/* ============================================================================== This file is part of the JUCE library. Copyright (c) 2022 - Raw Material Software Limited JUCE is an open source library subject to commercial or open-source licensing. By using JUCE, you agree to the terms of both the JUCE 7 End-User License Agreement and JUCE Privacy Policy. End User License Agreement: www.juce.com/juce-7-licence Privacy Policy: www.juce.com/juce-privacy-policy Or: You may also use this code under the terms of the GPL v3 (see www.gnu.org/licenses). JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE DISCLAIMED. ============================================================================== */ namespace juce { template static Array operator+ (const Array& a, const Array& b) { auto copy = a; copy.addArray (b); return copy; } struct Grid::Helpers { struct AllTracksIncludingImplicit { Array items; int numImplicitLeading; // The number of implicit items before the explicit items }; struct Tracks { AllTracksIncludingImplicit columns, rows; }; struct NoRounding { template T operator() (T t) const { return t; } }; struct StandardRounding { template T operator() (T t) const { return std::round (t); } }; template struct SizeCalculation { float getTotalAbsoluteSize (const Array& tracks, Px gapSize) noexcept { float totalCellSize = 0.0f; for (const auto& trackInfo : tracks) if (! trackInfo.isFractional() || trackInfo.isAuto()) totalCellSize += roundingFunction (trackInfo.getSize()); float totalGap = tracks.size() > 1 ? (float) (tracks.size() - 1) * roundingFunction ((float) gapSize.pixels) : 0.0f; return totalCellSize + totalGap; } static float getRelativeUnitSize (float size, float totalAbsolute, const Array& tracks) noexcept { const float totalRelative = jlimit (0.0f, size, size - totalAbsolute); float factorsSum = 0.0f; for (const auto& trackInfo : tracks) if (trackInfo.isFractional()) factorsSum += trackInfo.getSize(); jassert (! approximatelyEqual (factorsSum, 0.0f)); return totalRelative / factorsSum; } //============================================================================== float getTotalAbsoluteHeight (const Array& rowTracks, Px rowGapSize) { return getTotalAbsoluteSize (rowTracks, rowGapSize); } float getTotalAbsoluteWidth (const Array& columnTracks, Px columnGapSize) { return getTotalAbsoluteSize (columnTracks, columnGapSize); } float getRelativeWidthUnit (float gridWidth, Px columnGapSize, const Array& columnTracks) { return getRelativeUnitSize (gridWidth, getTotalAbsoluteWidth (columnTracks, columnGapSize), columnTracks); } float getRelativeHeightUnit (float gridHeight, Px rowGapSize, const Array& rowTracks) { return getRelativeUnitSize (gridHeight, getTotalAbsoluteHeight (rowTracks, rowGapSize), rowTracks); } //============================================================================== static bool hasAnyFractions (const Array& tracks) { return std::any_of (tracks.begin(), tracks.end(), [] (const auto& t) { return t.isFractional(); }); } void computeSizes (float gridWidth, float gridHeight, Px columnGapToUse, Px rowGapToUse, const Tracks& tracks) { if (hasAnyFractions (tracks.columns.items)) { relativeWidthUnit = getRelativeWidthUnit (gridWidth, columnGapToUse, tracks.columns.items); fractionallyDividedWidth = gridWidth - getTotalAbsoluteSize (tracks.columns.items, columnGapToUse); } else { remainingWidth = gridWidth - getTotalAbsoluteSize (tracks.columns.items, columnGapToUse); } if (hasAnyFractions (tracks.rows.items)) { relativeHeightUnit = getRelativeHeightUnit (gridHeight, rowGapToUse, tracks.rows.items); fractionallyDividedHeight = gridHeight - getTotalAbsoluteSize (tracks.rows.items, rowGapToUse); } else { remainingHeight = gridHeight - getTotalAbsoluteSize (tracks.rows.items, rowGapToUse); } const auto calculateTrackBounds = [&] (auto& outBounds, const auto& trackItems, auto relativeUnit, auto totalSizeForFractionalItems, auto gap) { const auto lastFractionalIndex = [&] { for (int i = trackItems.size() - 1; 0 <= i; --i) if (trackItems[i].isFractional()) return i; return -1; }(); float start = 0.0f; float carriedError = 0.0f; for (int i = 0; i < trackItems.size(); ++i) { const auto& currentItem = trackItems[i]; const auto currentTrackSize = [&] { if (i == lastFractionalIndex) return totalSizeForFractionalItems; const auto absoluteSize = currentItem.getAbsoluteSize (relativeUnit); if (! currentItem.isFractional()) return roundingFunction (absoluteSize); const auto result = roundingFunction (absoluteSize - carriedError); carriedError += result - absoluteSize; return result; }(); if (currentItem.isFractional()) totalSizeForFractionalItems -= currentTrackSize; const auto end = start + currentTrackSize; outBounds.emplace_back (start, end); start = end + roundingFunction (static_cast (gap.pixels)); } }; calculateTrackBounds (columnTrackBounds, tracks.columns.items, relativeWidthUnit, fractionallyDividedWidth, columnGapToUse); calculateTrackBounds (rowTrackBounds, tracks.rows.items, relativeHeightUnit, fractionallyDividedHeight, rowGapToUse); } float relativeWidthUnit = 0.0f; float relativeHeightUnit = 0.0f; float fractionallyDividedWidth = 0.0f; float fractionallyDividedHeight = 0.0f; float remainingWidth = 0.0f; float remainingHeight = 0.0f; std::vector> columnTrackBounds; std::vector> rowTrackBounds; RoundingFunction roundingFunction; }; //============================================================================== struct PlacementHelpers { enum { invalid = -999999 }; static constexpr auto emptyAreaCharacter = "."; //============================================================================== struct LineRange { int start, end; }; struct LineArea { LineRange column, row; }; struct LineInfo { StringArray lineNames; }; struct NamedArea { String name; LineArea lines; }; //============================================================================== static Array getArrayOfLinesFromTracks (const Array& tracks) { // fill line info array Array lines; for (int i = 1; i <= tracks.size(); ++i) { const auto& currentTrack = tracks.getReference (i - 1); if (i == 1) // start line { LineInfo li; li.lineNames.add (currentTrack.getStartLineName()); lines.add (li); } if (i > 1 && i <= tracks.size()) // two lines in between tracks { const auto& prevTrack = tracks.getReference (i - 2); LineInfo li; li.lineNames.add (prevTrack.getEndLineName()); li.lineNames.add (currentTrack.getStartLineName()); lines.add (li); } if (i == tracks.size()) // end line { LineInfo li; li.lineNames.add (currentTrack.getEndLineName()); lines.add (li); } } jassert (lines.size() == tracks.size() + 1); return lines; } //============================================================================== static int deduceAbsoluteLineNumberFromLineName (GridItem::Property prop, const Array& tracks) { jassert (prop.hasAbsolute()); const auto lines = getArrayOfLinesFromTracks (tracks); int count = 0; for (const auto [index, line] : enumerate (lines)) { for (const auto& name : line.lineNames) { if (prop.getName() == name) { ++count; break; } } if (count == prop.getNumber()) return (int) index + 1; } jassertfalse; return count; } static int deduceAbsoluteLineNumber (GridItem::Property prop, const Array& tracks) { jassert (prop.hasAbsolute()); if (prop.hasName()) return deduceAbsoluteLineNumberFromLineName (prop, tracks); if (prop.getNumber() > 0) return prop.getNumber(); if (prop.getNumber() < 0) return tracks.size() + 2 + prop.getNumber(); // An integer value of 0 is invalid jassertfalse; return 1; } static int deduceAbsoluteLineNumberFromNamedSpan (int startLineNumber, GridItem::Property propertyWithSpan, const Array& tracks) { jassert (propertyWithSpan.hasSpan()); const auto lines = getArrayOfLinesFromTracks (tracks); int count = 0; const auto enumerated = enumerate (lines); for (const auto [index, line] : makeRange (enumerated.begin() + startLineNumber, enumerated.end())) { for (const auto& name : line.lineNames) { if (propertyWithSpan.getName() == name) { ++count; break; } } if (count == propertyWithSpan.getNumber()) return (int) index + 1; } jassertfalse; return count; } static int deduceAbsoluteLineNumberBasedOnSpan (int startLineNumber, GridItem::Property propertyWithSpan, const Array& tracks) { jassert (propertyWithSpan.hasSpan()); if (propertyWithSpan.hasName()) return deduceAbsoluteLineNumberFromNamedSpan (startLineNumber, propertyWithSpan, tracks); return startLineNumber + propertyWithSpan.getNumber(); } //============================================================================== static LineRange deduceLineRange (GridItem::StartAndEndProperty prop, const Array& tracks) { jassert (! (prop.start.hasAuto() && prop.end.hasAuto())); if (prop.start.hasAbsolute() && prop.end.hasAuto()) { prop.end = GridItem::Span (1); } else if (prop.start.hasAuto() && prop.end.hasAbsolute()) { prop.start = GridItem::Span (1); } auto s = [&]() -> LineRange { if (prop.start.hasAbsolute() && prop.end.hasAbsolute()) { return { deduceAbsoluteLineNumber (prop.start, tracks), deduceAbsoluteLineNumber (prop.end, tracks) }; } if (prop.start.hasAbsolute() && prop.end.hasSpan()) { const auto start = deduceAbsoluteLineNumber (prop.start, tracks); return { start, deduceAbsoluteLineNumberBasedOnSpan (start, prop.end, tracks) }; } if (prop.start.hasSpan() && prop.end.hasAbsolute()) { const auto start = deduceAbsoluteLineNumber (prop.end, tracks); return { start, deduceAbsoluteLineNumberBasedOnSpan (start, prop.start, tracks) }; } // Can't have an item with spans on both start and end. jassertfalse; return {}; }(); // swap if start overtakes end if (s.start > s.end) std::swap (s.start, s.end); else if (s.start == s.end) s.end = s.start + 1; return s; } static LineArea deduceLineArea (const GridItem& item, const Grid& grid, const std::map& namedAreas) { if (item.area.isNotEmpty() && ! grid.templateAreas.isEmpty()) { // Must be a named area! jassert (namedAreas.count (item.area) != 0); return namedAreas.at (item.area); } return { deduceLineRange (item.column, grid.templateColumns), deduceLineRange (item.row, grid.templateRows) }; } //============================================================================== static Array parseAreasProperty (const StringArray& areasStrings) { Array strings; for (const auto& areaString : areasStrings) strings.add (StringArray::fromTokens (areaString, false)); if (strings.size() > 0) { for (auto s : strings) { jassert (s.size() == strings[0].size()); // all rows must have the same number of columns } } return strings; } static NamedArea findArea (Array& stringsArrays) { NamedArea area; for (auto& stringArray : stringsArrays) { for (auto& string : stringArray) { // find anchor if (area.name.isEmpty()) { if (string != emptyAreaCharacter) { area.name = string; area.lines.row.start = stringsArrays.indexOf (stringArray) + 1; // non-zero indexed; area.lines.column.start = stringArray.indexOf (string) + 1; // non-zero indexed; area.lines.row.end = stringsArrays.indexOf (stringArray) + 2; area.lines.column.end = stringArray.indexOf (string) + 2; // mark as visited string = emptyAreaCharacter; } } else { if (string == area.name) { area.lines.row.end = stringsArrays.indexOf (stringArray) + 2; area.lines.column.end = stringArray.indexOf (string) + 2; // mark as visited string = emptyAreaCharacter; } } } } return area; } //============================================================================== static std::map deduceNamedAreas (const StringArray& areasStrings) { auto stringsArrays = parseAreasProperty (areasStrings); std::map areas; for (auto area = findArea (stringsArrays); area.name.isNotEmpty(); area = findArea (stringsArrays)) { if (areas.count (area.name) == 0) areas[area.name] = area.lines; else // Make sure your template-areas property only has one area with the same name and is well-formed jassertfalse; } return areas; } //============================================================================== template static Rectangle getCellBounds (int columnNumber, int rowNumber, const Tracks& tracks, const SizeCalculation& calculation) { const auto correctedColumn = columnNumber - 1 + tracks.columns.numImplicitLeading; const auto correctedRow = rowNumber - 1 + tracks.rows .numImplicitLeading; jassert (isPositiveAndBelow (correctedColumn, tracks.columns.items.size())); jassert (isPositiveAndBelow (correctedRow, tracks.rows .items.size())); return { calculation.columnTrackBounds[(size_t) correctedColumn].getStart(), calculation.rowTrackBounds[(size_t) correctedRow].getStart(), calculation.columnTrackBounds[(size_t) correctedColumn].getEnd() - calculation.columnTrackBounds[(size_t) correctedColumn].getStart(), calculation.rowTrackBounds[(size_t) correctedRow].getEnd() - calculation.rowTrackBounds[(size_t) correctedRow].getStart() }; } template static Rectangle alignCell (Rectangle area, int columnNumber, int rowNumber, int numberOfColumns, int numberOfRows, const SizeCalculation& calculation, AlignContent alignContent, JustifyContent justifyContent) { if (alignContent == AlignContent::end) area.setY (area.getY() + calculation.remainingHeight); if (justifyContent == JustifyContent::end) area.setX (area.getX() + calculation.remainingWidth); if (alignContent == AlignContent::center) area.setY (area.getY() + calculation.remainingHeight / 2); if (justifyContent == JustifyContent::center) area.setX (area.getX() + calculation.remainingWidth / 2); if (alignContent == AlignContent::spaceBetween) { const auto shift = ((float) (rowNumber - 1) * (calculation.remainingHeight / float (numberOfRows - 1))); area.setY (area.getY() + shift); } if (justifyContent == JustifyContent::spaceBetween) { const auto shift = ((float) (columnNumber - 1) * (calculation.remainingWidth / float (numberOfColumns - 1))); area.setX (area.getX() + shift); } if (alignContent == AlignContent::spaceEvenly) { const auto shift = ((float) rowNumber * (calculation.remainingHeight / float (numberOfRows + 1))); area.setY (area.getY() + shift); } if (justifyContent == JustifyContent::spaceEvenly) { const auto shift = ((float) columnNumber * (calculation.remainingWidth / float (numberOfColumns + 1))); area.setX (area.getX() + shift); } if (alignContent == AlignContent::spaceAround) { const auto inbetweenShift = calculation.remainingHeight / float (numberOfRows); const auto sidesShift = inbetweenShift / 2; auto shift = (float) (rowNumber - 1) * inbetweenShift + sidesShift; area.setY (area.getY() + shift); } if (justifyContent == JustifyContent::spaceAround) { const auto inbetweenShift = calculation.remainingWidth / float (numberOfColumns); const auto sidesShift = inbetweenShift / 2; auto shift = (float) (columnNumber - 1) * inbetweenShift + sidesShift; area.setX (area.getX() + shift); } return area; } template static Rectangle getAreaBounds (PlacementHelpers::LineRange columnRange, PlacementHelpers::LineRange rowRange, const Tracks& tracks, const SizeCalculation& calculation, AlignContent alignContent, JustifyContent justifyContent) { const auto findAlignedCell = [&] (int column, int row) { const auto cell = getCellBounds (column, row, tracks, calculation); return alignCell (cell, column, row, tracks.columns.items.size(), tracks.rows.items.size(), calculation, alignContent, justifyContent); }; const auto startCell = findAlignedCell (columnRange.start, rowRange.start); const auto endCell = findAlignedCell (columnRange.end - 1, rowRange.end - 1); const auto horizontalRange = startCell.getHorizontalRange().getUnionWith (endCell.getHorizontalRange()); const auto verticalRange = startCell.getVerticalRange() .getUnionWith (endCell.getVerticalRange()); return { horizontalRange.getStart(), verticalRange.getStart(), horizontalRange.getLength(), verticalRange.getLength() }; } }; //============================================================================== struct AutoPlacement { using ItemPlacementArray = Array>; //============================================================================== struct OccupancyPlane { struct Cell { int column, row; }; OccupancyPlane (int highestColumnToUse, int highestRowToUse, bool isColumnFirst) : highestCrossDimension (isColumnFirst ? highestRowToUse : highestColumnToUse), columnFirst (isColumnFirst) {} PlacementHelpers::LineArea setCell (Cell cell, int columnSpan, int rowSpan) { for (int i = 0; i < columnSpan; i++) for (int j = 0; j < rowSpan; j++) setCell (cell.column + i, cell.row + j); return { { cell.column, cell.column + columnSpan }, { cell.row, cell.row + rowSpan } }; } PlacementHelpers::LineArea setCell (Cell start, Cell end) { return setCell (start, std::abs (end.column - start.column), std::abs (end.row - start.row)); } Cell nextAvailable (Cell referenceCell, int columnSpan, int rowSpan) { while (isOccupied (referenceCell, columnSpan, rowSpan) || isOutOfBounds (referenceCell, columnSpan, rowSpan)) referenceCell = advance (referenceCell); return referenceCell; } Cell nextAvailableOnRow (Cell referenceCell, int columnSpan, int rowSpan, int rowNumber) { if (columnFirst && (rowNumber + rowSpan) > highestCrossDimension) highestCrossDimension = rowNumber + rowSpan; while (isOccupied (referenceCell, columnSpan, rowSpan) || (referenceCell.row != rowNumber)) referenceCell = advance (referenceCell); return referenceCell; } Cell nextAvailableOnColumn (Cell referenceCell, int columnSpan, int rowSpan, int columnNumber) { if (! columnFirst && (columnNumber + columnSpan) > highestCrossDimension) highestCrossDimension = columnNumber + columnSpan; while (isOccupied (referenceCell, columnSpan, rowSpan) || (referenceCell.column != columnNumber)) referenceCell = advance (referenceCell); return referenceCell; } void updateMaxCrossDimensionFromAutoPlacementItem (int columnSpan, int rowSpan) { highestCrossDimension = jmax (highestCrossDimension, 1 + getCrossDimension ({ columnSpan, rowSpan })); } private: struct SortableCell { int column, row; bool columnFirst; bool operator< (const SortableCell& other) const { if (columnFirst) { if (row == other.row) return column < other.column; return row < other.row; } if (row == other.row) return column < other.column; return row < other.row; } }; void setCell (int column, int row) { occupiedCells.insert ({ column, row, columnFirst }); } bool isOccupied (Cell cell) const { return occupiedCells.count ({ cell.column, cell.row, columnFirst }) > 0; } bool isOccupied (Cell cell, int columnSpan, int rowSpan) const { for (int i = 0; i < columnSpan; i++) for (int j = 0; j < rowSpan; j++) if (isOccupied ({ cell.column + i, cell.row + j })) return true; return false; } bool isOutOfBounds (Cell cell, int columnSpan, int rowSpan) const { const auto highestIndexOfCell = getCrossDimension (cell) + getCrossDimension ({ columnSpan, rowSpan }); const auto highestIndexOfGrid = getHighestCrossDimension(); return highestIndexOfGrid < highestIndexOfCell; } int getHighestCrossDimension() const { Cell cell { 1, 1 }; if (occupiedCells.size() > 0) cell = { occupiedCells.crbegin()->column, occupiedCells.crbegin()->row }; return std::max (getCrossDimension (cell), highestCrossDimension); } Cell advance (Cell cell) const { if ((getCrossDimension (cell) + 1) >= getHighestCrossDimension()) return fromDimensions (getMainDimension (cell) + 1, 1); return fromDimensions (getMainDimension (cell), getCrossDimension (cell) + 1); } int getMainDimension (Cell cell) const { return columnFirst ? cell.column : cell.row; } int getCrossDimension (Cell cell) const { return columnFirst ? cell.row : cell.column; } Cell fromDimensions (int mainDimension, int crossDimension) const { if (columnFirst) return { mainDimension, crossDimension }; return { crossDimension, mainDimension }; } int highestCrossDimension; bool columnFirst; std::set occupiedCells; }; //============================================================================== static bool isFixed (GridItem::StartAndEndProperty prop) { return prop.start.hasName() || prop.start.hasAbsolute() || prop.end.hasName() || prop.end.hasAbsolute(); } static bool hasFullyFixedPlacement (const GridItem& item) { if (item.area.isNotEmpty()) return true; if (isFixed (item.column) && isFixed (item.row)) return true; return false; } static bool hasPartialFixedPlacement (const GridItem& item) { if (item.area.isNotEmpty()) return false; if (isFixed (item.column) ^ isFixed (item.row)) return true; return false; } static bool hasAutoPlacement (const GridItem& item) { return ! hasFullyFixedPlacement (item) && ! hasPartialFixedPlacement (item); } //============================================================================== static bool hasDenseAutoFlow (AutoFlow autoFlow) { return autoFlow == AutoFlow::columnDense || autoFlow == AutoFlow::rowDense; } static bool isColumnAutoFlow (AutoFlow autoFlow) { return autoFlow == AutoFlow::column || autoFlow == AutoFlow::columnDense; } //============================================================================== static int getSpanFromAuto (GridItem::StartAndEndProperty prop) { if (prop.end.hasSpan()) return prop.end.getNumber(); if (prop.start.hasSpan()) return prop.start.getNumber(); return 1; } //============================================================================== ItemPlacementArray deduceAllItems (Grid& grid) const { const auto namedAreas = PlacementHelpers::deduceNamedAreas (grid.templateAreas); OccupancyPlane plane (jmax (grid.templateColumns.size() + 1, 2), jmax (grid.templateRows.size() + 1, 2), isColumnAutoFlow (grid.autoFlow)); ItemPlacementArray itemPlacementArray; Array sortedItems; for (auto& item : grid.items) sortedItems.add (&item); std::stable_sort (sortedItems.begin(), sortedItems.end(), [] (const GridItem* i1, const GridItem* i2) { return i1->order < i2->order; }); // place fixed items first for (auto* item : sortedItems) { if (hasFullyFixedPlacement (*item)) { const auto a = PlacementHelpers::deduceLineArea (*item, grid, namedAreas); plane.setCell ({ a.column.start, a.row.start }, { a.column.end, a.row.end }); itemPlacementArray.add ({ item, a }); } } OccupancyPlane::Cell lastInsertionCell = { 1, 1 }; for (auto* item : sortedItems) { if (hasPartialFixedPlacement (*item)) { if (isFixed (item->column)) { const auto p = PlacementHelpers::deduceLineRange (item->column, grid.templateColumns); const auto columnSpan = std::abs (p.start - p.end); const auto rowSpan = getSpanFromAuto (item->row); const auto insertionCell = hasDenseAutoFlow (grid.autoFlow) ? OccupancyPlane::Cell { p.start, 1 } : lastInsertionCell; const auto nextAvailableCell = plane.nextAvailableOnColumn (insertionCell, columnSpan, rowSpan, p.start); const auto lineArea = plane.setCell (nextAvailableCell, columnSpan, rowSpan); lastInsertionCell = nextAvailableCell; itemPlacementArray.add ({ item, lineArea }); } else if (isFixed (item->row)) { const auto p = PlacementHelpers::deduceLineRange (item->row, grid.templateRows); const auto columnSpan = getSpanFromAuto (item->column); const auto rowSpan = std::abs (p.start - p.end); const auto insertionCell = hasDenseAutoFlow (grid.autoFlow) ? OccupancyPlane::Cell { 1, p.start } : lastInsertionCell; const auto nextAvailableCell = plane.nextAvailableOnRow (insertionCell, columnSpan, rowSpan, p.start); const auto lineArea = plane.setCell (nextAvailableCell, columnSpan, rowSpan); lastInsertionCell = nextAvailableCell; itemPlacementArray.add ({ item, lineArea }); } } } // https://www.w3.org/TR/css-grid-1/#auto-placement-algo step 3.3 for (auto* item : sortedItems) if (hasAutoPlacement (*item)) plane.updateMaxCrossDimensionFromAutoPlacementItem (getSpanFromAuto (item->column), getSpanFromAuto (item->row)); lastInsertionCell = { 1, 1 }; for (auto* item : sortedItems) { if (hasAutoPlacement (*item)) { const auto columnSpan = getSpanFromAuto (item->column); const auto rowSpan = getSpanFromAuto (item->row); const auto nextAvailableCell = plane.nextAvailable (lastInsertionCell, columnSpan, rowSpan); const auto lineArea = plane.setCell (nextAvailableCell, columnSpan, rowSpan); if (! hasDenseAutoFlow (grid.autoFlow)) lastInsertionCell = nextAvailableCell; itemPlacementArray.add ({ item, lineArea }); } } return itemPlacementArray; } //============================================================================== template static PlacementHelpers::LineRange findFullLineRange (const ItemPlacementArray& items, Accessor&& accessor) { if (items.isEmpty()) return { 1, 1 }; const auto combine = [&accessor] (const auto& acc, const auto& item) { const auto newRange = accessor (item); return PlacementHelpers::LineRange { std::min (acc.start, newRange.start), std::max (acc.end, newRange.end) }; }; return std::accumulate (std::next (items.begin()), items.end(), accessor (*items.begin()), combine); } static PlacementHelpers::LineArea findFullLineArea (const ItemPlacementArray& items) { return { findFullLineRange (items, [] (const auto& item) { return item.second.column; }), findFullLineRange (items, [] (const auto& item) { return item.second.row; }) }; } template static Array repeated (int repeats, const Item& item) { Array result; result.insertMultiple (-1, item, repeats); return result; } static Tracks createImplicitTracks (const Grid& grid, const ItemPlacementArray& items) { const auto fullArea = findFullLineArea (items); const auto leadingColumns = std::max (0, 1 - fullArea.column.start); const auto leadingRows = std::max (0, 1 - fullArea.row.start); const auto trailingColumns = std::max (0, fullArea.column.end - grid.templateColumns.size() - 1); const auto trailingRows = std::max (0, fullArea.row .end - grid.templateRows .size() - 1); return { { repeated (leadingColumns, grid.autoColumns) + grid.templateColumns + repeated (trailingColumns, grid.autoColumns), leadingColumns }, { repeated (leadingRows, grid.autoRows) + grid.templateRows + repeated (trailingRows, grid.autoRows), leadingRows } }; } //============================================================================== static void applySizeForAutoTracks (Tracks& tracks, const ItemPlacementArray& placements) { const auto setSizes = [&placements] (auto& tracksInDirection, const auto& getItem, const auto& getItemSize) { auto& array = tracksInDirection.items; for (int index = 0; index < array.size(); ++index) { if (array.getReference (index).isAuto()) { const auto combiner = [&] (const auto acc, const auto& element) { const auto item = getItem (element.second); const auto isNotSpan = std::abs (item.end - item.start) <= 1; return isNotSpan && item.start == index + 1 - tracksInDirection.numImplicitLeading ? std::max (acc, getItemSize (*element.first)) : acc; }; array.getReference (index).size = std::accumulate (placements.begin(), placements.end(), 0.0f, combiner); } } }; setSizes (tracks.rows, [] (const auto& i) { return i.row; }, [] (const auto& i) { return i.height + i.margin.top + i.margin.bottom; }); setSizes (tracks.columns, [] (const auto& i) { return i.column; }, [] (const auto& i) { return i.width + i.margin.left + i.margin.right; }); } }; //============================================================================== struct BoxAlignment { static Rectangle alignItem (const GridItem& item, const Grid& grid, Rectangle area) { // if item align is auto, inherit value from grid const auto alignType = item.alignSelf == GridItem::AlignSelf::autoValue ? grid.alignItems : static_cast (item.alignSelf); const auto justifyType = item.justifySelf == GridItem::JustifySelf::autoValue ? grid.justifyItems : static_cast (item.justifySelf); // subtract margin from area area = BorderSize (item.margin.top, item.margin.left, item.margin.bottom, item.margin.right) .subtractedFrom (area); // align and justify auto r = area; if (! approximatelyEqual (item.width, (float) GridItem::notAssigned)) r.setWidth (item.width); if (! approximatelyEqual (item.height, (float) GridItem::notAssigned)) r.setHeight (item.height); if (! approximatelyEqual (item.maxWidth, (float) GridItem::notAssigned)) r.setWidth (jmin (item.maxWidth, r.getWidth())); if (item.minWidth > 0.0f) r.setWidth (jmax (item.minWidth, r.getWidth())); if (! approximatelyEqual (item.maxHeight, (float) GridItem::notAssigned)) r.setHeight (jmin (item.maxHeight, r.getHeight())); if (item.minHeight > 0.0f) r.setHeight (jmax (item.minHeight, r.getHeight())); if (alignType == AlignItems::start && justifyType == JustifyItems::start) return r; if (alignType == AlignItems::end) r.setY (r.getY() + (area.getHeight() - r.getHeight())); if (justifyType == JustifyItems::end) r.setX (r.getX() + (area.getWidth() - r.getWidth())); if (alignType == AlignItems::center) r.setCentre (r.getCentreX(), area.getCentreY()); if (justifyType == JustifyItems::center) r.setCentre (area.getCentreX(), r.getCentreY()); return r; } }; }; //============================================================================== Grid::TrackInfo::TrackInfo() noexcept : hasKeyword (true) {} Grid::TrackInfo::TrackInfo (Px sizeInPixels) noexcept : size (static_cast (sizeInPixels.pixels)), isFraction (false) {} Grid::TrackInfo::TrackInfo (Fr fractionOfFreeSpace) noexcept : size ((float)fractionOfFreeSpace.fraction), isFraction (true) {} Grid::TrackInfo::TrackInfo (Px sizeInPixels, const String& endLineNameToUse) noexcept : TrackInfo (sizeInPixels) { endLineName = endLineNameToUse; } Grid::TrackInfo::TrackInfo (Fr fractionOfFreeSpace, const String& endLineNameToUse) noexcept : TrackInfo (fractionOfFreeSpace) { endLineName = endLineNameToUse; } Grid::TrackInfo::TrackInfo (const String& startLineNameToUse, Px sizeInPixels) noexcept : TrackInfo (sizeInPixels) { startLineName = startLineNameToUse; } Grid::TrackInfo::TrackInfo (const String& startLineNameToUse, Fr fractionOfFreeSpace) noexcept : TrackInfo (fractionOfFreeSpace) { startLineName = startLineNameToUse; } Grid::TrackInfo::TrackInfo (const String& startLineNameToUse, Px sizeInPixels, const String& endLineNameToUse) noexcept : TrackInfo (startLineNameToUse, sizeInPixels) { endLineName = endLineNameToUse; } Grid::TrackInfo::TrackInfo (const String& startLineNameToUse, Fr fractionOfFreeSpace, const String& endLineNameToUse) noexcept : TrackInfo (startLineNameToUse, fractionOfFreeSpace) { endLineName = endLineNameToUse; } float Grid::TrackInfo::getAbsoluteSize (float relativeFractionalUnit) const { return isFractional() ? size * relativeFractionalUnit : size; } //============================================================================== void Grid::performLayout (Rectangle targetArea) { const auto itemsAndAreas = Helpers::AutoPlacement().deduceAllItems (*this); auto implicitTracks = Helpers::AutoPlacement::createImplicitTracks (*this, itemsAndAreas); Helpers::AutoPlacement::applySizeForAutoTracks (implicitTracks, itemsAndAreas); Helpers::SizeCalculation calculation; Helpers::SizeCalculation roundedCalculation; const auto doComputeSizes = [&] (auto& sizeCalculation) { sizeCalculation.computeSizes (targetArea.toFloat().getWidth(), targetArea.toFloat().getHeight(), columnGap, rowGap, implicitTracks); }; doComputeSizes (calculation); doComputeSizes (roundedCalculation); for (auto& itemAndArea : itemsAndAreas) { auto* item = itemAndArea.first; const auto getBounds = [&] (const auto& sizeCalculation) { const auto a = itemAndArea.second; const auto areaBounds = Helpers::PlacementHelpers::getAreaBounds (a.column, a.row, implicitTracks, sizeCalculation, alignContent, justifyContent); const auto rounded = [&] (auto rect) -> decltype (rect) { return { sizeCalculation.roundingFunction (rect.getX()), sizeCalculation.roundingFunction (rect.getY()), sizeCalculation.roundingFunction (rect.getWidth()), sizeCalculation.roundingFunction (rect.getHeight()) }; }; return rounded (Helpers::BoxAlignment::alignItem (*item, *this, areaBounds)); }; item->currentBounds = getBounds (calculation) + targetArea.toFloat().getPosition(); if (auto* c = item->associatedComponent) c->setBounds (getBounds (roundedCalculation).toNearestIntEdges() + targetArea.getPosition()); } } //============================================================================== #if JUCE_UNIT_TESTS struct GridTests final : public UnitTest { GridTests() : UnitTest ("Grid", UnitTestCategories::gui) {} void runTest() override { using Fr = Grid::Fr; using Tr = Grid::TrackInfo; using Rect = Rectangle; beginTest ("Layout calculation of an empty grid is a no-op"); { const Rectangle bounds { 100, 200 }; Grid grid; grid.performLayout (bounds); } { Grid grid; grid.templateColumns.add (Tr (1_fr)); grid.templateRows.addArray ({ Tr (20_px), Tr (1_fr) }); grid.items.addArray ({ GridItem().withArea (1, 1), GridItem().withArea (2, 1) }); grid.performLayout (Rectangle (200, 400)); beginTest ("Layout calculation test: 1 column x 2 rows: no gap"); expect (grid.items[0].currentBounds == Rect (0.0f, 0.0f, 200.f, 20.0f)); expect (grid.items[1].currentBounds == Rect (0.0f, 20.0f, 200.f, 380.0f)); grid.templateColumns.add (Tr (50_px)); grid.templateRows.add (Tr (2_fr)); grid.items.addArray ( { GridItem().withArea (1, 2), GridItem().withArea (2, 2), GridItem().withArea (3, 1), GridItem().withArea (3, 2) }); grid.performLayout (Rectangle (150, 170)); beginTest ("Layout calculation test: 2 columns x 3 rows: no gap"); expect (grid.items[0].currentBounds == Rect (0.0f, 0.0f, 100.0f, 20.0f)); expect (grid.items[1].currentBounds == Rect (0.0f, 20.0f, 100.0f, 50.0f)); expect (grid.items[2].currentBounds == Rect (100.0f, 0.0f, 50.0f, 20.0f)); expect (grid.items[3].currentBounds == Rect (100.0f, 20.0f, 50.0f, 50.0f)); expect (grid.items[4].currentBounds == Rect (0.0f, 70.0f, 100.0f, 100.0f)); expect (grid.items[5].currentBounds == Rect (100.0f, 70.0f, 50.0f, 100.0f)); grid.columnGap = 20_px; grid.rowGap = 10_px; grid.performLayout (Rectangle (200, 310)); beginTest ("Layout calculation test: 2 columns x 3 rows: rowGap of 10 and columnGap of 20"); expect (grid.items[0].currentBounds == Rect (0.0f, 0.0f, 130.0f, 20.0f)); expect (grid.items[1].currentBounds == Rect (0.0f, 30.0f, 130.0f, 90.0f)); expect (grid.items[2].currentBounds == Rect (150.0f, 0.0f, 50.0f, 20.0f)); expect (grid.items[3].currentBounds == Rect (150.0f, 30.0f, 50.0f, 90.0f)); expect (grid.items[4].currentBounds == Rect (0.0f, 130.0f, 130.0f, 180.0f)); expect (grid.items[5].currentBounds == Rect (150.0f, 130.0f, 50.0f, 180.0f)); } { Grid grid; grid.templateColumns.addArray ({ Tr ("first", 20_px, "in"), Tr ("in", 1_fr, "in"), Tr (20_px, "last") }); grid.templateRows.addArray ({ Tr (1_fr), Tr (20_px)}); { beginTest ("Grid items placement tests: integer and custom ident, counting forward"); GridItem i1, i2, i3, i4, i5; i1.column = { 1, 4 }; i1.row = { 1, 2 }; i2.column = { 1, 3 }; i2.row = { 1, 3 }; i3.column = { "first", "in" }; i3.row = { 2, 3 }; i4.column = { "first", { 2, "in" } }; i4.row = { 1, 2 }; i5.column = { "first", "last" }; i5.row = { 1, 2 }; grid.items.addArray ({ i1, i2, i3, i4, i5 }); grid.performLayout ({ 140, 100 }); expect (grid.items[0].currentBounds == Rect (0.0f, 0.0f, 140.0f, 80.0f)); expect (grid.items[1].currentBounds == Rect (0.0f, 0.0f, 120.0f, 100.0f)); expect (grid.items[2].currentBounds == Rect (0.0f, 80.0f, 20.0f, 20.0f)); expect (grid.items[3].currentBounds == Rect (0.0f, 0.0f, 120.0f, 80.0f)); expect (grid.items[4].currentBounds == Rect (0.0f, 0.0f, 140.0f, 80.0f)); } } { Grid grid; grid.templateColumns.addArray ({ Tr ("first", 20_px, "in"), Tr ("in", 1_fr, "in"), Tr (20_px, "last") }); grid.templateRows.addArray ({ Tr (1_fr), Tr (20_px)}); beginTest ("Grid items placement tests: integer and custom ident, counting forward, reversed end and start"); GridItem i1, i2, i3, i4, i5; i1.column = { 4, 1 }; i1.row = { 2, 1 }; i2.column = { 3, 1 }; i2.row = { 3, 1 }; i3.column = { "in", "first" }; i3.row = { 3, 2 }; i4.column = { "first", { 2, "in" } }; i4.row = { 1, 2 }; i5.column = { "last", "first" }; i5.row = { 1, 2 }; grid.items.addArray ({ i1, i2, i3, i4, i5 }); grid.performLayout ({ 140, 100 }); expect (grid.items[0].currentBounds == Rect (0.0f, 0.0f, 140.0f, 80.0f)); expect (grid.items[1].currentBounds == Rect (0.0f, 0.0f, 120.0f, 100.0f)); expect (grid.items[2].currentBounds == Rect (0.0f, 80.0f, 20.0f, 20.0f)); expect (grid.items[3].currentBounds == Rect (0.0f, 0.0f, 120.0f, 80.0f)); expect (grid.items[4].currentBounds == Rect (0.0f, 0.0f, 140.0f, 80.0f)); } { Grid grid; grid.templateColumns = { Tr ("first", 20_px, "in"), Tr ("in", 1_fr, "in"), Tr (20_px, "last") }; grid.templateRows = { Tr (1_fr), Tr (20_px) }; beginTest ("Grid items placement tests: integer, counting backward"); grid.items = { GridItem{}.withColumn ({ -2, -1 }).withRow ({ 1, 3 }), GridItem{}.withColumn ({ -10, -1 }).withRow ({ 1, -1 }) }; grid.performLayout ({ 140, 100 }); expect (grid.items[0].currentBounds == Rect (120.0f, 0.0f, 20.0f, 100.0f)); expect (grid.items[1].currentBounds == Rect (0.0f, 0.0f, 140.0f, 100.0f)); } { beginTest ("Grid items placement tests: areas"); Grid grid; grid.templateColumns = { Tr (50_px), Tr (100_px), Tr (Fr (1_fr)), Tr (50_px) }; grid.templateRows = { Tr (50_px), Tr (1_fr), Tr (50_px) }; grid.templateAreas = { "header header header header", "main main . sidebar", "footer footer footer footer" }; grid.items.addArray ({ GridItem().withArea ("header"), GridItem().withArea ("main"), GridItem().withArea ("sidebar"), GridItem().withArea ("footer"), }); grid.performLayout ({ 300, 150 }); expect (grid.items[0].currentBounds == Rect (0.f, 0.f, 300.f, 50.f)); expect (grid.items[1].currentBounds == Rect (0.f, 50.f, 150.f, 50.f)); expect (grid.items[2].currentBounds == Rect (250.f, 50.f, 50.f, 50.f)); expect (grid.items[3].currentBounds == Rect (0.f, 100.f, 300.f, 50.f)); } { beginTest ("Grid implicit rows and columns: triggered by areas"); Grid grid; grid.templateColumns = { Tr (50_px), Tr (100_px), Tr (1_fr), Tr (50_px) }; grid.templateRows = { Tr (50_px), Tr (1_fr), Tr (50_px) }; grid.autoRows = Tr (30_px); grid.autoColumns = Tr (30_px); grid.templateAreas = { "header header header header header", "main main . sidebar sidebar", "footer footer footer footer footer", "sub sub sub sub sub"}; grid.items.addArray ({ GridItem().withArea ("header"), GridItem().withArea ("main"), GridItem().withArea ("sidebar"), GridItem().withArea ("footer"), GridItem().withArea ("sub"), }); grid.performLayout ({ 330, 180 }); expect (grid.items[0].currentBounds == Rect (0.f, 0.f, 330.f, 50.f)); expect (grid.items[1].currentBounds == Rect (0.f, 50.f, 150.f, 50.f)); expect (grid.items[2].currentBounds == Rect (250.f, 50.f, 80.f, 50.f)); expect (grid.items[3].currentBounds == Rect (0.f, 100.f, 330.f, 50.f)); expect (grid.items[4].currentBounds == Rect (0.f, 150.f, 330.f, 30.f)); } { beginTest ("Grid implicit rows and columns: triggered by areas"); Grid grid; grid.templateColumns = { Tr (50_px), Tr (100_px), Tr (1_fr), Tr (50_px) }; grid.templateRows = { Tr (50_px), Tr (1_fr), Tr (50_px) }; grid.autoRows = Tr (1_fr); grid.autoColumns = Tr (1_fr); grid.templateAreas = { "header header header header", "main main . sidebar", "footer footer footer footer" }; grid.items.addArray ({ GridItem().withArea ("header"), GridItem().withArea ("main"), GridItem().withArea ("sidebar"), GridItem().withArea ("footer"), GridItem().withArea (4, 5, 6, 7) }); grid.performLayout ({ 350, 250 }); expect (grid.items[0].currentBounds == Rect (0.f, 0.f, 250.f, 50.f)); expect (grid.items[1].currentBounds == Rect (0.f, 50.f, 150.f, 50.f)); expect (grid.items[2].currentBounds == Rect (200.f, 50.f, 50.f, 50.f)); expect (grid.items[3].currentBounds == Rect (0.f, 100.f, 250.f, 50.f)); expect (grid.items[4].currentBounds == Rect (250.f, 150.f, 100.f, 100.f)); } { beginTest ("Grid implicit rows and columns: triggered by out-of-bounds indices"); Grid grid; grid.templateColumns = { Tr (1_fr), Tr (1_fr) }; grid.templateRows = { Tr (60_px), Tr (60_px) }; grid.autoColumns = Tr (20_px); grid.autoRows = Tr (1_fr); grid.items = { GridItem{}.withColumn ({ 5, 8 }).withRow ({ -5, -4 }), GridItem{}.withColumn ({ 4, 7 }).withRow ({ -4, -3 }), GridItem{}.withColumn ({ -2, -1 }).withRow ({ 4, 5 }) }; grid.performLayout ({ 500, 400 }); // -3 -2 -1 // 1 2 3 4 5 6 7 8 // -5 +---+---+---+---+---+---+---+ 0 // | | | | | 0 | 0 | 0 | // -4 +---+---+---+---+---+---+---+ 70 // | | | | 1 | 1 | 1 | | // -3 1 +---+---+---+---+---+---+---+ 140 // | x | x | | | | | | // -2 2 +---+---+---+---+---+---+---+ 200 y positions // | x | x | | | | | | // -1 3 +---+---+---+---+---+---+---+ 260 // | | | | | | | | // 4 +---+---+---+---+---+---+---+ 330 // | | 2 | | | | | | // 5 +---+---+---+---+---+---+---+ 400 // // 0 200 400 420 440 460 480 500 // x positions // // The cells marked "x" are the explicit cells specified by the template rows // and columns. // // The cells marked 0/1/2 correspond to the GridItems at those indices in the // items array. // // Note that negative indices count back from the last explicit line // number in that direction, so "2" and "-2" both correspond to the same line. expect (grid.items[0].currentBounds == Rect (440.0f, 0.0f, 60.0f, 70.0f)); expect (grid.items[1].currentBounds == Rect (420.0f, 70.0f, 60.0f, 70.0f)); expect (grid.items[2].currentBounds == Rect (200.0f, 330.0f, 200.0f, 70.0f)); } { beginTest ("Items with specified sizes should translate to correctly rounded Component dimensions"); static constexpr int targetSize = 100; juce::Component component; juce::GridItem item { component }; item.alignSelf = juce::GridItem::AlignSelf::center; item.justifySelf = juce::GridItem::JustifySelf::center; item.width = (float) targetSize; item.height = (float) targetSize; juce::Grid grid; grid.templateColumns = { juce::Grid::Fr { 1 } }; grid.templateRows = { juce::Grid::Fr { 1 } }; grid.items = { item }; for (int totalSize = 100 - 20; totalSize < 100 + 20; ++totalSize) { Rectangle bounds { 0, 0, totalSize, totalSize }; grid.performLayout (bounds); expectEquals (component.getWidth(), targetSize); expectEquals (component.getHeight(), targetSize); } } { beginTest ("Track sizes specified in Px should translate to correctly rounded Component dimensions"); static constexpr int targetSize = 100; juce::Component component; juce::GridItem item { component }; item.alignSelf = juce::GridItem::AlignSelf::center; item.justifySelf = juce::GridItem::JustifySelf::center; item.setArea (1, 3); juce::Grid grid; grid.templateColumns = { juce::Grid::Fr { 1 }, juce::Grid::Fr { 1 }, juce::Grid::Px { targetSize }, juce::Grid::Fr { 1 } }; grid.templateRows = { juce::Grid::Fr { 1 } }; grid.items = { item }; for (int totalSize = 100 - 20; totalSize < 100 + 20; ++totalSize) { Rectangle bounds { 0, 0, totalSize, totalSize }; grid.performLayout (bounds); expectEquals (component.getWidth(), targetSize); } } { beginTest ("Evaluate invariants on randomised Grid layouts"); struct Solution { Grid grid; std::deque components; int absoluteWidth; Rectangle bounds; }; auto createSolution = [this] (int numColumns, float probabilityOfFractionalColumn, Rectangle bounds) -> Solution { auto random = getRandom(); Grid grid; grid.templateRows = { Grid::Fr { 1 } }; // Ensuring that the sum of absolute item widths never exceed total width const auto widthOfAbsolute = (int) ((float) bounds.getWidth() / (float) (numColumns + 1)); for (int i = 0; i < numColumns; ++i) { if (random.nextFloat() < probabilityOfFractionalColumn) grid.templateColumns.add (Grid::Fr { 1 }); else grid.templateColumns.add (Grid::Px { widthOfAbsolute }); } std::deque itemComponents (static_cast (grid.templateColumns.size())); for (auto& c : itemComponents) grid.items.add (GridItem { c }); grid.performLayout (bounds); return { std::move (grid), std::move (itemComponents), widthOfAbsolute, bounds }; }; const auto getFractionalComponentWidths = [] (const Solution& solution) { std::vector result; for (int i = 0; i < solution.grid.templateColumns.size(); ++i) if (solution.grid.templateColumns[i].isFractional()) result.push_back (solution.components[(size_t) i].getWidth()); return result; }; const auto getAbsoluteComponentWidths = [] (const Solution& solution) { std::vector result; for (int i = 0; i < solution.grid.templateColumns.size(); ++i) if (! solution.grid.templateColumns[i].isFractional()) result.push_back (solution.components[(size_t) i].getWidth()); return result; }; const auto evaluateInvariants = [&] (const Solution& solution) { const auto fractionalWidths = getFractionalComponentWidths (solution); if (! fractionalWidths.empty()) { const auto [min, max] = std::minmax_element (fractionalWidths.begin(), fractionalWidths.end()); expectLessOrEqual (*max - *min, 1, "Fr { 1 } items are expected to share the " "rounding errors equally and hence couldn't " "deviate in size by more than 1 px"); } const auto absoluteWidths = getAbsoluteComponentWidths (solution); for (const auto& w : absoluteWidths) expectEquals (w, solution.absoluteWidth, "Sizes specified in absolute dimensions should " "be preserved"); Rectangle unionOfComponentBounds; for (const auto& c : solution.components) unionOfComponentBounds = unionOfComponentBounds.getUnion (c.getBoundsInParent()); if ((size_t) solution.grid.templateColumns.size() == absoluteWidths.size()) expect (solution.bounds.contains (unionOfComponentBounds), "Non-oversized absolute Components " "should never be placed outside the " "provided bounds."); else expect (unionOfComponentBounds == solution.bounds, "With fractional items, positioned items " "should cover the provided bounds exactly"); }; const auto knownPreviousBad = createSolution (5, 1.0f, Rectangle { 0, 0, 600, 200 }.reduced (16)); evaluateInvariants (knownPreviousBad); auto random = getRandom(); for (int i = 0; i < 1000; ++i) { const auto numColumns = random.nextInt (Range { 1, 26 }); const auto probabilityOfFractionalColumn = random.nextFloat(); const auto bounds = Rectangle { random.nextInt (Range { 0, 3 }), random.nextInt (Range { 0, 3 }), random.nextInt (Range { 300, 1200 }), random.nextInt (Range { 100, 500 }) } .reduced (random.nextInt (Range { 0, 16 })); const auto randomSolution = createSolution (numColumns, probabilityOfFractionalColumn, bounds); evaluateInvariants (randomSolution); } } } }; static GridTests gridUnitTests; #endif } // namespace juce