| @@ -27,7 +27,7 @@ struct ABC : Module { | |||
| float lights[2] = {}; | |||
| ABC() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
| void step(); | |||
| void step() override; | |||
| }; | |||
| @@ -24,7 +24,7 @@ struct DualAtenuverter : Module { | |||
| float lights[2] = {}; | |||
| DualAtenuverter() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
| void step(); | |||
| void step() override; | |||
| }; | |||
| @@ -45,7 +45,7 @@ struct EvenVCO : Module { | |||
| RCFilter triFilter; | |||
| EvenVCO(); | |||
| void step(); | |||
| void step() override; | |||
| }; | |||
| @@ -78,7 +78,7 @@ void EvenVCO::step() { | |||
| pw = rescalef(clampf(pw, -1.0, 1.0), -1.0, 1.0, minPw, 1.0-minPw); | |||
| // Advance phase | |||
| float deltaPhase = clampf(freq / gSampleRate, 1e-6, 0.5); | |||
| float deltaPhase = clampf(freq / engineGetSampleRate(), 1e-6, 0.5); | |||
| float oldPhase = phase; | |||
| phase += deltaPhase; | |||
| @@ -110,8 +110,8 @@ void EvenVCO::step() { | |||
| triSquare += triSquareMinBLEP.shift(); | |||
| // Integrate square for triangle | |||
| tri += 4.0 * triSquare * freq / gSampleRate; | |||
| tri *= (1.0 - 40.0 / gSampleRate); | |||
| tri += 4.0 * triSquare * freq / engineGetSampleRate(); | |||
| tri *= (1.0 - 40.0 / engineGetSampleRate()); | |||
| float sine = -cosf(2*M_PI * phase); | |||
| float doubleSaw = (phase < 0.5) ? (-1.0 + 4.0*phase) : (-1.0 + 4.0*(phase - 0.5)); | |||
| @@ -25,7 +25,7 @@ struct Mixer : Module { | |||
| float lights[1] = {}; | |||
| Mixer() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
| void step(); | |||
| void step() override; | |||
| }; | |||
| @@ -68,7 +68,7 @@ struct Rampage : Module { | |||
| trigger[c].setThresholds(0.0, 4.0); | |||
| } | |||
| } | |||
| void step(); | |||
| void step() override; | |||
| }; | |||
| @@ -110,10 +110,10 @@ void Rampage::step() { | |||
| if (delta > 0) { | |||
| // Rise | |||
| float riseCv = params[RISE_A_PARAM + c].value - inputs[EXP_CV_A_INPUT + c].value + inputs[RISE_CV_A_INPUT + c].value / 10.0; | |||
| float riseCv = params[RISE_A_PARAM + c].value - inputs[EXP_CV_A_INPUT + c].value / 10.0 + inputs[RISE_CV_A_INPUT + c].value / 10.0; | |||
| riseCv = clampf(riseCv, 0.0, 1.0); | |||
| float rise = minTime * powf(2.0, riseCv * 10.0); | |||
| out[c] += shapeDelta(delta, rise, shape) / gSampleRate; | |||
| out[c] += shapeDelta(delta, rise, shape) / engineGetSampleRate(); | |||
| rising = (in - out[c] > 1e-3); | |||
| if (!rising) { | |||
| gate[c] = false; | |||
| @@ -121,10 +121,10 @@ void Rampage::step() { | |||
| } | |||
| else if (delta < 0) { | |||
| // Fall | |||
| float fallCv = params[FALL_A_PARAM + c].value - inputs[EXP_CV_A_INPUT + c].value + inputs[FALL_CV_A_INPUT + c].value / 10.0; | |||
| float fallCv = params[FALL_A_PARAM + c].value - inputs[EXP_CV_A_INPUT + c].value / 10.0 + inputs[FALL_CV_A_INPUT + c].value / 10.0; | |||
| fallCv = clampf(fallCv, 0.0, 1.0); | |||
| float fall = minTime * powf(2.0, fallCv * 10.0); | |||
| out[c] += shapeDelta(delta, fall, shape) / gSampleRate; | |||
| out[c] += shapeDelta(delta, fall, shape) / engineGetSampleRate(); | |||
| falling = (in - out[c] < -1e-3); | |||
| if (!falling) { | |||
| // End of cycle, check if we should turn the gate back on (cycle mode) | |||
| @@ -146,7 +146,7 @@ void Rampage::step() { | |||
| outputs[FALLING_A_OUTPUT + c].value = (falling ? 10.0 : 0.0); | |||
| outputs[RISING_A_LIGHT + c].value = (rising ? 1.0 : 0.0); | |||
| outputs[FALLING_A_LIGHT + c].value = (falling ? 1.0 : 0.0); | |||
| outputs[EOC_A_OUTPUT + c].value = (endOfCyclePulse[c].process(1.0 / gSampleRate) ? 10.0 : 0.0); | |||
| outputs[EOC_A_OUTPUT + c].value = (endOfCyclePulse[c].process(1.0 / engineGetSampleRate()) ? 10.0 : 0.0); | |||
| outputs[OUT_A_OUTPUT + c].value = out[c]; | |||
| outputs[OUT_A_LIGHT + c].value = out[c] / 10.0; | |||
| } | |||
| @@ -22,7 +22,7 @@ struct SlewLimiter : Module { | |||
| float out = 0.0; | |||
| SlewLimiter() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
| void step(); | |||
| void step() override; | |||
| }; | |||
| @@ -40,7 +40,7 @@ void ::SlewLimiter::step() { | |||
| if (in > out) { | |||
| float rise = inputs[RISE_INPUT].value + params[RISE_PARAM].value; | |||
| float slew = slewMax * powf(slewMin / slewMax, rise); | |||
| out += slew * crossf(1.0, shapeScale * (in - out), shape) / gSampleRate; | |||
| out += slew * crossf(1.0, shapeScale * (in - out), shape) / engineGetSampleRate(); | |||
| if (out > in) | |||
| out = in; | |||
| } | |||
| @@ -48,7 +48,7 @@ void ::SlewLimiter::step() { | |||
| else if (in < out) { | |||
| float fall = inputs[FALL_INPUT].value + params[FALL_PARAM].value; | |||
| float slew = slewMax * powf(slewMin / slewMax, fall); | |||
| out -= slew * crossf(1.0, shapeScale * (out - in), shape) / gSampleRate; | |||
| out -= slew * crossf(1.0, shapeScale * (out - in), shape) / engineGetSampleRate(); | |||
| if (out < in) | |||
| out = in; | |||
| } | |||
| @@ -173,7 +173,7 @@ struct SpringReverb : Module { | |||
| SpringReverb(); | |||
| ~SpringReverb(); | |||
| void step(); | |||
| void step() override; | |||
| }; | |||
| @@ -196,7 +196,7 @@ void SpringReverb::step() { | |||
| float dry = in1 * level1 + in2 * level2; | |||
| // HPF on dry | |||
| float dryCutoff = 200.0 * powf(20.0, params[HPF_PARAM].value) / gSampleRate; | |||
| float dryCutoff = 200.0 * powf(20.0, params[HPF_PARAM].value) / engineGetSampleRate(); | |||
| dryFilter.setCutoff(dryCutoff); | |||
| dryFilter.process(dry); | |||
| @@ -213,7 +213,7 @@ void SpringReverb::step() { | |||
| float output[BLOCKSIZE]; | |||
| // Convert input buffer | |||
| { | |||
| inputSrc.setRatio(48000.0 / gSampleRate); | |||
| inputSrc.setRatio(48000.0 / engineGetSampleRate()); | |||
| int inLen = inputBuffer.size(); | |||
| int outLen = BLOCKSIZE; | |||
| inputSrc.process(inputBuffer.startData(), &inLen, (Frame<1>*) input, &outLen); | |||
| @@ -225,7 +225,7 @@ void SpringReverb::step() { | |||
| // Convert output buffer | |||
| { | |||
| outputSrc.setRatio(gSampleRate / 48000.0); | |||
| outputSrc.setRatio(engineGetSampleRate() / 48000.0); | |||
| int inLen = BLOCKSIZE; | |||
| int outLen = outputBuffer.capacity(); | |||
| outputSrc.process((Frame<1>*) output, &inLen, outputBuffer.endData(), &outLen); | |||
| @@ -244,7 +244,7 @@ void SpringReverb::step() { | |||
| outputs[MIX_OUTPUT].value =clampf(mix, -10.0, 10.0); | |||
| // Set lights | |||
| float lightRate = 5.0 / gSampleRate; | |||
| float lightRate = 5.0 / engineGetSampleRate(); | |||
| vuFilter.setRate(lightRate); | |||
| vuFilter.process(fabsf(wet)); | |||
| lightFilter.setRate(lightRate); | |||