|  | /*
  ==============================================================================
   This file is part of the JUCE library.
   Copyright (c) 2022 - Raw Material Software Limited
   JUCE is an open source library subject to commercial or open-source
   licensing.
   The code included in this file is provided under the terms of the ISC license
   http://www.isc.org/downloads/software-support-policy/isc-license. Permission
   To use, copy, modify, and/or distribute this software for any purpose with or
   without fee is hereby granted provided that the above copyright notice and
   this permission notice appear in all copies.
   JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
   EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
   DISCLAIMED.
  ==============================================================================
*/
namespace juce
{
#if JUCE_UNIT_TESTS
class InterpolatorTests final : public UnitTest
{
public:
    InterpolatorTests()
        : UnitTest ("InterpolatorTests", UnitTestCategories::audio)
    {
    }
private:
    template <typename InterpolatorType>
    void runInterplatorTests (const String& interpolatorName)
    {
        auto createGaussian = [] (std::vector<float>& destination, float scale, float centreInSamples, float width)
        {
            for (size_t i = 0; i < destination.size(); ++i)
            {
                auto x = (((float) i) - centreInSamples) * width;
                destination[i] = std::exp (-(x * x));
            }
            FloatVectorOperations::multiply (destination.data(), scale, (int) destination.size());
        };
        auto findGaussianPeak = [] (const std::vector<float>& input) -> float
        {
            auto max = std::max_element (std::begin (input), std::end (input));
            auto maxPrev = max - 1;
            jassert (maxPrev >= std::begin (input));
            auto maxNext = max + 1;
            jassert (maxNext < std::end (input));
            auto quadraticMaxLoc = (*maxPrev - *maxNext) / (2.0f * ((*maxNext + *maxPrev) - (2.0f * *max)));
            return quadraticMaxLoc + (float) std::distance (std::begin (input), max);
        };
        auto expectAllElementsWithin = [this] (const std::vector<float>& v1, const std::vector<float>& v2, float tolerance)
        {
            expectEquals ((int) v1.size(), (int) v2.size());
            for (size_t i = 0; i < v1.size(); ++i)
                expectWithinAbsoluteError (v1[i], v2[i], tolerance);
        };
        InterpolatorType interpolator;
        constexpr size_t inputSize = 1001;
        static_assert (inputSize > 800 + InterpolatorType::getBaseLatency(),
                       "The test InterpolatorTests input buffer is too small");
        std::vector<float> input (inputSize);
        constexpr auto inputGaussianMidpoint = (float) (inputSize - 1) / 2.0f;
        constexpr auto inputGaussianValueAtEnds = 0.000001f;
        const auto inputGaussianWidth = std::sqrt (-std::log (inputGaussianValueAtEnds)) / inputGaussianMidpoint;
        createGaussian (input, 1.0f, inputGaussianMidpoint, inputGaussianWidth);
        for (auto speedRatio : { 0.4, 0.8263, 1.0, 1.05, 1.2384, 1.6 })
        {
            const auto expectedGaussianMidpoint = (inputGaussianMidpoint + InterpolatorType::getBaseLatency()) / (float) speedRatio;
            const auto expectedGaussianWidth = inputGaussianWidth * (float) speedRatio;
            const auto outputBufferSize = (size_t) std::floor ((float) input.size() / speedRatio);
            for (int numBlocks : { 1, 5 })
            {
                const auto inputBlockSize = (float) input.size() / (float) numBlocks;
                const auto outputBlockSize = (int) std::floor (inputBlockSize / speedRatio);
                std::vector<float> output (outputBufferSize, std::numeric_limits<float>::min());
                beginTest (interpolatorName + " process " + String (numBlocks) + " blocks ratio " + String (speedRatio));
                interpolator.reset();
                {
                    auto* inputPtr = input.data();
                    auto* outputPtr = output.data();
                    for (int i = 0; i < numBlocks; ++i)
                    {
                        auto numInputSamplesRead = interpolator.process (speedRatio, inputPtr, outputPtr, outputBlockSize);
                        inputPtr += numInputSamplesRead;
                        outputPtr += outputBlockSize;
                    }
                }
                expectWithinAbsoluteError (findGaussianPeak (output), expectedGaussianMidpoint, 0.1f);
                std::vector<float> expectedOutput (output.size());
                createGaussian (expectedOutput, 1.0f, expectedGaussianMidpoint, expectedGaussianWidth);
                expectAllElementsWithin (output, expectedOutput, 0.02f);
                beginTest (interpolatorName + " process adding " + String (numBlocks) + " blocks ratio " + String (speedRatio));
                interpolator.reset();
                constexpr float addingGain = 0.7384f;
                {
                    auto* inputPtr = input.data();
                    auto* outputPtr = output.data();
                    for (int i = 0; i < numBlocks; ++i)
                    {
                        auto numInputSamplesRead = interpolator.processAdding (speedRatio, inputPtr, outputPtr, outputBlockSize, addingGain);
                        inputPtr += numInputSamplesRead;
                        outputPtr += outputBlockSize;
                    }
                }
                expectWithinAbsoluteError (findGaussianPeak (output), expectedGaussianMidpoint, 0.1f);
                std::vector<float> additionalOutput (output.size());
                createGaussian (additionalOutput, addingGain, expectedGaussianMidpoint, expectedGaussianWidth);
                FloatVectorOperations::add (expectedOutput.data(), additionalOutput.data(), (int) additionalOutput.size());
                expectAllElementsWithin (output, expectedOutput, 0.02f);
            }
            beginTest (interpolatorName + " process wrap 0 ratio " + String (speedRatio));
            std::vector<float> doubleLengthOutput (2 * outputBufferSize, std::numeric_limits<float>::min());
            interpolator.reset();
            interpolator.process (speedRatio, input.data(), doubleLengthOutput.data(), (int) doubleLengthOutput.size(),
                                  (int) input.size(), 0);
            std::vector<float> expectedDoubleLengthOutput (doubleLengthOutput.size());
            createGaussian (expectedDoubleLengthOutput, 1.0f, expectedGaussianMidpoint, expectedGaussianWidth);
            expectAllElementsWithin (doubleLengthOutput, expectedDoubleLengthOutput, 0.02f);
            beginTest (interpolatorName + " process wrap double ratio " + String (speedRatio));
            interpolator.reset();
            interpolator.process (speedRatio, input.data(), doubleLengthOutput.data(), (int) doubleLengthOutput.size(),
                                  (int) input.size(), (int) input.size());
            std::vector<float> secondGaussian (doubleLengthOutput.size());
            createGaussian (secondGaussian, 1.0f, expectedGaussianMidpoint + (float) outputBufferSize, expectedGaussianWidth);
            FloatVectorOperations::add (expectedDoubleLengthOutput.data(), secondGaussian.data(), (int) expectedDoubleLengthOutput.size());
            expectAllElementsWithin (doubleLengthOutput, expectedDoubleLengthOutput, 0.02f);
        }
    }
public:
    void runTest() override
    {
        runInterplatorTests<WindowedSincInterpolator> ("WindowedSincInterpolator");
        runInterplatorTests<LagrangeInterpolator>     ("LagrangeInterpolator");
        runInterplatorTests<CatmullRomInterpolator>   ("CatmullRomInterpolator");
        runInterplatorTests<LinearInterpolator>       ("LinearInterpolator");
    }
};
static InterpolatorTests interpolatorTests;
#endif
} // namespace juce
 |