@@ -54,28 +54,26 @@ struct Blinds : Module { | |||||
configParam(Blinds::MOD3_PARAM, -1.0, 1.0, 0.0); | configParam(Blinds::MOD3_PARAM, -1.0, 1.0, 0.0); | ||||
configParam(Blinds::MOD4_PARAM, -1.0, 1.0, 0.0); | configParam(Blinds::MOD4_PARAM, -1.0, 1.0, 0.0); | ||||
} | } | ||||
void process(const ProcessArgs &args) override; | |||||
}; | |||||
void Blinds::process(const ProcessArgs &args) { | |||||
float out = 0.0; | |||||
for (int i = 0; i < 4; i++) { | |||||
float g = params[GAIN1_PARAM + i].getValue(); | |||||
g += params[MOD1_PARAM + i].getValue() * inputs[CV1_INPUT + i].getVoltage() / 5.0; | |||||
g = clamp(g, -2.0f, 2.0f); | |||||
lights[CV1_POS_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, g), args.sampleTime); | |||||
lights[CV1_NEG_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, -g), args.sampleTime); | |||||
out += g * inputs[IN1_INPUT + i].getNormalVoltage(5.0); | |||||
lights[OUT1_POS_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, out / 5.0), args.sampleTime); | |||||
lights[OUT1_NEG_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, -out / 5.0), args.sampleTime); | |||||
if (outputs[OUT1_OUTPUT + i].isConnected()) { | |||||
outputs[OUT1_OUTPUT + i].setVoltage(out); | |||||
out = 0.0; | |||||
void process(const ProcessArgs &args) { | |||||
float out = 0.0; | |||||
for (int i = 0; i < 4; i++) { | |||||
float g = params[GAIN1_PARAM + i].getValue(); | |||||
g += params[MOD1_PARAM + i].getValue() * inputs[CV1_INPUT + i].getVoltage() / 5.0; | |||||
g = clamp(g, -2.0f, 2.0f); | |||||
lights[CV1_POS_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, g), args.sampleTime); | |||||
lights[CV1_NEG_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, -g), args.sampleTime); | |||||
out += g * inputs[IN1_INPUT + i].getNormalVoltage(5.0); | |||||
lights[OUT1_POS_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, out / 5.0), args.sampleTime); | |||||
lights[OUT1_NEG_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, -out / 5.0), args.sampleTime); | |||||
if (outputs[OUT1_OUTPUT + i].isConnected()) { | |||||
outputs[OUT1_OUTPUT + i].setVoltage(out); | |||||
out = 0.0; | |||||
} | |||||
} | } | ||||
} | } | ||||
} | |||||
}; | |||||
struct BlindsWidget : ModuleWidget { | struct BlindsWidget : ModuleWidget { | ||||
@@ -61,8 +61,90 @@ struct Braids : Module { | |||||
settings.vco_drift = 0; | settings.vco_drift = 0; | ||||
settings.signature = 0; | settings.signature = 0; | ||||
} | } | ||||
void process(const ProcessArgs &args) override; | |||||
void setShape(int shape); | |||||
void process(const ProcessArgs &args) { | |||||
// Trigger | |||||
bool trig = inputs[TRIG_INPUT].getVoltage() >= 1.0; | |||||
if (!lastTrig && trig) { | |||||
osc.Strike(); | |||||
} | |||||
lastTrig = trig; | |||||
// Render frames | |||||
if (outputBuffer.empty()) { | |||||
float fm = params[FM_PARAM].getValue() * inputs[FM_INPUT].getVoltage(); | |||||
// Set shape | |||||
int shape = roundf(params[SHAPE_PARAM].getValue() * braids::MACRO_OSC_SHAPE_LAST_ACCESSIBLE_FROM_META); | |||||
if (settings.meta_modulation) { | |||||
shape += roundf(fm / 10.0 * braids::MACRO_OSC_SHAPE_LAST_ACCESSIBLE_FROM_META); | |||||
} | |||||
settings.shape = clamp(shape, 0, braids::MACRO_OSC_SHAPE_LAST_ACCESSIBLE_FROM_META); | |||||
// Setup oscillator from settings | |||||
osc.set_shape((braids::MacroOscillatorShape) settings.shape); | |||||
// Set timbre/modulation | |||||
float timbre = params[TIMBRE_PARAM].getValue() + params[MODULATION_PARAM].getValue() * inputs[TIMBRE_INPUT].getVoltage() / 5.0; | |||||
float modulation = params[COLOR_PARAM].getValue() + inputs[COLOR_INPUT].getVoltage() / 5.0; | |||||
int16_t param1 = rescale(clamp(timbre, 0.0f, 1.0f), 0.0f, 1.0f, 0, INT16_MAX); | |||||
int16_t param2 = rescale(clamp(modulation, 0.0f, 1.0f), 0.0f, 1.0f, 0, INT16_MAX); | |||||
osc.set_parameters(param1, param2); | |||||
// Set pitch | |||||
float pitchV = inputs[PITCH_INPUT].getVoltage() + params[COARSE_PARAM].getValue() + params[FINE_PARAM].getValue() / 12.0; | |||||
if (!settings.meta_modulation) | |||||
pitchV += fm; | |||||
if (lowCpu) | |||||
pitchV += log2f(96000.f * args.sampleTime); | |||||
int32_t pitch = (pitchV * 12.0 + 60) * 128; | |||||
pitch += jitter_source.Render(settings.vco_drift); | |||||
pitch = clamp(pitch, 0, 16383); | |||||
osc.set_pitch(pitch); | |||||
// TODO: add a sync input buffer (must be sample rate converted) | |||||
uint8_t sync_buffer[24] = {}; | |||||
int16_t render_buffer[24]; | |||||
osc.Render(sync_buffer, render_buffer, 24); | |||||
// Signature waveshaping, decimation (not yet supported), and bit reduction (not yet supported) | |||||
uint16_t signature = settings.signature * settings.signature * 4095; | |||||
for (size_t i = 0; i < 24; i++) { | |||||
const int16_t bit_mask = 0xffff; | |||||
int16_t sample = render_buffer[i] & bit_mask; | |||||
int16_t warped = ws.Transform(sample); | |||||
render_buffer[i] = stmlib::Mix(sample, warped, signature); | |||||
} | |||||
if (lowCpu) { | |||||
for (int i = 0; i < 24; i++) { | |||||
dsp::Frame<1> f; | |||||
f.samples[0] = render_buffer[i] / 32768.0; | |||||
outputBuffer.push(f); | |||||
} | |||||
} | |||||
else { | |||||
// Sample rate convert | |||||
dsp::Frame<1> in[24]; | |||||
for (int i = 0; i < 24; i++) { | |||||
in[i].samples[0] = render_buffer[i] / 32768.0; | |||||
} | |||||
src.setRates(96000, args.sampleRate); | |||||
int inLen = 24; | |||||
int outLen = outputBuffer.capacity(); | |||||
src.process(in, &inLen, outputBuffer.endData(), &outLen); | |||||
outputBuffer.endIncr(outLen); | |||||
} | |||||
} | |||||
// Output | |||||
if (!outputBuffer.empty()) { | |||||
dsp::Frame<1> f = outputBuffer.shift(); | |||||
outputs[OUT_OUTPUT].setVoltage(5.0 * f.samples[0]); | |||||
} | |||||
} | |||||
json_t *dataToJson() override { | json_t *dataToJson() override { | ||||
json_t *rootJ = json_object(); | json_t *rootJ = json_object(); | ||||
@@ -99,89 +181,6 @@ struct Braids : Module { | |||||
}; | }; | ||||
void Braids::process(const ProcessArgs &args) { | |||||
// Trigger | |||||
bool trig = inputs[TRIG_INPUT].getVoltage() >= 1.0; | |||||
if (!lastTrig && trig) { | |||||
osc.Strike(); | |||||
} | |||||
lastTrig = trig; | |||||
// Render frames | |||||
if (outputBuffer.empty()) { | |||||
float fm = params[FM_PARAM].getValue() * inputs[FM_INPUT].getVoltage(); | |||||
// Set shape | |||||
int shape = roundf(params[SHAPE_PARAM].getValue() * braids::MACRO_OSC_SHAPE_LAST_ACCESSIBLE_FROM_META); | |||||
if (settings.meta_modulation) { | |||||
shape += roundf(fm / 10.0 * braids::MACRO_OSC_SHAPE_LAST_ACCESSIBLE_FROM_META); | |||||
} | |||||
settings.shape = clamp(shape, 0, braids::MACRO_OSC_SHAPE_LAST_ACCESSIBLE_FROM_META); | |||||
// Setup oscillator from settings | |||||
osc.set_shape((braids::MacroOscillatorShape) settings.shape); | |||||
// Set timbre/modulation | |||||
float timbre = params[TIMBRE_PARAM].getValue() + params[MODULATION_PARAM].getValue() * inputs[TIMBRE_INPUT].getVoltage() / 5.0; | |||||
float modulation = params[COLOR_PARAM].getValue() + inputs[COLOR_INPUT].getVoltage() / 5.0; | |||||
int16_t param1 = rescale(clamp(timbre, 0.0f, 1.0f), 0.0f, 1.0f, 0, INT16_MAX); | |||||
int16_t param2 = rescale(clamp(modulation, 0.0f, 1.0f), 0.0f, 1.0f, 0, INT16_MAX); | |||||
osc.set_parameters(param1, param2); | |||||
// Set pitch | |||||
float pitchV = inputs[PITCH_INPUT].getVoltage() + params[COARSE_PARAM].getValue() + params[FINE_PARAM].getValue() / 12.0; | |||||
if (!settings.meta_modulation) | |||||
pitchV += fm; | |||||
if (lowCpu) | |||||
pitchV += log2f(96000.f * args.sampleTime); | |||||
int32_t pitch = (pitchV * 12.0 + 60) * 128; | |||||
pitch += jitter_source.Render(settings.vco_drift); | |||||
pitch = clamp(pitch, 0, 16383); | |||||
osc.set_pitch(pitch); | |||||
// TODO: add a sync input buffer (must be sample rate converted) | |||||
uint8_t sync_buffer[24] = {}; | |||||
int16_t render_buffer[24]; | |||||
osc.Render(sync_buffer, render_buffer, 24); | |||||
// Signature waveshaping, decimation (not yet supported), and bit reduction (not yet supported) | |||||
uint16_t signature = settings.signature * settings.signature * 4095; | |||||
for (size_t i = 0; i < 24; i++) { | |||||
const int16_t bit_mask = 0xffff; | |||||
int16_t sample = render_buffer[i] & bit_mask; | |||||
int16_t warped = ws.Transform(sample); | |||||
render_buffer[i] = stmlib::Mix(sample, warped, signature); | |||||
} | |||||
if (lowCpu) { | |||||
for (int i = 0; i < 24; i++) { | |||||
dsp::Frame<1> f; | |||||
f.samples[0] = render_buffer[i] / 32768.0; | |||||
outputBuffer.push(f); | |||||
} | |||||
} | |||||
else { | |||||
// Sample rate convert | |||||
dsp::Frame<1> in[24]; | |||||
for (int i = 0; i < 24; i++) { | |||||
in[i].samples[0] = render_buffer[i] / 32768.0; | |||||
} | |||||
src.setRates(96000, args.sampleRate); | |||||
int inLen = 24; | |||||
int outLen = outputBuffer.capacity(); | |||||
src.process(in, &inLen, outputBuffer.endData(), &outLen); | |||||
outputBuffer.endIncr(outLen); | |||||
} | |||||
} | |||||
// Output | |||||
if (!outputBuffer.empty()) { | |||||
dsp::Frame<1> f = outputBuffer.shift(); | |||||
outputs[OUT_OUTPUT].setVoltage(5.0 * f.samples[0]); | |||||
} | |||||
} | |||||
static const char *algo_values[] = { | static const char *algo_values[] = { | ||||
@@ -65,7 +65,44 @@ struct Branches : Module { | |||||
} | } | ||||
} | } | ||||
void process(const ProcessArgs &args) override; | |||||
void process(const ProcessArgs &args) { | |||||
float gate = 0.0; | |||||
for (int i = 0; i < 2; i++) { | |||||
// mode button | |||||
if (modeTriggers[i].process(params[MODE1_PARAM + i].getValue())) | |||||
modes[i] = !modes[i]; | |||||
if (inputs[IN1_INPUT + i].isConnected()) | |||||
gate = inputs[IN1_INPUT + i].getVoltage(); | |||||
if (gateTriggers[i].process(gate)) { | |||||
// trigger | |||||
float r = random::uniform(); | |||||
float threshold = clamp(params[THRESHOLD1_PARAM + i].getValue() + inputs[P1_INPUT + i].getVoltage() / 10.f, 0.f, 1.f); | |||||
bool toss = (r < threshold); | |||||
if (!modes[i]) { | |||||
// direct modes | |||||
outcomes[i] = toss; | |||||
} | |||||
else { | |||||
// toggle modes | |||||
outcomes[i] = (outcomes[i] != toss); | |||||
} | |||||
if (!outcomes[i]) | |||||
lights[STATE1_POS_LIGHT + 2*i].value = 1.0; | |||||
else | |||||
lights[STATE1_NEG_LIGHT + 2*i].value = 1.0; | |||||
} | |||||
lights[STATE1_POS_LIGHT + 2*i].value *= 1.0 - args.sampleTime * 15.0; | |||||
lights[STATE1_NEG_LIGHT + 2*i].value *= 1.0 - args.sampleTime * 15.0; | |||||
lights[MODE1_LIGHT + i].value = modes[i] ? 1.0 : 0.0; | |||||
outputs[OUT1A_OUTPUT + i].setVoltage(outcomes[i] ? 0.0 : gate); | |||||
outputs[OUT1B_OUTPUT + i].setVoltage(outcomes[i] ? gate : 0.0); | |||||
} | |||||
} | |||||
void onReset() override { | void onReset() override { | ||||
for (int i = 0; i < 2; i++) { | for (int i = 0; i < 2; i++) { | ||||
@@ -76,46 +113,6 @@ struct Branches : Module { | |||||
}; | }; | ||||
void Branches::process(const ProcessArgs &args) { | |||||
float gate = 0.0; | |||||
for (int i = 0; i < 2; i++) { | |||||
// mode button | |||||
if (modeTriggers[i].process(params[MODE1_PARAM + i].getValue())) | |||||
modes[i] = !modes[i]; | |||||
if (inputs[IN1_INPUT + i].isConnected()) | |||||
gate = inputs[IN1_INPUT + i].getVoltage(); | |||||
if (gateTriggers[i].process(gate)) { | |||||
// trigger | |||||
float r = random::uniform(); | |||||
float threshold = clamp(params[THRESHOLD1_PARAM + i].getValue() + inputs[P1_INPUT + i].getVoltage() / 10.f, 0.f, 1.f); | |||||
bool toss = (r < threshold); | |||||
if (!modes[i]) { | |||||
// direct modes | |||||
outcomes[i] = toss; | |||||
} | |||||
else { | |||||
// toggle modes | |||||
outcomes[i] = (outcomes[i] != toss); | |||||
} | |||||
if (!outcomes[i]) | |||||
lights[STATE1_POS_LIGHT + 2*i].value = 1.0; | |||||
else | |||||
lights[STATE1_NEG_LIGHT + 2*i].value = 1.0; | |||||
} | |||||
lights[STATE1_POS_LIGHT + 2*i].value *= 1.0 - args.sampleTime * 15.0; | |||||
lights[STATE1_NEG_LIGHT + 2*i].value *= 1.0 - args.sampleTime * 15.0; | |||||
lights[MODE1_LIGHT + i].value = modes[i] ? 1.0 : 0.0; | |||||
outputs[OUT1A_OUTPUT + i].setVoltage(outcomes[i] ? 0.0 : gate); | |||||
outputs[OUT1B_OUTPUT + i].setVoltage(outcomes[i] ? gate : 0.0); | |||||
} | |||||
} | |||||
struct BranchesWidget : ModuleWidget { | struct BranchesWidget : ModuleWidget { | ||||
BranchesWidget(Branches *module) { | BranchesWidget(Branches *module) { | ||||
setModule(module); | setModule(module); | ||||
@@ -65,9 +65,164 @@ struct Clouds : Module { | |||||
clouds::PlaybackMode playback; | clouds::PlaybackMode playback; | ||||
int quality = 0; | int quality = 0; | ||||
Clouds(); | |||||
~Clouds(); | |||||
void process(const ProcessArgs &args) override; | |||||
Clouds() { | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
configParam(Clouds::POSITION_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Clouds::SIZE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Clouds::PITCH_PARAM, -2.0, 2.0, 0.0); | |||||
configParam(Clouds::IN_GAIN_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Clouds::DENSITY_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Clouds::TEXTURE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Clouds::BLEND_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Clouds::SPREAD_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Clouds::FEEDBACK_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Clouds::REVERB_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Clouds::FREEZE_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Clouds::MODE_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Clouds::LOAD_PARAM, 0.0, 1.0, 0.0); | |||||
const int memLen = 118784; | |||||
const int ccmLen = 65536 - 128; | |||||
block_mem = new uint8_t[memLen](); | |||||
block_ccm = new uint8_t[ccmLen](); | |||||
processor = new clouds::GranularProcessor(); | |||||
memset(processor, 0, sizeof(*processor)); | |||||
processor->Init(block_mem, memLen, block_ccm, ccmLen); | |||||
onReset(); | |||||
} | |||||
~Clouds() { | |||||
delete processor; | |||||
delete[] block_mem; | |||||
delete[] block_ccm; | |||||
} | |||||
void process(const ProcessArgs &args) { | |||||
// Get input | |||||
dsp::Frame<2> inputFrame = {}; | |||||
if (!inputBuffer.full()) { | |||||
inputFrame.samples[0] = inputs[IN_L_INPUT].getVoltage() * params[IN_GAIN_PARAM].getValue() / 5.0; | |||||
inputFrame.samples[1] = inputs[IN_R_INPUT].isConnected() ? inputs[IN_R_INPUT].getVoltage() * params[IN_GAIN_PARAM].getValue() / 5.0 : inputFrame.samples[0]; | |||||
inputBuffer.push(inputFrame); | |||||
} | |||||
if (freezeTrigger.process(params[FREEZE_PARAM].getValue())) { | |||||
freeze ^= true; | |||||
} | |||||
if (blendTrigger.process(params[MODE_PARAM].getValue())) { | |||||
blendMode = (blendMode + 1) % 4; | |||||
} | |||||
// Trigger | |||||
if (inputs[TRIG_INPUT].getVoltage() >= 1.0) { | |||||
triggered = true; | |||||
} | |||||
// Render frames | |||||
if (outputBuffer.empty()) { | |||||
clouds::ShortFrame input[32] = {}; | |||||
// Convert input buffer | |||||
{ | |||||
inputSrc.setRates(args.sampleRate, 32000); | |||||
dsp::Frame<2> inputFrames[32]; | |||||
int inLen = inputBuffer.size(); | |||||
int outLen = 32; | |||||
inputSrc.process(inputBuffer.startData(), &inLen, inputFrames, &outLen); | |||||
inputBuffer.startIncr(inLen); | |||||
// We might not fill all of the input buffer if there is a deficiency, but this cannot be avoided due to imprecisions between the input and output SRC. | |||||
for (int i = 0; i < outLen; i++) { | |||||
input[i].l = clamp(inputFrames[i].samples[0] * 32767.0f, -32768.0f, 32767.0f); | |||||
input[i].r = clamp(inputFrames[i].samples[1] * 32767.0f, -32768.0f, 32767.0f); | |||||
} | |||||
} | |||||
// Set up processor | |||||
processor->set_playback_mode(playback); | |||||
processor->set_quality(quality); | |||||
processor->Prepare(); | |||||
clouds::Parameters *p = processor->mutable_parameters(); | |||||
p->trigger = triggered; | |||||
p->gate = triggered; | |||||
p->freeze = freeze || (inputs[FREEZE_INPUT].getVoltage() >= 1.0); | |||||
p->position = clamp(params[POSITION_PARAM].getValue() + inputs[POSITION_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->size = clamp(params[SIZE_PARAM].getValue() + inputs[SIZE_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->pitch = clamp((params[PITCH_PARAM].getValue() + inputs[PITCH_INPUT].getVoltage()) * 12.0f, -48.0f, 48.0f); | |||||
p->density = clamp(params[DENSITY_PARAM].getValue() + inputs[DENSITY_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->texture = clamp(params[TEXTURE_PARAM].getValue() + inputs[TEXTURE_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->dry_wet = params[BLEND_PARAM].getValue(); | |||||
p->stereo_spread = params[SPREAD_PARAM].getValue(); | |||||
p->feedback = params[FEEDBACK_PARAM].getValue(); | |||||
// TODO | |||||
// Why doesn't dry audio get reverbed? | |||||
p->reverb = params[REVERB_PARAM].getValue(); | |||||
float blend = inputs[BLEND_INPUT].getVoltage() / 5.0f; | |||||
switch (blendMode) { | |||||
case 0: | |||||
p->dry_wet += blend; | |||||
p->dry_wet = clamp(p->dry_wet, 0.0f, 1.0f); | |||||
break; | |||||
case 1: | |||||
p->stereo_spread += blend; | |||||
p->stereo_spread = clamp(p->stereo_spread, 0.0f, 1.0f); | |||||
break; | |||||
case 2: | |||||
p->feedback += blend; | |||||
p->feedback = clamp(p->feedback, 0.0f, 1.0f); | |||||
break; | |||||
case 3: | |||||
p->reverb += blend; | |||||
p->reverb = clamp(p->reverb, 0.0f, 1.0f); | |||||
break; | |||||
} | |||||
clouds::ShortFrame output[32]; | |||||
processor->Process(input, output, 32); | |||||
// Convert output buffer | |||||
{ | |||||
dsp::Frame<2> outputFrames[32]; | |||||
for (int i = 0; i < 32; i++) { | |||||
outputFrames[i].samples[0] = output[i].l / 32768.0; | |||||
outputFrames[i].samples[1] = output[i].r / 32768.0; | |||||
} | |||||
outputSrc.setRates(32000, args.sampleRate); | |||||
int inLen = 32; | |||||
int outLen = outputBuffer.capacity(); | |||||
outputSrc.process(outputFrames, &inLen, outputBuffer.endData(), &outLen); | |||||
outputBuffer.endIncr(outLen); | |||||
} | |||||
triggered = false; | |||||
} | |||||
// Set output | |||||
dsp::Frame<2> outputFrame = {}; | |||||
if (!outputBuffer.empty()) { | |||||
outputFrame = outputBuffer.shift(); | |||||
outputs[OUT_L_OUTPUT].setVoltage(5.0 * outputFrame.samples[0]); | |||||
outputs[OUT_R_OUTPUT].setVoltage(5.0 * outputFrame.samples[1]); | |||||
} | |||||
// Lights | |||||
clouds::Parameters *p = processor->mutable_parameters(); | |||||
dsp::VuMeter vuMeter; | |||||
vuMeter.dBInterval = 6.0; | |||||
dsp::Frame<2> lightFrame = p->freeze ? outputFrame : inputFrame; | |||||
vuMeter.setValue(fmaxf(fabsf(lightFrame.samples[0]), fabsf(lightFrame.samples[1]))); | |||||
lights[FREEZE_LIGHT].setBrightness(p->freeze ? 0.75 : 0.0); | |||||
lights[MIX_GREEN_LIGHT].setSmoothBrightness(vuMeter.getBrightness(3), args.sampleTime); | |||||
lights[PAN_GREEN_LIGHT].setSmoothBrightness(vuMeter.getBrightness(2), args.sampleTime); | |||||
lights[FEEDBACK_GREEN_LIGHT].setSmoothBrightness(vuMeter.getBrightness(1), args.sampleTime); | |||||
lights[REVERB_GREEN_LIGHT].setBrightness(0.0); | |||||
lights[MIX_RED_LIGHT].setBrightness(0.0); | |||||
lights[PAN_RED_LIGHT].setBrightness(0.0); | |||||
lights[FEEDBACK_RED_LIGHT].setSmoothBrightness(vuMeter.getBrightness(1), args.sampleTime); | |||||
lights[REVERB_RED_LIGHT].setSmoothBrightness(vuMeter.getBrightness(0), args.sampleTime); | |||||
} | |||||
void onReset() override { | void onReset() override { | ||||
freeze = false; | freeze = false; | ||||
@@ -105,167 +260,6 @@ struct Clouds : Module { | |||||
}; | }; | ||||
Clouds::Clouds() { | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
configParam(Clouds::POSITION_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Clouds::SIZE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Clouds::PITCH_PARAM, -2.0, 2.0, 0.0); | |||||
configParam(Clouds::IN_GAIN_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Clouds::DENSITY_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Clouds::TEXTURE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Clouds::BLEND_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Clouds::SPREAD_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Clouds::FEEDBACK_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Clouds::REVERB_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Clouds::FREEZE_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Clouds::MODE_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Clouds::LOAD_PARAM, 0.0, 1.0, 0.0); | |||||
const int memLen = 118784; | |||||
const int ccmLen = 65536 - 128; | |||||
block_mem = new uint8_t[memLen](); | |||||
block_ccm = new uint8_t[ccmLen](); | |||||
processor = new clouds::GranularProcessor(); | |||||
memset(processor, 0, sizeof(*processor)); | |||||
processor->Init(block_mem, memLen, block_ccm, ccmLen); | |||||
onReset(); | |||||
} | |||||
Clouds::~Clouds() { | |||||
delete processor; | |||||
delete[] block_mem; | |||||
delete[] block_ccm; | |||||
} | |||||
void Clouds::process(const ProcessArgs &args) { | |||||
// Get input | |||||
dsp::Frame<2> inputFrame = {}; | |||||
if (!inputBuffer.full()) { | |||||
inputFrame.samples[0] = inputs[IN_L_INPUT].getVoltage() * params[IN_GAIN_PARAM].getValue() / 5.0; | |||||
inputFrame.samples[1] = inputs[IN_R_INPUT].isConnected() ? inputs[IN_R_INPUT].getVoltage() * params[IN_GAIN_PARAM].getValue() / 5.0 : inputFrame.samples[0]; | |||||
inputBuffer.push(inputFrame); | |||||
} | |||||
if (freezeTrigger.process(params[FREEZE_PARAM].getValue())) { | |||||
freeze ^= true; | |||||
} | |||||
if (blendTrigger.process(params[MODE_PARAM].getValue())) { | |||||
blendMode = (blendMode + 1) % 4; | |||||
} | |||||
// Trigger | |||||
if (inputs[TRIG_INPUT].getVoltage() >= 1.0) { | |||||
triggered = true; | |||||
} | |||||
// Render frames | |||||
if (outputBuffer.empty()) { | |||||
clouds::ShortFrame input[32] = {}; | |||||
// Convert input buffer | |||||
{ | |||||
inputSrc.setRates(args.sampleRate, 32000); | |||||
dsp::Frame<2> inputFrames[32]; | |||||
int inLen = inputBuffer.size(); | |||||
int outLen = 32; | |||||
inputSrc.process(inputBuffer.startData(), &inLen, inputFrames, &outLen); | |||||
inputBuffer.startIncr(inLen); | |||||
// We might not fill all of the input buffer if there is a deficiency, but this cannot be avoided due to imprecisions between the input and output SRC. | |||||
for (int i = 0; i < outLen; i++) { | |||||
input[i].l = clamp(inputFrames[i].samples[0] * 32767.0f, -32768.0f, 32767.0f); | |||||
input[i].r = clamp(inputFrames[i].samples[1] * 32767.0f, -32768.0f, 32767.0f); | |||||
} | |||||
} | |||||
// Set up processor | |||||
processor->set_playback_mode(playback); | |||||
processor->set_quality(quality); | |||||
processor->Prepare(); | |||||
clouds::Parameters *p = processor->mutable_parameters(); | |||||
p->trigger = triggered; | |||||
p->gate = triggered; | |||||
p->freeze = freeze || (inputs[FREEZE_INPUT].getVoltage() >= 1.0); | |||||
p->position = clamp(params[POSITION_PARAM].getValue() + inputs[POSITION_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->size = clamp(params[SIZE_PARAM].getValue() + inputs[SIZE_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->pitch = clamp((params[PITCH_PARAM].getValue() + inputs[PITCH_INPUT].getVoltage()) * 12.0f, -48.0f, 48.0f); | |||||
p->density = clamp(params[DENSITY_PARAM].getValue() + inputs[DENSITY_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->texture = clamp(params[TEXTURE_PARAM].getValue() + inputs[TEXTURE_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->dry_wet = params[BLEND_PARAM].getValue(); | |||||
p->stereo_spread = params[SPREAD_PARAM].getValue(); | |||||
p->feedback = params[FEEDBACK_PARAM].getValue(); | |||||
// TODO | |||||
// Why doesn't dry audio get reverbed? | |||||
p->reverb = params[REVERB_PARAM].getValue(); | |||||
float blend = inputs[BLEND_INPUT].getVoltage() / 5.0f; | |||||
switch (blendMode) { | |||||
case 0: | |||||
p->dry_wet += blend; | |||||
p->dry_wet = clamp(p->dry_wet, 0.0f, 1.0f); | |||||
break; | |||||
case 1: | |||||
p->stereo_spread += blend; | |||||
p->stereo_spread = clamp(p->stereo_spread, 0.0f, 1.0f); | |||||
break; | |||||
case 2: | |||||
p->feedback += blend; | |||||
p->feedback = clamp(p->feedback, 0.0f, 1.0f); | |||||
break; | |||||
case 3: | |||||
p->reverb += blend; | |||||
p->reverb = clamp(p->reverb, 0.0f, 1.0f); | |||||
break; | |||||
} | |||||
clouds::ShortFrame output[32]; | |||||
processor->Process(input, output, 32); | |||||
// Convert output buffer | |||||
{ | |||||
dsp::Frame<2> outputFrames[32]; | |||||
for (int i = 0; i < 32; i++) { | |||||
outputFrames[i].samples[0] = output[i].l / 32768.0; | |||||
outputFrames[i].samples[1] = output[i].r / 32768.0; | |||||
} | |||||
outputSrc.setRates(32000, args.sampleRate); | |||||
int inLen = 32; | |||||
int outLen = outputBuffer.capacity(); | |||||
outputSrc.process(outputFrames, &inLen, outputBuffer.endData(), &outLen); | |||||
outputBuffer.endIncr(outLen); | |||||
} | |||||
triggered = false; | |||||
} | |||||
// Set output | |||||
dsp::Frame<2> outputFrame = {}; | |||||
if (!outputBuffer.empty()) { | |||||
outputFrame = outputBuffer.shift(); | |||||
outputs[OUT_L_OUTPUT].setVoltage(5.0 * outputFrame.samples[0]); | |||||
outputs[OUT_R_OUTPUT].setVoltage(5.0 * outputFrame.samples[1]); | |||||
} | |||||
// Lights | |||||
clouds::Parameters *p = processor->mutable_parameters(); | |||||
dsp::VuMeter vuMeter; | |||||
vuMeter.dBInterval = 6.0; | |||||
dsp::Frame<2> lightFrame = p->freeze ? outputFrame : inputFrame; | |||||
vuMeter.setValue(fmaxf(fabsf(lightFrame.samples[0]), fabsf(lightFrame.samples[1]))); | |||||
lights[FREEZE_LIGHT].setBrightness(p->freeze ? 0.75 : 0.0); | |||||
lights[MIX_GREEN_LIGHT].setSmoothBrightness(vuMeter.getBrightness(3), args.sampleTime); | |||||
lights[PAN_GREEN_LIGHT].setSmoothBrightness(vuMeter.getBrightness(2), args.sampleTime); | |||||
lights[FEEDBACK_GREEN_LIGHT].setSmoothBrightness(vuMeter.getBrightness(1), args.sampleTime); | |||||
lights[REVERB_GREEN_LIGHT].setBrightness(0.0); | |||||
lights[MIX_RED_LIGHT].setBrightness(0.0); | |||||
lights[PAN_RED_LIGHT].setBrightness(0.0); | |||||
lights[FEEDBACK_RED_LIGHT].setSmoothBrightness(vuMeter.getBrightness(1), args.sampleTime); | |||||
lights[REVERB_RED_LIGHT].setSmoothBrightness(vuMeter.getBrightness(0), args.sampleTime); | |||||
} | |||||
struct FreezeLight : YellowLight { | struct FreezeLight : YellowLight { | ||||
FreezeLight() { | FreezeLight() { | ||||
box.size = Vec(28-6, 28-6); | box.size = Vec(28-6, 28-6); | ||||
@@ -78,9 +78,139 @@ struct Elements : Module { | |||||
uint16_t reverb_buffer[32768] = {}; | uint16_t reverb_buffer[32768] = {}; | ||||
elements::Part *part; | elements::Part *part; | ||||
Elements(); | |||||
~Elements(); | |||||
void process(const ProcessArgs &args) override; | |||||
Elements() { | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
configParam(Elements::CONTOUR_PARAM, 0.0, 1.0, 1.0); | |||||
configParam(Elements::BOW_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Elements::BLOW_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Elements::STRIKE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::COARSE_PARAM, -30.0, 30.0, 0.0); | |||||
configParam(Elements::FINE_PARAM, -2.0, 2.0, 0.0); | |||||
configParam(Elements::FM_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::FLOW_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::MALLET_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::GEOMETRY_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::BRIGHTNESS_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::BOW_TIMBRE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::BLOW_TIMBRE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::STRIKE_TIMBRE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::DAMPING_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::POSITION_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::SPACE_PARAM, 0.0, 2.0, 0.0); | |||||
configParam(Elements::BOW_TIMBRE_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::FLOW_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::BLOW_TIMBRE_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::MALLET_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::STRIKE_TIMBRE_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::DAMPING_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::GEOMETRY_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::POSITION_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::BRIGHTNESS_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::SPACE_MOD_PARAM, -2.0, 2.0, 0.0); | |||||
configParam(Elements::PLAY_PARAM, 0.0, 1.0, 0.0); | |||||
part = new elements::Part(); | |||||
// In the Mutable Instruments code, Part doesn't initialize itself, so zero it here. | |||||
memset(part, 0, sizeof(*part)); | |||||
part->Init(reverb_buffer); | |||||
// Just some random numbers | |||||
uint32_t seed[3] = {1, 2, 3}; | |||||
part->Seed(seed, 3); | |||||
} | |||||
~Elements() { | |||||
delete part; | |||||
} | |||||
void process(const ProcessArgs &args) { | |||||
// Get input | |||||
if (!inputBuffer.full()) { | |||||
dsp::Frame<2> inputFrame; | |||||
inputFrame.samples[0] = inputs[BLOW_INPUT].getVoltage() / 5.0; | |||||
inputFrame.samples[1] = inputs[STRIKE_INPUT].getVoltage() / 5.0; | |||||
inputBuffer.push(inputFrame); | |||||
} | |||||
// Render frames | |||||
if (outputBuffer.empty()) { | |||||
float blow[16] = {}; | |||||
float strike[16] = {}; | |||||
float main[16]; | |||||
float aux[16]; | |||||
// Convert input buffer | |||||
{ | |||||
inputSrc.setRates(args.sampleRate, 32000); | |||||
dsp::Frame<2> inputFrames[16]; | |||||
int inLen = inputBuffer.size(); | |||||
int outLen = 16; | |||||
inputSrc.process(inputBuffer.startData(), &inLen, inputFrames, &outLen); | |||||
inputBuffer.startIncr(inLen); | |||||
for (int i = 0; i < outLen; i++) { | |||||
blow[i] = inputFrames[i].samples[0]; | |||||
strike[i] = inputFrames[i].samples[1]; | |||||
} | |||||
} | |||||
// Set patch from parameters | |||||
elements::Patch* p = part->mutable_patch(); | |||||
p->exciter_envelope_shape = params[CONTOUR_PARAM].getValue(); | |||||
p->exciter_bow_level = params[BOW_PARAM].getValue(); | |||||
p->exciter_blow_level = params[BLOW_PARAM].getValue(); | |||||
p->exciter_strike_level = params[STRIKE_PARAM].getValue(); | |||||
#define BIND(_p, _m, _i) clamp(params[_p].getValue() + 3.3f*dsp::quadraticBipolar(params[_m].getValue())*inputs[_i].getVoltage()/5.0f, 0.0f, 0.9995f) | |||||
p->exciter_bow_timbre = BIND(BOW_TIMBRE_PARAM, BOW_TIMBRE_MOD_PARAM, BOW_TIMBRE_MOD_INPUT); | |||||
p->exciter_blow_meta = BIND(FLOW_PARAM, FLOW_MOD_PARAM, FLOW_MOD_INPUT); | |||||
p->exciter_blow_timbre = BIND(BLOW_TIMBRE_PARAM, BLOW_TIMBRE_MOD_PARAM, BLOW_TIMBRE_MOD_INPUT); | |||||
p->exciter_strike_meta = BIND(MALLET_PARAM, MALLET_MOD_PARAM, MALLET_MOD_INPUT); | |||||
p->exciter_strike_timbre = BIND(STRIKE_TIMBRE_PARAM, STRIKE_TIMBRE_MOD_PARAM, STRIKE_TIMBRE_MOD_INPUT); | |||||
p->resonator_geometry = BIND(GEOMETRY_PARAM, GEOMETRY_MOD_PARAM, GEOMETRY_MOD_INPUT); | |||||
p->resonator_brightness = BIND(BRIGHTNESS_PARAM, BRIGHTNESS_MOD_PARAM, BRIGHTNESS_MOD_INPUT); | |||||
p->resonator_damping = BIND(DAMPING_PARAM, DAMPING_MOD_PARAM, DAMPING_MOD_INPUT); | |||||
p->resonator_position = BIND(POSITION_PARAM, POSITION_MOD_PARAM, POSITION_MOD_INPUT); | |||||
p->space = clamp(params[SPACE_PARAM].getValue() + params[SPACE_MOD_PARAM].getValue()*inputs[SPACE_MOD_INPUT].getVoltage()/5.0f, 0.0f, 2.0f); | |||||
// Get performance inputs | |||||
elements::PerformanceState performance; | |||||
performance.note = 12.0*inputs[NOTE_INPUT].getVoltage() + roundf(params[COARSE_PARAM].getValue()) + params[FINE_PARAM].getValue() + 69.0; | |||||
performance.modulation = 3.3*dsp::quarticBipolar(params[FM_PARAM].getValue()) * 49.5 * inputs[FM_INPUT].getVoltage()/5.0; | |||||
performance.gate = params[PLAY_PARAM].getValue() >= 1.0 || inputs[GATE_INPUT].getVoltage() >= 1.0; | |||||
performance.strength = clamp(1.0 - inputs[STRENGTH_INPUT].getVoltage()/5.0f, 0.0f, 1.0f); | |||||
// Generate audio | |||||
part->Process(performance, blow, strike, main, aux, 16); | |||||
// Convert output buffer | |||||
{ | |||||
dsp::Frame<2> outputFrames[16]; | |||||
for (int i = 0; i < 16; i++) { | |||||
outputFrames[i].samples[0] = main[i]; | |||||
outputFrames[i].samples[1] = aux[i]; | |||||
} | |||||
outputSrc.setRates(32000, args.sampleRate); | |||||
int inLen = 16; | |||||
int outLen = outputBuffer.capacity(); | |||||
outputSrc.process(outputFrames, &inLen, outputBuffer.endData(), &outLen); | |||||
outputBuffer.endIncr(outLen); | |||||
} | |||||
// Set lights | |||||
lights[GATE_LIGHT].setBrightness(performance.gate ? 0.75 : 0.0); | |||||
lights[EXCITER_LIGHT].setBrightness(part->exciter_level()); | |||||
lights[RESONATOR_LIGHT].setBrightness(part->resonator_level()); | |||||
} | |||||
// Set output | |||||
if (!outputBuffer.empty()) { | |||||
dsp::Frame<2> outputFrame = outputBuffer.shift(); | |||||
outputs[AUX_OUTPUT].setVoltage(5.0 * outputFrame.samples[0]); | |||||
outputs[MAIN_OUTPUT].setVoltage(5.0 * outputFrame.samples[1]); | |||||
} | |||||
} | |||||
json_t *dataToJson() override { | json_t *dataToJson() override { | ||||
json_t *rootJ = json_object(); | json_t *rootJ = json_object(); | ||||
@@ -105,141 +235,6 @@ struct Elements : Module { | |||||
}; | }; | ||||
Elements::Elements() { | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
configParam(Elements::CONTOUR_PARAM, 0.0, 1.0, 1.0); | |||||
configParam(Elements::BOW_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Elements::BLOW_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Elements::STRIKE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::COARSE_PARAM, -30.0, 30.0, 0.0); | |||||
configParam(Elements::FINE_PARAM, -2.0, 2.0, 0.0); | |||||
configParam(Elements::FM_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::FLOW_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::MALLET_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::GEOMETRY_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::BRIGHTNESS_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::BOW_TIMBRE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::BLOW_TIMBRE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::STRIKE_TIMBRE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::DAMPING_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::POSITION_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Elements::SPACE_PARAM, 0.0, 2.0, 0.0); | |||||
configParam(Elements::BOW_TIMBRE_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::FLOW_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::BLOW_TIMBRE_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::MALLET_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::STRIKE_TIMBRE_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::DAMPING_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::GEOMETRY_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::POSITION_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::BRIGHTNESS_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Elements::SPACE_MOD_PARAM, -2.0, 2.0, 0.0); | |||||
configParam(Elements::PLAY_PARAM, 0.0, 1.0, 0.0); | |||||
part = new elements::Part(); | |||||
// In the Mutable Instruments code, Part doesn't initialize itself, so zero it here. | |||||
memset(part, 0, sizeof(*part)); | |||||
part->Init(reverb_buffer); | |||||
// Just some random numbers | |||||
uint32_t seed[3] = {1, 2, 3}; | |||||
part->Seed(seed, 3); | |||||
} | |||||
Elements::~Elements() { | |||||
delete part; | |||||
} | |||||
void Elements::process(const ProcessArgs &args) { | |||||
// Get input | |||||
if (!inputBuffer.full()) { | |||||
dsp::Frame<2> inputFrame; | |||||
inputFrame.samples[0] = inputs[BLOW_INPUT].getVoltage() / 5.0; | |||||
inputFrame.samples[1] = inputs[STRIKE_INPUT].getVoltage() / 5.0; | |||||
inputBuffer.push(inputFrame); | |||||
} | |||||
// Render frames | |||||
if (outputBuffer.empty()) { | |||||
float blow[16] = {}; | |||||
float strike[16] = {}; | |||||
float main[16]; | |||||
float aux[16]; | |||||
// Convert input buffer | |||||
{ | |||||
inputSrc.setRates(args.sampleRate, 32000); | |||||
dsp::Frame<2> inputFrames[16]; | |||||
int inLen = inputBuffer.size(); | |||||
int outLen = 16; | |||||
inputSrc.process(inputBuffer.startData(), &inLen, inputFrames, &outLen); | |||||
inputBuffer.startIncr(inLen); | |||||
for (int i = 0; i < outLen; i++) { | |||||
blow[i] = inputFrames[i].samples[0]; | |||||
strike[i] = inputFrames[i].samples[1]; | |||||
} | |||||
} | |||||
// Set patch from parameters | |||||
elements::Patch* p = part->mutable_patch(); | |||||
p->exciter_envelope_shape = params[CONTOUR_PARAM].getValue(); | |||||
p->exciter_bow_level = params[BOW_PARAM].getValue(); | |||||
p->exciter_blow_level = params[BLOW_PARAM].getValue(); | |||||
p->exciter_strike_level = params[STRIKE_PARAM].getValue(); | |||||
#define BIND(_p, _m, _i) clamp(params[_p].getValue() + 3.3f*dsp::quadraticBipolar(params[_m].getValue())*inputs[_i].getVoltage()/5.0f, 0.0f, 0.9995f) | |||||
p->exciter_bow_timbre = BIND(BOW_TIMBRE_PARAM, BOW_TIMBRE_MOD_PARAM, BOW_TIMBRE_MOD_INPUT); | |||||
p->exciter_blow_meta = BIND(FLOW_PARAM, FLOW_MOD_PARAM, FLOW_MOD_INPUT); | |||||
p->exciter_blow_timbre = BIND(BLOW_TIMBRE_PARAM, BLOW_TIMBRE_MOD_PARAM, BLOW_TIMBRE_MOD_INPUT); | |||||
p->exciter_strike_meta = BIND(MALLET_PARAM, MALLET_MOD_PARAM, MALLET_MOD_INPUT); | |||||
p->exciter_strike_timbre = BIND(STRIKE_TIMBRE_PARAM, STRIKE_TIMBRE_MOD_PARAM, STRIKE_TIMBRE_MOD_INPUT); | |||||
p->resonator_geometry = BIND(GEOMETRY_PARAM, GEOMETRY_MOD_PARAM, GEOMETRY_MOD_INPUT); | |||||
p->resonator_brightness = BIND(BRIGHTNESS_PARAM, BRIGHTNESS_MOD_PARAM, BRIGHTNESS_MOD_INPUT); | |||||
p->resonator_damping = BIND(DAMPING_PARAM, DAMPING_MOD_PARAM, DAMPING_MOD_INPUT); | |||||
p->resonator_position = BIND(POSITION_PARAM, POSITION_MOD_PARAM, POSITION_MOD_INPUT); | |||||
p->space = clamp(params[SPACE_PARAM].getValue() + params[SPACE_MOD_PARAM].getValue()*inputs[SPACE_MOD_INPUT].getVoltage()/5.0f, 0.0f, 2.0f); | |||||
// Get performance inputs | |||||
elements::PerformanceState performance; | |||||
performance.note = 12.0*inputs[NOTE_INPUT].getVoltage() + roundf(params[COARSE_PARAM].getValue()) + params[FINE_PARAM].getValue() + 69.0; | |||||
performance.modulation = 3.3*dsp::quarticBipolar(params[FM_PARAM].getValue()) * 49.5 * inputs[FM_INPUT].getVoltage()/5.0; | |||||
performance.gate = params[PLAY_PARAM].getValue() >= 1.0 || inputs[GATE_INPUT].getVoltage() >= 1.0; | |||||
performance.strength = clamp(1.0 - inputs[STRENGTH_INPUT].getVoltage()/5.0f, 0.0f, 1.0f); | |||||
// Generate audio | |||||
part->Process(performance, blow, strike, main, aux, 16); | |||||
// Convert output buffer | |||||
{ | |||||
dsp::Frame<2> outputFrames[16]; | |||||
for (int i = 0; i < 16; i++) { | |||||
outputFrames[i].samples[0] = main[i]; | |||||
outputFrames[i].samples[1] = aux[i]; | |||||
} | |||||
outputSrc.setRates(32000, args.sampleRate); | |||||
int inLen = 16; | |||||
int outLen = outputBuffer.capacity(); | |||||
outputSrc.process(outputFrames, &inLen, outputBuffer.endData(), &outLen); | |||||
outputBuffer.endIncr(outLen); | |||||
} | |||||
// Set lights | |||||
lights[GATE_LIGHT].setBrightness(performance.gate ? 0.75 : 0.0); | |||||
lights[EXCITER_LIGHT].setBrightness(part->exciter_level()); | |||||
lights[RESONATOR_LIGHT].setBrightness(part->resonator_level()); | |||||
} | |||||
// Set output | |||||
if (!outputBuffer.empty()) { | |||||
dsp::Frame<2> outputFrame = outputBuffer.shift(); | |||||
outputs[AUX_OUTPUT].setVoltage(5.0 * outputFrame.samples[0]); | |||||
outputs[MAIN_OUTPUT].setVoltage(5.0 * outputFrame.samples[1]); | |||||
} | |||||
} | |||||
struct ElementsModalItem : MenuItem { | struct ElementsModalItem : MenuItem { | ||||
Elements *elements; | Elements *elements; | ||||
int model; | int model; | ||||
@@ -49,8 +49,157 @@ struct Frames : Module { | |||||
dsp::SchmittTrigger addTrigger; | dsp::SchmittTrigger addTrigger; | ||||
dsp::SchmittTrigger delTrigger; | dsp::SchmittTrigger delTrigger; | ||||
Frames(); | |||||
void process(const ProcessArgs &args) override; | |||||
Frames() { | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
configParam(Frames::GAIN1_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::GAIN2_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::GAIN3_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::GAIN4_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::FRAME_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::MODULATION_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Frames::ADD_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::DEL_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::OFFSET_PARAM, 0.0, 1.0, 0.0); | |||||
memset(&keyframer, 0, sizeof(keyframer)); | |||||
keyframer.Init(); | |||||
memset(&poly_lfo, 0, sizeof(poly_lfo)); | |||||
poly_lfo.Init(); | |||||
onReset(); | |||||
} | |||||
void process(const ProcessArgs &args) { | |||||
// Set gain and timestamp knobs | |||||
uint16_t controls[4]; | |||||
for (int i = 0; i < 4; i++) { | |||||
controls[i] = params[GAIN1_PARAM + i].getValue() * 65535.0; | |||||
} | |||||
int32_t timestamp = params[FRAME_PARAM].getValue() * 65535.0; | |||||
int32_t timestampMod = timestamp + params[MODULATION_PARAM].getValue() * inputs[FRAME_INPUT].getVoltage() / 10.0 * 65535.0; | |||||
timestamp = clamp(timestamp, 0, 65535); | |||||
timestampMod = clamp(timestampMod, 0, 65535); | |||||
int16_t nearestIndex = -1; | |||||
if (!poly_lfo_mode) { | |||||
nearestIndex = keyframer.FindNearestKeyframe(timestamp, 2048); | |||||
} | |||||
// Render, handle buttons | |||||
if (poly_lfo_mode) { | |||||
if (controls[0] != lastControls[0]) | |||||
poly_lfo.set_shape(controls[0]); | |||||
if (controls[1] != lastControls[1]) | |||||
poly_lfo.set_shape_spread(controls[1]); | |||||
if (controls[2] != lastControls[2]) | |||||
poly_lfo.set_spread(controls[2]); | |||||
if (controls[3] != lastControls[3]) | |||||
poly_lfo.set_coupling(controls[3]); | |||||
poly_lfo.Render(timestampMod); | |||||
} | |||||
else { | |||||
for (int i = 0; i < 4; i++) { | |||||
if (controls[i] != lastControls[i]) { | |||||
// Update recently moved control | |||||
if (keyframer.num_keyframes() == 0) { | |||||
keyframer.set_immediate(i, controls[i]); | |||||
} | |||||
if (nearestIndex >= 0) { | |||||
frames::Keyframe *nearestKeyframe = keyframer.mutable_keyframe(nearestIndex); | |||||
nearestKeyframe->values[i] = controls[i]; | |||||
} | |||||
} | |||||
} | |||||
if (addTrigger.process(params[ADD_PARAM].getValue())) { | |||||
if (nearestIndex < 0) { | |||||
keyframer.AddKeyframe(timestamp, controls); | |||||
} | |||||
} | |||||
if (delTrigger.process(params[DEL_PARAM].getValue())) { | |||||
if (nearestIndex >= 0) { | |||||
int32_t nearestTimestamp = keyframer.keyframe(nearestIndex).timestamp; | |||||
keyframer.RemoveKeyframe(nearestTimestamp); | |||||
} | |||||
} | |||||
keyframer.Evaluate(timestampMod); | |||||
} | |||||
// Get gains | |||||
float gains[4]; | |||||
for (int i = 0; i < 4; i++) { | |||||
if (poly_lfo_mode) { | |||||
// gains[i] = poly_lfo.level(i) / 255.0; | |||||
gains[i] = poly_lfo.level16(i) / 65535.0; | |||||
} | |||||
else { | |||||
float lin = keyframer.level(i) / 65535.0; | |||||
gains[i] = lin; | |||||
} | |||||
// Simulate SSM2164 | |||||
if (keyframer.mutable_settings(i)->response > 0) { | |||||
const float expBase = 200.0; | |||||
float expGain = rescale(powf(expBase, gains[i]), 1.0f, expBase, 0.0f, 1.0f); | |||||
gains[i] = crossfade(gains[i], expGain, keyframer.mutable_settings(i)->response / 255.0f); | |||||
} | |||||
} | |||||
// Update last controls | |||||
for (int i = 0; i < 4; i++) { | |||||
lastControls[i] = controls[i]; | |||||
} | |||||
// Get inputs | |||||
float all = ((int)params[OFFSET_PARAM].getValue() == 1) ? 10.0 : 0.0; | |||||
if (inputs[ALL_INPUT].isConnected()) { | |||||
all = inputs[ALL_INPUT].getVoltage(); | |||||
} | |||||
float ins[4]; | |||||
for (int i = 0; i < 4; i++) { | |||||
ins[i] = inputs[IN1_INPUT + i].getNormalVoltage(all) * gains[i]; | |||||
} | |||||
// Set outputs | |||||
float mix = 0.0; | |||||
for (int i = 0; i < 4; i++) { | |||||
if (outputs[OUT1_OUTPUT + i].isConnected()) { | |||||
outputs[OUT1_OUTPUT + i].setVoltage(ins[i]); | |||||
} | |||||
else { | |||||
mix += ins[i]; | |||||
} | |||||
} | |||||
outputs[MIX_OUTPUT].setVoltage(clamp(mix / 2.0, -10.0f, 10.0f)); | |||||
// Set lights | |||||
for (int i = 0; i < 4; i++) { | |||||
lights[GAIN1_LIGHT + i].setBrightness(gains[i]); | |||||
} | |||||
if (poly_lfo_mode) { | |||||
lights[EDIT_LIGHT].value = (poly_lfo.level(0) > 128 ? 1.0 : 0.0); | |||||
} | |||||
else { | |||||
lights[EDIT_LIGHT].value = (nearestIndex >= 0 ? 1.0 : 0.0); | |||||
} | |||||
// Set frame light colors | |||||
const uint8_t *colors; | |||||
if (poly_lfo_mode) { | |||||
colors = poly_lfo.color(); | |||||
} | |||||
else { | |||||
colors = keyframer.color(); | |||||
} | |||||
for (int i = 0; i < 3; i++) { | |||||
float c = colors[i] / 255.0; | |||||
c = 1.0 - (1.0 - c) * 1.25; | |||||
lights[FRAME_LIGHT + i].setBrightness(c); | |||||
} | |||||
} | |||||
json_t *dataToJson() override { | json_t *dataToJson() override { | ||||
json_t *rootJ = json_object(); | json_t *rootJ = json_object(); | ||||
@@ -130,160 +279,6 @@ struct Frames : Module { | |||||
}; | }; | ||||
Frames::Frames() { | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
configParam(Frames::GAIN1_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::GAIN2_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::GAIN3_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::GAIN4_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::FRAME_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::MODULATION_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Frames::ADD_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::DEL_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Frames::OFFSET_PARAM, 0.0, 1.0, 0.0); | |||||
memset(&keyframer, 0, sizeof(keyframer)); | |||||
keyframer.Init(); | |||||
memset(&poly_lfo, 0, sizeof(poly_lfo)); | |||||
poly_lfo.Init(); | |||||
onReset(); | |||||
} | |||||
void Frames::process(const ProcessArgs &args) { | |||||
// Set gain and timestamp knobs | |||||
uint16_t controls[4]; | |||||
for (int i = 0; i < 4; i++) { | |||||
controls[i] = params[GAIN1_PARAM + i].getValue() * 65535.0; | |||||
} | |||||
int32_t timestamp = params[FRAME_PARAM].getValue() * 65535.0; | |||||
int32_t timestampMod = timestamp + params[MODULATION_PARAM].getValue() * inputs[FRAME_INPUT].getVoltage() / 10.0 * 65535.0; | |||||
timestamp = clamp(timestamp, 0, 65535); | |||||
timestampMod = clamp(timestampMod, 0, 65535); | |||||
int16_t nearestIndex = -1; | |||||
if (!poly_lfo_mode) { | |||||
nearestIndex = keyframer.FindNearestKeyframe(timestamp, 2048); | |||||
} | |||||
// Render, handle buttons | |||||
if (poly_lfo_mode) { | |||||
if (controls[0] != lastControls[0]) | |||||
poly_lfo.set_shape(controls[0]); | |||||
if (controls[1] != lastControls[1]) | |||||
poly_lfo.set_shape_spread(controls[1]); | |||||
if (controls[2] != lastControls[2]) | |||||
poly_lfo.set_spread(controls[2]); | |||||
if (controls[3] != lastControls[3]) | |||||
poly_lfo.set_coupling(controls[3]); | |||||
poly_lfo.Render(timestampMod); | |||||
} | |||||
else { | |||||
for (int i = 0; i < 4; i++) { | |||||
if (controls[i] != lastControls[i]) { | |||||
// Update recently moved control | |||||
if (keyframer.num_keyframes() == 0) { | |||||
keyframer.set_immediate(i, controls[i]); | |||||
} | |||||
if (nearestIndex >= 0) { | |||||
frames::Keyframe *nearestKeyframe = keyframer.mutable_keyframe(nearestIndex); | |||||
nearestKeyframe->values[i] = controls[i]; | |||||
} | |||||
} | |||||
} | |||||
if (addTrigger.process(params[ADD_PARAM].getValue())) { | |||||
if (nearestIndex < 0) { | |||||
keyframer.AddKeyframe(timestamp, controls); | |||||
} | |||||
} | |||||
if (delTrigger.process(params[DEL_PARAM].getValue())) { | |||||
if (nearestIndex >= 0) { | |||||
int32_t nearestTimestamp = keyframer.keyframe(nearestIndex).timestamp; | |||||
keyframer.RemoveKeyframe(nearestTimestamp); | |||||
} | |||||
} | |||||
keyframer.Evaluate(timestampMod); | |||||
} | |||||
// Get gains | |||||
float gains[4]; | |||||
for (int i = 0; i < 4; i++) { | |||||
if (poly_lfo_mode) { | |||||
// gains[i] = poly_lfo.level(i) / 255.0; | |||||
gains[i] = poly_lfo.level16(i) / 65535.0; | |||||
} | |||||
else { | |||||
float lin = keyframer.level(i) / 65535.0; | |||||
gains[i] = lin; | |||||
} | |||||
// Simulate SSM2164 | |||||
if (keyframer.mutable_settings(i)->response > 0) { | |||||
const float expBase = 200.0; | |||||
float expGain = rescale(powf(expBase, gains[i]), 1.0f, expBase, 0.0f, 1.0f); | |||||
gains[i] = crossfade(gains[i], expGain, keyframer.mutable_settings(i)->response / 255.0f); | |||||
} | |||||
} | |||||
// Update last controls | |||||
for (int i = 0; i < 4; i++) { | |||||
lastControls[i] = controls[i]; | |||||
} | |||||
// Get inputs | |||||
float all = ((int)params[OFFSET_PARAM].getValue() == 1) ? 10.0 : 0.0; | |||||
if (inputs[ALL_INPUT].isConnected()) { | |||||
all = inputs[ALL_INPUT].getVoltage(); | |||||
} | |||||
float ins[4]; | |||||
for (int i = 0; i < 4; i++) { | |||||
ins[i] = inputs[IN1_INPUT + i].getNormalVoltage(all) * gains[i]; | |||||
} | |||||
// Set outputs | |||||
float mix = 0.0; | |||||
for (int i = 0; i < 4; i++) { | |||||
if (outputs[OUT1_OUTPUT + i].isConnected()) { | |||||
outputs[OUT1_OUTPUT + i].setVoltage(ins[i]); | |||||
} | |||||
else { | |||||
mix += ins[i]; | |||||
} | |||||
} | |||||
outputs[MIX_OUTPUT].setVoltage(clamp(mix / 2.0, -10.0f, 10.0f)); | |||||
// Set lights | |||||
for (int i = 0; i < 4; i++) { | |||||
lights[GAIN1_LIGHT + i].setBrightness(gains[i]); | |||||
} | |||||
if (poly_lfo_mode) { | |||||
lights[EDIT_LIGHT].value = (poly_lfo.level(0) > 128 ? 1.0 : 0.0); | |||||
} | |||||
else { | |||||
lights[EDIT_LIGHT].value = (nearestIndex >= 0 ? 1.0 : 0.0); | |||||
} | |||||
// Set frame light colors | |||||
const uint8_t *colors; | |||||
if (poly_lfo_mode) { | |||||
colors = poly_lfo.color(); | |||||
} | |||||
else { | |||||
colors = keyframer.color(); | |||||
} | |||||
for (int i = 0; i < 3; i++) { | |||||
float c = colors[i] / 255.0; | |||||
c = 1.0 - (1.0 - c) * 1.25; | |||||
lights[FRAME_LIGHT + i].setBrightness(c); | |||||
} | |||||
} | |||||
struct CKSSRot : SVGSwitch { | struct CKSSRot : SVGSwitch { | ||||
CKSSRot() { | CKSSRot() { | ||||
addFrame(APP->window->loadSvg(asset::plugin(pluginInstance, "res/CKSS_rot_0.svg"))); | addFrame(APP->window->loadSvg(asset::plugin(pluginInstance, "res/CKSS_rot_0.svg"))); | ||||
@@ -34,38 +34,37 @@ struct Kinks : Module { | |||||
float sample = 0.0; | float sample = 0.0; | ||||
Kinks() { | Kinks() { | ||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS);} | |||||
void process(const ProcessArgs &args) override; | |||||
}; | |||||
void Kinks::process(const ProcessArgs &args) { | |||||
// Gaussian noise generator | |||||
float noise = 2.0 * random::normal(); | |||||
// S&H | |||||
if (trigger.process(inputs[TRIG_INPUT].getVoltage() / 0.7)) { | |||||
sample = inputs[SH_INPUT].getNormalVoltage(noise); | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
} | } | ||||
// lights | |||||
lights[SIGN_POS_LIGHT].setSmoothBrightness(fmaxf(0.0, inputs[SIGN_INPUT].getVoltage() / 5.0), args.sampleTime); | |||||
lights[SIGN_NEG_LIGHT].setSmoothBrightness(fmaxf(0.0, -inputs[SIGN_INPUT].getVoltage() / 5.0), args.sampleTime); | |||||
float logicSum = inputs[LOGIC_A_INPUT].getVoltage() + inputs[LOGIC_B_INPUT].getVoltage(); | |||||
lights[LOGIC_POS_LIGHT].setSmoothBrightness(fmaxf(0.0, logicSum / 5.0), args.sampleTime); | |||||
lights[LOGIC_NEG_LIGHT].setSmoothBrightness(fmaxf(0.0, -logicSum / 5.0), args.sampleTime); | |||||
lights[SH_POS_LIGHT].setBrightness(fmaxf(0.0, sample / 5.0)); | |||||
lights[SH_NEG_LIGHT].setBrightness(fmaxf(0.0, -sample / 5.0)); | |||||
// outputs | |||||
outputs[INVERT_OUTPUT].setVoltage(-inputs[SIGN_INPUT].getVoltage()); | |||||
outputs[HALF_RECTIFY_OUTPUT].setVoltage(fmaxf(0.0, inputs[SIGN_INPUT].getVoltage())); | |||||
outputs[FULL_RECTIFY_OUTPUT].setVoltage(fabsf(inputs[SIGN_INPUT].getVoltage())); | |||||
outputs[MAX_OUTPUT].setVoltage(fmaxf(inputs[LOGIC_A_INPUT].getVoltage(), inputs[LOGIC_B_INPUT].getVoltage())); | |||||
outputs[MIN_OUTPUT].setVoltage(fminf(inputs[LOGIC_A_INPUT].getVoltage(), inputs[LOGIC_B_INPUT].getVoltage())); | |||||
outputs[NOISE_OUTPUT].setVoltage(noise); | |||||
outputs[SH_OUTPUT].setVoltage(sample); | |||||
} | |||||
void process(const ProcessArgs &args) { | |||||
// Gaussian noise generator | |||||
float noise = 2.0 * random::normal(); | |||||
// S&H | |||||
if (trigger.process(inputs[TRIG_INPUT].getVoltage() / 0.7)) { | |||||
sample = inputs[SH_INPUT].getNormalVoltage(noise); | |||||
} | |||||
// lights | |||||
lights[SIGN_POS_LIGHT].setSmoothBrightness(fmaxf(0.0, inputs[SIGN_INPUT].getVoltage() / 5.0), args.sampleTime); | |||||
lights[SIGN_NEG_LIGHT].setSmoothBrightness(fmaxf(0.0, -inputs[SIGN_INPUT].getVoltage() / 5.0), args.sampleTime); | |||||
float logicSum = inputs[LOGIC_A_INPUT].getVoltage() + inputs[LOGIC_B_INPUT].getVoltage(); | |||||
lights[LOGIC_POS_LIGHT].setSmoothBrightness(fmaxf(0.0, logicSum / 5.0), args.sampleTime); | |||||
lights[LOGIC_NEG_LIGHT].setSmoothBrightness(fmaxf(0.0, -logicSum / 5.0), args.sampleTime); | |||||
lights[SH_POS_LIGHT].setBrightness(fmaxf(0.0, sample / 5.0)); | |||||
lights[SH_NEG_LIGHT].setBrightness(fmaxf(0.0, -sample / 5.0)); | |||||
// outputs | |||||
outputs[INVERT_OUTPUT].setVoltage(-inputs[SIGN_INPUT].getVoltage()); | |||||
outputs[HALF_RECTIFY_OUTPUT].setVoltage(fmaxf(0.0, inputs[SIGN_INPUT].getVoltage())); | |||||
outputs[FULL_RECTIFY_OUTPUT].setVoltage(fabsf(inputs[SIGN_INPUT].getVoltage())); | |||||
outputs[MAX_OUTPUT].setVoltage(fmaxf(inputs[LOGIC_A_INPUT].getVoltage(), inputs[LOGIC_B_INPUT].getVoltage())); | |||||
outputs[MIN_OUTPUT].setVoltage(fminf(inputs[LOGIC_A_INPUT].getVoltage(), inputs[LOGIC_B_INPUT].getVoltage())); | |||||
outputs[NOISE_OUTPUT].setVoltage(noise); | |||||
outputs[SH_OUTPUT].setVoltage(sample); | |||||
} | |||||
}; | |||||
struct KinksWidget : ModuleWidget { | struct KinksWidget : ModuleWidget { | ||||
@@ -31,30 +31,29 @@ struct Links : Module { | |||||
}; | }; | ||||
Links() { | Links() { | ||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS);} | |||||
void process(const ProcessArgs &args) override; | |||||
}; | |||||
void Links::process(const ProcessArgs &args) { | |||||
float inA = inputs[A1_INPUT].getVoltage(); | |||||
float inB = inputs[B1_INPUT].getVoltage() + inputs[B2_INPUT].getVoltage(); | |||||
float inC = inputs[C1_INPUT].getVoltage() + inputs[C2_INPUT].getVoltage() + inputs[C3_INPUT].getVoltage(); | |||||
outputs[A1_OUTPUT].setVoltage(inA); | |||||
outputs[A2_OUTPUT].setVoltage(inA); | |||||
outputs[A3_OUTPUT].setVoltage(inA); | |||||
outputs[B1_OUTPUT].setVoltage(inB); | |||||
outputs[B2_OUTPUT].setVoltage(inB); | |||||
outputs[C1_OUTPUT].setVoltage(inC); | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
} | |||||
lights[A_POS_LIGHT].setSmoothBrightness(fmaxf(0.0, inA / 5.0), args.sampleTime); | |||||
lights[A_NEG_LIGHT].setSmoothBrightness(fmaxf(0.0, -inA / 5.0), args.sampleTime); | |||||
lights[B_POS_LIGHT].setSmoothBrightness(fmaxf(0.0, inB / 5.0), args.sampleTime); | |||||
lights[B_NEG_LIGHT].setSmoothBrightness(fmaxf(0.0, -inB / 5.0), args.sampleTime); | |||||
lights[C_POS_LIGHT].setSmoothBrightness(fmaxf(0.0, inC / 5.0), args.sampleTime); | |||||
lights[C_NEG_LIGHT].setSmoothBrightness(fmaxf(0.0, -inC / 5.0), args.sampleTime); | |||||
} | |||||
void process(const ProcessArgs &args) { | |||||
float inA = inputs[A1_INPUT].getVoltage(); | |||||
float inB = inputs[B1_INPUT].getVoltage() + inputs[B2_INPUT].getVoltage(); | |||||
float inC = inputs[C1_INPUT].getVoltage() + inputs[C2_INPUT].getVoltage() + inputs[C3_INPUT].getVoltage(); | |||||
outputs[A1_OUTPUT].setVoltage(inA); | |||||
outputs[A2_OUTPUT].setVoltage(inA); | |||||
outputs[A3_OUTPUT].setVoltage(inA); | |||||
outputs[B1_OUTPUT].setVoltage(inB); | |||||
outputs[B2_OUTPUT].setVoltage(inB); | |||||
outputs[C1_OUTPUT].setVoltage(inC); | |||||
lights[A_POS_LIGHT].setSmoothBrightness(fmaxf(0.0, inA / 5.0), args.sampleTime); | |||||
lights[A_NEG_LIGHT].setSmoothBrightness(fmaxf(0.0, -inA / 5.0), args.sampleTime); | |||||
lights[B_POS_LIGHT].setSmoothBrightness(fmaxf(0.0, inB / 5.0), args.sampleTime); | |||||
lights[B_NEG_LIGHT].setSmoothBrightness(fmaxf(0.0, -inB / 5.0), args.sampleTime); | |||||
lights[C_POS_LIGHT].setSmoothBrightness(fmaxf(0.0, inC / 5.0), args.sampleTime); | |||||
lights[C_NEG_LIGHT].setSmoothBrightness(fmaxf(0.0, -inC / 5.0), args.sampleTime); | |||||
} | |||||
}; | |||||
struct LinksWidget : ModuleWidget { | struct LinksWidget : ModuleWidget { | ||||
@@ -63,8 +63,154 @@ struct Rings : Module { | |||||
rings::ResonatorModel resonatorModel = rings::RESONATOR_MODEL_MODAL; | rings::ResonatorModel resonatorModel = rings::RESONATOR_MODEL_MODAL; | ||||
bool easterEgg = false; | bool easterEgg = false; | ||||
Rings(); | |||||
void process(const ProcessArgs &args) override; | |||||
Rings() { | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
configParam(Rings::POLYPHONY_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Rings::RESONATOR_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Rings::FREQUENCY_PARAM, 0.0, 60.0, 30.0); | |||||
configParam(Rings::STRUCTURE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Rings::BRIGHTNESS_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Rings::DAMPING_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Rings::POSITION_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Rings::BRIGHTNESS_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Rings::FREQUENCY_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Rings::DAMPING_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Rings::STRUCTURE_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Rings::POSITION_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
memset(&strummer, 0, sizeof(strummer)); | |||||
memset(&part, 0, sizeof(part)); | |||||
memset(&string_synth, 0, sizeof(string_synth)); | |||||
strummer.Init(0.01, 44100.0 / 24); | |||||
part.Init(reverb_buffer); | |||||
string_synth.Init(reverb_buffer); | |||||
} | |||||
void process(const ProcessArgs &args) { | |||||
// TODO | |||||
// "Normalized to a pulse/burst generator that reacts to note changes on the V/OCT input." | |||||
// Get input | |||||
if (!inputBuffer.full()) { | |||||
dsp::Frame<1> f; | |||||
f.samples[0] = inputs[IN_INPUT].getVoltage() / 5.0; | |||||
inputBuffer.push(f); | |||||
} | |||||
if (!strum) { | |||||
strum = inputs[STRUM_INPUT].getVoltage() >= 1.0; | |||||
} | |||||
// Polyphony / model | |||||
if (polyphonyTrigger.process(params[POLYPHONY_PARAM].getValue())) { | |||||
polyphonyMode = (polyphonyMode + 1) % 3; | |||||
} | |||||
lights[POLYPHONY_GREEN_LIGHT].value = (polyphonyMode == 0 || polyphonyMode == 1) ? 1.0 : 0.0; | |||||
lights[POLYPHONY_RED_LIGHT].value = (polyphonyMode == 1 || polyphonyMode == 2) ? 1.0 : 0.0; | |||||
if (modelTrigger.process(params[RESONATOR_PARAM].getValue())) { | |||||
resonatorModel = (rings::ResonatorModel) ((resonatorModel + 1) % 3); | |||||
} | |||||
int modelColor = resonatorModel % 3; | |||||
lights[RESONATOR_GREEN_LIGHT].value = (modelColor == 0 || modelColor == 1) ? 1.0 : 0.0; | |||||
lights[RESONATOR_RED_LIGHT].value = (modelColor == 1 || modelColor == 2) ? 1.0 : 0.0; | |||||
// Render frames | |||||
if (outputBuffer.empty()) { | |||||
float in[24] = {}; | |||||
// Convert input buffer | |||||
{ | |||||
inputSrc.setRates(args.sampleRate, 48000); | |||||
int inLen = inputBuffer.size(); | |||||
int outLen = 24; | |||||
inputSrc.process(inputBuffer.startData(), &inLen, (dsp::Frame<1>*) in, &outLen); | |||||
inputBuffer.startIncr(inLen); | |||||
} | |||||
// Polyphony | |||||
int polyphony = 1 << polyphonyMode; | |||||
if (part.polyphony() != polyphony) | |||||
part.set_polyphony(polyphony); | |||||
// Model | |||||
if (easterEgg) | |||||
string_synth.set_fx((rings::FxType) resonatorModel); | |||||
else | |||||
part.set_model(resonatorModel); | |||||
// Patch | |||||
rings::Patch patch; | |||||
float structure = params[STRUCTURE_PARAM].getValue() + 3.3*dsp::quadraticBipolar(params[STRUCTURE_MOD_PARAM].getValue())*inputs[STRUCTURE_MOD_INPUT].getVoltage()/5.0; | |||||
patch.structure = clamp(structure, 0.0f, 0.9995f); | |||||
patch.brightness = clamp(params[BRIGHTNESS_PARAM].getValue() + 3.3*dsp::quadraticBipolar(params[BRIGHTNESS_MOD_PARAM].getValue())*inputs[BRIGHTNESS_MOD_INPUT].getVoltage()/5.0, 0.0f, 1.0f); | |||||
patch.damping = clamp(params[DAMPING_PARAM].getValue() + 3.3*dsp::quadraticBipolar(params[DAMPING_MOD_PARAM].getValue())*inputs[DAMPING_MOD_INPUT].getVoltage()/5.0, 0.0f, 0.9995f); | |||||
patch.position = clamp(params[POSITION_PARAM].getValue() + 3.3*dsp::quadraticBipolar(params[POSITION_MOD_PARAM].getValue())*inputs[POSITION_MOD_INPUT].getVoltage()/5.0, 0.0f, 0.9995f); | |||||
// Performance | |||||
rings::PerformanceState performance_state; | |||||
performance_state.note = 12.0*inputs[PITCH_INPUT].getNormalVoltage(1/12.0); | |||||
float transpose = params[FREQUENCY_PARAM].getValue(); | |||||
// Quantize transpose if pitch input is connected | |||||
if (inputs[PITCH_INPUT].isConnected()) { | |||||
transpose = roundf(transpose); | |||||
} | |||||
performance_state.tonic = 12.0 + clamp(transpose, 0.0f, 60.0f); | |||||
performance_state.fm = clamp(48.0 * 3.3*dsp::quarticBipolar(params[FREQUENCY_MOD_PARAM].getValue()) * inputs[FREQUENCY_MOD_INPUT].getNormalVoltage(1.0)/5.0, -48.0f, 48.0f); | |||||
performance_state.internal_exciter = !inputs[IN_INPUT].isConnected(); | |||||
performance_state.internal_strum = !inputs[STRUM_INPUT].isConnected(); | |||||
performance_state.internal_note = !inputs[PITCH_INPUT].isConnected(); | |||||
// TODO | |||||
// "Normalized to a step detector on the V/OCT input and a transient detector on the IN input." | |||||
performance_state.strum = strum && !lastStrum; | |||||
lastStrum = strum; | |||||
strum = false; | |||||
performance_state.chord = clamp((int) roundf(structure * (rings::kNumChords - 1)), 0, rings::kNumChords - 1); | |||||
// Process audio | |||||
float out[24]; | |||||
float aux[24]; | |||||
if (easterEgg) { | |||||
strummer.Process(NULL, 24, &performance_state); | |||||
string_synth.Process(performance_state, patch, in, out, aux, 24); | |||||
} | |||||
else { | |||||
strummer.Process(in, 24, &performance_state); | |||||
part.Process(performance_state, patch, in, out, aux, 24); | |||||
} | |||||
// Convert output buffer | |||||
{ | |||||
dsp::Frame<2> outputFrames[24]; | |||||
for (int i = 0; i < 24; i++) { | |||||
outputFrames[i].samples[0] = out[i]; | |||||
outputFrames[i].samples[1] = aux[i]; | |||||
} | |||||
outputSrc.setRates(48000, args.sampleRate); | |||||
int inLen = 24; | |||||
int outLen = outputBuffer.capacity(); | |||||
outputSrc.process(outputFrames, &inLen, outputBuffer.endData(), &outLen); | |||||
outputBuffer.endIncr(outLen); | |||||
} | |||||
} | |||||
// Set output | |||||
if (!outputBuffer.empty()) { | |||||
dsp::Frame<2> outputFrame = outputBuffer.shift(); | |||||
// "Note that you need to insert a jack into each output to split the signals: when only one jack is inserted, both signals are mixed together." | |||||
if (outputs[ODD_OUTPUT].isConnected() && outputs[EVEN_OUTPUT].isConnected()) { | |||||
outputs[ODD_OUTPUT].setVoltage(clamp(outputFrame.samples[0], -1.0, 1.0)*5.0); | |||||
outputs[EVEN_OUTPUT].setVoltage(clamp(outputFrame.samples[1], -1.0, 1.0)*5.0); | |||||
} | |||||
else { | |||||
float v = clamp(outputFrame.samples[0] + outputFrame.samples[1], -1.0, 1.0)*5.0; | |||||
outputs[ODD_OUTPUT].setVoltage(v); | |||||
outputs[EVEN_OUTPUT].setVoltage(v); | |||||
} | |||||
} | |||||
} | |||||
json_t *dataToJson() override { | json_t *dataToJson() override { | ||||
json_t *rootJ = json_object(); | json_t *rootJ = json_object(); | ||||
@@ -105,156 +251,6 @@ struct Rings : Module { | |||||
}; | }; | ||||
Rings::Rings() { | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
configParam(Rings::POLYPHONY_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Rings::RESONATOR_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Rings::FREQUENCY_PARAM, 0.0, 60.0, 30.0); | |||||
configParam(Rings::STRUCTURE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Rings::BRIGHTNESS_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Rings::DAMPING_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Rings::POSITION_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Rings::BRIGHTNESS_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Rings::FREQUENCY_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Rings::DAMPING_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Rings::STRUCTURE_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Rings::POSITION_MOD_PARAM, -1.0, 1.0, 0.0); | |||||
memset(&strummer, 0, sizeof(strummer)); | |||||
memset(&part, 0, sizeof(part)); | |||||
memset(&string_synth, 0, sizeof(string_synth)); | |||||
strummer.Init(0.01, 44100.0 / 24); | |||||
part.Init(reverb_buffer); | |||||
string_synth.Init(reverb_buffer); | |||||
} | |||||
void Rings::process(const ProcessArgs &args) { | |||||
// TODO | |||||
// "Normalized to a pulse/burst generator that reacts to note changes on the V/OCT input." | |||||
// Get input | |||||
if (!inputBuffer.full()) { | |||||
dsp::Frame<1> f; | |||||
f.samples[0] = inputs[IN_INPUT].getVoltage() / 5.0; | |||||
inputBuffer.push(f); | |||||
} | |||||
if (!strum) { | |||||
strum = inputs[STRUM_INPUT].getVoltage() >= 1.0; | |||||
} | |||||
// Polyphony / model | |||||
if (polyphonyTrigger.process(params[POLYPHONY_PARAM].getValue())) { | |||||
polyphonyMode = (polyphonyMode + 1) % 3; | |||||
} | |||||
lights[POLYPHONY_GREEN_LIGHT].value = (polyphonyMode == 0 || polyphonyMode == 1) ? 1.0 : 0.0; | |||||
lights[POLYPHONY_RED_LIGHT].value = (polyphonyMode == 1 || polyphonyMode == 2) ? 1.0 : 0.0; | |||||
if (modelTrigger.process(params[RESONATOR_PARAM].getValue())) { | |||||
resonatorModel = (rings::ResonatorModel) ((resonatorModel + 1) % 3); | |||||
} | |||||
int modelColor = resonatorModel % 3; | |||||
lights[RESONATOR_GREEN_LIGHT].value = (modelColor == 0 || modelColor == 1) ? 1.0 : 0.0; | |||||
lights[RESONATOR_RED_LIGHT].value = (modelColor == 1 || modelColor == 2) ? 1.0 : 0.0; | |||||
// Render frames | |||||
if (outputBuffer.empty()) { | |||||
float in[24] = {}; | |||||
// Convert input buffer | |||||
{ | |||||
inputSrc.setRates(args.sampleRate, 48000); | |||||
int inLen = inputBuffer.size(); | |||||
int outLen = 24; | |||||
inputSrc.process(inputBuffer.startData(), &inLen, (dsp::Frame<1>*) in, &outLen); | |||||
inputBuffer.startIncr(inLen); | |||||
} | |||||
// Polyphony | |||||
int polyphony = 1 << polyphonyMode; | |||||
if (part.polyphony() != polyphony) | |||||
part.set_polyphony(polyphony); | |||||
// Model | |||||
if (easterEgg) | |||||
string_synth.set_fx((rings::FxType) resonatorModel); | |||||
else | |||||
part.set_model(resonatorModel); | |||||
// Patch | |||||
rings::Patch patch; | |||||
float structure = params[STRUCTURE_PARAM].getValue() + 3.3*dsp::quadraticBipolar(params[STRUCTURE_MOD_PARAM].getValue())*inputs[STRUCTURE_MOD_INPUT].getVoltage()/5.0; | |||||
patch.structure = clamp(structure, 0.0f, 0.9995f); | |||||
patch.brightness = clamp(params[BRIGHTNESS_PARAM].getValue() + 3.3*dsp::quadraticBipolar(params[BRIGHTNESS_MOD_PARAM].getValue())*inputs[BRIGHTNESS_MOD_INPUT].getVoltage()/5.0, 0.0f, 1.0f); | |||||
patch.damping = clamp(params[DAMPING_PARAM].getValue() + 3.3*dsp::quadraticBipolar(params[DAMPING_MOD_PARAM].getValue())*inputs[DAMPING_MOD_INPUT].getVoltage()/5.0, 0.0f, 0.9995f); | |||||
patch.position = clamp(params[POSITION_PARAM].getValue() + 3.3*dsp::quadraticBipolar(params[POSITION_MOD_PARAM].getValue())*inputs[POSITION_MOD_INPUT].getVoltage()/5.0, 0.0f, 0.9995f); | |||||
// Performance | |||||
rings::PerformanceState performance_state; | |||||
performance_state.note = 12.0*inputs[PITCH_INPUT].getNormalVoltage(1/12.0); | |||||
float transpose = params[FREQUENCY_PARAM].getValue(); | |||||
// Quantize transpose if pitch input is connected | |||||
if (inputs[PITCH_INPUT].isConnected()) { | |||||
transpose = roundf(transpose); | |||||
} | |||||
performance_state.tonic = 12.0 + clamp(transpose, 0.0f, 60.0f); | |||||
performance_state.fm = clamp(48.0 * 3.3*dsp::quarticBipolar(params[FREQUENCY_MOD_PARAM].getValue()) * inputs[FREQUENCY_MOD_INPUT].getNormalVoltage(1.0)/5.0, -48.0f, 48.0f); | |||||
performance_state.internal_exciter = !inputs[IN_INPUT].isConnected(); | |||||
performance_state.internal_strum = !inputs[STRUM_INPUT].isConnected(); | |||||
performance_state.internal_note = !inputs[PITCH_INPUT].isConnected(); | |||||
// TODO | |||||
// "Normalized to a step detector on the V/OCT input and a transient detector on the IN input." | |||||
performance_state.strum = strum && !lastStrum; | |||||
lastStrum = strum; | |||||
strum = false; | |||||
performance_state.chord = clamp((int) roundf(structure * (rings::kNumChords - 1)), 0, rings::kNumChords - 1); | |||||
// Process audio | |||||
float out[24]; | |||||
float aux[24]; | |||||
if (easterEgg) { | |||||
strummer.Process(NULL, 24, &performance_state); | |||||
string_synth.Process(performance_state, patch, in, out, aux, 24); | |||||
} | |||||
else { | |||||
strummer.Process(in, 24, &performance_state); | |||||
part.Process(performance_state, patch, in, out, aux, 24); | |||||
} | |||||
// Convert output buffer | |||||
{ | |||||
dsp::Frame<2> outputFrames[24]; | |||||
for (int i = 0; i < 24; i++) { | |||||
outputFrames[i].samples[0] = out[i]; | |||||
outputFrames[i].samples[1] = aux[i]; | |||||
} | |||||
outputSrc.setRates(48000, args.sampleRate); | |||||
int inLen = 24; | |||||
int outLen = outputBuffer.capacity(); | |||||
outputSrc.process(outputFrames, &inLen, outputBuffer.endData(), &outLen); | |||||
outputBuffer.endIncr(outLen); | |||||
} | |||||
} | |||||
// Set output | |||||
if (!outputBuffer.empty()) { | |||||
dsp::Frame<2> outputFrame = outputBuffer.shift(); | |||||
// "Note that you need to insert a jack into each output to split the signals: when only one jack is inserted, both signals are mixed together." | |||||
if (outputs[ODD_OUTPUT].isConnected() && outputs[EVEN_OUTPUT].isConnected()) { | |||||
outputs[ODD_OUTPUT].setVoltage(clamp(outputFrame.samples[0], -1.0, 1.0)*5.0); | |||||
outputs[EVEN_OUTPUT].setVoltage(clamp(outputFrame.samples[1], -1.0, 1.0)*5.0); | |||||
} | |||||
else { | |||||
float v = clamp(outputFrame.samples[0] + outputFrame.samples[1], -1.0, 1.0)*5.0; | |||||
outputs[ODD_OUTPUT].setVoltage(v); | |||||
outputs[EVEN_OUTPUT].setVoltage(v); | |||||
} | |||||
} | |||||
} | |||||
struct RingsWidget : ModuleWidget { | struct RingsWidget : ModuleWidget { | ||||
RingsWidget(Rings *module) { | RingsWidget(Rings *module) { | ||||
setModule(module); | setModule(module); | ||||
@@ -39,32 +39,30 @@ struct Shades : Module { | |||||
configParam(Shades::MODE2_PARAM, 0.0, 1.0, 1.0); | configParam(Shades::MODE2_PARAM, 0.0, 1.0, 1.0); | ||||
configParam(Shades::MODE3_PARAM, 0.0, 1.0, 1.0); | configParam(Shades::MODE3_PARAM, 0.0, 1.0, 1.0); | ||||
} | } | ||||
void process(const ProcessArgs &args) override; | |||||
}; | |||||
void Shades::process(const ProcessArgs &args) { | |||||
float out = 0.0; | |||||
for (int i = 0; i < 3; i++) { | |||||
float in = inputs[IN1_INPUT + i].normalize(5.0); | |||||
if ((int)params[MODE1_PARAM + i].getValue() == 1) { | |||||
// attenuverter | |||||
in *= 2.0 * params[GAIN1_PARAM + i].getValue() - 1.0; | |||||
} | |||||
else { | |||||
// attenuator | |||||
in *= params[GAIN1_PARAM + i].getValue(); | |||||
} | |||||
out += in; | |||||
lights[OUT1_POS_LIGHT + 2*i].setBrightnessSmooth(fmaxf(0.0, out / 5.0)); | |||||
lights[OUT1_NEG_LIGHT + 2*i].setBrightnessSmooth(fmaxf(0.0, -out / 5.0)); | |||||
if (outputs[OUT1_OUTPUT + i].isConnected()) { | |||||
outputs[OUT1_OUTPUT + i].setVoltage(out); | |||||
out = 0.0; | |||||
void process(const ProcessArgs &args) { | |||||
float out = 0.0; | |||||
for (int i = 0; i < 3; i++) { | |||||
float in = inputs[IN1_INPUT + i].normalize(5.0); | |||||
if ((int)params[MODE1_PARAM + i].getValue() == 1) { | |||||
// attenuverter | |||||
in *= 2.0 * params[GAIN1_PARAM + i].getValue() - 1.0; | |||||
} | |||||
else { | |||||
// attenuator | |||||
in *= params[GAIN1_PARAM + i].getValue(); | |||||
} | |||||
out += in; | |||||
lights[OUT1_POS_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, out / 5.0), args.sampleTime); | |||||
lights[OUT1_NEG_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, -out / 5.0), args.sampleTime); | |||||
if (outputs[OUT1_OUTPUT + i].isConnected()) { | |||||
outputs[OUT1_OUTPUT + i].setVoltage(out); | |||||
out = 0.0; | |||||
} | |||||
} | } | ||||
} | } | ||||
} | |||||
}; | |||||
struct ShadesWidget : ModuleWidget { | struct ShadesWidget : ModuleWidget { | ||||
@@ -50,9 +50,108 @@ struct Tides : Module { | |||||
dsp::SchmittTrigger modeTrigger; | dsp::SchmittTrigger modeTrigger; | ||||
dsp::SchmittTrigger rangeTrigger; | dsp::SchmittTrigger rangeTrigger; | ||||
Tides(); | |||||
void process(const ProcessArgs &args) override; | |||||
Tides() { | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
configParam(Tides::MODE_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Tides::RANGE_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Tides::FREQUENCY_PARAM, -48.0, 48.0, 0.0); | |||||
configParam(Tides::FM_PARAM, -12.0, 12.0, 0.0); | |||||
configParam(Tides::SHAPE_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Tides::SLOPE_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Tides::SMOOTHNESS_PARAM, -1.0, 1.0, 0.0); | |||||
memset(&generator, 0, sizeof(generator)); | |||||
generator.Init(); | |||||
generator.set_sync(false); | |||||
onReset(); | |||||
} | |||||
void process(const ProcessArgs &args) { | |||||
tides::GeneratorMode mode = generator.mode(); | |||||
if (modeTrigger.process(params[MODE_PARAM].getValue())) { | |||||
mode = (tides::GeneratorMode) (((int)mode - 1 + 3) % 3); | |||||
generator.set_mode(mode); | |||||
} | |||||
lights[MODE_GREEN_LIGHT].value = (mode == 2) ? 1.0 : 0.0; | |||||
lights[MODE_RED_LIGHT].value = (mode == 0) ? 1.0 : 0.0; | |||||
tides::GeneratorRange range = generator.range(); | |||||
if (rangeTrigger.process(params[RANGE_PARAM].getValue())) { | |||||
range = (tides::GeneratorRange) (((int)range - 1 + 3) % 3); | |||||
generator.set_range(range); | |||||
} | |||||
lights[RANGE_GREEN_LIGHT].value = (range == 2) ? 1.0 : 0.0; | |||||
lights[RANGE_RED_LIGHT].value = (range == 0) ? 1.0 : 0.0; | |||||
// Buffer loop | |||||
if (++frame >= 16) { | |||||
frame = 0; | |||||
// Pitch | |||||
float pitch = params[FREQUENCY_PARAM].getValue(); | |||||
pitch += 12.0 * inputs[PITCH_INPUT].getVoltage(); | |||||
pitch += params[FM_PARAM].getValue() * inputs[FM_INPUT].getNormalVoltage(0.1) / 5.0; | |||||
pitch += 60.0; | |||||
// Scale to the global sample rate | |||||
pitch += log2f(48000.0 / args.sampleRate) * 12.0; | |||||
generator.set_pitch((int) clamp(pitch * 0x80, (float) -0x8000, (float) 0x7fff)); | |||||
// Slope, smoothness, pitch | |||||
int16_t shape = clamp(params[SHAPE_PARAM].getValue() + inputs[SHAPE_INPUT].getVoltage() / 5.0f, -1.0f, 1.0f) * 0x7fff; | |||||
int16_t slope = clamp(params[SLOPE_PARAM].getValue() + inputs[SLOPE_INPUT].getVoltage() / 5.0f, -1.0f, 1.0f) * 0x7fff; | |||||
int16_t smoothness = clamp(params[SMOOTHNESS_PARAM].getValue() + inputs[SMOOTHNESS_INPUT].getVoltage() / 5.0f, -1.0f, 1.0f) * 0x7fff; | |||||
generator.set_shape(shape); | |||||
generator.set_slope(slope); | |||||
generator.set_smoothness(smoothness); | |||||
// Sync | |||||
// Slight deviation from spec here. | |||||
// Instead of toggling sync by holding the range button, just enable it if the clock port is plugged in. | |||||
generator.set_sync(inputs[CLOCK_INPUT].isConnected() && !sheep); | |||||
// Generator | |||||
generator.Process(sheep); | |||||
} | |||||
// Level | |||||
uint16_t level = clamp(inputs[LEVEL_INPUT].getNormalVoltage(8.0) / 8.0f, 0.0f, 1.0f) * 0xffff; | |||||
if (level < 32) | |||||
level = 0; | |||||
uint8_t gate = 0; | |||||
if (inputs[FREEZE_INPUT].getVoltage() >= 0.7) | |||||
gate |= tides::CONTROL_FREEZE; | |||||
if (inputs[TRIG_INPUT].getVoltage() >= 0.7) | |||||
gate |= tides::CONTROL_GATE; | |||||
if (inputs[CLOCK_INPUT].getVoltage() >= 0.7) | |||||
gate |= tides::CONTROL_CLOCK; | |||||
if (!(lastGate & tides::CONTROL_CLOCK) && (gate & tides::CONTROL_CLOCK)) | |||||
gate |= tides::CONTROL_GATE_RISING; | |||||
if (!(lastGate & tides::CONTROL_GATE) && (gate & tides::CONTROL_GATE)) | |||||
gate |= tides::CONTROL_GATE_RISING; | |||||
if ((lastGate & tides::CONTROL_GATE) && !(gate & tides::CONTROL_GATE)) | |||||
gate |= tides::CONTROL_GATE_FALLING; | |||||
lastGate = gate; | |||||
const tides::GeneratorSample& sample = generator.Process(gate); | |||||
uint32_t uni = sample.unipolar; | |||||
int32_t bi = sample.bipolar; | |||||
uni = uni * level >> 16; | |||||
bi = -bi * level >> 16; | |||||
float unif = (float) uni / 0xffff; | |||||
float bif = (float) bi / 0x8000; | |||||
outputs[HIGH_OUTPUT].setVoltage(sample.flags & tides::FLAG_END_OF_ATTACK ? 0.0 : 5.0); | |||||
outputs[LOW_OUTPUT].setVoltage(sample.flags & tides::FLAG_END_OF_RELEASE ? 0.0 : 5.0); | |||||
outputs[UNI_OUTPUT].setVoltage(unif * 8.0); | |||||
outputs[BI_OUTPUT].setVoltage(bif * 5.0); | |||||
if (sample.flags & tides::FLAG_END_OF_ATTACK) | |||||
unif *= -1.0; | |||||
lights[PHASE_GREEN_LIGHT].setSmoothBrightness(fmaxf(0.0, unif), args.sampleTime); | |||||
lights[PHASE_RED_LIGHT].setSmoothBrightness(fmaxf(0.0, -unif), args.sampleTime); | |||||
} | |||||
void onReset() override { | void onReset() override { | ||||
generator.set_range(tides::GENERATOR_RANGE_MEDIUM); | generator.set_range(tides::GENERATOR_RANGE_MEDIUM); | ||||
@@ -94,110 +193,6 @@ struct Tides : Module { | |||||
}; | }; | ||||
Tides::Tides() { | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
configParam(Tides::MODE_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Tides::RANGE_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Tides::FREQUENCY_PARAM, -48.0, 48.0, 0.0); | |||||
configParam(Tides::FM_PARAM, -12.0, 12.0, 0.0); | |||||
configParam(Tides::SHAPE_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Tides::SLOPE_PARAM, -1.0, 1.0, 0.0); | |||||
configParam(Tides::SMOOTHNESS_PARAM, -1.0, 1.0, 0.0); | |||||
memset(&generator, 0, sizeof(generator)); | |||||
generator.Init(); | |||||
generator.set_sync(false); | |||||
onReset(); | |||||
} | |||||
void Tides::process(const ProcessArgs &args) { | |||||
tides::GeneratorMode mode = generator.mode(); | |||||
if (modeTrigger.process(params[MODE_PARAM].getValue())) { | |||||
mode = (tides::GeneratorMode) (((int)mode - 1 + 3) % 3); | |||||
generator.set_mode(mode); | |||||
} | |||||
lights[MODE_GREEN_LIGHT].value = (mode == 2) ? 1.0 : 0.0; | |||||
lights[MODE_RED_LIGHT].value = (mode == 0) ? 1.0 : 0.0; | |||||
tides::GeneratorRange range = generator.range(); | |||||
if (rangeTrigger.process(params[RANGE_PARAM].getValue())) { | |||||
range = (tides::GeneratorRange) (((int)range - 1 + 3) % 3); | |||||
generator.set_range(range); | |||||
} | |||||
lights[RANGE_GREEN_LIGHT].value = (range == 2) ? 1.0 : 0.0; | |||||
lights[RANGE_RED_LIGHT].value = (range == 0) ? 1.0 : 0.0; | |||||
// Buffer loop | |||||
if (++frame >= 16) { | |||||
frame = 0; | |||||
// Pitch | |||||
float pitch = params[FREQUENCY_PARAM].getValue(); | |||||
pitch += 12.0 * inputs[PITCH_INPUT].getVoltage(); | |||||
pitch += params[FM_PARAM].getValue() * inputs[FM_INPUT].getNormalVoltage(0.1) / 5.0; | |||||
pitch += 60.0; | |||||
// Scale to the global sample rate | |||||
pitch += log2f(48000.0 / args.sampleRate) * 12.0; | |||||
generator.set_pitch((int) clamp(pitch * 0x80, (float) -0x8000, (float) 0x7fff)); | |||||
// Slope, smoothness, pitch | |||||
int16_t shape = clamp(params[SHAPE_PARAM].getValue() + inputs[SHAPE_INPUT].getVoltage() / 5.0f, -1.0f, 1.0f) * 0x7fff; | |||||
int16_t slope = clamp(params[SLOPE_PARAM].getValue() + inputs[SLOPE_INPUT].getVoltage() / 5.0f, -1.0f, 1.0f) * 0x7fff; | |||||
int16_t smoothness = clamp(params[SMOOTHNESS_PARAM].getValue() + inputs[SMOOTHNESS_INPUT].getVoltage() / 5.0f, -1.0f, 1.0f) * 0x7fff; | |||||
generator.set_shape(shape); | |||||
generator.set_slope(slope); | |||||
generator.set_smoothness(smoothness); | |||||
// Sync | |||||
// Slight deviation from spec here. | |||||
// Instead of toggling sync by holding the range button, just enable it if the clock port is plugged in. | |||||
generator.set_sync(inputs[CLOCK_INPUT].isConnected() && !sheep); | |||||
// Generator | |||||
generator.Process(sheep); | |||||
} | |||||
// Level | |||||
uint16_t level = clamp(inputs[LEVEL_INPUT].getNormalVoltage(8.0) / 8.0f, 0.0f, 1.0f) * 0xffff; | |||||
if (level < 32) | |||||
level = 0; | |||||
uint8_t gate = 0; | |||||
if (inputs[FREEZE_INPUT].getVoltage() >= 0.7) | |||||
gate |= tides::CONTROL_FREEZE; | |||||
if (inputs[TRIG_INPUT].getVoltage() >= 0.7) | |||||
gate |= tides::CONTROL_GATE; | |||||
if (inputs[CLOCK_INPUT].getVoltage() >= 0.7) | |||||
gate |= tides::CONTROL_CLOCK; | |||||
if (!(lastGate & tides::CONTROL_CLOCK) && (gate & tides::CONTROL_CLOCK)) | |||||
gate |= tides::CONTROL_GATE_RISING; | |||||
if (!(lastGate & tides::CONTROL_GATE) && (gate & tides::CONTROL_GATE)) | |||||
gate |= tides::CONTROL_GATE_RISING; | |||||
if ((lastGate & tides::CONTROL_GATE) && !(gate & tides::CONTROL_GATE)) | |||||
gate |= tides::CONTROL_GATE_FALLING; | |||||
lastGate = gate; | |||||
const tides::GeneratorSample& sample = generator.Process(gate); | |||||
uint32_t uni = sample.unipolar; | |||||
int32_t bi = sample.bipolar; | |||||
uni = uni * level >> 16; | |||||
bi = -bi * level >> 16; | |||||
float unif = (float) uni / 0xffff; | |||||
float bif = (float) bi / 0x8000; | |||||
outputs[HIGH_OUTPUT].setVoltage(sample.flags & tides::FLAG_END_OF_ATTACK ? 0.0 : 5.0); | |||||
outputs[LOW_OUTPUT].setVoltage(sample.flags & tides::FLAG_END_OF_RELEASE ? 0.0 : 5.0); | |||||
outputs[UNI_OUTPUT].setVoltage(unif * 8.0); | |||||
outputs[BI_OUTPUT].setVoltage(bif * 5.0); | |||||
if (sample.flags & tides::FLAG_END_OF_ATTACK) | |||||
unif *= -1.0; | |||||
lights[PHASE_GREEN_LIGHT].setSmoothBrightness(fmaxf(0.0, unif), args.sampleTime); | |||||
lights[PHASE_RED_LIGHT].setSmoothBrightness(fmaxf(0.0, -unif), args.sampleTime); | |||||
} | |||||
struct TidesWidget : ModuleWidget { | struct TidesWidget : ModuleWidget { | ||||
SvgPanel *tidesPanel; | SvgPanel *tidesPanel; | ||||
SvgPanel *sheepPanel; | SvgPanel *sheepPanel; | ||||
@@ -50,31 +50,29 @@ struct Veils : Module { | |||||
configParam(Veils::RESPONSE3_PARAM, 0.0, 1.0, 1.0); | configParam(Veils::RESPONSE3_PARAM, 0.0, 1.0, 1.0); | ||||
configParam(Veils::RESPONSE4_PARAM, 0.0, 1.0, 1.0); | configParam(Veils::RESPONSE4_PARAM, 0.0, 1.0, 1.0); | ||||
} | } | ||||
void process(const ProcessArgs &args) override; | |||||
}; | |||||
void Veils::process(const ProcessArgs &args) { | |||||
float out = 0.0; | |||||
for (int i = 0; i < 4; i++) { | |||||
float in = inputs[IN1_INPUT + i].getVoltage() * params[GAIN1_PARAM + i].getValue(); | |||||
if (inputs[CV1_INPUT + i].isConnected()) { | |||||
float linear = fmaxf(inputs[CV1_INPUT + i].getVoltage() / 5.0, 0.0); | |||||
linear = clamp(linear, 0.0f, 2.0f); | |||||
const float base = 200.0; | |||||
float exponential = rescale(powf(base, linear / 2.0f), 1.0f, base, 0.0f, 10.0f); | |||||
in *= crossfade(exponential, linear, params[RESPONSE1_PARAM + i].getValue()); | |||||
} | |||||
out += in; | |||||
lights[OUT1_POS_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, out / 5.0), args.sampleTime); | |||||
lights[OUT1_NEG_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, -out / 5.0), args.sampleTime); | |||||
if (outputs[OUT1_OUTPUT + i].isConnected()) { | |||||
outputs[OUT1_OUTPUT + i].setVoltage(out); | |||||
out = 0.0; | |||||
void process(const ProcessArgs &args) { | |||||
float out = 0.0; | |||||
for (int i = 0; i < 4; i++) { | |||||
float in = inputs[IN1_INPUT + i].getVoltage() * params[GAIN1_PARAM + i].getValue(); | |||||
if (inputs[CV1_INPUT + i].isConnected()) { | |||||
float linear = fmaxf(inputs[CV1_INPUT + i].getVoltage() / 5.0, 0.0); | |||||
linear = clamp(linear, 0.0f, 2.0f); | |||||
const float base = 200.0; | |||||
float exponential = rescale(powf(base, linear / 2.0f), 1.0f, base, 0.0f, 10.0f); | |||||
in *= crossfade(exponential, linear, params[RESPONSE1_PARAM + i].getValue()); | |||||
} | |||||
out += in; | |||||
lights[OUT1_POS_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, out / 5.0), args.sampleTime); | |||||
lights[OUT1_NEG_LIGHT + 2*i].setSmoothBrightness(fmaxf(0.0, -out / 5.0), args.sampleTime); | |||||
if (outputs[OUT1_OUTPUT + i].isConnected()) { | |||||
outputs[OUT1_OUTPUT + i].setVoltage(out); | |||||
out = 0.0; | |||||
} | |||||
} | } | ||||
} | } | ||||
} | |||||
}; | |||||
struct VeilsWidget : ModuleWidget { | struct VeilsWidget : ModuleWidget { | ||||
@@ -38,8 +38,60 @@ struct Warps : Module { | |||||
warps::ShortFrame outputFrames[60] = {}; | warps::ShortFrame outputFrames[60] = {}; | ||||
dsp::SchmittTrigger stateTrigger; | dsp::SchmittTrigger stateTrigger; | ||||
Warps(); | |||||
void process(const ProcessArgs &args) override; | |||||
Warps() { | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
configParam(Warps::ALGORITHM_PARAM, 0.0, 8.0, 0.0); | |||||
configParam(Warps::TIMBRE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Warps::STATE_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Warps::LEVEL1_PARAM, 0.0, 1.0, 1.0); | |||||
configParam(Warps::LEVEL2_PARAM, 0.0, 1.0, 1.0); | |||||
memset(&modulator, 0, sizeof(modulator)); | |||||
modulator.Init(96000.0f); | |||||
} | |||||
void process(const ProcessArgs &args) { | |||||
// State trigger | |||||
warps::Parameters *p = modulator.mutable_parameters(); | |||||
if (stateTrigger.process(params[STATE_PARAM].getValue())) { | |||||
p->carrier_shape = (p->carrier_shape + 1) % 4; | |||||
} | |||||
lights[CARRIER_GREEN_LIGHT].value = (p->carrier_shape == 1 || p->carrier_shape == 2) ? 1.0 : 0.0; | |||||
lights[CARRIER_RED_LIGHT].value = (p->carrier_shape == 2 || p->carrier_shape == 3) ? 1.0 : 0.0; | |||||
// Buffer loop | |||||
if (++frame >= 60) { | |||||
frame = 0; | |||||
p->channel_drive[0] = clamp(params[LEVEL1_PARAM].getValue() + inputs[LEVEL1_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->channel_drive[1] = clamp(params[LEVEL2_PARAM].getValue() + inputs[LEVEL2_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->modulation_algorithm = clamp(params[ALGORITHM_PARAM].getValue() / 8.0f + inputs[ALGORITHM_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
{ | |||||
// TODO | |||||
// Use the correct light color | |||||
NVGcolor algorithmColor = nvgHSL(p->modulation_algorithm, 0.3, 0.4); | |||||
lights[ALGORITHM_LIGHT + 0].setBrightness(algorithmColor.r); | |||||
lights[ALGORITHM_LIGHT + 1].setBrightness(algorithmColor.g); | |||||
lights[ALGORITHM_LIGHT + 2].setBrightness(algorithmColor.b); | |||||
} | |||||
p->modulation_parameter = clamp(params[TIMBRE_PARAM].getValue() + inputs[TIMBRE_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->frequency_shift_pot = params[ALGORITHM_PARAM].getValue() / 8.0; | |||||
p->frequency_shift_cv = clamp(inputs[ALGORITHM_INPUT].getVoltage() / 5.0f, -1.0f, 1.0f); | |||||
p->phase_shift = p->modulation_algorithm; | |||||
p->note = 60.0 * params[LEVEL1_PARAM].getValue() + 12.0 * inputs[LEVEL1_INPUT].getNormalVoltage(2.0) + 12.0; | |||||
p->note += log2f(96000.0f * args.sampleTime) * 12.0f; | |||||
modulator.Process(inputFrames, outputFrames, 60); | |||||
} | |||||
inputFrames[frame].l = clamp((int) (inputs[CARRIER_INPUT].getVoltage() / 16.0 * 0x8000), -0x8000, 0x7fff); | |||||
inputFrames[frame].r = clamp((int) (inputs[MODULATOR_INPUT].getVoltage() / 16.0 * 0x8000), -0x8000, 0x7fff); | |||||
outputs[MODULATOR_OUTPUT].setVoltage((float)outputFrames[frame].l / 0x8000 * 5.0); | |||||
outputs[AUX_OUTPUT].setVoltage((float)outputFrames[frame].r / 0x8000 * 5.0); | |||||
} | |||||
json_t *dataToJson() override { | json_t *dataToJson() override { | ||||
json_t *rootJ = json_object(); | json_t *rootJ = json_object(); | ||||
@@ -68,62 +120,6 @@ struct Warps : Module { | |||||
}; | }; | ||||
Warps::Warps() { | |||||
config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); | |||||
configParam(Warps::ALGORITHM_PARAM, 0.0, 8.0, 0.0); | |||||
configParam(Warps::TIMBRE_PARAM, 0.0, 1.0, 0.5); | |||||
configParam(Warps::STATE_PARAM, 0.0, 1.0, 0.0); | |||||
configParam(Warps::LEVEL1_PARAM, 0.0, 1.0, 1.0); | |||||
configParam(Warps::LEVEL2_PARAM, 0.0, 1.0, 1.0); | |||||
memset(&modulator, 0, sizeof(modulator)); | |||||
modulator.Init(96000.0f); | |||||
} | |||||
void Warps::process(const ProcessArgs &args) { | |||||
// State trigger | |||||
warps::Parameters *p = modulator.mutable_parameters(); | |||||
if (stateTrigger.process(params[STATE_PARAM].getValue())) { | |||||
p->carrier_shape = (p->carrier_shape + 1) % 4; | |||||
} | |||||
lights[CARRIER_GREEN_LIGHT].value = (p->carrier_shape == 1 || p->carrier_shape == 2) ? 1.0 : 0.0; | |||||
lights[CARRIER_RED_LIGHT].value = (p->carrier_shape == 2 || p->carrier_shape == 3) ? 1.0 : 0.0; | |||||
// Buffer loop | |||||
if (++frame >= 60) { | |||||
frame = 0; | |||||
p->channel_drive[0] = clamp(params[LEVEL1_PARAM].getValue() + inputs[LEVEL1_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->channel_drive[1] = clamp(params[LEVEL2_PARAM].getValue() + inputs[LEVEL2_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->modulation_algorithm = clamp(params[ALGORITHM_PARAM].getValue() / 8.0f + inputs[ALGORITHM_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
{ | |||||
// TODO | |||||
// Use the correct light color | |||||
NVGcolor algorithmColor = nvgHSL(p->modulation_algorithm, 0.3, 0.4); | |||||
lights[ALGORITHM_LIGHT + 0].setBrightness(algorithmColor.r); | |||||
lights[ALGORITHM_LIGHT + 1].setBrightness(algorithmColor.g); | |||||
lights[ALGORITHM_LIGHT + 2].setBrightness(algorithmColor.b); | |||||
} | |||||
p->modulation_parameter = clamp(params[TIMBRE_PARAM].getValue() + inputs[TIMBRE_INPUT].getVoltage() / 5.0f, 0.0f, 1.0f); | |||||
p->frequency_shift_pot = params[ALGORITHM_PARAM].getValue() / 8.0; | |||||
p->frequency_shift_cv = clamp(inputs[ALGORITHM_INPUT].getVoltage() / 5.0f, -1.0f, 1.0f); | |||||
p->phase_shift = p->modulation_algorithm; | |||||
p->note = 60.0 * params[LEVEL1_PARAM].getValue() + 12.0 * inputs[LEVEL1_INPUT].getNormalVoltage(2.0) + 12.0; | |||||
p->note += log2f(96000.0f * args.sampleTime) * 12.0f; | |||||
modulator.Process(inputFrames, outputFrames, 60); | |||||
} | |||||
inputFrames[frame].l = clamp((int) (inputs[CARRIER_INPUT].getVoltage() / 16.0 * 0x8000), -0x8000, 0x7fff); | |||||
inputFrames[frame].r = clamp((int) (inputs[MODULATOR_INPUT].getVoltage() / 16.0 * 0x8000), -0x8000, 0x7fff); | |||||
outputs[MODULATOR_OUTPUT].setVoltage((float)outputFrames[frame].l / 0x8000 * 5.0); | |||||
outputs[AUX_OUTPUT].setVoltage((float)outputFrames[frame].r / 0x8000 * 5.0); | |||||
} | |||||
struct AlgorithmLight : RedGreenBlueLight { | struct AlgorithmLight : RedGreenBlueLight { | ||||
AlgorithmLight() { | AlgorithmLight() { | ||||
box.size = Vec(71, 71); | box.size = Vec(71, 71); | ||||