| 
							- /*
 - * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 - *
 - * This software is provided 'as-is', without any express or implied
 - * warranty.  In no event will the authors be held liable for any damages
 - * arising from the use of this software.
 - * Permission is granted to anyone to use this software for any purpose,
 - * including commercial applications, and to alter it and redistribute it
 - * freely, subject to the following restrictions:
 - * 1. The origin of this software must not be misrepresented; you must not
 - * claim that you wrote the original software. If you use this software
 - * in a product, an acknowledgment in the product documentation would be
 - * appreciated but is not required.
 - * 2. Altered source versions must be plainly marked as such, and must not be
 - * misrepresented as being the original software.
 - * 3. This notice may not be removed or altered from any source distribution.
 - */
 - 
 - #include "b2Collision.h"
 - #include "Shapes/b2PolygonShape.h"
 - 
 - // Find the separation between poly1 and poly2 for a give edge normal on poly1.
 - static float32 b2EdgeSeparation(const b2PolygonShape* poly1, const b2Transform& xf1, int32 edge1,
 - 							  const b2PolygonShape* poly2, const b2Transform& xf2)
 - {
 - 	const b2Vec2* vertices1 = poly1->m_vertices;
 - 	const b2Vec2* normals1 = poly1->m_normals;
 - 
 - 	int32 count2 = poly2->m_vertexCount;
 - 	const b2Vec2* vertices2 = poly2->m_vertices;
 - 
 - 	b2Assert(0 <= edge1 && edge1 < poly1->m_vertexCount);
 - 
 - 	// Convert normal from poly1's frame into poly2's frame.
 - 	b2Vec2 normal1World = b2Mul(xf1.q, normals1[edge1]);
 - 	b2Vec2 normal1 = b2MulT(xf2.q, normal1World);
 - 
 - 	// Find support vertex on poly2 for -normal.
 - 	int32 index = 0;
 - 	float32 minDot = b2_maxFloat;
 - 
 - 	for (int32 i = 0; i < count2; ++i)
 - 	{
 - 		float32 dot = b2Dot(vertices2[i], normal1);
 - 		if (dot < minDot)
 - 		{
 - 			minDot = dot;
 - 			index = i;
 - 		}
 - 	}
 - 
 - 	b2Vec2 v1 = b2Mul(xf1, vertices1[edge1]);
 - 	b2Vec2 v2 = b2Mul(xf2, vertices2[index]);
 - 	float32 separation = b2Dot(v2 - v1, normal1World);
 - 	return separation;
 - }
 - 
 - // Find the max separation between poly1 and poly2 using edge normals from poly1.
 - static float32 b2FindMaxSeparation(int32* edgeIndex,
 - 								 const b2PolygonShape* poly1, const b2Transform& xf1,
 - 								 const b2PolygonShape* poly2, const b2Transform& xf2)
 - {
 - 	int32 count1 = poly1->m_vertexCount;
 - 	const b2Vec2* normals1 = poly1->m_normals;
 - 
 - 	// Vector pointing from the centroid of poly1 to the centroid of poly2.
 - 	b2Vec2 d = b2Mul(xf2, poly2->m_centroid) - b2Mul(xf1, poly1->m_centroid);
 - 	b2Vec2 dLocal1 = b2MulT(xf1.q, d);
 - 
 - 	// Find edge normal on poly1 that has the largest projection onto d.
 - 	int32 edge = 0;
 - 	float32 maxDot = -b2_maxFloat;
 - 	for (int32 i = 0; i < count1; ++i)
 - 	{
 - 		float32 dot = b2Dot(normals1[i], dLocal1);
 - 		if (dot > maxDot)
 - 		{
 - 			maxDot = dot;
 - 			edge = i;
 - 		}
 - 	}
 - 
 - 	// Get the separation for the edge normal.
 - 	float32 s = b2EdgeSeparation(poly1, xf1, edge, poly2, xf2);
 - 
 - 	// Check the separation for the previous edge normal.
 - 	int32 prevEdge = edge - 1 >= 0 ? edge - 1 : count1 - 1;
 - 	float32 sPrev = b2EdgeSeparation(poly1, xf1, prevEdge, poly2, xf2);
 - 
 - 	// Check the separation for the next edge normal.
 - 	int32 nextEdge = edge + 1 < count1 ? edge + 1 : 0;
 - 	float32 sNext = b2EdgeSeparation(poly1, xf1, nextEdge, poly2, xf2);
 - 
 - 	// Find the best edge and the search direction.
 - 	int32 bestEdge;
 - 	float32 bestSeparation;
 - 	int32 increment;
 - 	if (sPrev > s && sPrev > sNext)
 - 	{
 - 		increment = -1;
 - 		bestEdge = prevEdge;
 - 		bestSeparation = sPrev;
 - 	}
 - 	else if (sNext > s)
 - 	{
 - 		increment = 1;
 - 		bestEdge = nextEdge;
 - 		bestSeparation = sNext;
 - 	}
 - 	else
 - 	{
 - 		*edgeIndex = edge;
 - 		return s;
 - 	}
 - 
 - 	// Perform a local search for the best edge normal.
 - 	for ( ; ; )
 - 	{
 - 		if (increment == -1)
 - 			edge = bestEdge - 1 >= 0 ? bestEdge - 1 : count1 - 1;
 - 		else
 - 			edge = bestEdge + 1 < count1 ? bestEdge + 1 : 0;
 - 
 - 		s = b2EdgeSeparation(poly1, xf1, edge, poly2, xf2);
 - 
 - 		if (s > bestSeparation)
 - 		{
 - 			bestEdge = edge;
 - 			bestSeparation = s;
 - 		}
 - 		else
 - 		{
 - 			break;
 - 		}
 - 	}
 - 
 - 	*edgeIndex = bestEdge;
 - 	return bestSeparation;
 - }
 - 
 - static void b2FindIncidentEdge(b2ClipVertex c[2],
 - 							 const b2PolygonShape* poly1, const b2Transform& xf1, int32 edge1,
 - 							 const b2PolygonShape* poly2, const b2Transform& xf2)
 - {
 - 	const b2Vec2* normals1 = poly1->m_normals;
 - 
 - 	int32 count2 = poly2->m_vertexCount;
 - 	const b2Vec2* vertices2 = poly2->m_vertices;
 - 	const b2Vec2* normals2 = poly2->m_normals;
 - 
 - 	b2Assert(0 <= edge1 && edge1 < poly1->m_vertexCount);
 - 
 - 	// Get the normal of the reference edge in poly2's frame.
 - 	b2Vec2 normal1 = b2MulT(xf2.q, b2Mul(xf1.q, normals1[edge1]));
 - 
 - 	// Find the incident edge on poly2.
 - 	int32 index = 0;
 - 	float32 minDot = b2_maxFloat;
 - 	for (int32 i = 0; i < count2; ++i)
 - 	{
 - 		float32 dot = b2Dot(normal1, normals2[i]);
 - 		if (dot < minDot)
 - 		{
 - 			minDot = dot;
 - 			index = i;
 - 		}
 - 	}
 - 
 - 	// Build the clip vertices for the incident edge.
 - 	int32 i1 = index;
 - 	int32 i2 = i1 + 1 < count2 ? i1 + 1 : 0;
 - 
 - 	c[0].v = b2Mul(xf2, vertices2[i1]);
 - 	c[0].id.cf.indexA = (uint8)edge1;
 - 	c[0].id.cf.indexB = (uint8)i1;
 - 	c[0].id.cf.typeA = b2ContactFeature::e_face;
 - 	c[0].id.cf.typeB = b2ContactFeature::e_vertex;
 - 
 - 	c[1].v = b2Mul(xf2, vertices2[i2]);
 - 	c[1].id.cf.indexA = (uint8)edge1;
 - 	c[1].id.cf.indexB = (uint8)i2;
 - 	c[1].id.cf.typeA = b2ContactFeature::e_face;
 - 	c[1].id.cf.typeB = b2ContactFeature::e_vertex;
 - }
 - 
 - // Find edge normal of max separation on A - return if separating axis is found
 - // Find edge normal of max separation on B - return if separation axis is found
 - // Choose reference edge as min(minA, minB)
 - // Find incident edge
 - // Clip
 - 
 - // The normal points from 1 to 2
 - void b2CollidePolygons(b2Manifold* manifold,
 - 					  const b2PolygonShape* polyA, const b2Transform& xfA,
 - 					  const b2PolygonShape* polyB, const b2Transform& xfB)
 - {
 - 	manifold->pointCount = 0;
 - 	float32 totalRadius = polyA->m_radius + polyB->m_radius;
 - 
 - 	int32 edgeA = 0;
 - 	float32 separationA = b2FindMaxSeparation(&edgeA, polyA, xfA, polyB, xfB);
 - 	if (separationA > totalRadius)
 - 		return;
 - 
 - 	int32 edgeB = 0;
 - 	float32 separationB = b2FindMaxSeparation(&edgeB, polyB, xfB, polyA, xfA);
 - 	if (separationB > totalRadius)
 - 		return;
 - 
 - 	const b2PolygonShape* poly1;	// reference polygon
 - 	const b2PolygonShape* poly2;	// incident polygon
 - 	b2Transform xf1, xf2;
 - 	int32 edge1;		// reference edge
 - 	uint8 flip;
 - 	const float32 k_relativeTol = 0.98f;
 - 	const float32 k_absoluteTol = 0.001f;
 - 
 - 	if (separationB > k_relativeTol * separationA + k_absoluteTol)
 - 	{
 - 		poly1 = polyB;
 - 		poly2 = polyA;
 - 		xf1 = xfB;
 - 		xf2 = xfA;
 - 		edge1 = edgeB;
 - 		manifold->type = b2Manifold::e_faceB;
 - 		flip = 1;
 - 	}
 - 	else
 - 	{
 - 		poly1 = polyA;
 - 		poly2 = polyB;
 - 		xf1 = xfA;
 - 		xf2 = xfB;
 - 		edge1 = edgeA;
 - 		manifold->type = b2Manifold::e_faceA;
 - 		flip = 0;
 - 	}
 - 
 - 	b2ClipVertex incidentEdge[2];
 - 	b2FindIncidentEdge(incidentEdge, poly1, xf1, edge1, poly2, xf2);
 - 
 - 	int32 count1 = poly1->m_vertexCount;
 - 	const b2Vec2* vertices1 = poly1->m_vertices;
 - 
 - 	int32 iv1 = edge1;
 - 	int32 iv2 = edge1 + 1 < count1 ? edge1 + 1 : 0;
 - 
 - 	b2Vec2 v11 = vertices1[iv1];
 - 	b2Vec2 v12 = vertices1[iv2];
 - 
 - 	b2Vec2 localTangent = v12 - v11;
 - 	localTangent.Normalize();
 - 
 - 	b2Vec2 localNormal = b2Cross(localTangent, 1.0f);
 - 	b2Vec2 planePoint = 0.5f * (v11 + v12);
 - 
 - 	b2Vec2 tangent = b2Mul(xf1.q, localTangent);
 - 	b2Vec2 normal = b2Cross(tangent, 1.0f);
 - 
 - 	v11 = b2Mul(xf1, v11);
 - 	v12 = b2Mul(xf1, v12);
 - 
 - 	// Face offset.
 - 	float32 frontOffset = b2Dot(normal, v11);
 - 
 - 	// Side offsets, extended by polytope skin thickness.
 - 	float32 sideOffset1 = -b2Dot(tangent, v11) + totalRadius;
 - 	float32 sideOffset2 = b2Dot(tangent, v12) + totalRadius;
 - 
 - 	// Clip incident edge against extruded edge1 side edges.
 - 	b2ClipVertex clipPoints1[2];
 - 	b2ClipVertex clipPoints2[2];
 - 	int np;
 - 
 - 	// Clip to box side 1
 - 	np = b2ClipSegmentToLine(clipPoints1, incidentEdge, -tangent, sideOffset1, iv1);
 - 
 - 	if (np < 2)
 - 		return;
 - 
 - 	// Clip to negative box side 1
 - 	np = b2ClipSegmentToLine(clipPoints2, clipPoints1,  tangent, sideOffset2, iv2);
 - 
 - 	if (np < 2)
 - 	{
 - 		return;
 - 	}
 - 
 - 	// Now clipPoints2 contains the clipped points.
 - 	manifold->localNormal = localNormal;
 - 	manifold->localPoint = planePoint;
 - 
 - 	int32 pointCount = 0;
 - 	for (int32 i = 0; i < b2_maxManifoldPoints; ++i)
 - 	{
 - 		float32 separation = b2Dot(normal, clipPoints2[i].v) - frontOffset;
 - 
 - 		if (separation <= totalRadius)
 - 		{
 - 			b2ManifoldPoint* cp = manifold->points + pointCount;
 - 			cp->localPoint = b2MulT(xf2, clipPoints2[i].v);
 - 			cp->id = clipPoints2[i].id;
 - 			if (flip)
 - 			{
 - 				// Swap features
 - 				b2ContactFeature cf = cp->id.cf;
 - 				cp->id.cf.indexA = cf.indexB;
 - 				cp->id.cf.indexB = cf.indexA;
 - 				cp->id.cf.typeA = cf.typeB;
 - 				cp->id.cf.typeB = cf.typeA;
 - 			}
 - 			++pointCount;
 - 		}
 - 	}
 - 
 - 	manifold->pointCount = pointCount;
 - }
 
 
  |