| 
							- /*
 -  * jquant2.c
 -  *
 -  * Copyright (C) 1991-1996, Thomas G. Lane.
 -  * This file is part of the Independent JPEG Group's software.
 -  * For conditions of distribution and use, see the accompanying README file.
 -  *
 -  * This file contains 2-pass color quantization (color mapping) routines.
 -  * These routines provide selection of a custom color map for an image,
 -  * followed by mapping of the image to that color map, with optional
 -  * Floyd-Steinberg dithering.
 -  * It is also possible to use just the second pass to map to an arbitrary
 -  * externally-given color map.
 -  *
 -  * Note: ordered dithering is not supported, since there isn't any fast
 -  * way to compute intercolor distances; it's unclear that ordered dither's
 -  * fundamental assumptions even hold with an irregularly spaced color map.
 -  */
 - 
 - #define JPEG_INTERNALS
 - #include "jinclude.h"
 - #include "jpeglib.h"
 - 
 - #ifdef QUANT_2PASS_SUPPORTED
 - 
 - 
 - /*
 -  * This module implements the well-known Heckbert paradigm for color
 -  * quantization.  Most of the ideas used here can be traced back to
 -  * Heckbert's seminal paper
 -  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
 -  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
 -  *
 -  * In the first pass over the image, we accumulate a histogram showing the
 -  * usage count of each possible color.  To keep the histogram to a reasonable
 -  * size, we reduce the precision of the input; typical practice is to retain
 -  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
 -  * in the same histogram cell.
 -  *
 -  * Next, the color-selection step begins with a box representing the whole
 -  * color space, and repeatedly splits the "largest" remaining box until we
 -  * have as many boxes as desired colors.  Then the mean color in each
 -  * remaining box becomes one of the possible output colors.
 -  *
 -  * The second pass over the image maps each input pixel to the closest output
 -  * color (optionally after applying a Floyd-Steinberg dithering correction).
 -  * This mapping is logically trivial, but making it go fast enough requires
 -  * considerable care.
 -  *
 -  * Heckbert-style quantizers vary a good deal in their policies for choosing
 -  * the "largest" box and deciding where to cut it.  The particular policies
 -  * used here have proved out well in experimental comparisons, but better ones
 -  * may yet be found.
 -  *
 -  * In earlier versions of the IJG code, this module quantized in YCbCr color
 -  * space, processing the raw upsampled data without a color conversion step.
 -  * This allowed the color conversion math to be done only once per colormap
 -  * entry, not once per pixel.  However, that optimization precluded other
 -  * useful optimizations (such as merging color conversion with upsampling)
 -  * and it also interfered with desired capabilities such as quantizing to an
 -  * externally-supplied colormap.  We have therefore abandoned that approach.
 -  * The present code works in the post-conversion color space, typically RGB.
 -  *
 -  * To improve the visual quality of the results, we actually work in scaled
 -  * RGB space, giving G distances more weight than R, and R in turn more than
 -  * B.  To do everything in integer math, we must use integer scale factors.
 -  * The 2/3/1 scale factors used here correspond loosely to the relative
 -  * weights of the colors in the NTSC grayscale equation.
 -  * If you want to use this code to quantize a non-RGB color space, you'll
 -  * probably need to change these scale factors.
 -  */
 - 
 - #define R_SCALE 2		/* scale R distances by this much */
 - #define G_SCALE 3		/* scale G distances by this much */
 - #define B_SCALE 1		/* and B by this much */
 - 
 - /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
 -  * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
 -  * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
 -  * you'll get compile errors until you extend this logic.  In that case
 -  * you'll probably want to tweak the histogram sizes too.
 -  */
 - 
 - #if RGB_RED == 0
 - #define C0_SCALE R_SCALE
 - #endif
 - #if RGB_BLUE == 0
 - #define C0_SCALE B_SCALE
 - #endif
 - #if RGB_GREEN == 1
 - #define C1_SCALE G_SCALE
 - #endif
 - #if RGB_RED == 2
 - #define C2_SCALE R_SCALE
 - #endif
 - #if RGB_BLUE == 2
 - #define C2_SCALE B_SCALE
 - #endif
 - 
 - 
 - /*
 -  * First we have the histogram data structure and routines for creating it.
 -  *
 -  * The number of bits of precision can be adjusted by changing these symbols.
 -  * We recommend keeping 6 bits for G and 5 each for R and B.
 -  * If you have plenty of memory and cycles, 6 bits all around gives marginally
 -  * better results; if you are short of memory, 5 bits all around will save
 -  * some space but degrade the results.
 -  * To maintain a fully accurate histogram, we'd need to allocate a "long"
 -  * (preferably unsigned long) for each cell.  In practice this is overkill;
 -  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
 -  * and clamping those that do overflow to the maximum value will give close-
 -  * enough results.  This reduces the recommended histogram size from 256Kb
 -  * to 128Kb, which is a useful savings on PC-class machines.
 -  * (In the second pass the histogram space is re-used for pixel mapping data;
 -  * in that capacity, each cell must be able to store zero to the number of
 -  * desired colors.  16 bits/cell is plenty for that too.)
 -  * Since the JPEG code is intended to run in small memory model on 80x86
 -  * machines, we can't just allocate the histogram in one chunk.  Instead
 -  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
 -  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
 -  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
 -  * on 80x86 machines, the pointer row is in near memory but the actual
 -  * arrays are in far memory (same arrangement as we use for image arrays).
 -  */
 - 
 - #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
 - 
 - /* These will do the right thing for either R,G,B or B,G,R color order,
 -  * but you may not like the results for other color orders.
 -  */
 - #define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
 - #define HIST_C1_BITS  6		/* bits of precision in G histogram */
 - #define HIST_C2_BITS  5		/* bits of precision in B/R histogram */
 - 
 - /* Number of elements along histogram axes. */
 - #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
 - #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
 - #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
 - 
 - /* These are the amounts to shift an input value to get a histogram index. */
 - #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
 - #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
 - #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
 - 
 - 
 - typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */
 - 
 - typedef histcell FAR * histptr;	/* for pointers to histogram cells */
 - 
 - typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
 - typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */
 - typedef hist2d * hist3d;	/* type for top-level pointer */
 - 
 - 
 - /* Declarations for Floyd-Steinberg dithering.
 -  *
 -  * Errors are accumulated into the array fserrors[], at a resolution of
 -  * 1/16th of a pixel count.  The error at a given pixel is propagated
 -  * to its not-yet-processed neighbors using the standard F-S fractions,
 -  *		...	(here)	7/16
 -  *		3/16	5/16	1/16
 -  * We work left-to-right on even rows, right-to-left on odd rows.
 -  *
 -  * We can get away with a single array (holding one row's worth of errors)
 -  * by using it to store the current row's errors at pixel columns not yet
 -  * processed, but the next row's errors at columns already processed.  We
 -  * need only a few extra variables to hold the errors immediately around the
 -  * current column.  (If we are lucky, those variables are in registers, but
 -  * even if not, they're probably cheaper to access than array elements are.)
 -  *
 -  * The fserrors[] array has (#columns + 2) entries; the extra entry at
 -  * each end saves us from special-casing the first and last pixels.
 -  * Each entry is three values long, one value for each color component.
 -  *
 -  * Note: on a wide image, we might not have enough room in a PC's near data
 -  * segment to hold the error array; so it is allocated with alloc_large.
 -  */
 - 
 - #if BITS_IN_JSAMPLE == 8
 - typedef INT16 FSERROR;		/* 16 bits should be enough */
 - typedef int LOCFSERROR;		/* use 'int' for calculation temps */
 - #else
 - typedef INT32 FSERROR;		/* may need more than 16 bits */
 - typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
 - #endif
 - 
 - typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
 - 
 - 
 - /* Private subobject */
 - 
 - typedef struct {
 -   struct jpeg_color_quantizer pub; /* public fields */
 - 
 -   /* Space for the eventually created colormap is stashed here */
 -   JSAMPARRAY sv_colormap;	/* colormap allocated at init time */
 -   int desired;			/* desired # of colors = size of colormap */
 - 
 -   /* Variables for accumulating image statistics */
 -   hist3d histogram;		/* pointer to the histogram */
 - 
 -   boolean needs_zeroed;		/* TRUE if next pass must zero histogram */
 - 
 -   /* Variables for Floyd-Steinberg dithering */
 -   FSERRPTR fserrors;		/* accumulated errors */
 -   boolean on_odd_row;		/* flag to remember which row we are on */
 -   int * error_limiter;		/* table for clamping the applied error */
 - } my_cquantizer2;
 - 
 - typedef my_cquantizer2 * my_cquantize_ptr2;
 - 
 - 
 - /*
 -  * Prescan some rows of pixels.
 -  * In this module the prescan simply updates the histogram, which has been
 -  * initialized to zeroes by start_pass.
 -  * An output_buf parameter is required by the method signature, but no data
 -  * is actually output (in fact the buffer controller is probably passing a
 -  * NULL pointer).
 -  */
 - 
 - METHODDEF(void)
 - prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
 - 		  JSAMPARRAY, int num_rows)
 - {
 -   my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize;
 -   register JSAMPROW ptr;
 -   register histptr histp;
 -   register hist3d histogram = cquantize->histogram;
 -   int row;
 -   JDIMENSION col;
 -   JDIMENSION width = cinfo->output_width;
 - 
 -   for (row = 0; row < num_rows; row++) {
 -     ptr = input_buf[row];
 -     for (col = width; col > 0; col--) {
 -       /* get pixel value and index into the histogram */
 -       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
 - 			 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
 - 			 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
 -       /* increment, check for overflow and undo increment if so. */
 -       if (++(*histp) <= 0)
 - 	(*histp)--;
 -       ptr += 3;
 -     }
 -   }
 - }
 - 
 - 
 - /*
 -  * Next we have the really interesting routines: selection of a colormap
 -  * given the completed histogram.
 -  * These routines work with a list of "boxes", each representing a rectangular
 -  * subset of the input color space (to histogram precision).
 -  */
 - 
 - typedef struct {
 -   /* The bounds of the box (inclusive); expressed as histogram indexes */
 -   int c0min, c0max;
 -   int c1min, c1max;
 -   int c2min, c2max;
 -   /* The volume (actually 2-norm) of the box */
 -   INT32 volume;
 -   /* The number of nonzero histogram cells within this box */
 -   long colorcount;
 - } box;
 - 
 - typedef box * boxptr;
 - 
 - 
 - LOCAL(boxptr)
 - find_biggest_color_pop (boxptr boxlist, int numboxes)
 - /* Find the splittable box with the largest color population */
 - /* Returns NULL if no splittable boxes remain */
 - {
 -   register boxptr boxp;
 -   register int i;
 -   register long maxc = 0;
 -   boxptr which = NULL;
 - 
 -   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
 -     if (boxp->colorcount > maxc && boxp->volume > 0) {
 -       which = boxp;
 -       maxc = boxp->colorcount;
 -     }
 -   }
 -   return which;
 - }
 - 
 - 
 - LOCAL(boxptr)
 - find_biggest_volume (boxptr boxlist, int numboxes)
 - /* Find the splittable box with the largest (scaled) volume */
 - /* Returns NULL if no splittable boxes remain */
 - {
 -   register boxptr boxp;
 -   register int i;
 -   register INT32 maxv = 0;
 -   boxptr which = NULL;
 - 
 -   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
 -     if (boxp->volume > maxv) {
 -       which = boxp;
 -       maxv = boxp->volume;
 -     }
 -   }
 -   return which;
 - }
 - 
 - 
 - LOCAL(void)
 - update_box (j_decompress_ptr cinfo, boxptr boxp)
 - /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
 - /* and recompute its volume and population */
 - {
 -   my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize;
 -   hist3d histogram = cquantize->histogram;
 -   histptr histp;
 -   int c0,c1,c2;
 -   int c0min,c0max,c1min,c1max,c2min,c2max;
 -   INT32 dist0,dist1,dist2;
 -   long ccount;
 - 
 -   c0min = boxp->c0min;  c0max = boxp->c0max;
 -   c1min = boxp->c1min;  c1max = boxp->c1max;
 -   c2min = boxp->c2min;  c2max = boxp->c2max;
 - 
 -   if (c0max > c0min)
 -     for (c0 = c0min; c0 <= c0max; c0++)
 -       for (c1 = c1min; c1 <= c1max; c1++) {
 - 	histp = & histogram[c0][c1][c2min];
 - 	for (c2 = c2min; c2 <= c2max; c2++)
 - 	  if (*histp++ != 0) {
 - 	    boxp->c0min = c0min = c0;
 - 	    goto have_c0min;
 - 	  }
 -       }
 -  have_c0min:
 -   if (c0max > c0min)
 -     for (c0 = c0max; c0 >= c0min; c0--)
 -       for (c1 = c1min; c1 <= c1max; c1++) {
 - 	histp = & histogram[c0][c1][c2min];
 - 	for (c2 = c2min; c2 <= c2max; c2++)
 - 	  if (*histp++ != 0) {
 - 	    boxp->c0max = c0max = c0;
 - 	    goto have_c0max;
 - 	  }
 -       }
 -  have_c0max:
 -   if (c1max > c1min)
 -     for (c1 = c1min; c1 <= c1max; c1++)
 -       for (c0 = c0min; c0 <= c0max; c0++) {
 - 	histp = & histogram[c0][c1][c2min];
 - 	for (c2 = c2min; c2 <= c2max; c2++)
 - 	  if (*histp++ != 0) {
 - 	    boxp->c1min = c1min = c1;
 - 	    goto have_c1min;
 - 	  }
 -       }
 -  have_c1min:
 -   if (c1max > c1min)
 -     for (c1 = c1max; c1 >= c1min; c1--)
 -       for (c0 = c0min; c0 <= c0max; c0++) {
 - 	histp = & histogram[c0][c1][c2min];
 - 	for (c2 = c2min; c2 <= c2max; c2++)
 - 	  if (*histp++ != 0) {
 - 	    boxp->c1max = c1max = c1;
 - 	    goto have_c1max;
 - 	  }
 -       }
 -  have_c1max:
 -   if (c2max > c2min)
 -     for (c2 = c2min; c2 <= c2max; c2++)
 -       for (c0 = c0min; c0 <= c0max; c0++) {
 - 	histp = & histogram[c0][c1min][c2];
 - 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
 - 	  if (*histp != 0) {
 - 	    boxp->c2min = c2min = c2;
 - 	    goto have_c2min;
 - 	  }
 -       }
 -  have_c2min:
 -   if (c2max > c2min)
 -     for (c2 = c2max; c2 >= c2min; c2--)
 -       for (c0 = c0min; c0 <= c0max; c0++) {
 - 	histp = & histogram[c0][c1min][c2];
 - 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
 - 	  if (*histp != 0) {
 - 	    boxp->c2max = c2max = c2;
 - 	    goto have_c2max;
 - 	  }
 -       }
 -  have_c2max:
 - 
 -   /* Update box volume.
 -    * We use 2-norm rather than real volume here; this biases the method
 -    * against making long narrow boxes, and it has the side benefit that
 -    * a box is splittable iff norm > 0.
 -    * Since the differences are expressed in histogram-cell units,
 -    * we have to shift back to JSAMPLE units to get consistent distances;
 -    * after which, we scale according to the selected distance scale factors.
 -    */
 -   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
 -   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
 -   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
 -   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
 - 
 -   /* Now scan remaining volume of box and compute population */
 -   ccount = 0;
 -   for (c0 = c0min; c0 <= c0max; c0++)
 -     for (c1 = c1min; c1 <= c1max; c1++) {
 -       histp = & histogram[c0][c1][c2min];
 -       for (c2 = c2min; c2 <= c2max; c2++, histp++)
 - 	if (*histp != 0) {
 - 	  ccount++;
 - 	}
 -     }
 -   boxp->colorcount = ccount;
 - }
 - 
 - 
 - LOCAL(int)
 - median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
 - 	    int desired_colors)
 - /* Repeatedly select and split the largest box until we have enough boxes */
 - {
 -   int n,lb;
 -   int c0,c1,c2,cmax;
 -   register boxptr b1,b2;
 - 
 -   while (numboxes < desired_colors) {
 -     /* Select box to split.
 -      * Current algorithm: by population for first half, then by volume.
 -      */
 -     if (numboxes*2 <= desired_colors) {
 -       b1 = find_biggest_color_pop(boxlist, numboxes);
 -     } else {
 -       b1 = find_biggest_volume(boxlist, numboxes);
 -     }
 -     if (b1 == NULL)		/* no splittable boxes left! */
 -       break;
 -     b2 = &boxlist[numboxes];	/* where new box will go */
 -     /* Copy the color bounds to the new box. */
 -     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
 -     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
 -     /* Choose which axis to split the box on.
 -      * Current algorithm: longest scaled axis.
 -      * See notes in update_box about scaling distances.
 -      */
 -     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
 -     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
 -     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
 -     /* We want to break any ties in favor of green, then red, blue last.
 -      * This code does the right thing for R,G,B or B,G,R color orders only.
 -      */
 - #if RGB_RED == 0
 -     cmax = c1; n = 1;
 -     if (c0 > cmax) { cmax = c0; n = 0; }
 -     if (c2 > cmax) { n = 2; }
 - #else
 -     cmax = c1; n = 1;
 -     if (c2 > cmax) { cmax = c2; n = 2; }
 -     if (c0 > cmax) { n = 0; }
 - #endif
 -     /* Choose split point along selected axis, and update box bounds.
 -      * Current algorithm: split at halfway point.
 -      * (Since the box has been shrunk to minimum volume,
 -      * any split will produce two nonempty subboxes.)
 -      * Note that lb value is max for lower box, so must be < old max.
 -      */
 -     switch (n) {
 -     case 0:
 -       lb = (b1->c0max + b1->c0min) / 2;
 -       b1->c0max = lb;
 -       b2->c0min = lb+1;
 -       break;
 -     case 1:
 -       lb = (b1->c1max + b1->c1min) / 2;
 -       b1->c1max = lb;
 -       b2->c1min = lb+1;
 -       break;
 -     case 2:
 -       lb = (b1->c2max + b1->c2min) / 2;
 -       b1->c2max = lb;
 -       b2->c2min = lb+1;
 -       break;
 -     }
 -     /* Update stats for boxes */
 -     update_box(cinfo, b1);
 -     update_box(cinfo, b2);
 -     numboxes++;
 -   }
 -   return numboxes;
 - }
 - 
 - 
 - LOCAL(void)
 - compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
 - /* Compute representative color for a box, put it in colormap[icolor] */
 - {
 -   /* Current algorithm: mean weighted by pixels (not colors) */
 -   /* Note it is important to get the rounding correct! */
 -   my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize;
 -   hist3d histogram = cquantize->histogram;
 -   histptr histp;
 -   int c0,c1,c2;
 -   int c0min,c0max,c1min,c1max,c2min,c2max;
 -   long count;
 -   long total = 0;
 -   long c0total = 0;
 -   long c1total = 0;
 -   long c2total = 0;
 - 
 -   c0min = boxp->c0min;  c0max = boxp->c0max;
 -   c1min = boxp->c1min;  c1max = boxp->c1max;
 -   c2min = boxp->c2min;  c2max = boxp->c2max;
 - 
 -   for (c0 = c0min; c0 <= c0max; c0++)
 -     for (c1 = c1min; c1 <= c1max; c1++) {
 -       histp = & histogram[c0][c1][c2min];
 -       for (c2 = c2min; c2 <= c2max; c2++) {
 - 	if ((count = *histp++) != 0) {
 - 	  total += count;
 - 	  c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
 - 	  c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
 - 	  c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
 - 	}
 -       }
 -     }
 - 
 -   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
 -   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
 -   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
 - }
 - 
 - 
 - LOCAL(void)
 - select_colors (j_decompress_ptr cinfo, int desired_colors)
 - /* Master routine for color selection */
 - {
 -   boxptr boxlist;
 -   int numboxes;
 -   int i;
 - 
 -   /* Allocate workspace for box list */
 -   boxlist = (boxptr) (*cinfo->mem->alloc_small)
 -     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
 -   /* Initialize one box containing whole space */
 -   numboxes = 1;
 -   boxlist[0].c0min = 0;
 -   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
 -   boxlist[0].c1min = 0;
 -   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
 -   boxlist[0].c2min = 0;
 -   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
 -   /* Shrink it to actually-used volume and set its statistics */
 -   update_box(cinfo, & boxlist[0]);
 -   /* Perform median-cut to produce final box list */
 -   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
 -   /* Compute the representative color for each box, fill colormap */
 -   for (i = 0; i < numboxes; i++)
 -     compute_color(cinfo, & boxlist[i], i);
 -   cinfo->actual_number_of_colors = numboxes;
 -   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
 - }
 - 
 - 
 - /*
 -  * These routines are concerned with the time-critical task of mapping input
 -  * colors to the nearest color in the selected colormap.
 -  *
 -  * We re-use the histogram space as an "inverse color map", essentially a
 -  * cache for the results of nearest-color searches.  All colors within a
 -  * histogram cell will be mapped to the same colormap entry, namely the one
 -  * closest to the cell's center.  This may not be quite the closest entry to
 -  * the actual input color, but it's almost as good.  A zero in the cache
 -  * indicates we haven't found the nearest color for that cell yet; the array
 -  * is cleared to zeroes before starting the mapping pass.  When we find the
 -  * nearest color for a cell, its colormap index plus one is recorded in the
 -  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
 -  * when they need to use an unfilled entry in the cache.
 -  *
 -  * Our method of efficiently finding nearest colors is based on the "locally
 -  * sorted search" idea described by Heckbert and on the incremental distance
 -  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
 -  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
 -  * the distances from a given colormap entry to each cell of the histogram can
 -  * be computed quickly using an incremental method: the differences between
 -  * distances to adjacent cells themselves differ by a constant.  This allows a
 -  * fairly fast implementation of the "brute force" approach of computing the
 -  * distance from every colormap entry to every histogram cell.  Unfortunately,
 -  * it needs a work array to hold the best-distance-so-far for each histogram
 -  * cell (because the inner loop has to be over cells, not colormap entries).
 -  * The work array elements have to be INT32s, so the work array would need
 -  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
 -  *
 -  * To get around these problems, we apply Thomas' method to compute the
 -  * nearest colors for only the cells within a small subbox of the histogram.
 -  * The work array need be only as big as the subbox, so the memory usage
 -  * problem is solved.  Furthermore, we need not fill subboxes that are never
 -  * referenced in pass2; many images use only part of the color gamut, so a
 -  * fair amount of work is saved.  An additional advantage of this
 -  * approach is that we can apply Heckbert's locality criterion to quickly
 -  * eliminate colormap entries that are far away from the subbox; typically
 -  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
 -  * and we need not compute their distances to individual cells in the subbox.
 -  * The speed of this approach is heavily influenced by the subbox size: too
 -  * small means too much overhead, too big loses because Heckbert's criterion
 -  * can't eliminate as many colormap entries.  Empirically the best subbox
 -  * size seems to be about 1/512th of the histogram (1/8th in each direction).
 -  *
 -  * Thomas' article also describes a refined method which is asymptotically
 -  * faster than the brute-force method, but it is also far more complex and
 -  * cannot efficiently be applied to small subboxes.  It is therefore not
 -  * useful for programs intended to be portable to DOS machines.  On machines
 -  * with plenty of memory, filling the whole histogram in one shot with Thomas'
 -  * refined method might be faster than the present code --- but then again,
 -  * it might not be any faster, and it's certainly more complicated.
 -  */
 - 
 - 
 - /* log2(histogram cells in update box) for each axis; this can be adjusted */
 - #define BOX_C0_LOG  (HIST_C0_BITS-3)
 - #define BOX_C1_LOG  (HIST_C1_BITS-3)
 - #define BOX_C2_LOG  (HIST_C2_BITS-3)
 - 
 - #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
 - #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
 - #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
 - 
 - #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
 - #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
 - #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
 - 
 - 
 - /*
 -  * The next three routines implement inverse colormap filling.  They could
 -  * all be folded into one big routine, but splitting them up this way saves
 -  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
 -  * and may allow some compilers to produce better code by registerizing more
 -  * inner-loop variables.
 -  */
 - 
 - LOCAL(int)
 - find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
 - 		    JSAMPLE colorlist[])
 - /* Locate the colormap entries close enough to an update box to be candidates
 -  * for the nearest entry to some cell(s) in the update box.  The update box
 -  * is specified by the center coordinates of its first cell.  The number of
 -  * candidate colormap entries is returned, and their colormap indexes are
 -  * placed in colorlist[].
 -  * This routine uses Heckbert's "locally sorted search" criterion to select
 -  * the colors that need further consideration.
 -  */
 - {
 -   int numcolors = cinfo->actual_number_of_colors;
 -   int maxc0, maxc1, maxc2;
 -   int centerc0, centerc1, centerc2;
 -   int i, x, ncolors;
 -   INT32 minmaxdist, min_dist, max_dist, tdist;
 -   INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */
 - 
 -   /* Compute true coordinates of update box's upper corner and center.
 -    * Actually we compute the coordinates of the center of the upper-corner
 -    * histogram cell, which are the upper bounds of the volume we care about.
 -    * Note that since ">>" rounds down, the "center" values may be closer to
 -    * min than to max; hence comparisons to them must be "<=", not "<".
 -    */
 -   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
 -   centerc0 = (minc0 + maxc0) >> 1;
 -   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
 -   centerc1 = (minc1 + maxc1) >> 1;
 -   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
 -   centerc2 = (minc2 + maxc2) >> 1;
 - 
 -   /* For each color in colormap, find:
 -    *  1. its minimum squared-distance to any point in the update box
 -    *     (zero if color is within update box);
 -    *  2. its maximum squared-distance to any point in the update box.
 -    * Both of these can be found by considering only the corners of the box.
 -    * We save the minimum distance for each color in mindist[];
 -    * only the smallest maximum distance is of interest.
 -    */
 -   minmaxdist = 0x7FFFFFFFL;
 - 
 -   for (i = 0; i < numcolors; i++) {
 -     /* We compute the squared-c0-distance term, then add in the other two. */
 -     x = GETJSAMPLE(cinfo->colormap[0][i]);
 -     if (x < minc0) {
 -       tdist = (x - minc0) * C0_SCALE;
 -       min_dist = tdist*tdist;
 -       tdist = (x - maxc0) * C0_SCALE;
 -       max_dist = tdist*tdist;
 -     } else if (x > maxc0) {
 -       tdist = (x - maxc0) * C0_SCALE;
 -       min_dist = tdist*tdist;
 -       tdist = (x - minc0) * C0_SCALE;
 -       max_dist = tdist*tdist;
 -     } else {
 -       /* within cell range so no contribution to min_dist */
 -       min_dist = 0;
 -       if (x <= centerc0) {
 - 	tdist = (x - maxc0) * C0_SCALE;
 - 	max_dist = tdist*tdist;
 -       } else {
 - 	tdist = (x - minc0) * C0_SCALE;
 - 	max_dist = tdist*tdist;
 -       }
 -     }
 - 
 -     x = GETJSAMPLE(cinfo->colormap[1][i]);
 -     if (x < minc1) {
 -       tdist = (x - minc1) * C1_SCALE;
 -       min_dist += tdist*tdist;
 -       tdist = (x - maxc1) * C1_SCALE;
 -       max_dist += tdist*tdist;
 -     } else if (x > maxc1) {
 -       tdist = (x - maxc1) * C1_SCALE;
 -       min_dist += tdist*tdist;
 -       tdist = (x - minc1) * C1_SCALE;
 -       max_dist += tdist*tdist;
 -     } else {
 -       /* within cell range so no contribution to min_dist */
 -       if (x <= centerc1) {
 - 	tdist = (x - maxc1) * C1_SCALE;
 - 	max_dist += tdist*tdist;
 -       } else {
 - 	tdist = (x - minc1) * C1_SCALE;
 - 	max_dist += tdist*tdist;
 -       }
 -     }
 - 
 -     x = GETJSAMPLE(cinfo->colormap[2][i]);
 -     if (x < minc2) {
 -       tdist = (x - minc2) * C2_SCALE;
 -       min_dist += tdist*tdist;
 -       tdist = (x - maxc2) * C2_SCALE;
 -       max_dist += tdist*tdist;
 -     } else if (x > maxc2) {
 -       tdist = (x - maxc2) * C2_SCALE;
 -       min_dist += tdist*tdist;
 -       tdist = (x - minc2) * C2_SCALE;
 -       max_dist += tdist*tdist;
 -     } else {
 -       /* within cell range so no contribution to min_dist */
 -       if (x <= centerc2) {
 - 	tdist = (x - maxc2) * C2_SCALE;
 - 	max_dist += tdist*tdist;
 -       } else {
 - 	tdist = (x - minc2) * C2_SCALE;
 - 	max_dist += tdist*tdist;
 -       }
 -     }
 - 
 -     mindist[i] = min_dist;	/* save away the results */
 -     if (max_dist < minmaxdist)
 -       minmaxdist = max_dist;
 -   }
 - 
 -   /* Now we know that no cell in the update box is more than minmaxdist
 -    * away from some colormap entry.  Therefore, only colors that are
 -    * within minmaxdist of some part of the box need be considered.
 -    */
 -   ncolors = 0;
 -   for (i = 0; i < numcolors; i++) {
 -     if (mindist[i] <= minmaxdist)
 -       colorlist[ncolors++] = (JSAMPLE) i;
 -   }
 -   return ncolors;
 - }
 - 
 - 
 - LOCAL(void)
 - find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
 - 		  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
 - /* Find the closest colormap entry for each cell in the update box,
 -  * given the list of candidate colors prepared by find_nearby_colors.
 -  * Return the indexes of the closest entries in the bestcolor[] array.
 -  * This routine uses Thomas' incremental distance calculation method to
 -  * find the distance from a colormap entry to successive cells in the box.
 -  */
 - {
 -   int ic0, ic1, ic2;
 -   int i, icolor;
 -   register INT32 * bptr;	/* pointer into bestdist[] array */
 -   JSAMPLE * cptr;		/* pointer into bestcolor[] array */
 -   INT32 dist0, dist1;		/* initial distance values */
 -   register INT32 dist2;		/* current distance in inner loop */
 -   INT32 xx0, xx1;		/* distance increments */
 -   register INT32 xx2;
 -   INT32 inc0, inc1, inc2;	/* initial values for increments */
 -   /* This array holds the distance to the nearest-so-far color for each cell */
 -   INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
 - 
 -   /* Initialize best-distance for each cell of the update box */
 -   bptr = bestdist;
 -   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
 -     *bptr++ = 0x7FFFFFFFL;
 - 
 -   /* For each color selected by find_nearby_colors,
 -    * compute its distance to the center of each cell in the box.
 -    * If that's less than best-so-far, update best distance and color number.
 -    */
 - 
 -   /* Nominal steps between cell centers ("x" in Thomas article) */
 - #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
 - #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
 - #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
 - 
 -   for (i = 0; i < numcolors; i++) {
 -     icolor = GETJSAMPLE(colorlist[i]);
 -     /* Compute (square of) distance from minc0/c1/c2 to this color */
 -     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
 -     dist0 = inc0*inc0;
 -     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
 -     dist0 += inc1*inc1;
 -     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
 -     dist0 += inc2*inc2;
 -     /* Form the initial difference increments */
 -     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
 -     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
 -     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
 -     /* Now loop over all cells in box, updating distance per Thomas method */
 -     bptr = bestdist;
 -     cptr = bestcolor;
 -     xx0 = inc0;
 -     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
 -       dist1 = dist0;
 -       xx1 = inc1;
 -       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
 - 	dist2 = dist1;
 - 	xx2 = inc2;
 - 	for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
 - 	  if (dist2 < *bptr) {
 - 	    *bptr = dist2;
 - 	    *cptr = (JSAMPLE) icolor;
 - 	  }
 - 	  dist2 += xx2;
 - 	  xx2 += 2 * STEP_C2 * STEP_C2;
 - 	  bptr++;
 - 	  cptr++;
 - 	}
 - 	dist1 += xx1;
 - 	xx1 += 2 * STEP_C1 * STEP_C1;
 -       }
 -       dist0 += xx0;
 -       xx0 += 2 * STEP_C0 * STEP_C0;
 -     }
 -   }
 - }
 - 
 - 
 - LOCAL(void)
 - fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
 - /* Fill the inverse-colormap entries in the update box that contains */
 - /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
 - /* we can fill as many others as we wish.) */
 - {
 -   my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize;
 -   hist3d histogram = cquantize->histogram;
 -   int minc0, minc1, minc2;	/* lower left corner of update box */
 -   int ic0, ic1, ic2;
 -   register JSAMPLE * cptr;	/* pointer into bestcolor[] array */
 -   register histptr cachep;	/* pointer into main cache array */
 -   /* This array lists the candidate colormap indexes. */
 -   JSAMPLE colorlist[MAXNUMCOLORS];
 -   int numcolors;		/* number of candidate colors */
 -   /* This array holds the actually closest colormap index for each cell. */
 -   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
 - 
 -   /* Convert cell coordinates to update box ID */
 -   c0 >>= BOX_C0_LOG;
 -   c1 >>= BOX_C1_LOG;
 -   c2 >>= BOX_C2_LOG;
 - 
 -   /* Compute true coordinates of update box's origin corner.
 -    * Actually we compute the coordinates of the center of the corner
 -    * histogram cell, which are the lower bounds of the volume we care about.
 -    */
 -   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
 -   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
 -   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
 - 
 -   /* Determine which colormap entries are close enough to be candidates
 -    * for the nearest entry to some cell in the update box.
 -    */
 -   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
 - 
 -   /* Determine the actually nearest colors. */
 -   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
 - 		   bestcolor);
 - 
 -   /* Save the best color numbers (plus 1) in the main cache array */
 -   c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
 -   c1 <<= BOX_C1_LOG;
 -   c2 <<= BOX_C2_LOG;
 -   cptr = bestcolor;
 -   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
 -     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
 -       cachep = & histogram[c0+ic0][c1+ic1][c2];
 -       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
 - 	*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
 -       }
 -     }
 -   }
 - }
 - 
 - 
 - /*
 -  * Map some rows of pixels to the output colormapped representation.
 -  */
 - 
 - METHODDEF(void)
 - pass2_no_dither (j_decompress_ptr cinfo,
 - 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
 - /* This version performs no dithering */
 - {
 -   my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize;
 -   hist3d histogram = cquantize->histogram;
 -   register JSAMPROW inptr, outptr;
 -   register histptr cachep;
 -   register int c0, c1, c2;
 -   int row;
 -   JDIMENSION col;
 -   JDIMENSION width = cinfo->output_width;
 - 
 -   for (row = 0; row < num_rows; row++) {
 -     inptr = input_buf[row];
 -     outptr = output_buf[row];
 -     for (col = width; col > 0; col--) {
 -       /* get pixel value and index into the cache */
 -       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
 -       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
 -       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
 -       cachep = & histogram[c0][c1][c2];
 -       /* If we have not seen this color before, find nearest colormap entry */
 -       /* and update the cache */
 -       if (*cachep == 0)
 - 	fill_inverse_cmap(cinfo, c0,c1,c2);
 -       /* Now emit the colormap index for this cell */
 -       *outptr++ = (JSAMPLE) (*cachep - 1);
 -     }
 -   }
 - }
 - 
 - 
 - METHODDEF(void)
 - pass2_fs_dither (j_decompress_ptr cinfo,
 - 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
 - /* This version performs Floyd-Steinberg dithering */
 - {
 -   my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize;
 -   hist3d histogram = cquantize->histogram;
 -   register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
 -   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
 -   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
 -   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
 -   JSAMPROW inptr;		/* => current input pixel */
 -   JSAMPROW outptr;		/* => current output pixel */
 -   histptr cachep;
 -   int dir;			/* +1 or -1 depending on direction */
 -   int dir3;			/* 3*dir, for advancing inptr & errorptr */
 -   int row;
 -   JDIMENSION col;
 -   JDIMENSION width = cinfo->output_width;
 -   JSAMPLE *range_limit = cinfo->sample_range_limit;
 -   int *error_limit = cquantize->error_limiter;
 -   JSAMPROW colormap0 = cinfo->colormap[0];
 -   JSAMPROW colormap1 = cinfo->colormap[1];
 -   JSAMPROW colormap2 = cinfo->colormap[2];
 -   SHIFT_TEMPS
 - 
 -   for (row = 0; row < num_rows; row++) {
 -     inptr = input_buf[row];
 -     outptr = output_buf[row];
 -     if (cquantize->on_odd_row) {
 -       /* work right to left in this row */
 -       inptr += (width-1) * 3;	/* so point to rightmost pixel */
 -       outptr += width-1;
 -       dir = -1;
 -       dir3 = -3;
 -       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
 -       cquantize->on_odd_row = FALSE; /* flip for next time */
 -     } else {
 -       /* work left to right in this row */
 -       dir = 1;
 -       dir3 = 3;
 -       errorptr = cquantize->fserrors; /* => entry before first real column */
 -       cquantize->on_odd_row = TRUE; /* flip for next time */
 -     }
 -     /* Preset error values: no error propagated to first pixel from left */
 -     cur0 = cur1 = cur2 = 0;
 -     /* and no error propagated to row below yet */
 -     belowerr0 = belowerr1 = belowerr2 = 0;
 -     bpreverr0 = bpreverr1 = bpreverr2 = 0;
 - 
 -     for (col = width; col > 0; col--) {
 -       /* curN holds the error propagated from the previous pixel on the
 -        * current line.  Add the error propagated from the previous line
 -        * to form the complete error correction term for this pixel, and
 -        * round the error term (which is expressed * 16) to an integer.
 -        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
 -        * for either sign of the error value.
 -        * Note: errorptr points to *previous* column's array entry.
 -        */
 -       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
 -       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
 -       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
 -       /* Limit the error using transfer function set by init_error_limit.
 -        * See comments with init_error_limit for rationale.
 -        */
 -       cur0 = error_limit[cur0];
 -       cur1 = error_limit[cur1];
 -       cur2 = error_limit[cur2];
 -       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
 -        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
 -        * this sets the required size of the range_limit array.
 -        */
 -       cur0 += GETJSAMPLE(inptr[0]);
 -       cur1 += GETJSAMPLE(inptr[1]);
 -       cur2 += GETJSAMPLE(inptr[2]);
 -       cur0 = GETJSAMPLE(range_limit[cur0]);
 -       cur1 = GETJSAMPLE(range_limit[cur1]);
 -       cur2 = GETJSAMPLE(range_limit[cur2]);
 -       /* Index into the cache with adjusted pixel value */
 -       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
 -       /* If we have not seen this color before, find nearest colormap */
 -       /* entry and update the cache */
 -       if (*cachep == 0)
 - 	fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
 -       /* Now emit the colormap index for this cell */
 -       { register int pixcode = *cachep - 1;
 - 	*outptr = (JSAMPLE) pixcode;
 - 	/* Compute representation error for this pixel */
 - 	cur0 -= GETJSAMPLE(colormap0[pixcode]);
 - 	cur1 -= GETJSAMPLE(colormap1[pixcode]);
 - 	cur2 -= GETJSAMPLE(colormap2[pixcode]);
 -       }
 -       /* Compute error fractions to be propagated to adjacent pixels.
 -        * Add these into the running sums, and simultaneously shift the
 -        * next-line error sums left by 1 column.
 -        */
 -       { register LOCFSERROR bnexterr, delta;
 - 
 - 	bnexterr = cur0;	/* Process component 0 */
 - 	delta = cur0 * 2;
 - 	cur0 += delta;		/* form error * 3 */
 - 	errorptr[0] = (FSERROR) (bpreverr0 + cur0);
 - 	cur0 += delta;		/* form error * 5 */
 - 	bpreverr0 = belowerr0 + cur0;
 - 	belowerr0 = bnexterr;
 - 	cur0 += delta;		/* form error * 7 */
 - 	bnexterr = cur1;	/* Process component 1 */
 - 	delta = cur1 * 2;
 - 	cur1 += delta;		/* form error * 3 */
 - 	errorptr[1] = (FSERROR) (bpreverr1 + cur1);
 - 	cur1 += delta;		/* form error * 5 */
 - 	bpreverr1 = belowerr1 + cur1;
 - 	belowerr1 = bnexterr;
 - 	cur1 += delta;		/* form error * 7 */
 - 	bnexterr = cur2;	/* Process component 2 */
 - 	delta = cur2 * 2;
 - 	cur2 += delta;		/* form error * 3 */
 - 	errorptr[2] = (FSERROR) (bpreverr2 + cur2);
 - 	cur2 += delta;		/* form error * 5 */
 - 	bpreverr2 = belowerr2 + cur2;
 - 	belowerr2 = bnexterr;
 - 	cur2 += delta;		/* form error * 7 */
 -       }
 -       /* At this point curN contains the 7/16 error value to be propagated
 -        * to the next pixel on the current line, and all the errors for the
 -        * next line have been shifted over.  We are therefore ready to move on.
 -        */
 -       inptr += dir3;		/* Advance pixel pointers to next column */
 -       outptr += dir;
 -       errorptr += dir3;		/* advance errorptr to current column */
 -     }
 -     /* Post-loop cleanup: we must unload the final error values into the
 -      * final fserrors[] entry.  Note we need not unload belowerrN because
 -      * it is for the dummy column before or after the actual array.
 -      */
 -     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
 -     errorptr[1] = (FSERROR) bpreverr1;
 -     errorptr[2] = (FSERROR) bpreverr2;
 -   }
 - }
 - 
 - 
 - /*
 -  * Initialize the error-limiting transfer function (lookup table).
 -  * The raw F-S error computation can potentially compute error values of up to
 -  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
 -  * much less, otherwise obviously wrong pixels will be created.  (Typical
 -  * effects include weird fringes at color-area boundaries, isolated bright
 -  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
 -  * is to ensure that the "corners" of the color cube are allocated as output
 -  * colors; then repeated errors in the same direction cannot cause cascading
 -  * error buildup.  However, that only prevents the error from getting
 -  * completely out of hand; Aaron Giles reports that error limiting improves
 -  * the results even with corner colors allocated.
 -  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
 -  * well, but the smoother transfer function used below is even better.  Thanks
 -  * to Aaron Giles for this idea.
 -  */
 - 
 - LOCAL(void)
 - init_error_limit (j_decompress_ptr cinfo)
 - /* Allocate and fill in the error_limiter table */
 - {
 -   my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize;
 -   int * table;
 -   int in, out;
 - 
 -   table = (int *) (*cinfo->mem->alloc_small)
 -     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
 -   table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
 -   cquantize->error_limiter = table;
 - 
 - #define STEPSIZE ((MAXJSAMPLE+1)/16)
 -   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
 -   out = 0;
 -   for (in = 0; in < STEPSIZE; in++, out++) {
 -     table[in] = out; table[-in] = -out;
 -   }
 -   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
 -   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
 -     table[in] = out; table[-in] = -out;
 -   }
 -   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
 -   for (; in <= MAXJSAMPLE; in++) {
 -     table[in] = out; table[-in] = -out;
 -   }
 - #undef STEPSIZE
 - }
 - 
 - 
 - /*
 -  * Finish up at the end of each pass.
 -  */
 - 
 - METHODDEF(void)
 - finish_pass1 (j_decompress_ptr cinfo)
 - {
 -   my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize;
 - 
 -   /* Select the representative colors and fill in cinfo->colormap */
 -   cinfo->colormap = cquantize->sv_colormap;
 -   select_colors(cinfo, cquantize->desired);
 -   /* Force next pass to zero the color index table */
 -   cquantize->needs_zeroed = TRUE;
 - }
 - 
 - 
 - METHODDEF(void)
 - finish_pass2 (j_decompress_ptr)
 - {
 -   /* no work */
 - }
 - 
 - 
 - /*
 -  * Initialize for each processing pass.
 -  */
 - 
 - METHODDEF(void)
 - start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
 - {
 -   my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize;
 -   hist3d histogram = cquantize->histogram;
 -   int i;
 - 
 -   /* Only F-S dithering or no dithering is supported. */
 -   /* If user asks for ordered dither, give him F-S. */
 -   if (cinfo->dither_mode != JDITHER_NONE)
 -     cinfo->dither_mode = JDITHER_FS;
 - 
 -   if (is_pre_scan) {
 -     /* Set up method pointers */
 -     cquantize->pub.color_quantize = prescan_quantize;
 -     cquantize->pub.finish_pass = finish_pass1;
 -     cquantize->needs_zeroed = TRUE; /* Always zero histogram */
 -   } else {
 -     /* Set up method pointers */
 -     if (cinfo->dither_mode == JDITHER_FS)
 -       cquantize->pub.color_quantize = pass2_fs_dither;
 -     else
 -       cquantize->pub.color_quantize = pass2_no_dither;
 -     cquantize->pub.finish_pass = finish_pass2;
 - 
 -     /* Make sure color count is acceptable */
 -     i = cinfo->actual_number_of_colors;
 -     if (i < 1)
 -       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
 -     if (i > MAXNUMCOLORS)
 -       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
 - 
 -     if (cinfo->dither_mode == JDITHER_FS) {
 -       size_t arraysize = (size_t) ((cinfo->output_width + 2) *
 - 				   (3 * SIZEOF(FSERROR)));
 -       /* Allocate Floyd-Steinberg workspace if we didn't already. */
 -       if (cquantize->fserrors == NULL)
 - 	cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
 - 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
 -       /* Initialize the propagated errors to zero. */
 -       jzero_far((void FAR *) cquantize->fserrors, arraysize);
 -       /* Make the error-limit table if we didn't already. */
 -       if (cquantize->error_limiter == NULL)
 - 	init_error_limit(cinfo);
 -       cquantize->on_odd_row = FALSE;
 -     }
 - 
 -   }
 -   /* Zero the histogram or inverse color map, if necessary */
 -   if (cquantize->needs_zeroed) {
 -     for (i = 0; i < HIST_C0_ELEMS; i++) {
 -       jzero_far((void FAR *) histogram[i],
 - 		HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
 -     }
 -     cquantize->needs_zeroed = FALSE;
 -   }
 - }
 - 
 - 
 - /*
 -  * Switch to a new external colormap between output passes.
 -  */
 - 
 - METHODDEF(void)
 - new_color_map_2_quant (j_decompress_ptr cinfo)
 - {
 -   my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize;
 - 
 -   /* Reset the inverse color map */
 -   cquantize->needs_zeroed = TRUE;
 - }
 - 
 - 
 - /*
 -  * Module initialization routine for 2-pass color quantization.
 -  */
 - 
 - GLOBAL(void)
 - jinit_2pass_quantizer (j_decompress_ptr cinfo)
 - {
 -   my_cquantize_ptr2 cquantize;
 -   int i;
 - 
 -   cquantize = (my_cquantize_ptr2)
 -     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 - 				SIZEOF(my_cquantizer2));
 -   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
 -   cquantize->pub.start_pass = start_pass_2_quant;
 -   cquantize->pub.new_color_map = new_color_map_2_quant;
 -   cquantize->fserrors = NULL;	/* flag optional arrays not allocated */
 -   cquantize->error_limiter = NULL;
 - 
 -   /* Make sure jdmaster didn't give me a case I can't handle */
 -   if (cinfo->out_color_components != 3)
 -     ERREXIT(cinfo, JERR_NOTIMPL);
 - 
 -   /* Allocate the histogram/inverse colormap storage */
 -   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
 -     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
 -   for (i = 0; i < HIST_C0_ELEMS; i++) {
 -     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
 -       ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -        HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
 -   }
 -   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
 - 
 -   /* Allocate storage for the completed colormap, if required.
 -    * We do this now since it is FAR storage and may affect
 -    * the memory manager's space calculations.
 -    */
 -   if (cinfo->enable_2pass_quant) {
 -     /* Make sure color count is acceptable */
 -     int desired = cinfo->desired_number_of_colors;
 -     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
 -     if (desired < 8)
 -       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
 -     /* Make sure colormap indexes can be represented by JSAMPLEs */
 -     if (desired > MAXNUMCOLORS)
 -       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
 -     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
 -       ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
 -     cquantize->desired = desired;
 -   } else
 -     cquantize->sv_colormap = NULL;
 - 
 -   /* Only F-S dithering or no dithering is supported. */
 -   /* If user asks for ordered dither, give him F-S. */
 -   if (cinfo->dither_mode != JDITHER_NONE)
 -     cinfo->dither_mode = JDITHER_FS;
 - 
 -   /* Allocate Floyd-Steinberg workspace if necessary.
 -    * This isn't really needed until pass 2, but again it is FAR storage.
 -    * Although we will cope with a later change in dither_mode,
 -    * we do not promise to honor max_memory_to_use if dither_mode changes.
 -    */
 -   if (cinfo->dither_mode == JDITHER_FS) {
 -     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
 -       ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -        (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
 -     /* Might as well create the error-limiting table too. */
 -     init_error_limit(cinfo);
 -   }
 - }
 - 
 - #endif /* QUANT_2PASS_SUPPORTED */
 
 
  |