Signed-off-by: hemmer <915048+hemmer@users.noreply.github.com>tags/v1.1.0^2
@@ -33,7 +33,8 @@ | |||
"tags": [ | |||
"Ring Modulator", | |||
"Attenuator", | |||
"Dual" | |||
"Dual", | |||
"Polyphonic" | |||
] | |||
}, | |||
{ | |||
@@ -47,7 +48,8 @@ | |||
"slug": "Mixer", | |||
"name": "Mixer", | |||
"tags": [ | |||
"Mixer" | |||
"Mixer", | |||
"Polyphonic" | |||
] | |||
}, | |||
{ | |||
@@ -55,7 +57,8 @@ | |||
"name": "Slew Limiter", | |||
"tags": [ | |||
"Slew Limiter", | |||
"Envelope Follower" | |||
"Envelope Follower", | |||
"Polyphonic" | |||
] | |||
}, | |||
{ | |||
@@ -63,7 +66,8 @@ | |||
"name": "Dual Atenuverter", | |||
"tags": [ | |||
"Attenuator", | |||
"Dual" | |||
"Dual", | |||
"Polyphonic" | |||
] | |||
} | |||
] |
@@ -1,5 +1,6 @@ | |||
#include "plugin.hpp" | |||
#define MAX(a,b) (a>b)?a:b | |||
static float clip(float x) { | |||
@@ -10,6 +11,26 @@ static float clip(float x) { | |||
/ (1. + 1.54167*std::pow(x, 12) + 0.642361*std::pow(x, 24) + 0.0579909*std::pow(x, 36)); | |||
} | |||
static simd::float_4 clip4(simd::float_4 x) { | |||
// Pade approximant of x/(1 + x^12)^(1/12) | |||
const simd::float_4 limit = simd::float_4(1.16691853009184); | |||
const simd::float_4 cnst_10 = simd::float_4(10.0); | |||
const simd::float_4 cnst_1 = simd::float_4(1.0); | |||
const simd::float_4 cnst_01 = simd::float_4(0.1); | |||
const simd::float_4 coeff_1 = simd::float_4(1.45833); | |||
const simd::float_4 coeff_2 = simd::float_4(0.559028); | |||
const simd::float_4 coeff_3 = simd::float_4(0.0427035); | |||
const simd::float_4 coeff_4 = simd::float_4(1.54167); | |||
const simd::float_4 coeff_5 = simd::float_4(0.642361); | |||
const simd::float_4 coeff_6 = simd::float_4(0.0579909); | |||
x = clamp(x*cnst_01, -limit, limit); | |||
return cnst_10 * (x + coeff_1*simd::pow(x, 13) + coeff_2*simd::pow(x, 25) + coeff_3*simd::pow(x, 37)) | |||
/ (cnst_1 + coeff_4*simd::pow(x, 12) + coeff_5*simd::pow(x, 24) + coeff_6*simd::pow(x, 36)); | |||
} | |||
static float exponentialBipolar80Pade_5_4(float x) { | |||
return (0.109568*x + 0.281588*std::pow(x, 3) + 0.133841*std::pow(x, 5)) | |||
/ (1. - 0.630374*std::pow(x, 2) + 0.166271*std::pow(x, 4)); | |||
@@ -44,41 +65,156 @@ struct ABC : Module { | |||
NUM_LIGHTS | |||
}; | |||
simd::float_4 mask[4]; | |||
ABC() { | |||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||
configParam(B1_LEVEL_PARAM, -1.0, 1.0, 0.0, "B1 Level"); | |||
configParam(C1_LEVEL_PARAM, -1.0, 1.0, 0.0, "C1 Level"); | |||
configParam(B2_LEVEL_PARAM, -1.0, 1.0, 0.0, "B2 Level"); | |||
configParam(C2_LEVEL_PARAM, -1.0, 1.0, 0.0, "C2 Level"); | |||
__m128i tmp = _mm_cmpeq_epi16(_mm_set_epi32(0,0,0,0),_mm_set_epi32(0,0,0,0)); | |||
for(int i=0; i<4; i++) { | |||
mask[3-i] = simd::float_4(_mm_castsi128_ps(tmp)); | |||
tmp = _mm_srli_si128(tmp, 4); | |||
} | |||
} | |||
inline void load_input(Input &in, simd::float_4 *v, int numChannels) { | |||
if(numChannels==1) { | |||
for(int i=0; i<4; i++) v[i] = simd::float_4(in.getVoltage()); | |||
} else { | |||
for(int c=0; c<numChannels; c+=4) v[c/4] = simd::float_4::load(in.getVoltages(c)); | |||
} | |||
} | |||
inline void crop_channels(simd::float_4 *vec, int numChannels) { | |||
int c=numChannels/4; | |||
vec[c] = simd::float_4(_mm_and_ps(vec[c].v, mask[numChannels-4*c].v)); | |||
} | |||
void process(const ProcessArgs &args) override { | |||
float a1 = inputs[A1_INPUT].getVoltage(); | |||
float b1 = inputs[B1_INPUT].getNormalVoltage(5.f) * 2.f*exponentialBipolar80Pade_5_4(params[B1_LEVEL_PARAM].getValue()); | |||
float c1 = inputs[C1_INPUT].getNormalVoltage(10.f) * exponentialBipolar80Pade_5_4(params[C1_LEVEL_PARAM].getValue()); | |||
float out1 = a1 * b1 / 5.f + c1; | |||
float a2 = inputs[A2_INPUT].getVoltage(); | |||
float b2 = inputs[B2_INPUT].getNormalVoltage(5.f) * 2.f*exponentialBipolar80Pade_5_4(params[B2_LEVEL_PARAM].getValue()); | |||
float c2 = inputs[C2_INPUT].getNormalVoltage(10.f) * exponentialBipolar80Pade_5_4(params[C2_LEVEL_PARAM].getValue()); | |||
float out2 = a2 * b2 / 5.f + c2; | |||
simd::float_4 a1[4]; | |||
simd::float_4 b1[4]; | |||
simd::float_4 c1[4]; | |||
simd::float_4 out1[4]; | |||
simd::float_4 a2[4]; | |||
simd::float_4 b2[4]; | |||
simd::float_4 c2[4]; | |||
simd::float_4 out2[4]; | |||
int channels_A1 = inputs[A1_INPUT].getChannels(); | |||
int channels_A2 = inputs[A2_INPUT].getChannels(); | |||
int channels_B1 = inputs[B1_INPUT].getChannels(); | |||
int channels_B2 = inputs[B2_INPUT].getChannels(); | |||
int channels_C1 = inputs[C1_INPUT].getChannels(); | |||
int channels_C2 = inputs[C2_INPUT].getChannels(); | |||
int channels_1 = 1; | |||
channels_1 = MAX(channels_1, channels_A1); | |||
channels_1 = MAX(channels_1, channels_B1); | |||
channels_1 = MAX(channels_1, channels_C1); | |||
int channels_2 = channels_1; | |||
channels_2 = MAX(channels_2, channels_A2); | |||
channels_2 = MAX(channels_2, channels_B2); | |||
channels_2 = MAX(channels_2, channels_C2); | |||
float mult_B1 = (2.f/5.f)*exponentialBipolar80Pade_5_4(params[B1_LEVEL_PARAM].getValue()); | |||
float mult_C1 = exponentialBipolar80Pade_5_4(params[C1_LEVEL_PARAM].getValue()); | |||
float mult_B2 = (2.f/5.f)*exponentialBipolar80Pade_5_4(params[B2_LEVEL_PARAM].getValue()); | |||
float mult_C2 = exponentialBipolar80Pade_5_4(params[C2_LEVEL_PARAM].getValue()); | |||
load_input(inputs[A1_INPUT], a1, channels_A1); | |||
crop_channels(a1, channels_1); | |||
if(inputs[B1_INPUT].isConnected()) { | |||
load_input(inputs[B1_INPUT], b1, channels_B1); | |||
for(int c=0; c<channels_1; c+=4) b1[c/4] = b1[c/4] * simd::float_4(mult_B1); | |||
} else { | |||
for(int c=0; c<channels_1; c+=4) b1[c/4] = simd::float_4(5.f*mult_B1); | |||
} | |||
crop_channels(b1, channels_1); | |||
if(inputs[C1_INPUT].isConnected()) { | |||
load_input(inputs[C1_INPUT], c1, channels_C1); | |||
for(int c=0; c<channels_1; c+=4) c1[c/4] = c1[c/4] * simd::float_4(mult_C1); | |||
} else { | |||
for(int c=0; c<channels_1; c+=4) c1[c/4] = simd::float_4(10.f*mult_C1); | |||
} | |||
crop_channels(c1, channels_1); | |||
for(int c=0; c<channels_1; c+=4) out1[c/4] = clip4(a1[c/4] * b1[c/4] + c1[c/4]); | |||
load_input(inputs[A1_INPUT], a1, channels_A1); | |||
crop_channels(a1, channels_1); | |||
if(inputs[B2_INPUT].isConnected()) { | |||
load_input(inputs[B2_INPUT], b2, channels_B2); | |||
for(int c=0; c<channels_2; c+=4) b2[c/4] = b2[c/4] * simd::float_4(mult_B2); | |||
} else { | |||
for(int c=0; c<channels_2; c+=4) b2[c/4] = simd::float_4(5.f*mult_B2); | |||
} | |||
crop_channels(b2, channels_2); | |||
if(inputs[C2_INPUT].isConnected()) { | |||
load_input(inputs[C2_INPUT], c2, channels_C2); | |||
for(int c=0; c<channels_2; c+=4) c2[c/4] = c2[c/4] * simd::float_4(mult_C2); | |||
} else { | |||
for(int c=0; c<channels_2; c+=4) c2[c/4] = simd::float_4(10.f*mult_C2); | |||
} | |||
crop_channels(c2, channels_2); | |||
for(int c=0; c<channels_2; c+=4) out2[c/4] = clip4(a2[c/4] * b2[c/4] + c2[c/4]); | |||
// Set outputs | |||
if (outputs[OUT1_OUTPUT].isConnected()) { | |||
outputs[OUT1_OUTPUT].setVoltage(clip(out1 / 10.f) * 10.f); | |||
outputs[OUT1_OUTPUT].setChannels(channels_1); | |||
for(int c=0; c<channels_1; c+=4) out1[c/4].store(outputs[OUT1_OUTPUT].getVoltages(c)); | |||
} | |||
else { | |||
out2 += out1; | |||
for(int c=0; c<channels_1; c+=4) out2[c/4] += out1[c/4]; | |||
} | |||
if (outputs[OUT2_OUTPUT].isConnected()) { | |||
outputs[OUT2_OUTPUT].setVoltage(clip(out2 / 10.f) * 10.f); | |||
outputs[OUT2_OUTPUT].setChannels(channels_1); | |||
for(int c=0; c<channels_1; c+=4) out2[c/4].store(outputs[OUT2_OUTPUT].getVoltages(c)); | |||
} | |||
// Lights | |||
lights[OUT1_LIGHT + 0].setSmoothBrightness(out1 / 5.f, args.sampleTime); | |||
lights[OUT1_LIGHT + 1].setSmoothBrightness(-out1 / 5.f, args.sampleTime); | |||
lights[OUT2_LIGHT + 0].setSmoothBrightness(out2 / 5.f, args.sampleTime); | |||
lights[OUT2_LIGHT + 1].setSmoothBrightness(-out2 / 5.f, args.sampleTime); | |||
float light_1; | |||
float light_2; | |||
if(channels_1==1) { | |||
light_1 = out1[0].s[0]; | |||
} else { | |||
light_1 = outputs[OUT1_OUTPUT].getVoltageSum(); | |||
} | |||
lights[OUT1_LIGHT + 0].setSmoothBrightness(light_1 / 5.f, args.sampleTime); | |||
lights[OUT1_LIGHT + 1].setSmoothBrightness(-light_1 / 5.f, args.sampleTime); | |||
if(channels_2==1) { | |||
light_2 = out2[0].s[0]; | |||
} else { | |||
light_2 = outputs[OUT2_OUTPUT].getVoltageSum(); | |||
} | |||
lights[OUT2_LIGHT + 0].setSmoothBrightness(light_2 / 5.f, args.sampleTime); | |||
lights[OUT2_LIGHT + 1].setSmoothBrightness(-light_2 / 5.f, args.sampleTime); | |||
} | |||
}; | |||
@@ -36,17 +36,36 @@ struct DualAtenuverter : Module { | |||
} | |||
void process(const ProcessArgs &args) override { | |||
float out1 = inputs[IN1_INPUT].getVoltage() * params[ATEN1_PARAM].getValue() + params[OFFSET1_PARAM].getValue(); | |||
float out2 = inputs[IN2_INPUT].getVoltage() * params[ATEN2_PARAM].getValue() + params[OFFSET2_PARAM].getValue(); | |||
out1 = clamp(out1, -10.f, 10.f); | |||
out2 = clamp(out2, -10.f, 10.f); | |||
outputs[OUT1_OUTPUT].setVoltage(out1); | |||
outputs[OUT2_OUTPUT].setVoltage(out2); | |||
lights[OUT1_POS_LIGHT].setSmoothBrightness(out1 / 5.f, args.sampleTime); | |||
lights[OUT1_NEG_LIGHT].setSmoothBrightness(-out1 / 5.f, args.sampleTime); | |||
lights[OUT2_POS_LIGHT].setSmoothBrightness(out2 / 5.f, args.sampleTime); | |||
lights[OUT2_NEG_LIGHT].setSmoothBrightness(-out2 / 5.f, args.sampleTime); | |||
simd::float_4 out1[4]; | |||
simd::float_4 out2[4]; | |||
int channels1 = inputs[IN1_INPUT].getChannels(); channels1 = channels1>0?channels1:1; | |||
int channels2 = inputs[IN2_INPUT].getChannels(); channels2 = channels2>0?channels2:1; | |||
simd::float_4 att1 = simd::float_4(params[ATEN1_PARAM].getValue()); | |||
simd::float_4 att2 = simd::float_4(params[ATEN2_PARAM].getValue()); | |||
simd::float_4 offset1 = simd::float_4(params[OFFSET1_PARAM].getValue()); | |||
simd::float_4 offset2 = simd::float_4(params[OFFSET2_PARAM].getValue()); | |||
for (int c = 0; c < channels1; c += 4) out1[c / 4] = clamp(simd::float_4::load(inputs[IN1_INPUT].getVoltages(c)) * att1 + offset1, -10.f, 10.f); | |||
for (int c = 0; c < channels2; c += 4) out2[c / 4] = clamp(simd::float_4::load(inputs[IN2_INPUT].getVoltages(c)) * att2 + offset2, -10.f, 10.f); | |||
outputs[OUT1_OUTPUT].setChannels(channels1); | |||
outputs[OUT2_OUTPUT].setChannels(channels2); | |||
for (int c = 0; c < channels1; c += 4) out1[c / 4].store(outputs[OUT1_OUTPUT].getVoltages(c)); | |||
for (int c = 0; c < channels2; c += 4) out2[c / 4].store(outputs[OUT2_OUTPUT].getVoltages(c)); | |||
float light1 = outputs[OUT1_OUTPUT].getVoltageSum()/channels1; | |||
float light2 = outputs[OUT2_OUTPUT].getVoltageSum()/channels2; | |||
lights[OUT1_POS_LIGHT].setSmoothBrightness(light1 / 5.f, args.sampleTime); | |||
lights[OUT1_NEG_LIGHT].setSmoothBrightness(-light1 / 5.f, args.sampleTime); | |||
lights[OUT2_POS_LIGHT].setSmoothBrightness(light2 / 5.f, args.sampleTime); | |||
lights[OUT2_NEG_LIGHT].setSmoothBrightness(-light2 / 5.f, args.sampleTime); | |||
} | |||
}; | |||
@@ -1,5 +1,6 @@ | |||
#include "plugin.hpp" | |||
#define MAX(a,b) (a>b)?a:b | |||
struct EvenVCO : Module { | |||
enum ParamIds { | |||
@@ -47,11 +48,25 @@ struct EvenVCO : Module { | |||
configParam(OCTAVE_PARAM, -5.0, 4.0, 0.0, "Octave", "'", 0.5); | |||
configParam(TUNE_PARAM, -7.0, 7.0, 0.0, "Tune", " semitones"); | |||
configParam(PWM_PARAM, -1.0, 1.0, 0.0, "Pulse width"); | |||
} | |||
void process(const ProcessArgs &args) override { | |||
// Compute frequency, pitch is 1V/oct | |||
float pitch = 1.f + std::round(params[OCTAVE_PARAM].getValue()) + params[TUNE_PARAM].getValue() / 12.f; | |||
int channels_pitch1 = inputs[PITCH1_INPUT].getChannels(); | |||
int channels_pitch2 = inputs[PITCH2_INPUT].getChannels(); | |||
int channels_fm = inputs[FM_INPUT].getChannels(); | |||
int channels = 1; | |||
channels = MAX(channels, channels_pitch1); | |||
channels = MAX(channels, channels_pitch2); | |||
// channels = MAX(channels, channels_fm); | |||
float pitch_0 = 1.f + std::round(params[OCTAVE_PARAM].getValue()) + params[TUNE_PARAM].getValue() / 12.f; | |||
pitch += inputs[PITCH1_INPUT].getVoltage() + inputs[PITCH2_INPUT].getVoltage(); | |||
pitch += inputs[FM_INPUT].getVoltage() / 4.f; | |||
float freq = dsp::FREQ_C4 * std::pow(2.f, pitch); | |||
@@ -1,5 +1,8 @@ | |||
#include "plugin.hpp" | |||
#define MAX(a,b) (a>b)?a:b | |||
#define MIN(a,b) (a<b)?a:b | |||
struct Mixer : Module { | |||
enum ParamIds { | |||
@@ -27,25 +30,103 @@ struct Mixer : Module { | |||
NUM_LIGHTS | |||
}; | |||
simd::float_4 mask[4]; | |||
simd::float_4 minus_one; | |||
Mixer() { | |||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||
configParam(CH1_PARAM, 0.0, 1.0, 0.0, "Ch 1 level", "%", 0, 100); | |||
configParam(CH2_PARAM, 0.0, 1.0, 0.0, "Ch 2 level", "%", 0, 100); | |||
configParam(CH3_PARAM, 0.0, 1.0, 0.0, "Ch 3 level", "%", 0, 100); | |||
configParam(CH4_PARAM, 0.0, 1.0, 0.0, "Ch 4 level", "%", 0, 100); | |||
minus_one = simd::float_4(-1.0f); | |||
__m128i tmp = _mm_cmpeq_epi16(_mm_set_epi32(0,0,0,0),_mm_set_epi32(0,0,0,0)); | |||
for(int i=0; i<4; i++) { | |||
mask[3-i] = simd::float_4(_mm_castsi128_ps(tmp)); | |||
tmp = _mm_srli_si128(tmp, 4); | |||
} | |||
} | |||
void process(const ProcessArgs &args) override { | |||
float in1 = inputs[IN1_INPUT].getVoltage() * params[CH1_PARAM].getValue(); | |||
float in2 = inputs[IN2_INPUT].getVoltage() * params[CH2_PARAM].getValue(); | |||
float in3 = inputs[IN3_INPUT].getVoltage() * params[CH3_PARAM].getValue(); | |||
float in4 = inputs[IN4_INPUT].getVoltage() * params[CH4_PARAM].getValue(); | |||
float out = in1 + in2 + in3 + in4; | |||
outputs[OUT1_OUTPUT].setVoltage(out); | |||
outputs[OUT2_OUTPUT].setVoltage(-out); | |||
int i; | |||
int channels1 = inputs[IN1_INPUT].getChannels(); | |||
int channels2 = inputs[IN2_INPUT].getChannels(); | |||
int channels3 = inputs[IN3_INPUT].getChannels(); | |||
int channels4 = inputs[IN4_INPUT].getChannels(); | |||
int out_channels = 1; | |||
out_channels = MAX(out_channels, channels1); | |||
out_channels = MAX(out_channels, channels2); | |||
out_channels = MAX(out_channels, channels3); | |||
out_channels = MAX(out_channels, channels4); | |||
simd::float_4 mult1 = simd::float_4(params[CH1_PARAM].getValue()); | |||
simd::float_4 mult2 = simd::float_4(params[CH2_PARAM].getValue()); | |||
simd::float_4 mult3 = simd::float_4(params[CH3_PARAM].getValue()); | |||
simd::float_4 mult4 = simd::float_4(params[CH4_PARAM].getValue()); | |||
simd::float_4 in1[4]; | |||
simd::float_4 in2[4]; | |||
simd::float_4 in3[4]; | |||
simd::float_4 in4[4]; | |||
simd::float_4 out[4]; | |||
out[0] = simd::float_4(0.f); | |||
out[1] = simd::float_4(0.f); | |||
out[2] = simd::float_4(0.f); | |||
out[3] = simd::float_4(0.f); | |||
if(inputs[IN1_INPUT].isConnected()) { | |||
// this also loads some spurious channels into in1[] | |||
for(int c=0; c<channels1; c+=4) in1[c/4] = simd::float_4::load(inputs[IN1_INPUT].getVoltages(c)) * mult1; | |||
for(i=0; i<channels1/4; i++) out[i] += in1[i]; // add only "real" channels. | |||
out[i] += simd::float_4(_mm_and_ps(in1[i].v, mask[channels1-4*i].v)); // make sure we zero out spurious channels | |||
} | |||
if(inputs[IN2_INPUT].isConnected()) { | |||
for(int c=0; c<channels2; c+=4) in2[c/4] = simd::float_4::load(inputs[IN2_INPUT].getVoltages(c)) * mult2; | |||
for(i=0; i<channels2/4; i++) out[i] += in2[i]; | |||
out[i] += simd::float_4(_mm_and_ps(in2[i].v, mask[channels2-4*i].v)); | |||
} | |||
if(inputs[IN3_INPUT].isConnected()) { | |||
for(int c=0; c<channels3; c+=4) in3[c/4] = simd::float_4::load(inputs[IN3_INPUT].getVoltages(c)) * mult3; | |||
for(i=0; i<channels3/4; i++) out[i] += in3[i]; | |||
out[i] += simd::float_4(_mm_and_ps(in3[i].v, mask[channels3-4*i].v)); | |||
} | |||
if(inputs[IN4_INPUT].isConnected()) { | |||
for(int c=0; c<channels4; c+=4) in4[c/4] = simd::float_4::load(inputs[IN4_INPUT].getVoltages(c)) * mult4; | |||
for(i=0; i<channels4/4; i++) out[i] += in4[i]; | |||
out[i] += simd::float_4(_mm_and_ps(in4[i].v, mask[channels4-4*i].v)); | |||
} | |||
outputs[OUT1_OUTPUT].setChannels(out_channels); | |||
outputs[OUT2_OUTPUT].setChannels(out_channels); | |||
for(int c=0; c<out_channels; c+=4) { | |||
out[c / 4].store(outputs[OUT1_OUTPUT].getVoltages(c)); | |||
out[c / 4] *= minus_one; | |||
out[c / 4].store(outputs[OUT2_OUTPUT].getVoltages(c)); | |||
} | |||
/* | |||
lights[OUT_POS_LIGHT].setSmoothBrightness(out / 5.f, args.sampleTime); | |||
lights[OUT_NEG_LIGHT].setSmoothBrightness(-out / 5.f, args.sampleTime); | |||
*/ | |||
} | |||
}; | |||
@@ -19,17 +19,21 @@ struct SlewLimiter : Module { | |||
NUM_OUTPUTS | |||
}; | |||
float out = 0.0; | |||
float out[PORT_MAX_CHANNELS]; | |||
SlewLimiter() { | |||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS); | |||
configParam(SHAPE_PARAM, 0.0, 1.0, 0.0, "Shape"); | |||
configParam(RISE_PARAM, 0.0, 1.0, 0.0, "Rise time"); | |||
configParam(FALL_PARAM, 0.0, 1.0, 0.0, "Fall time"); | |||
memset(out, 0, sizeof(out)); | |||
} | |||
void process(const ProcessArgs &args) override { | |||
float in = inputs[IN_INPUT].getVoltage(); | |||
int channels = inputs[IN_INPUT].getChannels(); | |||
float shape = params[SHAPE_PARAM].getValue(); | |||
// minimum and maximum slopes in volts per second | |||
@@ -38,24 +42,36 @@ struct SlewLimiter : Module { | |||
// Amount of extra slew per voltage difference | |||
const float shapeScale = 1/10.f; | |||
// Rise | |||
if (in > out) { | |||
float rise = inputs[RISE_INPUT].getVoltage() / 10.f + params[RISE_PARAM].getValue(); | |||
float slew = slewMax * std::pow(slewMin / slewMax, rise); | |||
out += slew * crossfade(1.f, shapeScale * (in - out), shape) * args.sampleTime; | |||
if (out > in) | |||
out = in; | |||
} | |||
// Fall | |||
else if (in < out) { | |||
float fall = inputs[FALL_INPUT].getVoltage() / 10.f + params[FALL_PARAM].getValue(); | |||
float slew = slewMax * std::pow(slewMin / slewMax, fall); | |||
out -= slew * crossfade(1.f, shapeScale * (out - in), shape) * args.sampleTime; | |||
if (out < in) | |||
out = in; | |||
const float param_rise = params[RISE_PARAM].getValue(); | |||
const float param_fall = params[FALL_PARAM].getValue(); | |||
outputs[OUT_OUTPUT].setChannels(channels); | |||
for(int c=0; c<channels; c++) { | |||
float in = inputs[IN_INPUT].getVoltage(c); | |||
// Rise | |||
if (in > out[c]) { | |||
float rise = inputs[RISE_INPUT].getPolyVoltage(c) / 10.f + param_rise; | |||
float slew = slewMax * std::pow(slewMin / slewMax, rise); | |||
out[c] += slew * crossfade(1.f, shapeScale * (in - out[c]), shape) * args.sampleTime; | |||
if (out[c] > in) | |||
out[c] = in; | |||
} | |||
// Fall | |||
else if (in < out[c]) { | |||
float fall = inputs[FALL_INPUT].getPolyVoltage(c) / 10.f + param_fall; | |||
float slew = slewMax * std::pow(slewMin / slewMax, fall); | |||
out[c] -= slew * crossfade(1.f, shapeScale * (out[c] - in), shape) * args.sampleTime; | |||
if (out[c] < in) | |||
out[c] = in; | |||
} | |||
} | |||
outputs[OUT_OUTPUT].writeVoltages(out); | |||
outputs[OUT_OUTPUT].setVoltage(out); | |||
} | |||
}; | |||
@@ -65,8 +65,8 @@ struct SpringReverb : Module { | |||
} | |||
void process(const ProcessArgs &args) override { | |||
float in1 = inputs[IN1_INPUT].getVoltage(); | |||
float in2 = inputs[IN2_INPUT].getVoltage(); | |||
float in1 = inputs[IN1_INPUT].getVoltageSum(); | |||
float in2 = inputs[IN2_INPUT].getVoltageSum(); | |||
const float levelScale = 0.030; | |||
const float levelBase = 25.0; | |||
float level1 = levelScale * dsp::exponentialBipolar(levelBase, params[LEVEL1_PARAM].getValue()) * inputs[CV1_INPUT].getNormalVoltage(10.0) / 10.0; | |||