|
|
@@ -0,0 +1,331 @@ |
|
|
|
#include "plugin.hpp" |
|
|
|
#include "ChowDSP.hpp" |
|
|
|
|
|
|
|
using simd::float_4; |
|
|
|
|
|
|
|
struct EvenVCO2 : Module { |
|
|
|
enum ParamIds { |
|
|
|
OCTAVE_PARAM, |
|
|
|
TUNE_PARAM, |
|
|
|
PWM_PARAM, |
|
|
|
NUM_PARAMS |
|
|
|
}; |
|
|
|
enum InputIds { |
|
|
|
PITCH1_INPUT, |
|
|
|
PITCH2_INPUT, |
|
|
|
FM_INPUT, |
|
|
|
SYNC_INPUT, |
|
|
|
PWM_INPUT, |
|
|
|
NUM_INPUTS |
|
|
|
}; |
|
|
|
enum OutputIds { |
|
|
|
TRI_OUTPUT, |
|
|
|
SINE_OUTPUT, |
|
|
|
EVEN_OUTPUT, |
|
|
|
SAW_OUTPUT, |
|
|
|
SQUARE_OUTPUT, |
|
|
|
NUM_OUTPUTS |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
float_4 phase[4] = {}; |
|
|
|
dsp::TSchmittTrigger<float_4> syncTrigger[4]; |
|
|
|
bool removePulseDC = true; |
|
|
|
bool limitPW = true; |
|
|
|
|
|
|
|
EvenVCO2() { |
|
|
|
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS); |
|
|
|
configParam(OCTAVE_PARAM, -5.0, 4.0, 0.0, "Octave", "'", 0.5); |
|
|
|
getParamQuantity(OCTAVE_PARAM)->snapEnabled = true; |
|
|
|
configParam(TUNE_PARAM, -7.0, 7.0, 0.0, "Tune", " semitones"); |
|
|
|
configParam(PWM_PARAM, -1.0, 1.0, 0.0, "Pulse width"); |
|
|
|
|
|
|
|
configInput(PITCH1_INPUT, "Pitch 1"); |
|
|
|
configInput(PITCH2_INPUT, "Pitch 2"); |
|
|
|
configInput(FM_INPUT, "FM"); |
|
|
|
configInput(SYNC_INPUT, "Sync"); |
|
|
|
configInput(PWM_INPUT, "Pulse Width Modulation"); |
|
|
|
|
|
|
|
configOutput(TRI_OUTPUT, "Triangle"); |
|
|
|
configOutput(SINE_OUTPUT, "Sine"); |
|
|
|
configOutput(EVEN_OUTPUT, "Even"); |
|
|
|
configOutput(SAW_OUTPUT, "Sawtooth"); |
|
|
|
configOutput(SQUARE_OUTPUT, "Square"); |
|
|
|
|
|
|
|
// calculate up/downsampling rates |
|
|
|
onSampleRateChange(); |
|
|
|
} |
|
|
|
|
|
|
|
void onSampleRateChange() override { |
|
|
|
float sampleRate = APP->engine->getSampleRate(); |
|
|
|
for (int i = 0; i < NUM_OUTPUTS; ++i) { |
|
|
|
for (int c = 0; c < 4; c++) { |
|
|
|
oversampler[i][c].setOversamplingIndex(oversamplingIndex); |
|
|
|
oversampler[i][c].reset(sampleRate); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
const float lowFreqRegime = oversampler[0][0].getOversamplingRatio() * 1e-3 * sampleRate; |
|
|
|
DEBUG("Low freq regime: %g", lowFreqRegime); |
|
|
|
} |
|
|
|
|
|
|
|
float_4 aliasSuppressedTri(float_4* phases) { |
|
|
|
float_4 triBuffer[3]; |
|
|
|
for (int i = 0; i < 3; ++i) { |
|
|
|
float_4 p = 2 * phases[i] - 1.0; // range -1.0 to +1.0 |
|
|
|
float_4 s = 0.5 - simd::abs(p); // eq 30 |
|
|
|
triBuffer[i] = (s * s * s - 0.75 * s) / 3.0; // eq 29 |
|
|
|
} |
|
|
|
return (triBuffer[0] - 2.0 * triBuffer[1] + triBuffer[2]); |
|
|
|
} |
|
|
|
|
|
|
|
float_4 aliasSuppressedSaw(float_4* phases) { |
|
|
|
float_4 sawBuffer[3]; |
|
|
|
for (int i = 0; i < 3; ++i) { |
|
|
|
float_4 p = 2 * phases[i] - 1.0; // range -1 to +1 |
|
|
|
sawBuffer[i] = (p * p * p - p) / 6.0; // eq 11 |
|
|
|
} |
|
|
|
|
|
|
|
return (sawBuffer[0] - 2.0 * sawBuffer[1] + sawBuffer[2]); |
|
|
|
} |
|
|
|
|
|
|
|
float_4 aliasSuppressedDoubleSaw(float_4* phases) { |
|
|
|
float_4 sawBuffer[3]; |
|
|
|
for (int i = 0; i < 3; ++i) { |
|
|
|
float_4 p = 4.0 * simd::ifelse(phases[i] < 0.5, phases[i], phases[i] - 0.5) - 1.0; |
|
|
|
sawBuffer[i] = (p * p * p - p) / 24.0; // eq 11 (modified for doubled freq) |
|
|
|
} |
|
|
|
|
|
|
|
return (sawBuffer[0] - 2.0 * sawBuffer[1] + sawBuffer[2]); |
|
|
|
} |
|
|
|
|
|
|
|
float_4 aliasSuppressedOffsetSaw(float_4* phases, float_4 pw) { |
|
|
|
float_4 sawOffsetBuff[3]; |
|
|
|
|
|
|
|
for (int i = 0; i < 3; ++i) { |
|
|
|
float_4 p = 2 * phases[i] - 1.0; // range -1 to +1 |
|
|
|
float_4 pwp = p + 2 * pw; // phase after pw (pw in [0, 1]) |
|
|
|
pwp += simd::ifelse(pwp > 1, -2, 0); // modulo on [-1, +1] |
|
|
|
sawOffsetBuff[i] = (pwp * pwp * pwp - pwp) / 6.0; // eq 11 |
|
|
|
} |
|
|
|
return (sawOffsetBuff[0] - 2.0 * sawOffsetBuff[1] + sawOffsetBuff[2]); |
|
|
|
} |
|
|
|
|
|
|
|
chowdsp::VariableOversampling<6, float_4> oversampler[NUM_OUTPUTS][4]; // uses a 2*6=12th order Butterworth filter |
|
|
|
int oversamplingIndex = 1; // default is 2^oversamplingIndex == x2 oversampling |
|
|
|
|
|
|
|
void process(const ProcessArgs& args) override { |
|
|
|
|
|
|
|
// pitch inputs determine number of polyphony engines |
|
|
|
const int channels = std::max({1, inputs[PITCH1_INPUT].getChannels(), inputs[PITCH2_INPUT].getChannels()}); |
|
|
|
|
|
|
|
const float pitchKnobs = 1.f + std::round(params[OCTAVE_PARAM].getValue()) + params[TUNE_PARAM].getValue() / 12.f; |
|
|
|
const int oversamplingRatio = oversampler[0][0].getOversamplingRatio(); |
|
|
|
|
|
|
|
for (int c = 0; c < channels; c += 4) { |
|
|
|
float_4 pw = simd::clamp(params[PWM_PARAM].getValue() + inputs[PWM_INPUT].getPolyVoltageSimd<float_4>(c) / 5.f, -1.f, 1.f); |
|
|
|
if (limitPW) { |
|
|
|
pw = simd::rescale(pw, -1, +1, 0.05f, 0.95f); |
|
|
|
} |
|
|
|
else { |
|
|
|
pw = simd::rescale(pw, -1.f, +1.f, 0.f, 1.f); |
|
|
|
} |
|
|
|
|
|
|
|
const float_4 fmVoltage = inputs[FM_INPUT].getPolyVoltageSimd<float_4>(c) * 0.25f; |
|
|
|
const float_4 pitch = inputs[PITCH1_INPUT].getPolyVoltageSimd<float_4>(c) + inputs[PITCH2_INPUT].getPolyVoltageSimd<float_4>(c); |
|
|
|
const float_4 freq = dsp::FREQ_C4 * simd::pow(2.f, pitchKnobs + pitch + fmVoltage); |
|
|
|
const float_4 deltaBasePhase = simd::clamp(freq * args.sampleTime / oversamplingRatio, 1e-6, 0.5f); |
|
|
|
// floating point arithmetic doesn't work well at low frequencies, specifically because the finite difference denominator |
|
|
|
// becomes tiny - we check for that scenario and use naive / 1st order waveforms in that frequency regime (as aliasing isn't |
|
|
|
// a problem there). With no oversampling, at 44100Hz, the threshold frequency is 44.1Hz. |
|
|
|
const float_4 lowFreqRegime = simd::abs(deltaBasePhase) < 1e-3; |
|
|
|
// 1 / denominator for the second-order FD |
|
|
|
const float_4 denominatorInv = 0.25 / (deltaBasePhase * deltaBasePhase); |
|
|
|
|
|
|
|
// pulsewave waveform doesn't have DC even for non 50% duty cycles, but Befaco team would like the option |
|
|
|
// for it to be added back in for hardware compatibility reasons |
|
|
|
const float_4 pulseDCOffset = (!removePulseDC) * 2.f * (0.5f - pw); |
|
|
|
|
|
|
|
// hard sync |
|
|
|
const float_4 syncMask = syncTrigger[c / 4].process(inputs[SYNC_INPUT].getPolyVoltageSimd<float_4>(c)); |
|
|
|
phase[c / 4] = simd::ifelse(syncMask, 0.5f, phase[c / 4]); |
|
|
|
|
|
|
|
float_4* osBufferTri = oversampler[TRI_OUTPUT][c / 4].getOSBuffer(); |
|
|
|
float_4* osBufferSaw = oversampler[SAW_OUTPUT][c / 4].getOSBuffer(); |
|
|
|
float_4* osBufferSin = oversampler[SINE_OUTPUT][c / 4].getOSBuffer(); |
|
|
|
float_4* osBufferSquare = oversampler[SQUARE_OUTPUT][c / 4].getOSBuffer(); |
|
|
|
float_4* osBufferEven = oversampler[EVEN_OUTPUT][c / 4].getOSBuffer(); |
|
|
|
for (int i = 0; i < oversamplingRatio; ++i) { |
|
|
|
|
|
|
|
phase[c / 4] += deltaBasePhase; |
|
|
|
// ensure within [0, 1] |
|
|
|
phase[c / 4] -= simd::floor(phase[c / 4]); |
|
|
|
|
|
|
|
float_4 phases[3]; // phase as extrapolated to the current and two previous samples |
|
|
|
|
|
|
|
phases[0] = phase[c / 4] - 2 * deltaBasePhase + simd::ifelse(phase[c / 4] < 2 * deltaBasePhase, 1.f, 0.f); |
|
|
|
phases[1] = phase[c / 4] - deltaBasePhase + simd::ifelse(phase[c / 4] < deltaBasePhase, 1.f, 0.f); |
|
|
|
phases[2] = phase[c / 4]; |
|
|
|
|
|
|
|
if (outputs[SINE_OUTPUT].isConnected() || outputs[EVEN_OUTPUT].isConnected()) { |
|
|
|
// sin doesn't need PDW |
|
|
|
osBufferSin[i] = -simd::cos(2.0 * M_PI * phase[c / 4]); |
|
|
|
} |
|
|
|
|
|
|
|
if (outputs[TRI_OUTPUT].isConnected()) { |
|
|
|
const float_4 dpwOrder1 = 1.0 - 2.0 * simd::abs(2 * phase[c / 4] - 1.0); |
|
|
|
const float_4 dpwOrder3 = aliasSuppressedTri(phases) * denominatorInv; |
|
|
|
|
|
|
|
osBufferTri[i] = simd::ifelse(lowFreqRegime, dpwOrder1, dpwOrder3); |
|
|
|
} |
|
|
|
|
|
|
|
if (outputs[SAW_OUTPUT].isConnected()) { |
|
|
|
const float_4 dpwOrder1 = 2 * phase[c / 4] - 1.0; |
|
|
|
const float_4 dpwOrder3 = aliasSuppressedSaw(phases) * denominatorInv; |
|
|
|
|
|
|
|
osBufferSaw[i] = simd::ifelse(lowFreqRegime, dpwOrder1, dpwOrder3); |
|
|
|
} |
|
|
|
|
|
|
|
if (outputs[SQUARE_OUTPUT].isConnected()) { |
|
|
|
|
|
|
|
float_4 dpwOrder1 = simd::ifelse(phase[c / 4] < pw, -1.0, +1.0); |
|
|
|
dpwOrder1 -= removePulseDC ? 2.f * (0.5f - pw) : 0.f; |
|
|
|
|
|
|
|
float_4 saw = aliasSuppressedSaw(phases); |
|
|
|
float_4 sawOffset = aliasSuppressedOffsetSaw(phases, pw); |
|
|
|
float_4 dpwOrder3 = (saw - sawOffset) * denominatorInv + pulseDCOffset; |
|
|
|
|
|
|
|
osBufferSquare[i] = simd::ifelse(lowFreqRegime, dpwOrder1, dpwOrder3); |
|
|
|
} |
|
|
|
|
|
|
|
if (outputs[EVEN_OUTPUT].isConnected()) { |
|
|
|
|
|
|
|
float_4 dpwOrder1 = 4.0 * simd::ifelse(phase[c / 4] < 0.5, phase[c / 4], phase[c / 4] - 0.5) - 1.0; |
|
|
|
float_4 dpwOrder3 = aliasSuppressedDoubleSaw(phases) * denominatorInv; |
|
|
|
float_4 doubleSaw = simd::ifelse(lowFreqRegime, dpwOrder1, dpwOrder3); |
|
|
|
osBufferEven[i] = 0.55 * (doubleSaw + 1.27 * osBufferSin[i]); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
} // end of oversampling loop |
|
|
|
|
|
|
|
// downsample (if required) |
|
|
|
if (outputs[SINE_OUTPUT].isConnected()) { |
|
|
|
const float_4 outSin = (oversamplingRatio > 1) ? oversampler[SINE_OUTPUT][c / 4].downsample() : osBufferSin[0]; |
|
|
|
outputs[SINE_OUTPUT].setVoltageSimd(5.f * outSin, c); |
|
|
|
} |
|
|
|
|
|
|
|
if (outputs[TRI_OUTPUT].isConnected()) { |
|
|
|
const float_4 outTri = (oversamplingRatio > 1) ? oversampler[TRI_OUTPUT][c / 4].downsample() : osBufferTri[0]; |
|
|
|
outputs[TRI_OUTPUT].setVoltageSimd(5.f * outTri, c); |
|
|
|
} |
|
|
|
|
|
|
|
if (outputs[SAW_OUTPUT].isConnected()) { |
|
|
|
const float_4 outSaw = (oversamplingRatio > 1) ? oversampler[SAW_OUTPUT][c / 4].downsample() : osBufferSaw[0]; |
|
|
|
outputs[SAW_OUTPUT].setVoltageSimd(5.f * outSaw, c); |
|
|
|
} |
|
|
|
|
|
|
|
if (outputs[SQUARE_OUTPUT].isConnected()) { |
|
|
|
const float_4 outSquare = (oversamplingRatio > 1) ? oversampler[SQUARE_OUTPUT][c / 4].downsample() : osBufferSquare[0]; |
|
|
|
outputs[SQUARE_OUTPUT].setVoltageSimd(5.f * outSquare, c); |
|
|
|
} |
|
|
|
|
|
|
|
if (outputs[EVEN_OUTPUT].isConnected()) { |
|
|
|
const float_4 outEven = (oversamplingRatio > 1) ? oversampler[EVEN_OUTPUT][c / 4].downsample() : osBufferEven[0]; |
|
|
|
outputs[EVEN_OUTPUT].setVoltageSimd(5.f * outEven, c); |
|
|
|
} |
|
|
|
|
|
|
|
} // end of channels loop |
|
|
|
|
|
|
|
// Outputs |
|
|
|
outputs[TRI_OUTPUT].setChannels(channels); |
|
|
|
outputs[SINE_OUTPUT].setChannels(channels); |
|
|
|
outputs[EVEN_OUTPUT].setChannels(channels); |
|
|
|
outputs[SAW_OUTPUT].setChannels(channels); |
|
|
|
outputs[SQUARE_OUTPUT].setChannels(channels); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
json_t* dataToJson() override { |
|
|
|
json_t* rootJ = json_object(); |
|
|
|
json_object_set_new(rootJ, "removePulseDC", json_boolean(removePulseDC)); |
|
|
|
json_object_set_new(rootJ, "limitPW", json_boolean(limitPW)); |
|
|
|
json_object_set_new(rootJ, "oversamplingIndex", json_integer(oversampler[0][0].getOversamplingIndex())); |
|
|
|
return rootJ; |
|
|
|
} |
|
|
|
|
|
|
|
void dataFromJson(json_t* rootJ) override { |
|
|
|
json_t* pulseDCJ = json_object_get(rootJ, "removePulseDC"); |
|
|
|
if (pulseDCJ) { |
|
|
|
removePulseDC = json_boolean_value(pulseDCJ); |
|
|
|
} |
|
|
|
|
|
|
|
json_t* limitPWJ = json_object_get(rootJ, "limitPW"); |
|
|
|
if (limitPWJ) { |
|
|
|
limitPW = json_boolean_value(limitPWJ); |
|
|
|
} |
|
|
|
|
|
|
|
json_t* oversamplingIndexJ = json_object_get(rootJ, "oversamplingIndex"); |
|
|
|
if (oversamplingIndexJ) { |
|
|
|
oversamplingIndex = json_integer_value(oversamplingIndexJ); |
|
|
|
onSampleRateChange(); |
|
|
|
} |
|
|
|
} |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
struct EvenVCO2Widget : ModuleWidget { |
|
|
|
EvenVCO2Widget(EvenVCO2* module) { |
|
|
|
setModule(module); |
|
|
|
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/panels/EvenVCO.svg"))); |
|
|
|
|
|
|
|
addChild(createWidget<Knurlie>(Vec(15, 0))); |
|
|
|
addChild(createWidget<Knurlie>(Vec(15, 365))); |
|
|
|
addChild(createWidget<Knurlie>(Vec(15 * 6, 0))); |
|
|
|
addChild(createWidget<Knurlie>(Vec(15 * 6, 365))); |
|
|
|
|
|
|
|
addParam(createParam<BefacoBigKnob>(Vec(22, 32), module, EvenVCO2::OCTAVE_PARAM)); |
|
|
|
addParam(createParam<BefacoTinyKnob>(Vec(73, 131), module, EvenVCO2::TUNE_PARAM)); |
|
|
|
addParam(createParam<Davies1900hRedKnob>(Vec(16, 230), module, EvenVCO2::PWM_PARAM)); |
|
|
|
|
|
|
|
addInput(createInput<BefacoInputPort>(Vec(8, 120), module, EvenVCO2::PITCH1_INPUT)); |
|
|
|
addInput(createInput<BefacoInputPort>(Vec(19, 157), module, EvenVCO2::PITCH2_INPUT)); |
|
|
|
addInput(createInput<BefacoInputPort>(Vec(48, 183), module, EvenVCO2::FM_INPUT)); |
|
|
|
addInput(createInput<BefacoInputPort>(Vec(86, 189), module, EvenVCO2::SYNC_INPUT)); |
|
|
|
|
|
|
|
addInput(createInput<BefacoInputPort>(Vec(72, 236), module, EvenVCO2::PWM_INPUT)); |
|
|
|
|
|
|
|
addOutput(createOutput<BefacoOutputPort>(Vec(10, 283), module, EvenVCO2::TRI_OUTPUT)); |
|
|
|
addOutput(createOutput<BefacoOutputPort>(Vec(87, 283), module, EvenVCO2::SINE_OUTPUT)); |
|
|
|
addOutput(createOutput<BefacoOutputPort>(Vec(48, 306), module, EvenVCO2::EVEN_OUTPUT)); |
|
|
|
addOutput(createOutput<BefacoOutputPort>(Vec(10, 327), module, EvenVCO2::SAW_OUTPUT)); |
|
|
|
addOutput(createOutput<BefacoOutputPort>(Vec(87, 327), module, EvenVCO2::SQUARE_OUTPUT)); |
|
|
|
} |
|
|
|
|
|
|
|
void appendContextMenu(Menu* menu) override { |
|
|
|
EvenVCO2* module = dynamic_cast<EvenVCO2*>(this->module); |
|
|
|
assert(module); |
|
|
|
|
|
|
|
menu->addChild(new MenuSeparator()); |
|
|
|
menu->addChild(createSubmenuItem("Hardware compatibility", "", |
|
|
|
[ = ](Menu * menu) { |
|
|
|
menu->addChild(createBoolPtrMenuItem("Remove DC from pulse", "", &module->removePulseDC)); |
|
|
|
menu->addChild(createBoolPtrMenuItem("Limit pulsewidth (5\%-95\%)", "", &module->limitPW)); |
|
|
|
} |
|
|
|
)); |
|
|
|
|
|
|
|
menu->addChild(createIndexSubmenuItem("Oversampling", |
|
|
|
{"Off", "x2", "x4", "x8"}, |
|
|
|
[ = ]() { |
|
|
|
return module->oversamplingIndex; |
|
|
|
}, |
|
|
|
[ = ](int mode) { |
|
|
|
module->oversamplingIndex = mode; |
|
|
|
module->onSampleRateChange(); |
|
|
|
} |
|
|
|
)); |
|
|
|
} |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
Model* modelEvenVCO2 = createModel<EvenVCO2, EvenVCO2Widget>("EvenVCO2"); |