Browse Source

Prepare PR for library update

pull/46/head
hemmer 1 year ago
parent
commit
1de4c8898f
10 changed files with 0 additions and 9838 deletions
  1. +0
    -2
      CHANGELOG.md
  2. +0
    -19
      docs/MIDIThingV2.md
  3. BIN
      docs/img/MidiThingV2.png
  4. +0
    -24
      plugin.json
  5. +0
    -1850
      res/panels/EvenVCObeta.svg
  6. +0
    -6828
      res/panels/MidiThing.svg
  7. +0
    -331
      src/EvenVCO2.cpp
  8. +0
    -780
      src/MidiThing.cpp
  9. +0
    -2
      src/plugin.cpp
  10. +0
    -2
      src/plugin.hpp

+ 0
- 2
CHANGELOG.md View File

@@ -3,8 +3,6 @@
## v2.5.0
* Burst
* Initial release
* Midi Thing 2
* Initial release
* Voltio
* Initial release
* PonyVCO


+ 0
- 19
docs/MIDIThingV2.md View File

@@ -1,19 +0,0 @@
# MIDI Thing v2

The original MIDI Thing v2 hardware unit is described as follows:

> Midi Thing v2 is a flexible MIDI to CV converter. Allowing polyphonic notes handling, envelope and LFO generation as well as all available MIDI messages to be converted into CV. This is a huge upgrade from our previous beloved MIDI Thing, which adds a screen for easy configuration,12 assignable ports, TRS, USB Host and Device, MIDI merge OUT, a web configuration tool, and a VCV rack Bridge counterpart.

The VCV counterpart is designed to allow users to quickly get up and running with their hardware, i.e. sending CV from VCV to the hardware unit.

## Setup

To use, first ensure the MIDI Thing v2 is plugged into your computer, and visible as a MIDI device. Then select it, either from the top of the module, or the right click context menu. Then click "SYNC" - this puts the MIDI Thing into a preset designed to work with VCV Rack, and syncronises settings/voltage ranges etc.

![MIDI Thing Config](img/MidiThingV2.png "MIDI Thing v2 Setup")

## Usage

To use, simply wire CV which you wish to send to the hardware to the matching input on the VCV module. Note that you will need to select the range, which can be done by right-clicking on the matching box (see below). Options are 0/10v, -5/5v, -10/0v, 0/8v, 0/5v. Note that the module is **not** designed to work with audio rate signals, just CV.

![MIDI Thing Voltage Range](img/VoltageRange.png "MIDI Thing v2 Voltage Range")

BIN
docs/img/MidiThingV2.png View File

Before After
Width: 281  |  Height: 1015  |  Size: 102KB

+ 0
- 24
plugin.json View File

@@ -23,18 +23,6 @@
"Polyphonic"
]
},
{
"slug": "EvenVCO2",
"name": "Even VCO (beta)",
"description": "Oscillator including even-harmonic waveform",
"manualUrl": "https://www.befaco.org/even-vco/",
"modularGridUrl": "https://www.modulargrid.net/e/befaco-even-vco-",
"tags": [
"VCO",
"Hardware clone",
"Polyphonic"
]
},
{
"slug": "Rampage",
"name": "Rampage",
@@ -308,18 +296,6 @@
"Hardware clone"
]
},
{
"slug": "MidiThingV2",
"name": "MIDI Thing V2",
"description": "Hardware MIDI Thing v2 is a flexible MIDI to CV converter, this module acts as a bridge from VCV",
"manualUrl": "https://github.com/VCVRack/Befaco/blob/v2/docs/MIDIThingV2.md",
"modularGridUrl": "https://www.modulargrid.net/e/befaco-midi-thing-v2",
"tags": [
"External",
"MIDI",
"Hardware clone"
]
},
{
"slug": "Voltio",
"name": "Voltio",


+ 0
- 1850
res/panels/EvenVCObeta.svg
File diff suppressed because it is too large
View File


+ 0
- 6828
res/panels/MidiThing.svg
File diff suppressed because it is too large
View File


+ 0
- 331
src/EvenVCO2.cpp View File

@@ -1,331 +0,0 @@
#include "plugin.hpp"
#include "ChowDSP.hpp"

using simd::float_4;

struct EvenVCO2 : Module {
enum ParamIds {
OCTAVE_PARAM,
TUNE_PARAM,
PWM_PARAM,
NUM_PARAMS
};
enum InputIds {
PITCH1_INPUT,
PITCH2_INPUT,
FM_INPUT,
SYNC_INPUT,
PWM_INPUT,
NUM_INPUTS
};
enum OutputIds {
TRI_OUTPUT,
SINE_OUTPUT,
EVEN_OUTPUT,
SAW_OUTPUT,
SQUARE_OUTPUT,
NUM_OUTPUTS
};


float_4 phase[4] = {};
dsp::TSchmittTrigger<float_4> syncTrigger[4];
bool removePulseDC = true;
bool limitPW = true;

EvenVCO2() {
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS);
configParam(OCTAVE_PARAM, -5.0, 4.0, 0.0, "Octave", "'", 0.5);
getParamQuantity(OCTAVE_PARAM)->snapEnabled = true;
configParam(TUNE_PARAM, -7.0, 7.0, 0.0, "Tune", " semitones");
configParam(PWM_PARAM, -1.0, 1.0, 0.0, "Pulse width");

configInput(PITCH1_INPUT, "Pitch 1");
configInput(PITCH2_INPUT, "Pitch 2");
configInput(FM_INPUT, "FM");
configInput(SYNC_INPUT, "Sync");
configInput(PWM_INPUT, "Pulse Width Modulation");

configOutput(TRI_OUTPUT, "Triangle");
configOutput(SINE_OUTPUT, "Sine");
configOutput(EVEN_OUTPUT, "Even");
configOutput(SAW_OUTPUT, "Sawtooth");
configOutput(SQUARE_OUTPUT, "Square");

// calculate up/downsampling rates
onSampleRateChange();
}

void onSampleRateChange() override {
float sampleRate = APP->engine->getSampleRate();
for (int i = 0; i < NUM_OUTPUTS; ++i) {
for (int c = 0; c < 4; c++) {
oversampler[i][c].setOversamplingIndex(oversamplingIndex);
oversampler[i][c].reset(sampleRate);
}
}

const float lowFreqRegime = oversampler[0][0].getOversamplingRatio() * 1e-3 * sampleRate;
DEBUG("Low freq regime: %g", lowFreqRegime);
}

float_4 aliasSuppressedTri(float_4* phases) {
float_4 triBuffer[3];
for (int i = 0; i < 3; ++i) {
float_4 p = 2 * phases[i] - 1.0; // range -1.0 to +1.0
float_4 s = 0.5 - simd::abs(p); // eq 30
triBuffer[i] = (s * s * s - 0.75 * s) / 3.0; // eq 29
}
return (triBuffer[0] - 2.0 * triBuffer[1] + triBuffer[2]);
}

float_4 aliasSuppressedSaw(float_4* phases) {
float_4 sawBuffer[3];
for (int i = 0; i < 3; ++i) {
float_4 p = 2 * phases[i] - 1.0; // range -1 to +1
sawBuffer[i] = (p * p * p - p) / 6.0; // eq 11
}

return (sawBuffer[0] - 2.0 * sawBuffer[1] + sawBuffer[2]);
}

float_4 aliasSuppressedDoubleSaw(float_4* phases) {
float_4 sawBuffer[3];
for (int i = 0; i < 3; ++i) {
float_4 p = 4.0 * simd::ifelse(phases[i] < 0.5, phases[i], phases[i] - 0.5) - 1.0;
sawBuffer[i] = (p * p * p - p) / 24.0; // eq 11 (modified for doubled freq)
}

return (sawBuffer[0] - 2.0 * sawBuffer[1] + sawBuffer[2]);
}

float_4 aliasSuppressedOffsetSaw(float_4* phases, float_4 pw) {
float_4 sawOffsetBuff[3];

for (int i = 0; i < 3; ++i) {
float_4 p = 2 * phases[i] - 1.0; // range -1 to +1
float_4 pwp = p + 2 * pw; // phase after pw (pw in [0, 1])
pwp += simd::ifelse(pwp > 1, -2, 0); // modulo on [-1, +1]
sawOffsetBuff[i] = (pwp * pwp * pwp - pwp) / 6.0; // eq 11
}
return (sawOffsetBuff[0] - 2.0 * sawOffsetBuff[1] + sawOffsetBuff[2]);
}

chowdsp::VariableOversampling<6, float_4> oversampler[NUM_OUTPUTS][4]; // uses a 2*6=12th order Butterworth filter
int oversamplingIndex = 1; // default is 2^oversamplingIndex == x2 oversampling

void process(const ProcessArgs& args) override {

// pitch inputs determine number of polyphony engines
const int channels = std::max({1, inputs[PITCH1_INPUT].getChannels(), inputs[PITCH2_INPUT].getChannels()});

const float pitchKnobs = 1.f + std::round(params[OCTAVE_PARAM].getValue()) + params[TUNE_PARAM].getValue() / 12.f;
const int oversamplingRatio = oversampler[0][0].getOversamplingRatio();

for (int c = 0; c < channels; c += 4) {
float_4 pw = simd::clamp(params[PWM_PARAM].getValue() + inputs[PWM_INPUT].getPolyVoltageSimd<float_4>(c) / 5.f, -1.f, 1.f);
if (limitPW) {
pw = simd::rescale(pw, -1, +1, 0.05f, 0.95f);
}
else {
pw = simd::rescale(pw, -1.f, +1.f, 0.f, 1.f);
}

const float_4 fmVoltage = inputs[FM_INPUT].getPolyVoltageSimd<float_4>(c) * 0.25f;
const float_4 pitch = inputs[PITCH1_INPUT].getPolyVoltageSimd<float_4>(c) + inputs[PITCH2_INPUT].getPolyVoltageSimd<float_4>(c);
const float_4 freq = dsp::FREQ_C4 * simd::pow(2.f, pitchKnobs + pitch + fmVoltage);
const float_4 deltaBasePhase = simd::clamp(freq * args.sampleTime / oversamplingRatio, 1e-6, 0.5f);
// floating point arithmetic doesn't work well at low frequencies, specifically because the finite difference denominator
// becomes tiny - we check for that scenario and use naive / 1st order waveforms in that frequency regime (as aliasing isn't
// a problem there). With no oversampling, at 44100Hz, the threshold frequency is 44.1Hz.
const float_4 lowFreqRegime = simd::abs(deltaBasePhase) < 1e-3;
// 1 / denominator for the second-order FD
const float_4 denominatorInv = 0.25 / (deltaBasePhase * deltaBasePhase);

// pulsewave waveform doesn't have DC even for non 50% duty cycles, but Befaco team would like the option
// for it to be added back in for hardware compatibility reasons
const float_4 pulseDCOffset = (!removePulseDC) * 2.f * (0.5f - pw);

// hard sync
const float_4 syncMask = syncTrigger[c / 4].process(inputs[SYNC_INPUT].getPolyVoltageSimd<float_4>(c));
phase[c / 4] = simd::ifelse(syncMask, 0.5f, phase[c / 4]);

float_4* osBufferTri = oversampler[TRI_OUTPUT][c / 4].getOSBuffer();
float_4* osBufferSaw = oversampler[SAW_OUTPUT][c / 4].getOSBuffer();
float_4* osBufferSin = oversampler[SINE_OUTPUT][c / 4].getOSBuffer();
float_4* osBufferSquare = oversampler[SQUARE_OUTPUT][c / 4].getOSBuffer();
float_4* osBufferEven = oversampler[EVEN_OUTPUT][c / 4].getOSBuffer();
for (int i = 0; i < oversamplingRatio; ++i) {

phase[c / 4] += deltaBasePhase;
// ensure within [0, 1]
phase[c / 4] -= simd::floor(phase[c / 4]);

float_4 phases[3]; // phase as extrapolated to the current and two previous samples

phases[0] = phase[c / 4] - 2 * deltaBasePhase + simd::ifelse(phase[c / 4] < 2 * deltaBasePhase, 1.f, 0.f);
phases[1] = phase[c / 4] - deltaBasePhase + simd::ifelse(phase[c / 4] < deltaBasePhase, 1.f, 0.f);
phases[2] = phase[c / 4];

if (outputs[SINE_OUTPUT].isConnected() || outputs[EVEN_OUTPUT].isConnected()) {
// sin doesn't need PDW
osBufferSin[i] = -simd::cos(2.0 * M_PI * phase[c / 4]);
}

if (outputs[TRI_OUTPUT].isConnected()) {
const float_4 dpwOrder1 = 1.0 - 2.0 * simd::abs(2 * phase[c / 4] - 1.0);
const float_4 dpwOrder3 = aliasSuppressedTri(phases) * denominatorInv;

osBufferTri[i] = simd::ifelse(lowFreqRegime, dpwOrder1, dpwOrder3);
}

if (outputs[SAW_OUTPUT].isConnected()) {
const float_4 dpwOrder1 = 2 * phase[c / 4] - 1.0;
const float_4 dpwOrder3 = aliasSuppressedSaw(phases) * denominatorInv;

osBufferSaw[i] = simd::ifelse(lowFreqRegime, dpwOrder1, dpwOrder3);
}

if (outputs[SQUARE_OUTPUT].isConnected()) {

float_4 dpwOrder1 = simd::ifelse(phase[c / 4] < pw, -1.0, +1.0);
dpwOrder1 -= removePulseDC ? 2.f * (0.5f - pw) : 0.f;

float_4 saw = aliasSuppressedSaw(phases);
float_4 sawOffset = aliasSuppressedOffsetSaw(phases, pw);
float_4 dpwOrder3 = (saw - sawOffset) * denominatorInv + pulseDCOffset;

osBufferSquare[i] = simd::ifelse(lowFreqRegime, dpwOrder1, dpwOrder3);
}

if (outputs[EVEN_OUTPUT].isConnected()) {

float_4 dpwOrder1 = 4.0 * simd::ifelse(phase[c / 4] < 0.5, phase[c / 4], phase[c / 4] - 0.5) - 1.0;
float_4 dpwOrder3 = aliasSuppressedDoubleSaw(phases) * denominatorInv;
float_4 doubleSaw = simd::ifelse(lowFreqRegime, dpwOrder1, dpwOrder3);
osBufferEven[i] = 0.55 * (doubleSaw + 1.27 * osBufferSin[i]);
}


} // end of oversampling loop

// downsample (if required)
if (outputs[SINE_OUTPUT].isConnected()) {
const float_4 outSin = (oversamplingRatio > 1) ? oversampler[SINE_OUTPUT][c / 4].downsample() : osBufferSin[0];
outputs[SINE_OUTPUT].setVoltageSimd(5.f * outSin, c);
}

if (outputs[TRI_OUTPUT].isConnected()) {
const float_4 outTri = (oversamplingRatio > 1) ? oversampler[TRI_OUTPUT][c / 4].downsample() : osBufferTri[0];
outputs[TRI_OUTPUT].setVoltageSimd(5.f * outTri, c);
}

if (outputs[SAW_OUTPUT].isConnected()) {
const float_4 outSaw = (oversamplingRatio > 1) ? oversampler[SAW_OUTPUT][c / 4].downsample() : osBufferSaw[0];
outputs[SAW_OUTPUT].setVoltageSimd(5.f * outSaw, c);
}

if (outputs[SQUARE_OUTPUT].isConnected()) {
const float_4 outSquare = (oversamplingRatio > 1) ? oversampler[SQUARE_OUTPUT][c / 4].downsample() : osBufferSquare[0];
outputs[SQUARE_OUTPUT].setVoltageSimd(5.f * outSquare, c);
}

if (outputs[EVEN_OUTPUT].isConnected()) {
const float_4 outEven = (oversamplingRatio > 1) ? oversampler[EVEN_OUTPUT][c / 4].downsample() : osBufferEven[0];
outputs[EVEN_OUTPUT].setVoltageSimd(5.f * outEven, c);
}

} // end of channels loop

// Outputs
outputs[TRI_OUTPUT].setChannels(channels);
outputs[SINE_OUTPUT].setChannels(channels);
outputs[EVEN_OUTPUT].setChannels(channels);
outputs[SAW_OUTPUT].setChannels(channels);
outputs[SQUARE_OUTPUT].setChannels(channels);
}


json_t* dataToJson() override {
json_t* rootJ = json_object();
json_object_set_new(rootJ, "removePulseDC", json_boolean(removePulseDC));
json_object_set_new(rootJ, "limitPW", json_boolean(limitPW));
json_object_set_new(rootJ, "oversamplingIndex", json_integer(oversampler[0][0].getOversamplingIndex()));
return rootJ;
}

void dataFromJson(json_t* rootJ) override {
json_t* pulseDCJ = json_object_get(rootJ, "removePulseDC");
if (pulseDCJ) {
removePulseDC = json_boolean_value(pulseDCJ);
}

json_t* limitPWJ = json_object_get(rootJ, "limitPW");
if (limitPWJ) {
limitPW = json_boolean_value(limitPWJ);
}

json_t* oversamplingIndexJ = json_object_get(rootJ, "oversamplingIndex");
if (oversamplingIndexJ) {
oversamplingIndex = json_integer_value(oversamplingIndexJ);
onSampleRateChange();
}
}
};


struct EvenVCO2Widget : ModuleWidget {
EvenVCO2Widget(EvenVCO2* module) {
setModule(module);
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/panels/EvenVCObeta.svg")));

addChild(createWidget<Knurlie>(Vec(15, 0)));
addChild(createWidget<Knurlie>(Vec(15, 365)));
addChild(createWidget<Knurlie>(Vec(15 * 6, 0)));
addChild(createWidget<Knurlie>(Vec(15 * 6, 365)));

addParam(createParam<BefacoBigKnob>(Vec(22, 32), module, EvenVCO2::OCTAVE_PARAM));
addParam(createParam<BefacoTinyKnob>(Vec(73, 131), module, EvenVCO2::TUNE_PARAM));
addParam(createParam<Davies1900hRedKnob>(Vec(16, 230), module, EvenVCO2::PWM_PARAM));

addInput(createInput<BefacoInputPort>(Vec(8, 120), module, EvenVCO2::PITCH1_INPUT));
addInput(createInput<BefacoInputPort>(Vec(19, 157), module, EvenVCO2::PITCH2_INPUT));
addInput(createInput<BefacoInputPort>(Vec(48, 183), module, EvenVCO2::FM_INPUT));
addInput(createInput<BefacoInputPort>(Vec(86, 189), module, EvenVCO2::SYNC_INPUT));

addInput(createInput<BefacoInputPort>(Vec(72, 236), module, EvenVCO2::PWM_INPUT));

addOutput(createOutput<BefacoOutputPort>(Vec(10, 283), module, EvenVCO2::TRI_OUTPUT));
addOutput(createOutput<BefacoOutputPort>(Vec(87, 283), module, EvenVCO2::SINE_OUTPUT));
addOutput(createOutput<BefacoOutputPort>(Vec(48, 306), module, EvenVCO2::EVEN_OUTPUT));
addOutput(createOutput<BefacoOutputPort>(Vec(10, 327), module, EvenVCO2::SAW_OUTPUT));
addOutput(createOutput<BefacoOutputPort>(Vec(87, 327), module, EvenVCO2::SQUARE_OUTPUT));
}

void appendContextMenu(Menu* menu) override {
EvenVCO2* module = dynamic_cast<EvenVCO2*>(this->module);
assert(module);

menu->addChild(new MenuSeparator());
menu->addChild(createSubmenuItem("Hardware compatibility", "",
[ = ](Menu * menu) {
menu->addChild(createBoolPtrMenuItem("Remove DC from pulse", "", &module->removePulseDC));
menu->addChild(createBoolPtrMenuItem("Limit pulsewidth (5\%-95\%)", "", &module->limitPW));
}
));

menu->addChild(createIndexSubmenuItem("Oversampling",
{"Off", "x2", "x4", "x8"},
[ = ]() {
return module->oversamplingIndex;
},
[ = ](int mode) {
module->oversamplingIndex = mode;
module->onSampleRateChange();
}
));
}
};


Model* modelEvenVCO2 = createModel<EvenVCO2, EvenVCO2Widget>("EvenVCO2");

+ 0
- 780
src/MidiThing.cpp View File

@@ -1,780 +0,0 @@
#include "plugin.hpp"


/*! \brief Decode System Exclusive messages.
SysEx messages are encoded to guarantee transmission of data bytes higher than
127 without breaking the MIDI protocol. Use this static method to reassemble
your received message.
\param inSysEx The SysEx data received from MIDI in.
\param outData The output buffer where to store the decrypted message.
\param inLength The length of the input buffer.
\param inFlipHeaderBits True for Korg and other who store MSB in reverse order
\return The length of the output buffer.
@see encodeSysEx @see getSysExArrayLength
Code inspired from Ruin & Wesen's SysEx encoder/decoder - http://ruinwesen.com
*/
unsigned decodeSysEx(const uint8_t* inSysEx,
uint8_t* outData,
unsigned inLength,
bool inFlipHeaderBits) {
unsigned count = 0;
uint8_t msbStorage = 0;
uint8_t byteIndex = 0;

for (unsigned i = 0; i < inLength; ++i) {
if ((i % 8) == 0) {
msbStorage = inSysEx[i];
byteIndex = 6;
}
else {
const uint8_t body = inSysEx[i];
const uint8_t shift = inFlipHeaderBits ? 6 - byteIndex : byteIndex;
const uint8_t msb = uint8_t(((msbStorage >> shift) & 1) << 7);
byteIndex--;
outData[count++] = msb | body;
}
}
return count;
}

struct RoundRobinProcessor {
// if a channel (0 - 11) should be updated, return it's index, otherwise return -1
int process(float sampleTime, float period, int numActiveChannels) {

if (numActiveChannels == 0 || period <= 0) {
return -1;
}

time += sampleTime;

if (time > period) {
time -= period;

// special case: when there's only one channel, the below logic (which looks for when active channel changes)
// wont fire. as we've completed a period, return an "update channel 0" value
if (numActiveChannels == 1) {
return 0;
}
}

int currentActiveChannel = numActiveChannels * time / period;

if (currentActiveChannel != previousActiveChannel) {
previousActiveChannel = currentActiveChannel;
return currentActiveChannel;
}

// if we've got this far, no updates needed (-1)
return -1;
}
private:
float time = 0.f;
int previousActiveChannel = -1;
};


struct MidiThing : Module {
enum ParamId {
REFRESH_PARAM,
PARAMS_LEN
};
enum InputId {
A1_INPUT,
B1_INPUT,
C1_INPUT,
A2_INPUT,
B2_INPUT,
C2_INPUT,
A3_INPUT,
B3_INPUT,
C3_INPUT,
A4_INPUT,
B4_INPUT,
C4_INPUT,
INPUTS_LEN
};
enum OutputId {
OUTPUTS_LEN
};
enum LightId {
LIGHTS_LEN
};
/// Port mode
enum PORTMODE_t : uint8_t {
NOPORTMODE = 0,
MODE10V,
MODEPN5V,
MODENEG10V,
MODE8V,
MODE5V,

LASTPORTMODE
};

const char* cfgPortModeNames[7] = {
"No Mode",
"0/10v",
"-5/5v",
"-10/0v",
"0/8v",
"0/5v",
""
};

const std::vector<float> updateRates = {200., 1000., 4000., 16000.};
const std::vector<std::string> updateRateNames = {"200 Hz (fewest active channels, slowest, lowest-cpu)", "1 kHz", "4 kHz",
"16 kHz (most active channels, fast, highest-cpu)"};
int updateRateIdx = 1;

// use Pre-def 4 for bridge mode
const static int VCV_BRIDGE_PREDEF = 4;

midi::Output midiOut;
RoundRobinProcessor roundRobinProcessor;

MidiThing() {
config(PARAMS_LEN, INPUTS_LEN, OUTPUTS_LEN, LIGHTS_LEN);
configButton(REFRESH_PARAM, "");

for (int i = 0; i < NUM_INPUTS; ++i) {
portModes[i] = MODE10V;
configInput(A1_INPUT + i, string::f("Port %d", i + 1));
}
}

void onReset() override {
midiOut.reset();

}

void refreshConfig() {
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 3; ++col) {
requestParamOverSysex(row, col, 2);
}
}
}

// request that MidiThing loads a pre-defined template, 1-4
void setPredef(uint8_t predef) {
predef = clamp(predef, 1, 4);
midi::Message msg;
msg.bytes.resize(8);
// Midi spec is zeroo indexed
uint8_t predefToSend = predef - 1;
msg.bytes = {0xF0, 0x7D, 0x17, 0x00, 0x00, 0x02, 0x00, predefToSend, 0xF7};
midiOut.setChannel(0);
midiOut.sendMessage(msg);
// DEBUG("Predef %d msg request sent: %s", predef, msg.toString().c_str());
}

uint8_t port = 0;
void setVoltageMode(uint8_t row, uint8_t col, uint8_t outputMode_) {
port = 3 * row + col;
// +1 because enum starts at 1
portModes[port] = (PORTMODE_t)(outputMode_ + 1);

midi::Message msg;
msg.bytes.resize(8);
// F0 7D 17 2n 02 02 00 0m F7
// Where n = 0 based port number
// and m is the volt output mode to select from:
msg.bytes = {0xF0, 0x7D, 0x17, static_cast<unsigned char>(32 + port), 0x02, 0x02, 0x00, portModes[port], 0xF7};
midiOut.sendMessage(msg);
// DEBUG("Voltage mode msg sent: port %d (%d), mode %d", port, static_cast<unsigned char>(32 + port), portModes[port]);
}


midi::InputQueue inputQueue;
void requestParamOverSysex(uint8_t row, uint8_t col, uint8_t mode) {

midi::Message msg;
msg.bytes.resize(8);
// F0 7D 17 00 01 03 00 nm pp F7
uint8_t port = 3 * row + col;
//Where n is:
// 0 = Full configuration request. The module will send only pre def, port functions and modified parameters
// 2 = Send Port configuration
// 4 = Send MIDI Channel configuration
// 6 = Send Voice Configuration

uint8_t n = mode * 16;
uint8_t m = port; // element number: 0-11 port number, 1-16 channel or voice number
uint8_t pp = 2;
msg.bytes = {0xF0, 0x7D, 0x17, 0x00, 0x01, 0x03, 0x00, static_cast<uint8_t>(n + m), pp, 0xF7};
midiOut.sendMessage(msg);
// DEBUG("API request mode msg sent: port %d, pp %s", port, msg.toString().c_str());
}

int getVoltageMode(uint8_t row, uint8_t col) {
// -1 because menu is zero indexed but enum is not
int channel = clamp(3 * row + col, 0, NUM_INPUTS - 1);
return portModes[channel] - 1;
}

const static int NUM_INPUTS = 12;
bool isClipping[NUM_INPUTS] = {};

bool checkIsVoltageWithinRange(uint8_t channel, float voltage) {
const float tol = 0.001;
switch (portModes[channel]) {
case MODE10V: return 0 - tol < voltage && voltage < 10 + tol;
case MODEPN5V: return -5 - tol < voltage && voltage < 5 + tol;
case MODENEG10V: return -10 - tol < voltage && voltage < 0 + tol;
case MODE8V: return 0 - tol < voltage && voltage < 8 + tol;
case MODE5V: return 0 - tol < voltage && voltage < 5 + tol;
default: return false;
}
}

uint16_t rescaleVoltageForChannel(uint8_t channel, float voltage) {
switch (portModes[channel]) {
case MODE10V: return rescale(clamp(voltage, 0.f, 10.f), 0.f, +10.f, 0, 16383);
case MODEPN5V: return rescale(clamp(voltage, -5.f, 5.f), -5.f, +5.f, 0, 16383);
case MODENEG10V: return rescale(clamp(voltage, -10.f, 0.f), -10.f, +0.f, 0, 16383);
case MODE8V: return rescale(clamp(voltage, 0.f, 8.f), 0.f, +8.f, 0, 16383);
case MODE5V: return rescale(clamp(voltage, 0.f, 5.f), 0.f, +5.f, 0, 16383);
default: return 0;
}
}

// debug only
bool setFrame = true;
int numActiveChannels = 0;
dsp::BooleanTrigger buttonTrigger;
dsp::Timer rateLimiterTimer;
PORTMODE_t portModes[NUM_INPUTS] = {};
void process(const ProcessArgs& args) override {

if (buttonTrigger.process(params[REFRESH_PARAM].getValue())) {
// currently this sets the predef to 4, which will reset ranges etc
// TODO: figure this out!
setPredef(4);
refreshConfig();
}

//DEBUG("inputDriver id: %d, outMidi id: %d", inputQueue.getDriverId(), midiOut.getDriverId());
//DEBUG("inputDevice id: %d, outMidi id: %d", inputQueue.getDeviceId(), midiOut.getDeviceId());
//DEBUG("inputChannel: %d, outChannel: %d", inputQueue.getChannel(), midiOut.getChannel());

midi::Message msg;
uint8_t outData[32] = {};
while (inputQueue.tryPop(&msg, args.frame)) {
DEBUG("msg (size: %d): %s", msg.getSize(), msg.toString().c_str());

uint8_t outLen = decodeSysEx(&msg.bytes[0], outData, msg.bytes.size(), false);
if (outLen > 3) {

int channel = (outData[2] & 0x0f) >> 0;

if (channel >= 0 && channel < NUM_INPUTS) {
if (outData[outLen - 1] < LASTPORTMODE) {
portModes[channel] = (PORTMODE_t) outData[outLen - 1];
DEBUG("Channel %d, %d: mode %d (%s)", outData[2], channel, portModes[channel], cfgPortModeNames[portModes[channel]]);
}

}
}
}

std::vector<int> activeChannels;
for (int c = 0; c < NUM_INPUTS; ++c) {
if (inputs[A1_INPUT + c].isConnected()) {
activeChannels.push_back(c);
}
}
numActiveChannels = activeChannels.size();
// we're done if no channels are active
if (numActiveChannels == 0) {
return;
}

//DEBUG("updateRateIdx: %d", updateRateIdx);
const float updateRateHz = updateRates[updateRateIdx];
//DEBUG("updateRateHz: %f", updateRateHz);
const int maxCCMessagesPerSecondPerChannel = updateRateHz / numActiveChannels;

// MIDI baud rate is 31250 b/s, or 3125 B/s.
// CC messages are 3 bytes, so we can send a maximum of 1041 CC messages per second.
// The refresh rate period (i.e. how often we can send X channels of data is:
const float rateLimiterPeriod = 1.f / maxCCMessagesPerSecondPerChannel;

// this returns -1 if no channel should be updated, or the index of the channel that should be updated
// it distributes update times in a round robin fashion
int channelIdxToUpdate = roundRobinProcessor.process(args.sampleTime, rateLimiterPeriod, numActiveChannels);

if (channelIdxToUpdate >= 0 && channelIdxToUpdate < numActiveChannels) {
int c = activeChannels[channelIdxToUpdate];

const float channelVoltage = inputs[A1_INPUT + c].getVoltage();
uint16_t pw = rescaleVoltageForChannel(c, channelVoltage);
isClipping[c] = !checkIsVoltageWithinRange(c, channelVoltage);
midi::Message m;
m.setStatus(0xe);
m.setNote(pw & 0x7f);
m.setValue((pw >> 7) & 0x7f);

if (setFrame) {
m.setFrame(args.frame);
}

midiOut.setChannel(c);
midiOut.sendMessage(m);
}
}


json_t* dataToJson() override {
json_t* rootJ = json_object();
json_object_set_new(rootJ, "midiOutput", midiOut.toJson());
json_object_set_new(rootJ, "inputQueue", inputQueue.toJson());

json_object_set_new(rootJ, "setFrame", json_boolean(setFrame));
json_object_set_new(rootJ, "updateRateIdx", json_integer(updateRateIdx));

return rootJ;
}

void dataFromJson(json_t* rootJ) override {
json_t* midiOutputJ = json_object_get(rootJ, "midiOutput");
if (midiOutputJ) {
midiOut.fromJson(midiOutputJ);
}

json_t* midiInputQueueJ = json_object_get(rootJ, "inputQueue");
if (midiInputQueueJ) {
inputQueue.fromJson(midiInputQueueJ);
}

json_t* setFrameJ = json_object_get(rootJ, "setFrame");
if (setFrameJ) {
setFrame = json_boolean_value(setFrameJ);
}

json_t* updateRateIdxJ = json_object_get(rootJ, "updateRateIdx");
if (updateRateIdxJ) {
updateRateIdx = json_integer_value(updateRateIdxJ);
}

refreshConfig();
}
};

struct MidiThingPort : PJ301MPort {
int row = 0, col = 0;
MidiThing* module;

void appendContextMenu(Menu* menu) override {

menu->addChild(new MenuSeparator());
std::string label = string::f("Voltage Mode Port %d", 3 * row + col + 1);

menu->addChild(createIndexSubmenuItem(label,
{"0 to 10v", "-5 to 5v", "-10 to 0v", "0 to 8v", "0 to 5v"},
[ = ]() {
return module->getVoltageMode(row, col);
},
[ = ](int mode) {
module->setVoltageMode(row, col, mode);
}
));

menu->addChild(createIndexSubmenuItem("Get Port Info",
{"Full", "Port", "MIDI", "Voice"},
[ = ]() {
return -1;
},
[ = ](int mode) {
module->requestParamOverSysex(row, col, 2 * mode);
}
));
}
};

// dervied from https://github.com/countmodula/VCVRackPlugins/blob/v2.0.0/src/components/CountModulaLEDDisplay.hpp
struct LEDDisplay : LightWidget {
float fontSize = 9;
Vec textPos = Vec(1, 13);
int numChars = 7;
int row = 0, col = 0;
MidiThing* module;

LEDDisplay() {
box.size = mm2px(Vec(9.298, 5.116));
}

void setCentredPos(Vec pos) {
box.pos.x = pos.x - box.size.x / 2;
box.pos.y = pos.y - box.size.y / 2;
}

void drawBackground(const DrawArgs& args) override {
// Background
NVGcolor backgroundColor = nvgRGB(0x20, 0x20, 0x20);
NVGcolor borderColor = nvgRGB(0x10, 0x10, 0x10);
nvgBeginPath(args.vg);
nvgRoundedRect(args.vg, 0.0, 0.0, box.size.x, box.size.y, 2.0);
nvgFillColor(args.vg, backgroundColor);
nvgFill(args.vg);
nvgStrokeWidth(args.vg, 1.0);
nvgStrokeColor(args.vg, borderColor);
nvgStroke(args.vg);
}

void drawLight(const DrawArgs& args) override {
// Background
NVGcolor backgroundColor = nvgRGB(0x20, 0x20, 0x20);
NVGcolor borderColor = nvgRGB(0x10, 0x10, 0x10);
NVGcolor textColor = nvgRGB(0xff, 0x10, 0x10);

nvgBeginPath(args.vg);
nvgRoundedRect(args.vg, 0.0, 0.0, box.size.x, box.size.y, 2.0);
nvgFillColor(args.vg, backgroundColor);
nvgFill(args.vg);
nvgStrokeWidth(args.vg, 1.0);

if (module) {
const bool isClipping = module->isClipping[col + row * 3];
if (isClipping) {
borderColor = nvgRGB(0xff, 0x20, 0x20);
}
}

nvgStrokeColor(args.vg, borderColor);
nvgStroke(args.vg);

std::shared_ptr<Font> font = APP->window->loadFont(asset::plugin(pluginInstance, "res/fonts/miso.otf"));

if (font && font->handle >= 0) {

std::string text = "?-?v"; // fallback if module not yet defined
if (module) {
text = module->cfgPortModeNames[module->getVoltageMode(row, col) + 1];
}
char buffer[numChars + 1];
int l = text.size();
if (l > numChars)
l = numChars;

nvgGlobalTint(args.vg, color::WHITE);

text.copy(buffer, l);
buffer[l] = '\0';

nvgFontSize(args.vg, fontSize);
nvgFontFaceId(args.vg, font->handle);
nvgFillColor(args.vg, textColor);
nvgTextAlign(args.vg, NVG_ALIGN_CENTER | NVG_ALIGN_BOTTOM);
NVGtextRow textRow;
nvgTextBreakLines(args.vg, text.c_str(), NULL, box.size.x, &textRow, 1);
nvgTextBox(args.vg, textPos.x, textPos.y, box.size.x, textRow.start, textRow.end);
}
}

void onButton(const ButtonEvent& e) override {
if (e.button == GLFW_MOUSE_BUTTON_RIGHT && e.action == GLFW_PRESS) {
ui::Menu* menu = createMenu();

menu->addChild(createMenuLabel(string::f("Voltage mode port %d:", col + 3 * row + 1)));

const std::string labels[5] = {"0 to 10v", "-5 to 5v", "-10 to 0v", "0 to 8v", "0 to 5v"};

for (int i = 0; i < 5; ++i) {
menu->addChild(createCheckMenuItem(labels[i], "",
[ = ]() {
return module->getVoltageMode(row, col) == i;
},
[ = ]() {
module->setVoltageMode(row, col, i);;
}
));
}

e.consume(this);
return;
}

LightWidget::onButton(e);
}

};


struct MidiThingWidget : ModuleWidget {

struct LedDisplayCenterChoiceEx : LedDisplayChoice {
LedDisplayCenterChoiceEx() {
box.size = mm2px(math::Vec(0, 8.0));
color = nvgRGB(0xf0, 0xf0, 0xf0);
bgColor = nvgRGBAf(0, 0, 0, 0);
textOffset = math::Vec(0, 16);
}

void drawLayer(const DrawArgs& args, int layer) override {
nvgScissor(args.vg, RECT_ARGS(args.clipBox));
if (layer == 1) {
if (bgColor.a > 0.0) {
nvgBeginPath(args.vg);
nvgRect(args.vg, 0, 0, box.size.x, box.size.y);
nvgFillColor(args.vg, bgColor);
nvgFill(args.vg);
}

std::shared_ptr<window::Font> font = APP->window->loadFont(asset::plugin(pluginInstance, "res/fonts/miso.otf"));

if (font && font->handle >= 0 && !text.empty()) {
nvgFillColor(args.vg, color);
nvgFontFaceId(args.vg, font->handle);
nvgTextLetterSpacing(args.vg, -0.6f);
nvgFontSize(args.vg, 10);
nvgTextAlign(args.vg, NVG_ALIGN_CENTER | NVG_ALIGN_BOTTOM);
NVGtextRow textRow;
nvgTextBreakLines(args.vg, text.c_str(), NULL, box.size.x, &textRow, 1);
nvgTextBox(args.vg, textOffset.x, textOffset.y, box.size.x, textRow.start, textRow.end);
}
}
nvgResetScissor(args.vg);
}
};


struct MidiDriverItem : ui::MenuItem {
midi::Port* port;
int driverId;
void onAction(const event::Action& e) override {
port->setDriverId(driverId);
}
};

struct MidiDriverChoice : LedDisplayCenterChoiceEx {
midi::Port* port;
void onAction(const event::Action& e) override {
if (!port)
return;
createContextMenu();
}

virtual ui::Menu* createContextMenu() {
ui::Menu* menu = createMenu();
menu->addChild(createMenuLabel("MIDI driver"));
for (int driverId : midi::getDriverIds()) {
MidiDriverItem* item = new MidiDriverItem;
item->port = port;
item->driverId = driverId;
item->text = midi::getDriver(driverId)->getName();
item->rightText = CHECKMARK(item->driverId == port->driverId);
menu->addChild(item);
}
return menu;
}

void step() override {
text = port ? port->getDriver()->getName() : "";
if (text.empty()) {
text = "(No driver)";
color.a = 0.5f;
}
else {
color.a = 1.f;
}
}
};

struct MidiDeviceItem : ui::MenuItem {
midi::Port* outPort, *inPort;
int deviceId;
void onAction(const event::Action& e) override {
outPort->setDeviceId(deviceId);
inPort->setDeviceId(deviceId);
}
};

struct MidiDeviceChoice : LedDisplayCenterChoiceEx {
midi::Port* outPort, *inPort;
void onAction(const event::Action& e) override {
if (!outPort || !inPort)
return;
createContextMenu();
}

virtual ui::Menu* createContextMenu() {
ui::Menu* menu = createMenu();
menu->addChild(createMenuLabel("MIDI device"));
{
MidiDeviceItem* item = new MidiDeviceItem;
item->outPort = outPort;
item->inPort = inPort;
item->deviceId = -1;
item->text = "(No device)";
item->rightText = CHECKMARK(item->deviceId == outPort->deviceId);
menu->addChild(item);
}
for (int deviceId : outPort->getDeviceIds()) {
MidiDeviceItem* item = new MidiDeviceItem;
item->outPort = outPort;
item->inPort = inPort;
item->deviceId = deviceId;
item->text = outPort->getDeviceName(deviceId);
item->rightText = CHECKMARK(item->deviceId == outPort->deviceId);
menu->addChild(item);
}
return menu;
}

void step() override {
text = outPort ? outPort->getDeviceName(outPort->deviceId) : "";
if (text.empty()) {
text = "(No device)";
color.a = 0.5f;
}
else {
color.a = 1.f;
}
}
};

struct MidiWidget : LedDisplay {
MidiDriverChoice* driverChoice;
LedDisplaySeparator* driverSeparator;
MidiDeviceChoice* deviceChoice;
LedDisplaySeparator* deviceSeparator;

void setMidiPorts(midi::Port* outPort, midi::Port* inPort) {

clearChildren();
math::Vec pos;

MidiDriverChoice* driverChoice = createWidget<MidiDriverChoice>(pos);
driverChoice->box.size = Vec(box.size.x, 20.f);
//driverChoice->textOffset = Vec(6.f, 14.7f);
driverChoice->color = nvgRGB(0xf0, 0xf0, 0xf0);
driverChoice->port = outPort;

addChild(driverChoice);
pos = driverChoice->box.getBottomLeft();
this->driverChoice = driverChoice;

this->driverSeparator = createWidget<LedDisplaySeparator>(pos);
this->driverSeparator->box.size.x = box.size.x;
addChild(this->driverSeparator);

MidiDeviceChoice* deviceChoice = createWidget<MidiDeviceChoice>(pos);
deviceChoice->box.size = Vec(box.size.x, 21.f);
//deviceChoice->textOffset = Vec(6.f, 14.7f);
deviceChoice->color = nvgRGB(0xf0, 0xf0, 0xf0);
deviceChoice->outPort = outPort;
deviceChoice->inPort = inPort;
addChild(deviceChoice);
pos = deviceChoice->box.getBottomLeft();
this->deviceChoice = deviceChoice;
}
};


MidiThingWidget(MidiThing* module) {
setModule(module);
setPanel(createPanel(asset::plugin(pluginInstance, "res/panels/MidiThing.svg")));

addChild(createWidget<Knurlie>(Vec(RACK_GRID_WIDTH, 0)));
addChild(createWidget<Knurlie>(Vec(RACK_GRID_WIDTH, RACK_GRID_HEIGHT - RACK_GRID_WIDTH)));

MidiWidget* midiInputWidget = createWidget<MidiWidget>(Vec(1.5f, 36.4f)); //mm2px(Vec(0.5f, 10.f)));
midiInputWidget->box.size = mm2px(Vec(5.08 * 6 - 1, 13.5f));
if (module) {
midiInputWidget->setMidiPorts(&module->midiOut, &module->inputQueue);
}
else {
midiInputWidget->setMidiPorts(nullptr, nullptr);
}
addChild(midiInputWidget);

addParam(createParamCentered<BefacoButton>(mm2px(Vec(21.12, 57.32)), module, MidiThing::REFRESH_PARAM));

const float xStartLed = 0.2 + 0.628;
const float yStartLed = 28.019;

for (int row = 0; row < 4; row++) {
for (int col = 0; col < 3; col++) {

LEDDisplay* display = createWidget<LEDDisplay>(mm2px(Vec(xStartLed + 9.751 * col, yStartLed + 5.796 * row)));
display->module = module;
display->row = row;
display->col = col;
addChild(display);

auto input = createInputCentered<MidiThingPort>(mm2px(Vec(5.08 + 10 * col, 69.77 + 14.225 * row)), module, MidiThing::A1_INPUT + 3 * row + col);
input->row = row;
input->col = col;
input->module = module;
addInput(input);


}
}
}

void appendContextMenu(Menu* menu) override {
MidiThing* module = dynamic_cast<MidiThing*>(this->module);
assert(module);

menu->addChild(new MenuSeparator());

menu->addChild(createSubmenuItem("Select Device", "",
[ = ](Menu * menu) {

for (auto driverId : rack::midi::getDriverIds()) {
midi::Driver* driver = midi::getDriver(driverId);
const bool activeDriver = module->midiOut.getDriverId() == driverId;

menu->addChild(createSubmenuItem(driver->getName(), CHECKMARK(activeDriver),
[ = ](Menu * menu) {

for (auto deviceId : driver->getOutputDeviceIds()) {
const bool activeDevice = activeDriver && module->midiOut.getDeviceId() == deviceId;

menu->addChild(createMenuItem(driver->getOutputDeviceName(deviceId),
CHECKMARK(activeDevice),
[ = ]() {
module->midiOut.setDriverId(driverId);
module->midiOut.setDeviceId(deviceId);

module->inputQueue.setDriverId(driverId);
module->inputQueue.setDeviceId(deviceId);
module->inputQueue.setChannel(0); // TODO update

module->refreshConfig();

// DEBUG("Updating Output MIDI settings - driver: %s, device: %s",
// driver->getName().c_str(), driver->getOutputDeviceName(deviceId).c_str());
}));
}
}));
}
}));


menu->addChild(createIndexSubmenuItem("Select Hardware Preset",
{"Predef 1", "Predef 2", "Predef 3", "Predef 4 (VCV Mode)"},
[ = ]() {
return -1;
},
[ = ](int mode) {
module->setPredef(mode + 1);
module->refreshConfig();
}));


menu->addChild(createIndexPtrSubmenuItem("MIDI Rate Limiting",
module->updateRateNames,
&module->updateRateIdx));

menu->addChild(createBoolPtrMenuItem("Set frame", "", &module->setFrame));

float updateRate = module->updateRates[module->updateRateIdx] / module->numActiveChannels;
menu->addChild(createMenuLabel(string::f("Per-channel MIDI rate: %.3g Hz", updateRate)));
}
};


Model* modelMidiThing = createModel<MidiThing, MidiThingWidget>("MidiThingV2");

+ 0
- 2
src/plugin.cpp View File

@@ -7,7 +7,6 @@ void init(rack::Plugin *p) {
pluginInstance = p;

p->addModel(modelEvenVCO);
p->addModel(modelEvenVCO2);
p->addModel(modelRampage);
p->addModel(modelABC);
p->addModel(modelSpringReverb);
@@ -29,6 +28,5 @@ void init(rack::Plugin *p) {
p->addModel(modelPonyVCO);
p->addModel(modelMotionMTR);
p->addModel(modelBurst);
p->addModel(modelMidiThing);
p->addModel(modelVoltio);
}

+ 0
- 2
src/plugin.hpp View File

@@ -8,7 +8,6 @@ using namespace rack;
extern Plugin* pluginInstance;

extern Model* modelEvenVCO;
extern Model* modelEvenVCO2;
extern Model* modelRampage;
extern Model* modelABC;
extern Model* modelSpringReverb;
@@ -30,7 +29,6 @@ extern Model* modelChannelStrip;
extern Model* modelPonyVCO;
extern Model* modelMotionMTR;
extern Model* modelBurst;
extern Model* modelMidiThing;
extern Model* modelVoltio;

struct Knurlie : SvgScrew {


Loading…
Cancel
Save