|
- /*
- ==============================================================================
-
- This file is part of the JUCE library.
- Copyright (c) 2017 - ROLI Ltd.
-
- JUCE is an open source library subject to commercial or open-source
- licensing.
-
- The code included in this file is provided under the terms of the ISC license
- http://www.isc.org/downloads/software-support-policy/isc-license. Permission
- To use, copy, modify, and/or distribute this software for any purpose with or
- without fee is hereby granted provided that the above copyright notice and
- this permission notice appear in all copies.
-
- JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
- EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
- DISCLAIMED.
-
- ==============================================================================
- */
-
- #pragma once
-
- //==============================================================================
- /*
- This file sets up some handy mathematical typdefs and functions.
- */
-
- //==============================================================================
- // Definitions for the int8, int16, int32, int64 and pointer_sized_int types.
-
- /** A platform-independent 8-bit signed integer type. */
- typedef signed char int8;
- /** A platform-independent 8-bit unsigned integer type. */
- typedef unsigned char uint8;
- /** A platform-independent 16-bit signed integer type. */
- typedef signed short int16;
- /** A platform-independent 16-bit unsigned integer type. */
- typedef unsigned short uint16;
- /** A platform-independent 32-bit signed integer type. */
- typedef signed int int32;
- /** A platform-independent 32-bit unsigned integer type. */
- typedef unsigned int uint32;
-
- #if JUCE_MSVC
- /** A platform-independent 64-bit integer type. */
- typedef __int64 int64;
- /** A platform-independent 64-bit unsigned integer type. */
- typedef unsigned __int64 uint64;
- #else
- /** A platform-independent 64-bit integer type. */
- typedef long long int64;
- /** A platform-independent 64-bit unsigned integer type. */
- typedef unsigned long long uint64;
- #endif
-
- #ifndef DOXYGEN
- /** A macro for creating 64-bit literals.
- Historically, this was needed to support portability with MSVC6, and is kept here
- so that old code will still compile, but nowadays every compiler will support the
- LL and ULL suffixes, so you should use those in preference to this macro.
- */
- #define literal64bit(longLiteral) (longLiteral##LL)
- #endif
-
- #if JUCE_64BIT
- /** A signed integer type that's guaranteed to be large enough to hold a pointer without truncating it. */
- typedef int64 pointer_sized_int;
- /** An unsigned integer type that's guaranteed to be large enough to hold a pointer without truncating it. */
- typedef uint64 pointer_sized_uint;
- #elif JUCE_MSVC
- /** A signed integer type that's guaranteed to be large enough to hold a pointer without truncating it. */
- typedef _W64 int pointer_sized_int;
- /** An unsigned integer type that's guaranteed to be large enough to hold a pointer without truncating it. */
- typedef _W64 unsigned int pointer_sized_uint;
- #else
- /** A signed integer type that's guaranteed to be large enough to hold a pointer without truncating it. */
- typedef int pointer_sized_int;
- /** An unsigned integer type that's guaranteed to be large enough to hold a pointer without truncating it. */
- typedef unsigned int pointer_sized_uint;
- #endif
-
- #if JUCE_WINDOWS && ! JUCE_MINGW
- typedef pointer_sized_int ssize_t;
- #endif
-
- //==============================================================================
- // Some indispensable min/max functions
-
- /** Returns the larger of two values. */
- template <typename Type>
- Type jmax (const Type a, const Type b) { return (a < b) ? b : a; }
-
- /** Returns the larger of three values. */
- template <typename Type>
- Type jmax (const Type a, const Type b, const Type c) { return (a < b) ? ((b < c) ? c : b) : ((a < c) ? c : a); }
-
- /** Returns the larger of four values. */
- template <typename Type>
- Type jmax (const Type a, const Type b, const Type c, const Type d) { return jmax (a, jmax (b, c, d)); }
-
- /** Returns the smaller of two values. */
- template <typename Type>
- Type jmin (const Type a, const Type b) { return (b < a) ? b : a; }
-
- /** Returns the smaller of three values. */
- template <typename Type>
- Type jmin (const Type a, const Type b, const Type c) { return (b < a) ? ((c < b) ? c : b) : ((c < a) ? c : a); }
-
- /** Returns the smaller of four values. */
- template <typename Type>
- Type jmin (const Type a, const Type b, const Type c, const Type d) { return jmin (a, jmin (b, c, d)); }
-
- /** Remaps a normalised value (between 0 and 1) to a target range.
- This effectively returns (targetRangeMin + value0To1 * (targetRangeMax - targetRangeMin)).
- */
- template <typename Type>
- Type jmap (Type value0To1, Type targetRangeMin, Type targetRangeMax)
- {
- return targetRangeMin + value0To1 * (targetRangeMax - targetRangeMin);
- }
-
- /** Remaps a value from a source range to a target range. */
- template <typename Type>
- Type jmap (Type sourceValue, Type sourceRangeMin, Type sourceRangeMax, Type targetRangeMin, Type targetRangeMax)
- {
- jassert (sourceRangeMax != sourceRangeMin); // mapping from a range of zero will produce NaN!
- return targetRangeMin + ((targetRangeMax - targetRangeMin) * (sourceValue - sourceRangeMin)) / (sourceRangeMax - sourceRangeMin);
- }
-
- /** Scans an array of values, returning the minimum value that it contains. */
- template <typename Type>
- Type findMinimum (const Type* data, int numValues)
- {
- if (numValues <= 0)
- return Type();
-
- Type result (*data++);
-
- while (--numValues > 0) // (> 0 rather than >= 0 because we've already taken the first sample)
- {
- const Type& v = *data++;
- if (v < result) result = v;
- }
-
- return result;
- }
-
- /** Scans an array of values, returning the maximum value that it contains. */
- template <typename Type>
- Type findMaximum (const Type* values, int numValues)
- {
- if (numValues <= 0)
- return Type();
-
- Type result (*values++);
-
- while (--numValues > 0) // (> 0 rather than >= 0 because we've already taken the first sample)
- {
- const Type& v = *values++;
- if (result < v) result = v;
- }
-
- return result;
- }
-
- /** Scans an array of values, returning the minimum and maximum values that it contains. */
- template <typename Type>
- void findMinAndMax (const Type* values, int numValues, Type& lowest, Type& highest)
- {
- if (numValues <= 0)
- {
- lowest = Type();
- highest = Type();
- }
- else
- {
- Type mn (*values++);
- Type mx (mn);
-
- while (--numValues > 0) // (> 0 rather than >= 0 because we've already taken the first sample)
- {
- const Type& v = *values++;
-
- if (mx < v) mx = v;
- if (v < mn) mn = v;
- }
-
- lowest = mn;
- highest = mx;
- }
- }
-
-
- //==============================================================================
- /** Constrains a value to keep it within a given range.
-
- This will check that the specified value lies between the lower and upper bounds
- specified, and if not, will return the nearest value that would be in-range. Effectively,
- it's like calling jmax (lowerLimit, jmin (upperLimit, value)).
-
- Note that it expects that lowerLimit <= upperLimit. If this isn't true,
- the results will be unpredictable.
-
- @param lowerLimit the minimum value to return
- @param upperLimit the maximum value to return
- @param valueToConstrain the value to try to return
- @returns the closest value to valueToConstrain which lies between lowerLimit
- and upperLimit (inclusive)
- @see jmin, jmax, jmap
- */
- template <typename Type>
- Type jlimit (const Type lowerLimit,
- const Type upperLimit,
- const Type valueToConstrain) noexcept
- {
- jassert (lowerLimit <= upperLimit); // if these are in the wrong order, results are unpredictable..
-
- return (valueToConstrain < lowerLimit) ? lowerLimit
- : ((upperLimit < valueToConstrain) ? upperLimit
- : valueToConstrain);
- }
-
- /** Returns true if a value is at least zero, and also below a specified upper limit.
- This is basically a quicker way to write:
- @code valueToTest >= 0 && valueToTest < upperLimit
- @endcode
- */
- template <typename Type>
- bool isPositiveAndBelow (Type valueToTest, Type upperLimit) noexcept
- {
- jassert (Type() <= upperLimit); // makes no sense to call this if the upper limit is itself below zero..
- return Type() <= valueToTest && valueToTest < upperLimit;
- }
-
- template <>
- inline bool isPositiveAndBelow (const int valueToTest, const int upperLimit) noexcept
- {
- jassert (upperLimit >= 0); // makes no sense to call this if the upper limit is itself below zero..
- return static_cast<unsigned int> (valueToTest) < static_cast<unsigned int> (upperLimit);
- }
-
- /** Returns true if a value is at least zero, and also less than or equal to a specified upper limit.
- This is basically a quicker way to write:
- @code valueToTest >= 0 && valueToTest <= upperLimit
- @endcode
- */
- template <typename Type>
- bool isPositiveAndNotGreaterThan (Type valueToTest, Type upperLimit) noexcept
- {
- jassert (Type() <= upperLimit); // makes no sense to call this if the upper limit is itself below zero..
- return Type() <= valueToTest && valueToTest <= upperLimit;
- }
-
- template <>
- inline bool isPositiveAndNotGreaterThan (const int valueToTest, const int upperLimit) noexcept
- {
- jassert (upperLimit >= 0); // makes no sense to call this if the upper limit is itself below zero..
- return static_cast<unsigned int> (valueToTest) <= static_cast<unsigned int> (upperLimit);
- }
-
- //==============================================================================
- /** Handy function to swap two values. */
- template <typename Type>
- void swapVariables (Type& variable1, Type& variable2)
- {
- std::swap (variable1, variable2);
- }
-
- /** Handy function for avoiding unused variables warning. */
- template <typename Type1>
- void ignoreUnused (const Type1&) noexcept {}
-
- template <typename Type1, typename Type2>
- void ignoreUnused (const Type1&, const Type2&) noexcept {}
-
- template <typename Type1, typename Type2, typename Type3>
- void ignoreUnused (const Type1&, const Type2&, const Type3&) noexcept {}
-
- template <typename Type1, typename Type2, typename Type3, typename Type4>
- void ignoreUnused (const Type1&, const Type2&, const Type3&, const Type4&) noexcept {}
-
- /** Handy function for getting the number of elements in a simple const C array.
- E.g.
- @code
- static int myArray[] = { 1, 2, 3 };
-
- int numElements = numElementsInArray (myArray) // returns 3
- @endcode
- */
- template <typename Type, int N>
- int numElementsInArray (Type (&array)[N])
- {
- ignoreUnused (array);
- (void) sizeof (0[array]); // This line should cause an error if you pass an object with a user-defined subscript operator
- return N;
- }
-
- //==============================================================================
- // Some useful maths functions that aren't always present with all compilers and build settings.
-
- /** Using juce_hypot is easier than dealing with the different types of hypot function
- that are provided by the various platforms and compilers. */
- template <typename Type>
- Type juce_hypot (Type a, Type b) noexcept
- {
- #if JUCE_MSVC
- return static_cast<Type> (_hypot (a, b));
- #else
- return static_cast<Type> (hypot (a, b));
- #endif
- }
-
- #ifndef DOXYGEN
- template <>
- inline float juce_hypot (float a, float b) noexcept
- {
- #if JUCE_MSVC
- return _hypotf (a, b);
- #else
- return hypotf (a, b);
- #endif
- }
- #endif
-
- /** 64-bit abs function. */
- inline int64 abs64 (const int64 n) noexcept
- {
- return (n >= 0) ? n : -n;
- }
-
- #if JUCE_MSVC && ! defined (DOXYGEN) // The MSVC libraries omit these functions for some reason...
- template<typename Type> Type asinh (Type x) { return std::log (x + std::sqrt (x * x + (Type) 1)); }
- template<typename Type> Type acosh (Type x) { return std::log (x + std::sqrt (x * x - (Type) 1)); }
- template<typename Type> Type atanh (Type x) { return (std::log (x + (Type) 1) - std::log (((Type) 1) - x)) / (Type) 2; }
- #endif
-
- //==============================================================================
-
- /** Commonly used mathematical constants */
- template <typename FloatType>
- struct MathConstants
- {
- /** A predefined value for Pi */
- static const FloatType pi;
-
- /** A predfined value for Euler's number */
- static const FloatType euler;
- };
-
- template <typename FloatType>
- const FloatType MathConstants<FloatType>::pi = static_cast<FloatType> (3.141592653589793238L);
-
- template <typename FloatType>
- const FloatType MathConstants<FloatType>::euler = static_cast<FloatType> (2.71828182845904523536L);
-
-
- /** A predefined value for Pi, at double-precision.
- @see float_Pi
- */
- const double double_Pi = MathConstants<double>::pi;
-
- /** A predefined value for Pi, at single-precision.
- @see double_Pi
- */
- const float float_Pi = MathConstants<float>::pi;
-
-
- /** Converts an angle in degrees to radians. */
- inline float degreesToRadians (float degrees) noexcept { return degrees * (float_Pi / 180.0f); }
-
- /** Converts an angle in degrees to radians. */
- inline double degreesToRadians (double degrees) noexcept { return degrees * (double_Pi / 180.0); }
-
- /** Converts an angle in radians to degrees. */
- inline float radiansToDegrees (float radians) noexcept { return radians * (180.0f / float_Pi); }
-
- /** Converts an angle in radians to degrees. */
- inline double radiansToDegrees (double radians) noexcept { return radians * (180.0 / double_Pi); }
-
-
- //==============================================================================
- /** The isfinite() method seems to vary between platforms, so this is a
- platform-independent function for it.
- */
- template <typename NumericType>
- bool juce_isfinite (NumericType) noexcept
- {
- return true; // Integer types are always finite
- }
-
- template <>
- inline bool juce_isfinite (float value) noexcept
- {
- #if JUCE_WINDOWS && ! JUCE_MINGW
- return _finite (value) != 0;
- #else
- return std::isfinite (value);
- #endif
- }
-
- template <>
- inline bool juce_isfinite (double value) noexcept
- {
- #if JUCE_WINDOWS && ! JUCE_MINGW
- return _finite (value) != 0;
- #else
- return std::isfinite (value);
- #endif
- }
-
- //==============================================================================
- #if JUCE_MSVC
- #pragma optimize ("t", off)
- #ifndef __INTEL_COMPILER
- #pragma float_control (precise, on, push)
- #endif
- #endif
-
- /** Fast floating-point-to-integer conversion.
-
- This is faster than using the normal c++ cast to convert a float to an int, and
- it will round the value to the nearest integer, rather than rounding it down
- like the normal cast does.
-
- Note that this routine gets its speed at the expense of some accuracy, and when
- rounding values whose floating point component is exactly 0.5, odd numbers and
- even numbers will be rounded up or down differently.
- */
- template <typename FloatType>
- int roundToInt (const FloatType value) noexcept
- {
- #ifdef __INTEL_COMPILER
- #pragma float_control (precise, on, push)
- #endif
-
- union { int asInt[2]; double asDouble; } n;
- n.asDouble = ((double) value) + 6755399441055744.0;
-
- #if JUCE_BIG_ENDIAN
- return n.asInt [1];
- #else
- return n.asInt [0];
- #endif
- }
-
- inline int roundToInt (int value) noexcept
- {
- return value;
- }
-
- #if JUCE_MSVC
- #ifndef __INTEL_COMPILER
- #pragma float_control (pop)
- #endif
- #pragma optimize ("", on) // resets optimisations to the project defaults
- #endif
-
- /** Fast floating-point-to-integer conversion.
-
- This is a slightly slower and slightly more accurate version of roundDoubleToInt(). It works
- fine for values above zero, but negative numbers are rounded the wrong way.
- */
- inline int roundToIntAccurate (double value) noexcept
- {
- #ifdef __INTEL_COMPILER
- #pragma float_control (pop)
- #endif
-
- return roundToInt (value + 1.5e-8);
- }
-
- /** Fast floating-point-to-integer conversion.
-
- This is faster than using the normal c++ cast to convert a double to an int, and
- it will round the value to the nearest integer, rather than rounding it down
- like the normal cast does.
-
- Note that this routine gets its speed at the expense of some accuracy, and when
- rounding values whose floating point component is exactly 0.5, odd numbers and
- even numbers will be rounded up or down differently. For a more accurate conversion,
- see roundDoubleToIntAccurate().
- */
- inline int roundDoubleToInt (double value) noexcept
- {
- return roundToInt (value);
- }
-
- /** Fast floating-point-to-integer conversion.
-
- This is faster than using the normal c++ cast to convert a float to an int, and
- it will round the value to the nearest integer, rather than rounding it down
- like the normal cast does.
-
- Note that this routine gets its speed at the expense of some accuracy, and when
- rounding values whose floating point component is exactly 0.5, odd numbers and
- even numbers will be rounded up or down differently.
- */
- inline int roundFloatToInt (float value) noexcept
- {
- return roundToInt (value);
- }
-
- //==============================================================================
- /** Truncates a positive floating-point number to an unsigned int.
-
- This is generally faster than static_cast<unsigned int> (std::floor (x))
- but it only works for positive numbers small enough to be represented as an
- unsigned int.
- */
- template <typename FloatType>
- unsigned int truncatePositiveToUnsignedInt (FloatType value) noexcept
- {
- jassert (value >= static_cast<FloatType> (0));
- jassert (static_cast<FloatType> (value) <= std::numeric_limits<unsigned int>::max());
-
- return static_cast<unsigned int> (value);
- }
-
- //==============================================================================
- /** Returns true if the specified integer is a power-of-two. */
- template <typename IntegerType>
- bool isPowerOfTwo (IntegerType value)
- {
- return (value & (value - 1)) == 0;
- }
-
- /** Returns the smallest power-of-two which is equal to or greater than the given integer. */
- inline int nextPowerOfTwo (int n) noexcept
- {
- --n;
- n |= (n >> 1);
- n |= (n >> 2);
- n |= (n >> 4);
- n |= (n >> 8);
- n |= (n >> 16);
- return n + 1;
- }
-
- /** Returns the index of the highest set bit in a (non-zero) number.
- So for n=3 this would return 1, for n=7 it returns 2, etc.
- An input value of 0 is illegal!
- */
- int findHighestSetBit (uint32 n) noexcept;
-
- /** Returns the number of bits in a 32-bit integer. */
- inline int countNumberOfBits (uint32 n) noexcept
- {
- n -= ((n >> 1) & 0x55555555);
- n = (((n >> 2) & 0x33333333) + (n & 0x33333333));
- n = (((n >> 4) + n) & 0x0f0f0f0f);
- n += (n >> 8);
- n += (n >> 16);
- return (int) (n & 0x3f);
- }
-
- /** Returns the number of bits in a 64-bit integer. */
- inline int countNumberOfBits (uint64 n) noexcept
- {
- return countNumberOfBits ((uint32) n) + countNumberOfBits ((uint32) (n >> 32));
- }
-
- /** Performs a modulo operation, but can cope with the dividend being negative.
- The divisor must be greater than zero.
- */
- template <typename IntegerType>
- IntegerType negativeAwareModulo (IntegerType dividend, const IntegerType divisor) noexcept
- {
- jassert (divisor > 0);
- dividend %= divisor;
- return (dividend < 0) ? (dividend + divisor) : dividend;
- }
-
- /** Returns the square of its argument. */
- template <typename NumericType>
- NumericType square (NumericType n) noexcept
- {
- return n * n;
- }
-
- //==============================================================================
- /** Writes a number of bits into a memory buffer at a given bit index.
- The buffer is treated as a sequence of 8-bit bytes, and the value is encoded in little-endian order,
- so for example if startBit = 10, and numBits = 11 then the lower 6 bits of the value would be written
- into bits 2-8 of targetBuffer[1], and the upper 5 bits of value into bits 0-5 of targetBuffer[2].
-
- @see readLittleEndianBitsInBuffer
- */
- void writeLittleEndianBitsInBuffer (void* targetBuffer, uint32 startBit, uint32 numBits, uint32 value) noexcept;
-
- /** Reads a number of bits from a buffer at a given bit index.
- The buffer is treated as a sequence of 8-bit bytes, and the value is encoded in little-endian order,
- so for example if startBit = 10, and numBits = 11 then the lower 6 bits of the result would be read
- from bits 2-8 of sourceBuffer[1], and the upper 5 bits of the result from bits 0-5 of sourceBuffer[2].
-
- @see writeLittleEndianBitsInBuffer
- */
- uint32 readLittleEndianBitsInBuffer (const void* sourceBuffer, uint32 startBit, uint32 numBits) noexcept;
-
-
- //==============================================================================
- #if JUCE_INTEL || defined (DOXYGEN)
- /** This macro can be applied to a float variable to check whether it contains a denormalised
- value, and to normalise it if necessary.
- On CPUs that aren't vulnerable to denormalisation problems, this will have no effect.
- */
- #define JUCE_UNDENORMALISE(x) { (x) += 0.1f; (x) -= 0.1f; }
- #else
- #define JUCE_UNDENORMALISE(x)
- #endif
-
- //==============================================================================
- /** This namespace contains a few template classes for helping work out class type variations.
- */
- namespace TypeHelpers
- {
- /** The ParameterType struct is used to find the best type to use when passing some kind
- of object as a parameter.
-
- Of course, this is only likely to be useful in certain esoteric template situations.
-
- E.g. "myFunction (typename TypeHelpers::ParameterType<int>::type, typename TypeHelpers::ParameterType<MyObject>::type)"
- would evaluate to "myfunction (int, const MyObject&)", keeping any primitive types as
- pass-by-value, but passing objects as a const reference, to avoid copying.
- */
- template <typename Type> struct ParameterType { typedef const Type& type; };
-
- #if ! DOXYGEN
- template <typename Type> struct ParameterType <Type&> { typedef Type& type; };
- template <typename Type> struct ParameterType <Type*> { typedef Type* type; };
- template <> struct ParameterType <char> { typedef char type; };
- template <> struct ParameterType <unsigned char> { typedef unsigned char type; };
- template <> struct ParameterType <short> { typedef short type; };
- template <> struct ParameterType <unsigned short> { typedef unsigned short type; };
- template <> struct ParameterType <int> { typedef int type; };
- template <> struct ParameterType <unsigned int> { typedef unsigned int type; };
- template <> struct ParameterType <long> { typedef long type; };
- template <> struct ParameterType <unsigned long> { typedef unsigned long type; };
- template <> struct ParameterType <int64> { typedef int64 type; };
- template <> struct ParameterType <uint64> { typedef uint64 type; };
- template <> struct ParameterType <bool> { typedef bool type; };
- template <> struct ParameterType <float> { typedef float type; };
- template <> struct ParameterType <double> { typedef double type; };
- #endif
-
- /** These templates are designed to take a type, and if it's a double, they return a double
- type; for anything else, they return a float type.
- */
- template <typename Type> struct SmallestFloatType { typedef float type; };
- template <> struct SmallestFloatType <double> { typedef double type; };
-
-
- /** These templates are designed to take an integer type, and return an unsigned int
- version with the same size.
- */
- template <int bytes> struct UnsignedTypeWithSize {};
- template <> struct UnsignedTypeWithSize<1> { typedef uint8 type; };
- template <> struct UnsignedTypeWithSize<2> { typedef uint16 type; };
- template <> struct UnsignedTypeWithSize<4> { typedef uint32 type; };
- template <> struct UnsignedTypeWithSize<8> { typedef uint64 type; };
- }
-
-
- //==============================================================================
|