Browse Source

Cleaning up polyphony post merge

* try older build machine for linux
tags/v1.1.0^2
hemmer 3 years ago
parent
commit
0647a715fb
8 changed files with 331 additions and 297 deletions
  1. +2
    -2
      .github/workflows/build-plugin.yml
  2. +86
    -99
      src/ABC.cpp
  3. +5
    -6
      src/DualAtenuverter.cpp
  4. +66
    -51
      src/EvenVCO.cpp
  5. +14
    -16
      src/Mixer.cpp
  6. +115
    -66
      src/Rampage.cpp
  7. +43
    -29
      src/SlewLimiter.cpp
  8. +0
    -28
      src/simd_input.hpp

+ 2
- 2
.github/workflows/build-plugin.yml View File

@@ -17,7 +17,7 @@ jobs:
config:
- {
name: Linux,
os: ubuntu-latest,
os: ubuntu-16.04,
prepare-os: sudo apt install -y libglu-dev
}
- {
@@ -68,7 +68,7 @@ jobs:
# only create a release if a tag was created that is called e.g. v1.2.3
# see also https://vcvrack.com/manual/Manifest#version
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
runs-on: ubuntu-16.04
needs: build
steps:
- uses: actions/checkout@v2


+ 86
- 99
src/ABC.cpp View File

@@ -1,6 +1,7 @@
#include "plugin.hpp"
#include "Common.hpp"
#include "simd_input.hpp"

using simd::float_4;

template <typename T>
static T clip4(T x) {
@@ -54,126 +55,112 @@ struct ABC : Module {
configParam(C2_LEVEL_PARAM, -1.0, 1.0, 0.0, "C2 Level");
}

void process(const ProcessArgs &args) override {

simd::float_4 a1[4] = {};
simd::float_4 b1[4] = {};
simd::float_4 c1[4] = {};
simd::float_4 out1[4];

simd::float_4 a2[4] = {};
simd::float_4 b2[4] = {};
simd::float_4 c2[4] = {};
simd::float_4 out2[4];

int channels_1 = 1;
int channels_2 = 1;

memset(out1, 0, sizeof(out1));
memset(out2, 0, sizeof(out2));
int processSection(simd::float_4* out, InputIds inputA, InputIds inputB, InputIds inputC,
ParamIds levelB, ParamIds levelC) {

// process upper section
if (outputs[OUT1_OUTPUT].isConnected() || outputs[OUT2_OUTPUT].isConnected()) {
float_4 inA[4] = {0.f};
float_4 inB[4] = {0.f};
float_4 inC[4] = {0.f};

int channels_A1 = inputs[A1_INPUT].getChannels();
int channels_B1 = inputs[B1_INPUT].getChannels();
int channels_C1 = inputs[C1_INPUT].getChannels();
int channelsA = inputs[inputA].getChannels();
int channelsB = inputs[inputB].getChannels();
int channelsC = inputs[inputC].getChannels();

channels_1 = std::max(channels_1, channels_A1);
channels_1 = std::max(channels_1, channels_B1);
channels_1 = std::max(channels_1, channels_C1);
// this sets the number of active engines (according to polyphony standard)
// NOTE: A*B + C has the number of active engines set by any one of the three inputs
int activeEngines = std::max(1, channelsA);
activeEngines = std::max(activeEngines, channelsB);
activeEngines = std::max(activeEngines, channelsC);

float mult_B1 = (2.f / 5.f) * exponentialBipolar80Pade_5_4(params[B1_LEVEL_PARAM].getValue());
float mult_C1 = exponentialBipolar80Pade_5_4(params[C1_LEVEL_PARAM].getValue());
float mult_B = (2.f / 5.f) * exponentialBipolar80Pade_5_4(params[levelB].getValue());
float mult_C = exponentialBipolar80Pade_5_4(params[levelC].getValue());

if (inputs[A1_INPUT].isConnected())
load_input(inputs[A1_INPUT], a1, channels_A1);
else
memset(a1, 0, sizeof(a1));

if (inputs[B1_INPUT].isConnected()) {
load_input(inputs[B1_INPUT], b1, channels_B1);
for (int c = 0; c < channels_1; c += 4)
b1[c / 4] *= simd::float_4(mult_B1);
if (inputs[inputA].isConnected()) {
// if monophonic, broadcast to number of active engines
if (channelsA == 1) {
for (int c = 0; c < activeEngines; c += 4)
inA[c / 4] = float_4(inputs[inputA].getVoltage());
}
else {
for (int c = 0; c < channels_1; c += 4)
b1[c / 4] = simd::float_4(5.f * mult_B1);
for (int c = 0; c < channelsA; c += 4)
inA[c / 4] = inputs[inputA].getVoltageSimd<float_4>(c);
}
}

if (inputs[C1_INPUT].isConnected()) {
load_input(inputs[C1_INPUT], c1, channels_C1);
for (int c = 0; c < channels_1; c += 4)
c1[c / 4] *= simd::float_4(mult_C1);
if (inputs[inputB].isConnected()) {
// if monophonic, broadcast to number of active engines
if (channelsB == 1) {
for (int c = 0; c < activeEngines; c += 4)
inB[c / 4] = float_4(inputs[inputB].getVoltage());
}
else {
for (int c = 0; c < channels_1; c += 4)
c1[c / 4] = simd::float_4(10.f * mult_C1);
for (int c = 0; c < channelsB; c += 4)
inB[c / 4] = inputs[inputB].getVoltageSimd<float_4>(c);
}

for (int c = 0; c < channels_1; c += 4)
out1[c / 4] = clip4(a1[c / 4] * b1[c / 4] + c1[c / 4]);
for (int c = 0; c < activeEngines; c += 4)
inB[c / 4] *= mult_B;
}
else {
for (int c = 0; c < activeEngines; c += 4)
inB[c / 4] = 5.f * mult_B;
}

// process lower section

if (outputs[OUT2_OUTPUT].isConnected()) {
int channels_A2 = inputs[A2_INPUT].getChannels();
int channels_B2 = inputs[B2_INPUT].getChannels();
int channels_C2 = inputs[C2_INPUT].getChannels();

channels_2 = std::max(channels_2, channels_A2);
channels_2 = std::max(channels_2, channels_B2);
channels_2 = std::max(channels_2, channels_C2);

float mult_B2 = (2.f / 5.f) * exponentialBipolar80Pade_5_4(params[B2_LEVEL_PARAM].getValue());
float mult_C2 = exponentialBipolar80Pade_5_4(params[C2_LEVEL_PARAM].getValue());

if (inputs[A2_INPUT].isConnected())
load_input(inputs[A2_INPUT], a2, channels_A2);
else
memset(a2, 0, sizeof(a2));

if (inputs[B2_INPUT].isConnected()) {
load_input(inputs[B2_INPUT], b2, channels_B2);
for (int c = 0; c < channels_2; c += 4)
b2[c / 4] *= simd::float_4(mult_B2);
if (inputs[inputC].isConnected()) {
// if monophonic, broadcast to number of active engines
if (channelsC == 1) {
for (int c = 0; c < activeEngines; c += 4)
inC[c / 4] = float_4(inputs[inputC].getVoltage());
}
else {
for (int c = 0; c < channels_2; c += 4)
b2[c / 4] = simd::float_4(5.f * mult_B2);
for (int c = 0; c < channelsC; c += 4)
inC[c / 4] = inputs[inputC].getVoltageSimd<float_4>(c);
}

if (inputs[C2_INPUT].isConnected()) {
load_input(inputs[C2_INPUT], c2, channels_C2);
for (int c = 0; c < channels_2; c += 4)
c2[c / 4] *= simd::float_4(mult_C2);
}
else {
for (int c = 0; c < channels_2; c += 4)
c2[c / 4] = simd::float_4(10.f * mult_C2);
}
for (int c = 0; c < activeEngines; c += 4)
inC[c / 4] *= mult_C;
}
else {
for (int c = 0; c < activeEngines; c += 4)
inC[c / 4] = float_4(10.f * mult_C);
}

for (int c = 0; c < activeEngines; c += 4)
out[c / 4] = clip4(inA[c / 4] * inB[c / 4] + inC[c / 4]);

return activeEngines;
}

void process(const ProcessArgs& args) override {

for (int c = 0; c < channels_2; c += 4)
out2[c / 4] = clip4(a2[c / 4] * b2[c / 4] + c2[c / 4]);
};
// process upper section
float_4 out1[4] = {0.f};
int activeEngines1 = 1;
if (outputs[OUT1_OUTPUT].isConnected() || outputs[OUT2_OUTPUT].isConnected()) {
activeEngines1 = processSection(out1, A1_INPUT, B1_INPUT, C1_INPUT, B1_LEVEL_PARAM, C1_LEVEL_PARAM);
}

float_4 out2[4] = {0.f};
int activeEngines2 = 1;
// process lower section
if (outputs[OUT2_OUTPUT].isConnected()) {
activeEngines2 = processSection(out2, A2_INPUT, B2_INPUT, C2_INPUT, B2_LEVEL_PARAM, C2_LEVEL_PARAM);
}

// Set outputs
if (outputs[OUT1_OUTPUT].isConnected()) {
outputs[OUT1_OUTPUT].setChannels(channels_1);
for (int c = 0; c < channels_1; c += 4)
outputs[OUT1_OUTPUT].setChannels(activeEngines1);
for (int c = 0; c < activeEngines1; c += 4)
out1[c / 4].store(outputs[OUT1_OUTPUT].getVoltages(c));
}
else {
for (int c = 0; c < channels_1; c += 4)
else if (outputs[OUT2_OUTPUT].isConnected()) {

for (int c = 0; c < activeEngines1; c += 4)
out2[c / 4] += out1[c / 4];
channels_2 = std::max(channels_1, channels_2);
}

if (outputs[OUT2_OUTPUT].isConnected()) {
outputs[OUT2_OUTPUT].setChannels(channels_2);
for (int c = 0; c < channels_2; c += 4)
activeEngines2 = std::max(activeEngines1, activeEngines2);

outputs[OUT2_OUTPUT].setChannels(activeEngines2);
for (int c = 0; c < activeEngines2; c += 4)
out2[c / 4].store(outputs[OUT2_OUTPUT].getVoltages(c));
}

@@ -182,7 +169,7 @@ struct ABC : Module {
float light_1;
float light_2;

if (channels_1 == 1) {
if (activeEngines1 == 1) {
light_1 = out1[0].s[0];
lights[OUT1_LIGHT + 0].setSmoothBrightness(light_1 / 5.f, args.sampleTime);
lights[OUT1_LIGHT + 1].setSmoothBrightness(-light_1 / 5.f, args.sampleTime);
@@ -195,7 +182,7 @@ struct ABC : Module {
lights[OUT1_LIGHT + 2].setBrightness(light_1);
}

if (channels_2 == 1) {
if (activeEngines2 == 1) {
light_2 = out2[0].s[0];
lights[OUT2_LIGHT + 0].setSmoothBrightness(light_2 / 5.f, args.sampleTime);
lights[OUT2_LIGHT + 1].setSmoothBrightness(-light_2 / 5.f, args.sampleTime);
@@ -212,7 +199,7 @@ struct ABC : Module {


struct ABCWidget : ModuleWidget {
ABCWidget(ABC *module) {
ABCWidget(ABC* module) {
setModule(module);
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/ABC.svg")));

@@ -239,4 +226,4 @@ struct ABCWidget : ModuleWidget {
};


Model *modelABC = createModel<ABC, ABCWidget>("ABC");
Model* modelABC = createModel<ABC, ABCWidget>("ABC");

+ 5
- 6
src/DualAtenuverter.cpp View File

@@ -1,6 +1,5 @@
#include "plugin.hpp"
#include "Common.hpp"
#include "simd_input.hpp"

struct DualAtenuverter : Module {
enum ParamIds {
@@ -34,7 +33,7 @@ struct DualAtenuverter : Module {
configParam(OFFSET2_PARAM, -10.0, 10.0, 0.0, "Ch 2 offset", " V");
}

void process(const ProcessArgs &args) override {
void process(const ProcessArgs& args) override {
using simd::float_4;

float_4 out1[4];
@@ -52,10 +51,10 @@ struct DualAtenuverter : Module {
float offset2 = params[OFFSET2_PARAM].getValue();

for (int c = 0; c < channels1; c += 4) {
out1[c / 4] = clamp(float_4::load(inputs[IN1_INPUT].getVoltages(c)) * att1 + offset1, -10.f, 10.f);
out1[c / 4] = clamp(inputs[IN1_INPUT].getVoltageSimd<float_4>(c) * att1 + offset1, -10.f, 10.f);
}
for (int c = 0; c < channels2; c += 4) {
out2[c / 4] = clamp(float_4::load(inputs[IN2_INPUT].getVoltages(c)) * att2 + offset2, -10.f, 10.f);
out2[c / 4] = clamp(inputs[IN2_INPUT].getVoltageSimd<float_4>(c) * att2 + offset2, -10.f, 10.f);
}

outputs[OUT1_OUTPUT].setChannels(channels1);
@@ -97,7 +96,7 @@ struct DualAtenuverter : Module {


struct DualAtenuverterWidget : ModuleWidget {
DualAtenuverterWidget(DualAtenuverter *module) {
DualAtenuverterWidget(DualAtenuverter* module) {
setModule(module);
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/DualAtenuverter.svg")));

@@ -121,4 +120,4 @@ struct DualAtenuverterWidget : ModuleWidget {
};


Model *modelDualAtenuverter = createModel<DualAtenuverter, DualAtenuverterWidget>("DualAtenuverter");
Model* modelDualAtenuverter = createModel<DualAtenuverter, DualAtenuverterWidget>("DualAtenuverter");

+ 66
- 51
src/EvenVCO.cpp View File

@@ -1,7 +1,8 @@
#include "plugin.hpp"
#include "simd_input.hpp"
#include "Common.hpp"

using simd::float_4;

struct EvenVCO : Module {
enum ParamIds {
OCTAVE_PARAM,
@@ -26,8 +27,8 @@ struct EvenVCO : Module {
NUM_OUTPUTS
};

simd::float_4 phase[4];
simd::float_4 tri[4];
float_4 phase[4];
float_4 tri[4];

/** The value of the last sync input */
float sync = 0.0;
@@ -51,23 +52,14 @@ struct EvenVCO : Module {
configParam(PWM_PARAM, -1.0, 1.0, 0.0, "Pulse width");

for (int i = 0; i < 4; i++) {
phase[i] = simd::float_4(0.0f);
tri[i] = simd::float_4(0.0f);
phase[i] = float_4(0.0f);
tri[i] = float_4(0.0f);
}
for (int c = 0; c < PORT_MAX_CHANNELS; c++)
halfPhase[c] = false;
}

void process(const ProcessArgs &args) override {
simd::float_4 pitch[4];
simd::float_4 pitch_1[4];
simd::float_4 pitch_2[4];
simd::float_4 pitch_fm[4];
simd::float_4 freq[4];
simd::float_4 pw[4];
simd::float_4 pwm[4];
simd::float_4 deltaPhase[4];
simd::float_4 oldPhase[4];
void process(const ProcessArgs& args) override {

int channels_pitch1 = inputs[PITCH1_INPUT].getChannels();
int channels_pitch2 = inputs[PITCH2_INPUT].getChannels();
@@ -81,56 +73,79 @@ struct EvenVCO : Module {
float pitch_0 = 1.f + std::round(params[OCTAVE_PARAM].getValue()) + params[TUNE_PARAM].getValue() / 12.f;

// Compute frequency, pitch is 1V/oct
float_4 pitch[4];
for (int c = 0; c < channels; c += 4)
pitch[c / 4] = simd::float_4(pitch_0);
pitch[c / 4] = float_4(pitch_0);

if (inputs[PITCH1_INPUT].isConnected()) {
load_input(inputs[PITCH1_INPUT], pitch_1, channels_pitch1);
for (int c = 0; c < channels_pitch1; c += 4)
pitch[c / 4] += pitch_1[c / 4];
// if pitch_1 monophonic, broadcast
if (channels_pitch1 == 1) {
for (int c = 0; c < channels; c += 4)
pitch[c / 4] += float_4(inputs[PITCH1_INPUT].getVoltage());
}
else {
for (int c = 0; c < std::min(channels, channels_pitch1); c += 4)
pitch[c / 4] += inputs[PITCH1_INPUT].getVoltageSimd<float_4>(c);
}
}

if (inputs[PITCH2_INPUT].isConnected()) {
load_input(inputs[PITCH2_INPUT], pitch_2, channels_pitch2);
for (int c = 0; c < channels_pitch2; c += 4)
pitch[c / 4] += pitch_2[c / 4];
// if pitch_2 monophonic, broadcast
if (channels_pitch2 == 1) {
for (int c = 0; c < channels; c += 4)
pitch[c / 4] += float_4(inputs[PITCH2_INPUT].getVoltage());
}
else {
for (int c = 0; c < std::min(channels, channels_pitch2); c += 4)
pitch[c / 4] += inputs[PITCH2_INPUT].getVoltageSimd<float_4>(c);
}
}

if (inputs[FM_INPUT].isConnected()) {
load_input(inputs[FM_INPUT], pitch_fm, channels_fm);
for (int c = 0; c < channels_fm; c += 4)
pitch[c / 4] += pitch_fm[c / 4] / 4.f;
// if FM is monophonic, broadcast
if (channels_fm == 1) {
for (int c = 0; c < channels; c += 4)
pitch[c / 4] += float_4(inputs[FM_INPUT].getVoltage() / 4.f);
}
else {
for (int c = 0; c < std::min(channels, channels_fm); c += 4)
pitch[c / 4] += inputs[FM_INPUT].getVoltageSimd<float_4>(c) / 4.f;
}
}

float_4 freq[4];
for (int c = 0; c < channels; c += 4) {
freq[c / 4] = dsp::FREQ_C4 * simd::pow(2.f, pitch[c / 4]);
freq[c / 4] = clamp(freq[c / 4], 0.f, 20000.f);
}


// Pulse width

float pw_0 = params[PWM_PARAM].getValue();
float_4 pw[4];
for (int c = 0; c < channels; c += 4)
pw[c / 4] = simd::float_4(pw_0);
pw[c / 4] = float_4(pw_0);

if (inputs[PWM_INPUT].isConnected()) {
load_input(inputs[PWM_INPUT], pwm, channels_pwm);
for (int c = 0; c < channels_pwm; c += 4)
pw[c / 4] += pwm[c / 4] / 5.f;
if (channels_pwm == 1) {
for (int c = 0; c < channels; c += 4)
pw[c / 4] += float_4(inputs[PWM_INPUT].getVoltage() / 5.f);
}
else {
for (int c = 0; c < std::min(channels, channels_pwm); c += 4)
pw[c / 4] += inputs[PWM_INPUT].getVoltageSimd<float_4>(c) / 5.f;
}
}

const simd::float_4 minPw_4 = simd::float_4(0.05f);
const simd::float_4 m_one_4 = simd::float_4(-1.0f);
const simd::float_4 one_4 = simd::float_4(1.0f);

const float_4 minPw_4 = float_4(0.05f);
const float_4 m_one_4 = float_4(-1.0f);
const float_4 one_4 = float_4(1.0f);
float_4 deltaPhase[4];
float_4 oldPhase[4];
for (int c = 0; c < channels; c += 4) {
pw[c / 4] = rescale(clamp(pw[c / 4], m_one_4, one_4), m_one_4, one_4, minPw_4, one_4 - minPw_4);

// Advance phase
deltaPhase[c / 4] = clamp(freq[c / 4] * args.sampleTime, simd::float_4(1e-6f), simd::float_4(0.5f));
deltaPhase[c / 4] = clamp(freq[c / 4] * args.sampleTime, float_4(1e-6f), float_4(0.5f));
oldPhase[c / 4] = phase[c / 4];
phase[c / 4] += deltaPhase[c / 4];
}
@@ -163,19 +178,19 @@ struct EvenVCO : Module {
}
}

simd::float_4 triSquareMinBlepOut[4];
simd::float_4 doubleSawMinBlepOut[4];
simd::float_4 sawMinBlepOut[4];
simd::float_4 squareMinBlepOut[4];
float_4 triSquareMinBlepOut[4];
float_4 doubleSawMinBlepOut[4];
float_4 sawMinBlepOut[4];
float_4 squareMinBlepOut[4];

simd::float_4 triSquare[4];
simd::float_4 sine[4];
simd::float_4 doubleSaw[4];
float_4 triSquare[4];
float_4 sine[4];
float_4 doubleSaw[4];

simd::float_4 even[4];
simd::float_4 saw[4];
simd::float_4 square[4];
simd::float_4 triOut[4];
float_4 even[4];
float_4 saw[4];
float_4 square[4];
float_4 triOut[4];

for (int c = 0; c < channels; c++) {
triSquareMinBlepOut[c / 4].s[c % 4] = triSquareMinBlep[c].process();
@@ -231,7 +246,7 @@ struct EvenVCO : Module {


struct EvenVCOWidget : ModuleWidget {
EvenVCOWidget(EvenVCO *module) {
EvenVCOWidget(EvenVCO* module) {
setModule(module);
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/EvenVCO.svg")));

@@ -260,4 +275,4 @@ struct EvenVCOWidget : ModuleWidget {
};


Model *modelEvenVCO = createModel<EvenVCO, EvenVCOWidget>("EvenVCO");
Model* modelEvenVCO = createModel<EvenVCO, EvenVCOWidget>("EvenVCO");

+ 14
- 16
src/Mixer.cpp View File

@@ -1,6 +1,7 @@
#include "plugin.hpp"
#include "Common.hpp"
#include "simd_input.hpp"

using simd::float_4;

struct Mixer : Module {
enum ParamIds {
@@ -37,7 +38,7 @@ struct Mixer : Module {
configParam(CH4_PARAM, 0.0, 1.0, 0.0, "Ch 4 level", "%", 0, 100);
}

void process(const ProcessArgs &args) override {
void process(const ProcessArgs& args) override {
int channels1 = inputs[IN1_INPUT].getChannels();
int channels2 = inputs[IN2_INPUT].getChannels();
int channels3 = inputs[IN3_INPUT].getChannels();
@@ -49,37 +50,35 @@ struct Mixer : Module {
out_channels = std::max(out_channels, channels3);
out_channels = std::max(out_channels, channels4);

simd::float_4 mult1 = simd::float_4(params[CH1_PARAM].getValue());
simd::float_4 mult2 = simd::float_4(params[CH2_PARAM].getValue());
simd::float_4 mult3 = simd::float_4(params[CH3_PARAM].getValue());
simd::float_4 mult4 = simd::float_4(params[CH4_PARAM].getValue());
float_4 mult1 = float_4(params[CH1_PARAM].getValue());
float_4 mult2 = float_4(params[CH2_PARAM].getValue());
float_4 mult3 = float_4(params[CH3_PARAM].getValue());
float_4 mult4 = float_4(params[CH4_PARAM].getValue());

simd::float_4 out[4];
float_4 out[4];

std::memset(out, 0, sizeof(out));


if (inputs[IN1_INPUT].isConnected()) {
for (int c = 0; c < channels1; c += 4)
out[c / 4] += simd::float_4::load(inputs[IN1_INPUT].getVoltages(c)) * mult1;
out[c / 4] += inputs[IN1_INPUT].getVoltageSimd<float_4>(c) * mult1;
}

if (inputs[IN2_INPUT].isConnected()) {
for (int c = 0; c < channels2; c += 4)
out[c / 4] += simd::float_4::load(inputs[IN2_INPUT].getVoltages(c)) * mult2;
out[c / 4] += inputs[IN2_INPUT].getVoltageSimd<float_4>(c) * mult2;
}

if (inputs[IN3_INPUT].isConnected()) {
for (int c = 0; c < channels3; c += 4)
out[c / 4] += simd::float_4::load(inputs[IN3_INPUT].getVoltages(c)) * mult3;
out[c / 4] += inputs[IN3_INPUT].getVoltageSimd<float_4>(c) * mult3;
}

if (inputs[IN4_INPUT].isConnected()) {
for (int c = 0; c < channels4; c += 4)
out[c / 4] += simd::float_4::load(inputs[IN4_INPUT].getVoltages(c)) * mult4;
out[c / 4] += inputs[IN4_INPUT].getVoltageSimd<float_4>(c) * mult4;
}


outputs[OUT1_OUTPUT].setChannels(out_channels);
outputs[OUT2_OUTPUT].setChannels(out_channels);

@@ -105,13 +104,12 @@ struct Mixer : Module {
lights[OUT_NEG_LIGHT].setBrightness(0.0f);
lights[OUT_BLUE_LIGHT].setSmoothBrightness(light / 5.f, args.sampleTime);
}

}
};


struct MixerWidget : ModuleWidget {
MixerWidget(Mixer *module) {
MixerWidget(Mixer* module) {
setModule(module);
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/Mixer.svg")));

@@ -137,4 +135,4 @@ struct MixerWidget : ModuleWidget {
};


Model *modelMixer = createModel<Mixer, MixerWidget>("Mixer");
Model* modelMixer = createModel<Mixer, MixerWidget>("Mixer");

+ 115
- 66
src/Rampage.cpp View File

@@ -1,16 +1,17 @@
#include "plugin.hpp"
#include "Common.hpp"
#include "simd_input.hpp"
#include "PulseGenerator_4.hpp"

static simd::float_4 shapeDelta(simd::float_4 delta, simd::float_4 tau, float shape) {
simd::float_4 lin = simd::sgn(delta) * 10.f / tau;
using simd::float_4;

static float_4 shapeDelta(float_4 delta, float_4 tau, float shape) {
float_4 lin = simd::sgn(delta) * 10.f / tau;
if (shape < 0.f) {
simd::float_4 log = simd::sgn(delta) * simd::float_4(40.f) / tau / (simd::fabs(delta) + simd::float_4(1.f));
float_4 log = simd::sgn(delta) * float_4(40.f) / tau / (simd::fabs(delta) + float_4(1.f));
return simd::crossfade(lin, log, -shape * 0.95f);
}
else {
simd::float_4 exp = M_E * delta / tau;
float_4 exp = M_E * delta / tau;
return simd::crossfade(lin, exp, shape * 0.90f);
}
}
@@ -75,10 +76,10 @@ struct Rampage : Module {
};


simd::float_4 out[2][4];
simd::float_4 gate[2][4]; // use simd __m128 logic instead of bool
float_4 out[2][4];
float_4 gate[2][4]; // use simd __m128 logic instead of bool

dsp::TSchmittTrigger<simd::float_4> trigger_4[2][4];
dsp::TSchmittTrigger<float_4> trigger_4[2][4];
PulseGenerator_4 endOfCyclePulse[2][4];

// ChannelMask channelMask;
@@ -103,10 +104,10 @@ struct Rampage : Module {
std::memset(gate, 0, sizeof(gate));
}

void process(const ProcessArgs &args) override {
void process(const ProcessArgs& args) override {
int channels_in[2];
int channels_trig[2];
int channels[2];
int channels[2]; // the larger of in or trig (per-part)

// determine number of channels:

@@ -122,25 +123,25 @@ struct Rampage : Module {
outputs[FALLING_A_OUTPUT + part].setChannels(channels[part]);
outputs[EOC_A_OUTPUT + part].setChannels(channels[part]);
}
int channels_max = std::max(channels[0], channels[1]);
// total number of active polyphony engines, accounting for both halves
// (channels[0] / channels[1] are the number of active engines per section)
const int channels_max = std::max(channels[0], channels[1]);

outputs[COMPARATOR_OUTPUT].setChannels(channels_max);
outputs[MIN_OUTPUT].setChannels(channels_max);
outputs[MAX_OUTPUT].setChannels(channels_max);

// loop over two parts of Rampage:

for (int part = 0; part < 2; part++) {

simd::float_4 in[4];
simd::float_4 in_trig[4];
simd::float_4 expCV[4];
simd::float_4 riseCV[4];
simd::float_4 fallCV[4];
simd::float_4 cycle[4];
float_4 in[4];
float_4 in_trig[4];
float_4 riseCV[4];
float_4 fallCV[4];
float_4 cycle[4];

// get parameters:

float shape = params[SHAPE_A_PARAM + part].getValue();
float minTime;
switch ((int) params[RANGE_A_PARAM + part].getValue()) {
@@ -155,91 +156,142 @@ struct Rampage : Module {
break;
}

simd::float_4 param_rise = simd::float_4(params[RISE_A_PARAM + part].getValue() * 10.0f);
simd::float_4 param_fall = simd::float_4(params[FALL_A_PARAM + part].getValue() * 10.0f);
simd::float_4 param_trig = simd::float_4(params[TRIGG_A_PARAM + part].getValue() * 20.0f);
simd::float_4 param_cycle = simd::float_4(params[CYCLE_A_PARAM + part].getValue() * 10.0f);
float_4 param_rise = float_4(params[RISE_A_PARAM + part].getValue() * 10.0f);
float_4 param_fall = float_4(params[FALL_A_PARAM + part].getValue() * 10.0f);
float_4 param_trig = float_4(params[TRIGG_A_PARAM + part].getValue() * 20.0f);
float_4 param_cycle = float_4(params[CYCLE_A_PARAM + part].getValue() * 10.0f);

for (int c = 0; c < channels[part]; c += 4) {
riseCV[c / 4] = param_rise;
fallCV[c / 4] = param_fall;
cycle[c / 4] = param_cycle;
in_trig[c / 4] = param_trig;

}


// read inputs:

if (inputs[IN_A_INPUT + part].isConnected()) {
load_input(inputs[IN_A_INPUT + part], in, channels_in[part]);
// channelMask.apply_all(in, channels_in[part]);
// if IN_<A,B>_INPUT is monophonic, broadcast to the active number of engines (channels[part])
if (inputs[IN_A_INPUT + part].getChannels() == 1) {
for (int c = 0; c < channels[part]; c += 4)
in[c / 4] = float_4(inputs[IN_A_INPUT + part].getVoltage());
}
else {
for (int c = 0; c < channels[part]; c += 4)
in[c / 4] = inputs[IN_A_INPUT + part].getVoltageSimd<float_4>(c);
}
}
else {
std::memset(in, 0, sizeof(in));
}

if (inputs[TRIGG_A_INPUT + part].isConnected()) {
add_input(inputs[TRIGG_A_INPUT + part], in_trig, channels_trig[part]);
// channelMask.apply_all(in_trig, channels_trig[part]);
// if TRIGG_<A,B>_INPUT is monophonic, broadcast to the active number of engines (channels[part])
if (inputs[TRIGG_A_INPUT + part].getChannels() == 1) {
for (int c = 0; c < channels[part]; c += 4)
in_trig[c / 4] += float_4(inputs[TRIGG_A_INPUT + part].getVoltage());
}
else {
for (int c = 0; c < channels[part]; c += 4)
in_trig[c / 4] += inputs[TRIGG_A_INPUT + part].getVoltageSimd<float_4>(c);
}
}

if (inputs[EXP_CV_A_INPUT + part].isConnected()) {
load_input(inputs[EXP_CV_A_INPUT + part], expCV, channels[part]);
float_4 expCV[4];
int expCVChannels = inputs[EXP_CV_A_INPUT + part].getChannels();
// if EXP_CV_<A,B>_INPUT is monophonic, broadcast to the active number of engines (channels[part])
if (expCVChannels == 1) {
for (int c = 0; c < channels[part]; c += 4)
expCV[c / 4] = float_4(inputs[EXP_CV_A_INPUT + part].getVoltage());
}
else {
// otherwise read in the polyphonic expCV data, either to the number of active engines (channels[part])
// or the number of channels of expCV, whichever is smaller
for (int c = 0; c < std::min(channels[part], expCVChannels); c += 4)
expCV[c / 4] = inputs[EXP_CV_A_INPUT + part].getVoltageSimd<float_4>(c);
}

for (int c = 0; c < channels[part]; c += 4) {
riseCV[c / 4] -= expCV[c / 4];
fallCV[c / 4] -= expCV[c / 4];
}
}

add_input(inputs[RISE_CV_A_INPUT + part], riseCV, channels[part]);
add_input(inputs[FALL_CV_A_INPUT + part], fallCV, channels[part]);
add_input(inputs[CYCLE_A_INPUT + part], cycle, channels[part]);
// channelMask.apply(cycle, channels[part]); // check whether this is necessary
const int riseCVChannels = inputs[RISE_CV_A_INPUT + part].getChannels();
// if EXP_CV_<A,B>_INPUT is monophonic, broadcast to the active number of engines (channels[part])
if (riseCVChannels == 1) {
for (int c = 0; c < channels[part]; c += 4)
riseCV[c / 4] += float_4(inputs[RISE_CV_A_INPUT + part].getVoltage());
}
else {
// otherwise read in the polyphonic rise CV data, either to the number of active engines (channels[part])
// or the number of channels of expCV, whichever is smaller
for (int c = 0; c < std::min(channels[part], riseCVChannels); c += 4)
riseCV[c / 4] += inputs[RISE_CV_A_INPUT + part].getVoltageSimd<float_4>(c);
}

const int fallCVChannels = inputs[FALL_CV_A_INPUT + part].getChannels();
if (fallCVChannels == 1) {
for (int c = 0; c < channels[part]; c += 4)
fallCV[c / 4] += float_4(inputs[FALL_CV_A_INPUT + part].getVoltage());
}
else {
for (int c = 0; c < std::min(channels[part], fallCVChannels); c += 4)
fallCV[c / 4] += inputs[FALL_CV_A_INPUT + part].getVoltageSimd<float_4>(c);
}

// start processing:
const int cycleChannels = inputs[CYCLE_A_INPUT + part].getChannels();
if (cycleChannels == 1) {
for (int c = 0; c < channels[part]; c += 4)
cycle[c / 4] += float_4(inputs[CYCLE_A_INPUT + part].getVoltage());
}
else {
for (int c = 0; c < std::min(channels[part], cycleChannels); c += 4)
cycle[c / 4] += inputs[CYCLE_A_INPUT + part].getVoltageSimd<float_4>(c);
}

// start processing:
for (int c = 0; c < channels[part]; c += 4) {

// process SchmittTriggers

simd::float_4 trig_mask = trigger_4[part][c / 4].process(in_trig[c / 4] / 2.0);
gate[part][c / 4] = ifelse(trig_mask, simd::float_4::mask(), gate[part][c / 4]);
in[c / 4] = ifelse(gate[part][c / 4], simd::float_4(10.0f), in[c / 4]);
float_4 trig_mask = trigger_4[part][c / 4].process(in_trig[c / 4] / 2.0);
gate[part][c / 4] = ifelse(trig_mask, float_4::mask(), gate[part][c / 4]);
in[c / 4] = ifelse(gate[part][c / 4], float_4(10.0f), in[c / 4]);

simd::float_4 delta = in[c / 4] - out[part][c / 4];
float_4 delta = in[c / 4] - out[part][c / 4];

// rise / fall branching

simd::float_4 delta_gt_0 = delta > simd::float_4::zero();
simd::float_4 delta_lt_0 = delta < simd::float_4::zero();
simd::float_4 delta_eq_0 = ~(delta_lt_0 | delta_gt_0);
float_4 delta_gt_0 = delta > float_4::zero();
float_4 delta_lt_0 = delta < float_4::zero();
float_4 delta_eq_0 = ~(delta_lt_0 | delta_gt_0);

simd::float_4 rateCV = ifelse(delta_gt_0, riseCV[c / 4], simd::float_4::zero());
float_4 rateCV = ifelse(delta_gt_0, riseCV[c / 4], float_4::zero());
rateCV = ifelse(delta_lt_0, fallCV[c / 4], rateCV);
rateCV = clamp(rateCV, simd::float_4::zero(), simd::float_4(10.0f));
rateCV = clamp(rateCV, float_4::zero(), float_4(10.0f));

simd::float_4 rate = minTime * simd::pow(2.0f, rateCV);
float_4 rate = minTime * simd::pow(2.0f, rateCV);

out[part][c / 4] += shapeDelta(delta, rate, shape) * args.sampleTime;

simd::float_4 rising = (in[c / 4] - out[part][c / 4]) > simd::float_4(1e-3);
simd::float_4 falling = (in[c / 4] - out[part][c / 4]) < simd::float_4(-1e-3);
simd::float_4 end_of_cycle = simd::andnot(falling, delta_lt_0);
float_4 rising = (in[c / 4] - out[part][c / 4]) > float_4(1e-3);
float_4 falling = (in[c / 4] - out[part][c / 4]) < float_4(-1e-3);
float_4 end_of_cycle = simd::andnot(falling, delta_lt_0);

endOfCyclePulse[part][c / 4].trigger(end_of_cycle, 1e-3);

gate[part][c / 4] = ifelse(simd::andnot(rising, delta_gt_0), simd::float_4::zero(), gate[part][c / 4]);
gate[part][c / 4] = ifelse(end_of_cycle & (cycle[c / 4] >= simd::float_4(4.0f)), simd::float_4::mask(), gate[part][c / 4]);
gate[part][c / 4] = ifelse(delta_eq_0, simd::float_4::zero(), gate[part][c / 4]);
gate[part][c / 4] = ifelse(simd::andnot(rising, delta_gt_0), float_4::zero(), gate[part][c / 4]);
gate[part][c / 4] = ifelse(end_of_cycle & (cycle[c / 4] >= float_4(4.0f)), float_4::mask(), gate[part][c / 4]);
gate[part][c / 4] = ifelse(delta_eq_0, float_4::zero(), gate[part][c / 4]);

out[part][c / 4] = ifelse(rising | falling, out[part][c / 4], in[c / 4]);

simd::float_4 out_rising = ifelse(rising, simd::float_4(10.0f), simd::float_4::zero());
simd::float_4 out_falling = ifelse(falling, simd::float_4(10.0f), simd::float_4::zero());
float_4 out_rising = ifelse(rising, float_4(10.0f), float_4::zero());
float_4 out_falling = ifelse(falling, float_4(10.0f), float_4::zero());

simd::float_4 pulse = endOfCyclePulse[part][c / 4].process(args.sampleTime);
simd::float_4 out_EOC = ifelse(pulse, simd::float_4(10.f), simd::float_4::zero());
float_4 pulse = endOfCyclePulse[part][c / 4].process(args.sampleTime);
float_4 out_EOC = ifelse(pulse, float_4(10.f), float_4::zero());

out[part][c / 4].store(outputs[OUT_A_OUTPUT + part].getVoltages(c));

@@ -247,7 +299,6 @@ struct Rampage : Module {
out_falling.store(outputs[FALLING_A_OUTPUT + part].getVoltages(c));
out_EOC.store(outputs[EOC_A_OUTPUT + part].getVoltages(c));


} // for(int c, ...)

if (channels[part] == 1) {
@@ -281,17 +332,17 @@ struct Rampage : Module {

for (int c = 0; c < channels_max; c += 4) {

simd::float_4 a = out[0][c / 4];
simd::float_4 b = out[1][c / 4];
float_4 a = out[0][c / 4];
float_4 b = out[1][c / 4];

if (balance < 0.5)
b *= 2.0f * balance;
else if (balance > 0.5)
a *= 2.0f * (1.0 - balance);

simd::float_4 comp = ifelse(b > a, simd::float_4(10.0f), simd::float_4::zero());
simd::float_4 out_min = simd::fmin(a, b);
simd::float_4 out_max = simd::fmax(a, b);
float_4 comp = ifelse(b > a, float_4(10.0f), float_4::zero());
float_4 out_min = simd::fmin(a, b);
float_4 out_max = simd::fmax(a, b);

comp.store(outputs[COMPARATOR_OUTPUT].getVoltages(c));
out_min.store(outputs[MIN_OUTPUT].getVoltages(c));
@@ -325,10 +376,8 @@ struct Rampage : Module {
};




struct RampageWidget : ModuleWidget {
RampageWidget(Rampage *module) {
RampageWidget(Rampage* module) {
setModule(module);
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/Rampage.svg")));

@@ -389,4 +438,4 @@ struct RampageWidget : ModuleWidget {
};


Model *modelRampage = createModel<Rampage, RampageWidget>("Rampage");
Model* modelRampage = createModel<Rampage, RampageWidget>("Rampage");

+ 43
- 29
src/SlewLimiter.cpp View File

@@ -1,6 +1,7 @@
#include "plugin.hpp"
#include "Common.hpp"
#include "simd_input.hpp"

using simd::float_4;

struct SlewLimiter : Module {
enum ParamIds {
@@ -20,7 +21,7 @@ struct SlewLimiter : Module {
NUM_OUTPUTS
};

simd::float_4 out[4];
float_4 out[4];

SlewLimiter() {
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS);
@@ -31,14 +32,14 @@ struct SlewLimiter : Module {
memset(out, 0, sizeof(out));
}

void process(const ProcessArgs &args) override {

simd::float_4 in[4];
simd::float_4 riseCV[4];
simd::float_4 fallCV[4];
void process(const ProcessArgs& args) override {

int channels = inputs[IN_INPUT].getChannels();
float_4 in[4] = {0.f};
float_4 riseCV[4] = {0.f};
float_4 fallCV[4] = {0.f};

// this is the number of active polyphony engines, defined by the input
int numPolyphonyEngines = inputs[IN_INPUT].getChannels();

// minimum and std::maximum slopes in volts per second
const float slewMin = 0.1;
@@ -46,32 +47,45 @@ struct SlewLimiter : Module {
// Amount of extra slew per voltage difference
const float shapeScale = 1 / 10.f;

const simd::float_4 shape = simd::float_4(params[SHAPE_PARAM].getValue());
const simd::float_4 param_rise = simd::float_4(params[RISE_PARAM].getValue() * 10.f);
const simd::float_4 param_fall = simd::float_4(params[FALL_PARAM].getValue() * 10.f);

outputs[OUT_OUTPUT].setChannels(channels);
const float_4 shape = float_4(params[SHAPE_PARAM].getValue());
const float_4 param_rise = float_4(params[RISE_PARAM].getValue() * 10.f);
const float_4 param_fall = float_4(params[FALL_PARAM].getValue() * 10.f);

outputs[OUT_OUTPUT].setChannels(numPolyphonyEngines);

for (int c = 0; c < numPolyphonyEngines; c += 4) {
in[c / 4] = inputs[IN_INPUT].getVoltageSimd<float_4>(c);

if (inputs[RISE_INPUT].isConnected()) {
if (inputs[RISE_INPUT].getChannels() == 1) {
riseCV[c / 4] = float_4(inputs[RISE_INPUT].getVoltage());
}
else {
riseCV[c / 4] = inputs[RISE_INPUT].getVoltageSimd<float_4>(c);
}
}
if (inputs[FALL_INPUT].isConnected()) {
if (inputs[FALL_INPUT].getChannels() == 1) {
fallCV[c / 4] = float_4(inputs[FALL_INPUT].getVoltage());
}
else {
fallCV[c / 4] = inputs[FALL_INPUT].getVoltageSimd<float_4>(c);
}
}

load_input(inputs[IN_INPUT], in, channels);
load_input(inputs[RISE_INPUT], riseCV, channels);
load_input(inputs[FALL_INPUT], fallCV, channels);

for (int c = 0; c < channels; c += 4) {
riseCV[c / 4] += param_rise;
fallCV[c / 4] += param_fall;

simd::float_4 delta = in[c / 4] - out[c / 4];

simd::float_4 delta_gt_0 = delta > simd::float_4::zero();
simd::float_4 delta_lt_0 = delta < simd::float_4::zero();
float_4 delta = in[c / 4] - out[c / 4];
float_4 delta_gt_0 = delta > float_4::zero();
float_4 delta_lt_0 = delta < float_4::zero();

simd::float_4 rateCV;
rateCV = ifelse(delta_gt_0, riseCV[c / 4], simd::float_4::zero());
float_4 rateCV;
rateCV = ifelse(delta_gt_0, riseCV[c / 4], float_4::zero());
rateCV = ifelse(delta_lt_0, fallCV[c / 4], rateCV) * 0.1f;

simd::float_4 pm_one = simd::sgn(delta);

simd::float_4 slew = slewMax * simd::pow(simd::float_4(slewMin / slewMax), rateCV);
float_4 pm_one = simd::sgn(delta);
float_4 slew = slewMax * simd::pow(float_4(slewMin / slewMax), rateCV);

out[c / 4] += slew * simd::crossfade(pm_one, shapeScale * delta, shape) * args.sampleTime;
out[c / 4] = ifelse(delta_gt_0 & (out[c / 4] > in[c / 4]), in[c / 4], out[c / 4]);
@@ -84,7 +98,7 @@ struct SlewLimiter : Module {


struct SlewLimiterWidget : ModuleWidget {
SlewLimiterWidget(::SlewLimiter *module) {
SlewLimiterWidget(SlewLimiter* module) {
setModule(module);
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/SlewLimiter.svg")));

@@ -105,4 +119,4 @@ struct SlewLimiterWidget : ModuleWidget {
};


Model *modelSlewLimiter = createModel<::SlewLimiter, SlewLimiterWidget>("SlewLimiter");
Model* modelSlewLimiter = createModel<::SlewLimiter, SlewLimiterWidget>("SlewLimiter");

+ 0
- 28
src/simd_input.hpp View File

@@ -1,28 +0,0 @@
#pragma once

#include "rack.hpp"


inline void load_input(Input &in, simd::float_4 *v, int numChannels) {
int inChannels = in.getChannels();
if (inChannels == 1) {
for (int i = 0; i < numChannels; i++)
v[i] = simd::float_4(in.getVoltage());
}
else {
for (int c = 0; c < inChannels; c += 4)
v[c / 4] = simd::float_4::load(in.getVoltages(c));
}
}

inline void add_input(Input &in, simd::float_4 *v, int numChannels) {
int inChannels = in.getChannels();
if (inChannels == 1) {
for (int i = 0; i < numChannels; i++)
v[i] += simd::float_4(in.getVoltage());
}
else {
for (int c = 0; c < inChannels; c += 4)
v[c / 4] += simd::float_4::load(in.getVoltages(c));
}
}

Loading…
Cancel
Save