The JUCE cross-platform C++ framework, with DISTRHO/KXStudio specific changes
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

309 lines
8.6KB

  1. /*
  2. ==============================================================================
  3. This file is part of the JUCE library.
  4. Copyright (c) 2017 - ROLI Ltd.
  5. JUCE is an open source library subject to commercial or open-source
  6. licensing.
  7. By using JUCE, you agree to the terms of both the JUCE 5 End-User License
  8. Agreement and JUCE 5 Privacy Policy (both updated and effective as of the
  9. 27th April 2017).
  10. End User License Agreement: www.juce.com/juce-5-licence
  11. Privacy Policy: www.juce.com/juce-5-privacy-policy
  12. Or: You may also use this code under the terms of the GPL v3 (see
  13. www.gnu.org/licenses).
  14. JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
  15. EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
  16. DISCLAIMED.
  17. ==============================================================================
  18. */
  19. template <typename ElementType>
  20. Matrix<ElementType> Matrix<ElementType>::identity (size_t size)
  21. {
  22. Matrix result (size, size);
  23. for (size_t i = 0; i < size; ++i)
  24. result(i, i) = 1;
  25. return result;
  26. }
  27. template <typename ElementType>
  28. Matrix<ElementType> Matrix<ElementType>::toeplitz (const Matrix& vector, size_t size)
  29. {
  30. jassert (vector.isOneColumnVector());
  31. jassert (size <= vector.rows);
  32. Matrix result (size, size);
  33. for (size_t i = 0; i < size; ++i)
  34. result (i, i) = vector (0, 0);
  35. for (size_t i = 1; i < size; ++i)
  36. for (size_t j = i; j < size; ++j)
  37. result (j, j - i) = result (j - i, j) = vector (i, 0);
  38. return result;
  39. }
  40. template <typename ElementType>
  41. Matrix<ElementType> Matrix<ElementType>::hankel (const Matrix& vector, size_t size, size_t offset)
  42. {
  43. jassert(vector.isOneColumnVector());
  44. jassert(vector.rows >= (2 * (size - 1) + 1));
  45. Matrix result (size, size);
  46. for (size_t i = 0; i < size; ++i)
  47. result (i, i) = vector ((2 * i) + offset, 0);
  48. for (size_t i = 1; i < size; ++i)
  49. for (size_t j = i; j < size; ++j)
  50. result (j, j - i) = result (j - i, j) = vector (i + 2 * (j - i) + offset, 0);
  51. return result;
  52. }
  53. //==============================================================================
  54. template <typename ElementType>
  55. Matrix<ElementType>& Matrix<ElementType>::swapColumns (size_t columnOne, size_t columnTwo) noexcept
  56. {
  57. jassert (columnOne < columns && columnTwo < columns);
  58. auto* p = data.getRawDataPointer();
  59. for (size_t i = 0; i < rows; ++i)
  60. {
  61. auto offset = dataAcceleration.getUnchecked (static_cast<int> (i));
  62. std::swap (p[offset + columnOne], p[offset + columnTwo]);
  63. }
  64. return *this;
  65. }
  66. template <typename ElementType>
  67. Matrix<ElementType>& Matrix<ElementType>::swapRows (size_t rowOne, size_t rowTwo) noexcept
  68. {
  69. jassert (rowOne < rows && rowTwo < rows);
  70. auto offset1 = rowOne * columns;
  71. auto offset2 = rowTwo * columns;
  72. auto* p = data.getRawDataPointer();
  73. for (size_t i = 0; i < columns; ++i)
  74. std::swap (p[offset1 + i], p[offset2 + i]);
  75. return *this;
  76. }
  77. //==============================================================================
  78. template <typename ElementType>
  79. Matrix<ElementType> Matrix<ElementType>::operator* (const Matrix<ElementType>& other) const
  80. {
  81. auto n = getNumRows(), m = other.getNumColumns(), p = getNumColumns();
  82. Matrix result (n, m);
  83. jassert (other.getNumRows() == p && n == m);
  84. size_t offsetMat = 0, offsetlhs = 0;
  85. auto *dst = result.getRawDataPointer();
  86. auto *a = getRawDataPointer();
  87. auto *b = other.getRawDataPointer();
  88. for (size_t i = 0; i < n; ++i)
  89. {
  90. size_t offsetrhs = 0;
  91. for (size_t k = 0; k < p; ++k)
  92. {
  93. auto ak = a[offsetlhs++];
  94. for (size_t j = 0; j < m; ++j)
  95. dst[offsetMat + j] += ak * b[offsetrhs + j];
  96. offsetrhs += m;
  97. }
  98. offsetMat += m;
  99. }
  100. return result;
  101. }
  102. //==============================================================================
  103. template <typename ElementType>
  104. bool Matrix<ElementType>::compare (const Matrix& a, const Matrix& b, ElementType tolerance) noexcept
  105. {
  106. if (a.rows != b.rows || a.columns != b.columns)
  107. return false;
  108. tolerance = std::abs (tolerance);
  109. auto* bPtr = b.begin();
  110. for (auto aValue : a)
  111. if (std::abs (aValue - *bPtr++) > tolerance)
  112. return false;
  113. return true;
  114. }
  115. //==============================================================================
  116. template <typename ElementType>
  117. bool Matrix<ElementType>::solve (Matrix& b) const noexcept
  118. {
  119. auto n = columns;
  120. jassert (n == n && n == b.rows && b.isOneColumnVector());
  121. auto* x = b.getRawDataPointer();
  122. const auto& A = *this;
  123. switch (n)
  124. {
  125. case 1:
  126. {
  127. auto denominator = A (0,0);
  128. if (denominator == 0)
  129. return false;
  130. b (0, 0) /= denominator;
  131. }
  132. break;
  133. case 2:
  134. {
  135. auto denominator = A (0, 0) * A (1, 1) - A (0, 1) * A (1, 0);
  136. if (denominator == 0)
  137. return false;
  138. auto factor = (1 / denominator);
  139. auto b0 = x[0], b1 = x[1];
  140. x[0] = factor * (A (1, 1) * b0 - A (0, 1) * b1);
  141. x[1] = factor * (A (0, 0) * b1 - A (1, 0) * b0);
  142. }
  143. break;
  144. case 3:
  145. {
  146. auto denominator = A (0, 0) * (A (1, 1) * A (2, 2) - A (1, 2) * A (2, 1))
  147. + A (0, 1) * (A (1, 2) * A (2, 0) - A (1, 0) * A (2, 2))
  148. + A (0, 2) * (A (1, 0) * A (2, 1) - A (1, 1) * A (2, 0));
  149. if (denominator == 0)
  150. return false;
  151. auto factor = 1 / denominator;
  152. auto b0 = x[0], b1 = x[1], b2 = x[2];
  153. x[0] = ( ( A (0, 1) * A (1, 2) - A (0, 2) * A (1, 1)) * b2
  154. + (-A (0, 1) * A (2, 2) + A (0, 2) * A (2, 1)) * b1
  155. + ( A (1, 1) * A (2, 2) - A (1, 2) * A (2, 1)) * b0) * factor;
  156. x[1] = -( ( A (0, 0) * A (1, 2) - A (0, 2) * A (1, 0)) * b2
  157. + (-A (0, 0) * A (2, 2) + A (0, 2) * A (2, 0)) * b1
  158. + ( A (1, 0) * A (2, 2) - A (1, 2) * A (2, 0)) * b0) * factor;
  159. x[2] = ( ( A (0, 0) * A (1, 1) - A (0, 1) * A (1, 0)) * b2
  160. + (-A (0, 0) * A (2, 1) + A (0, 1) * A (2, 0)) * b1
  161. + ( A (1, 0) * A (2, 1) - A (1, 1) * A (2, 0)) * b0) * factor;
  162. }
  163. break;
  164. default:
  165. {
  166. Matrix<ElementType> M (A);
  167. for (size_t j = 0; j < n; ++j)
  168. {
  169. if (M (j, j) == 0)
  170. {
  171. auto i = j;
  172. while (i < n && M (i, j) == 0)
  173. ++i;
  174. if (i == n)
  175. return false;
  176. for (size_t k = 0; k < n; ++k)
  177. M (j, k) += M (i, k);
  178. x[j] += x[i];
  179. }
  180. auto t = 1 / M (j, j);
  181. for (size_t k = 0; k < n; ++k)
  182. M (j, k) *= t;
  183. x[j] *= t;
  184. for (size_t k = j + 1; k < n; ++k)
  185. {
  186. auto u = -M (k, j);
  187. for (size_t l = 0; l < n; ++l)
  188. M (k, l) += u * M (j, l);
  189. x[k] += u * x[j];
  190. }
  191. }
  192. for (int k = static_cast<int> (n) - 2; k >= 0; --k)
  193. for (size_t i = static_cast<size_t> (k) + 1; i < n; ++i)
  194. x[k] -= M (static_cast<size_t> (k), i) * x[i];
  195. }
  196. }
  197. return true;
  198. }
  199. //==============================================================================
  200. template <typename ElementType>
  201. String Matrix<ElementType>::toString() const
  202. {
  203. StringArray entries;
  204. int sizeMax = 0;
  205. auto* p = data.getRawDataPointer();
  206. for (size_t i = 0; i < rows; ++i)
  207. {
  208. for (size_t j = 0; j < columns; ++j)
  209. {
  210. String entry (*p++, 4);
  211. sizeMax = jmax (sizeMax, entry.length());
  212. entries.add (entry);
  213. }
  214. }
  215. sizeMax = ((sizeMax + 1) / 4 + 1) * 4;
  216. MemoryOutputStream result;
  217. auto n = static_cast<size_t> (entries.size());
  218. for (size_t i = 0; i < n; ++i)
  219. {
  220. result << entries[(int) i].paddedRight (' ', sizeMax);
  221. if (i % columns == (columns - 1))
  222. result << newLine;
  223. }
  224. return result.toString();
  225. }