/* ============================================================================== This file is part of the JUCE library - "Jules' Utility Class Extensions" Copyright 2004-7 by Raw Material Software ltd. ------------------------------------------------------------------------------ JUCE can be redistributed and/or modified under the terms of the GNU General Public License, as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. JUCE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with JUCE; if not, visit www.gnu.org/licenses or write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ------------------------------------------------------------------------------ If you'd like to release a closed-source product which uses JUCE, commercial licenses are also available: visit www.rawmaterialsoftware.com/juce for more information. ============================================================================== */ #ifndef __JUCE_REFERENCECOUNTEDARRAY_JUCEHEADER__ #define __JUCE_REFERENCECOUNTEDARRAY_JUCEHEADER__ #include "juce_ReferenceCountedObject.h" #include "juce_ArrayAllocationBase.h" #include "juce_ElementComparator.h" #include "../threads/juce_CriticalSection.h" //============================================================================== /** Holds a list of objects derived from ReferenceCountedObject. A ReferenceCountedArray holds objects derived from ReferenceCountedObject, and takes care of incrementing and decrementing their ref counts when they are added and removed from the array. To make all the array's methods thread-safe, pass in "CriticalSection" as the templated TypeOfCriticalSectionToUse parameter, instead of the default DummyCriticalSection. @see Array, OwnedArray, StringArray */ template class ReferenceCountedArray : private ArrayAllocationBase { public: //============================================================================== /** Creates an empty array. @param granularity this is the size of increment by which the internal storage used by the array will grow. Only change it from the default if you know the array is going to be very big and needs to be able to grow efficiently. @see ReferenceCountedObject, ArrayAllocationBase, Array, OwnedArray */ ReferenceCountedArray (const int granularity = juceDefaultArrayGranularity) throw() : ArrayAllocationBase (granularity), numUsed (0) { } /** Creates a copy of another array */ ReferenceCountedArray (const ReferenceCountedArray& other) throw() : ArrayAllocationBase (other.granularity), numUsed (other.numUsed) { other.lockArray(); this->setAllocatedSize (numUsed); memcpy (this->elements, other.elements, numUsed * sizeof (ObjectClass*)); for (int i = numUsed; --i >= 0;) if (this->elements[i] != 0) this->elements[i]->incReferenceCount(); other.unlockArray(); } /** Copies another array into this one. Any existing objects in this array will first be released. */ const ReferenceCountedArray& operator= (const ReferenceCountedArray& other) throw() { if (this != &other) { other.lockArray(); lock.enter(); clear(); this->granularity = other.granularity; this->ensureAllocatedSize (other.numUsed); numUsed = other.numUsed; memcpy (this->elements, other.elements, numUsed * sizeof (ObjectClass*)); minimiseStorageOverheads(); for (int i = numUsed; --i >= 0;) if (this->elements[i] != 0) this->elements[i]->incReferenceCount(); lock.exit(); other.unlockArray(); } return *this; } /** Destructor. Any objects in the array will be released, and may be deleted if not referenced from elsewhere. */ ~ReferenceCountedArray() { clear(); } //============================================================================== /** Removes all objects from the array. Any objects in the array that are not referenced from elsewhere will be deleted. */ void clear() { lock.enter(); while (numUsed > 0) if (this->elements [--numUsed] != 0) this->elements [numUsed]->decReferenceCount(); jassert (numUsed == 0); this->setAllocatedSize (0); lock.exit(); } /** Returns the current number of objects in the array. */ inline int size() const throw() { return numUsed; } /** Returns a pointer to the object at this index in the array. If the index is out-of-range, this will return a null pointer, (and it could be null anyway, because it's ok for the array to hold null pointers as well as objects). @see getUnchecked */ inline ObjectClass* operator[] (const int index) const throw() { lock.enter(); ObjectClass* const result = (((unsigned int) index) < (unsigned int) numUsed) ? this->elements [index] : (ObjectClass*) 0; lock.exit(); return result; } /** Returns a pointer to the object at this index in the array, without checking whether the index is in-range. This is a faster and less safe version of operator[] which doesn't check the index passed in, so it can be used when you're sure the index if always going to be legal. */ inline ObjectClass* getUnchecked (const int index) const throw() { lock.enter(); jassert (((unsigned int) index) < (unsigned int) numUsed); ObjectClass* const result = this->elements [index]; lock.exit(); return result; } /** Returns a pointer to the first object in the array. This will return a null pointer if the array's empty. @see getLast */ inline ObjectClass* getFirst() const throw() { lock.enter(); ObjectClass* const result = (numUsed > 0) ? this->elements [0] : (ObjectClass*) 0; lock.exit(); return result; } /** Returns a pointer to the last object in the array. This will return a null pointer if the array's empty. @see getFirst */ inline ObjectClass* getLast() const throw() { lock.enter(); ObjectClass* const result = (numUsed > 0) ? this->elements [numUsed - 1] : (ObjectClass*) 0; lock.exit(); return result; } //============================================================================== /** Finds the index of the first occurrence of an object in the array. @param objectToLookFor the object to look for @returns the index at which the object was found, or -1 if it's not found */ int indexOf (const ObjectClass* const objectToLookFor) const throw() { int result = -1; lock.enter(); ObjectClass** e = this->elements; for (int i = numUsed; --i >= 0;) { if (objectToLookFor == *e) { result = (int) (e - this->elements); break; } ++e; } lock.exit(); return result; } /** Returns true if the array contains a specified object. @param objectToLookFor the object to look for @returns true if the object is in the array */ bool contains (const ObjectClass* const objectToLookFor) const throw() { lock.enter(); ObjectClass** e = this->elements; for (int i = numUsed; --i >= 0;) { if (objectToLookFor == *e) { lock.exit(); return true; } ++e; } lock.exit(); return false; } /** Appends a new object to the end of the array. This will increase the new object's reference count. @param newObject the new object to add to the array @see set, insert, addIfNotAlreadyThere, addSorted, addArray */ void add (ObjectClass* const newObject) throw() { lock.enter(); this->ensureAllocatedSize (numUsed + 1); this->elements [numUsed++] = newObject; if (newObject != 0) newObject->incReferenceCount(); lock.exit(); } /** Inserts a new object into the array at the given index. If the index is less than 0 or greater than the size of the array, the element will be added to the end of the array. Otherwise, it will be inserted into the array, moving all the later elements along to make room. This will increase the new object's reference count. @param indexToInsertAt the index at which the new element should be inserted @param newObject the new object to add to the array @see add, addSorted, addIfNotAlreadyThere, set */ void insert (int indexToInsertAt, ObjectClass* const newObject) throw() { if (indexToInsertAt >= 0) { lock.enter(); if (indexToInsertAt > numUsed) indexToInsertAt = numUsed; this->ensureAllocatedSize (numUsed + 1); ObjectClass** const e = this->elements + indexToInsertAt; const int numToMove = numUsed - indexToInsertAt; if (numToMove > 0) memmove (e + 1, e, numToMove * sizeof (ObjectClass*)); *e = newObject; if (newObject != 0) newObject->incReferenceCount(); ++numUsed; lock.exit(); } else { add (newObject); } } /** Appends a new object at the end of the array as long as the array doesn't already contain it. If the array already contains a matching object, nothing will be done. @param newObject the new object to add to the array */ void addIfNotAlreadyThere (ObjectClass* const newObject) throw() { lock.enter(); if (! contains (newObject)) add (newObject); lock.exit(); } /** Replaces an object in the array with a different one. If the index is less than zero, this method does nothing. If the index is beyond the end of the array, the new object is added to the end of the array. The object being added has its reference count increased, and if it's replacing another object, then that one has its reference count decreased, and may be deleted. @param indexToChange the index whose value you want to change @param newObject the new value to set for this index. @see add, insert, remove */ void set (const int indexToChange, ObjectClass* const newObject) { if (indexToChange >= 0) { lock.enter(); if (newObject != 0) newObject->incReferenceCount(); if (indexToChange < numUsed) { if (this->elements [indexToChange] != 0) this->elements [indexToChange]->decReferenceCount(); this->elements [indexToChange] = newObject; } else { this->ensureAllocatedSize (numUsed + 1); this->elements [numUsed++] = newObject; } lock.exit(); } } /** Adds elements from another array to the end of this array. @param arrayToAddFrom the array from which to copy the elements @param startIndex the first element of the other array to start copying from @param numElementsToAdd how many elements to add from the other array. If this value is negative or greater than the number of available elements, all available elements will be copied. @see add */ void addArray (const ReferenceCountedArray& arrayToAddFrom, int startIndex = 0, int numElementsToAdd = -1) throw() { arrayToAddFrom.lockArray(); lock.enter(); if (startIndex < 0) { jassertfalse startIndex = 0; } if (numElementsToAdd < 0 || startIndex + numElementsToAdd > arrayToAddFrom.size()) numElementsToAdd = arrayToAddFrom.size() - startIndex; if (numElementsToAdd > 0) { this->ensureAllocatedSize (numUsed + numElementsToAdd); while (--numElementsToAdd >= 0) add (arrayToAddFrom.getUnchecked (startIndex++)); } lock.exit(); arrayToAddFrom.unlockArray(); } /** Inserts a new object into the array assuming that the array is sorted. This will use a comparator to find the position at which the new object should go. If the array isn't sorted, the behaviour of this method will be unpredictable. @param comparator the comparator object to use to compare the elements - see the sort() method for details about this object's form @param newObject the new object to insert to the array @see add, sort */ template void addSorted (ElementComparator& comparator, ObjectClass* newObject) throw() { lock.enter(); insert (findInsertIndexInSortedArray (comparator, this->elements, newObject, 0, numUsed), newObject); lock.exit(); } //============================================================================== /** Removes an object from the array. This will remove the object at a given index and move back all the subsequent objects to close the gap. If the index passed in is out-of-range, nothing will happen. The object that is removed will have its reference count decreased, and may be deleted if not referenced from elsewhere. @param indexToRemove the index of the element to remove @see removeObject, removeRange */ void remove (const int indexToRemove) { lock.enter(); if (((unsigned int) indexToRemove) < (unsigned int) numUsed) { ObjectClass** const e = this->elements + indexToRemove; if (*e != 0) (*e)->decReferenceCount(); --numUsed; const int numberToShift = numUsed - indexToRemove; if (numberToShift > 0) memmove (e, e + 1, numberToShift * sizeof (ObjectClass*)); if ((numUsed << 1) < this->numAllocated) minimiseStorageOverheads(); } lock.exit(); } /** Removes the first occurrence of a specified object from the array. If the item isn't found, no action is taken. If it is found, it is removed and has its reference count decreased. @param objectToRemove the object to try to remove @see remove, removeRange */ void removeObject (ObjectClass* const objectToRemove) { lock.enter(); remove (indexOf (objectToRemove)); lock.exit(); } /** Removes a range of objects from the array. This will remove a set of objects, starting from the given index, and move any subsequent elements down to close the gap. If the range extends beyond the bounds of the array, it will be safely clipped to the size of the array. The objects that are removed will have their reference counts decreased, and may be deleted if not referenced from elsewhere. @param startIndex the index of the first object to remove @param numberToRemove how many objects should be removed @see remove, removeObject */ void removeRange (const int startIndex, const int numberToRemove) { lock.enter(); const int start = jlimit (0, numUsed, startIndex); const int end = jlimit (0, numUsed, startIndex + numberToRemove); if (end > start) { int i; for (i = start; i < end; ++i) { if (this->elements[i] != 0) { this->elements[i]->decReferenceCount(); this->elements[i] = 0; // (in case one of the destructors accesses this array and hits a dangling pointer) } } const int rangeSize = end - start; ObjectClass** e = this->elements + start; i = numUsed - end; numUsed -= rangeSize; while (--i >= 0) { *e = e [rangeSize]; ++e; } if ((numUsed << 1) < this->numAllocated) minimiseStorageOverheads(); } lock.exit(); } /** Removes the last n objects from the array. The objects that are removed will have their reference counts decreased, and may be deleted if not referenced from elsewhere. @param howManyToRemove how many objects to remove from the end of the array @see remove, removeObject, removeRange */ void removeLast (int howManyToRemove = 1) { lock.enter(); if (howManyToRemove > numUsed) howManyToRemove = numUsed; while (--howManyToRemove >= 0) remove (numUsed - 1); lock.exit(); } /** Swaps a pair of objects in the array. If either of the indexes passed in is out-of-range, nothing will happen, otherwise the two objects at these positions will be exchanged. */ void swap (const int index1, const int index2) throw() { lock.enter(); if (((unsigned int) index1) < (unsigned int) numUsed && ((unsigned int) index2) < (unsigned int) numUsed) { swapVariables (this->elements [index1], this->elements [index2]); } lock.exit(); } /** Moves one of the objects to a different position. This will move the object to a specified index, shuffling along any intervening elements as required. So for example, if you have the array { 0, 1, 2, 3, 4, 5 } then calling move (2, 4) would result in { 0, 1, 3, 4, 2, 5 }. @param currentIndex the index of the object to be moved. If this isn't a valid index, then nothing will be done @param newIndex the index at which you'd like this object to end up. If this is less than zero, it will be moved to the end of the array */ void move (const int currentIndex, int newIndex) throw() { if (currentIndex != newIndex) { lock.enter(); if (((unsigned int) currentIndex) < (unsigned int) numUsed) { if (((unsigned int) newIndex) >= (unsigned int) numUsed) newIndex = numUsed - 1; ObjectClass* const value = this->elements [currentIndex]; if (newIndex > currentIndex) { memmove (this->elements + currentIndex, this->elements + currentIndex + 1, (newIndex - currentIndex) * sizeof (ObjectClass*)); } else { memmove (this->elements + newIndex + 1, this->elements + newIndex, (currentIndex - newIndex) * sizeof (ObjectClass*)); } this->elements [newIndex] = value; } lock.exit(); } } //============================================================================== /** Compares this array to another one. @returns true only if the other array contains the same objects in the same order */ bool operator== (const ReferenceCountedArray& other) const throw() { other.lockArray(); lock.enter(); bool result = numUsed == other.numUsed; if (result) { for (int i = numUsed; --i >= 0;) { if (this->elements [i] != other.elements [i]) { result = false; break; } } } lock.exit(); other.unlockArray(); return result; } /** Compares this array to another one. @see operator== */ bool operator!= (const ReferenceCountedArray& other) const throw() { return ! operator== (other); } //============================================================================== /** Sorts the elements in the array. This will use a comparator object to sort the elements into order. The object passed must have a method of the form: @code int compareElements (ElementType first, ElementType second); @endcode ..and this method must return: - a value of < 0 if the first comes before the second - a value of 0 if the two objects are equivalent - a value of > 0 if the second comes before the first To improve performance, the compareElements() method can be declared as static or const. @param comparator the comparator to use for comparing elements. @param retainOrderOfEquivalentItems if this is true, then items which the comparator says are equivalent will be kept in the order in which they currently appear in the array. This is slower to perform, but may be important in some cases. If it's false, a faster algorithm is used, but equivalent elements may be rearranged. @see sortArray */ template void sort (ElementComparator& comparator, const bool retainOrderOfEquivalentItems = false) const throw() { (void) comparator; // if you pass in an object with a static compareElements() method, this // avoids getting warning messages about the parameter being unused lock.enter(); sortArray (comparator, this->elements, 0, size() - 1, retainOrderOfEquivalentItems); lock.exit(); } //============================================================================== /** Reduces the amount of storage being used by the array. Arrays typically allocate slightly more storage than they need, and after removing elements, they may have quite a lot of unused space allocated. This method will reduce the amount of allocated storage to a minimum. */ void minimiseStorageOverheads() throw() { lock.enter(); if (numUsed == 0) { this->setAllocatedSize (0); } else { const int newAllocation = this->granularity * (numUsed / this->granularity + 1); if (newAllocation < this->numAllocated) this->setAllocatedSize (newAllocation); } lock.exit(); } //============================================================================== /** Locks the array's CriticalSection. Of course if the type of section used is a DummyCriticalSection, this won't have any effect. @see unlockArray */ void lockArray() const throw() { lock.enter(); } /** Unlocks the array's CriticalSection. Of course if the type of section used is a DummyCriticalSection, this won't have any effect. @see lockArray */ void unlockArray() const throw() { lock.exit(); } //============================================================================== juce_UseDebuggingNewOperator private: int numUsed; TypeOfCriticalSectionToUse lock; }; #endif // __JUCE_REFERENCECOUNTEDARRAY_JUCEHEADER__