|
- /* libFLAC - Free Lossless Audio Codec library
- * Copyright (C) 2000-2009 Josh Coalson
- * Copyright (C) 2011-2023 Xiph.Org Foundation
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * - Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * - Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * - Neither the name of the Xiph.org Foundation nor the names of its
- * contributors may be used to endorse or promote products derived from
- * this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
- #ifdef HAVE_CONFIG_H
- # include <config.h>
- #endif
-
- #include <math.h>
- #include <string.h>
- #include "../compat.h"
- #include "include/private/bitmath.h"
- #include "include/private/fixed.h"
-
- #include "../assert.h"
-
- #ifdef local_abs
- #undef local_abs
- #endif
- #define local_abs(x) ((uint32_t)((x)<0? -(x) : (x)))
-
- #ifdef local_abs64
- #undef local_abs64
- #endif
- #define local_abs64(x) ((uint64_t)((x)<0? -(x) : (x)))
-
- #ifdef FLAC__INTEGER_ONLY_LIBRARY
- /* rbps stands for residual bits per sample
- *
- * (ln(2) * err)
- * rbps = log (-----------)
- * 2 ( n )
- */
- static FLAC__fixedpoint local__compute_rbps_integerized(FLAC__uint32 err, FLAC__uint32 n)
- {
- FLAC__uint32 rbps;
- uint32_t bits; /* the number of bits required to represent a number */
- int fracbits; /* the number of bits of rbps that comprise the fractional part */
-
- FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint));
- FLAC__ASSERT(err > 0);
- FLAC__ASSERT(n > 0);
-
- FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE);
- if(err <= n)
- return 0;
- /*
- * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1.
- * These allow us later to know we won't lose too much precision in the
- * fixed-point division (err<<fracbits)/n.
- */
-
- fracbits = (8*sizeof(err)) - (FLAC__bitmath_ilog2(err)+1);
-
- err <<= fracbits;
- err /= n;
- /* err now holds err/n with fracbits fractional bits */
-
- /*
- * Whittle err down to 16 bits max. 16 significant bits is enough for
- * our purposes.
- */
- FLAC__ASSERT(err > 0);
- bits = FLAC__bitmath_ilog2(err)+1;
- if(bits > 16) {
- err >>= (bits-16);
- fracbits -= (bits-16);
- }
- rbps = (FLAC__uint32)err;
-
- /* Multiply by fixed-point version of ln(2), with 16 fractional bits */
- rbps *= FLAC__FP_LN2;
- fracbits += 16;
- FLAC__ASSERT(fracbits >= 0);
-
- /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */
- {
- const int f = fracbits & 3;
- if(f) {
- rbps >>= f;
- fracbits -= f;
- }
- }
-
- rbps = FLAC__fixedpoint_log2(rbps, fracbits, (uint32_t)(-1));
-
- if(rbps == 0)
- return 0;
-
- /*
- * The return value must have 16 fractional bits. Since the whole part
- * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits
- * must be >= -3, these assertion allows us to be able to shift rbps
- * left if necessary to get 16 fracbits without losing any bits of the
- * whole part of rbps.
- *
- * There is a slight chance due to accumulated error that the whole part
- * will require 6 bits, so we use 6 in the assertion. Really though as
- * long as it fits in 13 bits (32 - (16 - (-3))) we are fine.
- */
- FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6);
- FLAC__ASSERT(fracbits >= -3);
-
- /* now shift the decimal point into place */
- if(fracbits < 16)
- return rbps << (16-fracbits);
- else if(fracbits > 16)
- return rbps >> (fracbits-16);
- else
- return rbps;
- }
-
- static FLAC__fixedpoint local__compute_rbps_wide_integerized(FLAC__uint64 err, FLAC__uint32 n)
- {
- FLAC__uint32 rbps;
- uint32_t bits; /* the number of bits required to represent a number */
- int fracbits; /* the number of bits of rbps that comprise the fractional part */
-
- FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint));
- FLAC__ASSERT(err > 0);
- FLAC__ASSERT(n > 0);
-
- FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE);
- if(err <= n)
- return 0;
- /*
- * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1.
- * These allow us later to know we won't lose too much precision in the
- * fixed-point division (err<<fracbits)/n.
- */
-
- fracbits = (8*sizeof(err)) - (FLAC__bitmath_ilog2_wide(err)+1);
-
- err <<= fracbits;
- err /= n;
- /* err now holds err/n with fracbits fractional bits */
-
- /*
- * Whittle err down to 16 bits max. 16 significant bits is enough for
- * our purposes.
- */
- FLAC__ASSERT(err > 0);
- bits = FLAC__bitmath_ilog2_wide(err)+1;
- if(bits > 16) {
- err >>= (bits-16);
- fracbits -= (bits-16);
- }
- rbps = (FLAC__uint32)err;
-
- /* Multiply by fixed-point version of ln(2), with 16 fractional bits */
- rbps *= FLAC__FP_LN2;
- fracbits += 16;
- FLAC__ASSERT(fracbits >= 0);
-
- /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */
- {
- const int f = fracbits & 3;
- if(f) {
- rbps >>= f;
- fracbits -= f;
- }
- }
-
- rbps = FLAC__fixedpoint_log2(rbps, fracbits, (uint32_t)(-1));
-
- if(rbps == 0)
- return 0;
-
- /*
- * The return value must have 16 fractional bits. Since the whole part
- * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits
- * must be >= -3, these assertion allows us to be able to shift rbps
- * left if necessary to get 16 fracbits without losing any bits of the
- * whole part of rbps.
- *
- * There is a slight chance due to accumulated error that the whole part
- * will require 6 bits, so we use 6 in the assertion. Really though as
- * long as it fits in 13 bits (32 - (16 - (-3))) we are fine.
- */
- FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6);
- FLAC__ASSERT(fracbits >= -3);
-
- /* now shift the decimal point into place */
- if(fracbits < 16)
- return rbps << (16-fracbits);
- else if(fracbits > 16)
- return rbps >> (fracbits-16);
- else
- return rbps;
- }
- #endif
-
- #ifndef FLAC__INTEGER_ONLY_LIBRARY
- uint32_t FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
- #else
- uint32_t FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], uint32_t data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
- #endif
- {
- FLAC__uint32 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
- uint32_t order;
- #if 0
- /* This code has been around a long time, and was written when compilers weren't able
- * to vectorize code. These days, compilers are better in optimizing the next block
- * which is also much more readable
- */
- FLAC__int32 last_error_0 = data[-1];
- FLAC__int32 last_error_1 = data[-1] - data[-2];
- FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]);
- FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]);
- FLAC__int32 error, save;
- uint32_t i;
- /* total_error_* are 64-bits to avoid overflow when encoding
- * erratic signals when the bits-per-sample and blocksize are
- * large.
- */
- for(i = 0; i < data_len; i++) {
- error = data[i] ; total_error_0 += local_abs(error); save = error;
- error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
- error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
- error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
- error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
- }
- #else
- int i;
- for(i = 0; i < (int)data_len; i++) {
- total_error_0 += local_abs(data[i]);
- total_error_1 += local_abs(data[i] - data[i-1]);
- total_error_2 += local_abs(data[i] - 2 * data[i-1] + data[i-2]);
- total_error_3 += local_abs(data[i] - 3 * data[i-1] + 3 * data[i-2] - data[i-3]);
- total_error_4 += local_abs(data[i] - 4 * data[i-1] + 6 * data[i-2] - 4 * data[i-3] + data[i-4]);
- }
- #endif
-
-
- /* prefer lower order */
- if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
- order = 0;
- else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4))
- order = 1;
- else if(total_error_2 <= flac_min(total_error_3, total_error_4))
- order = 2;
- else if(total_error_3 <= total_error_4)
- order = 3;
- else
- order = 4;
-
- /* Estimate the expected number of bits per residual signal sample. */
- /* 'total_error*' is linearly related to the variance of the residual */
- /* signal, so we use it directly to compute E(|x|) */
- FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
- #ifndef FLAC__INTEGER_ONLY_LIBRARY
- residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
- #else
- residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_integerized(total_error_0, data_len) : 0;
- residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_integerized(total_error_1, data_len) : 0;
- residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_integerized(total_error_2, data_len) : 0;
- residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_integerized(total_error_3, data_len) : 0;
- residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_integerized(total_error_4, data_len) : 0;
- #endif
-
- return order;
- }
-
- #ifndef FLAC__INTEGER_ONLY_LIBRARY
- uint32_t FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
- #else
- uint32_t FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], uint32_t data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
- #endif
- {
- FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
- uint32_t order;
- int i;
-
- for(i = 0; i < (int)data_len; i++) {
- total_error_0 += local_abs(data[i]);
- total_error_1 += local_abs(data[i] - data[i-1]);
- total_error_2 += local_abs(data[i] - 2 * data[i-1] + data[i-2]);
- total_error_3 += local_abs(data[i] - 3 * data[i-1] + 3 * data[i-2] - data[i-3]);
- total_error_4 += local_abs(data[i] - 4 * data[i-1] + 6 * data[i-2] - 4 * data[i-3] + data[i-4]);
- }
-
- /* prefer lower order */
- if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
- order = 0;
- else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4))
- order = 1;
- else if(total_error_2 <= flac_min(total_error_3, total_error_4))
- order = 2;
- else if(total_error_3 <= total_error_4)
- order = 3;
- else
- order = 4;
-
- /* Estimate the expected number of bits per residual signal sample. */
- /* 'total_error*' is linearly related to the variance of the residual */
- /* signal, so we use it directly to compute E(|x|) */
- FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
- #ifndef FLAC__INTEGER_ONLY_LIBRARY
- residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
- #else
- residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_wide_integerized(total_error_0, data_len) : 0;
- residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_wide_integerized(total_error_1, data_len) : 0;
- residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_wide_integerized(total_error_2, data_len) : 0;
- residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_wide_integerized(total_error_3, data_len) : 0;
- residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_wide_integerized(total_error_4, data_len) : 0;
- #endif
-
- return order;
- }
-
- #ifndef FLAC__INTEGER_ONLY_LIBRARY
- #define CHECK_ORDER_IS_VALID(macro_order) \
- if(order_##macro_order##_is_valid && total_error_##macro_order < smallest_error) { \
- order = macro_order; \
- smallest_error = total_error_##macro_order ; \
- residual_bits_per_sample[ macro_order ] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); \
- } \
- else \
- residual_bits_per_sample[ macro_order ] = 34.0f;
- #else
- #define CHECK_ORDER_IS_VALID(macro_order) \
- if(order_##macro_order##_is_valid && total_error_##macro_order < smallest_error) { \
- order = macro_order; \
- smallest_error = total_error_##macro_order ; \
- residual_bits_per_sample[ macro_order ] = (total_error_##macro_order > 0) ? local__compute_rbps_wide_integerized(total_error_##macro_order, data_len) : 0; \
- } \
- else \
- residual_bits_per_sample[ macro_order ] = 34 * FLAC__FP_ONE;
- #endif
-
-
- #ifndef FLAC__INTEGER_ONLY_LIBRARY
- uint32_t FLAC__fixed_compute_best_predictor_limit_residual(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
- #else
- uint32_t FLAC__fixed_compute_best_predictor_limit_residual(const FLAC__int32 data[], uint32_t data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
- #endif
- {
- FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0, smallest_error = UINT64_MAX;
- FLAC__uint64 error_0, error_1, error_2, error_3, error_4;
- FLAC__bool order_0_is_valid = true, order_1_is_valid = true, order_2_is_valid = true, order_3_is_valid = true, order_4_is_valid = true;
- uint32_t order = 0;
- int i;
-
- for(i = -4; i < (int)data_len; i++) {
- error_0 = local_abs64((FLAC__int64)data[i]);
- error_1 = (i > -4) ? local_abs64((FLAC__int64)data[i] - data[i-1]) : 0 ;
- error_2 = (i > -3) ? local_abs64((FLAC__int64)data[i] - 2 * (FLAC__int64)data[i-1] + data[i-2]) : 0;
- error_3 = (i > -2) ? local_abs64((FLAC__int64)data[i] - 3 * (FLAC__int64)data[i-1] + 3 * (FLAC__int64)data[i-2] - data[i-3]) : 0;
- error_4 = (i > -1) ? local_abs64((FLAC__int64)data[i] - 4 * (FLAC__int64)data[i-1] + 6 * (FLAC__int64)data[i-2] - 4 * (FLAC__int64)data[i-3] + data[i-4]) : 0;
-
- total_error_0 += error_0;
- total_error_1 += error_1;
- total_error_2 += error_2;
- total_error_3 += error_3;
- total_error_4 += error_4;
-
- /* residual must not be INT32_MIN because abs(INT32_MIN) is undefined */
- if(error_0 > INT32_MAX)
- order_0_is_valid = false;
- if(error_1 > INT32_MAX)
- order_1_is_valid = false;
- if(error_2 > INT32_MAX)
- order_2_is_valid = false;
- if(error_3 > INT32_MAX)
- order_3_is_valid = false;
- if(error_4 > INT32_MAX)
- order_4_is_valid = false;
- }
-
- CHECK_ORDER_IS_VALID(0);
- CHECK_ORDER_IS_VALID(1);
- CHECK_ORDER_IS_VALID(2);
- CHECK_ORDER_IS_VALID(3);
- CHECK_ORDER_IS_VALID(4);
-
- return order;
- }
-
- #ifndef FLAC__INTEGER_ONLY_LIBRARY
- uint32_t FLAC__fixed_compute_best_predictor_limit_residual_33bit(const FLAC__int64 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
- #else
- uint32_t FLAC__fixed_compute_best_predictor_limit_residual_33bit(const FLAC__int64 data[], uint32_t data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
- #endif
- {
- FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0, smallest_error = UINT64_MAX;
- FLAC__uint64 error_0, error_1, error_2, error_3, error_4;
- FLAC__bool order_0_is_valid = true, order_1_is_valid = true, order_2_is_valid = true, order_3_is_valid = true, order_4_is_valid = true;
- uint32_t order = 0;
- int i;
-
- for(i = -4; i < (int)data_len; i++) {
- error_0 = local_abs64(data[i]);
- error_1 = (i > -4) ? local_abs64(data[i] - data[i-1]) : 0 ;
- error_2 = (i > -3) ? local_abs64(data[i] - 2 * data[i-1] + data[i-2]) : 0;
- error_3 = (i > -2) ? local_abs64(data[i] - 3 * data[i-1] + 3 * data[i-2] - data[i-3]) : 0;
- error_4 = (i > -1) ? local_abs64(data[i] - 4 * data[i-1] + 6 * data[i-2] - 4 * data[i-3] + data[i-4]) : 0;
-
- total_error_0 += error_0;
- total_error_1 += error_1;
- total_error_2 += error_2;
- total_error_3 += error_3;
- total_error_4 += error_4;
-
- /* residual must not be INT32_MIN because abs(INT32_MIN) is undefined */
- if(error_0 > INT32_MAX)
- order_0_is_valid = false;
- if(error_1 > INT32_MAX)
- order_1_is_valid = false;
- if(error_2 > INT32_MAX)
- order_2_is_valid = false;
- if(error_3 > INT32_MAX)
- order_3_is_valid = false;
- if(error_4 > INT32_MAX)
- order_4_is_valid = false;
- }
-
- CHECK_ORDER_IS_VALID(0);
- CHECK_ORDER_IS_VALID(1);
- CHECK_ORDER_IS_VALID(2);
- CHECK_ORDER_IS_VALID(3);
- CHECK_ORDER_IS_VALID(4);
-
- return order;
- }
-
- void FLAC__fixed_compute_residual(const FLAC__int32 data[], uint32_t data_len, uint32_t order, FLAC__int32 residual[])
- {
- const int idata_len = (int)data_len;
- int i;
-
- switch(order) {
- case 0:
- FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0]));
- memcpy(residual, data, sizeof(residual[0])*data_len);
- break;
- case 1:
- for(i = 0; i < idata_len; i++)
- residual[i] = data[i] - data[i-1];
- break;
- case 2:
- for(i = 0; i < idata_len; i++)
- residual[i] = data[i] - 2*data[i-1] + data[i-2];
- break;
- case 3:
- for(i = 0; i < idata_len; i++)
- residual[i] = data[i] - 3*data[i-1] + 3*data[i-2] - data[i-3];
- break;
- case 4:
- for(i = 0; i < idata_len; i++)
- residual[i] = data[i] - 4*data[i-1] + 6*data[i-2] - 4*data[i-3] + data[i-4];
- break;
- default:
- FLAC__ASSERT(0);
- }
- }
-
- void FLAC__fixed_compute_residual_wide(const FLAC__int32 data[], uint32_t data_len, uint32_t order, FLAC__int32 residual[])
- {
- const int idata_len = (int)data_len;
- int i;
-
- switch(order) {
- case 0:
- FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0]));
- memcpy(residual, data, sizeof(residual[0])*data_len);
- break;
- case 1:
- for(i = 0; i < idata_len; i++)
- residual[i] = (FLAC__int64)data[i] - data[i-1];
- break;
- case 2:
- for(i = 0; i < idata_len; i++)
- residual[i] = (FLAC__int64)data[i] - 2*(FLAC__int64)data[i-1] + data[i-2];
- break;
- case 3:
- for(i = 0; i < idata_len; i++)
- residual[i] = (FLAC__int64)data[i] - 3*(FLAC__int64)data[i-1] + 3*(FLAC__int64)data[i-2] - data[i-3];
- break;
- case 4:
- for(i = 0; i < idata_len; i++)
- residual[i] = (FLAC__int64)data[i] - 4*(FLAC__int64)data[i-1] + 6*(FLAC__int64)data[i-2] - 4*(FLAC__int64)data[i-3] + data[i-4];
- break;
- default:
- FLAC__ASSERT(0);
- }
- }
-
- void FLAC__fixed_compute_residual_wide_33bit(const FLAC__int64 data[], uint32_t data_len, uint32_t order, FLAC__int32 residual[])
- {
- const int idata_len = (int)data_len;
- int i;
-
- switch(order) {
- case 0:
- for(i = 0; i < idata_len; i++)
- residual[i] = data[i];
- break;
- case 1:
- for(i = 0; i < idata_len; i++)
- residual[i] = data[i] - data[i-1];
- break;
- case 2:
- for(i = 0; i < idata_len; i++)
- residual[i] = data[i] - 2*data[i-1] + data[i-2];
- break;
- case 3:
- for(i = 0; i < idata_len; i++)
- residual[i] = data[i] - 3*data[i-1] + 3*data[i-2] - data[i-3];
- break;
- case 4:
- for(i = 0; i < idata_len; i++)
- residual[i] = data[i] - 4*data[i-1] + 6*data[i-2] - 4*data[i-3] + data[i-4];
- break;
- default:
- FLAC__ASSERT(0);
- }
- }
-
- #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && !defined(FUZZING_BUILD_MODE_FLAC_SANITIZE_SIGNED_INTEGER_OVERFLOW)
- /* The attribute below is to silence the undefined sanitizer of oss-fuzz.
- * Because fuzzing feeds bogus predictors and residual samples to the
- * decoder, having overflows in this section is unavoidable. Also,
- * because the calculated values are audio path only, there is no
- * potential for security problems */
- __attribute__((no_sanitize("signed-integer-overflow")))
- #endif
- void FLAC__fixed_restore_signal(const FLAC__int32 residual[], uint32_t data_len, uint32_t order, FLAC__int32 data[])
- {
- int i, idata_len = (int)data_len;
-
- switch(order) {
- case 0:
- FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0]));
- memcpy(data, residual, sizeof(residual[0])*data_len);
- break;
- case 1:
- for(i = 0; i < idata_len; i++)
- data[i] = residual[i] + data[i-1];
- break;
- case 2:
- for(i = 0; i < idata_len; i++)
- data[i] = residual[i] + 2*data[i-1] - data[i-2];
- break;
- case 3:
- for(i = 0; i < idata_len; i++)
- data[i] = residual[i] + 3*data[i-1] - 3*data[i-2] + data[i-3];
- break;
- case 4:
- for(i = 0; i < idata_len; i++)
- data[i] = residual[i] + 4*data[i-1] - 6*data[i-2] + 4*data[i-3] - data[i-4];
- break;
- default:
- FLAC__ASSERT(0);
- }
- }
-
- void FLAC__fixed_restore_signal_wide(const FLAC__int32 residual[], uint32_t data_len, uint32_t order, FLAC__int32 data[])
- {
- int i, idata_len = (int)data_len;
-
- switch(order) {
- case 0:
- FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0]));
- memcpy(data, residual, sizeof(residual[0])*data_len);
- break;
- case 1:
- for(i = 0; i < idata_len; i++)
- data[i] = (FLAC__int64)residual[i] + (FLAC__int64)data[i-1];
- break;
- case 2:
- for(i = 0; i < idata_len; i++)
- data[i] = (FLAC__int64)residual[i] + 2*(FLAC__int64)data[i-1] - (FLAC__int64)data[i-2];
- break;
- case 3:
- for(i = 0; i < idata_len; i++)
- data[i] = (FLAC__int64)residual[i] + 3*(FLAC__int64)data[i-1] - 3*(FLAC__int64)data[i-2] + (FLAC__int64)data[i-3];
- break;
- case 4:
- for(i = 0; i < idata_len; i++)
- data[i] = (FLAC__int64)residual[i] + 4*(FLAC__int64)data[i-1] - 6*(FLAC__int64)data[i-2] + 4*(FLAC__int64)data[i-3] - (FLAC__int64)data[i-4];
- break;
- default:
- FLAC__ASSERT(0);
- }
- }
-
- #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && !defined(FUZZING_BUILD_MODE_FLAC_SANITIZE_SIGNED_INTEGER_OVERFLOW)
- /* The attribute below is to silence the undefined sanitizer of oss-fuzz.
- * Because fuzzing feeds bogus predictors and residual samples to the
- * decoder, having overflows in this section is unavoidable. Also,
- * because the calculated values are audio path only, there is no
- * potential for security problems */
- __attribute__((no_sanitize("signed-integer-overflow")))
- #endif
- void FLAC__fixed_restore_signal_wide_33bit(const FLAC__int32 residual[], uint32_t data_len, uint32_t order, FLAC__int64 data[])
- {
- int i, idata_len = (int)data_len;
-
- switch(order) {
- case 0:
- for(i = 0; i < idata_len; i++)
- data[i] = residual[i];
- break;
- case 1:
- for(i = 0; i < idata_len; i++)
- data[i] = (FLAC__int64)residual[i] + data[i-1];
- break;
- case 2:
- for(i = 0; i < idata_len; i++)
- data[i] = (FLAC__int64)residual[i] + 2*data[i-1] - data[i-2];
- break;
- case 3:
- for(i = 0; i < idata_len; i++)
- data[i] = (FLAC__int64)residual[i] + 3*data[i-1] - 3*data[i-2] + data[i-3];
- break;
- case 4:
- for(i = 0; i < idata_len; i++)
- data[i] = (FLAC__int64)residual[i] + 4*data[i-1] - 6*data[i-2] + 4*data[i-3] - data[i-4];
- break;
- default:
- FLAC__ASSERT(0);
- }
- }
|