|
|
@@ -1,6 +1,7 @@ |
|
|
|
#include "plugin.hpp" |
|
|
|
#include "ChowDSP.hpp" |
|
|
|
|
|
|
|
using simd::float_4; |
|
|
|
|
|
|
|
// references: |
|
|
|
// * "REDUCING THE ALIASING OF NONLINEAR WAVESHAPING USING CONTINUOUS-TIME CONVOLUTION" (https://www.dafx.de/paper-archive/2016/dafxpapers/20-DAFx-16_paper_41-PN.pdf) |
|
|
@@ -8,46 +9,27 @@ |
|
|
|
// * https://ccrma.stanford.edu/~jatin/Notebooks/adaa.html |
|
|
|
// * Pony waveshape https://www.desmos.com/calculator/1kvahyl4ti |
|
|
|
|
|
|
|
template<typename T> |
|
|
|
class FoldStage1 { |
|
|
|
public: |
|
|
|
|
|
|
|
float process(float x, float xt) { |
|
|
|
float y; |
|
|
|
T process(T x, T xt) { |
|
|
|
T y = simd::ifelse(simd::abs(x - xPrev) < 1e-5, |
|
|
|
f(0.5 * (xPrev + x), xt), |
|
|
|
(F(x, xt) - F(xPrev, xt)) / (x - xPrev)); |
|
|
|
|
|
|
|
if (fabs(x - xPrev) < 1e-5) { |
|
|
|
y = f(0.5 * (xPrev + x), xt); |
|
|
|
} |
|
|
|
else { |
|
|
|
y = (F(x, xt) - F(xPrev, xt)) / (x - xPrev); |
|
|
|
} |
|
|
|
xPrev = x; |
|
|
|
return y; |
|
|
|
} |
|
|
|
|
|
|
|
// xt - threshold x |
|
|
|
static float f(float x, float xt) { |
|
|
|
if (x > xt) { |
|
|
|
return +5 * xt - 4 * x; |
|
|
|
} |
|
|
|
else if (x < -xt) { |
|
|
|
return -5 * xt - 4 * x; |
|
|
|
} |
|
|
|
else { |
|
|
|
return x; |
|
|
|
} |
|
|
|
static T f(T x, T xt) { |
|
|
|
return simd::ifelse(x > xt, +5 * xt - 4 * x, simd::ifelse(x < -xt, -5 * xt - 4 * x, x)); |
|
|
|
} |
|
|
|
|
|
|
|
static float F(float x, float xt) { |
|
|
|
if (x > xt) { |
|
|
|
return 5 * xt * x - 2 * x * x - 2.5 * xt * xt; |
|
|
|
} |
|
|
|
else if (x < -xt) { |
|
|
|
return -5 * xt * x - 2 * x * x - 2.5 * xt * xt; |
|
|
|
|
|
|
|
} |
|
|
|
else { |
|
|
|
return x * x / 2.f; |
|
|
|
} |
|
|
|
static T F(T x, T xt) { |
|
|
|
return simd::ifelse(x > xt, 5 * xt * x - 2 * x * x - 2.5 * xt * xt, |
|
|
|
simd::ifelse(x < -xt, -5 * xt * x - 2 * x * x - 2.5 * xt * xt, x * x / 2.f)); |
|
|
|
} |
|
|
|
|
|
|
|
void reset() { |
|
|
@@ -55,55 +37,29 @@ public: |
|
|
|
} |
|
|
|
|
|
|
|
private: |
|
|
|
float xPrev = 0.f; |
|
|
|
T xPrev = 0.f; |
|
|
|
}; |
|
|
|
|
|
|
|
template<typename T> |
|
|
|
class FoldStage2 { |
|
|
|
public: |
|
|
|
float process(float x) { |
|
|
|
float y; |
|
|
|
|
|
|
|
if (fabs(x - xPrev) < 1e-5) { |
|
|
|
y = f(0.5 * (xPrev + x)); |
|
|
|
} |
|
|
|
else { |
|
|
|
y = (F(x) - F(xPrev)) / (x - xPrev); |
|
|
|
} |
|
|
|
T process(T x) { |
|
|
|
const T y = simd::ifelse(simd::abs(x - xPrev) < 1e-5, f(0.5 * (xPrev + x)), (F(x) - F(xPrev)) / (x - xPrev)); |
|
|
|
xPrev = x; |
|
|
|
return y; |
|
|
|
} |
|
|
|
|
|
|
|
static float f(float x) { |
|
|
|
if (-(x + 2) > c) { |
|
|
|
return c; |
|
|
|
} |
|
|
|
else if (x < -1) { |
|
|
|
return -(x + 2); |
|
|
|
} |
|
|
|
else if (x < 1) { |
|
|
|
return x; |
|
|
|
} |
|
|
|
else if (-x + 2 > -c) { |
|
|
|
return -x + 2; |
|
|
|
} |
|
|
|
else { |
|
|
|
return -c; |
|
|
|
} |
|
|
|
static T f(T x) { |
|
|
|
return simd::ifelse(-(x + 2) > c, c, simd::ifelse(x < -1, -(x + 2), simd::ifelse(x < 1, x, simd::ifelse(-x + 2 > -c, -x + 2, -c)))); |
|
|
|
} |
|
|
|
|
|
|
|
static float F(float x) { |
|
|
|
if (x < 0) { |
|
|
|
return F(-x); |
|
|
|
} |
|
|
|
else if (x < 1) { |
|
|
|
return x * x * 0.5; |
|
|
|
} |
|
|
|
else if (x < 2 + c) { |
|
|
|
return 2 * x * (1.f - x * 0.25f) - 1.f; |
|
|
|
} |
|
|
|
else { |
|
|
|
return 2 * (2 + c) * (1 - (2 + c) * 0.25f) - 1.f - c * (x - 2 - c); |
|
|
|
} |
|
|
|
static T F(T x) { |
|
|
|
return simd::ifelse(x > 0, F_signed(x), F_signed(-x)); |
|
|
|
} |
|
|
|
|
|
|
|
static T F_signed(T x) { |
|
|
|
return simd::ifelse(x < 1, x * x * 0.5, simd::ifelse(x < 2.f + c, 2.f * x * (1.f - x * 0.25f) - 1.f, |
|
|
|
2.f * (2.f + c) * (1.f - (2.f + c) * 0.25f) - 1.f - c * (x - 2.f - c))); |
|
|
|
} |
|
|
|
|
|
|
|
void reset() { |
|
|
@@ -111,8 +67,8 @@ public: |
|
|
|
} |
|
|
|
|
|
|
|
private: |
|
|
|
float xPrev = 0.f; |
|
|
|
static constexpr float c = 0.1; |
|
|
|
T xPrev = 0.f; |
|
|
|
static constexpr float c = 0.1f; |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
@@ -148,10 +104,10 @@ struct PonyVCO : Module { |
|
|
|
}; |
|
|
|
|
|
|
|
float range[4] = {8.f, 1.f, 1.f / 12.f, 10.f}; |
|
|
|
chowdsp::VariableOversampling<6> oversampler; // uses a 2*6=12th order Butterworth filter |
|
|
|
chowdsp::VariableOversampling<6, float_4> oversampler[4]; // uses a 2*6=12th order Butterworth filter |
|
|
|
int oversamplingIndex = 1; // default is 2^oversamplingIndex == x2 oversampling |
|
|
|
|
|
|
|
dsp::RCFilter blockTZFMDCFilter; |
|
|
|
dsp::TRCFilter<float_4> blockTZFMDCFilter[4]; |
|
|
|
bool blockTZFMDC = true; |
|
|
|
|
|
|
|
// hardware doesn't limit PW but some user might want to (to 5%->95%) |
|
|
@@ -160,10 +116,10 @@ struct PonyVCO : Module { |
|
|
|
// hardware has DC for non-50% duty cycle, optionally add/remove it |
|
|
|
bool removePulseDC = true; |
|
|
|
|
|
|
|
dsp::SchmittTrigger syncTrigger; |
|
|
|
dsp::TSchmittTrigger<float_4> syncTrigger[4]; |
|
|
|
|
|
|
|
FoldStage1 stage1; |
|
|
|
FoldStage2 stage2; |
|
|
|
FoldStage1<float_4> stage1[4]; |
|
|
|
FoldStage2<float_4> stage2[4]; |
|
|
|
|
|
|
|
PonyVCO() { |
|
|
|
config(PARAMS_LEN, INPUTS_LEN, OUTPUTS_LEN, LIGHTS_LEN); |
|
|
@@ -191,22 +147,21 @@ struct PonyVCO : Module { |
|
|
|
|
|
|
|
void onSampleRateChange() override { |
|
|
|
float sampleRate = APP->engine->getSampleRate(); |
|
|
|
blockTZFMDCFilter.setCutoffFreq(5.0 / sampleRate); |
|
|
|
oversampler.setOversamplingIndex(oversamplingIndex); |
|
|
|
oversampler.reset(sampleRate); |
|
|
|
for (int c = 0; c < 4; c++) { |
|
|
|
blockTZFMDCFilter[c].setCutoffFreq(5.0 / sampleRate); |
|
|
|
oversampler[c].setOversamplingIndex(oversamplingIndex); |
|
|
|
oversampler[c].reset(sampleRate); |
|
|
|
|
|
|
|
stage1.reset(); |
|
|
|
stage2.reset(); |
|
|
|
stage1[c].reset(); |
|
|
|
stage2[c].reset(); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// implementation taken from "Alias-Suppressed Oscillators Based on Differentiated Polynomial Waveforms", |
|
|
|
// also the notes from Surge Synthesier repo: |
|
|
|
// https://github.com/surge-synthesizer/surge/blob/09f1ec8e103265bef6fc0d8a0fc188238197bf8c/src/common/dsp/oscillators/ModernOscillator.cpp#L19 |
|
|
|
// Calculation is performed at double precision, as the differencing equations appeared to work poorly with only float. |
|
|
|
|
|
|
|
double phase = 0.0; // phase at current (sub)sample |
|
|
|
double phases[3] = {}; // phase as extrapolated to the current and two previous samples |
|
|
|
double sawBuffer[3] = {}, sawOffsetBuff[3] = {}, triBuffer[3] = {}; // buffers for storing the terms in the difference equation |
|
|
|
float_4 phase[4] = {}; // phase at current (sub)sample |
|
|
|
|
|
|
|
void process(const ProcessArgs& args) override { |
|
|
|
|
|
|
@@ -216,130 +171,161 @@ struct PonyVCO : Module { |
|
|
|
const Waveform waveform = (Waveform) params[WAVE_PARAM].getValue(); |
|
|
|
const float mult = lfoMode ? 1.0 : dsp::FREQ_C4; |
|
|
|
const float baseFreq = std::pow(2, (int)(params[OCT_PARAM].getValue() - 3)) * mult; |
|
|
|
const int oversamplingRatio = lfoMode ? 1 : oversampler.getOversamplingRatio(); |
|
|
|
const float timbre = clamp(params[TIMBRE_PARAM].getValue() + inputs[TIMBRE_INPUT].getVoltage() / 10.f, 0.f, 1.f); |
|
|
|
|
|
|
|
float tzfmVoltage = inputs[TZFM_INPUT].getVoltage(); |
|
|
|
if (blockTZFMDC) { |
|
|
|
blockTZFMDCFilter.process(tzfmVoltage); |
|
|
|
tzfmVoltage = blockTZFMDCFilter.highpass(); |
|
|
|
} |
|
|
|
const int oversamplingRatio = lfoMode ? 1 : oversampler[0].getOversamplingRatio(); |
|
|
|
|
|
|
|
const double pitch = inputs[VOCT_INPUT].getVoltage() + params[FREQ_PARAM].getValue() * range[rangeIndex]; |
|
|
|
const double freq = baseFreq * simd::pow(2.f, pitch); |
|
|
|
const double deltaBasePhase = clamp(freq * args.sampleTime / oversamplingRatio, -0.5f, 0.5f); |
|
|
|
// denominator for the second-order FD |
|
|
|
const double denominator = 0.25 / (deltaBasePhase * deltaBasePhase); |
|
|
|
// not clamped, but _total_ phase treated later with floor/ceil |
|
|
|
const double deltaFMPhase = freq * tzfmVoltage * args.sampleTime / oversamplingRatio; |
|
|
|
|
|
|
|
float pw = timbre; |
|
|
|
if (limitPW) { |
|
|
|
pw = clamp(pw, 0.05, 0.95); |
|
|
|
} |
|
|
|
// pulsewave waveform doesn't have DC even for non 50% duty cycles, but Befaco team would like the option |
|
|
|
// for it to be added back in for hardware compatibility reasons |
|
|
|
const float pulseDCOffset = (!removePulseDC) * 2.f * (0.5f - pw); |
|
|
|
|
|
|
|
// hard sync |
|
|
|
if (syncTrigger.process(inputs[SYNC_INPUT].getVoltage())) { |
|
|
|
// hardware waveform is actually cos, so pi/2 phase offset is required |
|
|
|
// - variable phase is defined on [0, 1] rather than [0, 2pi] so pi/2 -> 0.25 |
|
|
|
phase = (waveform == WAVE_SIN) ? 0.25f : 0.f; |
|
|
|
} |
|
|
|
// number of active polyphony engines (must be at least 1) |
|
|
|
const int channels = std::max({inputs[TZFM_INPUT].getChannels(), inputs[VOCT_INPUT].getChannels(), inputs[TIMBRE_INPUT].getChannels(), 1}); |
|
|
|
|
|
|
|
float* osBuffer = oversampler.getOSBuffer(); |
|
|
|
for (int i = 0; i < oversamplingRatio; ++i) { |
|
|
|
for (int c = 0; c < channels; c += 4) { |
|
|
|
const float_4 timbre = simd::clamp(params[TIMBRE_PARAM].getValue() + inputs[TIMBRE_INPUT].getPolyVoltageSimd<float_4>(c) / 10.f, 0.f, 1.f); |
|
|
|
|
|
|
|
phase += deltaBasePhase + deltaFMPhase; |
|
|
|
if (phase > 1.f) { |
|
|
|
phase -= floor(phase); |
|
|
|
float_4 tzfmVoltage = inputs[TZFM_INPUT].getPolyVoltageSimd<float_4>(c); |
|
|
|
if (blockTZFMDC) { |
|
|
|
blockTZFMDCFilter[c / 4].process(tzfmVoltage); |
|
|
|
tzfmVoltage = blockTZFMDCFilter[c / 4].highpass(); |
|
|
|
} |
|
|
|
else if (phase < 0.f) { |
|
|
|
phase += -ceil(phase) + 1; |
|
|
|
|
|
|
|
const float_4 pitch = inputs[VOCT_INPUT].getPolyVoltageSimd<float_4>(c) + params[FREQ_PARAM].getValue() * range[rangeIndex]; |
|
|
|
const float_4 freq = baseFreq * simd::pow(2.f, pitch); |
|
|
|
const float_4 deltaBasePhase = simd::clamp(freq * args.sampleTime / oversamplingRatio, -0.5f, 0.5f); |
|
|
|
// floating point arithmetic doesn't work well at low frequencies, specifically because the finite difference denominator |
|
|
|
// becomes tiny - we check for that scenario and use naive / 1st order waveforms in that frequency regime (as aliasing isn't |
|
|
|
// a problem there). With no oversampling, at 44100Hz, the threshold frequency is 44.1Hz. |
|
|
|
const float_4 lowFreqRegime = simd::abs(deltaBasePhase) < 1e-3; |
|
|
|
|
|
|
|
// 1 / denominator for the second-order FD |
|
|
|
const float_4 denominatorInv = 0.25 / (deltaBasePhase * deltaBasePhase); |
|
|
|
// not clamped, but _total_ phase treated later with floor/ceil |
|
|
|
const float_4 deltaFMPhase = freq * tzfmVoltage * args.sampleTime / oversamplingRatio; |
|
|
|
|
|
|
|
float_4 pw = timbre; |
|
|
|
if (limitPW) { |
|
|
|
pw = clamp(pw, 0.05, 0.95); |
|
|
|
} |
|
|
|
// pulsewave waveform doesn't have DC even for non 50% duty cycles, but Befaco team would like the option |
|
|
|
// for it to be added back in for hardware compatibility reasons |
|
|
|
const float_4 pulseDCOffset = (!removePulseDC) * 2.f * (0.5f - pw); |
|
|
|
|
|
|
|
// sin is simple |
|
|
|
// hard sync |
|
|
|
const float_4 syncMask = syncTrigger[c / 4].process(inputs[SYNC_INPUT].getPolyVoltageSimd<float_4>(c)); |
|
|
|
if (waveform == WAVE_SIN) { |
|
|
|
osBuffer[i] = sin2pi_pade_05_5_4(phase); |
|
|
|
// hardware waveform is actually cos, so pi/2 phase offset is required |
|
|
|
// - variable phase is defined on [0, 1] rather than [0, 2pi] so pi/2 -> 0.25 |
|
|
|
phase[c / 4] = simd::ifelse(syncMask, 0.25f, phase[c / 4]); |
|
|
|
} |
|
|
|
else { |
|
|
|
phase[c / 4] = simd::ifelse(syncMask, 0.f, phase[c / 4]); |
|
|
|
} |
|
|
|
|
|
|
|
phases[0] = phase - 2 * deltaBasePhase + (phase < 2 * deltaBasePhase); |
|
|
|
phases[1] = phase - deltaBasePhase + (phase < deltaBasePhase); |
|
|
|
phases[2] = phase; |
|
|
|
float_4* osBuffer = oversampler[c / 4].getOSBuffer(); |
|
|
|
for (int i = 0; i < oversamplingRatio; ++i) { |
|
|
|
|
|
|
|
switch (waveform) { |
|
|
|
case WAVE_TRI: { |
|
|
|
osBuffer[i] = aliasSuppressedTri() * denominator; |
|
|
|
break; |
|
|
|
} |
|
|
|
case WAVE_SAW: { |
|
|
|
osBuffer[i] = aliasSuppressedSaw() * denominator; |
|
|
|
break; |
|
|
|
} |
|
|
|
case WAVE_PULSE: { |
|
|
|
double saw = aliasSuppressedSaw(); |
|
|
|
double sawOffset = aliasSuppressedOffsetSaw(pw); |
|
|
|
phase[c / 4] += deltaBasePhase + deltaFMPhase; |
|
|
|
// ensure within [0, 1] |
|
|
|
phase[c / 4] -= simd::floor(phase[c / 4]); |
|
|
|
|
|
|
|
osBuffer[i] = (sawOffset - saw) * denominator; |
|
|
|
osBuffer[i] += pulseDCOffset; |
|
|
|
break; |
|
|
|
// sin is simple |
|
|
|
if (waveform == WAVE_SIN) { |
|
|
|
osBuffer[i] = sin2pi_pade_05_5_4(phase[c / 4]); |
|
|
|
} |
|
|
|
else { |
|
|
|
float_4 phases[3]; // phase as extrapolated to the current and two previous samples |
|
|
|
|
|
|
|
phases[0] = phase[c / 4] - 2 * deltaBasePhase + simd::ifelse(phase[c / 4] < 2 * deltaBasePhase, 1.f, 0.f); |
|
|
|
phases[1] = phase[c / 4] - deltaBasePhase + simd::ifelse(phase[c / 4] < deltaBasePhase, 1.f, 0.f); |
|
|
|
phases[2] = phase[c / 4]; |
|
|
|
|
|
|
|
switch (waveform) { |
|
|
|
case WAVE_TRI: { |
|
|
|
const float_4 dpwOrder1 = 1.0 - 2.0 * simd::abs(2 * phase[c / 4] - 1.0); |
|
|
|
const float_4 dpwOrder3 = aliasSuppressedTri(phases) * denominatorInv; |
|
|
|
|
|
|
|
osBuffer[i] = simd::ifelse(lowFreqRegime, dpwOrder1, dpwOrder3); |
|
|
|
break; |
|
|
|
} |
|
|
|
case WAVE_SAW: { |
|
|
|
const float_4 dpwOrder1 = 2 * phase[c / 4] - 1.0; |
|
|
|
const float_4 dpwOrder3 = aliasSuppressedSaw(phases) * denominatorInv; |
|
|
|
|
|
|
|
osBuffer[i] = simd::ifelse(lowFreqRegime, dpwOrder1, dpwOrder3); |
|
|
|
break; |
|
|
|
} |
|
|
|
case WAVE_PULSE: { |
|
|
|
|
|
|
|
float_4 dpwOrder1 = simd::ifelse(phase[c / 4] < pw, -1.0, +1.0); |
|
|
|
dpwOrder1 -= simd::ifelse(removePulseDC, 2.f * (0.5f - pw), 0.f); |
|
|
|
|
|
|
|
float_4 saw = aliasSuppressedSaw(phases); |
|
|
|
float_4 sawOffset = aliasSuppressedOffsetSaw(phases, pw); |
|
|
|
float_4 dpwOrder3 = (sawOffset - saw) * denominatorInv + pulseDCOffset; |
|
|
|
|
|
|
|
osBuffer[i] = simd::ifelse(lowFreqRegime, dpwOrder1, dpwOrder3); |
|
|
|
break; |
|
|
|
} |
|
|
|
default: break; |
|
|
|
} |
|
|
|
default: break; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (waveform != WAVE_PULSE) { |
|
|
|
osBuffer[i] = wavefolder(osBuffer[i], (1 - 0.85 * timbre)); |
|
|
|
} |
|
|
|
} |
|
|
|
if (waveform != WAVE_PULSE) { |
|
|
|
osBuffer[i] = wavefolder(osBuffer[i], (1 - 0.85 * timbre), c); |
|
|
|
} |
|
|
|
|
|
|
|
} // end of oversampling loop |
|
|
|
|
|
|
|
// downsample (if required) |
|
|
|
const float out = (oversamplingRatio > 1) ? oversampler.downsample() : osBuffer[0]; |
|
|
|
// downsample (if required) |
|
|
|
const float_4 out = (oversamplingRatio > 1) ? oversampler[c / 4].downsample() : osBuffer[0]; |
|
|
|
|
|
|
|
// end of chain VCA |
|
|
|
const float gain = std::max(0.f, inputs[VCA_INPUT].getNormalVoltage(10.f) / 10.f); |
|
|
|
outputs[OUT_OUTPUT].setVoltage(5.f * out * gain); |
|
|
|
// end of chain VCA |
|
|
|
const float_4 gain = simd::clamp(inputs[VCA_INPUT].getNormalPolyVoltageSimd<float_4>(10.f, c) / 10.f, 0.f, 1.f); |
|
|
|
outputs[OUT_OUTPUT].setVoltageSimd(5.f * out * gain, c); |
|
|
|
|
|
|
|
} // end of channels loop |
|
|
|
|
|
|
|
outputs[OUT_OUTPUT].setChannels(channels); |
|
|
|
} |
|
|
|
|
|
|
|
double aliasSuppressedTri() { |
|
|
|
float_4 aliasSuppressedTri(float_4* phases) { |
|
|
|
float_4 triBuffer[3]; |
|
|
|
for (int i = 0; i < 3; ++i) { |
|
|
|
double p = 2 * phases[i] - 1.0; // range -1.0 to +1.0 |
|
|
|
double s = 0.5 - std::abs(p); // eq 30 |
|
|
|
float_4 p = 2 * phases[i] - 1.0; // range -1.0 to +1.0 |
|
|
|
float_4 s = 0.5 - simd::abs(p); // eq 30 |
|
|
|
triBuffer[i] = (s * s * s - 0.75 * s) / 3.0; // eq 29 |
|
|
|
} |
|
|
|
return (triBuffer[0] - 2.0 * triBuffer[1] + triBuffer[2]); |
|
|
|
} |
|
|
|
|
|
|
|
double aliasSuppressedSaw() { |
|
|
|
float_4 aliasSuppressedSaw(float_4* phases) { |
|
|
|
float_4 sawBuffer[3]; |
|
|
|
for (int i = 0; i < 3; ++i) { |
|
|
|
double p = 2 * phases[i] - 1.0; // range -1 to +1 |
|
|
|
float_4 p = 2 * phases[i] - 1.0; // range -1 to +1 |
|
|
|
sawBuffer[i] = (p * p * p - p) / 6.0; // eq 11 |
|
|
|
} |
|
|
|
|
|
|
|
return (sawBuffer[0] - 2.0 * sawBuffer[1] + sawBuffer[2]); |
|
|
|
} |
|
|
|
|
|
|
|
double aliasSuppressedOffsetSaw(double pw) { |
|
|
|
float_4 aliasSuppressedOffsetSaw(float_4* phases, float_4 pw) { |
|
|
|
float_4 sawOffsetBuff[3]; |
|
|
|
|
|
|
|
for (int i = 0; i < 3; ++i) { |
|
|
|
double p = 2 * phases[i] - 1.0; // range -1 to +1 |
|
|
|
double pwp = p + 2 * pw; // phase after pw (pw in [0, 1]) |
|
|
|
pwp += (pwp > 1) * -2; // modulo on [-1, +1] |
|
|
|
float_4 p = 2 * phases[i] - 1.0; // range -1 to +1 |
|
|
|
float_4 pwp = p + 2 * pw; // phase after pw (pw in [0, 1]) |
|
|
|
pwp += simd::ifelse(pwp > 1, -2, 0); // modulo on [-1, +1] |
|
|
|
sawOffsetBuff[i] = (pwp * pwp * pwp - pwp) / 6.0; // eq 11 |
|
|
|
} |
|
|
|
return (sawOffsetBuff[0] - 2.0 * sawOffsetBuff[1] + sawOffsetBuff[2]); |
|
|
|
} |
|
|
|
|
|
|
|
float wavefolder(float x, float xt) { |
|
|
|
return stage2.process(stage1.process(x, xt)); |
|
|
|
float_4 wavefolder(float_4 x, float_4 xt, int c) { |
|
|
|
return stage2[c / 4].process(stage1[c / 4].process(x, xt)); |
|
|
|
} |
|
|
|
|
|
|
|
json_t* dataToJson() override { |
|
|
|
json_t* rootJ = json_object(); |
|
|
|
json_object_set_new(rootJ, "blockTZFMDC", json_boolean(blockTZFMDC)); |
|
|
|
json_object_set_new(rootJ, "removePulseDC", json_boolean(removePulseDC)); |
|
|
|
json_object_set_new(rootJ, "oversamplingIndex", json_integer(oversampler.getOversamplingIndex())); |
|
|
|
json_object_set_new(rootJ, "limitPW", json_boolean(limitPW)); |
|
|
|
json_object_set_new(rootJ, "oversamplingIndex", json_integer(oversampler[0].getOversamplingIndex())); |
|
|
|
return rootJ; |
|
|
|
} |
|
|
|
|
|
|
@@ -355,6 +341,11 @@ struct PonyVCO : Module { |
|
|
|
removePulseDC = json_boolean_value(removePulseDCJ); |
|
|
|
} |
|
|
|
|
|
|
|
json_t* limitPWJ = json_object_get(rootJ, "limitPW"); |
|
|
|
if (limitPWJ) { |
|
|
|
limitPW = json_boolean_value(limitPWJ); |
|
|
|
} |
|
|
|
|
|
|
|
json_t* oversamplingIndexJ = json_object_get(rootJ, "oversamplingIndex"); |
|
|
|
if (oversamplingIndexJ) { |
|
|
|
oversamplingIndex = json_integer_value(oversamplingIndexJ); |
|
|
|