diff --git a/src/ABC.cpp b/src/ABC.cpp index 238cd89..b98422e 100644 --- a/src/ABC.cpp +++ b/src/ABC.cpp @@ -47,25 +47,25 @@ struct ABC : Module { } void process(const ProcessArgs &args) override { - float a1 = inputs[A1_INPUT].value; - float b1 = inputs[B1_INPUT].getNormalVoltage(5.f) * 2.f*dsp::exponentialBipolar(80.f, params[B1_LEVEL_PARAM].value); - float c1 = inputs[C1_INPUT].getNormalVoltage(10.f) * dsp::exponentialBipolar(80.f, params[C1_LEVEL_PARAM].value); + float a1 = inputs[A1_INPUT].getVoltage(); + float b1 = inputs[B1_INPUT].getNormalVoltage(5.f) * 2.f*dsp::exponentialBipolar(80.f, params[B1_LEVEL_PARAM].getValue()); + float c1 = inputs[C1_INPUT].getNormalVoltage(10.f) * dsp::exponentialBipolar(80.f, params[C1_LEVEL_PARAM].getValue()); float out1 = a1 * b1 / 5.f + c1; - float a2 = inputs[A2_INPUT].value; - float b2 = inputs[B2_INPUT].getNormalVoltage(5.f) * 2.f*dsp::exponentialBipolar(80.f, params[B2_LEVEL_PARAM].value); - float c2 = inputs[C2_INPUT].getNormalVoltage(10.f) * dsp::exponentialBipolar(80.f, params[C2_LEVEL_PARAM].value); + float a2 = inputs[A2_INPUT].getVoltage(); + float b2 = inputs[B2_INPUT].getNormalVoltage(5.f) * 2.f*dsp::exponentialBipolar(80.f, params[B2_LEVEL_PARAM].getValue()); + float c2 = inputs[C2_INPUT].getNormalVoltage(10.f) * dsp::exponentialBipolar(80.f, params[C2_LEVEL_PARAM].getValue()); float out2 = a2 * b2 / 5.f + c2; // Set outputs - if (outputs[OUT1_OUTPUT].active) { - outputs[OUT1_OUTPUT].value = clip(out1 / 10.f) * 10.f; + if (outputs[OUT1_OUTPUT].isConnected()) { + outputs[OUT1_OUTPUT].setVoltage(clip(out1 / 10.f) * 10.f); } else { out2 += out1; } - if (outputs[OUT2_OUTPUT].active) { - outputs[OUT2_OUTPUT].value = clip(out2 / 10.f) * 10.f; + if (outputs[OUT2_OUTPUT].isConnected()) { + outputs[OUT2_OUTPUT].setVoltage(clip(out2 / 10.f) * 10.f); } // Lights diff --git a/src/DualAtenuverter.cpp b/src/DualAtenuverter.cpp index 3007ba3..37df22d 100644 --- a/src/DualAtenuverter.cpp +++ b/src/DualAtenuverter.cpp @@ -36,13 +36,13 @@ struct DualAtenuverter : Module { } void process(const ProcessArgs &args) override { - float out1 = inputs[IN1_INPUT].value * params[ATEN1_PARAM].value + params[OFFSET1_PARAM].value; - float out2 = inputs[IN2_INPUT].value * params[ATEN2_PARAM].value + params[OFFSET2_PARAM].value; + float out1 = inputs[IN1_INPUT].getVoltage() * params[ATEN1_PARAM].getValue() + params[OFFSET1_PARAM].getValue(); + float out2 = inputs[IN2_INPUT].getVoltage() * params[ATEN2_PARAM].getValue() + params[OFFSET2_PARAM].getValue(); out1 = clamp(out1, -10.f, 10.f); out2 = clamp(out2, -10.f, 10.f); - outputs[OUT1_OUTPUT].value = out1; - outputs[OUT2_OUTPUT].value = out2; + outputs[OUT1_OUTPUT].setVoltage(out1); + outputs[OUT2_OUTPUT].setVoltage(out2); lights[OUT1_POS_LIGHT].setSmoothBrightness(out1 / 5.f, args.sampleTime); lights[OUT1_NEG_LIGHT].setSmoothBrightness(-out1 / 5.f, args.sampleTime); lights[OUT2_POS_LIGHT].setSmoothBrightness(out2 / 5.f, args.sampleTime); diff --git a/src/EvenVCO.cpp b/src/EvenVCO.cpp index f3d5496..db7b0bc 100644 --- a/src/EvenVCO.cpp +++ b/src/EvenVCO.cpp @@ -51,14 +51,14 @@ struct EvenVCO : Module { void process(const ProcessArgs &args) override { // Compute frequency, pitch is 1V/oct - float pitch = 1.f + std::round(params[OCTAVE_PARAM].value) + params[TUNE_PARAM].value / 12.f; - pitch += inputs[PITCH1_INPUT].value + inputs[PITCH2_INPUT].value; - pitch += inputs[FM_INPUT].value / 4.f; + float pitch = 1.f + std::round(params[OCTAVE_PARAM].getValue()) + params[TUNE_PARAM].getValue() / 12.f; + pitch += inputs[PITCH1_INPUT].getVoltage() + inputs[PITCH2_INPUT].getVoltage(); + pitch += inputs[FM_INPUT].getVoltage() / 4.f; float freq = dsp::FREQ_C4 * std::pow(2.f, pitch); freq = clamp(freq, 0.f, 20000.f); // Pulse width - float pw = params[PWM_PARAM].value + inputs[PWM_INPUT].value / 5.f; + float pw = params[PWM_PARAM].getValue() + inputs[PWM_INPUT].getVoltage() / 5.f; const float minPw = 0.05; pw = rescale(clamp(pw, -1.f, 1.f), -1.f, 1.f, minPw, 1.f - minPw); @@ -108,11 +108,11 @@ struct EvenVCO : Module { square += squareMinBlep.process(); // Set outputs - outputs[TRI_OUTPUT].value = 5.f*tri; - outputs[SINE_OUTPUT].value = 5.f*sine; - outputs[EVEN_OUTPUT].value = 5.f*even; - outputs[SAW_OUTPUT].value = 5.f*saw; - outputs[SQUARE_OUTPUT].value = 5.f*square; + outputs[TRI_OUTPUT].setVoltage(5.f*tri); + outputs[SINE_OUTPUT].setVoltage(5.f*sine); + outputs[EVEN_OUTPUT].setVoltage(5.f*even); + outputs[SAW_OUTPUT].setVoltage(5.f*saw); + outputs[SQUARE_OUTPUT].setVoltage(5.f*square); } }; diff --git a/src/Rampage.cpp b/src/Rampage.cpp index cacbc15..0e99035 100644 --- a/src/Rampage.cpp +++ b/src/Rampage.cpp @@ -97,20 +97,20 @@ struct Rampage : Module { void process(const ProcessArgs &args) override { for (int c = 0; c < 2; c++) { - float in = inputs[IN_A_INPUT + c].value; - if (trigger[c].process(params[TRIGG_A_PARAM + c].value * 10.0 + inputs[TRIGG_A_INPUT + c].value / 2.0)) { + float in = inputs[IN_A_INPUT + c].getVoltage(); + if (trigger[c].process(params[TRIGG_A_PARAM + c].getValue() * 10.0 + inputs[TRIGG_A_INPUT + c].getVoltage() / 2.0)) { gate[c] = true; } if (gate[c]) { in = 10.0; } - float shape = params[SHAPE_A_PARAM + c].value; + float shape = params[SHAPE_A_PARAM + c].getValue(); float delta = in - out[c]; // Integrator float minTime; - switch ((int) params[RANGE_A_PARAM + c].value) { + switch ((int) params[RANGE_A_PARAM + c].getValue()) { case 0: minTime = 1e-2; break; case 1: minTime = 1e-3; break; default: minTime = 1e-1; break; @@ -121,7 +121,7 @@ struct Rampage : Module { if (delta > 0) { // Rise - float riseCv = params[RISE_A_PARAM + c].value - inputs[EXP_CV_A_INPUT + c].value / 10.0 + inputs[RISE_CV_A_INPUT + c].value / 10.0; + float riseCv = params[RISE_A_PARAM + c].getValue() - inputs[EXP_CV_A_INPUT + c].getVoltage() / 10.0 + inputs[RISE_CV_A_INPUT + c].getVoltage() / 10.0; riseCv = clamp(riseCv, 0.0f, 1.0f); float rise = minTime * std::pow(2.0, riseCv * 10.0); out[c] += shapeDelta(delta, rise, shape) * args.sampleTime; @@ -132,7 +132,7 @@ struct Rampage : Module { } else if (delta < 0) { // Fall - float fallCv = params[FALL_A_PARAM + c].value - inputs[EXP_CV_A_INPUT + c].value / 10.0 + inputs[FALL_CV_A_INPUT + c].value / 10.0; + float fallCv = params[FALL_A_PARAM + c].getValue() - inputs[EXP_CV_A_INPUT + c].getVoltage() / 10.0 + inputs[FALL_CV_A_INPUT + c].getVoltage() / 10.0; fallCv = clamp(fallCv, 0.0f, 1.0f); float fall = minTime * std::pow(2.0, fallCv * 10.0); out[c] += shapeDelta(delta, fall, shape) * args.sampleTime; @@ -140,7 +140,7 @@ struct Rampage : Module { if (!falling) { // End of cycle, check if we should turn the gate back on (cycle mode) endOfCyclePulse[c].trigger(1e-3); - if (params[CYCLE_A_PARAM + c].value * 10.0 + inputs[CYCLE_A_INPUT + c].value >= 4.0) { + if (params[CYCLE_A_PARAM + c].getValue() * 10.0 + inputs[CYCLE_A_INPUT + c].getVoltage() >= 4.0) { gate[c] = true; } } @@ -153,26 +153,26 @@ struct Rampage : Module { out[c] = in; } - outputs[RISING_A_OUTPUT + c].value = (rising ? 10.0 : 0.0); - outputs[FALLING_A_OUTPUT + c].value = (falling ? 10.0 : 0.0); + outputs[RISING_A_OUTPUT + c].setVoltage((rising ? 10.0 : 0.0)); + outputs[FALLING_A_OUTPUT + c].setVoltage((falling ? 10.0 : 0.0)); lights[RISING_A_LIGHT + c].setSmoothBrightness(rising ? 1.0 : 0.0, args.sampleTime); lights[FALLING_A_LIGHT + c].setSmoothBrightness(falling ? 1.0 : 0.0, args.sampleTime); - outputs[EOC_A_OUTPUT + c].value = (endOfCyclePulse[c].process(args.sampleTime) ? 10.0 : 0.0); - outputs[OUT_A_OUTPUT + c].value = out[c]; + outputs[EOC_A_OUTPUT + c].setVoltage((endOfCyclePulse[c].process(args.sampleTime) ? 10.0 : 0.0)); + outputs[OUT_A_OUTPUT + c].setVoltage(out[c]); lights[OUT_A_LIGHT + c].setSmoothBrightness(out[c] / 10.0, args.sampleTime); } // Logic - float balance = params[BALANCE_PARAM].value; + float balance = params[BALANCE_PARAM].getValue(); float a = out[0]; float b = out[1]; if (balance < 0.5) b *= 2.0 * balance; else if (balance > 0.5) a *= 2.0 * (1.0 - balance); - outputs[COMPARATOR_OUTPUT].value = (b > a ? 10.0 : 0.0); - outputs[MIN_OUTPUT].value = std::min(a, b); - outputs[MAX_OUTPUT].value = std::max(a, b); + outputs[COMPARATOR_OUTPUT].setVoltage((b > a ? 10.0 : 0.0)); + outputs[MIN_OUTPUT].setVoltage(std::min(a, b)); + outputs[MAX_OUTPUT].setVoltage(std::max(a, b)); // Lights lights[COMPARATOR_LIGHT].setSmoothBrightness(outputs[COMPARATOR_OUTPUT].value / 10.0, args.sampleTime); lights[MIN_LIGHT].setSmoothBrightness(outputs[MIN_OUTPUT].value / 10.0, args.sampleTime); diff --git a/src/SlewLimiter.cpp b/src/SlewLimiter.cpp index 2af9b66..8e1d159 100644 --- a/src/SlewLimiter.cpp +++ b/src/SlewLimiter.cpp @@ -29,8 +29,8 @@ struct SlewLimiter : Module { } void process(const ProcessArgs &args) override { - float in = inputs[IN_INPUT].value; - float shape = params[SHAPE_PARAM].value; + float in = inputs[IN_INPUT].getVoltage(); + float shape = params[SHAPE_PARAM].getValue(); // minimum and maximum slopes in volts per second const float slewMin = 0.1; @@ -40,7 +40,7 @@ struct SlewLimiter : Module { // Rise if (in > out) { - float rise = inputs[RISE_INPUT].value / 10.f + params[RISE_PARAM].value; + float rise = inputs[RISE_INPUT].getVoltage() / 10.f + params[RISE_PARAM].getValue(); float slew = slewMax * std::pow(slewMin / slewMax, rise); out += slew * crossfade(1.f, shapeScale * (in - out), shape) * args.sampleTime; if (out > in) @@ -48,14 +48,14 @@ struct SlewLimiter : Module { } // Fall else if (in < out) { - float fall = inputs[FALL_INPUT].value / 10.f + params[FALL_PARAM].value; + float fall = inputs[FALL_INPUT].getVoltage() / 10.f + params[FALL_PARAM].getValue(); float slew = slewMax * std::pow(slewMin / slewMax, fall); out -= slew * crossfade(1.f, shapeScale * (out - in), shape) * args.sampleTime; if (out < in) out = in; } - outputs[OUT_OUTPUT].value = out; + outputs[OUT_OUTPUT].setVoltage(out); } }; diff --git a/src/SpringReverb.cpp b/src/SpringReverb.cpp index 13e29aa..27ebe1d 100644 --- a/src/SpringReverb.cpp +++ b/src/SpringReverb.cpp @@ -65,16 +65,16 @@ struct SpringReverb : Module { } void process(const ProcessArgs &args) override { - float in1 = inputs[IN1_INPUT].value; - float in2 = inputs[IN2_INPUT].value; + float in1 = inputs[IN1_INPUT].getVoltage(); + float in2 = inputs[IN2_INPUT].getVoltage(); const float levelScale = 0.030; const float levelBase = 25.0; - float level1 = levelScale * dsp::exponentialBipolar(levelBase, params[LEVEL1_PARAM].value) * inputs[CV1_INPUT].getNormalVoltage(10.0) / 10.0; - float level2 = levelScale * dsp::exponentialBipolar(levelBase, params[LEVEL2_PARAM].value) * inputs[CV2_INPUT].getNormalVoltage(10.0) / 10.0; + float level1 = levelScale * dsp::exponentialBipolar(levelBase, params[LEVEL1_PARAM].getValue()) * inputs[CV1_INPUT].getNormalVoltage(10.0) / 10.0; + float level2 = levelScale * dsp::exponentialBipolar(levelBase, params[LEVEL2_PARAM].getValue()) * inputs[CV2_INPUT].getNormalVoltage(10.0) / 10.0; float dry = in1 * level1 + in2 * level2; // HPF on dry - float dryCutoff = 200.0 * std::pow(20.0, params[HPF_PARAM].value) * args.sampleTime; + float dryCutoff = 200.0 * std::pow(20.0, params[HPF_PARAM].getValue()) * args.sampleTime; dryFilter.setCutoff(dryCutoff); dryFilter.process(dry); @@ -115,11 +115,11 @@ struct SpringReverb : Module { if (outputBuffer.empty()) return; float wet = outputBuffer.shift().samples[0]; - float balance = clamp(params[WET_PARAM].value + inputs[MIX_CV_INPUT].value / 10.0f, 0.0f, 1.0f); + float balance = clamp(params[WET_PARAM].getValue() + inputs[MIX_CV_INPUT].getVoltage() / 10.0f, 0.0f, 1.0f); float mix = crossfade(in1, wet, balance); - outputs[WET_OUTPUT].value = clamp(wet, -10.0f, 10.0f); - outputs[MIX_OUTPUT].value = clamp(mix, -10.0f, 10.0f); + outputs[WET_OUTPUT].setVoltage(clamp(wet, -10.0f, 10.0f)); + outputs[MIX_OUTPUT].setVoltage(clamp(mix, -10.0f, 10.0f)); // Set lights float lightRate = 5.0 * args.sampleTime;