| 
							- /*
 -  * jcsample.c
 -  *
 -  * Copyright (C) 1991-1996, Thomas G. Lane.
 -  * This file is part of the Independent JPEG Group's software.
 -  * For conditions of distribution and use, see the accompanying README file.
 -  *
 -  * This file contains downsampling routines.
 -  *
 -  * Downsampling input data is counted in "row groups".  A row group
 -  * is defined to be max_v_samp_factor pixel rows of each component,
 -  * from which the downsampler produces v_samp_factor sample rows.
 -  * A single row group is processed in each call to the downsampler module.
 -  *
 -  * The downsampler is responsible for edge-expansion of its output data
 -  * to fill an integral number of DCT blocks horizontally.  The source buffer
 -  * may be modified if it is helpful for this purpose (the source buffer is
 -  * allocated wide enough to correspond to the desired output width).
 -  * The caller (the prep controller) is responsible for vertical padding.
 -  *
 -  * The downsampler may request "context rows" by setting need_context_rows
 -  * during startup.  In this case, the input arrays will contain at least
 -  * one row group's worth of pixels above and below the passed-in data;
 -  * the caller will create dummy rows at image top and bottom by replicating
 -  * the first or last real pixel row.
 -  *
 -  * An excellent reference for image resampling is
 -  *   Digital Image Warping, George Wolberg, 1990.
 -  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
 -  *
 -  * The downsampling algorithm used here is a simple average of the source
 -  * pixels covered by the output pixel.  The hi-falutin sampling literature
 -  * refers to this as a "box filter".  In general the characteristics of a box
 -  * filter are not very good, but for the specific cases we normally use (1:1
 -  * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
 -  * nearly so bad.  If you intend to use other sampling ratios, you'd be well
 -  * advised to improve this code.
 -  *
 -  * A simple input-smoothing capability is provided.  This is mainly intended
 -  * for cleaning up color-dithered GIF input files (if you find it inadequate,
 -  * we suggest using an external filtering program such as pnmconvol).  When
 -  * enabled, each input pixel P is replaced by a weighted sum of itself and its
 -  * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
 -  * where SF = (smoothing_factor / 1024).
 -  * Currently, smoothing is only supported for 2h2v sampling factors.
 -  */
 - 
 - #define JPEG_INTERNALS
 - #include "jinclude.h"
 - #include "jpeglib.h"
 - 
 - 
 - /* Pointer to routine to downsample a single component */
 - typedef JMETHOD(void, downsample1_ptr,
 - 		(j_compress_ptr cinfo, jpeg_component_info * compptr,
 - 		 JSAMPARRAY input_data, JSAMPARRAY output_data));
 - 
 - /* Private subobject */
 - 
 - typedef struct {
 -   struct jpeg_downsampler pub;	/* public fields */
 - 
 -   /* Downsampling method pointers, one per component */
 -   downsample1_ptr methods[MAX_COMPONENTS];
 - } my_downsampler;
 - 
 - typedef my_downsampler * my_downsample_ptr;
 - 
 - 
 - /*
 -  * Initialize for a downsampling pass.
 -  */
 - 
 - METHODDEF(void)
 - start_pass_downsample (j_compress_ptr)
 - {
 -   /* no work for now */
 - }
 - 
 - 
 - /*
 -  * Expand a component horizontally from width input_cols to width output_cols,
 -  * by duplicating the rightmost samples.
 -  */
 - 
 - LOCAL(void)
 - expand_right_edge (JSAMPARRAY image_data, int num_rows,
 - 		   JDIMENSION input_cols, JDIMENSION output_cols)
 - {
 -   JSAMPROW ptr;
 -   JSAMPLE pixval;
 -   int count;
 -   int row;
 -   int numcols = (int) (output_cols - input_cols);
 - 
 -   if (numcols > 0) {
 -     for (row = 0; row < num_rows; row++) {
 -       ptr = image_data[row] + input_cols;
 -       pixval = ptr[-1];		/* don't need GETJSAMPLE() here */
 -       for (count = numcols; count > 0; count--)
 - 	*ptr++ = pixval;
 -     }
 -   }
 - }
 - 
 - 
 - /*
 -  * Do downsampling for a whole row group (all components).
 -  *
 -  * In this version we simply downsample each component independently.
 -  */
 - 
 - METHODDEF(void)
 - sep_downsample (j_compress_ptr cinfo,
 - 		JSAMPIMAGE input_buf, JDIMENSION in_row_index,
 - 		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
 - {
 -   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
 -   int ci;
 -   jpeg_component_info * compptr;
 -   JSAMPARRAY in_ptr, out_ptr;
 - 
 -   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
 -        ci++, compptr++) {
 -     in_ptr = input_buf[ci] + in_row_index;
 -     out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
 -     (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
 -   }
 - }
 - 
 - 
 - /*
 -  * Downsample pixel values of a single component.
 -  * One row group is processed per call.
 -  * This version handles arbitrary integral sampling ratios, without smoothing.
 -  * Note that this version is not actually used for customary sampling ratios.
 -  */
 - 
 - METHODDEF(void)
 - int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
 - 		JSAMPARRAY input_data, JSAMPARRAY output_data)
 - {
 -   int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
 -   JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */
 -   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
 -   JSAMPROW inptr, outptr;
 -   INT32 outvalue;
 - 
 -   h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
 -   v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
 -   numpix = h_expand * v_expand;
 -   numpix2 = numpix/2;
 - 
 -   /* Expand input data enough to let all the output samples be generated
 -    * by the standard loop.  Special-casing padded output would be more
 -    * efficient.
 -    */
 -   expand_right_edge(input_data, cinfo->max_v_samp_factor,
 - 		    cinfo->image_width, output_cols * h_expand);
 - 
 -   inrow = 0;
 -   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
 -     outptr = output_data[outrow];
 -     for (outcol = 0, outcol_h = 0; outcol < output_cols;
 - 	 outcol++, outcol_h += h_expand) {
 -       outvalue = 0;
 -       for (v = 0; v < v_expand; v++) {
 - 	inptr = input_data[inrow+v] + outcol_h;
 - 	for (h = 0; h < h_expand; h++) {
 - 	  outvalue += (INT32) GETJSAMPLE(*inptr++);
 - 	}
 -       }
 -       *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
 -     }
 -     inrow += v_expand;
 -   }
 - }
 - 
 - 
 - /*
 -  * Downsample pixel values of a single component.
 -  * This version handles the special case of a full-size component,
 -  * without smoothing.
 -  */
 - 
 - METHODDEF(void)
 - fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
 - 		     JSAMPARRAY input_data, JSAMPARRAY output_data)
 - {
 -   /* Copy the data */
 -   jcopy_sample_rows(input_data, 0, output_data, 0,
 - 		    cinfo->max_v_samp_factor, cinfo->image_width);
 -   /* Edge-expand */
 -   expand_right_edge(output_data, cinfo->max_v_samp_factor,
 - 		    cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
 - }
 - 
 - 
 - /*
 -  * Downsample pixel values of a single component.
 -  * This version handles the common case of 2:1 horizontal and 1:1 vertical,
 -  * without smoothing.
 -  *
 -  * A note about the "bias" calculations: when rounding fractional values to
 -  * integer, we do not want to always round 0.5 up to the next integer.
 -  * If we did that, we'd introduce a noticeable bias towards larger values.
 -  * Instead, this code is arranged so that 0.5 will be rounded up or down at
 -  * alternate pixel locations (a simple ordered dither pattern).
 -  */
 - 
 - METHODDEF(void)
 - h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
 - 		 JSAMPARRAY input_data, JSAMPARRAY output_data)
 - {
 -   int outrow;
 -   JDIMENSION outcol;
 -   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
 -   JSAMPROW inptr, outptr;
 -   int bias;
 - 
 -   /* Expand input data enough to let all the output samples be generated
 -    * by the standard loop.  Special-casing padded output would be more
 -    * efficient.
 -    */
 -   expand_right_edge(input_data, cinfo->max_v_samp_factor,
 - 		    cinfo->image_width, output_cols * 2);
 - 
 -   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
 -     outptr = output_data[outrow];
 -     inptr = input_data[outrow];
 -     bias = 0;			/* bias = 0,1,0,1,... for successive samples */
 -     for (outcol = 0; outcol < output_cols; outcol++) {
 -       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
 - 			      + bias) >> 1);
 -       bias ^= 1;		/* 0=>1, 1=>0 */
 -       inptr += 2;
 -     }
 -   }
 - }
 - 
 - 
 - /*
 -  * Downsample pixel values of a single component.
 -  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
 -  * without smoothing.
 -  */
 - 
 - METHODDEF(void)
 - h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
 - 		 JSAMPARRAY input_data, JSAMPARRAY output_data)
 - {
 -   int inrow, outrow;
 -   JDIMENSION outcol;
 -   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
 -   JSAMPROW inptr0, inptr1, outptr;
 -   int bias;
 - 
 -   /* Expand input data enough to let all the output samples be generated
 -    * by the standard loop.  Special-casing padded output would be more
 -    * efficient.
 -    */
 -   expand_right_edge(input_data, cinfo->max_v_samp_factor,
 - 		    cinfo->image_width, output_cols * 2);
 - 
 -   inrow = 0;
 -   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
 -     outptr = output_data[outrow];
 -     inptr0 = input_data[inrow];
 -     inptr1 = input_data[inrow+1];
 -     bias = 1;			/* bias = 1,2,1,2,... for successive samples */
 -     for (outcol = 0; outcol < output_cols; outcol++) {
 -       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
 - 			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
 - 			      + bias) >> 2);
 -       bias ^= 3;		/* 1=>2, 2=>1 */
 -       inptr0 += 2; inptr1 += 2;
 -     }
 -     inrow += 2;
 -   }
 - }
 - 
 - 
 - #ifdef INPUT_SMOOTHING_SUPPORTED
 - 
 - /*
 -  * Downsample pixel values of a single component.
 -  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
 -  * with smoothing.  One row of context is required.
 -  */
 - 
 - METHODDEF(void)
 - h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
 - 			JSAMPARRAY input_data, JSAMPARRAY output_data)
 - {
 -   int inrow, outrow;
 -   JDIMENSION colctr;
 -   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
 -   JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
 -   INT32 membersum, neighsum, memberscale, neighscale;
 - 
 -   /* Expand input data enough to let all the output samples be generated
 -    * by the standard loop.  Special-casing padded output would be more
 -    * efficient.
 -    */
 -   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
 - 		    cinfo->image_width, output_cols * 2);
 - 
 -   /* We don't bother to form the individual "smoothed" input pixel values;
 -    * we can directly compute the output which is the average of the four
 -    * smoothed values.  Each of the four member pixels contributes a fraction
 -    * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
 -    * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
 -    * output.  The four corner-adjacent neighbor pixels contribute a fraction
 -    * SF to just one smoothed pixel, or SF/4 to the final output; while the
 -    * eight edge-adjacent neighbors contribute SF to each of two smoothed
 -    * pixels, or SF/2 overall.  In order to use integer arithmetic, these
 -    * factors are scaled by 2^16 = 65536.
 -    * Also recall that SF = smoothing_factor / 1024.
 -    */
 - 
 -   memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
 -   neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
 - 
 -   inrow = 0;
 -   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
 -     outptr = output_data[outrow];
 -     inptr0 = input_data[inrow];
 -     inptr1 = input_data[inrow+1];
 -     above_ptr = input_data[inrow-1];
 -     below_ptr = input_data[inrow+2];
 - 
 -     /* Special case for first column: pretend column -1 is same as column 0 */
 -     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
 - 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
 -     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
 - 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
 - 	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
 - 	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
 -     neighsum += neighsum;
 -     neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
 - 		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
 -     membersum = membersum * memberscale + neighsum * neighscale;
 -     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
 -     inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
 - 
 -     for (colctr = output_cols - 2; colctr > 0; colctr--) {
 -       /* sum of pixels directly mapped to this output element */
 -       membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
 - 		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
 -       /* sum of edge-neighbor pixels */
 -       neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
 - 		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
 - 		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
 - 		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
 -       /* The edge-neighbors count twice as much as corner-neighbors */
 -       neighsum += neighsum;
 -       /* Add in the corner-neighbors */
 -       neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
 - 		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
 -       /* form final output scaled up by 2^16 */
 -       membersum = membersum * memberscale + neighsum * neighscale;
 -       /* round, descale and output it */
 -       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
 -       inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
 -     }
 - 
 -     /* Special case for last column */
 -     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
 - 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
 -     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
 - 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
 - 	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
 - 	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
 -     neighsum += neighsum;
 -     neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
 - 		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
 -     membersum = membersum * memberscale + neighsum * neighscale;
 -     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
 - 
 -     inrow += 2;
 -   }
 - }
 - 
 - 
 - /*
 -  * Downsample pixel values of a single component.
 -  * This version handles the special case of a full-size component,
 -  * with smoothing.  One row of context is required.
 -  */
 - 
 - METHODDEF(void)
 - fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
 - 			    JSAMPARRAY input_data, JSAMPARRAY output_data)
 - {
 -   int outrow;
 -   JDIMENSION colctr;
 -   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
 -   JSAMPROW inptr, above_ptr, below_ptr, outptr;
 -   INT32 membersum, neighsum, memberscale, neighscale;
 -   int colsum, lastcolsum, nextcolsum;
 - 
 -   /* Expand input data enough to let all the output samples be generated
 -    * by the standard loop.  Special-casing padded output would be more
 -    * efficient.
 -    */
 -   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
 - 		    cinfo->image_width, output_cols);
 - 
 -   /* Each of the eight neighbor pixels contributes a fraction SF to the
 -    * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
 -    * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
 -    * Also recall that SF = smoothing_factor / 1024.
 -    */
 - 
 -   memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
 -   neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
 - 
 -   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
 -     outptr = output_data[outrow];
 -     inptr = input_data[outrow];
 -     above_ptr = input_data[outrow-1];
 -     below_ptr = input_data[outrow+1];
 - 
 -     /* Special case for first column */
 -     colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
 - 	     GETJSAMPLE(*inptr);
 -     membersum = GETJSAMPLE(*inptr++);
 -     nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
 - 		 GETJSAMPLE(*inptr);
 -     neighsum = colsum + (colsum - membersum) + nextcolsum;
 -     membersum = membersum * memberscale + neighsum * neighscale;
 -     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
 -     lastcolsum = colsum; colsum = nextcolsum;
 - 
 -     for (colctr = output_cols - 2; colctr > 0; colctr--) {
 -       membersum = GETJSAMPLE(*inptr++);
 -       above_ptr++; below_ptr++;
 -       nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
 - 		   GETJSAMPLE(*inptr);
 -       neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
 -       membersum = membersum * memberscale + neighsum * neighscale;
 -       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
 -       lastcolsum = colsum; colsum = nextcolsum;
 -     }
 - 
 -     /* Special case for last column */
 -     membersum = GETJSAMPLE(*inptr);
 -     neighsum = lastcolsum + (colsum - membersum) + colsum;
 -     membersum = membersum * memberscale + neighsum * neighscale;
 -     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
 - 
 -   }
 - }
 - 
 - #endif /* INPUT_SMOOTHING_SUPPORTED */
 - 
 - 
 - /*
 -  * Module initialization routine for downsampling.
 -  * Note that we must select a routine for each component.
 -  */
 - 
 - GLOBAL(void)
 - jinit_downsampler (j_compress_ptr cinfo)
 - {
 -   my_downsample_ptr downsample;
 -   int ci;
 -   jpeg_component_info * compptr;
 -   boolean smoothok = TRUE;
 - 
 -   downsample = (my_downsample_ptr)
 -     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 - 				SIZEOF(my_downsampler));
 -   cinfo->downsample = (struct jpeg_downsampler *) downsample;
 -   downsample->pub.start_pass = start_pass_downsample;
 -   downsample->pub.downsample = sep_downsample;
 -   downsample->pub.need_context_rows = FALSE;
 - 
 -   if (cinfo->CCIR601_sampling)
 -     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
 - 
 -   /* Verify we can handle the sampling factors, and set up method pointers */
 -   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
 -        ci++, compptr++) {
 -     if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
 - 	compptr->v_samp_factor == cinfo->max_v_samp_factor) {
 - #ifdef INPUT_SMOOTHING_SUPPORTED
 -       if (cinfo->smoothing_factor) {
 - 	downsample->methods[ci] = fullsize_smooth_downsample;
 - 	downsample->pub.need_context_rows = TRUE;
 -       } else
 - #endif
 - 	downsample->methods[ci] = fullsize_downsample;
 -     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
 - 	       compptr->v_samp_factor == cinfo->max_v_samp_factor) {
 -       smoothok = FALSE;
 -       downsample->methods[ci] = h2v1_downsample;
 -     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
 - 	       compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
 - #ifdef INPUT_SMOOTHING_SUPPORTED
 -       if (cinfo->smoothing_factor) {
 - 	downsample->methods[ci] = h2v2_smooth_downsample;
 - 	downsample->pub.need_context_rows = TRUE;
 -       } else
 - #endif
 - 	downsample->methods[ci] = h2v2_downsample;
 -     } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
 - 	       (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
 -       smoothok = FALSE;
 -       downsample->methods[ci] = int_downsample;
 -     } else
 -       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
 -   }
 - 
 - #ifdef INPUT_SMOOTHING_SUPPORTED
 -   if (cinfo->smoothing_factor && !smoothok)
 -     TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
 - #endif
 - }
 
 
  |