@@ -7,9 +7,6 @@ include ../../plugin.mk | |||
dist: all | |||
ifndef VERSION | |||
$(error VERSION is not set.) | |||
endif | |||
mkdir -p dist/Befaco | |||
cp LICENSE* dist/Befaco/ | |||
cp plugin.* dist/Befaco/ | |||
@@ -26,42 +26,36 @@ struct ABC : Module { | |||
float lights[2] = {}; | |||
ABC(); | |||
ABC() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
void step(); | |||
}; | |||
ABC::ABC() { | |||
params.resize(NUM_PARAMS); | |||
inputs.resize(NUM_INPUTS); | |||
outputs.resize(NUM_OUTPUTS); | |||
} | |||
static float clip(float x) { | |||
x = clampf(x, -2.0, 2.0); | |||
return x / powf(1.0 + powf(x, 24.0), 1/24.0); | |||
} | |||
void ABC::step() { | |||
float a1 = getf(inputs[A1_INPUT]); | |||
float b1 = getf(inputs[B1_INPUT], 5.0) * 2.0*exponentialBipolar(80.0, params[B1_LEVEL_PARAM]); | |||
float c1 = getf(inputs[C1_INPUT], 10.0) * exponentialBipolar(80.0, params[C1_LEVEL_PARAM]); | |||
float a1 = inputs[A1_INPUT].value; | |||
float b1 = inputs[B1_INPUT].normalize(5.0) * 2.0*exponentialBipolar(80.0, params[B1_LEVEL_PARAM].value); | |||
float c1 = inputs[C1_INPUT].normalize(10.0) * exponentialBipolar(80.0, params[C1_LEVEL_PARAM].value); | |||
float out1 = a1 * b1 / 5.0 + c1; | |||
float a2 = getf(inputs[A2_INPUT]); | |||
float b2 = getf(inputs[B2_INPUT], 5.0) * 2.0*exponentialBipolar(80.0, params[B2_LEVEL_PARAM]); | |||
float c2 = getf(inputs[C2_INPUT], 20.0) * exponentialBipolar(80.0, params[C2_LEVEL_PARAM]); | |||
float a2 = inputs[A2_INPUT].value; | |||
float b2 = inputs[B2_INPUT].normalize(5.0) * 2.0*exponentialBipolar(80.0, params[B2_LEVEL_PARAM].value); | |||
float c2 = inputs[C2_INPUT].normalize(20.0) * exponentialBipolar(80.0, params[C2_LEVEL_PARAM].value); | |||
float out2 = a2 * b2 / 5.0 + c2; | |||
// Set outputs | |||
if (outputs[OUT1_OUTPUT]) { | |||
*outputs[OUT1_OUTPUT] = clip(out1 / 10.0) * 10.0; | |||
if (outputs[OUT1_OUTPUT].active) { | |||
outputs[OUT1_OUTPUT].value = clip(out1 / 10.0) * 10.0; | |||
} | |||
else { | |||
out2 += out1; | |||
} | |||
if (outputs[OUT2_OUTPUT]) { | |||
*outputs[OUT2_OUTPUT] = clip(out2 / 10.0) * 10.0; | |||
if (outputs[OUT2_OUTPUT].active) { | |||
outputs[OUT2_OUTPUT].value = clip(out2 / 10.0) * 10.0; | |||
} | |||
lights[0] = out1 / 5.0; | |||
lights[1] = out2 / 5.0; | |||
@@ -23,25 +23,19 @@ struct DualAtenuverter : Module { | |||
float lights[2] = {}; | |||
DualAtenuverter(); | |||
DualAtenuverter() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
void step(); | |||
}; | |||
DualAtenuverter::DualAtenuverter() { | |||
params.resize(NUM_PARAMS); | |||
inputs.resize(NUM_INPUTS); | |||
outputs.resize(NUM_OUTPUTS); | |||
} | |||
void DualAtenuverter::step() { | |||
float out1 = getf(inputs[IN1_INPUT]) * params[ATEN1_PARAM] + params[OFFSET1_PARAM]; | |||
float out2 = getf(inputs[IN2_INPUT]) * params[ATEN2_PARAM] + params[OFFSET2_PARAM]; | |||
float out1 = inputs[IN1_INPUT].value * params[ATEN1_PARAM].value + params[OFFSET1_PARAM].value; | |||
float out2 = inputs[IN2_INPUT].value * params[ATEN2_PARAM].value + params[OFFSET2_PARAM].value; | |||
out1 = clampf(out1, -10.0, 10.0); | |||
out2 = clampf(out2, -10.0, 10.0); | |||
setf(outputs[OUT1_OUTPUT], out1); | |||
setf(outputs[OUT2_OUTPUT], out2); | |||
outputs[OUT1_OUTPUT].value = out1; | |||
outputs[OUT2_OUTPUT].value = out2; | |||
lights[0] = out1 / 5.0; | |||
lights[1] = out2 / 5.0; | |||
} | |||
@@ -48,11 +48,7 @@ struct EvenVCO : Module { | |||
}; | |||
EvenVCO::EvenVCO() { | |||
params.resize(NUM_PARAMS); | |||
inputs.resize(NUM_INPUTS); | |||
outputs.resize(NUM_OUTPUTS); | |||
EvenVCO::EvenVCO() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) { | |||
triSquareMinBLEP.minblep = minblep_16_32; | |||
triSquareMinBLEP.oversample = 32; | |||
triMinBLEP.minblep = minblep_16_32; | |||
@@ -69,14 +65,14 @@ EvenVCO::EvenVCO() { | |||
void EvenVCO::step() { | |||
// Compute frequency, pitch is 1V/oct | |||
float pitch = 1.0 + roundf(params[OCTAVE_PARAM]) + params[TUNE_PARAM] / 12.0; | |||
pitch += getf(inputs[PITCH1_INPUT]) + getf(inputs[PITCH2_INPUT]); | |||
pitch += getf(inputs[FM_INPUT]) / 4.0; | |||
float pitch = 1.0 + roundf(params[OCTAVE_PARAM].value) + params[TUNE_PARAM].value / 12.0; | |||
pitch += inputs[PITCH1_INPUT].value + inputs[PITCH2_INPUT].value; | |||
pitch += inputs[FM_INPUT].value / 4.0; | |||
float freq = 261.626 * powf(2.0, pitch); | |||
freq = clampf(freq, 0.0, 20000.0); | |||
// Pulse width | |||
float pw = params[PWM_PARAM] + getf(inputs[PWM_INPUT]) / 5.0; | |||
float pw = params[PWM_PARAM].value + inputs[PWM_INPUT].value / 5.0; | |||
const float minPw = 0.05; | |||
pw = rescalef(clampf(pw, -1.0, 1.0), -1.0, 1.0, minPw, 1.0-minPw); | |||
@@ -126,11 +122,11 @@ void EvenVCO::step() { | |||
square += squareMinBLEP.shift(); | |||
// Set outputs | |||
setf(outputs[TRI_OUTPUT], 5.0*tri); | |||
setf(outputs[SINE_OUTPUT], 5.0*sine); | |||
setf(outputs[EVEN_OUTPUT], 5.0*even); | |||
setf(outputs[SAW_OUTPUT], 5.0*saw); | |||
setf(outputs[SQUARE_OUTPUT], 5.0*square); | |||
outputs[TRI_OUTPUT].value = 5.0*tri; | |||
outputs[SINE_OUTPUT].value = 5.0*sine; | |||
outputs[EVEN_OUTPUT].value = 5.0*even; | |||
outputs[SAW_OUTPUT].value = 5.0*saw; | |||
outputs[SQUARE_OUTPUT].value = 5.0*square; | |||
} | |||
@@ -24,26 +24,20 @@ struct Mixer : Module { | |||
float lights[1] = {}; | |||
Mixer(); | |||
Mixer() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
void step(); | |||
}; | |||
Mixer::Mixer() { | |||
params.resize(NUM_PARAMS); | |||
inputs.resize(NUM_INPUTS); | |||
outputs.resize(NUM_OUTPUTS); | |||
} | |||
void Mixer::step() { | |||
float in1 = getf(inputs[IN1_INPUT]) * params[CH1_PARAM]; | |||
float in2 = getf(inputs[IN2_INPUT]) * params[CH2_PARAM]; | |||
float in3 = getf(inputs[IN3_INPUT]) * params[CH3_PARAM]; | |||
float in4 = getf(inputs[IN4_INPUT]) * params[CH4_PARAM]; | |||
float in1 = inputs[IN1_INPUT].value * params[CH1_PARAM].value; | |||
float in2 = inputs[IN2_INPUT].value * params[CH2_PARAM].value; | |||
float in3 = inputs[IN3_INPUT].value * params[CH3_PARAM].value; | |||
float in4 = inputs[IN4_INPUT].value * params[CH4_PARAM].value; | |||
float out = in1 + in2 + in3 + in4; | |||
setf(outputs[OUT1_OUTPUT], out); | |||
setf(outputs[OUT2_OUTPUT], -out); | |||
outputs[OUT1_OUTPUT].value = out; | |||
outputs[OUT2_OUTPUT].value = -out; | |||
lights[0] = out / 5.0; | |||
} | |||
@@ -61,23 +61,17 @@ struct Rampage : Module { | |||
float risingBLight = 0.0; | |||
float fallingBLight = 0.0; | |||
Rampage(); | |||
Rampage() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
void step(); | |||
}; | |||
Rampage::Rampage() { | |||
params.resize(NUM_PARAMS); | |||
inputs.resize(NUM_INPUTS); | |||
outputs.resize(NUM_OUTPUTS); | |||
} | |||
void Rampage::step() { | |||
// TEMP | |||
float outA = getf(inputs[IN_A_INPUT]); | |||
float outB = getf(inputs[IN_B_INPUT]); | |||
setf(outputs[OUT_A_OUTPUT], outA); | |||
setf(outputs[OUT_B_OUTPUT], outB); | |||
float outA = inputs[IN_A_INPUT].value; | |||
float outB = inputs[IN_B_INPUT].value; | |||
outputs[OUT_A_OUTPUT].value = outA; | |||
outputs[OUT_B_OUTPUT].value = outB; | |||
outALight = outA / 10.0; | |||
outBLight = outB / 10.0; | |||
@@ -88,8 +82,8 @@ void Rampage::step() { | |||
lastOut = out; \ | |||
float rising = slope > slopeThreshold ? 10.0 : 0.0; \ | |||
float falling = slope < -slopeThreshold ? 10.0 : 0.0; \ | |||
setf(outputs[rising], rising); \ | |||
setf(outputs[falling], falling); \ | |||
outputs[rising].value = rising; \ | |||
outputs[falling].value = falling; \ | |||
risingLight = rising / 10.0; \ | |||
fallingLight = falling / 10.0; \ | |||
} | |||
@@ -97,16 +91,16 @@ void Rampage::step() { | |||
SLOPE(outB, lastOutB, RISING_B_OUTPUT, FALLING_B_OUTPUT, risingBLight, fallingBLight) | |||
// Analog logic processor | |||
float balance = params[BALANCE_PARAM]; | |||
float balance = params[BALANCE_PARAM].value; | |||
const float balancePower = 0.5; | |||
outA *= powf(1.0 - balance, balancePower); | |||
outB *= powf(balance, balancePower); | |||
float max = fmaxf(outA, outB); | |||
float min = fminf(outA, outB); | |||
float comparator = outB > outA ? 10.0 : 0.0; | |||
setf(outputs[MAX_OUTPUT], max); | |||
setf(outputs[MIN_OUTPUT], min); | |||
setf(outputs[COMPARATOR_OUTPUT], comparator); | |||
outputs[MAX_OUTPUT].value = max; | |||
outputs[MIN_OUTPUT].value = min; | |||
outputs[COMPARATOR_OUTPUT].value = comparator; | |||
maxLight = max / 10.0; | |||
minLight = min / 10.0; | |||
comparatorLight = comparator / 20.0; | |||
@@ -21,20 +21,14 @@ struct SlewLimiter : Module { | |||
float out = 0.0; | |||
SlewLimiter(); | |||
SlewLimiter() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
void step(); | |||
}; | |||
::SlewLimiter::SlewLimiter() { | |||
params.resize(NUM_PARAMS); | |||
inputs.resize(NUM_INPUTS); | |||
outputs.resize(NUM_OUTPUTS); | |||
} | |||
void ::SlewLimiter::step() { | |||
float in = getf(inputs[IN_INPUT]); | |||
float shape = params[SHAPE_PARAM]; | |||
float in = inputs[IN_INPUT].value; | |||
float shape = params[SHAPE_PARAM].value; | |||
// minimum and maximum slopes in volts per second | |||
const float slewMin = 0.1; | |||
@@ -44,7 +38,7 @@ void ::SlewLimiter::step() { | |||
// Rise | |||
if (in > out) { | |||
float rise = getf(inputs[RISE_INPUT]) + params[RISE_PARAM]; | |||
float rise = inputs[RISE_INPUT].value + params[RISE_PARAM].value; | |||
float slew = slewMax * powf(slewMin / slewMax, rise); | |||
out += slew * crossf(1.0, shapeScale * (in - out), shape) / gSampleRate; | |||
if (out > in) | |||
@@ -52,14 +46,14 @@ void ::SlewLimiter::step() { | |||
} | |||
// Fall | |||
else if (in < out) { | |||
float fall = getf(inputs[FALL_INPUT]) + params[FALL_PARAM]; | |||
float fall = inputs[FALL_INPUT].value + params[FALL_PARAM].value; | |||
float slew = slewMax * powf(slewMin / slewMax, fall); | |||
out -= slew * crossf(1.0, shapeScale * (out - in), shape) / gSampleRate; | |||
if (out < in) | |||
out = in; | |||
} | |||
setf(outputs[OUT_OUTPUT], out); | |||
outputs[OUT_OUTPUT].value = out; | |||
} | |||
@@ -175,11 +175,7 @@ struct SpringReverb : Module { | |||
}; | |||
SpringReverb::SpringReverb() { | |||
params.resize(NUM_PARAMS); | |||
inputs.resize(NUM_INPUTS); | |||
outputs.resize(NUM_OUTPUTS); | |||
SpringReverb::SpringReverb() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) { | |||
convolver = new RealTimeConvolver(BLOCKSIZE); | |||
convolver->setKernel(springReverbIR, springReverbIRLen); | |||
} | |||
@@ -189,16 +185,16 @@ SpringReverb::~SpringReverb() { | |||
} | |||
void SpringReverb::step() { | |||
float in1 = getf(inputs[IN1_INPUT]); | |||
float in2 = getf(inputs[IN2_INPUT]); | |||
float in1 = inputs[IN1_INPUT].value; | |||
float in2 = inputs[IN2_INPUT].value; | |||
const float levelScale = 0.030; | |||
const float levelBase = 25.0; | |||
float level1 = levelScale * exponentialBipolar(levelBase, params[LEVEL1_PARAM]) * getf(inputs[CV1_INPUT], 10.0) / 10.0; | |||
float level2 = levelScale * exponentialBipolar(levelBase, params[LEVEL2_PARAM]) * getf(inputs[CV2_INPUT], 10.0) / 10.0; | |||
float level1 = levelScale * exponentialBipolar(levelBase, params[LEVEL1_PARAM].value) * inputs[CV1_INPUT].normalize(10.0) / 10.0; | |||
float level2 = levelScale * exponentialBipolar(levelBase, params[LEVEL2_PARAM].value) * inputs[CV2_INPUT].normalize(10.0) / 10.0; | |||
float dry = in1 * level1 + in2 * level2; | |||
// HPF on dry | |||
float dryCutoff = 200.0 * powf(20.0, params[HPF_PARAM]) / gSampleRate; | |||
float dryCutoff = 200.0 * powf(20.0, params[HPF_PARAM].value) / gSampleRate; | |||
dryFilter.setCutoff(dryCutoff); | |||
dryFilter.process(dry); | |||
@@ -239,11 +235,11 @@ void SpringReverb::step() { | |||
if (outputBuffer.empty()) | |||
return; | |||
float wet = outputBuffer.shift().samples[0]; | |||
float crossfade = clampf(params[WET_PARAM] + getf(inputs[MIX_CV_INPUT]) / 10.0, 0.0, 1.0); | |||
float crossfade = clampf(params[WET_PARAM].value + inputs[MIX_CV_INPUT].value / 10.0, 0.0, 1.0); | |||
float mix = crossf(in1, wet, crossfade); | |||
setf(outputs[WET_OUTPUT], clampf(wet, -10.0, 10.0)); | |||
setf(outputs[MIX_OUTPUT], clampf(mix, -10.0, 10.0)); | |||
outputs[WET_OUTPUT].value =clampf(wet, -10.0, 10.0); | |||
outputs[MIX_OUTPUT].value =clampf(mix, -10.0, 10.0); | |||
// Set lights | |||
float lightRate = 5.0 / gSampleRate; | |||