* use of string::f * removed unnecessary casts to float_4 * corrected/updated brace initialisation * removed github actionstags/v1.1.0^2
@@ -1,103 +0,0 @@ | |||
name: Build VCV Rack Plugin | |||
on: [push, pull_request] | |||
env: | |||
rack-sdk-version: 1.1.6 | |||
defaults: | |||
run: | |||
shell: bash | |||
jobs: | |||
build: | |||
name: ${{ matrix.config.name }} | |||
runs-on: ${{ matrix.config.os }} | |||
strategy: | |||
matrix: | |||
config: | |||
- { | |||
name: Linux, | |||
os: ubuntu-16.04, | |||
prepare-os: sudo apt install -y libglu-dev | |||
} | |||
- { | |||
name: MacOS, | |||
os: macos-latest, | |||
prepare-os: "" | |||
} | |||
- { | |||
name: Windows, | |||
os: windows-latest, | |||
prepare-os: export CC=gcc | |||
} | |||
steps: | |||
- uses: actions/checkout@v2 | |||
with: | |||
submodules: recursive | |||
- name: Get Rack-SDK | |||
run: | | |||
pushd $HOME | |||
curl -o Rack-SDK.zip https://vcvrack.com/downloads/Rack-SDK-${{ env.rack-sdk-version }}.zip | |||
unzip Rack-SDK.zip | |||
- name: Patch plugin.mk, use 7zip on Windows | |||
if: runner.os == 'Windows' | |||
run: | | |||
sed -i 's/zip -q -9 -r/7z a -tzip -mx=9/' $HOME/Rack-SDK/plugin.mk | |||
- name: Modify plugin version | |||
# only modify plugin version if no tag was created | |||
if: "! startsWith(github.ref, 'refs/tags/v')" | |||
run: | | |||
gitrev=`git rev-parse --short HEAD` | |||
pluginversion=`jq -r '.version' plugin.json` | |||
echo "Set plugin version from $pluginversion to $pluginversion-$gitrev" | |||
cat <<< `jq --arg VERSION "$pluginversion-$gitrev" '.version=$VERSION' plugin.json` > plugin.json | |||
- name: Build plugin | |||
run: | | |||
${{ matrix.config.prepare-os }} | |||
export RACK_DIR=$HOME/Rack-SDK | |||
make -j dep | |||
make -j dist | |||
- name: Upload artifact | |||
uses: actions/upload-artifact@v2 | |||
with: | |||
path: dist | |||
name: ${{ matrix.config.name }} | |||
publish: | |||
name: Publish plugin | |||
# only create a release if a tag was created that is called e.g. v1.2.3 | |||
# see also https://vcvrack.com/manual/Manifest#version | |||
if: startsWith(github.ref, 'refs/tags/v') | |||
runs-on: ubuntu-16.04 | |||
needs: build | |||
steps: | |||
- uses: actions/checkout@v2 | |||
- uses: FranzDiebold/github-env-vars-action@v1.2.1 | |||
- name: Check if plugin version matches tag | |||
run: | | |||
pluginversion=`jq -r '.version' plugin.json` | |||
if [ "v$pluginversion" != "${{ env.GITHUB_REF_NAME }}" ]; then | |||
echo "Plugin version from plugin.json 'v$pluginversion' doesn't match with tag version '${{ env.GITHUB_REF_NAME }}'" | |||
exit 1 | |||
fi | |||
- name: Create Release | |||
uses: actions/create-release@v1 | |||
env: | |||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} | |||
with: | |||
tag_name: ${{ github.ref }} | |||
release_name: Release ${{ github.ref }} | |||
body: | | |||
${{ env.GITHUB_REPOSITORY_NAME }} VCV Rack Plugin ${{ env.GITHUB_REF_NAME }} | |||
draft: false | |||
prerelease: false | |||
- uses: actions/download-artifact@v2 | |||
with: | |||
path: _artifacts | |||
- name: Upload release assets | |||
uses: svenstaro/upload-release-action@v2 | |||
with: | |||
repo_token: ${{ secrets.GITHUB_TOKEN }} | |||
file: _artifacts/**/*.zip | |||
tag: ${{ github.ref }} | |||
file_glob: true |
@@ -56,9 +56,9 @@ struct ABC : Module { | |||
int processSection(simd::float_4* out, InputIds inputA, InputIds inputB, InputIds inputC, ParamIds levelB, ParamIds levelC) { | |||
float_4 inA[4] = {0.f}; | |||
float_4 inB[4] = {0.f}; | |||
float_4 inC[4] = {0.f}; | |||
float_4 inA[4] = {}; | |||
float_4 inB[4] = {}; | |||
float_4 inC[4] = {}; | |||
int channelsA = inputs[inputA].getChannels(); | |||
int channelsB = inputs[inputB].getChannels(); | |||
@@ -105,13 +105,13 @@ struct ABC : Module { | |||
void process(const ProcessArgs& args) override { | |||
// process upper section | |||
float_4 out1[4] = {0.f}; | |||
float_4 out1[4] = {}; | |||
int activeEngines1 = 1; | |||
if (outputs[OUT1_OUTPUT].isConnected() || outputs[OUT2_OUTPUT].isConnected()) { | |||
activeEngines1 = processSection(out1, A1_INPUT, B1_INPUT, C1_INPUT, B1_LEVEL_PARAM, C1_LEVEL_PARAM); | |||
} | |||
float_4 out2[4] = {0.f}; | |||
float_4 out2[4] = {}; | |||
int activeEngines2 = 1; | |||
// process lower section | |||
if (outputs[OUT2_OUTPUT].isConnected()) { | |||
@@ -39,9 +39,9 @@ struct ChoppingKinky : Module { | |||
}; | |||
static const int WAVESHAPE_CACHE_SIZE = 256; | |||
float waveshapeA[WAVESHAPE_CACHE_SIZE + 1] = {0.f}; | |||
float waveshapeBPositive[WAVESHAPE_CACHE_SIZE + 1] = {0.f}; | |||
float waveshapeBNegative[WAVESHAPE_CACHE_SIZE + 1] = {0.f}; | |||
float waveshapeA[WAVESHAPE_CACHE_SIZE + 1] = {}; | |||
float waveshapeBPositive[WAVESHAPE_CACHE_SIZE + 1] = {}; | |||
float waveshapeBNegative[WAVESHAPE_CACHE_SIZE + 1] = {}; | |||
dsp::SchmittTrigger trigger; | |||
bool outputAToChopp = false; | |||
@@ -349,7 +349,7 @@ struct ChoppingKinkyWidget : ModuleWidget { | |||
} | |||
}; | |||
for (int i = 0; i < 5; i++) { | |||
ModeItem* modeItem = createMenuItem<ModeItem>(std::to_string(int (1 << i)) + "x"); | |||
ModeItem* modeItem = createMenuItem<ModeItem>(string::f("%dx", int (1 << i))); | |||
modeItem->rightText = CHECKMARK(module->oversamplingIndex == i); | |||
modeItem->module = module; | |||
modeItem->oversamplingIndex = i; | |||
@@ -26,14 +26,14 @@ struct EvenVCO : Module { | |||
NUM_OUTPUTS | |||
}; | |||
float_4 phase[4]; | |||
float_4 tri[4]; | |||
float_4 phase[4] = {}; | |||
float_4 tri[4] = {}; | |||
/** The value of the last sync input */ | |||
float sync = 0.0; | |||
/** The outputs */ | |||
/** Whether we are past the pulse width already */ | |||
bool halfPhase[PORT_MAX_CHANNELS]; | |||
bool halfPhase[PORT_MAX_CHANNELS] = {}; | |||
dsp::MinBlepGenerator<16, 32> triSquareMinBlep[PORT_MAX_CHANNELS]; | |||
dsp::MinBlepGenerator<16, 32> triMinBlep[PORT_MAX_CHANNELS]; | |||
@@ -42,20 +42,11 @@ struct EvenVCO : Module { | |||
dsp::MinBlepGenerator<16, 32> sawMinBlep[PORT_MAX_CHANNELS]; | |||
dsp::MinBlepGenerator<16, 32> squareMinBlep[PORT_MAX_CHANNELS]; | |||
dsp::RCFilter triFilter; | |||
EvenVCO() { | |||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS); | |||
configParam(OCTAVE_PARAM, -5.0, 4.0, 0.0, "Octave", "'", 0.5); | |||
configParam(TUNE_PARAM, -7.0, 7.0, 0.0, "Tune", " semitones"); | |||
configParam(PWM_PARAM, -1.0, 1.0, 0.0, "Pulse width"); | |||
for (int i = 0; i < 4; i++) { | |||
phase[i] = 0.f; | |||
tri[i] = 0.f; | |||
} | |||
for (int c = 0; c < PORT_MAX_CHANNELS; c++) | |||
halfPhase[c] = false; | |||
} | |||
void process(const ProcessArgs& args) override { | |||
@@ -70,9 +61,9 @@ struct EvenVCO : Module { | |||
float pitch_0 = 1.f + std::round(params[OCTAVE_PARAM].getValue()) + params[TUNE_PARAM].getValue() / 12.f; | |||
// Compute frequency, pitch is 1V/oct | |||
float_4 pitch[4]; | |||
float_4 pitch[4] = {}; | |||
for (int c = 0; c < channels; c += 4) | |||
pitch[c / 4] = float_4(pitch_0); | |||
pitch[c / 4] = pitch_0; | |||
if (inputs[PITCH1_INPUT].isConnected()) { | |||
for (int c = 0; c < channels; c += 4) | |||
@@ -89,30 +80,26 @@ struct EvenVCO : Module { | |||
pitch[c / 4] += inputs[FM_INPUT].getPolyVoltageSimd<float_4>(c) / 4.f; | |||
} | |||
float_4 freq[4]; | |||
float_4 freq[4] = {}; | |||
for (int c = 0; c < channels; c += 4) { | |||
freq[c / 4] = dsp::FREQ_C4 * simd::pow(2.f, pitch[c / 4]); | |||
freq[c / 4] = clamp(freq[c / 4], 0.f, 20000.f); | |||
} | |||
// Pulse width | |||
float pw_0 = params[PWM_PARAM].getValue(); | |||
float_4 pw[4]; | |||
// Pulse width | |||
float_4 pw[4] = {}; | |||
for (int c = 0; c < channels; c += 4) | |||
pw[c / 4] = float_4(pw_0); | |||
pw[c / 4] = params[PWM_PARAM].getValue(); | |||
if (inputs[PWM_INPUT].isConnected()) { | |||
for (int c = 0; c < channels; c += 4) | |||
pw[c / 4] += inputs[PWM_INPUT].getPolyVoltageSimd<float_4>(c) / 5.f; | |||
} | |||
const float_4 minPw_4 = float_4(0.05f); | |||
const float_4 m_one_4 = float_4(-1.0f); | |||
const float_4 one_4 = float_4(1.0f); | |||
float_4 deltaPhase[4]; | |||
float_4 oldPhase[4]; | |||
float_4 deltaPhase[4] = {}; | |||
float_4 oldPhase[4] = {}; | |||
for (int c = 0; c < channels; c += 4) { | |||
pw[c / 4] = rescale(clamp(pw[c / 4], m_one_4, one_4), m_one_4, one_4, minPw_4, one_4 - minPw_4); | |||
pw[c / 4] = rescale(clamp(pw[c / 4], -1.0f, 1.0f), -1.0f, 1.0f, 0.05f, 1.0f - 0.05f); | |||
// Advance phase | |||
deltaPhase[c / 4] = clamp(freq[c / 4] * args.sampleTime, float_4(1e-6f), float_4(0.5f)); | |||
@@ -121,7 +108,6 @@ struct EvenVCO : Module { | |||
} | |||
// the next block can't be done with SIMD instructions: | |||
for (int c = 0; c < channels; c++) { | |||
if (oldPhase[c / 4].s[c % 4] < 0.5 && phase[c / 4].s[c % 4] >= 0.5) { | |||
@@ -148,19 +134,19 @@ struct EvenVCO : Module { | |||
} | |||
} | |||
float_4 triSquareMinBlepOut[4]; | |||
float_4 doubleSawMinBlepOut[4]; | |||
float_4 sawMinBlepOut[4]; | |||
float_4 squareMinBlepOut[4]; | |||
float_4 triSquareMinBlepOut[4] = {}; | |||
float_4 doubleSawMinBlepOut[4] = {}; | |||
float_4 sawMinBlepOut[4] = {}; | |||
float_4 squareMinBlepOut[4] = {}; | |||
float_4 triSquare[4]; | |||
float_4 sine[4]; | |||
float_4 doubleSaw[4]; | |||
float_4 triSquare[4] = {}; | |||
float_4 sine[4] = {}; | |||
float_4 doubleSaw[4] = {}; | |||
float_4 even[4]; | |||
float_4 saw[4]; | |||
float_4 square[4]; | |||
float_4 triOut[4]; | |||
float_4 even[4] = {}; | |||
float_4 saw[4] = {}; | |||
float_4 square[4] = {}; | |||
float_4 triOut[4] = {}; | |||
for (int c = 0; c < channels; c++) { | |||
triSquareMinBlepOut[c / 4].s[c % 4] = triSquareMinBlep[c].process(); | |||
@@ -170,7 +156,6 @@ struct EvenVCO : Module { | |||
} | |||
// Outputs | |||
outputs[TRI_OUTPUT].setChannels(channels); | |||
outputs[SINE_OUTPUT].setChannels(channels); | |||
outputs[EVEN_OUTPUT].setChannels(channels); | |||
@@ -179,7 +164,7 @@ struct EvenVCO : Module { | |||
for (int c = 0; c < channels; c += 4) { | |||
triSquare[c / 4] = simd::ifelse((phase[c / 4] < 0.5f * one_4), m_one_4, one_4); | |||
triSquare[c / 4] = simd::ifelse((phase[c / 4] < 0.5f), -1.f, +1.f); | |||
triSquare[c / 4] += triSquareMinBlepOut[c / 4]; | |||
// Integrate square for triangle | |||
@@ -199,7 +184,7 @@ struct EvenVCO : Module { | |||
saw[c / 4] += sawMinBlepOut[c / 4]; | |||
saw[c / 4] *= 5.f; | |||
square[c / 4] = simd::ifelse((phase[c / 4] < pw[c / 4]), m_one_4, one_4) ; | |||
square[c / 4] = simd::ifelse((phase[c / 4] < pw[c / 4]), -1.f, +1.f); | |||
square[c / 4] += squareMinBlepOut[c / 4]; | |||
square[c / 4] *= 5.f; | |||
@@ -35,21 +35,25 @@ struct HexmixVCA : Module { | |||
const static int numRows = 6; | |||
dsp::ClockDivider cvDivider; | |||
float outputLevels[numRows] = {1.f}; | |||
float shapes[numRows] = {0.f}; | |||
float outputLevels[numRows] = {}; | |||
float shapes[numRows] = {}; | |||
bool finalRowIsMix = true; | |||
HexmixVCA() { | |||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||
for (int i = 0; i < numRows; ++i) { | |||
configParam(SHAPE_PARAM + i, -1.f, 1.f, 0.f, "VCA response"); | |||
configParam(VOL_PARAM + i, 0.f, 1.f, 1.f, "Output level"); | |||
configParam(SHAPE_PARAM + i, -1.f, 1.f, 0.f, string::f("Channel %d VCA response", i)); | |||
configParam(VOL_PARAM + i, 0.f, 1.f, 1.f, string::f("Channel %d output level", i)); | |||
} | |||
cvDivider.setDivision(16); | |||
for (int row = 0; row < numRows; ++row) { | |||
outputLevels[row] = 1.f; | |||
} | |||
} | |||
void process(const ProcessArgs& args) override { | |||
float_4 mix[4] = {0.f}; | |||
float_4 mix[4] = {}; | |||
int maxChannels = 1; | |||
// only calculate gains/shapes every 16 samples | |||
@@ -63,7 +67,7 @@ struct HexmixVCA : Module { | |||
for (int row = 0; row < numRows; ++row) { | |||
bool finalRow = (row == numRows - 1); | |||
int channels = 1; | |||
float_4 in[4] = {0.f}; | |||
float_4 in[4] = {}; | |||
bool inputIsConnected = inputs[IN_INPUT + row].isConnected(); | |||
if (inputIsConnected) { | |||
channels = inputs[row].getChannels(); | |||
@@ -73,7 +77,7 @@ struct HexmixVCA : Module { | |||
if (finalRowIsMix && (finalRow || !outputs[OUT_OUTPUT + row].isConnected())) { | |||
maxChannels = std::max(maxChannels, channels); | |||
} | |||
float cvGain = clamp(inputs[CV_INPUT + row].getNormalVoltage(10.f) / 10.f, 0.f, 1.f); | |||
float gain = gainFunction(cvGain, shapes[row]) * outputLevels[row]; | |||
@@ -81,7 +85,7 @@ struct HexmixVCA : Module { | |||
in[c / 4] = inputs[row].getVoltageSimd<float_4>(c) * gain; | |||
} | |||
} | |||
if (!finalRow) { | |||
if (outputs[OUT_OUTPUT + row].isConnected()) { | |||
// if output is connected, we don't add to mix | |||
@@ -185,19 +189,19 @@ struct HexmixVCAWidget : ModuleWidget { | |||
addOutput(createOutputCentered<BefacoOutputPort>(mm2px(Vec(64.222, 108.536)), module, HexmixVCA::OUT_OUTPUT + 5)); | |||
} | |||
struct MixMenuItem : MenuItem { | |||
HexmixVCA* module; | |||
void onAction(const event::Action& e) override { | |||
module->finalRowIsMix ^= true; | |||
} | |||
}; | |||
void appendContextMenu(Menu* menu) override { | |||
HexmixVCA* module = dynamic_cast<HexmixVCA*>(this->module); | |||
assert(module); | |||
menu->addChild(new MenuSeparator()); | |||
struct MixMenuItem : MenuItem { | |||
HexmixVCA* module; | |||
void onAction(const event::Action& e) override { | |||
module->finalRowIsMix ^= true; | |||
} | |||
}; | |||
MixMenuItem* mixItem = createMenuItem<MixMenuItem>("Final row is mix", CHECKMARK(module->finalRowIsMix)); | |||
mixItem->module = module; | |||
menu->addChild(mixItem); | |||
@@ -49,31 +49,26 @@ struct Mixer : Module { | |||
out_channels = std::max(out_channels, channels3); | |||
out_channels = std::max(out_channels, channels4); | |||
float_4 mult1 = float_4(params[CH1_PARAM].getValue()); | |||
float_4 mult2 = float_4(params[CH2_PARAM].getValue()); | |||
float_4 mult3 = float_4(params[CH3_PARAM].getValue()); | |||
float_4 mult4 = float_4(params[CH4_PARAM].getValue()); | |||
float_4 out[4] = {}; | |||
if (inputs[IN1_INPUT].isConnected()) { | |||
for (int c = 0; c < channels1; c += 4) | |||
out[c / 4] += inputs[IN1_INPUT].getVoltageSimd<float_4>(c) * mult1; | |||
out[c / 4] += inputs[IN1_INPUT].getVoltageSimd<float_4>(c) * params[CH1_PARAM].getValue(); | |||
} | |||
if (inputs[IN2_INPUT].isConnected()) { | |||
for (int c = 0; c < channels2; c += 4) | |||
out[c / 4] += inputs[IN2_INPUT].getVoltageSimd<float_4>(c) * mult2; | |||
out[c / 4] += inputs[IN2_INPUT].getVoltageSimd<float_4>(c) * params[CH2_PARAM].getValue(); | |||
} | |||
if (inputs[IN3_INPUT].isConnected()) { | |||
for (int c = 0; c < channels3; c += 4) | |||
out[c / 4] += inputs[IN3_INPUT].getVoltageSimd<float_4>(c) * mult3; | |||
out[c / 4] += inputs[IN3_INPUT].getVoltageSimd<float_4>(c) * params[CH3_PARAM].getValue(); | |||
} | |||
if (inputs[IN4_INPUT].isConnected()) { | |||
for (int c = 0; c < channels4; c += 4) | |||
out[c / 4] += inputs[IN4_INPUT].getVoltageSimd<float_4>(c) * mult4; | |||
out[c / 4] += inputs[IN4_INPUT].getVoltageSimd<float_4>(c) * params[CH4_PARAM].getValue(); | |||
} | |||
outputs[OUT1_OUTPUT].setChannels(out_channels); | |||
@@ -28,9 +28,8 @@ struct Percall : Module { | |||
ADEnvelope envs[4]; | |||
float gains[4] = {0.f}; | |||
float gains[4] = {}; | |||
float strength = 1.0f; | |||
dsp::SchmittTrigger trigger[4]; | |||
dsp::ClockDivider cvDivider; | |||
dsp::ClockDivider lightDivider; | |||
@@ -43,16 +42,15 @@ struct Percall : Module { | |||
Percall() { | |||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||
for (int i = 0; i < 4; i++) { | |||
configParam(VOL_PARAMS + i, 0.f, 1.f, 1.f, "Ch " + std::to_string(i + 1) + " level", "%", 0, 100); | |||
configParam(DECAY_PARAMS + i, 0.f, 1.f, 0.f, "Ch " + std::to_string(i + 1) + " decay time"); | |||
configParam(VOL_PARAMS + i, 0.f, 1.f, 1.f, string::f("Channel %d level", i + 1), "%", 0, 100); | |||
configParam(DECAY_PARAMS + i, 0.f, 1.f, 0.f, string::f("Channel %d decay time", i + 1)); | |||
envs[i].attackTime = attackTime; | |||
envs[i].attackShape = 0.5f; | |||
envs[i].decayShape = 2.0f; | |||
} | |||
for (int i = 0; i < 2; i++) { | |||
std::string description = "Choke " + std::to_string(2 * i + 1) + " to " + std::to_string(2 * i + 2); | |||
configParam(CHOKE_PARAMS + i, 0.f, 1.f, 0.f, description); | |||
for (int i = 0; i < 2; i++) { | |||
configParam(CHOKE_PARAMS + i, 0.f, 1.f, 0.f, string::f("Choke %d to %d", 2 * i + 1, 2 * i + 2)); | |||
} | |||
cvDivider.setDivision(16); | |||
@@ -61,9 +59,9 @@ struct Percall : Module { | |||
void process(const ProcessArgs& args) override { | |||
strength = 1.0f; | |||
float strength = 1.0f; | |||
if (inputs[STRENGTH_INPUT].isConnected()) { | |||
strength = sqrt(clamp(inputs[STRENGTH_INPUT].getVoltage() / 10.0f, 0.0f, 1.0f)); | |||
strength = std::sqrt(clamp(inputs[STRENGTH_INPUT].getVoltage() / 10.0f, 0.0f, 1.0f)); | |||
} | |||
// only calculate gains/decays every 16 samples | |||
@@ -76,7 +74,7 @@ struct Percall : Module { | |||
} | |||
} | |||
float_4 mix[4] = {0.f}; | |||
float_4 mix[4] = {}; | |||
int maxPolyphonyChannels = 1; | |||
// Mixer channels | |||
@@ -4,26 +4,25 @@ | |||
/** When triggered, holds a high value for a specified time before going low again */ | |||
struct PulseGenerator_4 { | |||
simd::float_4 remaining = simd::float_4::zero(); | |||
simd::float_4 remaining = 0.f; | |||
/** Immediately disables the pulse */ | |||
void reset() { | |||
remaining = simd::float_4::zero(); | |||
remaining = 0.f; | |||
} | |||
/** Advances the state by `deltaTime`. Returns whether the pulse is in the HIGH state. */ | |||
inline simd::float_4 process(float deltaTime) { | |||
simd::float_4 process(float deltaTime) { | |||
simd::float_4 mask = (remaining > simd::float_4::zero()); | |||
simd::float_4 mask = (remaining > 0.f); | |||
remaining -= ifelse(mask, simd::float_4(deltaTime), simd::float_4::zero()); | |||
return ifelse(mask, simd::float_4::mask(), simd::float_4::zero()); | |||
remaining -= ifelse(mask, simd::float_4(deltaTime), 0.f); | |||
return ifelse(mask, simd::float_4::mask(), 0.f); | |||
} | |||
/** Begins a trigger with the given `duration`. */ | |||
inline void trigger(simd::float_4 mask, float duration = 1e-3f) { | |||
void trigger(simd::float_4 mask, float duration = 1e-3f) { | |||
// Keep the previous pulse if the existing pulse will be held longer than the currently requested one. | |||
simd::float_4 duration_4 = simd::float_4(duration); | |||
remaining = ifelse(mask & (duration_4 > remaining), duration_4, remaining); | |||
remaining = ifelse(mask & (duration > remaining), duration, remaining); | |||
} | |||
}; |
@@ -75,8 +75,8 @@ struct Rampage : Module { | |||
}; | |||
float_4 out[2][4]; | |||
float_4 gate[2][4]; // use simd __m128 logic instead of bool | |||
float_4 out[2][4] = {}; | |||
float_4 gate[2][4] = {}; // use simd __m128 logic instead of bool | |||
dsp::TSchmittTrigger<float_4> trigger_4[2][4]; | |||
PulseGenerator_4 endOfCyclePulse[2][4]; | |||
@@ -98,15 +98,12 @@ struct Rampage : Module { | |||
configParam(FALL_B_PARAM, 0.0, 1.0, 0.0, "Ch 2 fall time"); | |||
configParam(CYCLE_B_PARAM, 0.0, 1.0, 0.0, "Ch 2 cycle"); | |||
configParam(BALANCE_PARAM, 0.0, 1.0, 0.5, "Balance"); | |||
std::memset(out, 0, sizeof(out)); | |||
std::memset(gate, 0, sizeof(gate)); | |||
} | |||
void process(const ProcessArgs& args) override { | |||
int channels_in[2]; | |||
int channels_trig[2]; | |||
int channels[2]; // the larger of in or trig (per-part) | |||
int channels_in[2] = {}; | |||
int channels_trig[2] = {}; | |||
int channels[2] = {}; // the larger of in or trig (per-part) | |||
// determine number of channels: | |||
@@ -122,7 +119,7 @@ struct Rampage : Module { | |||
outputs[FALLING_A_OUTPUT + part].setChannels(channels[part]); | |||
outputs[EOC_A_OUTPUT + part].setChannels(channels[part]); | |||
} | |||
// total number of active polyphony engines, accounting for both halves | |||
// (channels[0] / channels[1] are the number of active engines per section) | |||
const int channels_max = std::max(channels[0], channels[1]); | |||
@@ -134,14 +131,13 @@ struct Rampage : Module { | |||
// loop over two parts of Rampage: | |||
for (int part = 0; part < 2; part++) { | |||
float_4 in[4] = {0.f}; | |||
float_4 in_trig[4] = {0.f}; | |||
float_4 riseCV[4] = {0.f}; | |||
float_4 fallCV[4] = {0.f}; | |||
float_4 cycle[4] = {0.f}; | |||
float_4 in[4] = {}; | |||
float_4 in_trig[4] = {}; | |||
float_4 riseCV[4] = {}; | |||
float_4 fallCV[4] = {}; | |||
float_4 cycle[4] = {}; | |||
// get parameters: | |||
float shape = params[SHAPE_A_PARAM + part].getValue(); | |||
float minTime; | |||
switch ((int) params[RANGE_A_PARAM + part].getValue()) { | |||
case 0: | |||
@@ -155,10 +151,10 @@ struct Rampage : Module { | |||
break; | |||
} | |||
float_4 param_rise = float_4(params[RISE_A_PARAM + part].getValue() * 10.0f); | |||
float_4 param_fall = float_4(params[FALL_A_PARAM + part].getValue() * 10.0f); | |||
float_4 param_trig = float_4(params[TRIGG_A_PARAM + part].getValue() * 20.0f); | |||
float_4 param_cycle = float_4(params[CYCLE_A_PARAM + part].getValue() * 10.0f); | |||
float_4 param_rise = params[RISE_A_PARAM + part].getValue() * 10.0f; | |||
float_4 param_fall = params[FALL_A_PARAM + part].getValue() * 10.0f; | |||
float_4 param_trig = params[TRIGG_A_PARAM + part].getValue() * 20.0f; | |||
float_4 param_cycle = params[CYCLE_A_PARAM + part].getValue() * 10.0f; | |||
for (int c = 0; c < channels[part]; c += 4) { | |||
riseCV[c / 4] = param_rise; | |||
@@ -168,7 +164,7 @@ struct Rampage : Module { | |||
} | |||
// read inputs: | |||
if (inputs[IN_A_INPUT + part].isConnected()) { | |||
if (inputs[IN_A_INPUT + part].isConnected()) { | |||
for (int c = 0; c < channels[part]; c += 4) | |||
in[c / 4] = inputs[IN_A_INPUT + part].getPolyVoltageSimd<float_4>(c); | |||
} | |||
@@ -179,7 +175,7 @@ struct Rampage : Module { | |||
} | |||
if (inputs[EXP_CV_A_INPUT + part].isConnected()) { | |||
float_4 expCV[4]; | |||
float_4 expCV[4] = {}; | |||
for (int c = 0; c < channels[part]; c += 4) | |||
expCV[c / 4] = inputs[EXP_CV_A_INPUT + part].getPolyVoltageSimd<float_4>(c); | |||
@@ -190,11 +186,11 @@ struct Rampage : Module { | |||
} | |||
for (int c = 0; c < channels[part]; c += 4) | |||
riseCV[c / 4] += inputs[RISE_CV_A_INPUT + part].getPolyVoltageSimd<float_4>(c); | |||
riseCV[c / 4] += inputs[RISE_CV_A_INPUT + part].getPolyVoltageSimd<float_4>(c); | |||
for (int c = 0; c < channels[part]; c += 4) | |||
fallCV[c / 4] += inputs[FALL_CV_A_INPUT + part].getPolyVoltageSimd<float_4>(c); | |||
for (int c = 0; c < channels[part]; c += 4) | |||
cycle[c / 4] += inputs[CYCLE_A_INPUT + part].getPolyVoltageSimd<float_4>(c); | |||
cycle[c / 4] += inputs[CYCLE_A_INPUT + part].getPolyVoltageSimd<float_4>(c); | |||
// start processing: | |||
for (int c = 0; c < channels[part]; c += 4) { | |||
@@ -207,39 +203,38 @@ struct Rampage : Module { | |||
float_4 delta = in[c / 4] - out[part][c / 4]; | |||
// rise / fall branching | |||
float_4 delta_gt_0 = delta > float_4::zero(); | |||
float_4 delta_lt_0 = delta < float_4::zero(); | |||
float_4 delta_gt_0 = delta > 0.f; | |||
float_4 delta_lt_0 = delta < 0.f; | |||
float_4 delta_eq_0 = ~(delta_lt_0 | delta_gt_0); | |||
float_4 rateCV = ifelse(delta_gt_0, riseCV[c / 4], float_4::zero()); | |||
float_4 rateCV = ifelse(delta_gt_0, riseCV[c / 4], 0.f); | |||
rateCV = ifelse(delta_lt_0, fallCV[c / 4], rateCV); | |||
rateCV = clamp(rateCV, float_4::zero(), float_4(10.0f)); | |||
rateCV = clamp(rateCV, 0.f, 10.0f); | |||
float_4 rate = minTime * simd::pow(2.0f, rateCV); | |||
float shape = params[SHAPE_A_PARAM + part].getValue(); | |||
out[part][c / 4] += shapeDelta(delta, rate, shape) * args.sampleTime; | |||
float_4 rising = (in[c / 4] - out[part][c / 4]) > float_4(1e-3); | |||
float_4 falling = (in[c / 4] - out[part][c / 4]) < float_4(-1e-3); | |||
float_4 rising = (in[c / 4] - out[part][c / 4]) > 1e-3f; | |||
float_4 falling = (in[c / 4] - out[part][c / 4]) < -1e-3f; | |||
float_4 end_of_cycle = simd::andnot(falling, delta_lt_0); | |||
endOfCyclePulse[part][c / 4].trigger(end_of_cycle, 1e-3); | |||
gate[part][c / 4] = ifelse(simd::andnot(rising, delta_gt_0), float_4::zero(), gate[part][c / 4]); | |||
gate[part][c / 4] = ifelse(end_of_cycle & (cycle[c / 4] >= float_4(4.0f)), float_4::mask(), gate[part][c / 4]); | |||
gate[part][c / 4] = ifelse(delta_eq_0, float_4::zero(), gate[part][c / 4]); | |||
gate[part][c / 4] = ifelse(simd::andnot(rising, delta_gt_0), 0.f, gate[part][c / 4]); | |||
gate[part][c / 4] = ifelse(end_of_cycle & (cycle[c / 4] >= 4.0f), float_4::mask(), gate[part][c / 4]); | |||
gate[part][c / 4] = ifelse(delta_eq_0, 0.f, gate[part][c / 4]); | |||
out[part][c / 4] = ifelse(rising | falling, out[part][c / 4], in[c / 4]); | |||
float_4 out_rising = ifelse(rising, float_4(10.0f), float_4::zero()); | |||
float_4 out_falling = ifelse(falling, float_4(10.0f), float_4::zero()); | |||
float_4 out_rising = ifelse(rising, 10.0f, 0.f); | |||
float_4 out_falling = ifelse(falling, 10.0f, 0.f); | |||
float_4 pulse = endOfCyclePulse[part][c / 4].process(args.sampleTime); | |||
float_4 out_EOC = ifelse(pulse, float_4(10.f), float_4::zero()); | |||
out[part][c / 4].store(outputs[OUT_A_OUTPUT + part].getVoltages(c)); | |||
float_4 out_EOC = ifelse(pulse, 10.f, 0.f); | |||
outputs[OUT_A_OUTPUT + part].setVoltageSimd(out[part][c / 4], c); | |||
outputs[RISING_A_OUTPUT + part].setVoltageSimd(out_rising, c); | |||
outputs[FALLING_A_OUTPUT + part].setVoltageSimd(out_falling, c); | |||
outputs[EOC_A_OUTPUT + part].setVoltageSimd(out_EOC, c); | |||
@@ -285,14 +280,13 @@ struct Rampage : Module { | |||
else if (balance > 0.5) | |||
a *= 2.0f * (1.0 - balance); | |||
float_4 comp = ifelse(b > a, float_4(10.0f), float_4::zero()); | |||
float_4 comp = ifelse(b > a, 10.0f, 0.f); | |||
float_4 out_min = simd::fmin(a, b); | |||
float_4 out_max = simd::fmax(a, b); | |||
comp.store(outputs[COMPARATOR_OUTPUT].getVoltages(c)); | |||
out_min.store(outputs[MIN_OUTPUT].getVoltages(c)); | |||
out_max.store(outputs[MAX_OUTPUT].getVoltages(c)); | |||
outputs[COMPARATOR_OUTPUT].setVoltageSimd(comp, c); | |||
outputs[MIN_OUTPUT].setVoltageSimd(out_min, c); | |||
outputs[MAX_OUTPUT].setVoltageSimd(out_max, c); | |||
} | |||
// Lights | |||
if (channels_max == 1) { | |||
@@ -20,22 +20,20 @@ struct SlewLimiter : Module { | |||
NUM_OUTPUTS | |||
}; | |||
float_4 out[4]; | |||
float_4 out[4] = {}; | |||
SlewLimiter() { | |||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS); | |||
configParam(SHAPE_PARAM, 0.0, 1.0, 0.0, "Shape"); | |||
configParam(RISE_PARAM, 0.0, 1.0, 0.0, "Rise time"); | |||
configParam(FALL_PARAM, 0.0, 1.0, 0.0, "Fall time"); | |||
memset(out, 0, sizeof(out)); | |||
} | |||
void process(const ProcessArgs& args) override { | |||
float_4 in[4] = {0.f}; | |||
float_4 riseCV[4] = {0.f}; | |||
float_4 fallCV[4] = {0.f}; | |||
float_4 in[4] = {}; | |||
float_4 riseCV[4] = {}; | |||
float_4 fallCV[4] = {}; | |||
// this is the number of active polyphony engines, defined by the input | |||
int numPolyphonyEngines = inputs[IN_INPUT].getChannels(); | |||
@@ -46,9 +44,8 @@ struct SlewLimiter : Module { | |||
// Amount of extra slew per voltage difference | |||
const float shapeScale = 1 / 10.f; | |||
const float_4 shape = float_4(params[SHAPE_PARAM].getValue()); | |||
const float_4 param_rise = float_4(params[RISE_PARAM].getValue() * 10.f); | |||
const float_4 param_fall = float_4(params[FALL_PARAM].getValue() * 10.f); | |||
const float_4 param_rise = params[RISE_PARAM].getValue() * 10.f; | |||
const float_4 param_fall = params[FALL_PARAM].getValue() * 10.f; | |||
outputs[OUT_OUTPUT].setChannels(numPolyphonyEngines); | |||
@@ -66,21 +63,22 @@ struct SlewLimiter : Module { | |||
fallCV[c / 4] += param_fall; | |||
float_4 delta = in[c / 4] - out[c / 4]; | |||
float_4 delta_gt_0 = delta > float_4::zero(); | |||
float_4 delta_lt_0 = delta < float_4::zero(); | |||
float_4 delta_gt_0 = delta > 0.f; | |||
float_4 delta_lt_0 = delta < 0.f; | |||
float_4 rateCV; | |||
rateCV = ifelse(delta_gt_0, riseCV[c / 4], float_4::zero()); | |||
float_4 rateCV = {}; | |||
rateCV = ifelse(delta_gt_0, riseCV[c / 4], 0.f); | |||
rateCV = ifelse(delta_lt_0, fallCV[c / 4], rateCV) * 0.1f; | |||
float_4 pm_one = simd::sgn(delta); | |||
float_4 slew = slewMax * simd::pow(float_4(slewMin / slewMax), rateCV); | |||
const float shape = params[SHAPE_PARAM].getValue(); | |||
out[c / 4] += slew * simd::crossfade(pm_one, shapeScale * delta, shape) * args.sampleTime; | |||
out[c / 4] = ifelse(delta_gt_0 & (out[c / 4] > in[c / 4]), in[c / 4], out[c / 4]); | |||
out[c / 4] = ifelse(delta_lt_0 & (out[c / 4] < in[c / 4]), in[c / 4], out[c / 4]); | |||
out[c / 4].store(outputs[OUT_OUTPUT].getVoltages(c)); | |||
outputs[OUT_OUTPUT].setVoltageSimd(out[c / 4], c); | |||
} | |||
} | |||
}; | |||
@@ -34,15 +34,18 @@ struct SpringReverb : Module { | |||
NUM_LIGHTS | |||
}; | |||
dsp::RealTimeConvolver *convolver = NULL; | |||
dsp::RealTimeConvolver* convolver = NULL; | |||
dsp::SampleRateConverter<1> inputSrc; | |||
dsp::SampleRateConverter<1> outputSrc; | |||
dsp::DoubleRingBuffer<dsp::Frame<1>, 16 * BLOCK_SIZE> inputBuffer; | |||
dsp::DoubleRingBuffer<dsp::Frame<1>, 16 * BLOCK_SIZE> outputBuffer; | |||
dsp::RCFilter dryFilter; | |||
dsp::PeakFilter vuFilter; | |||
dsp::PeakFilter lightFilter; | |||
dsp::VuMeter2 vuFilter; | |||
dsp::VuMeter2 lightFilter; | |||
dsp::ClockDivider lightRefreshClock; | |||
SpringReverb() { | |||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||
@@ -53,16 +56,21 @@ struct SpringReverb : Module { | |||
convolver = new dsp::RealTimeConvolver(BLOCK_SIZE); | |||
const float *kernel = (const float *) BINARY_START(src_SpringReverbIR_pcm); | |||
const float* kernel = (const float*) BINARY_START(src_SpringReverbIR_pcm); | |||
size_t kernelLen = BINARY_SIZE(src_SpringReverbIR_pcm) / sizeof(float); | |||
convolver->setKernel(kernel, kernelLen); | |||
vuFilter.mode = dsp::VuMeter2::PEAK; | |||
lightFilter.mode = dsp::VuMeter2::PEAK; | |||
lightRefreshClock.setDivision(32); | |||
} | |||
~SpringReverb() { | |||
delete convolver; | |||
} | |||
void process(const ProcessArgs &args) override { | |||
void process(const ProcessArgs& args) override { | |||
float in1 = inputs[IN1_INPUT].getVoltageSum(); | |||
float in2 = inputs[IN2_INPUT].getVoltageSum(); | |||
const float levelScale = 0.030; | |||
@@ -92,7 +100,7 @@ struct SpringReverb : Module { | |||
inputSrc.setRates(args.sampleRate, 48000); | |||
int inLen = inputBuffer.size(); | |||
int outLen = BLOCK_SIZE; | |||
inputSrc.process(inputBuffer.startData(), &inLen, (dsp::Frame<1> *) input, &outLen); | |||
inputSrc.process(inputBuffer.startData(), &inLen, (dsp::Frame<1>*) input, &outLen); | |||
inputBuffer.startIncr(inLen); | |||
} | |||
@@ -104,7 +112,7 @@ struct SpringReverb : Module { | |||
outputSrc.setRates(48000, args.sampleRate); | |||
int inLen = BLOCK_SIZE; | |||
int outLen = outputBuffer.capacity(); | |||
outputSrc.process((dsp::Frame<1> *) output, &inLen, outputBuffer.endData(), &outLen); | |||
outputSrc.process((dsp::Frame<1>*) output, &inLen, outputBuffer.endData(), &outLen); | |||
outputBuffer.endIncr(outLen); | |||
} | |||
} | |||
@@ -112,6 +120,7 @@ struct SpringReverb : Module { | |||
// Set output | |||
if (outputBuffer.empty()) | |||
return; | |||
float wet = outputBuffer.shift().samples[0]; | |||
float balance = clamp(params[WET_PARAM].getValue() + inputs[MIX_CV_INPUT].getVoltage() / 10.0f, 0.0f, 1.0f); | |||
float mix = crossfade(in1, wet, balance); | |||
@@ -119,24 +128,28 @@ struct SpringReverb : Module { | |||
outputs[WET_OUTPUT].setVoltage(clamp(wet, -10.0f, 10.0f)); | |||
outputs[MIX_OUTPUT].setVoltage(clamp(mix, -10.0f, 10.0f)); | |||
// Set lights | |||
float lightRate = 5.0 * args.sampleTime; | |||
vuFilter.setLambda(1.f - lightRate); | |||
float vuValue = vuFilter.process(1.f, std::fabs(wet)); | |||
lightFilter.setLambda(1.f - lightRate); | |||
float lightValue = lightFilter.process(1.f, std::fabs(dry * 50.0)); | |||
for (int i = 0; i < 7; i++) { | |||
float light = std::pow(1.413, i) * vuValue / 10.0 - 1.0; | |||
lights[VU1_LIGHTS + i].value = clamp(light, 0.0f, 1.0f); | |||
// process VU lights | |||
vuFilter.process(args.sampleTime, wet); | |||
// process peak light | |||
lightFilter.process(args.sampleTime, dry * 50.0); | |||
if (lightRefreshClock.process()) { | |||
float brightnessIntervals[8] = {14.f, 14.f, 12.f, 9.f, 6.f, 0.f, -6.f, -12.f}; | |||
for (int i = 0; i < 7; i++) { | |||
float brightness = vuFilter.getBrightness(brightnessIntervals[i + 1], brightnessIntervals[i]); | |||
lights[VU1_LIGHTS + i].setBrightness(brightness); | |||
} | |||
lights[PEAK_LIGHT].value = lightFilter.v; | |||
} | |||
lights[PEAK_LIGHT].value = lightValue; | |||
} | |||
}; | |||
struct SpringReverbWidget : ModuleWidget { | |||
SpringReverbWidget(SpringReverb *module) { | |||
SpringReverbWidget(SpringReverb* module) { | |||
setModule(module); | |||
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/SpringReverb.svg"))); | |||
@@ -173,4 +186,4 @@ struct SpringReverbWidget : ModuleWidget { | |||
}; | |||
Model *modelSpringReverb = createModel<SpringReverb, SpringReverbWidget>("SpringReverb"); | |||
Model* modelSpringReverb = createModel<SpringReverb, SpringReverbWidget>("SpringReverb"); |