Browse Source

Code cleanup

Signed-off-by: hemmer <915048+hemmer@users.noreply.github.com>
tags/v1.1.0^2
martin-lueders hemmer 5 years ago
parent
commit
fe50e81e5c
8 changed files with 94 additions and 257 deletions
  1. +20
    -37
      src/ABC.cpp
  2. +1
    -1
      src/DualAtenuverter.cpp
  3. +3
    -11
      src/EvenVCO.cpp
  4. +30
    -45
      src/Mixer.cpp
  5. +10
    -68
      src/Rampage.cpp
  6. +6
    -34
      src/SlewLimiter.cpp
  7. +24
    -0
      src/simd_input.hpp
  8. +0
    -61
      src/simd_mask.hpp

+ 20
- 37
src/ABC.cpp View File

@@ -1,17 +1,7 @@
#include "plugin.hpp" #include "plugin.hpp"
#include "simd_mask.hpp"
#include "simd_input.hpp"


#define MAX(a,b) (a>b)?a:b


/*
static float clip(float x) {
// Pade approximant of x/(1 + x^12)^(1/12)
const float limit = 1.16691853009184;
x = clamp(x, -limit, limit);
return (x + 1.45833*std::pow(x, 13) + 0.559028*std::pow(x, 25) + 0.0427035*std::pow(x, 37))
/ (1. + 1.54167*std::pow(x, 12) + 0.642361*std::pow(x, 24) + 0.0579909*std::pow(x, 36));
}
*/


static simd::float_4 clip4(simd::float_4 x) { static simd::float_4 clip4(simd::float_4 x) {
// Pade approximant of x/(1 + x^12)^(1/12) // Pade approximant of x/(1 + x^12)^(1/12)
@@ -67,8 +57,6 @@ struct ABC : Module {
NUM_LIGHTS NUM_LIGHTS
}; };


ChannelMask channelMask;



ABC() { ABC() {
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS);
@@ -79,24 +67,23 @@ struct ABC : Module {
} }






void process(const ProcessArgs &args) override { void process(const ProcessArgs &args) override {


simd::float_4 a1[4];
simd::float_4 b1[4];
simd::float_4 c1[4];
simd::float_4 a1[4] = {};
simd::float_4 b1[4] = {};
simd::float_4 c1[4] = {};
simd::float_4 out1[4]; simd::float_4 out1[4];


simd::float_4 a2[4];
simd::float_4 b2[4];
simd::float_4 c2[4];
simd::float_4 a2[4] = {};
simd::float_4 b2[4] = {};
simd::float_4 c2[4] = {};
simd::float_4 out2[4]; simd::float_4 out2[4];


int channels_1 = 1; int channels_1 = 1;
int channels_2 = 1; int channels_2 = 1;



memset(out1, 0, sizeof(out1));
memset(out2, 0, sizeof(out2));


// process upper section // process upper section


@@ -106,15 +93,15 @@ struct ABC : Module {
int channels_B1 = inputs[B1_INPUT].getChannels(); int channels_B1 = inputs[B1_INPUT].getChannels();
int channels_C1 = inputs[C1_INPUT].getChannels(); int channels_C1 = inputs[C1_INPUT].getChannels();


channels_1 = MAX(channels_1, channels_A1);
channels_1 = MAX(channels_1, channels_B1);
channels_1 = MAX(channels_1, channels_C1);
channels_1 = std::max(channels_1, channels_A1);
channels_1 = std::max(channels_1, channels_B1);
channels_1 = std::max(channels_1, channels_C1);


float mult_B1 = (2.f/5.f)*exponentialBipolar80Pade_5_4(params[B1_LEVEL_PARAM].getValue()); float mult_B1 = (2.f/5.f)*exponentialBipolar80Pade_5_4(params[B1_LEVEL_PARAM].getValue());
float mult_C1 = exponentialBipolar80Pade_5_4(params[C1_LEVEL_PARAM].getValue()); float mult_C1 = exponentialBipolar80Pade_5_4(params[C1_LEVEL_PARAM].getValue());


load_input(inputs[A1_INPUT], a1, channels_A1);
channelMask.apply(a1, channels_1);
if(inputs[A1_INPUT].isConnected()) load_input(inputs[A1_INPUT], a1, channels_A1);
else memset(a1, 0, sizeof(a1));


if(inputs[B1_INPUT].isConnected()) { if(inputs[B1_INPUT].isConnected()) {
load_input(inputs[B1_INPUT], b1, channels_B1); load_input(inputs[B1_INPUT], b1, channels_B1);
@@ -122,7 +109,6 @@ struct ABC : Module {
} else { } else {
for(int c=0; c<channels_1; c+=4) b1[c/4] = simd::float_4(5.f*mult_B1); for(int c=0; c<channels_1; c+=4) b1[c/4] = simd::float_4(5.f*mult_B1);
} }
channelMask.apply(b1, channels_1);


if(inputs[C1_INPUT].isConnected()) { if(inputs[C1_INPUT].isConnected()) {
load_input(inputs[C1_INPUT], c1, channels_C1); load_input(inputs[C1_INPUT], c1, channels_C1);
@@ -130,7 +116,6 @@ struct ABC : Module {
} else { } else {
for(int c=0; c<channels_1; c+=4) c1[c/4] = simd::float_4(10.f*mult_C1); for(int c=0; c<channels_1; c+=4) c1[c/4] = simd::float_4(10.f*mult_C1);
} }
channelMask.apply(c1, channels_1);


for(int c=0; c<channels_1; c+=4) out1[c/4] = clip4(a1[c/4] * b1[c/4] + c1[c/4]); for(int c=0; c<channels_1; c+=4) out1[c/4] = clip4(a1[c/4] * b1[c/4] + c1[c/4]);
} }
@@ -143,15 +128,15 @@ struct ABC : Module {
int channels_B2 = inputs[B2_INPUT].getChannels(); int channels_B2 = inputs[B2_INPUT].getChannels();
int channels_C2 = inputs[C2_INPUT].getChannels(); int channels_C2 = inputs[C2_INPUT].getChannels();


channels_2 = MAX(channels_2, channels_A2);
channels_2 = MAX(channels_2, channels_B2);
channels_2 = MAX(channels_2, channels_C2);
channels_2 = std::max(channels_2, channels_A2);
channels_2 = std::max(channels_2, channels_B2);
channels_2 = std::max(channels_2, channels_C2);


float mult_B2 = (2.f/5.f)*exponentialBipolar80Pade_5_4(params[B2_LEVEL_PARAM].getValue()); float mult_B2 = (2.f/5.f)*exponentialBipolar80Pade_5_4(params[B2_LEVEL_PARAM].getValue());
float mult_C2 = exponentialBipolar80Pade_5_4(params[C2_LEVEL_PARAM].getValue()); float mult_C2 = exponentialBipolar80Pade_5_4(params[C2_LEVEL_PARAM].getValue());


load_input(inputs[A2_INPUT], a2, channels_A2);
channelMask.apply(a2, channels_2);
if(inputs[A2_INPUT].isConnected()) load_input(inputs[A2_INPUT], a2, channels_A2);
else memset(a2, 0, sizeof(a2));


if(inputs[B2_INPUT].isConnected()) { if(inputs[B2_INPUT].isConnected()) {
load_input(inputs[B2_INPUT], b2, channels_B2); load_input(inputs[B2_INPUT], b2, channels_B2);
@@ -159,7 +144,6 @@ struct ABC : Module {
} else { } else {
for(int c=0; c<channels_2; c+=4) b2[c/4] = simd::float_4(5.f*mult_B2); for(int c=0; c<channels_2; c+=4) b2[c/4] = simd::float_4(5.f*mult_B2);
} }
channelMask.apply(b2, channels_2);


if(inputs[C2_INPUT].isConnected()) { if(inputs[C2_INPUT].isConnected()) {
load_input(inputs[C2_INPUT], c2, channels_C2); load_input(inputs[C2_INPUT], c2, channels_C2);
@@ -167,7 +151,6 @@ struct ABC : Module {
} else { } else {
for(int c=0; c<channels_2; c+=4) c2[c/4] = simd::float_4(10.f*mult_C2); for(int c=0; c<channels_2; c+=4) c2[c/4] = simd::float_4(10.f*mult_C2);
} }
channelMask.apply(c2, channels_2);


for(int c=0; c<channels_2; c+=4) out2[c/4] = clip4(a2[c/4] * b2[c/4] + c2[c/4]); for(int c=0; c<channels_2; c+=4) out2[c/4] = clip4(a2[c/4] * b2[c/4] + c2[c/4]);
}; };
@@ -180,7 +163,7 @@ struct ABC : Module {
} }
else { else {
for(int c=0; c<channels_1; c+=4) out2[c/4] += out1[c/4]; for(int c=0; c<channels_1; c+=4) out2[c/4] += out1[c/4];
channels_2 = MAX(channels_1, channels_2);
channels_2 = std::max(channels_1, channels_2);
} }


if (outputs[OUT2_OUTPUT].isConnected()) { if (outputs[OUT2_OUTPUT].isConnected()) {


+ 1
- 1
src/DualAtenuverter.cpp View File

@@ -1,5 +1,5 @@
#include "plugin.hpp" #include "plugin.hpp"
#include "simd_mask.hpp"
#include "simd_input.hpp"




struct DualAtenuverter : Module { struct DualAtenuverter : Module {


+ 3
- 11
src/EvenVCO.cpp View File

@@ -1,7 +1,6 @@
#include "plugin.hpp" #include "plugin.hpp"
#include "simd_mask.hpp"
#include "simd_input.hpp"


#define MAX(a,b) (a>b)?a:b


struct EvenVCO : Module { struct EvenVCO : Module {
enum ParamIds { enum ParamIds {
@@ -45,8 +44,6 @@ struct EvenVCO : Module {


dsp::RCFilter triFilter; dsp::RCFilter triFilter;


ChannelMask channelMask;

EvenVCO() { EvenVCO() {
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS); config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS);
configParam(OCTAVE_PARAM, -5.0, 4.0, 0.0, "Octave", "'", 0.5); configParam(OCTAVE_PARAM, -5.0, 4.0, 0.0, "Octave", "'", 0.5);
@@ -78,9 +75,8 @@ struct EvenVCO : Module {
int channels_pwm = inputs[PWM_INPUT].getChannels(); int channels_pwm = inputs[PWM_INPUT].getChannels();


int channels = 1; int channels = 1;
channels = MAX(channels, channels_pitch1);
channels = MAX(channels, channels_pitch2);
// channels = MAX(channels, channels_fm);
channels = std::max(channels, channels_pitch1);
channels = std::max(channels, channels_pitch2);


float pitch_0 = 1.f + std::round(params[OCTAVE_PARAM].getValue()) + params[TUNE_PARAM].getValue() / 12.f; float pitch_0 = 1.f + std::round(params[OCTAVE_PARAM].getValue()) + params[TUNE_PARAM].getValue() / 12.f;


@@ -90,19 +86,16 @@ struct EvenVCO : Module {


if(inputs[PITCH1_INPUT].isConnected()) { if(inputs[PITCH1_INPUT].isConnected()) {
load_input(inputs[PITCH1_INPUT], pitch_1, channels_pitch1); load_input(inputs[PITCH1_INPUT], pitch_1, channels_pitch1);
channelMask.apply(pitch_1, channels_pitch1);
for(int c=0; c<channels_pitch1; c+=4) pitch[c/4] += pitch_1[c/4]; for(int c=0; c<channels_pitch1; c+=4) pitch[c/4] += pitch_1[c/4];
} }


if(inputs[PITCH2_INPUT].isConnected()) { if(inputs[PITCH2_INPUT].isConnected()) {
load_input(inputs[PITCH2_INPUT], pitch_2, channels_pitch2); load_input(inputs[PITCH2_INPUT], pitch_2, channels_pitch2);
channelMask.apply(pitch_2, channels_pitch2);
for(int c=0; c<channels_pitch2; c+=4) pitch[c/4] += pitch_2[c/4]; for(int c=0; c<channels_pitch2; c+=4) pitch[c/4] += pitch_2[c/4];
} }


if(inputs[FM_INPUT].isConnected()) { if(inputs[FM_INPUT].isConnected()) {
load_input(inputs[FM_INPUT], pitch_fm, channels_fm); load_input(inputs[FM_INPUT], pitch_fm, channels_fm);
channelMask.apply(pitch_fm, channels_fm);
for(int c=0; c<channels_fm; c+=4) pitch[c/4] += pitch_fm[c/4] / 4.f; for(int c=0; c<channels_fm; c+=4) pitch[c/4] += pitch_fm[c/4] / 4.f;
} }


@@ -120,7 +113,6 @@ struct EvenVCO : Module {
if(inputs[PWM_INPUT].isConnected()) { if(inputs[PWM_INPUT].isConnected()) {
load_input(inputs[PWM_INPUT], pwm, channels_pwm); load_input(inputs[PWM_INPUT], pwm, channels_pwm);
channelMask.apply(pwm, channels_pwm);
for(int c=0; c<channels_pwm; c+=4) pw[c/4] += pwm[c/4] / 5.f; for(int c=0; c<channels_pwm; c+=4) pw[c/4] += pwm[c/4] / 5.f;
} }




+ 30
- 45
src/Mixer.cpp View File

@@ -1,10 +1,7 @@
#include "plugin.hpp" #include "plugin.hpp"
#include "simd_mask.hpp"
#include "simd_input.hpp"




#define MAX(a,b) (a>b)?a:b
#define MIN(a,b) (a<b)?a:b



struct Mixer : Module { struct Mixer : Module {
enum ParamIds { enum ParamIds {
@@ -29,13 +26,12 @@ struct Mixer : Module {
enum LightIds { enum LightIds {
OUT_POS_LIGHT, OUT_POS_LIGHT,
OUT_NEG_LIGHT, OUT_NEG_LIGHT,
OUT_BLUE_LIGHT,
NUM_LIGHTS NUM_LIGHTS
}; };


simd::float_4 minus_one; simd::float_4 minus_one;


ChannelMask channelMask;

Mixer() { Mixer() {
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS);
configParam(CH1_PARAM, 0.0, 1.0, 0.0, "Ch 1 level", "%", 0, 100); configParam(CH1_PARAM, 0.0, 1.0, 0.0, "Ch 1 level", "%", 0, 100);
@@ -44,71 +40,46 @@ struct Mixer : Module {
configParam(CH4_PARAM, 0.0, 1.0, 0.0, "Ch 4 level", "%", 0, 100); configParam(CH4_PARAM, 0.0, 1.0, 0.0, "Ch 4 level", "%", 0, 100);


minus_one = simd::float_4(-1.0f); minus_one = simd::float_4(-1.0f);


} }




void process(const ProcessArgs &args) override { void process(const ProcessArgs &args) override {


int i;

int channels1 = inputs[IN1_INPUT].getChannels(); int channels1 = inputs[IN1_INPUT].getChannels();
int channels2 = inputs[IN2_INPUT].getChannels(); int channels2 = inputs[IN2_INPUT].getChannels();
int channels3 = inputs[IN3_INPUT].getChannels(); int channels3 = inputs[IN3_INPUT].getChannels();
int channels4 = inputs[IN4_INPUT].getChannels(); int channels4 = inputs[IN4_INPUT].getChannels();


int out_channels = 1; int out_channels = 1;
out_channels = MAX(out_channels, channels1);
out_channels = MAX(out_channels, channels2);
out_channels = MAX(out_channels, channels3);
out_channels = MAX(out_channels, channels4);
out_channels = std::max(out_channels, channels1);
out_channels = std::max(out_channels, channels2);
out_channels = std::max(out_channels, channels3);
out_channels = std::max(out_channels, channels4);
simd::float_4 mult1 = simd::float_4(params[CH1_PARAM].getValue()); simd::float_4 mult1 = simd::float_4(params[CH1_PARAM].getValue());
simd::float_4 mult2 = simd::float_4(params[CH2_PARAM].getValue()); simd::float_4 mult2 = simd::float_4(params[CH2_PARAM].getValue());
simd::float_4 mult3 = simd::float_4(params[CH3_PARAM].getValue()); simd::float_4 mult3 = simd::float_4(params[CH3_PARAM].getValue());
simd::float_4 mult4 = simd::float_4(params[CH4_PARAM].getValue()); simd::float_4 mult4 = simd::float_4(params[CH4_PARAM].getValue());


simd::float_4 in1[4];
simd::float_4 in2[4];
simd::float_4 in3[4];
simd::float_4 in4[4];

simd::float_4 out[4]; simd::float_4 out[4];


out[0] = simd::float_4(0.f);
out[1] = simd::float_4(0.f);
out[2] = simd::float_4(0.f);
out[3] = simd::float_4(0.f);
memset(out, 0, sizeof(out));




if(inputs[IN1_INPUT].isConnected()) { if(inputs[IN1_INPUT].isConnected()) {
// this also loads some spurious channels into in1[]
for(int c=0; c<channels1; c+=4) in1[c/4] = simd::float_4::load(inputs[IN1_INPUT].getVoltages(c)) * mult1;

for(i=0; i<channels1/4; i++) out[i] += in1[i]; // add only "real" channels.
out[i] += simd::float_4(_mm_and_ps(in1[i].v, channelMask[channels1-4*i].v)); // make sure we zero out spurious channels
for(int c=0; c<channels1; c+=4) out[c/4] += simd::float_4::load(inputs[IN1_INPUT].getVoltages(c)) * mult1;
} }
if(inputs[IN2_INPUT].isConnected()) { if(inputs[IN2_INPUT].isConnected()) {
for(int c=0; c<channels2; c+=4) in2[c/4] = simd::float_4::load(inputs[IN2_INPUT].getVoltages(c)) * mult2;

for(i=0; i<channels2/4; i++) out[i] += in2[i];
out[i] += simd::float_4(_mm_and_ps(in2[i].v, channelMask[channels2-4*i].v));
for(int c=0; c<channels2; c+=4) out[c/4] += simd::float_4::load(inputs[IN2_INPUT].getVoltages(c)) * mult2;
} }


if(inputs[IN3_INPUT].isConnected()) { if(inputs[IN3_INPUT].isConnected()) {
for(int c=0; c<channels3; c+=4) in3[c/4] = simd::float_4::load(inputs[IN3_INPUT].getVoltages(c)) * mult3;

for(i=0; i<channels3/4; i++) out[i] += in3[i];
out[i] += simd::float_4(_mm_and_ps(in3[i].v, channelMask[channels3-4*i].v));
for(int c=0; c<channels3; c+=4) out[c/4] += simd::float_4::load(inputs[IN3_INPUT].getVoltages(c)) * mult3;
} }


if(inputs[IN4_INPUT].isConnected()) { if(inputs[IN4_INPUT].isConnected()) {
for(int c=0; c<channels4; c+=4) in4[c/4] = simd::float_4::load(inputs[IN4_INPUT].getVoltages(c)) * mult4;

for(i=0; i<channels4/4; i++) out[i] += in4[i];
out[i] += simd::float_4(_mm_and_ps(in4[i].v, channelMask[channels4-4*i].v));
for(int c=0; c<channels4; c+=4) out[c/4] += simd::float_4::load(inputs[IN4_INPUT].getVoltages(c)) * mult4;
} }




@@ -120,10 +91,24 @@ struct Mixer : Module {
out[c / 4] *= minus_one; out[c / 4] *= minus_one;
out[c / 4].store(outputs[OUT2_OUTPUT].getVoltages(c)); out[c / 4].store(outputs[OUT2_OUTPUT].getVoltages(c));
} }
/*
lights[OUT_POS_LIGHT].setSmoothBrightness(out / 5.f, args.sampleTime);
lights[OUT_NEG_LIGHT].setSmoothBrightness(-out / 5.f, args.sampleTime);
*/

if(out_channels==1) {
float light = outputs[OUT1_OUTPUT].getVoltage();
lights[OUT_POS_LIGHT].setSmoothBrightness(light / 5.f, args.sampleTime);
lights[OUT_NEG_LIGHT].setSmoothBrightness(-light / 5.f, args.sampleTime);
} else
{
float light = 0.0f;
for(int c=0; c<out_channels; c++) {
float tmp = outputs[OUT1_OUTPUT].getVoltage(c);
light += tmp*tmp;
}
light = sqrt(light);
lights[OUT_POS_LIGHT].setBrightness(0.0f);
lights[OUT_NEG_LIGHT].setBrightness(0.0f);
lights[OUT_BLUE_LIGHT].setSmoothBrightness(light / 5.f, args.sampleTime);
}
} }
}; };


@@ -152,7 +137,7 @@ struct MixerWidget : ModuleWidget {
addOutput(createOutput<PJ301MPort>(Vec(7, 324), module, Mixer::OUT1_OUTPUT)); addOutput(createOutput<PJ301MPort>(Vec(7, 324), module, Mixer::OUT1_OUTPUT));
addOutput(createOutput<PJ301MPort>(Vec(43, 324), module, Mixer::OUT2_OUTPUT)); addOutput(createOutput<PJ301MPort>(Vec(43, 324), module, Mixer::OUT2_OUTPUT));


addChild(createLight<MediumLight<GreenRedLight>>(Vec(32.7, 310), module, Mixer::OUT_POS_LIGHT));
addChild(createLight<MediumLight<RedGreenBlueLight>>(Vec(32.7, 310), module, Mixer::OUT_POS_LIGHT));
} }
}; };




+ 10
- 68
src/Rampage.cpp View File

@@ -1,19 +1,17 @@
#include "plugin.hpp" #include "plugin.hpp"
#include "simd_mask.hpp"
#include "simd_input.hpp"
#include "PulseGenerator_4.hpp" #include "PulseGenerator_4.hpp"


#define MAX(a,b) a>b?a:b



static simd::float_4 shapeDelta(simd::float_4 delta, simd::float_4 tau, float shape) { static simd::float_4 shapeDelta(simd::float_4 delta, simd::float_4 tau, float shape) {
simd::float_4 lin = simd::sgn(delta) * 10.f / tau; simd::float_4 lin = simd::sgn(delta) * 10.f / tau;
if (shape < 0.f) { if (shape < 0.f) {
simd::float_4 log = simd::sgn(delta) * simd::float_4(40.f) / tau / (simd::fabs(delta) + simd::float_4(1.f)); simd::float_4 log = simd::sgn(delta) * simd::float_4(40.f) / tau / (simd::fabs(delta) + simd::float_4(1.f));
return crossfade_4(lin, log, -shape * 0.95f);
return simd::crossfade(lin, log, -shape * 0.95f);
} }
else { else {
simd::float_4 exp = M_E * delta / tau; simd::float_4 exp = M_E * delta / tau;
return crossfade_4(lin, exp, shape * 0.90f);
return simd::crossfade(lin, exp, shape * 0.90f);
} }
} }


@@ -76,10 +74,6 @@ struct Rampage : Module {
NUM_LIGHTS NUM_LIGHTS
}; };


/*
float out[2] = {};
bool gate[2] = {};
*/


simd::float_4 out[2][4]; simd::float_4 out[2][4];
simd::float_4 gate[2][4]; // use simd __m128 logic instead of bool simd::float_4 gate[2][4]; // use simd __m128 logic instead of bool
@@ -87,7 +81,7 @@ struct Rampage : Module {
dsp::TSchmittTrigger<simd::float_4> trigger_4[2][4]; dsp::TSchmittTrigger<simd::float_4> trigger_4[2][4];
PulseGenerator_4 endOfCyclePulse[2][4]; PulseGenerator_4 endOfCyclePulse[2][4];


ChannelMask channelMask;
// ChannelMask channelMask;


Rampage() { Rampage() {
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS);
@@ -121,15 +115,15 @@ struct Rampage : Module {
channels_in[part] = inputs[IN_A_INPUT+part].getChannels(); channels_in[part] = inputs[IN_A_INPUT+part].getChannels();
channels_trig[part] = inputs[TRIGG_A_INPUT+part].getChannels(); channels_trig[part] = inputs[TRIGG_A_INPUT+part].getChannels();
channels[part] = MAX(channels_in[part], channels_trig[part]);
channels[part] = MAX(1, channels[part]);
channels[part] = std::max(channels_in[part], channels_trig[part]);
channels[part] = std::max(1, channels[part]);


outputs[OUT_A_OUTPUT+part].setChannels(channels[part]); outputs[OUT_A_OUTPUT+part].setChannels(channels[part]);
outputs[RISING_A_OUTPUT+part].setChannels(channels[part]); outputs[RISING_A_OUTPUT+part].setChannels(channels[part]);
outputs[FALLING_A_OUTPUT+part].setChannels(channels[part]); outputs[FALLING_A_OUTPUT+part].setChannels(channels[part]);
outputs[EOC_A_OUTPUT+part].setChannels(channels[part]); outputs[EOC_A_OUTPUT+part].setChannels(channels[part]);
} }
int channels_max = MAX(channels[0], channels[1]);
int channels_max = std::max(channels[0], channels[1]);


outputs[COMPARATOR_OUTPUT].setChannels(channels_max); outputs[COMPARATOR_OUTPUT].setChannels(channels_max);
outputs[MIN_OUTPUT].setChannels(channels_max); outputs[MIN_OUTPUT].setChannels(channels_max);
@@ -174,14 +168,14 @@ struct Rampage : Module {


if(inputs[IN_A_INPUT + part].isConnected()) { if(inputs[IN_A_INPUT + part].isConnected()) {
load_input(inputs[IN_A_INPUT + part], in, channels_in[part]); load_input(inputs[IN_A_INPUT + part], in, channels_in[part]);
channelMask.apply_all(in, channels_in[part]);
// channelMask.apply_all(in, channels_in[part]);
} else { } else {
memset(in, 0, sizeof(in)); memset(in, 0, sizeof(in));
} }


if(inputs[TRIGG_A_INPUT + part].isConnected()) { if(inputs[TRIGG_A_INPUT + part].isConnected()) {
add_input(inputs[TRIGG_A_INPUT + part], in_trig, channels_trig[part]); add_input(inputs[TRIGG_A_INPUT + part], in_trig, channels_trig[part]);
channelMask.apply_all(in_trig, channels_trig[part]);
// channelMask.apply_all(in_trig, channels_trig[part]);
} }


if(inputs[EXP_CV_A_INPUT + part].isConnected()) { if(inputs[EXP_CV_A_INPUT + part].isConnected()) {
@@ -195,7 +189,7 @@ struct Rampage : Module {
add_input(inputs[RISE_CV_A_INPUT + part], riseCV, channels[part]); add_input(inputs[RISE_CV_A_INPUT + part], riseCV, channels[part]);
add_input(inputs[FALL_CV_A_INPUT + part], fallCV, channels[part]); add_input(inputs[FALL_CV_A_INPUT + part], fallCV, channels[part]);
add_input(inputs[CYCLE_A_INPUT+part], cycle, channels[part]); add_input(inputs[CYCLE_A_INPUT+part], cycle, channels[part]);
channelMask.apply(cycle, channels[part]); // check whether this is necessary
// channelMask.apply(cycle, channels[part]); // check whether this is necessary


// start processing: // start processing:
@@ -272,61 +266,9 @@ struct Rampage : Module {
lights[OUT_A_LIGHT + 3*part+2].setBrightness(10.0f); lights[OUT_A_LIGHT + 3*part+2].setBrightness(10.0f);
} }


// Integrator

// bool rising = false;
// bool falling = false;

/*
if (delta > 0) {
// Rise
float riseCv = params[RISE_A_PARAM + c].getValue() - inputs[EXP_CV_A_INPUT + c].getVoltage() / 10.0 + inputs[RISE_CV_A_INPUT + c].getVoltage() / 10.0;
riseCv = clamp(riseCv, 0.0f, 1.0f);
float rise = minTime * std::pow(2.0, riseCv * 10.0);
out[c] += shapeDelta(delta, rise, shape) * args.sampleTime;
rising = (in - out[c] > 1e-3);
if (!rising) {
gate[c] = false;
}
}
else if (delta < 0) {
// Fall
float fallCv = params[FALL_A_PARAM + c].getValue() - inputs[EXP_CV_A_INPUT + c].getVoltage() / 10.0 + inputs[FALL_CV_A_INPUT + c].getVoltage() / 10.0;
fallCv = clamp(fallCv, 0.0f, 1.0f);
float fall = minTime * std::pow(2.0, fallCv * 10.0);
out[c] += shapeDelta(delta, fall, shape) * args.sampleTime;
falling = (in - out[c] < -1e-3);
if (!falling) {
// End of cycle, check if we should turn the gate back on (cycle mode)
endOfCyclePulse[c].trigger(1e-3);
if (params[CYCLE_A_PARAM + c].getValue() * 10.0 + inputs[CYCLE_A_INPUT + c].getVoltage() >= 4.0) {
gate[c] = true;
}
}
}
else {
gate[c] = false;
}

if (!rising && !falling) {
out[c] = in;
}
*/

// outputs[RISING_A_OUTPUT + part].setVoltage((rising ? 10.0 : 0.0));
// outputs[FALLING_A_OUTPUT + part].setVoltage((falling ? 10.0 : 0.0));
// lights[RISING_A_LIGHT + part].setSmoothBrightness(rising ? 1.0 : 0.0, args.sampleTime);
// lights[FALLING_A_LIGHT + part].setSmoothBrightness(falling ? 1.0 : 0.0, args.sampleTime);
// outputs[EOC_A_OUTPUT + part].setVoltage((endOfCyclePulse[c].process(args.sampleTime) ? 10.0 : 0.0));
// outputs[OUT_A_OUTPUT + part].setVoltage(out[c]);
// lights[OUT_A_LIGHT + part].setSmoothBrightness(out[c] / 10.0, args.sampleTime);


} // for (int part, ... ) } // for (int part, ... )





// Logic // Logic
float balance = params[BALANCE_PARAM].getValue(); float balance = params[BALANCE_PARAM].getValue();




+ 6
- 34
src/SlewLimiter.cpp View File

@@ -1,5 +1,5 @@
#include "plugin.hpp" #include "plugin.hpp"
#include "simd_mask.hpp"
#include "simd_input.hpp"




struct SlewLimiter : Module { struct SlewLimiter : Module {
@@ -21,8 +21,6 @@ struct SlewLimiter : Module {
}; };


simd::float_4 out[4]; simd::float_4 out[4];
ChannelMask channelMask;



SlewLimiter() { SlewLimiter() {
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS); config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS);
@@ -42,7 +40,7 @@ struct SlewLimiter : Module {
int channels = inputs[IN_INPUT].getChannels(); int channels = inputs[IN_INPUT].getChannels();




// minimum and maximum slopes in volts per second
// minimum and std::maximum slopes in volts per second
const float slewMin = 0.1; const float slewMin = 0.1;
const float slewMax = 10000.f; const float slewMax = 10000.f;
// Amount of extra slew per voltage difference // Amount of extra slew per voltage difference
@@ -55,9 +53,9 @@ struct SlewLimiter : Module {


outputs[OUT_OUTPUT].setChannels(channels); outputs[OUT_OUTPUT].setChannels(channels);


load_input(inputs[IN_INPUT], in, channels); channelMask.apply(in, channels);
load_input(inputs[RISE_INPUT], riseCV, channels); channelMask.apply(riseCV, channels);
load_input(inputs[FALL_INPUT], fallCV, channels); channelMask.apply(fallCV, channels);
load_input(inputs[IN_INPUT], in, channels);
load_input(inputs[RISE_INPUT], riseCV, channels);
load_input(inputs[FALL_INPUT], fallCV, channels);


for(int c=0; c<channels; c+=4) { for(int c=0; c<channels; c+=4) {
riseCV[c/4] += param_rise; riseCV[c/4] += param_rise;
@@ -73,38 +71,12 @@ struct SlewLimiter : Module {


simd::float_4 slew = slewMax * simd::pow(slewMin / slewMax, rateCV); simd::float_4 slew = slewMax * simd::pow(slewMin / slewMax, rateCV);


out[c/4] += slew * crossfade_4(simd::float_4(1.0f), shapeScale*delta, shape) * args.sampleTime;
out[c/4] += slew * simd::crossfade(simd::float_4(1.0f), shapeScale*delta, shape) * args.sampleTime;
out[c/4] = ifelse( delta_gt_0 & (out[c/4]>in[c/4]), in[c/4], out[c/4]); out[c/4] = ifelse( delta_gt_0 & (out[c/4]>in[c/4]), in[c/4], out[c/4]);
out[c/4] = ifelse( delta_lt_0 & (out[c/4]<in[c/4]), in[c/4], out[c/4]); out[c/4] = ifelse( delta_lt_0 & (out[c/4]<in[c/4]), in[c/4], out[c/4]);


out[c/4].store(outputs[OUT_OUTPUT].getVoltages(c)); out[c/4].store(outputs[OUT_OUTPUT].getVoltages(c));
} }

/*
for(int c=0; c<channels; c++) {

float in = inputs[IN_INPUT].getVoltage(c);

// Rise
if (in > out[c]) {
float rise = inputs[RISE_INPUT].getPolyVoltage(c) / 10.f + param_rise;
float slew = slewMax * std::pow(slewMin / slewMax, rise);
out[c] += slew * crossfade(1.f, shapeScale * (in - out[c]), shape) * args.sampleTime;
if (out[c] > in)
out[c] = in;
}
// Fall
else if (in < out[c]) {
float fall = inputs[FALL_INPUT].getPolyVoltage(c) / 10.f + param_fall;
float slew = slewMax * std::pow(slewMin / slewMax, fall);
out[c] -= slew * crossfade(1.f, shapeScale * (out[c] - in), shape) * args.sampleTime;
if (out[c] < in)
out[c] = in;
}

}
outputs[OUT_OUTPUT].writeVoltages(out);
*/
} }
}; };




+ 24
- 0
src/simd_input.hpp View File

@@ -0,0 +1,24 @@
#pragma once

#include "rack.hpp"



inline void load_input(Input &in, simd::float_4 *v, int numChannels) {
int inChannels = in.getChannels();
if(inChannels==1) {
for(int i=0; i<numChannels; i++) v[i] = simd::float_4(in.getVoltage());
} else {
for(int c=0; c<inChannels; c+=4) v[c/4] = simd::float_4::load(in.getVoltages(c));
}
}

inline void add_input(Input &in, simd::float_4 *v, int numChannels) {
int inChannels = in.getChannels();
if(inChannels==1) {
for(int i=0; i<numChannels; i++) v[i] += simd::float_4(in.getVoltage());
} else {
for(int c=0; c<inChannels; c+=4) v[c/4] += simd::float_4::load(in.getVoltages(c));
}
}


+ 0
- 61
src/simd_mask.hpp View File

@@ -1,61 +0,0 @@
#pragma once

#include "rack.hpp"


struct ChannelMask {

rack::simd::float_4 mask[4];

ChannelMask() {
__m128i tmp = _mm_cmpeq_epi16(_mm_set_epi32(0,0,0,0),_mm_set_epi32(0,0,0,0));
for(int i=0; i<4; i++) {
mask[3-i] = simd::float_4(_mm_castsi128_ps(tmp));
tmp = _mm_srli_si128(tmp, 4);
}
};

~ChannelMask() {};

inline const rack::simd::float_4 operator[](const int c) {return mask[c];}

inline void apply(simd::float_4 *vec, int numChannels) {
int c=numChannels/4;
if(c<4) vec[c] = vec[c]&mask[numChannels-4*c];
}

inline void apply_all(simd::float_4 *vec, int numChannels) {
int c=numChannels/4;
if(c<4) {
vec[c] = vec[c]&mask[numChannels-4*c];
for(int i=c+1; i<4; i++) vec[i] = simd::float_4::zero();
}
}


};

inline void load_input(Input &in, simd::float_4 *v, int numChannels) {
int inChannels = in.getChannels();
if(inChannels==1) {
for(int i=0; i<numChannels; i++) v[i] = simd::float_4(in.getVoltage());
} else {
for(int c=0; c<inChannels; c+=4) v[c/4] = simd::float_4::load(in.getVoltages(c));
}
}

inline void add_input(Input &in, simd::float_4 *v, int numChannels) {
int inChannels = in.getChannels();
if(inChannels==1) {
for(int i=0; i<numChannels; i++) v[i] += simd::float_4(in.getVoltage());
} else {
for(int c=0; c<inChannels; c+=4) v[c/4] += simd::float_4::load(in.getVoltages(c));
}
}

inline simd::float_4 crossfade_4(simd::float_4 a, simd::float_4 b, simd::float_4 p) {
return a + (b - a) * p;
}

Loading…
Cancel
Save