| @@ -7,9 +7,6 @@ include ../../plugin.mk | |||
| dist: all | |||
| ifndef VERSION | |||
| $(error VERSION is not set.) | |||
| endif | |||
| mkdir -p dist/Befaco | |||
| cp LICENSE* dist/Befaco/ | |||
| cp plugin.* dist/Befaco/ | |||
| @@ -26,42 +26,36 @@ struct ABC : Module { | |||
| float lights[2] = {}; | |||
| ABC(); | |||
| ABC() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
| void step(); | |||
| }; | |||
| ABC::ABC() { | |||
| params.resize(NUM_PARAMS); | |||
| inputs.resize(NUM_INPUTS); | |||
| outputs.resize(NUM_OUTPUTS); | |||
| } | |||
| static float clip(float x) { | |||
| x = clampf(x, -2.0, 2.0); | |||
| return x / powf(1.0 + powf(x, 24.0), 1/24.0); | |||
| } | |||
| void ABC::step() { | |||
| float a1 = getf(inputs[A1_INPUT]); | |||
| float b1 = getf(inputs[B1_INPUT], 5.0) * 2.0*exponentialBipolar(80.0, params[B1_LEVEL_PARAM]); | |||
| float c1 = getf(inputs[C1_INPUT], 10.0) * exponentialBipolar(80.0, params[C1_LEVEL_PARAM]); | |||
| float a1 = inputs[A1_INPUT].value; | |||
| float b1 = inputs[B1_INPUT].normalize(5.0) * 2.0*exponentialBipolar(80.0, params[B1_LEVEL_PARAM].value); | |||
| float c1 = inputs[C1_INPUT].normalize(10.0) * exponentialBipolar(80.0, params[C1_LEVEL_PARAM].value); | |||
| float out1 = a1 * b1 / 5.0 + c1; | |||
| float a2 = getf(inputs[A2_INPUT]); | |||
| float b2 = getf(inputs[B2_INPUT], 5.0) * 2.0*exponentialBipolar(80.0, params[B2_LEVEL_PARAM]); | |||
| float c2 = getf(inputs[C2_INPUT], 20.0) * exponentialBipolar(80.0, params[C2_LEVEL_PARAM]); | |||
| float a2 = inputs[A2_INPUT].value; | |||
| float b2 = inputs[B2_INPUT].normalize(5.0) * 2.0*exponentialBipolar(80.0, params[B2_LEVEL_PARAM].value); | |||
| float c2 = inputs[C2_INPUT].normalize(20.0) * exponentialBipolar(80.0, params[C2_LEVEL_PARAM].value); | |||
| float out2 = a2 * b2 / 5.0 + c2; | |||
| // Set outputs | |||
| if (outputs[OUT1_OUTPUT]) { | |||
| *outputs[OUT1_OUTPUT] = clip(out1 / 10.0) * 10.0; | |||
| if (outputs[OUT1_OUTPUT].active) { | |||
| outputs[OUT1_OUTPUT].value = clip(out1 / 10.0) * 10.0; | |||
| } | |||
| else { | |||
| out2 += out1; | |||
| } | |||
| if (outputs[OUT2_OUTPUT]) { | |||
| *outputs[OUT2_OUTPUT] = clip(out2 / 10.0) * 10.0; | |||
| if (outputs[OUT2_OUTPUT].active) { | |||
| outputs[OUT2_OUTPUT].value = clip(out2 / 10.0) * 10.0; | |||
| } | |||
| lights[0] = out1 / 5.0; | |||
| lights[1] = out2 / 5.0; | |||
| @@ -23,25 +23,19 @@ struct DualAtenuverter : Module { | |||
| float lights[2] = {}; | |||
| DualAtenuverter(); | |||
| DualAtenuverter() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
| void step(); | |||
| }; | |||
| DualAtenuverter::DualAtenuverter() { | |||
| params.resize(NUM_PARAMS); | |||
| inputs.resize(NUM_INPUTS); | |||
| outputs.resize(NUM_OUTPUTS); | |||
| } | |||
| void DualAtenuverter::step() { | |||
| float out1 = getf(inputs[IN1_INPUT]) * params[ATEN1_PARAM] + params[OFFSET1_PARAM]; | |||
| float out2 = getf(inputs[IN2_INPUT]) * params[ATEN2_PARAM] + params[OFFSET2_PARAM]; | |||
| float out1 = inputs[IN1_INPUT].value * params[ATEN1_PARAM].value + params[OFFSET1_PARAM].value; | |||
| float out2 = inputs[IN2_INPUT].value * params[ATEN2_PARAM].value + params[OFFSET2_PARAM].value; | |||
| out1 = clampf(out1, -10.0, 10.0); | |||
| out2 = clampf(out2, -10.0, 10.0); | |||
| setf(outputs[OUT1_OUTPUT], out1); | |||
| setf(outputs[OUT2_OUTPUT], out2); | |||
| outputs[OUT1_OUTPUT].value = out1; | |||
| outputs[OUT2_OUTPUT].value = out2; | |||
| lights[0] = out1 / 5.0; | |||
| lights[1] = out2 / 5.0; | |||
| } | |||
| @@ -48,11 +48,7 @@ struct EvenVCO : Module { | |||
| }; | |||
| EvenVCO::EvenVCO() { | |||
| params.resize(NUM_PARAMS); | |||
| inputs.resize(NUM_INPUTS); | |||
| outputs.resize(NUM_OUTPUTS); | |||
| EvenVCO::EvenVCO() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) { | |||
| triSquareMinBLEP.minblep = minblep_16_32; | |||
| triSquareMinBLEP.oversample = 32; | |||
| triMinBLEP.minblep = minblep_16_32; | |||
| @@ -69,14 +65,14 @@ EvenVCO::EvenVCO() { | |||
| void EvenVCO::step() { | |||
| // Compute frequency, pitch is 1V/oct | |||
| float pitch = 1.0 + roundf(params[OCTAVE_PARAM]) + params[TUNE_PARAM] / 12.0; | |||
| pitch += getf(inputs[PITCH1_INPUT]) + getf(inputs[PITCH2_INPUT]); | |||
| pitch += getf(inputs[FM_INPUT]) / 4.0; | |||
| float pitch = 1.0 + roundf(params[OCTAVE_PARAM].value) + params[TUNE_PARAM].value / 12.0; | |||
| pitch += inputs[PITCH1_INPUT].value + inputs[PITCH2_INPUT].value; | |||
| pitch += inputs[FM_INPUT].value / 4.0; | |||
| float freq = 261.626 * powf(2.0, pitch); | |||
| freq = clampf(freq, 0.0, 20000.0); | |||
| // Pulse width | |||
| float pw = params[PWM_PARAM] + getf(inputs[PWM_INPUT]) / 5.0; | |||
| float pw = params[PWM_PARAM].value + inputs[PWM_INPUT].value / 5.0; | |||
| const float minPw = 0.05; | |||
| pw = rescalef(clampf(pw, -1.0, 1.0), -1.0, 1.0, minPw, 1.0-minPw); | |||
| @@ -126,11 +122,11 @@ void EvenVCO::step() { | |||
| square += squareMinBLEP.shift(); | |||
| // Set outputs | |||
| setf(outputs[TRI_OUTPUT], 5.0*tri); | |||
| setf(outputs[SINE_OUTPUT], 5.0*sine); | |||
| setf(outputs[EVEN_OUTPUT], 5.0*even); | |||
| setf(outputs[SAW_OUTPUT], 5.0*saw); | |||
| setf(outputs[SQUARE_OUTPUT], 5.0*square); | |||
| outputs[TRI_OUTPUT].value = 5.0*tri; | |||
| outputs[SINE_OUTPUT].value = 5.0*sine; | |||
| outputs[EVEN_OUTPUT].value = 5.0*even; | |||
| outputs[SAW_OUTPUT].value = 5.0*saw; | |||
| outputs[SQUARE_OUTPUT].value = 5.0*square; | |||
| } | |||
| @@ -24,26 +24,20 @@ struct Mixer : Module { | |||
| float lights[1] = {}; | |||
| Mixer(); | |||
| Mixer() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
| void step(); | |||
| }; | |||
| Mixer::Mixer() { | |||
| params.resize(NUM_PARAMS); | |||
| inputs.resize(NUM_INPUTS); | |||
| outputs.resize(NUM_OUTPUTS); | |||
| } | |||
| void Mixer::step() { | |||
| float in1 = getf(inputs[IN1_INPUT]) * params[CH1_PARAM]; | |||
| float in2 = getf(inputs[IN2_INPUT]) * params[CH2_PARAM]; | |||
| float in3 = getf(inputs[IN3_INPUT]) * params[CH3_PARAM]; | |||
| float in4 = getf(inputs[IN4_INPUT]) * params[CH4_PARAM]; | |||
| float in1 = inputs[IN1_INPUT].value * params[CH1_PARAM].value; | |||
| float in2 = inputs[IN2_INPUT].value * params[CH2_PARAM].value; | |||
| float in3 = inputs[IN3_INPUT].value * params[CH3_PARAM].value; | |||
| float in4 = inputs[IN4_INPUT].value * params[CH4_PARAM].value; | |||
| float out = in1 + in2 + in3 + in4; | |||
| setf(outputs[OUT1_OUTPUT], out); | |||
| setf(outputs[OUT2_OUTPUT], -out); | |||
| outputs[OUT1_OUTPUT].value = out; | |||
| outputs[OUT2_OUTPUT].value = -out; | |||
| lights[0] = out / 5.0; | |||
| } | |||
| @@ -61,23 +61,17 @@ struct Rampage : Module { | |||
| float risingBLight = 0.0; | |||
| float fallingBLight = 0.0; | |||
| Rampage(); | |||
| Rampage() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
| void step(); | |||
| }; | |||
| Rampage::Rampage() { | |||
| params.resize(NUM_PARAMS); | |||
| inputs.resize(NUM_INPUTS); | |||
| outputs.resize(NUM_OUTPUTS); | |||
| } | |||
| void Rampage::step() { | |||
| // TEMP | |||
| float outA = getf(inputs[IN_A_INPUT]); | |||
| float outB = getf(inputs[IN_B_INPUT]); | |||
| setf(outputs[OUT_A_OUTPUT], outA); | |||
| setf(outputs[OUT_B_OUTPUT], outB); | |||
| float outA = inputs[IN_A_INPUT].value; | |||
| float outB = inputs[IN_B_INPUT].value; | |||
| outputs[OUT_A_OUTPUT].value = outA; | |||
| outputs[OUT_B_OUTPUT].value = outB; | |||
| outALight = outA / 10.0; | |||
| outBLight = outB / 10.0; | |||
| @@ -88,8 +82,8 @@ void Rampage::step() { | |||
| lastOut = out; \ | |||
| float rising = slope > slopeThreshold ? 10.0 : 0.0; \ | |||
| float falling = slope < -slopeThreshold ? 10.0 : 0.0; \ | |||
| setf(outputs[rising], rising); \ | |||
| setf(outputs[falling], falling); \ | |||
| outputs[rising].value = rising; \ | |||
| outputs[falling].value = falling; \ | |||
| risingLight = rising / 10.0; \ | |||
| fallingLight = falling / 10.0; \ | |||
| } | |||
| @@ -97,16 +91,16 @@ void Rampage::step() { | |||
| SLOPE(outB, lastOutB, RISING_B_OUTPUT, FALLING_B_OUTPUT, risingBLight, fallingBLight) | |||
| // Analog logic processor | |||
| float balance = params[BALANCE_PARAM]; | |||
| float balance = params[BALANCE_PARAM].value; | |||
| const float balancePower = 0.5; | |||
| outA *= powf(1.0 - balance, balancePower); | |||
| outB *= powf(balance, balancePower); | |||
| float max = fmaxf(outA, outB); | |||
| float min = fminf(outA, outB); | |||
| float comparator = outB > outA ? 10.0 : 0.0; | |||
| setf(outputs[MAX_OUTPUT], max); | |||
| setf(outputs[MIN_OUTPUT], min); | |||
| setf(outputs[COMPARATOR_OUTPUT], comparator); | |||
| outputs[MAX_OUTPUT].value = max; | |||
| outputs[MIN_OUTPUT].value = min; | |||
| outputs[COMPARATOR_OUTPUT].value = comparator; | |||
| maxLight = max / 10.0; | |||
| minLight = min / 10.0; | |||
| comparatorLight = comparator / 20.0; | |||
| @@ -21,20 +21,14 @@ struct SlewLimiter : Module { | |||
| float out = 0.0; | |||
| SlewLimiter(); | |||
| SlewLimiter() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
| void step(); | |||
| }; | |||
| ::SlewLimiter::SlewLimiter() { | |||
| params.resize(NUM_PARAMS); | |||
| inputs.resize(NUM_INPUTS); | |||
| outputs.resize(NUM_OUTPUTS); | |||
| } | |||
| void ::SlewLimiter::step() { | |||
| float in = getf(inputs[IN_INPUT]); | |||
| float shape = params[SHAPE_PARAM]; | |||
| float in = inputs[IN_INPUT].value; | |||
| float shape = params[SHAPE_PARAM].value; | |||
| // minimum and maximum slopes in volts per second | |||
| const float slewMin = 0.1; | |||
| @@ -44,7 +38,7 @@ void ::SlewLimiter::step() { | |||
| // Rise | |||
| if (in > out) { | |||
| float rise = getf(inputs[RISE_INPUT]) + params[RISE_PARAM]; | |||
| float rise = inputs[RISE_INPUT].value + params[RISE_PARAM].value; | |||
| float slew = slewMax * powf(slewMin / slewMax, rise); | |||
| out += slew * crossf(1.0, shapeScale * (in - out), shape) / gSampleRate; | |||
| if (out > in) | |||
| @@ -52,14 +46,14 @@ void ::SlewLimiter::step() { | |||
| } | |||
| // Fall | |||
| else if (in < out) { | |||
| float fall = getf(inputs[FALL_INPUT]) + params[FALL_PARAM]; | |||
| float fall = inputs[FALL_INPUT].value + params[FALL_PARAM].value; | |||
| float slew = slewMax * powf(slewMin / slewMax, fall); | |||
| out -= slew * crossf(1.0, shapeScale * (out - in), shape) / gSampleRate; | |||
| if (out < in) | |||
| out = in; | |||
| } | |||
| setf(outputs[OUT_OUTPUT], out); | |||
| outputs[OUT_OUTPUT].value = out; | |||
| } | |||
| @@ -175,11 +175,7 @@ struct SpringReverb : Module { | |||
| }; | |||
| SpringReverb::SpringReverb() { | |||
| params.resize(NUM_PARAMS); | |||
| inputs.resize(NUM_INPUTS); | |||
| outputs.resize(NUM_OUTPUTS); | |||
| SpringReverb::SpringReverb() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) { | |||
| convolver = new RealTimeConvolver(BLOCKSIZE); | |||
| convolver->setKernel(springReverbIR, springReverbIRLen); | |||
| } | |||
| @@ -189,16 +185,16 @@ SpringReverb::~SpringReverb() { | |||
| } | |||
| void SpringReverb::step() { | |||
| float in1 = getf(inputs[IN1_INPUT]); | |||
| float in2 = getf(inputs[IN2_INPUT]); | |||
| float in1 = inputs[IN1_INPUT].value; | |||
| float in2 = inputs[IN2_INPUT].value; | |||
| const float levelScale = 0.030; | |||
| const float levelBase = 25.0; | |||
| float level1 = levelScale * exponentialBipolar(levelBase, params[LEVEL1_PARAM]) * getf(inputs[CV1_INPUT], 10.0) / 10.0; | |||
| float level2 = levelScale * exponentialBipolar(levelBase, params[LEVEL2_PARAM]) * getf(inputs[CV2_INPUT], 10.0) / 10.0; | |||
| float level1 = levelScale * exponentialBipolar(levelBase, params[LEVEL1_PARAM].value) * inputs[CV1_INPUT].normalize(10.0) / 10.0; | |||
| float level2 = levelScale * exponentialBipolar(levelBase, params[LEVEL2_PARAM].value) * inputs[CV2_INPUT].normalize(10.0) / 10.0; | |||
| float dry = in1 * level1 + in2 * level2; | |||
| // HPF on dry | |||
| float dryCutoff = 200.0 * powf(20.0, params[HPF_PARAM]) / gSampleRate; | |||
| float dryCutoff = 200.0 * powf(20.0, params[HPF_PARAM].value) / gSampleRate; | |||
| dryFilter.setCutoff(dryCutoff); | |||
| dryFilter.process(dry); | |||
| @@ -239,11 +235,11 @@ void SpringReverb::step() { | |||
| if (outputBuffer.empty()) | |||
| return; | |||
| float wet = outputBuffer.shift().samples[0]; | |||
| float crossfade = clampf(params[WET_PARAM] + getf(inputs[MIX_CV_INPUT]) / 10.0, 0.0, 1.0); | |||
| float crossfade = clampf(params[WET_PARAM].value + inputs[MIX_CV_INPUT].value / 10.0, 0.0, 1.0); | |||
| float mix = crossf(in1, wet, crossfade); | |||
| setf(outputs[WET_OUTPUT], clampf(wet, -10.0, 10.0)); | |||
| setf(outputs[MIX_OUTPUT], clampf(mix, -10.0, 10.0)); | |||
| outputs[WET_OUTPUT].value =clampf(wet, -10.0, 10.0); | |||
| outputs[MIX_OUTPUT].value =clampf(mix, -10.0, 10.0); | |||
| // Set lights | |||
| float lightRate = 5.0 / gSampleRate; | |||