|
@@ -1,6 +1,8 @@ |
|
|
#include "plugin.hpp" |
|
|
#include "plugin.hpp" |
|
|
#include "ChowDSP.hpp" |
|
|
#include "ChowDSP.hpp" |
|
|
|
|
|
|
|
|
|
|
|
using namespace simd; |
|
|
|
|
|
|
|
|
float aliasSuppressedSaw(const float* phases, float pw) { |
|
|
float aliasSuppressedSaw(const float* phases, float pw) { |
|
|
float sawBuffer[3]; |
|
|
float sawBuffer[3]; |
|
|
for (int i = 0; i < 3; ++i) { |
|
|
for (int i = 0; i < 3; ++i) { |
|
@@ -102,29 +104,29 @@ struct Octaves : Module { |
|
|
static const int NUM_OUTPUTS = 6; |
|
|
static const int NUM_OUTPUTS = 6; |
|
|
const float ranges[3] = {4.f, 1.f, 1.f / 12.f}; // full, octave, semitone |
|
|
const float ranges[3] = {4.f, 1.f, 1.f / 12.f}; // full, octave, semitone |
|
|
|
|
|
|
|
|
float phase = 0.f; // phase for core waveform, in [0, 1] |
|
|
|
|
|
chowdsp::VariableOversampling<6, float> oversampler[NUM_OUTPUTS]; // uses a 2*6=12th order Butterworth filter |
|
|
|
|
|
|
|
|
float_4 phase[4] = {}; // phase for core waveform, in [0, 1] |
|
|
|
|
|
chowdsp::VariableOversampling<6, float_4> oversampler[NUM_OUTPUTS][4]; // uses a 2*6=12th order Butterworth filter |
|
|
int oversamplingIndex = 1; // default is 2^oversamplingIndex == x2 oversampling |
|
|
int oversamplingIndex = 1; // default is 2^oversamplingIndex == x2 oversampling |
|
|
|
|
|
|
|
|
DCBlocker blockDCFilter[NUM_OUTPUTS]; // optionally block DC with RC filter @ ~22 Hz |
|
|
|
|
|
dsp::SchmittTrigger syncTrigger; // for hard sync |
|
|
|
|
|
|
|
|
DCBlockerT<2, float_4> blockDCFilter[NUM_OUTPUTS][4]; // optionally block DC with RC filter @ ~22 Hz |
|
|
|
|
|
dsp::TSchmittTrigger<float_4> syncTrigger[4]; // for hard sync |
|
|
|
|
|
|
|
|
Octaves() { |
|
|
Octaves() { |
|
|
config(PARAMS_LEN, INPUTS_LEN, OUTPUTS_LEN, LIGHTS_LEN); |
|
|
config(PARAMS_LEN, INPUTS_LEN, OUTPUTS_LEN, LIGHTS_LEN); |
|
|
configParam(PWM_CV_PARAM, 0.f, 1.f, 1.f, "PWM CV attenuater"); |
|
|
configParam(PWM_CV_PARAM, 0.f, 1.f, 1.f, "PWM CV attenuater"); |
|
|
|
|
|
|
|
|
auto octParam = configSwitch(OCTAVE_PARAM, 0.f, 6.f, 4.f, "Octave", {"C1", "C2", "C3", "C4", "C5", "C6", "C7"}); |
|
|
|
|
|
|
|
|
auto octParam = configSwitch(OCTAVE_PARAM, 0.f, 6.f, 1.f, "Octave", {"C1", "C2", "C3", "C4", "C5", "C6", "C7"}); |
|
|
octParam->snapEnabled = true; |
|
|
octParam->snapEnabled = true; |
|
|
|
|
|
|
|
|
configParam(TUNE_PARAM, -1.f, 1.f, 0.f, "Tune"); |
|
|
configParam(TUNE_PARAM, -1.f, 1.f, 0.f, "Tune"); |
|
|
configParam(PWM_PARAM, 0.5f, 0.f, 0.5f, "PWM"); |
|
|
configParam(PWM_PARAM, 0.5f, 0.f, 0.5f, "PWM"); |
|
|
auto rangeParam = configSwitch(RANGE_PARAM, 0.f, 2.f, 0.f, "Range", {"VCO: Full", "VCO: Octave", "VCO: Semitone"}); |
|
|
|
|
|
|
|
|
auto rangeParam = configSwitch(RANGE_PARAM, 0.f, 2.f, 1.f, "Range", {"VCO: Full", "VCO: Octave", "VCO: Semitone"}); |
|
|
rangeParam->snapEnabled = true; |
|
|
rangeParam->snapEnabled = true; |
|
|
|
|
|
|
|
|
configParam(GAIN_01F_PARAM, 0.f, 1.f, 0.f, "Gain Fundamental"); |
|
|
|
|
|
configParam(GAIN_02F_PARAM, 0.f, 1.f, 0.f, "Gain x2 Fundamental"); |
|
|
|
|
|
configParam(GAIN_04F_PARAM, 0.f, 1.f, 0.f, "Gain x4 Fundamental"); |
|
|
|
|
|
configParam(GAIN_08F_PARAM, 0.f, 1.f, 0.f, "Gain x8 Fundamental"); |
|
|
|
|
|
|
|
|
configParam(GAIN_01F_PARAM, 0.f, 1.f, 1.00f, "Gain Fundamental"); |
|
|
|
|
|
configParam(GAIN_02F_PARAM, 0.f, 1.f, 0.75f, "Gain x2 Fundamental"); |
|
|
|
|
|
configParam(GAIN_04F_PARAM, 0.f, 1.f, 0.50f, "Gain x4 Fundamental"); |
|
|
|
|
|
configParam(GAIN_08F_PARAM, 0.f, 1.f, 0.25f, "Gain x8 Fundamental"); |
|
|
configParam(GAIN_16F_PARAM, 0.f, 1.f, 0.f, "Gain x16 Fundamental"); |
|
|
configParam(GAIN_16F_PARAM, 0.f, 1.f, 0.f, "Gain x16 Fundamental"); |
|
|
configParam(GAIN_32F_PARAM, 0.f, 1.f, 0.f, "Gain x32 Fundamental"); |
|
|
configParam(GAIN_32F_PARAM, 0.f, 1.f, 0.f, "Gain x32 Fundamental"); |
|
|
|
|
|
|
|
@@ -153,85 +155,115 @@ struct Octaves : Module { |
|
|
void onSampleRateChange() override { |
|
|
void onSampleRateChange() override { |
|
|
float sampleRate = APP->engine->getSampleRate(); |
|
|
float sampleRate = APP->engine->getSampleRate(); |
|
|
for (int c = 0; c < NUM_OUTPUTS; c++) { |
|
|
for (int c = 0; c < NUM_OUTPUTS; c++) { |
|
|
oversampler[c].setOversamplingIndex(oversamplingIndex); |
|
|
|
|
|
oversampler[c].reset(sampleRate); |
|
|
|
|
|
blockDCFilter[c].setFrequency(22.05 / sampleRate); |
|
|
|
|
|
|
|
|
for (int i = 0; i < 4; i++) { |
|
|
|
|
|
oversampler[c][i].setOversamplingIndex(oversamplingIndex); |
|
|
|
|
|
oversampler[c][i].reset(sampleRate); |
|
|
|
|
|
blockDCFilter[c][i].setFrequency(22.05 / sampleRate); |
|
|
|
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void process(const ProcessArgs& args) override { |
|
|
|
|
|
const int rangeIndex = params[RANGE_PARAM].getValue(); |
|
|
|
|
|
|
|
|
|
|
|
float pitch = ranges[rangeIndex] * params[TUNE_PARAM].getValue() + inputs[VOCT1_INPUT].getVoltage() + inputs[VOCT2_INPUT].getVoltage(); |
|
|
|
|
|
pitch += params[OCTAVE_PARAM].getValue() - 3; |
|
|
|
|
|
const float freq = dsp::FREQ_C4 * dsp::exp2_taylor5(pitch); |
|
|
|
|
|
// -1 to +1 |
|
|
|
|
|
const float pwmCV = params[PWM_CV_PARAM].getValue() * clamp(inputs[PWM_INPUT].getVoltage() / 10.f, -1.f, 1.f); |
|
|
|
|
|
const float pulseWidthLimit = limitPW ? 0.05f : 0.0f; |
|
|
|
|
|
|
|
|
|
|
|
// pwm in [-0.25 : +0.25] |
|
|
|
|
|
const float pwm = 2 * clamp(0.5 - params[PWM_PARAM].getValue() + 0.5 * pwmCV, -0.5f + pulseWidthLimit, 0.5f - pulseWidthLimit); |
|
|
|
|
|
|
|
|
void process(const ProcessArgs& args) override { |
|
|
|
|
|
|
|
|
const int oversamplingRatio = oversampler[0].getOversamplingRatio(); |
|
|
|
|
|
|
|
|
const int numActivePolyphonyEngines = getNumActivePolyphonyEngines(); |
|
|
|
|
|
|
|
|
// work out active outputs |
|
|
// work out active outputs |
|
|
std::vector<int> connectedOutputs = getConnectedOutputs(); |
|
|
|
|
|
|
|
|
const std::vector<int> connectedOutputs = getConnectedOutputs(); |
|
|
if (connectedOutputs.size() == 0) { |
|
|
if (connectedOutputs.size() == 0) { |
|
|
return; |
|
|
return; |
|
|
} |
|
|
} |
|
|
// only process up to highest active channel |
|
|
// only process up to highest active channel |
|
|
const int highestOutput = *std::max_element(connectedOutputs.begin(), connectedOutputs.end()); |
|
|
const int highestOutput = *std::max_element(connectedOutputs.begin(), connectedOutputs.end()); |
|
|
const float deltaPhase = freq * args.sampleTime / oversamplingRatio; |
|
|
|
|
|
|
|
|
|
|
|
// process sync |
|
|
|
|
|
if (syncTrigger.process(inputs[SYNC_INPUT].getVoltage())) { |
|
|
|
|
|
phase = 0.5f; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
for (int c = 0; c < numActivePolyphonyEngines; c += 4) { |
|
|
|
|
|
|
|
|
|
|
|
const int rangeIndex = params[RANGE_PARAM].getValue(); |
|
|
|
|
|
float_4 pitch = ranges[rangeIndex] * params[TUNE_PARAM].getValue() + inputs[VOCT1_INPUT].getPolyVoltageSimd<float_4>(c) + inputs[VOCT2_INPUT].getPolyVoltageSimd<float_4>(c); |
|
|
|
|
|
pitch += params[OCTAVE_PARAM].getValue() - 3; |
|
|
|
|
|
const float_4 freq = dsp::FREQ_C4 * dsp::exp2_taylor5(pitch); |
|
|
|
|
|
// -1 to +1 |
|
|
|
|
|
const float_4 pwmCV = params[PWM_CV_PARAM].getValue() * clamp(inputs[PWM_INPUT].getPolyVoltageSimd<float_4>(c) / 10.f, -1.f, 1.f); |
|
|
|
|
|
const float_4 pulseWidthLimit = limitPW ? 0.05f : 0.0f; |
|
|
|
|
|
|
|
|
|
|
|
// pwm in [-0.25 : +0.25] |
|
|
|
|
|
const float_4 pwm = 2 * clamp(0.5 - params[PWM_PARAM].getValue() + 0.5 * pwmCV, -0.5f + pulseWidthLimit, 0.5f - pulseWidthLimit); |
|
|
|
|
|
|
|
|
|
|
|
const int oversamplingRatio = oversampler[0][0].getOversamplingRatio(); |
|
|
|
|
|
|
|
|
|
|
|
const float_4 deltaPhase = freq * args.sampleTime / oversamplingRatio; |
|
|
|
|
|
|
|
|
|
|
|
// process sync |
|
|
|
|
|
float_4 sync = syncTrigger[c / 4].process(inputs[SYNC_INPUT].getPolyVoltageSimd<float_4>(c)); |
|
|
|
|
|
phase[c / 4] = simd::ifelse(sync, 0.5f, phase[c / 4]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < oversamplingRatio; i++) { |
|
|
|
|
|
|
|
|
for (int i = 0; i < oversamplingRatio; i++) { |
|
|
|
|
|
|
|
|
phase += deltaPhase; |
|
|
|
|
|
phase -= std::floor(phase); |
|
|
|
|
|
|
|
|
phase[c / 4] += deltaPhase; |
|
|
|
|
|
phase[c / 4] -= simd::floor(phase[c / 4]); |
|
|
|
|
|
|
|
|
float sum = 0.f; |
|
|
|
|
|
for (int c = 0; c <= highestOutput; c++) { |
|
|
|
|
|
// derive phases for higher octaves from base phase (this keeps things in sync!) |
|
|
|
|
|
const float n = (float)(1 << c); |
|
|
|
|
|
// this is on [0, 1] |
|
|
|
|
|
const float effectivePhase = n * std::fmod(phase, 1 / n); |
|
|
|
|
|
const float gainCV = clamp(inputs[GAIN_01F_INPUT + c].getNormalVoltage(10.f) / 10.f, 0.f, 1.0f); |
|
|
|
|
|
const float gain = params[GAIN_01F_PARAM + c].getValue() * gainCV; |
|
|
|
|
|
|
|
|
float_4 sum = {}; |
|
|
|
|
|
for (int oct = 0; oct <= highestOutput; oct++) { |
|
|
|
|
|
// derive phases for higher octaves from base phase (this keeps things in sync!) |
|
|
|
|
|
const float_4 n = (float)(1 << oct); |
|
|
|
|
|
// this is on [0, 1] |
|
|
|
|
|
const float_4 effectivePhase = n * simd::fmod(phase[c / 4], 1 / n); |
|
|
|
|
|
const float_4 gainCV = simd::clamp(inputs[GAIN_01F_INPUT + oct].getNormalPolyVoltageSimd<float_4>(10.f, c) / 10.f, 0.f, 1.0f); |
|
|
|
|
|
const float_4 gain = params[GAIN_01F_PARAM + oct].getValue() * gainCV; |
|
|
|
|
|
|
|
|
const float waveTri = 1.0 - 2.0 * std::abs(2.f * effectivePhase - 1.0); |
|
|
|
|
|
// build square from triangle + comparator |
|
|
|
|
|
const float waveSquare = (waveTri > pwm) ? +1 : -1; |
|
|
|
|
|
|
|
|
const float_4 waveTri = 1.0 - 2.0 * simd::abs(2.f * effectivePhase - 1.0); |
|
|
|
|
|
// build square from triangle + comparator |
|
|
|
|
|
const float_4 waveSquare = simd::ifelse(waveTri > pwm, +1.f, -1.f); |
|
|
|
|
|
|
|
|
sum += (useTriangleCore ? waveTri : waveSquare) * gain; |
|
|
|
|
|
sum = clamp(sum, -1.f, 1.f); |
|
|
|
|
|
|
|
|
sum += (useTriangleCore ? waveTri : waveSquare) * gain; |
|
|
|
|
|
sum = clamp(sum, -1.f, 1.f); |
|
|
|
|
|
|
|
|
|
|
|
if (outputs[OUT_01F_OUTPUT + oct].isConnected()) { |
|
|
|
|
|
oversampler[oct][c/4].getOSBuffer()[i] = sum; |
|
|
|
|
|
sum = 0.f; |
|
|
|
|
|
|
|
|
|
|
|
// DEBUG("here %f %f %f %f %f", phase[c/4][0], waveTri[0], sum[0], gain[0], gainCV[0]); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (outputs[OUT_01F_OUTPUT + c].isConnected()) { |
|
|
|
|
|
oversampler[c].getOSBuffer()[i] = sum; |
|
|
|
|
|
sum = 0.f; |
|
|
|
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
} // end of oversampling loop |
|
|
|
|
|
|
|
|
} // end of oversampling loop |
|
|
|
|
|
|
|
|
// only downsample required channels |
|
|
|
|
|
for (int c = 0; c <= highestOutput; c++) { |
|
|
|
|
|
if (outputs[OUT_01F_OUTPUT + c].isConnected()) { |
|
|
|
|
|
// downsample (if required) |
|
|
|
|
|
float out = (oversamplingRatio > 1) ? oversampler[c].downsample() : oversampler[c].getOSBuffer()[0]; |
|
|
|
|
|
|
|
|
// only downsample required channels |
|
|
|
|
|
for (int oct = 0; oct <= highestOutput; oct++) { |
|
|
|
|
|
if (outputs[OUT_01F_OUTPUT + oct].isConnected()) { |
|
|
|
|
|
|
|
|
|
|
|
// downsample (if required) |
|
|
|
|
|
float_4 out = (oversamplingRatio > 1) ? oversampler[oct][c/4].downsample() : oversampler[oct][c/4].getOSBuffer()[0]; |
|
|
|
|
|
if (removePulseDC) { |
|
|
|
|
|
out = blockDCFilter[oct][c/4].process(out); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
if (removePulseDC) { |
|
|
|
|
|
out = blockDCFilter[c].process(out); |
|
|
|
|
|
|
|
|
outputs[OUT_01F_OUTPUT + oct].setVoltageSimd(5.f * out, c); |
|
|
} |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
} // end of polyphony loop |
|
|
|
|
|
|
|
|
outputs[OUT_01F_OUTPUT + c].setVoltage(5.f * out); |
|
|
|
|
|
|
|
|
for (int connectedOutput : connectedOutputs) { |
|
|
|
|
|
outputs[OUT_01F_OUTPUT + connectedOutput].setChannels(numActivePolyphonyEngines); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// polyphony is defined by the largest number of active channels on voct, pwm or gain inputs |
|
|
|
|
|
int getNumActivePolyphonyEngines() { |
|
|
|
|
|
int activePolyphonyEngines = 1; |
|
|
|
|
|
for (int c = 0; c < NUM_OUTPUTS; c++) { |
|
|
|
|
|
if (inputs[GAIN_01F_INPUT + c].isConnected()) { |
|
|
|
|
|
activePolyphonyEngines = std::max(activePolyphonyEngines, inputs[GAIN_01F_INPUT + c].getChannels()); |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
activePolyphonyEngines = std::max({activePolyphonyEngines, inputs[VOCT1_INPUT].getChannels(), inputs[VOCT2_INPUT].getChannels()}); |
|
|
|
|
|
activePolyphonyEngines = std::max(activePolyphonyEngines, inputs[PWM_INPUT].getChannels()); |
|
|
|
|
|
|
|
|
|
|
|
return activePolyphonyEngines; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
std::vector<int> getConnectedOutputs() { |
|
|
std::vector<int> getConnectedOutputs() { |
|
@@ -248,7 +280,7 @@ struct Octaves : Module { |
|
|
json_t* rootJ = json_object(); |
|
|
json_t* rootJ = json_object(); |
|
|
json_object_set_new(rootJ, "removePulseDC", json_boolean(removePulseDC)); |
|
|
json_object_set_new(rootJ, "removePulseDC", json_boolean(removePulseDC)); |
|
|
json_object_set_new(rootJ, "limitPW", json_boolean(limitPW)); |
|
|
json_object_set_new(rootJ, "limitPW", json_boolean(limitPW)); |
|
|
json_object_set_new(rootJ, "oversamplingIndex", json_integer(oversampler[0].getOversamplingIndex())); |
|
|
|
|
|
|
|
|
json_object_set_new(rootJ, "oversamplingIndex", json_integer(oversampler[0][0].getOversamplingIndex())); |
|
|
json_object_set_new(rootJ, "useTriangleCore", json_boolean(useTriangleCore)); |
|
|
json_object_set_new(rootJ, "useTriangleCore", json_boolean(useTriangleCore)); |
|
|
|
|
|
|
|
|
return rootJ; |
|
|
return rootJ; |
|
|