Browse Source

polyphony part 1

Signed-off-by: hemmer <915048+hemmer@users.noreply.github.com>
tags/v1.1.0^2
martin-lueders hemmer 6 years ago
parent
commit
bb2253f0cd
7 changed files with 330 additions and 59 deletions
  1. +8
    -4
      plugin.json
  2. +151
    -15
      src/ABC.cpp
  3. +30
    -11
      src/DualAtenuverter.cpp
  4. +16
    -1
      src/EvenVCO.cpp
  5. +89
    -8
      src/Mixer.cpp
  6. +34
    -18
      src/SlewLimiter.cpp
  7. +2
    -2
      src/SpringReverb.cpp

+ 8
- 4
plugin.json View File

@@ -33,7 +33,8 @@
"tags": [
"Ring Modulator",
"Attenuator",
"Dual"
"Dual",
"Polyphonic"
]
},
{
@@ -47,7 +48,8 @@
"slug": "Mixer",
"name": "Mixer",
"tags": [
"Mixer"
"Mixer",
"Polyphonic"
]
},
{
@@ -55,7 +57,8 @@
"name": "Slew Limiter",
"tags": [
"Slew Limiter",
"Envelope Follower"
"Envelope Follower",
"Polyphonic"
]
},
{
@@ -63,7 +66,8 @@
"name": "Dual Atenuverter",
"tags": [
"Attenuator",
"Dual"
"Dual",
"Polyphonic"
]
}
]

+ 151
- 15
src/ABC.cpp View File

@@ -1,5 +1,6 @@
#include "plugin.hpp"

#define MAX(a,b) (a>b)?a:b


static float clip(float x) {
@@ -10,6 +11,26 @@ static float clip(float x) {
/ (1. + 1.54167*std::pow(x, 12) + 0.642361*std::pow(x, 24) + 0.0579909*std::pow(x, 36));
}

static simd::float_4 clip4(simd::float_4 x) {
// Pade approximant of x/(1 + x^12)^(1/12)
const simd::float_4 limit = simd::float_4(1.16691853009184);
const simd::float_4 cnst_10 = simd::float_4(10.0);
const simd::float_4 cnst_1 = simd::float_4(1.0);
const simd::float_4 cnst_01 = simd::float_4(0.1);

const simd::float_4 coeff_1 = simd::float_4(1.45833);
const simd::float_4 coeff_2 = simd::float_4(0.559028);
const simd::float_4 coeff_3 = simd::float_4(0.0427035);
const simd::float_4 coeff_4 = simd::float_4(1.54167);
const simd::float_4 coeff_5 = simd::float_4(0.642361);
const simd::float_4 coeff_6 = simd::float_4(0.0579909);

x = clamp(x*cnst_01, -limit, limit);
return cnst_10 * (x + coeff_1*simd::pow(x, 13) + coeff_2*simd::pow(x, 25) + coeff_3*simd::pow(x, 37))
/ (cnst_1 + coeff_4*simd::pow(x, 12) + coeff_5*simd::pow(x, 24) + coeff_6*simd::pow(x, 36));
}


static float exponentialBipolar80Pade_5_4(float x) {
return (0.109568*x + 0.281588*std::pow(x, 3) + 0.133841*std::pow(x, 5))
/ (1. - 0.630374*std::pow(x, 2) + 0.166271*std::pow(x, 4));
@@ -44,41 +65,156 @@ struct ABC : Module {
NUM_LIGHTS
};

simd::float_4 mask[4];


ABC() {
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS);
configParam(B1_LEVEL_PARAM, -1.0, 1.0, 0.0, "B1 Level");
configParam(C1_LEVEL_PARAM, -1.0, 1.0, 0.0, "C1 Level");
configParam(B2_LEVEL_PARAM, -1.0, 1.0, 0.0, "B2 Level");
configParam(C2_LEVEL_PARAM, -1.0, 1.0, 0.0, "C2 Level");

__m128i tmp = _mm_cmpeq_epi16(_mm_set_epi32(0,0,0,0),_mm_set_epi32(0,0,0,0));

for(int i=0; i<4; i++) {
mask[3-i] = simd::float_4(_mm_castsi128_ps(tmp));
tmp = _mm_srli_si128(tmp, 4);
}

}

inline void load_input(Input &in, simd::float_4 *v, int numChannels) {
if(numChannels==1) {
for(int i=0; i<4; i++) v[i] = simd::float_4(in.getVoltage());
} else {
for(int c=0; c<numChannels; c+=4) v[c/4] = simd::float_4::load(in.getVoltages(c));
}
}

inline void crop_channels(simd::float_4 *vec, int numChannels) {
int c=numChannels/4;
vec[c] = simd::float_4(_mm_and_ps(vec[c].v, mask[numChannels-4*c].v));
}

void process(const ProcessArgs &args) override {
float a1 = inputs[A1_INPUT].getVoltage();
float b1 = inputs[B1_INPUT].getNormalVoltage(5.f) * 2.f*exponentialBipolar80Pade_5_4(params[B1_LEVEL_PARAM].getValue());
float c1 = inputs[C1_INPUT].getNormalVoltage(10.f) * exponentialBipolar80Pade_5_4(params[C1_LEVEL_PARAM].getValue());
float out1 = a1 * b1 / 5.f + c1;

float a2 = inputs[A2_INPUT].getVoltage();
float b2 = inputs[B2_INPUT].getNormalVoltage(5.f) * 2.f*exponentialBipolar80Pade_5_4(params[B2_LEVEL_PARAM].getValue());
float c2 = inputs[C2_INPUT].getNormalVoltage(10.f) * exponentialBipolar80Pade_5_4(params[C2_LEVEL_PARAM].getValue());
float out2 = a2 * b2 / 5.f + c2;
simd::float_4 a1[4];
simd::float_4 b1[4];
simd::float_4 c1[4];
simd::float_4 out1[4];

simd::float_4 a2[4];
simd::float_4 b2[4];
simd::float_4 c2[4];
simd::float_4 out2[4];

int channels_A1 = inputs[A1_INPUT].getChannels();
int channels_A2 = inputs[A2_INPUT].getChannels();

int channels_B1 = inputs[B1_INPUT].getChannels();
int channels_B2 = inputs[B2_INPUT].getChannels();

int channels_C1 = inputs[C1_INPUT].getChannels();
int channels_C2 = inputs[C2_INPUT].getChannels();

int channels_1 = 1;
channels_1 = MAX(channels_1, channels_A1);
channels_1 = MAX(channels_1, channels_B1);
channels_1 = MAX(channels_1, channels_C1);

int channels_2 = channels_1;
channels_2 = MAX(channels_2, channels_A2);
channels_2 = MAX(channels_2, channels_B2);
channels_2 = MAX(channels_2, channels_C2);

float mult_B1 = (2.f/5.f)*exponentialBipolar80Pade_5_4(params[B1_LEVEL_PARAM].getValue());
float mult_C1 = exponentialBipolar80Pade_5_4(params[C1_LEVEL_PARAM].getValue());

float mult_B2 = (2.f/5.f)*exponentialBipolar80Pade_5_4(params[B2_LEVEL_PARAM].getValue());
float mult_C2 = exponentialBipolar80Pade_5_4(params[C2_LEVEL_PARAM].getValue());


load_input(inputs[A1_INPUT], a1, channels_A1);
crop_channels(a1, channels_1);

if(inputs[B1_INPUT].isConnected()) {
load_input(inputs[B1_INPUT], b1, channels_B1);
for(int c=0; c<channels_1; c+=4) b1[c/4] = b1[c/4] * simd::float_4(mult_B1);
} else {
for(int c=0; c<channels_1; c+=4) b1[c/4] = simd::float_4(5.f*mult_B1);
}
crop_channels(b1, channels_1);

if(inputs[C1_INPUT].isConnected()) {
load_input(inputs[C1_INPUT], c1, channels_C1);
for(int c=0; c<channels_1; c+=4) c1[c/4] = c1[c/4] * simd::float_4(mult_C1);
} else {
for(int c=0; c<channels_1; c+=4) c1[c/4] = simd::float_4(10.f*mult_C1);
}
crop_channels(c1, channels_1);

for(int c=0; c<channels_1; c+=4) out1[c/4] = clip4(a1[c/4] * b1[c/4] + c1[c/4]);



load_input(inputs[A1_INPUT], a1, channels_A1);
crop_channels(a1, channels_1);

if(inputs[B2_INPUT].isConnected()) {
load_input(inputs[B2_INPUT], b2, channels_B2);
for(int c=0; c<channels_2; c+=4) b2[c/4] = b2[c/4] * simd::float_4(mult_B2);
} else {
for(int c=0; c<channels_2; c+=4) b2[c/4] = simd::float_4(5.f*mult_B2);
}
crop_channels(b2, channels_2);

if(inputs[C2_INPUT].isConnected()) {
load_input(inputs[C2_INPUT], c2, channels_C2);
for(int c=0; c<channels_2; c+=4) c2[c/4] = c2[c/4] * simd::float_4(mult_C2);
} else {
for(int c=0; c<channels_2; c+=4) c2[c/4] = simd::float_4(10.f*mult_C2);
}
crop_channels(c2, channels_2);

for(int c=0; c<channels_2; c+=4) out2[c/4] = clip4(a2[c/4] * b2[c/4] + c2[c/4]);



// Set outputs
if (outputs[OUT1_OUTPUT].isConnected()) {
outputs[OUT1_OUTPUT].setVoltage(clip(out1 / 10.f) * 10.f);
outputs[OUT1_OUTPUT].setChannels(channels_1);
for(int c=0; c<channels_1; c+=4) out1[c/4].store(outputs[OUT1_OUTPUT].getVoltages(c));
}
else {
out2 += out1;
for(int c=0; c<channels_1; c+=4) out2[c/4] += out1[c/4];
}
if (outputs[OUT2_OUTPUT].isConnected()) {
outputs[OUT2_OUTPUT].setVoltage(clip(out2 / 10.f) * 10.f);
outputs[OUT2_OUTPUT].setChannels(channels_1);
for(int c=0; c<channels_1; c+=4) out2[c/4].store(outputs[OUT2_OUTPUT].getVoltages(c));
}

// Lights
lights[OUT1_LIGHT + 0].setSmoothBrightness(out1 / 5.f, args.sampleTime);
lights[OUT1_LIGHT + 1].setSmoothBrightness(-out1 / 5.f, args.sampleTime);
lights[OUT2_LIGHT + 0].setSmoothBrightness(out2 / 5.f, args.sampleTime);
lights[OUT2_LIGHT + 1].setSmoothBrightness(-out2 / 5.f, args.sampleTime);

float light_1;
float light_2;

if(channels_1==1) {
light_1 = out1[0].s[0];
} else {
light_1 = outputs[OUT1_OUTPUT].getVoltageSum();
}
lights[OUT1_LIGHT + 0].setSmoothBrightness(light_1 / 5.f, args.sampleTime);
lights[OUT1_LIGHT + 1].setSmoothBrightness(-light_1 / 5.f, args.sampleTime);

if(channels_2==1) {
light_2 = out2[0].s[0];
} else {
light_2 = outputs[OUT2_OUTPUT].getVoltageSum();
}
lights[OUT2_LIGHT + 0].setSmoothBrightness(light_2 / 5.f, args.sampleTime);
lights[OUT2_LIGHT + 1].setSmoothBrightness(-light_2 / 5.f, args.sampleTime);
}
};



+ 30
- 11
src/DualAtenuverter.cpp View File

@@ -36,17 +36,36 @@ struct DualAtenuverter : Module {
}

void process(const ProcessArgs &args) override {
float out1 = inputs[IN1_INPUT].getVoltage() * params[ATEN1_PARAM].getValue() + params[OFFSET1_PARAM].getValue();
float out2 = inputs[IN2_INPUT].getVoltage() * params[ATEN2_PARAM].getValue() + params[OFFSET2_PARAM].getValue();
out1 = clamp(out1, -10.f, 10.f);
out2 = clamp(out2, -10.f, 10.f);

outputs[OUT1_OUTPUT].setVoltage(out1);
outputs[OUT2_OUTPUT].setVoltage(out2);
lights[OUT1_POS_LIGHT].setSmoothBrightness(out1 / 5.f, args.sampleTime);
lights[OUT1_NEG_LIGHT].setSmoothBrightness(-out1 / 5.f, args.sampleTime);
lights[OUT2_POS_LIGHT].setSmoothBrightness(out2 / 5.f, args.sampleTime);
lights[OUT2_NEG_LIGHT].setSmoothBrightness(-out2 / 5.f, args.sampleTime);

simd::float_4 out1[4];
simd::float_4 out2[4];

int channels1 = inputs[IN1_INPUT].getChannels(); channels1 = channels1>0?channels1:1;
int channels2 = inputs[IN2_INPUT].getChannels(); channels2 = channels2>0?channels2:1;

simd::float_4 att1 = simd::float_4(params[ATEN1_PARAM].getValue());
simd::float_4 att2 = simd::float_4(params[ATEN2_PARAM].getValue());

simd::float_4 offset1 = simd::float_4(params[OFFSET1_PARAM].getValue());
simd::float_4 offset2 = simd::float_4(params[OFFSET2_PARAM].getValue());


for (int c = 0; c < channels1; c += 4) out1[c / 4] = clamp(simd::float_4::load(inputs[IN1_INPUT].getVoltages(c)) * att1 + offset1, -10.f, 10.f);
for (int c = 0; c < channels2; c += 4) out2[c / 4] = clamp(simd::float_4::load(inputs[IN2_INPUT].getVoltages(c)) * att2 + offset2, -10.f, 10.f);
outputs[OUT1_OUTPUT].setChannels(channels1);
outputs[OUT2_OUTPUT].setChannels(channels2);
for (int c = 0; c < channels1; c += 4) out1[c / 4].store(outputs[OUT1_OUTPUT].getVoltages(c));
for (int c = 0; c < channels2; c += 4) out2[c / 4].store(outputs[OUT2_OUTPUT].getVoltages(c));
float light1 = outputs[OUT1_OUTPUT].getVoltageSum()/channels1;
float light2 = outputs[OUT2_OUTPUT].getVoltageSum()/channels2;

lights[OUT1_POS_LIGHT].setSmoothBrightness(light1 / 5.f, args.sampleTime);
lights[OUT1_NEG_LIGHT].setSmoothBrightness(-light1 / 5.f, args.sampleTime);
lights[OUT2_POS_LIGHT].setSmoothBrightness(light2 / 5.f, args.sampleTime);
lights[OUT2_NEG_LIGHT].setSmoothBrightness(-light2 / 5.f, args.sampleTime);
}
};



+ 16
- 1
src/EvenVCO.cpp View File

@@ -1,5 +1,6 @@
#include "plugin.hpp"

#define MAX(a,b) (a>b)?a:b

struct EvenVCO : Module {
enum ParamIds {
@@ -47,11 +48,25 @@ struct EvenVCO : Module {
configParam(OCTAVE_PARAM, -5.0, 4.0, 0.0, "Octave", "'", 0.5);
configParam(TUNE_PARAM, -7.0, 7.0, 0.0, "Tune", " semitones");
configParam(PWM_PARAM, -1.0, 1.0, 0.0, "Pulse width");


}

void process(const ProcessArgs &args) override {
// Compute frequency, pitch is 1V/oct
float pitch = 1.f + std::round(params[OCTAVE_PARAM].getValue()) + params[TUNE_PARAM].getValue() / 12.f;

int channels_pitch1 = inputs[PITCH1_INPUT].getChannels();
int channels_pitch2 = inputs[PITCH2_INPUT].getChannels();
int channels_fm = inputs[FM_INPUT].getChannels();

int channels = 1;
channels = MAX(channels, channels_pitch1);
channels = MAX(channels, channels_pitch2);
// channels = MAX(channels, channels_fm);

float pitch_0 = 1.f + std::round(params[OCTAVE_PARAM].getValue()) + params[TUNE_PARAM].getValue() / 12.f;


pitch += inputs[PITCH1_INPUT].getVoltage() + inputs[PITCH2_INPUT].getVoltage();
pitch += inputs[FM_INPUT].getVoltage() / 4.f;
float freq = dsp::FREQ_C4 * std::pow(2.f, pitch);


+ 89
- 8
src/Mixer.cpp View File

@@ -1,5 +1,8 @@
#include "plugin.hpp"

#define MAX(a,b) (a>b)?a:b
#define MIN(a,b) (a<b)?a:b


struct Mixer : Module {
enum ParamIds {
@@ -27,25 +30,103 @@ struct Mixer : Module {
NUM_LIGHTS
};

simd::float_4 mask[4];
simd::float_4 minus_one;

Mixer() {
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS);
configParam(CH1_PARAM, 0.0, 1.0, 0.0, "Ch 1 level", "%", 0, 100);
configParam(CH2_PARAM, 0.0, 1.0, 0.0, "Ch 2 level", "%", 0, 100);
configParam(CH3_PARAM, 0.0, 1.0, 0.0, "Ch 3 level", "%", 0, 100);
configParam(CH4_PARAM, 0.0, 1.0, 0.0, "Ch 4 level", "%", 0, 100);

minus_one = simd::float_4(-1.0f);

__m128i tmp = _mm_cmpeq_epi16(_mm_set_epi32(0,0,0,0),_mm_set_epi32(0,0,0,0));

for(int i=0; i<4; i++) {
mask[3-i] = simd::float_4(_mm_castsi128_ps(tmp));
tmp = _mm_srli_si128(tmp, 4);
}

}


void process(const ProcessArgs &args) override {
float in1 = inputs[IN1_INPUT].getVoltage() * params[CH1_PARAM].getValue();
float in2 = inputs[IN2_INPUT].getVoltage() * params[CH2_PARAM].getValue();
float in3 = inputs[IN3_INPUT].getVoltage() * params[CH3_PARAM].getValue();
float in4 = inputs[IN4_INPUT].getVoltage() * params[CH4_PARAM].getValue();

float out = in1 + in2 + in3 + in4;
outputs[OUT1_OUTPUT].setVoltage(out);
outputs[OUT2_OUTPUT].setVoltage(-out);

int i;

int channels1 = inputs[IN1_INPUT].getChannels();
int channels2 = inputs[IN2_INPUT].getChannels();
int channels3 = inputs[IN3_INPUT].getChannels();
int channels4 = inputs[IN4_INPUT].getChannels();

int out_channels = 1;
out_channels = MAX(out_channels, channels1);
out_channels = MAX(out_channels, channels2);
out_channels = MAX(out_channels, channels3);
out_channels = MAX(out_channels, channels4);
simd::float_4 mult1 = simd::float_4(params[CH1_PARAM].getValue());
simd::float_4 mult2 = simd::float_4(params[CH2_PARAM].getValue());
simd::float_4 mult3 = simd::float_4(params[CH3_PARAM].getValue());
simd::float_4 mult4 = simd::float_4(params[CH4_PARAM].getValue());

simd::float_4 in1[4];
simd::float_4 in2[4];
simd::float_4 in3[4];
simd::float_4 in4[4];

simd::float_4 out[4];

out[0] = simd::float_4(0.f);
out[1] = simd::float_4(0.f);
out[2] = simd::float_4(0.f);
out[3] = simd::float_4(0.f);


if(inputs[IN1_INPUT].isConnected()) {
// this also loads some spurious channels into in1[]
for(int c=0; c<channels1; c+=4) in1[c/4] = simd::float_4::load(inputs[IN1_INPUT].getVoltages(c)) * mult1;

for(i=0; i<channels1/4; i++) out[i] += in1[i]; // add only "real" channels.
out[i] += simd::float_4(_mm_and_ps(in1[i].v, mask[channels1-4*i].v)); // make sure we zero out spurious channels
}
if(inputs[IN2_INPUT].isConnected()) {
for(int c=0; c<channels2; c+=4) in2[c/4] = simd::float_4::load(inputs[IN2_INPUT].getVoltages(c)) * mult2;

for(i=0; i<channels2/4; i++) out[i] += in2[i];
out[i] += simd::float_4(_mm_and_ps(in2[i].v, mask[channels2-4*i].v));
}

if(inputs[IN3_INPUT].isConnected()) {
for(int c=0; c<channels3; c+=4) in3[c/4] = simd::float_4::load(inputs[IN3_INPUT].getVoltages(c)) * mult3;

for(i=0; i<channels3/4; i++) out[i] += in3[i];
out[i] += simd::float_4(_mm_and_ps(in3[i].v, mask[channels3-4*i].v));
}

if(inputs[IN4_INPUT].isConnected()) {
for(int c=0; c<channels4; c+=4) in4[c/4] = simd::float_4::load(inputs[IN4_INPUT].getVoltages(c)) * mult4;

for(i=0; i<channels4/4; i++) out[i] += in4[i];
out[i] += simd::float_4(_mm_and_ps(in4[i].v, mask[channels4-4*i].v));
}


outputs[OUT1_OUTPUT].setChannels(out_channels);
outputs[OUT2_OUTPUT].setChannels(out_channels);

for(int c=0; c<out_channels; c+=4) {
out[c / 4].store(outputs[OUT1_OUTPUT].getVoltages(c));
out[c / 4] *= minus_one;
out[c / 4].store(outputs[OUT2_OUTPUT].getVoltages(c));
}
/*
lights[OUT_POS_LIGHT].setSmoothBrightness(out / 5.f, args.sampleTime);
lights[OUT_NEG_LIGHT].setSmoothBrightness(-out / 5.f, args.sampleTime);
*/
}
};



+ 34
- 18
src/SlewLimiter.cpp View File

@@ -19,17 +19,21 @@ struct SlewLimiter : Module {
NUM_OUTPUTS
};

float out = 0.0;
float out[PORT_MAX_CHANNELS];

SlewLimiter() {
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS);
configParam(SHAPE_PARAM, 0.0, 1.0, 0.0, "Shape");
configParam(RISE_PARAM, 0.0, 1.0, 0.0, "Rise time");
configParam(FALL_PARAM, 0.0, 1.0, 0.0, "Fall time");

memset(out, 0, sizeof(out));
}

void process(const ProcessArgs &args) override {
float in = inputs[IN_INPUT].getVoltage();

int channels = inputs[IN_INPUT].getChannels();

float shape = params[SHAPE_PARAM].getValue();

// minimum and maximum slopes in volts per second
@@ -38,24 +42,36 @@ struct SlewLimiter : Module {
// Amount of extra slew per voltage difference
const float shapeScale = 1/10.f;

// Rise
if (in > out) {
float rise = inputs[RISE_INPUT].getVoltage() / 10.f + params[RISE_PARAM].getValue();
float slew = slewMax * std::pow(slewMin / slewMax, rise);
out += slew * crossfade(1.f, shapeScale * (in - out), shape) * args.sampleTime;
if (out > in)
out = in;
}
// Fall
else if (in < out) {
float fall = inputs[FALL_INPUT].getVoltage() / 10.f + params[FALL_PARAM].getValue();
float slew = slewMax * std::pow(slewMin / slewMax, fall);
out -= slew * crossfade(1.f, shapeScale * (out - in), shape) * args.sampleTime;
if (out < in)
out = in;
const float param_rise = params[RISE_PARAM].getValue();
const float param_fall = params[FALL_PARAM].getValue();


outputs[OUT_OUTPUT].setChannels(channels);

for(int c=0; c<channels; c++) {

float in = inputs[IN_INPUT].getVoltage(c);

// Rise
if (in > out[c]) {
float rise = inputs[RISE_INPUT].getPolyVoltage(c) / 10.f + param_rise;
float slew = slewMax * std::pow(slewMin / slewMax, rise);
out[c] += slew * crossfade(1.f, shapeScale * (in - out[c]), shape) * args.sampleTime;
if (out[c] > in)
out[c] = in;
}
// Fall
else if (in < out[c]) {
float fall = inputs[FALL_INPUT].getPolyVoltage(c) / 10.f + param_fall;
float slew = slewMax * std::pow(slewMin / slewMax, fall);
out[c] -= slew * crossfade(1.f, shapeScale * (out[c] - in), shape) * args.sampleTime;
if (out[c] < in)
out[c] = in;
}

}
outputs[OUT_OUTPUT].writeVoltages(out);

outputs[OUT_OUTPUT].setVoltage(out);
}
};



+ 2
- 2
src/SpringReverb.cpp View File

@@ -65,8 +65,8 @@ struct SpringReverb : Module {
}

void process(const ProcessArgs &args) override {
float in1 = inputs[IN1_INPUT].getVoltage();
float in2 = inputs[IN2_INPUT].getVoltage();
float in1 = inputs[IN1_INPUT].getVoltageSum();
float in2 = inputs[IN2_INPUT].getVoltageSum();
const float levelScale = 0.030;
const float levelBase = 25.0;
float level1 = levelScale * dsp::exponentialBipolar(levelBase, params[LEVEL1_PARAM].getValue()) * inputs[CV1_INPUT].getNormalVoltage(10.0) / 10.0;


Loading…
Cancel
Save