Browse Source

Initial commit

tags/v0.4.0
Andrew Belt 8 years ago
commit
00ef3ee41d
10 changed files with 895 additions and 0 deletions
  1. +11
    -0
      LICENSE.txt
  2. +29
    -0
      Makefile
  3. +103
    -0
      src/ABC.cpp
  4. +21
    -0
      src/Befaco.cpp
  5. +34
    -0
      src/Befaco.hpp
  6. +170
    -0
      src/EvenVCO.cpp
  7. +81
    -0
      src/Mixer.cpp
  8. +50
    -0
      src/Rampage.cpp
  9. +91
    -0
      src/SlewLimiter.cpp
  10. +305
    -0
      src/SpringReverb.cpp

+ 11
- 0
LICENSE.txt View File

@@ -0,0 +1,11 @@
Copyright 2016 Andrew Belt

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

+ 29
- 0
Makefile View File

@@ -0,0 +1,29 @@
ARCH ?= lin
FLAGS = -fPIC -g -Wall -O3 -msse -mfpmath=sse -ffast-math \
-I../../include -I./pffft -DPFFFT_SIMD_DISABLE
LDFLAGS =

SOURCES = $(wildcard src/*.cpp) pffft/pffft.c


ifeq ($(ARCH), lin)
LDFLAGS += -shared
TARGET = plugin.so
endif

ifeq ($(ARCH), mac)
LDFLAGS += -shared -undefined dynamic_lookup
TARGET = plugin.dylib
endif

ifeq ($(ARCH), win)
LDFLAGS += -shared -L../../ -lRack
TARGET = plugin.dll
endif

all: $(TARGET)

clean:
rm -rfv build $(TARGET)

include ../../Makefile.inc

+ 103
- 0
src/ABC.cpp View File

@@ -0,0 +1,103 @@
#include "Befaco.hpp"


struct ABC : Module {
enum ParamIds {
B1_LEVEL_PARAM,
C1_LEVEL_PARAM,
B2_LEVEL_PARAM,
C2_LEVEL_PARAM,
NUM_PARAMS
};
enum InputIds {
A1_INPUT,
B1_INPUT,
C1_INPUT,
A2_INPUT,
B2_INPUT,
C2_INPUT,
NUM_INPUTS
};
enum OutputIds {
OUT1_OUTPUT,
OUT2_OUTPUT,
NUM_OUTPUTS
};

float lights[2] = {};

ABC();
void step();
};


ABC::ABC() {
params.resize(NUM_PARAMS);
inputs.resize(NUM_INPUTS);
outputs.resize(NUM_OUTPUTS);
}

inline
float clip(float x) {
x = clampf(x, -2.0, 2.0);
return x / powf(1.0 + powf(x, 24.0), 1/24.0);
}

void ABC::step() {
float a1 = getf(inputs[A1_INPUT]);
float b1 = getf(inputs[B1_INPUT], 5.0) * 2.0*exponentialBipolar(80.0, params[B1_LEVEL_PARAM]);
float c1 = getf(inputs[C1_INPUT], 10.0) * exponentialBipolar(80.0, params[C1_LEVEL_PARAM]);
float out1 = a1 * b1 / 5.0 + c1;

float a2 = getf(inputs[A2_INPUT]);
float b2 = getf(inputs[B2_INPUT], 5.0) * 2.0*exponentialBipolar(80.0, params[B2_LEVEL_PARAM]);
float c2 = getf(inputs[C2_INPUT], 20.0) * exponentialBipolar(80.0, params[C2_LEVEL_PARAM]);
float out2 = a2 * b2 / 5.0 + c2;

// Set outputs
if (outputs[OUT1_OUTPUT]) {
*outputs[OUT1_OUTPUT] = clip(out1 / 10.0) * 10.0;
}
else {
out2 += out1;
}
if (outputs[OUT2_OUTPUT]) {
*outputs[OUT2_OUTPUT] = clip(out2 / 10.0) * 10.0;
}
lights[0] = out1 / 5.0;
lights[1] = out2 / 5.0;
}


ABCWidget::ABCWidget() {
ABC *module = new ABC();
setModule(module);
box.size = Vec(15*6, 380);

{
Panel *panel = new DarkPanel();
panel->box.size = box.size;
panel->backgroundImage = Image::load("plugins/Befaco/res/ABC.png");
addChild(panel);
}

addChild(createScrew<BlackScrew>(Vec(15, 0)));
addChild(createScrew<BlackScrew>(Vec(15, 365)));

addParam(createParam<Davies1900hRedKnob>(Vec(44, 37), module, ABC::B1_LEVEL_PARAM, -1.0, 1.0, 0.0));
addParam(createParam<Davies1900hWhiteKnob>(Vec(44, 107), module, ABC::C1_LEVEL_PARAM, -1.0, 1.0, 0.0));
addParam(createParam<Davies1900hRedKnob>(Vec(44, 204), module, ABC::B2_LEVEL_PARAM, -1.0, 1.0, 0.0));
addParam(createParam<Davies1900hWhiteKnob>(Vec(44, 274), module, ABC::C2_LEVEL_PARAM, -1.0, 1.0, 0.0));

addInput(createInput<PJ3410Port>(Vec(2, 24), module, ABC::A1_INPUT));
addInput(createInput<PJ3410Port>(Vec(2, 66), module, ABC::B1_INPUT));
addInput(createInput<PJ3410Port>(Vec(2, 108), module, ABC::C1_INPUT));
addOutput(createOutput<PJ3410Port>(Vec(2, 150), module, ABC::OUT1_OUTPUT));
addInput(createInput<PJ3410Port>(Vec(2, 191), module, ABC::A2_INPUT));
addInput(createInput<PJ3410Port>(Vec(2, 233), module, ABC::B2_INPUT));
addInput(createInput<PJ3410Port>(Vec(2, 275), module, ABC::C2_INPUT));
addOutput(createOutput<PJ3410Port>(Vec(2, 317), module, ABC::OUT2_OUTPUT));

addChild(createValueLight<SmallLight<GreenRedPolarityLight>>(Vec(38, 162), &module->lights[0]));
addChild(createValueLight<SmallLight<GreenRedPolarityLight>>(Vec(38, 329), &module->lights[1]));
}

+ 21
- 0
src/Befaco.cpp View File

@@ -0,0 +1,21 @@
#include "Befaco.hpp"


struct BefacoPlugin : Plugin {
BefacoPlugin() {
slug = "Befaco";
name = "Befaco";
createModel<EvenVCOWidget>(this, "EvenVCO", "EvenVCO");
// createModel<RampageWidget>(this, "Rampage", "Rampage");
createModel<ABCWidget>(this, "ABC", "A*B+C");
createModel<SpringReverbWidget>(this, "SpringReverb", "Spring Reverb");
createModel<MixerWidget>(this, "Mixer", "Mixer");
createModel<SlewLimiterWidget>(this, "SlewLimiter", "Slew Limiter");
}
};


Plugin *init() {
springReverbInit();
return new BefacoPlugin();
}

+ 34
- 0
src/Befaco.hpp View File

@@ -0,0 +1,34 @@
#include "rack.hpp"


using namespace rack;

void springReverbInit();

////////////////////
// module widgets
////////////////////

struct EvenVCOWidget : ModuleWidget {
EvenVCOWidget();
};

struct RampageWidget : ModuleWidget {
RampageWidget();
};

struct ABCWidget : ModuleWidget {
ABCWidget();
};

struct SpringReverbWidget : ModuleWidget {
SpringReverbWidget();
};

struct MixerWidget : ModuleWidget {
MixerWidget();
};

struct SlewLimiterWidget : ModuleWidget {
SlewLimiterWidget();
};

+ 170
- 0
src/EvenVCO.cpp View File

@@ -0,0 +1,170 @@
#include "Befaco.hpp"
#include "dsp.hpp"


struct EvenVCO : Module {
enum ParamIds {
OCTAVE_PARAM,
TUNE_PARAM,
PWM_PARAM,
NUM_PARAMS
};
enum InputIds {
PITCH1_INPUT,
PITCH2_INPUT,
FM_INPUT,
SYNC_INPUT,
PWM_INPUT,
NUM_INPUTS
};
enum OutputIds {
TRI_OUTPUT,
SINE_OUTPUT,
EVEN_OUTPUT,
SAW_OUTPUT,
SQUARE_OUTPUT,
NUM_OUTPUTS
};

float phase = 0.0;
/** The value of the last sync input */
float sync = 0.0;
/** The outputs */
float tri = 0.0;
/** Whether we are past the pulse width already */
bool halfPhase = false;

MinBLEP<16> triSquareMinBLEP;
MinBLEP<16> triMinBLEP;
MinBLEP<16> sineMinBLEP;
MinBLEP<16> doubleSawMinBLEP;
MinBLEP<16> sawMinBLEP;
MinBLEP<16> squareMinBLEP;

RCFilter triFilter;

EvenVCO();
void step();
};


EvenVCO::EvenVCO() {
params.resize(NUM_PARAMS);
inputs.resize(NUM_INPUTS);
outputs.resize(NUM_OUTPUTS);

triSquareMinBLEP.minblep = minblep_16_32;
triSquareMinBLEP.oversample = 32;
triMinBLEP.minblep = minblep_16_32;
triMinBLEP.oversample = 32;
sineMinBLEP.minblep = minblep_16_32;
sineMinBLEP.oversample = 32;
doubleSawMinBLEP.minblep = minblep_16_32;
doubleSawMinBLEP.oversample = 32;
sawMinBLEP.minblep = minblep_16_32;
sawMinBLEP.oversample = 32;
squareMinBLEP.minblep = minblep_16_32;
squareMinBLEP.oversample = 32;
}

void EvenVCO::step() {
// Compute frequency, pitch is 1V/oct
float pitch = 1.0 + roundf(params[OCTAVE_PARAM]) + params[TUNE_PARAM] / 12.0;
pitch += getf(inputs[PITCH1_INPUT]) + getf(inputs[PITCH2_INPUT]);
pitch += getf(inputs[FM_INPUT]) / 4.0;
float freq = 261.626 * powf(2.0, pitch);
freq = clampf(freq, 0.0, 20000.0);

// Pulse width
float pw = params[PWM_PARAM] + getf(inputs[PWM_INPUT]) / 5.0;
const float minPw = 0.05;
pw = mapf(clampf(pw, -1.0, 1.0), -1.0, 1.0, minPw, 1.0-minPw);

// Advance phase
float deltaPhase = clampf(freq / gSampleRate, 1e-6, 0.5);
float oldPhase = phase;
phase += deltaPhase;

if (oldPhase < 0.5 && phase >= 0.5) {
float crossing = -(phase - 0.5) / deltaPhase;
triSquareMinBLEP.jump(crossing, 2.0);
doubleSawMinBLEP.jump(crossing, -2.0);
}

if (!halfPhase && phase >= pw) {
float crossing = -(phase - pw) / deltaPhase;
squareMinBLEP.jump(crossing, 2.0);
halfPhase = true;
}

// Reset phase if at end of cycle
if (phase >= 1.0) {
phase -= 1.0;
float crossing = -phase / deltaPhase;
triSquareMinBLEP.jump(crossing, -2.0);
doubleSawMinBLEP.jump(crossing, -2.0);
squareMinBLEP.jump(crossing, -2.0);
sawMinBLEP.jump(crossing, -2.0);
halfPhase = false;
}

// Outputs
float triSquare = (phase < 0.5) ? -1.0 : 1.0;
triSquare += triSquareMinBLEP.shift();

// Integrate square for triangle
tri += 4.0 * triSquare * freq / gSampleRate;
tri *= (1.0 - 40.0 / gSampleRate);

float sine = -cosf(2*M_PI * phase);
float doubleSaw = (phase < 0.5) ? (-1.0 + 4.0*phase) : (-1.0 + 4.0*(phase - 0.5));
doubleSaw += doubleSawMinBLEP.shift();
float even = 0.55 * (doubleSaw + 1.27 * sine);
float saw = -1.0 + 2.0*phase;
saw += sawMinBLEP.shift();
float square = (phase < pw) ? -1.0 : 1.0;
square += squareMinBLEP.shift();

// Set outputs
setf(outputs[TRI_OUTPUT], 5.0*tri);
setf(outputs[SINE_OUTPUT], 5.0*sine);
setf(outputs[EVEN_OUTPUT], 5.0*even);
setf(outputs[SAW_OUTPUT], 5.0*saw);
setf(outputs[SQUARE_OUTPUT], 5.0*square);
}


EvenVCOWidget::EvenVCOWidget() {
EvenVCO *module = new EvenVCO();
setModule(module);
box.size = Vec(15*8, 380);

{
Panel *panel = new DarkPanel();
panel->box.size = box.size;
panel->backgroundImage = Image::load("plugins/Befaco/res/EvenVCO.png");
addChild(panel);
}

addChild(createScrew<BlackScrew>(Vec(15, 0)));
addChild(createScrew<BlackScrew>(Vec(15, 365)));
addChild(createScrew<BlackScrew>(Vec(15*6, 0)));
addChild(createScrew<BlackScrew>(Vec(15*6, 365)));

addParam(createParam<BefacoBigKnob>(Vec(24-4+2, 35-4+1), module, EvenVCO::OCTAVE_PARAM, -5.0, 4.0, 0.0));
addParam(createParam<BefacoTinyKnob>(Vec(72, 131), module, EvenVCO::TUNE_PARAM, -7.0, 7.0, 0.0));
addParam(createParam<Davies1900hRedKnob>(Vec(16, 230), module, EvenVCO::PWM_PARAM, -1.0, 1.0, 0.0));

addInput(createInput<PJ3410Port>(Vec(13-7-1, 124-7), module, EvenVCO::PITCH1_INPUT));
addInput(createInput<PJ3410Port>(Vec(22-7, 162-7-1), module, EvenVCO::PITCH2_INPUT));
addInput(createInput<PJ3410Port>(Vec(51-7, 188-7-1), module, EvenVCO::FM_INPUT));
addInput(createInput<PJ3410Port>(Vec(88-7, 193-7), module, EvenVCO::SYNC_INPUT));

addInput(createInput<PJ3410Port>(Vec(76-7, 240-7), module, EvenVCO::PWM_INPUT));

addOutput(createOutput<PJ3410Port>(Vec(12-7, 285-7), module, EvenVCO::TRI_OUTPUT));
addOutput(createOutput<PJ3410Port>(Vec(88-7+1, 285-7), module, EvenVCO::SINE_OUTPUT));
addOutput(createOutput<PJ3410Port>(Vec(50-7+1, 308-7), module, EvenVCO::EVEN_OUTPUT));
addOutput(createOutput<PJ3410Port>(Vec(12-7, 329-7), module, EvenVCO::SAW_OUTPUT));
addOutput(createOutput<PJ3410Port>(Vec(88-7+1, 329-7), module, EvenVCO::SQUARE_OUTPUT));
}

+ 81
- 0
src/Mixer.cpp View File

@@ -0,0 +1,81 @@
#include "Befaco.hpp"


struct Mixer : Module {
enum ParamIds {
CH1_PARAM,
CH2_PARAM,
CH3_PARAM,
CH4_PARAM,
NUM_PARAMS
};
enum InputIds {
IN1_INPUT,
IN2_INPUT,
IN3_INPUT,
IN4_INPUT,
NUM_INPUTS
};
enum OutputIds {
OUT1_OUTPUT,
OUT2_OUTPUT,
NUM_OUTPUTS
};

float lights[1] = {};

Mixer();
void step();
};


Mixer::Mixer() {
params.resize(NUM_PARAMS);
inputs.resize(NUM_INPUTS);
outputs.resize(NUM_OUTPUTS);
}

void Mixer::step() {
float in1 = getf(inputs[IN1_INPUT]) * params[CH1_PARAM];
float in2 = getf(inputs[IN2_INPUT]) * params[CH2_PARAM];
float in3 = getf(inputs[IN3_INPUT]) * params[CH3_PARAM];
float in4 = getf(inputs[IN4_INPUT]) * params[CH4_PARAM];

float out = in1 + in2 + in3 + in4;
setf(outputs[OUT1_OUTPUT], out);
setf(outputs[OUT2_OUTPUT], -out);
lights[0] = out / 5.0;
}


MixerWidget::MixerWidget() {
Mixer *module = new Mixer();
setModule(module);
box.size = Vec(15*5, 380);

{
Panel *panel = new DarkPanel();
panel->box.size = box.size;
panel->backgroundImage = Image::load("plugins/Befaco/res/Mixer.png");
addChild(panel);
}

addChild(createScrew<BlackScrew>(Vec(15, 0)));
addChild(createScrew<BlackScrew>(Vec(15, 365)));

addParam(createParam<Davies1900hWhiteKnob>(Vec(19, 32), module, Mixer::CH1_PARAM, 0.0, 1.0, 0.0));
addParam(createParam<Davies1900hWhiteKnob>(Vec(19, 85), module, Mixer::CH2_PARAM, 0.0, 1.0, 0.0));
addParam(createParam<Davies1900hWhiteKnob>(Vec(19, 137), module, Mixer::CH3_PARAM, 0.0, 1.0, 0.0));
addParam(createParam<Davies1900hWhiteKnob>(Vec(19, 190), module, Mixer::CH4_PARAM, 0.0, 1.0, 0.0));

addInput(createInput<PJ3410Port>(Vec(4, 239), module, Mixer::IN1_INPUT));
addInput(createInput<PJ3410Port>(Vec(40, 239), module, Mixer::IN2_INPUT));

addInput(createInput<PJ3410Port>(Vec(4, 278), module, Mixer::IN3_INPUT));
addInput(createInput<PJ3410Port>(Vec(40, 278), module, Mixer::IN4_INPUT));

addOutput(createOutput<PJ3410Port>(Vec(4, 321), module, Mixer::OUT1_OUTPUT));
addOutput(createOutput<PJ3410Port>(Vec(40, 321), module, Mixer::OUT2_OUTPUT));

addChild(createValueLight<MediumLight<GreenRedPolarityLight>>(Vec(31, 309), &module->lights[0]));
}

+ 50
- 0
src/Rampage.cpp View File

@@ -0,0 +1,50 @@
#include "Befaco.hpp"


struct Rampage : Module {
enum ParamIds {
NUM_PARAMS
};
enum InputIds {
NUM_INPUTS
};
enum OutputIds {
NUM_OUTPUTS
};

Rampage();
void step();
};


Rampage::Rampage() {
params.resize(NUM_PARAMS);
inputs.resize(NUM_INPUTS);
outputs.resize(NUM_OUTPUTS);
}

void Rampage::step() {
}


RampageWidget::RampageWidget() {
Rampage *module = new Rampage();
setModule(module);
box.size = Vec(15*18, 380);

{
Panel *panel = new DarkPanel();
panel->box.size = box.size;
panel->backgroundImage = Image::load("plugins/Befaco/res/Rampage.png");
addChild(panel);
}

addChild(createScrew<BlackScrew>(Vec(15, 0)));
addChild(createScrew<BlackScrew>(Vec(box.size.x-30, 0)));
addChild(createScrew<BlackScrew>(Vec(15, 365)));
addChild(createScrew<BlackScrew>(Vec(box.size.x-30, 365)));

// addParam(createParam<ExperimentalKnob>(Vec(0, 43), module, Rampage::RADIOACTIVITY_PARAM, 0.0, 1.0, 0.0));
// addInput(createInput(Vec(10, 248), module, Rampage::RADIOACTIVITY_INPUT));
// addOutput(createOutput(Vec(10, 306), module, Rampage::PULSE_OUTPUT));
}

+ 91
- 0
src/SlewLimiter.cpp View File

@@ -0,0 +1,91 @@
#include "Befaco.hpp"


struct SlewLimiter : Module {
enum ParamIds {
SHAPE_PARAM,
RISE_PARAM,
FALL_PARAM,
NUM_PARAMS
};
enum InputIds {
RISE_INPUT,
FALL_INPUT,
IN_INPUT,
NUM_INPUTS
};
enum OutputIds {
OUT_OUTPUT,
NUM_OUTPUTS
};

float output = 0.0;

SlewLimiter();
void step();
};


SlewLimiter::SlewLimiter() {
params.resize(NUM_PARAMS);
inputs.resize(NUM_INPUTS);
outputs.resize(NUM_OUTPUTS);
}

void SlewLimiter::step() {
float input = getf(inputs[IN_INPUT]);
float shape = params[SHAPE_PARAM];

// minimum and maximum slopes in volts per second
const float slewMin = 0.1;
const float slewMax = 40000.0;
// Amount of extra slew per voltage difference
const float shapeScale = 1/10.0;

// Rise
if (input > output) {
float rise = getf(inputs[RISE_INPUT]) + params[RISE_PARAM];
float slew = slewMax * powf(slewMin / slewMax, rise);
output += slew * crossf(1.0, shapeScale * (input - output), shape) / gSampleRate;
if (output > input)
output = input;
}
// Fall
else if (input < output) {
float fall = getf(inputs[FALL_INPUT]) + params[FALL_PARAM];
float slew = slewMax * powf(slewMin / slewMax, fall);
output -= slew * crossf(1.0, shapeScale * (output - input), shape) / gSampleRate;
if (output < input)
output = input;
}

setf(outputs[OUT_OUTPUT], output);
}


SlewLimiterWidget::SlewLimiterWidget() {
SlewLimiter *module = new SlewLimiter();
setModule(module);
box.size = Vec(15*6, 380);

{
Panel *panel = new DarkPanel();
panel->box.size = box.size;
panel->backgroundImage = Image::load("plugins/Befaco/res/Slew Limiter.png");
addChild(panel);
}

addChild(createScrew<BlackScrew>(Vec(15, 0)));
addChild(createScrew<BlackScrew>(Vec(15, 365)));

addParam(createParam<Davies1900hWhiteKnob>(Vec(26, 39), module, SlewLimiter::SHAPE_PARAM, 0.0, 1.0, 0.0));

addParam(createParam<BefacoSlidePot>(Vec(17, 100), module, SlewLimiter::RISE_PARAM, 0.0, 1.0, 0.0));
addParam(createParam<BefacoSlidePot>(Vec(61, 100), module, SlewLimiter::FALL_PARAM, 0.0, 1.0, 0.0));

addInput(createInput<PJ3410Port>(Vec(6, 270), module, SlewLimiter::RISE_INPUT));
addInput(createInput<PJ3410Port>(Vec(52, 270), module, SlewLimiter::FALL_INPUT));

addInput(createInput<PJ3410Port>(Vec(6, 320), module, SlewLimiter::IN_INPUT));
addOutput(createOutput<PJ3410Port>(Vec(52, 320), module, SlewLimiter::OUT_OUTPUT));
}

+ 305
- 0
src/SpringReverb.cpp View File

@@ -0,0 +1,305 @@
#include <string.h>
#include "Befaco.hpp"
#include "dsp.hpp"
#include "pffft.h"


float *springReverbIR;
int springReverbIRLen;

void springReverbInit() {
FILE *f = fopen("plugins/Befaco/res/SpringReverbIR.pcm", "rb");
assert(f);
fseek(f, 0, SEEK_END);
int size = ftell(f);
fseek(f, 0, SEEK_SET);

springReverbIRLen = size / sizeof(float);
springReverbIR = new float[springReverbIRLen];
fread(springReverbIR, sizeof(float), springReverbIRLen, f);
fclose(f);

// TODO Add springReverbDestroy() function once plugins have destroy() callbacks
}


struct RealTimeConvolver {
// `kernelBlocks` number of contiguous FFT blocks of size `blockSize`
// indexed by [i * blockSize*2 + j]
float *kernelFfts = NULL;
float *inputFfts = NULL;
float *outputTail = NULL;
float *tmpBlock = NULL;
size_t blockSize;
size_t kernelBlocks = 0;
size_t inputPos = 0;
// kiss_fftr_cfg fft_cfg;
// kiss_fftr_cfg ifft_cfg;
PFFFT_Setup *pffft;

/** blocksize should be >=32 and a power of 2 */
RealTimeConvolver(size_t blockSize) {
this->blockSize = blockSize;
pffft = pffft_new_setup(blockSize*2, PFFFT_REAL);
outputTail = new float[blockSize]();
tmpBlock = new float[blockSize*2]();
}

~RealTimeConvolver() {
clear();
delete[] outputTail;
delete[] tmpBlock;
pffft_destroy_setup(pffft);
}

void clear() {
if (kernelFfts) {
pffft_aligned_free(kernelFfts);
kernelFfts = NULL;
}
if (inputFfts) {
pffft_aligned_free(inputFfts);
inputFfts = NULL;
}
kernelBlocks = 0;
inputPos = 0;
}

void setKernel(const float *kernel, size_t length) {
clear();

if (!kernel || length == 0)
return;

// Round up to the nearest factor blockSize
kernelBlocks = (length - 1) / blockSize + 1;

// Allocate blocks
kernelFfts = (float*) pffft_aligned_malloc(sizeof(float) * blockSize*2 * kernelBlocks);
inputFfts = (float*) pffft_aligned_malloc(sizeof(float) * blockSize*2 * kernelBlocks);
memset(inputFfts, 0, sizeof(float) * blockSize*2 * kernelBlocks);

for (size_t i = 0; i < kernelBlocks; i++) {
// Pad each block with zeros
memset(tmpBlock, 0, sizeof(float) * blockSize*2);
size_t len = mini(blockSize, length - i*blockSize);
memcpy(tmpBlock, &kernel[i*blockSize], sizeof(float)*len);
// Compute fft
pffft_transform(pffft, tmpBlock, &kernelFfts[blockSize*2 * i], NULL, PFFFT_FORWARD);
}
}

/** Applies reverb to input
input and output must be size blockSize
*/
void processBlock(const float *input, float *output) {
if (kernelBlocks == 0) {
memset(output, 0, sizeof(float) * blockSize);
return;
}

// Step input position
inputPos = (inputPos + 1) % kernelBlocks;
// Pad block with zeros
memset(tmpBlock, 0, sizeof(float) * blockSize*2);
memcpy(tmpBlock, input, sizeof(float) * blockSize);
// Compute input fft
pffft_transform(pffft, tmpBlock, &inputFfts[blockSize*2 * inputPos], NULL, PFFFT_FORWARD);
// Create output fft
memset(tmpBlock, 0, sizeof(float) * blockSize*2);
// convolve input fft by kernel fft
// Note: This is the CPU bottleneck loop
for (size_t i = 0; i < kernelBlocks; i++) {
size_t pos = (inputPos - i + kernelBlocks) % kernelBlocks;
pffft_zconvolve_accumulate(pffft, &kernelFfts[blockSize*2 * i], &inputFfts[blockSize*2 * pos], tmpBlock, 1.0);
}
// Compute output
pffft_transform(pffft, tmpBlock, tmpBlock, NULL, PFFFT_BACKWARD);
// Add block tail from last output block
for (size_t i = 0; i < blockSize; i++) {
tmpBlock[i] += outputTail[i];
}
// Copy output block to output
for (size_t i = 0; i < blockSize; i++) {
// Scale based on FFT
output[i] = tmpBlock[i] / blockSize;
}
// Set tail
for (size_t i = 0; i < blockSize; i++) {
outputTail[i] = tmpBlock[i + blockSize];
}
}
};


#define BLOCKSIZE 1024

struct SpringReverb : Module {
enum ParamIds {
WET_PARAM,
LEVEL1_PARAM,
LEVEL2_PARAM,
HPF_PARAM,
NUM_PARAMS
};
enum InputIds {
CV1_INPUT,
CV2_INPUT,
IN1_INPUT,
IN2_INPUT,
MIX_CV_INPUT,
NUM_INPUTS
};
enum OutputIds {
MIX_OUTPUT,
WET_OUTPUT,
NUM_OUTPUTS
};

RealTimeConvolver *convolver = NULL;
SampleRateConverter<1> inputSrc;
SampleRateConverter<1> outputSrc;
DoubleRingBuffer<Frame<1>, 16*BLOCKSIZE> inputBuffer;
DoubleRingBuffer<Frame<1>, 16*BLOCKSIZE> outputBuffer;

RCFilter dryFilter;
PeakFilter vuFilter;
PeakFilter lightFilter;
float vuLights[7] = {};
float lights[1] = {};

SpringReverb();
~SpringReverb();
void step();
};


SpringReverb::SpringReverb() {
params.resize(NUM_PARAMS);
inputs.resize(NUM_INPUTS);
outputs.resize(NUM_OUTPUTS);

convolver = new RealTimeConvolver(BLOCKSIZE);
convolver->setKernel(springReverbIR, springReverbIRLen);
}

SpringReverb::~SpringReverb() {
delete convolver;
}

void SpringReverb::step() {
float in1 = getf(inputs[IN1_INPUT]);
float in2 = getf(inputs[IN2_INPUT]);
const float levelScale = 0.030;
const float levelBase = 25.0;
float level1 = levelScale * exponentialBipolar(levelBase, params[LEVEL1_PARAM]) * getf(inputs[CV1_INPUT], 10.0) / 10.0;
float level2 = levelScale * exponentialBipolar(levelBase, params[LEVEL2_PARAM]) * getf(inputs[CV2_INPUT], 10.0) / 10.0;
float dry = in1 * level1 + in2 * level2;

// HPF on dry
float dryCutoff = 200.0 * powf(20.0, params[HPF_PARAM]) / gSampleRate;
dryFilter.setCutoff(dryCutoff);
dryFilter.process(dry);

// Add dry to input buffer
if (!inputBuffer.full()) {
Frame<1> inputFrame;
inputFrame.samples[0] = dryFilter.highpass();
inputBuffer.push(inputFrame);
}


if (outputBuffer.empty()) {
float input[BLOCKSIZE] = {};
float output[BLOCKSIZE];
// Convert input buffer
{
inputSrc.setRatio(48000.0 / gSampleRate);
int inLen = inputBuffer.size();
int outLen = BLOCKSIZE;
inputSrc.process(inputBuffer.startData(), &inLen, (Frame<1>*) input, &outLen);
inputBuffer.startIncr(inLen);
}

// Convolve block
convolver->processBlock(input, output);

// Convert output buffer
{
outputSrc.setRatio(gSampleRate / 48000.0);
int inLen = BLOCKSIZE;
int outLen = outputBuffer.capacity();
outputSrc.process((Frame<1>*) output, &inLen, outputBuffer.endData(), &outLen);
outputBuffer.endIncr(outLen);
}
}

// Set output
if (outputBuffer.empty())
return;
float wet = outputBuffer.shift().samples[0];
float crossfade = clampf(params[WET_PARAM] + getf(inputs[MIX_CV_INPUT]) / 10.0, 0.0, 1.0);
float mix = crossf(in1, wet, crossfade);

setf(outputs[WET_OUTPUT], clampf(wet, -10.0, 10.0));
setf(outputs[MIX_OUTPUT], clampf(mix, -10.0, 10.0));

// Set lights
float lightRate = 5.0 / gSampleRate;
vuFilter.setRate(lightRate);
vuFilter.process(fabsf(wet));
lightFilter.setRate(lightRate);
lightFilter.process(fabsf(dry*50.0));

float vuValue = vuFilter.peak();
for (int i = 0; i < 7; i++) {
float light = powf(1.413, i) * vuValue / 10.0 - 1.0;
vuLights[i] = clampf(light, 0.0, 1.0);
}
lights[0] = lightFilter.peak();
}


SpringReverbWidget::SpringReverbWidget() {
SpringReverb *module = new SpringReverb();
setModule(module);
box.size = Vec(15*8, 380);

{
Panel *panel = new DarkPanel();
panel->box.size = box.size;
panel->backgroundImage = Image::load("plugins/Befaco/res/Spring Reverb.png");
addChild(panel);
}

addChild(createScrew<BlackScrew>(Vec(15, 0)));
addChild(createScrew<BlackScrew>(Vec(15, 365)));
addChild(createScrew<BlackScrew>(Vec(15*6, 0)));
addChild(createScrew<BlackScrew>(Vec(15*6, 365)));

addParam(createParam<BefacoBigKnob>(Vec(22, 29), module, SpringReverb::WET_PARAM, 0.0, 1.0, 0.5));

addParam(createParam<BefacoSlidePot>(Vec(13, 118-2), module, SpringReverb::LEVEL1_PARAM, 0.0, 1.0, 0.0));
addParam(createParam<BefacoSlidePot>(Vec(93, 118-2), module, SpringReverb::LEVEL2_PARAM, 0.0, 1.0, 0.0));

addParam(createParam<Davies1900hWhiteKnob>(Vec(41, 209), module, SpringReverb::HPF_PARAM, 0.0, 1.0, 0.5));

addInput(createInput<PJ3410Port>(Vec(6-3, 243-3), module, SpringReverb::CV1_INPUT));
addInput(createInput<PJ3410Port>(Vec(86-3, 243-3), module, SpringReverb::CV2_INPUT));
addInput(createInput<PJ3410Port>(Vec(26-3, 281-3), module, SpringReverb::IN1_INPUT));
addInput(createInput<PJ3410Port>(Vec(65-3, 281-3), module, SpringReverb::IN2_INPUT));

addOutput(createOutput<PJ3410Port>(Vec(6-3, 317-3), module, SpringReverb::MIX_OUTPUT));
addInput(createInput<PJ3410Port>(Vec(46-3, 324-3), module, SpringReverb::MIX_CV_INPUT));
addOutput(createOutput<PJ3410Port>(Vec(87-3, 317-3), module, SpringReverb::WET_OUTPUT));

addChild(createValueLight<SmallLight<RedValueLight>>(Vec(55, 114), &module->vuLights[0]));
addChild(createValueLight<SmallLight<YellowValueLight>>(Vec(55, 127), &module->vuLights[1]));
addChild(createValueLight<SmallLight<YellowValueLight>>(Vec(55, 139), &module->vuLights[2]));
addChild(createValueLight<SmallLight<GreenValueLight>>(Vec(55, 151), &module->vuLights[3]));
addChild(createValueLight<SmallLight<GreenValueLight>>(Vec(55, 164), &module->vuLights[4]));
addChild(createValueLight<SmallLight<GreenValueLight>>(Vec(55, 176), &module->vuLights[5]));
addChild(createValueLight<SmallLight<GreenValueLight>>(Vec(55, 189), &module->vuLights[6]));

addChild(createValueLight<SmallLight<GreenRedPolarityLight>>(Vec(55, 270), &module->lights[0]));
}

Loading…
Cancel
Save