@@ -17,7 +17,7 @@ jobs: | |||
config: | |||
- { | |||
name: Linux, | |||
os: ubuntu-latest, | |||
os: ubuntu-16.04, | |||
prepare-os: sudo apt install -y libglu-dev | |||
} | |||
- { | |||
@@ -68,7 +68,7 @@ jobs: | |||
# only create a release if a tag was created that is called e.g. v1.2.3 | |||
# see also https://vcvrack.com/manual/Manifest#version | |||
if: startsWith(github.ref, 'refs/tags/v') | |||
runs-on: ubuntu-latest | |||
runs-on: ubuntu-16.04 | |||
needs: build | |||
steps: | |||
- uses: actions/checkout@v2 | |||
@@ -1,6 +1,7 @@ | |||
#include "plugin.hpp" | |||
#include "Common.hpp" | |||
#include "simd_input.hpp" | |||
using simd::float_4; | |||
template <typename T> | |||
static T clip4(T x) { | |||
@@ -54,126 +55,112 @@ struct ABC : Module { | |||
configParam(C2_LEVEL_PARAM, -1.0, 1.0, 0.0, "C2 Level"); | |||
} | |||
void process(const ProcessArgs &args) override { | |||
simd::float_4 a1[4] = {}; | |||
simd::float_4 b1[4] = {}; | |||
simd::float_4 c1[4] = {}; | |||
simd::float_4 out1[4]; | |||
simd::float_4 a2[4] = {}; | |||
simd::float_4 b2[4] = {}; | |||
simd::float_4 c2[4] = {}; | |||
simd::float_4 out2[4]; | |||
int channels_1 = 1; | |||
int channels_2 = 1; | |||
memset(out1, 0, sizeof(out1)); | |||
memset(out2, 0, sizeof(out2)); | |||
int processSection(simd::float_4* out, InputIds inputA, InputIds inputB, InputIds inputC, | |||
ParamIds levelB, ParamIds levelC) { | |||
// process upper section | |||
if (outputs[OUT1_OUTPUT].isConnected() || outputs[OUT2_OUTPUT].isConnected()) { | |||
float_4 inA[4] = {0.f}; | |||
float_4 inB[4] = {0.f}; | |||
float_4 inC[4] = {0.f}; | |||
int channels_A1 = inputs[A1_INPUT].getChannels(); | |||
int channels_B1 = inputs[B1_INPUT].getChannels(); | |||
int channels_C1 = inputs[C1_INPUT].getChannels(); | |||
int channelsA = inputs[inputA].getChannels(); | |||
int channelsB = inputs[inputB].getChannels(); | |||
int channelsC = inputs[inputC].getChannels(); | |||
channels_1 = std::max(channels_1, channels_A1); | |||
channels_1 = std::max(channels_1, channels_B1); | |||
channels_1 = std::max(channels_1, channels_C1); | |||
// this sets the number of active engines (according to polyphony standard) | |||
// NOTE: A*B + C has the number of active engines set by any one of the three inputs | |||
int activeEngines = std::max(1, channelsA); | |||
activeEngines = std::max(activeEngines, channelsB); | |||
activeEngines = std::max(activeEngines, channelsC); | |||
float mult_B1 = (2.f / 5.f) * exponentialBipolar80Pade_5_4(params[B1_LEVEL_PARAM].getValue()); | |||
float mult_C1 = exponentialBipolar80Pade_5_4(params[C1_LEVEL_PARAM].getValue()); | |||
float mult_B = (2.f / 5.f) * exponentialBipolar80Pade_5_4(params[levelB].getValue()); | |||
float mult_C = exponentialBipolar80Pade_5_4(params[levelC].getValue()); | |||
if (inputs[A1_INPUT].isConnected()) | |||
load_input(inputs[A1_INPUT], a1, channels_A1); | |||
else | |||
memset(a1, 0, sizeof(a1)); | |||
if (inputs[B1_INPUT].isConnected()) { | |||
load_input(inputs[B1_INPUT], b1, channels_B1); | |||
for (int c = 0; c < channels_1; c += 4) | |||
b1[c / 4] *= simd::float_4(mult_B1); | |||
if (inputs[inputA].isConnected()) { | |||
// if monophonic, broadcast to number of active engines | |||
if (channelsA == 1) { | |||
for (int c = 0; c < activeEngines; c += 4) | |||
inA[c / 4] = float_4(inputs[inputA].getVoltage()); | |||
} | |||
else { | |||
for (int c = 0; c < channels_1; c += 4) | |||
b1[c / 4] = simd::float_4(5.f * mult_B1); | |||
for (int c = 0; c < channelsA; c += 4) | |||
inA[c / 4] = inputs[inputA].getVoltageSimd<float_4>(c); | |||
} | |||
} | |||
if (inputs[C1_INPUT].isConnected()) { | |||
load_input(inputs[C1_INPUT], c1, channels_C1); | |||
for (int c = 0; c < channels_1; c += 4) | |||
c1[c / 4] *= simd::float_4(mult_C1); | |||
if (inputs[inputB].isConnected()) { | |||
// if monophonic, broadcast to number of active engines | |||
if (channelsB == 1) { | |||
for (int c = 0; c < activeEngines; c += 4) | |||
inB[c / 4] = float_4(inputs[inputB].getVoltage()); | |||
} | |||
else { | |||
for (int c = 0; c < channels_1; c += 4) | |||
c1[c / 4] = simd::float_4(10.f * mult_C1); | |||
for (int c = 0; c < channelsB; c += 4) | |||
inB[c / 4] = inputs[inputB].getVoltageSimd<float_4>(c); | |||
} | |||
for (int c = 0; c < channels_1; c += 4) | |||
out1[c / 4] = clip4(a1[c / 4] * b1[c / 4] + c1[c / 4]); | |||
for (int c = 0; c < activeEngines; c += 4) | |||
inB[c / 4] *= mult_B; | |||
} | |||
else { | |||
for (int c = 0; c < activeEngines; c += 4) | |||
inB[c / 4] = 5.f * mult_B; | |||
} | |||
// process lower section | |||
if (outputs[OUT2_OUTPUT].isConnected()) { | |||
int channels_A2 = inputs[A2_INPUT].getChannels(); | |||
int channels_B2 = inputs[B2_INPUT].getChannels(); | |||
int channels_C2 = inputs[C2_INPUT].getChannels(); | |||
channels_2 = std::max(channels_2, channels_A2); | |||
channels_2 = std::max(channels_2, channels_B2); | |||
channels_2 = std::max(channels_2, channels_C2); | |||
float mult_B2 = (2.f / 5.f) * exponentialBipolar80Pade_5_4(params[B2_LEVEL_PARAM].getValue()); | |||
float mult_C2 = exponentialBipolar80Pade_5_4(params[C2_LEVEL_PARAM].getValue()); | |||
if (inputs[A2_INPUT].isConnected()) | |||
load_input(inputs[A2_INPUT], a2, channels_A2); | |||
else | |||
memset(a2, 0, sizeof(a2)); | |||
if (inputs[B2_INPUT].isConnected()) { | |||
load_input(inputs[B2_INPUT], b2, channels_B2); | |||
for (int c = 0; c < channels_2; c += 4) | |||
b2[c / 4] *= simd::float_4(mult_B2); | |||
if (inputs[inputC].isConnected()) { | |||
// if monophonic, broadcast to number of active engines | |||
if (channelsC == 1) { | |||
for (int c = 0; c < activeEngines; c += 4) | |||
inC[c / 4] = float_4(inputs[inputC].getVoltage()); | |||
} | |||
else { | |||
for (int c = 0; c < channels_2; c += 4) | |||
b2[c / 4] = simd::float_4(5.f * mult_B2); | |||
for (int c = 0; c < channelsC; c += 4) | |||
inC[c / 4] = inputs[inputC].getVoltageSimd<float_4>(c); | |||
} | |||
if (inputs[C2_INPUT].isConnected()) { | |||
load_input(inputs[C2_INPUT], c2, channels_C2); | |||
for (int c = 0; c < channels_2; c += 4) | |||
c2[c / 4] *= simd::float_4(mult_C2); | |||
} | |||
else { | |||
for (int c = 0; c < channels_2; c += 4) | |||
c2[c / 4] = simd::float_4(10.f * mult_C2); | |||
} | |||
for (int c = 0; c < activeEngines; c += 4) | |||
inC[c / 4] *= mult_C; | |||
} | |||
else { | |||
for (int c = 0; c < activeEngines; c += 4) | |||
inC[c / 4] = float_4(10.f * mult_C); | |||
} | |||
for (int c = 0; c < activeEngines; c += 4) | |||
out[c / 4] = clip4(inA[c / 4] * inB[c / 4] + inC[c / 4]); | |||
return activeEngines; | |||
} | |||
void process(const ProcessArgs& args) override { | |||
for (int c = 0; c < channels_2; c += 4) | |||
out2[c / 4] = clip4(a2[c / 4] * b2[c / 4] + c2[c / 4]); | |||
}; | |||
// process upper section | |||
float_4 out1[4] = {0.f}; | |||
int activeEngines1 = 1; | |||
if (outputs[OUT1_OUTPUT].isConnected() || outputs[OUT2_OUTPUT].isConnected()) { | |||
activeEngines1 = processSection(out1, A1_INPUT, B1_INPUT, C1_INPUT, B1_LEVEL_PARAM, C1_LEVEL_PARAM); | |||
} | |||
float_4 out2[4] = {0.f}; | |||
int activeEngines2 = 1; | |||
// process lower section | |||
if (outputs[OUT2_OUTPUT].isConnected()) { | |||
activeEngines2 = processSection(out2, A2_INPUT, B2_INPUT, C2_INPUT, B2_LEVEL_PARAM, C2_LEVEL_PARAM); | |||
} | |||
// Set outputs | |||
if (outputs[OUT1_OUTPUT].isConnected()) { | |||
outputs[OUT1_OUTPUT].setChannels(channels_1); | |||
for (int c = 0; c < channels_1; c += 4) | |||
outputs[OUT1_OUTPUT].setChannels(activeEngines1); | |||
for (int c = 0; c < activeEngines1; c += 4) | |||
out1[c / 4].store(outputs[OUT1_OUTPUT].getVoltages(c)); | |||
} | |||
else { | |||
for (int c = 0; c < channels_1; c += 4) | |||
else if (outputs[OUT2_OUTPUT].isConnected()) { | |||
for (int c = 0; c < activeEngines1; c += 4) | |||
out2[c / 4] += out1[c / 4]; | |||
channels_2 = std::max(channels_1, channels_2); | |||
} | |||
if (outputs[OUT2_OUTPUT].isConnected()) { | |||
outputs[OUT2_OUTPUT].setChannels(channels_2); | |||
for (int c = 0; c < channels_2; c += 4) | |||
activeEngines2 = std::max(activeEngines1, activeEngines2); | |||
outputs[OUT2_OUTPUT].setChannels(activeEngines2); | |||
for (int c = 0; c < activeEngines2; c += 4) | |||
out2[c / 4].store(outputs[OUT2_OUTPUT].getVoltages(c)); | |||
} | |||
@@ -182,7 +169,7 @@ struct ABC : Module { | |||
float light_1; | |||
float light_2; | |||
if (channels_1 == 1) { | |||
if (activeEngines1 == 1) { | |||
light_1 = out1[0].s[0]; | |||
lights[OUT1_LIGHT + 0].setSmoothBrightness(light_1 / 5.f, args.sampleTime); | |||
lights[OUT1_LIGHT + 1].setSmoothBrightness(-light_1 / 5.f, args.sampleTime); | |||
@@ -195,7 +182,7 @@ struct ABC : Module { | |||
lights[OUT1_LIGHT + 2].setBrightness(light_1); | |||
} | |||
if (channels_2 == 1) { | |||
if (activeEngines2 == 1) { | |||
light_2 = out2[0].s[0]; | |||
lights[OUT2_LIGHT + 0].setSmoothBrightness(light_2 / 5.f, args.sampleTime); | |||
lights[OUT2_LIGHT + 1].setSmoothBrightness(-light_2 / 5.f, args.sampleTime); | |||
@@ -212,7 +199,7 @@ struct ABC : Module { | |||
struct ABCWidget : ModuleWidget { | |||
ABCWidget(ABC *module) { | |||
ABCWidget(ABC* module) { | |||
setModule(module); | |||
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/ABC.svg"))); | |||
@@ -239,4 +226,4 @@ struct ABCWidget : ModuleWidget { | |||
}; | |||
Model *modelABC = createModel<ABC, ABCWidget>("ABC"); | |||
Model* modelABC = createModel<ABC, ABCWidget>("ABC"); |
@@ -1,6 +1,5 @@ | |||
#include "plugin.hpp" | |||
#include "Common.hpp" | |||
#include "simd_input.hpp" | |||
struct DualAtenuverter : Module { | |||
enum ParamIds { | |||
@@ -34,7 +33,7 @@ struct DualAtenuverter : Module { | |||
configParam(OFFSET2_PARAM, -10.0, 10.0, 0.0, "Ch 2 offset", " V"); | |||
} | |||
void process(const ProcessArgs &args) override { | |||
void process(const ProcessArgs& args) override { | |||
using simd::float_4; | |||
float_4 out1[4]; | |||
@@ -52,10 +51,10 @@ struct DualAtenuverter : Module { | |||
float offset2 = params[OFFSET2_PARAM].getValue(); | |||
for (int c = 0; c < channels1; c += 4) { | |||
out1[c / 4] = clamp(float_4::load(inputs[IN1_INPUT].getVoltages(c)) * att1 + offset1, -10.f, 10.f); | |||
out1[c / 4] = clamp(inputs[IN1_INPUT].getVoltageSimd<float_4>(c) * att1 + offset1, -10.f, 10.f); | |||
} | |||
for (int c = 0; c < channels2; c += 4) { | |||
out2[c / 4] = clamp(float_4::load(inputs[IN2_INPUT].getVoltages(c)) * att2 + offset2, -10.f, 10.f); | |||
out2[c / 4] = clamp(inputs[IN2_INPUT].getVoltageSimd<float_4>(c) * att2 + offset2, -10.f, 10.f); | |||
} | |||
outputs[OUT1_OUTPUT].setChannels(channels1); | |||
@@ -97,7 +96,7 @@ struct DualAtenuverter : Module { | |||
struct DualAtenuverterWidget : ModuleWidget { | |||
DualAtenuverterWidget(DualAtenuverter *module) { | |||
DualAtenuverterWidget(DualAtenuverter* module) { | |||
setModule(module); | |||
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/DualAtenuverter.svg"))); | |||
@@ -121,4 +120,4 @@ struct DualAtenuverterWidget : ModuleWidget { | |||
}; | |||
Model *modelDualAtenuverter = createModel<DualAtenuverter, DualAtenuverterWidget>("DualAtenuverter"); | |||
Model* modelDualAtenuverter = createModel<DualAtenuverter, DualAtenuverterWidget>("DualAtenuverter"); |
@@ -1,7 +1,8 @@ | |||
#include "plugin.hpp" | |||
#include "simd_input.hpp" | |||
#include "Common.hpp" | |||
using simd::float_4; | |||
struct EvenVCO : Module { | |||
enum ParamIds { | |||
OCTAVE_PARAM, | |||
@@ -26,8 +27,8 @@ struct EvenVCO : Module { | |||
NUM_OUTPUTS | |||
}; | |||
simd::float_4 phase[4]; | |||
simd::float_4 tri[4]; | |||
float_4 phase[4]; | |||
float_4 tri[4]; | |||
/** The value of the last sync input */ | |||
float sync = 0.0; | |||
@@ -51,23 +52,14 @@ struct EvenVCO : Module { | |||
configParam(PWM_PARAM, -1.0, 1.0, 0.0, "Pulse width"); | |||
for (int i = 0; i < 4; i++) { | |||
phase[i] = simd::float_4(0.0f); | |||
tri[i] = simd::float_4(0.0f); | |||
phase[i] = float_4(0.0f); | |||
tri[i] = float_4(0.0f); | |||
} | |||
for (int c = 0; c < PORT_MAX_CHANNELS; c++) | |||
halfPhase[c] = false; | |||
} | |||
void process(const ProcessArgs &args) override { | |||
simd::float_4 pitch[4]; | |||
simd::float_4 pitch_1[4]; | |||
simd::float_4 pitch_2[4]; | |||
simd::float_4 pitch_fm[4]; | |||
simd::float_4 freq[4]; | |||
simd::float_4 pw[4]; | |||
simd::float_4 pwm[4]; | |||
simd::float_4 deltaPhase[4]; | |||
simd::float_4 oldPhase[4]; | |||
void process(const ProcessArgs& args) override { | |||
int channels_pitch1 = inputs[PITCH1_INPUT].getChannels(); | |||
int channels_pitch2 = inputs[PITCH2_INPUT].getChannels(); | |||
@@ -81,56 +73,79 @@ struct EvenVCO : Module { | |||
float pitch_0 = 1.f + std::round(params[OCTAVE_PARAM].getValue()) + params[TUNE_PARAM].getValue() / 12.f; | |||
// Compute frequency, pitch is 1V/oct | |||
float_4 pitch[4]; | |||
for (int c = 0; c < channels; c += 4) | |||
pitch[c / 4] = simd::float_4(pitch_0); | |||
pitch[c / 4] = float_4(pitch_0); | |||
if (inputs[PITCH1_INPUT].isConnected()) { | |||
load_input(inputs[PITCH1_INPUT], pitch_1, channels_pitch1); | |||
for (int c = 0; c < channels_pitch1; c += 4) | |||
pitch[c / 4] += pitch_1[c / 4]; | |||
// if pitch_1 monophonic, broadcast | |||
if (channels_pitch1 == 1) { | |||
for (int c = 0; c < channels; c += 4) | |||
pitch[c / 4] += float_4(inputs[PITCH1_INPUT].getVoltage()); | |||
} | |||
else { | |||
for (int c = 0; c < std::min(channels, channels_pitch1); c += 4) | |||
pitch[c / 4] += inputs[PITCH1_INPUT].getVoltageSimd<float_4>(c); | |||
} | |||
} | |||
if (inputs[PITCH2_INPUT].isConnected()) { | |||
load_input(inputs[PITCH2_INPUT], pitch_2, channels_pitch2); | |||
for (int c = 0; c < channels_pitch2; c += 4) | |||
pitch[c / 4] += pitch_2[c / 4]; | |||
// if pitch_2 monophonic, broadcast | |||
if (channels_pitch2 == 1) { | |||
for (int c = 0; c < channels; c += 4) | |||
pitch[c / 4] += float_4(inputs[PITCH2_INPUT].getVoltage()); | |||
} | |||
else { | |||
for (int c = 0; c < std::min(channels, channels_pitch2); c += 4) | |||
pitch[c / 4] += inputs[PITCH2_INPUT].getVoltageSimd<float_4>(c); | |||
} | |||
} | |||
if (inputs[FM_INPUT].isConnected()) { | |||
load_input(inputs[FM_INPUT], pitch_fm, channels_fm); | |||
for (int c = 0; c < channels_fm; c += 4) | |||
pitch[c / 4] += pitch_fm[c / 4] / 4.f; | |||
// if FM is monophonic, broadcast | |||
if (channels_fm == 1) { | |||
for (int c = 0; c < channels; c += 4) | |||
pitch[c / 4] += float_4(inputs[FM_INPUT].getVoltage() / 4.f); | |||
} | |||
else { | |||
for (int c = 0; c < std::min(channels, channels_fm); c += 4) | |||
pitch[c / 4] += inputs[FM_INPUT].getVoltageSimd<float_4>(c) / 4.f; | |||
} | |||
} | |||
float_4 freq[4]; | |||
for (int c = 0; c < channels; c += 4) { | |||
freq[c / 4] = dsp::FREQ_C4 * simd::pow(2.f, pitch[c / 4]); | |||
freq[c / 4] = clamp(freq[c / 4], 0.f, 20000.f); | |||
} | |||
// Pulse width | |||
float pw_0 = params[PWM_PARAM].getValue(); | |||
float_4 pw[4]; | |||
for (int c = 0; c < channels; c += 4) | |||
pw[c / 4] = simd::float_4(pw_0); | |||
pw[c / 4] = float_4(pw_0); | |||
if (inputs[PWM_INPUT].isConnected()) { | |||
load_input(inputs[PWM_INPUT], pwm, channels_pwm); | |||
for (int c = 0; c < channels_pwm; c += 4) | |||
pw[c / 4] += pwm[c / 4] / 5.f; | |||
if (channels_pwm == 1) { | |||
for (int c = 0; c < channels; c += 4) | |||
pw[c / 4] += float_4(inputs[PWM_INPUT].getVoltage() / 5.f); | |||
} | |||
else { | |||
for (int c = 0; c < std::min(channels, channels_pwm); c += 4) | |||
pw[c / 4] += inputs[PWM_INPUT].getVoltageSimd<float_4>(c) / 5.f; | |||
} | |||
} | |||
const simd::float_4 minPw_4 = simd::float_4(0.05f); | |||
const simd::float_4 m_one_4 = simd::float_4(-1.0f); | |||
const simd::float_4 one_4 = simd::float_4(1.0f); | |||
const float_4 minPw_4 = float_4(0.05f); | |||
const float_4 m_one_4 = float_4(-1.0f); | |||
const float_4 one_4 = float_4(1.0f); | |||
float_4 deltaPhase[4]; | |||
float_4 oldPhase[4]; | |||
for (int c = 0; c < channels; c += 4) { | |||
pw[c / 4] = rescale(clamp(pw[c / 4], m_one_4, one_4), m_one_4, one_4, minPw_4, one_4 - minPw_4); | |||
// Advance phase | |||
deltaPhase[c / 4] = clamp(freq[c / 4] * args.sampleTime, simd::float_4(1e-6f), simd::float_4(0.5f)); | |||
deltaPhase[c / 4] = clamp(freq[c / 4] * args.sampleTime, float_4(1e-6f), float_4(0.5f)); | |||
oldPhase[c / 4] = phase[c / 4]; | |||
phase[c / 4] += deltaPhase[c / 4]; | |||
} | |||
@@ -163,19 +178,19 @@ struct EvenVCO : Module { | |||
} | |||
} | |||
simd::float_4 triSquareMinBlepOut[4]; | |||
simd::float_4 doubleSawMinBlepOut[4]; | |||
simd::float_4 sawMinBlepOut[4]; | |||
simd::float_4 squareMinBlepOut[4]; | |||
float_4 triSquareMinBlepOut[4]; | |||
float_4 doubleSawMinBlepOut[4]; | |||
float_4 sawMinBlepOut[4]; | |||
float_4 squareMinBlepOut[4]; | |||
simd::float_4 triSquare[4]; | |||
simd::float_4 sine[4]; | |||
simd::float_4 doubleSaw[4]; | |||
float_4 triSquare[4]; | |||
float_4 sine[4]; | |||
float_4 doubleSaw[4]; | |||
simd::float_4 even[4]; | |||
simd::float_4 saw[4]; | |||
simd::float_4 square[4]; | |||
simd::float_4 triOut[4]; | |||
float_4 even[4]; | |||
float_4 saw[4]; | |||
float_4 square[4]; | |||
float_4 triOut[4]; | |||
for (int c = 0; c < channels; c++) { | |||
triSquareMinBlepOut[c / 4].s[c % 4] = triSquareMinBlep[c].process(); | |||
@@ -231,7 +246,7 @@ struct EvenVCO : Module { | |||
struct EvenVCOWidget : ModuleWidget { | |||
EvenVCOWidget(EvenVCO *module) { | |||
EvenVCOWidget(EvenVCO* module) { | |||
setModule(module); | |||
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/EvenVCO.svg"))); | |||
@@ -260,4 +275,4 @@ struct EvenVCOWidget : ModuleWidget { | |||
}; | |||
Model *modelEvenVCO = createModel<EvenVCO, EvenVCOWidget>("EvenVCO"); | |||
Model* modelEvenVCO = createModel<EvenVCO, EvenVCOWidget>("EvenVCO"); |
@@ -1,6 +1,7 @@ | |||
#include "plugin.hpp" | |||
#include "Common.hpp" | |||
#include "simd_input.hpp" | |||
using simd::float_4; | |||
struct Mixer : Module { | |||
enum ParamIds { | |||
@@ -37,7 +38,7 @@ struct Mixer : Module { | |||
configParam(CH4_PARAM, 0.0, 1.0, 0.0, "Ch 4 level", "%", 0, 100); | |||
} | |||
void process(const ProcessArgs &args) override { | |||
void process(const ProcessArgs& args) override { | |||
int channels1 = inputs[IN1_INPUT].getChannels(); | |||
int channels2 = inputs[IN2_INPUT].getChannels(); | |||
int channels3 = inputs[IN3_INPUT].getChannels(); | |||
@@ -49,37 +50,35 @@ struct Mixer : Module { | |||
out_channels = std::max(out_channels, channels3); | |||
out_channels = std::max(out_channels, channels4); | |||
simd::float_4 mult1 = simd::float_4(params[CH1_PARAM].getValue()); | |||
simd::float_4 mult2 = simd::float_4(params[CH2_PARAM].getValue()); | |||
simd::float_4 mult3 = simd::float_4(params[CH3_PARAM].getValue()); | |||
simd::float_4 mult4 = simd::float_4(params[CH4_PARAM].getValue()); | |||
float_4 mult1 = float_4(params[CH1_PARAM].getValue()); | |||
float_4 mult2 = float_4(params[CH2_PARAM].getValue()); | |||
float_4 mult3 = float_4(params[CH3_PARAM].getValue()); | |||
float_4 mult4 = float_4(params[CH4_PARAM].getValue()); | |||
simd::float_4 out[4]; | |||
float_4 out[4]; | |||
std::memset(out, 0, sizeof(out)); | |||
if (inputs[IN1_INPUT].isConnected()) { | |||
for (int c = 0; c < channels1; c += 4) | |||
out[c / 4] += simd::float_4::load(inputs[IN1_INPUT].getVoltages(c)) * mult1; | |||
out[c / 4] += inputs[IN1_INPUT].getVoltageSimd<float_4>(c) * mult1; | |||
} | |||
if (inputs[IN2_INPUT].isConnected()) { | |||
for (int c = 0; c < channels2; c += 4) | |||
out[c / 4] += simd::float_4::load(inputs[IN2_INPUT].getVoltages(c)) * mult2; | |||
out[c / 4] += inputs[IN2_INPUT].getVoltageSimd<float_4>(c) * mult2; | |||
} | |||
if (inputs[IN3_INPUT].isConnected()) { | |||
for (int c = 0; c < channels3; c += 4) | |||
out[c / 4] += simd::float_4::load(inputs[IN3_INPUT].getVoltages(c)) * mult3; | |||
out[c / 4] += inputs[IN3_INPUT].getVoltageSimd<float_4>(c) * mult3; | |||
} | |||
if (inputs[IN4_INPUT].isConnected()) { | |||
for (int c = 0; c < channels4; c += 4) | |||
out[c / 4] += simd::float_4::load(inputs[IN4_INPUT].getVoltages(c)) * mult4; | |||
out[c / 4] += inputs[IN4_INPUT].getVoltageSimd<float_4>(c) * mult4; | |||
} | |||
outputs[OUT1_OUTPUT].setChannels(out_channels); | |||
outputs[OUT2_OUTPUT].setChannels(out_channels); | |||
@@ -105,13 +104,12 @@ struct Mixer : Module { | |||
lights[OUT_NEG_LIGHT].setBrightness(0.0f); | |||
lights[OUT_BLUE_LIGHT].setSmoothBrightness(light / 5.f, args.sampleTime); | |||
} | |||
} | |||
}; | |||
struct MixerWidget : ModuleWidget { | |||
MixerWidget(Mixer *module) { | |||
MixerWidget(Mixer* module) { | |||
setModule(module); | |||
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/Mixer.svg"))); | |||
@@ -137,4 +135,4 @@ struct MixerWidget : ModuleWidget { | |||
}; | |||
Model *modelMixer = createModel<Mixer, MixerWidget>("Mixer"); | |||
Model* modelMixer = createModel<Mixer, MixerWidget>("Mixer"); |
@@ -1,16 +1,17 @@ | |||
#include "plugin.hpp" | |||
#include "Common.hpp" | |||
#include "simd_input.hpp" | |||
#include "PulseGenerator_4.hpp" | |||
static simd::float_4 shapeDelta(simd::float_4 delta, simd::float_4 tau, float shape) { | |||
simd::float_4 lin = simd::sgn(delta) * 10.f / tau; | |||
using simd::float_4; | |||
static float_4 shapeDelta(float_4 delta, float_4 tau, float shape) { | |||
float_4 lin = simd::sgn(delta) * 10.f / tau; | |||
if (shape < 0.f) { | |||
simd::float_4 log = simd::sgn(delta) * simd::float_4(40.f) / tau / (simd::fabs(delta) + simd::float_4(1.f)); | |||
float_4 log = simd::sgn(delta) * float_4(40.f) / tau / (simd::fabs(delta) + float_4(1.f)); | |||
return simd::crossfade(lin, log, -shape * 0.95f); | |||
} | |||
else { | |||
simd::float_4 exp = M_E * delta / tau; | |||
float_4 exp = M_E * delta / tau; | |||
return simd::crossfade(lin, exp, shape * 0.90f); | |||
} | |||
} | |||
@@ -75,10 +76,10 @@ struct Rampage : Module { | |||
}; | |||
simd::float_4 out[2][4]; | |||
simd::float_4 gate[2][4]; // use simd __m128 logic instead of bool | |||
float_4 out[2][4]; | |||
float_4 gate[2][4]; // use simd __m128 logic instead of bool | |||
dsp::TSchmittTrigger<simd::float_4> trigger_4[2][4]; | |||
dsp::TSchmittTrigger<float_4> trigger_4[2][4]; | |||
PulseGenerator_4 endOfCyclePulse[2][4]; | |||
// ChannelMask channelMask; | |||
@@ -103,10 +104,10 @@ struct Rampage : Module { | |||
std::memset(gate, 0, sizeof(gate)); | |||
} | |||
void process(const ProcessArgs &args) override { | |||
void process(const ProcessArgs& args) override { | |||
int channels_in[2]; | |||
int channels_trig[2]; | |||
int channels[2]; | |||
int channels[2]; // the larger of in or trig (per-part) | |||
// determine number of channels: | |||
@@ -122,25 +123,25 @@ struct Rampage : Module { | |||
outputs[FALLING_A_OUTPUT + part].setChannels(channels[part]); | |||
outputs[EOC_A_OUTPUT + part].setChannels(channels[part]); | |||
} | |||
int channels_max = std::max(channels[0], channels[1]); | |||
// total number of active polyphony engines, accounting for both halves | |||
// (channels[0] / channels[1] are the number of active engines per section) | |||
const int channels_max = std::max(channels[0], channels[1]); | |||
outputs[COMPARATOR_OUTPUT].setChannels(channels_max); | |||
outputs[MIN_OUTPUT].setChannels(channels_max); | |||
outputs[MAX_OUTPUT].setChannels(channels_max); | |||
// loop over two parts of Rampage: | |||
for (int part = 0; part < 2; part++) { | |||
simd::float_4 in[4]; | |||
simd::float_4 in_trig[4]; | |||
simd::float_4 expCV[4]; | |||
simd::float_4 riseCV[4]; | |||
simd::float_4 fallCV[4]; | |||
simd::float_4 cycle[4]; | |||
float_4 in[4]; | |||
float_4 in_trig[4]; | |||
float_4 riseCV[4]; | |||
float_4 fallCV[4]; | |||
float_4 cycle[4]; | |||
// get parameters: | |||
float shape = params[SHAPE_A_PARAM + part].getValue(); | |||
float minTime; | |||
switch ((int) params[RANGE_A_PARAM + part].getValue()) { | |||
@@ -155,91 +156,142 @@ struct Rampage : Module { | |||
break; | |||
} | |||
simd::float_4 param_rise = simd::float_4(params[RISE_A_PARAM + part].getValue() * 10.0f); | |||
simd::float_4 param_fall = simd::float_4(params[FALL_A_PARAM + part].getValue() * 10.0f); | |||
simd::float_4 param_trig = simd::float_4(params[TRIGG_A_PARAM + part].getValue() * 20.0f); | |||
simd::float_4 param_cycle = simd::float_4(params[CYCLE_A_PARAM + part].getValue() * 10.0f); | |||
float_4 param_rise = float_4(params[RISE_A_PARAM + part].getValue() * 10.0f); | |||
float_4 param_fall = float_4(params[FALL_A_PARAM + part].getValue() * 10.0f); | |||
float_4 param_trig = float_4(params[TRIGG_A_PARAM + part].getValue() * 20.0f); | |||
float_4 param_cycle = float_4(params[CYCLE_A_PARAM + part].getValue() * 10.0f); | |||
for (int c = 0; c < channels[part]; c += 4) { | |||
riseCV[c / 4] = param_rise; | |||
fallCV[c / 4] = param_fall; | |||
cycle[c / 4] = param_cycle; | |||
in_trig[c / 4] = param_trig; | |||
} | |||
// read inputs: | |||
if (inputs[IN_A_INPUT + part].isConnected()) { | |||
load_input(inputs[IN_A_INPUT + part], in, channels_in[part]); | |||
// channelMask.apply_all(in, channels_in[part]); | |||
// if IN_<A,B>_INPUT is monophonic, broadcast to the active number of engines (channels[part]) | |||
if (inputs[IN_A_INPUT + part].getChannels() == 1) { | |||
for (int c = 0; c < channels[part]; c += 4) | |||
in[c / 4] = float_4(inputs[IN_A_INPUT + part].getVoltage()); | |||
} | |||
else { | |||
for (int c = 0; c < channels[part]; c += 4) | |||
in[c / 4] = inputs[IN_A_INPUT + part].getVoltageSimd<float_4>(c); | |||
} | |||
} | |||
else { | |||
std::memset(in, 0, sizeof(in)); | |||
} | |||
if (inputs[TRIGG_A_INPUT + part].isConnected()) { | |||
add_input(inputs[TRIGG_A_INPUT + part], in_trig, channels_trig[part]); | |||
// channelMask.apply_all(in_trig, channels_trig[part]); | |||
// if TRIGG_<A,B>_INPUT is monophonic, broadcast to the active number of engines (channels[part]) | |||
if (inputs[TRIGG_A_INPUT + part].getChannels() == 1) { | |||
for (int c = 0; c < channels[part]; c += 4) | |||
in_trig[c / 4] += float_4(inputs[TRIGG_A_INPUT + part].getVoltage()); | |||
} | |||
else { | |||
for (int c = 0; c < channels[part]; c += 4) | |||
in_trig[c / 4] += inputs[TRIGG_A_INPUT + part].getVoltageSimd<float_4>(c); | |||
} | |||
} | |||
if (inputs[EXP_CV_A_INPUT + part].isConnected()) { | |||
load_input(inputs[EXP_CV_A_INPUT + part], expCV, channels[part]); | |||
float_4 expCV[4]; | |||
int expCVChannels = inputs[EXP_CV_A_INPUT + part].getChannels(); | |||
// if EXP_CV_<A,B>_INPUT is monophonic, broadcast to the active number of engines (channels[part]) | |||
if (expCVChannels == 1) { | |||
for (int c = 0; c < channels[part]; c += 4) | |||
expCV[c / 4] = float_4(inputs[EXP_CV_A_INPUT + part].getVoltage()); | |||
} | |||
else { | |||
// otherwise read in the polyphonic expCV data, either to the number of active engines (channels[part]) | |||
// or the number of channels of expCV, whichever is smaller | |||
for (int c = 0; c < std::min(channels[part], expCVChannels); c += 4) | |||
expCV[c / 4] = inputs[EXP_CV_A_INPUT + part].getVoltageSimd<float_4>(c); | |||
} | |||
for (int c = 0; c < channels[part]; c += 4) { | |||
riseCV[c / 4] -= expCV[c / 4]; | |||
fallCV[c / 4] -= expCV[c / 4]; | |||
} | |||
} | |||
add_input(inputs[RISE_CV_A_INPUT + part], riseCV, channels[part]); | |||
add_input(inputs[FALL_CV_A_INPUT + part], fallCV, channels[part]); | |||
add_input(inputs[CYCLE_A_INPUT + part], cycle, channels[part]); | |||
// channelMask.apply(cycle, channels[part]); // check whether this is necessary | |||
const int riseCVChannels = inputs[RISE_CV_A_INPUT + part].getChannels(); | |||
// if EXP_CV_<A,B>_INPUT is monophonic, broadcast to the active number of engines (channels[part]) | |||
if (riseCVChannels == 1) { | |||
for (int c = 0; c < channels[part]; c += 4) | |||
riseCV[c / 4] += float_4(inputs[RISE_CV_A_INPUT + part].getVoltage()); | |||
} | |||
else { | |||
// otherwise read in the polyphonic rise CV data, either to the number of active engines (channels[part]) | |||
// or the number of channels of expCV, whichever is smaller | |||
for (int c = 0; c < std::min(channels[part], riseCVChannels); c += 4) | |||
riseCV[c / 4] += inputs[RISE_CV_A_INPUT + part].getVoltageSimd<float_4>(c); | |||
} | |||
const int fallCVChannels = inputs[FALL_CV_A_INPUT + part].getChannels(); | |||
if (fallCVChannels == 1) { | |||
for (int c = 0; c < channels[part]; c += 4) | |||
fallCV[c / 4] += float_4(inputs[FALL_CV_A_INPUT + part].getVoltage()); | |||
} | |||
else { | |||
for (int c = 0; c < std::min(channels[part], fallCVChannels); c += 4) | |||
fallCV[c / 4] += inputs[FALL_CV_A_INPUT + part].getVoltageSimd<float_4>(c); | |||
} | |||
// start processing: | |||
const int cycleChannels = inputs[CYCLE_A_INPUT + part].getChannels(); | |||
if (cycleChannels == 1) { | |||
for (int c = 0; c < channels[part]; c += 4) | |||
cycle[c / 4] += float_4(inputs[CYCLE_A_INPUT + part].getVoltage()); | |||
} | |||
else { | |||
for (int c = 0; c < std::min(channels[part], cycleChannels); c += 4) | |||
cycle[c / 4] += inputs[CYCLE_A_INPUT + part].getVoltageSimd<float_4>(c); | |||
} | |||
// start processing: | |||
for (int c = 0; c < channels[part]; c += 4) { | |||
// process SchmittTriggers | |||
simd::float_4 trig_mask = trigger_4[part][c / 4].process(in_trig[c / 4] / 2.0); | |||
gate[part][c / 4] = ifelse(trig_mask, simd::float_4::mask(), gate[part][c / 4]); | |||
in[c / 4] = ifelse(gate[part][c / 4], simd::float_4(10.0f), in[c / 4]); | |||
float_4 trig_mask = trigger_4[part][c / 4].process(in_trig[c / 4] / 2.0); | |||
gate[part][c / 4] = ifelse(trig_mask, float_4::mask(), gate[part][c / 4]); | |||
in[c / 4] = ifelse(gate[part][c / 4], float_4(10.0f), in[c / 4]); | |||
simd::float_4 delta = in[c / 4] - out[part][c / 4]; | |||
float_4 delta = in[c / 4] - out[part][c / 4]; | |||
// rise / fall branching | |||
simd::float_4 delta_gt_0 = delta > simd::float_4::zero(); | |||
simd::float_4 delta_lt_0 = delta < simd::float_4::zero(); | |||
simd::float_4 delta_eq_0 = ~(delta_lt_0 | delta_gt_0); | |||
float_4 delta_gt_0 = delta > float_4::zero(); | |||
float_4 delta_lt_0 = delta < float_4::zero(); | |||
float_4 delta_eq_0 = ~(delta_lt_0 | delta_gt_0); | |||
simd::float_4 rateCV = ifelse(delta_gt_0, riseCV[c / 4], simd::float_4::zero()); | |||
float_4 rateCV = ifelse(delta_gt_0, riseCV[c / 4], float_4::zero()); | |||
rateCV = ifelse(delta_lt_0, fallCV[c / 4], rateCV); | |||
rateCV = clamp(rateCV, simd::float_4::zero(), simd::float_4(10.0f)); | |||
rateCV = clamp(rateCV, float_4::zero(), float_4(10.0f)); | |||
simd::float_4 rate = minTime * simd::pow(2.0f, rateCV); | |||
float_4 rate = minTime * simd::pow(2.0f, rateCV); | |||
out[part][c / 4] += shapeDelta(delta, rate, shape) * args.sampleTime; | |||
simd::float_4 rising = (in[c / 4] - out[part][c / 4]) > simd::float_4(1e-3); | |||
simd::float_4 falling = (in[c / 4] - out[part][c / 4]) < simd::float_4(-1e-3); | |||
simd::float_4 end_of_cycle = simd::andnot(falling, delta_lt_0); | |||
float_4 rising = (in[c / 4] - out[part][c / 4]) > float_4(1e-3); | |||
float_4 falling = (in[c / 4] - out[part][c / 4]) < float_4(-1e-3); | |||
float_4 end_of_cycle = simd::andnot(falling, delta_lt_0); | |||
endOfCyclePulse[part][c / 4].trigger(end_of_cycle, 1e-3); | |||
gate[part][c / 4] = ifelse(simd::andnot(rising, delta_gt_0), simd::float_4::zero(), gate[part][c / 4]); | |||
gate[part][c / 4] = ifelse(end_of_cycle & (cycle[c / 4] >= simd::float_4(4.0f)), simd::float_4::mask(), gate[part][c / 4]); | |||
gate[part][c / 4] = ifelse(delta_eq_0, simd::float_4::zero(), gate[part][c / 4]); | |||
gate[part][c / 4] = ifelse(simd::andnot(rising, delta_gt_0), float_4::zero(), gate[part][c / 4]); | |||
gate[part][c / 4] = ifelse(end_of_cycle & (cycle[c / 4] >= float_4(4.0f)), float_4::mask(), gate[part][c / 4]); | |||
gate[part][c / 4] = ifelse(delta_eq_0, float_4::zero(), gate[part][c / 4]); | |||
out[part][c / 4] = ifelse(rising | falling, out[part][c / 4], in[c / 4]); | |||
simd::float_4 out_rising = ifelse(rising, simd::float_4(10.0f), simd::float_4::zero()); | |||
simd::float_4 out_falling = ifelse(falling, simd::float_4(10.0f), simd::float_4::zero()); | |||
float_4 out_rising = ifelse(rising, float_4(10.0f), float_4::zero()); | |||
float_4 out_falling = ifelse(falling, float_4(10.0f), float_4::zero()); | |||
simd::float_4 pulse = endOfCyclePulse[part][c / 4].process(args.sampleTime); | |||
simd::float_4 out_EOC = ifelse(pulse, simd::float_4(10.f), simd::float_4::zero()); | |||
float_4 pulse = endOfCyclePulse[part][c / 4].process(args.sampleTime); | |||
float_4 out_EOC = ifelse(pulse, float_4(10.f), float_4::zero()); | |||
out[part][c / 4].store(outputs[OUT_A_OUTPUT + part].getVoltages(c)); | |||
@@ -247,7 +299,6 @@ struct Rampage : Module { | |||
out_falling.store(outputs[FALLING_A_OUTPUT + part].getVoltages(c)); | |||
out_EOC.store(outputs[EOC_A_OUTPUT + part].getVoltages(c)); | |||
} // for(int c, ...) | |||
if (channels[part] == 1) { | |||
@@ -281,17 +332,17 @@ struct Rampage : Module { | |||
for (int c = 0; c < channels_max; c += 4) { | |||
simd::float_4 a = out[0][c / 4]; | |||
simd::float_4 b = out[1][c / 4]; | |||
float_4 a = out[0][c / 4]; | |||
float_4 b = out[1][c / 4]; | |||
if (balance < 0.5) | |||
b *= 2.0f * balance; | |||
else if (balance > 0.5) | |||
a *= 2.0f * (1.0 - balance); | |||
simd::float_4 comp = ifelse(b > a, simd::float_4(10.0f), simd::float_4::zero()); | |||
simd::float_4 out_min = simd::fmin(a, b); | |||
simd::float_4 out_max = simd::fmax(a, b); | |||
float_4 comp = ifelse(b > a, float_4(10.0f), float_4::zero()); | |||
float_4 out_min = simd::fmin(a, b); | |||
float_4 out_max = simd::fmax(a, b); | |||
comp.store(outputs[COMPARATOR_OUTPUT].getVoltages(c)); | |||
out_min.store(outputs[MIN_OUTPUT].getVoltages(c)); | |||
@@ -325,10 +376,8 @@ struct Rampage : Module { | |||
}; | |||
struct RampageWidget : ModuleWidget { | |||
RampageWidget(Rampage *module) { | |||
RampageWidget(Rampage* module) { | |||
setModule(module); | |||
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/Rampage.svg"))); | |||
@@ -389,4 +438,4 @@ struct RampageWidget : ModuleWidget { | |||
}; | |||
Model *modelRampage = createModel<Rampage, RampageWidget>("Rampage"); | |||
Model* modelRampage = createModel<Rampage, RampageWidget>("Rampage"); |
@@ -1,6 +1,7 @@ | |||
#include "plugin.hpp" | |||
#include "Common.hpp" | |||
#include "simd_input.hpp" | |||
using simd::float_4; | |||
struct SlewLimiter : Module { | |||
enum ParamIds { | |||
@@ -20,7 +21,7 @@ struct SlewLimiter : Module { | |||
NUM_OUTPUTS | |||
}; | |||
simd::float_4 out[4]; | |||
float_4 out[4]; | |||
SlewLimiter() { | |||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS); | |||
@@ -31,14 +32,14 @@ struct SlewLimiter : Module { | |||
memset(out, 0, sizeof(out)); | |||
} | |||
void process(const ProcessArgs &args) override { | |||
simd::float_4 in[4]; | |||
simd::float_4 riseCV[4]; | |||
simd::float_4 fallCV[4]; | |||
void process(const ProcessArgs& args) override { | |||
int channels = inputs[IN_INPUT].getChannels(); | |||
float_4 in[4] = {0.f}; | |||
float_4 riseCV[4] = {0.f}; | |||
float_4 fallCV[4] = {0.f}; | |||
// this is the number of active polyphony engines, defined by the input | |||
int numPolyphonyEngines = inputs[IN_INPUT].getChannels(); | |||
// minimum and std::maximum slopes in volts per second | |||
const float slewMin = 0.1; | |||
@@ -46,32 +47,45 @@ struct SlewLimiter : Module { | |||
// Amount of extra slew per voltage difference | |||
const float shapeScale = 1 / 10.f; | |||
const simd::float_4 shape = simd::float_4(params[SHAPE_PARAM].getValue()); | |||
const simd::float_4 param_rise = simd::float_4(params[RISE_PARAM].getValue() * 10.f); | |||
const simd::float_4 param_fall = simd::float_4(params[FALL_PARAM].getValue() * 10.f); | |||
outputs[OUT_OUTPUT].setChannels(channels); | |||
const float_4 shape = float_4(params[SHAPE_PARAM].getValue()); | |||
const float_4 param_rise = float_4(params[RISE_PARAM].getValue() * 10.f); | |||
const float_4 param_fall = float_4(params[FALL_PARAM].getValue() * 10.f); | |||
outputs[OUT_OUTPUT].setChannels(numPolyphonyEngines); | |||
for (int c = 0; c < numPolyphonyEngines; c += 4) { | |||
in[c / 4] = inputs[IN_INPUT].getVoltageSimd<float_4>(c); | |||
if (inputs[RISE_INPUT].isConnected()) { | |||
if (inputs[RISE_INPUT].getChannels() == 1) { | |||
riseCV[c / 4] = float_4(inputs[RISE_INPUT].getVoltage()); | |||
} | |||
else { | |||
riseCV[c / 4] = inputs[RISE_INPUT].getVoltageSimd<float_4>(c); | |||
} | |||
} | |||
if (inputs[FALL_INPUT].isConnected()) { | |||
if (inputs[FALL_INPUT].getChannels() == 1) { | |||
fallCV[c / 4] = float_4(inputs[FALL_INPUT].getVoltage()); | |||
} | |||
else { | |||
fallCV[c / 4] = inputs[FALL_INPUT].getVoltageSimd<float_4>(c); | |||
} | |||
} | |||
load_input(inputs[IN_INPUT], in, channels); | |||
load_input(inputs[RISE_INPUT], riseCV, channels); | |||
load_input(inputs[FALL_INPUT], fallCV, channels); | |||
for (int c = 0; c < channels; c += 4) { | |||
riseCV[c / 4] += param_rise; | |||
fallCV[c / 4] += param_fall; | |||
simd::float_4 delta = in[c / 4] - out[c / 4]; | |||
simd::float_4 delta_gt_0 = delta > simd::float_4::zero(); | |||
simd::float_4 delta_lt_0 = delta < simd::float_4::zero(); | |||
float_4 delta = in[c / 4] - out[c / 4]; | |||
float_4 delta_gt_0 = delta > float_4::zero(); | |||
float_4 delta_lt_0 = delta < float_4::zero(); | |||
simd::float_4 rateCV; | |||
rateCV = ifelse(delta_gt_0, riseCV[c / 4], simd::float_4::zero()); | |||
float_4 rateCV; | |||
rateCV = ifelse(delta_gt_0, riseCV[c / 4], float_4::zero()); | |||
rateCV = ifelse(delta_lt_0, fallCV[c / 4], rateCV) * 0.1f; | |||
simd::float_4 pm_one = simd::sgn(delta); | |||
simd::float_4 slew = slewMax * simd::pow(simd::float_4(slewMin / slewMax), rateCV); | |||
float_4 pm_one = simd::sgn(delta); | |||
float_4 slew = slewMax * simd::pow(float_4(slewMin / slewMax), rateCV); | |||
out[c / 4] += slew * simd::crossfade(pm_one, shapeScale * delta, shape) * args.sampleTime; | |||
out[c / 4] = ifelse(delta_gt_0 & (out[c / 4] > in[c / 4]), in[c / 4], out[c / 4]); | |||
@@ -84,7 +98,7 @@ struct SlewLimiter : Module { | |||
struct SlewLimiterWidget : ModuleWidget { | |||
SlewLimiterWidget(::SlewLimiter *module) { | |||
SlewLimiterWidget(SlewLimiter* module) { | |||
setModule(module); | |||
setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/SlewLimiter.svg"))); | |||
@@ -105,4 +119,4 @@ struct SlewLimiterWidget : ModuleWidget { | |||
}; | |||
Model *modelSlewLimiter = createModel<::SlewLimiter, SlewLimiterWidget>("SlewLimiter"); | |||
Model* modelSlewLimiter = createModel<::SlewLimiter, SlewLimiterWidget>("SlewLimiter"); |
@@ -1,28 +0,0 @@ | |||
#pragma once | |||
#include "rack.hpp" | |||
inline void load_input(Input &in, simd::float_4 *v, int numChannels) { | |||
int inChannels = in.getChannels(); | |||
if (inChannels == 1) { | |||
for (int i = 0; i < numChannels; i++) | |||
v[i] = simd::float_4(in.getVoltage()); | |||
} | |||
else { | |||
for (int c = 0; c < inChannels; c += 4) | |||
v[c / 4] = simd::float_4::load(in.getVoltages(c)); | |||
} | |||
} | |||
inline void add_input(Input &in, simd::float_4 *v, int numChannels) { | |||
int inChannels = in.getChannels(); | |||
if (inChannels == 1) { | |||
for (int i = 0; i < numChannels; i++) | |||
v[i] += simd::float_4(in.getVoltage()); | |||
} | |||
else { | |||
for (int c = 0; c < inChannels; c += 4) | |||
v[c / 4] += simd::float_4::load(in.getVoltages(c)); | |||
} | |||
} |