| 
							- /*
 -   ==============================================================================
 - 
 -    This file is part of the JUCE library.
 -    Copyright (c) 2017 - ROLI Ltd.
 - 
 -    JUCE is an open source library subject to commercial or open-source
 -    licensing.
 - 
 -    By using JUCE, you agree to the terms of both the JUCE 5 End-User License
 -    Agreement and JUCE 5 Privacy Policy (both updated and effective as of the
 -    27th April 2017).
 - 
 -    End User License Agreement: www.juce.com/juce-5-licence
 -    Privacy Policy: www.juce.com/juce-5-privacy-policy
 - 
 -    Or: You may also use this code under the terms of the GPL v3 (see
 -    www.gnu.org/licenses).
 - 
 -    JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
 -    EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
 -    DISCLAIMED.
 - 
 -   ==============================================================================
 - */
 - 
 - namespace juce
 - {
 - namespace dsp
 - {
 - 
 - double SpecialFunctions::besselI0 (double x) noexcept
 - {
 -     auto ax = std::abs (x);
 - 
 -     if (ax < 3.75)
 -     {
 -         auto y = x / 3.75;
 -         y *= y;
 - 
 -         return 1.0 + y * (3.5156229 + y * (3.0899424 + y * (1.2067492
 -                 + y * (0.2659732 + y * (0.360768e-1 + y * 0.45813e-2)))));
 -     }
 - 
 -     auto y = 3.75 / ax;
 - 
 -     return (std::exp (ax) / std::sqrt (ax))
 -              * (0.39894228 + y * (0.1328592e-1 + y * (0.225319e-2 + y * (-0.157565e-2 + y * (0.916281e-2
 -                  + y * (-0.2057706e-1 + y * (0.2635537e-1 + y * (-0.1647633e-1 + y * 0.392377e-2))))))));
 - }
 - 
 - void SpecialFunctions::ellipticIntegralK (double k, double& K, double& Kp) noexcept
 - {
 -     constexpr int M = 4;
 - 
 -     K = MathConstants<double>::halfPi;
 -     auto lastK = k;
 - 
 -     for (int i = 0; i < M; ++i)
 -     {
 -         lastK = std::pow (lastK / (1 + std::sqrt (1 - std::pow (lastK, 2.0))), 2.0);
 -         K *= 1 + lastK;
 -     }
 - 
 -     Kp = MathConstants<double>::halfPi;
 -     auto last = std::sqrt (1 - k * k);
 - 
 -     for (int i = 0; i < M; ++i)
 -     {
 -         last = std::pow (last / (1.0 + std::sqrt (1.0 - std::pow (last, 2.0))), 2.0);
 -         Kp *= 1 + last;
 -     }
 - }
 - 
 - Complex<double> SpecialFunctions::cde (Complex<double> u, double k) noexcept
 - {
 -     constexpr int M = 4;
 - 
 -     double ke[M + 1];
 -     double* kei = ke;
 -     *kei = k;
 - 
 -     for (int i = 0; i < M; ++i)
 -     {
 -         auto next = std::pow (*kei / (1.0 + std::sqrt (1.0 - std::pow (*kei, 2.0))), 2.0);
 -         *++kei = next;
 -     }
 - 
 -     // NB: the spurious cast to double here is a workaround for a very odd link-time failure
 -     std::complex<double> last = std::cos (u * (double) MathConstants<double>::halfPi);
 - 
 -     for (int i = M - 1; i >= 0; --i)
 -         last = (1.0 + ke[i + 1]) / (1.0 / last + ke[i + 1] * last);
 - 
 -     return last;
 - }
 - 
 - Complex<double> SpecialFunctions::sne (Complex<double> u, double k) noexcept
 - {
 -     constexpr int M = 4;
 - 
 -     double ke[M + 1];
 -     double* kei = ke;
 -     *kei = k;
 - 
 -     for (int i = 0; i < M; ++i)
 -     {
 -         auto next = std::pow (*kei / (1 + std::sqrt (1 - std::pow (*kei, 2.0))), 2.0);
 -         *++kei = next;
 -     }
 - 
 -     // NB: the spurious cast to double here is a workaround for a very odd link-time failure
 -     std::complex<double> last = std::sin (u * (double) MathConstants<double>::halfPi);
 - 
 -     for (int i = M - 1; i >= 0; --i)
 -         last = (1.0 + ke[i + 1]) / (1.0 / last + ke[i + 1] * last);
 - 
 -     return last;
 - }
 - 
 - Complex<double> SpecialFunctions::asne (Complex<double> w, double k) noexcept
 - {
 -     constexpr int M = 4;
 - 
 -     double ke[M + 1];
 -     double* kei = ke;
 -     *kei = k;
 - 
 -     for (int i = 0; i < M; ++i)
 -     {
 -         auto next = std::pow (*kei / (1.0 + std::sqrt (1.0 - std::pow (*kei, 2.0))), 2.0);
 -         *++kei = next;
 -     }
 - 
 -     std::complex<double> last = w;
 - 
 -     for (int i = 1; i <= M; ++i)
 -         last = 2.0 * last / ((1.0 + ke[i]) * (1.0 + std::sqrt (1.0 - std::pow (ke[i - 1] * last, 2.0))));
 - 
 -     return 2.0 / MathConstants<double>::pi * std::asin (last);
 - }
 - 
 - } // namespace dsp
 - } // namespace juce
 
 
  |