| 
							- /*
 -   ==============================================================================
 - 
 -    This file is part of the JUCE library.
 -    Copyright (c) 2017 - ROLI Ltd.
 - 
 -    JUCE is an open source library subject to commercial or open-source
 -    licensing.
 - 
 -    By using JUCE, you agree to the terms of both the JUCE 5 End-User License
 -    Agreement and JUCE 5 Privacy Policy (both updated and effective as of the
 -    27th April 2017).
 - 
 -    End User License Agreement: www.juce.com/juce-5-licence
 -    Privacy Policy: www.juce.com/juce-5-privacy-policy
 - 
 -    Or: You may also use this code under the terms of the GPL v3 (see
 -    www.gnu.org/licenses).
 - 
 -    JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
 -    EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
 -    DISCLAIMED.
 - 
 -   ==============================================================================
 - */
 - 
 - namespace juce
 - {
 - namespace dsp
 - {
 - 
 - template <typename ElementType>
 - Matrix<ElementType> Matrix<ElementType>::identity (size_t size)
 - {
 -     Matrix result (size, size);
 - 
 -     for (size_t i = 0; i < size; ++i)
 -         result(i, i) = 1;
 - 
 -     return result;
 - }
 - 
 - template <typename ElementType>
 - Matrix<ElementType> Matrix<ElementType>::toeplitz (const Matrix& vector, size_t size)
 - {
 -     jassert (vector.isOneColumnVector());
 -     jassert (size <= vector.rows);
 - 
 -     Matrix result (size, size);
 - 
 -     for (size_t i = 0; i < size; ++i)
 -         result (i, i) = vector (0, 0);
 - 
 -     for (size_t i = 1; i < size; ++i)
 -         for (size_t j = i; j < size; ++j)
 -             result (j, j - i) = result (j - i, j) = vector (i, 0);
 - 
 -     return result;
 - }
 - 
 - template <typename ElementType>
 - Matrix<ElementType> Matrix<ElementType>::hankel (const Matrix& vector, size_t size, size_t offset)
 - {
 -     jassert(vector.isOneColumnVector());
 -     jassert(vector.rows >= (2 * (size - 1) + 1));
 - 
 -     Matrix result (size, size);
 - 
 -     for (size_t i = 0; i < size; ++i)
 -         result (i, i) = vector ((2 * i) + offset, 0);
 - 
 -     for (size_t i = 1; i < size; ++i)
 -         for (size_t j = i; j < size; ++j)
 -             result (j, j - i) = result (j - i, j) = vector (i + 2 * (j - i) + offset, 0);
 - 
 -     return result;
 - }
 - 
 - //==============================================================================
 - template <typename ElementType>
 - Matrix<ElementType>& Matrix<ElementType>::swapColumns (size_t columnOne, size_t columnTwo) noexcept
 - {
 -     jassert (columnOne < columns && columnTwo < columns);
 - 
 -     auto* p = data.getRawDataPointer();
 - 
 -     for (size_t i = 0; i < rows; ++i)
 -     {
 -         auto offset = dataAcceleration.getUnchecked (static_cast<int> (i));
 -         std::swap (p[offset + columnOne], p[offset + columnTwo]);
 -     }
 - 
 -     return *this;
 - }
 - 
 - template <typename ElementType>
 - Matrix<ElementType>& Matrix<ElementType>::swapRows (size_t rowOne, size_t rowTwo) noexcept
 - {
 -     jassert (rowOne < rows && rowTwo < rows);
 - 
 -     auto offset1 = rowOne * columns;
 -     auto offset2 = rowTwo * columns;
 - 
 -     auto* p = data.getRawDataPointer();
 - 
 -     for (size_t i = 0; i < columns; ++i)
 -         std::swap (p[offset1 + i], p[offset2 + i]);
 - 
 -     return *this;
 - }
 - 
 - //==============================================================================
 - template <typename ElementType>
 - Matrix<ElementType> Matrix<ElementType>::operator* (const Matrix<ElementType>& other) const
 - {
 -     auto n = getNumRows(), m = other.getNumColumns(), p = getNumColumns();
 -     Matrix result (n, m);
 - 
 -     jassert (p == other.getNumRows());
 - 
 -     size_t offsetMat = 0, offsetlhs = 0;
 - 
 -     auto *dst = result.getRawDataPointer();
 -     auto *a  = getRawDataPointer();
 -     auto *b  = other.getRawDataPointer();
 - 
 -     for (size_t i = 0; i < n; ++i)
 -     {
 -         size_t offsetrhs = 0;
 - 
 -         for (size_t k = 0; k < p; ++k)
 -         {
 -             auto ak = a[offsetlhs++];
 - 
 -             for (size_t j = 0; j < m; ++j)
 -                 dst[offsetMat + j] += ak * b[offsetrhs + j];
 - 
 -             offsetrhs += m;
 -         }
 - 
 -         offsetMat += m;
 -     }
 - 
 -     return result;
 - }
 - 
 - //==============================================================================
 - template <typename ElementType>
 - bool Matrix<ElementType>::compare (const Matrix& a, const Matrix& b, ElementType tolerance) noexcept
 - {
 -     if (a.rows != b.rows || a.columns != b.columns)
 -         return false;
 - 
 -     tolerance = std::abs (tolerance);
 - 
 -     auto* bPtr = b.begin();
 -     for (auto aValue : a)
 -         if (std::abs (aValue - *bPtr++) > tolerance)
 -             return false;
 - 
 -     return true;
 - }
 - 
 - //==============================================================================
 - template <typename ElementType>
 - bool Matrix<ElementType>::solve (Matrix& b) const noexcept
 - {
 -     auto n = columns;
 -     jassert (n == n && n == b.rows && b.isOneColumnVector());
 - 
 -     auto* x = b.getRawDataPointer();
 -     const auto& A = *this;
 - 
 -     switch (n)
 -     {
 -         case 1:
 -         {
 -             auto denominator = A (0,0);
 - 
 -             if (denominator == 0)
 -                 return false;
 - 
 -             b (0, 0) /= denominator;
 -         }
 -         break;
 - 
 -         case 2:
 -         {
 -             auto denominator = A (0, 0) * A (1, 1) - A (0, 1) * A (1, 0);
 - 
 -             if (denominator == 0)
 -                 return false;
 - 
 -             auto factor = (1 / denominator);
 -             auto b0 = x[0], b1 = x[1];
 - 
 -             x[0] = factor * (A (1, 1) * b0 - A (0, 1) * b1);
 -             x[1] = factor * (A (0, 0) * b1 - A (1, 0) * b0);
 -         }
 -         break;
 - 
 -         case 3:
 -         {
 -             auto denominator = A (0, 0) * (A (1, 1) * A (2, 2) - A (1, 2) * A (2, 1))
 -                              + A (0, 1) * (A (1, 2) * A (2, 0) - A (1, 0) * A (2, 2))
 -                              + A (0, 2) * (A (1, 0) * A (2, 1) - A (1, 1) * A (2, 0));
 - 
 -             if (denominator == 0)
 -                 return false;
 - 
 -             auto factor = 1 / denominator;
 -             auto b0 = x[0], b1 = x[1], b2 = x[2];
 - 
 -             x[0] =  ( ( A (0, 1) * A (1, 2) - A (0, 2) * A (1, 1)) * b2
 -                     + (-A (0, 1) * A (2, 2) + A (0, 2) * A (2, 1)) * b1
 -                     + ( A (1, 1) * A (2, 2) - A (1, 2) * A (2, 1)) * b0) * factor;
 - 
 -             x[1] = -( ( A (0, 0) * A (1, 2) - A (0, 2) * A (1, 0)) * b2
 -                     + (-A (0, 0) * A (2, 2) + A (0, 2) * A (2, 0)) * b1
 -                     + ( A (1, 0) * A (2, 2) - A (1, 2) * A (2, 0)) * b0) * factor;
 - 
 -             x[2] =  ( ( A (0, 0) * A (1, 1) - A (0, 1) * A (1, 0)) * b2
 -                     + (-A (0, 0) * A (2, 1) + A (0, 1) * A (2, 0)) * b1
 -                     + ( A (1, 0) * A (2, 1) - A (1, 1) * A (2, 0)) * b0) * factor;
 -         }
 -         break;
 - 
 - 
 -         default:
 -         {
 -             Matrix<ElementType> M (A);
 - 
 -             for (size_t j = 0; j < n; ++j)
 -             {
 -                 if (M (j, j) == 0)
 -                 {
 -                     auto i = j;
 -                     while (i < n && M (i, j) == 0)
 -                         ++i;
 - 
 -                     if (i == n)
 -                         return false;
 - 
 -                     for (size_t k = 0; k < n; ++k)
 -                         M (j, k) += M (i, k);
 - 
 -                     x[j] += x[i];
 -                 }
 - 
 -                 auto t = 1 / M (j, j);
 - 
 -                 for (size_t k = 0; k < n; ++k)
 -                     M (j, k) *= t;
 - 
 -                 x[j] *= t;
 - 
 -                 for (size_t k = j + 1; k < n; ++k)
 -                 {
 -                     auto u = -M (k, j);
 - 
 -                     for (size_t l = 0; l < n; ++l)
 -                         M (k, l) += u * M (j, l);
 - 
 -                     x[k] += u * x[j];
 -                 }
 -             }
 - 
 -             for (int k = static_cast<int> (n) - 2; k >= 0; --k)
 -                 for (size_t i = static_cast<size_t> (k) + 1; i < n; ++i)
 -                     x[k] -= M (static_cast<size_t> (k), i) * x[i];
 -         }
 -     }
 - 
 -     return true;
 - }
 - 
 - //==============================================================================
 - template <typename ElementType>
 - String Matrix<ElementType>::toString() const
 - {
 -     StringArray entries;
 -     int sizeMax = 0;
 - 
 -     auto* p = data.begin();
 - 
 -     for (size_t i = 0; i < rows; ++i)
 -     {
 -         for (size_t j = 0; j < columns; ++j)
 -         {
 -             String entry (*p++, 4);
 -             sizeMax = jmax (sizeMax, entry.length());
 - 
 -             entries.add (entry);
 -         }
 -     }
 - 
 -     sizeMax = ((sizeMax + 1) / 4 + 1) * 4;
 - 
 -     MemoryOutputStream result;
 - 
 -     auto n = static_cast<size_t> (entries.size());
 - 
 -     for (size_t i = 0; i < n; ++i)
 -     {
 -         result << entries[(int) i].paddedRight (' ', sizeMax);
 - 
 -         if (i % columns == (columns - 1))
 -             result << newLine;
 -     }
 - 
 -     return result.toString();
 - }
 - 
 - template class Matrix<float>;
 - template class Matrix<double>;
 - 
 - } // namespace dsp
 - } // namespace juce
 
 
  |