/* ============================================================================== This file is part of the JUCE library - "Jules' Utility Class Extensions" Copyright 2004-9 by Raw Material Software Ltd. ------------------------------------------------------------------------------ JUCE can be redistributed and/or modified under the terms of the GNU General Public License (Version 2), as published by the Free Software Foundation. A copy of the license is included in the JUCE distribution, or can be found online at www.gnu.org/licenses. JUCE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. ------------------------------------------------------------------------------ To release a closed-source product which uses JUCE, commercial licenses are available: visit www.rawmaterialsoftware.com/juce for more information. ============================================================================== */ /* This monolithic file contains the entire Juce source tree! To build an app which uses Juce, all you need to do is to add this file to your project, and include juce.h in your own cpp files. */ #ifdef __JUCE_JUCEHEADER__ /* When you add the amalgamated cpp file to your project, you mustn't include it in a file where you've already included juce.h - just put it inside a file on its own, possibly with your config flags preceding it, but don't include anything else. */ #error #endif /********* Start of inlined file: juce_TargetPlatform.h *********/ #ifndef __JUCE_TARGETPLATFORM_JUCEHEADER__ #define __JUCE_TARGETPLATFORM_JUCEHEADER__ /* This file figures out which platform is being built, and defines some macros that the rest of the code can use for OS-specific compilation. Macros that will be set here are: - One of JUCE_WINDOWS, JUCE_MAC or JUCE_LINUX. - Either JUCE_32BIT or JUCE_64BIT, depending on the architecture. - Either JUCE_LITTLE_ENDIAN or JUCE_BIG_ENDIAN. - Either JUCE_INTEL or JUCE_PPC - Either JUCE_GCC or JUCE_MSVC */ #if (defined (_WIN32) || defined (_WIN64)) #define JUCE_WIN32 1 #define JUCE_WINDOWS 1 #elif defined (LINUX) || defined (__linux__) #define JUCE_LINUX 1 #elif defined(__APPLE_CPP__) || defined(__APPLE_CC__) #include // (needed to find out what platform we're using) #if TARGET_OS_IPHONE || TARGET_IPHONE_SIMULATOR #define JUCE_IPHONE 1 #else #define JUCE_MAC 1 #endif #else #error "Unknown platform!" #endif #if JUCE_WINDOWS #ifdef _MSC_VER #ifdef _WIN64 #define JUCE_64BIT 1 #else #define JUCE_32BIT 1 #endif #endif #ifdef _DEBUG #define JUCE_DEBUG 1 #endif /** If defined, this indicates that the processor is little-endian. */ #define JUCE_LITTLE_ENDIAN 1 #define JUCE_INTEL 1 #endif #if JUCE_MAC #ifndef NDEBUG #define JUCE_DEBUG 1 #endif #ifdef __LITTLE_ENDIAN__ #define JUCE_LITTLE_ENDIAN 1 #else #define JUCE_BIG_ENDIAN 1 #endif #if defined (__ppc__) || defined (__ppc64__) #define JUCE_PPC 1 #else #define JUCE_INTEL 1 #endif #ifdef __LP64__ #define JUCE_64BIT 1 #else #define JUCE_32BIT 1 #endif #if (MAC_OS_X_VERSION_MIN_REQUIRED < MAC_OS_X_VERSION_10_3) #error "Building for OSX 10.2 is no longer supported!" #endif #if (! defined (MAC_OS_X_VERSION_10_4)) || (MAC_OS_X_VERSION_MIN_REQUIRED < MAC_OS_X_VERSION_10_4) #define MACOS_10_3_OR_EARLIER 1 #endif #if (! defined (MAC_OS_X_VERSION_10_5)) || (MAC_OS_X_VERSION_MIN_REQUIRED < MAC_OS_X_VERSION_10_5) #define MACOS_10_4_OR_EARLIER 1 #endif #endif #if JUCE_IPHONE #ifndef NDEBUG #define JUCE_DEBUG 1 #endif #ifdef __LITTLE_ENDIAN__ #define JUCE_LITTLE_ENDIAN 1 #else #define JUCE_BIG_ENDIAN 1 #endif #endif #if JUCE_LINUX #ifdef _DEBUG #define JUCE_DEBUG 1 #endif // Allow override for big-endian Linux platforms #ifndef JUCE_BIG_ENDIAN #define JUCE_LITTLE_ENDIAN 1 #endif #if defined (__LP64__) || defined (_LP64) #define JUCE_64BIT 1 #else #define JUCE_32BIT 1 #endif #define JUCE_INTEL 1 #endif // Compiler type macros. #ifdef __GNUC__ #define JUCE_GCC 1 #elif defined (_MSC_VER) #define JUCE_MSVC 1 #if _MSC_VER >= 1400 #define JUCE_USE_INTRINSICS 1 #endif #else #error unknown compiler #endif #endif // __JUCE_TARGETPLATFORM_JUCEHEADER__ /********* End of inlined file: juce_TargetPlatform.h *********/ // FORCE_AMALGAMATOR_INCLUDE /********* Start of inlined file: juce_Config.h *********/ #ifndef __JUCE_CONFIG_JUCEHEADER__ #define __JUCE_CONFIG_JUCEHEADER__ /* This file contains macros that enable/disable various JUCE features. */ /** The name of the namespace that all Juce classes and functions will be put inside. If this is not defined, no namespace will be used. */ #ifndef JUCE_NAMESPACE #define JUCE_NAMESPACE juce #endif /** Normally, JUCE_DEBUG is set to 1 or 0 based on compiler and project settings, but if you define this value, you can override this can force it to be true or false. */ #ifndef JUCE_FORCE_DEBUG //#define JUCE_FORCE_DEBUG 1 #endif /** If this flag is enabled, the the jassert and jassertfalse macros will always use Logger::writeToLog() to write a message when an assertion happens. Enabling it will also leave this turned on in release builds. When it's disabled, however, the jassert and jassertfalse macros will not be compiled in a release build. @see jassert, jassertfalse, Logger */ #ifndef JUCE_LOG_ASSERTIONS // #define JUCE_LOG_ASSERTIONS 1 #endif /** Comment out this macro if you haven't got the Steinberg ASIO SDK, without which the ASIOAudioIODevice class can't be built. See the comments in the ASIOAudioIODevice class's header file for more info about this. (This only affects a Win32 build) */ #ifndef JUCE_ASIO #define JUCE_ASIO 1 #endif /** Comment out this macro to disable the Windows WASAPI audio device type. */ #ifndef JUCE_WASAPI // #define JUCE_WASAPI 1 #endif /** Comment out this macro to disable the Windows WASAPI audio device type. */ #ifndef JUCE_DIRECTSOUND #define JUCE_DIRECTSOUND 1 #endif /** Comment out this macro to disable building of ALSA device support on Linux. */ #ifndef JUCE_ALSA #define JUCE_ALSA 1 #endif /** Comment out this macro if you don't want to enable QuickTime or if you don't have the SDK installed. If this flag is not enabled, the QuickTimeMovieComponent and QuickTimeAudioFormat classes will be unavailable. On Windows, if you enable this, you'll need to have the QuickTime SDK installed, and its header files will need to be on your include path. */ #if ! (defined (JUCE_QUICKTIME) || JUCE_LINUX || JUCE_IPHONE || (JUCE_WINDOWS && ! JUCE_MSVC)) #define JUCE_QUICKTIME 1 #endif /** Comment out this macro if you don't want to enable OpenGL or if you don't have the appropriate headers and libraries available. If it's not enabled, the OpenGLComponent class will be unavailable. */ #ifndef JUCE_OPENGL #define JUCE_OPENGL 1 #endif /** These flags enable the Ogg-Vorbis and Flac audio formats. If you're not going to need either of these formats, turn off the flags to avoid bloating your codebase with them. */ #ifndef JUCE_USE_FLAC #define JUCE_USE_FLAC 1 #endif #ifndef JUCE_USE_OGGVORBIS #define JUCE_USE_OGGVORBIS 1 #endif /** This flag lets you enable support for CD-burning. You might want to disable it to build without the MS SDK under windows. */ #if (! defined (JUCE_USE_CDBURNER)) && ! (JUCE_WINDOWS && ! JUCE_MSVC) #define JUCE_USE_CDBURNER 1 #endif /** Enabling this provides support for cameras, using the CameraDevice class */ #if JUCE_QUICKTIME && ! defined (JUCE_USE_CAMERA) // #define JUCE_USE_CAMERA 1 #endif /** Enabling this macro means that all regions that get repainted will have a coloured line drawn around them. This is handy if you're trying to optimise drawing, because it lets you easily see when anything is being repainted unnecessarily. */ #ifndef JUCE_ENABLE_REPAINT_DEBUGGING // #define JUCE_ENABLE_REPAINT_DEBUGGING 1 #endif /** Enable this under Linux to use Xinerama for multi-monitor support. */ #ifndef JUCE_USE_XINERAMA #define JUCE_USE_XINERAMA 1 #endif /** Enable this under Linux to use XShm for faster shared-memory rendering. */ #ifndef JUCE_USE_XSHM #define JUCE_USE_XSHM 1 #endif /** Enabling this builds support for VST audio plugins. @see VSTPluginFormat, AudioPluginFormat, AudioPluginFormatManager, JUCE_PLUGINHOST_AU */ #ifndef JUCE_PLUGINHOST_VST // #define JUCE_PLUGINHOST_VST 1 #endif /** Enabling this builds support for AudioUnit audio plugins. @see AudioUnitPluginFormat, AudioPluginFormat, AudioPluginFormatManager, JUCE_PLUGINHOST_VST */ #ifndef JUCE_PLUGINHOST_AU // #define JUCE_PLUGINHOST_AU 1 #endif /** Enabling this will avoid including any UI code in the build. This is handy for writing command-line utilities, e.g. on linux boxes which don't have some of the UI libraries installed. */ #ifndef JUCE_ONLY_BUILD_CORE_LIBRARY //#define JUCE_ONLY_BUILD_CORE_LIBRARY 1 #endif /** This lets you disable building of the WebBrowserComponent, if it's not required. */ #ifndef JUCE_WEB_BROWSER #define JUCE_WEB_BROWSER 1 #endif /** Setting this allows the build to use old Carbon libraries that will be deprecated in newer versions of OSX. This is handy for some backwards-compatibility reasons. */ #ifndef JUCE_SUPPORT_CARBON #define JUCE_SUPPORT_CARBON 1 #endif /* These flags let you avoid the direct inclusion of some 3rd-party libs in the codebase - you might need to use this if you're linking to some of these libraries yourself. */ #ifndef JUCE_INCLUDE_ZLIB_CODE #define JUCE_INCLUDE_ZLIB_CODE 1 #endif #ifndef JUCE_INCLUDE_FLAC_CODE #define JUCE_INCLUDE_FLAC_CODE 1 #endif #ifndef JUCE_INCLUDE_OGGVORBIS_CODE #define JUCE_INCLUDE_OGGVORBIS_CODE 1 #endif #ifndef JUCE_INCLUDE_PNGLIB_CODE #define JUCE_INCLUDE_PNGLIB_CODE 1 #endif #ifndef JUCE_INCLUDE_JPEGLIB_CODE #define JUCE_INCLUDE_JPEGLIB_CODE 1 #endif /** Enable this to add extra memory-leak info to the new and delete operators. (Currently, this only affects Windows builds in debug mode). */ #ifndef JUCE_CHECK_MEMORY_LEAKS #define JUCE_CHECK_MEMORY_LEAKS 1 #endif /** Enable this to turn on juce's internal catching of exceptions. Turning it off will avoid any exception catching. With it on, all exceptions are passed to the JUCEApplication::unhandledException() callback for logging. */ #ifndef JUCE_CATCH_UNHANDLED_EXCEPTIONS #define JUCE_CATCH_UNHANDLED_EXCEPTIONS 1 #endif /** If this macro is set, the Juce String class will use unicode as its internal representation. If it isn't set, it'll use ANSI. */ #ifndef JUCE_STRINGS_ARE_UNICODE #define JUCE_STRINGS_ARE_UNICODE 1 #endif #endif /********* End of inlined file: juce_Config.h *********/ // FORCE_AMALGAMATOR_INCLUDE //============================================================================== #if JUCE_WINDOWS /********* Start of inlined file: juce_win32_NativeIncludes.h *********/ #ifndef __JUCE_WIN32_NATIVEINCLUDES_JUCEHEADER__ #define __JUCE_WIN32_NATIVEINCLUDES_JUCEHEADER__ #ifndef STRICT #define STRICT 1 #endif #undef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN 1 #ifdef _MSC_VER #pragma warning (push) #pragma warning (disable : 4100 4201 4514 4312 4995) #endif #define _WIN32_WINNT 0x0500 #define _UNICODE 1 #define UNICODE 1 #ifndef _WIN32_IE #define _WIN32_IE 0x0400 #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if JUCE_OPENGL #include #endif #undef PACKED #if JUCE_ASIO /* This is very frustrating - we only need to use a handful of definitions from a couple of the header files in Steinberg's ASIO SDK, and it'd be easy to copy about 30 lines of code into this cpp file to create a fully stand-alone ASIO implementation... ..unfortunately that would break Steinberg's license agreement for use of their SDK, so I'm not allowed to do this. This means that anyone who wants to use JUCE's ASIO abilities will have to: 1) Agree to Steinberg's licensing terms and download the ASIO SDK (see www.steinberg.net/Steinberg/Developers.asp). 2) Rebuild the whole of JUCE, setting the global definition JUCE_ASIO (you can un-comment the "#define JUCE_ASIO" line in juce_Config.h if you prefer). Make sure that your header search path will find the iasiodrv.h file that comes with the SDK. (Only about 2-3 of the SDK header files are actually needed - so to simplify things, you could just copy these into your JUCE directory). If you're compiling and you get an error here because you don't have the ASIO SDK installed, you can disable ASIO support by commenting-out the "#define JUCE_ASIO" line in juce_Config.h, and rebuild your Juce library. */ #include "iasiodrv.h" #endif #if JUCE_USE_CDBURNER /* You'll need the Platform SDK for these headers - if you don't have it and don't need to use CD-burning, then you might just want to disable the JUCE_USE_CDBURNER flag in juce_Config.h to avoid these includes. */ #include #include #endif #if JUCE_USE_CAMERA /* If you're using the camera classes, you'll need access to a few DirectShow headers. Both of these files are provided in the normal Windows SDK, but some Microsoft plonker didn't realise that qedit.h doesn't actually compile without the rest of the DirectShow SDK! Microsoft's suggested fix for this is to hack their qedit.h file! See: http://social.msdn.microsoft.com/Forums/en-US/windowssdk/thread/ed097d2c-3d68-4f48-8448-277eaaf68252 .. which is a pathetic bodge, but a lot less hassle than installing the full DShow SDK. */ #include #include #endif #if JUCE_WASAPI #include #include #include #include #endif #if JUCE_QUICKTIME /* If you've got an include error here, you probably need to install the QuickTime SDK and add its header directory to your include path. Alternatively, if you don't need any QuickTime services, just turn off the JUCE_QUICKTIME flag in juce_Config.h */ #include #include #include #include #include /* If you've got QuickTime 7 installed, then these COM objects should be found in the "\Program Files\Quicktime" directory. You'll need to add this directory to your include search path to make these import statements work. */ #import #import #endif #ifdef _MSC_VER #pragma warning (pop) #endif /** A simple COM smart pointer. Avoids having to include ATL just to get one of these. */ template class ComSmartPtr { public: ComSmartPtr() throw() : p (0) {} ComSmartPtr (T* const p_) : p (p_) { if (p_ != 0) p_->AddRef(); } ComSmartPtr (const ComSmartPtr& p_) : p (p_.p) { if (p != 0) p->AddRef(); } ~ComSmartPtr() { if (p != 0) p->Release(); } operator T*() const throw() { return p; } T& operator*() const throw() { return *p; } T** operator&() throw() { return &p; } T* operator->() const throw() { return p; } T* operator= (T* const newP) { if (newP != 0) newP->AddRef(); if (p != 0) p->Release(); p = newP; return newP; } T* operator= (const ComSmartPtr& newP) { return operator= (newP.p); } HRESULT CoCreateInstance (REFCLSID rclsid, DWORD dwClsContext) { #ifndef __MINGW32__ operator= (0); return ::CoCreateInstance (rclsid, 0, dwClsContext, __uuidof(T), (void**) &p); #else return S_FALSE; #endif } T* p; }; #endif // __JUCE_WIN32_NATIVEINCLUDES_JUCEHEADER__ /********* End of inlined file: juce_win32_NativeIncludes.h *********/ #elif JUCE_LINUX /********* Start of inlined file: juce_linux_NativeIncludes.h *********/ #ifndef __JUCE_LINUX_NATIVEINCLUDES_JUCEHEADER__ #define __JUCE_LINUX_NATIVEINCLUDES_JUCEHEADER__ /* This file wraps together all the linux-specific headers, so that we can include them all just once, and compile all our platform-specific stuff in one big lump, keeping it out of the way of the rest of the codebase. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Got a build error here? You'll need to install the freetype library... The name of the package to install is "libfreetype6-dev". */ #include #include FT_FREETYPE_H #include #include #include #include #include #include #include #if JUCE_USE_XINERAMA /* If you're trying to use Xinerama, you'll need to install the "libxinerama-dev" package.. */ #include #endif #if JUCE_USE_XSHM #include #include #include #endif #if JUCE_OPENGL /* Got an include error here? If you want to install OpenGL support, the packages to get are "mesa-common-dev" and "freeglut3-dev". Alternatively, you can turn off the JUCE_OPENGL flag in juce_Config.h if you want to disable it. */ #include #endif #undef KeyPress #if JUCE_ALSA /* Got an include error here? If so, you've either not got ALSA installed, or you've not got your paths set up correctly to find its header files. The package you need to install to get ASLA support is "libasound2-dev". If you don't have the ALSA library and don't want to build Juce with audio support, just disable the JUCE_ALSA flag in juce_Config.h */ #include #endif #undef SIZEOF #endif // __JUCE_LINUX_NATIVEINCLUDES_JUCEHEADER__ /********* End of inlined file: juce_linux_NativeIncludes.h *********/ #elif JUCE_MAC || JUCE_IPHONE /********* Start of inlined file: juce_mac_NativeIncludes.h *********/ #ifndef __JUCE_MAC_NATIVEINCLUDES_JUCEHEADER__ #define __JUCE_MAC_NATIVEINCLUDES_JUCEHEADER__ /* This file wraps together all the mac-specific code, so that we can include all the native headers just once, and compile all our platform-specific stuff in one big lump, keeping it out of the way of the rest of the codebase. */ #if JUCE_IPHONE #import #import #import #import #import #import #include #else #import #import #import #import #import #import #import #import #import #import #import #import #include #include #endif #include #include #include #include #include #include #include #include #include #include #if MACOS_10_4_OR_EARLIER #include typedef int NSInteger; typedef unsigned int NSUInteger; #endif #endif // __JUCE_MAC_NATIVEINCLUDES_JUCEHEADER__ /********* End of inlined file: juce_mac_NativeIncludes.h *********/ #else #error "Unknown platform!" #endif //============================================================================== #define DONT_SET_USING_JUCE_NAMESPACE 1 #include "juce_amalgamated.h" #define NO_DUMMY_DECL #if (defined(_MSC_VER) && (_MSC_VER <= 1200)) #pragma warning (disable: 4309 4305) #endif #if JUCE_MAC && JUCE_32BIT && JUCE_SUPPORT_CARBON && ! JUCE_ONLY_BUILD_CORE_LIBRARY BEGIN_JUCE_NAMESPACE /********* Start of inlined file: juce_mac_CarbonViewWrapperComponent.h *********/ #ifndef __JUCE_MAC_CARBONVIEWWRAPPERCOMPONENT_JUCEHEADER__ #define __JUCE_MAC_CARBONVIEWWRAPPERCOMPONENT_JUCEHEADER__ /** Creates a floating carbon window that can be used to hold a carbon UI. This is a handy class that's designed to be inlined where needed, e.g. in the audio plugin hosting code. */ class CarbonViewWrapperComponent : public Component, public ComponentMovementWatcher, public Timer { public: CarbonViewWrapperComponent() : ComponentMovementWatcher (this), wrapperWindow (0), embeddedView (0), recursiveResize (false) { } virtual ~CarbonViewWrapperComponent() { jassert (embeddedView == 0); // must call deleteWindow() in the subclass's destructor! } virtual HIViewRef attachView (WindowRef windowRef, HIViewRef rootView) = 0; virtual void removeView (HIViewRef embeddedView) = 0; virtual void mouseDown (int x, int y) {} virtual void paint() {} virtual bool getEmbeddedViewSize (int& w, int& h) { if (embeddedView == 0) return false; HIRect bounds; HIViewGetBounds (embeddedView, &bounds); w = jmax (1, roundFloatToInt (bounds.size.width)); h = jmax (1, roundFloatToInt (bounds.size.height)); return true; } void createWindow() { if (wrapperWindow == 0) { Rect r; r.left = getScreenX(); r.top = getScreenY(); r.right = r.left + getWidth(); r.bottom = r.top + getHeight(); CreateNewWindow (kDocumentWindowClass, (WindowAttributes) (kWindowStandardHandlerAttribute | kWindowCompositingAttribute | kWindowNoShadowAttribute | kWindowNoTitleBarAttribute), &r, &wrapperWindow); jassert (wrapperWindow != 0); if (wrapperWindow == 0) return; NSWindow* carbonWindow = [[NSWindow alloc] initWithWindowRef: wrapperWindow]; NSWindow* ownerWindow = [((NSView*) getWindowHandle()) window]; [ownerWindow addChildWindow: carbonWindow ordered: NSWindowAbove]; embeddedView = attachView (wrapperWindow, HIViewGetRoot (wrapperWindow)); EventTypeSpec windowEventTypes[] = { { kEventClassWindow, kEventWindowGetClickActivation }, { kEventClassWindow, kEventWindowHandleDeactivate } }; EventHandlerUPP upp = NewEventHandlerUPP (carbonEventCallback); InstallWindowEventHandler (wrapperWindow, upp, sizeof (windowEventTypes) / sizeof (EventTypeSpec), windowEventTypes, this, &eventHandlerRef); setOurSizeToEmbeddedViewSize(); setEmbeddedWindowToOurSize(); creationTime = Time::getCurrentTime(); } } void deleteWindow() { removeView (embeddedView); embeddedView = 0; if (wrapperWindow != 0) { RemoveEventHandler (eventHandlerRef); DisposeWindow (wrapperWindow); wrapperWindow = 0; } } void setOurSizeToEmbeddedViewSize() { int w, h; if (getEmbeddedViewSize (w, h)) { if (w != getWidth() || h != getHeight()) { startTimer (50); setSize (w, h); if (getParentComponent() != 0) getParentComponent()->setSize (w, h); } else { startTimer (jlimit (50, 500, getTimerInterval() + 20)); } } else { stopTimer(); } } void setEmbeddedWindowToOurSize() { if (! recursiveResize) { recursiveResize = true; if (embeddedView != 0) { HIRect r; r.origin.x = 0; r.origin.y = 0; r.size.width = (float) getWidth(); r.size.height = (float) getHeight(); HIViewSetFrame (embeddedView, &r); } if (wrapperWindow != 0) { Rect wr; wr.left = getScreenX(); wr.top = getScreenY(); wr.right = wr.left + getWidth(); wr.bottom = wr.top + getHeight(); SetWindowBounds (wrapperWindow, kWindowContentRgn, &wr); ShowWindow (wrapperWindow); } recursiveResize = false; } } void componentMovedOrResized (bool /*wasMoved*/, bool /*wasResized*/) { setEmbeddedWindowToOurSize(); } void componentPeerChanged() { deleteWindow(); createWindow(); } void componentVisibilityChanged (Component&) { if (isShowing()) createWindow(); else deleteWindow(); setEmbeddedWindowToOurSize(); } static void recursiveHIViewRepaint (HIViewRef view) throw() { HIViewSetNeedsDisplay (view, true); HIViewRef child = HIViewGetFirstSubview (view); while (child != 0) { recursiveHIViewRepaint (child); child = HIViewGetNextView (child); } } void timerCallback() { setOurSizeToEmbeddedViewSize(); // To avoid strange overpainting problems when the UI is first opened, we'll // repaint it a few times during the first second that it's on-screen.. if ((Time::getCurrentTime() - creationTime).inMilliseconds() < 1000) recursiveHIViewRepaint (HIViewGetRoot (wrapperWindow)); } OSStatus carbonEventHandler (EventHandlerCallRef nextHandlerRef, EventRef event) { switch (GetEventKind (event)) { case kEventWindowHandleDeactivate: ActivateWindow (wrapperWindow, TRUE); break; case kEventWindowGetClickActivation: { getTopLevelComponent()->toFront (false); ClickActivationResult howToHandleClick = kActivateAndHandleClick; SetEventParameter (event, kEventParamClickActivation, typeClickActivationResult, sizeof (ClickActivationResult), &howToHandleClick); HIViewSetNeedsDisplay (embeddedView, true); } break; } return noErr; } static pascal OSStatus carbonEventCallback (EventHandlerCallRef nextHandlerRef, EventRef event, void* userData) { return ((CarbonViewWrapperComponent*) userData)->carbonEventHandler (nextHandlerRef, event); } protected: WindowRef wrapperWindow; HIViewRef embeddedView; bool recursiveResize; Time creationTime; EventHandlerRef eventHandlerRef; }; #endif // __JUCE_MAC_CARBONVIEWWRAPPERCOMPONENT_JUCEHEADER__ /********* End of inlined file: juce_mac_CarbonViewWrapperComponent.h *********/ END_JUCE_NAMESPACE #endif #define JUCE_AMALGAMATED_TEMPLATE 1 //============================================================================== /********* Start of inlined file: juce_FileLogger.cpp *********/ BEGIN_JUCE_NAMESPACE FileLogger::FileLogger (const File& logFile_, const String& welcomeMessage, const int maxInitialFileSizeBytes) : logFile (logFile_) { if (maxInitialFileSizeBytes >= 0) trimFileSize (maxInitialFileSizeBytes); if (! logFile_.exists()) { // do this so that the parent directories get created.. logFile_.create(); } logStream = logFile_.createOutputStream (256); jassert (logStream != 0); String welcome; welcome << "\r\n**********************************************************\r\n" << welcomeMessage << "\r\nLog started: " << Time::getCurrentTime().toString (true, true) << "\r\n"; logMessage (welcome); } FileLogger::~FileLogger() { deleteAndZero (logStream); } void FileLogger::logMessage (const String& message) { if (logStream != 0) { Logger::outputDebugString (message); const ScopedLock sl (logLock); (*logStream) << message << T("\r\n"); logStream->flush(); } } void FileLogger::trimFileSize (int maxFileSizeBytes) const { if (maxFileSizeBytes <= 0) { logFile.deleteFile(); } else { const int64 fileSize = logFile.getSize(); if (fileSize > maxFileSizeBytes) { FileInputStream* const in = logFile.createInputStream(); jassert (in != 0); if (in != 0) { in->setPosition (fileSize - maxFileSizeBytes); String content; { MemoryBlock contentToSave; contentToSave.setSize (maxFileSizeBytes + 4); contentToSave.fillWith (0); in->read (contentToSave.getData(), maxFileSizeBytes); delete in; content = contentToSave.toString(); } int newStart = 0; while (newStart < fileSize && content[newStart] != '\n' && content[newStart] != '\r') ++newStart; logFile.deleteFile(); logFile.appendText (content.substring (newStart), false, false); } } } } FileLogger* FileLogger::createDefaultAppLogger (const String& logFileSubDirectoryName, const String& logFileName, const String& welcomeMessage, const int maxInitialFileSizeBytes) { #if JUCE_MAC File logFile ("~/Library/Logs"); logFile = logFile.getChildFile (logFileName); #else File logFile (File::getSpecialLocation (File::userApplicationDataDirectory)); if (logFile.isDirectory()) { logFile = logFile.getChildFile (logFileSubDirectoryName) .getChildFile (logFileName); } #endif return new FileLogger (logFile, welcomeMessage, maxInitialFileSizeBytes); } END_JUCE_NAMESPACE /********* End of inlined file: juce_FileLogger.cpp *********/ /********* Start of inlined file: juce_Logger.cpp *********/ BEGIN_JUCE_NAMESPACE Logger::Logger() { } Logger::~Logger() { } static Logger* currentLogger = 0; void Logger::setCurrentLogger (Logger* const newLogger, const bool deleteOldLogger) { Logger* const oldLogger = currentLogger; currentLogger = newLogger; if (deleteOldLogger && (oldLogger != 0)) delete oldLogger; } void Logger::writeToLog (const String& message) { if (currentLogger != 0) currentLogger->logMessage (message); else outputDebugString (message); } #if JUCE_LOG_ASSERTIONS void JUCE_API juce_LogAssertion (const char* filename, const int lineNum) throw() { String m ("JUCE Assertion failure in "); m << filename << ", line " << lineNum; Logger::writeToLog (m); } #endif END_JUCE_NAMESPACE /********* End of inlined file: juce_Logger.cpp *********/ /********* Start of inlined file: juce_Random.cpp *********/ BEGIN_JUCE_NAMESPACE Random::Random (const int64 seedValue) throw() : seed (seedValue) { } Random::~Random() throw() { } void Random::setSeed (const int64 newSeed) throw() { seed = newSeed; } void Random::setSeedRandomly() { Random r1 (Time::getMillisecondCounter()); Random r2 (Time::getHighResolutionTicks()); Random r3 (Time::getHighResolutionTicksPerSecond()); Random r4 (Time::currentTimeMillis()); setSeed (nextInt64() ^ r1.nextInt64() ^ r2.nextInt64() ^ r3.nextInt64() ^ r4.nextInt64()); } int Random::nextInt() throw() { seed = (seed * literal64bit (0x5deece66d) + 11) & literal64bit (0xffffffffffff); return (int) (seed >> 16); } int Random::nextInt (const int maxValue) throw() { jassert (maxValue > 0); return (nextInt() & 0x7fffffff) % maxValue; } int64 Random::nextInt64() throw() { return (((int64) nextInt()) << 32) | (int64) (uint64) (uint32) nextInt(); } bool Random::nextBool() throw() { return (nextInt() & 0x80000000) != 0; } float Random::nextFloat() throw() { return ((uint32) nextInt()) / (float) 0xffffffff; } double Random::nextDouble() throw() { return ((uint32) nextInt()) / (double) 0xffffffff; } const BitArray Random::nextLargeNumber (const BitArray& maximumValue) throw() { BitArray n; do { fillBitsRandomly (n, 0, maximumValue.getHighestBit() + 1); } while (n.compare (maximumValue) >= 0); return n; } void Random::fillBitsRandomly (BitArray& arrayToChange, int startBit, int numBits) throw() { arrayToChange.setBit (startBit + numBits - 1, true); // to force the array to pre-allocate space while ((startBit & 31) != 0 && numBits > 0) { arrayToChange.setBit (startBit++, nextBool()); --numBits; } while (numBits >= 32) { arrayToChange.setBitRangeAsInt (startBit, 32, (unsigned int) nextInt()); startBit += 32; numBits -= 32; } while (--numBits >= 0) arrayToChange.setBit (startBit + numBits, nextBool()); } Random& Random::getSystemRandom() throw() { static Random sysRand (1); return sysRand; } END_JUCE_NAMESPACE /********* End of inlined file: juce_Random.cpp *********/ /********* Start of inlined file: juce_RelativeTime.cpp *********/ BEGIN_JUCE_NAMESPACE RelativeTime::RelativeTime (const double seconds_) throw() : seconds (seconds_) { } RelativeTime::RelativeTime (const RelativeTime& other) throw() : seconds (other.seconds) { } RelativeTime::~RelativeTime() throw() { } const RelativeTime RelativeTime::milliseconds (const int milliseconds) throw() { return RelativeTime (milliseconds * 0.001); } const RelativeTime RelativeTime::milliseconds (const int64 milliseconds) throw() { return RelativeTime (milliseconds * 0.001); } const RelativeTime RelativeTime::minutes (const double numberOfMinutes) throw() { return RelativeTime (numberOfMinutes * 60.0); } const RelativeTime RelativeTime::hours (const double numberOfHours) throw() { return RelativeTime (numberOfHours * (60.0 * 60.0)); } const RelativeTime RelativeTime::days (const double numberOfDays) throw() { return RelativeTime (numberOfDays * (60.0 * 60.0 * 24.0)); } const RelativeTime RelativeTime::weeks (const double numberOfWeeks) throw() { return RelativeTime (numberOfWeeks * (60.0 * 60.0 * 24.0 * 7.0)); } int64 RelativeTime::inMilliseconds() const throw() { return (int64)(seconds * 1000.0); } double RelativeTime::inMinutes() const throw() { return seconds / 60.0; } double RelativeTime::inHours() const throw() { return seconds / (60.0 * 60.0); } double RelativeTime::inDays() const throw() { return seconds / (60.0 * 60.0 * 24.0); } double RelativeTime::inWeeks() const throw() { return seconds / (60.0 * 60.0 * 24.0 * 7.0); } const String RelativeTime::getDescription (const String& returnValueForZeroTime) const throw() { if (seconds < 0.001 && seconds > -0.001) return returnValueForZeroTime; String result; if (seconds < 0) result = T("-"); int fieldsShown = 0; int n = abs ((int) inWeeks()); if (n > 0) { result << n << ((n == 1) ? TRANS(" week ") : TRANS(" weeks ")); ++fieldsShown; } n = abs ((int) inDays()) % 7; if (n > 0) { result << n << ((n == 1) ? TRANS(" day ") : TRANS(" days ")); ++fieldsShown; } if (fieldsShown < 2) { n = abs ((int) inHours()) % 24; if (n > 0) { result << n << ((n == 1) ? TRANS(" hr ") : TRANS(" hrs ")); ++fieldsShown; } if (fieldsShown < 2) { n = abs ((int) inMinutes()) % 60; if (n > 0) { result << n << ((n == 1) ? TRANS(" min ") : TRANS(" mins ")); ++fieldsShown; } if (fieldsShown < 2) { n = abs ((int) inSeconds()) % 60; if (n > 0) { result << n << ((n == 1) ? TRANS(" sec ") : TRANS(" secs ")); ++fieldsShown; } if (fieldsShown < 1) { n = abs ((int) inMilliseconds()) % 1000; if (n > 0) { result << n << TRANS(" ms"); ++fieldsShown; } } } } } return result.trimEnd(); } const RelativeTime& RelativeTime::operator= (const RelativeTime& other) throw() { seconds = other.seconds; return *this; } bool RelativeTime::operator== (const RelativeTime& other) const throw() { return seconds == other.seconds; } bool RelativeTime::operator!= (const RelativeTime& other) const throw() { return seconds != other.seconds; } bool RelativeTime::operator> (const RelativeTime& other) const throw() { return seconds > other.seconds; } bool RelativeTime::operator< (const RelativeTime& other) const throw() { return seconds < other.seconds; } bool RelativeTime::operator>= (const RelativeTime& other) const throw() { return seconds >= other.seconds; } bool RelativeTime::operator<= (const RelativeTime& other) const throw() { return seconds <= other.seconds; } const RelativeTime RelativeTime::operator+ (const RelativeTime& timeToAdd) const throw() { return RelativeTime (seconds + timeToAdd.seconds); } const RelativeTime RelativeTime::operator- (const RelativeTime& timeToSubtract) const throw() { return RelativeTime (seconds - timeToSubtract.seconds); } const RelativeTime RelativeTime::operator+ (const double secondsToAdd) const throw() { return RelativeTime (seconds + secondsToAdd); } const RelativeTime RelativeTime::operator- (const double secondsToSubtract) const throw() { return RelativeTime (seconds - secondsToSubtract); } const RelativeTime& RelativeTime::operator+= (const RelativeTime& timeToAdd) throw() { seconds += timeToAdd.seconds; return *this; } const RelativeTime& RelativeTime::operator-= (const RelativeTime& timeToSubtract) throw() { seconds -= timeToSubtract.seconds; return *this; } const RelativeTime& RelativeTime::operator+= (const double secondsToAdd) throw() { seconds += secondsToAdd; return *this; } const RelativeTime& RelativeTime::operator-= (const double secondsToSubtract) throw() { seconds -= secondsToSubtract; return *this; } END_JUCE_NAMESPACE /********* End of inlined file: juce_RelativeTime.cpp *********/ /********* Start of inlined file: juce_SystemStats.cpp *********/ BEGIN_JUCE_NAMESPACE void juce_initialiseStrings(); const String SystemStats::getJUCEVersion() throw() { return "JUCE v" + String (JUCE_MAJOR_VERSION) + "." + String (JUCE_MINOR_VERSION); } static bool juceInitialisedNonGUI = false; void JUCE_PUBLIC_FUNCTION initialiseJuce_NonGUI() { if (! juceInitialisedNonGUI) { #if JUCE_MAC || JUCE_IPHONE const ScopedAutoReleasePool pool; #endif #ifdef JUCE_DEBUG // Some simple test code to keep an eye on things and make sure these functions // work ok on all platforms. Let me know if any of these assertions fail! int n = 1; atomicIncrement (n); jassert (atomicIncrementAndReturn (n) == 3); atomicDecrement (n); jassert (atomicDecrementAndReturn (n) == 1); jassert (swapByteOrder ((uint32) 0x11223344) == 0x44332211); // quick test to make sure the run-time lib doesn't crash on freeing a null-pointer. SystemStats* nullPointer = 0; juce_free (nullPointer); delete[] nullPointer; delete nullPointer; #endif // Now the real initialisation.. juceInitialisedNonGUI = true; DBG (SystemStats::getJUCEVersion()); juce_initialiseStrings(); SystemStats::initialiseStats(); Random::getSystemRandom().setSeedRandomly(); // (mustn't call this before initialiseStats() because it relies on the time being set up) } } #if JUCE_WINDOWS // This is imported from the sockets code.. typedef int (__stdcall juce_CloseWin32SocketLibCall) (void); extern juce_CloseWin32SocketLibCall* juce_CloseWin32SocketLib; #endif #if JUCE_DEBUG extern void juce_CheckForDanglingStreams(); #endif void JUCE_PUBLIC_FUNCTION shutdownJuce_NonGUI() { if (juceInitialisedNonGUI) { #if JUCE_MAC || JUCE_IPHONE const ScopedAutoReleasePool pool; #endif #if JUCE_WINDOWS // need to shut down sockets if they were used.. if (juce_CloseWin32SocketLib != 0) (*juce_CloseWin32SocketLib)(); #endif LocalisedStrings::setCurrentMappings (0); Thread::stopAllThreads (3000); #if JUCE_DEBUG juce_CheckForDanglingStreams(); #endif juceInitialisedNonGUI = false; } } #ifdef JUCE_DLL void* juce_Malloc (const int size) { return malloc (size); } void* juce_Calloc (const int size) { return calloc (1, size); } void* juce_Realloc (void* const block, const int size) { return realloc (block, size); } void juce_Free (void* const block) { free (block); } #if defined (JUCE_DEBUG) && JUCE_MSVC && JUCE_CHECK_MEMORY_LEAKS void* juce_DebugMalloc (const int size, const char* file, const int line) { return _malloc_dbg (size, _NORMAL_BLOCK, file, line); } void* juce_DebugCalloc (const int size, const char* file, const int line) { return _calloc_dbg (1, size, _NORMAL_BLOCK, file, line); } void* juce_DebugRealloc (void* const block, const int size, const char* file, const int line) { return _realloc_dbg (block, size, _NORMAL_BLOCK, file, line); } void juce_DebugFree (void* const block) { _free_dbg (block, _NORMAL_BLOCK); } #endif #endif END_JUCE_NAMESPACE /********* End of inlined file: juce_SystemStats.cpp *********/ /********* Start of inlined file: juce_Time.cpp *********/ #ifdef _MSC_VER #pragma warning (disable: 4514) #pragma warning (push) #endif #ifndef JUCE_WINDOWS #include #else #include #endif #include BEGIN_JUCE_NAMESPACE #ifdef _MSC_VER #pragma warning (pop) #ifdef _INC_TIME_INL #define USE_NEW_SECURE_TIME_FNS #endif #endif static void millisToLocal (const int64 millis, struct tm& result) throw() { const int64 seconds = millis / 1000; if (seconds < literal64bit (86400) || seconds >= literal64bit (2145916800)) { // use extended maths for dates beyond 1970 to 2037.. const int timeZoneAdjustment = 31536000 - (int) (Time (1971, 0, 1, 0, 0).toMilliseconds() / 1000); const int64 jdm = seconds + timeZoneAdjustment + literal64bit (210866803200); const int days = (int) (jdm / literal64bit (86400)); const int a = 32044 + days; const int b = (4 * a + 3) / 146097; const int c = a - (b * 146097) / 4; const int d = (4 * c + 3) / 1461; const int e = c - (d * 1461) / 4; const int m = (5 * e + 2) / 153; result.tm_mday = e - (153 * m + 2) / 5 + 1; result.tm_mon = m + 2 - 12 * (m / 10); result.tm_year = b * 100 + d - 6700 + (m / 10); result.tm_wday = (days + 1) % 7; result.tm_yday = -1; int t = (int) (jdm % literal64bit (86400)); result.tm_hour = t / 3600; t %= 3600; result.tm_min = t / 60; result.tm_sec = t % 60; result.tm_isdst = -1; } else { time_t now = (time_t) (seconds); #if JUCE_WINDOWS #ifdef USE_NEW_SECURE_TIME_FNS if (now >= 0 && now <= 0x793406fff) localtime_s (&result, &now); else zeromem (&result, sizeof (result)); #else result = *localtime (&now); #endif #else // more thread-safe localtime_r (&now, &result); #endif } } Time::Time() throw() : millisSinceEpoch (0) { } Time::Time (const Time& other) throw() : millisSinceEpoch (other.millisSinceEpoch) { } Time::Time (const int64 ms) throw() : millisSinceEpoch (ms) { } Time::Time (const int year, const int month, const int day, const int hours, const int minutes, const int seconds, const int milliseconds, const bool useLocalTime) throw() { jassert (year > 100); // year must be a 4-digit version if (year < 1971 || year >= 2038 || ! useLocalTime) { // use extended maths for dates beyond 1970 to 2037.. const int timeZoneAdjustment = useLocalTime ? (31536000 - (int) (Time (1971, 0, 1, 0, 0).toMilliseconds() / 1000)) : 0; const int a = (13 - month) / 12; const int y = year + 4800 - a; const int jd = day + (153 * (month + 12 * a - 2) + 2) / 5 + (y * 365) + (y / 4) - (y / 100) + (y / 400) - 32045; const int64 s = ((int64) jd) * literal64bit (86400) - literal64bit (210866803200); millisSinceEpoch = 1000 * (s + (hours * 3600 + minutes * 60 + seconds - timeZoneAdjustment)) + milliseconds; } else { struct tm t; t.tm_year = year - 1900; t.tm_mon = month; t.tm_mday = day; t.tm_hour = hours; t.tm_min = minutes; t.tm_sec = seconds; t.tm_isdst = -1; millisSinceEpoch = 1000 * (int64) mktime (&t); if (millisSinceEpoch < 0) millisSinceEpoch = 0; else millisSinceEpoch += milliseconds; } } Time::~Time() throw() { } const Time& Time::operator= (const Time& other) throw() { millisSinceEpoch = other.millisSinceEpoch; return *this; } int64 Time::currentTimeMillis() throw() { static uint32 lastCounterResult = 0xffffffff; static int64 correction = 0; const uint32 now = getMillisecondCounter(); // check the counter hasn't wrapped (also triggered the first time this function is called) if (now < lastCounterResult) { // double-check it's actually wrapped, in case multi-cpu machines have timers that drift a bit. if (lastCounterResult == 0xffffffff || now < lastCounterResult - 10) { // get the time once using normal library calls, and store the difference needed to // turn the millisecond counter into a real time. #if JUCE_WINDOWS struct _timeb t; #ifdef USE_NEW_SECURE_TIME_FNS _ftime_s (&t); #else _ftime (&t); #endif correction = (((int64) t.time) * 1000 + t.millitm) - now; #else struct timeval tv; struct timezone tz; gettimeofday (&tv, &tz); correction = (((int64) tv.tv_sec) * 1000 + tv.tv_usec / 1000) - now; #endif } } lastCounterResult = now; return correction + now; } uint32 juce_millisecondsSinceStartup() throw(); static uint32 lastMSCounterValue = 0; uint32 Time::getMillisecondCounter() throw() { const uint32 now = juce_millisecondsSinceStartup(); if (now < lastMSCounterValue) { // in multi-threaded apps this might be called concurrently, so // make sure that our last counter value only increases and doesn't // go backwards.. if (now < lastMSCounterValue - 1000) lastMSCounterValue = now; } else { lastMSCounterValue = now; } return now; } uint32 Time::getApproximateMillisecondCounter() throw() { jassert (lastMSCounterValue != 0); return lastMSCounterValue; } void Time::waitForMillisecondCounter (const uint32 targetTime) throw() { for (;;) { const uint32 now = getMillisecondCounter(); if (now >= targetTime) break; const int toWait = targetTime - now; if (toWait > 2) { Thread::sleep (jmin (20, toWait >> 1)); } else { // xxx should consider using mutex_pause on the mac as it apparently // makes it seem less like a spinlock and avoids lowering the thread pri. for (int i = 10; --i >= 0;) Thread::yield(); } } } double Time::highResolutionTicksToSeconds (const int64 ticks) throw() { return ticks / (double) getHighResolutionTicksPerSecond(); } int64 Time::secondsToHighResolutionTicks (const double seconds) throw() { return (int64) (seconds * (double) getHighResolutionTicksPerSecond()); } const Time JUCE_CALLTYPE Time::getCurrentTime() throw() { return Time (currentTimeMillis()); } const String Time::toString (const bool includeDate, const bool includeTime, const bool includeSeconds, const bool use24HourClock) const throw() { String result; if (includeDate) { result << getDayOfMonth() << ' ' << getMonthName (true) << ' ' << getYear(); if (includeTime) result << ' '; } if (includeTime) { if (includeSeconds) { result += String::formatted (T("%d:%02d:%02d "), (use24HourClock) ? getHours() : getHoursInAmPmFormat(), getMinutes(), getSeconds()); } else { result += String::formatted (T("%d.%02d"), (use24HourClock) ? getHours() : getHoursInAmPmFormat(), getMinutes()); } if (! use24HourClock) result << (isAfternoon() ? "pm" : "am"); } return result.trimEnd(); } const String Time::formatted (const tchar* const format) const throw() { tchar buffer[80]; struct tm t; millisToLocal (millisSinceEpoch, t); if (CharacterFunctions::ftime (buffer, 79, format, &t) <= 0) { int bufferSize = 128; for (;;) { MemoryBlock mb (bufferSize * sizeof (tchar)); tchar* const b = (tchar*) mb.getData(); if (CharacterFunctions::ftime (b, bufferSize, format, &t) > 0) return String (b); bufferSize += 128; } } return String (buffer); } int Time::getYear() const throw() { struct tm t; millisToLocal (millisSinceEpoch, t); return t.tm_year + 1900; } int Time::getMonth() const throw() { struct tm t; millisToLocal (millisSinceEpoch, t); return t.tm_mon; } int Time::getDayOfMonth() const throw() { struct tm t; millisToLocal (millisSinceEpoch, t); return t.tm_mday; } int Time::getDayOfWeek() const throw() { struct tm t; millisToLocal (millisSinceEpoch, t); return t.tm_wday; } int Time::getHours() const throw() { struct tm t; millisToLocal (millisSinceEpoch, t); return t.tm_hour; } int Time::getHoursInAmPmFormat() const throw() { const int hours = getHours(); if (hours == 0) return 12; else if (hours <= 12) return hours; else return hours - 12; } bool Time::isAfternoon() const throw() { return getHours() >= 12; } static int extendedModulo (const int64 value, const int modulo) throw() { return (int) (value >= 0 ? (value % modulo) : (value - ((value / modulo) + 1) * modulo)); } int Time::getMinutes() const throw() { struct tm t; millisToLocal (millisSinceEpoch, t); return t.tm_min; } int Time::getSeconds() const throw() { return extendedModulo (millisSinceEpoch / 1000, 60); } int Time::getMilliseconds() const throw() { return extendedModulo (millisSinceEpoch, 1000); } bool Time::isDaylightSavingTime() const throw() { struct tm t; millisToLocal (millisSinceEpoch, t); return t.tm_isdst != 0; } const String Time::getTimeZone() const throw() { String zone[2]; #if JUCE_WINDOWS _tzset(); #ifdef USE_NEW_SECURE_TIME_FNS { char name [128]; size_t length; for (int i = 0; i < 2; ++i) { zeromem (name, sizeof (name)); _get_tzname (&length, name, 127, i); zone[i] = name; } } #else const char** const zonePtr = (const char**) _tzname; zone[0] = zonePtr[0]; zone[1] = zonePtr[1]; #endif #else tzset(); const char** const zonePtr = (const char**) tzname; zone[0] = zonePtr[0]; zone[1] = zonePtr[1]; #endif if (isDaylightSavingTime()) { zone[0] = zone[1]; if (zone[0].length() > 3 && zone[0].containsIgnoreCase (T("daylight")) && zone[0].contains (T("GMT"))) zone[0] = "BST"; } return zone[0].substring (0, 3); } const String Time::getMonthName (const bool threeLetterVersion) const throw() { return getMonthName (getMonth(), threeLetterVersion); } const String Time::getWeekdayName (const bool threeLetterVersion) const throw() { return getWeekdayName (getDayOfWeek(), threeLetterVersion); } const String Time::getMonthName (int monthNumber, const bool threeLetterVersion) throw() { const char* const shortMonthNames[] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; const char* const longMonthNames[] = { "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December" }; monthNumber %= 12; return TRANS (threeLetterVersion ? shortMonthNames [monthNumber] : longMonthNames [monthNumber]); } const String Time::getWeekdayName (int day, const bool threeLetterVersion) throw() { const char* const shortDayNames[] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" }; const char* const longDayNames[] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday" }; day %= 7; return TRANS (threeLetterVersion ? shortDayNames [day] : longDayNames [day]); } END_JUCE_NAMESPACE /********* End of inlined file: juce_Time.cpp *********/ /********* Start of inlined file: juce_BitArray.cpp *********/ BEGIN_JUCE_NAMESPACE BitArray::BitArray() throw() : numValues (4), highestBit (-1), negative (false) { values = (unsigned int*) juce_calloc (sizeof (unsigned int) * (numValues + 1)); } BitArray::BitArray (const int value) throw() : numValues (4), highestBit (31), negative (value < 0) { values = (unsigned int*) juce_calloc (sizeof (unsigned int) * (numValues + 1)); values[0] = abs (value); highestBit = getHighestBit(); } BitArray::BitArray (int64 value) throw() : numValues (4), highestBit (63), negative (value < 0) { values = (unsigned int*) juce_calloc (sizeof (unsigned int) * (numValues + 1)); if (value < 0) value = -value; values[0] = (unsigned int) value; values[1] = (unsigned int) (value >> 32); highestBit = getHighestBit(); } BitArray::BitArray (const unsigned int value) throw() : numValues (4), highestBit (31), negative (false) { values = (unsigned int*) juce_calloc (sizeof (unsigned int) * (numValues + 1)); values[0] = value; highestBit = getHighestBit(); } BitArray::BitArray (const BitArray& other) throw() : numValues (jmax (4, (other.highestBit >> 5) + 1)), highestBit (other.getHighestBit()), negative (other.negative) { const int bytes = sizeof (unsigned int) * (numValues + 1); values = (unsigned int*) juce_malloc (bytes); memcpy (values, other.values, bytes); } BitArray::~BitArray() throw() { juce_free (values); } const BitArray& BitArray::operator= (const BitArray& other) throw() { if (this != &other) { juce_free (values); highestBit = other.getHighestBit(); numValues = jmax (4, (highestBit >> 5) + 1); negative = other.negative; const int memSize = sizeof (unsigned int) * (numValues + 1); values = (unsigned int*)juce_malloc (memSize); memcpy (values, other.values, memSize); } return *this; } // result == 0 = the same // result < 0 = this number is smaller // result > 0 = this number is bigger int BitArray::compare (const BitArray& other) const throw() { if (isNegative() == other.isNegative()) { const int absComp = compareAbsolute (other); return isNegative() ? -absComp : absComp; } else { return isNegative() ? -1 : 1; } } int BitArray::compareAbsolute (const BitArray& other) const throw() { const int h1 = getHighestBit(); const int h2 = other.getHighestBit(); if (h1 > h2) return 1; else if (h1 < h2) return -1; for (int i = (h1 >> 5) + 1; --i >= 0;) if (values[i] != other.values[i]) return (values[i] > other.values[i]) ? 1 : -1; return 0; } bool BitArray::operator== (const BitArray& other) const throw() { return compare (other) == 0; } bool BitArray::operator!= (const BitArray& other) const throw() { return compare (other) != 0; } bool BitArray::operator[] (const int bit) const throw() { return bit >= 0 && bit <= highestBit && ((values [bit >> 5] & (1 << (bit & 31))) != 0); } bool BitArray::isEmpty() const throw() { return getHighestBit() < 0; } void BitArray::clear() throw() { if (numValues > 16) { juce_free (values); numValues = 4; values = (unsigned int*) juce_calloc (sizeof (unsigned int) * (numValues + 1)); } else { zeromem (values, sizeof (unsigned int) * (numValues + 1)); } highestBit = -1; negative = false; } void BitArray::setBit (const int bit) throw() { if (bit >= 0) { if (bit > highestBit) { ensureSize (bit >> 5); highestBit = bit; } values [bit >> 5] |= (1 << (bit & 31)); } } void BitArray::setBit (const int bit, const bool shouldBeSet) throw() { if (shouldBeSet) setBit (bit); else clearBit (bit); } void BitArray::clearBit (const int bit) throw() { if (bit >= 0 && bit <= highestBit) values [bit >> 5] &= ~(1 << (bit & 31)); } void BitArray::setRange (int startBit, int numBits, const bool shouldBeSet) throw() { while (--numBits >= 0) setBit (startBit++, shouldBeSet); } void BitArray::insertBit (const int bit, const bool shouldBeSet) throw() { if (bit >= 0) shiftBits (1, bit); setBit (bit, shouldBeSet); } void BitArray::andWith (const BitArray& other) throw() { // this operation will only work with the absolute values jassert (isNegative() == other.isNegative()); int n = numValues; while (n > other.numValues) values[--n] = 0; while (--n >= 0) values[n] &= other.values[n]; if (other.highestBit < highestBit) highestBit = other.highestBit; highestBit = getHighestBit(); } void BitArray::orWith (const BitArray& other) throw() { if (other.highestBit < 0) return; // this operation will only work with the absolute values jassert (isNegative() == other.isNegative()); ensureSize (other.highestBit >> 5); int n = (other.highestBit >> 5) + 1; while (--n >= 0) values[n] |= other.values[n]; if (other.highestBit > highestBit) highestBit = other.highestBit; highestBit = getHighestBit(); } void BitArray::xorWith (const BitArray& other) throw() { if (other.highestBit < 0) return; // this operation will only work with the absolute values jassert (isNegative() == other.isNegative()); ensureSize (other.highestBit >> 5); int n = (other.highestBit >> 5) + 1; while (--n >= 0) values[n] ^= other.values[n]; if (other.highestBit > highestBit) highestBit = other.highestBit; highestBit = getHighestBit(); } void BitArray::add (const BitArray& other) throw() { if (other.isNegative()) { BitArray o (other); o.negate(); subtract (o); return; } if (isNegative()) { if (compareAbsolute (other) < 0) { BitArray temp (*this); temp.negate(); *this = other; subtract (temp); } else { negate(); subtract (other); negate(); } return; } if (other.highestBit > highestBit) highestBit = other.highestBit; ++highestBit; const int numInts = (highestBit >> 5) + 1; ensureSize (numInts); int64 remainder = 0; for (int i = 0; i <= numInts; ++i) { if (i < numValues) remainder += values[i]; if (i < other.numValues) remainder += other.values[i]; values[i] = (unsigned int) remainder; remainder >>= 32; } jassert (remainder == 0); highestBit = getHighestBit(); } void BitArray::subtract (const BitArray& other) throw() { if (other.isNegative()) { BitArray o (other); o.negate(); add (o); return; } if (! isNegative()) { if (compareAbsolute (other) < 0) { BitArray temp (*this); *this = other; subtract (temp); negate(); return; } } else { negate(); add (other); negate(); return; } const int numInts = (highestBit >> 5) + 1; const int maxOtherInts = (other.highestBit >> 5) + 1; int64 amountToSubtract = 0; for (int i = 0; i <= numInts; ++i) { if (i <= maxOtherInts) amountToSubtract += (int64)other.values[i]; if (values[i] >= amountToSubtract) { values[i] = (unsigned int) (values[i] - amountToSubtract); amountToSubtract = 0; } else { const int64 n = ((int64) values[i] + (((int64) 1) << 32)) - amountToSubtract; values[i] = (unsigned int) n; amountToSubtract = 1; } } } void BitArray::multiplyBy (const BitArray& other) throw() { BitArray total; highestBit = getHighestBit(); const bool wasNegative = isNegative(); setNegative (false); for (int i = 0; i <= highestBit; ++i) { if (operator[](i)) { BitArray n (other); n.setNegative (false); n.shiftBits (i); total.add (n); } } *this = total; negative = wasNegative ^ other.isNegative(); } void BitArray::divideBy (const BitArray& divisor, BitArray& remainder) throw() { jassert (this != &remainder); // (can't handle passing itself in to get the remainder) const int divHB = divisor.getHighestBit(); const int ourHB = getHighestBit(); if (divHB < 0 || ourHB < 0) { // division by zero remainder.clear(); clear(); } else { remainder = *this; remainder.setNegative (false); const bool wasNegative = isNegative(); clear(); BitArray temp (divisor); temp.setNegative (false); int leftShift = ourHB - divHB; temp.shiftBits (leftShift); while (leftShift >= 0) { if (remainder.compareAbsolute (temp) >= 0) { remainder.subtract (temp); setBit (leftShift); } if (--leftShift >= 0) temp.shiftBits (-1); } negative = wasNegative ^ divisor.isNegative(); remainder.setNegative (wasNegative); } } void BitArray::modulo (const BitArray& divisor) throw() { BitArray remainder; divideBy (divisor, remainder); *this = remainder; } static const BitArray simpleGCD (BitArray* m, BitArray* n) throw() { while (! m->isEmpty()) { if (n->compareAbsolute (*m) > 0) swapVariables (m, n); m->subtract (*n); } return *n; } const BitArray BitArray::findGreatestCommonDivisor (BitArray n) const throw() { BitArray m (*this); while (! n.isEmpty()) { if (abs (m.getHighestBit() - n.getHighestBit()) <= 16) return simpleGCD (&m, &n); BitArray temp1 (m), temp2; temp1.divideBy (n, temp2); m = n; n = temp2; } return m; } void BitArray::exponentModulo (const BitArray& exponent, const BitArray& modulus) throw() { BitArray exp (exponent); exp.modulo (modulus); BitArray value (*this); value.modulo (modulus); clear(); setBit (0); while (! exp.isEmpty()) { if (exp [0]) { multiplyBy (value); this->modulo (modulus); } value.multiplyBy (value); value.modulo (modulus); exp.shiftBits (-1); } } void BitArray::inverseModulo (const BitArray& modulus) throw() { const BitArray one (1); if (modulus == one || modulus.isNegative()) { clear(); return; } if (isNegative() || compareAbsolute (modulus) >= 0) this->modulo (modulus); if (*this == one) return; if (! (*this)[0]) { // not invertible clear(); return; } BitArray a1 (modulus); BitArray a2 (*this); BitArray b1 (modulus); BitArray b2 (1); while (a2 != one) { BitArray temp1, temp2, multiplier (a1); multiplier.divideBy (a2, temp1); temp1 = a2; temp1.multiplyBy (multiplier); temp2 = a1; temp2.subtract (temp1); a1 = a2; a2 = temp2; temp1 = b2; temp1.multiplyBy (multiplier); temp2 = b1; temp2.subtract (temp1); b1 = b2; b2 = temp2; } while (b2.isNegative()) b2.add (modulus); b2.modulo (modulus); *this = b2; } void BitArray::shiftBits (int bits, const int startBit) throw() { if (highestBit < 0) return; if (startBit > 0) { if (bits < 0) { // right shift for (int i = startBit; i <= highestBit; ++i) setBit (i, operator[] (i - bits)); highestBit = getHighestBit(); } else if (bits > 0) { // left shift for (int i = highestBit + 1; --i >= startBit;) setBit (i + bits, operator[] (i)); while (--bits >= 0) clearBit (bits + startBit); } } else { if (bits < 0) { // right shift bits = -bits; if (bits > highestBit) { clear(); } else { const int wordsToMove = bits >> 5; int top = 1 + (highestBit >> 5) - wordsToMove; highestBit -= bits; if (wordsToMove > 0) { int i; for (i = 0; i < top; ++i) values [i] = values [i + wordsToMove]; for (i = 0; i < wordsToMove; ++i) values [top + i] = 0; bits &= 31; } if (bits != 0) { const int invBits = 32 - bits; --top; for (int i = 0; i < top; ++i) values[i] = (values[i] >> bits) | (values [i + 1] << invBits); values[top] = (values[top] >> bits); } highestBit = getHighestBit(); } } else if (bits > 0) { // left shift ensureSize (((highestBit + bits) >> 5) + 1); const int wordsToMove = bits >> 5; int top = 1 + (highestBit >> 5); highestBit += bits; if (wordsToMove > 0) { int i; for (i = top; --i >= 0;) values [i + wordsToMove] = values [i]; for (i = 0; i < wordsToMove; ++i) values [i] = 0; bits &= 31; } if (bits != 0) { const int invBits = 32 - bits; for (int i = top + 1 + wordsToMove; --i > wordsToMove;) values[i] = (values[i] << bits) | (values [i - 1] >> invBits); values [wordsToMove] = values [wordsToMove] << bits; } highestBit = getHighestBit(); } } } const BitArray BitArray::getBitRange (int startBit, int numBits) const throw() { BitArray r; numBits = jmin (numBits, getHighestBit() + 1 - startBit); r.ensureSize (numBits >> 5); r.highestBit = numBits; int i = 0; while (numBits > 0) { r.values[i++] = getBitRangeAsInt (startBit, jmin (32, numBits)); numBits -= 32; startBit += 32; } r.highestBit = r.getHighestBit(); return r; } int BitArray::getBitRangeAsInt (const int startBit, int numBits) const throw() { if (numBits > 32) { jassertfalse // use getBitRange() if you need more than 32 bits.. numBits = 32; } numBits = jmin (numBits, highestBit + 1 - startBit); if (numBits <= 0) return 0; const int pos = startBit >> 5; const int offset = startBit & 31; const int endSpace = 32 - numBits; uint32 n = ((uint32) values [pos]) >> offset; if (offset > endSpace) n |= ((uint32) values [pos + 1]) << (32 - offset); return (int) (n & (((uint32) 0xffffffff) >> endSpace)); } void BitArray::setBitRangeAsInt (const int startBit, int numBits, unsigned int valueToSet) throw() { if (numBits > 32) { jassertfalse numBits = 32; } for (int i = 0; i < numBits; ++i) { setBit (startBit + i, (valueToSet & 1) != 0); valueToSet >>= 1; } } bool BitArray::isNegative() const throw() { return negative && ! isEmpty(); } void BitArray::setNegative (const bool neg) throw() { negative = neg; } void BitArray::negate() throw() { negative = (! negative) && ! isEmpty(); } int BitArray::countNumberOfSetBits() const throw() { int total = 0; for (int i = (highestBit >> 5) + 1; --i >= 0;) { unsigned int n = values[i]; if (n == 0xffffffff) { total += 32; } else { while (n != 0) { total += (n & 1); n >>= 1; } } } return total; } int BitArray::getHighestBit() const throw() { for (int i = highestBit + 1; --i >= 0;) if ((values [i >> 5] & (1 << (i & 31))) != 0) return i; return -1; } int BitArray::findNextSetBit (int i) const throw() { for (; i <= highestBit; ++i) if ((values [i >> 5] & (1 << (i & 31))) != 0) return i; return -1; } int BitArray::findNextClearBit (int i) const throw() { for (; i <= highestBit; ++i) if ((values [i >> 5] & (1 << (i & 31))) == 0) break; return i; } void BitArray::ensureSize (const int numVals) throw() { if (numVals + 2 >= numValues) { int oldSize = numValues; numValues = ((numVals + 2) * 3) / 2; values = (unsigned int*) juce_realloc (values, sizeof (unsigned int) * numValues + 4); while (oldSize < numValues) values [oldSize++] = 0; } } const String BitArray::toString (const int base, const int minimumNumCharacters) const throw() { String s; BitArray v (*this); if (base == 2 || base == 8 || base == 16) { const int bits = (base == 2) ? 1 : (base == 8 ? 3 : 4); static const tchar* const hexDigits = T("0123456789abcdef"); for (;;) { const int remainder = v.getBitRangeAsInt (0, bits); v.shiftBits (-bits); if (remainder == 0 && v.isEmpty()) break; s = String::charToString (hexDigits [remainder]) + s; } } else if (base == 10) { const BitArray ten (10); BitArray remainder; for (;;) { v.divideBy (ten, remainder); if (remainder.isEmpty() && v.isEmpty()) break; s = String (remainder.getBitRangeAsInt (0, 8)) + s; } } else { jassertfalse // can't do the specified base return String::empty; } const int length = s.length(); if (length < minimumNumCharacters) s = String::repeatedString (T("0"), minimumNumCharacters - length); return isNegative() ? T("-") + s : s; } void BitArray::parseString (const String& text, const int base) throw() { clear(); const tchar* t = (const tchar*) text; if (base == 2 || base == 8 || base == 16) { const int bits = (base == 2) ? 1 : (base == 8 ? 3 : 4); for (;;) { const tchar c = *t++; const int digit = CharacterFunctions::getHexDigitValue (c); if (((unsigned int) digit) < (unsigned int) base) { shiftBits (bits); add (digit); } else if (c == 0) { break; } } } else if (base == 10) { const BitArray ten ((unsigned int) 10); for (;;) { const tchar c = *t++; if (c >= T('0') && c <= T('9')) { multiplyBy (ten); add ((int) (c - T('0'))); } else if (c == 0) { break; } } } setNegative (text.trimStart().startsWithChar (T('-'))); } const MemoryBlock BitArray::toMemoryBlock() const throw() { const int numBytes = (getHighestBit() + 8) >> 3; MemoryBlock mb (numBytes); for (int i = 0; i < numBytes; ++i) mb[i] = (uint8) getBitRangeAsInt (i << 3, 8); return mb; } void BitArray::loadFromMemoryBlock (const MemoryBlock& data) throw() { clear(); for (int i = data.getSize(); --i >= 0;) this->setBitRangeAsInt (i << 3, 8, data [i]); } END_JUCE_NAMESPACE /********* End of inlined file: juce_BitArray.cpp *********/ /********* Start of inlined file: juce_MemoryBlock.cpp *********/ BEGIN_JUCE_NAMESPACE MemoryBlock::MemoryBlock() throw() : data (0), size (0) { } MemoryBlock::MemoryBlock (const int initialSize, const bool initialiseToZero) throw() { if (initialSize > 0) { size = initialSize; if (initialiseToZero) data = (char*) juce_calloc (initialSize); else data = (char*) juce_malloc (initialSize); } else { data = 0; size = 0; } } MemoryBlock::MemoryBlock (const MemoryBlock& other) throw() : data (0), size (other.size) { if (size > 0) { jassert (other.data != 0); data = (char*) juce_malloc (size); memcpy (data, other.data, size); } } MemoryBlock::MemoryBlock (const void* const dataToInitialiseFrom, const int sizeInBytes) throw() : data (0), size (jmax (0, sizeInBytes)) { jassert (sizeInBytes >= 0); if (size > 0) { jassert (dataToInitialiseFrom != 0); // non-zero size, but a zero pointer passed-in? data = (char*) juce_malloc (size); if (dataToInitialiseFrom != 0) memcpy (data, dataToInitialiseFrom, size); } } MemoryBlock::~MemoryBlock() throw() { jassert (size >= 0); // should never happen jassert (size == 0 || data != 0); // non-zero size but no data allocated? juce_free (data); } const MemoryBlock& MemoryBlock::operator= (const MemoryBlock& other) throw() { if (this != &other) { setSize (other.size, false); memcpy (data, other.data, size); } return *this; } bool MemoryBlock::operator== (const MemoryBlock& other) const throw() { return (size == other.size) && (memcmp (data, other.data, size) == 0); } bool MemoryBlock::operator!= (const MemoryBlock& other) const throw() { return ! operator== (other); } // this will resize the block to this size void MemoryBlock::setSize (const int newSize, const bool initialiseToZero) throw() { if (size != newSize) { if (newSize <= 0) { juce_free (data); data = 0; size = 0; } else { if (data != 0) { data = (char*) juce_realloc (data, newSize); if (initialiseToZero && (newSize > size)) zeromem (data + size, newSize - size); } else { if (initialiseToZero) data = (char*) juce_calloc (newSize); else data = (char*) juce_malloc (newSize); } size = newSize; } } } void MemoryBlock::ensureSize (const int minimumSize, const bool initialiseToZero) throw() { if (size < minimumSize) setSize (minimumSize, initialiseToZero); } void MemoryBlock::fillWith (const uint8 value) throw() { memset (data, (int) value, size); } void MemoryBlock::append (const void* const srcData, const int numBytes) throw() { if (numBytes > 0) { const int oldSize = size; setSize (size + numBytes); memcpy (data + oldSize, srcData, numBytes); } } void MemoryBlock::copyFrom (const void* const src, int offset, int num) throw() { const char* d = (const char*) src; if (offset < 0) { d -= offset; num -= offset; offset = 0; } if (offset + num > size) num = size - offset; if (num > 0) memcpy (data + offset, d, num); } void MemoryBlock::copyTo (void* const dst, int offset, int num) const throw() { char* d = (char*) dst; if (offset < 0) { zeromem (d, -offset); d -= offset; num += offset; offset = 0; } if (offset + num > size) { const int newNum = size - offset; zeromem (d + newNum, num - newNum); num = newNum; } if (num > 0) memcpy (d, data + offset, num); } void MemoryBlock::removeSection (int startByte, int numBytesToRemove) throw() { if (startByte < 0) { numBytesToRemove += startByte; startByte = 0; } if (startByte + numBytesToRemove >= size) { setSize (startByte); } else if (numBytesToRemove > 0) { memmove (data + startByte, data + startByte + numBytesToRemove, size - (startByte + numBytesToRemove)); setSize (size - numBytesToRemove); } } const String MemoryBlock::toString() const throw() { return String (data, size); } int MemoryBlock::getBitRange (const int bitRangeStart, int numBits) const throw() { int res = 0; int byte = bitRangeStart >> 3; int offsetInByte = bitRangeStart & 7; int bitsSoFar = 0; while (numBits > 0 && byte < size) { const int bitsThisTime = jmin (numBits, 8 - offsetInByte); const int mask = (0xff >> (8 - bitsThisTime)) << offsetInByte; res |= (((data[byte] & mask) >> offsetInByte) << bitsSoFar); bitsSoFar += bitsThisTime; numBits -= bitsThisTime; ++byte; offsetInByte = 0; } return res; } void MemoryBlock::setBitRange (const int bitRangeStart, int numBits, int bitsToSet) throw() { int byte = bitRangeStart >> 3; int offsetInByte = bitRangeStart & 7; unsigned int mask = ~((((unsigned int)0xffffffff) << (32 - numBits)) >> (32 - numBits)); while (numBits > 0 && byte < size) { const int bitsThisTime = jmin (numBits, 8 - offsetInByte); const unsigned int tempMask = (mask << offsetInByte) | ~((((unsigned int)0xffffffff) >> offsetInByte) << offsetInByte); const unsigned int tempBits = bitsToSet << offsetInByte; data[byte] = (char)((data[byte] & tempMask) | tempBits); ++byte; numBits -= bitsThisTime; bitsToSet >>= bitsThisTime; mask >>= bitsThisTime; offsetInByte = 0; } } void MemoryBlock::loadFromHexString (const String& hex) throw() { ensureSize (hex.length() >> 1); char* dest = data; int i = 0; for (;;) { int byte = 0; for (int loop = 2; --loop >= 0;) { byte <<= 4; for (;;) { const tchar c = hex [i++]; if (c >= T('0') && c <= T('9')) { byte |= c - T('0'); break; } else if (c >= T('a') && c <= T('z')) { byte |= c - (T('a') - 10); break; } else if (c >= T('A') && c <= T('Z')) { byte |= c - (T('A') - 10); break; } else if (c == 0) { setSize ((int) (dest - data)); return; } } } *dest++ = (char) byte; } } static const char* const encodingTable = ".ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+"; const String MemoryBlock::toBase64Encoding() const throw() { const int numChars = ((size << 3) + 5) / 6; String destString (size); // store the length, followed by a '.', and then the data. const int initialLen = destString.length(); destString.preallocateStorage (initialLen + 2 + numChars); tchar* d = const_cast (((const tchar*) destString) + initialLen); *d++ = T('.'); for (int i = 0; i < numChars; ++i) *d++ = encodingTable [getBitRange (i * 6, 6)]; *d++ = 0; return destString; } bool MemoryBlock::fromBase64Encoding (const String& s) throw() { const int startPos = s.indexOfChar (T('.')) + 1; if (startPos <= 0) return false; const int numBytesNeeded = s.substring (0, startPos - 1).getIntValue(); setSize (numBytesNeeded, true); const int numChars = s.length() - startPos; const tchar* const srcChars = ((const tchar*) s) + startPos; int pos = 0; for (int i = 0; i < numChars; ++i) { const char c = (char) srcChars[i]; for (int j = 0; j < 64; ++j) { if (encodingTable[j] == c) { setBitRange (pos, 6, j); pos += 6; break; } } } return true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_MemoryBlock.cpp *********/ /********* Start of inlined file: juce_PropertySet.cpp *********/ BEGIN_JUCE_NAMESPACE PropertySet::PropertySet (const bool ignoreCaseOfKeyNames) throw() : properties (ignoreCaseOfKeyNames), fallbackProperties (0), ignoreCaseOfKeys (ignoreCaseOfKeyNames) { } PropertySet::PropertySet (const PropertySet& other) throw() : properties (other.properties), fallbackProperties (other.fallbackProperties), ignoreCaseOfKeys (other.ignoreCaseOfKeys) { } const PropertySet& PropertySet::operator= (const PropertySet& other) throw() { properties = other.properties; fallbackProperties = other.fallbackProperties; ignoreCaseOfKeys = other.ignoreCaseOfKeys; propertyChanged(); return *this; } PropertySet::~PropertySet() { } void PropertySet::clear() { const ScopedLock sl (lock); if (properties.size() > 0) { properties.clear(); propertyChanged(); } } const String PropertySet::getValue (const String& keyName, const String& defaultValue) const throw() { const ScopedLock sl (lock); const int index = properties.getAllKeys().indexOf (keyName, ignoreCaseOfKeys); if (index >= 0) return properties.getAllValues() [index]; return fallbackProperties != 0 ? fallbackProperties->getValue (keyName, defaultValue) : defaultValue; } int PropertySet::getIntValue (const String& keyName, const int defaultValue) const throw() { const ScopedLock sl (lock); const int index = properties.getAllKeys().indexOf (keyName, ignoreCaseOfKeys); if (index >= 0) return properties.getAllValues() [index].getIntValue(); return fallbackProperties != 0 ? fallbackProperties->getIntValue (keyName, defaultValue) : defaultValue; } double PropertySet::getDoubleValue (const String& keyName, const double defaultValue) const throw() { const ScopedLock sl (lock); const int index = properties.getAllKeys().indexOf (keyName, ignoreCaseOfKeys); if (index >= 0) return properties.getAllValues()[index].getDoubleValue(); return fallbackProperties != 0 ? fallbackProperties->getDoubleValue (keyName, defaultValue) : defaultValue; } bool PropertySet::getBoolValue (const String& keyName, const bool defaultValue) const throw() { const ScopedLock sl (lock); const int index = properties.getAllKeys().indexOf (keyName, ignoreCaseOfKeys); if (index >= 0) return properties.getAllValues() [index].getIntValue() != 0; return fallbackProperties != 0 ? fallbackProperties->getBoolValue (keyName, defaultValue) : defaultValue; } XmlElement* PropertySet::getXmlValue (const String& keyName) const { XmlDocument doc (getValue (keyName)); return doc.getDocumentElement(); } void PropertySet::setValue (const String& keyName, const String& value) throw() { jassert (keyName.isNotEmpty()); // shouldn't use an empty key name! if (keyName.isNotEmpty()) { const ScopedLock sl (lock); const int index = properties.getAllKeys().indexOf (keyName, ignoreCaseOfKeys); if (index < 0 || properties.getAllValues() [index] != value) { properties.set (keyName, value); propertyChanged(); } } } void PropertySet::removeValue (const String& keyName) throw() { if (keyName.isNotEmpty()) { const ScopedLock sl (lock); const int index = properties.getAllKeys().indexOf (keyName, ignoreCaseOfKeys); if (index >= 0) { properties.remove (keyName); propertyChanged(); } } } void PropertySet::setValue (const String& keyName, const tchar* const value) throw() { setValue (keyName, String (value)); } void PropertySet::setValue (const String& keyName, const int value) throw() { setValue (keyName, String (value)); } void PropertySet::setValue (const String& keyName, const double value) throw() { setValue (keyName, String (value)); } void PropertySet::setValue (const String& keyName, const bool value) throw() { setValue (keyName, String ((value) ? T("1") : T("0"))); } void PropertySet::setValue (const String& keyName, const XmlElement* const xml) { setValue (keyName, (xml == 0) ? String::empty : xml->createDocument (String::empty, true)); } bool PropertySet::containsKey (const String& keyName) const throw() { const ScopedLock sl (lock); return properties.getAllKeys().contains (keyName, ignoreCaseOfKeys); } void PropertySet::setFallbackPropertySet (PropertySet* fallbackProperties_) throw() { const ScopedLock sl (lock); fallbackProperties = fallbackProperties_; } XmlElement* PropertySet::createXml (const String& nodeName) const throw() { const ScopedLock sl (lock); XmlElement* const xml = new XmlElement (nodeName); for (int i = 0; i < properties.getAllKeys().size(); ++i) { XmlElement* const e = new XmlElement (T("VALUE")); e->setAttribute (T("name"), properties.getAllKeys()[i]); e->setAttribute (T("val"), properties.getAllValues()[i]); xml->addChildElement (e); } return xml; } void PropertySet::restoreFromXml (const XmlElement& xml) throw() { const ScopedLock sl (lock); clear(); forEachXmlChildElementWithTagName (xml, e, T("VALUE")) { if (e->hasAttribute (T("name")) && e->hasAttribute (T("val"))) { properties.set (e->getStringAttribute (T("name")), e->getStringAttribute (T("val"))); } } if (properties.size() > 0) propertyChanged(); } void PropertySet::propertyChanged() { } END_JUCE_NAMESPACE /********* End of inlined file: juce_PropertySet.cpp *********/ /********* Start of inlined file: juce_Variant.cpp *********/ BEGIN_JUCE_NAMESPACE var::var() throw() : type (voidType) { value.doubleValue = 0; } void var::releaseValue() throw() { if (type == stringType) delete value.stringValue; else if (type == objectType && value.objectValue != 0) value.objectValue->decReferenceCount(); } var::~var() { releaseValue(); } var::var (const var& valueToCopy) throw() : type (valueToCopy.type), value (valueToCopy.value) { if (type == stringType) value.stringValue = new String (*(value.stringValue)); else if (type == objectType && value.objectValue != 0) value.objectValue->incReferenceCount(); } var::var (const int value_) throw() : type (intType) { value.intValue = value_; } var::var (const bool value_) throw() : type (boolType) { value.boolValue = value_; } var::var (const double value_) throw() : type (doubleType) { value.doubleValue = value_; } var::var (const String& value_) throw() : type (stringType) { value.stringValue = new String (value_); } var::var (const char* const value_) throw() : type (stringType) { value.stringValue = new String (value_); } var::var (const juce_wchar* const value_) throw() : type (stringType) { value.stringValue = new String (value_); } var::var (DynamicObject* const object) throw() : type (objectType) { value.objectValue = object; if (object != 0) object->incReferenceCount(); } var::var (MethodFunction method_) throw() : type (methodType) { value.methodValue = method_; } const var& var::operator= (const var& valueToCopy) throw() { if (this != &valueToCopy) { if (type == stringType) delete value.stringValue; DynamicObject* const oldObject = getObject(); type = valueToCopy.type; value = valueToCopy.value; if (type == stringType) value.stringValue = new String (*(value.stringValue)); else if (type == objectType && value.objectValue != 0) value.objectValue->incReferenceCount(); if (oldObject != 0) oldObject->decReferenceCount(); } return *this; } const var& var::operator= (const int value_) throw() { releaseValue(); type = intType; value.intValue = value_; return *this; } const var& var::operator= (const bool value_) throw() { releaseValue(); type = boolType; value.boolValue = value_; return *this; } const var& var::operator= (const double value_) throw() { releaseValue(); type = doubleType; value.doubleValue = value_; return *this; } const var& var::operator= (const char* const value_) throw() { releaseValue(); type = stringType; value.stringValue = new String (value_); return *this; } const var& var::operator= (const juce_wchar* const value_) throw() { releaseValue(); type = stringType; value.stringValue = new String (value_); return *this; } const var& var::operator= (const String& value_) throw() { releaseValue(); type = stringType; value.stringValue = new String (value_); return *this; } const var& var::operator= (DynamicObject* const value_) throw() { value_->incReferenceCount(); releaseValue(); type = objectType; value.objectValue = value_; return *this; } const var& var::operator= (MethodFunction method_) throw() { releaseValue(); type = doubleType; value.methodValue = method_; return *this; } var::operator int() const throw() { switch (type) { case voidType: case objectType: break; case intType: return value.intValue; case boolType: return value.boolValue ? 1 : 0; case doubleType: return (int) value.doubleValue; case stringType: return value.stringValue->getIntValue(); default: jassertfalse; break; } return 0; } var::operator bool() const throw() { switch (type) { case voidType: break; case objectType: return value.objectValue != 0; case intType: return value.intValue != 0; case boolType: return value.boolValue; case doubleType: return value.doubleValue != 0; case stringType: return value.stringValue->getIntValue() != 0 || value.stringValue->trim().equalsIgnoreCase (T("true")) || value.stringValue->trim().equalsIgnoreCase (T("yes")); default: jassertfalse; break; } return false; } var::operator double() const throw() { switch (type) { case voidType: case objectType: break; case intType: return value.intValue; case boolType: return value.boolValue ? 1.0 : 0.0; case doubleType: return value.doubleValue; case stringType: return value.stringValue->getDoubleValue(); default: jassertfalse; break; } return 0; } const String var::toString() const throw() { switch (type) { case voidType: case objectType: return "Object 0x" + String::toHexString ((int) (pointer_sized_int) value.objectValue); case intType: return String (value.intValue); case boolType: return value.boolValue ? T("1") : T("0"); case doubleType: return String (value.doubleValue); case stringType: return *(value.stringValue); default: jassertfalse; break; } return String::empty; } var::operator const String() const throw() { return toString(); } DynamicObject* var::getObject() const throw() { return type == objectType ? value.objectValue : 0; } const var var::operator[] (const var::identifier& propertyName) const throw() { if (type == objectType && value.objectValue != 0) return value.objectValue->getProperty (propertyName); return var(); } const var var::invoke (const var::identifier& method, const var* arguments, int numArguments) const { if (type == objectType && value.objectValue != 0) return value.objectValue->invokeMethod (method, arguments, numArguments); return var(); } const var var::invoke (const var& targetObject, const var* arguments, int numArguments) const { if (isMethod()) { DynamicObject* const target = targetObject.getObject(); if (target != 0) return (target->*(value.methodValue)) (arguments, numArguments); } return var(); } const var var::call (const var::identifier& method) const { return invoke (method, 0, 0); } const var var::call (const var::identifier& method, const var& arg1) const { return invoke (method, &arg1, 1); } const var var::call (const var::identifier& method, const var& arg1, const var& arg2) const { var args[] = { arg1, arg2 }; return invoke (method, args, 2); } const var var::call (const var::identifier& method, const var& arg1, const var& arg2, const var& arg3) { var args[] = { arg1, arg2, arg3 }; return invoke (method, args, 3); } const var var::call (const var::identifier& method, const var& arg1, const var& arg2, const var& arg3, const var& arg4) const { var args[] = { arg1, arg2, arg3, arg4 }; return invoke (method, args, 4); } const var var::call (const var::identifier& method, const var& arg1, const var& arg2, const var& arg3, const var& arg4, const var& arg5) const { var args[] = { arg1, arg2, arg3, arg4, arg5 }; return invoke (method, args, 5); } var::identifier::identifier (const String& name_) throw() : name (name_), hashCode (name_.hashCode()) { } var::identifier::identifier (const char* const name_) throw() : name (name_), hashCode (name.hashCode()) { } var::identifier::~identifier() throw() { } DynamicObject::DynamicObject() { } DynamicObject::~DynamicObject() { } bool DynamicObject::hasProperty (const var::identifier& propertyName) const { const int index = propertyIds.indexOf (propertyName.hashCode); return index >= 0 && ! propertyValues.getUnchecked (index)->isMethod(); } const var DynamicObject::getProperty (const var::identifier& propertyName) const { const int index = propertyIds.indexOf (propertyName.hashCode); if (index >= 0) return *propertyValues.getUnchecked (index); return var(); } void DynamicObject::setProperty (const var::identifier& propertyName, const var& newValue) { const int index = propertyIds.indexOf (propertyName.hashCode); if (index >= 0) { propertyValues.set (index, new var (newValue)); } else { propertyIds.add (propertyName.hashCode); propertyValues.add (new var (newValue)); } } void DynamicObject::removeProperty (const var::identifier& propertyName) { const int index = propertyIds.indexOf (propertyName.hashCode); if (index >= 0) { propertyIds.remove (index); propertyValues.remove (index); } } bool DynamicObject::hasMethod (const var::identifier& methodName) const { return getProperty (methodName).isMethod(); } const var DynamicObject::invokeMethod (const var::identifier& methodName, const var* parameters, int numParameters) { return getProperty (methodName).invoke (this, parameters, numParameters); } void DynamicObject::setMethod (const var::identifier& name, var::MethodFunction methodFunction) { setProperty (name, methodFunction); } void DynamicObject::clear() { propertyIds.clear(); propertyValues.clear(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_Variant.cpp *********/ /********* Start of inlined file: juce_BlowFish.cpp *********/ BEGIN_JUCE_NAMESPACE static const uint32 initialPValues [18] = { 0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344, 0xa4093822, 0x299f31d0, 0x082efa98, 0xec4e6c89, 0x452821e6, 0x38d01377, 0xbe5466cf, 0x34e90c6c, 0xc0ac29b7, 0xc97c50dd, 0x3f84d5b5, 0xb5470917, 0x9216d5d9, 0x8979fb1b }; static const uint32 initialSValues [4 * 256] = { 0xd1310ba6, 0x98dfb5ac, 0x2ffd72db, 0xd01adfb7, 0xb8e1afed, 0x6a267e96, 0xba7c9045, 0xf12c7f99, 0x24a19947, 0xb3916cf7, 0x0801f2e2, 0x858efc16, 0x636920d8, 0x71574e69, 0xa458fea3, 0xf4933d7e, 0x0d95748f, 0x728eb658, 0x718bcd58, 0x82154aee, 0x7b54a41d, 0xc25a59b5, 0x9c30d539, 0x2af26013, 0xc5d1b023, 0x286085f0, 0xca417918, 0xb8db38ef, 0x8e79dcb0, 0x603a180e, 0x6c9e0e8b, 0xb01e8a3e, 0xd71577c1, 0xbd314b27, 0x78af2fda, 0x55605c60, 0xe65525f3, 0xaa55ab94, 0x57489862, 0x63e81440, 0x55ca396a, 0x2aab10b6, 0xb4cc5c34, 0x1141e8ce, 0xa15486af, 0x7c72e993, 0xb3ee1411, 0x636fbc2a, 0x2ba9c55d, 0x741831f6, 0xce5c3e16, 0x9b87931e, 0xafd6ba33, 0x6c24cf5c, 0x7a325381, 0x28958677, 0x3b8f4898, 0x6b4bb9af, 0xc4bfe81b, 0x66282193, 0x61d809cc, 0xfb21a991, 0x487cac60, 0x5dec8032, 0xef845d5d, 0xe98575b1, 0xdc262302, 0xeb651b88, 0x23893e81, 0xd396acc5, 0x0f6d6ff3, 0x83f44239, 0x2e0b4482, 0xa4842004, 0x69c8f04a, 0x9e1f9b5e, 0x21c66842, 0xf6e96c9a, 0x670c9c61, 0xabd388f0, 0x6a51a0d2, 0xd8542f68, 0x960fa728, 0xab5133a3, 0x6eef0b6c, 0x137a3be4, 0xba3bf050, 0x7efb2a98, 0xa1f1651d, 0x39af0176, 0x66ca593e, 0x82430e88, 0x8cee8619, 0x456f9fb4, 0x7d84a5c3, 0x3b8b5ebe, 0xe06f75d8, 0x85c12073, 0x401a449f, 0x56c16aa6, 0x4ed3aa62, 0x363f7706, 0x1bfedf72, 0x429b023d, 0x37d0d724, 0xd00a1248, 0xdb0fead3, 0x49f1c09b, 0x075372c9, 0x80991b7b, 0x25d479d8, 0xf6e8def7, 0xe3fe501a, 0xb6794c3b, 0x976ce0bd, 0x04c006ba, 0xc1a94fb6, 0x409f60c4, 0x5e5c9ec2, 0x196a2463, 0x68fb6faf, 0x3e6c53b5, 0x1339b2eb, 0x3b52ec6f, 0x6dfc511f, 0x9b30952c, 0xcc814544, 0xaf5ebd09, 0xbee3d004, 0xde334afd, 0x660f2807, 0x192e4bb3, 0xc0cba857, 0x45c8740f, 0xd20b5f39, 0xb9d3fbdb, 0x5579c0bd, 0x1a60320a, 0xd6a100c6, 0x402c7279, 0x679f25fe, 0xfb1fa3cc, 0x8ea5e9f8, 0xdb3222f8, 0x3c7516df, 0xfd616b15, 0x2f501ec8, 0xad0552ab, 0x323db5fa, 0xfd238760, 0x53317b48, 0x3e00df82, 0x9e5c57bb, 0xca6f8ca0, 0x1a87562e, 0xdf1769db, 0xd542a8f6, 0x287effc3, 0xac6732c6, 0x8c4f5573, 0x695b27b0, 0xbbca58c8, 0xe1ffa35d, 0xb8f011a0, 0x10fa3d98, 0xfd2183b8, 0x4afcb56c, 0x2dd1d35b, 0x9a53e479, 0xb6f84565, 0xd28e49bc, 0x4bfb9790, 0xe1ddf2da, 0xa4cb7e33, 0x62fb1341, 0xcee4c6e8, 0xef20cada, 0x36774c01, 0xd07e9efe, 0x2bf11fb4, 0x95dbda4d, 0xae909198, 0xeaad8e71, 0x6b93d5a0, 0xd08ed1d0, 0xafc725e0, 0x8e3c5b2f, 0x8e7594b7, 0x8ff6e2fb, 0xf2122b64, 0x8888b812, 0x900df01c, 0x4fad5ea0, 0x688fc31c, 0xd1cff191, 0xb3a8c1ad, 0x2f2f2218, 0xbe0e1777, 0xea752dfe, 0x8b021fa1, 0xe5a0cc0f, 0xb56f74e8, 0x18acf3d6, 0xce89e299, 0xb4a84fe0, 0xfd13e0b7, 0x7cc43b81, 0xd2ada8d9, 0x165fa266, 0x80957705, 0x93cc7314, 0x211a1477, 0xe6ad2065, 0x77b5fa86, 0xc75442f5, 0xfb9d35cf, 0xebcdaf0c, 0x7b3e89a0, 0xd6411bd3, 0xae1e7e49, 0x00250e2d, 0x2071b35e, 0x226800bb, 0x57b8e0af, 0x2464369b, 0xf009b91e, 0x5563911d, 0x59dfa6aa, 0x78c14389, 0xd95a537f, 0x207d5ba2, 0x02e5b9c5, 0x83260376, 0x6295cfa9, 0x11c81968, 0x4e734a41, 0xb3472dca, 0x7b14a94a, 0x1b510052, 0x9a532915, 0xd60f573f, 0xbc9bc6e4, 0x2b60a476, 0x81e67400, 0x08ba6fb5, 0x571be91f, 0xf296ec6b, 0x2a0dd915, 0xb6636521, 0xe7b9f9b6, 0xff34052e, 0xc5855664, 0x53b02d5d, 0xa99f8fa1, 0x08ba4799, 0x6e85076a, 0x4b7a70e9, 0xb5b32944, 0xdb75092e, 0xc4192623, 0xad6ea6b0, 0x49a7df7d, 0x9cee60b8, 0x8fedb266, 0xecaa8c71, 0x699a17ff, 0x5664526c, 0xc2b19ee1, 0x193602a5, 0x75094c29, 0xa0591340, 0xe4183a3e, 0x3f54989a, 0x5b429d65, 0x6b8fe4d6, 0x99f73fd6, 0xa1d29c07, 0xefe830f5, 0x4d2d38e6, 0xf0255dc1, 0x4cdd2086, 0x8470eb26, 0x6382e9c6, 0x021ecc5e, 0x09686b3f, 0x3ebaefc9, 0x3c971814, 0x6b6a70a1, 0x687f3584, 0x52a0e286, 0xb79c5305, 0xaa500737, 0x3e07841c, 0x7fdeae5c, 0x8e7d44ec, 0x5716f2b8, 0xb03ada37, 0xf0500c0d, 0xf01c1f04, 0x0200b3ff, 0xae0cf51a, 0x3cb574b2, 0x25837a58, 0xdc0921bd, 0xd19113f9, 0x7ca92ff6, 0x94324773, 0x22f54701, 0x3ae5e581, 0x37c2dadc, 0xc8b57634, 0x9af3dda7, 0xa9446146, 0x0fd0030e, 0xecc8c73e, 0xa4751e41, 0xe238cd99, 0x3bea0e2f, 0x3280bba1, 0x183eb331, 0x4e548b38, 0x4f6db908, 0x6f420d03, 0xf60a04bf, 0x2cb81290, 0x24977c79, 0x5679b072, 0xbcaf89af, 0xde9a771f, 0xd9930810, 0xb38bae12, 0xdccf3f2e, 0x5512721f, 0x2e6b7124, 0x501adde6, 0x9f84cd87, 0x7a584718, 0x7408da17, 0xbc9f9abc, 0xe94b7d8c, 0xec7aec3a, 0xdb851dfa, 0x63094366, 0xc464c3d2, 0xef1c1847, 0x3215d908, 0xdd433b37, 0x24c2ba16, 0x12a14d43, 0x2a65c451, 0x50940002, 0x133ae4dd, 0x71dff89e, 0x10314e55, 0x81ac77d6, 0x5f11199b, 0x043556f1, 0xd7a3c76b, 0x3c11183b, 0x5924a509, 0xf28fe6ed, 0x97f1fbfa, 0x9ebabf2c, 0x1e153c6e, 0x86e34570, 0xeae96fb1, 0x860e5e0a, 0x5a3e2ab3, 0x771fe71c, 0x4e3d06fa, 0x2965dcb9, 0x99e71d0f, 0x803e89d6, 0x5266c825, 0x2e4cc978, 0x9c10b36a, 0xc6150eba, 0x94e2ea78, 0xa5fc3c53, 0x1e0a2df4, 0xf2f74ea7, 0x361d2b3d, 0x1939260f, 0x19c27960, 0x5223a708, 0xf71312b6, 0xebadfe6e, 0xeac31f66, 0xe3bc4595, 0xa67bc883, 0xb17f37d1, 0x018cff28, 0xc332ddef, 0xbe6c5aa5, 0x65582185, 0x68ab9802, 0xeecea50f, 0xdb2f953b, 0x2aef7dad, 0x5b6e2f84, 0x1521b628, 0x29076170, 0xecdd4775, 0x619f1510, 0x13cca830, 0xeb61bd96, 0x0334fe1e, 0xaa0363cf, 0xb5735c90, 0x4c70a239, 0xd59e9e0b, 0xcbaade14, 0xeecc86bc, 0x60622ca7, 0x9cab5cab, 0xb2f3846e, 0x648b1eaf, 0x19bdf0ca, 0xa02369b9, 0x655abb50, 0x40685a32, 0x3c2ab4b3, 0x319ee9d5, 0xc021b8f7, 0x9b540b19, 0x875fa099, 0x95f7997e, 0x623d7da8, 0xf837889a, 0x97e32d77, 0x11ed935f, 0x16681281, 0x0e358829, 0xc7e61fd6, 0x96dedfa1, 0x7858ba99, 0x57f584a5, 0x1b227263, 0x9b83c3ff, 0x1ac24696, 0xcdb30aeb, 0x532e3054, 0x8fd948e4, 0x6dbc3128, 0x58ebf2ef, 0x34c6ffea, 0xfe28ed61, 0xee7c3c73, 0x5d4a14d9, 0xe864b7e3, 0x42105d14, 0x203e13e0, 0x45eee2b6, 0xa3aaabea, 0xdb6c4f15, 0xfacb4fd0, 0xc742f442, 0xef6abbb5, 0x654f3b1d, 0x41cd2105, 0xd81e799e, 0x86854dc7, 0xe44b476a, 0x3d816250, 0xcf62a1f2, 0x5b8d2646, 0xfc8883a0, 0xc1c7b6a3, 0x7f1524c3, 0x69cb7492, 0x47848a0b, 0x5692b285, 0x095bbf00, 0xad19489d, 0x1462b174, 0x23820e00, 0x58428d2a, 0x0c55f5ea, 0x1dadf43e, 0x233f7061, 0x3372f092, 0x8d937e41, 0xd65fecf1, 0x6c223bdb, 0x7cde3759, 0xcbee7460, 0x4085f2a7, 0xce77326e, 0xa6078084, 0x19f8509e, 0xe8efd855, 0x61d99735, 0xa969a7aa, 0xc50c06c2, 0x5a04abfc, 0x800bcadc, 0x9e447a2e, 0xc3453484, 0xfdd56705, 0x0e1e9ec9, 0xdb73dbd3, 0x105588cd, 0x675fda79, 0xe3674340, 0xc5c43465, 0x713e38d8, 0x3d28f89e, 0xf16dff20, 0x153e21e7, 0x8fb03d4a, 0xe6e39f2b, 0xdb83adf7, 0xe93d5a68, 0x948140f7, 0xf64c261c, 0x94692934, 0x411520f7, 0x7602d4f7, 0xbcf46b2e, 0xd4a20068, 0xd4082471, 0x3320f46a, 0x43b7d4b7, 0x500061af, 0x1e39f62e, 0x97244546, 0x14214f74, 0xbf8b8840, 0x4d95fc1d, 0x96b591af, 0x70f4ddd3, 0x66a02f45, 0xbfbc09ec, 0x03bd9785, 0x7fac6dd0, 0x31cb8504, 0x96eb27b3, 0x55fd3941, 0xda2547e6, 0xabca0a9a, 0x28507825, 0x530429f4, 0x0a2c86da, 0xe9b66dfb, 0x68dc1462, 0xd7486900, 0x680ec0a4, 0x27a18dee, 0x4f3ffea2, 0xe887ad8c, 0xb58ce006, 0x7af4d6b6, 0xaace1e7c, 0xd3375fec, 0xce78a399, 0x406b2a42, 0x20fe9e35, 0xd9f385b9, 0xee39d7ab, 0x3b124e8b, 0x1dc9faf7, 0x4b6d1856, 0x26a36631, 0xeae397b2, 0x3a6efa74, 0xdd5b4332, 0x6841e7f7, 0xca7820fb, 0xfb0af54e, 0xd8feb397, 0x454056ac, 0xba489527, 0x55533a3a, 0x20838d87, 0xfe6ba9b7, 0xd096954b, 0x55a867bc, 0xa1159a58, 0xcca92963, 0x99e1db33, 0xa62a4a56, 0x3f3125f9, 0x5ef47e1c, 0x9029317c, 0xfdf8e802, 0x04272f70, 0x80bb155c, 0x05282ce3, 0x95c11548, 0xe4c66d22, 0x48c1133f, 0xc70f86dc, 0x07f9c9ee, 0x41041f0f, 0x404779a4, 0x5d886e17, 0x325f51eb, 0xd59bc0d1, 0xf2bcc18f, 0x41113564, 0x257b7834, 0x602a9c60, 0xdff8e8a3, 0x1f636c1b, 0x0e12b4c2, 0x02e1329e, 0xaf664fd1, 0xcad18115, 0x6b2395e0, 0x333e92e1, 0x3b240b62, 0xeebeb922, 0x85b2a20e, 0xe6ba0d99, 0xde720c8c, 0x2da2f728, 0xd0127845, 0x95b794fd, 0x647d0862, 0xe7ccf5f0, 0x5449a36f, 0x877d48fa, 0xc39dfd27, 0xf33e8d1e, 0x0a476341, 0x992eff74, 0x3a6f6eab, 0xf4f8fd37, 0xa812dc60, 0xa1ebddf8, 0x991be14c, 0xdb6e6b0d, 0xc67b5510, 0x6d672c37, 0x2765d43b, 0xdcd0e804, 0xf1290dc7, 0xcc00ffa3, 0xb5390f92, 0x690fed0b, 0x667b9ffb, 0xcedb7d9c, 0xa091cf0b, 0xd9155ea3, 0xbb132f88, 0x515bad24, 0x7b9479bf, 0x763bd6eb, 0x37392eb3, 0xcc115979, 0x8026e297, 0xf42e312d, 0x6842ada7, 0xc66a2b3b, 0x12754ccc, 0x782ef11c, 0x6a124237, 0xb79251e7, 0x06a1bbe6, 0x4bfb6350, 0x1a6b1018, 0x11caedfa, 0x3d25bdd8, 0xe2e1c3c9, 0x44421659, 0x0a121386, 0xd90cec6e, 0xd5abea2a, 0x64af674e, 0xda86a85f, 0xbebfe988, 0x64e4c3fe, 0x9dbc8057, 0xf0f7c086, 0x60787bf8, 0x6003604d, 0xd1fd8346, 0xf6381fb0, 0x7745ae04, 0xd736fccc, 0x83426b33, 0xf01eab71, 0xb0804187, 0x3c005e5f, 0x77a057be, 0xbde8ae24, 0x55464299, 0xbf582e61, 0x4e58f48f, 0xf2ddfda2, 0xf474ef38, 0x8789bdc2, 0x5366f9c3, 0xc8b38e74, 0xb475f255, 0x46fcd9b9, 0x7aeb2661, 0x8b1ddf84, 0x846a0e79, 0x915f95e2, 0x466e598e, 0x20b45770, 0x8cd55591, 0xc902de4c, 0xb90bace1, 0xbb8205d0, 0x11a86248, 0x7574a99e, 0xb77f19b6, 0xe0a9dc09, 0x662d09a1, 0xc4324633, 0xe85a1f02, 0x09f0be8c, 0x4a99a025, 0x1d6efe10, 0x1ab93d1d, 0x0ba5a4df, 0xa186f20f, 0x2868f169, 0xdcb7da83, 0x573906fe, 0xa1e2ce9b, 0x4fcd7f52, 0x50115e01, 0xa70683fa, 0xa002b5c4, 0x0de6d027, 0x9af88c27, 0x773f8641, 0xc3604c06, 0x61a806b5, 0xf0177a28, 0xc0f586e0, 0x006058aa, 0x30dc7d62, 0x11e69ed7, 0x2338ea63, 0x53c2dd94, 0xc2c21634, 0xbbcbee56, 0x90bcb6de, 0xebfc7da1, 0xce591d76, 0x6f05e409, 0x4b7c0188, 0x39720a3d, 0x7c927c24, 0x86e3725f, 0x724d9db9, 0x1ac15bb4, 0xd39eb8fc, 0xed545578, 0x08fca5b5, 0xd83d7cd3, 0x4dad0fc4, 0x1e50ef5e, 0xb161e6f8, 0xa28514d9, 0x6c51133c, 0x6fd5c7e7, 0x56e14ec4, 0x362abfce, 0xddc6c837, 0xd79a3234, 0x92638212, 0x670efa8e, 0x406000e0, 0x3a39ce37, 0xd3faf5cf, 0xabc27737, 0x5ac52d1b, 0x5cb0679e, 0x4fa33742, 0xd3822740, 0x99bc9bbe, 0xd5118e9d, 0xbf0f7315, 0xd62d1c7e, 0xc700c47b, 0xb78c1b6b, 0x21a19045, 0xb26eb1be, 0x6a366eb4, 0x5748ab2f, 0xbc946e79, 0xc6a376d2, 0x6549c2c8, 0x530ff8ee, 0x468dde7d, 0xd5730a1d, 0x4cd04dc6, 0x2939bbdb, 0xa9ba4650, 0xac9526e8, 0xbe5ee304, 0xa1fad5f0, 0x6a2d519a, 0x63ef8ce2, 0x9a86ee22, 0xc089c2b8, 0x43242ef6, 0xa51e03aa, 0x9cf2d0a4, 0x83c061ba, 0x9be96a4d, 0x8fe51550, 0xba645bd6, 0x2826a2f9, 0xa73a3ae1, 0x4ba99586, 0xef5562e9, 0xc72fefd3, 0xf752f7da, 0x3f046f69, 0x77fa0a59, 0x80e4a915, 0x87b08601, 0x9b09e6ad, 0x3b3ee593, 0xe990fd5a, 0x9e34d797, 0x2cf0b7d9, 0x022b8b51, 0x96d5ac3a, 0x017da67d, 0xd1cf3ed6, 0x7c7d2d28, 0x1f9f25cf, 0xadf2b89b, 0x5ad6b472, 0x5a88f54c, 0xe029ac71, 0xe019a5e6, 0x47b0acfd, 0xed93fa9b, 0xe8d3c48d, 0x283b57cc, 0xf8d56629, 0x79132e28, 0x785f0191, 0xed756055, 0xf7960e44, 0xe3d35e8c, 0x15056dd4, 0x88f46dba, 0x03a16125, 0x0564f0bd, 0xc3eb9e15, 0x3c9057a2, 0x97271aec, 0xa93a072a, 0x1b3f6d9b, 0x1e6321f5, 0xf59c66fb, 0x26dcf319, 0x7533d928, 0xb155fdf5, 0x03563482, 0x8aba3cbb, 0x28517711, 0xc20ad9f8, 0xabcc5167, 0xccad925f, 0x4de81751, 0x3830dc8e, 0x379d5862, 0x9320f991, 0xea7a90c2, 0xfb3e7bce, 0x5121ce64, 0x774fbe32, 0xa8b6e37e, 0xc3293d46, 0x48de5369, 0x6413e680, 0xa2ae0810, 0xdd6db224, 0x69852dfd, 0x09072166, 0xb39a460a, 0x6445c0dd, 0x586cdecf, 0x1c20c8ae, 0x5bbef7dd, 0x1b588d40, 0xccd2017f, 0x6bb4e3bb, 0xdda26a7e, 0x3a59ff45, 0x3e350a44, 0xbcb4cdd5, 0x72eacea8, 0xfa6484bb, 0x8d6612ae, 0xbf3c6f47, 0xd29be463, 0x542f5d9e, 0xaec2771b, 0xf64e6370, 0x740e0d8d, 0xe75b1357, 0xf8721671, 0xaf537d5d, 0x4040cb08, 0x4eb4e2cc, 0x34d2466a, 0x0115af84, 0xe1b00428, 0x95983a1d, 0x06b89fb4, 0xce6ea048, 0x6f3f3b82, 0x3520ab82, 0x011a1d4b, 0x277227f8, 0x611560b1, 0xe7933fdc, 0xbb3a792b, 0x344525bd, 0xa08839e1, 0x51ce794b, 0x2f32c9b7, 0xa01fbac9, 0xe01cc87e, 0xbcc7d1f6, 0xcf0111c3, 0xa1e8aac7, 0x1a908749, 0xd44fbd9a, 0xd0dadecb, 0xd50ada38, 0x0339c32a, 0xc6913667, 0x8df9317c, 0xe0b12b4f, 0xf79e59b7, 0x43f5bb3a, 0xf2d519ff, 0x27d9459c, 0xbf97222c, 0x15e6fc2a, 0x0f91fc71, 0x9b941525, 0xfae59361, 0xceb69ceb, 0xc2a86459, 0x12baa8d1, 0xb6c1075e, 0xe3056a0c, 0x10d25065, 0xcb03a442, 0xe0ec6e0e, 0x1698db3b, 0x4c98a0be, 0x3278e964, 0x9f1f9532, 0xe0d392df, 0xd3a0342b, 0x8971f21e, 0x1b0a7441, 0x4ba3348c, 0xc5be7120, 0xc37632d8, 0xdf359f8d, 0x9b992f2e, 0xe60b6f47, 0x0fe3f11d, 0xe54cda54, 0x1edad891, 0xce6279cf, 0xcd3e7e6f, 0x1618b166, 0xfd2c1d05, 0x848fd2c5, 0xf6fb2299, 0xf523f357, 0xa6327623, 0x93a83531, 0x56cccd02, 0xacf08162, 0x5a75ebb5, 0x6e163697, 0x88d273cc, 0xde966292, 0x81b949d0, 0x4c50901b, 0x71c65614, 0xe6c6c7bd, 0x327a140a, 0x45e1d006, 0xc3f27b9a, 0xc9aa53fd, 0x62a80f00, 0xbb25bfe2, 0x35bdd2f6, 0x71126905, 0xb2040222, 0xb6cbcf7c, 0xcd769c2b, 0x53113ec0, 0x1640e3d3, 0x38abbd60, 0x2547adf0, 0xba38209c, 0xf746ce76, 0x77afa1c5, 0x20756060, 0x85cbfe4e, 0x8ae88dd8, 0x7aaaf9b0, 0x4cf9aa7e, 0x1948c25c, 0x02fb8a8c, 0x01c36ae4, 0xd6ebe1f9, 0x90d4f869, 0xa65cdea0, 0x3f09252d, 0xc208e69f, 0xb74e6132, 0xce77e25b, 0x578fdfe3, 0x3ac372e6 }; BlowFish::BlowFish (const uint8* keyData, int keyBytes) { memcpy (p, initialPValues, sizeof (p)); int i, j; for (i = 4; --i >= 0;) { s[i] = (uint32*) juce_malloc (256 * sizeof (uint32)); memcpy (s[i], initialSValues + i * 256, 256 * sizeof (uint32)); } j = 0; for (i = 0; i < 18; ++i) { uint32 d = 0; for (int k = 0; k < 4; ++k) { d = (d << 8) | keyData[j]; if (++j >= keyBytes) j = 0; } p[i] = initialPValues[i] ^ d; } uint32 l = 0, r = 0; for (i = 0; i < 18; i += 2) { encrypt (l, r); p[i] = l; p[i + 1] = r; } for (i = 0; i < 4; ++i) { for (j = 0; j < 256; j += 2) { encrypt (l, r); s[i][j] = l; s[i][j + 1] = r; } } } BlowFish::BlowFish (const BlowFish& other) { for (int i = 4; --i >= 0;) s[i] = (uint32*) juce_malloc (256 * sizeof (uint32)); operator= (other); } const BlowFish& BlowFish::operator= (const BlowFish& other) { memcpy (p, other.p, sizeof (p)); for (int i = 4; --i >= 0;) memcpy (s[i], other.s[i], 256 * sizeof (uint32)); return *this; } BlowFish::~BlowFish() { for (int i = 4; --i >= 0;) juce_free (s[i]); } uint32 BlowFish::F (uint32 x) const { uint16 a, b, c, d; uint32 y; d = (uint16) (x & 0xff); x >>= 8; c = (uint16) (x & 0xff); x >>= 8; b = (uint16) (x & 0xff); x >>= 8; a = (uint16) (x & 0xff); y = s[0][a] + s[1][b]; y = y ^ s[2][c]; y = y + s[3][d]; return y; } void BlowFish::encrypt (uint32& data1, uint32& data2) const { uint32 l = data1; uint32 r = data2; for (int i = 0; i < 16; ++i) { l = l ^ p[i]; r = F (l) ^ r; const uint32 temp = l; l = r; r = temp; } const uint32 temp = l; l = r; r = temp; r = r ^ p[16]; l = l ^ p[17]; data1 = l; data2 = r; } void BlowFish::decrypt (uint32& data1, uint32& data2) const { uint32 l = data1; uint32 r = data2; for (int i = 17; i > 1; --i) { l =l ^ p[i]; r = F (l) ^ r; const uint32 temp = l; l = r; r = temp; } const uint32 temp = l; l = r; r = temp; r = r ^ p[1]; l = l ^ p[0]; data1 = l; data2 = r; } END_JUCE_NAMESPACE /********* End of inlined file: juce_BlowFish.cpp *********/ /********* Start of inlined file: juce_MD5.cpp *********/ BEGIN_JUCE_NAMESPACE MD5::MD5() { zeromem (result, sizeof (result)); } MD5::MD5 (const MD5& other) { memcpy (result, other.result, sizeof (result)); } const MD5& MD5::operator= (const MD5& other) { memcpy (result, other.result, sizeof (result)); return *this; } MD5::MD5 (const MemoryBlock& data) { ProcessContext context; context.processBlock ((const uint8*) data.getData(), data.getSize()); context.finish (result); } MD5::MD5 (const char* data, const int numBytes) { ProcessContext context; context.processBlock ((const uint8*) data, numBytes); context.finish (result); } MD5::MD5 (const String& text) { ProcessContext context; const int len = text.length(); const juce_wchar* const t = text; for (int i = 0; i < len; ++i) { // force the string into integer-sized unicode characters, to try to make it // get the same results on all platforms + compilers. uint32 unicodeChar = (uint32) t[i]; swapIfBigEndian (unicodeChar); context.processBlock ((const uint8*) &unicodeChar, sizeof (unicodeChar)); } context.finish (result); } void MD5::processStream (InputStream& input, int numBytesToRead) { ProcessContext context; if (numBytesToRead < 0) numBytesToRead = INT_MAX; while (numBytesToRead > 0) { char tempBuffer [512]; const int bytesRead = input.read (tempBuffer, jmin (numBytesToRead, sizeof (tempBuffer))); if (bytesRead <= 0) break; numBytesToRead -= bytesRead; context.processBlock ((const uint8*) tempBuffer, bytesRead); } context.finish (result); } MD5::MD5 (InputStream& input, int numBytesToRead) { processStream (input, numBytesToRead); } MD5::MD5 (const File& file) { FileInputStream* const fin = file.createInputStream(); if (fin != 0) { processStream (*fin, -1); delete fin; } else { zeromem (result, sizeof (result)); } } MD5::~MD5() { } MD5::ProcessContext::ProcessContext() { state[0] = 0x67452301; state[1] = 0xefcdab89; state[2] = 0x98badcfe; state[3] = 0x10325476; count[0] = 0; count[1] = 0; } void MD5::ProcessContext::processBlock (const uint8* const data, int dataSize) { int bufferPos = ((count[0] >> 3) & 0x3F); count[0] += (dataSize << 3); if (count[0] < ((uint32) dataSize << 3)) count[1]++; count[1] += (dataSize >> 29); const int spaceLeft = 64 - bufferPos; int i = 0; if (dataSize >= spaceLeft) { memcpy (buffer + bufferPos, data, spaceLeft); transform (buffer); i = spaceLeft; while (i < dataSize - 63) { transform (data + i); i += 64; } bufferPos = 0; } memcpy (buffer + bufferPos, data + i, dataSize - i); } static void encode (uint8* const output, const uint32* const input, const int numBytes) { uint32* const o = (uint32*) output; for (int i = 0; i < (numBytes >> 2); ++i) o[i] = swapIfBigEndian (input [i]); } static void decode (uint32* const output, const uint8* const input, const int numBytes) { for (int i = 0; i < (numBytes >> 2); ++i) output[i] = littleEndianInt ((const char*) input + (i << 2)); } void MD5::ProcessContext::finish (uint8* const result) { unsigned char encodedLength[8]; encode (encodedLength, count, 8); // Pad out to 56 mod 64. const int index = (uint32) ((count[0] >> 3) & 0x3f); const int paddingLength = (index < 56) ? (56 - index) : (120 - index); uint8 paddingBuffer [64]; zeromem (paddingBuffer, paddingLength); paddingBuffer [0] = 0x80; processBlock (paddingBuffer, paddingLength); processBlock (encodedLength, 8); encode (result, state, 16); zeromem (buffer, sizeof (buffer)); } #define S11 7 #define S12 12 #define S13 17 #define S14 22 #define S21 5 #define S22 9 #define S23 14 #define S24 20 #define S31 4 #define S32 11 #define S33 16 #define S34 23 #define S41 6 #define S42 10 #define S43 15 #define S44 21 static inline uint32 F (const uint32 x, const uint32 y, const uint32 z) { return (x & y) | (~x & z); } static inline uint32 G (const uint32 x, const uint32 y, const uint32 z) { return (x & z) | (y & ~z); } static inline uint32 H (const uint32 x, const uint32 y, const uint32 z) { return x ^ y ^ z; } static inline uint32 I (const uint32 x, const uint32 y, const uint32 z) { return y ^ (x | ~z); } static inline uint32 rotateLeft (const uint32 x, const uint32 n) { return (x << n) | (x >> (32 - n)); } static inline void FF (uint32& a, const uint32 b, const uint32 c, const uint32 d, const uint32 x, const uint32 s, const uint32 ac) { a += F (b, c, d) + x + ac; a = rotateLeft (a, s) + b; } static inline void GG (uint32& a, const uint32 b, const uint32 c, const uint32 d, const uint32 x, const uint32 s, const uint32 ac) { a += G (b, c, d) + x + ac; a = rotateLeft (a, s) + b; } static inline void HH (uint32& a, const uint32 b, const uint32 c, const uint32 d, const uint32 x, const uint32 s, const uint32 ac) { a += H (b, c, d) + x + ac; a = rotateLeft (a, s) + b; } static inline void II (uint32& a, const uint32 b, const uint32 c, const uint32 d, const uint32 x, const uint32 s, const uint32 ac) { a += I (b, c, d) + x + ac; a = rotateLeft (a, s) + b; } void MD5::ProcessContext::transform (const uint8* const buffer) { uint32 a = state[0]; uint32 b = state[1]; uint32 c = state[2]; uint32 d = state[3]; uint32 x[16]; decode (x, buffer, 64); FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */ FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */ FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */ FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */ FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */ FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */ FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */ FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */ FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */ FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */ FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */ GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */ GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */ GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */ GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */ GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */ GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */ GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */ GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */ GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */ GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */ GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */ HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */ HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */ HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */ HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */ HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */ HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */ HH (b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */ HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */ HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */ II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */ II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */ II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */ II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */ II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */ II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */ II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */ II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */ II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */ II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; zeromem (x, sizeof (x)); } const MemoryBlock MD5::getRawChecksumData() const { return MemoryBlock (result, 16); } const String MD5::toHexString() const { return String::toHexString (result, 16, 0); } bool MD5::operator== (const MD5& other) const { return memcmp (result, other.result, 16) == 0; } bool MD5::operator!= (const MD5& other) const { return ! operator== (other); } END_JUCE_NAMESPACE /********* End of inlined file: juce_MD5.cpp *********/ /********* Start of inlined file: juce_Primes.cpp *********/ BEGIN_JUCE_NAMESPACE static void createSmallSieve (const int numBits, BitArray& result) throw() { result.setBit (numBits); result.clearBit (numBits); // to enlarge the array result.setBit (0); int n = 2; do { for (int i = n + n; i < numBits; i += n) result.setBit (i); n = result.findNextClearBit (n + 1); } while (n <= (numBits >> 1)); } static void bigSieve (const BitArray& base, const int numBits, BitArray& result, const BitArray& smallSieve, const int smallSieveSize) throw() { jassert (! base[0]); // must be even! result.setBit (numBits); result.clearBit (numBits); // to enlarge the array int index = smallSieve.findNextClearBit (0); do { const int prime = (index << 1) + 1; BitArray r (base); BitArray remainder; r.divideBy (prime, remainder); int i = prime - remainder.getBitRangeAsInt (0, 32); if (r.isEmpty()) i += prime; if ((i & 1) == 0) i += prime; i = (i - 1) >> 1; while (i < numBits) { result.setBit (i); i += prime; } index = smallSieve.findNextClearBit (index + 1); } while (index < smallSieveSize); } static bool findCandidate (const BitArray& base, const BitArray& sieve, const int numBits, BitArray& result, const int certainty) throw() { for (int i = 0; i < numBits; ++i) { if (! sieve[i]) { result = base; result.add (BitArray ((unsigned int) ((i << 1) + 1))); if (Primes::isProbablyPrime (result, certainty)) return true; } } return false; } const BitArray Primes::createProbablePrime (const int bitLength, const int certainty, const int* randomSeeds, int numRandomSeeds) throw() { int defaultSeeds [16]; if (numRandomSeeds <= 0) { randomSeeds = defaultSeeds; numRandomSeeds = numElementsInArray (defaultSeeds); Random r (0); for (int j = 10; --j >= 0;) { r.setSeedRandomly(); for (int i = numRandomSeeds; --i >= 0;) defaultSeeds[i] ^= r.nextInt() ^ Random::getSystemRandom().nextInt(); } } BitArray smallSieve; const int smallSieveSize = 15000; createSmallSieve (smallSieveSize, smallSieve); BitArray p; for (int i = numRandomSeeds; --i >= 0;) { BitArray p2; Random r (randomSeeds[i]); r.fillBitsRandomly (p2, 0, bitLength); p.xorWith (p2); } p.setBit (bitLength - 1); p.clearBit (0); const int searchLen = jmax (1024, (bitLength / 20) * 64); while (p.getHighestBit() < bitLength) { p.add (2 * searchLen); BitArray sieve; bigSieve (p, searchLen, sieve, smallSieve, smallSieveSize); BitArray candidate; if (findCandidate (p, sieve, searchLen, candidate, certainty)) return candidate; } jassertfalse return BitArray(); } static bool passesMillerRabin (const BitArray& n, int iterations) throw() { const BitArray one (1); const BitArray two (2); BitArray nMinusOne (n); nMinusOne.subtract (one); BitArray d (nMinusOne); const int s = d.findNextSetBit (0); d.shiftBits (-s); BitArray smallPrimes; int numBitsInSmallPrimes = 0; for (;;) { numBitsInSmallPrimes += 256; createSmallSieve (numBitsInSmallPrimes, smallPrimes); const int numPrimesFound = numBitsInSmallPrimes - smallPrimes.countNumberOfSetBits(); if (numPrimesFound > iterations + 1) break; } int smallPrime = 2; while (--iterations >= 0) { smallPrime = smallPrimes.findNextClearBit (smallPrime + 1); BitArray r (smallPrime); //r.createRandomNumber (nMinusOne); r.exponentModulo (d, n); if (! (r == one || r == nMinusOne)) { for (int j = 0; j < s; ++j) { r.exponentModulo (two, n); if (r == nMinusOne) break; } if (r != nMinusOne) return false; } } return true; } bool Primes::isProbablyPrime (const BitArray& number, const int certainty) throw() { if (! number[0]) return false; if (number.getHighestBit() <= 10) { const int num = number.getBitRangeAsInt (0, 10); for (int i = num / 2; --i > 1;) if (num % i == 0) return false; return true; } else { const BitArray screen (2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23); if (number.findGreatestCommonDivisor (screen) != BitArray (1)) return false; return passesMillerRabin (number, certainty); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_Primes.cpp *********/ /********* Start of inlined file: juce_RSAKey.cpp *********/ BEGIN_JUCE_NAMESPACE RSAKey::RSAKey() throw() { } RSAKey::RSAKey (const String& s) throw() { if (s.containsChar (T(','))) { part1.parseString (s.upToFirstOccurrenceOf (T(","), false, false), 16); part2.parseString (s.fromFirstOccurrenceOf (T(","), false, false), 16); } else { // the string needs to be two hex numbers, comma-separated.. jassertfalse; } } RSAKey::~RSAKey() throw() { } const String RSAKey::toString() const throw() { return part1.toString (16) + T(",") + part2.toString (16); } bool RSAKey::applyToValue (BitArray& value) const throw() { if (part1.isEmpty() || part2.isEmpty() || value.compare (0) <= 0) { jassertfalse // using an uninitialised key value.clear(); return false; } BitArray result; while (! value.isEmpty()) { result.multiplyBy (part2); BitArray remainder; value.divideBy (part2, remainder); remainder.exponentModulo (part1, part2); result.add (remainder); } value = result; return true; } static const BitArray findBestCommonDivisor (const BitArray& p, const BitArray& q) throw() { const BitArray one (1); // try 3, 5, 9, 17, etc first because these only contain 2 bits and so // are fast to divide + multiply for (int i = 2; i <= 65536; i *= 2) { const BitArray e (1 + i); if (e.findGreatestCommonDivisor (p) == one && e.findGreatestCommonDivisor (q) == one) { return e; } } BitArray e (4); while (! (e.findGreatestCommonDivisor (p) == one && e.findGreatestCommonDivisor (q) == one)) { e.add (one); } return e; } void RSAKey::createKeyPair (RSAKey& publicKey, RSAKey& privateKey, const int numBits, const int* randomSeeds, const int numRandomSeeds) throw() { jassert (numBits > 16); // not much point using less than this.. BitArray p (Primes::createProbablePrime (numBits / 2, 30, randomSeeds, numRandomSeeds)); BitArray q (Primes::createProbablePrime (numBits - numBits / 2, 30, randomSeeds, numRandomSeeds)); BitArray n (p); n.multiplyBy (q); // n = pq const BitArray one (1); p.subtract (one); q.subtract (one); BitArray m (p); m.multiplyBy (q); // m = (p - 1)(q - 1) const BitArray e (findBestCommonDivisor (p, q)); BitArray d (e); d.inverseModulo (m); publicKey.part1 = e; publicKey.part2 = n; privateKey.part1 = d; privateKey.part2 = n; } END_JUCE_NAMESPACE /********* End of inlined file: juce_RSAKey.cpp *********/ /********* Start of inlined file: juce_InputStream.cpp *********/ BEGIN_JUCE_NAMESPACE char InputStream::readByte() { char temp = 0; read (&temp, 1); return temp; } bool InputStream::readBool() { return readByte() != 0; } short InputStream::readShort() { char temp [2]; if (read (temp, 2) == 2) return (short) littleEndianShort (temp); else return 0; } short InputStream::readShortBigEndian() { char temp [2]; if (read (temp, 2) == 2) return (short) bigEndianShort (temp); else return 0; } int InputStream::readInt() { char temp [4]; if (read (temp, 4) == 4) return (int) littleEndianInt (temp); else return 0; } int InputStream::readIntBigEndian() { char temp [4]; if (read (temp, 4) == 4) return (int) bigEndianInt (temp); else return 0; } int InputStream::readCompressedInt() { int num = 0; if (! isExhausted()) { unsigned char numBytes = readByte(); const bool negative = (numBytes & 0x80) != 0; numBytes &= 0x7f; if (numBytes <= 4) { if (read (&num, numBytes) != numBytes) return 0; if (negative) num = -num; } } return num; } int64 InputStream::readInt64() { char temp [8]; if (read (temp, 8) == 8) return (int64) swapIfBigEndian (*(uint64*)temp); else return 0; } int64 InputStream::readInt64BigEndian() { char temp [8]; if (read (temp, 8) == 8) return (int64) swapIfLittleEndian (*(uint64*)temp); else return 0; } float InputStream::readFloat() { union { int asInt; float asFloat; } n; n.asInt = readInt(); return n.asFloat; } float InputStream::readFloatBigEndian() { union { int asInt; float asFloat; } n; n.asInt = readIntBigEndian(); return n.asFloat; } double InputStream::readDouble() { union { int64 asInt; double asDouble; } n; n.asInt = readInt64(); return n.asDouble; } double InputStream::readDoubleBigEndian() { union { int64 asInt; double asDouble; } n; n.asInt = readInt64BigEndian(); return n.asDouble; } const String InputStream::readString() { const int tempBufferSize = 256; uint8 temp [tempBufferSize]; int i = 0; while ((temp [i++] = readByte()) != 0) { if (i == tempBufferSize) { // too big for our quick buffer, so read it in blocks.. String result (String::fromUTF8 (temp, i)); i = 0; for (;;) { if ((temp [i++] = readByte()) == 0) { result += String::fromUTF8 (temp, i - 1); break; } else if (i == tempBufferSize) { result += String::fromUTF8 (temp, i); i = 0; } } return result; } } return String::fromUTF8 (temp, i - 1); } const String InputStream::readNextLine() { String s; const int maxChars = 256; tchar buffer [maxChars]; int charsInBuffer = 0; while (! isExhausted()) { const uint8 c = readByte(); const int64 lastPos = getPosition(); if (c == '\n') { break; } else if (c == '\r') { if (readByte() != '\n') setPosition (lastPos); break; } buffer [charsInBuffer++] = c; if (charsInBuffer == maxChars) { s.append (buffer, maxChars); charsInBuffer = 0; } } if (charsInBuffer > 0) s.append (buffer, charsInBuffer); return s; } int InputStream::readIntoMemoryBlock (MemoryBlock& block, int numBytes) { const int64 totalLength = getTotalLength(); if (totalLength >= 0) { const int totalBytesRemaining = (int) jmin ((int64) 0x7fffffff, totalLength - getPosition()); if (numBytes < 0) numBytes = totalBytesRemaining; else if (numBytes > 0) numBytes = jmin (numBytes, totalBytesRemaining); else return 0; } const int originalBlockSize = block.getSize(); int totalBytesRead = 0; if (numBytes > 0) { // know how many bytes we want, so we can resize the block first.. block.setSize (originalBlockSize + numBytes, false); totalBytesRead = read (((char*) block.getData()) + originalBlockSize, numBytes); } else { // read until end of stram.. const int chunkSize = 32768; for (;;) { block.ensureSize (originalBlockSize + totalBytesRead + chunkSize, false); const int bytesJustIn = read (((char*) block.getData()) + originalBlockSize + totalBytesRead, chunkSize); if (bytesJustIn == 0) break; totalBytesRead += bytesJustIn; } } // trim off any excess left at the end block.setSize (originalBlockSize + totalBytesRead, false); return totalBytesRead; } const String InputStream::readEntireStreamAsString() { MemoryBlock mb; const int size = readIntoMemoryBlock (mb); return String::createStringFromData ((const char*) mb.getData(), size); } void InputStream::skipNextBytes (int64 numBytesToSkip) { if (numBytesToSkip > 0) { const int skipBufferSize = (int) jmin (numBytesToSkip, (int64) 16384); MemoryBlock temp (skipBufferSize); while ((numBytesToSkip > 0) && ! isExhausted()) { numBytesToSkip -= read (temp.getData(), (int) jmin (numBytesToSkip, (int64) skipBufferSize)); } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_InputStream.cpp *********/ /********* Start of inlined file: juce_OutputStream.cpp *********/ BEGIN_JUCE_NAMESPACE #if JUCE_DEBUG static CriticalSection activeStreamLock; static VoidArray activeStreams; void juce_CheckForDanglingStreams() { /* It's always a bad idea to leak any object, but if you're leaking output streams, then there's a good chance that you're failing to flush a file to disk properly, which could result in corrupted data and other similar nastiness.. */ jassert (activeStreams.size() == 0); }; #endif OutputStream::OutputStream() throw() { #if JUCE_DEBUG activeStreamLock.enter(); activeStreams.add (this); activeStreamLock.exit(); #endif } OutputStream::~OutputStream() { #if JUCE_DEBUG activeStreamLock.enter(); activeStreams.removeValue (this); activeStreamLock.exit(); #endif } void OutputStream::writeBool (bool b) { writeByte ((b) ? (char) 1 : (char) 0); } void OutputStream::writeByte (char byte) { write (&byte, 1); } void OutputStream::writeShort (short value) { const unsigned short v = swapIfBigEndian ((unsigned short) value); write (&v, 2); } void OutputStream::writeShortBigEndian (short value) { const unsigned short v = swapIfLittleEndian ((unsigned short) value); write (&v, 2); } void OutputStream::writeInt (int value) { const unsigned int v = swapIfBigEndian ((unsigned int) value); write (&v, 4); } void OutputStream::writeIntBigEndian (int value) { const unsigned int v = swapIfLittleEndian ((unsigned int) value); write (&v, 4); } void OutputStream::writeCompressedInt (int value) { unsigned int un = (value < 0) ? (unsigned int) -value : (unsigned int) value; unsigned int tn = un; int numSigBytes = 0; do { tn >>= 8; numSigBytes++; } while (tn & 0xff); if (value < 0) numSigBytes |= 0x80; writeByte ((char) numSigBytes); write (&un, numSigBytes); } void OutputStream::writeInt64 (int64 value) { const uint64 v = swapIfBigEndian ((uint64) value); write (&v, 8); } void OutputStream::writeInt64BigEndian (int64 value) { const uint64 v = swapIfLittleEndian ((uint64) value); write (&v, 8); } void OutputStream::writeFloat (float value) { union { int asInt; float asFloat; } n; n.asFloat = value; writeInt (n.asInt); } void OutputStream::writeFloatBigEndian (float value) { union { int asInt; float asFloat; } n; n.asFloat = value; writeIntBigEndian (n.asInt); } void OutputStream::writeDouble (double value) { union { int64 asInt; double asDouble; } n; n.asDouble = value; writeInt64 (n.asInt); } void OutputStream::writeDoubleBigEndian (double value) { union { int64 asInt; double asDouble; } n; n.asDouble = value; writeInt64BigEndian (n.asInt); } void OutputStream::writeString (const String& text) { const int numBytes = text.copyToUTF8 (0); uint8* const temp = (uint8*) juce_malloc (numBytes); text.copyToUTF8 (temp); write (temp, numBytes); // (numBytes includes the terminating null). juce_free (temp); } void OutputStream::printf (const char* pf, ...) { unsigned int bufSize = 256; char* buf = (char*) juce_malloc (bufSize); for (;;) { va_list list; va_start (list, pf); const int num = CharacterFunctions::vprintf (buf, bufSize, pf, list); va_end (list); if (num > 0) { write (buf, num); break; } else if (num == 0) { break; } juce_free (buf); bufSize += 256; buf = (char*) juce_malloc (bufSize); } juce_free (buf); } OutputStream& OutputStream::operator<< (const int number) { const String s (number); write ((const char*) s, s.length()); return *this; } OutputStream& OutputStream::operator<< (const double number) { const String s (number); write ((const char*) s, s.length()); return *this; } OutputStream& OutputStream::operator<< (const char character) { writeByte (character); return *this; } OutputStream& OutputStream::operator<< (const char* const text) { write (text, (int) strlen (text)); return *this; } OutputStream& OutputStream::operator<< (const juce_wchar* const text) { const String s (text); write ((const char*) s, s.length()); return *this; } OutputStream& OutputStream::operator<< (const String& text) { write ((const char*) text, text.length()); return *this; } void OutputStream::writeText (const String& text, const bool asUnicode, const bool writeUnicodeHeaderBytes) { if (asUnicode) { if (writeUnicodeHeaderBytes) write ("\x0ff\x0fe", 2); const juce_wchar* src = (const juce_wchar*) text; bool lastCharWasReturn = false; while (*src != 0) { if (*src == L'\n' && ! lastCharWasReturn) writeShort ((short) L'\r'); lastCharWasReturn = (*src == L'\r'); writeShort ((short) *src++); } } else { const char* src = (const char*) text; const char* t = src; for (;;) { if (*t == '\n') { if (t > src) write (src, (int) (t - src)); write ("\r\n", 2); src = t + 1; } else if (*t == '\r') { if (t[1] == '\n') ++t; } else if (*t == 0) { if (t > src) write (src, (int) (t - src)); break; } ++t; } } } int OutputStream::writeFromInputStream (InputStream& source, int numBytesToWrite) { if (numBytesToWrite < 0) numBytesToWrite = 0x7fffffff; int numWritten = 0; while (numBytesToWrite > 0 && ! source.isExhausted()) { char buffer [8192]; const int num = source.read (buffer, jmin (numBytesToWrite, sizeof (buffer))); if (num == 0) break; write (buffer, num); numBytesToWrite -= num; numWritten += num; } return numWritten; } END_JUCE_NAMESPACE /********* End of inlined file: juce_OutputStream.cpp *********/ /********* Start of inlined file: juce_DirectoryIterator.cpp *********/ BEGIN_JUCE_NAMESPACE void* juce_findFileStart (const String& directory, const String& wildCard, String& firstResultFile, bool* isDirectory, bool* isHidden, int64* fileSize, Time* modTime, Time* creationTime, bool* isReadOnly) throw(); bool juce_findFileNext (void* handle, String& resultFile, bool* isDirectory, bool* isHidden, int64* fileSize, Time* modTime, Time* creationTime, bool* isReadOnly) throw(); void juce_findFileClose (void* handle) throw(); DirectoryIterator::DirectoryIterator (const File& directory, bool isRecursive, const String& wc, const int whatToLookFor_) throw() : wildCard (wc), index (-1), whatToLookFor (whatToLookFor_), subIterator (0) { // you have to specify the type of files you're looking for! jassert ((whatToLookFor_ & (File::findFiles | File::findDirectories)) != 0); jassert (whatToLookFor_ > 0 && whatToLookFor_ <= 7); String path (directory.getFullPathName()); if (! path.endsWithChar (File::separator)) path += File::separator; String filename; bool isDirectory, isHidden; void* const handle = juce_findFileStart (path, isRecursive ? T("*") : wc, filename, &isDirectory, &isHidden, 0, 0, 0, 0); if (handle != 0) { do { if (! filename.containsOnly (T("."))) { bool addToList = false; if (isDirectory) { if (isRecursive && ((whatToLookFor_ & File::ignoreHiddenFiles) == 0 || ! isHidden)) { dirsFound.add (new File (path + filename, 0)); } addToList = (whatToLookFor_ & File::findDirectories) != 0; } else { addToList = (whatToLookFor_ & File::findFiles) != 0; } // if it's recursive, we're not relying on the OS iterator // to do the wildcard match, so do it now.. if (isRecursive && addToList) addToList = filename.matchesWildcard (wc, true); if (addToList && (whatToLookFor_ & File::ignoreHiddenFiles) != 0) addToList = ! isHidden; if (addToList) filesFound.add (new File (path + filename, 0)); } } while (juce_findFileNext (handle, filename, &isDirectory, &isHidden, 0, 0, 0, 0)); juce_findFileClose (handle); } } DirectoryIterator::~DirectoryIterator() throw() { if (subIterator != 0) delete subIterator; } bool DirectoryIterator::next() throw() { if (subIterator != 0) { if (subIterator->next()) return true; deleteAndZero (subIterator); } if (index >= filesFound.size() + dirsFound.size() - 1) return false; ++index; if (index >= filesFound.size()) { subIterator = new DirectoryIterator (*(dirsFound [index - filesFound.size()]), true, wildCard, whatToLookFor); return next(); } return true; } const File DirectoryIterator::getFile() const throw() { if (subIterator != 0) return subIterator->getFile(); const File* const f = filesFound [index]; return (f != 0) ? *f : File::nonexistent; } float DirectoryIterator::getEstimatedProgress() const throw() { if (filesFound.size() + dirsFound.size() == 0) { return 0.0f; } else { const float detailedIndex = (subIterator != 0) ? index + subIterator->getEstimatedProgress() : (float) index; return detailedIndex / (filesFound.size() + dirsFound.size()); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_DirectoryIterator.cpp *********/ /********* Start of inlined file: juce_File.cpp *********/ #ifdef _MSC_VER #pragma warning (disable: 4514) #pragma warning (push) #endif #if ! JUCE_WINDOWS #include #endif BEGIN_JUCE_NAMESPACE #ifdef _MSC_VER #pragma warning (pop) #endif void* juce_fileOpen (const String& path, bool forWriting) throw(); void juce_fileClose (void* handle) throw(); int juce_fileWrite (void* handle, const void* buffer, int size) throw(); int64 juce_fileGetPosition (void* handle) throw(); int64 juce_fileSetPosition (void* handle, int64 pos) throw(); void juce_fileFlush (void* handle) throw(); bool juce_fileExists (const String& fileName, const bool dontCountDirectories) throw(); bool juce_isDirectory (const String& fileName) throw(); int64 juce_getFileSize (const String& fileName) throw(); bool juce_canWriteToFile (const String& fileName) throw(); bool juce_setFileReadOnly (const String& fileName, bool isReadOnly) throw(); void juce_getFileTimes (const String& fileName, int64& modificationTime, int64& accessTime, int64& creationTime) throw(); bool juce_setFileTimes (const String& fileName, int64 modificationTime, int64 accessTime, int64 creationTime) throw(); bool juce_deleteFile (const String& fileName) throw(); bool juce_copyFile (const String& source, const String& dest) throw(); bool juce_moveFile (const String& source, const String& dest) throw(); // this must also create all paths involved in the directory. void juce_createDirectory (const String& fileName) throw(); bool juce_launchFile (const String& fileName, const String& parameters) throw(); const StringArray juce_getFileSystemRoots() throw(); const String juce_getVolumeLabel (const String& filenameOnVolume, int& volumeSerialNumber) throw(); // starts a directory search operation with a wildcard, returning a handle for // use in calls to juce_findFileNext. // juce_firstResultFile gets the name of the file (not the whole pathname) and // the other pointers, if non-null, are set based on the properties of the file. void* juce_findFileStart (const String& directory, const String& wildCard, String& firstResultFile, bool* isDirectory, bool* isHidden, int64* fileSize, Time* modTime, Time* creationTime, bool* isReadOnly) throw(); // returns false when no more files are found bool juce_findFileNext (void* handle, String& resultFile, bool* isDirectory, bool* isHidden, int64* fileSize, Time* modTime, Time* creationTime, bool* isReadOnly) throw(); void juce_findFileClose (void* handle) throw(); static const String juce_addTrailingSeparator (const String& path) throw() { return path.endsWithChar (File::separator) ? path : path + File::separator; } static const String parseAbsolutePath (String path) throw() { if (path.isEmpty()) return String::empty; #if JUCE_WINDOWS // Windows.. path = path.replaceCharacter (T('/'), T('\\')); if (path.startsWithChar (File::separator)) { if (path[1] != File::separator) { jassertfalse // using a filename that starts with a slash is a bit dodgy on // Windows, because it needs a drive letter, which in this case // we'll take from the CWD.. but this is a bit of an assumption that // could be wrong.. path = File::getCurrentWorkingDirectory().getFullPathName().substring (0, 2) + path; } } else if (path.indexOfChar (T(':')) < 0) { if (path.isEmpty()) return String::empty; jassertfalse // using a partial filename is a bad way to initialise a file, because // we don't know what directory to put it in. // Here we'll assume it's in the CWD, but this might not be what was // intended.. return File::getCurrentWorkingDirectory().getChildFile (path).getFullPathName(); } #else // Mac or Linux.. path = path.replaceCharacter (T('\\'), T('/')); if (path.startsWithChar (T('~'))) { const char* homeDir = 0; if (path[1] == File::separator || path[1] == 0) { // expand a name of the form "~/abc" path = File::getSpecialLocation (File::userHomeDirectory).getFullPathName() + path.substring (1); } else { // expand a name of type "~dave/abc" const String userName (path.substring (1) .upToFirstOccurrenceOf (T("/"), false, false)); struct passwd* const pw = getpwnam (userName); if (pw != 0) { String home (homeDir); if (home.endsWithChar (File::separator)) home [home.length() - 1] = 0; path = String (pw->pw_dir) + path.substring (userName.length()); } } } else if (! path.startsWithChar (File::separator)) { while (path.startsWith (T("./"))) path = path.substring (2); if (path.isEmpty()) return String::empty; jassertfalse // using a partial filename is a bad way to initialise a file, because // we don't know what directory to put it in. // Here we'll assume it's in the CWD, but this might not be what was // intended.. return File::getCurrentWorkingDirectory().getChildFile (path).getFullPathName(); } #endif int len = path.length(); while (--len > 0 && path [len] == File::separator) path [len] = 0; return path; } const File File::nonexistent; File::File (const String& fullPathName) throw() : fullPath (parseAbsolutePath (fullPathName)) { } File::File (const String& path, int) throw() : fullPath (path) { } File::File (const File& other) throw() : fullPath (other.fullPath) { } const File& File::operator= (const String& newPath) throw() { fullPath = parseAbsolutePath (newPath); return *this; } const File& File::operator= (const File& other) throw() { fullPath = other.fullPath; return *this; } #if JUCE_LINUX #define NAMES_ARE_CASE_SENSITIVE 1 #endif bool File::areFileNamesCaseSensitive() { #if NAMES_ARE_CASE_SENSITIVE return true; #else return false; #endif } bool File::operator== (const File& other) const throw() { // case-insensitive on Windows, but not on linux. #if NAMES_ARE_CASE_SENSITIVE return fullPath == other.fullPath; #else return fullPath.equalsIgnoreCase (other.fullPath); #endif } bool File::operator!= (const File& other) const throw() { return ! operator== (other); } bool File::exists() const throw() { return juce_fileExists (fullPath, false); } bool File::existsAsFile() const throw() { return juce_fileExists (fullPath, true); } bool File::isDirectory() const throw() { return juce_isDirectory (fullPath); } bool File::hasWriteAccess() const throw() { if (exists()) return juce_canWriteToFile (fullPath); #if ! JUCE_WINDOWS else if ((! isDirectory()) && fullPath.containsChar (separator)) return getParentDirectory().hasWriteAccess(); else return false; #else // on windows, it seems that even read-only directories can still be written into, // so checking the parent directory's permissions would return the wrong result.. else return true; #endif } bool File::setReadOnly (const bool shouldBeReadOnly, const bool applyRecursively) const throw() { bool worked = true; if (applyRecursively && isDirectory()) { OwnedArray subFiles; findChildFiles (subFiles, File::findFilesAndDirectories, false); for (int i = subFiles.size(); --i >= 0;) worked = subFiles[i]->setReadOnly (shouldBeReadOnly, true) && worked; } return juce_setFileReadOnly (fullPath, shouldBeReadOnly) && worked; } bool File::deleteFile() const throw() { return (! exists()) || juce_deleteFile (fullPath); } bool File::deleteRecursively() const throw() { bool worked = true; if (isDirectory()) { OwnedArray subFiles; findChildFiles (subFiles, File::findFilesAndDirectories, false); for (int i = subFiles.size(); --i >= 0;) worked = subFiles[i]->deleteRecursively() && worked; } return deleteFile() && worked; } bool File::moveFileTo (const File& newFile) const throw() { if (newFile.fullPath == fullPath) return true; #if ! NAMES_ARE_CASE_SENSITIVE if (*this != newFile) #endif if (! newFile.deleteFile()) return false; return juce_moveFile (fullPath, newFile.fullPath); } bool File::copyFileTo (const File& newFile) const throw() { if (*this == newFile) return true; if (! newFile.deleteFile()) return false; return juce_copyFile (fullPath, newFile.fullPath); } bool File::copyDirectoryTo (const File& newDirectory) const throw() { if (isDirectory() && newDirectory.createDirectory()) { OwnedArray subFiles; findChildFiles (subFiles, File::findFiles, false); int i; for (i = 0; i < subFiles.size(); ++i) if (! subFiles[i]->copyFileTo (newDirectory.getChildFile (subFiles[i]->getFileName()))) return false; subFiles.clear(); findChildFiles (subFiles, File::findDirectories, false); for (i = 0; i < subFiles.size(); ++i) if (! subFiles[i]->copyDirectoryTo (newDirectory.getChildFile (subFiles[i]->getFileName()))) return false; return true; } return false; } const String File::getPathUpToLastSlash() const throw() { const int lastSlash = fullPath.lastIndexOfChar (separator); if (lastSlash > 0) return fullPath.substring (0, lastSlash); else if (lastSlash == 0) return separatorString; else return fullPath; } const File File::getParentDirectory() const throw() { return File (getPathUpToLastSlash()); } const String File::getFileName() const throw() { return fullPath.substring (fullPath.lastIndexOfChar (separator) + 1); } int File::hashCode() const throw() { return fullPath.hashCode(); } int64 File::hashCode64() const throw() { return fullPath.hashCode64(); } const String File::getFileNameWithoutExtension() const throw() { const int lastSlash = fullPath.lastIndexOfChar (separator) + 1; const int lastDot = fullPath.lastIndexOfChar (T('.')); if (lastDot > lastSlash) return fullPath.substring (lastSlash, lastDot); else return fullPath.substring (lastSlash); } bool File::isAChildOf (const File& potentialParent) const throw() { const String ourPath (getPathUpToLastSlash()); #if NAMES_ARE_CASE_SENSITIVE if (potentialParent.fullPath == ourPath) #else if (potentialParent.fullPath.equalsIgnoreCase (ourPath)) #endif { return true; } else if (potentialParent.fullPath.length() >= ourPath.length()) { return false; } else { return getParentDirectory().isAChildOf (potentialParent); } } bool File::isAbsolutePath (const String& path) throw() { return path.startsWithChar (T('/')) || path.startsWithChar (T('\\')) #if JUCE_WINDOWS || (path.isNotEmpty() && ((const String&) path)[1] == T(':')); #else || path.startsWithChar (T('~')); #endif } const File File::getChildFile (String relativePath) const throw() { if (isAbsolutePath (relativePath)) { // the path is really absolute.. return File (relativePath); } else { // it's relative, so remove any ../ or ./ bits at the start. String path (fullPath); if (relativePath[0] == T('.')) { #if JUCE_WINDOWS relativePath = relativePath.replaceCharacter (T('/'), T('\\')).trimStart(); #else relativePath = relativePath.replaceCharacter (T('\\'), T('/')).trimStart(); #endif while (relativePath[0] == T('.')) { if (relativePath[1] == T('.')) { if (relativePath [2] == 0 || relativePath[2] == separator) { const int lastSlash = path.lastIndexOfChar (separator); if (lastSlash >= 0) path = path.substring (0, lastSlash); relativePath = relativePath.substring (3); } else { break; } } else if (relativePath[1] == separator) { relativePath = relativePath.substring (2); } else { break; } } } return File (juce_addTrailingSeparator (path) + relativePath); } } const File File::getSiblingFile (const String& fileName) const throw() { return getParentDirectory().getChildFile (fileName); } int64 File::getSize() const throw() { return juce_getFileSize (fullPath); } const String File::descriptionOfSizeInBytes (const int64 bytes) { if (bytes == 1) { return "1 byte"; } else if (bytes < 1024) { return String ((int) bytes) + " bytes"; } else if (bytes < 1024 * 1024) { return String (bytes / 1024.0, 1) + " KB"; } else if (bytes < 1024 * 1024 * 1024) { return String (bytes / (1024.0 * 1024.0), 1) + " MB"; } else { return String (bytes / (1024.0 * 1024.0 * 1024.0), 1) + " GB"; } } bool File::create() const throw() { if (! exists()) { const File parentDir (getParentDirectory()); if (parentDir == *this || ! parentDir.createDirectory()) return false; void* const fh = juce_fileOpen (fullPath, true); if (fh == 0) return false; juce_fileClose (fh); } return true; } bool File::createDirectory() const throw() { if (! isDirectory()) { const File parentDir (getParentDirectory()); if (parentDir == *this || ! parentDir.createDirectory()) return false; String dir (fullPath); while (dir.endsWithChar (separator)) dir [dir.length() - 1] = 0; juce_createDirectory (dir); return isDirectory(); } return true; } const Time File::getCreationTime() const throw() { int64 m, a, c; juce_getFileTimes (fullPath, m, a, c); return Time (c); } bool File::setCreationTime (const Time& t) const throw() { return juce_setFileTimes (fullPath, 0, 0, t.toMilliseconds()); } const Time File::getLastModificationTime() const throw() { int64 m, a, c; juce_getFileTimes (fullPath, m, a, c); return Time (m); } bool File::setLastModificationTime (const Time& t) const throw() { return juce_setFileTimes (fullPath, t.toMilliseconds(), 0, 0); } const Time File::getLastAccessTime() const throw() { int64 m, a, c; juce_getFileTimes (fullPath, m, a, c); return Time (a); } bool File::setLastAccessTime (const Time& t) const throw() { return juce_setFileTimes (fullPath, 0, t.toMilliseconds(), 0); } bool File::loadFileAsData (MemoryBlock& destBlock) const throw() { if (! existsAsFile()) return false; FileInputStream in (*this); return getSize() == in.readIntoMemoryBlock (destBlock); } const String File::loadFileAsString() const throw() { if (! existsAsFile()) return String::empty; FileInputStream in (*this); return in.readEntireStreamAsString(); } static inline bool fileTypeMatches (const int whatToLookFor, const bool isDir, const bool isHidden) { return (whatToLookFor & (isDir ? File::findDirectories : File::findFiles)) != 0 && ((! isHidden) || (whatToLookFor & File::ignoreHiddenFiles) == 0); } int File::findChildFiles (OwnedArray& results, const int whatToLookFor, const bool searchRecursively, const String& wildCardPattern) const throw() { // you have to specify the type of files you're looking for! jassert ((whatToLookFor & (findFiles | findDirectories)) != 0); int total = 0; // find child files or directories in this directory first.. if (isDirectory()) { const String path (juce_addTrailingSeparator (fullPath)); String filename; bool isDirectory, isHidden; void* const handle = juce_findFileStart (path, wildCardPattern, filename, &isDirectory, &isHidden, 0, 0, 0, 0); if (handle != 0) { do { if (fileTypeMatches (whatToLookFor, isDirectory, isHidden) && ! filename.containsOnly (T("."))) { results.add (new File (path + filename, 0)); ++total; } } while (juce_findFileNext (handle, filename, &isDirectory, &isHidden, 0, 0, 0, 0)); juce_findFileClose (handle); } } else { // trying to search for files inside a non-directory? //jassertfalse } // and recurse down if required. if (searchRecursively) { OwnedArray subDirectories; findChildFiles (subDirectories, File::findDirectories, false); for (int i = 0; i < subDirectories.size(); ++i) { total += subDirectories.getUnchecked(i) ->findChildFiles (results, whatToLookFor, true, wildCardPattern); } } return total; } int File::getNumberOfChildFiles (const int whatToLookFor, const String& wildCardPattern) const throw() { // you have to specify the type of files you're looking for! jassert (whatToLookFor > 0 && whatToLookFor <= 3); int count = 0; if (isDirectory()) { String filename; bool isDirectory, isHidden; void* const handle = juce_findFileStart (fullPath, wildCardPattern, filename, &isDirectory, &isHidden, 0, 0, 0, 0); if (handle != 0) { do { if (fileTypeMatches (whatToLookFor, isDirectory, isHidden) && ! filename.containsOnly (T("."))) { ++count; } } while (juce_findFileNext (handle, filename, &isDirectory, &isHidden, 0, 0, 0, 0)); juce_findFileClose (handle); } } else { // trying to search for files inside a non-directory? jassertfalse } return count; } bool File::containsSubDirectories() const throw() { bool result = false; if (isDirectory()) { String filename; bool isDirectory, isHidden; void* const handle = juce_findFileStart (juce_addTrailingSeparator (fullPath), T("*"), filename, &isDirectory, &isHidden, 0, 0, 0, 0); if (handle != 0) { do { if (isDirectory) { result = true; break; } } while (juce_findFileNext (handle, filename, &isDirectory, &isHidden, 0, 0, 0, 0)); juce_findFileClose (handle); } } return result; } const File File::getNonexistentChildFile (const String& prefix_, const String& suffix, bool putNumbersInBrackets) const throw() { File f (getChildFile (prefix_ + suffix)); if (f.exists()) { int num = 2; String prefix (prefix_); // remove any bracketed numbers that may already be on the end.. if (prefix.trim().endsWithChar (T(')'))) { putNumbersInBrackets = true; const int openBracks = prefix.lastIndexOfChar (T('(')); const int closeBracks = prefix.lastIndexOfChar (T(')')); if (openBracks > 0 && closeBracks > openBracks && prefix.substring (openBracks + 1, closeBracks).containsOnly (T("0123456789"))) { num = prefix.substring (openBracks + 1, closeBracks).getIntValue() + 1; prefix = prefix.substring (0, openBracks); } } // also use brackets if it ends in a digit. putNumbersInBrackets = putNumbersInBrackets || CharacterFunctions::isDigit (prefix.getLastCharacter()); do { if (putNumbersInBrackets) f = getChildFile (prefix + T('(') + String (num++) + T(')') + suffix); else f = getChildFile (prefix + String (num++) + suffix); } while (f.exists()); } return f; } const File File::getNonexistentSibling (const bool putNumbersInBrackets) const throw() { if (exists()) { return getParentDirectory() .getNonexistentChildFile (getFileNameWithoutExtension(), getFileExtension(), putNumbersInBrackets); } else { return *this; } } const String File::getFileExtension() const throw() { String ext; if (! isDirectory()) { const int indexOfDot = fullPath.lastIndexOfChar (T('.')); if (indexOfDot > fullPath.lastIndexOfChar (separator)) ext = fullPath.substring (indexOfDot); } return ext; } bool File::hasFileExtension (const String& possibleSuffix) const throw() { if (possibleSuffix.isEmpty()) return fullPath.lastIndexOfChar (T('.')) <= fullPath.lastIndexOfChar (separator); if (fullPath.endsWithIgnoreCase (possibleSuffix)) { if (possibleSuffix.startsWithChar (T('.'))) return true; const int dotPos = fullPath.length() - possibleSuffix.length() - 1; if (dotPos >= 0) return fullPath [dotPos] == T('.'); } return false; } const File File::withFileExtension (const String& newExtension) const throw() { if (fullPath.isEmpty()) return File::nonexistent; String filePart (getFileName()); int i = filePart.lastIndexOfChar (T('.')); if (i < 0) i = filePart.length(); String newExt (newExtension); if (newExt.isNotEmpty() && ! newExt.startsWithChar (T('.'))) newExt = T(".") + newExt; return getSiblingFile (filePart.substring (0, i) + newExt); } bool File::startAsProcess (const String& parameters) const throw() { return exists() && juce_launchFile (fullPath, parameters); } FileInputStream* File::createInputStream() const throw() { if (existsAsFile()) return new FileInputStream (*this); else return 0; } FileOutputStream* File::createOutputStream (const int bufferSize) const throw() { FileOutputStream* const out = new FileOutputStream (*this, bufferSize); if (out->failedToOpen()) { delete out; return 0; } else { return out; } } bool File::appendData (const void* const dataToAppend, const int numberOfBytes) const throw() { if (numberOfBytes > 0) { FileOutputStream* const out = createOutputStream(); if (out == 0) return false; out->write (dataToAppend, numberOfBytes); delete out; } return true; } bool File::replaceWithData (const void* const dataToWrite, const int numberOfBytes) const throw() { jassert (numberOfBytes >= 0); // a negative number of bytes?? if (numberOfBytes <= 0) return deleteFile(); const File tempFile (getSiblingFile (T(".") + getFileName()).getNonexistentSibling (false)); if (tempFile.appendData (dataToWrite, numberOfBytes) && tempFile.moveFileTo (*this)) { return true; } tempFile.deleteFile(); return false; } bool File::appendText (const String& text, const bool asUnicode, const bool writeUnicodeHeaderBytes) const throw() { FileOutputStream* const out = createOutputStream(); if (out != 0) { out->writeText (text, asUnicode, writeUnicodeHeaderBytes); delete out; return true; } return false; } bool File::printf (const tchar* pf, ...) const throw() { va_list list; va_start (list, pf); String text; text.vprintf (pf, list); return appendData ((const char*) text, text.length()); } bool File::replaceWithText (const String& textToWrite, const bool asUnicode, const bool writeUnicodeHeaderBytes) const throw() { const File tempFile (getSiblingFile (T(".") + getFileName()).getNonexistentSibling (false)); if (tempFile.appendText (textToWrite, asUnicode, writeUnicodeHeaderBytes) && tempFile.moveFileTo (*this)) { return true; } tempFile.deleteFile(); return false; } const String File::createLegalPathName (const String& original) throw() { String s (original); String start; if (s[1] == T(':')) { start = s.substring (0, 2); s = s.substring (2); } return start + s.removeCharacters (T("\"#@,;:<>*^|?")) .substring (0, 1024); } const String File::createLegalFileName (const String& original) throw() { String s (original.removeCharacters (T("\"#@,;:<>*^|?\\/"))); const int maxLength = 128; // only the length of the filename, not the whole path const int len = s.length(); if (len > maxLength) { const int lastDot = s.lastIndexOfChar (T('.')); if (lastDot > jmax (0, len - 12)) { s = s.substring (0, maxLength - (len - lastDot)) + s.substring (lastDot); } else { s = s.substring (0, maxLength); } } return s; } const String File::getRelativePathFrom (const File& dir) const throw() { String thisPath (fullPath); { int len = thisPath.length(); while (--len >= 0 && thisPath [len] == File::separator) thisPath [len] = 0; } String dirPath (juce_addTrailingSeparator ((dir.existsAsFile()) ? dir.getParentDirectory().getFullPathName() : dir.fullPath)); const int len = jmin (thisPath.length(), dirPath.length()); int commonBitLength = 0; for (int i = 0; i < len; ++i) { #if NAMES_ARE_CASE_SENSITIVE if (thisPath[i] != dirPath[i]) #else if (CharacterFunctions::toLowerCase (thisPath[i]) != CharacterFunctions::toLowerCase (dirPath[i])) #endif { break; } ++commonBitLength; } while (commonBitLength > 0 && thisPath [commonBitLength - 1] != File::separator) --commonBitLength; // if the only common bit is the root, then just return the full path.. if (commonBitLength <= 0 || (commonBitLength == 1 && thisPath [1] == File::separator)) return fullPath; thisPath = thisPath.substring (commonBitLength); dirPath = dirPath.substring (commonBitLength); while (dirPath.isNotEmpty()) { #if JUCE_WINDOWS thisPath = T("..\\") + thisPath; #else thisPath = T("../") + thisPath; #endif const int sep = dirPath.indexOfChar (separator); if (sep >= 0) dirPath = dirPath.substring (sep + 1); else dirPath = String::empty; } return thisPath; } void File::findFileSystemRoots (OwnedArray& destArray) throw() { const StringArray roots (juce_getFileSystemRoots()); for (int i = 0; i < roots.size(); ++i) destArray.add (new File (roots[i])); } const String File::getVolumeLabel() const throw() { int serialNum; return juce_getVolumeLabel (fullPath, serialNum); } int File::getVolumeSerialNumber() const throw() { int serialNum; juce_getVolumeLabel (fullPath, serialNum); return serialNum; } const File File::createTempFile (const String& fileNameEnding) throw() { String tempName (T("temp")); static int tempNum = 0; tempName << tempNum++ << fileNameEnding; const File tempFile (getSpecialLocation (tempDirectory) .getChildFile (tempName)); if (tempFile.exists()) return createTempFile (fileNameEnding); else return tempFile; } END_JUCE_NAMESPACE /********* End of inlined file: juce_File.cpp *********/ /********* Start of inlined file: juce_FileInputStream.cpp *********/ BEGIN_JUCE_NAMESPACE void* juce_fileOpen (const String& path, bool forWriting) throw(); void juce_fileClose (void* handle) throw(); int juce_fileRead (void* handle, void* buffer, int size) throw(); int64 juce_fileSetPosition (void* handle, int64 pos) throw(); FileInputStream::FileInputStream (const File& f) : file (f), currentPosition (0), needToSeek (true) { totalSize = f.getSize(); fileHandle = juce_fileOpen (f.getFullPathName(), false); } FileInputStream::~FileInputStream() { juce_fileClose (fileHandle); } int64 FileInputStream::getTotalLength() { return totalSize; } int FileInputStream::read (void* buffer, int bytesToRead) { int num = 0; if (needToSeek) { if (juce_fileSetPosition (fileHandle, currentPosition) < 0) return 0; needToSeek = false; } num = juce_fileRead (fileHandle, buffer, bytesToRead); currentPosition += num; return num; } bool FileInputStream::isExhausted() { return currentPosition >= totalSize; } int64 FileInputStream::getPosition() { return currentPosition; } bool FileInputStream::setPosition (int64 pos) { pos = jlimit ((int64) 0, totalSize, pos); needToSeek |= (currentPosition != pos); currentPosition = pos; return true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_FileInputStream.cpp *********/ /********* Start of inlined file: juce_FileOutputStream.cpp *********/ BEGIN_JUCE_NAMESPACE void* juce_fileOpen (const String& path, bool forWriting) throw(); void juce_fileClose (void* handle) throw(); int juce_fileWrite (void* handle, const void* buffer, int size) throw(); void juce_fileFlush (void* handle) throw(); int64 juce_fileGetPosition (void* handle) throw(); int64 juce_fileSetPosition (void* handle, int64 pos) throw(); FileOutputStream::FileOutputStream (const File& f, const int bufferSize_) : file (f), bufferSize (bufferSize_), bytesInBuffer (0) { fileHandle = juce_fileOpen (f.getFullPathName(), true); if (fileHandle != 0) { currentPosition = juce_fileGetPosition (fileHandle); if (currentPosition < 0) { jassertfalse juce_fileClose (fileHandle); fileHandle = 0; } } buffer = (char*) juce_malloc (jmax (bufferSize_, 16)); } FileOutputStream::~FileOutputStream() { flush(); juce_fileClose (fileHandle); juce_free (buffer); } int64 FileOutputStream::getPosition() { return currentPosition; } bool FileOutputStream::setPosition (int64 newPosition) { if (newPosition != currentPosition) { flush(); currentPosition = juce_fileSetPosition (fileHandle, newPosition); } return newPosition == currentPosition; } void FileOutputStream::flush() { if (bytesInBuffer > 0) { juce_fileWrite (fileHandle, buffer, bytesInBuffer); bytesInBuffer = 0; } juce_fileFlush (fileHandle); } bool FileOutputStream::write (const void* const src, const int numBytes) { if (bytesInBuffer + numBytes < bufferSize) { memcpy (buffer + bytesInBuffer, src, numBytes); bytesInBuffer += numBytes; currentPosition += numBytes; } else { if (bytesInBuffer > 0) { // flush the reservoir const bool wroteOk = (juce_fileWrite (fileHandle, buffer, bytesInBuffer) == bytesInBuffer); bytesInBuffer = 0; if (! wroteOk) return false; } if (numBytes < bufferSize) { memcpy (buffer + bytesInBuffer, src, numBytes); bytesInBuffer += numBytes; currentPosition += numBytes; } else { const int bytesWritten = juce_fileWrite (fileHandle, src, numBytes); currentPosition += bytesWritten; return bytesWritten == numBytes; } } return true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_FileOutputStream.cpp *********/ /********* Start of inlined file: juce_FileSearchPath.cpp *********/ BEGIN_JUCE_NAMESPACE FileSearchPath::FileSearchPath() { } FileSearchPath::FileSearchPath (const String& path) { init (path); } FileSearchPath::FileSearchPath (const FileSearchPath& other) : directories (other.directories) { } FileSearchPath::~FileSearchPath() { } const FileSearchPath& FileSearchPath::operator= (const String& path) { init (path); return *this; } void FileSearchPath::init (const String& path) { directories.clear(); directories.addTokens (path, T(";"), T("\"")); directories.trim(); directories.removeEmptyStrings(); for (int i = directories.size(); --i >= 0;) directories.set (i, directories[i].unquoted()); } int FileSearchPath::getNumPaths() const { return directories.size(); } const File FileSearchPath::operator[] (const int index) const { return File (directories [index]); } const String FileSearchPath::toString() const { StringArray directories2 (directories); for (int i = directories2.size(); --i >= 0;) if (directories2[i].containsChar (T(';'))) directories2.set (i, directories2[i].quoted()); return directories2.joinIntoString (T(";")); } void FileSearchPath::add (const File& dir, const int insertIndex) { directories.insert (insertIndex, dir.getFullPathName()); } void FileSearchPath::addIfNotAlreadyThere (const File& dir) { for (int i = 0; i < directories.size(); ++i) if (File (directories[i]) == dir) return; add (dir); } void FileSearchPath::remove (const int index) { directories.remove (index); } void FileSearchPath::addPath (const FileSearchPath& other) { for (int i = 0; i < other.getNumPaths(); ++i) addIfNotAlreadyThere (other[i]); } void FileSearchPath::removeRedundantPaths() { for (int i = directories.size(); --i >= 0;) { const File d1 (directories[i]); for (int j = directories.size(); --j >= 0;) { const File d2 (directories[j]); if ((i != j) && (d1.isAChildOf (d2) || d1 == d2)) { directories.remove (i); break; } } } } void FileSearchPath::removeNonExistentPaths() { for (int i = directories.size(); --i >= 0;) if (! File (directories[i]).isDirectory()) directories.remove (i); } int FileSearchPath::findChildFiles (OwnedArray& results, const int whatToLookFor, const bool searchRecursively, const String& wildCardPattern) const { int total = 0; for (int i = 0; i < directories.size(); ++i) total += operator[] (i).findChildFiles (results, whatToLookFor, searchRecursively, wildCardPattern); return total; } bool FileSearchPath::isFileInPath (const File& fileToCheck, const bool checkRecursively) const { for (int i = directories.size(); --i >= 0;) { const File d (directories[i]); if (checkRecursively) { if (fileToCheck.isAChildOf (d)) return true; } else { if (fileToCheck.getParentDirectory() == d) return true; } } return false; } END_JUCE_NAMESPACE /********* End of inlined file: juce_FileSearchPath.cpp *********/ /********* Start of inlined file: juce_NamedPipe.cpp *********/ BEGIN_JUCE_NAMESPACE NamedPipe::NamedPipe() : internal (0) { } NamedPipe::~NamedPipe() { close(); } bool NamedPipe::openExisting (const String& pipeName) { currentPipeName = pipeName; return openInternal (pipeName, false); } bool NamedPipe::createNewPipe (const String& pipeName) { currentPipeName = pipeName; return openInternal (pipeName, true); } bool NamedPipe::isOpen() const throw() { return internal != 0; } const String NamedPipe::getName() const throw() { return currentPipeName; } // other methods for this class are implemented in the platform-specific files END_JUCE_NAMESPACE /********* End of inlined file: juce_NamedPipe.cpp *********/ /********* Start of inlined file: juce_Socket.cpp *********/ #if JUCE_WINDOWS #include #ifdef _MSC_VER #pragma warning (disable : 4127 4389 4018) #endif #else #if JUCE_LINUX #include #include #include #include #include #elif (MACOSX_DEPLOYMENT_TARGET <= MAC_OS_X_VERSION_10_4) && ! JUCE_IPHONE #include #endif #include #include #include #include #endif BEGIN_JUCE_NAMESPACE #if defined (JUCE_LINUX) || defined (JUCE_MAC) || defined (JUCE_IPHONE) typedef socklen_t juce_socklen_t; #else typedef int juce_socklen_t; #endif #if JUCE_WINDOWS typedef int (__stdcall juce_CloseWin32SocketLibCall) (void); juce_CloseWin32SocketLibCall* juce_CloseWin32SocketLib = 0; static void initWin32Sockets() { static CriticalSection lock; const ScopedLock sl (lock); if (juce_CloseWin32SocketLib == 0) { WSADATA wsaData; const WORD wVersionRequested = MAKEWORD (1, 1); WSAStartup (wVersionRequested, &wsaData); juce_CloseWin32SocketLib = &WSACleanup; } } #endif static bool resetSocketOptions (const int handle, const bool isDatagram, const bool allowBroadcast) throw() { const int sndBufSize = 65536; const int rcvBufSize = 65536; const int one = 1; return handle > 0 && setsockopt (handle, SOL_SOCKET, SO_RCVBUF, (const char*) &rcvBufSize, sizeof (rcvBufSize)) == 0 && setsockopt (handle, SOL_SOCKET, SO_SNDBUF, (const char*) &sndBufSize, sizeof (sndBufSize)) == 0 && (isDatagram ? ((! allowBroadcast) || setsockopt (handle, SOL_SOCKET, SO_BROADCAST, (const char*) &one, sizeof (one)) == 0) : (setsockopt (handle, IPPROTO_TCP, TCP_NODELAY, (const char*) &one, sizeof (one)) == 0)); } static bool bindSocketToPort (const int handle, const int port) throw() { if (handle <= 0 || port <= 0) return false; struct sockaddr_in servTmpAddr; zerostruct (servTmpAddr); servTmpAddr.sin_family = PF_INET; servTmpAddr.sin_addr.s_addr = htonl (INADDR_ANY); servTmpAddr.sin_port = htons ((uint16) port); return bind (handle, (struct sockaddr*) &servTmpAddr, sizeof (struct sockaddr_in)) >= 0; } static int readSocket (const int handle, void* const destBuffer, const int maxBytesToRead, bool volatile& connected, const bool blockUntilSpecifiedAmountHasArrived) throw() { int bytesRead = 0; while (bytesRead < maxBytesToRead) { int bytesThisTime; #if JUCE_WINDOWS bytesThisTime = recv (handle, ((char*) destBuffer) + bytesRead, maxBytesToRead - bytesRead, 0); #else while ((bytesThisTime = ::read (handle, ((char*) destBuffer) + bytesRead, maxBytesToRead - bytesRead)) < 0 && errno == EINTR && connected) { } #endif if (bytesThisTime <= 0 || ! connected) { if (bytesRead == 0) bytesRead = -1; break; } bytesRead += bytesThisTime; if (! blockUntilSpecifiedAmountHasArrived) break; } return bytesRead; } static int waitForReadiness (const int handle, const bool forReading, const int timeoutMsecs) throw() { struct timeval timeout; struct timeval* timeoutp; if (timeoutMsecs >= 0) { timeout.tv_sec = timeoutMsecs / 1000; timeout.tv_usec = (timeoutMsecs % 1000) * 1000; timeoutp = &timeout; } else { timeoutp = 0; } fd_set rset, wset; FD_ZERO (&rset); FD_SET (handle, &rset); FD_ZERO (&wset); FD_SET (handle, &wset); fd_set* const prset = forReading ? &rset : 0; fd_set* const pwset = forReading ? 0 : &wset; #if JUCE_WINDOWS if (select (handle + 1, prset, pwset, 0, timeoutp) < 0) return -1; #else { int result; while ((result = select (handle + 1, prset, pwset, 0, timeoutp)) < 0 && errno == EINTR) { } if (result < 0) return -1; } #endif { int opt; juce_socklen_t len = sizeof (opt); if (getsockopt (handle, SOL_SOCKET, SO_ERROR, (char*) &opt, &len) < 0 || opt != 0) return -1; } if ((forReading && FD_ISSET (handle, &rset)) || ((! forReading) && FD_ISSET (handle, &wset))) return 1; return 0; } static bool setSocketBlockingState (const int handle, const bool shouldBlock) throw() { #if JUCE_WINDOWS u_long nonBlocking = shouldBlock ? 0 : 1; if (ioctlsocket (handle, FIONBIO, &nonBlocking) != 0) return false; #else int socketFlags = fcntl (handle, F_GETFL, 0); if (socketFlags == -1) return false; if (shouldBlock) socketFlags &= ~O_NONBLOCK; else socketFlags |= O_NONBLOCK; if (fcntl (handle, F_SETFL, socketFlags) != 0) return false; #endif return true; } static bool connectSocket (int volatile& handle, const bool isDatagram, void** serverAddress, const String& hostName, const int portNumber, const int timeOutMillisecs) throw() { struct hostent* const hostEnt = gethostbyname (hostName); if (hostEnt == 0) return false; struct in_addr targetAddress; memcpy (&targetAddress.s_addr, *(hostEnt->h_addr_list), sizeof (targetAddress.s_addr)); struct sockaddr_in servTmpAddr; zerostruct (servTmpAddr); servTmpAddr.sin_family = PF_INET; servTmpAddr.sin_addr = targetAddress; servTmpAddr.sin_port = htons ((uint16) portNumber); if (handle < 0) handle = (int) socket (AF_INET, isDatagram ? SOCK_DGRAM : SOCK_STREAM, 0); if (handle < 0) return false; if (isDatagram) { *serverAddress = new struct sockaddr_in(); *((struct sockaddr_in*) *serverAddress) = servTmpAddr; return true; } setSocketBlockingState (handle, false); const int result = ::connect (handle, (struct sockaddr*) &servTmpAddr, sizeof (struct sockaddr_in)); if (result < 0) { #if JUCE_WINDOWS if (result == SOCKET_ERROR && WSAGetLastError() == WSAEWOULDBLOCK) #else if (errno == EINPROGRESS) #endif { if (waitForReadiness (handle, false, timeOutMillisecs) != 1) { setSocketBlockingState (handle, true); return false; } } } setSocketBlockingState (handle, true); resetSocketOptions (handle, false, false); return true; } StreamingSocket::StreamingSocket() : portNumber (0), handle (-1), connected (false), isListener (false) { #if JUCE_WINDOWS initWin32Sockets(); #endif } StreamingSocket::StreamingSocket (const String& hostName_, const int portNumber_, const int handle_) : hostName (hostName_), portNumber (portNumber_), handle (handle_), connected (true), isListener (false) { #if JUCE_WINDOWS initWin32Sockets(); #endif resetSocketOptions (handle_, false, false); } StreamingSocket::~StreamingSocket() { close(); } int StreamingSocket::read (void* destBuffer, const int maxBytesToRead, const bool blockUntilSpecifiedAmountHasArrived) { return (connected && ! isListener) ? readSocket (handle, destBuffer, maxBytesToRead, connected, blockUntilSpecifiedAmountHasArrived) : -1; } int StreamingSocket::write (const void* sourceBuffer, const int numBytesToWrite) { if (isListener || ! connected) return -1; #if JUCE_WINDOWS return send (handle, (const char*) sourceBuffer, numBytesToWrite, 0); #else int result; while ((result = ::write (handle, sourceBuffer, numBytesToWrite)) < 0 && errno == EINTR) { } return result; #endif } int StreamingSocket::waitUntilReady (const bool readyForReading, const int timeoutMsecs) const { return connected ? waitForReadiness (handle, readyForReading, timeoutMsecs) : -1; } bool StreamingSocket::bindToPort (const int port) { return bindSocketToPort (handle, port); } bool StreamingSocket::connect (const String& remoteHostName, const int remotePortNumber, const int timeOutMillisecs) { if (isListener) { jassertfalse // a listener socket can't connect to another one! return false; } if (connected) close(); hostName = remoteHostName; portNumber = remotePortNumber; isListener = false; connected = connectSocket (handle, false, 0, remoteHostName, remotePortNumber, timeOutMillisecs); if (! (connected && resetSocketOptions (handle, false, false))) { close(); return false; } return true; } void StreamingSocket::close() { #if JUCE_WINDOWS closesocket (handle); connected = false; #else if (connected) { connected = false; if (isListener) { // need to do this to interrupt the accept() function.. StreamingSocket temp; temp.connect ("localhost", portNumber, 1000); } } ::close (handle); #endif hostName = String::empty; portNumber = 0; handle = -1; isListener = false; } bool StreamingSocket::createListener (const int newPortNumber) { if (connected) close(); hostName = "listener"; portNumber = newPortNumber; isListener = true; struct sockaddr_in servTmpAddr; zerostruct (servTmpAddr); servTmpAddr.sin_family = PF_INET; servTmpAddr.sin_addr.s_addr = htonl (INADDR_ANY); servTmpAddr.sin_port = htons ((uint16) portNumber); handle = (int) socket (AF_INET, SOCK_STREAM, 0); if (handle < 0) return false; const int reuse = 1; setsockopt (handle, SOL_SOCKET, SO_REUSEADDR, (const char*) &reuse, sizeof (reuse)); if (bind (handle, (struct sockaddr*) &servTmpAddr, sizeof (struct sockaddr_in)) < 0 || listen (handle, SOMAXCONN) < 0) { close(); return false; } connected = true; return true; } StreamingSocket* StreamingSocket::waitForNextConnection() const { jassert (isListener || ! connected); // to call this method, you first have to use createListener() to // prepare this socket as a listener. if (connected && isListener) { struct sockaddr address; juce_socklen_t len = sizeof (sockaddr); const int newSocket = (int) accept (handle, &address, &len); if (newSocket >= 0 && connected) return new StreamingSocket (inet_ntoa (((struct sockaddr_in*) &address)->sin_addr), portNumber, newSocket); } return 0; } bool StreamingSocket::isLocal() const throw() { return hostName == T("127.0.0.1"); } DatagramSocket::DatagramSocket (const int localPortNumber, const bool allowBroadcast_) : portNumber (0), handle (-1), connected (true), allowBroadcast (allowBroadcast_), serverAddress (0) { #if JUCE_WINDOWS initWin32Sockets(); #endif handle = (int) socket (AF_INET, SOCK_DGRAM, 0); bindToPort (localPortNumber); } DatagramSocket::DatagramSocket (const String& hostName_, const int portNumber_, const int handle_, const int localPortNumber) : hostName (hostName_), portNumber (portNumber_), handle (handle_), connected (true), allowBroadcast (false), serverAddress (0) { #if JUCE_WINDOWS initWin32Sockets(); #endif resetSocketOptions (handle_, true, allowBroadcast); bindToPort (localPortNumber); } DatagramSocket::~DatagramSocket() { close(); delete ((struct sockaddr_in*) serverAddress); serverAddress = 0; } void DatagramSocket::close() { #if JUCE_WINDOWS closesocket (handle); connected = false; #else connected = false; ::close (handle); #endif hostName = String::empty; portNumber = 0; handle = -1; } bool DatagramSocket::bindToPort (const int port) { return bindSocketToPort (handle, port); } bool DatagramSocket::connect (const String& remoteHostName, const int remotePortNumber, const int timeOutMillisecs) { if (connected) close(); hostName = remoteHostName; portNumber = remotePortNumber; connected = connectSocket (handle, true, &serverAddress, remoteHostName, remotePortNumber, timeOutMillisecs); if (! (connected && resetSocketOptions (handle, true, allowBroadcast))) { close(); return false; } return true; } DatagramSocket* DatagramSocket::waitForNextConnection() const { struct sockaddr address; juce_socklen_t len = sizeof (sockaddr); while (waitUntilReady (true, -1) == 1) { char buf[1]; if (recvfrom (handle, buf, 0, 0, &address, &len) > 0) { return new DatagramSocket (inet_ntoa (((struct sockaddr_in*) &address)->sin_addr), ntohs (((struct sockaddr_in*) &address)->sin_port), -1, -1); } } return 0; } int DatagramSocket::waitUntilReady (const bool readyForReading, const int timeoutMsecs) const { return connected ? waitForReadiness (handle, readyForReading, timeoutMsecs) : -1; } int DatagramSocket::read (void* destBuffer, const int maxBytesToRead, const bool blockUntilSpecifiedAmountHasArrived) { return connected ? readSocket (handle, destBuffer, maxBytesToRead, connected, blockUntilSpecifiedAmountHasArrived) : -1; } int DatagramSocket::write (const void* sourceBuffer, const int numBytesToWrite) { // You need to call connect() first to set the server address.. jassert (serverAddress != 0 && connected); return connected ? sendto (handle, (const char*) sourceBuffer, numBytesToWrite, 0, (const struct sockaddr*) serverAddress, sizeof (struct sockaddr_in)) : -1; } bool DatagramSocket::isLocal() const throw() { return hostName == T("127.0.0.1"); } END_JUCE_NAMESPACE /********* End of inlined file: juce_Socket.cpp *********/ /********* Start of inlined file: juce_URL.cpp *********/ BEGIN_JUCE_NAMESPACE URL::URL() throw() { } URL::URL (const String& url_) : url (url_) { int i = url.indexOfChar (T('?')); if (i >= 0) { do { const int nextAmp = url.indexOfChar (i + 1, T('&')); const int equalsPos = url.indexOfChar (i + 1, T('=')); if (equalsPos > i + 1) { if (nextAmp < 0) { parameters.set (removeEscapeChars (url.substring (i + 1, equalsPos)), removeEscapeChars (url.substring (equalsPos + 1))); } else if (nextAmp > 0 && equalsPos < nextAmp) { parameters.set (removeEscapeChars (url.substring (i + 1, equalsPos)), removeEscapeChars (url.substring (equalsPos + 1, nextAmp))); } } i = nextAmp; } while (i >= 0); url = url.upToFirstOccurrenceOf (T("?"), false, false); } } URL::URL (const URL& other) : url (other.url), postData (other.postData), parameters (other.parameters), filesToUpload (other.filesToUpload), mimeTypes (other.mimeTypes) { } const URL& URL::operator= (const URL& other) { url = other.url; postData = other.postData; parameters = other.parameters; filesToUpload = other.filesToUpload; mimeTypes = other.mimeTypes; return *this; } URL::~URL() throw() { } static const String getMangledParameters (const StringPairArray& parameters) { String p; for (int i = 0; i < parameters.size(); ++i) { if (i > 0) p += T("&"); p << URL::addEscapeChars (parameters.getAllKeys() [i], true) << T("=") << URL::addEscapeChars (parameters.getAllValues() [i], true); } return p; } const String URL::toString (const bool includeGetParameters) const { if (includeGetParameters && parameters.size() > 0) return url + T("?") + getMangledParameters (parameters); else return url; } bool URL::isWellFormed() const { //xxx TODO return url.isNotEmpty(); } static int findStartOfDomain (const String& url) { int i = 0; while (CharacterFunctions::isLetterOrDigit (url[i]) || CharacterFunctions::indexOfChar (T("+-."), url[i], false) >= 0) ++i; return url[i] == T(':') ? i + 1 : 0; } const String URL::getDomain() const { int start = findStartOfDomain (url); while (url[start] == T('/')) ++start; const int end1 = url.indexOfChar (start, T('/')); const int end2 = url.indexOfChar (start, T(':')); const int end = (end1 < 0 || end2 < 0) ? jmax (end1, end2) : jmin (end1, end2); return url.substring (start, end); } const String URL::getSubPath() const { int start = findStartOfDomain (url); while (url[start] == T('/')) ++start; const int startOfPath = url.indexOfChar (start, T('/')) + 1; return startOfPath <= 0 ? String::empty : url.substring (startOfPath); } const String URL::getScheme() const { return url.substring (0, findStartOfDomain (url) - 1); } const URL URL::withNewSubPath (const String& newPath) const { int start = findStartOfDomain (url); while (url[start] == T('/')) ++start; const int startOfPath = url.indexOfChar (start, T('/')) + 1; URL u (*this); if (startOfPath > 0) u.url = url.substring (0, startOfPath); if (! u.url.endsWithChar (T('/'))) u.url << '/'; if (newPath.startsWithChar (T('/'))) u.url << newPath.substring (1); else u.url << newPath; return u; } bool URL::isProbablyAWebsiteURL (const String& possibleURL) { if (possibleURL.startsWithIgnoreCase (T("http:")) || possibleURL.startsWithIgnoreCase (T("ftp:"))) return true; if (possibleURL.startsWithIgnoreCase (T("file:")) || possibleURL.containsChar (T('@')) || possibleURL.endsWithChar (T('.')) || (! possibleURL.containsChar (T('.')))) return false; if (possibleURL.startsWithIgnoreCase (T("www.")) && possibleURL.substring (5).containsChar (T('.'))) return true; const char* commonTLDs[] = { "com", "net", "org", "uk", "de", "fr", "jp" }; for (int i = 0; i < numElementsInArray (commonTLDs); ++i) if ((possibleURL + T("/")).containsIgnoreCase (T(".") + String (commonTLDs[i]) + T("/"))) return true; return false; } bool URL::isProbablyAnEmailAddress (const String& possibleEmailAddress) { const int atSign = possibleEmailAddress.indexOfChar (T('@')); return atSign > 0 && possibleEmailAddress.lastIndexOfChar (T('.')) > (atSign + 1) && (! possibleEmailAddress.endsWithChar (T('.'))); } void* juce_openInternetFile (const String& url, const String& headers, const MemoryBlock& optionalPostData, const bool isPost, URL::OpenStreamProgressCallback* callback, void* callbackContext, int timeOutMs); void juce_closeInternetFile (void* handle); int juce_readFromInternetFile (void* handle, void* dest, int bytesToRead); int juce_seekInInternetFile (void* handle, int newPosition); int64 juce_getInternetFileContentLength (void* handle); class WebInputStream : public InputStream { public: WebInputStream (const URL& url, const bool isPost_, URL::OpenStreamProgressCallback* const progressCallback_, void* const progressCallbackContext_, const String& extraHeaders, int timeOutMs_) : position (0), finished (false), isPost (isPost_), progressCallback (progressCallback_), progressCallbackContext (progressCallbackContext_), timeOutMs (timeOutMs_) { server = url.toString (! isPost); if (isPost_) createHeadersAndPostData (url); headers += extraHeaders; if (! headers.endsWithChar (T('\n'))) headers << "\r\n"; handle = juce_openInternetFile (server, headers, postData, isPost, progressCallback_, progressCallbackContext_, timeOutMs); } ~WebInputStream() { juce_closeInternetFile (handle); } bool isError() const throw() { return handle == 0; } int64 getTotalLength() { return juce_getInternetFileContentLength (handle); } bool isExhausted() { return finished; } int read (void* dest, int bytes) { if (finished || isError()) { return 0; } else { const int bytesRead = juce_readFromInternetFile (handle, dest, bytes); position += bytesRead; if (bytesRead == 0) finished = true; return bytesRead; } } int64 getPosition() { return position; } bool setPosition (int64 wantedPos) { if (wantedPos != position) { finished = false; const int actualPos = juce_seekInInternetFile (handle, (int) wantedPos); if (actualPos == wantedPos) { position = wantedPos; } else { if (wantedPos < position) { juce_closeInternetFile (handle); position = 0; finished = false; handle = juce_openInternetFile (server, headers, postData, isPost, progressCallback, progressCallbackContext, timeOutMs); } skipNextBytes (wantedPos - position); } } return true; } juce_UseDebuggingNewOperator private: String server, headers; MemoryBlock postData; int64 position; bool finished; const bool isPost; void* handle; URL::OpenStreamProgressCallback* const progressCallback; void* const progressCallbackContext; const int timeOutMs; void createHeadersAndPostData (const URL& url) { if (url.getFilesToUpload().size() > 0) { // need to upload some files, so do it as multi-part... String boundary (String::toHexString (Random::getSystemRandom().nextInt64())); headers << "Content-Type: multipart/form-data; boundary=" << boundary << "\r\n"; appendUTF8ToPostData ("--" + boundary); int i; for (i = 0; i < url.getParameters().size(); ++i) { String s; s << "\r\nContent-Disposition: form-data; name=\"" << url.getParameters().getAllKeys() [i] << "\"\r\n\r\n" << url.getParameters().getAllValues() [i] << "\r\n--" << boundary; appendUTF8ToPostData (s); } for (i = 0; i < url.getFilesToUpload().size(); ++i) { const File f (url.getFilesToUpload().getAllValues() [i]); const String paramName (url.getFilesToUpload().getAllKeys() [i]); String s; s << "\r\nContent-Disposition: form-data; name=\"" << paramName << "\"; filename=\"" << f.getFileName() << "\"\r\n"; const String mimeType (url.getMimeTypesOfUploadFiles() .getValue (paramName, String::empty)); if (mimeType.isNotEmpty()) s << "Content-Type: " << mimeType << "\r\n"; s << "Content-Transfer-Encoding: binary\r\n\r\n"; appendUTF8ToPostData (s); f.loadFileAsData (postData); s = "\r\n--" + boundary; appendUTF8ToPostData (s); } appendUTF8ToPostData ("--\r\n"); } else { appendUTF8ToPostData (getMangledParameters (url.getParameters())); appendUTF8ToPostData (url.getPostData()); // just a short text attachment, so use simple url encoding.. headers = "Content-Type: application/x-www-form-urlencoded\r\nContent-length: " + String (postData.getSize()) + "\r\n"; } } void appendUTF8ToPostData (const String& text) throw() { postData.append (text.toUTF8(), (int) strlen (text.toUTF8())); } WebInputStream (const WebInputStream&); const WebInputStream& operator= (const WebInputStream&); }; InputStream* URL::createInputStream (const bool usePostCommand, OpenStreamProgressCallback* const progressCallback, void* const progressCallbackContext, const String& extraHeaders, const int timeOutMs) const { WebInputStream* wi = new WebInputStream (*this, usePostCommand, progressCallback, progressCallbackContext, extraHeaders, timeOutMs); if (wi->isError()) { delete wi; wi = 0; } return wi; } bool URL::readEntireBinaryStream (MemoryBlock& destData, const bool usePostCommand) const { InputStream* const in = createInputStream (usePostCommand); if (in != 0) { in->readIntoMemoryBlock (destData, -1); delete in; return true; } return false; } const String URL::readEntireTextStream (const bool usePostCommand) const { String result; InputStream* const in = createInputStream (usePostCommand); if (in != 0) { result = in->readEntireStreamAsString(); delete in; } return result; } XmlElement* URL::readEntireXmlStream (const bool usePostCommand) const { XmlDocument doc (readEntireTextStream (usePostCommand)); return doc.getDocumentElement(); } const URL URL::withParameter (const String& parameterName, const String& parameterValue) const { URL u (*this); u.parameters.set (parameterName, parameterValue); return u; } const URL URL::withFileToUpload (const String& parameterName, const File& fileToUpload, const String& mimeType) const { URL u (*this); u.filesToUpload.set (parameterName, fileToUpload.getFullPathName()); u.mimeTypes.set (parameterName, mimeType); return u; } const URL URL::withPOSTData (const String& postData_) const { URL u (*this); u.postData = postData_; return u; } const StringPairArray& URL::getParameters() const throw() { return parameters; } const StringPairArray& URL::getFilesToUpload() const throw() { return filesToUpload; } const StringPairArray& URL::getMimeTypesOfUploadFiles() const throw() { return mimeTypes; } const String URL::removeEscapeChars (const String& s) { const int len = s.length(); uint8* const resultUTF8 = (uint8*) juce_calloc (len * 4); uint8* r = resultUTF8; for (int i = 0; i < len; ++i) { char c = (char) s[i]; if (c == 0) break; if (c == '+') { c = ' '; } else if (c == '%') { c = (char) s.substring (i + 1, i + 3).getHexValue32(); i += 2; } *r++ = c; } const String stringResult (String::fromUTF8 (resultUTF8)); juce_free (resultUTF8); return stringResult; } const String URL::addEscapeChars (const String& s, const bool isParameter) { String result; result.preallocateStorage (s.length() + 8); const char* utf8 = s.toUTF8(); const char* legalChars = isParameter ? "_-.*!'()" : "_-$.*!'(),"; while (*utf8 != 0) { const char c = *utf8++; if (CharacterFunctions::isLetterOrDigit (c) || CharacterFunctions::indexOfChar (legalChars, c, false) >= 0) { result << c; } else { const int v = (int) (uint8) c; if (v < 0x10) result << T("%0"); else result << T('%'); result << String::toHexString (v); } } return result; } extern bool juce_launchFile (const String& fileName, const String& parameters) throw(); bool URL::launchInDefaultBrowser() const { String u (toString (true)); if (u.contains (T("@")) && ! u.contains (T(":"))) u = "mailto:" + u; return juce_launchFile (u, String::empty); } END_JUCE_NAMESPACE /********* End of inlined file: juce_URL.cpp *********/ /********* Start of inlined file: juce_BufferedInputStream.cpp *********/ BEGIN_JUCE_NAMESPACE BufferedInputStream::BufferedInputStream (InputStream* const source_, const int bufferSize_, const bool deleteSourceWhenDestroyed_) throw() : source (source_), deleteSourceWhenDestroyed (deleteSourceWhenDestroyed_), bufferSize (jmax (256, bufferSize_)), position (source_->getPosition()), lastReadPos (0), bufferOverlap (128) { const int sourceSize = (int) source_->getTotalLength(); if (sourceSize >= 0) bufferSize = jmin (jmax (32, sourceSize), bufferSize); bufferStart = position; buffer = (char*) juce_malloc (bufferSize); } BufferedInputStream::~BufferedInputStream() throw() { if (deleteSourceWhenDestroyed) delete source; juce_free (buffer); } int64 BufferedInputStream::getTotalLength() { return source->getTotalLength(); } int64 BufferedInputStream::getPosition() { return position; } bool BufferedInputStream::setPosition (int64 newPosition) { position = jmax ((int64) 0, newPosition); return true; } bool BufferedInputStream::isExhausted() { return (position >= lastReadPos) && source->isExhausted(); } void BufferedInputStream::ensureBuffered() { const int64 bufferEndOverlap = lastReadPos - bufferOverlap; if (position < bufferStart || position >= bufferEndOverlap) { int bytesRead; if (position < lastReadPos && position >= bufferEndOverlap && position >= bufferStart) { const int bytesToKeep = (int) (lastReadPos - position); memmove (buffer, buffer + position - bufferStart, bytesToKeep); bufferStart = position; bytesRead = source->read (buffer + bytesToKeep, bufferSize - bytesToKeep); lastReadPos += bytesRead; bytesRead += bytesToKeep; } else { bufferStart = position; source->setPosition (bufferStart); bytesRead = source->read (buffer, bufferSize); lastReadPos = bufferStart + bytesRead; } while (bytesRead < bufferSize) buffer [bytesRead++] = 0; } } int BufferedInputStream::read (void* destBuffer, int maxBytesToRead) { if (position >= bufferStart && position + maxBytesToRead <= lastReadPos) { memcpy (destBuffer, buffer + (position - bufferStart), maxBytesToRead); position += maxBytesToRead; return maxBytesToRead; } else { if (position < bufferStart || position >= lastReadPos) ensureBuffered(); int bytesRead = 0; while (maxBytesToRead > 0) { const int bytesAvailable = jmin (maxBytesToRead, (int) (lastReadPos - position)); if (bytesAvailable > 0) { memcpy (destBuffer, buffer + (position - bufferStart), bytesAvailable); maxBytesToRead -= bytesAvailable; bytesRead += bytesAvailable; position += bytesAvailable; destBuffer = (void*) (((char*) destBuffer) + bytesAvailable); } const int64 oldLastReadPos = lastReadPos; ensureBuffered(); if (oldLastReadPos == lastReadPos) break; // if ensureBuffered() failed to read any more data, bail out if (isExhausted()) break; } return bytesRead; } } const String BufferedInputStream::readString() { if (position >= bufferStart && position < lastReadPos) { const int maxChars = (int) (lastReadPos - position); const char* const src = buffer + (position - bufferStart); for (int i = 0; i < maxChars; ++i) { if (src[i] == 0) { position += i + 1; return String::fromUTF8 ((const uint8*) src, i); } } } return InputStream::readString(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_BufferedInputStream.cpp *********/ /********* Start of inlined file: juce_FileInputSource.cpp *********/ BEGIN_JUCE_NAMESPACE FileInputSource::FileInputSource (const File& file_) throw() : file (file_) { } FileInputSource::~FileInputSource() { } InputStream* FileInputSource::createInputStream() { return file.createInputStream(); } InputStream* FileInputSource::createInputStreamFor (const String& relatedItemPath) { return file.getSiblingFile (relatedItemPath).createInputStream(); } int64 FileInputSource::hashCode() const { return file.hashCode(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_FileInputSource.cpp *********/ /********* Start of inlined file: juce_MemoryInputStream.cpp *********/ BEGIN_JUCE_NAMESPACE MemoryInputStream::MemoryInputStream (const void* const sourceData, const int sourceDataSize, const bool keepInternalCopy) throw() : data ((const char*) sourceData), dataSize (sourceDataSize), position (0) { if (keepInternalCopy) { internalCopy.append (data, sourceDataSize); data = (const char*) internalCopy.getData(); } } MemoryInputStream::~MemoryInputStream() throw() { } int64 MemoryInputStream::getTotalLength() { return dataSize; } int MemoryInputStream::read (void* buffer, int howMany) { const int num = jmin (howMany, dataSize - position); memcpy (buffer, data + position, num); position += num; return num; } bool MemoryInputStream::isExhausted() { return (position >= dataSize); } bool MemoryInputStream::setPosition (int64 pos) { position = (int) jlimit ((int64) 0, (int64) dataSize, pos); return true; } int64 MemoryInputStream::getPosition() { return position; } END_JUCE_NAMESPACE /********* End of inlined file: juce_MemoryInputStream.cpp *********/ /********* Start of inlined file: juce_MemoryOutputStream.cpp *********/ BEGIN_JUCE_NAMESPACE MemoryOutputStream::MemoryOutputStream (const int initialSize, const int blockSizeToIncreaseBy, MemoryBlock* const memoryBlockToWriteTo) throw() : data (memoryBlockToWriteTo), position (0), size (0), blockSize (jmax (16, blockSizeToIncreaseBy)), ownsMemoryBlock (memoryBlockToWriteTo == 0) { if (memoryBlockToWriteTo == 0) data = new MemoryBlock (initialSize); else memoryBlockToWriteTo->setSize (initialSize, false); } MemoryOutputStream::~MemoryOutputStream() throw() { if (ownsMemoryBlock) delete data; else flush(); } void MemoryOutputStream::flush() { if (! ownsMemoryBlock) data->setSize (size, false); } void MemoryOutputStream::reset() throw() { position = 0; size = 0; } bool MemoryOutputStream::write (const void* buffer, int howMany) { if (howMany > 0) { int storageNeeded = position + howMany; if (storageNeeded >= data->getSize()) { // if we need more space, increase the block by at least 10%.. storageNeeded += jmax (blockSize, storageNeeded / 10); storageNeeded = storageNeeded - (storageNeeded % blockSize) + blockSize; data->ensureSize (storageNeeded); } data->copyFrom (buffer, position, howMany); position += howMany; size = jmax (size, position); } return true; } const char* MemoryOutputStream::getData() throw() { if (data->getSize() > size) ((char*) data->getData()) [size] = 0; return (const char*) data->getData(); } int MemoryOutputStream::getDataSize() const throw() { return size; } int64 MemoryOutputStream::getPosition() { return position; } bool MemoryOutputStream::setPosition (int64 newPosition) { if (newPosition <= size) { // ok to seek backwards position = jlimit (0, size, (int) newPosition); return true; } else { // trying to make it bigger isn't a good thing to do.. return false; } } END_JUCE_NAMESPACE /********* End of inlined file: juce_MemoryOutputStream.cpp *********/ /********* Start of inlined file: juce_SubregionStream.cpp *********/ BEGIN_JUCE_NAMESPACE SubregionStream::SubregionStream (InputStream* const sourceStream, const int64 startPositionInSourceStream_, const int64 lengthOfSourceStream_, const bool deleteSourceWhenDestroyed_) throw() : source (sourceStream), deleteSourceWhenDestroyed (deleteSourceWhenDestroyed_), startPositionInSourceStream (startPositionInSourceStream_), lengthOfSourceStream (lengthOfSourceStream_) { setPosition (0); } SubregionStream::~SubregionStream() throw() { if (deleteSourceWhenDestroyed) delete source; } int64 SubregionStream::getTotalLength() { const int64 srcLen = source->getTotalLength() - startPositionInSourceStream; return (lengthOfSourceStream >= 0) ? jmin (lengthOfSourceStream, srcLen) : srcLen; } int64 SubregionStream::getPosition() { return source->getPosition() - startPositionInSourceStream; } bool SubregionStream::setPosition (int64 newPosition) { return source->setPosition (jmax ((int64) 0, newPosition + startPositionInSourceStream)); } int SubregionStream::read (void* destBuffer, int maxBytesToRead) { if (lengthOfSourceStream < 0) { return source->read (destBuffer, maxBytesToRead); } else { maxBytesToRead = (int) jmin ((int64) maxBytesToRead, lengthOfSourceStream - getPosition()); if (maxBytesToRead <= 0) return 0; return source->read (destBuffer, maxBytesToRead); } } bool SubregionStream::isExhausted() { if (lengthOfSourceStream >= 0) return (getPosition() >= lengthOfSourceStream) || source->isExhausted(); else return source->isExhausted(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_SubregionStream.cpp *********/ /********* Start of inlined file: juce_PerformanceCounter.cpp *********/ BEGIN_JUCE_NAMESPACE PerformanceCounter::PerformanceCounter (const String& name_, int runsPerPrintout, const File& loggingFile) : name (name_), numRuns (0), runsPerPrint (runsPerPrintout), totalTime (0), outputFile (loggingFile) { if (outputFile != File::nonexistent) { String s ("**** Counter for \""); s << name_ << "\" started at: " << Time::getCurrentTime().toString (true, true) << "\r\n"; outputFile.appendText (s, false, false); } } PerformanceCounter::~PerformanceCounter() { printStatistics(); } void PerformanceCounter::start() { started = Time::getHighResolutionTicks(); } void PerformanceCounter::stop() { const int64 now = Time::getHighResolutionTicks(); totalTime += 1000.0 * Time::highResolutionTicksToSeconds (now - started); if (++numRuns == runsPerPrint) printStatistics(); } void PerformanceCounter::printStatistics() { if (numRuns > 0) { String s ("Performance count for \""); s << name << "\" - average over " << numRuns << " run(s) = "; const int micros = (int) (totalTime * (1000.0 / numRuns)); if (micros > 10000) s << (micros/1000) << " millisecs"; else s << micros << " microsecs"; s << ", total = " << String (totalTime / 1000, 5) << " seconds"; Logger::outputDebugString (s); s << "\r\n"; if (outputFile != File::nonexistent) outputFile.appendText (s, false, false); numRuns = 0; totalTime = 0; } } END_JUCE_NAMESPACE /********* End of inlined file: juce_PerformanceCounter.cpp *********/ /********* Start of inlined file: juce_Uuid.cpp *********/ BEGIN_JUCE_NAMESPACE Uuid::Uuid() { // Mix up any available MAC addresses with some time-based pseudo-random numbers // to make it very very unlikely that two UUIDs will ever be the same.. static int64 macAddresses[2]; static bool hasCheckedMacAddresses = false; if (! hasCheckedMacAddresses) { hasCheckedMacAddresses = true; SystemStats::getMACAddresses (macAddresses, 2); } value.asInt64[0] = macAddresses[0]; value.asInt64[1] = macAddresses[1]; // We'll use both a local RNG that is re-seeded, plus the shared RNG, // whose seed will carry over between calls to this method. Random r (macAddresses[0] ^ macAddresses[1] ^ Random::getSystemRandom().nextInt64()); for (int i = 4; --i >= 0;) { r.setSeedRandomly(); // calling this repeatedly improves randomness value.asInt[i] ^= r.nextInt(); value.asInt[i] ^= Random::getSystemRandom().nextInt(); } } Uuid::~Uuid() throw() { } Uuid::Uuid (const Uuid& other) : value (other.value) { } Uuid& Uuid::operator= (const Uuid& other) { if (this != &other) value = other.value; return *this; } bool Uuid::operator== (const Uuid& other) const { return memcmp (value.asBytes, other.value.asBytes, 16) == 0; } bool Uuid::operator!= (const Uuid& other) const { return ! operator== (other); } bool Uuid::isNull() const throw() { return (value.asInt64 [0] == 0) && (value.asInt64 [1] == 0); } const String Uuid::toString() const { return String::toHexString (value.asBytes, 16, 0); } Uuid::Uuid (const String& uuidString) { operator= (uuidString); } Uuid& Uuid::operator= (const String& uuidString) { int destIndex = 0; int i = 0; for (;;) { int byte = 0; for (int loop = 2; --loop >= 0;) { byte <<= 4; for (;;) { const tchar c = uuidString [i++]; if (c >= T('0') && c <= T('9')) { byte |= c - T('0'); break; } else if (c >= T('a') && c <= T('z')) { byte |= c - (T('a') - 10); break; } else if (c >= T('A') && c <= T('Z')) { byte |= c - (T('A') - 10); break; } else if (c == 0) { while (destIndex < 16) value.asBytes [destIndex++] = 0; return *this; } } } value.asBytes [destIndex++] = (uint8) byte; } } Uuid::Uuid (const uint8* const rawData) { operator= (rawData); } Uuid& Uuid::operator= (const uint8* const rawData) { if (rawData != 0) memcpy (value.asBytes, rawData, 16); else zeromem (value.asBytes, 16); return *this; } END_JUCE_NAMESPACE /********* End of inlined file: juce_Uuid.cpp *********/ /********* Start of inlined file: juce_ZipFile.cpp *********/ BEGIN_JUCE_NAMESPACE struct ZipEntryInfo { ZipFile::ZipEntry entry; int streamOffset; int compressedSize; bool compressed; }; class ZipInputStream : public InputStream { public: ZipInputStream (ZipFile& file_, ZipEntryInfo& zei) throw() : file (file_), zipEntryInfo (zei), pos (0), headerSize (0), inputStream (0) { inputStream = file_.inputStream; if (file_.inputSource != 0) { inputStream = file.inputSource->createInputStream(); } else { #ifdef JUCE_DEBUG file_.numOpenStreams++; #endif } char buffer [30]; if (inputStream != 0 && inputStream->setPosition (zei.streamOffset) && inputStream->read (buffer, 30) == 30 && littleEndianInt (buffer) == 0x04034b50) { headerSize = 30 + littleEndianShort (buffer + 26) + littleEndianShort (buffer + 28); } } ~ZipInputStream() throw() { #ifdef JUCE_DEBUG if (inputStream != 0 && inputStream == file.inputStream) file.numOpenStreams--; #endif if (inputStream != file.inputStream) delete inputStream; } int64 getTotalLength() throw() { return zipEntryInfo.compressedSize; } int read (void* buffer, int howMany) throw() { if (headerSize <= 0) return 0; howMany = (int) jmin ((int64) howMany, zipEntryInfo.compressedSize - pos); if (inputStream == 0) return 0; int num; if (inputStream == file.inputStream) { const ScopedLock sl (file.lock); inputStream->setPosition (pos + zipEntryInfo.streamOffset + headerSize); num = inputStream->read (buffer, howMany); } else { inputStream->setPosition (pos + zipEntryInfo.streamOffset + headerSize); num = inputStream->read (buffer, howMany); } pos += num; return num; } bool isExhausted() throw() { return headerSize <= 0 || pos >= zipEntryInfo.compressedSize; } int64 getPosition() throw() { return pos; } bool setPosition (int64 newPos) throw() { pos = jlimit ((int64) 0, (int64) zipEntryInfo.compressedSize, newPos); return true; } private: ZipFile& file; ZipEntryInfo zipEntryInfo; int64 pos; int headerSize; InputStream* inputStream; ZipInputStream (const ZipInputStream&); const ZipInputStream& operator= (const ZipInputStream&); }; ZipFile::ZipFile (InputStream* const source_, const bool deleteStreamWhenDestroyed_) throw() : inputStream (source_), inputSource (0), deleteStreamWhenDestroyed (deleteStreamWhenDestroyed_) #ifdef JUCE_DEBUG , numOpenStreams (0) #endif { init(); } ZipFile::ZipFile (const File& file) : inputStream (0), deleteStreamWhenDestroyed (false) #ifdef JUCE_DEBUG , numOpenStreams (0) #endif { inputSource = new FileInputSource (file); init(); } ZipFile::ZipFile (InputSource* const inputSource_) : inputStream (0), inputSource (inputSource_), deleteStreamWhenDestroyed (false) #ifdef JUCE_DEBUG , numOpenStreams (0) #endif { init(); } ZipFile::~ZipFile() throw() { for (int i = entries.size(); --i >= 0;) { ZipEntryInfo* const zei = (ZipEntryInfo*) entries [i]; delete zei; } if (deleteStreamWhenDestroyed) delete inputStream; delete inputSource; #ifdef JUCE_DEBUG // If you hit this assertion, it means you've created a stream to read // one of the items in the zipfile, but you've forgotten to delete that // stream object before deleting the file.. Streams can't be kept open // after the file is deleted because they need to share the input // stream that the file uses to read itself. jassert (numOpenStreams == 0); #endif } int ZipFile::getNumEntries() const throw() { return entries.size(); } const ZipFile::ZipEntry* ZipFile::getEntry (const int index) const throw() { ZipEntryInfo* const zei = (ZipEntryInfo*) entries [index]; return (zei != 0) ? &(zei->entry) : 0; } int ZipFile::getIndexOfFileName (const String& fileName) const throw() { for (int i = 0; i < entries.size(); ++i) if (((ZipEntryInfo*) entries.getUnchecked (i))->entry.filename == fileName) return i; return -1; } const ZipFile::ZipEntry* ZipFile::getEntry (const String& fileName) const throw() { return getEntry (getIndexOfFileName (fileName)); } InputStream* ZipFile::createStreamForEntry (const int index) { ZipEntryInfo* const zei = (ZipEntryInfo*) entries[index]; InputStream* stream = 0; if (zei != 0) { stream = new ZipInputStream (*this, *zei); if (zei->compressed) { stream = new GZIPDecompressorInputStream (stream, true, true, zei->entry.uncompressedSize); // (much faster to unzip in big blocks using a buffer..) stream = new BufferedInputStream (stream, 32768, true); } } return stream; } class ZipFilenameComparator { public: static int compareElements (const void* const first, const void* const second) throw() { return ((const ZipEntryInfo*) first)->entry.filename .compare (((const ZipEntryInfo*) second)->entry.filename); } }; void ZipFile::sortEntriesByFilename() { ZipFilenameComparator sorter; entries.sort (sorter); } void ZipFile::init() { InputStream* in = inputStream; bool deleteInput = false; if (inputSource != 0) { deleteInput = true; in = inputSource->createInputStream(); } if (in != 0) { numEntries = 0; int pos = findEndOfZipEntryTable (in); if (pos >= 0 && pos < in->getTotalLength()) { const int size = (int) (in->getTotalLength() - pos); in->setPosition (pos); MemoryBlock headerData; if (in->readIntoMemoryBlock (headerData, size) == size) { pos = 0; for (int i = 0; i < numEntries; ++i) { if (pos + 46 > size) break; const char* const buffer = ((const char*) headerData.getData()) + pos; const int fileNameLen = littleEndianShort (buffer + 28); if (pos + 46 + fileNameLen > size) break; ZipEntryInfo* const zei = new ZipEntryInfo(); zei->entry.filename = String (buffer + 46, fileNameLen); const int time = littleEndianShort (buffer + 12); const int date = littleEndianShort (buffer + 14); const int year = 1980 + (date >> 9); const int month = ((date >> 5) & 15) - 1; const int day = date & 31; const int hours = time >> 11; const int minutes = (time >> 5) & 63; const int seconds = (time & 31) << 1; zei->entry.fileTime = Time (year, month, day, hours, minutes, seconds); zei->compressed = littleEndianShort (buffer + 10) != 0; zei->compressedSize = littleEndianInt (buffer + 20); zei->entry.uncompressedSize = littleEndianInt (buffer + 24); zei->streamOffset = littleEndianInt (buffer + 42); entries.add (zei); pos += 46 + fileNameLen + littleEndianShort (buffer + 30) + littleEndianShort (buffer + 32); } } } if (deleteInput) delete in; } } int ZipFile::findEndOfZipEntryTable (InputStream* input) { BufferedInputStream in (input, 8192, false); in.setPosition (in.getTotalLength()); int64 pos = in.getPosition(); const int64 lowestPos = jmax ((int64) 0, pos - 1024); char buffer [32]; zeromem (buffer, sizeof (buffer)); while (pos > lowestPos) { in.setPosition (pos - 22); pos = in.getPosition(); memcpy (buffer + 22, buffer, 4); if (in.read (buffer, 22) != 22) return 0; for (int i = 0; i < 22; ++i) { if (littleEndianInt (buffer + i) == 0x06054b50) { in.setPosition (pos + i); in.read (buffer, 22); numEntries = littleEndianShort (buffer + 10); return littleEndianInt (buffer + 16); } } } return 0; } void ZipFile::uncompressTo (const File& targetDirectory, const bool shouldOverwriteFiles) { for (int i = 0; i < entries.size(); ++i) { const ZipEntryInfo& zei = *(ZipEntryInfo*) entries[i]; const File targetFile (targetDirectory.getChildFile (zei.entry.filename)); if (zei.entry.filename.endsWithChar (T('/'))) { targetFile.createDirectory(); // (entry is a directory, not a file) } else { InputStream* const in = createStreamForEntry (i); if (in != 0) { if (shouldOverwriteFiles) targetFile.deleteFile(); if ((! targetFile.exists()) && targetFile.getParentDirectory().createDirectory()) { FileOutputStream* const out = targetFile.createOutputStream(); if (out != 0) { out->writeFromInputStream (*in, -1); delete out; targetFile.setCreationTime (zei.entry.fileTime); targetFile.setLastModificationTime (zei.entry.fileTime); targetFile.setLastAccessTime (zei.entry.fileTime); } } delete in; } } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ZipFile.cpp *********/ /********* Start of inlined file: juce_CharacterFunctions.cpp *********/ #ifdef _MSC_VER #pragma warning (disable: 4514 4996) #pragma warning (push) #endif #include #include #include #ifdef _MSC_VER #pragma warning (pop) #endif BEGIN_JUCE_NAMESPACE int CharacterFunctions::length (const char* const s) throw() { return (int) strlen (s); } int CharacterFunctions::length (const juce_wchar* const s) throw() { return (int) wcslen (s); } void CharacterFunctions::copy (char* dest, const char* src, const int maxChars) throw() { strncpy (dest, src, maxChars); } void CharacterFunctions::copy (juce_wchar* dest, const juce_wchar* src, int maxChars) throw() { wcsncpy (dest, src, maxChars); } void CharacterFunctions::copy (juce_wchar* dest, const char* src, const int maxChars) throw() { mbstowcs (dest, src, maxChars); } void CharacterFunctions::copy (char* dest, const juce_wchar* src, const int maxChars) throw() { wcstombs (dest, src, maxChars); } int CharacterFunctions::bytesRequiredForCopy (const juce_wchar* src) throw() { return (int) wcstombs (0, src, 0); } void CharacterFunctions::append (char* dest, const char* src) throw() { strcat (dest, src); } void CharacterFunctions::append (juce_wchar* dest, const juce_wchar* src) throw() { wcscat (dest, src); } int CharacterFunctions::compare (const char* const s1, const char* const s2) throw() { return strcmp (s1, s2); } int CharacterFunctions::compare (const juce_wchar* s1, const juce_wchar* s2) throw() { jassert (s1 != 0 && s2 != 0); return wcscmp (s1, s2); } int CharacterFunctions::compare (const char* const s1, const char* const s2, const int maxChars) throw() { jassert (s1 != 0 && s2 != 0); return strncmp (s1, s2, maxChars); } int CharacterFunctions::compare (const juce_wchar* s1, const juce_wchar* s2, int maxChars) throw() { jassert (s1 != 0 && s2 != 0); return wcsncmp (s1, s2, maxChars); } int CharacterFunctions::compareIgnoreCase (const char* const s1, const char* const s2) throw() { jassert (s1 != 0 && s2 != 0); #if JUCE_WIN32 return stricmp (s1, s2); #else return strcasecmp (s1, s2); #endif } int CharacterFunctions::compareIgnoreCase (const juce_wchar* s1, const juce_wchar* s2) throw() { jassert (s1 != 0 && s2 != 0); #if JUCE_WIN32 return _wcsicmp (s1, s2); #else for (;;) { if (*s1 != *s2) { const int diff = toUpperCase (*s1) - toUpperCase (*s2); if (diff != 0) return diff < 0 ? -1 : 1; } else if (*s1 == 0) break; ++s1; ++s2; } return 0; #endif } int CharacterFunctions::compareIgnoreCase (const char* const s1, const char* const s2, const int maxChars) throw() { jassert (s1 != 0 && s2 != 0); #if JUCE_WIN32 return strnicmp (s1, s2, maxChars); #else return strncasecmp (s1, s2, maxChars); #endif } int CharacterFunctions::compareIgnoreCase (const juce_wchar* s1, const juce_wchar* s2, int maxChars) throw() { jassert (s1 != 0 && s2 != 0); #if JUCE_WIN32 return _wcsnicmp (s1, s2, maxChars); #else while (--maxChars >= 0) { if (*s1 != *s2) { const int diff = toUpperCase (*s1) - toUpperCase (*s2); if (diff != 0) return diff < 0 ? -1 : 1; } else if (*s1 == 0) break; ++s1; ++s2; } return 0; #endif } const char* CharacterFunctions::find (const char* const haystack, const char* const needle) throw() { return strstr (haystack, needle); } const juce_wchar* CharacterFunctions::find (const juce_wchar* haystack, const juce_wchar* const needle) throw() { return wcsstr (haystack, needle); } int CharacterFunctions::indexOfChar (const char* const haystack, const char needle, const bool ignoreCase) throw() { if (haystack != 0) { int i = 0; if (ignoreCase) { const char n1 = toLowerCase (needle); const char n2 = toUpperCase (needle); if (n1 != n2) // if the char is the same in upper/lower case, fall through to the normal search { while (haystack[i] != 0) { if (haystack[i] == n1 || haystack[i] == n2) return i; ++i; } return -1; } jassert (n1 == needle); } while (haystack[i] != 0) { if (haystack[i] == needle) return i; ++i; } } return -1; } int CharacterFunctions::indexOfChar (const juce_wchar* const haystack, const juce_wchar needle, const bool ignoreCase) throw() { if (haystack != 0) { int i = 0; if (ignoreCase) { const juce_wchar n1 = toLowerCase (needle); const juce_wchar n2 = toUpperCase (needle); if (n1 != n2) // if the char is the same in upper/lower case, fall through to the normal search { while (haystack[i] != 0) { if (haystack[i] == n1 || haystack[i] == n2) return i; ++i; } return -1; } jassert (n1 == needle); } while (haystack[i] != 0) { if (haystack[i] == needle) return i; ++i; } } return -1; } int CharacterFunctions::indexOfCharFast (const char* const haystack, const char needle) throw() { jassert (haystack != 0); int i = 0; while (haystack[i] != 0) { if (haystack[i] == needle) return i; ++i; } return -1; } int CharacterFunctions::indexOfCharFast (const juce_wchar* const haystack, const juce_wchar needle) throw() { jassert (haystack != 0); int i = 0; while (haystack[i] != 0) { if (haystack[i] == needle) return i; ++i; } return -1; } int CharacterFunctions::getIntialSectionContainingOnly (const char* const text, const char* const allowedChars) throw() { return allowedChars == 0 ? 0 : (int) strspn (text, allowedChars); } int CharacterFunctions::getIntialSectionContainingOnly (const juce_wchar* const text, const juce_wchar* const allowedChars) throw() { if (allowedChars == 0) return 0; int i = 0; for (;;) { if (indexOfCharFast (allowedChars, text[i]) < 0) break; ++i; } return i; } int CharacterFunctions::ftime (char* const dest, const int maxChars, const char* const format, const struct tm* const tm) throw() { return (int) strftime (dest, maxChars, format, tm); } int CharacterFunctions::ftime (juce_wchar* const dest, const int maxChars, const juce_wchar* const format, const struct tm* const tm) throw() { return (int) wcsftime (dest, maxChars, format, tm); } int CharacterFunctions::getIntValue (const char* const s) throw() { return atoi (s); } int CharacterFunctions::getIntValue (const juce_wchar* s) throw() { #if JUCE_WIN32 return _wtoi (s); #else int v = 0; while (isWhitespace (*s)) ++s; const bool isNeg = *s == T('-'); if (isNeg) ++s; for (;;) { const wchar_t c = *s++; if (c >= T('0') && c <= T('9')) v = v * 10 + (int) (c - T('0')); else break; } return isNeg ? -v : v; #endif } int64 CharacterFunctions::getInt64Value (const char* s) throw() { #if JUCE_LINUX return atoll (s); #elif defined (JUCE_WIN32) return _atoi64 (s); #else int64 v = 0; while (isWhitespace (*s)) ++s; const bool isNeg = *s == T('-'); if (isNeg) ++s; for (;;) { const char c = *s++; if (c >= '0' && c <= '9') v = v * 10 + (int64) (c - '0'); else break; } return isNeg ? -v : v; #endif } int64 CharacterFunctions::getInt64Value (const juce_wchar* s) throw() { #if JUCE_WIN32 return _wtoi64 (s); #else int64 v = 0; while (isWhitespace (*s)) ++s; const bool isNeg = *s == T('-'); if (isNeg) ++s; for (;;) { const juce_wchar c = *s++; if (c >= T('0') && c <= T('9')) v = v * 10 + (int64) (c - T('0')); else break; } return isNeg ? -v : v; #endif } static double juce_mulexp10 (const double value, int exponent) throw() { if (exponent == 0) return value; if (value == 0) return 0; const bool negative = (exponent < 0); if (negative) exponent = -exponent; double result = 1.0, power = 10.0; for (int bit = 1; exponent != 0; bit <<= 1) { if ((exponent & bit) != 0) { exponent ^= bit; result *= power; if (exponent == 0) break; } power *= power; } return negative ? (value / result) : (value * result); } template double juce_atof (const CharType* const original) throw() { double result[3] = { 0, 0, 0 }, accumulator[2] = { 0, 0 }; int exponentAdjustment[2] = { 0, 0 }, exponentAccumulator[2] = { -1, -1 }; int exponent = 0, decPointIndex = 0, digit = 0; int lastDigit = 0, numSignificantDigits = 0; bool isNegative = false, digitsFound = false; const int maxSignificantDigits = 15 + 2; const CharType* s = original; while (CharacterFunctions::isWhitespace (*s)) ++s; switch (*s) { case '-': isNegative = true; // fall-through.. case '+': ++s; } if (*s == 'n' || *s == 'N' || *s == 'i' || *s == 'I') return atof (String (original)); // Let the c library deal with NAN and INF for (;;) { if (CharacterFunctions::isDigit (*s)) { lastDigit = digit; digit = *s++ - '0'; digitsFound = true; if (decPointIndex != 0) exponentAdjustment[1]++; if (numSignificantDigits == 0 && digit == 0) continue; if (++numSignificantDigits > maxSignificantDigits) { if (digit > 5) ++accumulator [decPointIndex]; else if (digit == 5 && (lastDigit & 1) != 0) ++accumulator [decPointIndex]; if (decPointIndex > 0) exponentAdjustment[1]--; else exponentAdjustment[0]++; while (CharacterFunctions::isDigit (*s)) { ++s; if (decPointIndex == 0) exponentAdjustment[0]++; } } else { const double maxAccumulatorValue = (double) ((UINT_MAX - 9) / 10); if (accumulator [decPointIndex] > maxAccumulatorValue) { result [decPointIndex] = juce_mulexp10 (result [decPointIndex], exponentAccumulator [decPointIndex]) + accumulator [decPointIndex]; accumulator [decPointIndex] = 0; exponentAccumulator [decPointIndex] = 0; } accumulator [decPointIndex] = accumulator[decPointIndex] * 10 + digit; exponentAccumulator [decPointIndex]++; } } else if (decPointIndex == 0 && *s == '.') { ++s; decPointIndex = 1; if (numSignificantDigits > maxSignificantDigits) { while (CharacterFunctions::isDigit (*s)) ++s; break; } } else { break; } } result[0] = juce_mulexp10 (result[0], exponentAccumulator[0]) + accumulator[0]; if (decPointIndex != 0) result[1] = juce_mulexp10 (result[1], exponentAccumulator[1]) + accumulator[1]; if ((*s == 'e' || *s == 'E') && digitsFound) { bool negativeExponent = false; switch (*++s) { case '-': negativeExponent = true; // fall-through.. case '+': ++s; } while (CharacterFunctions::isDigit (*s)) exponent = (exponent * 10) + (*s++ - '0'); if (negativeExponent) exponent = -exponent; } double r = juce_mulexp10 (result[0], exponent + exponentAdjustment[0]); if (decPointIndex != 0) r += juce_mulexp10 (result[1], exponent - exponentAdjustment[1]); return isNegative ? -r : r; } double CharacterFunctions::getDoubleValue (const char* const s) throw() { return juce_atof (s); } double CharacterFunctions::getDoubleValue (const juce_wchar* const s) throw() { return juce_atof (s); } char CharacterFunctions::toUpperCase (const char character) throw() { return (char) toupper (character); } juce_wchar CharacterFunctions::toUpperCase (const juce_wchar character) throw() { return towupper (character); } void CharacterFunctions::toUpperCase (char* s) throw() { #if JUCE_WIN32 strupr (s); #else while (*s != 0) { *s = toUpperCase (*s); ++s; } #endif } void CharacterFunctions::toUpperCase (juce_wchar* s) throw() { #if JUCE_WIN32 _wcsupr (s); #else while (*s != 0) { *s = toUpperCase (*s); ++s; } #endif } bool CharacterFunctions::isUpperCase (const char character) throw() { return isupper (character) != 0; } bool CharacterFunctions::isUpperCase (const juce_wchar character) throw() { #if JUCE_WIN32 return iswupper (character) != 0; #else return toLowerCase (character) != character; #endif } char CharacterFunctions::toLowerCase (const char character) throw() { return (char) tolower (character); } juce_wchar CharacterFunctions::toLowerCase (const juce_wchar character) throw() { return towlower (character); } void CharacterFunctions::toLowerCase (char* s) throw() { #if JUCE_WIN32 strlwr (s); #else while (*s != 0) { *s = toLowerCase (*s); ++s; } #endif } void CharacterFunctions::toLowerCase (juce_wchar* s) throw() { #if JUCE_WIN32 _wcslwr (s); #else while (*s != 0) { *s = toLowerCase (*s); ++s; } #endif } bool CharacterFunctions::isLowerCase (const char character) throw() { return islower (character) != 0; } bool CharacterFunctions::isLowerCase (const juce_wchar character) throw() { #if JUCE_WIN32 return iswlower (character) != 0; #else return toUpperCase (character) != character; #endif } bool CharacterFunctions::isWhitespace (const char character) throw() { return character == T(' ') || (character <= 13 && character >= 9); } bool CharacterFunctions::isWhitespace (const juce_wchar character) throw() { return iswspace (character) != 0; } bool CharacterFunctions::isDigit (const char character) throw() { return (character >= '0' && character <= '9'); } bool CharacterFunctions::isDigit (const juce_wchar character) throw() { return iswdigit (character) != 0; } bool CharacterFunctions::isLetter (const char character) throw() { return (character >= 'a' && character <= 'z') || (character >= 'A' && character <= 'Z'); } bool CharacterFunctions::isLetter (const juce_wchar character) throw() { return iswalpha (character) != 0; } bool CharacterFunctions::isLetterOrDigit (const char character) throw() { return (character >= 'a' && character <= 'z') || (character >= 'A' && character <= 'Z') || (character >= '0' && character <= '9'); } bool CharacterFunctions::isLetterOrDigit (const juce_wchar character) throw() { return iswalnum (character) != 0; } int CharacterFunctions::getHexDigitValue (const tchar digit) throw() { if (digit >= T('0') && digit <= T('9')) return digit - T('0'); else if (digit >= T('a') && digit <= T('f')) return digit - (T('a') - 10); else if (digit >= T('A') && digit <= T('F')) return digit - (T('A') - 10); return -1; } int CharacterFunctions::printf (char* const dest, const int maxLength, const char* const format, ...) throw() { va_list list; va_start (list, format); return vprintf (dest, maxLength, format, list); } int CharacterFunctions::printf (juce_wchar* const dest, const int maxLength, const juce_wchar* const format, ...) throw() { va_list list; va_start (list, format); return vprintf (dest, maxLength, format, list); } int CharacterFunctions::vprintf (char* const dest, const int maxLength, const char* const format, va_list& args) throw() { #if JUCE_WIN32 return (int) _vsnprintf (dest, maxLength, format, args); #else return (int) vsnprintf (dest, maxLength, format, args); #endif } int CharacterFunctions::vprintf (juce_wchar* const dest, const int maxLength, const juce_wchar* const format, va_list& args) throw() { #if MACOS_10_3_OR_EARLIER const String formatTemp (format); size_t num = vprintf ((char*) dest, maxLength, formatTemp, args); String temp ((char*) dest); temp.copyToBuffer (dest, num); dest [num] = 0; return (int) num; #elif defined (JUCE_WIN32) return (int) _vsnwprintf (dest, maxLength, format, args); #else return (int) vswprintf (dest, maxLength, format, args); #endif } END_JUCE_NAMESPACE /********* End of inlined file: juce_CharacterFunctions.cpp *********/ /********* Start of inlined file: juce_LocalisedStrings.cpp *********/ BEGIN_JUCE_NAMESPACE LocalisedStrings::LocalisedStrings (const String& fileContents) throw() { loadFromText (fileContents); } LocalisedStrings::LocalisedStrings (const File& fileToLoad) throw() { loadFromText (fileToLoad.loadFileAsString()); } LocalisedStrings::~LocalisedStrings() throw() { } const String LocalisedStrings::translate (const String& text) const throw() { return translations.getValue (text, text); } static int findCloseQuote (const String& text, int startPos) throw() { tchar lastChar = 0; for (;;) { const tchar c = text [startPos]; if (c == 0 || (c == T('"') && lastChar != T('\\'))) break; lastChar = c; ++startPos; } return startPos; } static const String unescapeString (const String& s) throw() { return s.replace (T("\\\""), T("\"")) .replace (T("\\\'"), T("\'")) .replace (T("\\t"), T("\t")) .replace (T("\\r"), T("\r")) .replace (T("\\n"), T("\n")); } void LocalisedStrings::loadFromText (const String& fileContents) throw() { StringArray lines; lines.addLines (fileContents); for (int i = 0; i < lines.size(); ++i) { String line (lines[i].trim()); if (line.startsWithChar (T('"'))) { int closeQuote = findCloseQuote (line, 1); const String originalText (unescapeString (line.substring (1, closeQuote))); if (originalText.isNotEmpty()) { const int openingQuote = findCloseQuote (line, closeQuote + 1); closeQuote = findCloseQuote (line, openingQuote + 1); const String newText (unescapeString (line.substring (openingQuote + 1, closeQuote))); if (newText.isNotEmpty()) translations.set (originalText, newText); } } else if (line.startsWithIgnoreCase (T("language:"))) { languageName = line.substring (9).trim(); } else if (line.startsWithIgnoreCase (T("countries:"))) { countryCodes.addTokens (line.substring (10).trim(), true); countryCodes.trim(); countryCodes.removeEmptyStrings(); } } } void LocalisedStrings::setIgnoresCase (const bool shouldIgnoreCase) throw() { translations.setIgnoresCase (shouldIgnoreCase); } static CriticalSection currentMappingsLock; static LocalisedStrings* currentMappings = 0; void LocalisedStrings::setCurrentMappings (LocalisedStrings* newTranslations) throw() { const ScopedLock sl (currentMappingsLock); delete currentMappings; currentMappings = newTranslations; } LocalisedStrings* LocalisedStrings::getCurrentMappings() throw() { return currentMappings; } const String LocalisedStrings::translateWithCurrentMappings (const String& text) throw() { const ScopedLock sl (currentMappingsLock); if (currentMappings != 0) return currentMappings->translate (text); return text; } const String LocalisedStrings::translateWithCurrentMappings (const char* text) throw() { return translateWithCurrentMappings (String (text)); } END_JUCE_NAMESPACE /********* End of inlined file: juce_LocalisedStrings.cpp *********/ /********* Start of inlined file: juce_String.cpp *********/ #ifdef _MSC_VER #pragma warning (disable: 4514) #pragma warning (push) #endif #include #if JUCE_MSVC #include #endif BEGIN_JUCE_NAMESPACE #ifdef _MSC_VER #pragma warning (pop) #endif static const char* const emptyCharString = "\0\0\0\0JUCE"; static const int safeEmptyStringRefCount = 0x3fffffff; String::InternalRefCountedStringHolder String::emptyString = { safeEmptyStringRefCount, 0, { 0 } }; static tchar decimalPoint = T('.'); void juce_initialiseStrings() { decimalPoint = String::fromUTF8 ((const uint8*) localeconv()->decimal_point) [0]; } void String::deleteInternal() throw() { if (atomicDecrementAndReturn (text->refCount) == 0) juce_free (text); } void String::createInternal (const int numChars) throw() { jassert (numChars > 0); text = (InternalRefCountedStringHolder*) juce_malloc (sizeof (InternalRefCountedStringHolder) + numChars * sizeof (tchar)); text->refCount = 1; text->allocatedNumChars = numChars; text->text[0] = 0; } void String::createInternal (const tchar* const t, const tchar* const textEnd) throw() { jassert (*(textEnd - 1) == 0); // must have a null terminator const int numChars = (int) (textEnd - t); createInternal (numChars - 1); memcpy (text->text, t, numChars * sizeof (tchar)); } void String::appendInternal (const tchar* const newText, const int numExtraChars) throw() { if (numExtraChars > 0) { const int oldLen = CharacterFunctions::length (text->text); const int newTotalLen = oldLen + numExtraChars; if (text->refCount > 1) { // it's in use by other strings as well, so we need to make a private copy before messing with it.. InternalRefCountedStringHolder* const newTextHolder = (InternalRefCountedStringHolder*) juce_malloc (sizeof (InternalRefCountedStringHolder) + newTotalLen * sizeof (tchar)); newTextHolder->refCount = 1; newTextHolder->allocatedNumChars = newTotalLen; memcpy (newTextHolder->text, text->text, oldLen * sizeof (tchar)); memcpy (newTextHolder->text + oldLen, newText, numExtraChars * sizeof (tchar)); InternalRefCountedStringHolder* const old = text; text = newTextHolder; if (atomicDecrementAndReturn (old->refCount) == 0) juce_free (old); } else { // no other strings using it, so just expand it if needed.. if (newTotalLen > text->allocatedNumChars) { text = (InternalRefCountedStringHolder*) juce_realloc (text, sizeof (InternalRefCountedStringHolder) + newTotalLen * sizeof (tchar)); text->allocatedNumChars = newTotalLen; } memcpy (text->text + oldLen, newText, numExtraChars * sizeof (tchar)); } text->text [newTotalLen] = 0; } } void String::dupeInternalIfMultiplyReferenced() throw() { if (text->refCount > 1) { InternalRefCountedStringHolder* const old = text; const int len = old->allocatedNumChars; InternalRefCountedStringHolder* const newTextHolder = (InternalRefCountedStringHolder*) juce_malloc (sizeof (InternalRefCountedStringHolder) + len * sizeof (tchar)); newTextHolder->refCount = 1; newTextHolder->allocatedNumChars = len; memcpy (newTextHolder->text, old->text, (len + 1) * sizeof (tchar)); text = newTextHolder; if (atomicDecrementAndReturn (old->refCount) == 0) juce_free (old); } } const String String::empty; String::String() throw() : text (&emptyString) { } String::String (const String& other) throw() : text (other.text) { atomicIncrement (text->refCount); } String::String (const int numChars, const int /*dummyVariable*/) throw() { createInternal (numChars); } String::String (const char* const t) throw() { if (t != 0 && *t != 0) { const int len = CharacterFunctions::length (t); createInternal (len); #if JUCE_STRINGS_ARE_UNICODE CharacterFunctions::copy (text->text, t, len + 1); #else memcpy (text->text, t, len + 1); #endif } else { text = &emptyString; emptyString.refCount = safeEmptyStringRefCount; } } String::String (const juce_wchar* const t) throw() { if (t != 0 && *t != 0) { #if JUCE_STRINGS_ARE_UNICODE const int len = CharacterFunctions::length (t); createInternal (len); memcpy (text->text, t, (len + 1) * sizeof (tchar)); #else const int len = CharacterFunctions::bytesRequiredForCopy (t); createInternal (len); CharacterFunctions::copy (text->text, t, len + 1); #endif } else { text = &emptyString; emptyString.refCount = safeEmptyStringRefCount; } } String::String (const char* const t, const int maxChars) throw() { int i; for (i = 0; i < maxChars; ++i) if (t[i] == 0) break; if (i > 0) { createInternal (i); #if JUCE_STRINGS_ARE_UNICODE CharacterFunctions::copy (text->text, t, i); #else memcpy (text->text, t, i); #endif text->text [i] = 0; } else { text = &emptyString; emptyString.refCount = safeEmptyStringRefCount; } } String::String (const juce_wchar* const t, const int maxChars) throw() { int i; for (i = 0; i < maxChars; ++i) if (t[i] == 0) break; if (i > 0) { createInternal (i); #if JUCE_STRINGS_ARE_UNICODE memcpy (text->text, t, i * sizeof (tchar)); #else CharacterFunctions::copy (text->text, t, i); #endif text->text [i] = 0; } else { text = &emptyString; emptyString.refCount = safeEmptyStringRefCount; } } const String String::charToString (const tchar character) throw() { tchar temp[2]; temp[0] = character; temp[1] = 0; return String (temp); } // pass in a pointer to the END of a buffer.. static tchar* int64ToCharString (tchar* t, const int64 n) throw() { *--t = 0; int64 v = (n >= 0) ? n : -n; do { *--t = (tchar) (T('0') + (int) (v % 10)); v /= 10; } while (v > 0); if (n < 0) *--t = T('-'); return t; } static tchar* intToCharString (tchar* t, const int n) throw() { if (n == (int) 0x80000000) // (would cause an overflow) return int64ToCharString (t, n); *--t = 0; int v = abs (n); do { *--t = (tchar) (T('0') + (v % 10)); v /= 10; } while (v > 0); if (n < 0) *--t = T('-'); return t; } static tchar* uintToCharString (tchar* t, unsigned int v) throw() { *--t = 0; do { *--t = (tchar) (T('0') + (v % 10)); v /= 10; } while (v > 0); return t; } String::String (const int number) throw() { tchar buffer [16]; tchar* const end = buffer + 16; createInternal (intToCharString (end, number), end); } String::String (const unsigned int number) throw() { tchar buffer [16]; tchar* const end = buffer + 16; createInternal (uintToCharString (end, number), end); } String::String (const short number) throw() { tchar buffer [16]; tchar* const end = buffer + 16; createInternal (intToCharString (end, (int) number), end); } String::String (const unsigned short number) throw() { tchar buffer [16]; tchar* const end = buffer + 16; createInternal (uintToCharString (end, (unsigned int) number), end); } String::String (const int64 number) throw() { tchar buffer [32]; tchar* const end = buffer + 32; createInternal (int64ToCharString (end, number), end); } String::String (const uint64 number) throw() { tchar buffer [32]; tchar* const end = buffer + 32; tchar* t = end; *--t = 0; int64 v = number; do { *--t = (tchar) (T('0') + (int) (v % 10)); v /= 10; } while (v > 0); createInternal (t, end); } // a double-to-string routine that actually uses the number of dec. places you asked for // without resorting to exponent notation if the number's too big or small (which is what printf does). void String::doubleToStringWithDecPlaces (double n, int numDecPlaces) throw() { const int bufSize = 80; tchar buffer [bufSize]; int len; tchar* t; if (numDecPlaces > 0 && n > -1.0e20 && n < 1.0e20) { int64 v = (int64) (pow (10.0, numDecPlaces) * fabs (n) + 0.5); t = buffer + bufSize; *--t = (tchar) 0; while (numDecPlaces >= 0 || v > 0) { if (numDecPlaces == 0) *--t = decimalPoint; *--t = (tchar) (T('0') + (v % 10)); v /= 10; --numDecPlaces; } if (n < 0) *--t = T('-'); len = (int) ((buffer + bufSize) - t); } else { len = CharacterFunctions::printf (buffer, bufSize, T("%.9g"), n) + 1; t = buffer; } if (len > 1) { jassert (len < numElementsInArray (buffer)); createInternal (len - 1); memcpy (text->text, t, len * sizeof (tchar)); } else { jassert (*t == 0); text = &emptyString; emptyString.refCount = safeEmptyStringRefCount; } } String::String (const float number, const int numberOfDecimalPlaces) throw() { doubleToStringWithDecPlaces ((double) number, numberOfDecimalPlaces); } String::String (const double number, const int numberOfDecimalPlaces) throw() { doubleToStringWithDecPlaces (number, numberOfDecimalPlaces); } String::~String() throw() { emptyString.refCount = safeEmptyStringRefCount; if (atomicDecrementAndReturn (text->refCount) == 0) juce_free (text); } void String::preallocateStorage (const int numChars) throw() { if (numChars > text->allocatedNumChars) { dupeInternalIfMultiplyReferenced(); text = (InternalRefCountedStringHolder*) juce_realloc (text, sizeof (InternalRefCountedStringHolder) + numChars * sizeof (tchar)); text->allocatedNumChars = numChars; } } #if JUCE_STRINGS_ARE_UNICODE String::operator const char*() const throw() { if (isEmpty()) { return (const char*) emptyCharString; } else { String* const mutableThis = const_cast (this); mutableThis->dupeInternalIfMultiplyReferenced(); int len = CharacterFunctions::bytesRequiredForCopy (text->text) + 1; mutableThis->text = (InternalRefCountedStringHolder*) juce_realloc (text, sizeof (InternalRefCountedStringHolder) + (len * sizeof (juce_wchar) + len)); char* otherCopy = (char*) (text->text + len); --len; CharacterFunctions::copy (otherCopy, text->text, len); otherCopy [len] = 0; return otherCopy; } } #else String::operator const juce_wchar*() const throw() { if (isEmpty()) { return (const juce_wchar*) emptyCharString; } else { String* const mutableThis = const_cast (this); mutableThis->dupeInternalIfMultiplyReferenced(); int len = CharacterFunctions::length (text->text) + 1; mutableThis->text = (InternalRefCountedStringHolder*) juce_realloc (text, sizeof (InternalRefCountedStringHolder) + (len * sizeof (juce_wchar) + len)); juce_wchar* otherCopy = (juce_wchar*) (text->text + len); --len; CharacterFunctions::copy (otherCopy, text->text, len); otherCopy [len] = 0; return otherCopy; } } #endif void String::copyToBuffer (char* const destBuffer, const int bufferSizeBytes) const throw() { #if JUCE_STRINGS_ARE_UNICODE const int len = jmin (bufferSizeBytes, CharacterFunctions::bytesRequiredForCopy (text->text)); CharacterFunctions::copy (destBuffer, text->text, len); #else const int len = jmin (bufferSizeBytes, length()); memcpy (destBuffer, text->text, len * sizeof (tchar)); #endif destBuffer [len] = 0; } void String::copyToBuffer (juce_wchar* const destBuffer, const int maxCharsToCopy) const throw() { const int len = jmin (maxCharsToCopy, length()); #if JUCE_STRINGS_ARE_UNICODE memcpy (destBuffer, text->text, len * sizeof (juce_wchar)); #else CharacterFunctions::copy (destBuffer, text->text, len); #endif destBuffer [len] = 0; } int String::length() const throw() { return CharacterFunctions::length (text->text); } int String::hashCode() const throw() { const tchar* t = text->text; int result = 0; while (*t != (tchar) 0) result = 31 * result + *t++; return result; } int64 String::hashCode64() const throw() { const tchar* t = text->text; int64 result = 0; while (*t != (tchar) 0) result = 101 * result + *t++; return result; } const String& String::operator= (const tchar* const otherText) throw() { if (otherText != 0 && *otherText != 0) { const int otherLen = CharacterFunctions::length (otherText); if (otherLen > 0) { // avoid resizing the memory block if the string is // shrinking.. if (text->refCount > 1 || otherLen > text->allocatedNumChars || otherLen <= (text->allocatedNumChars >> 1)) { deleteInternal(); createInternal (otherLen); } memcpy (text->text, otherText, (otherLen + 1) * sizeof (tchar)); return *this; } } deleteInternal(); text = &emptyString; emptyString.refCount = safeEmptyStringRefCount; return *this; } const String& String::operator= (const String& other) throw() { if (this != &other) { atomicIncrement (other.text->refCount); if (atomicDecrementAndReturn (text->refCount) == 0) juce_free (text); text = other.text; } return *this; } bool String::operator== (const String& other) const throw() { return text == other.text || CharacterFunctions::compare (text->text, other.text->text) == 0; } bool String::operator== (const tchar* const t) const throw() { return t != 0 ? CharacterFunctions::compare (text->text, t) == 0 : isEmpty(); } bool String::equalsIgnoreCase (const tchar* t) const throw() { return t != 0 ? CharacterFunctions::compareIgnoreCase (text->text, t) == 0 : isEmpty(); } bool String::equalsIgnoreCase (const String& other) const throw() { return text == other.text || CharacterFunctions::compareIgnoreCase (text->text, other.text->text) == 0; } bool String::operator!= (const String& other) const throw() { return text != other.text && CharacterFunctions::compare (text->text, other.text->text) != 0; } bool String::operator!= (const tchar* const t) const throw() { return t != 0 ? (CharacterFunctions::compare (text->text, t) != 0) : isNotEmpty(); } bool String::operator> (const String& other) const throw() { return compare (other) > 0; } bool String::operator< (const tchar* const other) const throw() { return compare (other) < 0; } bool String::operator>= (const String& other) const throw() { return compare (other) >= 0; } bool String::operator<= (const tchar* const other) const throw() { return compare (other) <= 0; } int String::compare (const tchar* const other) const throw() { return other != 0 ? CharacterFunctions::compare (text->text, other) : isEmpty(); } int String::compareIgnoreCase (const tchar* const other) const throw() { return other != 0 ? CharacterFunctions::compareIgnoreCase (text->text, other) : isEmpty(); } int String::compareLexicographically (const tchar* other) const throw() { if (other == 0) return isEmpty(); const tchar* s1 = text->text; while (*s1 != 0 && ! CharacterFunctions::isLetterOrDigit (*s1)) ++s1; while (*other != 0 && ! CharacterFunctions::isLetterOrDigit (*other)) ++other; return CharacterFunctions::compareIgnoreCase (s1, other); } const String String::operator+ (const String& other) const throw() { if (*(other.text->text) == 0) return *this; if (isEmpty()) return other; const int len = CharacterFunctions::length (text->text); const int otherLen = CharacterFunctions::length (other.text->text); String result (len + otherLen, (int) 0); memcpy (result.text->text, text->text, len * sizeof (tchar)); memcpy (result.text->text + len, other.text->text, otherLen * sizeof (tchar)); result.text->text [len + otherLen] = 0; return result; } const String String::operator+ (const tchar* const textToAppend) const throw() { if (textToAppend == 0 || *textToAppend == 0) return *this; const int len = CharacterFunctions::length (text->text); const int otherLen = CharacterFunctions::length (textToAppend); String result (len + otherLen, (int) 0); memcpy (result.text->text, text->text, len * sizeof (tchar)); memcpy (result.text->text + len, textToAppend, otherLen * sizeof (tchar)); result.text->text [len + otherLen] = 0; return result; } const String String::operator+ (const tchar characterToAppend) const throw() { if (characterToAppend == 0) return *this; const int len = CharacterFunctions::length (text->text); String result ((int) (len + 1), (int) 0); memcpy (result.text->text, text->text, len * sizeof (tchar)); result.text->text[len] = characterToAppend; result.text->text[len + 1] = 0; return result; } const String JUCE_PUBLIC_FUNCTION operator+ (const char* const string1, const String& string2) throw() { String s (string1); s += string2; return s; } const String JUCE_PUBLIC_FUNCTION operator+ (const juce_wchar* const string1, const String& string2) throw() { String s (string1); s += string2; return s; } const String& String::operator+= (const tchar* const t) throw() { if (t != 0) appendInternal (t, CharacterFunctions::length (t)); return *this; } const String& String::operator+= (const String& other) throw() { if (isEmpty()) operator= (other); else appendInternal (other.text->text, CharacterFunctions::length (other.text->text)); return *this; } const String& String::operator+= (const char ch) throw() { char asString[2]; asString[0] = ch; asString[1] = 0; #if JUCE_STRINGS_ARE_UNICODE operator+= (String (asString)); #else appendInternal (asString, 1); #endif return *this; } const String& String::operator+= (const juce_wchar ch) throw() { juce_wchar asString[2]; asString[0] = ch; asString[1] = 0; #if JUCE_STRINGS_ARE_UNICODE appendInternal (asString, 1); #else operator+= (String (asString)); #endif return *this; } void String::append (const tchar* const other, const int howMany) throw() { if (howMany > 0) { int i; for (i = 0; i < howMany; ++i) if (other[i] == 0) break; appendInternal (other, i); } } String& String::operator<< (const int number) throw() { tchar buffer [64]; tchar* const end = buffer + 64; const tchar* const t = intToCharString (end, number); appendInternal (t, (int) (end - t) - 1); return *this; } String& String::operator<< (const unsigned int number) throw() { tchar buffer [64]; tchar* const end = buffer + 64; const tchar* const t = uintToCharString (end, number); appendInternal (t, (int) (end - t) - 1); return *this; } String& String::operator<< (const short number) throw() { tchar buffer [64]; tchar* const end = buffer + 64; const tchar* const t = intToCharString (end, (int) number); appendInternal (t, (int) (end - t) - 1); return *this; } String& String::operator<< (const double number) throw() { operator+= (String (number)); return *this; } String& String::operator<< (const float number) throw() { operator+= (String (number)); return *this; } String& String::operator<< (const char character) throw() { operator+= (character); return *this; } String& String::operator<< (const juce_wchar character) throw() { operator+= (character); return *this; } String& String::operator<< (const char* const t) throw() { #if JUCE_STRINGS_ARE_UNICODE operator+= (String (t)); #else operator+= (t); #endif return *this; } String& String::operator<< (const juce_wchar* const t) throw() { #if JUCE_STRINGS_ARE_UNICODE operator+= (t); #else operator+= (String (t)); #endif return *this; } String& String::operator<< (const String& t) throw() { operator+= (t); return *this; } int String::indexOfChar (const tchar character) const throw() { const tchar* t = text->text; for (;;) { if (*t == character) return (int) (t - text->text); if (*t++ == 0) return -1; } } int String::lastIndexOfChar (const tchar character) const throw() { for (int i = CharacterFunctions::length (text->text); --i >= 0;) if (text->text[i] == character) return i; return -1; } int String::indexOf (const tchar* const t) const throw() { const tchar* const r = CharacterFunctions::find (text->text, t); return (r == 0) ? -1 : (int) (r - text->text); } int String::indexOfChar (const int startIndex, const tchar character) const throw() { if (startIndex >= 0 && startIndex >= CharacterFunctions::length (text->text)) return -1; const tchar* t = text->text + jmax (0, startIndex); for (;;) { if (*t == character) return (int) (t - text->text); if (*t++ == 0) return -1; } } int String::indexOfAnyOf (const tchar* const charactersToLookFor, const int startIndex, const bool ignoreCase) const throw() { if (charactersToLookFor == 0 || (startIndex >= 0 && startIndex >= CharacterFunctions::length (text->text))) return -1; const tchar* t = text->text + jmax (0, startIndex); while (*t != 0) { if (CharacterFunctions::indexOfChar (charactersToLookFor, *t, ignoreCase) >= 0) return (int) (t - text->text); ++t; } return -1; } int String::indexOf (const int startIndex, const tchar* const other) const throw() { if (other == 0 || startIndex >= CharacterFunctions::length (text->text)) return -1; const tchar* const found = CharacterFunctions::find (text->text + jmax (0, startIndex), other); return (found == 0) ? -1 : (int) (found - text->text); } int String::indexOfIgnoreCase (const tchar* const other) const throw() { if (other != 0 && *other != 0) { const int len = CharacterFunctions::length (other); const int end = CharacterFunctions::length (text->text) - len; for (int i = 0; i <= end; ++i) if (CharacterFunctions::compareIgnoreCase (text->text + i, other, len) == 0) return i; } return -1; } int String::indexOfIgnoreCase (const int startIndex, const tchar* const other) const throw() { if (other != 0 && *other != 0) { const int len = CharacterFunctions::length (other); const int end = length() - len; for (int i = jmax (0, startIndex); i <= end; ++i) if (CharacterFunctions::compareIgnoreCase (text->text + i, other, len) == 0) return i; } return -1; } int String::lastIndexOf (const tchar* const other) const throw() { if (other != 0 && *other != 0) { const int len = CharacterFunctions::length (other); int i = length() - len; if (i >= 0) { const tchar* n = text->text + i; while (i >= 0) { if (CharacterFunctions::compare (n--, other, len) == 0) return i; --i; } } } return -1; } int String::lastIndexOfIgnoreCase (const tchar* const other) const throw() { if (other != 0 && *other != 0) { const int len = CharacterFunctions::length (other); int i = length() - len; if (i >= 0) { const tchar* n = text->text + i; while (i >= 0) { if (CharacterFunctions::compareIgnoreCase (n--, other, len) == 0) return i; --i; } } } return -1; } int String::lastIndexOfAnyOf (const tchar* const charactersToLookFor, const bool ignoreCase) const throw() { for (int i = CharacterFunctions::length (text->text); --i >= 0;) if (CharacterFunctions::indexOfChar (charactersToLookFor, text->text [i], ignoreCase) >= 0) return i; return -1; } bool String::contains (const tchar* const other) const throw() { return indexOf (other) >= 0; } bool String::containsChar (const tchar character) const throw() { return indexOfChar (character) >= 0; } bool String::containsIgnoreCase (const tchar* const t) const throw() { return indexOfIgnoreCase (t) >= 0; } int String::indexOfWholeWord (const tchar* const word) const throw() { if (word != 0 && *word != 0) { const int wordLen = CharacterFunctions::length (word); const int end = length() - wordLen; const tchar* t = text->text; for (int i = 0; i <= end; ++i) { if (CharacterFunctions::compare (t, word, wordLen) == 0 && (i == 0 || ! CharacterFunctions::isLetterOrDigit (* (t - 1))) && ! CharacterFunctions::isLetterOrDigit (t [wordLen])) { return i; } ++t; } } return -1; } int String::indexOfWholeWordIgnoreCase (const tchar* const word) const throw() { if (word != 0 && *word != 0) { const int wordLen = CharacterFunctions::length (word); const int end = length() - wordLen; const tchar* t = text->text; for (int i = 0; i <= end; ++i) { if (CharacterFunctions::compareIgnoreCase (t, word, wordLen) == 0 && (i == 0 || ! CharacterFunctions::isLetterOrDigit (* (t - 1))) && ! CharacterFunctions::isLetterOrDigit (t [wordLen])) { return i; } ++t; } } return -1; } bool String::containsWholeWord (const tchar* const wordToLookFor) const throw() { return indexOfWholeWord (wordToLookFor) >= 0; } bool String::containsWholeWordIgnoreCase (const tchar* const wordToLookFor) const throw() { return indexOfWholeWordIgnoreCase (wordToLookFor) >= 0; } static int indexOfMatch (const tchar* const wildcard, const tchar* const test, const bool ignoreCase) throw() { int start = 0; while (test [start] != 0) { int i = 0; for (;;) { const tchar wc = wildcard [i]; const tchar c = test [i + start]; if (wc == c || (ignoreCase && CharacterFunctions::toLowerCase (wc) == CharacterFunctions::toLowerCase (c)) || (wc == T('?') && c != 0)) { if (wc == 0) return start; ++i; } else { if (wc == T('*') && (wildcard [i + 1] == 0 || indexOfMatch (wildcard + i + 1, test + start + i, ignoreCase) >= 0)) { return start; } break; } } ++start; } return -1; } bool String::matchesWildcard (const tchar* wildcard, const bool ignoreCase) const throw() { int i = 0; for (;;) { const tchar wc = wildcard [i]; const tchar c = text->text [i]; if (wc == c || (ignoreCase && CharacterFunctions::toLowerCase (wc) == CharacterFunctions::toLowerCase (c)) || (wc == T('?') && c != 0)) { if (wc == 0) return true; ++i; } else { return wc == T('*') && (wildcard [i + 1] == 0 || indexOfMatch (wildcard + i + 1, text->text + i, ignoreCase) >= 0); } } } void String::printf (const tchar* const pf, ...) throw() { va_list list; va_start (list, pf); vprintf (pf, list); } const String String::formatted (const tchar* const pf, ...) throw() { va_list list; va_start (list, pf); String result; result.vprintf (pf, list); return result; } void String::vprintf (const tchar* const pf, va_list& args) throw() { tchar stackBuf [256]; unsigned int bufSize = 256; tchar* buf = stackBuf; deleteInternal(); do { #if JUCE_LINUX && JUCE_64BIT va_list tempArgs; va_copy (tempArgs, args); const int num = CharacterFunctions::vprintf (buf, bufSize - 1, pf, tempArgs); va_end (tempArgs); #else const int num = CharacterFunctions::vprintf (buf, bufSize - 1, pf, args); #endif if (num > 0) { createInternal (num); memcpy (text->text, buf, (num + 1) * sizeof (tchar)); break; } else if (num == 0) { text = &emptyString; emptyString.refCount = safeEmptyStringRefCount; break; } if (buf != stackBuf) juce_free (buf); bufSize += 256; buf = (tchar*) juce_malloc (bufSize * sizeof (tchar)); } while (bufSize < 65536); // this is a sanity check to avoid situations where vprintf repeatedly // returns -1 because of an error rather than because it needs more space. if (buf != stackBuf) juce_free (buf); } const String String::repeatedString (const tchar* const stringToRepeat, int numberOfTimesToRepeat) throw() { const int len = CharacterFunctions::length (stringToRepeat); String result ((int) (len * numberOfTimesToRepeat + 1), (int) 0); tchar* n = result.text->text; n[0] = 0; while (--numberOfTimesToRepeat >= 0) { CharacterFunctions::append (n, stringToRepeat); n += len; } return result; } const String String::replaceSection (int index, int numCharsToReplace, const tchar* const stringToInsert) const throw() { if (index < 0) { // a negative index to replace from? jassertfalse index = 0; } if (numCharsToReplace < 0) { // replacing a negative number of characters? numCharsToReplace = 0; jassertfalse; } const int len = length(); if (index + numCharsToReplace > len) { if (index > len) { // replacing beyond the end of the string? index = len; jassertfalse } numCharsToReplace = len - index; } const int newStringLen = (stringToInsert != 0) ? CharacterFunctions::length (stringToInsert) : 0; const int newTotalLen = len + newStringLen - numCharsToReplace; if (newTotalLen <= 0) return String::empty; String result (newTotalLen, (int) 0); memcpy (result.text->text, text->text, index * sizeof (tchar)); if (newStringLen > 0) memcpy (result.text->text + index, stringToInsert, newStringLen * sizeof (tchar)); const int endStringLen = newTotalLen - (index + newStringLen); if (endStringLen > 0) memcpy (result.text->text + (index + newStringLen), text->text + (index + numCharsToReplace), endStringLen * sizeof (tchar)); result.text->text [newTotalLen] = 0; return result; } const String String::replace (const tchar* const stringToReplace, const tchar* const stringToInsert, const bool ignoreCase) const throw() { const int stringToReplaceLen = CharacterFunctions::length (stringToReplace); const int stringToInsertLen = CharacterFunctions::length (stringToInsert); int i = 0; String result (*this); while ((i = (ignoreCase ? result.indexOfIgnoreCase (i, stringToReplace) : result.indexOf (i, stringToReplace))) >= 0) { result = result.replaceSection (i, stringToReplaceLen, stringToInsert); i += stringToInsertLen; } return result; } const String String::replaceCharacter (const tchar charToReplace, const tchar charToInsert) const throw() { const int index = indexOfChar (charToReplace); if (index < 0) return *this; String result (*this); result.dupeInternalIfMultiplyReferenced(); tchar* t = result.text->text + index; while (*t != 0) { if (*t == charToReplace) *t = charToInsert; ++t; } return result; } const String String::replaceCharacters (const String& charactersToReplace, const tchar* const charactersToInsertInstead) const throw() { String result (*this); result.dupeInternalIfMultiplyReferenced(); tchar* t = result.text->text; const int len2 = CharacterFunctions::length (charactersToInsertInstead); // the two strings passed in are supposed to be the same length! jassert (len2 == charactersToReplace.length()); while (*t != 0) { const int index = charactersToReplace.indexOfChar (*t); if (((unsigned int) index) < (unsigned int) len2) *t = charactersToInsertInstead [index]; ++t; } return result; } bool String::startsWith (const tchar* const other) const throw() { return other != 0 && CharacterFunctions::compare (text->text, other, CharacterFunctions::length (other)) == 0; } bool String::startsWithIgnoreCase (const tchar* const other) const throw() { return other != 0 && CharacterFunctions::compareIgnoreCase (text->text, other, CharacterFunctions::length (other)) == 0; } bool String::startsWithChar (const tchar character) const throw() { jassert (character != 0); // strings can't contain a null character! return text->text[0] == character; } bool String::endsWithChar (const tchar character) const throw() { jassert (character != 0); // strings can't contain a null character! return text->text[0] != 0 && text->text [length() - 1] == character; } bool String::endsWith (const tchar* const other) const throw() { if (other == 0) return false; const int thisLen = length(); const int otherLen = CharacterFunctions::length (other); return thisLen >= otherLen && CharacterFunctions::compare (text->text + thisLen - otherLen, other) == 0; } bool String::endsWithIgnoreCase (const tchar* const other) const throw() { if (other == 0) return false; const int thisLen = length(); const int otherLen = CharacterFunctions::length (other); return thisLen >= otherLen && CharacterFunctions::compareIgnoreCase (text->text + thisLen - otherLen, other) == 0; } const String String::toUpperCase() const throw() { String result (*this); result.dupeInternalIfMultiplyReferenced(); CharacterFunctions::toUpperCase (result.text->text); return result; } const String String::toLowerCase() const throw() { String result (*this); result.dupeInternalIfMultiplyReferenced(); CharacterFunctions::toLowerCase (result.text->text); return result; } tchar& String::operator[] (const int index) throw() { jassert (((unsigned int) index) <= (unsigned int) length()); dupeInternalIfMultiplyReferenced(); return text->text [index]; } tchar String::getLastCharacter() const throw() { return (isEmpty()) ? ((tchar) 0) : text->text [CharacterFunctions::length (text->text) - 1]; } const String String::substring (int start, int end) const throw() { if (start < 0) start = 0; else if (end <= start) return empty; int len = 0; const tchar* const t = text->text; while (len <= end && t [len] != 0) ++len; if (end >= len) { if (start == 0) return *this; end = len; } return String (text->text + start, end - start); } const String String::substring (const int start) const throw() { if (start <= 0) return *this; const int len = CharacterFunctions::length (text->text); if (start >= len) return empty; else return String (text->text + start, len - start); } const String String::dropLastCharacters (const int numberToDrop) const throw() { return String (text->text, jmax (0, CharacterFunctions::length (text->text) - numberToDrop)); } const String String::fromFirstOccurrenceOf (const tchar* const sub, const bool includeSubString, const bool ignoreCase) const throw() { const int i = ignoreCase ? indexOfIgnoreCase (sub) : indexOf (sub); if (i < 0) return empty; else return substring (includeSubString ? i : i + CharacterFunctions::length (sub)); } const String String::fromLastOccurrenceOf (const tchar* const sub, const bool includeSubString, const bool ignoreCase) const throw() { const int i = ignoreCase ? lastIndexOfIgnoreCase (sub) : lastIndexOf (sub); if (i < 0) return *this; else return substring (includeSubString ? i : i + CharacterFunctions::length (sub)); } const String String::upToFirstOccurrenceOf (const tchar* const sub, const bool includeSubString, const bool ignoreCase) const throw() { const int i = ignoreCase ? indexOfIgnoreCase (sub) : indexOf (sub); if (i < 0) return *this; else return substring (0, includeSubString ? i + CharacterFunctions::length (sub) : i); } const String String::upToLastOccurrenceOf (const tchar* const sub, const bool includeSubString, const bool ignoreCase) const throw() { const int i = ignoreCase ? lastIndexOfIgnoreCase (sub) : lastIndexOf (sub); if (i < 0) return *this; return substring (0, includeSubString ? i + CharacterFunctions::length (sub) : i); } bool String::isQuotedString() const throw() { const String trimmed (trimStart()); return trimmed[0] == T('"') || trimmed[0] == T('\''); } const String String::unquoted() const throw() { String s (*this); if (s[0] == T('"') || s[0] == T('\'')) s = s.substring (1); const int lastCharIndex = s.length() - 1; if (lastCharIndex >= 0 && (s [lastCharIndex] == T('"') || s[lastCharIndex] == T('\''))) s [lastCharIndex] = 0; return s; } const String String::quoted (const tchar quoteCharacter) const throw() { if (isEmpty()) return charToString (quoteCharacter) + quoteCharacter; String t (*this); if (! t.startsWithChar (quoteCharacter)) t = charToString (quoteCharacter) + t; if (! t.endsWithChar (quoteCharacter)) t += quoteCharacter; return t; } const String String::trim() const throw() { if (isEmpty()) return empty; int start = 0; while (CharacterFunctions::isWhitespace (text->text [start])) ++start; const int len = CharacterFunctions::length (text->text); int end = len - 1; while ((end >= start) && CharacterFunctions::isWhitespace (text->text [end])) --end; ++end; if (end <= start) return empty; else if (start > 0 || end < len) return String (text->text + start, end - start); else return *this; } const String String::trimStart() const throw() { if (isEmpty()) return empty; const tchar* t = text->text; while (CharacterFunctions::isWhitespace (*t)) ++t; if (t == text->text) return *this; else return String (t); } const String String::trimEnd() const throw() { if (isEmpty()) return empty; const tchar* endT = text->text + (CharacterFunctions::length (text->text) - 1); while ((endT >= text->text) && CharacterFunctions::isWhitespace (*endT)) --endT; return String (text->text, (int) (++endT - text->text)); } const String String::retainCharacters (const tchar* const charactersToRetain) const throw() { jassert (charactersToRetain != 0); if (isEmpty()) return empty; String result (text->allocatedNumChars, (int) 0); tchar* dst = result.text->text; const tchar* src = text->text; while (*src != 0) { if (CharacterFunctions::indexOfCharFast (charactersToRetain, *src) >= 0) *dst++ = *src; ++src; } *dst = 0; return result; } const String String::removeCharacters (const tchar* const charactersToRemove) const throw() { jassert (charactersToRemove != 0); if (isEmpty()) return empty; String result (text->allocatedNumChars, (int) 0); tchar* dst = result.text->text; const tchar* src = text->text; while (*src != 0) { if (CharacterFunctions::indexOfCharFast (charactersToRemove, *src) < 0) *dst++ = *src; ++src; } *dst = 0; return result; } const String String::initialSectionContainingOnly (const tchar* const permittedCharacters) const throw() { return substring (0, CharacterFunctions::getIntialSectionContainingOnly (text->text, permittedCharacters)); } const String String::initialSectionNotContaining (const tchar* const charactersToStopAt) const throw() { jassert (charactersToStopAt != 0); const tchar* const t = text->text; int i = 0; while (t[i] != 0) { if (CharacterFunctions::indexOfCharFast (charactersToStopAt, t[i]) >= 0) return String (text->text, i); ++i; } return empty; } bool String::containsOnly (const tchar* const chars) const throw() { jassert (chars != 0); const tchar* t = text->text; while (*t != 0) if (CharacterFunctions::indexOfCharFast (chars, *t++) < 0) return false; return true; } bool String::containsAnyOf (const tchar* const chars) const throw() { jassert (chars != 0); const tchar* t = text->text; while (*t != 0) if (CharacterFunctions::indexOfCharFast (chars, *t++) >= 0) return true; return false; } bool String::containsNonWhitespaceChars() const throw() { const tchar* t = text->text; while (*t != 0) if (! CharacterFunctions::isWhitespace (*t++)) return true; return false; } int String::getIntValue() const throw() { return CharacterFunctions::getIntValue (text->text); } int String::getTrailingIntValue() const throw() { int n = 0; int mult = 1; const tchar* t = text->text + length(); while (--t >= text->text) { const tchar c = *t; if (! CharacterFunctions::isDigit (c)) { if (c == T('-')) n = -n; break; } n += mult * (c - T('0')); mult *= 10; } return n; } int64 String::getLargeIntValue() const throw() { return CharacterFunctions::getInt64Value (text->text); } float String::getFloatValue() const throw() { return (float) CharacterFunctions::getDoubleValue (text->text); } double String::getDoubleValue() const throw() { return CharacterFunctions::getDoubleValue (text->text); } static const tchar* const hexDigits = T("0123456789abcdef"); const String String::toHexString (const int number) throw() { tchar buffer[32]; tchar* const end = buffer + 32; tchar* t = end; *--t = 0; unsigned int v = (unsigned int) number; do { *--t = hexDigits [v & 15]; v >>= 4; } while (v != 0); return String (t, (int) (((char*) end) - (char*) t) - 1); } const String String::toHexString (const int64 number) throw() { tchar buffer[32]; tchar* const end = buffer + 32; tchar* t = end; *--t = 0; uint64 v = (uint64) number; do { *--t = hexDigits [(int) (v & 15)]; v >>= 4; } while (v != 0); return String (t, (int) (((char*) end) - (char*) t)); } const String String::toHexString (const short number) throw() { return toHexString ((int) (unsigned short) number); } const String String::toHexString (const unsigned char* data, const int size, const int groupSize) throw() { if (size <= 0) return empty; int numChars = (size * 2) + 2; if (groupSize > 0) numChars += size / groupSize; String s (numChars, (int) 0); tchar* d = s.text->text; for (int i = 0; i < size; ++i) { *d++ = hexDigits [(*data) >> 4]; *d++ = hexDigits [(*data) & 0xf]; ++data; if (groupSize > 0 && (i % groupSize) == (groupSize - 1) && i < (size - 1)) *d++ = T(' '); } *d = 0; return s; } int String::getHexValue32() const throw() { int result = 0; const tchar* c = text->text; for (;;) { const int hexValue = CharacterFunctions::getHexDigitValue (*c); if (hexValue >= 0) result = (result << 4) | hexValue; else if (*c == 0) break; ++c; } return result; } int64 String::getHexValue64() const throw() { int64 result = 0; const tchar* c = text->text; for (;;) { const int hexValue = CharacterFunctions::getHexDigitValue (*c); if (hexValue >= 0) result = (result << 4) | hexValue; else if (*c == 0) break; ++c; } return result; } const String String::createStringFromData (const void* const data_, const int size) throw() { const char* const data = (const char*) data_; if (size <= 0 || data == 0) { return empty; } else if (size < 2) { return charToString (data[0]); } else if ((data[0] == (char)-2 && data[1] == (char)-1) || (data[0] == (char)-1 && data[1] == (char)-2)) { // assume it's 16-bit unicode const bool bigEndian = (data[0] == (char)-2); const int numChars = size / 2 - 1; String result; result.preallocateStorage (numChars + 2); const uint16* const src = (const uint16*) (data + 2); tchar* const dst = const_cast ((const tchar*) result); if (bigEndian) { for (int i = 0; i < numChars; ++i) dst[i] = (tchar) swapIfLittleEndian (src[i]); } else { for (int i = 0; i < numChars; ++i) dst[i] = (tchar) swapIfBigEndian (src[i]); } dst [numChars] = 0; return result; } else { return String::fromUTF8 ((const uint8*) data, size); } } const char* String::toUTF8() const throw() { if (isEmpty()) { return (const char*) emptyCharString; } else { String* const mutableThis = const_cast (this); mutableThis->dupeInternalIfMultiplyReferenced(); const int currentLen = CharacterFunctions::length (text->text) + 1; const int utf8BytesNeeded = copyToUTF8 (0); mutableThis->text = (InternalRefCountedStringHolder*) juce_realloc (text, sizeof (InternalRefCountedStringHolder) + (currentLen * sizeof (juce_wchar) + utf8BytesNeeded)); char* const otherCopy = (char*) (text->text + currentLen); copyToUTF8 ((uint8*) otherCopy); return otherCopy; } } int String::copyToUTF8 (uint8* const buffer, const int maxBufferSizeBytes) const throw() { jassert (maxBufferSizeBytes >= 0); // keep this value positive, or no characters will be copied! #if JUCE_STRINGS_ARE_UNICODE int num = 0, index = 0; for (;;) { const uint32 c = (uint32) text->text [index++]; if (c >= 0x80) { int numExtraBytes = 1; if (c >= 0x800) { ++numExtraBytes; if (c >= 0x10000) { ++numExtraBytes; if (c >= 0x200000) { ++numExtraBytes; if (c >= 0x4000000) ++numExtraBytes; } } } if (buffer != 0) { if (num + numExtraBytes >= maxBufferSizeBytes) { buffer [num++] = 0; break; } else { buffer [num++] = (uint8) ((0xff << (7 - numExtraBytes)) | (c >> (numExtraBytes * 6))); while (--numExtraBytes >= 0) buffer [num++] = (uint8) (0x80 | (0x3f & (c >> (numExtraBytes * 6)))); } } else { num += numExtraBytes + 1; } } else { if (buffer != 0) { if (num + 1 >= maxBufferSizeBytes) { buffer [num++] = 0; break; } buffer [num] = (uint8) c; } ++num; } if (c == 0) break; } return num; #else const int numBytes = jmin (maxBufferSizeBytes, length() + 1); if (buffer != 0) copyToBuffer ((char*) buffer, maxBufferSizeBytes); return numBytes; #endif } const String String::fromUTF8 (const uint8* const buffer, int bufferSizeBytes) throw() { if (buffer == 0) return empty; if (bufferSizeBytes < 0) bufferSizeBytes = INT_MAX; int numBytes; for (numBytes = 0; numBytes < bufferSizeBytes; ++numBytes) if (buffer [numBytes] == 0) break; String result (numBytes + 1, 0); tchar* dest = result.text->text; int i = 0; while (i < numBytes) { const uint8 c = buffer [i++]; if ((c & 0x80) != 0) { int mask = 0x7f; int bit = 0x40; int numExtraValues = 0; while (bit != 0 && (c & bit) != 0) { bit >>= 1; mask >>= 1; ++numExtraValues; } int n = (c & mask); while (--numExtraValues >= 0 && i < bufferSizeBytes) { const uint8 c = buffer[i]; if ((c & 0xc0) != 0x80) break; n <<= 6; n |= (c & 0x3f); ++i; } *dest++ = (tchar) n; } else { *dest++ = (tchar) c; } } *dest = 0; return result; } END_JUCE_NAMESPACE /********* End of inlined file: juce_String.cpp *********/ /********* Start of inlined file: juce_StringArray.cpp *********/ BEGIN_JUCE_NAMESPACE StringArray::StringArray() throw() { } StringArray::StringArray (const StringArray& other) throw() { addArray (other); } StringArray::StringArray (const juce_wchar** const strings, const int numberOfStrings) throw() { for (int i = 0; i < numberOfStrings; ++i) add (strings [i]); } StringArray::StringArray (const char** const strings, const int numberOfStrings) throw() { for (int i = 0; i < numberOfStrings; ++i) add (strings [i]); } StringArray::StringArray (const juce_wchar** const strings) throw() { int i = 0; while (strings[i] != 0) add (strings [i++]); } StringArray::StringArray (const char** const strings) throw() { int i = 0; while (strings[i] != 0) add (strings [i++]); } const StringArray& StringArray::operator= (const StringArray& other) throw() { if (this != &other) { clear(); addArray (other); } return *this; } StringArray::~StringArray() throw() { clear(); } bool StringArray::operator== (const StringArray& other) const throw() { if (other.size() != size()) return false; for (int i = size(); --i >= 0;) { if (*(String*) other.strings.getUnchecked(i) != *(String*) strings.getUnchecked(i)) { return false; } } return true; } bool StringArray::operator!= (const StringArray& other) const throw() { return ! operator== (other); } void StringArray::clear() throw() { for (int i = size(); --i >= 0;) { String* const s = (String*) strings.getUnchecked(i); delete s; } strings.clear(); } const String& StringArray::operator[] (const int index) const throw() { if (((unsigned int) index) < (unsigned int) strings.size()) return *(const String*) (strings.getUnchecked (index)); return String::empty; } void StringArray::add (const String& newString) throw() { strings.add (new String (newString)); } void StringArray::insert (const int index, const String& newString) throw() { strings.insert (index, new String (newString)); } void StringArray::addIfNotAlreadyThere (const String& newString, const bool ignoreCase) throw() { if (! contains (newString, ignoreCase)) add (newString); } void StringArray::addArray (const StringArray& otherArray, int startIndex, int numElementsToAdd) throw() { if (startIndex < 0) { jassertfalse startIndex = 0; } if (numElementsToAdd < 0 || startIndex + numElementsToAdd > otherArray.size()) numElementsToAdd = otherArray.size() - startIndex; while (--numElementsToAdd >= 0) strings.add (new String (*(const String*) otherArray.strings.getUnchecked (startIndex++))); } void StringArray::set (const int index, const String& newString) throw() { String* const s = (String*) strings [index]; if (s != 0) { *s = newString; } else if (index >= 0) { add (newString); } } bool StringArray::contains (const String& stringToLookFor, const bool ignoreCase) const throw() { if (ignoreCase) { for (int i = size(); --i >= 0;) if (stringToLookFor.equalsIgnoreCase (*(const String*)(strings.getUnchecked(i)))) return true; } else { for (int i = size(); --i >= 0;) if (stringToLookFor == *(const String*)(strings.getUnchecked(i))) return true; } return false; } int StringArray::indexOf (const String& stringToLookFor, const bool ignoreCase, int i) const throw() { if (i < 0) i = 0; const int numElements = size(); if (ignoreCase) { while (i < numElements) { if (stringToLookFor.equalsIgnoreCase (*(const String*) strings.getUnchecked (i))) return i; ++i; } } else { while (i < numElements) { if (stringToLookFor == *(const String*) strings.getUnchecked (i)) return i; ++i; } } return -1; } void StringArray::remove (const int index) throw() { String* const s = (String*) strings [index]; if (s != 0) { strings.remove (index); delete s; } } void StringArray::removeString (const String& stringToRemove, const bool ignoreCase) throw() { if (ignoreCase) { for (int i = size(); --i >= 0;) if (stringToRemove.equalsIgnoreCase (*(const String*) strings.getUnchecked (i))) remove (i); } else { for (int i = size(); --i >= 0;) if (stringToRemove == *(const String*) strings.getUnchecked (i)) remove (i); } } void StringArray::removeEmptyStrings (const bool removeWhitespaceStrings) throw() { if (removeWhitespaceStrings) { for (int i = size(); --i >= 0;) if (! ((const String*) strings.getUnchecked(i))->containsNonWhitespaceChars()) remove (i); } else { for (int i = size(); --i >= 0;) if (((const String*) strings.getUnchecked(i))->isEmpty()) remove (i); } } void StringArray::trim() throw() { for (int i = size(); --i >= 0;) { String& s = *(String*) strings.getUnchecked(i); s = s.trim(); } } class InternalStringArrayComparator { public: static int compareElements (void* const first, void* const second) throw() { return ((const String*) first)->compare (*(const String*) second); } }; class InsensitiveInternalStringArrayComparator { public: static int compareElements (void* const first, void* const second) throw() { return ((const String*) first)->compareIgnoreCase (*(const String*) second); } }; void StringArray::sort (const bool ignoreCase) throw() { if (ignoreCase) { InsensitiveInternalStringArrayComparator comp; strings.sort (comp); } else { InternalStringArrayComparator comp; strings.sort (comp); } } void StringArray::move (const int currentIndex, int newIndex) throw() { strings.move (currentIndex, newIndex); } const String StringArray::joinIntoString (const String& separator, int start, int numberToJoin) const throw() { const int last = (numberToJoin < 0) ? size() : jmin (size(), start + numberToJoin); if (start < 0) start = 0; if (start >= last) return String::empty; if (start == last - 1) return *(const String*) strings.getUnchecked (start); const int separatorLen = separator.length(); int charsNeeded = separatorLen * (last - start - 1); for (int i = start; i < last; ++i) charsNeeded += ((const String*) strings.getUnchecked(i))->length(); String result; result.preallocateStorage (charsNeeded); tchar* dest = (tchar*) (const tchar*) result; while (start < last) { const String& s = *(const String*) strings.getUnchecked (start); const int len = s.length(); if (len > 0) { s.copyToBuffer (dest, len); dest += len; } if (++start < last && separatorLen > 0) { separator.copyToBuffer (dest, separatorLen); dest += separatorLen; } } *dest = 0; return result; } int StringArray::addTokens (const tchar* const text, const bool preserveQuotedStrings) throw() { return addTokens (text, T(" \n\r\t"), preserveQuotedStrings ? T("\"") : 0); } int StringArray::addTokens (const tchar* const text, const tchar* breakCharacters, const tchar* quoteCharacters) throw() { int num = 0; if (text != 0 && *text != 0) { if (breakCharacters == 0) breakCharacters = T(""); if (quoteCharacters == 0) quoteCharacters = T(""); bool insideQuotes = false; tchar currentQuoteChar = 0; int i = 0; int tokenStart = 0; for (;;) { const tchar c = text[i]; bool isBreak = (c == 0); if (! (insideQuotes || isBreak)) { const tchar* b = breakCharacters; while (*b != 0) { if (*b++ == c) { isBreak = true; break; } } } if (! isBreak) { bool isQuote = false; const tchar* q = quoteCharacters; while (*q != 0) { if (*q++ == c) { isQuote = true; break; } } if (isQuote) { if (insideQuotes) { // only break out of quotes-mode if we find a matching quote to the // one that we opened with.. if (currentQuoteChar == c) insideQuotes = false; } else { insideQuotes = true; currentQuoteChar = c; } } } else { add (String (text + tokenStart, i - tokenStart)); ++num; tokenStart = i + 1; } if (c == 0) break; ++i; } } return num; } int StringArray::addLines (const tchar* text) throw() { int numLines = 0; if (text != 0) { while (*text != 0) { const tchar* const startOfLine = text; while (*text != 0) { if (*text == T('\r')) { ++text; if (*text == T('\n')) ++text; break; } if (*text == T('\n')) { ++text; break; } ++text; } const tchar* endOfLine = text; if (endOfLine > startOfLine && (*(endOfLine - 1) == T('\r') || *(endOfLine - 1) == T('\n'))) --endOfLine; if (endOfLine > startOfLine && (*(endOfLine - 1) == T('\r') || *(endOfLine - 1) == T('\n'))) --endOfLine; add (String (startOfLine, jmax (0, (int) (endOfLine - startOfLine)))); ++numLines; } } return numLines; } void StringArray::removeDuplicates (const bool ignoreCase) throw() { for (int i = 0; i < size() - 1; ++i) { const String& s = *(String*) strings.getUnchecked(i); int nextIndex = i + 1; for (;;) { nextIndex = indexOf (s, ignoreCase, nextIndex); if (nextIndex < 0) break; remove (nextIndex); } } } void StringArray::appendNumbersToDuplicates (const bool ignoreCase, const bool appendNumberToFirstInstance, const tchar* const preNumberString, const tchar* const postNumberString) throw() { for (int i = 0; i < size() - 1; ++i) { String& s = *(String*) strings.getUnchecked(i); int nextIndex = indexOf (s, ignoreCase, i + 1); if (nextIndex >= 0) { const String original (s); int number = 0; if (appendNumberToFirstInstance) s = original + preNumberString + String (++number) + postNumberString; else ++number; while (nextIndex >= 0) { set (nextIndex, (*this)[nextIndex] + preNumberString + String (++number) + postNumberString); nextIndex = indexOf (original, ignoreCase, nextIndex + 1); } } } } void StringArray::minimiseStorageOverheads() throw() { strings.minimiseStorageOverheads(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_StringArray.cpp *********/ /********* Start of inlined file: juce_StringPairArray.cpp *********/ BEGIN_JUCE_NAMESPACE StringPairArray::StringPairArray (const bool ignoreCase_) throw() : ignoreCase (ignoreCase_) { } StringPairArray::StringPairArray (const StringPairArray& other) throw() : keys (other.keys), values (other.values), ignoreCase (other.ignoreCase) { } StringPairArray::~StringPairArray() throw() { } const StringPairArray& StringPairArray::operator= (const StringPairArray& other) throw() { keys = other.keys; values = other.values; return *this; } bool StringPairArray::operator== (const StringPairArray& other) const throw() { for (int i = keys.size(); --i >= 0;) if (other [keys[i]] != values[i]) return false; return true; } bool StringPairArray::operator!= (const StringPairArray& other) const throw() { return ! operator== (other); } const String& StringPairArray::operator[] (const String& key) const throw() { return values [keys.indexOf (key, ignoreCase)]; } const String StringPairArray::getValue (const String& key, const String& defaultReturnValue) const { const int i = keys.indexOf (key, ignoreCase); if (i >= 0) return values[i]; return defaultReturnValue; } void StringPairArray::set (const String& key, const String& value) throw() { const int i = keys.indexOf (key, ignoreCase); if (i >= 0) { values.set (i, value); } else { keys.add (key); values.add (value); } } void StringPairArray::addArray (const StringPairArray& other) { for (int i = 0; i < other.size(); ++i) set (other.keys[i], other.values[i]); } void StringPairArray::clear() throw() { keys.clear(); values.clear(); } void StringPairArray::remove (const String& key) throw() { remove (keys.indexOf (key, ignoreCase)); } void StringPairArray::remove (const int index) throw() { keys.remove (index); values.remove (index); } void StringPairArray::setIgnoresCase (const bool shouldIgnoreCase) throw() { ignoreCase = shouldIgnoreCase; } const String StringPairArray::getDescription() const { String s; for (int i = 0; i < keys.size(); ++i) { s << keys[i] << T(" = ") << values[i]; if (i < keys.size()) s << T(", "); } return s; } void StringPairArray::minimiseStorageOverheads() throw() { keys.minimiseStorageOverheads(); values.minimiseStorageOverheads(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_StringPairArray.cpp *********/ /********* Start of inlined file: juce_XmlDocument.cpp *********/ BEGIN_JUCE_NAMESPACE static bool isXmlIdentifierChar_Slow (const tchar c) throw() { return CharacterFunctions::isLetterOrDigit (c) || c == T('_') || c == T('-') || c == T(':') || c == T('.'); } #define isXmlIdentifierChar(c) \ ((c > 0 && c <= 127) ? identifierLookupTable [(int) c] : isXmlIdentifierChar_Slow (c)) XmlDocument::XmlDocument (const String& documentText) throw() : originalText (documentText), ignoreEmptyTextElements (true), inputSource (0) { } XmlDocument::XmlDocument (const File& file) { inputSource = new FileInputSource (file); } XmlDocument::~XmlDocument() throw() { delete inputSource; } void XmlDocument::setInputSource (InputSource* const newSource) throw() { if (inputSource != newSource) { delete inputSource; inputSource = newSource; } } void XmlDocument::setEmptyTextElementsIgnored (const bool shouldBeIgnored) throw() { ignoreEmptyTextElements = shouldBeIgnored; } XmlElement* XmlDocument::getDocumentElement (const bool onlyReadOuterDocumentElement) { String textToParse (originalText); if (textToParse.isEmpty() && inputSource != 0) { InputStream* const in = inputSource->createInputStream(); if (in != 0) { MemoryBlock data; in->readIntoMemoryBlock (data, onlyReadOuterDocumentElement ? 8192 : -1); delete in; if (data.getSize() >= 2 && ((data[0] == (char)-2 && data[1] == (char)-1) || (data[0] == (char)-1 && data[1] == (char)-2))) { textToParse = String::createStringFromData ((const char*) data.getData(), data.getSize()); } else { textToParse = String::fromUTF8 ((const uint8*) data.getData(), data.getSize()); } if (! onlyReadOuterDocumentElement) originalText = textToParse; } } input = textToParse; lastError = String::empty; errorOccurred = false; outOfData = false; needToLoadDTD = true; for (int i = 0; i < 128; ++i) identifierLookupTable[i] = isXmlIdentifierChar_Slow ((tchar) i); if (textToParse.isEmpty()) { lastError = "not enough input"; } else { skipHeader(); if (input != 0) { XmlElement* const result = readNextElement (! onlyReadOuterDocumentElement); if (errorOccurred) delete result; else return result; } else { lastError = "incorrect xml header"; } } return 0; } const String& XmlDocument::getLastParseError() const throw() { return lastError; } void XmlDocument::setLastError (const String& desc, const bool carryOn) throw() { lastError = desc; errorOccurred = ! carryOn; } const String XmlDocument::getFileContents (const String& filename) const { String result; if (inputSource != 0) { InputStream* const in = inputSource->createInputStreamFor (filename.trim().unquoted()); if (in != 0) { result = in->readEntireStreamAsString(); delete in; } } return result; } tchar XmlDocument::readNextChar() throw() { if (*input != 0) { return *input++; } else { outOfData = true; return 0; } } int XmlDocument::findNextTokenLength() throw() { int len = 0; tchar c = *input; while (isXmlIdentifierChar (c)) c = input [++len]; return len; } void XmlDocument::skipHeader() throw() { const tchar* const found = CharacterFunctions::find (input, T("")); if (input == 0) return; input += 2; } skipNextWhiteSpace(); const tchar* docType = CharacterFunctions::find (input, T(" 0) { const tchar c = readNextChar(); if (outOfData) return; if (c == T('<')) ++n; else if (c == T('>')) --n; } docType += 9; dtdText = String (docType, (int) (input - (docType + 1))).trim(); } void XmlDocument::skipNextWhiteSpace() throw() { for (;;) { tchar c = *input; while (CharacterFunctions::isWhitespace (c)) c = *++input; if (c == 0) { outOfData = true; break; } else if (c == T('<')) { if (input[1] == T('!') && input[2] == T('-') && input[3] == T('-')) { const tchar* const closeComment = CharacterFunctions::find (input, T("-->")); if (closeComment == 0) { outOfData = true; break; } input = closeComment + 3; continue; } else if (input[1] == T('?')) { const tchar* const closeBracket = CharacterFunctions::find (input, T("?>")); if (closeBracket == 0) { outOfData = true; break; } input = closeBracket + 2; continue; } } break; } } void XmlDocument::readQuotedString (String& result) throw() { const tchar quote = readNextChar(); while (! outOfData) { const tchar character = readNextChar(); if (character == quote) break; if (character == T('&')) { --input; readEntity (result); } else { --input; const tchar* const start = input; for (;;) { const tchar character = *input; if (character == quote) { result.append (start, (int) (input - start)); ++input; return; } else if (character == T('&')) { result.append (start, (int) (input - start)); break; } else if (character == 0) { outOfData = true; setLastError ("unmatched quotes", false); break; } ++input; } } } } XmlElement* XmlDocument::readNextElement (const bool alsoParseSubElements) throw() { XmlElement* node = 0; skipNextWhiteSpace(); if (outOfData) return 0; input = CharacterFunctions::find (input, T("<")); if (input != 0) { ++input; int tagLen = findNextTokenLength(); if (tagLen == 0) { // no tag name - but allow for a gap after the '<' before giving an error skipNextWhiteSpace(); tagLen = findNextTokenLength(); if (tagLen == 0) { setLastError ("tag name missing", false); return node; } } node = new XmlElement (input, tagLen); input += tagLen; XmlElement::XmlAttributeNode* lastAttribute = 0; // look for attributes for (;;) { skipNextWhiteSpace(); const tchar c = *input; // empty tag.. if (c == T('/') && input[1] == T('>')) { input += 2; break; } // parse the guts of the element.. if (c == T('>')) { ++input; skipNextWhiteSpace(); if (alsoParseSubElements) readChildElements (node); break; } // get an attribute.. if (isXmlIdentifierChar (c)) { const int attNameLen = findNextTokenLength(); if (attNameLen > 0) { const tchar* attNameStart = input; input += attNameLen; skipNextWhiteSpace(); if (readNextChar() == T('=')) { skipNextWhiteSpace(); const tchar c = *input; if (c == T('"') || c == T('\'')) { XmlElement::XmlAttributeNode* const newAtt = new XmlElement::XmlAttributeNode (String (attNameStart, attNameLen), String::empty); readQuotedString (newAtt->value); if (lastAttribute == 0) node->attributes = newAtt; else lastAttribute->next = newAtt; lastAttribute = newAtt; continue; } } } } else { if (! outOfData) setLastError ("illegal character found in " + node->getTagName() + ": '" + c + "'", false); } break; } } return node; } void XmlDocument::readChildElements (XmlElement* parent) throw() { XmlElement* lastChildNode = 0; for (;;) { skipNextWhiteSpace(); if (outOfData) { setLastError ("unmatched tags", false); break; } if (*input == T('<')) { if (input[1] == T('/')) { // our close tag.. input = CharacterFunctions::find (input, T(">")); ++input; break; } else if (input[1] == T('!') && input[2] == T('[') && input[3] == T('C') && input[4] == T('D') && input[5] == T('A') && input[6] == T('T') && input[7] == T('A') && input[8] == T('[')) { input += 9; const tchar* const inputStart = input; int len = 0; for (;;) { if (*input == 0) { setLastError ("unterminated CDATA section", false); outOfData = true; break; } else if (input[0] == T(']') && input[1] == T(']') && input[2] == T('>')) { input += 3; break; } ++input; ++len; } XmlElement* const e = new XmlElement ((int) 0); e->setText (String (inputStart, len)); if (lastChildNode != 0) lastChildNode->nextElement = e; else parent->addChildElement (e); lastChildNode = e; } else { // this is some other element, so parse and add it.. XmlElement* const n = readNextElement (true); if (n != 0) { if (lastChildNode == 0) parent->addChildElement (n); else lastChildNode->nextElement = n; lastChildNode = n; } else { return; } } } else { // read character block.. XmlElement* const e = new XmlElement ((int)0); if (lastChildNode != 0) lastChildNode->nextElement = e; else parent->addChildElement (e); lastChildNode = e; String textElementContent; for (;;) { const tchar c = *input; if (c == T('<')) break; if (c == 0) { setLastError ("unmatched tags", false); outOfData = true; return; } if (c == T('&')) { String entity; readEntity (entity); if (entity.startsWithChar (T('<')) && entity [1] != 0) { const tchar* const oldInput = input; const bool oldOutOfData = outOfData; input = (const tchar*) entity; outOfData = false; for (;;) { XmlElement* const n = readNextElement (true); if (n == 0) break; if (lastChildNode == 0) parent->addChildElement (n); else lastChildNode->nextElement = n; lastChildNode = n; } input = oldInput; outOfData = oldOutOfData; } else { textElementContent += entity; } } else { const tchar* start = input; int len = 0; for (;;) { const tchar c = *input; if (c == T('<') || c == T('&')) { break; } else if (c == 0) { setLastError ("unmatched tags", false); outOfData = true; return; } ++input; ++len; } textElementContent.append (start, len); } } if (ignoreEmptyTextElements ? textElementContent.containsNonWhitespaceChars() : textElementContent.isNotEmpty()) e->setText (textElementContent); } } } void XmlDocument::readEntity (String& result) throw() { // skip over the ampersand ++input; if (CharacterFunctions::compareIgnoreCase (input, T("amp;"), 4) == 0) { input += 4; result += T("&"); } else if (CharacterFunctions::compareIgnoreCase (input, T("quot;"), 5) == 0) { input += 5; result += T("\""); } else if (CharacterFunctions::compareIgnoreCase (input, T("apos;"), 5) == 0) { input += 5; result += T("\'"); } else if (CharacterFunctions::compareIgnoreCase (input, T("lt;"), 3) == 0) { input += 3; result += T("<"); } else if (CharacterFunctions::compareIgnoreCase (input, T("gt;"), 3) == 0) { input += 3; result += T(">"); } else if (*input == T('#')) { int charCode = 0; ++input; if (*input == T('x') || *input == T('X')) { ++input; int numChars = 0; while (input[0] != T(';')) { const int hexValue = CharacterFunctions::getHexDigitValue (input[0]); if (hexValue < 0 || ++numChars > 8) { setLastError ("illegal escape sequence", true); break; } charCode = (charCode << 4) | hexValue; ++input; } ++input; } else if (input[0] >= T('0') && input[0] <= T('9')) { int numChars = 0; while (input[0] != T(';')) { if (++numChars > 12) { setLastError ("illegal escape sequence", true); break; } charCode = charCode * 10 + (input[0] - T('0')); ++input; } ++input; } else { setLastError ("illegal escape sequence", true); result += T("&"); return; } result << (tchar) charCode; } else { const tchar* const entityNameStart = input; const tchar* const closingSemiColon = CharacterFunctions::find (input, T(";")); if (closingSemiColon == 0) { outOfData = true; result += T("&"); } else { input = closingSemiColon + 1; result += expandExternalEntity (String (entityNameStart, (int) (closingSemiColon - entityNameStart))); } } } const String XmlDocument::expandEntity (const String& ent) { if (ent.equalsIgnoreCase (T("amp"))) { return T("&"); } else if (ent.equalsIgnoreCase (T("quot"))) { return T("\""); } else if (ent.equalsIgnoreCase (T("apos"))) { return T("\'"); } else if (ent.equalsIgnoreCase (T("lt"))) { return T("<"); } else if (ent.equalsIgnoreCase (T("gt"))) { return T(">"); } else if (ent[0] == T('#')) { if (ent[1] == T('x') || ent[1] == T('X')) { return String::charToString ((tchar) ent.substring (2).getHexValue32()); } else if (ent[1] >= T('0') && ent[1] <= T('9')) { return String::charToString ((tchar) ent.substring (1).getIntValue()); } setLastError ("illegal escape sequence", false); return T("&"); } else { return expandExternalEntity (ent); } } const String XmlDocument::expandExternalEntity (const String& entity) { if (needToLoadDTD) { if (dtdText.isNotEmpty()) { while (dtdText.endsWithChar (T('>'))) dtdText = dtdText.dropLastCharacters (1); tokenisedDTD.addTokens (dtdText, true); if (tokenisedDTD [tokenisedDTD.size() - 2].equalsIgnoreCase (T("system")) && tokenisedDTD [tokenisedDTD.size() - 1].isQuotedString()) { const String fn (tokenisedDTD [tokenisedDTD.size() - 1]); tokenisedDTD.clear(); tokenisedDTD.addTokens (getFileContents (fn), true); } else { tokenisedDTD.clear(); const int openBracket = dtdText.indexOfChar (T('[')); if (openBracket > 0) { const int closeBracket = dtdText.lastIndexOfChar (T(']')); if (closeBracket > openBracket) tokenisedDTD.addTokens (dtdText.substring (openBracket + 1, closeBracket), true); } } for (int i = tokenisedDTD.size(); --i >= 0;) { if (tokenisedDTD[i].startsWithChar (T('%')) && tokenisedDTD[i].endsWithChar (T(';'))) { const String parsed (getParameterEntity (tokenisedDTD[i].substring (1, tokenisedDTD[i].length() - 1))); StringArray newToks; newToks.addTokens (parsed, true); tokenisedDTD.remove (i); for (int j = newToks.size(); --j >= 0;) tokenisedDTD.insert (i, newToks[j]); } } } needToLoadDTD = false; } for (int i = 0; i < tokenisedDTD.size(); ++i) { if (tokenisedDTD[i] == entity) { if (tokenisedDTD[i - 1].equalsIgnoreCase (T("'))) ent = ent.dropLastCharacters (1); ent = ent.trim().unquoted(); // check for sub-entities.. int ampersand = ent.indexOfChar (T('&')); while (ampersand >= 0) { const int semiColon = ent.indexOf (i + 1, T(";")); if (semiColon < 0) { setLastError ("entity without terminating semi-colon", false); break; } const String resolved (expandEntity (ent.substring (i + 1, semiColon))); ent = ent.substring (0, ampersand) + resolved + ent.substring (semiColon + 1); ampersand = ent.indexOfChar (semiColon + 1, T('&')); } return ent; } } } setLastError ("unknown entity", true); return entity; } const String XmlDocument::getParameterEntity (const String& entity) { for (int i = 0; i < tokenisedDTD.size(); ++i) { if (tokenisedDTD[i] == entity) { if (tokenisedDTD [i - 1] == T("%") && tokenisedDTD [i - 2].equalsIgnoreCase (T("'))) ent = ent.dropLastCharacters (1); if (ent.equalsIgnoreCase (T("system"))) { String filename (tokenisedDTD [i + 2]); while (filename.endsWithChar (T('>'))) filename = filename.dropLastCharacters (1); return getFileContents (filename); } else { return ent.trim().unquoted(); } } } } return entity; } END_JUCE_NAMESPACE /********* End of inlined file: juce_XmlDocument.cpp *********/ /********* Start of inlined file: juce_XmlElement.cpp *********/ BEGIN_JUCE_NAMESPACE XmlElement::XmlAttributeNode::XmlAttributeNode (const XmlAttributeNode& other) throw() : name (other.name), value (other.value), next (0) { } XmlElement::XmlAttributeNode::XmlAttributeNode (const String& name_, const String& value_) throw() : name (name_), value (value_), next (0) { } XmlElement::XmlElement (const String& tagName_) throw() : tagName (tagName_), firstChildElement (0), nextElement (0), attributes (0) { // the tag name mustn't be empty, or it'll look like a text element! jassert (tagName_.containsNonWhitespaceChars()) } XmlElement::XmlElement (int /*dummy*/) throw() : firstChildElement (0), nextElement (0), attributes (0) { } XmlElement::XmlElement (const tchar* const tagName_, const int nameLen) throw() : tagName (tagName_, nameLen), firstChildElement (0), nextElement (0), attributes (0) { } XmlElement::XmlElement (const XmlElement& other) throw() : tagName (other.tagName), firstChildElement (0), nextElement (0), attributes (0) { copyChildrenAndAttributesFrom (other); } const XmlElement& XmlElement::operator= (const XmlElement& other) throw() { if (this != &other) { removeAllAttributes(); deleteAllChildElements(); tagName = other.tagName; copyChildrenAndAttributesFrom (other); } return *this; } void XmlElement::copyChildrenAndAttributesFrom (const XmlElement& other) throw() { XmlElement* child = other.firstChildElement; XmlElement* lastChild = 0; while (child != 0) { XmlElement* const copiedChild = new XmlElement (*child); if (lastChild != 0) lastChild->nextElement = copiedChild; else firstChildElement = copiedChild; lastChild = copiedChild; child = child->nextElement; } const XmlAttributeNode* att = other.attributes; XmlAttributeNode* lastAtt = 0; while (att != 0) { XmlAttributeNode* const newAtt = new XmlAttributeNode (*att); if (lastAtt != 0) lastAtt->next = newAtt; else attributes = newAtt; lastAtt = newAtt; att = att->next; } } XmlElement::~XmlElement() throw() { XmlElement* child = firstChildElement; while (child != 0) { XmlElement* const nextChild = child->nextElement; delete child; child = nextChild; } XmlAttributeNode* att = attributes; while (att != 0) { XmlAttributeNode* const nextAtt = att->next; delete att; att = nextAtt; } } static bool isLegalXmlChar (const juce_wchar character) { if ((character >= 'a' && character <= 'z') || (character >= 'A' && character <= 'Z') || (character >= '0' && character <= '9')) return true; const char* t = " .,;:-()_+=?!'#@[]/\\*%~{}"; do { if (((juce_wchar) (uint8) *t) == character) return true; } while (*++t != 0); return false; } static void escapeIllegalXmlChars (OutputStream& outputStream, const String& text, const bool changeNewLines) throw() { const juce_wchar* t = (const juce_wchar*) text; for (;;) { const juce_wchar character = *t++; if (character == 0) { break; } else if (isLegalXmlChar (character)) { outputStream.writeByte ((char) character); } else { switch (character) { case '&': outputStream.write ("&", 5); break; case '"': outputStream.write (""", 6); break; case '>': outputStream.write (">", 4); break; case '<': outputStream.write ("<", 4); break; case '\n': if (changeNewLines) outputStream.write (" ", 5); else outputStream.writeByte ((char) character); break; case '\r': if (changeNewLines) outputStream.write (" ", 5); else outputStream.writeByte ((char) character); break; default: { String encoded (T("&#")); encoded << String ((int) (unsigned int) character).trim() << T(';'); outputStream.write ((const char*) encoded, encoded.length()); } } } } } static void writeSpaces (OutputStream& out, int numSpaces) throw() { if (numSpaces > 0) { const char* const blanks = " "; const int blankSize = (int) sizeof (blanks) - 1; while (numSpaces > blankSize) { out.write (blanks, blankSize); numSpaces -= blankSize; } out.write (blanks, numSpaces); } } void XmlElement::writeElementAsText (OutputStream& outputStream, const int indentationLevel, const int lineWrapLength) const throw() { writeSpaces (outputStream, indentationLevel); if (! isTextElement()) { outputStream.writeByte ('<'); const int nameLen = tagName.length(); outputStream.write ((const char*) tagName, nameLen); const int attIndent = indentationLevel + nameLen + 1; int lineLen = 0; const XmlAttributeNode* att = attributes; while (att != 0) { if (lineLen > lineWrapLength && indentationLevel >= 0) { outputStream.write ("\r\n", 2); writeSpaces (outputStream, attIndent); lineLen = 0; } const int attNameLen = att->name.length(); outputStream.writeByte (' '); outputStream.write ((const char*) (att->name), attNameLen); outputStream.write ("=\"", 2); escapeIllegalXmlChars (outputStream, att->value, true); outputStream.writeByte ('"'); lineLen += 4 + attNameLen + att->value.length(); att = att->next; } if (firstChildElement != 0) { XmlElement* child = firstChildElement; if (child->nextElement == 0 && child->isTextElement()) { outputStream.writeByte ('>'); escapeIllegalXmlChars (outputStream, child->getText(), false); } else { if (indentationLevel >= 0) outputStream.write (">\r\n", 3); else outputStream.writeByte ('>'); bool lastWasTextNode = false; while (child != 0) { if (child->isTextElement()) { if ((! lastWasTextNode) && (indentationLevel >= 0)) writeSpaces (outputStream, indentationLevel + 2); escapeIllegalXmlChars (outputStream, child->getText(), false); lastWasTextNode = true; } else { if (indentationLevel >= 0) { if (lastWasTextNode) outputStream.write ("\r\n", 2); child->writeElementAsText (outputStream, indentationLevel + 2, lineWrapLength); } else { child->writeElementAsText (outputStream, indentationLevel, lineWrapLength); } lastWasTextNode = false; } child = child->nextElement; } if (indentationLevel >= 0) { if (lastWasTextNode) outputStream.write ("\r\n", 2); writeSpaces (outputStream, indentationLevel); } } outputStream.write ("= 0) outputStream.write (">\r\n", 3); else outputStream.writeByte ('>'); } else { if (indentationLevel >= 0) outputStream.write ("/>\r\n", 4); else outputStream.write ("/>", 2); } } else { if (indentationLevel >= 0) writeSpaces (outputStream, indentationLevel + 2); escapeIllegalXmlChars (outputStream, getText(), false); } } const String XmlElement::createDocument (const String& dtd, const bool allOnOneLine, const bool includeXmlHeader, const tchar* const encoding, const int lineWrapLength) const throw() { String doc; doc.preallocateStorage (1024); if (includeXmlHeader) { doc << " "; else doc += "\"?>\n\n"; } if (dtd.isNotEmpty()) { if (allOnOneLine) doc << dtd << " "; else doc << dtd << "\r\n"; } MemoryOutputStream mem (2048, 4096); writeElementAsText (mem, allOnOneLine ? -1 : 0, lineWrapLength); return doc + String (mem.getData(), mem.getDataSize()); } bool XmlElement::writeToFile (const File& f, const String& dtd, const tchar* const encoding, const int lineWrapLength) const throw() { if (f.hasWriteAccess()) { const File tempFile (f.getNonexistentSibling()); FileOutputStream* const out = tempFile.createOutputStream(); if (out != 0) { *out << "\r\n\r\n" << dtd << "\r\n"; writeElementAsText (*out, 0, lineWrapLength); delete out; if (tempFile.moveFileTo (f)) return true; tempFile.deleteFile(); } } return false; } bool XmlElement::hasTagName (const tchar* const tagNameWanted) const throw() { #ifdef JUCE_DEBUG // if debugging, check that the case is actually the same, because // valid xml is case-sensitive, and although this lets it pass, it's // better not to.. if (tagName.equalsIgnoreCase (tagNameWanted)) { jassert (tagName == tagNameWanted); return true; } else { return false; } #else return tagName.equalsIgnoreCase (tagNameWanted); #endif } XmlElement* XmlElement::getNextElementWithTagName (const tchar* const requiredTagName) const { XmlElement* e = nextElement; while (e != 0 && ! e->hasTagName (requiredTagName)) e = e->nextElement; return e; } int XmlElement::getNumAttributes() const throw() { const XmlAttributeNode* att = attributes; int count = 0; while (att != 0) { att = att->next; ++count; } return count; } const String& XmlElement::getAttributeName (const int index) const throw() { const XmlAttributeNode* att = attributes; int count = 0; while (att != 0) { if (count == index) return att->name; att = att->next; ++count; } return String::empty; } const String& XmlElement::getAttributeValue (const int index) const throw() { const XmlAttributeNode* att = attributes; int count = 0; while (att != 0) { if (count == index) return att->value; att = att->next; ++count; } return String::empty; } bool XmlElement::hasAttribute (const tchar* const attributeName) const throw() { const XmlAttributeNode* att = attributes; while (att != 0) { if (att->name.equalsIgnoreCase (attributeName)) return true; att = att->next; } return false; } const String XmlElement::getStringAttribute (const tchar* const attributeName, const tchar* const defaultReturnValue) const throw() { const XmlAttributeNode* att = attributes; while (att != 0) { if (att->name.equalsIgnoreCase (attributeName)) return att->value; att = att->next; } return defaultReturnValue; } int XmlElement::getIntAttribute (const tchar* const attributeName, const int defaultReturnValue) const throw() { const XmlAttributeNode* att = attributes; while (att != 0) { if (att->name.equalsIgnoreCase (attributeName)) return att->value.getIntValue(); att = att->next; } return defaultReturnValue; } double XmlElement::getDoubleAttribute (const tchar* const attributeName, const double defaultReturnValue) const throw() { const XmlAttributeNode* att = attributes; while (att != 0) { if (att->name.equalsIgnoreCase (attributeName)) return att->value.getDoubleValue(); att = att->next; } return defaultReturnValue; } bool XmlElement::getBoolAttribute (const tchar* const attributeName, const bool defaultReturnValue) const throw() { const XmlAttributeNode* att = attributes; while (att != 0) { if (att->name.equalsIgnoreCase (attributeName)) { tchar firstChar = att->value[0]; if (CharacterFunctions::isWhitespace (firstChar)) firstChar = att->value.trimStart() [0]; return firstChar == T('1') || firstChar == T('t') || firstChar == T('y') || firstChar == T('T') || firstChar == T('Y'); } att = att->next; } return defaultReturnValue; } bool XmlElement::compareAttribute (const tchar* const attributeName, const tchar* const stringToCompareAgainst, const bool ignoreCase) const throw() { const XmlAttributeNode* att = attributes; while (att != 0) { if (att->name.equalsIgnoreCase (attributeName)) { if (ignoreCase) return att->value.equalsIgnoreCase (stringToCompareAgainst); else return att->value == stringToCompareAgainst; } att = att->next; } return false; } void XmlElement::setAttribute (const tchar* const attributeName, const String& value) throw() { #ifdef JUCE_DEBUG // check the identifier being passed in is legal.. const tchar* t = attributeName; while (*t != 0) { jassert (CharacterFunctions::isLetterOrDigit (*t) || *t == T('_') || *t == T('-') || *t == T(':')); ++t; } #endif if (attributes == 0) { attributes = new XmlAttributeNode (attributeName, value); } else { XmlAttributeNode* att = attributes; for (;;) { if (att->name.equalsIgnoreCase (attributeName)) { att->value = value; break; } else if (att->next == 0) { att->next = new XmlAttributeNode (attributeName, value); break; } att = att->next; } } } void XmlElement::setAttribute (const tchar* const attributeName, const tchar* const text) throw() { setAttribute (attributeName, String (text)); } void XmlElement::setAttribute (const tchar* const attributeName, const int number) throw() { setAttribute (attributeName, String (number)); } void XmlElement::setAttribute (const tchar* const attributeName, const double number) throw() { tchar buffer [40]; CharacterFunctions::printf (buffer, numElementsInArray (buffer), T("%.9g"), number); setAttribute (attributeName, buffer); } void XmlElement::removeAttribute (const tchar* const attributeName) throw() { XmlAttributeNode* att = attributes; XmlAttributeNode* lastAtt = 0; while (att != 0) { if (att->name.equalsIgnoreCase (attributeName)) { if (lastAtt == 0) attributes = att->next; else lastAtt->next = att->next; delete att; break; } lastAtt = att; att = att->next; } } void XmlElement::removeAllAttributes() throw() { while (attributes != 0) { XmlAttributeNode* const nextAtt = attributes->next; delete attributes; attributes = nextAtt; } } int XmlElement::getNumChildElements() const throw() { int count = 0; const XmlElement* child = firstChildElement; while (child != 0) { ++count; child = child->nextElement; } return count; } XmlElement* XmlElement::getChildElement (const int index) const throw() { int count = 0; XmlElement* child = firstChildElement; while (child != 0 && count < index) { child = child->nextElement; ++count; } return child; } XmlElement* XmlElement::getChildByName (const tchar* const childName) const throw() { XmlElement* child = firstChildElement; while (child != 0) { if (child->hasTagName (childName)) break; child = child->nextElement; } return child; } void XmlElement::addChildElement (XmlElement* const newNode) throw() { if (newNode != 0) { if (firstChildElement == 0) { firstChildElement = newNode; } else { XmlElement* child = firstChildElement; while (child->nextElement != 0) child = child->nextElement; child->nextElement = newNode; // if this is non-zero, then something's probably // gone wrong.. jassert (newNode->nextElement == 0); } } } void XmlElement::insertChildElement (XmlElement* const newNode, int indexToInsertAt) throw() { if (newNode != 0) { removeChildElement (newNode, false); if (indexToInsertAt == 0) { newNode->nextElement = firstChildElement; firstChildElement = newNode; } else { if (firstChildElement == 0) { firstChildElement = newNode; } else { if (indexToInsertAt < 0) indexToInsertAt = INT_MAX; XmlElement* child = firstChildElement; while (child->nextElement != 0 && --indexToInsertAt > 0) child = child->nextElement; newNode->nextElement = child->nextElement; child->nextElement = newNode; } } } } bool XmlElement::replaceChildElement (XmlElement* const currentChildElement, XmlElement* const newNode) throw() { if (newNode != 0) { XmlElement* child = firstChildElement; XmlElement* previousNode = 0; while (child != 0) { if (child == currentChildElement) { if (child != newNode) { if (previousNode == 0) firstChildElement = newNode; else previousNode->nextElement = newNode; newNode->nextElement = child->nextElement; delete child; } return true; } previousNode = child; child = child->nextElement; } } return false; } void XmlElement::removeChildElement (XmlElement* const childToRemove, const bool shouldDeleteTheChild) throw() { if (childToRemove != 0) { if (firstChildElement == childToRemove) { firstChildElement = childToRemove->nextElement; childToRemove->nextElement = 0; } else { XmlElement* child = firstChildElement; XmlElement* last = 0; while (child != 0) { if (child == childToRemove) { if (last == 0) firstChildElement = child->nextElement; else last->nextElement = child->nextElement; childToRemove->nextElement = 0; break; } last = child; child = child->nextElement; } } if (shouldDeleteTheChild) delete childToRemove; } } bool XmlElement::isEquivalentTo (const XmlElement* const other, const bool ignoreOrderOfAttributes) const throw() { if (this != other) { if (other == 0 || tagName != other->tagName) { return false; } if (ignoreOrderOfAttributes) { int totalAtts = 0; const XmlAttributeNode* att = attributes; while (att != 0) { if (! other->compareAttribute (att->name, att->value)) return false; att = att->next; ++totalAtts; } if (totalAtts != other->getNumAttributes()) return false; } else { const XmlAttributeNode* thisAtt = attributes; const XmlAttributeNode* otherAtt = other->attributes; for (;;) { if (thisAtt == 0 || otherAtt == 0) { if (thisAtt == otherAtt) // both 0, so it's a match break; return false; } if (thisAtt->name != otherAtt->name || thisAtt->value != otherAtt->value) { return false; } thisAtt = thisAtt->next; otherAtt = otherAtt->next; } } const XmlElement* thisChild = firstChildElement; const XmlElement* otherChild = other->firstChildElement; for (;;) { if (thisChild == 0 || otherChild == 0) { if (thisChild == otherChild) // both 0, so it's a match break; return false; } if (! thisChild->isEquivalentTo (otherChild, ignoreOrderOfAttributes)) return false; thisChild = thisChild->nextElement; otherChild = otherChild->nextElement; } } return true; } void XmlElement::deleteAllChildElements() throw() { while (firstChildElement != 0) { XmlElement* const nextChild = firstChildElement->nextElement; delete firstChildElement; firstChildElement = nextChild; } } void XmlElement::deleteAllChildElementsWithTagName (const tchar* const name) throw() { XmlElement* child = firstChildElement; while (child != 0) { if (child->hasTagName (name)) { XmlElement* const nextChild = child->nextElement; removeChildElement (child, true); child = nextChild; } else { child = child->nextElement; } } } bool XmlElement::containsChildElement (const XmlElement* const possibleChild) const throw() { const XmlElement* child = firstChildElement; while (child != 0) { if (child == possibleChild) return true; child = child->nextElement; } return false; } XmlElement* XmlElement::findParentElementOf (const XmlElement* const elementToLookFor) throw() { if (this == elementToLookFor || elementToLookFor == 0) return 0; XmlElement* child = firstChildElement; while (child != 0) { if (elementToLookFor == child) return this; XmlElement* const found = child->findParentElementOf (elementToLookFor); if (found != 0) return found; child = child->nextElement; } return 0; } XmlElement** XmlElement::getChildElementsAsArray (const int num) const throw() { XmlElement** const elems = new XmlElement* [num]; XmlElement* e = firstChildElement; int i = 0; while (e != 0) { elems [i++] = e; e = e->nextElement; } return elems; } void XmlElement::reorderChildElements (XmlElement** const elems, const int num) throw() { XmlElement* e = firstChildElement = elems[0]; for (int i = 1; i < num; ++i) { e->nextElement = elems[i]; e = e->nextElement; } e->nextElement = 0; } bool XmlElement::isTextElement() const throw() { return tagName.isEmpty(); } static const tchar* const juce_xmltextContentAttributeName = T("text"); const String XmlElement::getText() const throw() { jassert (isTextElement()); // you're trying to get the text from an element that // isn't actually a text element.. If this contains text sub-nodes, you // can use getAllSubText instead to return getStringAttribute (juce_xmltextContentAttributeName); } void XmlElement::setText (const String& newText) throw() { if (isTextElement()) { setAttribute (juce_xmltextContentAttributeName, newText); } else { jassertfalse // you can only change the text in a text element, not a normal one. } } const String XmlElement::getAllSubText() const throw() { String result; const XmlElement* child = firstChildElement; while (child != 0) { if (child->isTextElement()) result += child->getText(); child = child->nextElement; } return result; } const String XmlElement::getChildElementAllSubText (const tchar* const childTagName, const String& defaultReturnValue) const throw() { const XmlElement* const child = getChildByName (childTagName); if (child != 0) return child->getAllSubText(); return defaultReturnValue; } XmlElement* XmlElement::createTextElement (const String& text) throw() { XmlElement* const e = new XmlElement ((int) 0); e->setAttribute (juce_xmltextContentAttributeName, text); return e; } void XmlElement::addTextElement (const String& text) throw() { addChildElement (createTextElement (text)); } void XmlElement::deleteAllTextElements() throw() { XmlElement* child = firstChildElement; while (child != 0) { XmlElement* const next = child->nextElement; if (child->isTextElement()) removeChildElement (child, true); child = next; } } END_JUCE_NAMESPACE /********* End of inlined file: juce_XmlElement.cpp *********/ /********* Start of inlined file: juce_InterProcessLock.cpp *********/ BEGIN_JUCE_NAMESPACE // (implemented in the platform-specific code files) END_JUCE_NAMESPACE /********* End of inlined file: juce_InterProcessLock.cpp *********/ /********* Start of inlined file: juce_ReadWriteLock.cpp *********/ BEGIN_JUCE_NAMESPACE ReadWriteLock::ReadWriteLock() throw() : numWaitingWriters (0), numWriters (0), writerThreadId (0) { } ReadWriteLock::~ReadWriteLock() throw() { jassert (readerThreads.size() == 0); jassert (numWriters == 0); } void ReadWriteLock::enterRead() const throw() { const Thread::ThreadID threadId = Thread::getCurrentThreadId(); const ScopedLock sl (accessLock); for (;;) { jassert (readerThreads.size() % 2 == 0); int i; for (i = 0; i < readerThreads.size(); i += 2) if (readerThreads.getUnchecked(i) == threadId) break; if (i < readerThreads.size() || numWriters + numWaitingWriters == 0 || (threadId == writerThreadId && numWriters > 0)) { if (i < readerThreads.size()) { readerThreads.set (i + 1, (Thread::ThreadID) (1 + (pointer_sized_int) readerThreads.getUnchecked (i + 1))); } else { readerThreads.add (threadId); readerThreads.add ((Thread::ThreadID) 1); } return; } const ScopedUnlock ul (accessLock); waitEvent.wait (100); } } void ReadWriteLock::exitRead() const throw() { const Thread::ThreadID threadId = Thread::getCurrentThreadId(); const ScopedLock sl (accessLock); for (int i = 0; i < readerThreads.size(); i += 2) { if (readerThreads.getUnchecked(i) == threadId) { const pointer_sized_int newCount = ((pointer_sized_int) readerThreads.getUnchecked (i + 1)) - 1; if (newCount == 0) { readerThreads.removeRange (i, 2); waitEvent.signal(); } else { readerThreads.set (i + 1, (Thread::ThreadID) newCount); } return; } } jassertfalse // unlocking a lock that wasn't locked.. } void ReadWriteLock::enterWrite() const throw() { const Thread::ThreadID threadId = Thread::getCurrentThreadId(); const ScopedLock sl (accessLock); for (;;) { if (readerThreads.size() + numWriters == 0 || threadId == writerThreadId || (readerThreads.size() == 2 && readerThreads.getUnchecked(0) == threadId)) { writerThreadId = threadId; ++numWriters; break; } ++numWaitingWriters; accessLock.exit(); waitEvent.wait (100); accessLock.enter(); --numWaitingWriters; } } bool ReadWriteLock::tryEnterWrite() const throw() { const Thread::ThreadID threadId = Thread::getCurrentThreadId(); const ScopedLock sl (accessLock); if (readerThreads.size() + numWriters == 0 || threadId == writerThreadId || (readerThreads.size() == 2 && readerThreads.getUnchecked(0) == threadId)) { writerThreadId = threadId; ++numWriters; return true; } return false; } void ReadWriteLock::exitWrite() const throw() { const ScopedLock sl (accessLock); // check this thread actually had the lock.. jassert (numWriters > 0 && writerThreadId == Thread::getCurrentThreadId()); if (--numWriters == 0) { writerThreadId = 0; waitEvent.signal(); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ReadWriteLock.cpp *********/ /********* Start of inlined file: juce_Thread.cpp *********/ BEGIN_JUCE_NAMESPACE // these functions are implemented in the platform-specific code. void* juce_createThread (void* userData) throw(); void juce_killThread (void* handle) throw(); bool juce_setThreadPriority (void* handle, int priority) throw(); void juce_setCurrentThreadName (const String& name) throw(); #if JUCE_WIN32 void juce_CloseThreadHandle (void* handle) throw(); #endif static VoidArray runningThreads (4); static CriticalSection runningThreadsLock; void Thread::threadEntryPoint (Thread* const thread) throw() { { const ScopedLock sl (runningThreadsLock); runningThreads.add (thread); } JUCE_TRY { thread->threadId_ = Thread::getCurrentThreadId(); if (thread->threadName_.isNotEmpty()) juce_setCurrentThreadName (thread->threadName_); if (thread->startSuspensionEvent_.wait (10000)) { if (thread->affinityMask_ != 0) setCurrentThreadAffinityMask (thread->affinityMask_); thread->run(); } } JUCE_CATCH_ALL_ASSERT { const ScopedLock sl (runningThreadsLock); jassert (runningThreads.contains (thread)); runningThreads.removeValue (thread); } #if JUCE_WIN32 juce_CloseThreadHandle (thread->threadHandle_); #endif thread->threadHandle_ = 0; thread->threadId_ = 0; } // used to wrap the incoming call from the platform-specific code void JUCE_API juce_threadEntryPoint (void* userData) { Thread::threadEntryPoint ((Thread*) userData); } Thread::Thread (const String& threadName) : threadName_ (threadName), threadHandle_ (0), threadPriority_ (5), threadId_ (0), affinityMask_ (0), threadShouldExit_ (false) { } Thread::~Thread() { stopThread (100); } void Thread::startThread() throw() { const ScopedLock sl (startStopLock); threadShouldExit_ = false; if (threadHandle_ == 0) { threadHandle_ = juce_createThread ((void*) this); juce_setThreadPriority (threadHandle_, threadPriority_); startSuspensionEvent_.signal(); } } void Thread::startThread (const int priority) throw() { const ScopedLock sl (startStopLock); if (threadHandle_ == 0) { threadPriority_ = priority; startThread(); } else { setPriority (priority); } } bool Thread::isThreadRunning() const throw() { return threadHandle_ != 0; } void Thread::signalThreadShouldExit() throw() { threadShouldExit_ = true; } bool Thread::waitForThreadToExit (const int timeOutMilliseconds) const throw() { // Doh! So how exactly do you expect this thread to wait for itself to stop?? jassert (getThreadId() != getCurrentThreadId()); const int sleepMsPerIteration = 5; int count = timeOutMilliseconds / sleepMsPerIteration; while (isThreadRunning()) { if (timeOutMilliseconds > 0 && --count < 0) return false; sleep (sleepMsPerIteration); } return true; } void Thread::stopThread (const int timeOutMilliseconds) throw() { // agh! You can't stop the thread that's calling this method! How on earth // would that work?? jassert (getCurrentThreadId() != getThreadId()); const ScopedLock sl (startStopLock); if (isThreadRunning()) { signalThreadShouldExit(); notify(); if (timeOutMilliseconds != 0) waitForThreadToExit (timeOutMilliseconds); if (isThreadRunning()) { // very bad karma if this point is reached, as // there are bound to be locks and events left in // silly states when a thread is killed by force.. jassertfalse Logger::writeToLog ("!! killing thread by force !!"); juce_killThread (threadHandle_); threadHandle_ = 0; threadId_ = 0; const ScopedLock sl (runningThreadsLock); runningThreads.removeValue (this); } } } bool Thread::setPriority (const int priority) throw() { const ScopedLock sl (startStopLock); const bool worked = juce_setThreadPriority (threadHandle_, priority); if (worked) threadPriority_ = priority; return worked; } bool Thread::setCurrentThreadPriority (const int priority) throw() { return juce_setThreadPriority (0, priority); } void Thread::setAffinityMask (const uint32 affinityMask) throw() { affinityMask_ = affinityMask; } Thread::ThreadID Thread::getThreadId() const throw() { return threadId_; } bool Thread::wait (const int timeOutMilliseconds) const throw() { return defaultEvent_.wait (timeOutMilliseconds); } void Thread::notify() const throw() { defaultEvent_.signal(); } int Thread::getNumRunningThreads() throw() { return runningThreads.size(); } Thread* Thread::getCurrentThread() throw() { const ThreadID thisId = getCurrentThreadId(); const ScopedLock sl (runningThreadsLock); for (int i = runningThreads.size(); --i >= 0;) { Thread* const t = (Thread*) (runningThreads.getUnchecked(i)); if (t->threadId_ == thisId) return t; } return 0; } void Thread::stopAllThreads (const int timeOutMilliseconds) throw() { { const ScopedLock sl (runningThreadsLock); for (int i = runningThreads.size(); --i >= 0;) ((Thread*) runningThreads.getUnchecked(i))->signalThreadShouldExit(); } for (;;) { runningThreadsLock.enter(); Thread* const t = (Thread*) runningThreads[0]; runningThreadsLock.exit(); if (t == 0) break; t->stopThread (timeOutMilliseconds); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_Thread.cpp *********/ /********* Start of inlined file: juce_ThreadPool.cpp *********/ BEGIN_JUCE_NAMESPACE ThreadPoolJob::ThreadPoolJob (const String& name) : jobName (name), pool (0), shouldStop (false), isActive (false), shouldBeDeleted (false) { } ThreadPoolJob::~ThreadPoolJob() { // you mustn't delete a job while it's still in a pool! Use ThreadPool::removeJob() // to remove it first! jassert (pool == 0 || ! pool->contains (this)); } const String ThreadPoolJob::getJobName() const throw() { return jobName; } void ThreadPoolJob::setJobName (const String& newName) throw() { jobName = newName; } void ThreadPoolJob::signalJobShouldExit() throw() { shouldStop = true; } class ThreadPoolThread : public Thread { ThreadPool& pool; bool volatile busy; ThreadPoolThread (const ThreadPoolThread&); const ThreadPoolThread& operator= (const ThreadPoolThread&); public: ThreadPoolThread (ThreadPool& pool_) : Thread (T("Pool")), pool (pool_), busy (false) { } ~ThreadPoolThread() { } void run() { while (! threadShouldExit()) { if (! pool.runNextJob()) wait (500); } } }; ThreadPool::ThreadPool (const int numThreads_, const bool startThreadsOnlyWhenNeeded, const int stopThreadsWhenNotUsedTimeoutMs) : numThreads (jmax (1, numThreads_)), threadStopTimeout (stopThreadsWhenNotUsedTimeoutMs), priority (5) { jassert (numThreads_ > 0); // not much point having one of these with no threads in it. threads = (Thread**) juce_calloc (sizeof (Thread*) * numThreads); for (int i = numThreads; --i >= 0;) threads[i] = new ThreadPoolThread (*this); if (! startThreadsOnlyWhenNeeded) for (int i = numThreads; --i >= 0;) threads[i]->startThread (priority); } ThreadPool::~ThreadPool() { removeAllJobs (true, 4000); int i; for (i = numThreads; --i >= 0;) threads[i]->signalThreadShouldExit(); for (i = numThreads; --i >= 0;) { threads[i]->stopThread (500); delete threads[i]; } juce_free (threads); } void ThreadPool::addJob (ThreadPoolJob* const job) { jassert (job->pool == 0); if (job->pool == 0) { job->pool = this; job->shouldStop = false; job->isActive = false; lock.enter(); jobs.add (job); int numRunning = 0; int i; for (i = numThreads; --i >= 0;) if (threads[i]->isThreadRunning() && ! threads[i]->threadShouldExit()) ++numRunning; if (numRunning < numThreads) { bool startedOne = false; int n = 1000; while (--n >= 0 && ! startedOne) { for (int i = numThreads; --i >= 0;) { if (! threads[i]->isThreadRunning()) { threads[i]->startThread (priority); startedOne = true; break; } } if (! startedOne) Thread::sleep (2); } } lock.exit(); for (i = numThreads; --i >= 0;) threads[i]->notify(); } } int ThreadPool::getNumJobs() const throw() { return jobs.size(); } ThreadPoolJob* ThreadPool::getJob (const int index) const throw() { const ScopedLock sl (lock); return (ThreadPoolJob*) jobs [index]; } bool ThreadPool::contains (const ThreadPoolJob* const job) const throw() { const ScopedLock sl (lock); return jobs.contains ((void*) job); } bool ThreadPool::isJobRunning (const ThreadPoolJob* const job) const { const ScopedLock sl (lock); return jobs.contains ((void*) job) && job->isActive; } bool ThreadPool::waitForJobToFinish (const ThreadPoolJob* const job, const int timeOutMs) const { if (job != 0) { const uint32 start = Time::getMillisecondCounter(); while (contains (job)) { if (timeOutMs >= 0 && Time::getMillisecondCounter() >= start + timeOutMs) return false; jobFinishedSignal.wait (2); } } return true; } bool ThreadPool::removeJob (ThreadPoolJob* const job, const bool interruptIfRunning, const int timeOutMs) { if (job != 0) { lock.enter(); if (jobs.contains (job)) { if (job->isActive) { if (interruptIfRunning) job->signalJobShouldExit(); lock.exit(); return waitForJobToFinish (job, timeOutMs); } else { jobs.removeValue (job); } } lock.exit(); } return true; } bool ThreadPool::removeAllJobs (const bool interruptRunningJobs, const int timeOutMs, const bool deleteInactiveJobs) { lock.enter(); for (int i = jobs.size(); --i >= 0;) { ThreadPoolJob* const job = (ThreadPoolJob*) jobs.getUnchecked(i); if (job->isActive) { if (interruptRunningJobs) job->signalJobShouldExit(); } else { jobs.remove (i); if (deleteInactiveJobs) delete job; } } lock.exit(); const uint32 start = Time::getMillisecondCounter(); while (jobs.size() > 0) { if (timeOutMs >= 0 && Time::getMillisecondCounter() >= start + timeOutMs) return false; jobFinishedSignal.wait (2); } return true; } const StringArray ThreadPool::getNamesOfAllJobs (const bool onlyReturnActiveJobs) const throw() { StringArray s; const ScopedLock sl (lock); for (int i = 0; i < jobs.size(); ++i) { const ThreadPoolJob* const job = (const ThreadPoolJob*) jobs.getUnchecked(i); if (job->isActive || ! onlyReturnActiveJobs) s.add (job->getJobName()); } return s; } bool ThreadPool::setThreadPriorities (const int newPriority) { bool ok = true; if (priority != newPriority) { priority = newPriority; for (int i = numThreads; --i >= 0;) if (! threads[i]->setPriority (newPriority)) ok = false; } return ok; } bool ThreadPool::runNextJob() { lock.enter(); ThreadPoolJob* job = 0; for (int i = 0; i < jobs.size(); ++i) { job = (ThreadPoolJob*) jobs [i]; if (job != 0 && ! (job->isActive || job->shouldStop)) break; job = 0; } if (job != 0) { job->isActive = true; lock.exit(); JUCE_TRY { ThreadPoolJob::JobStatus result = job->runJob(); lastJobEndTime = Time::getApproximateMillisecondCounter(); const ScopedLock sl (lock); if (jobs.contains (job)) { job->isActive = false; if (result != ThreadPoolJob::jobNeedsRunningAgain || job->shouldStop) { job->pool = 0; job->shouldStop = true; jobs.removeValue (job); if (result == ThreadPoolJob::jobHasFinishedAndShouldBeDeleted) delete job; jobFinishedSignal.signal(); } else { // move the job to the end of the queue if it wants another go jobs.move (jobs.indexOf (job), -1); } } } #if JUCE_CATCH_UNHANDLED_EXCEPTIONS catch (...) { lock.enter(); jobs.removeValue (job); lock.exit(); } #endif } else { lock.exit(); if (threadStopTimeout > 0 && Time::getApproximateMillisecondCounter() > lastJobEndTime + threadStopTimeout) { const ScopedLock sl (lock); if (jobs.size() == 0) for (int i = numThreads; --i >= 0;) threads[i]->signalThreadShouldExit(); } else { return false; } } return true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_ThreadPool.cpp *********/ /********* Start of inlined file: juce_TimeSliceThread.cpp *********/ BEGIN_JUCE_NAMESPACE TimeSliceThread::TimeSliceThread (const String& threadName) : Thread (threadName), index (0), clientBeingCalled (0), clientsChanged (false) { } TimeSliceThread::~TimeSliceThread() { stopThread (2000); } void TimeSliceThread::addTimeSliceClient (TimeSliceClient* const client) { const ScopedLock sl (listLock); clients.addIfNotAlreadyThere (client); clientsChanged = true; notify(); } void TimeSliceThread::removeTimeSliceClient (TimeSliceClient* const client) { const ScopedLock sl1 (listLock); clientsChanged = true; // if there's a chance we're in the middle of calling this client, we need to // also lock the outer lock.. if (clientBeingCalled == client) { const ScopedUnlock ul (listLock); // unlock first to get the order right.. const ScopedLock sl1 (callbackLock); const ScopedLock sl2 (listLock); clients.removeValue (client); } else { clients.removeValue (client); } } int TimeSliceThread::getNumClients() const throw() { return clients.size(); } TimeSliceClient* TimeSliceThread::getClient (const int index) const throw() { const ScopedLock sl (listLock); return clients [index]; } void TimeSliceThread::run() { int numCallsSinceBusy = 0; while (! threadShouldExit()) { int timeToWait = 500; { const ScopedLock sl (callbackLock); { const ScopedLock sl (listLock); if (clients.size() > 0) { index = (index + 1) % clients.size(); clientBeingCalled = clients [index]; } else { index = 0; clientBeingCalled = 0; } if (clientsChanged) { clientsChanged = false; numCallsSinceBusy = 0; } } if (clientBeingCalled != 0) { if (clientBeingCalled->useTimeSlice()) numCallsSinceBusy = 0; else ++numCallsSinceBusy; if (numCallsSinceBusy >= clients.size()) timeToWait = 500; else if (index == 0) timeToWait = 1; // throw in an occasional pause, to stop everything locking up else timeToWait = 0; } } if (timeToWait > 0) wait (timeToWait); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_TimeSliceThread.cpp *********/ #if ! JUCE_ONLY_BUILD_CORE_LIBRARY /********* Start of inlined file: juce_Application.cpp *********/ #if JUCE_MSVC #pragma warning (push) #pragma warning (disable: 4245 4514 4100) #include #pragma warning (pop) #endif BEGIN_JUCE_NAMESPACE void juce_setCurrentThreadName (const String& name) throw(); static JUCEApplication* appInstance = 0; JUCEApplication::JUCEApplication() : appReturnValue (0), stillInitialising (true), appLock (0) { } JUCEApplication::~JUCEApplication() { if (appLock != 0) { appLock->exit(); delete appLock; } } JUCEApplication* JUCEApplication::getInstance() throw() { return appInstance; } bool JUCEApplication::isInitialising() const throw() { return stillInitialising; } const String JUCEApplication::getApplicationVersion() { return String::empty; } bool JUCEApplication::moreThanOneInstanceAllowed() { return true; } void JUCEApplication::anotherInstanceStarted (const String&) { } void JUCEApplication::systemRequestedQuit() { quit(); } void JUCEApplication::quit() { MessageManager::getInstance()->stopDispatchLoop(); } void JUCEApplication::setApplicationReturnValue (const int newReturnValue) throw() { appReturnValue = newReturnValue; } void JUCEApplication::unhandledException (const std::exception*, const String&, const int) { jassertfalse } void JUCEApplication::sendUnhandledException (const std::exception* const e, const char* const sourceFile, const int lineNumber) { if (appInstance != 0) appInstance->unhandledException (e, sourceFile, lineNumber); } ApplicationCommandTarget* JUCEApplication::getNextCommandTarget() { return 0; } void JUCEApplication::getAllCommands (Array & commands) { commands.add (StandardApplicationCommandIDs::quit); } void JUCEApplication::getCommandInfo (const CommandID commandID, ApplicationCommandInfo& result) { if (commandID == StandardApplicationCommandIDs::quit) { result.setInfo ("Quit", "Quits the application", "Application", 0); result.defaultKeypresses.add (KeyPress (T('q'), ModifierKeys::commandModifier, 0)); } } bool JUCEApplication::perform (const InvocationInfo& info) { if (info.commandID == StandardApplicationCommandIDs::quit) { systemRequestedQuit(); return true; } return false; } int JUCEApplication::main (String& commandLine, JUCEApplication* const app) { if (! app->initialiseApp (commandLine)) return 0; // now loop until a quit message is received.. JUCE_TRY { MessageManager::getInstance()->runDispatchLoop(); } #if JUCE_CATCH_UNHANDLED_EXCEPTIONS catch (const std::exception& e) { app->unhandledException (&e, __FILE__, __LINE__); } catch (...) { app->unhandledException (0, __FILE__, __LINE__); } #endif return shutdownAppAndClearUp(); } bool JUCEApplication::initialiseApp (String& commandLine) { jassert (appInstance == 0); appInstance = this; commandLineParameters = commandLine.trim(); commandLine = String::empty; initialiseJuce_GUI(); InterProcessLock* appLock = 0; if (! moreThanOneInstanceAllowed()) { appLock = new InterProcessLock ("juceAppLock_" + getApplicationName()); if (! appLock->enter(0)) { MessageManager::broadcastMessage (getApplicationName() + "/" + commandLineParameters); delete appInstance; appInstance = 0; DBG ("Another instance is running - quitting..."); return false; } } // let the app do its setting-up.. initialise (commandLineParameters); // register for broadcast new app messages MessageManager::getInstance()->registerBroadcastListener (this); stillInitialising = false; return true; } int JUCEApplication::shutdownAppAndClearUp() { jassert (appInstance != 0); JUCEApplication* const app = appInstance; int returnValue = 0; MessageManager::getInstance()->deregisterBroadcastListener (app); static bool reentrancyCheck = false; if (! reentrancyCheck) { reentrancyCheck = true; JUCE_TRY { // give the app a chance to clean up.. app->shutdown(); } #if JUCE_CATCH_UNHANDLED_EXCEPTIONS catch (const std::exception& e) { app->unhandledException (&e, __FILE__, __LINE__); } catch (...) { app->unhandledException (0, __FILE__, __LINE__); } #endif JUCE_TRY { shutdownJuce_GUI(); returnValue = app->getApplicationReturnValue(); appInstance = 0; delete app; } JUCE_CATCH_ALL_ASSERT reentrancyCheck = false; } return returnValue; } #if JUCE_IPHONE extern int juce_IPhoneMain (int argc, char* argv[], JUCEApplication* app); #endif int JUCEApplication::main (int argc, char* argv[], JUCEApplication* const newApp) { #if JUCE_IPHONE const ScopedAutoReleasePool pool; return juce_IPhoneMain (argc, argv, newApp); #else #if JUCE_MAC const ScopedAutoReleasePool pool; #endif String cmd; for (int i = 1; i < argc; ++i) cmd << String::fromUTF8 ((const uint8*) argv[i]) << T(' '); return JUCEApplication::main (cmd, newApp); #endif } void JUCEApplication::actionListenerCallback (const String& message) { if (message.startsWith (getApplicationName() + "/")) anotherInstanceStarted (message.substring (getApplicationName().length() + 1)); } static bool juceInitialisedGUI = false; void JUCE_PUBLIC_FUNCTION initialiseJuce_GUI() { if (! juceInitialisedGUI) { #if JUCE_MAC || JUCE_IPHONE const ScopedAutoReleasePool pool; #endif juceInitialisedGUI = true; initialiseJuce_NonGUI(); MessageManager::getInstance(); LookAndFeel::setDefaultLookAndFeel (0); juce_setCurrentThreadName ("Juce Message Thread"); #if JUCE_WINDOWS && JUCE_DEBUG // This section is just for catching people who mess up their project settings and // turn RTTI off.. try { TextButton tb (String::empty); Component* c = &tb; // Got an exception here? Then TURN ON RTTI in your compiler settings!! c = dynamic_cast (c); } catch (...) { // Ended up here? If so, TURN ON RTTI in your compiler settings!! And if you // got as far as this catch statement, then why haven't you got exception catching // turned on in the debugger??? jassertfalse } #endif } } void JUCE_PUBLIC_FUNCTION shutdownJuce_GUI() { if (juceInitialisedGUI) { #if JUCE_MAC const ScopedAutoReleasePool pool; #endif { DeletedAtShutdown::deleteAll(); LookAndFeel::clearDefaultLookAndFeel(); } delete MessageManager::getInstance(); shutdownJuce_NonGUI(); juceInitialisedGUI = false; } } END_JUCE_NAMESPACE /********* End of inlined file: juce_Application.cpp *********/ /********* Start of inlined file: juce_ApplicationCommandInfo.cpp *********/ BEGIN_JUCE_NAMESPACE ApplicationCommandInfo::ApplicationCommandInfo (const CommandID commandID_) throw() : commandID (commandID_), flags (0) { } void ApplicationCommandInfo::setInfo (const String& shortName_, const String& description_, const String& categoryName_, const int flags_) throw() { shortName = shortName_; description = description_; categoryName = categoryName_; flags = flags_; } void ApplicationCommandInfo::setActive (const bool b) throw() { if (b) flags &= ~isDisabled; else flags |= isDisabled; } void ApplicationCommandInfo::setTicked (const bool b) throw() { if (b) flags |= isTicked; else flags &= ~isTicked; } void ApplicationCommandInfo::addDefaultKeypress (const int keyCode, const ModifierKeys& modifiers) throw() { defaultKeypresses.add (KeyPress (keyCode, modifiers, 0)); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ApplicationCommandInfo.cpp *********/ /********* Start of inlined file: juce_ApplicationCommandManager.cpp *********/ BEGIN_JUCE_NAMESPACE ApplicationCommandManager::ApplicationCommandManager() : listeners (8), firstTarget (0) { keyMappings = new KeyPressMappingSet (this); Desktop::getInstance().addFocusChangeListener (this); } ApplicationCommandManager::~ApplicationCommandManager() { Desktop::getInstance().removeFocusChangeListener (this); deleteAndZero (keyMappings); } void ApplicationCommandManager::clearCommands() { commands.clear(); keyMappings->clearAllKeyPresses(); triggerAsyncUpdate(); } void ApplicationCommandManager::registerCommand (const ApplicationCommandInfo& newCommand) { // zero isn't a valid command ID! jassert (newCommand.commandID != 0); // the name isn't optional! jassert (newCommand.shortName.isNotEmpty()); if (getCommandForID (newCommand.commandID) == 0) { ApplicationCommandInfo* const newInfo = new ApplicationCommandInfo (newCommand); newInfo->flags &= ~ApplicationCommandInfo::isTicked; commands.add (newInfo); keyMappings->resetToDefaultMapping (newCommand.commandID); triggerAsyncUpdate(); } else { // trying to re-register the same command with different parameters? jassert (newCommand.shortName == getCommandForID (newCommand.commandID)->shortName && (newCommand.description == getCommandForID (newCommand.commandID)->description || newCommand.description.isEmpty()) && newCommand.categoryName == getCommandForID (newCommand.commandID)->categoryName && newCommand.defaultKeypresses == getCommandForID (newCommand.commandID)->defaultKeypresses && (newCommand.flags & (ApplicationCommandInfo::wantsKeyUpDownCallbacks | ApplicationCommandInfo::hiddenFromKeyEditor | ApplicationCommandInfo::readOnlyInKeyEditor)) == (getCommandForID (newCommand.commandID)->flags & (ApplicationCommandInfo::wantsKeyUpDownCallbacks | ApplicationCommandInfo::hiddenFromKeyEditor | ApplicationCommandInfo::readOnlyInKeyEditor))); } } void ApplicationCommandManager::registerAllCommandsForTarget (ApplicationCommandTarget* target) { if (target != 0) { Array commandIDs; target->getAllCommands (commandIDs); for (int i = 0; i < commandIDs.size(); ++i) { ApplicationCommandInfo info (commandIDs.getUnchecked(i)); target->getCommandInfo (info.commandID, info); registerCommand (info); } } } void ApplicationCommandManager::removeCommand (const CommandID commandID) { for (int i = commands.size(); --i >= 0;) { if (commands.getUnchecked (i)->commandID == commandID) { commands.remove (i); triggerAsyncUpdate(); const Array keys (keyMappings->getKeyPressesAssignedToCommand (commandID)); for (int j = keys.size(); --j >= 0;) keyMappings->removeKeyPress (keys.getReference (j)); } } } void ApplicationCommandManager::commandStatusChanged() { triggerAsyncUpdate(); } const ApplicationCommandInfo* ApplicationCommandManager::getCommandForID (const CommandID commandID) const throw() { for (int i = commands.size(); --i >= 0;) if (commands.getUnchecked(i)->commandID == commandID) return commands.getUnchecked(i); return 0; } const String ApplicationCommandManager::getNameOfCommand (const CommandID commandID) const throw() { const ApplicationCommandInfo* const ci = getCommandForID (commandID); return (ci != 0) ? ci->shortName : String::empty; } const String ApplicationCommandManager::getDescriptionOfCommand (const CommandID commandID) const throw() { const ApplicationCommandInfo* const ci = getCommandForID (commandID); return (ci != 0) ? (ci->description.isNotEmpty() ? ci->description : ci->shortName) : String::empty; } const StringArray ApplicationCommandManager::getCommandCategories() const throw() { StringArray s; for (int i = 0; i < commands.size(); ++i) s.addIfNotAlreadyThere (commands.getUnchecked(i)->categoryName, false); return s; } const Array ApplicationCommandManager::getCommandsInCategory (const String& categoryName) const throw() { Array results (4); for (int i = 0; i < commands.size(); ++i) if (commands.getUnchecked(i)->categoryName == categoryName) results.add (commands.getUnchecked(i)->commandID); return results; } bool ApplicationCommandManager::invokeDirectly (const CommandID commandID, const bool asynchronously) { ApplicationCommandTarget::InvocationInfo info (commandID); info.invocationMethod = ApplicationCommandTarget::InvocationInfo::direct; return invoke (info, asynchronously); } bool ApplicationCommandManager::invoke (const ApplicationCommandTarget::InvocationInfo& info_, const bool asynchronously) { // This call isn't thread-safe for use from a non-UI thread without locking the message // manager first.. jassert (MessageManager::getInstance()->currentThreadHasLockedMessageManager()); ApplicationCommandTarget* const target = getFirstCommandTarget (info_.commandID); if (target == 0) return false; ApplicationCommandInfo commandInfo (0); target->getCommandInfo (info_.commandID, commandInfo); ApplicationCommandTarget::InvocationInfo info (info_); info.commandFlags = commandInfo.flags; sendListenerInvokeCallback (info); const bool ok = target->invoke (info, asynchronously); commandStatusChanged(); return ok; } ApplicationCommandTarget* ApplicationCommandManager::getFirstCommandTarget (const CommandID) { return firstTarget != 0 ? firstTarget : findDefaultComponentTarget(); } void ApplicationCommandManager::setFirstCommandTarget (ApplicationCommandTarget* const newTarget) throw() { firstTarget = newTarget; } ApplicationCommandTarget* ApplicationCommandManager::getTargetForCommand (const CommandID commandID, ApplicationCommandInfo& upToDateInfo) { ApplicationCommandTarget* target = getFirstCommandTarget (commandID); if (target == 0) target = JUCEApplication::getInstance(); if (target != 0) target = target->getTargetForCommand (commandID); if (target != 0) target->getCommandInfo (commandID, upToDateInfo); return target; } ApplicationCommandTarget* ApplicationCommandManager::findTargetForComponent (Component* c) { ApplicationCommandTarget* target = dynamic_cast (c); if (target == 0 && c != 0) // (unable to use the syntax findParentComponentOfClass () because of a VC6 compiler bug) target = c->findParentComponentOfClass ((ApplicationCommandTarget*) 0); return target; } ApplicationCommandTarget* ApplicationCommandManager::findDefaultComponentTarget() { Component* c = Component::getCurrentlyFocusedComponent(); if (c == 0) { TopLevelWindow* const activeWindow = TopLevelWindow::getActiveTopLevelWindow(); if (activeWindow != 0) { c = activeWindow->getPeer()->getLastFocusedSubcomponent(); if (c == 0) c = activeWindow; } } if (c == 0 && Process::isForegroundProcess()) { // getting a bit desperate now - try all desktop comps.. for (int i = Desktop::getInstance().getNumComponents(); --i >= 0;) { ApplicationCommandTarget* const target = findTargetForComponent (Desktop::getInstance().getComponent (i) ->getPeer()->getLastFocusedSubcomponent()); if (target != 0) return target; } } if (c != 0) { ResizableWindow* const resizableWindow = dynamic_cast (c); // if we're focused on a ResizableWindow, chances are that it's the content // component that really should get the event. And if not, the event will // still be passed up to the top level window anyway, so let's send it to the // content comp. if (resizableWindow != 0 && resizableWindow->getContentComponent() != 0) c = resizableWindow->getContentComponent(); ApplicationCommandTarget* const target = findTargetForComponent (c); if (target != 0) return target; } return JUCEApplication::getInstance(); } void ApplicationCommandManager::addListener (ApplicationCommandManagerListener* const listener) throw() { jassert (listener != 0); if (listener != 0) listeners.add (listener); } void ApplicationCommandManager::removeListener (ApplicationCommandManagerListener* const listener) throw() { listeners.removeValue (listener); } void ApplicationCommandManager::sendListenerInvokeCallback (const ApplicationCommandTarget::InvocationInfo& info) const { for (int i = listeners.size(); --i >= 0;) { ((ApplicationCommandManagerListener*) listeners.getUnchecked (i))->applicationCommandInvoked (info); i = jmin (i, listeners.size()); } } void ApplicationCommandManager::handleAsyncUpdate() { for (int i = listeners.size(); --i >= 0;) { ((ApplicationCommandManagerListener*) listeners.getUnchecked (i))->applicationCommandListChanged(); i = jmin (i, listeners.size()); } } void ApplicationCommandManager::globalFocusChanged (Component*) { commandStatusChanged(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ApplicationCommandManager.cpp *********/ /********* Start of inlined file: juce_ApplicationCommandTarget.cpp *********/ BEGIN_JUCE_NAMESPACE ApplicationCommandTarget::ApplicationCommandTarget() : messageInvoker (0) { } ApplicationCommandTarget::~ApplicationCommandTarget() { deleteAndZero (messageInvoker); } bool ApplicationCommandTarget::tryToInvoke (const InvocationInfo& info, const bool async) { if (isCommandActive (info.commandID)) { if (async) { if (messageInvoker == 0) messageInvoker = new CommandTargetMessageInvoker (this); messageInvoker->postMessage (new Message (0, 0, 0, new ApplicationCommandTarget::InvocationInfo (info))); return true; } else { const bool success = perform (info); jassert (success); // hmm - your target should have been able to perform this command. If it can't // do it at the moment for some reason, it should clear the 'isActive' flag when it // returns the command's info. return success; } } return false; } ApplicationCommandTarget* ApplicationCommandTarget::findFirstTargetParentComponent() { Component* c = dynamic_cast (this); if (c != 0) // (unable to use the syntax findParentComponentOfClass () because of a VC6 compiler bug) return c->findParentComponentOfClass ((ApplicationCommandTarget*) 0); return 0; } ApplicationCommandTarget* ApplicationCommandTarget::getTargetForCommand (const CommandID commandID) { ApplicationCommandTarget* target = this; int depth = 0; while (target != 0) { Array commandIDs; target->getAllCommands (commandIDs); if (commandIDs.contains (commandID)) return target; target = target->getNextCommandTarget(); ++depth; jassert (depth < 100); // could be a recursive command chain?? jassert (target != this); // definitely a recursive command chain! if (depth > 100 || target == this) break; } if (target == 0) { target = JUCEApplication::getInstance(); if (target != 0) { Array commandIDs; target->getAllCommands (commandIDs); if (commandIDs.contains (commandID)) return target; } } return 0; } bool ApplicationCommandTarget::isCommandActive (const CommandID commandID) { ApplicationCommandInfo info (commandID); info.flags = ApplicationCommandInfo::isDisabled; getCommandInfo (commandID, info); return (info.flags & ApplicationCommandInfo::isDisabled) == 0; } bool ApplicationCommandTarget::invoke (const InvocationInfo& info, const bool async) { ApplicationCommandTarget* target = this; int depth = 0; while (target != 0) { if (target->tryToInvoke (info, async)) return true; target = target->getNextCommandTarget(); ++depth; jassert (depth < 100); // could be a recursive command chain?? jassert (target != this); // definitely a recursive command chain! if (depth > 100 || target == this) break; } if (target == 0) { target = JUCEApplication::getInstance(); if (target != 0) return target->tryToInvoke (info, async); } return false; } bool ApplicationCommandTarget::invokeDirectly (const CommandID commandID, const bool asynchronously) { ApplicationCommandTarget::InvocationInfo info (commandID); info.invocationMethod = ApplicationCommandTarget::InvocationInfo::direct; return invoke (info, asynchronously); } ApplicationCommandTarget::InvocationInfo::InvocationInfo (const CommandID commandID_) throw() : commandID (commandID_), commandFlags (0), invocationMethod (direct), originatingComponent (0), isKeyDown (false), millisecsSinceKeyPressed (0) { } ApplicationCommandTarget::CommandTargetMessageInvoker::CommandTargetMessageInvoker (ApplicationCommandTarget* const owner_) : owner (owner_) { } ApplicationCommandTarget::CommandTargetMessageInvoker::~CommandTargetMessageInvoker() { } void ApplicationCommandTarget::CommandTargetMessageInvoker::handleMessage (const Message& message) { InvocationInfo* const info = (InvocationInfo*) message.pointerParameter; owner->tryToInvoke (*info, false); delete info; } END_JUCE_NAMESPACE /********* End of inlined file: juce_ApplicationCommandTarget.cpp *********/ /********* Start of inlined file: juce_ApplicationProperties.cpp *********/ BEGIN_JUCE_NAMESPACE juce_ImplementSingleton (ApplicationProperties) ApplicationProperties::ApplicationProperties() throw() : userProps (0), commonProps (0), msBeforeSaving (3000), options (PropertiesFile::storeAsBinary), commonSettingsAreReadOnly (0) { } ApplicationProperties::~ApplicationProperties() { closeFiles(); clearSingletonInstance(); } void ApplicationProperties::setStorageParameters (const String& applicationName, const String& fileNameSuffix, const String& folderName_, const int millisecondsBeforeSaving, const int propertiesFileOptions) throw() { appName = applicationName; fileSuffix = fileNameSuffix; folderName = folderName_; msBeforeSaving = millisecondsBeforeSaving; options = propertiesFileOptions; } bool ApplicationProperties::testWriteAccess (const bool testUserSettings, const bool testCommonSettings, const bool showWarningDialogOnFailure) { const bool userOk = (! testUserSettings) || getUserSettings()->save(); const bool commonOk = (! testCommonSettings) || getCommonSettings (false)->save(); if (! (userOk && commonOk)) { if (showWarningDialogOnFailure) { String filenames; if (userProps != 0 && ! userOk) filenames << '\n' << userProps->getFile().getFullPathName(); if (commonProps != 0 && ! commonOk) filenames << '\n' << commonProps->getFile().getFullPathName(); AlertWindow::showMessageBox (AlertWindow::WarningIcon, appName + TRANS(" - Unable to save settings"), TRANS("An error occurred when trying to save the application's settings file...\n\nIn order to save and restore its settings, ") + appName + TRANS(" needs to be able to write to the following files:\n") + filenames + TRANS("\n\nMake sure that these files aren't read-only, and that the disk isn't full.")); } return false; } return true; } void ApplicationProperties::openFiles() throw() { // You need to call setStorageParameters() before trying to get hold of the // properties! jassert (appName.isNotEmpty()); if (appName.isNotEmpty()) { if (userProps == 0) userProps = PropertiesFile::createDefaultAppPropertiesFile (appName, fileSuffix, folderName, false, msBeforeSaving, options); if (commonProps == 0) commonProps = PropertiesFile::createDefaultAppPropertiesFile (appName, fileSuffix, folderName, true, msBeforeSaving, options); userProps->setFallbackPropertySet (commonProps); } } PropertiesFile* ApplicationProperties::getUserSettings() throw() { if (userProps == 0) openFiles(); return userProps; } PropertiesFile* ApplicationProperties::getCommonSettings (const bool returnUserPropsIfReadOnly) throw() { if (commonProps == 0) openFiles(); if (returnUserPropsIfReadOnly) { if (commonSettingsAreReadOnly == 0) commonSettingsAreReadOnly = commonProps->save() ? -1 : 1; if (commonSettingsAreReadOnly > 0) return userProps; } return commonProps; } bool ApplicationProperties::saveIfNeeded() { return (userProps == 0 || userProps->saveIfNeeded()) && (commonProps == 0 || commonProps->saveIfNeeded()); } void ApplicationProperties::closeFiles() { deleteAndZero (userProps); deleteAndZero (commonProps); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ApplicationProperties.cpp *********/ /********* Start of inlined file: juce_DeletedAtShutdown.cpp *********/ BEGIN_JUCE_NAMESPACE static VoidArray objectsToDelete (16); static CriticalSection lock; DeletedAtShutdown::DeletedAtShutdown() throw() { const ScopedLock sl (lock); objectsToDelete.add (this); } DeletedAtShutdown::~DeletedAtShutdown() { const ScopedLock sl (lock); objectsToDelete.removeValue (this); } void DeletedAtShutdown::deleteAll() { // make a local copy of the array, so it can't get into a loop if something // creates another DeletedAtShutdown object during its destructor. lock.enter(); const VoidArray localCopy (objectsToDelete); lock.exit(); for (int i = localCopy.size(); --i >= 0;) { JUCE_TRY { DeletedAtShutdown* const deletee = (DeletedAtShutdown*) localCopy.getUnchecked(i); // double-check that it's not already been deleted during another object's destructor. lock.enter(); const bool okToDelete = objectsToDelete.contains (deletee); lock.exit(); if (okToDelete) delete deletee; } JUCE_CATCH_EXCEPTION } // if no objects got re-created during shutdown, this should have been emptied by their // destructors jassert (objectsToDelete.size() == 0); objectsToDelete.clear(); // just to make sure the array doesn't have any memory still allocated } END_JUCE_NAMESPACE /********* End of inlined file: juce_DeletedAtShutdown.cpp *********/ /********* Start of inlined file: juce_PropertiesFile.cpp *********/ BEGIN_JUCE_NAMESPACE static const int propFileMagicNumber = ((int) littleEndianInt ("PROP")); static const int propFileMagicNumberCompressed = ((int) littleEndianInt ("CPRP")); static const tchar* const propertyFileXmlTag = T("PROPERTIES"); static const tchar* const propertyTagName = T("VALUE"); PropertiesFile::PropertiesFile (const File& f, const int millisecondsBeforeSaving, const int options_) throw() : PropertySet (ignoreCaseOfKeyNames), file (f), timerInterval (millisecondsBeforeSaving), options (options_), needsWriting (false) { // You need to correctly specify just one storage format for the file jassert ((options_ & (storeAsBinary | storeAsCompressedBinary | storeAsXML)) == storeAsBinary || (options_ & (storeAsBinary | storeAsCompressedBinary | storeAsXML)) == storeAsCompressedBinary || (options_ & (storeAsBinary | storeAsCompressedBinary | storeAsXML)) == storeAsXML); InputStream* fileStream = f.createInputStream(); if (fileStream != 0) { int magicNumber = fileStream->readInt(); if (magicNumber == propFileMagicNumberCompressed) { fileStream = new SubregionStream (fileStream, 4, -1, true); fileStream = new GZIPDecompressorInputStream (fileStream, true); magicNumber = propFileMagicNumber; } if (magicNumber == propFileMagicNumber) { BufferedInputStream in (fileStream, 2048, true); int numValues = in.readInt(); while (--numValues >= 0 && ! in.isExhausted()) { const String key (in.readString()); const String value (in.readString()); jassert (key.isNotEmpty()); if (key.isNotEmpty()) getAllProperties().set (key, value); } } else { // Not a binary props file - let's see if it's XML.. delete fileStream; XmlDocument parser (f); XmlElement* doc = parser.getDocumentElement (true); if (doc != 0 && doc->hasTagName (propertyFileXmlTag)) { delete doc; doc = parser.getDocumentElement(); if (doc != 0) { forEachXmlChildElementWithTagName (*doc, e, propertyTagName) { const String name (e->getStringAttribute (T("name"))); if (name.isNotEmpty()) { getAllProperties().set (name, e->getFirstChildElement() != 0 ? e->getFirstChildElement()->createDocument (String::empty, true) : e->getStringAttribute (T("val"))); } } } else { // must be a pretty broken XML file we're trying to parse here! jassertfalse } delete doc; } } } } PropertiesFile::~PropertiesFile() { saveIfNeeded(); } bool PropertiesFile::saveIfNeeded() { const ScopedLock sl (getLock()); return (! needsWriting) || save(); } bool PropertiesFile::needsToBeSaved() const throw() { const ScopedLock sl (getLock()); return needsWriting; } bool PropertiesFile::save() { const ScopedLock sl (getLock()); stopTimer(); if (file == File::nonexistent || file.isDirectory() || ! file.getParentDirectory().createDirectory()) return false; if ((options & storeAsXML) != 0) { XmlElement* const doc = new XmlElement (propertyFileXmlTag); for (int i = 0; i < getAllProperties().size(); ++i) { XmlElement* const e = new XmlElement (propertyTagName); e->setAttribute (T("name"), getAllProperties().getAllKeys() [i]); // if the value seems to contain xml, store it as such.. XmlDocument xmlContent (getAllProperties().getAllValues() [i]); XmlElement* const childElement = xmlContent.getDocumentElement(); if (childElement != 0) e->addChildElement (childElement); else e->setAttribute (T("val"), getAllProperties().getAllValues() [i]); doc->addChildElement (e); } const bool ok = doc->writeToFile (file, String::empty); delete doc; return ok; } else { const File tempFile (file.getNonexistentSibling (false)); OutputStream* out = tempFile.createOutputStream(); if (out != 0) { if ((options & storeAsCompressedBinary) != 0) { out->writeInt (propFileMagicNumberCompressed); out->flush(); out = new GZIPCompressorOutputStream (out, 9, true); } else { // have you set up the storage option flags correctly? jassert ((options & storeAsBinary) != 0); out->writeInt (propFileMagicNumber); } const int numProperties = getAllProperties().size(); out->writeInt (numProperties); for (int i = 0; i < numProperties; ++i) { out->writeString (getAllProperties().getAllKeys() [i]); out->writeString (getAllProperties().getAllValues() [i]); } out->flush(); delete out; if (tempFile.moveFileTo (file)) { needsWriting = false; return true; } tempFile.deleteFile(); } } return false; } void PropertiesFile::timerCallback() { saveIfNeeded(); } void PropertiesFile::propertyChanged() { sendChangeMessage (this); needsWriting = true; if (timerInterval > 0) startTimer (timerInterval); else if (timerInterval == 0) saveIfNeeded(); } const File PropertiesFile::getFile() const throw() { return file; } const File PropertiesFile::getDefaultAppSettingsFile (const String& applicationName, const String& fileNameSuffix, const String& folderName, const bool commonToAllUsers) { // mustn't have illegal characters in this name.. jassert (applicationName == File::createLegalFileName (applicationName)); #if JUCE_MAC || JUCE_IPHONE File dir (commonToAllUsers ? "/Library/Preferences" : "~/Library/Preferences"); if (folderName.isNotEmpty()) dir = dir.getChildFile (folderName); #endif #ifdef JUCE_LINUX const File dir ((commonToAllUsers ? T("/var/") : T("~/")) + (folderName.isNotEmpty() ? folderName : (T(".") + applicationName))); #endif #if JUCE_WIN32 File dir (File::getSpecialLocation (commonToAllUsers ? File::commonApplicationDataDirectory : File::userApplicationDataDirectory)); if (dir == File::nonexistent) return File::nonexistent; dir = dir.getChildFile (folderName.isNotEmpty() ? folderName : applicationName); #endif return dir.getChildFile (applicationName) .withFileExtension (fileNameSuffix); } PropertiesFile* PropertiesFile::createDefaultAppPropertiesFile (const String& applicationName, const String& fileNameSuffix, const String& folderName, const bool commonToAllUsers, const int millisecondsBeforeSaving, const int propertiesFileOptions) { const File file (getDefaultAppSettingsFile (applicationName, fileNameSuffix, folderName, commonToAllUsers)); jassert (file != File::nonexistent); if (file == File::nonexistent) return 0; return new PropertiesFile (file, millisecondsBeforeSaving, propertiesFileOptions); } END_JUCE_NAMESPACE /********* End of inlined file: juce_PropertiesFile.cpp *********/ /********* Start of inlined file: juce_FileBasedDocument.cpp *********/ BEGIN_JUCE_NAMESPACE FileBasedDocument::FileBasedDocument (const String& fileExtension_, const String& fileWildcard_, const String& openFileDialogTitle_, const String& saveFileDialogTitle_) : changedSinceSave (false), fileExtension (fileExtension_), fileWildcard (fileWildcard_), openFileDialogTitle (openFileDialogTitle_), saveFileDialogTitle (saveFileDialogTitle_) { } FileBasedDocument::~FileBasedDocument() { } void FileBasedDocument::setChangedFlag (const bool hasChanged) { changedSinceSave = hasChanged; } void FileBasedDocument::changed() { changedSinceSave = true; sendChangeMessage (this); } void FileBasedDocument::setFile (const File& newFile) { if (documentFile != newFile) { documentFile = newFile; changedSinceSave = true; } } bool FileBasedDocument::loadFrom (const File& newFile, const bool showMessageOnFailure) { MouseCursor::showWaitCursor(); const File oldFile (documentFile); documentFile = newFile; String error; if (newFile.existsAsFile()) { error = loadDocument (newFile); if (error.isEmpty()) { setChangedFlag (false); MouseCursor::hideWaitCursor(); setLastDocumentOpened (newFile); return true; } } else { error = "The file doesn't exist"; } documentFile = oldFile; MouseCursor::hideWaitCursor(); if (showMessageOnFailure) { AlertWindow::showMessageBox (AlertWindow::WarningIcon, TRANS("Failed to open file..."), TRANS("There was an error while trying to load the file:\n\n") + newFile.getFullPathName() + T("\n\n") + error); } return false; } bool FileBasedDocument::loadFromUserSpecifiedFile (const bool showMessageOnFailure) { FileChooser fc (openFileDialogTitle, getLastDocumentOpened(), fileWildcard); if (fc.browseForFileToOpen()) return loadFrom (fc.getResult(), showMessageOnFailure); return false; } FileBasedDocument::SaveResult FileBasedDocument::save (const bool askUserForFileIfNotSpecified, const bool showMessageOnFailure) { return saveAs (documentFile, false, askUserForFileIfNotSpecified, showMessageOnFailure); } FileBasedDocument::SaveResult FileBasedDocument::saveAs (const File& newFile, const bool warnAboutOverwritingExistingFiles, const bool askUserForFileIfNotSpecified, const bool showMessageOnFailure) { if (newFile == File::nonexistent) { if (askUserForFileIfNotSpecified) { return saveAsInteractive (true); } else { // can't save to an unspecified file jassertfalse return failedToWriteToFile; } } if (warnAboutOverwritingExistingFiles && newFile.exists()) { if (! AlertWindow::showOkCancelBox (AlertWindow::WarningIcon, TRANS("File already exists"), TRANS("There's already a file called:\n\n") + newFile.getFullPathName() + TRANS("\n\nAre you sure you want to overwrite it?"), TRANS("overwrite"), TRANS("cancel"))) { return userCancelledSave; } } MouseCursor::showWaitCursor(); const File oldFile (documentFile); documentFile = newFile; String error (saveDocument (newFile)); if (error.isEmpty()) { setChangedFlag (false); MouseCursor::hideWaitCursor(); return savedOk; } documentFile = oldFile; MouseCursor::hideWaitCursor(); if (showMessageOnFailure) { AlertWindow::showMessageBox (AlertWindow::WarningIcon, TRANS("Error writing to file..."), TRANS("An error occurred while trying to save \"") + getDocumentTitle() + TRANS("\" to the file:\n\n") + newFile.getFullPathName() + T("\n\n") + error); } return failedToWriteToFile; } FileBasedDocument::SaveResult FileBasedDocument::saveIfNeededAndUserAgrees() { if (! hasChangedSinceSaved()) return savedOk; const int r = AlertWindow::showYesNoCancelBox (AlertWindow::QuestionIcon, TRANS("Closing document..."), TRANS("Do you want to save the changes to \"") + getDocumentTitle() + T("\"?"), TRANS("save"), TRANS("discard changes"), TRANS("cancel")); if (r == 1) { // save changes return save (true, true); } else if (r == 2) { // discard changes return savedOk; } return userCancelledSave; } FileBasedDocument::SaveResult FileBasedDocument::saveAsInteractive (const bool warnAboutOverwritingExistingFiles) { File f; if (documentFile.existsAsFile()) f = documentFile; else f = getLastDocumentOpened(); String legalFilename (File::createLegalFileName (getDocumentTitle())); if (legalFilename.isEmpty()) legalFilename = "unnamed"; if (f.existsAsFile() || f.getParentDirectory().isDirectory()) f = f.getSiblingFile (legalFilename); else f = File::getSpecialLocation (File::userDocumentsDirectory).getChildFile (legalFilename); f = f.withFileExtension (fileExtension) .getNonexistentSibling (true); FileChooser fc (saveFileDialogTitle, f, fileWildcard); if (fc.browseForFileToSave (warnAboutOverwritingExistingFiles)) { setLastDocumentOpened (fc.getResult()); File chosen (fc.getResult()); if (chosen.getFileExtension().isEmpty()) chosen = chosen.withFileExtension (fileExtension); return saveAs (chosen, false, false, true); } return userCancelledSave; } END_JUCE_NAMESPACE /********* End of inlined file: juce_FileBasedDocument.cpp *********/ /********* Start of inlined file: juce_RecentlyOpenedFilesList.cpp *********/ BEGIN_JUCE_NAMESPACE RecentlyOpenedFilesList::RecentlyOpenedFilesList() : maxNumberOfItems (10) { } RecentlyOpenedFilesList::~RecentlyOpenedFilesList() { } void RecentlyOpenedFilesList::setMaxNumberOfItems (const int newMaxNumber) { maxNumberOfItems = jmax (1, newMaxNumber); while (getNumFiles() > maxNumberOfItems) files.remove (getNumFiles() - 1); } int RecentlyOpenedFilesList::getNumFiles() const { return files.size(); } const File RecentlyOpenedFilesList::getFile (const int index) const { return File (files [index]); } void RecentlyOpenedFilesList::clear() { files.clear(); } void RecentlyOpenedFilesList::addFile (const File& file) { const String path (file.getFullPathName()); files.removeString (path, true); files.insert (0, path); setMaxNumberOfItems (maxNumberOfItems); } void RecentlyOpenedFilesList::removeNonExistentFiles() { for (int i = getNumFiles(); --i >= 0;) if (! getFile(i).exists()) files.remove (i); } int RecentlyOpenedFilesList::createPopupMenuItems (PopupMenu& menuToAddTo, const int baseItemId, const bool showFullPaths, const bool dontAddNonExistentFiles, const File** filesToAvoid) { int num = 0; for (int i = 0; i < getNumFiles(); ++i) { const File f (getFile(i)); if ((! dontAddNonExistentFiles) || f.exists()) { bool needsAvoiding = false; if (filesToAvoid != 0) { const File** files = filesToAvoid; while (*files != 0) { if (f == **files) { needsAvoiding = true; break; } ++files; } } if (! needsAvoiding) { menuToAddTo.addItem (baseItemId + i, showFullPaths ? f.getFullPathName() : f.getFileName()); ++num; } } } return num; } const String RecentlyOpenedFilesList::toString() const { return files.joinIntoString (T("\n")); } void RecentlyOpenedFilesList::restoreFromString (const String& stringifiedVersion) { clear(); files.addLines (stringifiedVersion); setMaxNumberOfItems (maxNumberOfItems); } END_JUCE_NAMESPACE /********* End of inlined file: juce_RecentlyOpenedFilesList.cpp *********/ /********* Start of inlined file: juce_UndoManager.cpp *********/ BEGIN_JUCE_NAMESPACE UndoManager::UndoManager (const int maxNumberOfUnitsToKeep, const int minimumTransactions) : totalUnitsStored (0), nextIndex (0), newTransaction (true), reentrancyCheck (false) { setMaxNumberOfStoredUnits (maxNumberOfUnitsToKeep, minimumTransactions); } UndoManager::~UndoManager() { clearUndoHistory(); } void UndoManager::clearUndoHistory() { transactions.clear(); transactionNames.clear(); totalUnitsStored = 0; nextIndex = 0; sendChangeMessage (this); } int UndoManager::getNumberOfUnitsTakenUpByStoredCommands() const { return totalUnitsStored; } void UndoManager::setMaxNumberOfStoredUnits (const int maxNumberOfUnitsToKeep, const int minimumTransactions) { maxNumUnitsToKeep = jmax (1, maxNumberOfUnitsToKeep); minimumTransactionsToKeep = jmax (1, minimumTransactions); } bool UndoManager::perform (UndoableAction* const command, const String& actionName) { if (command != 0) { if (actionName.isNotEmpty()) currentTransactionName = actionName; if (reentrancyCheck) { jassertfalse // don't call perform() recursively from the UndoableAction::perform() or // undo() methods, or else these actions won't actually get done. return false; } else { bool success = false; JUCE_TRY { success = command->perform(); } JUCE_CATCH_EXCEPTION jassert (success); if (success) { if (nextIndex > 0 && ! newTransaction) { OwnedArray* commandSet = transactions [nextIndex - 1]; jassert (commandSet != 0); if (commandSet == 0) return false; commandSet->add (command); } else { OwnedArray* commandSet = new OwnedArray(); commandSet->add (command); transactions.insert (nextIndex, commandSet); transactionNames.insert (nextIndex, currentTransactionName); ++nextIndex; } totalUnitsStored += command->getSizeInUnits(); newTransaction = false; } while (nextIndex < transactions.size()) { const OwnedArray * const lastSet = transactions.getLast(); for (int i = lastSet->size(); --i >= 0;) totalUnitsStored -= lastSet->getUnchecked (i)->getSizeInUnits(); transactions.removeLast(); transactionNames.remove (transactionNames.size() - 1); } while (nextIndex > 0 && totalUnitsStored > maxNumUnitsToKeep && transactions.size() > minimumTransactionsToKeep) { const OwnedArray * const firstSet = transactions.getFirst(); for (int i = firstSet->size(); --i >= 0;) totalUnitsStored -= firstSet->getUnchecked (i)->getSizeInUnits(); jassert (totalUnitsStored >= 0); // something fishy going on if this fails! transactions.remove (0); transactionNames.remove (0); --nextIndex; } sendChangeMessage (this); return success; } } return false; } void UndoManager::beginNewTransaction (const String& actionName) { newTransaction = true; currentTransactionName = actionName; } void UndoManager::setCurrentTransactionName (const String& newName) { currentTransactionName = newName; } bool UndoManager::canUndo() const { return nextIndex > 0; } bool UndoManager::canRedo() const { return nextIndex < transactions.size(); } const String UndoManager::getUndoDescription() const { return transactionNames [nextIndex - 1]; } const String UndoManager::getRedoDescription() const { return transactionNames [nextIndex]; } bool UndoManager::undo() { const OwnedArray* const commandSet = transactions [nextIndex - 1]; if (commandSet == 0) return false; reentrancyCheck = true; bool failed = false; for (int i = commandSet->size(); --i >= 0;) { if (! commandSet->getUnchecked(i)->undo()) { jassertfalse failed = true; break; } } reentrancyCheck = false; if (failed) { clearUndoHistory(); } else { --nextIndex; } beginNewTransaction(); sendChangeMessage (this); return true; } bool UndoManager::redo() { const OwnedArray* const commandSet = transactions [nextIndex]; if (commandSet == 0) return false; reentrancyCheck = true; bool failed = false; for (int i = 0; i < commandSet->size(); ++i) { if (! commandSet->getUnchecked(i)->perform()) { jassertfalse failed = true; break; } } reentrancyCheck = false; if (failed) { clearUndoHistory(); } else { ++nextIndex; } beginNewTransaction(); sendChangeMessage (this); return true; } bool UndoManager::undoCurrentTransactionOnly() { return newTransaction ? false : undo(); } void UndoManager::getActionsInCurrentTransaction (Array & actionsFound) const { const OwnedArray * const commandSet = transactions [nextIndex - 1]; if (commandSet != 0 && ! newTransaction) { for (int i = 0; i < commandSet->size(); ++i) actionsFound.add (commandSet->getUnchecked(i)); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_UndoManager.cpp *********/ /********* Start of inlined file: juce_AiffAudioFormat.cpp *********/ BEGIN_JUCE_NAMESPACE #undef chunkName #define chunkName(a) (int)littleEndianInt(a) #define aiffFormatName TRANS("AIFF file") static const tchar* const aiffExtensions[] = { T(".aiff"), T(".aif"), 0 }; class AiffAudioFormatReader : public AudioFormatReader { public: int bytesPerFrame; int64 dataChunkStart; bool littleEndian; AiffAudioFormatReader (InputStream* in) : AudioFormatReader (in, aiffFormatName) { if (input->readInt() == chunkName ("FORM")) { const int len = input->readIntBigEndian(); const int64 end = input->getPosition() + len; const int nextType = input->readInt(); if (nextType == chunkName ("AIFF") || nextType == chunkName ("AIFC")) { bool hasGotVer = false; bool hasGotData = false; bool hasGotType = false; while (input->getPosition() < end) { const int type = input->readInt(); const uint32 length = (uint32) input->readIntBigEndian(); const int64 chunkEnd = input->getPosition() + length; if (type == chunkName ("FVER")) { hasGotVer = true; const int ver = input->readIntBigEndian(); if (ver != 0 && ver != (int)0xa2805140) break; } else if (type == chunkName ("COMM")) { hasGotType = true; numChannels = (unsigned int)input->readShortBigEndian(); lengthInSamples = input->readIntBigEndian(); bitsPerSample = input->readShortBigEndian(); bytesPerFrame = (numChannels * bitsPerSample) >> 3; unsigned char sampleRateBytes[10]; input->read (sampleRateBytes, 10); const int byte0 = sampleRateBytes[0]; if ((byte0 & 0x80) != 0 || byte0 <= 0x3F || byte0 > 0x40 || (byte0 == 0x40 && sampleRateBytes[1] > 0x1C)) break; unsigned int sampRate = bigEndianInt ((char*) sampleRateBytes + 2); sampRate >>= (16414 - bigEndianShort ((char*) sampleRateBytes)); sampleRate = (int)sampRate; if (length <= 18) { // some types don't have a chunk large enough to include a compression // type, so assume it's just big-endian pcm littleEndian = false; } else { const int compType = input->readInt(); if (compType == chunkName ("NONE") || compType == chunkName ("twos")) { littleEndian = false; } else if (compType == chunkName ("sowt")) { littleEndian = true; } else { sampleRate = 0; break; } } } else if (type == chunkName ("SSND")) { hasGotData = true; const int offset = input->readIntBigEndian(); dataChunkStart = input->getPosition() + 4 + offset; lengthInSamples = (bytesPerFrame > 0) ? jmin (lengthInSamples, (int64) (length / bytesPerFrame)) : 0; } else if ((hasGotVer && hasGotData && hasGotType) || chunkEnd < input->getPosition() || input->isExhausted()) { break; } input->setPosition (chunkEnd); } } } } ~AiffAudioFormatReader() { } bool readSamples (int** destSamples, int numDestChannels, int startOffsetInDestBuffer, int64 startSampleInFile, int numSamples) { const int64 samplesAvailable = lengthInSamples - startSampleInFile; if (samplesAvailable < numSamples) { for (int i = numDestChannels; --i >= 0;) if (destSamples[i] != 0) zeromem (destSamples[i] + startOffsetInDestBuffer, sizeof (int) * numSamples); numSamples = (int) samplesAvailable; } if (numSamples <= 0) return true; input->setPosition (dataChunkStart + startSampleInFile * bytesPerFrame); const int tempBufSize = 480 * 3 * 4; // (keep this a multiple of 3) char tempBuffer [tempBufSize]; while (numSamples > 0) { int* left = destSamples[0]; if (left != 0) left += startOffsetInDestBuffer; int* right = numDestChannels > 1 ? destSamples[1] : 0; if (right != 0) right += startOffsetInDestBuffer; const int numThisTime = jmin (tempBufSize / bytesPerFrame, numSamples); const int bytesRead = input->read (tempBuffer, numThisTime * bytesPerFrame); if (bytesRead < numThisTime * bytesPerFrame) zeromem (tempBuffer + bytesRead, numThisTime * bytesPerFrame - bytesRead); if (bitsPerSample == 16) { if (littleEndian) { const short* src = (const short*) tempBuffer; if (numChannels > 1) { if (left == 0) { for (int i = numThisTime; --i >= 0;) { *right++ = (int) swapIfBigEndian ((unsigned short) *src++) << 16; ++src; } } else if (right == 0) { for (int i = numThisTime; --i >= 0;) { ++src; *left++ = (int) swapIfBigEndian ((unsigned short) *src++) << 16; } } else { for (int i = numThisTime; --i >= 0;) { *left++ = (int) swapIfBigEndian ((unsigned short) *src++) << 16; *right++ = (int) swapIfBigEndian ((unsigned short) *src++) << 16; } } } else { for (int i = numThisTime; --i >= 0;) { *left++ = (int) swapIfBigEndian ((unsigned short) *src++) << 16; } } } else { const char* src = (const char*) tempBuffer; if (numChannels > 1) { if (left == 0) { for (int i = numThisTime; --i >= 0;) { *right++ = bigEndianShort (src) << 16; src += 4; } } else if (right == 0) { for (int i = numThisTime; --i >= 0;) { src += 2; *left++ = bigEndianShort (src) << 16; src += 2; } } else { for (int i = numThisTime; --i >= 0;) { *left++ = bigEndianShort (src) << 16; src += 2; *right++ = bigEndianShort (src) << 16; src += 2; } } } else { for (int i = numThisTime; --i >= 0;) { *left++ = bigEndianShort (src) << 16; src += 2; } } } } else if (bitsPerSample == 24) { const char* src = (const char*)tempBuffer; if (littleEndian) { if (numChannels > 1) { if (left == 0) { for (int i = numThisTime; --i >= 0;) { *right++ = littleEndian24Bit (src) << 8; src += 6; } } else if (right == 0) { for (int i = numThisTime; --i >= 0;) { src += 3; *left++ = littleEndian24Bit (src) << 8; src += 3; } } else { for (int i = numThisTime; --i >= 0;) { *left++ = littleEndian24Bit (src) << 8; src += 3; *right++ = littleEndian24Bit (src) << 8; src += 3; } } } else { for (int i = numThisTime; --i >= 0;) { *left++ = littleEndian24Bit (src) << 8; src += 3; } } } else { if (numChannels > 1) { if (left == 0) { for (int i = numThisTime; --i >= 0;) { *right++ = bigEndian24Bit (src) << 8; src += 6; } } else if (right == 0) { for (int i = numThisTime; --i >= 0;) { src += 3; *left++ = bigEndian24Bit (src) << 8; src += 3; } } else { for (int i = numThisTime; --i >= 0;) { *left++ = bigEndian24Bit (src) << 8; src += 3; *right++ = bigEndian24Bit (src) << 8; src += 3; } } } else { for (int i = numThisTime; --i >= 0;) { *left++ = bigEndian24Bit (src) << 8; src += 3; } } } } else if (bitsPerSample == 32) { const unsigned int* src = (const unsigned int*) tempBuffer; unsigned int* l = (unsigned int*) left; unsigned int* r = (unsigned int*) right; if (littleEndian) { if (numChannels > 1) { if (l == 0) { for (int i = numThisTime; --i >= 0;) { ++src; *r++ = swapIfBigEndian (*src++); } } else if (r == 0) { for (int i = numThisTime; --i >= 0;) { *l++ = swapIfBigEndian (*src++); ++src; } } else { for (int i = numThisTime; --i >= 0;) { *l++ = swapIfBigEndian (*src++); *r++ = swapIfBigEndian (*src++); } } } else { for (int i = numThisTime; --i >= 0;) { *l++ = swapIfBigEndian (*src++); } } } else { if (numChannels > 1) { if (l == 0) { for (int i = numThisTime; --i >= 0;) { ++src; *r++ = swapIfLittleEndian (*src++); } } else if (r == 0) { for (int i = numThisTime; --i >= 0;) { *l++ = swapIfLittleEndian (*src++); ++src; } } else { for (int i = numThisTime; --i >= 0;) { *l++ = swapIfLittleEndian (*src++); *r++ = swapIfLittleEndian (*src++); } } } else { for (int i = numThisTime; --i >= 0;) { *l++ = swapIfLittleEndian (*src++); } } } left = (int*) l; right = (int*) r; } else if (bitsPerSample == 8) { const char* src = (const char*) tempBuffer; if (numChannels > 1) { if (left == 0) { for (int i = numThisTime; --i >= 0;) { *right++ = ((int) *src++) << 24; ++src; } } else if (right == 0) { for (int i = numThisTime; --i >= 0;) { ++src; *left++ = ((int) *src++) << 24; } } else { for (int i = numThisTime; --i >= 0;) { *left++ = ((int) *src++) << 24; *right++ = ((int) *src++) << 24; } } } else { for (int i = numThisTime; --i >= 0;) { *left++ = ((int) *src++) << 24; } } } startOffsetInDestBuffer += numThisTime; numSamples -= numThisTime; } if (numSamples > 0) { for (int i = numDestChannels; --i >= 0;) if (destSamples[i] != 0) zeromem (destSamples[i] + startOffsetInDestBuffer, sizeof (int) * numSamples); } return true; } juce_UseDebuggingNewOperator private: AiffAudioFormatReader (const AiffAudioFormatReader&); const AiffAudioFormatReader& operator= (const AiffAudioFormatReader&); }; class AiffAudioFormatWriter : public AudioFormatWriter { MemoryBlock tempBlock; uint32 lengthInSamples, bytesWritten; int64 headerPosition; bool writeFailed; AiffAudioFormatWriter (const AiffAudioFormatWriter&); const AiffAudioFormatWriter& operator= (const AiffAudioFormatWriter&); void writeHeader() { const bool couldSeekOk = output->setPosition (headerPosition); (void) couldSeekOk; // if this fails, you've given it an output stream that can't seek! It needs // to be able to seek back to write the header jassert (couldSeekOk); const int headerLen = 54; int audioBytes = lengthInSamples * ((bitsPerSample * numChannels) / 8); audioBytes += (audioBytes & 1); output->writeInt (chunkName ("FORM")); output->writeIntBigEndian (headerLen + audioBytes - 8); output->writeInt (chunkName ("AIFF")); output->writeInt (chunkName ("COMM")); output->writeIntBigEndian (18); output->writeShortBigEndian ((short) numChannels); output->writeIntBigEndian (lengthInSamples); output->writeShortBigEndian ((short) bitsPerSample); uint8 sampleRateBytes[10]; zeromem (sampleRateBytes, 10); if (sampleRate <= 1) { sampleRateBytes[0] = 0x3f; sampleRateBytes[1] = 0xff; sampleRateBytes[2] = 0x80; } else { int mask = 0x40000000; sampleRateBytes[0] = 0x40; if (sampleRate >= mask) { jassertfalse sampleRateBytes[1] = 0x1d; } else { int n = (int) sampleRate; int i; for (i = 0; i <= 32 ; ++i) { if ((n & mask) != 0) break; mask >>= 1; } n = n << (i + 1); sampleRateBytes[1] = (uint8) (29 - i); sampleRateBytes[2] = (uint8) ((n >> 24) & 0xff); sampleRateBytes[3] = (uint8) ((n >> 16) & 0xff); sampleRateBytes[4] = (uint8) ((n >> 8) & 0xff); sampleRateBytes[5] = (uint8) (n & 0xff); } } output->write (sampleRateBytes, 10); output->writeInt (chunkName ("SSND")); output->writeIntBigEndian (audioBytes + 8); output->writeInt (0); output->writeInt (0); jassert (output->getPosition() == headerLen); } public: AiffAudioFormatWriter (OutputStream* out, const double sampleRate_, const unsigned int chans, const int bits) : AudioFormatWriter (out, aiffFormatName, sampleRate_, chans, bits), lengthInSamples (0), bytesWritten (0), writeFailed (false) { headerPosition = out->getPosition(); writeHeader(); } ~AiffAudioFormatWriter() { if ((bytesWritten & 1) != 0) output->writeByte (0); writeHeader(); } bool write (const int** data, int numSamples) { if (writeFailed) return false; const int bytes = numChannels * numSamples * bitsPerSample / 8; tempBlock.ensureSize (bytes, false); char* buffer = (char*) tempBlock.getData(); const int* left = data[0]; const int* right = data[1]; if (right == 0) right = left; if (bitsPerSample == 16) { short* b = (short*) buffer; if (numChannels > 1) { for (int i = numSamples; --i >= 0;) { *b++ = (short) swapIfLittleEndian ((unsigned short) (*left++ >> 16)); *b++ = (short) swapIfLittleEndian ((unsigned short) (*right++ >> 16)); } } else { for (int i = numSamples; --i >= 0;) { *b++ = (short) swapIfLittleEndian ((unsigned short) (*left++ >> 16)); } } } else if (bitsPerSample == 24) { char* b = (char*) buffer; if (numChannels > 1) { for (int i = numSamples; --i >= 0;) { bigEndian24BitToChars (*left++ >> 8, b); b += 3; bigEndian24BitToChars (*right++ >> 8, b); b += 3; } } else { for (int i = numSamples; --i >= 0;) { bigEndian24BitToChars (*left++ >> 8, b); b += 3; } } } else if (bitsPerSample == 32) { unsigned int* b = (unsigned int*) buffer; if (numChannels > 1) { for (int i = numSamples; --i >= 0;) { *b++ = swapIfLittleEndian ((unsigned int) *left++); *b++ = swapIfLittleEndian ((unsigned int) *right++); } } else { for (int i = numSamples; --i >= 0;) { *b++ = swapIfLittleEndian ((unsigned int) *left++); } } } else if (bitsPerSample == 8) { char* b = (char*)buffer; if (numChannels > 1) { for (int i = numSamples; --i >= 0;) { *b++ = (char) (*left++ >> 24); *b++ = (char) (*right++ >> 24); } } else { for (int i = numSamples; --i >= 0;) { *b++ = (char) (*left++ >> 24); } } } if (bytesWritten + bytes >= (uint32) 0xfff00000 || ! output->write (buffer, bytes)) { // failed to write to disk, so let's try writing the header. // If it's just run out of disk space, then if it does manage // to write the header, we'll still have a useable file.. writeHeader(); writeFailed = true; return false; } else { bytesWritten += bytes; lengthInSamples += numSamples; return true; } } juce_UseDebuggingNewOperator }; AiffAudioFormat::AiffAudioFormat() : AudioFormat (aiffFormatName, (const tchar**) aiffExtensions) { } AiffAudioFormat::~AiffAudioFormat() { } const Array AiffAudioFormat::getPossibleSampleRates() { const int rates[] = { 22050, 32000, 44100, 48000, 88200, 96000, 176400, 192000, 0 }; return Array (rates); } const Array AiffAudioFormat::getPossibleBitDepths() { const int depths[] = { 8, 16, 24, 0 }; return Array (depths); } bool AiffAudioFormat::canDoStereo() { return true; } bool AiffAudioFormat::canDoMono() { return true; } #if JUCE_MAC bool AiffAudioFormat::canHandleFile (const File& f) { if (AudioFormat::canHandleFile (f)) return true; const OSType type = PlatformUtilities::getTypeOfFile (f.getFullPathName()); return type == 'AIFF' || type == 'AIFC' || type == 'aiff' || type == 'aifc'; } #endif AudioFormatReader* AiffAudioFormat::createReaderFor (InputStream* sourceStream, const bool deleteStreamIfOpeningFails) { AiffAudioFormatReader* w = new AiffAudioFormatReader (sourceStream); if (w->sampleRate == 0) { if (! deleteStreamIfOpeningFails) w->input = 0; deleteAndZero (w); } return w; } AudioFormatWriter* AiffAudioFormat::createWriterFor (OutputStream* out, double sampleRate, unsigned int chans, int bitsPerSample, const StringPairArray& /*metadataValues*/, int /*qualityOptionIndex*/) { if (getPossibleBitDepths().contains (bitsPerSample)) { return new AiffAudioFormatWriter (out, sampleRate, chans, bitsPerSample); } return 0; } END_JUCE_NAMESPACE /********* End of inlined file: juce_AiffAudioFormat.cpp *********/ /********* Start of inlined file: juce_AudioCDReader.cpp *********/ BEGIN_JUCE_NAMESPACE #if JUCE_MAC // Mac version doesn't need any native code because it's all done with files.. // Windows + Linux versions are in the platform-dependent code sections. static void findCDs (OwnedArray& cds) { File volumes ("/Volumes"); volumes.findChildFiles (cds, File::findDirectories, false); for (int i = cds.size(); --i >= 0;) if (! cds[i]->getChildFile (".TOC.plist").exists()) cds.remove (i); } const StringArray AudioCDReader::getAvailableCDNames() { OwnedArray cds; findCDs (cds); StringArray names; for (int i = 0; i < cds.size(); ++i) names.add (cds[i]->getFileName()); return names; } AudioCDReader* AudioCDReader::createReaderForCD (const int index) { OwnedArray cds; findCDs (cds); if (cds[index] != 0) return new AudioCDReader (*cds[index]); else return 0; } AudioCDReader::AudioCDReader (const File& volume) : AudioFormatReader (0, "CD Audio"), volumeDir (volume), currentReaderTrack (-1), reader (0) { sampleRate = 44100.0; bitsPerSample = 16; numChannels = 2; usesFloatingPointData = false; refreshTrackLengths(); } AudioCDReader::~AudioCDReader() { if (reader != 0) delete reader; } static int getTrackNumber (const File& file) { return file.getFileName() .initialSectionContainingOnly (T("0123456789")) .getIntValue(); } int AudioCDReader::compareElements (const File* const first, const File* const second) throw() { const int firstTrack = getTrackNumber (*first); const int secondTrack = getTrackNumber (*second); jassert (firstTrack > 0 && secondTrack > 0); return firstTrack - secondTrack; } void AudioCDReader::refreshTrackLengths() { tracks.clear(); trackStartSamples.clear(); volumeDir.findChildFiles (tracks, File::findFiles | File::ignoreHiddenFiles, false, T("*.aiff")); tracks.sort (*this); AiffAudioFormat format; int sample = 0; for (int i = 0; i < tracks.size(); ++i) { trackStartSamples.add (sample); FileInputStream* const in = tracks[i]->createInputStream(); if (in != 0) { AudioFormatReader* const r = format.createReaderFor (in, true); if (r != 0) { sample += r->lengthInSamples; delete r; } } } trackStartSamples.add (sample); lengthInSamples = sample; } bool AudioCDReader::readSamples (int** destSamples, int numDestChannels, int startOffsetInDestBuffer, int64 startSampleInFile, int numSamples) { while (numSamples > 0) { int track = -1; for (int i = 0; i < trackStartSamples.size() - 1; ++i) { if (startSampleInFile < trackStartSamples.getUnchecked (i + 1)) { track = i; break; } } if (track < 0) return false; if (track != currentReaderTrack) { deleteAndZero (reader); if (tracks [track] != 0) { FileInputStream* const in = tracks [track]->createInputStream(); if (in != 0) { BufferedInputStream* const bin = new BufferedInputStream (in, 65536, true); AiffAudioFormat format; reader = format.createReaderFor (bin, true); if (reader == 0) currentReaderTrack = -1; else currentReaderTrack = track; } } } if (reader == 0) return false; const int startPos = (int) (startSampleInFile - trackStartSamples.getUnchecked (track)); const int numAvailable = (int) jmin ((int64) numSamples, reader->lengthInSamples - startPos); reader->readSamples (destSamples, numDestChannels, startOffsetInDestBuffer, startPos, numAvailable); numSamples -= numAvailable; startSampleInFile += numAvailable; } return true; } bool AudioCDReader::isCDStillPresent() const { return volumeDir.exists(); } int AudioCDReader::getNumTracks() const { return tracks.size(); } int AudioCDReader::getPositionOfTrackStart (int trackNum) const { return trackStartSamples [trackNum]; } bool AudioCDReader::isTrackAudio (int trackNum) const { return tracks [trackNum] != 0; } void AudioCDReader::enableIndexScanning (bool b) { // any way to do this on a Mac?? } int AudioCDReader::getLastIndex() const { return 0; } const Array AudioCDReader::findIndexesInTrack (const int trackNumber) { return Array (); } int AudioCDReader::getCDDBId() { return 0; //xxx } #endif END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioCDReader.cpp *********/ /********* Start of inlined file: juce_AudioFormat.cpp *********/ BEGIN_JUCE_NAMESPACE AudioFormatReader::AudioFormatReader (InputStream* const in, const String& formatName_) : sampleRate (0), bitsPerSample (0), lengthInSamples (0), numChannels (0), usesFloatingPointData (false), input (in), formatName (formatName_) { } AudioFormatReader::~AudioFormatReader() { delete input; } bool AudioFormatReader::read (int** destSamples, int numDestChannels, int64 startSampleInSource, int numSamplesToRead, const bool fillLeftoverChannelsWithCopies) { jassert (numDestChannels > 0); // you have to actually give this some channels to work with! int startOffsetInDestBuffer = 0; if (startSampleInSource < 0) { const int silence = (int) jmin (-startSampleInSource, (int64) numSamplesToRead); for (int i = numDestChannels; --i >= 0;) if (destSamples[i] != 0) zeromem (destSamples[i], sizeof (int) * silence); startOffsetInDestBuffer += silence; numSamplesToRead -= silence; startSampleInSource = 0; } if (numSamplesToRead <= 0) return true; if (! readSamples (destSamples, jmin (numChannels, numDestChannels), startOffsetInDestBuffer, startSampleInSource, numSamplesToRead)) return false; if (numDestChannels > (int) numChannels) { if (fillLeftoverChannelsWithCopies) { int* lastFullChannel = destSamples[0]; for (int i = numDestChannels; --i > 0;) { if (destSamples[i] != 0) { lastFullChannel = destSamples[i]; break; } } if (lastFullChannel != 0) for (int i = numChannels; i < numDestChannels; ++i) if (destSamples[i] != 0) memcpy (destSamples[i], lastFullChannel, sizeof (int) * numSamplesToRead); } else { for (int i = numChannels; i < numDestChannels; ++i) if (destSamples[i] != 0) zeromem (destSamples[i], sizeof (int) * numSamplesToRead); } } return true; } static void findMaxMin (const float* src, const int num, float& maxVal, float& minVal) { float mn = src[0]; float mx = mn; for (int i = 1; i < num; ++i) { const float s = src[i]; if (s > mx) mx = s; if (s < mn) mn = s; } maxVal = mx; minVal = mn; } void AudioFormatReader::readMaxLevels (int64 startSampleInFile, int64 numSamples, float& lowestLeft, float& highestLeft, float& lowestRight, float& highestRight) { if (numSamples <= 0) { lowestLeft = 0; lowestRight = 0; highestLeft = 0; highestRight = 0; return; } const int bufferSize = (int) jmin (numSamples, (int64) 4096); MemoryBlock tempSpace (bufferSize * sizeof (int) * 2 + 64); int* tempBuffer[3]; tempBuffer[0] = (int*) tempSpace.getData(); tempBuffer[1] = ((int*) tempSpace.getData()) + bufferSize; tempBuffer[2] = 0; if (usesFloatingPointData) { float lmin = 1.0e6; float lmax = -lmin; float rmin = lmin; float rmax = lmax; while (numSamples > 0) { const int numToDo = (int) jmin (numSamples, (int64) bufferSize); read ((int**) tempBuffer, 2, startSampleInFile, numToDo, false); numSamples -= numToDo; startSampleInFile += numToDo; float bufmin, bufmax; findMaxMin ((float*) tempBuffer[0], numToDo, bufmax, bufmin); lmin = jmin (lmin, bufmin); lmax = jmax (lmax, bufmax); if (numChannels > 1) { findMaxMin ((float*) tempBuffer[1], numToDo, bufmax, bufmin); rmin = jmin (rmin, bufmin); rmax = jmax (rmax, bufmax); } } if (numChannels <= 1) { rmax = lmax; rmin = lmin; } lowestLeft = lmin; highestLeft = lmax; lowestRight = rmin; highestRight = rmax; } else { int lmax = INT_MIN; int lmin = INT_MAX; int rmax = INT_MIN; int rmin = INT_MAX; while (numSamples > 0) { const int numToDo = (int) jmin (numSamples, (int64) bufferSize); read ((int**) tempBuffer, 2, startSampleInFile, numToDo, false); numSamples -= numToDo; startSampleInFile += numToDo; for (int j = numChannels; --j >= 0;) { int bufMax = INT_MIN; int bufMin = INT_MAX; const int* const b = tempBuffer[j]; for (int i = 0; i < numToDo; ++i) { const int samp = b[i]; if (samp < bufMin) bufMin = samp; if (samp > bufMax) bufMax = samp; } if (j == 0) { lmax = jmax (lmax, bufMax); lmin = jmin (lmin, bufMin); } else { rmax = jmax (rmax, bufMax); rmin = jmin (rmin, bufMin); } } } if (numChannels <= 1) { rmax = lmax; rmin = lmin; } lowestLeft = lmin / (float)INT_MAX; highestLeft = lmax / (float)INT_MAX; lowestRight = rmin / (float)INT_MAX; highestRight = rmax / (float)INT_MAX; } } int64 AudioFormatReader::searchForLevel (int64 startSample, int64 numSamplesToSearch, const double magnitudeRangeMinimum, const double magnitudeRangeMaximum, const int minimumConsecutiveSamples) { if (numSamplesToSearch == 0) return -1; const int bufferSize = 4096; MemoryBlock tempSpace (bufferSize * sizeof (int) * 2 + 64); int* tempBuffer[3]; tempBuffer[0] = (int*) tempSpace.getData(); tempBuffer[1] = ((int*) tempSpace.getData()) + bufferSize; tempBuffer[2] = 0; int consecutive = 0; int64 firstMatchPos = -1; jassert (magnitudeRangeMaximum > magnitudeRangeMinimum); const double doubleMin = jlimit (0.0, (double) INT_MAX, magnitudeRangeMinimum * INT_MAX); const double doubleMax = jlimit (doubleMin, (double) INT_MAX, magnitudeRangeMaximum * INT_MAX); const int intMagnitudeRangeMinimum = roundDoubleToInt (doubleMin); const int intMagnitudeRangeMaximum = roundDoubleToInt (doubleMax); while (numSamplesToSearch != 0) { const int numThisTime = (int) jmin (abs64 (numSamplesToSearch), (int64) bufferSize); int64 bufferStart = startSample; if (numSamplesToSearch < 0) bufferStart -= numThisTime; if (bufferStart >= (int) lengthInSamples) break; read ((int**) tempBuffer, 2, bufferStart, numThisTime, false); int num = numThisTime; while (--num >= 0) { if (numSamplesToSearch < 0) --startSample; bool matches = false; const int index = (int) (startSample - bufferStart); if (usesFloatingPointData) { const float sample1 = fabsf (((float*) tempBuffer[0]) [index]); if (sample1 >= magnitudeRangeMinimum && sample1 <= magnitudeRangeMaximum) { matches = true; } else if (numChannels > 1) { const float sample2 = fabsf (((float*) tempBuffer[1]) [index]); matches = (sample2 >= magnitudeRangeMinimum && sample2 <= magnitudeRangeMaximum); } } else { const int sample1 = abs (tempBuffer[0] [index]); if (sample1 >= intMagnitudeRangeMinimum && sample1 <= intMagnitudeRangeMaximum) { matches = true; } else if (numChannels > 1) { const int sample2 = abs (tempBuffer[1][index]); matches = (sample2 >= intMagnitudeRangeMinimum && sample2 <= intMagnitudeRangeMaximum); } } if (matches) { if (firstMatchPos < 0) firstMatchPos = startSample; if (++consecutive >= minimumConsecutiveSamples) { if (firstMatchPos < 0 || firstMatchPos >= lengthInSamples) return -1; return firstMatchPos; } } else { consecutive = 0; firstMatchPos = -1; } if (numSamplesToSearch > 0) ++startSample; } if (numSamplesToSearch > 0) numSamplesToSearch -= numThisTime; else numSamplesToSearch += numThisTime; } return -1; } AudioFormatWriter::AudioFormatWriter (OutputStream* const out, const String& formatName_, const double rate, const unsigned int numChannels_, const unsigned int bitsPerSample_) : sampleRate (rate), numChannels (numChannels_), bitsPerSample (bitsPerSample_), usesFloatingPointData (false), output (out), formatName (formatName_) { } AudioFormatWriter::~AudioFormatWriter() { delete output; } bool AudioFormatWriter::writeFromAudioReader (AudioFormatReader& reader, int64 startSample, int64 numSamplesToRead) { const int bufferSize = 16384; const int maxChans = 128; AudioSampleBuffer tempBuffer (reader.numChannels, bufferSize); int* buffers [maxChans]; for (int i = maxChans; --i >= 0;) buffers[i] = 0; if (numSamplesToRead < 0) numSamplesToRead = reader.lengthInSamples; while (numSamplesToRead > 0) { const int numToDo = (int) jmin (numSamplesToRead, (int64) bufferSize); for (int i = tempBuffer.getNumChannels(); --i >= 0;) buffers[i] = (int*) tempBuffer.getSampleData (i, 0); if (! reader.read (buffers, maxChans, startSample, numToDo, false)) return false; if (reader.usesFloatingPointData != isFloatingPoint()) { int** bufferChan = buffers; while (*bufferChan != 0) { int* b = *bufferChan++; if (isFloatingPoint()) { // int -> float const double factor = 1.0 / INT_MAX; for (int i = 0; i < numToDo; ++i) ((float*)b)[i] = (float) (factor * b[i]); } else { // float -> int for (int i = 0; i < numToDo; ++i) { const double samp = *(const float*) b; if (samp <= -1.0) *b++ = INT_MIN; else if (samp >= 1.0) *b++ = INT_MAX; else *b++ = roundDoubleToInt (INT_MAX * samp); } } } } if (! write ((const int**) buffers, numToDo)) return false; numSamplesToRead -= numToDo; startSample += numToDo; } return true; } bool AudioFormatWriter::writeFromAudioSource (AudioSource& source, int numSamplesToRead, const int samplesPerBlock) { const int maxChans = 128; AudioSampleBuffer tempBuffer (getNumChannels(), samplesPerBlock); int* buffers [maxChans]; while (numSamplesToRead > 0) { const int numToDo = jmin (numSamplesToRead, samplesPerBlock); AudioSourceChannelInfo info; info.buffer = &tempBuffer; info.startSample = 0; info.numSamples = numToDo; info.clearActiveBufferRegion(); source.getNextAudioBlock (info); int i; for (i = maxChans; --i >= 0;) buffers[i] = 0; for (i = tempBuffer.getNumChannels(); --i >= 0;) buffers[i] = (int*) tempBuffer.getSampleData (i, 0); if (! isFloatingPoint()) { int** bufferChan = buffers; while (*bufferChan != 0) { int* b = *bufferChan++; // float -> int for (int j = numToDo; --j >= 0;) { const double samp = *(const float*) b; if (samp <= -1.0) *b++ = INT_MIN; else if (samp >= 1.0) *b++ = INT_MAX; else *b++ = roundDoubleToInt (INT_MAX * samp); } } } if (! write ((const int**) buffers, numToDo)) return false; numSamplesToRead -= numToDo; } return true; } AudioFormat::AudioFormat (const String& name, const tchar** const extensions) : formatName (name), fileExtensions (extensions) { } AudioFormat::~AudioFormat() { } const String& AudioFormat::getFormatName() const { return formatName; } const StringArray& AudioFormat::getFileExtensions() const { return fileExtensions; } bool AudioFormat::canHandleFile (const File& f) { for (int i = 0; i < fileExtensions.size(); ++i) if (f.hasFileExtension (fileExtensions[i])) return true; return false; } bool AudioFormat::isCompressed() { return false; } const StringArray AudioFormat::getQualityOptions() { return StringArray(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioFormat.cpp *********/ /********* Start of inlined file: juce_AudioFormatManager.cpp *********/ BEGIN_JUCE_NAMESPACE AudioFormatManager::AudioFormatManager() : knownFormats (4), defaultFormatIndex (0) { } AudioFormatManager::~AudioFormatManager() { clearFormats(); clearSingletonInstance(); } juce_ImplementSingleton (AudioFormatManager); void AudioFormatManager::registerFormat (AudioFormat* newFormat, const bool makeThisTheDefaultFormat) { jassert (newFormat != 0); if (newFormat != 0) { #ifdef JUCE_DEBUG for (int i = getNumKnownFormats(); --i >= 0;) { if (getKnownFormat (i)->getFormatName() == newFormat->getFormatName()) { jassertfalse // trying to add the same format twice! } } #endif if (makeThisTheDefaultFormat) defaultFormatIndex = knownFormats.size(); knownFormats.add (newFormat); } } void AudioFormatManager::registerBasicFormats() { #if JUCE_MAC registerFormat (new AiffAudioFormat(), true); registerFormat (new WavAudioFormat(), false); #else registerFormat (new WavAudioFormat(), true); registerFormat (new AiffAudioFormat(), false); #endif #if JUCE_USE_FLAC registerFormat (new FlacAudioFormat(), false); #endif #if JUCE_USE_OGGVORBIS registerFormat (new OggVorbisAudioFormat(), false); #endif } void AudioFormatManager::clearFormats() { for (int i = getNumKnownFormats(); --i >= 0;) { AudioFormat* const af = getKnownFormat(i); delete af; } knownFormats.clear(); defaultFormatIndex = 0; } int AudioFormatManager::getNumKnownFormats() const { return knownFormats.size(); } AudioFormat* AudioFormatManager::getKnownFormat (const int index) const { return (AudioFormat*) knownFormats [index]; } AudioFormat* AudioFormatManager::getDefaultFormat() const { return getKnownFormat (defaultFormatIndex); } AudioFormat* AudioFormatManager::findFormatForFileExtension (const String& fileExtension) const { String e (fileExtension); if (! e.startsWithChar (T('.'))) e = T(".") + e; for (int i = 0; i < getNumKnownFormats(); ++i) if (getKnownFormat(i)->getFileExtensions().contains (e, true)) return getKnownFormat(i); return 0; } const String AudioFormatManager::getWildcardForAllFormats() const { StringArray allExtensions; int i; for (i = 0; i < getNumKnownFormats(); ++i) allExtensions.addArray (getKnownFormat (i)->getFileExtensions()); allExtensions.trim(); allExtensions.removeEmptyStrings(); String s; for (i = 0; i < allExtensions.size(); ++i) { s << T('*'); if (! allExtensions[i].startsWithChar (T('.'))) s << T('.'); s << allExtensions[i]; if (i < allExtensions.size() - 1) s << T(';'); } return s; } AudioFormatReader* AudioFormatManager::createReaderFor (const File& file) { // you need to actually register some formats before the manager can // use them to open a file! jassert (knownFormats.size() > 0); for (int i = 0; i < getNumKnownFormats(); ++i) { AudioFormat* const af = getKnownFormat(i); if (af->canHandleFile (file)) { InputStream* const in = file.createInputStream(); if (in != 0) { AudioFormatReader* const r = af->createReaderFor (in, true); if (r != 0) return r; } } } return 0; } AudioFormatReader* AudioFormatManager::createReaderFor (InputStream* in) { // you need to actually register some formats before the manager can // use them to open a file! jassert (knownFormats.size() > 0); if (in != 0) { const int64 originalStreamPos = in->getPosition(); for (int i = 0; i < getNumKnownFormats(); ++i) { AudioFormatReader* const r = getKnownFormat(i)->createReaderFor (in, false); if (r != 0) return r; in->setPosition (originalStreamPos); // the stream that is passed-in must be capable of being repositioned so // that all the formats can have a go at opening it. jassert (in->getPosition() == originalStreamPos); } delete in; } return 0; } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioFormatManager.cpp *********/ /********* Start of inlined file: juce_AudioSubsectionReader.cpp *********/ BEGIN_JUCE_NAMESPACE AudioSubsectionReader::AudioSubsectionReader (AudioFormatReader* const source_, const int64 startSample_, const int64 length_, const bool deleteSourceWhenDeleted_) : AudioFormatReader (0, source_->getFormatName()), source (source_), startSample (startSample_), deleteSourceWhenDeleted (deleteSourceWhenDeleted_) { length = jmin (jmax ((int64) 0, source->lengthInSamples - startSample), length_); sampleRate = source->sampleRate; bitsPerSample = source->bitsPerSample; lengthInSamples = length; numChannels = source->numChannels; usesFloatingPointData = source->usesFloatingPointData; } AudioSubsectionReader::~AudioSubsectionReader() { if (deleteSourceWhenDeleted) delete source; } bool AudioSubsectionReader::readSamples (int** destSamples, int numDestChannels, int startOffsetInDestBuffer, int64 startSampleInFile, int numSamples) { if (startSampleInFile + numSamples > length) { for (int i = numDestChannels; --i >= 0;) if (destSamples[i] != 0) zeromem (destSamples[i], sizeof (int) * numSamples); numSamples = jmin (numSamples, (int) (length - startSampleInFile)); if (numSamples <= 0) return true; } return source->readSamples (destSamples, numDestChannels, startOffsetInDestBuffer, startSampleInFile + startSample, numSamples); } void AudioSubsectionReader::readMaxLevels (int64 startSampleInFile, int64 numSamples, float& lowestLeft, float& highestLeft, float& lowestRight, float& highestRight) { startSampleInFile = jmax ((int64) 0, startSampleInFile); numSamples = jmax ((int64) 0, jmin (numSamples, length - startSampleInFile)); source->readMaxLevels (startSampleInFile + startSample, numSamples, lowestLeft, highestLeft, lowestRight, highestRight); } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioSubsectionReader.cpp *********/ /********* Start of inlined file: juce_AudioThumbnail.cpp *********/ BEGIN_JUCE_NAMESPACE const int timeBeforeDeletingReader = 2000; struct AudioThumbnailDataFormat { char thumbnailMagic[4]; int samplesPerThumbSample; int64 totalSamples; // source samples int64 numFinishedSamples; // source samples int numThumbnailSamples; int numChannels; int sampleRate; char future[16]; char data[1]; }; #if JUCE_BIG_ENDIAN static void swap (int& n) { n = (int) swapByteOrder ((uint32) n); } static void swap (int64& n) { n = (int64) swapByteOrder ((uint64) n); } #endif static void swapEndiannessIfNeeded (AudioThumbnailDataFormat* const d) { (void) d; #if JUCE_BIG_ENDIAN swap (d->samplesPerThumbSample); swap (d->totalSamples); swap (d->numFinishedSamples); swap (d->numThumbnailSamples); swap (d->numChannels); swap (d->sampleRate); #endif } AudioThumbnail::AudioThumbnail (const int orginalSamplesPerThumbnailSample_, AudioFormatManager& formatManagerToUse_, AudioThumbnailCache& cacheToUse) : formatManagerToUse (formatManagerToUse_), cache (cacheToUse), source (0), reader (0), orginalSamplesPerThumbnailSample (orginalSamplesPerThumbnailSample_) { clear(); } AudioThumbnail::~AudioThumbnail() { cache.removeThumbnail (this); const ScopedLock sl (readerLock); deleteAndZero (reader); delete source; } void AudioThumbnail::setSource (InputSource* const newSource) { cache.removeThumbnail (this); timerCallback(); // stops the timer and deletes the reader delete source; source = newSource; clear(); if (newSource != 0 && ! (cache.loadThumb (*this, newSource->hashCode()) && isFullyLoaded())) { { const ScopedLock sl (readerLock); reader = createReader(); } if (reader != 0) { initialiseFromAudioFile (*reader); cache.addThumbnail (this); } } sendChangeMessage (this); } bool AudioThumbnail::useTimeSlice() { const ScopedLock sl (readerLock); if (isFullyLoaded()) { if (reader != 0) startTimer (timeBeforeDeletingReader); cache.removeThumbnail (this); return false; } if (reader == 0) reader = createReader(); if (reader != 0) { readNextBlockFromAudioFile (*reader); stopTimer(); sendChangeMessage (this); const bool justFinished = isFullyLoaded(); if (justFinished) cache.storeThumb (*this, source->hashCode()); return ! justFinished; } return false; } AudioFormatReader* AudioThumbnail::createReader() const { if (source != 0) { InputStream* const audioFileStream = source->createInputStream(); if (audioFileStream != 0) return formatManagerToUse.createReaderFor (audioFileStream); } return 0; } void AudioThumbnail::timerCallback() { stopTimer(); const ScopedLock sl (readerLock); deleteAndZero (reader); } void AudioThumbnail::clear() { data.setSize (sizeof (AudioThumbnailDataFormat) + 3); AudioThumbnailDataFormat* const d = (AudioThumbnailDataFormat*) data.getData(); d->thumbnailMagic[0] = 'j'; d->thumbnailMagic[1] = 'a'; d->thumbnailMagic[2] = 't'; d->thumbnailMagic[3] = 'm'; d->samplesPerThumbSample = orginalSamplesPerThumbnailSample; d->totalSamples = 0; d->numFinishedSamples = 0; d->numThumbnailSamples = 0; d->numChannels = 0; d->sampleRate = 0; numSamplesCached = 0; cacheNeedsRefilling = true; } void AudioThumbnail::loadFrom (InputStream& input) { data.setSize (0); input.readIntoMemoryBlock (data); AudioThumbnailDataFormat* const d = (AudioThumbnailDataFormat*) data.getData(); swapEndiannessIfNeeded (d); if (! (d->thumbnailMagic[0] == 'j' && d->thumbnailMagic[1] == 'a' && d->thumbnailMagic[2] == 't' && d->thumbnailMagic[3] == 'm')) { clear(); } numSamplesCached = 0; cacheNeedsRefilling = true; } void AudioThumbnail::saveTo (OutputStream& output) const { AudioThumbnailDataFormat* const d = (AudioThumbnailDataFormat*) data.getData(); swapEndiannessIfNeeded (d); output.write (data.getData(), data.getSize()); swapEndiannessIfNeeded (d); } bool AudioThumbnail::initialiseFromAudioFile (AudioFormatReader& reader) { AudioThumbnailDataFormat* d = (AudioThumbnailDataFormat*) data.getData(); d->totalSamples = reader.lengthInSamples; d->numChannels = jmin (2, reader.numChannels); d->numFinishedSamples = 0; d->sampleRate = roundDoubleToInt (reader.sampleRate); d->numThumbnailSamples = (int) (d->totalSamples / d->samplesPerThumbSample) + 1; data.setSize (sizeof (AudioThumbnailDataFormat) + 3 + d->numThumbnailSamples * d->numChannels * 2); d = (AudioThumbnailDataFormat*) data.getData(); zeromem (&(d->data[0]), d->numThumbnailSamples * d->numChannels * 2); return d->totalSamples > 0; } bool AudioThumbnail::readNextBlockFromAudioFile (AudioFormatReader& reader) { AudioThumbnailDataFormat* const d = (AudioThumbnailDataFormat*) data.getData(); if (d->numFinishedSamples < d->totalSamples) { const int numToDo = (int) jmin ((int64) 65536, d->totalSamples - d->numFinishedSamples); generateSection (reader, d->numFinishedSamples, numToDo); d->numFinishedSamples += numToDo; } cacheNeedsRefilling = true; return (d->numFinishedSamples < d->totalSamples); } int AudioThumbnail::getNumChannels() const throw() { const AudioThumbnailDataFormat* const d = (const AudioThumbnailDataFormat*) data.getData(); jassert (d != 0); return d->numChannels; } double AudioThumbnail::getTotalLength() const throw() { const AudioThumbnailDataFormat* const d = (const AudioThumbnailDataFormat*) data.getData(); jassert (d != 0); if (d->sampleRate > 0) return d->totalSamples / (double)d->sampleRate; else return 0.0; } void AudioThumbnail::generateSection (AudioFormatReader& reader, int64 startSample, int numSamples) { AudioThumbnailDataFormat* const d = (AudioThumbnailDataFormat*) data.getData(); jassert (d != 0); int firstDataPos = (int) (startSample / d->samplesPerThumbSample); int lastDataPos = (int) ((startSample + numSamples) / d->samplesPerThumbSample); char* l = getChannelData (0); char* r = getChannelData (1); for (int i = firstDataPos; i < lastDataPos; ++i) { const int sourceStart = i * d->samplesPerThumbSample; const int sourceEnd = sourceStart + d->samplesPerThumbSample; float lowestLeft, highestLeft, lowestRight, highestRight; reader.readMaxLevels (sourceStart, sourceEnd - sourceStart, lowestLeft, highestLeft, lowestRight, highestRight); int n = i * 2; if (r != 0) { l [n] = (char) jlimit (-128.0f, 127.0f, lowestLeft * 127.0f); r [n++] = (char) jlimit (-128.0f, 127.0f, lowestRight * 127.0f); l [n] = (char) jlimit (-128.0f, 127.0f, highestLeft * 127.0f); r [n++] = (char) jlimit (-128.0f, 127.0f, highestRight * 127.0f); } else { l [n++] = (char) jlimit (-128.0f, 127.0f, lowestLeft * 127.0f); l [n++] = (char) jlimit (-128.0f, 127.0f, highestLeft * 127.0f); } } } char* AudioThumbnail::getChannelData (int channel) const { AudioThumbnailDataFormat* const d = (AudioThumbnailDataFormat*) data.getData(); jassert (d != 0); if (channel >= 0 && channel < d->numChannels) return d->data + (channel * 2 * d->numThumbnailSamples); return 0; } bool AudioThumbnail::isFullyLoaded() const throw() { const AudioThumbnailDataFormat* const d = (const AudioThumbnailDataFormat*) data.getData(); jassert (d != 0); return d->numFinishedSamples >= d->totalSamples; } void AudioThumbnail::refillCache (const int numSamples, double startTime, const double timePerPixel) { const AudioThumbnailDataFormat* const d = (const AudioThumbnailDataFormat*) data.getData(); jassert (d != 0); if (numSamples <= 0 || timePerPixel <= 0.0 || d->sampleRate <= 0) { numSamplesCached = 0; cacheNeedsRefilling = true; return; } if (numSamples == numSamplesCached && numChannelsCached == d->numChannels && startTime == cachedStart && timePerPixel == cachedTimePerPixel && ! cacheNeedsRefilling) { return; } numSamplesCached = numSamples; numChannelsCached = d->numChannels; cachedStart = startTime; cachedTimePerPixel = timePerPixel; cachedLevels.ensureSize (2 * numChannelsCached * numSamples); const bool needExtraDetail = (timePerPixel * d->sampleRate <= d->samplesPerThumbSample); const ScopedLock sl (readerLock); cacheNeedsRefilling = false; if (needExtraDetail && reader == 0) reader = createReader(); if (reader != 0 && timePerPixel * d->sampleRate <= d->samplesPerThumbSample) { startTimer (timeBeforeDeletingReader); char* cacheData = (char*) cachedLevels.getData(); int sample = roundDoubleToInt (startTime * d->sampleRate); for (int i = numSamples; --i >= 0;) { const int nextSample = roundDoubleToInt ((startTime + timePerPixel) * d->sampleRate); if (sample >= 0) { if (sample >= reader->lengthInSamples) break; float lmin, lmax, rmin, rmax; reader->readMaxLevels (sample, jmax (1, nextSample - sample), lmin, lmax, rmin, rmax); cacheData[0] = (char) jlimit (-128, 127, roundFloatToInt (lmin * 127.0f)); cacheData[1] = (char) jlimit (-128, 127, roundFloatToInt (lmax * 127.0f)); if (numChannelsCached > 1) { cacheData[2] = (char) jlimit (-128, 127, roundFloatToInt (rmin * 127.0f)); cacheData[3] = (char) jlimit (-128, 127, roundFloatToInt (rmax * 127.0f)); } cacheData += 2 * numChannelsCached; } startTime += timePerPixel; sample = nextSample; } } else { for (int channelNum = 0; channelNum < numChannelsCached; ++channelNum) { char* const data = getChannelData (channelNum); char* cacheData = ((char*) cachedLevels.getData()) + channelNum * 2; const double timeToThumbSampleFactor = d->sampleRate / (double) d->samplesPerThumbSample; startTime = cachedStart; int sample = roundDoubleToInt (startTime * timeToThumbSampleFactor); const int numFinished = (int) (d->numFinishedSamples / d->samplesPerThumbSample); for (int i = numSamples; --i >= 0;) { const int nextSample = roundDoubleToInt ((startTime + timePerPixel) * timeToThumbSampleFactor); if (sample >= 0 && data != 0) { char mx = -128; char mn = 127; while (sample <= nextSample) { if (sample >= numFinished) break; const int n = sample << 1; const char sampMin = data [n]; const char sampMax = data [n + 1]; if (sampMin < mn) mn = sampMin; if (sampMax > mx) mx = sampMax; ++sample; } if (mn <= mx) { cacheData[0] = mn; cacheData[1] = mx; } else { cacheData[0] = 1; cacheData[1] = 0; } } else { cacheData[0] = 1; cacheData[1] = 0; } cacheData += numChannelsCached * 2; startTime += timePerPixel; sample = nextSample; } } } } void AudioThumbnail::drawChannel (Graphics& g, int x, int y, int w, int h, double startTime, double endTime, int channelNum, const float verticalZoomFactor) { refillCache (w, startTime, (endTime - startTime) / w); if (numSamplesCached >= w && channelNum >= 0 && channelNum < numChannelsCached) { const float topY = (float) y; const float bottomY = topY + h; const float midY = topY + h * 0.5f; const float vscale = verticalZoomFactor * h / 256.0f; const Rectangle clip (g.getClipBounds()); const int skipLeft = jlimit (0, w, clip.getX() - x); w -= skipLeft; x += skipLeft; const char* cacheData = ((const char*) cachedLevels.getData()) + (channelNum << 1) + skipLeft * (numChannelsCached << 1); while (--w >= 0) { const char mn = cacheData[0]; const char mx = cacheData[1]; cacheData += numChannelsCached << 1; if (mn <= mx) // if the wrong way round, signifies that the sample's not yet known g.drawLine ((float) x, jmax (midY - mx * vscale - 0.3f, topY), (float) x, jmin (midY - mn * vscale + 0.3f, bottomY)); ++x; if (x >= clip.getRight()) break; } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioThumbnail.cpp *********/ /********* Start of inlined file: juce_AudioThumbnailCache.cpp *********/ BEGIN_JUCE_NAMESPACE struct ThumbnailCacheEntry { int64 hash; uint32 lastUsed; MemoryBlock data; juce_UseDebuggingNewOperator }; AudioThumbnailCache::AudioThumbnailCache (const int maxNumThumbsToStore_) : TimeSliceThread (T("thumb cache")), maxNumThumbsToStore (maxNumThumbsToStore_) { startThread (2); } AudioThumbnailCache::~AudioThumbnailCache() { } bool AudioThumbnailCache::loadThumb (AudioThumbnail& thumb, const int64 hashCode) { for (int i = thumbs.size(); --i >= 0;) { if (thumbs[i]->hash == hashCode) { MemoryInputStream in ((const char*) thumbs[i]->data.getData(), thumbs[i]->data.getSize(), false); thumb.loadFrom (in); thumbs[i]->lastUsed = Time::getMillisecondCounter(); return true; } } return false; } void AudioThumbnailCache::storeThumb (const AudioThumbnail& thumb, const int64 hashCode) { MemoryOutputStream out; thumb.saveTo (out); ThumbnailCacheEntry* te = 0; for (int i = thumbs.size(); --i >= 0;) { if (thumbs[i]->hash == hashCode) { te = thumbs[i]; break; } } if (te == 0) { te = new ThumbnailCacheEntry(); te->hash = hashCode; if (thumbs.size() < maxNumThumbsToStore) { thumbs.add (te); } else { int oldest = 0; unsigned int oldestTime = Time::getMillisecondCounter() + 1; int i; for (i = thumbs.size(); --i >= 0;) if (thumbs[i]->lastUsed < oldestTime) oldest = i; thumbs.set (i, te); } } te->lastUsed = Time::getMillisecondCounter(); te->data.setSize (0); te->data.append (out.getData(), out.getDataSize()); } void AudioThumbnailCache::clear() { thumbs.clear(); } void AudioThumbnailCache::addThumbnail (AudioThumbnail* const thumb) { addTimeSliceClient (thumb); } void AudioThumbnailCache::removeThumbnail (AudioThumbnail* const thumb) { removeTimeSliceClient (thumb); } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioThumbnailCache.cpp *********/ /********* Start of inlined file: juce_QuickTimeAudioFormat.cpp *********/ #if JUCE_QUICKTIME && ! (JUCE_64BIT || JUCE_IPHONE) #if ! JUCE_WINDOWS #include #include #include #include #include #else #if JUCE_MSVC #pragma warning (push) #pragma warning (disable : 4100) #endif /* If you've got an include error here, you probably need to install the QuickTime SDK and add its header directory to your include path. Alternatively, if you don't need any QuickTime services, just turn off the JUC_QUICKTIME flag in juce_Config.h */ #include #include #include #include #include #if JUCE_MSVC #pragma warning (pop) #endif #endif BEGIN_JUCE_NAMESPACE bool juce_OpenQuickTimeMovieFromStream (InputStream* input, Movie& movie, Handle& dataHandle); #define quickTimeFormatName TRANS("QuickTime file") static const tchar* const quickTimeExtensions[] = { T(".mov"), T(".mp3"), T(".mp4"), 0 }; class QTAudioReader : public AudioFormatReader { public: QTAudioReader (InputStream* const input_, const int trackNum_) : AudioFormatReader (input_, quickTimeFormatName), ok (false), movie (0), trackNum (trackNum_), extractor (0), lastSampleRead (0), lastThreadId (0), dataHandle (0) { bufferList = (AudioBufferList*) juce_calloc (256); #ifdef WIN32 if (InitializeQTML (0) != noErr) return; #endif if (EnterMovies() != noErr) return; bool opened = juce_OpenQuickTimeMovieFromStream (input_, movie, dataHandle); if (! opened) return; { const int numTracks = GetMovieTrackCount (movie); int trackCount = 0; for (int i = 1; i <= numTracks; ++i) { track = GetMovieIndTrack (movie, i); media = GetTrackMedia (track); OSType mediaType; GetMediaHandlerDescription (media, &mediaType, 0, 0); if (mediaType == SoundMediaType && trackCount++ == trackNum_) { ok = true; break; } } } if (! ok) return; ok = false; lengthInSamples = GetMediaDecodeDuration (media); usesFloatingPointData = false; samplesPerFrame = (int) (GetMediaDecodeDuration (media) / GetMediaSampleCount (media)); trackUnitsPerFrame = GetMovieTimeScale (movie) * samplesPerFrame / GetMediaTimeScale (media); OSStatus err = MovieAudioExtractionBegin (movie, 0, &extractor); unsigned long output_layout_size; err = MovieAudioExtractionGetPropertyInfo (extractor, kQTPropertyClass_MovieAudioExtraction_Audio, kQTMovieAudioExtractionAudioPropertyID_AudioChannelLayout, 0, &output_layout_size, 0); if (err != noErr) return; AudioChannelLayout* const qt_audio_channel_layout = (AudioChannelLayout*) juce_calloc (output_layout_size); err = MovieAudioExtractionGetProperty (extractor, kQTPropertyClass_MovieAudioExtraction_Audio, kQTMovieAudioExtractionAudioPropertyID_AudioChannelLayout, output_layout_size, qt_audio_channel_layout, 0); qt_audio_channel_layout->mChannelLayoutTag = kAudioChannelLayoutTag_Stereo; err = MovieAudioExtractionSetProperty (extractor, kQTPropertyClass_MovieAudioExtraction_Audio, kQTMovieAudioExtractionAudioPropertyID_AudioChannelLayout, sizeof (qt_audio_channel_layout), qt_audio_channel_layout); juce_free (qt_audio_channel_layout); err = MovieAudioExtractionGetProperty (extractor, kQTPropertyClass_MovieAudioExtraction_Audio, kQTMovieAudioExtractionAudioPropertyID_AudioStreamBasicDescription, sizeof (inputStreamDesc), &inputStreamDesc, 0); if (err != noErr) return; inputStreamDesc.mFormatFlags = kAudioFormatFlagIsSignedInteger | kAudioFormatFlagIsPacked | kAudioFormatFlagsNativeEndian; inputStreamDesc.mBitsPerChannel = sizeof (SInt16) * 8; inputStreamDesc.mChannelsPerFrame = jmin (2, inputStreamDesc.mChannelsPerFrame); inputStreamDesc.mBytesPerFrame = sizeof (SInt16) * inputStreamDesc.mChannelsPerFrame; inputStreamDesc.mBytesPerPacket = inputStreamDesc.mBytesPerFrame; err = MovieAudioExtractionSetProperty (extractor, kQTPropertyClass_MovieAudioExtraction_Audio, kQTMovieAudioExtractionAudioPropertyID_AudioStreamBasicDescription, sizeof (inputStreamDesc), &inputStreamDesc); if (err != noErr) return; Boolean allChannelsDiscrete = false; err = MovieAudioExtractionSetProperty (extractor, kQTPropertyClass_MovieAudioExtraction_Movie, kQTMovieAudioExtractionMoviePropertyID_AllChannelsDiscrete, sizeof (allChannelsDiscrete), &allChannelsDiscrete); if (err != noErr) return; bufferList->mNumberBuffers = 1; bufferList->mBuffers[0].mNumberChannels = inputStreamDesc.mChannelsPerFrame; bufferList->mBuffers[0].mDataByteSize = (UInt32) (samplesPerFrame * inputStreamDesc.mBytesPerFrame) + 16; bufferList->mBuffers[0].mData = malloc (bufferList->mBuffers[0].mDataByteSize); sampleRate = inputStreamDesc.mSampleRate; bitsPerSample = 16; numChannels = inputStreamDesc.mChannelsPerFrame; detachThread(); ok = true; } ~QTAudioReader() { if (dataHandle != 0) DisposeHandle (dataHandle); if (extractor != 0) { MovieAudioExtractionEnd (extractor); extractor = 0; } checkThreadIsAttached(); DisposeMovie (movie); juce_free (bufferList->mBuffers[0].mData); juce_free (bufferList); #if JUCE_MAC ExitMoviesOnThread (); #endif } bool readSamples (int** destSamples, int numDestChannels, int startOffsetInDestBuffer, int64 startSampleInFile, int numSamples) { checkThreadIsAttached(); while (numSamples > 0) { if (! loadFrame ((int) startSampleInFile)) return false; const int numToDo = jmin (numSamples, samplesPerFrame); for (int j = numDestChannels; --j >= 0;) { if (destSamples[j] != 0) { const short* const src = ((const short*) bufferList->mBuffers[0].mData) + j; for (int i = 0; i < numToDo; ++i) destSamples[j][startOffsetInDestBuffer + i] = src [i << 1] << 16; } } startOffsetInDestBuffer += numToDo; startSampleInFile += numToDo; numSamples -= numToDo; } detachThread(); return true; } bool loadFrame (const int sampleNum) { if (lastSampleRead != sampleNum) { TimeRecord time; time.scale = (TimeScale) inputStreamDesc.mSampleRate; time.base = 0; time.value.hi = 0; time.value.lo = (UInt32) sampleNum; OSStatus err = MovieAudioExtractionSetProperty (extractor, kQTPropertyClass_MovieAudioExtraction_Movie, kQTMovieAudioExtractionMoviePropertyID_CurrentTime, sizeof (time), &time); if (err != noErr) return false; } bufferList->mBuffers[0].mDataByteSize = inputStreamDesc.mBytesPerFrame * samplesPerFrame; UInt32 outFlags = 0; UInt32 actualNumSamples = samplesPerFrame; OSStatus err = MovieAudioExtractionFillBuffer (extractor, &actualNumSamples, bufferList, &outFlags); lastSampleRead = sampleNum + samplesPerFrame; return err == noErr; } juce_UseDebuggingNewOperator bool ok; private: Movie movie; Media media; Track track; const int trackNum; double trackUnitsPerFrame; int samplesPerFrame; int lastSampleRead; Thread::ThreadID lastThreadId; MovieAudioExtractionRef extractor; AudioStreamBasicDescription inputStreamDesc; AudioBufferList* bufferList; Handle dataHandle; /*OSErr readMovieStream (long offset, long size, void* dataPtr) { input->setPosition (offset); input->read (dataPtr, size); return noErr; } static OSErr readMovieStreamProc (long offset, long size, void* dataPtr, void* userRef) { return ((QTAudioReader*) userRef)->readMovieStream (offset, size, dataPtr); }*/ void checkThreadIsAttached() { #if JUCE_MAC if (Thread::getCurrentThreadId() != lastThreadId) EnterMoviesOnThread (0); AttachMovieToCurrentThread (movie); #endif } void detachThread() { #if JUCE_MAC DetachMovieFromCurrentThread (movie); #endif } }; QuickTimeAudioFormat::QuickTimeAudioFormat() : AudioFormat (quickTimeFormatName, (const tchar**) quickTimeExtensions) { } QuickTimeAudioFormat::~QuickTimeAudioFormat() { } const Array QuickTimeAudioFormat::getPossibleSampleRates() { return Array(); } const Array QuickTimeAudioFormat::getPossibleBitDepths() { return Array(); } bool QuickTimeAudioFormat::canDoStereo() { return true; } bool QuickTimeAudioFormat::canDoMono() { return true; } AudioFormatReader* QuickTimeAudioFormat::createReaderFor (InputStream* sourceStream, const bool deleteStreamIfOpeningFails) { QTAudioReader* r = new QTAudioReader (sourceStream, 0); if (! r->ok) { if (! deleteStreamIfOpeningFails) r->input = 0; deleteAndZero (r); } return r; } AudioFormatWriter* QuickTimeAudioFormat::createWriterFor (OutputStream* /*streamToWriteTo*/, double /*sampleRateToUse*/, unsigned int /*numberOfChannels*/, int /*bitsPerSample*/, const StringPairArray& /*metadataValues*/, int /*qualityOptionIndex*/) { jassertfalse // not yet implemented! return 0; } END_JUCE_NAMESPACE #endif /********* End of inlined file: juce_QuickTimeAudioFormat.cpp *********/ /********* Start of inlined file: juce_WavAudioFormat.cpp *********/ BEGIN_JUCE_NAMESPACE #define wavFormatName TRANS("WAV file") static const tchar* const wavExtensions[] = { T(".wav"), T(".bwf"), 0 }; const tchar* const WavAudioFormat::bwavDescription = T("bwav description"); const tchar* const WavAudioFormat::bwavOriginator = T("bwav originator"); const tchar* const WavAudioFormat::bwavOriginatorRef = T("bwav originator ref"); const tchar* const WavAudioFormat::bwavOriginationDate = T("bwav origination date"); const tchar* const WavAudioFormat::bwavOriginationTime = T("bwav origination time"); const tchar* const WavAudioFormat::bwavTimeReference = T("bwav time reference"); const tchar* const WavAudioFormat::bwavCodingHistory = T("bwav coding history"); const StringPairArray WavAudioFormat::createBWAVMetadata (const String& description, const String& originator, const String& originatorRef, const Time& date, const int64 timeReferenceSamples, const String& codingHistory) { StringPairArray m; m.set (bwavDescription, description); m.set (bwavOriginator, originator); m.set (bwavOriginatorRef, originatorRef); m.set (bwavOriginationDate, date.formatted (T("%Y-%m-%d"))); m.set (bwavOriginationTime, date.formatted (T("%H:%M:%S"))); m.set (bwavTimeReference, String (timeReferenceSamples)); m.set (bwavCodingHistory, codingHistory); return m; } #if JUCE_MSVC #pragma pack (push, 1) #define PACKED #elif defined (JUCE_GCC) #define PACKED __attribute__((packed)) #else #define PACKED #endif struct BWAVChunk { uint8 description [256]; uint8 originator [32]; uint8 originatorRef [32]; uint8 originationDate [10]; uint8 originationTime [8]; uint32 timeRefLow; uint32 timeRefHigh; uint16 version; uint8 umid[64]; uint8 reserved[190]; uint8 codingHistory[1]; void copyTo (StringPairArray& values) const { values.set (WavAudioFormat::bwavDescription, String::fromUTF8 (description, 256)); values.set (WavAudioFormat::bwavOriginator, String::fromUTF8 (originator, 32)); values.set (WavAudioFormat::bwavOriginatorRef, String::fromUTF8 (originatorRef, 32)); values.set (WavAudioFormat::bwavOriginationDate, String::fromUTF8 (originationDate, 10)); values.set (WavAudioFormat::bwavOriginationTime, String::fromUTF8 (originationTime, 8)); const uint32 timeLow = swapIfBigEndian (timeRefLow); const uint32 timeHigh = swapIfBigEndian (timeRefHigh); const int64 time = (((int64)timeHigh) << 32) + timeLow; values.set (WavAudioFormat::bwavTimeReference, String (time)); values.set (WavAudioFormat::bwavCodingHistory, String::fromUTF8 (codingHistory)); } static MemoryBlock createFrom (const StringPairArray& values) { const int sizeNeeded = sizeof (BWAVChunk) + values [WavAudioFormat::bwavCodingHistory].copyToUTF8 (0) - 1; MemoryBlock data ((sizeNeeded + 3) & ~3); data.fillWith (0); BWAVChunk* b = (BWAVChunk*) data.getData(); // Allow these calls to overwrite an extra byte at the end, which is fine as long // as they get called in the right order.. values [WavAudioFormat::bwavDescription].copyToUTF8 (b->description, 257); values [WavAudioFormat::bwavOriginator].copyToUTF8 (b->originator, 33); values [WavAudioFormat::bwavOriginatorRef].copyToUTF8 (b->originatorRef, 33); values [WavAudioFormat::bwavOriginationDate].copyToUTF8 (b->originationDate, 11); values [WavAudioFormat::bwavOriginationTime].copyToUTF8 (b->originationTime, 9); const int64 time = values [WavAudioFormat::bwavTimeReference].getLargeIntValue(); b->timeRefLow = swapIfBigEndian ((uint32) (time & 0xffffffff)); b->timeRefHigh = swapIfBigEndian ((uint32) (time >> 32)); values [WavAudioFormat::bwavCodingHistory].copyToUTF8 (b->codingHistory); if (b->description[0] != 0 || b->originator[0] != 0 || b->originationDate[0] != 0 || b->originationTime[0] != 0 || b->codingHistory[0] != 0 || time != 0) { return data; } return MemoryBlock(); } } PACKED; struct SMPLChunk { struct SampleLoop { uint32 identifier; uint32 type; uint32 start; uint32 end; uint32 fraction; uint32 playCount; } PACKED; uint32 manufacturer; uint32 product; uint32 samplePeriod; uint32 midiUnityNote; uint32 midiPitchFraction; uint32 smpteFormat; uint32 smpteOffset; uint32 numSampleLoops; uint32 samplerData; SampleLoop loops[1]; void copyTo (StringPairArray& values, const int totalSize) const { values.set (T("Manufacturer"), String (swapIfBigEndian (manufacturer))); values.set (T("Product"), String (swapIfBigEndian (product))); values.set (T("SamplePeriod"), String (swapIfBigEndian (samplePeriod))); values.set (T("MidiUnityNote"), String (swapIfBigEndian (midiUnityNote))); values.set (T("MidiPitchFraction"), String (swapIfBigEndian (midiPitchFraction))); values.set (T("SmpteFormat"), String (swapIfBigEndian (smpteFormat))); values.set (T("SmpteOffset"), String (swapIfBigEndian (smpteOffset))); values.set (T("NumSampleLoops"), String (swapIfBigEndian (numSampleLoops))); values.set (T("SamplerData"), String (swapIfBigEndian (samplerData))); for (uint32 i = 0; i < numSampleLoops; ++i) { if ((uint8*) (loops + (i + 1)) > ((uint8*) this) + totalSize) break; values.set (String::formatted (T("Loop%dIdentifier"), i), String (swapIfBigEndian (loops[i].identifier))); values.set (String::formatted (T("Loop%dType"), i), String (swapIfBigEndian (loops[i].type))); values.set (String::formatted (T("Loop%dStart"), i), String (swapIfBigEndian (loops[i].start))); values.set (String::formatted (T("Loop%dEnd"), i), String (swapIfBigEndian (loops[i].end))); values.set (String::formatted (T("Loop%dFraction"), i), String (swapIfBigEndian (loops[i].fraction))); values.set (String::formatted (T("Loop%dPlayCount"), i), String (swapIfBigEndian (loops[i].playCount))); } } } PACKED; #if JUCE_MSVC #pragma pack (pop) #endif #undef PACKED #undef chunkName #define chunkName(a) ((int) littleEndianInt(a)) class WavAudioFormatReader : public AudioFormatReader { int bytesPerFrame; int64 dataChunkStart, dataLength; WavAudioFormatReader (const WavAudioFormatReader&); const WavAudioFormatReader& operator= (const WavAudioFormatReader&); public: int64 bwavChunkStart, bwavSize; WavAudioFormatReader (InputStream* const in) : AudioFormatReader (in, wavFormatName), dataLength (0), bwavChunkStart (0), bwavSize (0) { if (input->readInt() == chunkName ("RIFF")) { const uint32 len = (uint32) input->readInt(); const int64 end = input->getPosition() + len; bool hasGotType = false; bool hasGotData = false; if (input->readInt() == chunkName ("WAVE")) { while (input->getPosition() < end && ! input->isExhausted()) { const int chunkType = input->readInt(); uint32 length = (uint32) input->readInt(); const int64 chunkEnd = input->getPosition() + length + (length & 1); if (chunkType == chunkName ("fmt ")) { // read the format chunk const short format = input->readShort(); const short numChans = input->readShort(); sampleRate = input->readInt(); const int bytesPerSec = input->readInt(); numChannels = numChans; bytesPerFrame = bytesPerSec / (int)sampleRate; bitsPerSample = 8 * bytesPerFrame / numChans; if (format == 3) usesFloatingPointData = true; else if (format != 1) bytesPerFrame = 0; hasGotType = true; } else if (chunkType == chunkName ("data")) { // get the data chunk's position dataLength = length; dataChunkStart = input->getPosition(); lengthInSamples = (bytesPerFrame > 0) ? (dataLength / bytesPerFrame) : 0; hasGotData = true; } else if (chunkType == chunkName ("bext")) { bwavChunkStart = input->getPosition(); bwavSize = length; // Broadcast-wav extension chunk.. BWAVChunk* const bwav = (BWAVChunk*) juce_calloc (jmax (length + 1, (int) sizeof (BWAVChunk))); input->read (bwav, length); bwav->copyTo (metadataValues); juce_free (bwav); } else if (chunkType == chunkName ("smpl")) { SMPLChunk* const smpl = (SMPLChunk*) juce_calloc (jmax (length + 1, (int) sizeof (SMPLChunk))); input->read (smpl, length); smpl->copyTo (metadataValues, length); juce_free (smpl); } else if (chunkEnd <= input->getPosition()) { break; } input->setPosition (chunkEnd); } } } } ~WavAudioFormatReader() { } bool readSamples (int** destSamples, int numDestChannels, int startOffsetInDestBuffer, int64 startSampleInFile, int numSamples) { const int64 samplesAvailable = lengthInSamples - startSampleInFile; if (samplesAvailable < numSamples) { for (int i = numDestChannels; --i >= 0;) if (destSamples[i] != 0) zeromem (destSamples[i] + startOffsetInDestBuffer, sizeof (int) * numSamples); numSamples = (int) samplesAvailable; } if (numSamples <= 0) return true; input->setPosition (dataChunkStart + startSampleInFile * bytesPerFrame); const int tempBufSize = 480 * 3 * 4; // (keep this a multiple of 3) char tempBuffer [tempBufSize]; while (numSamples > 0) { int* left = destSamples[0]; if (left != 0) left += startOffsetInDestBuffer; int* right = numDestChannels > 1 ? destSamples[1] : 0; if (right != 0) right += startOffsetInDestBuffer; const int numThisTime = jmin (tempBufSize / bytesPerFrame, numSamples); const int bytesRead = input->read (tempBuffer, numThisTime * bytesPerFrame); if (bytesRead < numThisTime * bytesPerFrame) zeromem (tempBuffer + bytesRead, numThisTime * bytesPerFrame - bytesRead); if (bitsPerSample == 16) { const short* src = (const short*) tempBuffer; if (numChannels > 1) { if (left == 0) { for (int i = numThisTime; --i >= 0;) { ++src; *right++ = (int) swapIfBigEndian ((unsigned short) *src++) << 16; } } else if (right == 0) { for (int i = numThisTime; --i >= 0;) { *left++ = (int) swapIfBigEndian ((unsigned short) *src++) << 16; ++src; } } else { for (int i = numThisTime; --i >= 0;) { *left++ = (int) swapIfBigEndian ((unsigned short) *src++) << 16; *right++ = (int) swapIfBigEndian ((unsigned short) *src++) << 16; } } } else { for (int i = numThisTime; --i >= 0;) { *left++ = (int) swapIfBigEndian ((unsigned short) *src++) << 16; } } } else if (bitsPerSample == 24) { const char* src = (const char*) tempBuffer; if (numChannels > 1) { if (left == 0) { for (int i = numThisTime; --i >= 0;) { src += 3; *right++ = littleEndian24Bit (src) << 8; src += 3; } } else if (right == 0) { for (int i = numThisTime; --i >= 0;) { *left++ = littleEndian24Bit (src) << 8; src += 6; } } else { for (int i = 0; i < numThisTime; ++i) { *left++ = littleEndian24Bit (src) << 8; src += 3; *right++ = littleEndian24Bit (src) << 8; src += 3; } } } else { for (int i = 0; i < numThisTime; ++i) { *left++ = littleEndian24Bit (src) << 8; src += 3; } } } else if (bitsPerSample == 32) { const unsigned int* src = (const unsigned int*) tempBuffer; unsigned int* l = (unsigned int*) left; unsigned int* r = (unsigned int*) right; if (numChannels > 1) { if (l == 0) { for (int i = numThisTime; --i >= 0;) { ++src; *r++ = swapIfBigEndian (*src++); } } else if (r == 0) { for (int i = numThisTime; --i >= 0;) { *l++ = swapIfBigEndian (*src++); ++src; } } else { for (int i = numThisTime; --i >= 0;) { *l++ = swapIfBigEndian (*src++); *r++ = swapIfBigEndian (*src++); } } } else { for (int i = numThisTime; --i >= 0;) { *l++ = swapIfBigEndian (*src++); } } left = (int*)l; right = (int*)r; } else if (bitsPerSample == 8) { const unsigned char* src = (const unsigned char*) tempBuffer; if (numChannels > 1) { if (left == 0) { for (int i = numThisTime; --i >= 0;) { ++src; *right++ = ((int) *src++ - 128) << 24; } } else if (right == 0) { for (int i = numThisTime; --i >= 0;) { *left++ = ((int) *src++ - 128) << 24; ++src; } } else { for (int i = numThisTime; --i >= 0;) { *left++ = ((int) *src++ - 128) << 24; *right++ = ((int) *src++ - 128) << 24; } } } else { for (int i = numThisTime; --i >= 0;) { *left++ = ((int)*src++ - 128) << 24; } } } startOffsetInDestBuffer += numThisTime; numSamples -= numThisTime; } if (numSamples > 0) { for (int i = numDestChannels; --i >= 0;) if (destSamples[i] != 0) zeromem (destSamples[i] + startOffsetInDestBuffer, sizeof (int) * numSamples); } return true; } juce_UseDebuggingNewOperator }; class WavAudioFormatWriter : public AudioFormatWriter { MemoryBlock tempBlock, bwavChunk; uint32 lengthInSamples, bytesWritten; int64 headerPosition; bool writeFailed; WavAudioFormatWriter (const WavAudioFormatWriter&); const WavAudioFormatWriter& operator= (const WavAudioFormatWriter&); void writeHeader() { const bool seekedOk = output->setPosition (headerPosition); (void) seekedOk; // if this fails, you've given it an output stream that can't seek! It needs // to be able to seek back to write the header jassert (seekedOk); const int bytesPerFrame = numChannels * bitsPerSample / 8; output->writeInt (chunkName ("RIFF")); output->writeInt (lengthInSamples * bytesPerFrame + ((bwavChunk.getSize() > 0) ? (44 + bwavChunk.getSize()) : 36)); output->writeInt (chunkName ("WAVE")); output->writeInt (chunkName ("fmt ")); output->writeInt (16); output->writeShort ((bitsPerSample < 32) ? (short) 1 /*WAVE_FORMAT_PCM*/ : (short) 3 /*WAVE_FORMAT_IEEE_FLOAT*/); output->writeShort ((short) numChannels); output->writeInt ((int) sampleRate); output->writeInt (bytesPerFrame * (int) sampleRate); output->writeShort ((short) bytesPerFrame); output->writeShort ((short) bitsPerSample); if (bwavChunk.getSize() > 0) { output->writeInt (chunkName ("bext")); output->writeInt (bwavChunk.getSize()); output->write (bwavChunk.getData(), bwavChunk.getSize()); } output->writeInt (chunkName ("data")); output->writeInt (lengthInSamples * bytesPerFrame); usesFloatingPointData = (bitsPerSample == 32); } public: WavAudioFormatWriter (OutputStream* const out, const double sampleRate, const unsigned int numChannels_, const int bits, const StringPairArray& metadataValues) : AudioFormatWriter (out, wavFormatName, sampleRate, numChannels_, bits), lengthInSamples (0), bytesWritten (0), writeFailed (false) { if (metadataValues.size() > 0) bwavChunk = BWAVChunk::createFrom (metadataValues); headerPosition = out->getPosition(); writeHeader(); } ~WavAudioFormatWriter() { writeHeader(); } bool write (const int** data, int numSamples) { if (writeFailed) return false; const int bytes = numChannels * numSamples * bitsPerSample / 8; tempBlock.ensureSize (bytes, false); char* buffer = (char*) tempBlock.getData(); const int* left = data[0]; const int* right = data[1]; if (right == 0) right = left; if (bitsPerSample == 16) { short* b = (short*) buffer; if (numChannels > 1) { for (int i = numSamples; --i >= 0;) { *b++ = (short) swapIfBigEndian ((unsigned short) (*left++ >> 16)); *b++ = (short) swapIfBigEndian ((unsigned short) (*right++ >> 16)); } } else { for (int i = numSamples; --i >= 0;) { *b++ = (short) swapIfBigEndian ((unsigned short) (*left++ >> 16)); } } } else if (bitsPerSample == 24) { char* b = (char*) buffer; if (numChannels > 1) { for (int i = numSamples; --i >= 0;) { littleEndian24BitToChars ((*left++) >> 8, b); b += 3; littleEndian24BitToChars ((*right++) >> 8, b); b += 3; } } else { for (int i = numSamples; --i >= 0;) { littleEndian24BitToChars ((*left++) >> 8, b); b += 3; } } } else if (bitsPerSample == 32) { unsigned int* b = (unsigned int*) buffer; if (numChannels > 1) { for (int i = numSamples; --i >= 0;) { *b++ = swapIfBigEndian ((unsigned int) *left++); *b++ = swapIfBigEndian ((unsigned int) *right++); } } else { for (int i = numSamples; --i >= 0;) { *b++ = swapIfBigEndian ((unsigned int) *left++); } } } else if (bitsPerSample == 8) { unsigned char* b = (unsigned char*) buffer; if (numChannels > 1) { for (int i = numSamples; --i >= 0;) { *b++ = (unsigned char) (128 + (*left++ >> 24)); *b++ = (unsigned char) (128 + (*right++ >> 24)); } } else { for (int i = numSamples; --i >= 0;) { *b++ = (unsigned char) (128 + (*left++ >> 24)); } } } if (bytesWritten + bytes >= (uint32) 0xfff00000 || ! output->write (buffer, bytes)) { // failed to write to disk, so let's try writing the header. // If it's just run out of disk space, then if it does manage // to write the header, we'll still have a useable file.. writeHeader(); writeFailed = true; return false; } else { bytesWritten += bytes; lengthInSamples += numSamples; return true; } } juce_UseDebuggingNewOperator }; WavAudioFormat::WavAudioFormat() : AudioFormat (wavFormatName, (const tchar**) wavExtensions) { } WavAudioFormat::~WavAudioFormat() { } const Array WavAudioFormat::getPossibleSampleRates() { const int rates[] = { 22050, 32000, 44100, 48000, 88200, 96000, 176400, 192000, 0 }; return Array (rates); } const Array WavAudioFormat::getPossibleBitDepths() { const int depths[] = { 8, 16, 24, 32, 0 }; return Array (depths); } bool WavAudioFormat::canDoStereo() { return true; } bool WavAudioFormat::canDoMono() { return true; } AudioFormatReader* WavAudioFormat::createReaderFor (InputStream* sourceStream, const bool deleteStreamIfOpeningFails) { WavAudioFormatReader* r = new WavAudioFormatReader (sourceStream); if (r->sampleRate == 0) { if (! deleteStreamIfOpeningFails) r->input = 0; deleteAndZero (r); } return r; } AudioFormatWriter* WavAudioFormat::createWriterFor (OutputStream* out, double sampleRate, unsigned int numChannels, int bitsPerSample, const StringPairArray& metadataValues, int /*qualityOptionIndex*/) { if (getPossibleBitDepths().contains (bitsPerSample)) { return new WavAudioFormatWriter (out, sampleRate, numChannels, bitsPerSample, metadataValues); } return 0; } static bool juce_slowCopyOfWavFileWithNewMetadata (const File& file, const StringPairArray& metadata) { bool ok = false; WavAudioFormat wav; const File dest (file.getNonexistentSibling()); OutputStream* outStream = dest.createOutputStream(); if (outStream != 0) { AudioFormatReader* reader = wav.createReaderFor (file.createInputStream(), true); if (reader != 0) { AudioFormatWriter* writer = wav.createWriterFor (outStream, reader->sampleRate, reader->numChannels, reader->bitsPerSample, metadata, 0); if (writer != 0) { ok = writer->writeFromAudioReader (*reader, 0, -1); outStream = 0; delete writer; } delete reader; } delete outStream; } if (ok) ok = dest.moveFileTo (file); if (! ok) dest.deleteFile(); return ok; } bool WavAudioFormat::replaceMetadataInFile (const File& wavFile, const StringPairArray& newMetadata) { WavAudioFormatReader* reader = (WavAudioFormatReader*) createReaderFor (wavFile.createInputStream(), true); if (reader != 0) { const int64 bwavPos = reader->bwavChunkStart; const int64 bwavSize = reader->bwavSize; delete reader; if (bwavSize > 0) { MemoryBlock chunk = BWAVChunk::createFrom (newMetadata); if (chunk.getSize() <= bwavSize) { // the new one will fit in the space available, so write it directly.. const int64 oldSize = wavFile.getSize(); FileOutputStream* out = wavFile.createOutputStream(); out->setPosition (bwavPos); out->write (chunk.getData(), chunk.getSize()); out->setPosition (oldSize); delete out; jassert (wavFile.getSize() == oldSize); return true; } } } return juce_slowCopyOfWavFileWithNewMetadata (wavFile, newMetadata); } END_JUCE_NAMESPACE /********* End of inlined file: juce_WavAudioFormat.cpp *********/ /********* Start of inlined file: juce_AudioFormatReaderSource.cpp *********/ BEGIN_JUCE_NAMESPACE AudioFormatReaderSource::AudioFormatReaderSource (AudioFormatReader* const reader_, const bool deleteReaderWhenThisIsDeleted) : reader (reader_), deleteReader (deleteReaderWhenThisIsDeleted), nextPlayPos (0), looping (false) { jassert (reader != 0); } AudioFormatReaderSource::~AudioFormatReaderSource() { releaseResources(); if (deleteReader) delete reader; } void AudioFormatReaderSource::setNextReadPosition (int newPosition) { nextPlayPos = newPosition; } void AudioFormatReaderSource::setLooping (const bool shouldLoop) throw() { looping = shouldLoop; } int AudioFormatReaderSource::getNextReadPosition() const { return (looping) ? (nextPlayPos % (int) reader->lengthInSamples) : nextPlayPos; } int AudioFormatReaderSource::getTotalLength() const { return (int) reader->lengthInSamples; } void AudioFormatReaderSource::prepareToPlay (int /*samplesPerBlockExpected*/, double /*sampleRate*/) { } void AudioFormatReaderSource::releaseResources() { } void AudioFormatReaderSource::getNextAudioBlock (const AudioSourceChannelInfo& info) { if (info.numSamples > 0) { const int start = nextPlayPos; if (looping) { const int newStart = start % (int) reader->lengthInSamples; const int newEnd = (start + info.numSamples) % (int) reader->lengthInSamples; if (newEnd > newStart) { info.buffer->readFromAudioReader (reader, info.startSample, newEnd - newStart, newStart, true, true); } else { const int endSamps = (int) reader->lengthInSamples - newStart; info.buffer->readFromAudioReader (reader, info.startSample, endSamps, newStart, true, true); info.buffer->readFromAudioReader (reader, info.startSample + endSamps, newEnd, 0, true, true); } nextPlayPos = newEnd; } else { info.buffer->readFromAudioReader (reader, info.startSample, info.numSamples, start, true, true); nextPlayPos += info.numSamples; } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioFormatReaderSource.cpp *********/ /********* Start of inlined file: juce_AudioSourcePlayer.cpp *********/ BEGIN_JUCE_NAMESPACE AudioSourcePlayer::AudioSourcePlayer() : source (0), sampleRate (0), bufferSize (0), tempBuffer (2, 8), lastGain (1.0f), gain (1.0f) { } AudioSourcePlayer::~AudioSourcePlayer() { setSource (0); } void AudioSourcePlayer::setSource (AudioSource* newSource) { if (source != newSource) { AudioSource* const oldSource = source; if (newSource != 0 && bufferSize > 0 && sampleRate > 0) newSource->prepareToPlay (bufferSize, sampleRate); { const ScopedLock sl (readLock); source = newSource; } if (oldSource != 0) oldSource->releaseResources(); } } void AudioSourcePlayer::setGain (const float newGain) throw() { gain = newGain; } void AudioSourcePlayer::audioDeviceIOCallback (const float** inputChannelData, int totalNumInputChannels, float** outputChannelData, int totalNumOutputChannels, int numSamples) { // these should have been prepared by audioDeviceAboutToStart()... jassert (sampleRate > 0 && bufferSize > 0); const ScopedLock sl (readLock); if (source != 0) { AudioSourceChannelInfo info; int i, numActiveChans = 0, numInputs = 0, numOutputs = 0; // messy stuff needed to compact the channels down into an array // of non-zero pointers.. for (i = 0; i < totalNumInputChannels; ++i) { if (inputChannelData[i] != 0) { inputChans [numInputs++] = inputChannelData[i]; if (numInputs >= numElementsInArray (inputChans)) break; } } for (i = 0; i < totalNumOutputChannels; ++i) { if (outputChannelData[i] != 0) { outputChans [numOutputs++] = outputChannelData[i]; if (numOutputs >= numElementsInArray (outputChans)) break; } } if (numInputs > numOutputs) { // if there aren't enough output channels for the number of // inputs, we need to create some temporary extra ones (can't // use the input data in case it gets written to) tempBuffer.setSize (numInputs - numOutputs, numSamples, false, false, true); for (i = 0; i < numOutputs; ++i) { channels[numActiveChans] = outputChans[i]; memcpy (channels[numActiveChans], inputChans[i], sizeof (float) * numSamples); ++numActiveChans; } for (i = numOutputs; i < numInputs; ++i) { channels[numActiveChans] = tempBuffer.getSampleData (i - numOutputs, 0); memcpy (channels[numActiveChans], inputChans[i], sizeof (float) * numSamples); ++numActiveChans; } } else { for (i = 0; i < numInputs; ++i) { channels[numActiveChans] = outputChans[i]; memcpy (channels[numActiveChans], inputChans[i], sizeof (float) * numSamples); ++numActiveChans; } for (i = numInputs; i < numOutputs; ++i) { channels[numActiveChans] = outputChans[i]; zeromem (channels[numActiveChans], sizeof (float) * numSamples); ++numActiveChans; } } AudioSampleBuffer buffer (channels, numActiveChans, numSamples); info.buffer = &buffer; info.startSample = 0; info.numSamples = numSamples; source->getNextAudioBlock (info); for (i = info.buffer->getNumChannels(); --i >= 0;) info.buffer->applyGainRamp (i, info.startSample, info.numSamples, lastGain, gain); lastGain = gain; } else { for (int i = 0; i < totalNumOutputChannels; ++i) if (outputChannelData[i] != 0) zeromem (outputChannelData[i], sizeof (float) * numSamples); } } void AudioSourcePlayer::audioDeviceAboutToStart (AudioIODevice* device) { sampleRate = device->getCurrentSampleRate(); bufferSize = device->getCurrentBufferSizeSamples(); zeromem (channels, sizeof (channels)); if (source != 0) source->prepareToPlay (bufferSize, sampleRate); } void AudioSourcePlayer::audioDeviceStopped() { if (source != 0) source->releaseResources(); sampleRate = 0.0; bufferSize = 0; tempBuffer.setSize (2, 8); } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioSourcePlayer.cpp *********/ /********* Start of inlined file: juce_AudioTransportSource.cpp *********/ BEGIN_JUCE_NAMESPACE AudioTransportSource::AudioTransportSource() : source (0), resamplerSource (0), bufferingSource (0), positionableSource (0), masterSource (0), gain (1.0f), lastGain (1.0f), playing (false), stopped (true), sampleRate (44100.0), sourceSampleRate (0.0), blockSize (128), readAheadBufferSize (0), isPrepared (false), inputStreamEOF (false) { } AudioTransportSource::~AudioTransportSource() { setSource (0); releaseResources(); } void AudioTransportSource::setSource (PositionableAudioSource* const newSource, int readAheadBufferSize_, double sourceSampleRateToCorrectFor) { if (source == newSource) { if (source == 0) return; setSource (0, 0, 0); // deselect and reselect to avoid releasing resources wrongly } readAheadBufferSize = readAheadBufferSize_; sourceSampleRate = sourceSampleRateToCorrectFor; ResamplingAudioSource* newResamplerSource = 0; BufferingAudioSource* newBufferingSource = 0; PositionableAudioSource* newPositionableSource = 0; AudioSource* newMasterSource = 0; ResamplingAudioSource* oldResamplerSource = resamplerSource; BufferingAudioSource* oldBufferingSource = bufferingSource; AudioSource* oldMasterSource = masterSource; if (newSource != 0) { newPositionableSource = newSource; if (readAheadBufferSize_ > 0) newPositionableSource = newBufferingSource = new BufferingAudioSource (newPositionableSource, false, readAheadBufferSize_); newPositionableSource->setNextReadPosition (0); if (sourceSampleRateToCorrectFor != 0) newMasterSource = newResamplerSource = new ResamplingAudioSource (newPositionableSource, false); else newMasterSource = newPositionableSource; if (isPrepared) { if (newResamplerSource != 0 && sourceSampleRate > 0 && sampleRate > 0) newResamplerSource->setResamplingRatio (sourceSampleRate / sampleRate); newMasterSource->prepareToPlay (blockSize, sampleRate); } } { const ScopedLock sl (callbackLock); source = newSource; resamplerSource = newResamplerSource; bufferingSource = newBufferingSource; masterSource = newMasterSource; positionableSource = newPositionableSource; playing = false; } if (oldMasterSource != 0) oldMasterSource->releaseResources(); delete oldResamplerSource; delete oldBufferingSource; } void AudioTransportSource::start() { if ((! playing) && masterSource != 0) { callbackLock.enter(); playing = true; stopped = false; inputStreamEOF = false; callbackLock.exit(); sendChangeMessage (this); } } void AudioTransportSource::stop() { if (playing) { callbackLock.enter(); playing = false; callbackLock.exit(); int n = 500; while (--n >= 0 && ! stopped) Thread::sleep (2); sendChangeMessage (this); } } void AudioTransportSource::setPosition (double newPosition) { if (sampleRate > 0.0) setNextReadPosition (roundDoubleToInt (newPosition * sampleRate)); } double AudioTransportSource::getCurrentPosition() const { if (sampleRate > 0.0) return getNextReadPosition() / sampleRate; else return 0.0; } void AudioTransportSource::setNextReadPosition (int newPosition) { if (positionableSource != 0) { if (sampleRate > 0 && sourceSampleRate > 0) newPosition = roundDoubleToInt (newPosition * sourceSampleRate / sampleRate); positionableSource->setNextReadPosition (newPosition); } } int AudioTransportSource::getNextReadPosition() const { if (positionableSource != 0) { const double ratio = (sampleRate > 0 && sourceSampleRate > 0) ? sampleRate / sourceSampleRate : 1.0; return roundDoubleToInt (positionableSource->getNextReadPosition() * ratio); } return 0; } int AudioTransportSource::getTotalLength() const { const ScopedLock sl (callbackLock); if (positionableSource != 0) { const double ratio = (sampleRate > 0 && sourceSampleRate > 0) ? sampleRate / sourceSampleRate : 1.0; return roundDoubleToInt (positionableSource->getTotalLength() * ratio); } return 0; } bool AudioTransportSource::isLooping() const { const ScopedLock sl (callbackLock); return positionableSource != 0 && positionableSource->isLooping(); } void AudioTransportSource::setGain (const float newGain) throw() { gain = newGain; } void AudioTransportSource::prepareToPlay (int samplesPerBlockExpected, double sampleRate_) { const ScopedLock sl (callbackLock); sampleRate = sampleRate_; blockSize = samplesPerBlockExpected; if (masterSource != 0) masterSource->prepareToPlay (samplesPerBlockExpected, sampleRate); if (resamplerSource != 0 && sourceSampleRate != 0) resamplerSource->setResamplingRatio (sourceSampleRate / sampleRate); isPrepared = true; } void AudioTransportSource::releaseResources() { const ScopedLock sl (callbackLock); if (masterSource != 0) masterSource->releaseResources(); isPrepared = false; } void AudioTransportSource::getNextAudioBlock (const AudioSourceChannelInfo& info) { const ScopedLock sl (callbackLock); inputStreamEOF = false; if (masterSource != 0 && ! stopped) { masterSource->getNextAudioBlock (info); if (! playing) { // just stopped playing, so fade out the last block.. for (int i = info.buffer->getNumChannels(); --i >= 0;) info.buffer->applyGainRamp (i, info.startSample, jmin (256, info.numSamples), 1.0f, 0.0f); if (info.numSamples > 256) info.buffer->clear (info.startSample + 256, info.numSamples - 256); } if (positionableSource->getNextReadPosition() > positionableSource->getTotalLength() + 1 && ! positionableSource->isLooping()) { playing = false; inputStreamEOF = true; sendChangeMessage (this); } stopped = ! playing; for (int i = info.buffer->getNumChannels(); --i >= 0;) { info.buffer->applyGainRamp (i, info.startSample, info.numSamples, lastGain, gain); } } else { info.clearActiveBufferRegion(); stopped = true; } lastGain = gain; } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioTransportSource.cpp *********/ /********* Start of inlined file: juce_BufferingAudioSource.cpp *********/ BEGIN_JUCE_NAMESPACE class SharedBufferingAudioSourceThread : public DeletedAtShutdown, public Thread, private Timer { public: SharedBufferingAudioSourceThread() : Thread ("Audio Buffer"), sources (8) { } ~SharedBufferingAudioSourceThread() { stopThread (10000); clearSingletonInstance(); } juce_DeclareSingleton (SharedBufferingAudioSourceThread, false) void addSource (BufferingAudioSource* source) { const ScopedLock sl (lock); if (! sources.contains ((void*) source)) { sources.add ((void*) source); startThread(); stopTimer(); } notify(); } void removeSource (BufferingAudioSource* source) { const ScopedLock sl (lock); sources.removeValue ((void*) source); if (sources.size() == 0) startTimer (5000); } private: VoidArray sources; CriticalSection lock; void run() { while (! threadShouldExit()) { bool busy = false; for (int i = sources.size(); --i >= 0;) { if (threadShouldExit()) return; const ScopedLock sl (lock); BufferingAudioSource* const b = (BufferingAudioSource*) sources[i]; if (b != 0 && b->readNextBufferChunk()) busy = true; } if (! busy) wait (500); } } void timerCallback() { stopTimer(); if (sources.size() == 0) deleteInstance(); } SharedBufferingAudioSourceThread (const SharedBufferingAudioSourceThread&); const SharedBufferingAudioSourceThread& operator= (const SharedBufferingAudioSourceThread&); }; juce_ImplementSingleton (SharedBufferingAudioSourceThread) BufferingAudioSource::BufferingAudioSource (PositionableAudioSource* source_, const bool deleteSourceWhenDeleted_, int numberOfSamplesToBuffer_) : source (source_), deleteSourceWhenDeleted (deleteSourceWhenDeleted_), numberOfSamplesToBuffer (jmax (1024, numberOfSamplesToBuffer_)), buffer (2, 0), bufferValidStart (0), bufferValidEnd (0), nextPlayPos (0), wasSourceLooping (false) { jassert (source_ != 0); jassert (numberOfSamplesToBuffer_ > 1024); // not much point using this class if you're // not using a larger buffer.. } BufferingAudioSource::~BufferingAudioSource() { SharedBufferingAudioSourceThread* const thread = SharedBufferingAudioSourceThread::getInstanceWithoutCreating(); if (thread != 0) thread->removeSource (this); if (deleteSourceWhenDeleted) delete source; } void BufferingAudioSource::prepareToPlay (int samplesPerBlockExpected, double sampleRate_) { source->prepareToPlay (samplesPerBlockExpected, sampleRate_); sampleRate = sampleRate_; buffer.setSize (2, jmax (samplesPerBlockExpected * 2, numberOfSamplesToBuffer)); buffer.clear(); bufferValidStart = 0; bufferValidEnd = 0; SharedBufferingAudioSourceThread::getInstance()->addSource (this); while (bufferValidEnd - bufferValidStart < jmin (((int) sampleRate_) / 4, buffer.getNumSamples() / 2)) { SharedBufferingAudioSourceThread::getInstance()->notify(); Thread::sleep (5); } } void BufferingAudioSource::releaseResources() { SharedBufferingAudioSourceThread* const thread = SharedBufferingAudioSourceThread::getInstanceWithoutCreating(); if (thread != 0) thread->removeSource (this); buffer.setSize (2, 0); source->releaseResources(); } void BufferingAudioSource::getNextAudioBlock (const AudioSourceChannelInfo& info) { const ScopedLock sl (bufferStartPosLock); const int validStart = jlimit (bufferValidStart, bufferValidEnd, nextPlayPos) - nextPlayPos; const int validEnd = jlimit (bufferValidStart, bufferValidEnd, nextPlayPos + info.numSamples) - nextPlayPos; if (validStart == validEnd) { // total cache miss info.clearActiveBufferRegion(); } else { if (validStart > 0) info.buffer->clear (info.startSample, validStart); // partial cache miss at start if (validEnd < info.numSamples) info.buffer->clear (info.startSample + validEnd, info.numSamples - validEnd); // partial cache miss at end if (validStart < validEnd) { for (int chan = jmin (2, info.buffer->getNumChannels()); --chan >= 0;) { const int startBufferIndex = (validStart + nextPlayPos) % buffer.getNumSamples(); const int endBufferIndex = (validEnd + nextPlayPos) % buffer.getNumSamples(); if (startBufferIndex < endBufferIndex) { info.buffer->copyFrom (chan, info.startSample + validStart, buffer, chan, startBufferIndex, validEnd - validStart); } else { const int initialSize = buffer.getNumSamples() - startBufferIndex; info.buffer->copyFrom (chan, info.startSample + validStart, buffer, chan, startBufferIndex, initialSize); info.buffer->copyFrom (chan, info.startSample + validStart + initialSize, buffer, chan, 0, (validEnd - validStart) - initialSize); } } } nextPlayPos += info.numSamples; if (source->isLooping() && nextPlayPos > 0) nextPlayPos %= source->getTotalLength(); } SharedBufferingAudioSourceThread* const thread = SharedBufferingAudioSourceThread::getInstanceWithoutCreating(); if (thread != 0) thread->notify(); } int BufferingAudioSource::getNextReadPosition() const { return (source->isLooping() && nextPlayPos > 0) ? nextPlayPos % source->getTotalLength() : nextPlayPos; } void BufferingAudioSource::setNextReadPosition (int newPosition) { const ScopedLock sl (bufferStartPosLock); nextPlayPos = newPosition; SharedBufferingAudioSourceThread* const thread = SharedBufferingAudioSourceThread::getInstanceWithoutCreating(); if (thread != 0) thread->notify(); } bool BufferingAudioSource::readNextBufferChunk() { bufferStartPosLock.enter(); if (wasSourceLooping != isLooping()) { wasSourceLooping = isLooping(); bufferValidStart = 0; bufferValidEnd = 0; } int newBVS = jmax (0, nextPlayPos); int newBVE = newBVS + buffer.getNumSamples() - 4; int sectionToReadStart = 0; int sectionToReadEnd = 0; const int maxChunkSize = 2048; if (newBVS < bufferValidStart || newBVS >= bufferValidEnd) { newBVE = jmin (newBVE, newBVS + maxChunkSize); sectionToReadStart = newBVS; sectionToReadEnd = newBVE; bufferValidStart = 0; bufferValidEnd = 0; } else if (abs (newBVS - bufferValidStart) > 512 || abs (newBVE - bufferValidEnd) > 512) { newBVE = jmin (newBVE, bufferValidEnd + maxChunkSize); sectionToReadStart = bufferValidEnd; sectionToReadEnd = newBVE; bufferValidStart = newBVS; bufferValidEnd = jmin (bufferValidEnd, newBVE); } bufferStartPosLock.exit(); if (sectionToReadStart != sectionToReadEnd) { const int bufferIndexStart = sectionToReadStart % buffer.getNumSamples(); const int bufferIndexEnd = sectionToReadEnd % buffer.getNumSamples(); if (bufferIndexStart < bufferIndexEnd) { readBufferSection (sectionToReadStart, sectionToReadEnd - sectionToReadStart, bufferIndexStart); } else { const int initialSize = buffer.getNumSamples() - bufferIndexStart; readBufferSection (sectionToReadStart, initialSize, bufferIndexStart); readBufferSection (sectionToReadStart + initialSize, (sectionToReadEnd - sectionToReadStart) - initialSize, 0); } const ScopedLock sl2 (bufferStartPosLock); bufferValidStart = newBVS; bufferValidEnd = newBVE; return true; } else { return false; } } void BufferingAudioSource::readBufferSection (int start, int length, int bufferOffset) { if (source->getNextReadPosition() != start) source->setNextReadPosition (start); AudioSourceChannelInfo info; info.buffer = &buffer; info.startSample = bufferOffset; info.numSamples = length; source->getNextAudioBlock (info); } END_JUCE_NAMESPACE /********* End of inlined file: juce_BufferingAudioSource.cpp *********/ /********* Start of inlined file: juce_ChannelRemappingAudioSource.cpp *********/ BEGIN_JUCE_NAMESPACE ChannelRemappingAudioSource::ChannelRemappingAudioSource (AudioSource* const source_, const bool deleteSourceWhenDeleted_) : requiredNumberOfChannels (2), source (source_), deleteSourceWhenDeleted (deleteSourceWhenDeleted_), buffer (2, 16) { remappedInfo.buffer = &buffer; remappedInfo.startSample = 0; } ChannelRemappingAudioSource::~ChannelRemappingAudioSource() { if (deleteSourceWhenDeleted) delete source; } void ChannelRemappingAudioSource::setNumberOfChannelsToProduce (const int requiredNumberOfChannels_) throw() { const ScopedLock sl (lock); requiredNumberOfChannels = requiredNumberOfChannels_; } void ChannelRemappingAudioSource::clearAllMappings() throw() { const ScopedLock sl (lock); remappedInputs.clear(); remappedOutputs.clear(); } void ChannelRemappingAudioSource::setInputChannelMapping (const int destIndex, const int sourceIndex) throw() { const ScopedLock sl (lock); while (remappedInputs.size() < destIndex) remappedInputs.add (-1); remappedInputs.set (destIndex, sourceIndex); } void ChannelRemappingAudioSource::setOutputChannelMapping (const int sourceIndex, const int destIndex) throw() { const ScopedLock sl (lock); while (remappedOutputs.size() < sourceIndex) remappedOutputs.add (-1); remappedOutputs.set (sourceIndex, destIndex); } int ChannelRemappingAudioSource::getRemappedInputChannel (const int inputChannelIndex) const throw() { const ScopedLock sl (lock); if (inputChannelIndex >= 0 && inputChannelIndex < remappedInputs.size()) return remappedInputs.getUnchecked (inputChannelIndex); return -1; } int ChannelRemappingAudioSource::getRemappedOutputChannel (const int outputChannelIndex) const throw() { const ScopedLock sl (lock); if (outputChannelIndex >= 0 && outputChannelIndex < remappedOutputs.size()) return remappedOutputs .getUnchecked (outputChannelIndex); return -1; } void ChannelRemappingAudioSource::prepareToPlay (int samplesPerBlockExpected, double sampleRate) { source->prepareToPlay (samplesPerBlockExpected, sampleRate); } void ChannelRemappingAudioSource::releaseResources() { source->releaseResources(); } void ChannelRemappingAudioSource::getNextAudioBlock (const AudioSourceChannelInfo& bufferToFill) { const ScopedLock sl (lock); buffer.setSize (requiredNumberOfChannels, bufferToFill.numSamples, false, false, true); const int numChans = bufferToFill.buffer->getNumChannels(); int i; for (i = 0; i < buffer.getNumChannels(); ++i) { const int remappedChan = getRemappedInputChannel (i); if (remappedChan >= 0 && remappedChan < numChans) { buffer.copyFrom (i, 0, *bufferToFill.buffer, remappedChan, bufferToFill.startSample, bufferToFill.numSamples); } else { buffer.clear (i, 0, bufferToFill.numSamples); } } remappedInfo.numSamples = bufferToFill.numSamples; source->getNextAudioBlock (remappedInfo); bufferToFill.clearActiveBufferRegion(); for (i = 0; i < requiredNumberOfChannels; ++i) { const int remappedChan = getRemappedOutputChannel (i); if (remappedChan >= 0 && remappedChan < numChans) { bufferToFill.buffer->addFrom (remappedChan, bufferToFill.startSample, buffer, i, 0, bufferToFill.numSamples); } } } XmlElement* ChannelRemappingAudioSource::createXml() const throw() { XmlElement* e = new XmlElement (T("MAPPINGS")); String ins, outs; int i; const ScopedLock sl (lock); for (i = 0; i < remappedInputs.size(); ++i) ins << remappedInputs.getUnchecked(i) << T(' '); for (i = 0; i < remappedOutputs.size(); ++i) outs << remappedOutputs.getUnchecked(i) << T(' '); e->setAttribute (T("inputs"), ins.trimEnd()); e->setAttribute (T("outputs"), outs.trimEnd()); return e; } void ChannelRemappingAudioSource::restoreFromXml (const XmlElement& e) throw() { if (e.hasTagName (T("MAPPINGS"))) { const ScopedLock sl (lock); clearAllMappings(); StringArray ins, outs; ins.addTokens (e.getStringAttribute (T("inputs")), false); outs.addTokens (e.getStringAttribute (T("outputs")), false); int i; for (i = 0; i < ins.size(); ++i) remappedInputs.add (ins[i].getIntValue()); for (i = 0; i < outs.size(); ++i) remappedOutputs.add (outs[i].getIntValue()); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ChannelRemappingAudioSource.cpp *********/ /********* Start of inlined file: juce_IIRFilterAudioSource.cpp *********/ BEGIN_JUCE_NAMESPACE IIRFilterAudioSource::IIRFilterAudioSource (AudioSource* const inputSource, const bool deleteInputWhenDeleted_) : input (inputSource), deleteInputWhenDeleted (deleteInputWhenDeleted_) { jassert (inputSource != 0); for (int i = 2; --i >= 0;) iirFilters.add (new IIRFilter()); } IIRFilterAudioSource::~IIRFilterAudioSource() { if (deleteInputWhenDeleted) delete input; } void IIRFilterAudioSource::setFilterParameters (const IIRFilter& newSettings) { for (int i = iirFilters.size(); --i >= 0;) iirFilters.getUnchecked(i)->copyCoefficientsFrom (newSettings); } void IIRFilterAudioSource::prepareToPlay (int samplesPerBlockExpected, double sampleRate) { input->prepareToPlay (samplesPerBlockExpected, sampleRate); for (int i = iirFilters.size(); --i >= 0;) iirFilters.getUnchecked(i)->reset(); } void IIRFilterAudioSource::releaseResources() { input->releaseResources(); } void IIRFilterAudioSource::getNextAudioBlock (const AudioSourceChannelInfo& bufferToFill) { input->getNextAudioBlock (bufferToFill); const int numChannels = bufferToFill.buffer->getNumChannels(); while (numChannels > iirFilters.size()) iirFilters.add (new IIRFilter (*iirFilters.getUnchecked (0))); for (int i = 0; i < numChannels; ++i) iirFilters.getUnchecked(i) ->processSamples (bufferToFill.buffer->getSampleData (i, bufferToFill.startSample), bufferToFill.numSamples); } END_JUCE_NAMESPACE /********* End of inlined file: juce_IIRFilterAudioSource.cpp *********/ /********* Start of inlined file: juce_MixerAudioSource.cpp *********/ BEGIN_JUCE_NAMESPACE MixerAudioSource::MixerAudioSource() : tempBuffer (2, 0), currentSampleRate (0.0), bufferSizeExpected (0) { } MixerAudioSource::~MixerAudioSource() { removeAllInputs(); } void MixerAudioSource::addInputSource (AudioSource* input, const bool deleteWhenRemoved) { if (input != 0 && ! inputs.contains (input)) { lock.enter(); double localRate = currentSampleRate; int localBufferSize = bufferSizeExpected; lock.exit(); if (localRate != 0.0) input->prepareToPlay (localBufferSize, localRate); const ScopedLock sl (lock); inputsToDelete.setBit (inputs.size(), deleteWhenRemoved); inputs.add (input); } } void MixerAudioSource::removeInputSource (AudioSource* input, const bool deleteInput) { if (input != 0) { lock.enter(); const int index = inputs.indexOf ((void*) input); if (index >= 0) { inputsToDelete.shiftBits (index, 1); inputs.remove (index); } lock.exit(); if (index >= 0) { input->releaseResources(); if (deleteInput) delete input; } } } void MixerAudioSource::removeAllInputs() { lock.enter(); VoidArray inputsCopy (inputs); BitArray inputsToDeleteCopy (inputsToDelete); inputs.clear(); lock.exit(); for (int i = inputsCopy.size(); --i >= 0;) if (inputsToDeleteCopy[i]) delete (AudioSource*) inputsCopy[i]; } void MixerAudioSource::prepareToPlay (int samplesPerBlockExpected, double sampleRate) { tempBuffer.setSize (2, samplesPerBlockExpected); const ScopedLock sl (lock); currentSampleRate = sampleRate; bufferSizeExpected = samplesPerBlockExpected; for (int i = inputs.size(); --i >= 0;) ((AudioSource*) inputs.getUnchecked(i))->prepareToPlay (samplesPerBlockExpected, sampleRate); } void MixerAudioSource::releaseResources() { const ScopedLock sl (lock); for (int i = inputs.size(); --i >= 0;) ((AudioSource*) inputs.getUnchecked(i))->releaseResources(); tempBuffer.setSize (2, 0); currentSampleRate = 0; bufferSizeExpected = 0; } void MixerAudioSource::getNextAudioBlock (const AudioSourceChannelInfo& info) { const ScopedLock sl (lock); if (inputs.size() > 0) { ((AudioSource*) inputs.getUnchecked(0))->getNextAudioBlock (info); if (inputs.size() > 1) { tempBuffer.setSize (jmax (1, info.buffer->getNumChannels()), info.buffer->getNumSamples()); AudioSourceChannelInfo info2; info2.buffer = &tempBuffer; info2.numSamples = info.numSamples; info2.startSample = 0; for (int i = 1; i < inputs.size(); ++i) { ((AudioSource*) inputs.getUnchecked(i))->getNextAudioBlock (info2); for (int chan = 0; chan < info.buffer->getNumChannels(); ++chan) info.buffer->addFrom (chan, info.startSample, tempBuffer, chan, 0, info.numSamples); } } } else { info.clearActiveBufferRegion(); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_MixerAudioSource.cpp *********/ /********* Start of inlined file: juce_ResamplingAudioSource.cpp *********/ BEGIN_JUCE_NAMESPACE ResamplingAudioSource::ResamplingAudioSource (AudioSource* const inputSource, const bool deleteInputWhenDeleted_) : input (inputSource), deleteInputWhenDeleted (deleteInputWhenDeleted_), ratio (1.0), lastRatio (1.0), buffer (2, 0), sampsInBuffer (0) { jassert (input != 0); } ResamplingAudioSource::~ResamplingAudioSource() { if (deleteInputWhenDeleted) delete input; } void ResamplingAudioSource::setResamplingRatio (const double samplesInPerOutputSample) { jassert (samplesInPerOutputSample > 0); const ScopedLock sl (ratioLock); ratio = jmax (0.0, samplesInPerOutputSample); } void ResamplingAudioSource::prepareToPlay (int samplesPerBlockExpected, double sampleRate) { const ScopedLock sl (ratioLock); input->prepareToPlay (samplesPerBlockExpected, sampleRate); buffer.setSize (2, roundDoubleToInt (samplesPerBlockExpected * ratio) + 32); buffer.clear(); sampsInBuffer = 0; bufferPos = 0; subSampleOffset = 0.0; createLowPass (ratio); resetFilters(); } void ResamplingAudioSource::releaseResources() { input->releaseResources(); buffer.setSize (2, 0); } void ResamplingAudioSource::getNextAudioBlock (const AudioSourceChannelInfo& info) { const ScopedLock sl (ratioLock); if (lastRatio != ratio) { createLowPass (ratio); lastRatio = ratio; } const int sampsNeeded = roundDoubleToInt (info.numSamples * ratio) + 2; int bufferSize = buffer.getNumSamples(); if (bufferSize < sampsNeeded + 8) { bufferPos %= bufferSize; bufferSize = sampsNeeded + 32; buffer.setSize (buffer.getNumChannels(), bufferSize, true, true); } bufferPos %= bufferSize; int endOfBufferPos = bufferPos + sampsInBuffer; while (sampsNeeded > sampsInBuffer) { endOfBufferPos %= bufferSize; int numToDo = jmin (sampsNeeded - sampsInBuffer, bufferSize - endOfBufferPos); AudioSourceChannelInfo readInfo; readInfo.buffer = &buffer; readInfo.numSamples = numToDo; readInfo.startSample = endOfBufferPos; input->getNextAudioBlock (readInfo); if (ratio > 1.0001) { // for down-sampling, pre-apply the filter.. for (int i = jmin (2, info.buffer->getNumChannels()); --i >= 0;) applyFilter (buffer.getSampleData (i, endOfBufferPos), numToDo, filterStates[i]); } sampsInBuffer += numToDo; endOfBufferPos += numToDo; } float* dl = info.buffer->getSampleData (0, info.startSample); float* dr = (info.buffer->getNumChannels() > 1) ? info.buffer->getSampleData (1, info.startSample) : 0; const float* const bl = buffer.getSampleData (0, 0); const float* const br = buffer.getSampleData (1, 0); int nextPos = (bufferPos + 1) % bufferSize; for (int m = info.numSamples; --m >= 0;) { const float alpha = (float) subSampleOffset; const float invAlpha = 1.0f - alpha; *dl++ = bl [bufferPos] * invAlpha + bl [nextPos] * alpha; if (dr != 0) *dr++ = br [bufferPos] * invAlpha + br [nextPos] * alpha; subSampleOffset += ratio; jassert (sampsInBuffer > 0); while (subSampleOffset >= 1.0) { if (++bufferPos >= bufferSize) bufferPos = 0; --sampsInBuffer; nextPos = (bufferPos + 1) % bufferSize; subSampleOffset -= 1.0; } } if (ratio < 0.9999) { // for up-sampling, apply the filter after transposing.. for (int i = jmin (2, info.buffer->getNumChannels()); --i >= 0;) applyFilter (info.buffer->getSampleData (i, info.startSample), info.numSamples, filterStates[i]); } else if (ratio <= 1.0001) { // if the filter's not currently being applied, keep it stoked with the last couple of samples to avoid discontinuities for (int i = jmin (2, info.buffer->getNumChannels()); --i >= 0;) { const float* const endOfBuffer = info.buffer->getSampleData (i, info.startSample + info.numSamples - 1); FilterState& fs = filterStates[i]; if (info.numSamples > 1) { fs.y2 = fs.x2 = *(endOfBuffer - 1); } else { fs.y2 = fs.y1; fs.x2 = fs.x1; } fs.y1 = fs.x1 = *endOfBuffer; } } jassert (sampsInBuffer >= 0); } void ResamplingAudioSource::createLowPass (const double ratio) { const double proportionalRate = (ratio > 1.0) ? 0.5 / ratio : 0.5 * ratio; const double n = 1.0 / tan (double_Pi * jmax (0.001, proportionalRate)); const double nSquared = n * n; const double c1 = 1.0 / (1.0 + sqrt (2.0) * n + nSquared); setFilterCoefficients (c1, c1 * 2.0f, c1, 1.0, c1 * 2.0 * (1.0 - nSquared), c1 * (1.0 - sqrt (2.0) * n + nSquared)); } void ResamplingAudioSource::setFilterCoefficients (double c1, double c2, double c3, double c4, double c5, double c6) { const double a = 1.0 / c4; c1 *= a; c2 *= a; c3 *= a; c5 *= a; c6 *= a; coefficients[0] = c1; coefficients[1] = c2; coefficients[2] = c3; coefficients[3] = c4; coefficients[4] = c5; coefficients[5] = c6; } void ResamplingAudioSource::resetFilters() { zeromem (filterStates, sizeof (filterStates)); } void ResamplingAudioSource::applyFilter (float* samples, int num, FilterState& fs) { while (--num >= 0) { const double in = *samples; double out = coefficients[0] * in + coefficients[1] * fs.x1 + coefficients[2] * fs.x2 - coefficients[4] * fs.y1 - coefficients[5] * fs.y2; #if JUCE_INTEL if (! (out < -1.0e-8 || out > 1.0e-8)) out = 0; #endif fs.x2 = fs.x1; fs.x1 = in; fs.y2 = fs.y1; fs.y1 = out; *samples++ = (float) out; } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ResamplingAudioSource.cpp *********/ /********* Start of inlined file: juce_ToneGeneratorAudioSource.cpp *********/ BEGIN_JUCE_NAMESPACE ToneGeneratorAudioSource::ToneGeneratorAudioSource() : frequency (1000.0), sampleRate (44100.0), currentPhase (0.0), phasePerSample (0.0), amplitude (0.5f) { } ToneGeneratorAudioSource::~ToneGeneratorAudioSource() { } void ToneGeneratorAudioSource::setAmplitude (const float newAmplitude) { amplitude = newAmplitude; } void ToneGeneratorAudioSource::setFrequency (const double newFrequencyHz) { frequency = newFrequencyHz; phasePerSample = 0.0; } void ToneGeneratorAudioSource::prepareToPlay (int /*samplesPerBlockExpected*/, double sampleRate_) { currentPhase = 0.0; phasePerSample = 0.0; sampleRate = sampleRate_; } void ToneGeneratorAudioSource::releaseResources() { } void ToneGeneratorAudioSource::getNextAudioBlock (const AudioSourceChannelInfo& info) { if (phasePerSample == 0.0) phasePerSample = double_Pi * 2.0 / (sampleRate / frequency); for (int i = 0; i < info.numSamples; ++i) { const float sample = amplitude * (float) sin (currentPhase); currentPhase += phasePerSample; for (int j = info.buffer->getNumChannels(); --j >= 0;) *info.buffer->getSampleData (j, info.startSample + i) = sample; } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ToneGeneratorAudioSource.cpp *********/ /********* Start of inlined file: juce_AudioDeviceManager.cpp *********/ BEGIN_JUCE_NAMESPACE AudioDeviceManager::AudioDeviceSetup::AudioDeviceSetup() : sampleRate (0), bufferSize (0), useDefaultInputChannels (true), useDefaultOutputChannels (true) { } bool AudioDeviceManager::AudioDeviceSetup::operator== (const AudioDeviceManager::AudioDeviceSetup& other) const { return outputDeviceName == other.outputDeviceName && inputDeviceName == other.inputDeviceName && sampleRate == other.sampleRate && bufferSize == other.bufferSize && inputChannels == other.inputChannels && useDefaultInputChannels == other.useDefaultInputChannels && outputChannels == other.outputChannels && useDefaultOutputChannels == other.useDefaultOutputChannels; } AudioDeviceManager::AudioDeviceManager() : currentAudioDevice (0), numInputChansNeeded (0), numOutputChansNeeded (2), lastExplicitSettings (0), listNeedsScanning (true), useInputNames (false), inputLevelMeasurementEnabledCount (0), inputLevel (0), testSound (0), tempBuffer (2, 2), enabledMidiInputs (4), midiCallbacks (4), midiCallbackDevices (4), defaultMidiOutput (0), cpuUsageMs (0), timeToCpuScale (0) { callbackHandler.owner = this; } AudioDeviceManager::~AudioDeviceManager() { deleteAndZero (currentAudioDevice); deleteAndZero (defaultMidiOutput); delete lastExplicitSettings; delete testSound; } void AudioDeviceManager::createDeviceTypesIfNeeded() { if (availableDeviceTypes.size() == 0) { createAudioDeviceTypes (availableDeviceTypes); while (lastDeviceTypeConfigs.size() < availableDeviceTypes.size()) lastDeviceTypeConfigs.add (new AudioDeviceSetup()); if (availableDeviceTypes.size() > 0) currentDeviceType = availableDeviceTypes.getUnchecked(0)->getTypeName(); } } const OwnedArray & AudioDeviceManager::getAvailableDeviceTypes() { scanDevicesIfNeeded(); return availableDeviceTypes; } AudioIODeviceType* juce_createAudioIODeviceType_CoreAudio(); AudioIODeviceType* juce_createAudioIODeviceType_WASAPI(); AudioIODeviceType* juce_createAudioIODeviceType_DirectSound(); AudioIODeviceType* juce_createAudioIODeviceType_ASIO(); AudioIODeviceType* juce_createAudioIODeviceType_ALSA(); void AudioDeviceManager::createAudioDeviceTypes (OwnedArray & list) { #if JUCE_WINDOWS #if JUCE_WASAPI if (SystemStats::getOperatingSystemType() >= SystemStats::WinVista) list.add (juce_createAudioIODeviceType_WASAPI()); #endif #if JUCE_DIRECTSOUND list.add (juce_createAudioIODeviceType_DirectSound()); #endif #if JUCE_ASIO list.add (juce_createAudioIODeviceType_ASIO()); #endif #endif #if JUCE_MAC list.add (juce_createAudioIODeviceType_CoreAudio()); #endif #if JUCE_LINUX && JUCE_ALSA list.add (juce_createAudioIODeviceType_ALSA()); #endif } const String AudioDeviceManager::initialise (const int numInputChannelsNeeded, const int numOutputChannelsNeeded, const XmlElement* const e, const bool selectDefaultDeviceOnFailure, const String& preferredDefaultDeviceName, const AudioDeviceSetup* preferredSetupOptions) { scanDevicesIfNeeded(); numInputChansNeeded = numInputChannelsNeeded; numOutputChansNeeded = numOutputChannelsNeeded; if (e != 0 && e->hasTagName (T("DEVICESETUP"))) { delete lastExplicitSettings; lastExplicitSettings = new XmlElement (*e); String error; AudioDeviceSetup setup; if (preferredSetupOptions != 0) setup = *preferredSetupOptions; if (e->getStringAttribute (T("audioDeviceName")).isNotEmpty()) { setup.inputDeviceName = setup.outputDeviceName = e->getStringAttribute (T("audioDeviceName")); } else { setup.inputDeviceName = e->getStringAttribute (T("audioInputDeviceName")); setup.outputDeviceName = e->getStringAttribute (T("audioOutputDeviceName")); } currentDeviceType = e->getStringAttribute (T("deviceType")); if (currentDeviceType.isEmpty()) { AudioIODeviceType* const type = findType (setup.inputDeviceName, setup.outputDeviceName); if (type != 0) currentDeviceType = type->getTypeName(); else if (availableDeviceTypes.size() > 0) currentDeviceType = availableDeviceTypes[0]->getTypeName(); } setup.bufferSize = e->getIntAttribute (T("audioDeviceBufferSize")); setup.sampleRate = e->getDoubleAttribute (T("audioDeviceRate")); setup.inputChannels.parseString (e->getStringAttribute (T("audioDeviceInChans"), T("11")), 2); setup.outputChannels.parseString (e->getStringAttribute (T("audioDeviceOutChans"), T("11")), 2); setup.useDefaultInputChannels = ! e->hasAttribute (T("audioDeviceInChans")); setup.useDefaultOutputChannels = ! e->hasAttribute (T("audioDeviceOutChans")); error = setAudioDeviceSetup (setup, true); midiInsFromXml.clear(); forEachXmlChildElementWithTagName (*e, c, T("MIDIINPUT")) midiInsFromXml.add (c->getStringAttribute (T("name"))); const StringArray allMidiIns (MidiInput::getDevices()); for (int i = allMidiIns.size(); --i >= 0;) setMidiInputEnabled (allMidiIns[i], midiInsFromXml.contains (allMidiIns[i])); if (error.isNotEmpty() && selectDefaultDeviceOnFailure) error = initialise (numInputChannelsNeeded, numOutputChannelsNeeded, 0, false, preferredDefaultDeviceName); setDefaultMidiOutput (e->getStringAttribute (T("defaultMidiOutput"))); return error; } else { AudioDeviceSetup setup; if (preferredSetupOptions != 0) { setup = *preferredSetupOptions; } else if (preferredDefaultDeviceName.isNotEmpty()) { for (int j = availableDeviceTypes.size(); --j >= 0;) { AudioIODeviceType* const type = availableDeviceTypes.getUnchecked(j); StringArray outs (type->getDeviceNames (false)); int i; for (i = 0; i < outs.size(); ++i) { if (outs[i].matchesWildcard (preferredDefaultDeviceName, true)) { setup.outputDeviceName = outs[i]; break; } } StringArray ins (type->getDeviceNames (true)); for (i = 0; i < ins.size(); ++i) { if (ins[i].matchesWildcard (preferredDefaultDeviceName, true)) { setup.inputDeviceName = ins[i]; break; } } } } insertDefaultDeviceNames (setup); return setAudioDeviceSetup (setup, false); } } void AudioDeviceManager::insertDefaultDeviceNames (AudioDeviceSetup& setup) const { AudioIODeviceType* type = getCurrentDeviceTypeObject(); if (type != 0) { if (setup.outputDeviceName.isEmpty()) setup.outputDeviceName = type->getDeviceNames (false) [type->getDefaultDeviceIndex (false)]; if (setup.inputDeviceName.isEmpty()) setup.inputDeviceName = type->getDeviceNames (true) [type->getDefaultDeviceIndex (true)]; } } XmlElement* AudioDeviceManager::createStateXml() const { return lastExplicitSettings != 0 ? new XmlElement (*lastExplicitSettings) : 0; } void AudioDeviceManager::scanDevicesIfNeeded() { if (listNeedsScanning) { listNeedsScanning = false; createDeviceTypesIfNeeded(); for (int i = availableDeviceTypes.size(); --i >= 0;) availableDeviceTypes.getUnchecked(i)->scanForDevices(); } } AudioIODeviceType* AudioDeviceManager::findType (const String& inputName, const String& outputName) { scanDevicesIfNeeded(); for (int i = availableDeviceTypes.size(); --i >= 0;) { AudioIODeviceType* const type = availableDeviceTypes.getUnchecked(i); if ((inputName.isNotEmpty() && type->getDeviceNames (true).contains (inputName, true)) || (outputName.isNotEmpty() && type->getDeviceNames (false).contains (outputName, true))) { return type; } } return 0; } void AudioDeviceManager::getAudioDeviceSetup (AudioDeviceSetup& setup) { setup = currentSetup; } void AudioDeviceManager::deleteCurrentDevice() { deleteAndZero (currentAudioDevice); currentSetup.inputDeviceName = String::empty; currentSetup.outputDeviceName = String::empty; } void AudioDeviceManager::setCurrentAudioDeviceType (const String& type, const bool treatAsChosenDevice) { for (int i = 0; i < availableDeviceTypes.size(); ++i) { if (availableDeviceTypes.getUnchecked(i)->getTypeName() == type && currentDeviceType != type) { currentDeviceType = type; AudioDeviceSetup s (*lastDeviceTypeConfigs.getUnchecked(i)); insertDefaultDeviceNames (s); setAudioDeviceSetup (s, treatAsChosenDevice); sendChangeMessage (this); break; } } } AudioIODeviceType* AudioDeviceManager::getCurrentDeviceTypeObject() const { for (int i = 0; i < availableDeviceTypes.size(); ++i) if (availableDeviceTypes[i]->getTypeName() == currentDeviceType) return availableDeviceTypes[i]; return availableDeviceTypes[0]; } const String AudioDeviceManager::setAudioDeviceSetup (const AudioDeviceSetup& newSetup, const bool treatAsChosenDevice) { jassert (&newSetup != ¤tSetup); // this will have no effect if (newSetup == currentSetup && currentAudioDevice != 0) return String::empty; if (! (newSetup == currentSetup)) sendChangeMessage (this); stopDevice(); const String newInputDeviceName (numInputChansNeeded == 0 ? String::empty : newSetup.inputDeviceName); const String newOutputDeviceName (numOutputChansNeeded == 0 ? String::empty : newSetup.outputDeviceName); String error; AudioIODeviceType* type = getCurrentDeviceTypeObject(); if (type == 0 || (newInputDeviceName.isEmpty() && newOutputDeviceName.isEmpty())) { deleteCurrentDevice(); if (treatAsChosenDevice) updateXml(); return String::empty; } if (currentSetup.inputDeviceName != newInputDeviceName || currentSetup.outputDeviceName != newOutputDeviceName || currentAudioDevice == 0) { deleteCurrentDevice(); scanDevicesIfNeeded(); if (newOutputDeviceName.isNotEmpty() && ! type->getDeviceNames (false).contains (newOutputDeviceName)) { return "No such device: " + newOutputDeviceName; } if (newInputDeviceName.isNotEmpty() && ! type->getDeviceNames (true).contains (newInputDeviceName)) { return "No such device: " + newInputDeviceName; } currentAudioDevice = type->createDevice (newOutputDeviceName, newInputDeviceName); if (currentAudioDevice == 0) error = "Can't open the audio device!\n\nThis may be because another application is currently using the same device - if so, you should close any other applications and try again!"; else error = currentAudioDevice->getLastError(); if (error.isNotEmpty()) { deleteCurrentDevice(); return error; } if (newSetup.useDefaultInputChannels) { inputChannels.clear(); inputChannels.setRange (0, numInputChansNeeded, true); } if (newSetup.useDefaultOutputChannels) { outputChannels.clear(); outputChannels.setRange (0, numOutputChansNeeded, true); } if (newInputDeviceName.isEmpty()) inputChannels.clear(); if (newOutputDeviceName.isEmpty()) outputChannels.clear(); } if (! newSetup.useDefaultInputChannels) inputChannels = newSetup.inputChannels; if (! newSetup.useDefaultOutputChannels) outputChannels = newSetup.outputChannels; currentSetup = newSetup; currentSetup.sampleRate = chooseBestSampleRate (newSetup.sampleRate); error = currentAudioDevice->open (inputChannels, outputChannels, currentSetup.sampleRate, currentSetup.bufferSize); if (error.isEmpty()) { currentDeviceType = currentAudioDevice->getTypeName(); currentAudioDevice->start (&callbackHandler); currentSetup.sampleRate = currentAudioDevice->getCurrentSampleRate(); currentSetup.bufferSize = currentAudioDevice->getCurrentBufferSizeSamples(); currentSetup.inputChannels = currentAudioDevice->getActiveInputChannels(); currentSetup.outputChannels = currentAudioDevice->getActiveOutputChannels(); for (int i = 0; i < availableDeviceTypes.size(); ++i) if (availableDeviceTypes.getUnchecked (i)->getTypeName() == currentDeviceType) *(lastDeviceTypeConfigs.getUnchecked (i)) = currentSetup; if (treatAsChosenDevice) updateXml(); } else { deleteCurrentDevice(); } return error; } double AudioDeviceManager::chooseBestSampleRate (double rate) const { jassert (currentAudioDevice != 0); if (rate > 0) { bool ok = false; for (int i = currentAudioDevice->getNumSampleRates(); --i >= 0;) { const double sr = currentAudioDevice->getSampleRate (i); if (sr == rate) ok = true; } if (! ok) rate = 0; } if (rate == 0) { double lowestAbove44 = 0.0; for (int i = currentAudioDevice->getNumSampleRates(); --i >= 0;) { const double sr = currentAudioDevice->getSampleRate (i); if (sr >= 44100.0 && (lowestAbove44 == 0 || sr < lowestAbove44)) lowestAbove44 = sr; } if (lowestAbove44 == 0.0) rate = currentAudioDevice->getSampleRate (0); else rate = lowestAbove44; } return rate; } void AudioDeviceManager::stopDevice() { if (currentAudioDevice != 0) currentAudioDevice->stop(); deleteAndZero (testSound); } void AudioDeviceManager::closeAudioDevice() { stopDevice(); deleteAndZero (currentAudioDevice); } void AudioDeviceManager::restartLastAudioDevice() { if (currentAudioDevice == 0) { if (currentSetup.inputDeviceName.isEmpty() && currentSetup.outputDeviceName.isEmpty()) { // This method will only reload the last device that was running // before closeAudioDevice() was called - you need to actually open // one first, with setAudioDevice(). jassertfalse return; } AudioDeviceSetup s (currentSetup); setAudioDeviceSetup (s, false); } } void AudioDeviceManager::updateXml() { delete lastExplicitSettings; lastExplicitSettings = new XmlElement (T("DEVICESETUP")); lastExplicitSettings->setAttribute (T("deviceType"), currentDeviceType); lastExplicitSettings->setAttribute (T("audioOutputDeviceName"), currentSetup.outputDeviceName); lastExplicitSettings->setAttribute (T("audioInputDeviceName"), currentSetup.inputDeviceName); if (currentAudioDevice != 0) { lastExplicitSettings->setAttribute (T("audioDeviceRate"), currentAudioDevice->getCurrentSampleRate()); if (currentAudioDevice->getDefaultBufferSize() != currentAudioDevice->getCurrentBufferSizeSamples()) lastExplicitSettings->setAttribute (T("audioDeviceBufferSize"), currentAudioDevice->getCurrentBufferSizeSamples()); if (! currentSetup.useDefaultInputChannels) lastExplicitSettings->setAttribute (T("audioDeviceInChans"), currentSetup.inputChannels.toString (2)); if (! currentSetup.useDefaultOutputChannels) lastExplicitSettings->setAttribute (T("audioDeviceOutChans"), currentSetup.outputChannels.toString (2)); } for (int i = 0; i < enabledMidiInputs.size(); ++i) { XmlElement* const m = new XmlElement (T("MIDIINPUT")); m->setAttribute (T("name"), enabledMidiInputs[i]->getName()); lastExplicitSettings->addChildElement (m); } if (midiInsFromXml.size() > 0) { // Add any midi devices that have been enabled before, but which aren't currently // open because the device has been disconnected. const StringArray availableMidiDevices (MidiInput::getDevices()); for (int i = 0; i < midiInsFromXml.size(); ++i) { if (! availableMidiDevices.contains (midiInsFromXml[i], true)) { XmlElement* const m = new XmlElement (T("MIDIINPUT")); m->setAttribute (T("name"), midiInsFromXml[i]); lastExplicitSettings->addChildElement (m); } } } if (defaultMidiOutputName.isNotEmpty()) lastExplicitSettings->setAttribute (T("defaultMidiOutput"), defaultMidiOutputName); } void AudioDeviceManager::addAudioCallback (AudioIODeviceCallback* newCallback) { { const ScopedLock sl (audioCallbackLock); if (callbacks.contains (newCallback)) return; } if (currentAudioDevice != 0 && newCallback != 0) newCallback->audioDeviceAboutToStart (currentAudioDevice); const ScopedLock sl (audioCallbackLock); callbacks.add (newCallback); } void AudioDeviceManager::removeAudioCallback (AudioIODeviceCallback* callback) { if (callback != 0) { bool needsDeinitialising = currentAudioDevice != 0; { const ScopedLock sl (audioCallbackLock); needsDeinitialising = needsDeinitialising && callbacks.contains (callback); callbacks.removeValue (callback); } if (needsDeinitialising) callback->audioDeviceStopped(); } } void AudioDeviceManager::audioDeviceIOCallbackInt (const float** inputChannelData, int numInputChannels, float** outputChannelData, int numOutputChannels, int numSamples) { const ScopedLock sl (audioCallbackLock); if (inputLevelMeasurementEnabledCount > 0) { for (int j = 0; j < numSamples; ++j) { float s = 0; for (int i = 0; i < numInputChannels; ++i) s += fabsf (inputChannelData[i][j]); s /= numInputChannels; const double decayFactor = 0.99992; if (s > inputLevel) inputLevel = s; else if (inputLevel > 0.001f) inputLevel *= decayFactor; else inputLevel = 0; } } if (callbacks.size() > 0) { const double callbackStartTime = Time::getMillisecondCounterHiRes(); tempBuffer.setSize (jmax (1, numOutputChannels), jmax (1, numSamples), false, false, true); callbacks.getUnchecked(0)->audioDeviceIOCallback (inputChannelData, numInputChannels, outputChannelData, numOutputChannels, numSamples); float** const tempChans = tempBuffer.getArrayOfChannels(); for (int i = callbacks.size(); --i > 0;) { callbacks.getUnchecked(i)->audioDeviceIOCallback (inputChannelData, numInputChannels, tempChans, numOutputChannels, numSamples); for (int chan = 0; chan < numOutputChannels; ++chan) { const float* const src = tempChans [chan]; float* const dst = outputChannelData [chan]; if (src != 0 && dst != 0) for (int j = 0; j < numSamples; ++j) dst[j] += src[j]; } } const double msTaken = Time::getMillisecondCounterHiRes() - callbackStartTime; const double filterAmount = 0.2; cpuUsageMs += filterAmount * (msTaken - cpuUsageMs); } else { for (int i = 0; i < numOutputChannels; ++i) zeromem (outputChannelData[i], sizeof (float) * numSamples); } if (testSound != 0) { const int numSamps = jmin (numSamples, testSound->getNumSamples() - testSoundPosition); const float* const src = testSound->getSampleData (0, testSoundPosition); for (int i = 0; i < numOutputChannels; ++i) for (int j = 0; j < numSamps; ++j) outputChannelData [i][j] += src[j]; testSoundPosition += numSamps; if (testSoundPosition >= testSound->getNumSamples()) { delete testSound; testSound = 0; } } } void AudioDeviceManager::audioDeviceAboutToStartInt (AudioIODevice* const device) { cpuUsageMs = 0; const double sampleRate = device->getCurrentSampleRate(); const int blockSize = device->getCurrentBufferSizeSamples(); if (sampleRate > 0.0 && blockSize > 0) { const double msPerBlock = 1000.0 * blockSize / sampleRate; timeToCpuScale = (msPerBlock > 0.0) ? (1.0 / msPerBlock) : 0.0; } { const ScopedLock sl (audioCallbackLock); for (int i = callbacks.size(); --i >= 0;) callbacks.getUnchecked(i)->audioDeviceAboutToStart (device); } sendChangeMessage (this); } void AudioDeviceManager::audioDeviceStoppedInt() { cpuUsageMs = 0; timeToCpuScale = 0; sendChangeMessage (this); const ScopedLock sl (audioCallbackLock); for (int i = callbacks.size(); --i >= 0;) callbacks.getUnchecked(i)->audioDeviceStopped(); } double AudioDeviceManager::getCpuUsage() const { return jlimit (0.0, 1.0, timeToCpuScale * cpuUsageMs); } void AudioDeviceManager::setMidiInputEnabled (const String& name, const bool enabled) { if (enabled != isMidiInputEnabled (name)) { if (enabled) { const int index = MidiInput::getDevices().indexOf (name); if (index >= 0) { MidiInput* const min = MidiInput::openDevice (index, &callbackHandler); if (min != 0) { enabledMidiInputs.add (min); min->start(); } } } else { for (int i = enabledMidiInputs.size(); --i >= 0;) if (enabledMidiInputs[i]->getName() == name) enabledMidiInputs.remove (i); } updateXml(); sendChangeMessage (this); } } bool AudioDeviceManager::isMidiInputEnabled (const String& name) const { for (int i = enabledMidiInputs.size(); --i >= 0;) if (enabledMidiInputs[i]->getName() == name) return true; return false; } void AudioDeviceManager::addMidiInputCallback (const String& name, MidiInputCallback* callback) { removeMidiInputCallback (name, callback); if (name.isEmpty()) { midiCallbacks.add (callback); midiCallbackDevices.add (0); } else { for (int i = enabledMidiInputs.size(); --i >= 0;) { if (enabledMidiInputs[i]->getName() == name) { const ScopedLock sl (midiCallbackLock); midiCallbacks.add (callback); midiCallbackDevices.add (enabledMidiInputs[i]); break; } } } } void AudioDeviceManager::removeMidiInputCallback (const String& name, MidiInputCallback* /*callback*/) { const ScopedLock sl (midiCallbackLock); for (int i = midiCallbacks.size(); --i >= 0;) { String devName; if (midiCallbackDevices.getUnchecked(i) != 0) devName = midiCallbackDevices.getUnchecked(i)->getName(); if (devName == name) { midiCallbacks.remove (i); midiCallbackDevices.remove (i); } } } void AudioDeviceManager::handleIncomingMidiMessageInt (MidiInput* source, const MidiMessage& message) { if (! message.isActiveSense()) { const bool isDefaultSource = (source == 0 || source == enabledMidiInputs.getFirst()); const ScopedLock sl (midiCallbackLock); for (int i = midiCallbackDevices.size(); --i >= 0;) { MidiInput* const md = midiCallbackDevices.getUnchecked(i); if (md == source || (md == 0 && isDefaultSource)) midiCallbacks.getUnchecked(i)->handleIncomingMidiMessage (source, message); } } } void AudioDeviceManager::setDefaultMidiOutput (const String& deviceName) { if (defaultMidiOutputName != deviceName) { SortedSet oldCallbacks; { const ScopedLock sl (audioCallbackLock); oldCallbacks = callbacks; callbacks.clear(); } if (currentAudioDevice != 0) for (int i = oldCallbacks.size(); --i >= 0;) oldCallbacks.getUnchecked(i)->audioDeviceStopped(); deleteAndZero (defaultMidiOutput); defaultMidiOutputName = deviceName; if (deviceName.isNotEmpty()) defaultMidiOutput = MidiOutput::openDevice (MidiOutput::getDevices().indexOf (deviceName)); if (currentAudioDevice != 0) for (int i = oldCallbacks.size(); --i >= 0;) oldCallbacks.getUnchecked(i)->audioDeviceAboutToStart (currentAudioDevice); { const ScopedLock sl (audioCallbackLock); callbacks = oldCallbacks; } updateXml(); sendChangeMessage (this); } } void AudioDeviceManager::CallbackHandler::audioDeviceIOCallback (const float** inputChannelData, int numInputChannels, float** outputChannelData, int numOutputChannels, int numSamples) { owner->audioDeviceIOCallbackInt (inputChannelData, numInputChannels, outputChannelData, numOutputChannels, numSamples); } void AudioDeviceManager::CallbackHandler::audioDeviceAboutToStart (AudioIODevice* device) { owner->audioDeviceAboutToStartInt (device); } void AudioDeviceManager::CallbackHandler::audioDeviceStopped() { owner->audioDeviceStoppedInt(); } void AudioDeviceManager::CallbackHandler::handleIncomingMidiMessage (MidiInput* source, const MidiMessage& message) { owner->handleIncomingMidiMessageInt (source, message); } void AudioDeviceManager::playTestSound() { audioCallbackLock.enter(); AudioSampleBuffer* oldSound = testSound; testSound = 0; audioCallbackLock.exit(); delete oldSound; testSoundPosition = 0; if (currentAudioDevice != 0) { const double sampleRate = currentAudioDevice->getCurrentSampleRate(); const int soundLength = (int) sampleRate; AudioSampleBuffer* const newSound = new AudioSampleBuffer (1, soundLength); float* samples = newSound->getSampleData (0); const double frequency = MidiMessage::getMidiNoteInHertz (80); const float amplitude = 0.5f; const double phasePerSample = double_Pi * 2.0 / (sampleRate / frequency); for (int i = 0; i < soundLength; ++i) samples[i] = amplitude * (float) sin (i * phasePerSample); newSound->applyGainRamp (0, 0, soundLength / 10, 0.0f, 1.0f); newSound->applyGainRamp (0, soundLength - soundLength / 4, soundLength / 4, 1.0f, 0.0f); const ScopedLock sl (audioCallbackLock); testSound = newSound; } } void AudioDeviceManager::enableInputLevelMeasurement (const bool enableMeasurement) { const ScopedLock sl (audioCallbackLock); if (enableMeasurement) ++inputLevelMeasurementEnabledCount; else --inputLevelMeasurementEnabledCount; inputLevel = 0; } double AudioDeviceManager::getCurrentInputLevel() const { jassert (inputLevelMeasurementEnabledCount > 0); // you need to call enableInputLevelMeasurement() before using this! return inputLevel; } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioDeviceManager.cpp *********/ /********* Start of inlined file: juce_AudioIODevice.cpp *********/ BEGIN_JUCE_NAMESPACE AudioIODevice::AudioIODevice (const String& deviceName, const String& typeName_) : name (deviceName), typeName (typeName_) { } AudioIODevice::~AudioIODevice() { } bool AudioIODevice::hasControlPanel() const { return false; } bool AudioIODevice::showControlPanel() { jassertfalse // this should only be called for devices which return true from // their hasControlPanel() method. return false; } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioIODevice.cpp *********/ /********* Start of inlined file: juce_AudioIODeviceType.cpp *********/ BEGIN_JUCE_NAMESPACE AudioIODeviceType::AudioIODeviceType (const tchar* const name) : typeName (name) { } AudioIODeviceType::~AudioIODeviceType() { } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioIODeviceType.cpp *********/ /********* Start of inlined file: juce_MidiOutput.cpp *********/ BEGIN_JUCE_NAMESPACE MidiOutput::MidiOutput() throw() : Thread ("midi out"), internal (0), firstMessage (0) { } MidiOutput::PendingMessage::PendingMessage (const uint8* const data, const int len, const double sampleNumber) throw() : message (data, len, sampleNumber) { } void MidiOutput::sendBlockOfMessages (const MidiBuffer& buffer, const double millisecondCounterToStartAt, double samplesPerSecondForBuffer) throw() { // You've got to call startBackgroundThread() for this to actually work.. jassert (isThreadRunning()); // this needs to be a value in the future - RTFM for this method! jassert (millisecondCounterToStartAt > 0); const double timeScaleFactor = 1000.0 / samplesPerSecondForBuffer; MidiBuffer::Iterator i (buffer); const uint8* data; int len, time; while (i.getNextEvent (data, len, time)) { const double eventTime = millisecondCounterToStartAt + timeScaleFactor * time; PendingMessage* const m = new PendingMessage (data, len, eventTime); const ScopedLock sl (lock); if (firstMessage == 0 || firstMessage->message.getTimeStamp() > eventTime) { m->next = firstMessage; firstMessage = m; } else { PendingMessage* mm = firstMessage; while (mm->next != 0 && mm->next->message.getTimeStamp() <= eventTime) mm = mm->next; m->next = mm->next; mm->next = m; } } notify(); } void MidiOutput::clearAllPendingMessages() throw() { const ScopedLock sl (lock); while (firstMessage != 0) { PendingMessage* const m = firstMessage; firstMessage = firstMessage->next; delete m; } } void MidiOutput::startBackgroundThread() throw() { startThread (9); } void MidiOutput::stopBackgroundThread() throw() { stopThread (5000); } void MidiOutput::run() { while (! threadShouldExit()) { uint32 now = Time::getMillisecondCounter(); uint32 eventTime = 0; uint32 timeToWait = 500; lock.enter(); PendingMessage* message = firstMessage; if (message != 0) { eventTime = roundDoubleToInt (message->message.getTimeStamp()); if (eventTime > now + 20) { timeToWait = jmax (10, eventTime - now - 100); message = 0; } else { firstMessage = message->next; } } lock.exit(); if (message != 0) { if (eventTime > now) { Time::waitForMillisecondCounter (eventTime); if (threadShouldExit()) break; } if (eventTime > now - 200) sendMessageNow (message->message); delete message; } else { jassert (timeToWait < 1000 * 30); wait (timeToWait); } } clearAllPendingMessages(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_MidiOutput.cpp *********/ /********* Start of inlined file: juce_AudioDataConverters.cpp *********/ BEGIN_JUCE_NAMESPACE void AudioDataConverters::convertFloatToInt16LE (const float* source, void* dest, int numSamples, const int destBytesPerSample) { const double maxVal = (double) 0x7fff; char* intData = (char*) dest; if (dest != (void*) source || destBytesPerSample <= 4) { for (int i = 0; i < numSamples; ++i) { *(uint16*)intData = swapIfBigEndian ((uint16) (short) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * source[i]))); intData += destBytesPerSample; } } else { intData += destBytesPerSample * numSamples; for (int i = numSamples; --i >= 0;) { intData -= destBytesPerSample; *(uint16*)intData = swapIfBigEndian ((uint16) (short) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * source[i]))); } } } void AudioDataConverters::convertFloatToInt16BE (const float* source, void* dest, int numSamples, const int destBytesPerSample) { const double maxVal = (double) 0x7fff; char* intData = (char*) dest; if (dest != (void*) source || destBytesPerSample <= 4) { for (int i = 0; i < numSamples; ++i) { *(uint16*)intData = swapIfLittleEndian ((uint16) (short) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * source[i]))); intData += destBytesPerSample; } } else { intData += destBytesPerSample * numSamples; for (int i = numSamples; --i >= 0;) { intData -= destBytesPerSample; *(uint16*)intData = swapIfLittleEndian ((uint16) (short) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * source[i]))); } } } void AudioDataConverters::convertFloatToInt24LE (const float* source, void* dest, int numSamples, const int destBytesPerSample) { const double maxVal = (double) 0x7fffff; char* intData = (char*) dest; if (dest != (void*) source || destBytesPerSample <= 4) { for (int i = 0; i < numSamples; ++i) { littleEndian24BitToChars ((uint32) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * source[i])), intData); intData += destBytesPerSample; } } else { intData += destBytesPerSample * numSamples; for (int i = numSamples; --i >= 0;) { intData -= destBytesPerSample; littleEndian24BitToChars ((uint32) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * source[i])), intData); } } } void AudioDataConverters::convertFloatToInt24BE (const float* source, void* dest, int numSamples, const int destBytesPerSample) { const double maxVal = (double) 0x7fffff; char* intData = (char*) dest; if (dest != (void*) source || destBytesPerSample <= 4) { for (int i = 0; i < numSamples; ++i) { bigEndian24BitToChars ((uint32) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * source[i])), intData); intData += destBytesPerSample; } } else { intData += destBytesPerSample * numSamples; for (int i = numSamples; --i >= 0;) { intData -= destBytesPerSample; bigEndian24BitToChars ((uint32) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * source[i])), intData); } } } void AudioDataConverters::convertFloatToInt32LE (const float* source, void* dest, int numSamples, const int destBytesPerSample) { const double maxVal = (double) 0x7fffffff; char* intData = (char*) dest; if (dest != (void*) source || destBytesPerSample <= 4) { for (int i = 0; i < numSamples; ++i) { *(uint32*)intData = swapIfBigEndian ((uint32) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * source[i]))); intData += destBytesPerSample; } } else { intData += destBytesPerSample * numSamples; for (int i = numSamples; --i >= 0;) { intData -= destBytesPerSample; *(uint32*)intData = swapIfBigEndian ((uint32) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * source[i]))); } } } void AudioDataConverters::convertFloatToInt32BE (const float* source, void* dest, int numSamples, const int destBytesPerSample) { const double maxVal = (double) 0x7fffffff; char* intData = (char*) dest; if (dest != (void*) source || destBytesPerSample <= 4) { for (int i = 0; i < numSamples; ++i) { *(uint32*)intData = swapIfLittleEndian ((uint32) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * source[i]))); intData += destBytesPerSample; } } else { intData += destBytesPerSample * numSamples; for (int i = numSamples; --i >= 0;) { intData -= destBytesPerSample; *(uint32*)intData = swapIfLittleEndian ((uint32) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * source[i]))); } } } void AudioDataConverters::convertFloatToFloat32LE (const float* source, void* dest, int numSamples, const int destBytesPerSample) { jassert (dest != (void*) source || destBytesPerSample <= 4); // This op can't be performed on in-place data! char* d = (char*) dest; for (int i = 0; i < numSamples; ++i) { *(float*)d = source[i]; #if JUCE_BIG_ENDIAN *(uint32*)d = swapByteOrder (*(uint32*)d); #endif d += destBytesPerSample; } } void AudioDataConverters::convertFloatToFloat32BE (const float* source, void* dest, int numSamples, const int destBytesPerSample) { jassert (dest != (void*) source || destBytesPerSample <= 4); // This op can't be performed on in-place data! char* d = (char*) dest; for (int i = 0; i < numSamples; ++i) { *(float*)d = source[i]; #if JUCE_LITTLE_ENDIAN *(uint32*)d = swapByteOrder (*(uint32*)d); #endif d += destBytesPerSample; } } void AudioDataConverters::convertInt16LEToFloat (const void* const source, float* const dest, int numSamples, const int srcBytesPerSample) { const float scale = 1.0f / 0x7fff; const char* intData = (const char*) source; if (source != (void*) dest || srcBytesPerSample >= 4) { for (int i = 0; i < numSamples; ++i) { dest[i] = scale * (short) swapIfBigEndian (*(uint16*)intData); intData += srcBytesPerSample; } } else { intData += srcBytesPerSample * numSamples; for (int i = numSamples; --i >= 0;) { intData -= srcBytesPerSample; dest[i] = scale * (short) swapIfBigEndian (*(uint16*)intData); } } } void AudioDataConverters::convertInt16BEToFloat (const void* const source, float* const dest, int numSamples, const int srcBytesPerSample) { const float scale = 1.0f / 0x7fff; const char* intData = (const char*) source; if (source != (void*) dest || srcBytesPerSample >= 4) { for (int i = 0; i < numSamples; ++i) { dest[i] = scale * (short) swapIfLittleEndian (*(uint16*)intData); intData += srcBytesPerSample; } } else { intData += srcBytesPerSample * numSamples; for (int i = numSamples; --i >= 0;) { intData -= srcBytesPerSample; dest[i] = scale * (short) swapIfLittleEndian (*(uint16*)intData); } } } void AudioDataConverters::convertInt24LEToFloat (const void* const source, float* const dest, int numSamples, const int srcBytesPerSample) { const float scale = 1.0f / 0x7fffff; const char* intData = (const char*) source; if (source != (void*) dest || srcBytesPerSample >= 4) { for (int i = 0; i < numSamples; ++i) { dest[i] = scale * (short) littleEndian24Bit (intData); intData += srcBytesPerSample; } } else { intData += srcBytesPerSample * numSamples; for (int i = numSamples; --i >= 0;) { intData -= srcBytesPerSample; dest[i] = scale * (short) littleEndian24Bit (intData); } } } void AudioDataConverters::convertInt24BEToFloat (const void* const source, float* const dest, int numSamples, const int srcBytesPerSample) { const float scale = 1.0f / 0x7fffff; const char* intData = (const char*) source; if (source != (void*) dest || srcBytesPerSample >= 4) { for (int i = 0; i < numSamples; ++i) { dest[i] = scale * (short) bigEndian24Bit (intData); intData += srcBytesPerSample; } } else { intData += srcBytesPerSample * numSamples; for (int i = numSamples; --i >= 0;) { intData -= srcBytesPerSample; dest[i] = scale * (short) bigEndian24Bit (intData); } } } void AudioDataConverters::convertInt32LEToFloat (const void* const source, float* const dest, int numSamples, const int srcBytesPerSample) { const float scale = 1.0f / 0x7fffffff; const char* intData = (const char*) source; if (source != (void*) dest || srcBytesPerSample >= 4) { for (int i = 0; i < numSamples; ++i) { dest[i] = scale * (int) swapIfBigEndian (*(uint32*) intData); intData += srcBytesPerSample; } } else { intData += srcBytesPerSample * numSamples; for (int i = numSamples; --i >= 0;) { intData -= srcBytesPerSample; dest[i] = scale * (int) swapIfBigEndian (*(uint32*) intData); } } } void AudioDataConverters::convertInt32BEToFloat (const void* const source, float* const dest, int numSamples, const int srcBytesPerSample) { const float scale = 1.0f / 0x7fffffff; const char* intData = (const char*) source; if (source != (void*) dest || srcBytesPerSample >= 4) { for (int i = 0; i < numSamples; ++i) { dest[i] = scale * (int) (swapIfLittleEndian (*(uint32*) intData)); intData += srcBytesPerSample; } } else { intData += srcBytesPerSample * numSamples; for (int i = numSamples; --i >= 0;) { intData -= srcBytesPerSample; dest[i] = scale * (int) (swapIfLittleEndian (*(uint32*) intData)); } } } void AudioDataConverters::convertFloat32LEToFloat (const void* const source, float* const dest, int numSamples, const int srcBytesPerSample) { const char* s = (const char*) source; for (int i = 0; i < numSamples; ++i) { dest[i] = *(float*)s; #if JUCE_BIG_ENDIAN uint32* const d = (uint32*) (dest + i); *d = swapByteOrder (*d); #endif s += srcBytesPerSample; } } void AudioDataConverters::convertFloat32BEToFloat (const void* const source, float* const dest, int numSamples, const int srcBytesPerSample) { const char* s = (const char*) source; for (int i = 0; i < numSamples; ++i) { dest[i] = *(float*)s; #if JUCE_LITTLE_ENDIAN uint32* const d = (uint32*) (dest + i); *d = swapByteOrder (*d); #endif s += srcBytesPerSample; } } void AudioDataConverters::convertFloatToFormat (const DataFormat destFormat, const float* const source, void* const dest, const int numSamples) { switch (destFormat) { case int16LE: convertFloatToInt16LE (source, dest, numSamples); break; case int16BE: convertFloatToInt16BE (source, dest, numSamples); break; case int24LE: convertFloatToInt24LE (source, dest, numSamples); break; case int24BE: convertFloatToInt24BE (source, dest, numSamples); break; case int32LE: convertFloatToInt32LE (source, dest, numSamples); break; case int32BE: convertFloatToInt32BE (source, dest, numSamples); break; case float32LE: convertFloatToFloat32LE (source, dest, numSamples); break; case float32BE: convertFloatToFloat32BE (source, dest, numSamples); break; default: jassertfalse break; } } void AudioDataConverters::convertFormatToFloat (const DataFormat sourceFormat, const void* const source, float* const dest, const int numSamples) { switch (sourceFormat) { case int16LE: convertInt16LEToFloat (source, dest, numSamples); break; case int16BE: convertInt16BEToFloat (source, dest, numSamples); break; case int24LE: convertInt24LEToFloat (source, dest, numSamples); break; case int24BE: convertInt24BEToFloat (source, dest, numSamples); break; case int32LE: convertInt32LEToFloat (source, dest, numSamples); break; case int32BE: convertInt32BEToFloat (source, dest, numSamples); break; case float32LE: convertFloat32LEToFloat (source, dest, numSamples); break; case float32BE: convertFloat32BEToFloat (source, dest, numSamples); break; default: jassertfalse break; } } void AudioDataConverters::interleaveSamples (const float** const source, float* const dest, const int numSamples, const int numChannels) { for (int chan = 0; chan < numChannels; ++chan) { int i = chan; const float* src = source [chan]; for (int j = 0; j < numSamples; ++j) { dest [i] = src [j]; i += numChannels; } } } void AudioDataConverters::deinterleaveSamples (const float* const source, float** const dest, const int numSamples, const int numChannels) { for (int chan = 0; chan < numChannels; ++chan) { int i = chan; float* dst = dest [chan]; for (int j = 0; j < numSamples; ++j) { dst [j] = source [i]; i += numChannels; } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioDataConverters.cpp *********/ /********* Start of inlined file: juce_AudioSampleBuffer.cpp *********/ BEGIN_JUCE_NAMESPACE AudioSampleBuffer::AudioSampleBuffer (const int numChannels_, const int numSamples) throw() : numChannels (numChannels_), size (numSamples) { jassert (numSamples >= 0); jassert (numChannels_ > 0); allocatedBytes = numChannels * numSamples * sizeof (float) + 32; allocatedData = (float*) juce_malloc (allocatedBytes); channels = (float**) juce_malloc ((numChannels_ + 1) * sizeof (float*)); float* chan = allocatedData; for (int i = 0; i < numChannels_; ++i) { channels[i] = chan; chan += numSamples; } channels [numChannels_] = 0; } AudioSampleBuffer::AudioSampleBuffer (float** dataToReferTo, const int numChannels_, const int numSamples) throw() : numChannels (numChannels_), size (numSamples), allocatedBytes (0), allocatedData (0) { jassert (numChannels_ > 0); // (try to avoid doing a malloc here, as that'll blow up things like Pro-Tools) if (numChannels_ < numElementsInArray (preallocatedChannelSpace)) channels = (float**) preallocatedChannelSpace; else channels = (float**) juce_malloc ((numChannels_ + 1) * sizeof (float*)); for (int i = 0; i < numChannels_; ++i) { // you have to pass in the same number of valid pointers as numChannels jassert (dataToReferTo[i] != 0); channels[i] = dataToReferTo[i]; } channels [numChannels_] = 0; } void AudioSampleBuffer::setDataToReferTo (float** dataToReferTo, const int numChannels_, const int numSamples) throw() { jassert (numChannels_ > 0); juce_free (allocatedData); allocatedData = 0; allocatedBytes = 0; if (numChannels_ > numChannels) channels = (float**) juce_realloc (channels, (numChannels_ + 1) * sizeof (float*)); numChannels = numChannels_; size = numSamples; for (int i = 0; i < numChannels_; ++i) { // you have to pass in the same number of valid pointers as numChannels jassert (dataToReferTo[i] != 0); channels[i] = dataToReferTo[i]; } channels [numChannels_] = 0; } AudioSampleBuffer::AudioSampleBuffer (const AudioSampleBuffer& other) throw() : numChannels (other.numChannels), size (other.size) { channels = (float**) juce_malloc ((other.numChannels + 1) * sizeof (float*)); if (other.allocatedData != 0) { allocatedBytes = numChannels * size * sizeof (float) + 32; allocatedData = (float*) juce_malloc (allocatedBytes); memcpy (allocatedData, other.allocatedData, allocatedBytes); float* chan = allocatedData; for (int i = 0; i < numChannels; ++i) { channels[i] = chan; chan += size; } channels [numChannels] = 0; } else { allocatedData = 0; allocatedBytes = 0; memcpy (channels, other.channels, sizeof (channels)); } } const AudioSampleBuffer& AudioSampleBuffer::operator= (const AudioSampleBuffer& other) throw() { if (this != &other) { setSize (other.getNumChannels(), other.getNumSamples(), false, false, false); const int numBytes = size * sizeof (float); for (int i = 0; i < numChannels; ++i) memcpy (channels[i], other.channels[i], numBytes); } return *this; } AudioSampleBuffer::~AudioSampleBuffer() throw() { juce_free (allocatedData); if (channels != (float**) preallocatedChannelSpace) juce_free (channels); } void AudioSampleBuffer::setSize (const int newNumChannels, const int newNumSamples, const bool keepExistingContent, const bool clearExtraSpace, const bool avoidReallocating) throw() { jassert (newNumChannels > 0); if (newNumSamples != size || newNumChannels != numChannels) { const int newTotalBytes = newNumChannels * newNumSamples * sizeof (float) + 32; if (keepExistingContent) { float* const newData = (clearExtraSpace) ? (float*) juce_calloc (newTotalBytes) : (float*) juce_malloc (newTotalBytes); const int sizeToCopy = sizeof (float) * jmin (newNumSamples, size); for (int i = jmin (newNumChannels, numChannels); --i >= 0;) { memcpy (newData + i * newNumSamples, channels[i], sizeToCopy); } juce_free (allocatedData); allocatedData = newData; allocatedBytes = newTotalBytes; } else { if (avoidReallocating && allocatedBytes >= newTotalBytes) { if (clearExtraSpace) zeromem (allocatedData, newTotalBytes); } else { juce_free (allocatedData); allocatedData = (clearExtraSpace) ? (float*) juce_calloc (newTotalBytes) : (float*) juce_malloc (newTotalBytes); allocatedBytes = newTotalBytes; } } size = newNumSamples; if (newNumChannels > numChannels) channels = (float**) juce_realloc (channels, (newNumChannels + 1) * sizeof (float*)); numChannels = newNumChannels; float* chan = allocatedData; for (int i = 0; i < newNumChannels; ++i) { channels[i] = chan; chan += size; } channels [newNumChannels] = 0; } } void AudioSampleBuffer::clear() throw() { for (int i = 0; i < numChannels; ++i) zeromem (channels[i], size * sizeof (float)); } void AudioSampleBuffer::clear (const int startSample, const int numSamples) throw() { jassert (startSample >= 0 && startSample + numSamples <= size); for (int i = 0; i < numChannels; ++i) zeromem (channels [i] + startSample, numSamples * sizeof (float)); } void AudioSampleBuffer::clear (const int channel, const int startSample, const int numSamples) throw() { jassert (((unsigned int) channel) < (unsigned int) numChannels); jassert (startSample >= 0 && startSample + numSamples <= size); zeromem (channels [channel] + startSample, numSamples * sizeof (float)); } void AudioSampleBuffer::applyGain (const int channel, const int startSample, int numSamples, const float gain) throw() { jassert (((unsigned int) channel) < (unsigned int) numChannels); jassert (startSample >= 0 && startSample + numSamples <= size); if (gain != 1.0f) { float* d = channels [channel] + startSample; if (gain == 0.0f) { zeromem (d, sizeof (float) * numSamples); } else { while (--numSamples >= 0) *d++ *= gain; } } } void AudioSampleBuffer::applyGainRamp (const int channel, const int startSample, int numSamples, float startGain, float endGain) throw() { if (startGain == endGain) { applyGain (channel, startSample, numSamples, startGain); } else { jassert (((unsigned int) channel) < (unsigned int) numChannels); jassert (startSample >= 0 && startSample + numSamples <= size); const float increment = (endGain - startGain) / numSamples; float* d = channels [channel] + startSample; while (--numSamples >= 0) { *d++ *= startGain; startGain += increment; } } } void AudioSampleBuffer::applyGain (const int startSample, const int numSamples, const float gain) throw() { for (int i = 0; i < numChannels; ++i) applyGain (i, startSample, numSamples, gain); } void AudioSampleBuffer::addFrom (const int destChannel, const int destStartSample, const AudioSampleBuffer& source, const int sourceChannel, const int sourceStartSample, int numSamples, const float gain) throw() { jassert (&source != this || sourceChannel != destChannel); jassert (((unsigned int) destChannel) < (unsigned int) numChannels); jassert (destStartSample >= 0 && destStartSample + numSamples <= size); jassert (((unsigned int) sourceChannel) < (unsigned int) source.numChannels); jassert (sourceStartSample >= 0 && sourceStartSample + numSamples <= source.size); if (gain != 0.0f && numSamples > 0) { float* d = channels [destChannel] + destStartSample; const float* s = source.channels [sourceChannel] + sourceStartSample; if (gain != 1.0f) { while (--numSamples >= 0) *d++ += gain * *s++; } else { while (--numSamples >= 0) *d++ += *s++; } } } void AudioSampleBuffer::addFrom (const int destChannel, const int destStartSample, const float* source, int numSamples, const float gain) throw() { jassert (((unsigned int) destChannel) < (unsigned int) numChannels); jassert (destStartSample >= 0 && destStartSample + numSamples <= size); jassert (source != 0); if (gain != 0.0f && numSamples > 0) { float* d = channels [destChannel] + destStartSample; if (gain != 1.0f) { while (--numSamples >= 0) *d++ += gain * *source++; } else { while (--numSamples >= 0) *d++ += *source++; } } } void AudioSampleBuffer::addFromWithRamp (const int destChannel, const int destStartSample, const float* source, int numSamples, float startGain, const float endGain) throw() { jassert (((unsigned int) destChannel) < (unsigned int) numChannels); jassert (destStartSample >= 0 && destStartSample + numSamples <= size); jassert (source != 0); if (startGain == endGain) { addFrom (destChannel, destStartSample, source, numSamples, startGain); } else { if (numSamples > 0 && (startGain != 0.0f || endGain != 0.0f)) { const float increment = (endGain - startGain) / numSamples; float* d = channels [destChannel] + destStartSample; while (--numSamples >= 0) { *d++ += startGain * *source++; startGain += increment; } } } } void AudioSampleBuffer::copyFrom (const int destChannel, const int destStartSample, const AudioSampleBuffer& source, const int sourceChannel, const int sourceStartSample, int numSamples) throw() { jassert (&source != this || sourceChannel != destChannel); jassert (((unsigned int) destChannel) < (unsigned int) numChannels); jassert (destStartSample >= 0 && destStartSample + numSamples <= size); jassert (((unsigned int) sourceChannel) < (unsigned int) source.numChannels); jassert (sourceStartSample >= 0 && sourceStartSample + numSamples <= source.size); if (numSamples > 0) { memcpy (channels [destChannel] + destStartSample, source.channels [sourceChannel] + sourceStartSample, sizeof (float) * numSamples); } } void AudioSampleBuffer::copyFrom (const int destChannel, const int destStartSample, const float* source, int numSamples) throw() { jassert (((unsigned int) destChannel) < (unsigned int) numChannels); jassert (destStartSample >= 0 && destStartSample + numSamples <= size); jassert (source != 0); if (numSamples > 0) { memcpy (channels [destChannel] + destStartSample, source, sizeof (float) * numSamples); } } void AudioSampleBuffer::copyFrom (const int destChannel, const int destStartSample, const float* source, int numSamples, const float gain) throw() { jassert (((unsigned int) destChannel) < (unsigned int) numChannels); jassert (destStartSample >= 0 && destStartSample + numSamples <= size); jassert (source != 0); if (numSamples > 0 && gain != 0) { float* d = channels [destChannel] + destStartSample; if (gain != 1.0f) { while (--numSamples >= 0) *d++ = gain * *source++; } else { memcpy (d, source, sizeof (float) * numSamples); } } } void AudioSampleBuffer::copyFromWithRamp (const int destChannel, const int destStartSample, const float* source, int numSamples, float startGain, float endGain) throw() { jassert (((unsigned int) destChannel) < (unsigned int) numChannels); jassert (destStartSample >= 0 && destStartSample + numSamples <= size); jassert (source != 0); if (startGain == endGain) { copyFrom (destChannel, destStartSample, source, numSamples, startGain); } else { if (numSamples > 0 && (startGain != 0.0f || endGain != 0.0f)) { const float increment = (endGain - startGain) / numSamples; float* d = channels [destChannel] + destStartSample; while (--numSamples >= 0) { *d++ = startGain * *source++; startGain += increment; } } } } void AudioSampleBuffer::findMinMax (const int channel, const int startSample, int numSamples, float& minVal, float& maxVal) const throw() { jassert (((unsigned int) channel) < (unsigned int) numChannels); jassert (startSample >= 0 && startSample + numSamples <= size); if (numSamples <= 0) { minVal = 0.0f; maxVal = 0.0f; } else { const float* d = channels [channel] + startSample; float mn = *d++; float mx = mn; while (--numSamples > 0) // (> 0 rather than >= 0 because we've already taken the first sample) { const float samp = *d++; if (samp > mx) mx = samp; if (samp < mn) mn = samp; } maxVal = mx; minVal = mn; } } float AudioSampleBuffer::getMagnitude (const int channel, const int startSample, const int numSamples) const throw() { jassert (((unsigned int) channel) < (unsigned int) numChannels); jassert (startSample >= 0 && startSample + numSamples <= size); float mn, mx; findMinMax (channel, startSample, numSamples, mn, mx); return jmax (mn, -mn, mx, -mx); } float AudioSampleBuffer::getMagnitude (const int startSample, const int numSamples) const throw() { float mag = 0.0f; for (int i = 0; i < numChannels; ++i) mag = jmax (mag, getMagnitude (i, startSample, numSamples)); return mag; } float AudioSampleBuffer::getRMSLevel (const int channel, const int startSample, const int numSamples) const throw() { jassert (((unsigned int) channel) < (unsigned int) numChannels); jassert (startSample >= 0 && startSample + numSamples <= size); if (numSamples <= 0 || channel < 0 || channel >= numChannels) return 0.0f; const float* const data = channels [channel] + startSample; double sum = 0.0; for (int i = 0; i < numSamples; ++i) { const float sample = data [i]; sum += sample * sample; } return (float) sqrt (sum / numSamples); } void AudioSampleBuffer::readFromAudioReader (AudioFormatReader* reader, const int startSample, const int numSamples, const int readerStartSample, const bool useLeftChan, const bool useRightChan) throw() { jassert (reader != 0); jassert (startSample >= 0 && startSample + numSamples <= size); if (numSamples > 0) { int* chans[3]; if (useLeftChan == useRightChan) { chans[0] = (int*) getSampleData (0, startSample); chans[1] = (reader->numChannels > 1 && getNumChannels() > 1) ? (int*) getSampleData (1, startSample) : 0; } else if (useLeftChan || (reader->numChannels == 1)) { chans[0] = (int*) getSampleData (0, startSample); chans[1] = 0; } else if (useRightChan) { chans[0] = 0; chans[1] = (int*) getSampleData (0, startSample); } chans[2] = 0; reader->read (chans, 2, readerStartSample, numSamples, true); if (! reader->usesFloatingPointData) { for (int j = 0; j < 2; ++j) { float* const d = (float*) (chans[j]); if (d != 0) { const float multiplier = 1.0f / 0x7fffffff; for (int i = 0; i < numSamples; ++i) d[i] = *(int*)(d + i) * multiplier; } } } if (numChannels > 1 && (chans[0] == 0 || chans[1] == 0)) { // if this is a stereo buffer and the source was mono, dupe the first channel.. memcpy (getSampleData (1, startSample), getSampleData (0, startSample), sizeof (float) * numSamples); } } } void AudioSampleBuffer::writeToAudioWriter (AudioFormatWriter* writer, const int startSample, const int numSamples) const throw() { jassert (startSample >= 0 && startSample + numSamples <= size); if (numSamples > 0) { int* chans [3]; if (writer->isFloatingPoint()) { chans[0] = (int*) getSampleData (0, startSample); if (numChannels > 1) chans[1] = (int*) getSampleData (1, startSample); else chans[1] = 0; chans[2] = 0; writer->write ((const int**) chans, numSamples); } else { chans[0] = (int*) juce_malloc (sizeof (int) * numSamples * 2); if (numChannels > 1) chans[1] = chans[0] + numSamples; else chans[1] = 0; chans[2] = 0; for (int j = 0; j < 2; ++j) { int* const dest = chans[j]; if (dest != 0) { const float* const src = channels [j] + startSample; for (int i = 0; i < numSamples; ++i) { const double samp = src[i]; if (samp <= -1.0) dest[i] = INT_MIN; else if (samp >= 1.0) dest[i] = INT_MAX; else dest[i] = roundDoubleToInt (INT_MAX * samp); } } } writer->write ((const int**) chans, numSamples); juce_free (chans[0]); } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioSampleBuffer.cpp *********/ /********* Start of inlined file: juce_IIRFilter.cpp *********/ BEGIN_JUCE_NAMESPACE IIRFilter::IIRFilter() throw() : active (false) { reset(); } IIRFilter::IIRFilter (const IIRFilter& other) throw() : active (other.active) { const ScopedLock sl (other.processLock); memcpy (coefficients, other.coefficients, sizeof (coefficients)); reset(); } IIRFilter::~IIRFilter() throw() { } void IIRFilter::reset() throw() { const ScopedLock sl (processLock); x1 = 0; x2 = 0; y1 = 0; y2 = 0; } float IIRFilter::processSingleSampleRaw (const float in) throw() { float out = coefficients[0] * in + coefficients[1] * x1 + coefficients[2] * x2 - coefficients[4] * y1 - coefficients[5] * y2; #if JUCE_INTEL if (! (out < -1.0e-8 || out > 1.0e-8)) out = 0; #endif x2 = x1; x1 = in; y2 = y1; y1 = out; return out; } void IIRFilter::processSamples (float* const samples, const int numSamples) throw() { const ScopedLock sl (processLock); if (active) { for (int i = 0; i < numSamples; ++i) { const float in = samples[i]; float out = coefficients[0] * in + coefficients[1] * x1 + coefficients[2] * x2 - coefficients[4] * y1 - coefficients[5] * y2; #if JUCE_INTEL if (! (out < -1.0e-8 || out > 1.0e-8)) out = 0; #endif x2 = x1; x1 = in; y2 = y1; y1 = out; samples[i] = out; } } } void IIRFilter::makeLowPass (const double sampleRate, const double frequency) throw() { jassert (sampleRate > 0); const double n = 1.0 / tan (double_Pi * frequency / sampleRate); const double nSquared = n * n; const double c1 = 1.0 / (1.0 + sqrt (2.0) * n + nSquared); setCoefficients (c1, c1 * 2.0f, c1, 1.0, c1 * 2.0 * (1.0 - nSquared), c1 * (1.0 - sqrt (2.0) * n + nSquared)); } void IIRFilter::makeHighPass (const double sampleRate, const double frequency) throw() { const double n = tan (double_Pi * frequency / sampleRate); const double nSquared = n * n; const double c1 = 1.0 / (1.0 + sqrt (2.0) * n + nSquared); setCoefficients (c1, c1 * -2.0f, c1, 1.0, c1 * 2.0 * (nSquared - 1.0), c1 * (1.0 - sqrt (2.0) * n + nSquared)); } void IIRFilter::makeLowShelf (const double sampleRate, const double cutOffFrequency, const double Q, const float gainFactor) throw() { jassert (sampleRate > 0); jassert (Q > 0); const double A = jmax (0.0f, gainFactor); const double aminus1 = A - 1.0; const double aplus1 = A + 1.0; const double omega = (double_Pi * 2.0 * jmax (cutOffFrequency, 2.0)) / sampleRate; const double coso = cos (omega); const double beta = sin (omega) * sqrt (A) / Q; const double aminus1TimesCoso = aminus1 * coso; setCoefficients (A * (aplus1 - aminus1TimesCoso + beta), A * 2.0 * (aminus1 - aplus1 * coso), A * (aplus1 - aminus1TimesCoso - beta), aplus1 + aminus1TimesCoso + beta, -2.0 * (aminus1 + aplus1 * coso), aplus1 + aminus1TimesCoso - beta); } void IIRFilter::makeHighShelf (const double sampleRate, const double cutOffFrequency, const double Q, const float gainFactor) throw() { jassert (sampleRate > 0); jassert (Q > 0); const double A = jmax (0.0f, gainFactor); const double aminus1 = A - 1.0; const double aplus1 = A + 1.0; const double omega = (double_Pi * 2.0 * jmax (cutOffFrequency, 2.0)) / sampleRate; const double coso = cos (omega); const double beta = sin (omega) * sqrt (A) / Q; const double aminus1TimesCoso = aminus1 * coso; setCoefficients (A * (aplus1 + aminus1TimesCoso + beta), A * -2.0 * (aminus1 + aplus1 * coso), A * (aplus1 + aminus1TimesCoso - beta), aplus1 - aminus1TimesCoso + beta, 2.0 * (aminus1 - aplus1 * coso), aplus1 - aminus1TimesCoso - beta); } void IIRFilter::makeBandPass (const double sampleRate, const double centreFrequency, const double Q, const float gainFactor) throw() { jassert (sampleRate > 0); jassert (Q > 0); const double A = jmax (0.0f, gainFactor); const double omega = (double_Pi * 2.0 * jmax (centreFrequency, 2.0)) / sampleRate; const double alpha = 0.5 * sin (omega) / Q; const double c2 = -2.0 * cos (omega); const double alphaTimesA = alpha * A; const double alphaOverA = alpha / A; setCoefficients (1.0 + alphaTimesA, c2, 1.0 - alphaTimesA, 1.0 + alphaOverA, c2, 1.0 - alphaOverA); } void IIRFilter::makeInactive() throw() { const ScopedLock sl (processLock); active = false; } void IIRFilter::copyCoefficientsFrom (const IIRFilter& other) throw() { const ScopedLock sl (processLock); memcpy (coefficients, other.coefficients, sizeof (coefficients)); active = other.active; } void IIRFilter::setCoefficients (double c1, double c2, double c3, double c4, double c5, double c6) throw() { const double a = 1.0 / c4; c1 *= a; c2 *= a; c3 *= a; c5 *= a; c6 *= a; const ScopedLock sl (processLock); coefficients[0] = (float) c1; coefficients[1] = (float) c2; coefficients[2] = (float) c3; coefficients[3] = (float) c4; coefficients[4] = (float) c5; coefficients[5] = (float) c6; active = true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_IIRFilter.cpp *********/ /********* Start of inlined file: juce_MidiBuffer.cpp *********/ BEGIN_JUCE_NAMESPACE MidiBuffer::MidiBuffer() throw() : ArrayAllocationBase (32), bytesUsed (0) { } MidiBuffer::MidiBuffer (const MidiMessage& message) throw() : ArrayAllocationBase (32), bytesUsed (0) { addEvent (message, 0); } MidiBuffer::MidiBuffer (const MidiBuffer& other) throw() : ArrayAllocationBase (32), bytesUsed (other.bytesUsed) { ensureAllocatedSize (bytesUsed); memcpy (elements, other.elements, bytesUsed); } const MidiBuffer& MidiBuffer::operator= (const MidiBuffer& other) throw() { if (this != &other) { bytesUsed = other.bytesUsed; ensureAllocatedSize (bytesUsed); if (bytesUsed > 0) memcpy (elements, other.elements, bytesUsed); } return *this; } void MidiBuffer::swap (MidiBuffer& other) { swapVariables (this->elements, other.elements); swapVariables (this->numAllocated, other.numAllocated); swapVariables (this->bytesUsed, other.bytesUsed); } MidiBuffer::~MidiBuffer() throw() { } void MidiBuffer::clear() throw() { bytesUsed = 0; } void MidiBuffer::clear (const int startSample, const int numSamples) throw() { uint8* const start = findEventAfter (elements, startSample - 1); uint8* const end = findEventAfter (start, startSample + numSamples - 1); if (end > start) { const size_t bytesToMove = (size_t) (bytesUsed - (end - elements)); if (bytesToMove > 0) memmove (start, end, bytesToMove); bytesUsed -= (int) (end - start); } } void MidiBuffer::addEvent (const MidiMessage& m, const int sampleNumber) throw() { addEvent (m.getRawData(), m.getRawDataSize(), sampleNumber); } static int findActualEventLength (const uint8* const data, const int maxBytes) throw() { unsigned int byte = (unsigned int) *data; int size = 0; if (byte == 0xf0 || byte == 0xf7) { const uint8* d = data + 1; while (d < data + maxBytes) if (*d++ == 0xf7) break; size = (int) (d - data); } else if (byte == 0xff) { int n; const int bytesLeft = MidiMessage::readVariableLengthVal (data + 1, n); size = jmin (maxBytes, n + 2 + bytesLeft); } else if (byte >= 0x80) { size = jmin (maxBytes, MidiMessage::getMessageLengthFromFirstByte ((uint8) byte)); } return size; } void MidiBuffer::addEvent (const uint8* const newData, const int maxBytes, const int sampleNumber) throw() { const int numBytes = findActualEventLength (newData, maxBytes); if (numBytes > 0) { ensureAllocatedSize (bytesUsed + numBytes + 6); uint8* d = findEventAfter (elements, sampleNumber); const size_t bytesToMove = (size_t) (bytesUsed - (d - elements)); if (bytesToMove > 0) memmove (d + numBytes + 6, d, bytesToMove); *(int*) d = sampleNumber; d += 4; *(uint16*) d = (uint16) numBytes; d += 2; memcpy (d, newData, numBytes); bytesUsed += numBytes + 6; } } void MidiBuffer::addEvents (const MidiBuffer& otherBuffer, const int startSample, const int numSamples, const int sampleDeltaToAdd) throw() { Iterator i (otherBuffer); i.setNextSamplePosition (startSample); const uint8* data; int size, position; while (i.getNextEvent (data, size, position) && (position < startSample + numSamples || numSamples < 0)) { addEvent (data, size, position + sampleDeltaToAdd); } } bool MidiBuffer::isEmpty() const throw() { return bytesUsed == 0; } int MidiBuffer::getNumEvents() const throw() { int n = 0; const uint8* d = elements; const uint8* const end = elements + bytesUsed; while (d < end) { d += 4; d += 2 + *(const uint16*) d; ++n; } return n; } int MidiBuffer::getFirstEventTime() const throw() { return (bytesUsed > 0) ? *(const int*) elements : 0; } int MidiBuffer::getLastEventTime() const throw() { if (bytesUsed == 0) return 0; const uint8* d = elements; const uint8* const endData = d + bytesUsed; for (;;) { const uint8* nextOne = d + 6 + * (const uint16*) (d + 4); if (nextOne >= endData) return *(const int*) d; d = nextOne; } } uint8* MidiBuffer::findEventAfter (uint8* d, const int samplePosition) const throw() { const uint8* const endData = elements + bytesUsed; while (d < endData && *(int*) d <= samplePosition) { d += 4; d += 2 + *(uint16*) d; } return d; } MidiBuffer::Iterator::Iterator (const MidiBuffer& buffer) throw() : buffer (buffer), data (buffer.elements) { } MidiBuffer::Iterator::~Iterator() throw() { } void MidiBuffer::Iterator::setNextSamplePosition (const int samplePosition) throw() { data = buffer.elements; const uint8* dataEnd = buffer.elements + buffer.bytesUsed; while (data < dataEnd && *(int*) data < samplePosition) { data += 4; data += 2 + *(uint16*) data; } } bool MidiBuffer::Iterator::getNextEvent (const uint8* &midiData, int& numBytes, int& samplePosition) throw() { if (data >= buffer.elements + buffer.bytesUsed) return false; samplePosition = *(int*) data; data += 4; numBytes = *(uint16*) data; data += 2; midiData = data; data += numBytes; return true; } bool MidiBuffer::Iterator::getNextEvent (MidiMessage& result, int& samplePosition) throw() { if (data >= buffer.elements + buffer.bytesUsed) return false; samplePosition = *(int*) data; data += 4; const int numBytes = *(uint16*) data; data += 2; result = MidiMessage (data, numBytes, samplePosition); data += numBytes; return true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_MidiBuffer.cpp *********/ /********* Start of inlined file: juce_MidiFile.cpp *********/ BEGIN_JUCE_NAMESPACE struct TempoInfo { double bpm, timestamp; }; struct TimeSigInfo { int numerator, denominator; double timestamp; }; MidiFile::MidiFile() throw() : numTracks (0), timeFormat ((short)(unsigned short)0xe728) { } MidiFile::~MidiFile() throw() { clear(); } void MidiFile::clear() throw() { while (numTracks > 0) delete tracks [--numTracks]; } int MidiFile::getNumTracks() const throw() { return numTracks; } const MidiMessageSequence* MidiFile::getTrack (const int index) const throw() { return (((unsigned int) index) < (unsigned int) numTracks) ? tracks[index] : 0; } void MidiFile::addTrack (const MidiMessageSequence& trackSequence) throw() { jassert (numTracks < numElementsInArray (tracks)); if (numTracks < numElementsInArray (tracks)) tracks [numTracks++] = new MidiMessageSequence (trackSequence); } short MidiFile::getTimeFormat() const throw() { return timeFormat; } void MidiFile::setTicksPerQuarterNote (const int ticks) throw() { timeFormat = (short)ticks; } void MidiFile::setSmpteTimeFormat (const int framesPerSecond, const int subframeResolution) throw() { timeFormat = (short) (((-framesPerSecond) << 8) | subframeResolution); } void MidiFile::findAllTempoEvents (MidiMessageSequence& tempoChangeEvents) const { for (int i = numTracks; --i >= 0;) { const int numEvents = tracks[i]->getNumEvents(); for (int j = 0; j < numEvents; ++j) { const MidiMessage& m = tracks[i]->getEventPointer (j)->message; if (m.isTempoMetaEvent()) tempoChangeEvents.addEvent (m); } } } void MidiFile::findAllTimeSigEvents (MidiMessageSequence& timeSigEvents) const { for (int i = numTracks; --i >= 0;) { const int numEvents = tracks[i]->getNumEvents(); for (int j = 0; j < numEvents; ++j) { const MidiMessage& m = tracks[i]->getEventPointer (j)->message; if (m.isTimeSignatureMetaEvent()) timeSigEvents.addEvent (m); } } } double MidiFile::getLastTimestamp() const { double t = 0.0; for (int i = numTracks; --i >= 0;) t = jmax (t, tracks[i]->getEndTime()); return t; } static bool parseMidiHeader (const char* &data, short& timeFormat, short& fileType, short& numberOfTracks) { unsigned int ch = (int) bigEndianInt (data); data += 4; if (ch != bigEndianInt ("MThd")) { bool ok = false; if (ch == bigEndianInt ("RIFF")) { for (int i = 0; i < 8; ++i) { ch = bigEndianInt (data); data += 4; if (ch == bigEndianInt ("MThd")) { ok = true; break; } } } if (! ok) return false; } unsigned int bytesRemaining = bigEndianInt (data); data += 4; fileType = (short)bigEndianShort (data); data += 2; numberOfTracks = (short)bigEndianShort (data); data += 2; timeFormat = (short)bigEndianShort (data); data += 2; bytesRemaining -= 6; data += bytesRemaining; return true; } bool MidiFile::readFrom (InputStream& sourceStream) { clear(); MemoryBlock data; const int maxSensibleMidiFileSize = 2 * 1024 * 1024; // (put a sanity-check on the file size, as midi files are generally small) if (sourceStream.readIntoMemoryBlock (data, maxSensibleMidiFileSize)) { int size = data.getSize(); const char* d = (char*) data.getData(); short fileType, expectedTracks; if (size > 16 && parseMidiHeader (d, timeFormat, fileType, expectedTracks)) { size -= (int) (d - (char*) data.getData()); int track = 0; while (size > 0 && track < expectedTracks) { const int chunkType = (int)bigEndianInt (d); d += 4; const int chunkSize = (int)bigEndianInt (d); d += 4; if (chunkSize <= 0) break; if (size < 0) return false; if (chunkType == (int)bigEndianInt ("MTrk")) { readNextTrack (d, chunkSize); } size -= chunkSize + 8; d += chunkSize; ++track; } return true; } } return false; } // a comparator that puts all the note-offs before note-ons that have the same time int MidiFile::compareElements (const MidiMessageSequence::MidiEventHolder* const first, const MidiMessageSequence::MidiEventHolder* const second) throw() { const double diff = (first->message.getTimeStamp() - second->message.getTimeStamp()); if (diff == 0) { if (first->message.isNoteOff() && second->message.isNoteOn()) return -1; else if (first->message.isNoteOn() && second->message.isNoteOff()) return 1; else return 0; } else { return (diff > 0) ? 1 : -1; } } void MidiFile::readNextTrack (const char* data, int size) { double time = 0; char lastStatusByte = 0; MidiMessageSequence result; while (size > 0) { int bytesUsed; const int delay = MidiMessage::readVariableLengthVal ((const uint8*) data, bytesUsed); data += bytesUsed; size -= bytesUsed; time += delay; int messSize = 0; const MidiMessage mm ((const uint8*) data, size, messSize, lastStatusByte, time); if (messSize <= 0) break; size -= messSize; data += messSize; result.addEvent (mm); const char firstByte = *(mm.getRawData()); if ((firstByte & 0xf0) != 0xf0) lastStatusByte = firstByte; } // use a sort that puts all the note-offs before note-ons that have the same time result.list.sort (*this, true); result.updateMatchedPairs(); addTrack (result); } static double convertTicksToSeconds (const double time, const MidiMessageSequence& tempoEvents, const int timeFormat) { if (timeFormat > 0) { int numer = 4, denom = 4; double tempoTime = 0.0, correctedTempoTime = 0.0; const double tickLen = 1.0 / (timeFormat & 0x7fff); double secsPerTick = 0.5 * tickLen; const int numEvents = tempoEvents.getNumEvents(); for (int i = 0; i < numEvents; ++i) { const MidiMessage& m = tempoEvents.getEventPointer(i)->message; if (time <= m.getTimeStamp()) break; if (timeFormat > 0) { correctedTempoTime = correctedTempoTime + (m.getTimeStamp() - tempoTime) * secsPerTick; } else { correctedTempoTime = tickLen * m.getTimeStamp() / (((timeFormat & 0x7fff) >> 8) * (timeFormat & 0xff)); } tempoTime = m.getTimeStamp(); if (m.isTempoMetaEvent()) secsPerTick = tickLen * m.getTempoSecondsPerQuarterNote(); else if (m.isTimeSignatureMetaEvent()) m.getTimeSignatureInfo (numer, denom); while (i + 1 < numEvents) { const MidiMessage& m2 = tempoEvents.getEventPointer(i + 1)->message; if (m2.getTimeStamp() == tempoTime) { ++i; if (m2.isTempoMetaEvent()) secsPerTick = tickLen * m2.getTempoSecondsPerQuarterNote(); else if (m2.isTimeSignatureMetaEvent()) m2.getTimeSignatureInfo (numer, denom); } else { break; } } } return correctedTempoTime + (time - tempoTime) * secsPerTick; } else { return time / (((timeFormat & 0x7fff) >> 8) * (timeFormat & 0xff)); } } void MidiFile::convertTimestampTicksToSeconds() { MidiMessageSequence tempoEvents; findAllTempoEvents (tempoEvents); findAllTimeSigEvents (tempoEvents); for (int i = 0; i < numTracks; ++i) { MidiMessageSequence& ms = *tracks[i]; for (int j = ms.getNumEvents(); --j >= 0;) { MidiMessage& m = ms.getEventPointer(j)->message; m.setTimeStamp (convertTicksToSeconds (m.getTimeStamp(), tempoEvents, timeFormat)); } } } static void writeVariableLengthInt (OutputStream& out, unsigned int v) { unsigned int buffer = v & 0x7F; while ((v >>= 7) != 0) { buffer <<= 8; buffer |= ((v & 0x7F) | 0x80); } for (;;) { out.writeByte ((char) buffer); if (buffer & 0x80) buffer >>= 8; else break; } } bool MidiFile::writeTo (OutputStream& out) { out.writeIntBigEndian ((int) bigEndianInt ("MThd")); out.writeIntBigEndian (6); out.writeShortBigEndian (1); // type out.writeShortBigEndian (numTracks); out.writeShortBigEndian (timeFormat); for (int i = 0; i < numTracks; ++i) writeTrack (out, i); out.flush(); return true; } void MidiFile::writeTrack (OutputStream& mainOut, const int trackNum) { MemoryOutputStream out; const MidiMessageSequence& ms = *tracks[trackNum]; int lastTick = 0; char lastStatusByte = 0; for (int i = 0; i < ms.getNumEvents(); ++i) { const MidiMessage& mm = ms.getEventPointer(i)->message; const int tick = roundDoubleToInt (mm.getTimeStamp()); const int delta = jmax (0, tick - lastTick); writeVariableLengthInt (out, delta); lastTick = tick; const char statusByte = *(mm.getRawData()); if ((statusByte == lastStatusByte) && ((statusByte & 0xf0) != 0xf0) && i > 0 && mm.getRawDataSize() > 1) { out.write (mm.getRawData() + 1, mm.getRawDataSize() - 1); } else { out.write (mm.getRawData(), mm.getRawDataSize()); } lastStatusByte = statusByte; } out.writeByte (0); const MidiMessage m (MidiMessage::endOfTrack()); out.write (m.getRawData(), m.getRawDataSize()); mainOut.writeIntBigEndian ((int)bigEndianInt ("MTrk")); mainOut.writeIntBigEndian (out.getDataSize()); mainOut.write (out.getData(), out.getDataSize()); } END_JUCE_NAMESPACE /********* End of inlined file: juce_MidiFile.cpp *********/ /********* Start of inlined file: juce_MidiKeyboardState.cpp *********/ BEGIN_JUCE_NAMESPACE MidiKeyboardState::MidiKeyboardState() : listeners (2) { zeromem (noteStates, sizeof (noteStates)); } MidiKeyboardState::~MidiKeyboardState() { } void MidiKeyboardState::reset() { const ScopedLock sl (lock); zeromem (noteStates, sizeof (noteStates)); eventsToAdd.clear(); } bool MidiKeyboardState::isNoteOn (const int midiChannel, const int n) const throw() { jassert (midiChannel >= 0 && midiChannel <= 16); return ((unsigned int) n) < 128 && (noteStates[n] & (1 << (midiChannel - 1))) != 0; } bool MidiKeyboardState::isNoteOnForChannels (const int midiChannelMask, const int n) const throw() { return ((unsigned int) n) < 128 && (noteStates[n] & midiChannelMask) != 0; } void MidiKeyboardState::noteOn (const int midiChannel, const int midiNoteNumber, const float velocity) { jassert (midiChannel >= 0 && midiChannel <= 16); jassert (((unsigned int) midiNoteNumber) < 128); const ScopedLock sl (lock); if (((unsigned int) midiNoteNumber) < 128) { const int timeNow = (int) Time::getMillisecondCounter(); eventsToAdd.addEvent (MidiMessage::noteOn (midiChannel, midiNoteNumber, velocity), timeNow); eventsToAdd.clear (0, timeNow - 500); noteOnInternal (midiChannel, midiNoteNumber, velocity); } } void MidiKeyboardState::noteOnInternal (const int midiChannel, const int midiNoteNumber, const float velocity) { if (((unsigned int) midiNoteNumber) < 128) { noteStates [midiNoteNumber] |= (1 << (midiChannel - 1)); for (int i = listeners.size(); --i >= 0;) ((MidiKeyboardStateListener*) listeners.getUnchecked(i)) ->handleNoteOn (this, midiChannel, midiNoteNumber, velocity); } } void MidiKeyboardState::noteOff (const int midiChannel, const int midiNoteNumber) { const ScopedLock sl (lock); if (isNoteOn (midiChannel, midiNoteNumber)) { const int timeNow = (int) Time::getMillisecondCounter(); eventsToAdd.addEvent (MidiMessage::noteOff (midiChannel, midiNoteNumber), timeNow); eventsToAdd.clear (0, timeNow - 500); noteOffInternal (midiChannel, midiNoteNumber); } } void MidiKeyboardState::noteOffInternal (const int midiChannel, const int midiNoteNumber) { if (isNoteOn (midiChannel, midiNoteNumber)) { noteStates [midiNoteNumber] &= ~(1 << (midiChannel - 1)); for (int i = listeners.size(); --i >= 0;) ((MidiKeyboardStateListener*) listeners.getUnchecked(i)) ->handleNoteOff (this, midiChannel, midiNoteNumber); } } void MidiKeyboardState::allNotesOff (const int midiChannel) { const ScopedLock sl (lock); if (midiChannel <= 0) { for (int i = 1; i <= 16; ++i) allNotesOff (i); } else { for (int i = 0; i < 128; ++i) noteOff (midiChannel, i); } } void MidiKeyboardState::processNextMidiEvent (const MidiMessage& message) { if (message.isNoteOn()) { noteOnInternal (message.getChannel(), message.getNoteNumber(), message.getFloatVelocity()); } else if (message.isNoteOff()) { noteOffInternal (message.getChannel(), message.getNoteNumber()); } else if (message.isAllNotesOff()) { for (int i = 0; i < 128; ++i) noteOffInternal (message.getChannel(), i); } } void MidiKeyboardState::processNextMidiBuffer (MidiBuffer& buffer, const int startSample, const int numSamples, const bool injectIndirectEvents) { MidiBuffer::Iterator i (buffer); MidiMessage message (0xf4, 0.0); int time; const ScopedLock sl (lock); while (i.getNextEvent (message, time)) processNextMidiEvent (message); if (injectIndirectEvents) { MidiBuffer::Iterator i2 (eventsToAdd); const int firstEventToAdd = eventsToAdd.getFirstEventTime(); const double scaleFactor = numSamples / (double) (eventsToAdd.getLastEventTime() + 1 - firstEventToAdd); while (i2.getNextEvent (message, time)) { const int pos = jlimit (0, numSamples - 1, roundDoubleToInt ((time - firstEventToAdd) * scaleFactor)); buffer.addEvent (message, startSample + pos); } } eventsToAdd.clear(); } void MidiKeyboardState::addListener (MidiKeyboardStateListener* const listener) throw() { const ScopedLock sl (lock); listeners.addIfNotAlreadyThere (listener); } void MidiKeyboardState::removeListener (MidiKeyboardStateListener* const listener) throw() { const ScopedLock sl (lock); listeners.removeValue (listener); } END_JUCE_NAMESPACE /********* End of inlined file: juce_MidiKeyboardState.cpp *********/ /********* Start of inlined file: juce_MidiMessage.cpp *********/ BEGIN_JUCE_NAMESPACE int MidiMessage::readVariableLengthVal (const uint8* data, int& numBytesUsed) throw() { numBytesUsed = 0; int v = 0; int i; do { i = (int) *data++; if (++numBytesUsed > 6) break; v = (v << 7) + (i & 0x7f); } while (i & 0x80); return v; } int MidiMessage::getMessageLengthFromFirstByte (const uint8 firstByte) throw() { // this method only works for valid starting bytes of a short midi message jassert (firstByte >= 0x80 && firstByte != 0xf0 && firstByte != 0xf7); static const char messageLengths[] = { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; return messageLengths [firstByte & 0x7f]; } MidiMessage::MidiMessage (const uint8* const d, const int dataSize, const double t) throw() : timeStamp (t), message (0), size (dataSize) { jassert (dataSize > 0); if (dataSize <= 4) data = (uint8*) &message; else data = (uint8*) juce_malloc (dataSize); memcpy (data, d, dataSize); // check that the length matches the data.. jassert (size > 3 || *d >= 0xf0 || getMessageLengthFromFirstByte (*d) == size); } MidiMessage::MidiMessage (const int byte1, const double t) throw() : timeStamp (t), data ((uint8*) &message), size (1) { data[0] = (uint8) byte1; // check that the length matches the data.. jassert (byte1 >= 0xf0 || getMessageLengthFromFirstByte ((uint8) byte1) == 1); } MidiMessage::MidiMessage (const int byte1, const int byte2, const double t) throw() : timeStamp (t), data ((uint8*) &message), size (2) { data[0] = (uint8) byte1; data[1] = (uint8) byte2; // check that the length matches the data.. jassert (byte1 >= 0xf0 || getMessageLengthFromFirstByte ((uint8) byte1) == 2); } MidiMessage::MidiMessage (const int byte1, const int byte2, const int byte3, const double t) throw() : timeStamp (t), data ((uint8*) &message), size (3) { data[0] = (uint8) byte1; data[1] = (uint8) byte2; data[2] = (uint8) byte3; // check that the length matches the data.. jassert (byte1 >= 0xf0 || getMessageLengthFromFirstByte ((uint8) byte1) == 3); } MidiMessage::MidiMessage (const MidiMessage& other) throw() : timeStamp (other.timeStamp), message (other.message), size (other.size) { if (other.data != (uint8*) &other.message) { data = (uint8*) juce_malloc (size); memcpy (data, other.data, size); } else { data = (uint8*) &message; } } MidiMessage::MidiMessage (const MidiMessage& other, const double newTimeStamp) throw() : timeStamp (newTimeStamp), message (other.message), size (other.size) { if (other.data != (uint8*) &other.message) { data = (uint8*) juce_malloc (size); memcpy (data, other.data, size); } else { data = (uint8*) &message; } } MidiMessage::MidiMessage (const uint8* src, int sz, int& numBytesUsed, const uint8 lastStatusByte, double t) throw() : timeStamp (t), data ((uint8*) &message), message (0) { unsigned int byte = (unsigned int) *src; if (byte < 0x80) { byte = (unsigned int) (uint8) lastStatusByte; numBytesUsed = -1; } else { numBytesUsed = 0; --sz; ++src; } if (byte >= 0x80) { if (byte == 0xf0) { const uint8* d = (const uint8*) src; while (d < src + sz) { if (*d >= 0x80) // stop if we hit a status byte, and don't include it in this message { if (*d == 0xf7) // include an 0xf7 if we hit one ++d; break; } ++d; } size = 1 + (int) (d - src); data = (uint8*) juce_malloc (size); *data = (uint8) byte; memcpy (data + 1, src, size - 1); } else if (byte == 0xff) { int n; const int bytesLeft = readVariableLengthVal (src + 1, n); size = jmin (sz + 1, n + 2 + bytesLeft); data = (uint8*) juce_malloc (size); *data = (uint8) byte; memcpy (data + 1, src, size - 1); } else { size = getMessageLengthFromFirstByte ((uint8) byte); *data = (uint8) byte; if (size > 1) { data[1] = src[0]; if (size > 2) data[2] = src[1]; } } numBytesUsed += size; } else { message = 0; size = 0; } } const MidiMessage& MidiMessage::operator= (const MidiMessage& other) throw() { if (this == &other) return *this; timeStamp = other.timeStamp; size = other.size; message = other.message; if (data != (uint8*) &message) juce_free (data); if (other.data != (uint8*) &other.message) { data = (uint8*) juce_malloc (size); memcpy (data, other.data, size); } else { data = (uint8*) &message; } return *this; } MidiMessage::~MidiMessage() throw() { if (data != (uint8*) &message) juce_free (data); } int MidiMessage::getChannel() const throw() { if ((data[0] & 0xf0) != 0xf0) return (data[0] & 0xf) + 1; else return 0; } bool MidiMessage::isForChannel (const int channel) const throw() { return ((data[0] & 0xf) == channel - 1) && ((data[0] & 0xf0) != 0xf0); } void MidiMessage::setChannel (const int channel) throw() { if ((data[0] & 0xf0) != (uint8) 0xf0) data[0] = (uint8) ((data[0] & (uint8)0xf0) | (uint8)(channel - 1)); } bool MidiMessage::isNoteOn() const throw() { return ((data[0] & 0xf0) == 0x90) && (data[2] != 0); } bool MidiMessage::isNoteOff() const throw() { return ((data[0] & 0xf0) == 0x80) || ((data[2] == 0) && ((data[0] & 0xf0) == 0x90)); } bool MidiMessage::isNoteOnOrOff() const throw() { const int d = data[0] & 0xf0; return (d == 0x90) || (d == 0x80); } int MidiMessage::getNoteNumber() const throw() { return data[1]; } void MidiMessage::setNoteNumber (const int newNoteNumber) throw() { if (isNoteOnOrOff()) data[1] = (uint8) jlimit (0, 127, newNoteNumber); } uint8 MidiMessage::getVelocity() const throw() { if (isNoteOnOrOff()) return data[2]; else return 0; } float MidiMessage::getFloatVelocity() const throw() { return getVelocity() * (1.0f / 127.0f); } void MidiMessage::setVelocity (const float newVelocity) throw() { if (isNoteOnOrOff()) data[2] = (uint8) jlimit (0, 0x7f, roundFloatToInt (newVelocity * 127.0f)); } void MidiMessage::multiplyVelocity (const float scaleFactor) throw() { if (isNoteOnOrOff()) data[2] = (uint8) jlimit (0, 0x7f, roundFloatToInt (scaleFactor * data[2])); } bool MidiMessage::isAftertouch() const throw() { return (data[0] & 0xf0) == 0xa0; } int MidiMessage::getAfterTouchValue() const throw() { return data[2]; } const MidiMessage MidiMessage::aftertouchChange (const int channel, const int noteNum, const int aftertouchValue) throw() { jassert (channel > 0 && channel <= 16); jassert (((unsigned int) noteNum) <= 127); jassert (((unsigned int) aftertouchValue) <= 127); return MidiMessage (0xa0 | jlimit (0, 15, channel - 1), noteNum & 0x7f, aftertouchValue & 0x7f); } bool MidiMessage::isChannelPressure() const throw() { return (data[0] & 0xf0) == 0xd0; } int MidiMessage::getChannelPressureValue() const throw() { jassert (isChannelPressure()); return data[1]; } const MidiMessage MidiMessage::channelPressureChange (const int channel, const int pressure) throw() { jassert (channel > 0 && channel <= 16); jassert (((unsigned int) pressure) <= 127); return MidiMessage (0xd0 | jlimit (0, 15, channel - 1), pressure & 0x7f); } bool MidiMessage::isProgramChange() const throw() { return (data[0] & 0xf0) == 0xc0; } int MidiMessage::getProgramChangeNumber() const throw() { return data[1]; } const MidiMessage MidiMessage::programChange (const int channel, const int programNumber) throw() { jassert (channel > 0 && channel <= 16); return MidiMessage (0xc0 | jlimit (0, 15, channel - 1), programNumber & 0x7f); } bool MidiMessage::isPitchWheel() const throw() { return (data[0] & 0xf0) == 0xe0; } int MidiMessage::getPitchWheelValue() const throw() { return data[1] | (data[2] << 7); } const MidiMessage MidiMessage::pitchWheel (const int channel, const int position) throw() { jassert (channel > 0 && channel <= 16); jassert (((unsigned int) position) <= 0x3fff); return MidiMessage (0xe0 | jlimit (0, 15, channel - 1), position & 127, (position >> 7) & 127); } bool MidiMessage::isController() const throw() { return (data[0] & 0xf0) == 0xb0; } int MidiMessage::getControllerNumber() const throw() { jassert (isController()); return data[1]; } int MidiMessage::getControllerValue() const throw() { jassert (isController()); return data[2]; } const MidiMessage MidiMessage::controllerEvent (const int channel, const int controllerType, const int value) throw() { // the channel must be between 1 and 16 inclusive jassert (channel > 0 && channel <= 16); return MidiMessage (0xb0 | jlimit (0, 15, channel - 1), controllerType & 127, value & 127); } const MidiMessage MidiMessage::noteOn (const int channel, const int noteNumber, const float velocity) throw() { return noteOn (channel, noteNumber, (uint8)(velocity * 127.0f)); } const MidiMessage MidiMessage::noteOn (const int channel, const int noteNumber, const uint8 velocity) throw() { jassert (channel > 0 && channel <= 16); jassert (((unsigned int) noteNumber) <= 127); return MidiMessage (0x90 | jlimit (0, 15, channel - 1), noteNumber & 127, jlimit (0, 127, roundFloatToInt (velocity))); } const MidiMessage MidiMessage::noteOff (const int channel, const int noteNumber) throw() { jassert (channel > 0 && channel <= 16); jassert (((unsigned int) noteNumber) <= 127); return MidiMessage (0x80 | jlimit (0, 15, channel - 1), noteNumber & 127, 0); } const MidiMessage MidiMessage::allNotesOff (const int channel) throw() { jassert (channel > 0 && channel <= 16); return controllerEvent (channel, 123, 0); } bool MidiMessage::isAllNotesOff() const throw() { return (data[0] & 0xf0) == 0xb0 && data[1] == 123; } const MidiMessage MidiMessage::allSoundOff (const int channel) throw() { return controllerEvent (channel, 120, 0); } bool MidiMessage::isAllSoundOff() const throw() { return (data[0] & 0xf0) == 0xb0 && data[1] == 120; } const MidiMessage MidiMessage::allControllersOff (const int channel) throw() { return controllerEvent (channel, 121, 0); } const MidiMessage MidiMessage::masterVolume (const float volume) throw() { const int vol = jlimit (0, 0x3fff, roundFloatToInt (volume * 0x4000)); uint8 buf[8]; buf[0] = 0xf0; buf[1] = 0x7f; buf[2] = 0x7f; buf[3] = 0x04; buf[4] = 0x01; buf[5] = (uint8) (vol & 0x7f); buf[6] = (uint8) (vol >> 7); buf[7] = 0xf7; return MidiMessage (buf, 8); } bool MidiMessage::isSysEx() const throw() { return *data == 0xf0; } const MidiMessage MidiMessage::createSysExMessage (const uint8* sysexData, const int dataSize) throw() { MemoryBlock mm (dataSize + 2); uint8* const m = (uint8*) mm.getData(); m[0] = 0xf0; memcpy (m + 1, sysexData, dataSize); m[dataSize + 1] = 0xf7; return MidiMessage (m, dataSize + 2); } const uint8* MidiMessage::getSysExData() const throw() { return (isSysEx()) ? getRawData() + 1 : 0; } int MidiMessage::getSysExDataSize() const throw() { return (isSysEx()) ? size - 2 : 0; } bool MidiMessage::isMetaEvent() const throw() { return *data == 0xff; } bool MidiMessage::isActiveSense() const throw() { return *data == 0xfe; } int MidiMessage::getMetaEventType() const throw() { if (*data != 0xff) return -1; else return data[1]; } int MidiMessage::getMetaEventLength() const throw() { if (*data == 0xff) { int n; return jmin (size - 2, readVariableLengthVal (data + 2, n)); } return 0; } const uint8* MidiMessage::getMetaEventData() const throw() { int n; const uint8* d = data + 2; readVariableLengthVal (d, n); return d + n; } bool MidiMessage::isTrackMetaEvent() const throw() { return getMetaEventType() == 0; } bool MidiMessage::isEndOfTrackMetaEvent() const throw() { return getMetaEventType() == 47; } bool MidiMessage::isTextMetaEvent() const throw() { const int t = getMetaEventType(); return t > 0 && t < 16; } const String MidiMessage::getTextFromTextMetaEvent() const throw() { return String ((const char*) getMetaEventData(), getMetaEventLength()); } bool MidiMessage::isTrackNameEvent() const throw() { return (data[1] == 3) && (*data == 0xff); } bool MidiMessage::isTempoMetaEvent() const throw() { return (data[1] == 81) && (*data == 0xff); } bool MidiMessage::isMidiChannelMetaEvent() const throw() { return (data[1] == 0x20) && (*data == 0xff) && (data[2] == 1); } int MidiMessage::getMidiChannelMetaEventChannel() const throw() { return data[3] + 1; } double MidiMessage::getTempoSecondsPerQuarterNote() const throw() { if (! isTempoMetaEvent()) return 0.0; const uint8* const d = getMetaEventData(); return (((unsigned int) d[0] << 16) | ((unsigned int) d[1] << 8) | d[2]) / 1000000.0; } double MidiMessage::getTempoMetaEventTickLength (const short timeFormat) const throw() { if (timeFormat > 0) { if (! isTempoMetaEvent()) return 0.5 / timeFormat; return getTempoSecondsPerQuarterNote() / timeFormat; } else { const int frameCode = (-timeFormat) >> 8; double framesPerSecond; switch (frameCode) { case 24: framesPerSecond = 24.0; break; case 25: framesPerSecond = 25.0; break; case 29: framesPerSecond = 29.97; break; case 30: framesPerSecond = 30.0; break; default: framesPerSecond = 30.0; break; } return (1.0 / framesPerSecond) / (timeFormat & 0xff); } } const MidiMessage MidiMessage::tempoMetaEvent (int microsecondsPerQuarterNote) throw() { uint8 d[8]; d[0] = 0xff; d[1] = 81; d[2] = 3; d[3] = (uint8) (microsecondsPerQuarterNote >> 16); d[4] = (uint8) ((microsecondsPerQuarterNote >> 8) & 0xff); d[5] = (uint8) (microsecondsPerQuarterNote & 0xff); return MidiMessage (d, 6, 0.0); } bool MidiMessage::isTimeSignatureMetaEvent() const throw() { return (data[1] == 0x58) && (*data == (uint8) 0xff); } void MidiMessage::getTimeSignatureInfo (int& numerator, int& denominator) const throw() { if (isTimeSignatureMetaEvent()) { const uint8* const d = getMetaEventData(); numerator = d[0]; denominator = 1 << d[1]; } else { numerator = 4; denominator = 4; } } const MidiMessage MidiMessage::timeSignatureMetaEvent (const int numerator, const int denominator) throw() { uint8 d[8]; d[0] = 0xff; d[1] = 0x58; d[2] = 0x04; d[3] = (uint8) numerator; int n = 1; int powerOfTwo = 0; while (n < denominator) { n <<= 1; ++powerOfTwo; } d[4] = (uint8) powerOfTwo; d[5] = 0x01; d[6] = 96; return MidiMessage (d, 7, 0.0); } const MidiMessage MidiMessage::midiChannelMetaEvent (const int channel) throw() { uint8 d[8]; d[0] = 0xff; d[1] = 0x20; d[2] = 0x01; d[3] = (uint8) jlimit (0, 0xff, channel - 1); return MidiMessage (d, 4, 0.0); } bool MidiMessage::isKeySignatureMetaEvent() const throw() { return getMetaEventType() == 89; } int MidiMessage::getKeySignatureNumberOfSharpsOrFlats() const throw() { return (int) *getMetaEventData(); } const MidiMessage MidiMessage::endOfTrack() throw() { return MidiMessage (0xff, 0x2f, 0, 0.0); } bool MidiMessage::isSongPositionPointer() const throw() { return *data == 0xf2; } int MidiMessage::getSongPositionPointerMidiBeat() const throw() { return data[1] | (data[2] << 7); } const MidiMessage MidiMessage::songPositionPointer (const int positionInMidiBeats) throw() { return MidiMessage (0xf2, positionInMidiBeats & 127, (positionInMidiBeats >> 7) & 127); } bool MidiMessage::isMidiStart() const throw() { return *data == 0xfa; } const MidiMessage MidiMessage::midiStart() throw() { return MidiMessage (0xfa); } bool MidiMessage::isMidiContinue() const throw() { return *data == 0xfb; } const MidiMessage MidiMessage::midiContinue() throw() { return MidiMessage (0xfb); } bool MidiMessage::isMidiStop() const throw() { return *data == 0xfc; } const MidiMessage MidiMessage::midiStop() throw() { return MidiMessage (0xfc); } bool MidiMessage::isMidiClock() const throw() { return *data == 0xf8; } const MidiMessage MidiMessage::midiClock() throw() { return MidiMessage (0xf8); } bool MidiMessage::isQuarterFrame() const throw() { return *data == 0xf1; } int MidiMessage::getQuarterFrameSequenceNumber() const throw() { return ((int) data[1]) >> 4; } int MidiMessage::getQuarterFrameValue() const throw() { return ((int) data[1]) & 0x0f; } const MidiMessage MidiMessage::quarterFrame (const int sequenceNumber, const int value) throw() { return MidiMessage (0xf1, (sequenceNumber << 4) | value); } bool MidiMessage::isFullFrame() const throw() { return data[0] == 0xf0 && data[1] == 0x7f && size >= 10 && data[3] == 0x01 && data[4] == 0x01; } void MidiMessage::getFullFrameParameters (int& hours, int& minutes, int& seconds, int& frames, MidiMessage::SmpteTimecodeType& timecodeType) const throw() { jassert (isFullFrame()); timecodeType = (SmpteTimecodeType) (data[5] >> 5); hours = data[5] & 0x1f; minutes = data[6]; seconds = data[7]; frames = data[8]; } const MidiMessage MidiMessage::fullFrame (const int hours, const int minutes, const int seconds, const int frames, MidiMessage::SmpteTimecodeType timecodeType) { uint8 d[10]; d[0] = 0xf0; d[1] = 0x7f; d[2] = 0x7f; d[3] = 0x01; d[4] = 0x01; d[5] = (uint8) ((hours & 0x01f) | (timecodeType << 5)); d[6] = (uint8) minutes; d[7] = (uint8) seconds; d[8] = (uint8) frames; d[9] = 0xf7; return MidiMessage (d, 10, 0.0); } bool MidiMessage::isMidiMachineControlMessage() const throw() { return data[0] == 0xf0 && data[1] == 0x7f && data[3] == 0x06 && size > 5; } MidiMessage::MidiMachineControlCommand MidiMessage::getMidiMachineControlCommand() const throw() { jassert (isMidiMachineControlMessage()); return (MidiMachineControlCommand) data[4]; } const MidiMessage MidiMessage::midiMachineControlCommand (MidiMessage::MidiMachineControlCommand command) { uint8 d[6]; d[0] = 0xf0; d[1] = 0x7f; d[2] = 0x00; d[3] = 0x06; d[4] = (uint8) command; d[5] = 0xf7; return MidiMessage (d, 6, 0.0); } bool MidiMessage::isMidiMachineControlGoto (int& hours, int& minutes, int& seconds, int& frames) const throw() { if (size >= 12 && data[0] == 0xf0 && data[1] == 0x7f && data[3] == 0x06 && data[4] == 0x44 && data[5] == 0x06 && data[6] == 0x01) { hours = data[7] % 24; // (that some machines send out hours > 24) minutes = data[8]; seconds = data[9]; frames = data[10]; return true; } return false; } const MidiMessage MidiMessage::midiMachineControlGoto (int hours, int minutes, int seconds, int frames) { uint8 d[12]; d[0] = 0xf0; d[1] = 0x7f; d[2] = 0x00; d[3] = 0x06; d[4] = 0x44; d[5] = 0x06; d[6] = 0x01; d[7] = (uint8) hours; d[8] = (uint8) minutes; d[9] = (uint8) seconds; d[10] = (uint8) frames; d[11] = 0xf7; return MidiMessage (d, 12, 0.0); } const String MidiMessage::getMidiNoteName (int note, bool useSharps, bool includeOctaveNumber, int octaveNumForMiddleC) throw() { static const char* const sharpNoteNames[] = { "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B" }; static const char* const flatNoteNames[] = { "C", "Db", "D", "Eb", "E", "F", "Gb", "G", "Ab", "A", "Bb", "B" }; if (((unsigned int) note) < 128) { const String s ((useSharps) ? sharpNoteNames [note % 12] : flatNoteNames [note % 12]); if (includeOctaveNumber) return s + String (note / 12 + (octaveNumForMiddleC - 5)); else return s; } return String::empty; } const double MidiMessage::getMidiNoteInHertz (int noteNumber) throw() { noteNumber -= 12 * 6 + 9; // now 0 = A440 return 440.0 * pow (2.0, noteNumber / 12.0); } const String MidiMessage::getGMInstrumentName (int n) throw() { const char *names[] = { "Acoustic Grand Piano", "Bright Acoustic Piano", "Electric Grand Piano", "Honky-tonk Piano", "Electric Piano 1", "Electric Piano 2", "Harpsichord", "Clavinet", "Celesta", "Glockenspiel", "Music Box", "Vibraphone", "Marimba", "Xylophone", "Tubular Bells", "Dulcimer", "Drawbar Organ", "Percussive Organ", "Rock Organ", "Church Organ", "Reed Organ", "Accordion", "Harmonica", "Tango Accordion", "Acoustic Guitar (nylon)", "Acoustic Guitar (steel)", "Electric Guitar (jazz)", "Electric Guitar (clean)", "Electric Guitar (mute)", "Overdriven Guitar", "Distortion Guitar", "Guitar Harmonics", "Acoustic Bass", "Electric Bass (finger)", "Electric Bass (pick)", "Fretless Bass", "Slap Bass 1", "Slap Bass 2", "Synth Bass 1", "Synth Bass 2", "Violin", "Viola", "Cello", "Contrabass", "Tremolo Strings", "Pizzicato Strings", "Orchestral Harp", "Timpani", "String Ensemble 1", "String Ensemble 2", "SynthStrings 1", "SynthStrings 2", "Choir Aahs", "Voice Oohs", "Synth Voice", "Orchestra Hit", "Trumpet", "Trombone", "Tuba", "Muted Trumpet", "French Horn", "Brass Section", "SynthBrass 1", "SynthBrass 2", "Soprano Sax", "Alto Sax", "Tenor Sax", "Baritone Sax", "Oboe", "English Horn", "Bassoon", "Clarinet", "Piccolo", "Flute", "Recorder", "Pan Flute", "Blown Bottle", "Shakuhachi", "Whistle", "Ocarina", "Lead 1 (square)", "Lead 2 (sawtooth)", "Lead 3 (calliope)", "Lead 4 (chiff)", "Lead 5 (charang)", "Lead 6 (voice)", "Lead 7 (fifths)", "Lead 8 (bass+lead)", "Pad 1 (new age)", "Pad 2 (warm)", "Pad 3 (polysynth)", "Pad 4 (choir)", "Pad 5 (bowed)", "Pad 6 (metallic)", "Pad 7 (halo)", "Pad 8 (sweep)", "FX 1 (rain)", "FX 2 (soundtrack)", "FX 3 (crystal)", "FX 4 (atmosphere)", "FX 5 (brightness)", "FX 6 (goblins)", "FX 7 (echoes)", "FX 8 (sci-fi)", "Sitar", "Banjo", "Shamisen", "Koto", "Kalimba", "Bag pipe", "Fiddle", "Shanai", "Tinkle Bell", "Agogo", "Steel Drums", "Woodblock", "Taiko Drum", "Melodic Tom", "Synth Drum", "Reverse Cymbal", "Guitar Fret Noise", "Breath Noise", "Seashore", "Bird Tweet", "Telephone Ring", "Helicopter", "Applause", "Gunshot" }; return (((unsigned int) n) < 128) ? names[n] : (const char*)0; } const String MidiMessage::getGMInstrumentBankName (int n) throw() { const char* names[] = { "Piano", "Chromatic Percussion", "Organ", "Guitar", "Bass", "Strings", "Ensemble", "Brass", "Reed", "Pipe", "Synth Lead", "Synth Pad", "Synth Effects", "Ethnic", "Percussive", "Sound Effects" }; return (((unsigned int) n) <= 15) ? names[n] : (const char*)0; } const String MidiMessage::getRhythmInstrumentName (int n) throw() { const char* names[] = { "Acoustic Bass Drum", "Bass Drum 1", "Side Stick", "Acoustic Snare", "Hand Clap", "Electric Snare", "Low Floor Tom", "Closed Hi-Hat", "High Floor Tom", "Pedal Hi-Hat", "Low Tom", "Open Hi-Hat", "Low-Mid Tom", "Hi-Mid Tom", "Crash Cymbal 1", "High Tom", "Ride Cymbal 1", "Chinese Cymbal", "Ride Bell", "Tambourine", "Splash Cymbal", "Cowbell", "Crash Cymbal 2", "Vibraslap", "Ride Cymbal 2", "Hi Bongo", "Low Bongo", "Mute Hi Conga", "Open Hi Conga", "Low Conga", "High Timbale", "Low Timbale", "High Agogo", "Low Agogo", "Cabasa", "Maracas", "Short Whistle", "Long Whistle", "Short Guiro", "Long Guiro", "Claves", "Hi Wood Block", "Low Wood Block", "Mute Cuica", "Open Cuica", "Mute Triangle", "Open Triangle" }; return (n >= 35 && n <= 81) ? names [n - 35] : (const char*)0; } const String MidiMessage::getControllerName (int n) throw() { const char* names[] = { "Bank Select", "Modulation Wheel (coarse)", "Breath controller (coarse)", 0, "Foot Pedal (coarse)", "Portamento Time (coarse)", "Data Entry (coarse)", "Volume (coarse)", "Balance (coarse)", 0, "Pan position (coarse)", "Expression (coarse)", "Effect Control 1 (coarse)", "Effect Control 2 (coarse)", 0, 0, "General Purpose Slider 1", "General Purpose Slider 2", "General Purpose Slider 3", "General Purpose Slider 4", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "Bank Select (fine)", "Modulation Wheel (fine)", "Breath controller (fine)", 0, "Foot Pedal (fine)", "Portamento Time (fine)", "Data Entry (fine)", "Volume (fine)", "Balance (fine)", 0, "Pan position (fine)", "Expression (fine)", "Effect Control 1 (fine)", "Effect Control 2 (fine)", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "Hold Pedal (on/off)", "Portamento (on/off)", "Sustenuto Pedal (on/off)", "Soft Pedal (on/off)", "Legato Pedal (on/off)", "Hold 2 Pedal (on/off)", "Sound Variation", "Sound Timbre", "Sound Release Time", "Sound Attack Time", "Sound Brightness", "Sound Control 6", "Sound Control 7", "Sound Control 8", "Sound Control 9", "Sound Control 10", "General Purpose Button 1 (on/off)", "General Purpose Button 2 (on/off)", "General Purpose Button 3 (on/off)", "General Purpose Button 4 (on/off)", 0, 0, 0, 0, 0, 0, 0, "Reverb Level", "Tremolo Level", "Chorus Level", "Celeste Level", "Phaser Level", "Data Button increment", "Data Button decrement", "Non-registered Parameter (fine)", "Non-registered Parameter (coarse)", "Registered Parameter (fine)", "Registered Parameter (coarse)", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "All Sound Off", "All Controllers Off", "Local Keyboard (on/off)", "All Notes Off", "Omni Mode Off", "Omni Mode On", "Mono Operation", "Poly Operation" }; return (((unsigned int) n) < 128) ? names[n] : (const char*)0; } END_JUCE_NAMESPACE /********* End of inlined file: juce_MidiMessage.cpp *********/ /********* Start of inlined file: juce_MidiMessageCollector.cpp *********/ BEGIN_JUCE_NAMESPACE MidiMessageCollector::MidiMessageCollector() : lastCallbackTime (0), sampleRate (44100.0001) { } MidiMessageCollector::~MidiMessageCollector() { } void MidiMessageCollector::reset (const double sampleRate_) { jassert (sampleRate_ > 0); const ScopedLock sl (midiCallbackLock); sampleRate = sampleRate_; incomingMessages.clear(); lastCallbackTime = Time::getMillisecondCounterHiRes(); } void MidiMessageCollector::addMessageToQueue (const MidiMessage& message) { // you need to call reset() to set the correct sample rate before using this object jassert (sampleRate != 44100.0001); // the messages that come in here need to be time-stamped correctly - see MidiInput // for details of what the number should be. jassert (message.getTimeStamp() != 0); const ScopedLock sl (midiCallbackLock); const int sampleNumber = (int) ((message.getTimeStamp() - 0.001 * lastCallbackTime) * sampleRate); incomingMessages.addEvent (message, sampleNumber); // if the messages don't get used for over a second, we'd better // get rid of any old ones to avoid the queue getting too big if (sampleNumber > sampleRate) incomingMessages.clear (0, sampleNumber - (int) sampleRate); } void MidiMessageCollector::removeNextBlockOfMessages (MidiBuffer& destBuffer, const int numSamples) { // you need to call reset() to set the correct sample rate before using this object jassert (sampleRate != 44100.0001); const double timeNow = Time::getMillisecondCounterHiRes(); const double msElapsed = timeNow - lastCallbackTime; const ScopedLock sl (midiCallbackLock); lastCallbackTime = timeNow; if (! incomingMessages.isEmpty()) { int numSourceSamples = jmax (1, roundDoubleToInt (msElapsed * 0.001 * sampleRate)); int startSample = 0; int scale = 1 << 16; const uint8* midiData; int numBytes, samplePosition; MidiBuffer::Iterator iter (incomingMessages); if (numSourceSamples > numSamples) { // if our list of events is longer than the buffer we're being // asked for, scale them down to squeeze them all in.. const int maxBlockLengthToUse = numSamples << 5; if (numSourceSamples > maxBlockLengthToUse) { startSample = numSourceSamples - maxBlockLengthToUse; numSourceSamples = maxBlockLengthToUse; iter.setNextSamplePosition (startSample); } scale = (numSamples << 10) / numSourceSamples; while (iter.getNextEvent (midiData, numBytes, samplePosition)) { samplePosition = ((samplePosition - startSample) * scale) >> 10; destBuffer.addEvent (midiData, numBytes, jlimit (0, numSamples - 1, samplePosition)); } } else { // if our event list is shorter than the number we need, put them // towards the end of the buffer startSample = numSamples - numSourceSamples; while (iter.getNextEvent (midiData, numBytes, samplePosition)) { destBuffer.addEvent (midiData, numBytes, jlimit (0, numSamples - 1, samplePosition + startSample)); } } incomingMessages.clear(); } } void MidiMessageCollector::handleNoteOn (MidiKeyboardState*, int midiChannel, int midiNoteNumber, float velocity) { MidiMessage m (MidiMessage::noteOn (midiChannel, midiNoteNumber, velocity)); m.setTimeStamp (Time::getMillisecondCounterHiRes() * 0.001); addMessageToQueue (m); } void MidiMessageCollector::handleNoteOff (MidiKeyboardState*, int midiChannel, int midiNoteNumber) { MidiMessage m (MidiMessage::noteOff (midiChannel, midiNoteNumber)); m.setTimeStamp (Time::getMillisecondCounterHiRes() * 0.001); addMessageToQueue (m); } void MidiMessageCollector::handleIncomingMidiMessage (MidiInput*, const MidiMessage& message) { addMessageToQueue (message); } END_JUCE_NAMESPACE /********* End of inlined file: juce_MidiMessageCollector.cpp *********/ /********* Start of inlined file: juce_MidiMessageSequence.cpp *********/ BEGIN_JUCE_NAMESPACE MidiMessageSequence::MidiMessageSequence() { } MidiMessageSequence::MidiMessageSequence (const MidiMessageSequence& other) { list.ensureStorageAllocated (other.list.size()); for (int i = 0; i < other.list.size(); ++i) list.add (new MidiEventHolder (other.list.getUnchecked(i)->message)); } const MidiMessageSequence& MidiMessageSequence::operator= (const MidiMessageSequence& other) { if (this != &other) { clear(); for (int i = 0; i < other.list.size(); ++i) list.add (new MidiEventHolder (other.list.getUnchecked(i)->message)); } return *this; } MidiMessageSequence::~MidiMessageSequence() { } void MidiMessageSequence::clear() { list.clear(); } int MidiMessageSequence::getNumEvents() const { return list.size(); } MidiMessageSequence::MidiEventHolder* MidiMessageSequence::getEventPointer (const int index) const { return list [index]; } double MidiMessageSequence::getTimeOfMatchingKeyUp (const int index) const { const MidiEventHolder* const meh = list [index]; if (meh != 0 && meh->noteOffObject != 0) return meh->noteOffObject->message.getTimeStamp(); else return 0.0; } int MidiMessageSequence::getIndexOfMatchingKeyUp (const int index) const { const MidiEventHolder* const meh = list [index]; return (meh != 0) ? list.indexOf (meh->noteOffObject) : -1; } int MidiMessageSequence::getIndexOf (MidiEventHolder* const event) const { return list.indexOf (event); } int MidiMessageSequence::getNextIndexAtTime (const double timeStamp) const { const int numEvents = list.size(); int i; for (i = 0; i < numEvents; ++i) if (list.getUnchecked(i)->message.getTimeStamp() >= timeStamp) break; return i; } double MidiMessageSequence::getStartTime() const { if (list.size() > 0) return list.getUnchecked(0)->message.getTimeStamp(); else return 0; } double MidiMessageSequence::getEndTime() const { if (list.size() > 0) return list.getLast()->message.getTimeStamp(); else return 0; } double MidiMessageSequence::getEventTime (const int index) const { if (((unsigned int) index) < (unsigned int) list.size()) return list.getUnchecked (index)->message.getTimeStamp(); return 0.0; } void MidiMessageSequence::addEvent (const MidiMessage& newMessage, double timeAdjustment) { MidiEventHolder* const newOne = new MidiEventHolder (newMessage); timeAdjustment += newMessage.getTimeStamp(); newOne->message.setTimeStamp (timeAdjustment); int i; for (i = list.size(); --i >= 0;) if (list.getUnchecked(i)->message.getTimeStamp() <= timeAdjustment) break; list.insert (i + 1, newOne); } void MidiMessageSequence::deleteEvent (const int index, const bool deleteMatchingNoteUp) { if (((unsigned int) index) < (unsigned int) list.size()) { if (deleteMatchingNoteUp) deleteEvent (getIndexOfMatchingKeyUp (index), false); list.remove (index); } } void MidiMessageSequence::addSequence (const MidiMessageSequence& other, double timeAdjustment, double firstAllowableTime, double endOfAllowableDestTimes) { firstAllowableTime -= timeAdjustment; endOfAllowableDestTimes -= timeAdjustment; for (int i = 0; i < other.list.size(); ++i) { const MidiMessage& m = other.list.getUnchecked(i)->message; const double t = m.getTimeStamp(); if (t >= firstAllowableTime && t < endOfAllowableDestTimes) { MidiEventHolder* const newOne = new MidiEventHolder (m); newOne->message.setTimeStamp (timeAdjustment + t); list.add (newOne); } } sort(); } int MidiMessageSequence::compareElements (const MidiMessageSequence::MidiEventHolder* const first, const MidiMessageSequence::MidiEventHolder* const second) throw() { const double diff = first->message.getTimeStamp() - second->message.getTimeStamp(); return (diff > 0) - (diff < 0); } void MidiMessageSequence::sort() { list.sort (*this, true); } void MidiMessageSequence::updateMatchedPairs() { for (int i = 0; i < list.size(); ++i) { const MidiMessage& m1 = list.getUnchecked(i)->message; if (m1.isNoteOn()) { list.getUnchecked(i)->noteOffObject = 0; const int note = m1.getNoteNumber(); const int chan = m1.getChannel(); const int len = list.size(); for (int j = i + 1; j < len; ++j) { const MidiMessage& m = list.getUnchecked(j)->message; if (m.getNoteNumber() == note && m.getChannel() == chan) { if (m.isNoteOff()) { list.getUnchecked(i)->noteOffObject = list[j]; break; } else if (m.isNoteOn()) { list.insert (j, new MidiEventHolder (MidiMessage::noteOff (chan, note))); list.getUnchecked(j)->message.setTimeStamp (m.getTimeStamp()); list.getUnchecked(i)->noteOffObject = list[j]; break; } } } } } } void MidiMessageSequence::addTimeToMessages (const double delta) { for (int i = list.size(); --i >= 0;) list.getUnchecked (i)->message.setTimeStamp (list.getUnchecked (i)->message.getTimeStamp() + delta); } void MidiMessageSequence::extractMidiChannelMessages (const int channelNumberToExtract, MidiMessageSequence& destSequence, const bool alsoIncludeMetaEvents) const { for (int i = 0; i < list.size(); ++i) { const MidiMessage& mm = list.getUnchecked(i)->message; if (mm.isForChannel (channelNumberToExtract) || (alsoIncludeMetaEvents && mm.isMetaEvent())) { destSequence.addEvent (mm); } } } void MidiMessageSequence::extractSysExMessages (MidiMessageSequence& destSequence) const { for (int i = 0; i < list.size(); ++i) { const MidiMessage& mm = list.getUnchecked(i)->message; if (mm.isSysEx()) destSequence.addEvent (mm); } } void MidiMessageSequence::deleteMidiChannelMessages (const int channelNumberToRemove) { for (int i = list.size(); --i >= 0;) if (list.getUnchecked(i)->message.isForChannel (channelNumberToRemove)) list.remove(i); } void MidiMessageSequence::deleteSysExMessages() { for (int i = list.size(); --i >= 0;) if (list.getUnchecked(i)->message.isSysEx()) list.remove(i); } void MidiMessageSequence::createControllerUpdatesForTime (const int channelNumber, const double time, OwnedArray& dest) { bool doneProg = false; bool donePitchWheel = false; Array doneControllers (32); for (int i = list.size(); --i >= 0;) { const MidiMessage& mm = list.getUnchecked(i)->message; if (mm.isForChannel (channelNumber) && mm.getTimeStamp() <= time) { if (mm.isProgramChange()) { if (! doneProg) { dest.add (new MidiMessage (mm, 0.0)); doneProg = true; } } else if (mm.isController()) { if (! doneControllers.contains (mm.getControllerNumber())) { dest.add (new MidiMessage (mm, 0.0)); doneControllers.add (mm.getControllerNumber()); } } else if (mm.isPitchWheel()) { if (! donePitchWheel) { dest.add (new MidiMessage (mm, 0.0)); donePitchWheel = true; } } } } } MidiMessageSequence::MidiEventHolder::MidiEventHolder (const MidiMessage& message_) : message (message_), noteOffObject (0) { } MidiMessageSequence::MidiEventHolder::~MidiEventHolder() { } END_JUCE_NAMESPACE /********* End of inlined file: juce_MidiMessageSequence.cpp *********/ /********* Start of inlined file: juce_AudioPluginFormat.cpp *********/ BEGIN_JUCE_NAMESPACE AudioPluginFormat::AudioPluginFormat() throw() { } AudioPluginFormat::~AudioPluginFormat() { } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioPluginFormat.cpp *********/ /********* Start of inlined file: juce_AudioPluginFormatManager.cpp *********/ BEGIN_JUCE_NAMESPACE AudioPluginFormatManager::AudioPluginFormatManager() throw() { } AudioPluginFormatManager::~AudioPluginFormatManager() throw() { clearSingletonInstance(); } juce_ImplementSingleton_SingleThreaded (AudioPluginFormatManager); void AudioPluginFormatManager::addDefaultFormats() { #ifdef JUCE_DEBUG // you should only call this method once! for (int i = formats.size(); --i >= 0;) { #if JUCE_PLUGINHOST_VST jassert (dynamic_cast (formats[i]) == 0); #endif #if JUCE_PLUGINHOST_AU && JUCE_MAC jassert (dynamic_cast (formats[i]) == 0); #endif #if JUCE_PLUGINHOST_DX && JUCE_WIN32 jassert (dynamic_cast (formats[i]) == 0); #endif #if JUCE_PLUGINHOST_LADSPA && JUCE_LINUX jassert (dynamic_cast (formats[i]) == 0); #endif } #endif #if JUCE_PLUGINHOST_AU && JUCE_MAC formats.add (new AudioUnitPluginFormat()); #endif #if JUCE_PLUGINHOST_VST formats.add (new VSTPluginFormat()); #endif #if JUCE_PLUGINHOST_DX && JUCE_WIN32 formats.add (new DirectXPluginFormat()); #endif #if JUCE_PLUGINHOST_LADSPA && JUCE_LINUX formats.add (new LADSPAPluginFormat()); #endif } int AudioPluginFormatManager::getNumFormats() throw() { return formats.size(); } AudioPluginFormat* AudioPluginFormatManager::getFormat (const int index) throw() { return formats [index]; } void AudioPluginFormatManager::addFormat (AudioPluginFormat* const format) throw() { formats.add (format); } AudioPluginInstance* AudioPluginFormatManager::createPluginInstance (const PluginDescription& description, String& errorMessage) const { AudioPluginInstance* result = 0; for (int i = 0; i < formats.size(); ++i) { result = formats.getUnchecked(i)->createInstanceFromDescription (description); if (result != 0) break; } if (result == 0) { if (! doesPluginStillExist (description)) errorMessage = TRANS ("This plug-in file no longer exists"); else errorMessage = TRANS ("This plug-in failed to load correctly"); } return result; } bool AudioPluginFormatManager::doesPluginStillExist (const PluginDescription& description) const { for (int i = 0; i < formats.size(); ++i) if (formats.getUnchecked(i)->getName() == description.pluginFormatName) return formats.getUnchecked(i)->doesPluginStillExist (description); return false; } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioPluginFormatManager.cpp *********/ /********* Start of inlined file: juce_AudioPluginInstance.cpp *********/ #define JUCE_PLUGIN_HOST 1 BEGIN_JUCE_NAMESPACE AudioPluginInstance::AudioPluginInstance() { } AudioPluginInstance::~AudioPluginInstance() { } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioPluginInstance.cpp *********/ /********* Start of inlined file: juce_KnownPluginList.cpp *********/ BEGIN_JUCE_NAMESPACE KnownPluginList::KnownPluginList() { } KnownPluginList::~KnownPluginList() { } void KnownPluginList::clear() { if (types.size() > 0) { types.clear(); sendChangeMessage (this); } } PluginDescription* KnownPluginList::getTypeForFile (const String& fileOrIdentifier) const throw() { for (int i = 0; i < types.size(); ++i) if (types.getUnchecked(i)->fileOrIdentifier == fileOrIdentifier) return types.getUnchecked(i); return 0; } PluginDescription* KnownPluginList::getTypeForIdentifierString (const String& identifierString) const throw() { for (int i = 0; i < types.size(); ++i) if (types.getUnchecked(i)->createIdentifierString() == identifierString) return types.getUnchecked(i); return 0; } bool KnownPluginList::addType (const PluginDescription& type) { for (int i = types.size(); --i >= 0;) { if (types.getUnchecked(i)->isDuplicateOf (type)) { // strange - found a duplicate plugin with different info.. jassert (types.getUnchecked(i)->name == type.name); jassert (types.getUnchecked(i)->isInstrument == type.isInstrument); *types.getUnchecked(i) = type; return false; } } types.add (new PluginDescription (type)); sendChangeMessage (this); return true; } void KnownPluginList::removeType (const int index) throw() { types.remove (index); sendChangeMessage (this); } static Time getFileModTime (const String& fileOrIdentifier) throw() { if (fileOrIdentifier.startsWithChar (T('/')) || fileOrIdentifier[1] == T(':')) { return File (fileOrIdentifier).getLastModificationTime(); } return Time (0); } static bool timesAreDifferent (const Time& t1, const Time& t2) throw() { return t1 != t2 || t1 == Time (0); } bool KnownPluginList::isListingUpToDate (const String& fileOrIdentifier) const throw() { if (getTypeForFile (fileOrIdentifier) == 0) return false; for (int i = types.size(); --i >= 0;) { const PluginDescription* const d = types.getUnchecked(i); if (d->fileOrIdentifier == fileOrIdentifier && timesAreDifferent (d->lastFileModTime, getFileModTime (fileOrIdentifier))) { return false; } } return true; } bool KnownPluginList::scanAndAddFile (const String& fileOrIdentifier, const bool dontRescanIfAlreadyInList, OwnedArray & typesFound, AudioPluginFormat& format) { bool addedOne = false; if (dontRescanIfAlreadyInList && getTypeForFile (fileOrIdentifier) != 0) { bool needsRescanning = false; for (int i = types.size(); --i >= 0;) { const PluginDescription* const d = types.getUnchecked(i); if (d->fileOrIdentifier == fileOrIdentifier) { if (timesAreDifferent (d->lastFileModTime, getFileModTime (fileOrIdentifier))) needsRescanning = true; else typesFound.add (new PluginDescription (*d)); } } if (! needsRescanning) return false; } OwnedArray found; format.findAllTypesForFile (found, fileOrIdentifier); for (int i = 0; i < found.size(); ++i) { PluginDescription* const desc = found.getUnchecked(i); jassert (desc != 0); if (addType (*desc)) addedOne = true; typesFound.add (new PluginDescription (*desc)); } return addedOne; } void KnownPluginList::scanAndAddDragAndDroppedFiles (const StringArray& files, OwnedArray & typesFound) { for (int i = 0; i < files.size(); ++i) { bool loaded = false; for (int j = 0; j < AudioPluginFormatManager::getInstance()->getNumFormats(); ++j) { AudioPluginFormat* const format = AudioPluginFormatManager::getInstance()->getFormat (j); if (scanAndAddFile (files[i], true, typesFound, *format)) loaded = true; } if (! loaded) { const File f (files[i]); if (f.isDirectory()) { StringArray s; { OwnedArray subFiles; f.findChildFiles (subFiles, File::findFilesAndDirectories, false); for (int j = 0; j < subFiles.size(); ++j) s.add (subFiles.getUnchecked (j)->getFullPathName()); } scanAndAddDragAndDroppedFiles (s, typesFound); } } } } class PluginSorter { public: KnownPluginList::SortMethod method; PluginSorter() throw() {} int compareElements (const PluginDescription* const first, const PluginDescription* const second) const throw() { int diff = 0; if (method == KnownPluginList::sortByCategory) diff = first->category.compareLexicographically (second->category); else if (method == KnownPluginList::sortByManufacturer) diff = first->manufacturerName.compareLexicographically (second->manufacturerName); else if (method == KnownPluginList::sortByFileSystemLocation) diff = first->fileOrIdentifier.replaceCharacter (T('\\'), T('/')) .upToLastOccurrenceOf (T("/"), false, false) .compare (second->fileOrIdentifier.replaceCharacter (T('\\'), T('/')) .upToLastOccurrenceOf (T("/"), false, false)); if (diff == 0) diff = first->name.compareLexicographically (second->name); return diff; } }; void KnownPluginList::sort (const SortMethod method) { if (method != defaultOrder) { PluginSorter sorter; sorter.method = method; types.sort (sorter, true); sendChangeMessage (this); } } XmlElement* KnownPluginList::createXml() const { XmlElement* const e = new XmlElement (T("KNOWNPLUGINS")); for (int i = 0; i < types.size(); ++i) e->addChildElement (types.getUnchecked(i)->createXml()); return e; } void KnownPluginList::recreateFromXml (const XmlElement& xml) { clear(); if (xml.hasTagName (T("KNOWNPLUGINS"))) { forEachXmlChildElement (xml, e) { PluginDescription info; if (info.loadFromXml (*e)) addType (info); } } } const int menuIdBase = 0x324503f4; // This is used to turn a bunch of paths into a nested menu structure. struct PluginFilesystemTree { private: String folder; OwnedArray subFolders; Array plugins; void addPlugin (PluginDescription* const pd, const String& path) { if (path.isEmpty()) { plugins.add (pd); } else { const String firstSubFolder (path.upToFirstOccurrenceOf (T("/"), false, false)); const String remainingPath (path.fromFirstOccurrenceOf (T("/"), false, false)); for (int i = subFolders.size(); --i >= 0;) { if (subFolders.getUnchecked(i)->folder.equalsIgnoreCase (firstSubFolder)) { subFolders.getUnchecked(i)->addPlugin (pd, remainingPath); return; } } PluginFilesystemTree* const newFolder = new PluginFilesystemTree(); newFolder->folder = firstSubFolder; subFolders.add (newFolder); newFolder->addPlugin (pd, remainingPath); } } // removes any deeply nested folders that don't contain any actual plugins void optimise() { for (int i = subFolders.size(); --i >= 0;) { PluginFilesystemTree* const sub = subFolders.getUnchecked(i); sub->optimise(); if (sub->plugins.size() == 0) { for (int j = 0; j < sub->subFolders.size(); ++j) subFolders.add (sub->subFolders.getUnchecked(j)); sub->subFolders.clear (false); subFolders.remove (i); } } } public: void buildTree (const Array & allPlugins) { for (int i = 0; i < allPlugins.size(); ++i) { String path (allPlugins.getUnchecked(i) ->fileOrIdentifier.replaceCharacter (T('\\'), T('/')) .upToLastOccurrenceOf (T("/"), false, false)); if (path.substring (1, 2) == T(":")) path = path.substring (2); addPlugin (allPlugins.getUnchecked(i), path); } optimise(); } void addToMenu (PopupMenu& m, const OwnedArray & allPlugins) const { int i; for (i = 0; i < subFolders.size(); ++i) { const PluginFilesystemTree* const sub = subFolders.getUnchecked(i); PopupMenu subMenu; sub->addToMenu (subMenu, allPlugins); #if JUCE_MAC // avoid the special AU formatting nonsense on Mac.. m.addSubMenu (sub->folder.fromFirstOccurrenceOf (T(":"), false, false), subMenu); #else m.addSubMenu (sub->folder, subMenu); #endif } for (i = 0; i < plugins.size(); ++i) { PluginDescription* const plugin = plugins.getUnchecked(i); m.addItem (allPlugins.indexOf (plugin) + menuIdBase, plugin->name, true, false); } } }; void KnownPluginList::addToMenu (PopupMenu& menu, const SortMethod sortMethod) const { Array sorted; { PluginSorter sorter; sorter.method = sortMethod; for (int i = 0; i < types.size(); ++i) sorted.addSorted (sorter, types.getUnchecked(i)); } if (sortMethod == sortByCategory || sortMethod == sortByManufacturer) { String lastSubMenuName; PopupMenu sub; for (int i = 0; i < sorted.size(); ++i) { const PluginDescription* const pd = sorted.getUnchecked(i); String thisSubMenuName (sortMethod == sortByCategory ? pd->category : pd->manufacturerName); if (! thisSubMenuName.containsNonWhitespaceChars()) thisSubMenuName = T("Other"); if (thisSubMenuName != lastSubMenuName) { if (sub.getNumItems() > 0) { menu.addSubMenu (lastSubMenuName, sub); sub.clear(); } lastSubMenuName = thisSubMenuName; } sub.addItem (types.indexOf (pd) + menuIdBase, pd->name, true, false); } if (sub.getNumItems() > 0) menu.addSubMenu (lastSubMenuName, sub); } else if (sortMethod == sortByFileSystemLocation) { PluginFilesystemTree root; root.buildTree (sorted); root.addToMenu (menu, types); } else { for (int i = 0; i < sorted.size(); ++i) { const PluginDescription* const pd = sorted.getUnchecked(i); menu.addItem (types.indexOf (pd) + menuIdBase, pd->name, true, false); } } } int KnownPluginList::getIndexChosenByMenu (const int menuResultCode) const { const int i = menuResultCode - menuIdBase; return (((unsigned int) i) < (unsigned int) types.size()) ? i : -1; } END_JUCE_NAMESPACE /********* End of inlined file: juce_KnownPluginList.cpp *********/ /********* Start of inlined file: juce_PluginDescription.cpp *********/ BEGIN_JUCE_NAMESPACE PluginDescription::PluginDescription() throw() : uid (0), isInstrument (false), numInputChannels (0), numOutputChannels (0) { } PluginDescription::~PluginDescription() throw() { } PluginDescription::PluginDescription (const PluginDescription& other) throw() : name (other.name), pluginFormatName (other.pluginFormatName), category (other.category), manufacturerName (other.manufacturerName), version (other.version), fileOrIdentifier (other.fileOrIdentifier), lastFileModTime (other.lastFileModTime), uid (other.uid), isInstrument (other.isInstrument), numInputChannels (other.numInputChannels), numOutputChannels (other.numOutputChannels) { } const PluginDescription& PluginDescription::operator= (const PluginDescription& other) throw() { name = other.name; pluginFormatName = other.pluginFormatName; category = other.category; manufacturerName = other.manufacturerName; version = other.version; fileOrIdentifier = other.fileOrIdentifier; uid = other.uid; isInstrument = other.isInstrument; lastFileModTime = other.lastFileModTime; numInputChannels = other.numInputChannels; numOutputChannels = other.numOutputChannels; return *this; } bool PluginDescription::isDuplicateOf (const PluginDescription& other) const { return fileOrIdentifier == other.fileOrIdentifier && uid == other.uid; } const String PluginDescription::createIdentifierString() const throw() { return pluginFormatName + T("-") + name + T("-") + String::toHexString (fileOrIdentifier.hashCode()) + T("-") + String::toHexString (uid); } XmlElement* PluginDescription::createXml() const { XmlElement* const e = new XmlElement (T("PLUGIN")); e->setAttribute (T("name"), name); e->setAttribute (T("format"), pluginFormatName); e->setAttribute (T("category"), category); e->setAttribute (T("manufacturer"), manufacturerName); e->setAttribute (T("version"), version); e->setAttribute (T("file"), fileOrIdentifier); e->setAttribute (T("uid"), String::toHexString (uid)); e->setAttribute (T("isInstrument"), isInstrument); e->setAttribute (T("fileTime"), String::toHexString (lastFileModTime.toMilliseconds())); e->setAttribute (T("numInputs"), numInputChannels); e->setAttribute (T("numOutputs"), numOutputChannels); return e; } bool PluginDescription::loadFromXml (const XmlElement& xml) { if (xml.hasTagName (T("PLUGIN"))) { name = xml.getStringAttribute (T("name")); pluginFormatName = xml.getStringAttribute (T("format")); category = xml.getStringAttribute (T("category")); manufacturerName = xml.getStringAttribute (T("manufacturer")); version = xml.getStringAttribute (T("version")); fileOrIdentifier = xml.getStringAttribute (T("file")); uid = xml.getStringAttribute (T("uid")).getHexValue32(); isInstrument = xml.getBoolAttribute (T("isInstrument"), false); lastFileModTime = Time (xml.getStringAttribute (T("fileTime")).getHexValue64()); numInputChannels = xml.getIntAttribute (T("numInputs")); numOutputChannels = xml.getIntAttribute (T("numOutputs")); return true; } return false; } END_JUCE_NAMESPACE /********* End of inlined file: juce_PluginDescription.cpp *********/ /********* Start of inlined file: juce_PluginDirectoryScanner.cpp *********/ BEGIN_JUCE_NAMESPACE PluginDirectoryScanner::PluginDirectoryScanner (KnownPluginList& listToAddTo, AudioPluginFormat& formatToLookFor, FileSearchPath directoriesToSearch, const bool recursive, const File& deadMansPedalFile_) : list (listToAddTo), format (formatToLookFor), deadMansPedalFile (deadMansPedalFile_), nextIndex (0), progress (0) { directoriesToSearch.removeRedundantPaths(); filesOrIdentifiersToScan = format.searchPathsForPlugins (directoriesToSearch, recursive); // If any plugins have crashed recently when being loaded, move them to the // end of the list to give the others a chance to load correctly.. const StringArray crashedPlugins (getDeadMansPedalFile()); for (int i = 0; i < crashedPlugins.size(); ++i) { const String f = crashedPlugins[i]; for (int j = filesOrIdentifiersToScan.size(); --j >= 0;) if (f == filesOrIdentifiersToScan[j]) filesOrIdentifiersToScan.move (j, -1); } } PluginDirectoryScanner::~PluginDirectoryScanner() { } const String PluginDirectoryScanner::getNextPluginFileThatWillBeScanned() const throw() { return format.getNameOfPluginFromIdentifier (filesOrIdentifiersToScan [nextIndex]); } bool PluginDirectoryScanner::scanNextFile (const bool dontRescanIfAlreadyInList) { String file (filesOrIdentifiersToScan [nextIndex]); if (file.isNotEmpty()) { if (! list.isListingUpToDate (file)) { OwnedArray typesFound; // Add this plugin to the end of the dead-man's pedal list in case it crashes... StringArray crashedPlugins (getDeadMansPedalFile()); crashedPlugins.removeString (file); crashedPlugins.add (file); setDeadMansPedalFile (crashedPlugins); list.scanAndAddFile (file, dontRescanIfAlreadyInList, typesFound, format); // Managed to load without crashing, so remove it from the dead-man's-pedal.. crashedPlugins.removeString (file); setDeadMansPedalFile (crashedPlugins); if (typesFound.size() == 0) failedFiles.add (file); } ++nextIndex; progress = nextIndex / (float) filesOrIdentifiersToScan.size(); } return nextIndex < filesOrIdentifiersToScan.size(); } const StringArray PluginDirectoryScanner::getDeadMansPedalFile() throw() { StringArray lines; if (deadMansPedalFile != File::nonexistent) { lines.addLines (deadMansPedalFile.loadFileAsString()); lines.removeEmptyStrings(); } return lines; } void PluginDirectoryScanner::setDeadMansPedalFile (const StringArray& newContents) throw() { if (deadMansPedalFile != File::nonexistent) deadMansPedalFile.replaceWithText (newContents.joinIntoString ("\n"), true, true); } END_JUCE_NAMESPACE /********* End of inlined file: juce_PluginDirectoryScanner.cpp *********/ /********* Start of inlined file: juce_PluginListComponent.cpp *********/ BEGIN_JUCE_NAMESPACE PluginListComponent::PluginListComponent (KnownPluginList& listToEdit, const File& deadMansPedalFile_, PropertiesFile* const propertiesToUse_) : list (listToEdit), deadMansPedalFile (deadMansPedalFile_), propertiesToUse (propertiesToUse_) { addAndMakeVisible (listBox = new ListBox (String::empty, this)); addAndMakeVisible (optionsButton = new TextButton ("Options...")); optionsButton->addButtonListener (this); optionsButton->setTriggeredOnMouseDown (true); setSize (400, 600); list.addChangeListener (this); } PluginListComponent::~PluginListComponent() { list.removeChangeListener (this); deleteAllChildren(); } void PluginListComponent::resized() { listBox->setBounds (0, 0, getWidth(), getHeight() - 30); optionsButton->changeWidthToFitText (24); optionsButton->setTopLeftPosition (8, getHeight() - 28); } void PluginListComponent::changeListenerCallback (void*) { listBox->updateContent(); listBox->repaint(); } int PluginListComponent::getNumRows() { return list.getNumTypes(); } void PluginListComponent::paintListBoxItem (int row, Graphics& g, int width, int height, bool rowIsSelected) { if (rowIsSelected) g.fillAll (findColour (TextEditor::highlightColourId)); const PluginDescription* const pd = list.getType (row); if (pd != 0) { GlyphArrangement ga; ga.addCurtailedLineOfText (Font (height * 0.7f, Font::bold), pd->name, 8.0f, height * 0.8f, width - 10.0f, true); g.setColour (Colours::black); ga.draw (g); float x, y, r, b; ga.getBoundingBox (0, -1, x, y, r, b, false); String desc; desc << pd->pluginFormatName << (pd->isInstrument ? " instrument" : " effect") << " - " << pd->numInputChannels << (pd->numInputChannels == 1 ? " in" : " ins") << " / " << pd->numOutputChannels << (pd->numOutputChannels == 1 ? " out" : " outs"); if (pd->manufacturerName.isNotEmpty()) desc << " - " << pd->manufacturerName; if (pd->version.isNotEmpty()) desc << " - " << pd->version; if (pd->category.isNotEmpty()) desc << " - category: '" << pd->category << '\''; g.setColour (Colours::grey); ga.clear(); ga.addCurtailedLineOfText (Font (height * 0.6f), desc, r + 10.0f, height * 0.8f, width - r - 12.0f, true); ga.draw (g); } } void PluginListComponent::deleteKeyPressed (int lastRowSelected) { list.removeType (lastRowSelected); } void PluginListComponent::buttonClicked (Button* b) { if (optionsButton == b) { PopupMenu menu; menu.addItem (1, TRANS("Clear list")); menu.addItem (5, TRANS("Remove selected plugin from list"), listBox->getNumSelectedRows() > 0); menu.addItem (6, TRANS("Show folder containing selected plugin"), listBox->getNumSelectedRows() > 0); menu.addItem (7, TRANS("Remove any plugins whose files no longer exist")); menu.addSeparator(); menu.addItem (2, TRANS("Sort alphabetically")); menu.addItem (3, TRANS("Sort by category")); menu.addItem (4, TRANS("Sort by manufacturer")); menu.addSeparator(); for (int i = 0; i < AudioPluginFormatManager::getInstance()->getNumFormats(); ++i) { AudioPluginFormat* const format = AudioPluginFormatManager::getInstance()->getFormat (i); if (format->getDefaultLocationsToSearch().getNumPaths() > 0) menu.addItem (10 + i, "Scan for new or updated " + format->getName() + " plugins..."); } const int r = menu.showAt (optionsButton); if (r == 1) { list.clear(); } else if (r == 2) { list.sort (KnownPluginList::sortAlphabetically); } else if (r == 3) { list.sort (KnownPluginList::sortByCategory); } else if (r == 4) { list.sort (KnownPluginList::sortByManufacturer); } else if (r == 5) { const SparseSet selected (listBox->getSelectedRows()); for (int i = list.getNumTypes(); --i >= 0;) if (selected.contains (i)) list.removeType (i); } else if (r == 6) { const PluginDescription* const desc = list.getType (listBox->getSelectedRow()); if (desc != 0) { if (File (desc->fileOrIdentifier).existsAsFile()) File (desc->fileOrIdentifier).getParentDirectory().startAsProcess(); } } else if (r == 7) { for (int i = list.getNumTypes(); --i >= 0;) { if (! AudioPluginFormatManager::getInstance()->doesPluginStillExist (*list.getType (i))) { list.removeType (i); } } } else if (r != 0) { typeToScan = r - 10; startTimer (1); } } } void PluginListComponent::timerCallback() { stopTimer(); scanFor (AudioPluginFormatManager::getInstance()->getFormat (typeToScan)); } bool PluginListComponent::isInterestedInFileDrag (const StringArray& /*files*/) { return true; } void PluginListComponent::filesDropped (const StringArray& files, int, int) { OwnedArray typesFound; list.scanAndAddDragAndDroppedFiles (files, typesFound); } void PluginListComponent::scanFor (AudioPluginFormat* format) { if (format == 0) return; FileSearchPath path (format->getDefaultLocationsToSearch()); if (propertiesToUse != 0) path = propertiesToUse->getValue ("lastPluginScanPath_" + format->getName(), path.toString()); { AlertWindow aw (TRANS("Select folders to scan..."), String::empty, AlertWindow::NoIcon); FileSearchPathListComponent pathList; pathList.setSize (500, 300); pathList.setPath (path); aw.addCustomComponent (&pathList); aw.addButton (TRANS("Scan"), 1, KeyPress::returnKey); aw.addButton (TRANS("Cancel"), 0, KeyPress (KeyPress::escapeKey)); if (aw.runModalLoop() == 0) return; path = pathList.getPath(); } if (propertiesToUse != 0) { propertiesToUse->setValue ("lastPluginScanPath_" + format->getName(), path.toString()); propertiesToUse->saveIfNeeded(); } double progress = 0.0; AlertWindow aw (TRANS("Scanning for plugins..."), TRANS("Searching for all possible plugin files..."), AlertWindow::NoIcon); aw.addButton (TRANS("Cancel"), 0, KeyPress (KeyPress::escapeKey)); aw.addProgressBarComponent (progress); aw.enterModalState(); MessageManager::getInstance()->runDispatchLoopUntil (300); PluginDirectoryScanner scanner (list, *format, path, true, deadMansPedalFile); for (;;) { aw.setMessage (TRANS("Testing:\n\n") + scanner.getNextPluginFileThatWillBeScanned()); MessageManager::getInstance()->runDispatchLoopUntil (20); if (! scanner.scanNextFile (true)) break; if (! aw.isCurrentlyModal()) break; progress = scanner.getProgress(); } if (scanner.getFailedFiles().size() > 0) { StringArray shortNames; for (int i = 0; i < scanner.getFailedFiles().size(); ++i) shortNames.add (File (scanner.getFailedFiles()[i]).getFileName()); AlertWindow::showMessageBox (AlertWindow::InfoIcon, TRANS("Scan complete"), TRANS("Note that the following files appeared to be plugin files, but failed to load correctly:\n\n") + shortNames.joinIntoString (", ")); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_PluginListComponent.cpp *********/ /********* Start of inlined file: juce_AudioUnitPluginFormat.mm *********/ #if JUCE_PLUGINHOST_AU && (! (defined (LINUX) || defined (_WIN32))) #include #include #include #if JUCE_SUPPORT_CARBON #include #include #endif BEGIN_JUCE_NAMESPACE #if JUCE_MAC && JUCE_SUPPORT_CARBON #endif #if JUCE_MAC #if MACOS_10_3_OR_EARLIER #define kAudioUnitType_Generator 'augn' #endif // Change this to disable logging of various activities #ifndef AU_LOGGING #define AU_LOGGING 1 #endif #if AU_LOGGING #define log(a) Logger::writeToLog(a); #else #define log(a) #endif static int insideCallback = 0; static const String osTypeToString (OSType type) throw() { char s[4]; s[0] = (char) (((uint32) type) >> 24); s[1] = (char) (((uint32) type) >> 16); s[2] = (char) (((uint32) type) >> 8); s[3] = (char) ((uint32) type); return String (s, 4); } static OSType stringToOSType (const String& s1) throw() { const String s (s1 + " "); return (((OSType) (unsigned char) s[0]) << 24) | (((OSType) (unsigned char) s[1]) << 16) | (((OSType) (unsigned char) s[2]) << 8) | ((OSType) (unsigned char) s[3]); } static const tchar* auIdentifierPrefix = T("AudioUnit:"); static const String createAUPluginIdentifier (const ComponentDescription& desc) { jassert (osTypeToString ('abcd') == T("abcd")); // agh, must have got the endianness wrong.. jassert (stringToOSType ("abcd") == (OSType) 'abcd'); // ditto String s (auIdentifierPrefix); if (desc.componentType == kAudioUnitType_MusicDevice) s << "Synths/"; else if (desc.componentType == kAudioUnitType_MusicEffect || desc.componentType == kAudioUnitType_Effect) s << "Effects/"; else if (desc.componentType == kAudioUnitType_Generator) s << "Generators/"; else if (desc.componentType == kAudioUnitType_Panner) s << "Panners/"; s << osTypeToString (desc.componentType) << T(",") << osTypeToString (desc.componentSubType) << T(",") << osTypeToString (desc.componentManufacturer); return s; } static void getAUDetails (ComponentRecord* comp, String& name, String& manufacturer) { Handle componentNameHandle = NewHandle (sizeof (void*)); Handle componentInfoHandle = NewHandle (sizeof (void*)); if (componentNameHandle != 0 && componentInfoHandle != 0) { ComponentDescription desc; if (GetComponentInfo (comp, &desc, componentNameHandle, componentInfoHandle, 0) == noErr) { ConstStr255Param nameString = (ConstStr255Param) (*componentNameHandle); ConstStr255Param infoString = (ConstStr255Param) (*componentInfoHandle); if (nameString != 0 && nameString[0] != 0) { const String all ((const char*) nameString + 1, nameString[0]); DBG ("name: "+ all); manufacturer = all.upToFirstOccurrenceOf (T(":"), false, false).trim(); name = all.fromFirstOccurrenceOf (T(":"), false, false).trim(); } if (infoString != 0 && infoString[0] != 0) { const String all ((const char*) infoString + 1, infoString[0]); DBG ("info: " + all); } if (name.isEmpty()) name = ""; } DisposeHandle (componentNameHandle); DisposeHandle (componentInfoHandle); } } static bool getComponentDescFromIdentifier (const String& fileOrIdentifier, ComponentDescription& desc, String& name, String& version, String& manufacturer) { zerostruct (desc); if (fileOrIdentifier.startsWithIgnoreCase (auIdentifierPrefix)) { String s (fileOrIdentifier.substring (jmax (fileOrIdentifier.lastIndexOfChar (T(':')), fileOrIdentifier.lastIndexOfChar (T('/'))) + 1)); StringArray tokens; tokens.addTokens (s, T(","), 0); tokens.trim(); tokens.removeEmptyStrings(); if (tokens.size() == 3) { desc.componentType = stringToOSType (tokens[0]); desc.componentSubType = stringToOSType (tokens[1]); desc.componentManufacturer = stringToOSType (tokens[2]); ComponentRecord* comp = FindNextComponent (0, &desc); if (comp != 0) { getAUDetails (comp, name, manufacturer); return true; } } } return false; } class AudioUnitPluginWindowCarbon; class AudioUnitPluginWindowCocoa; class AudioUnitPluginInstance : public AudioPluginInstance { public: ~AudioUnitPluginInstance(); // AudioPluginInstance methods: void fillInPluginDescription (PluginDescription& desc) const { desc.name = pluginName; desc.fileOrIdentifier = createAUPluginIdentifier (componentDesc); desc.uid = ((int) componentDesc.componentType) ^ ((int) componentDesc.componentSubType) ^ ((int) componentDesc.componentManufacturer); desc.lastFileModTime = 0; desc.pluginFormatName = "AudioUnit"; desc.category = getCategory(); desc.manufacturerName = manufacturer; desc.version = version; desc.numInputChannels = getNumInputChannels(); desc.numOutputChannels = getNumOutputChannels(); desc.isInstrument = (componentDesc.componentType == kAudioUnitType_MusicDevice); } const String getName() const { return pluginName; } bool acceptsMidi() const { return wantsMidiMessages; } bool producesMidi() const { return false; } // AudioProcessor methods: void prepareToPlay (double sampleRate, int estimatedSamplesPerBlock); void releaseResources(); void processBlock (AudioSampleBuffer& buffer, MidiBuffer& midiMessages); AudioProcessorEditor* createEditor(); const String getInputChannelName (const int index) const; bool isInputChannelStereoPair (int index) const; const String getOutputChannelName (const int index) const; bool isOutputChannelStereoPair (int index) const; int getNumParameters(); float getParameter (int index); void setParameter (int index, float newValue); const String getParameterName (int index); const String getParameterText (int index); bool isParameterAutomatable (int index) const; int getNumPrograms(); int getCurrentProgram(); void setCurrentProgram (int index); const String getProgramName (int index); void changeProgramName (int index, const String& newName); void getStateInformation (MemoryBlock& destData); void getCurrentProgramStateInformation (MemoryBlock& destData); void setStateInformation (const void* data, int sizeInBytes); void setCurrentProgramStateInformation (const void* data, int sizeInBytes); juce_UseDebuggingNewOperator private: friend class AudioUnitPluginWindowCarbon; friend class AudioUnitPluginWindowCocoa; friend class AudioUnitPluginFormat; ComponentDescription componentDesc; String pluginName, manufacturer, version; String fileOrIdentifier; CriticalSection lock; bool initialised, wantsMidiMessages, wasPlaying; AudioBufferList* outputBufferList; AudioTimeStamp timeStamp; AudioSampleBuffer* currentBuffer; AudioUnit audioUnit; Array parameterIds; bool getComponentDescFromFile (const String& fileOrIdentifier); void initialise(); OSStatus renderGetInput (AudioUnitRenderActionFlags* ioActionFlags, const AudioTimeStamp* inTimeStamp, UInt32 inBusNumber, UInt32 inNumberFrames, AudioBufferList* ioData) const; static OSStatus renderGetInputCallback (void* inRefCon, AudioUnitRenderActionFlags* ioActionFlags, const AudioTimeStamp* inTimeStamp, UInt32 inBusNumber, UInt32 inNumberFrames, AudioBufferList* ioData) { return ((AudioUnitPluginInstance*) inRefCon) ->renderGetInput (ioActionFlags, inTimeStamp, inBusNumber, inNumberFrames, ioData); } OSStatus getBeatAndTempo (Float64* outCurrentBeat, Float64* outCurrentTempo) const; OSStatus getMusicalTimeLocation (UInt32* outDeltaSampleOffsetToNextBeat, Float32* outTimeSig_Numerator, UInt32* outTimeSig_Denominator, Float64* outCurrentMeasureDownBeat) const; OSStatus getTransportState (Boolean* outIsPlaying, Boolean* outTransportStateChanged, Float64* outCurrentSampleInTimeLine, Boolean* outIsCycling, Float64* outCycleStartBeat, Float64* outCycleEndBeat); static OSStatus getBeatAndTempoCallback (void* inHostUserData, Float64* outCurrentBeat, Float64* outCurrentTempo) { return ((AudioUnitPluginInstance*) inHostUserData)->getBeatAndTempo (outCurrentBeat, outCurrentTempo); } static OSStatus getMusicalTimeLocationCallback (void* inHostUserData, UInt32* outDeltaSampleOffsetToNextBeat, Float32* outTimeSig_Numerator, UInt32* outTimeSig_Denominator, Float64* outCurrentMeasureDownBeat) { return ((AudioUnitPluginInstance*) inHostUserData) ->getMusicalTimeLocation (outDeltaSampleOffsetToNextBeat, outTimeSig_Numerator, outTimeSig_Denominator, outCurrentMeasureDownBeat); } static OSStatus getTransportStateCallback (void* inHostUserData, Boolean* outIsPlaying, Boolean* outTransportStateChanged, Float64* outCurrentSampleInTimeLine, Boolean* outIsCycling, Float64* outCycleStartBeat, Float64* outCycleEndBeat) { return ((AudioUnitPluginInstance*) inHostUserData) ->getTransportState (outIsPlaying, outTransportStateChanged, outCurrentSampleInTimeLine, outIsCycling, outCycleStartBeat, outCycleEndBeat); } void getNumChannels (int& numIns, int& numOuts) { numIns = 0; numOuts = 0; AUChannelInfo supportedChannels [128]; UInt32 supportedChannelsSize = sizeof (supportedChannels); if (AudioUnitGetProperty (audioUnit, kAudioUnitProperty_SupportedNumChannels, kAudioUnitScope_Global, 0, supportedChannels, &supportedChannelsSize) == noErr && supportedChannelsSize > 0) { for (int i = 0; i < supportedChannelsSize / sizeof (AUChannelInfo); ++i) { numIns = jmax (numIns, supportedChannels[i].inChannels); numOuts = jmax (numOuts, supportedChannels[i].outChannels); } } else { // (this really means the plugin will take any number of ins/outs as long // as they are the same) numIns = numOuts = 2; } } const String getCategory() const; AudioUnitPluginInstance (const String& fileOrIdentifier); }; AudioUnitPluginInstance::AudioUnitPluginInstance (const String& fileOrIdentifier) : fileOrIdentifier (fileOrIdentifier), initialised (false), wantsMidiMessages (false), audioUnit (0), outputBufferList (0), currentBuffer (0) { try { ++insideCallback; log (T("Opening AU: ") + fileOrIdentifier); if (getComponentDescFromFile (fileOrIdentifier)) { ComponentRecord* const comp = FindNextComponent (0, &componentDesc); if (comp != 0) { audioUnit = (AudioUnit) OpenComponent (comp); wantsMidiMessages = componentDesc.componentType == kAudioUnitType_MusicDevice || componentDesc.componentType == kAudioUnitType_MusicEffect; } } --insideCallback; } catch (...) { --insideCallback; } } AudioUnitPluginInstance::~AudioUnitPluginInstance() { { const ScopedLock sl (lock); jassert (insideCallback == 0); if (audioUnit != 0) { AudioUnitUninitialize (audioUnit); CloseComponent (audioUnit); audioUnit = 0; } } juce_free (outputBufferList); } bool AudioUnitPluginInstance::getComponentDescFromFile (const String& fileOrIdentifier) { zerostruct (componentDesc); if (getComponentDescFromIdentifier (fileOrIdentifier, componentDesc, pluginName, version, manufacturer)) return true; const File file (fileOrIdentifier); if (! file.hasFileExtension (T(".component"))) return false; const char* const utf8 = fileOrIdentifier.toUTF8(); CFURLRef url = CFURLCreateFromFileSystemRepresentation (0, (const UInt8*) utf8, strlen (utf8), file.isDirectory()); if (url != 0) { CFBundleRef bundleRef = CFBundleCreate (kCFAllocatorDefault, url); CFRelease (url); if (bundleRef != 0) { CFTypeRef name = CFBundleGetValueForInfoDictionaryKey (bundleRef, CFSTR("CFBundleName")); if (name != 0 && CFGetTypeID (name) == CFStringGetTypeID()) pluginName = PlatformUtilities::cfStringToJuceString ((CFStringRef) name); if (pluginName.isEmpty()) pluginName = file.getFileNameWithoutExtension(); CFTypeRef versionString = CFBundleGetValueForInfoDictionaryKey (bundleRef, CFSTR("CFBundleVersion")); if (versionString != 0 && CFGetTypeID (versionString) == CFStringGetTypeID()) version = PlatformUtilities::cfStringToJuceString ((CFStringRef) versionString); CFTypeRef manuString = CFBundleGetValueForInfoDictionaryKey (bundleRef, CFSTR("CFBundleGetInfoString")); if (manuString != 0 && CFGetTypeID (manuString) == CFStringGetTypeID()) manufacturer = PlatformUtilities::cfStringToJuceString ((CFStringRef) manuString); short resFileId = CFBundleOpenBundleResourceMap (bundleRef); UseResFile (resFileId); for (int i = 1; i <= Count1Resources ('thng'); ++i) { Handle h = Get1IndResource ('thng', i); if (h != 0) { HLock (h); const uint32* const types = (const uint32*) *h; if (types[0] == kAudioUnitType_MusicDevice || types[0] == kAudioUnitType_MusicEffect || types[0] == kAudioUnitType_Effect || types[0] == kAudioUnitType_Generator || types[0] == kAudioUnitType_Panner) { componentDesc.componentType = types[0]; componentDesc.componentSubType = types[1]; componentDesc.componentManufacturer = types[2]; break; } HUnlock (h); ReleaseResource (h); } } CFBundleCloseBundleResourceMap (bundleRef, resFileId); CFRelease (bundleRef); } } return componentDesc.componentType != 0 && componentDesc.componentSubType != 0; } void AudioUnitPluginInstance::initialise() { if (initialised || audioUnit == 0) return; log (T("Initialising AU: ") + pluginName); parameterIds.clear(); { UInt32 paramListSize = 0; AudioUnitGetProperty (audioUnit, kAudioUnitProperty_ParameterList, kAudioUnitScope_Global, 0, 0, ¶mListSize); if (paramListSize > 0) { parameterIds.insertMultiple (0, 0, paramListSize / sizeof (int)); AudioUnitGetProperty (audioUnit, kAudioUnitProperty_ParameterList, kAudioUnitScope_Global, 0, ¶meterIds.getReference(0), ¶mListSize); } } { AURenderCallbackStruct info; zerostruct (info); info.inputProcRefCon = this; info.inputProc = renderGetInputCallback; AudioUnitSetProperty (audioUnit, kAudioUnitProperty_SetRenderCallback, kAudioUnitScope_Input, 0, &info, sizeof (info)); } { HostCallbackInfo info; zerostruct (info); info.hostUserData = this; info.beatAndTempoProc = getBeatAndTempoCallback; info.musicalTimeLocationProc = getMusicalTimeLocationCallback; info.transportStateProc = getTransportStateCallback; AudioUnitSetProperty (audioUnit, kAudioUnitProperty_HostCallbacks, kAudioUnitScope_Global, 0, &info, sizeof (info)); } int numIns, numOuts; getNumChannels (numIns, numOuts); setPlayConfigDetails (numIns, numOuts, 0, 0); initialised = AudioUnitInitialize (audioUnit) == noErr; setLatencySamples (0); } void AudioUnitPluginInstance::prepareToPlay (double sampleRate_, int samplesPerBlockExpected) { initialise(); if (initialised) { int numIns, numOuts; getNumChannels (numIns, numOuts); setPlayConfigDetails (numIns, numOuts, sampleRate_, samplesPerBlockExpected); Float64 latencySecs = 0.0; UInt32 latencySize = sizeof (latencySecs); AudioUnitGetProperty (audioUnit, kAudioUnitProperty_Latency, kAudioUnitScope_Global, 0, &latencySecs, &latencySize); setLatencySamples (roundDoubleToInt (latencySecs * sampleRate_)); AudioUnitReset (audioUnit, kAudioUnitScope_Input, 0); AudioUnitReset (audioUnit, kAudioUnitScope_Output, 0); AudioUnitReset (audioUnit, kAudioUnitScope_Global, 0); AudioStreamBasicDescription stream; zerostruct (stream); stream.mSampleRate = sampleRate_; stream.mFormatID = kAudioFormatLinearPCM; stream.mFormatFlags = kAudioFormatFlagsNativeFloatPacked | kAudioFormatFlagIsNonInterleaved; stream.mFramesPerPacket = 1; stream.mBytesPerPacket = 4; stream.mBytesPerFrame = 4; stream.mBitsPerChannel = 32; stream.mChannelsPerFrame = numIns; OSStatus err = AudioUnitSetProperty (audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, 0, &stream, sizeof (stream)); stream.mChannelsPerFrame = numOuts; err = AudioUnitSetProperty (audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, 0, &stream, sizeof (stream)); juce_free (outputBufferList); outputBufferList = (AudioBufferList*) juce_calloc (sizeof (AudioBufferList) + sizeof (AudioBuffer) * (numOuts + 1)); outputBufferList->mNumberBuffers = numOuts; for (int i = numOuts; --i >= 0;) outputBufferList->mBuffers[i].mNumberChannels = 1; zerostruct (timeStamp); timeStamp.mSampleTime = 0; timeStamp.mHostTime = AudioGetCurrentHostTime(); timeStamp.mFlags = kAudioTimeStampSampleTimeValid | kAudioTimeStampHostTimeValid; currentBuffer = 0; wasPlaying = false; } } void AudioUnitPluginInstance::releaseResources() { if (initialised) { AudioUnitReset (audioUnit, kAudioUnitScope_Input, 0); AudioUnitReset (audioUnit, kAudioUnitScope_Output, 0); AudioUnitReset (audioUnit, kAudioUnitScope_Global, 0); juce_free (outputBufferList); outputBufferList = 0; currentBuffer = 0; } } OSStatus AudioUnitPluginInstance::renderGetInput (AudioUnitRenderActionFlags* ioActionFlags, const AudioTimeStamp* inTimeStamp, UInt32 inBusNumber, UInt32 inNumberFrames, AudioBufferList* ioData) const { if (inBusNumber == 0 && currentBuffer != 0) { jassert (inNumberFrames == currentBuffer->getNumSamples()); // if this ever happens, might need to add extra handling for (int i = 0; i < ioData->mNumberBuffers; ++i) { if (i < currentBuffer->getNumChannels()) { memcpy (ioData->mBuffers[i].mData, currentBuffer->getSampleData (i, 0), sizeof (float) * inNumberFrames); } else { zeromem (ioData->mBuffers[i].mData, sizeof (float) * inNumberFrames); } } } return noErr; } void AudioUnitPluginInstance::processBlock (AudioSampleBuffer& buffer, MidiBuffer& midiMessages) { const int numSamples = buffer.getNumSamples(); if (initialised) { AudioUnitRenderActionFlags flags = 0; timeStamp.mHostTime = AudioGetCurrentHostTime(); for (int i = getNumOutputChannels(); --i >= 0;) { outputBufferList->mBuffers[i].mDataByteSize = sizeof (float) * numSamples; outputBufferList->mBuffers[i].mData = buffer.getSampleData (i, 0); } currentBuffer = &buffer; if (wantsMidiMessages) { const uint8* midiEventData; int midiEventSize, midiEventPosition; MidiBuffer::Iterator i (midiMessages); while (i.getNextEvent (midiEventData, midiEventSize, midiEventPosition)) { if (midiEventSize <= 3) MusicDeviceMIDIEvent (audioUnit, midiEventData[0], midiEventData[1], midiEventData[2], midiEventPosition); else MusicDeviceSysEx (audioUnit, midiEventData, midiEventSize); } midiMessages.clear(); } AudioUnitRender (audioUnit, &flags, &timeStamp, 0, numSamples, outputBufferList); timeStamp.mSampleTime += numSamples; } else { // Not initialised, so just bypass.. for (int i = getNumInputChannels(); i < getNumOutputChannels(); ++i) buffer.clear (i, 0, buffer.getNumSamples()); } } OSStatus AudioUnitPluginInstance::getBeatAndTempo (Float64* outCurrentBeat, Float64* outCurrentTempo) const { AudioPlayHead* const ph = getPlayHead(); AudioPlayHead::CurrentPositionInfo result; if (ph != 0 && ph->getCurrentPosition (result)) { if (outCurrentBeat != 0) *outCurrentBeat = result.ppqPosition; if (outCurrentTempo != 0) *outCurrentTempo = result.bpm; } else { if (outCurrentBeat != 0) *outCurrentBeat = 0; if (outCurrentTempo != 0) *outCurrentTempo = 120.0; } return noErr; } OSStatus AudioUnitPluginInstance::getMusicalTimeLocation (UInt32* outDeltaSampleOffsetToNextBeat, Float32* outTimeSig_Numerator, UInt32* outTimeSig_Denominator, Float64* outCurrentMeasureDownBeat) const { AudioPlayHead* const ph = getPlayHead(); AudioPlayHead::CurrentPositionInfo result; if (ph != 0 && ph->getCurrentPosition (result)) { if (outTimeSig_Numerator != 0) *outTimeSig_Numerator = result.timeSigNumerator; if (outTimeSig_Denominator != 0) *outTimeSig_Denominator = result.timeSigDenominator; if (outDeltaSampleOffsetToNextBeat != 0) *outDeltaSampleOffsetToNextBeat = 0; //xxx if (outCurrentMeasureDownBeat != 0) *outCurrentMeasureDownBeat = result.ppqPositionOfLastBarStart; //xxx wrong } else { if (outDeltaSampleOffsetToNextBeat != 0) *outDeltaSampleOffsetToNextBeat = 0; if (outTimeSig_Numerator != 0) *outTimeSig_Numerator = 4; if (outTimeSig_Denominator != 0) *outTimeSig_Denominator = 4; if (outCurrentMeasureDownBeat != 0) *outCurrentMeasureDownBeat = 0; } return noErr; } OSStatus AudioUnitPluginInstance::getTransportState (Boolean* outIsPlaying, Boolean* outTransportStateChanged, Float64* outCurrentSampleInTimeLine, Boolean* outIsCycling, Float64* outCycleStartBeat, Float64* outCycleEndBeat) { AudioPlayHead* const ph = getPlayHead(); AudioPlayHead::CurrentPositionInfo result; if (ph != 0 && ph->getCurrentPosition (result)) { if (outIsPlaying != 0) *outIsPlaying = result.isPlaying; if (outTransportStateChanged != 0) { *outTransportStateChanged = result.isPlaying != wasPlaying; wasPlaying = result.isPlaying; } if (outCurrentSampleInTimeLine != 0) *outCurrentSampleInTimeLine = roundDoubleToInt (result.timeInSeconds * getSampleRate()); if (outIsCycling != 0) *outIsCycling = false; if (outCycleStartBeat != 0) *outCycleStartBeat = 0; if (outCycleEndBeat != 0) *outCycleEndBeat = 0; } else { if (outIsPlaying != 0) *outIsPlaying = false; if (outTransportStateChanged != 0) *outTransportStateChanged = false; if (outCurrentSampleInTimeLine != 0) *outCurrentSampleInTimeLine = 0; if (outIsCycling != 0) *outIsCycling = false; if (outCycleStartBeat != 0) *outCycleStartBeat = 0; if (outCycleEndBeat != 0) *outCycleEndBeat = 0; } return noErr; } static VoidArray activeWindows; class AudioUnitPluginWindowCocoa : public AudioProcessorEditor { public: AudioUnitPluginWindowCocoa (AudioUnitPluginInstance& plugin_, const bool createGenericViewIfNeeded) : AudioProcessorEditor (&plugin_), plugin (plugin_), wrapper (0) { addAndMakeVisible (wrapper = new NSViewComponent()); activeWindows.add (this); setOpaque (true); setVisible (true); setSize (100, 100); createView (createGenericViewIfNeeded); } ~AudioUnitPluginWindowCocoa() { const bool wasValid = isValid(); wrapper->setView (0); activeWindows.removeValue (this); if (wasValid) plugin.editorBeingDeleted (this); delete wrapper; } bool isValid() const { return wrapper->getView() != 0; } void paint (Graphics& g) { g.fillAll (Colours::white); } void resized() { wrapper->setSize (getWidth(), getHeight()); } private: AudioUnitPluginInstance& plugin; NSViewComponent* wrapper; bool createView (const bool createGenericViewIfNeeded) { NSView* pluginView = 0; UInt32 dataSize = 0; Boolean isWritable = false; if (AudioUnitGetPropertyInfo (plugin.audioUnit, kAudioUnitProperty_CocoaUI, kAudioUnitScope_Global, 0, &dataSize, &isWritable) == noErr && dataSize != 0 && AudioUnitGetPropertyInfo (plugin.audioUnit, kAudioUnitProperty_CocoaUI, kAudioUnitScope_Global, 0, &dataSize, &isWritable) == noErr) { AudioUnitCocoaViewInfo* info = (AudioUnitCocoaViewInfo*) juce_calloc (dataSize); if (AudioUnitGetProperty (plugin.audioUnit, kAudioUnitProperty_CocoaUI, kAudioUnitScope_Global, 0, info, &dataSize) == noErr) { NSString* viewClassName = (NSString*) (info->mCocoaAUViewClass[0]); NSString* path = (NSString*) CFURLCopyPath (info->mCocoaAUViewBundleLocation); NSBundle* viewBundle = [NSBundle bundleWithPath: [path autorelease]]; Class viewClass = [viewBundle classNamed: viewClassName]; if ([viewClass conformsToProtocol: @protocol (AUCocoaUIBase)] && [viewClass instancesRespondToSelector: @selector (interfaceVersion)] && [viewClass instancesRespondToSelector: @selector (uiViewForAudioUnit: withSize:)]) { id factory = [[[viewClass alloc] init] autorelease]; pluginView = [factory uiViewForAudioUnit: plugin.audioUnit withSize: NSMakeSize (getWidth(), getHeight())]; } for (int i = (dataSize - sizeof (CFURLRef)) / sizeof (CFStringRef); --i >= 0;) { CFRelease (info->mCocoaAUViewClass[i]); CFRelease (info->mCocoaAUViewBundleLocation); } } juce_free (info); } if (createGenericViewIfNeeded && (pluginView == 0)) pluginView = [[AUGenericView alloc] initWithAudioUnit: plugin.audioUnit]; wrapper->setView (pluginView); if (pluginView != 0) setSize ([pluginView frame].size.width, [pluginView frame].size.height); return pluginView != 0; } }; #if JUCE_SUPPORT_CARBON class AudioUnitPluginWindowCarbon : public AudioProcessorEditor { public: AudioUnitPluginWindowCarbon (AudioUnitPluginInstance& plugin_) : AudioProcessorEditor (&plugin_), plugin (plugin_), viewComponent (0) { addAndMakeVisible (innerWrapper = new InnerWrapperComponent (this)); activeWindows.add (this); setOpaque (true); setVisible (true); setSize (400, 300); ComponentDescription viewList [16]; UInt32 viewListSize = sizeof (viewList); AudioUnitGetProperty (plugin.audioUnit, kAudioUnitProperty_GetUIComponentList, kAudioUnitScope_Global, 0, &viewList, &viewListSize); componentRecord = FindNextComponent (0, &viewList[0]); } ~AudioUnitPluginWindowCarbon() { deleteAndZero (innerWrapper); activeWindows.removeValue (this); if (isValid()) plugin.editorBeingDeleted (this); } bool isValid() const throw() { return componentRecord != 0; } void paint (Graphics& g) { g.fillAll (Colours::black); } void resized() { innerWrapper->setSize (getWidth(), getHeight()); } bool keyStateChanged (const bool) { return false; } bool keyPressed (const KeyPress&) { return false; } void broughtToFront() { activeWindows.removeValue (this); activeWindows.add (this); } AudioUnit getAudioUnit() const { return plugin.audioUnit; } AudioUnitCarbonView getViewComponent() { if (viewComponent == 0 && componentRecord != 0) viewComponent = (AudioUnitCarbonView) OpenComponent (componentRecord); return viewComponent; } void closeViewComponent() { if (viewComponent != 0) { CloseComponent (viewComponent); viewComponent = 0; } } juce_UseDebuggingNewOperator private: AudioUnitPluginInstance& plugin; ComponentRecord* componentRecord; AudioUnitCarbonView viewComponent; class InnerWrapperComponent : public CarbonViewWrapperComponent { public: InnerWrapperComponent (AudioUnitPluginWindowCarbon* const owner_) : owner (owner_) { } ~InnerWrapperComponent() { deleteWindow(); } HIViewRef attachView (WindowRef windowRef, HIViewRef rootView) { log (T("Opening AU GUI: ") + owner->plugin.getName()); AudioUnitCarbonView viewComponent = owner->getViewComponent(); if (viewComponent == 0) return 0; Float32Point pos = { 0, 0 }; Float32Point size = { 250, 200 }; HIViewRef pluginView = 0; AudioUnitCarbonViewCreate (viewComponent, owner->getAudioUnit(), windowRef, rootView, &pos, &size, (ControlRef*) &pluginView); return pluginView; } void removeView (HIViewRef) { log (T("Closing AU GUI: ") + owner->plugin.getName()); owner->closeViewComponent(); } private: AudioUnitPluginWindowCarbon* const owner; }; friend class InnerWrapperComponent; InnerWrapperComponent* innerWrapper; }; #endif AudioProcessorEditor* AudioUnitPluginInstance::createEditor() { AudioProcessorEditor* w = new AudioUnitPluginWindowCocoa (*this, false); if (! ((AudioUnitPluginWindowCocoa*) w)->isValid()) deleteAndZero (w); #if JUCE_SUPPORT_CARBON if (w == 0) { w = new AudioUnitPluginWindowCarbon (*this); if (! ((AudioUnitPluginWindowCarbon*) w)->isValid()) deleteAndZero (w); } #endif if (w == 0) w = new AudioUnitPluginWindowCocoa (*this, true); // use AUGenericView as a fallback return w; } const String AudioUnitPluginInstance::getCategory() const { const char* result = 0; switch (componentDesc.componentType) { case kAudioUnitType_Effect: case kAudioUnitType_MusicEffect: result = "Effect"; break; case kAudioUnitType_MusicDevice: result = "Synth"; break; case kAudioUnitType_Generator: result = "Generator"; break; case kAudioUnitType_Panner: result = "Panner"; break; default: break; } return result; } int AudioUnitPluginInstance::getNumParameters() { return parameterIds.size(); } float AudioUnitPluginInstance::getParameter (int index) { const ScopedLock sl (lock); Float32 value = 0.0f; if (audioUnit != 0 && ((unsigned int) index) < (unsigned int) parameterIds.size()) { AudioUnitGetParameter (audioUnit, (UInt32) parameterIds.getUnchecked (index), kAudioUnitScope_Global, 0, &value); } return value; } void AudioUnitPluginInstance::setParameter (int index, float newValue) { const ScopedLock sl (lock); if (audioUnit != 0 && ((unsigned int) index) < (unsigned int) parameterIds.size()) { AudioUnitSetParameter (audioUnit, (UInt32) parameterIds.getUnchecked (index), kAudioUnitScope_Global, 0, newValue, 0); } } const String AudioUnitPluginInstance::getParameterName (int index) { AudioUnitParameterInfo info; zerostruct (info); UInt32 sz = sizeof (info); String name; if (AudioUnitGetProperty (audioUnit, kAudioUnitProperty_ParameterInfo, kAudioUnitScope_Global, parameterIds [index], &info, &sz) == noErr) { if ((info.flags & kAudioUnitParameterFlag_HasCFNameString) != 0) name = PlatformUtilities::cfStringToJuceString (info.cfNameString); else name = String (info.name, sizeof (info.name)); } return name; } const String AudioUnitPluginInstance::getParameterText (int index) { return String (getParameter (index)); } bool AudioUnitPluginInstance::isParameterAutomatable (int index) const { AudioUnitParameterInfo info; UInt32 sz = sizeof (info); if (AudioUnitGetProperty (audioUnit, kAudioUnitProperty_ParameterInfo, kAudioUnitScope_Global, parameterIds [index], &info, &sz) == noErr) { return (info.flags & kAudioUnitParameterFlag_NonRealTime) == 0; } return true; } int AudioUnitPluginInstance::getNumPrograms() { CFArrayRef presets; UInt32 sz = sizeof (CFArrayRef); int num = 0; if (AudioUnitGetProperty (audioUnit, kAudioUnitProperty_FactoryPresets, kAudioUnitScope_Global, 0, &presets, &sz) == noErr) { num = (int) CFArrayGetCount (presets); CFRelease (presets); } return num; } int AudioUnitPluginInstance::getCurrentProgram() { AUPreset current; current.presetNumber = 0; UInt32 sz = sizeof (AUPreset); AudioUnitGetProperty (audioUnit, kAudioUnitProperty_FactoryPresets, kAudioUnitScope_Global, 0, ¤t, &sz); return current.presetNumber; } void AudioUnitPluginInstance::setCurrentProgram (int newIndex) { AUPreset current; current.presetNumber = newIndex; current.presetName = 0; AudioUnitSetProperty (audioUnit, kAudioUnitProperty_FactoryPresets, kAudioUnitScope_Global, 0, ¤t, sizeof (AUPreset)); } const String AudioUnitPluginInstance::getProgramName (int index) { String s; CFArrayRef presets; UInt32 sz = sizeof (CFArrayRef); if (AudioUnitGetProperty (audioUnit, kAudioUnitProperty_FactoryPresets, kAudioUnitScope_Global, 0, &presets, &sz) == noErr) { for (CFIndex i = 0; i < CFArrayGetCount (presets); ++i) { const AUPreset* p = (const AUPreset*) CFArrayGetValueAtIndex (presets, i); if (p != 0 && p->presetNumber == index) { s = PlatformUtilities::cfStringToJuceString (p->presetName); break; } } CFRelease (presets); } return s; } void AudioUnitPluginInstance::changeProgramName (int index, const String& newName) { jassertfalse // xxx not implemented! } const String AudioUnitPluginInstance::getInputChannelName (const int index) const { if (((unsigned int) index) < (unsigned int) getNumInputChannels()) return T("Input ") + String (index + 1); return String::empty; } bool AudioUnitPluginInstance::isInputChannelStereoPair (int index) const { if (((unsigned int) index) >= (unsigned int) getNumInputChannels()) return false; return true; } const String AudioUnitPluginInstance::getOutputChannelName (const int index) const { if (((unsigned int) index) < (unsigned int) getNumOutputChannels()) return T("Output ") + String (index + 1); return String::empty; } bool AudioUnitPluginInstance::isOutputChannelStereoPair (int index) const { if (((unsigned int) index) >= (unsigned int) getNumOutputChannels()) return false; return true; } void AudioUnitPluginInstance::getStateInformation (MemoryBlock& destData) { getCurrentProgramStateInformation (destData); } void AudioUnitPluginInstance::getCurrentProgramStateInformation (MemoryBlock& destData) { CFPropertyListRef propertyList = 0; UInt32 sz = sizeof (CFPropertyListRef); if (AudioUnitGetProperty (audioUnit, kAudioUnitProperty_ClassInfo, kAudioUnitScope_Global, 0, &propertyList, &sz) == noErr) { CFWriteStreamRef stream = CFWriteStreamCreateWithAllocatedBuffers (kCFAllocatorDefault, kCFAllocatorDefault); CFWriteStreamOpen (stream); CFIndex bytesWritten = CFPropertyListWriteToStream (propertyList, stream, kCFPropertyListBinaryFormat_v1_0, 0); CFWriteStreamClose (stream); CFDataRef data = (CFDataRef) CFWriteStreamCopyProperty (stream, kCFStreamPropertyDataWritten); destData.setSize (bytesWritten); destData.copyFrom (CFDataGetBytePtr (data), 0, destData.getSize()); CFRelease (data); CFRelease (stream); CFRelease (propertyList); } } void AudioUnitPluginInstance::setStateInformation (const void* data, int sizeInBytes) { setCurrentProgramStateInformation (data, sizeInBytes); } void AudioUnitPluginInstance::setCurrentProgramStateInformation (const void* data, int sizeInBytes) { CFReadStreamRef stream = CFReadStreamCreateWithBytesNoCopy (kCFAllocatorDefault, (const UInt8*) data, sizeInBytes, kCFAllocatorNull); CFReadStreamOpen (stream); CFPropertyListFormat format = kCFPropertyListBinaryFormat_v1_0; CFPropertyListRef propertyList = CFPropertyListCreateFromStream (kCFAllocatorDefault, stream, 0, kCFPropertyListImmutable, &format, 0); CFRelease (stream); if (propertyList != 0) AudioUnitSetProperty (audioUnit, kAudioUnitProperty_ClassInfo, kAudioUnitScope_Global, 0, &propertyList, sizeof (propertyList)); } AudioUnitPluginFormat::AudioUnitPluginFormat() { } AudioUnitPluginFormat::~AudioUnitPluginFormat() { } void AudioUnitPluginFormat::findAllTypesForFile (OwnedArray & results, const String& fileOrIdentifier) { if (! fileMightContainThisPluginType (fileOrIdentifier)) return; PluginDescription desc; desc.fileOrIdentifier = fileOrIdentifier; desc.uid = 0; AudioUnitPluginInstance* instance = dynamic_cast (createInstanceFromDescription (desc)); if (instance == 0) return; try { instance->fillInPluginDescription (desc); results.add (new PluginDescription (desc)); } catch (...) { // crashed while loading... } deleteAndZero (instance); } AudioPluginInstance* AudioUnitPluginFormat::createInstanceFromDescription (const PluginDescription& desc) { AudioUnitPluginInstance* result = 0; if (fileMightContainThisPluginType (desc.fileOrIdentifier)) { result = new AudioUnitPluginInstance (desc.fileOrIdentifier); if (result->audioUnit != 0) { result->initialise(); } else { deleteAndZero (result); } } return result; } const StringArray AudioUnitPluginFormat::searchPathsForPlugins (const FileSearchPath& /*directoriesToSearch*/, const bool /*recursive*/) { StringArray result; ComponentRecord* comp = 0; ComponentDescription desc; zerostruct (desc); for (;;) { zerostruct (desc); comp = FindNextComponent (comp, &desc); if (comp == 0) break; GetComponentInfo (comp, &desc, 0, 0, 0); if (desc.componentType == kAudioUnitType_MusicDevice || desc.componentType == kAudioUnitType_MusicEffect || desc.componentType == kAudioUnitType_Effect || desc.componentType == kAudioUnitType_Generator || desc.componentType == kAudioUnitType_Panner) { const String s (createAUPluginIdentifier (desc)); DBG (s); result.add (s); } } return result; } bool AudioUnitPluginFormat::fileMightContainThisPluginType (const String& fileOrIdentifier) { ComponentDescription desc; String name, version, manufacturer; if (getComponentDescFromIdentifier (fileOrIdentifier, desc, name, version, manufacturer)) return FindNextComponent (0, &desc) != 0; const File f (fileOrIdentifier); return f.hasFileExtension (T(".component")) && f.isDirectory(); } const String AudioUnitPluginFormat::getNameOfPluginFromIdentifier (const String& fileOrIdentifier) { ComponentDescription desc; String name, version, manufacturer; getComponentDescFromIdentifier (fileOrIdentifier, desc, name, version, manufacturer); if (name.isEmpty()) name = fileOrIdentifier; return name; } bool AudioUnitPluginFormat::doesPluginStillExist (const PluginDescription& desc) { return File (desc.fileOrIdentifier).exists(); } const FileSearchPath AudioUnitPluginFormat::getDefaultLocationsToSearch() { return FileSearchPath ("/(Default AudioUnit locations)"); } #endif END_JUCE_NAMESPACE #undef log #endif /********* End of inlined file: juce_AudioUnitPluginFormat.mm *********/ /********* Start of inlined file: juce_VSTPluginFormat.mm *********/ // This file just wraps juce_VSTPluginFormat.cpp in an objective-C wrapper #define JUCE_MAC_VST_INCLUDED 1 /********* Start of inlined file: juce_VSTPluginFormat.cpp *********/ #if JUCE_PLUGINHOST_VST #if (defined (_WIN32) || defined (_WIN64)) #undef _WIN32_WINNT #define _WIN32_WINNT 0x500 #undef STRICT #define STRICT #include #include #pragma warning (disable : 4312 4355) #elif defined (LINUX) || defined (__linux__) #include #include #include #include #include #undef Font #undef KeyPress #undef Drawable #undef Time #else #ifndef JUCE_MAC_VST_INCLUDED // On the mac, this file needs to be compiled indirectly, by using // juce_VSTPluginFormat.mm instead - that wraps it as an objective-C file for cocoa #error #endif #include #include #endif #if ! (JUCE_MAC && JUCE_64BIT) BEGIN_JUCE_NAMESPACE #if JUCE_MAC && JUCE_SUPPORT_CARBON #endif #undef PRAGMA_ALIGN_SUPPORTED #define VST_FORCE_DEPRECATED 0 #ifdef _MSC_VER #pragma warning (push) #pragma warning (disable: 4996) #endif /* Obviously you're going to need the Steinberg vstsdk2.4 folder in your include path if you want to add VST support. If you're not interested in VSTs, you can disable them by changing the JUCE_PLUGINHOST_VST flag in juce_Config.h */ #include "pluginterfaces/vst2.x/aeffectx.h" #ifdef _MSC_VER #pragma warning (pop) #endif #if JUCE_LINUX #define Font JUCE_NAMESPACE::Font #define KeyPress JUCE_NAMESPACE::KeyPress #define Drawable JUCE_NAMESPACE::Drawable #define Time JUCE_NAMESPACE::Time #endif /********* Start of inlined file: juce_VSTMidiEventList.h *********/ #ifdef __aeffect__ #ifndef __JUCE_VSTMIDIEVENTLIST_JUCEHEADER__ #define __JUCE_VSTMIDIEVENTLIST_JUCEHEADER__ /** Holds a set of VSTMidiEvent objects and makes it easy to add events to the list. This is used by both the VST hosting code and the plugin wrapper. */ class VSTMidiEventList { public: VSTMidiEventList() : events (0), numEventsUsed (0), numEventsAllocated (0) { } ~VSTMidiEventList() { freeEvents(); } void clear() { numEventsUsed = 0; if (events != 0) events->numEvents = 0; } void addEvent (const void* const midiData, const int numBytes, const int frameOffset) { ensureSize (numEventsUsed + 1); VstMidiEvent* const e = (VstMidiEvent*) (events->events [numEventsUsed]); events->numEvents = ++numEventsUsed; if (numBytes <= 4) { if (e->type == kVstSysExType) { juce_free (((VstMidiSysexEvent*) e)->sysexDump); e->type = kVstMidiType; e->byteSize = sizeof (VstMidiEvent); e->noteLength = 0; e->noteOffset = 0; e->detune = 0; e->noteOffVelocity = 0; } e->deltaFrames = frameOffset; memcpy (e->midiData, midiData, numBytes); } else { VstMidiSysexEvent* const se = (VstMidiSysexEvent*) e; if (se->type == kVstSysExType) se->sysexDump = (char*) juce_realloc (se->sysexDump, numBytes); else se->sysexDump = (char*) juce_malloc (numBytes); memcpy (se->sysexDump, midiData, numBytes); se->type = kVstSysExType; se->byteSize = sizeof (VstMidiSysexEvent); se->deltaFrames = frameOffset; se->flags = 0; se->dumpBytes = numBytes; se->resvd1 = 0; se->resvd2 = 0; } } // Handy method to pull the events out of an event buffer supplied by the host // or plugin. static void addEventsToMidiBuffer (const VstEvents* events, MidiBuffer& dest) { for (int i = 0; i < events->numEvents; ++i) { const VstEvent* const e = events->events[i]; if (e != 0) { if (e->type == kVstMidiType) { dest.addEvent ((const JUCE_NAMESPACE::uint8*) ((const VstMidiEvent*) e)->midiData, 4, e->deltaFrames); } else if (e->type == kVstSysExType) { dest.addEvent ((const JUCE_NAMESPACE::uint8*) ((const VstMidiSysexEvent*) e)->sysexDump, (int) ((const VstMidiSysexEvent*) e)->dumpBytes, e->deltaFrames); } } } } void ensureSize (int numEventsNeeded) { if (numEventsNeeded > numEventsAllocated) { numEventsNeeded = (numEventsNeeded + 32) & ~31; const int size = 20 + sizeof (VstEvent*) * numEventsNeeded; if (events == 0) events = (VstEvents*) juce_calloc (size); else events = (VstEvents*) juce_realloc (events, size); for (int i = numEventsAllocated; i < numEventsNeeded; ++i) { VstMidiEvent* const e = (VstMidiEvent*) juce_calloc (jmax ((int) sizeof (VstMidiEvent), (int) sizeof (VstMidiSysexEvent))); e->type = kVstMidiType; e->byteSize = sizeof (VstMidiEvent); events->events[i] = (VstEvent*) e; } numEventsAllocated = numEventsNeeded; } } void freeEvents() { if (events != 0) { for (int i = numEventsAllocated; --i >= 0;) { VstMidiEvent* const e = (VstMidiEvent*) (events->events[i]); if (e->type == kVstSysExType) juce_free (((VstMidiSysexEvent*) e)->sysexDump); juce_free (e); } juce_free (events); events = 0; numEventsUsed = 0; numEventsAllocated = 0; } } VstEvents* events; private: int numEventsUsed, numEventsAllocated; }; #endif // __JUCE_VSTMIDIEVENTLIST_JUCEHEADER__ #endif // __JUCE_VSTMIDIEVENTLIST_JUCEHEADER__ /********* End of inlined file: juce_VSTMidiEventList.h *********/ #if ! JUCE_WIN32 #define _fpreset() #define _clearfp() #endif extern void juce_callAnyTimersSynchronously(); const int fxbVersionNum = 1; struct fxProgram { long chunkMagic; // 'CcnK' long byteSize; // of this chunk, excl. magic + byteSize long fxMagic; // 'FxCk' long version; long fxID; // fx unique id long fxVersion; long numParams; char prgName[28]; float params[1]; // variable no. of parameters }; struct fxSet { long chunkMagic; // 'CcnK' long byteSize; // of this chunk, excl. magic + byteSize long fxMagic; // 'FxBk' long version; long fxID; // fx unique id long fxVersion; long numPrograms; char future[128]; fxProgram programs[1]; // variable no. of programs }; struct fxChunkSet { long chunkMagic; // 'CcnK' long byteSize; // of this chunk, excl. magic + byteSize long fxMagic; // 'FxCh', 'FPCh', or 'FBCh' long version; long fxID; // fx unique id long fxVersion; long numPrograms; char future[128]; long chunkSize; char chunk[8]; // variable }; struct fxProgramSet { long chunkMagic; // 'CcnK' long byteSize; // of this chunk, excl. magic + byteSize long fxMagic; // 'FxCh', 'FPCh', or 'FBCh' long version; long fxID; // fx unique id long fxVersion; long numPrograms; char name[28]; long chunkSize; char chunk[8]; // variable }; #ifdef JUCE_LITTLE_ENDIAN static long vst_swap (const long x) throw() { return (long) swapByteOrder ((uint32) x); } static float vst_swapFloat (const float x) throw() { union { uint32 asInt; float asFloat; } n; n.asFloat = x; n.asInt = swapByteOrder (n.asInt); return n.asFloat; } #else #define vst_swap(x) (x) #define vst_swapFloat(x) (x) #endif typedef AEffect* (*MainCall) (audioMasterCallback); static VstIntPtr VSTCALLBACK audioMaster (AEffect* effect, VstInt32 opcode, VstInt32 index, VstIntPtr value, void* ptr, float opt); static int shellUIDToCreate = 0; static int insideVSTCallback = 0; class VSTPluginWindow; // Change this to disable logging of various VST activities #ifndef VST_LOGGING #define VST_LOGGING 1 #endif #if VST_LOGGING #define log(a) Logger::writeToLog(a); #else #define log(a) #endif #if JUCE_MAC && JUCE_PPC static void* NewCFMFromMachO (void* const machofp) throw() { void* result = juce_malloc (8); ((void**) result)[0] = machofp; ((void**) result)[1] = result; return result; } #endif #if JUCE_LINUX extern Display* display; extern XContext improbableNumber; typedef void (*EventProcPtr) (XEvent* ev); static bool xErrorTriggered; static int temporaryErrorHandler (Display*, XErrorEvent*) { xErrorTriggered = true; return 0; } static int getPropertyFromXWindow (Window handle, Atom atom) { XErrorHandler oldErrorHandler = XSetErrorHandler (temporaryErrorHandler); xErrorTriggered = false; int userSize; unsigned long bytes, userCount; unsigned char* data; Atom userType; XGetWindowProperty (display, handle, atom, 0, 1, false, AnyPropertyType, &userType, &userSize, &userCount, &bytes, &data); XSetErrorHandler (oldErrorHandler); return (userCount == 1 && ! xErrorTriggered) ? *(int*) data : 0; } static Window getChildWindow (Window windowToCheck) { Window rootWindow, parentWindow; Window* childWindows; unsigned int numChildren; XQueryTree (display, windowToCheck, &rootWindow, &parentWindow, &childWindows, &numChildren); if (numChildren > 0) return childWindows [0]; return 0; } static void translateJuceToXButtonModifiers (const MouseEvent& e, XEvent& ev) throw() { if (e.mods.isLeftButtonDown()) { ev.xbutton.button = Button1; ev.xbutton.state |= Button1Mask; } else if (e.mods.isRightButtonDown()) { ev.xbutton.button = Button3; ev.xbutton.state |= Button3Mask; } else if (e.mods.isMiddleButtonDown()) { ev.xbutton.button = Button2; ev.xbutton.state |= Button2Mask; } } static void translateJuceToXMotionModifiers (const MouseEvent& e, XEvent& ev) throw() { if (e.mods.isLeftButtonDown()) ev.xmotion.state |= Button1Mask; else if (e.mods.isRightButtonDown()) ev.xmotion.state |= Button3Mask; else if (e.mods.isMiddleButtonDown()) ev.xmotion.state |= Button2Mask; } static void translateJuceToXCrossingModifiers (const MouseEvent& e, XEvent& ev) throw() { if (e.mods.isLeftButtonDown()) ev.xcrossing.state |= Button1Mask; else if (e.mods.isRightButtonDown()) ev.xcrossing.state |= Button3Mask; else if (e.mods.isMiddleButtonDown()) ev.xcrossing.state |= Button2Mask; } static void translateJuceToXMouseWheelModifiers (const MouseEvent& e, const float increment, XEvent& ev) throw() { if (increment < 0) { ev.xbutton.button = Button5; ev.xbutton.state |= Button5Mask; } else if (increment > 0) { ev.xbutton.button = Button4; ev.xbutton.state |= Button4Mask; } } #endif static VoidArray activeModules; class ModuleHandle : public ReferenceCountedObject { public: File file; MainCall moduleMain; String pluginName; static ModuleHandle* findOrCreateModule (const File& file) { for (int i = activeModules.size(); --i >= 0;) { ModuleHandle* const module = (ModuleHandle*) activeModules.getUnchecked(i); if (module->file == file) return module; } _fpreset(); // (doesn't do any harm) ++insideVSTCallback; shellUIDToCreate = 0; log ("Attempting to load VST: " + file.getFullPathName()); ModuleHandle* m = new ModuleHandle (file); if (! m->open()) deleteAndZero (m); --insideVSTCallback; _fpreset(); // (doesn't do any harm) return m; } ModuleHandle (const File& file_) : file (file_), moduleMain (0), #if JUCE_WIN32 || JUCE_LINUX hModule (0) #elif JUCE_MAC fragId (0), resHandle (0), bundleRef (0), resFileId (0) #endif { activeModules.add (this); #if JUCE_WIN32 || JUCE_LINUX fullParentDirectoryPathName = file_.getParentDirectory().getFullPathName(); #elif JUCE_MAC FSRef ref; PlatformUtilities::makeFSRefFromPath (&ref, file_.getParentDirectory().getFullPathName()); FSGetCatalogInfo (&ref, kFSCatInfoNone, 0, 0, &parentDirFSSpec, 0); #endif } ~ModuleHandle() { activeModules.removeValue (this); close(); } juce_UseDebuggingNewOperator #if JUCE_WIN32 || JUCE_LINUX void* hModule; String fullParentDirectoryPathName; bool open() { #if JUCE_WIN32 static bool timePeriodSet = false; if (! timePeriodSet) { timePeriodSet = true; timeBeginPeriod (2); } #endif pluginName = file.getFileNameWithoutExtension(); hModule = PlatformUtilities::loadDynamicLibrary (file.getFullPathName()); moduleMain = (MainCall) PlatformUtilities::getProcedureEntryPoint (hModule, "VSTPluginMain"); if (moduleMain == 0) moduleMain = (MainCall) PlatformUtilities::getProcedureEntryPoint (hModule, "main"); return moduleMain != 0; } void close() { _fpreset(); // (doesn't do any harm) PlatformUtilities::freeDynamicLibrary (hModule); } void closeEffect (AEffect* eff) { eff->dispatcher (eff, effClose, 0, 0, 0, 0); } #else CFragConnectionID fragId; Handle resHandle; CFBundleRef bundleRef; FSSpec parentDirFSSpec; short resFileId; bool open() { bool ok = false; const String filename (file.getFullPathName()); if (file.hasFileExtension (T(".vst"))) { const char* const utf8 = filename.toUTF8(); CFURLRef url = CFURLCreateFromFileSystemRepresentation (0, (const UInt8*) utf8, strlen (utf8), file.isDirectory()); if (url != 0) { bundleRef = CFBundleCreate (kCFAllocatorDefault, url); CFRelease (url); if (bundleRef != 0) { if (CFBundleLoadExecutable (bundleRef)) { moduleMain = (MainCall) CFBundleGetFunctionPointerForName (bundleRef, CFSTR("main_macho")); if (moduleMain == 0) moduleMain = (MainCall) CFBundleGetFunctionPointerForName (bundleRef, CFSTR("VSTPluginMain")); if (moduleMain != 0) { CFTypeRef name = CFBundleGetValueForInfoDictionaryKey (bundleRef, CFSTR("CFBundleName")); if (name != 0) { if (CFGetTypeID (name) == CFStringGetTypeID()) { char buffer[1024]; if (CFStringGetCString ((CFStringRef) name, buffer, sizeof (buffer), CFStringGetSystemEncoding())) pluginName = buffer; } } if (pluginName.isEmpty()) pluginName = file.getFileNameWithoutExtension(); resFileId = CFBundleOpenBundleResourceMap (bundleRef); ok = true; } } if (! ok) { CFBundleUnloadExecutable (bundleRef); CFRelease (bundleRef); bundleRef = 0; } } } } #if JUCE_PPC else { FSRef fn; if (FSPathMakeRef ((UInt8*) (const char*) filename, &fn, 0) == noErr) { resFileId = FSOpenResFile (&fn, fsRdPerm); if (resFileId != -1) { const int numEffs = Count1Resources ('aEff'); for (int i = 0; i < numEffs; ++i) { resHandle = Get1IndResource ('aEff', i + 1); if (resHandle != 0) { OSType type; Str255 name; SInt16 id; GetResInfo (resHandle, &id, &type, name); pluginName = String ((const char*) name + 1, name[0]); DetachResource (resHandle); HLock (resHandle); Ptr ptr; Str255 errorText; OSErr err = GetMemFragment (*resHandle, GetHandleSize (resHandle), name, kPrivateCFragCopy, &fragId, &ptr, errorText); if (err == noErr) { moduleMain = (MainCall) newMachOFromCFM (ptr); ok = true; } else { HUnlock (resHandle); } break; } } if (! ok) CloseResFile (resFileId); } } } #endif return ok; } void close() { #if JUCE_PPC if (fragId != 0) { if (moduleMain != 0) disposeMachOFromCFM ((void*) moduleMain); CloseConnection (&fragId); HUnlock (resHandle); if (resFileId != 0) CloseResFile (resFileId); } else #endif if (bundleRef != 0) { CFBundleCloseBundleResourceMap (bundleRef, resFileId); if (CFGetRetainCount (bundleRef) == 1) CFBundleUnloadExecutable (bundleRef); if (CFGetRetainCount (bundleRef) > 0) CFRelease (bundleRef); } } void closeEffect (AEffect* eff) { #if JUCE_PPC if (fragId != 0) { VoidArray thingsToDelete; thingsToDelete.add ((void*) eff->dispatcher); thingsToDelete.add ((void*) eff->process); thingsToDelete.add ((void*) eff->setParameter); thingsToDelete.add ((void*) eff->getParameter); thingsToDelete.add ((void*) eff->processReplacing); eff->dispatcher (eff, effClose, 0, 0, 0, 0); for (int i = thingsToDelete.size(); --i >= 0;) disposeMachOFromCFM (thingsToDelete[i]); } else #endif { eff->dispatcher (eff, effClose, 0, 0, 0, 0); } } #if JUCE_PPC static void* newMachOFromCFM (void* cfmfp) { if (cfmfp == 0) return 0; UInt32* const mfp = (UInt32*) juce_malloc (sizeof (UInt32) * 6); mfp[0] = 0x3d800000 | ((UInt32) cfmfp >> 16); mfp[1] = 0x618c0000 | ((UInt32) cfmfp & 0xffff); mfp[2] = 0x800c0000; mfp[3] = 0x804c0004; mfp[4] = 0x7c0903a6; mfp[5] = 0x4e800420; MakeDataExecutable (mfp, sizeof (UInt32) * 6); return mfp; } static void disposeMachOFromCFM (void* ptr) { juce_free (ptr); } void coerceAEffectFunctionCalls (AEffect* eff) { if (fragId != 0) { eff->dispatcher = (AEffectDispatcherProc) newMachOFromCFM ((void*) eff->dispatcher); eff->process = (AEffectProcessProc) newMachOFromCFM ((void*) eff->process); eff->setParameter = (AEffectSetParameterProc) newMachOFromCFM ((void*) eff->setParameter); eff->getParameter = (AEffectGetParameterProc) newMachOFromCFM ((void*) eff->getParameter); eff->processReplacing = (AEffectProcessProc) newMachOFromCFM ((void*) eff->processReplacing); } } #endif #endif }; /** An instance of a plugin, created by a VSTPluginFormat. */ class VSTPluginInstance : public AudioPluginInstance, private Timer, private AsyncUpdater { public: ~VSTPluginInstance(); // AudioPluginInstance methods: void fillInPluginDescription (PluginDescription& desc) const { desc.name = name; desc.fileOrIdentifier = module->file.getFullPathName(); desc.uid = getUID(); desc.lastFileModTime = module->file.getLastModificationTime(); desc.pluginFormatName = "VST"; desc.category = getCategory(); { char buffer [kVstMaxVendorStrLen + 8]; zerostruct (buffer); dispatch (effGetVendorString, 0, 0, buffer, 0); desc.manufacturerName = buffer; } desc.version = getVersion(); desc.numInputChannels = getNumInputChannels(); desc.numOutputChannels = getNumOutputChannels(); desc.isInstrument = (effect != 0 && (effect->flags & effFlagsIsSynth) != 0); } const String getName() const { return name; } int getUID() const throw(); bool acceptsMidi() const { return wantsMidiMessages; } bool producesMidi() const { return dispatch (effCanDo, 0, 0, (void*) "sendVstMidiEvent", 0) > 0; } // AudioProcessor methods: void prepareToPlay (double sampleRate, int estimatedSamplesPerBlock); void releaseResources(); void processBlock (AudioSampleBuffer& buffer, MidiBuffer& midiMessages); AudioProcessorEditor* createEditor(); const String getInputChannelName (const int index) const; bool isInputChannelStereoPair (int index) const; const String getOutputChannelName (const int index) const; bool isOutputChannelStereoPair (int index) const; int getNumParameters() { return effect != 0 ? effect->numParams : 0; } float getParameter (int index); void setParameter (int index, float newValue); const String getParameterName (int index); const String getParameterText (int index); bool isParameterAutomatable (int index) const; int getNumPrograms() { return effect != 0 ? effect->numPrograms : 0; } int getCurrentProgram() { return dispatch (effGetProgram, 0, 0, 0, 0); } void setCurrentProgram (int index); const String getProgramName (int index); void changeProgramName (int index, const String& newName); void getStateInformation (MemoryBlock& destData); void getCurrentProgramStateInformation (MemoryBlock& destData); void setStateInformation (const void* data, int sizeInBytes); void setCurrentProgramStateInformation (const void* data, int sizeInBytes); void timerCallback(); void handleAsyncUpdate(); VstIntPtr handleCallback (VstInt32 opcode, VstInt32 index, VstInt32 value, void *ptr, float opt); juce_UseDebuggingNewOperator private: friend class VSTPluginWindow; friend class VSTPluginFormat; AEffect* effect; String name; CriticalSection lock; bool wantsMidiMessages, initialised, isPowerOn; mutable StringArray programNames; AudioSampleBuffer tempBuffer; CriticalSection midiInLock; MidiBuffer incomingMidi; VSTMidiEventList midiEventsToSend; VstTimeInfo vstHostTime; float** channels; ReferenceCountedObjectPtr module; int dispatch (const int opcode, const int index, const int value, void* const ptr, float opt) const; bool restoreProgramSettings (const fxProgram* const prog); const String getCurrentProgramName(); void setParamsInProgramBlock (fxProgram* const prog) throw(); void updateStoredProgramNames(); void initialise(); void handleMidiFromPlugin (const VstEvents* const events); void createTempParameterStore (MemoryBlock& dest); void restoreFromTempParameterStore (const MemoryBlock& mb); const String getParameterLabel (int index) const; bool usesChunks() const throw() { return effect != 0 && (effect->flags & effFlagsProgramChunks) != 0; } void getChunkData (MemoryBlock& mb, bool isPreset, int maxSizeMB) const; void setChunkData (const char* data, int size, bool isPreset); bool loadFromFXBFile (const void* data, int numBytes); bool saveToFXBFile (MemoryBlock& dest, bool isFXB, int maxSizeMB); int getVersionNumber() const throw() { return effect != 0 ? effect->version : 0; } const String getVersion() const throw(); const String getCategory() const throw(); bool hasEditor() const throw() { return effect != 0 && (effect->flags & effFlagsHasEditor) != 0; } void setPower (const bool on); VSTPluginInstance (const ReferenceCountedObjectPtr & module); }; VSTPluginInstance::VSTPluginInstance (const ReferenceCountedObjectPtr & module_) : effect (0), wantsMidiMessages (false), initialised (false), isPowerOn (false), tempBuffer (1, 1), channels (0), module (module_) { try { _fpreset(); ++insideVSTCallback; name = module->pluginName; log (T("Creating VST instance: ") + name); #if JUCE_MAC if (module->resFileId != 0) UseResFile (module->resFileId); #if JUCE_PPC if (module->fragId != 0) { static void* audioMasterCoerced = 0; if (audioMasterCoerced == 0) audioMasterCoerced = NewCFMFromMachO ((void*) &audioMaster); effect = module->moduleMain ((audioMasterCallback) audioMasterCoerced); } else #endif #endif { effect = module->moduleMain (&audioMaster); } --insideVSTCallback; if (effect != 0 && effect->magic == kEffectMagic) { #if JUCE_PPC module->coerceAEffectFunctionCalls (effect); #endif jassert (effect->resvd2 == 0); jassert (effect->object != 0); _fpreset(); // some dodgy plugs fuck around with this } else { effect = 0; } } catch (...) { --insideVSTCallback; } } VSTPluginInstance::~VSTPluginInstance() { { const ScopedLock sl (lock); jassert (insideVSTCallback == 0); if (effect != 0 && effect->magic == kEffectMagic) { try { #if JUCE_MAC if (module->resFileId != 0) UseResFile (module->resFileId); #endif // Must delete any editors before deleting the plugin instance! jassert (getActiveEditor() == 0); _fpreset(); // some dodgy plugs fuck around with this module->closeEffect (effect); } catch (...) {} } module = 0; effect = 0; } juce_free (channels); channels = 0; } void VSTPluginInstance::initialise() { if (initialised || effect == 0) return; log (T("Initialising VST: ") + module->pluginName); initialised = true; dispatch (effIdentify, 0, 0, 0, 0); // this code would ask the plugin for its name, but so few plugins // actually bother implementing this correctly, that it's better to // just ignore it and use the file name instead. /* { char buffer [256]; zerostruct (buffer); dispatch (effGetEffectName, 0, 0, buffer, 0); name = String (buffer).trim(); if (name.isEmpty()) name = module->pluginName; } */ if (getSampleRate() > 0) dispatch (effSetSampleRate, 0, 0, 0, (float) getSampleRate()); if (getBlockSize() > 0) dispatch (effSetBlockSize, 0, jmax (32, getBlockSize()), 0, 0); dispatch (effOpen, 0, 0, 0, 0); setPlayConfigDetails (effect->numInputs, effect->numOutputs, getSampleRate(), getBlockSize()); if (getNumPrograms() > 1) setCurrentProgram (0); else dispatch (effSetProgram, 0, 0, 0, 0); int i; for (i = effect->numInputs; --i >= 0;) dispatch (effConnectInput, i, 1, 0, 0); for (i = effect->numOutputs; --i >= 0;) dispatch (effConnectOutput, i, 1, 0, 0); updateStoredProgramNames(); wantsMidiMessages = dispatch (effCanDo, 0, 0, (void*) "receiveVstMidiEvent", 0) > 0; setLatencySamples (effect->initialDelay); } void VSTPluginInstance::prepareToPlay (double sampleRate_, int samplesPerBlockExpected) { setPlayConfigDetails (effect->numInputs, effect->numOutputs, sampleRate_, samplesPerBlockExpected); setLatencySamples (effect->initialDelay); juce_free (channels); channels = (float**) juce_calloc (sizeof (float*) * jmax (16, getNumOutputChannels() + 2, getNumInputChannels() + 2)); vstHostTime.tempo = 120.0; vstHostTime.timeSigNumerator = 4; vstHostTime.timeSigDenominator = 4; vstHostTime.sampleRate = sampleRate_; vstHostTime.samplePos = 0; vstHostTime.flags = kVstNanosValid; /*| kVstTransportPlaying | kVstTempoValid | kVstTimeSigValid*/; initialise(); if (initialised) { wantsMidiMessages = wantsMidiMessages || (dispatch (effCanDo, 0, 0, (void*) "receiveVstMidiEvent", 0) > 0); if (wantsMidiMessages) midiEventsToSend.ensureSize (256); else midiEventsToSend.freeEvents(); incomingMidi.clear(); dispatch (effSetSampleRate, 0, 0, 0, (float) sampleRate_); dispatch (effSetBlockSize, 0, jmax (16, samplesPerBlockExpected), 0, 0); tempBuffer.setSize (jmax (1, effect->numOutputs), samplesPerBlockExpected); if (! isPowerOn) setPower (true); // dodgy hack to force some plugins to initialise the sample rate.. if ((! hasEditor()) && getNumParameters() > 0) { const float old = getParameter (0); setParameter (0, (old < 0.5f) ? 1.0f : 0.0f); setParameter (0, old); } dispatch (effStartProcess, 0, 0, 0, 0); } } void VSTPluginInstance::releaseResources() { if (initialised) { dispatch (effStopProcess, 0, 0, 0, 0); setPower (false); } tempBuffer.setSize (1, 1); incomingMidi.clear(); midiEventsToSend.freeEvents(); juce_free (channels); channels = 0; } void VSTPluginInstance::processBlock (AudioSampleBuffer& buffer, MidiBuffer& midiMessages) { const int numSamples = buffer.getNumSamples(); if (initialised) { AudioPlayHead* playHead = getPlayHead(); if (playHead != 0) { AudioPlayHead::CurrentPositionInfo position; playHead->getCurrentPosition (position); vstHostTime.tempo = position.bpm; vstHostTime.timeSigNumerator = position.timeSigNumerator; vstHostTime.timeSigDenominator = position.timeSigDenominator; vstHostTime.ppqPos = position.ppqPosition; vstHostTime.barStartPos = position.ppqPositionOfLastBarStart; vstHostTime.flags |= kVstTempoValid | kVstTimeSigValid | kVstPpqPosValid | kVstBarsValid; if (position.isPlaying) vstHostTime.flags |= kVstTransportPlaying; else vstHostTime.flags &= ~kVstTransportPlaying; } #if JUCE_WIN32 vstHostTime.nanoSeconds = timeGetTime() * 1000000.0; #elif JUCE_LINUX timeval micro; gettimeofday (µ, 0); vstHostTime.nanoSeconds = micro.tv_usec * 1000.0; #elif JUCE_MAC UnsignedWide micro; Microseconds (µ); vstHostTime.nanoSeconds = micro.lo * 1000.0; #endif if (wantsMidiMessages) { midiEventsToSend.clear(); midiEventsToSend.ensureSize (1); MidiBuffer::Iterator iter (midiMessages); const uint8* midiData; int numBytesOfMidiData, samplePosition; while (iter.getNextEvent (midiData, numBytesOfMidiData, samplePosition)) { midiEventsToSend.addEvent (midiData, numBytesOfMidiData, jlimit (0, numSamples - 1, samplePosition)); } try { effect->dispatcher (effect, effProcessEvents, 0, 0, midiEventsToSend.events, 0); } catch (...) {} } int i; const int maxChans = jmax (effect->numInputs, effect->numOutputs); for (i = 0; i < maxChans; ++i) channels[i] = buffer.getSampleData (i); channels [maxChans] = 0; _clearfp(); if ((effect->flags & effFlagsCanReplacing) != 0) { try { effect->processReplacing (effect, channels, channels, numSamples); } catch (...) {} } else { tempBuffer.setSize (effect->numOutputs, numSamples); tempBuffer.clear(); float* outs [64]; for (i = effect->numOutputs; --i >= 0;) outs[i] = tempBuffer.getSampleData (i); outs [effect->numOutputs] = 0; try { effect->process (effect, channels, outs, numSamples); } catch (...) {} for (i = effect->numOutputs; --i >= 0;) buffer.copyFrom (i, 0, outs[i], numSamples); } } else { // Not initialised, so just bypass.. for (int i = getNumInputChannels(); i < getNumOutputChannels(); ++i) buffer.clear (i, 0, buffer.getNumSamples()); } { // copy any incoming midi.. const ScopedLock sl (midiInLock); midiMessages = incomingMidi; incomingMidi.clear(); } } void VSTPluginInstance::handleMidiFromPlugin (const VstEvents* const events) { if (events != 0) { const ScopedLock sl (midiInLock); VSTMidiEventList::addEventsToMidiBuffer (events, incomingMidi); } } static Array activeVSTWindows; class VSTPluginWindow : public AudioProcessorEditor, #if ! JUCE_MAC public ComponentMovementWatcher, #endif public Timer { public: VSTPluginWindow (VSTPluginInstance& plugin_) : AudioProcessorEditor (&plugin_), #if ! JUCE_MAC ComponentMovementWatcher (this), #endif plugin (plugin_), isOpen (false), wasShowing (false), pluginRefusesToResize (false), pluginWantsKeys (false), alreadyInside (false), recursiveResize (false) { #if JUCE_WIN32 sizeCheckCount = 0; pluginHWND = 0; #elif JUCE_LINUX pluginWindow = None; pluginProc = None; #else addAndMakeVisible (innerWrapper = new InnerWrapperComponent (this)); #endif activeVSTWindows.add (this); setSize (1, 1); setOpaque (true); setVisible (true); } ~VSTPluginWindow() { #if JUCE_MAC deleteAndZero (innerWrapper); #else closePluginWindow(); #endif activeVSTWindows.removeValue (this); plugin.editorBeingDeleted (this); } #if ! JUCE_MAC void componentMovedOrResized (bool /*wasMoved*/, bool /*wasResized*/) { if (recursiveResize) return; Component* const topComp = getTopLevelComponent(); if (topComp->getPeer() != 0) { int x = 0, y = 0; relativePositionToOtherComponent (topComp, x, y); recursiveResize = true; #if JUCE_WIN32 if (pluginHWND != 0) MoveWindow (pluginHWND, x, y, getWidth(), getHeight(), TRUE); #elif JUCE_LINUX if (pluginWindow != 0) { XResizeWindow (display, pluginWindow, getWidth(), getHeight()); XMoveWindow (display, pluginWindow, x, y); XMapRaised (display, pluginWindow); } #endif recursiveResize = false; } } void componentVisibilityChanged (Component&) { const bool isShowingNow = isShowing(); if (wasShowing != isShowingNow) { wasShowing = isShowingNow; if (isShowingNow) openPluginWindow(); else closePluginWindow(); } componentMovedOrResized (true, true); } void componentPeerChanged() { closePluginWindow(); openPluginWindow(); } #endif bool keyStateChanged (const bool) { return pluginWantsKeys; } bool keyPressed (const KeyPress&) { return pluginWantsKeys; } #if JUCE_MAC void paint (Graphics& g) { g.fillAll (Colours::black); } #else void paint (Graphics& g) { if (isOpen) { ComponentPeer* const peer = getPeer(); if (peer != 0) { peer->addMaskedRegion (getScreenX() - peer->getScreenX(), getScreenY() - peer->getScreenY(), getWidth(), getHeight()); #if JUCE_LINUX if (pluginWindow != 0) { const Rectangle clip (g.getClipBounds()); XEvent ev; zerostruct (ev); ev.xexpose.type = Expose; ev.xexpose.display = display; ev.xexpose.window = pluginWindow; ev.xexpose.x = clip.getX(); ev.xexpose.y = clip.getY(); ev.xexpose.width = clip.getWidth(); ev.xexpose.height = clip.getHeight(); sendEventToChild (&ev); } #endif } } else { g.fillAll (Colours::black); } } #endif void timerCallback() { #if JUCE_WIN32 if (--sizeCheckCount <= 0) { sizeCheckCount = 10; checkPluginWindowSize(); } #endif try { static bool reentrant = false; if (! reentrant) { reentrant = true; plugin.dispatch (effEditIdle, 0, 0, 0, 0); reentrant = false; } } catch (...) {} } void mouseDown (const MouseEvent& e) { #if JUCE_LINUX if (pluginWindow == 0) return; toFront (true); XEvent ev; zerostruct (ev); ev.xbutton.display = display; ev.xbutton.type = ButtonPress; ev.xbutton.window = pluginWindow; ev.xbutton.root = RootWindow (display, DefaultScreen (display)); ev.xbutton.time = CurrentTime; ev.xbutton.x = e.x; ev.xbutton.y = e.y; ev.xbutton.x_root = e.getScreenX(); ev.xbutton.y_root = e.getScreenY(); translateJuceToXButtonModifiers (e, ev); sendEventToChild (&ev); #elif JUCE_WIN32 (void) e; toFront (true); #endif } void broughtToFront() { activeVSTWindows.removeValue (this); activeVSTWindows.add (this); #if JUCE_MAC dispatch (effEditTop, 0, 0, 0, 0); #endif } juce_UseDebuggingNewOperator private: VSTPluginInstance& plugin; bool isOpen, wasShowing, recursiveResize; bool pluginWantsKeys, pluginRefusesToResize, alreadyInside; #if JUCE_WIN32 HWND pluginHWND; void* originalWndProc; int sizeCheckCount; #elif JUCE_LINUX Window pluginWindow; EventProcPtr pluginProc; #endif #if JUCE_MAC void openPluginWindow (WindowRef parentWindow) { if (isOpen || parentWindow == 0) return; isOpen = true; ERect* rect = 0; dispatch (effEditGetRect, 0, 0, &rect, 0); dispatch (effEditOpen, 0, 0, parentWindow, 0); // do this before and after like in the steinberg example dispatch (effEditGetRect, 0, 0, &rect, 0); dispatch (effGetProgram, 0, 0, 0, 0); // also in steinberg code // Install keyboard hooks pluginWantsKeys = (dispatch (effKeysRequired, 0, 0, 0, 0) == 0); // double-check it's not too tiny int w = 250, h = 150; if (rect != 0) { w = rect->right - rect->left; h = rect->bottom - rect->top; if (w == 0 || h == 0) { w = 250; h = 150; } } w = jmax (w, 32); h = jmax (h, 32); setSize (w, h); startTimer (18 + JUCE_NAMESPACE::Random::getSystemRandom().nextInt (5)); repaint(); } #else void openPluginWindow() { if (isOpen || getWindowHandle() == 0) return; log (T("Opening VST UI: ") + plugin.name); isOpen = true; ERect* rect = 0; dispatch (effEditGetRect, 0, 0, &rect, 0); dispatch (effEditOpen, 0, 0, getWindowHandle(), 0); // do this before and after like in the steinberg example dispatch (effEditGetRect, 0, 0, &rect, 0); dispatch (effGetProgram, 0, 0, 0, 0); // also in steinberg code // Install keyboard hooks pluginWantsKeys = (dispatch (effKeysRequired, 0, 0, 0, 0) == 0); #if JUCE_WIN32 originalWndProc = 0; pluginHWND = GetWindow ((HWND) getWindowHandle(), GW_CHILD); if (pluginHWND == 0) { isOpen = false; setSize (300, 150); return; } #pragma warning (push) #pragma warning (disable: 4244) originalWndProc = (void*) GetWindowLongPtr (pluginHWND, GWL_WNDPROC); if (! pluginWantsKeys) SetWindowLongPtr (pluginHWND, GWL_WNDPROC, (LONG_PTR) vstHookWndProc); #pragma warning (pop) int w, h; RECT r; GetWindowRect (pluginHWND, &r); w = r.right - r.left; h = r.bottom - r.top; if (rect != 0) { const int rw = rect->right - rect->left; const int rh = rect->bottom - rect->top; if ((rw > 50 && rh > 50 && rw < 2000 && rh < 2000 && rw != w && rh != h) || ((w == 0 && rw > 0) || (h == 0 && rh > 0))) { // very dodgy logic to decide which size is right. if (abs (rw - w) > 350 || abs (rh - h) > 350) { SetWindowPos (pluginHWND, 0, 0, 0, rw, rh, SWP_NOMOVE | SWP_NOACTIVATE | SWP_NOOWNERZORDER | SWP_NOZORDER); GetWindowRect (pluginHWND, &r); w = r.right - r.left; h = r.bottom - r.top; pluginRefusesToResize = (w != rw) || (h != rh); w = rw; h = rh; } } } #elif JUCE_LINUX pluginWindow = getChildWindow ((Window) getWindowHandle()); if (pluginWindow != 0) pluginProc = (EventProcPtr) getPropertyFromXWindow (pluginWindow, XInternAtom (display, "_XEventProc", False)); int w = 250, h = 150; if (rect != 0) { w = rect->right - rect->left; h = rect->bottom - rect->top; if (w == 0 || h == 0) { w = 250; h = 150; } } if (pluginWindow != 0) XMapRaised (display, pluginWindow); #endif // double-check it's not too tiny w = jmax (w, 32); h = jmax (h, 32); setSize (w, h); #if JUCE_WIN32 checkPluginWindowSize(); #endif startTimer (18 + JUCE_NAMESPACE::Random::getSystemRandom().nextInt (5)); repaint(); } #endif #if ! JUCE_MAC void closePluginWindow() { if (isOpen) { log (T("Closing VST UI: ") + plugin.getName()); isOpen = false; dispatch (effEditClose, 0, 0, 0, 0); #if JUCE_WIN32 #pragma warning (push) #pragma warning (disable: 4244) if (pluginHWND != 0 && IsWindow (pluginHWND)) SetWindowLongPtr (pluginHWND, GWL_WNDPROC, (LONG_PTR) originalWndProc); #pragma warning (pop) stopTimer(); if (pluginHWND != 0 && IsWindow (pluginHWND)) DestroyWindow (pluginHWND); pluginHWND = 0; #elif JUCE_LINUX stopTimer(); pluginWindow = 0; pluginProc = 0; #endif } } #endif int dispatch (const int opcode, const int index, const int value, void* const ptr, float opt) { return plugin.dispatch (opcode, index, value, ptr, opt); } #if JUCE_WIN32 void checkPluginWindowSize() throw() { RECT r; GetWindowRect (pluginHWND, &r); const int w = r.right - r.left; const int h = r.bottom - r.top; if (isShowing() && w > 0 && h > 0 && (w != getWidth() || h != getHeight()) && ! pluginRefusesToResize) { setSize (w, h); sizeCheckCount = 0; } } // hooks to get keyboard events from VST windows.. static LRESULT CALLBACK vstHookWndProc (HWND hW, UINT message, WPARAM wParam, LPARAM lParam) { for (int i = activeVSTWindows.size(); --i >= 0;) { const VSTPluginWindow* const w = (const VSTPluginWindow*) activeVSTWindows.getUnchecked (i); if (w->pluginHWND == hW) { if (message == WM_CHAR || message == WM_KEYDOWN || message == WM_SYSKEYDOWN || message == WM_KEYUP || message == WM_SYSKEYUP || message == WM_APPCOMMAND) { SendMessage ((HWND) w->getTopLevelComponent()->getWindowHandle(), message, wParam, lParam); } return CallWindowProc ((WNDPROC) (w->originalWndProc), (HWND) w->pluginHWND, message, wParam, lParam); } } return DefWindowProc (hW, message, wParam, lParam); } #endif #if JUCE_LINUX // overload mouse/keyboard events to forward them to the plugin's inner window.. void sendEventToChild (XEvent* event) { if (pluginProc != 0) { // if the plugin publishes an event procedure, pass the event directly.. pluginProc (event); } else if (pluginWindow != 0) { // if the plugin has a window, then send the event to the window so that // its message thread will pick it up.. XSendEvent (display, pluginWindow, False, 0L, event); XFlush (display); } } void mouseEnter (const MouseEvent& e) { if (pluginWindow != 0) { XEvent ev; zerostruct (ev); ev.xcrossing.display = display; ev.xcrossing.type = EnterNotify; ev.xcrossing.window = pluginWindow; ev.xcrossing.root = RootWindow (display, DefaultScreen (display)); ev.xcrossing.time = CurrentTime; ev.xcrossing.x = e.x; ev.xcrossing.y = e.y; ev.xcrossing.x_root = e.getScreenX(); ev.xcrossing.y_root = e.getScreenY(); ev.xcrossing.mode = NotifyNormal; // NotifyGrab, NotifyUngrab ev.xcrossing.detail = NotifyAncestor; // NotifyVirtual, NotifyInferior, NotifyNonlinear,NotifyNonlinearVirtual translateJuceToXCrossingModifiers (e, ev); sendEventToChild (&ev); } } void mouseExit (const MouseEvent& e) { if (pluginWindow != 0) { XEvent ev; zerostruct (ev); ev.xcrossing.display = display; ev.xcrossing.type = LeaveNotify; ev.xcrossing.window = pluginWindow; ev.xcrossing.root = RootWindow (display, DefaultScreen (display)); ev.xcrossing.time = CurrentTime; ev.xcrossing.x = e.x; ev.xcrossing.y = e.y; ev.xcrossing.x_root = e.getScreenX(); ev.xcrossing.y_root = e.getScreenY(); ev.xcrossing.mode = NotifyNormal; // NotifyGrab, NotifyUngrab ev.xcrossing.detail = NotifyAncestor; // NotifyVirtual, NotifyInferior, NotifyNonlinear,NotifyNonlinearVirtual ev.xcrossing.focus = hasKeyboardFocus (true); // TODO - yes ? translateJuceToXCrossingModifiers (e, ev); sendEventToChild (&ev); } } void mouseMove (const MouseEvent& e) { if (pluginWindow != 0) { XEvent ev; zerostruct (ev); ev.xmotion.display = display; ev.xmotion.type = MotionNotify; ev.xmotion.window = pluginWindow; ev.xmotion.root = RootWindow (display, DefaultScreen (display)); ev.xmotion.time = CurrentTime; ev.xmotion.is_hint = NotifyNormal; ev.xmotion.x = e.x; ev.xmotion.y = e.y; ev.xmotion.x_root = e.getScreenX(); ev.xmotion.y_root = e.getScreenY(); sendEventToChild (&ev); } } void mouseDrag (const MouseEvent& e) { if (pluginWindow != 0) { XEvent ev; zerostruct (ev); ev.xmotion.display = display; ev.xmotion.type = MotionNotify; ev.xmotion.window = pluginWindow; ev.xmotion.root = RootWindow (display, DefaultScreen (display)); ev.xmotion.time = CurrentTime; ev.xmotion.x = e.x ; ev.xmotion.y = e.y; ev.xmotion.x_root = e.getScreenX(); ev.xmotion.y_root = e.getScreenY(); ev.xmotion.is_hint = NotifyNormal; translateJuceToXMotionModifiers (e, ev); sendEventToChild (&ev); } } void mouseUp (const MouseEvent& e) { if (pluginWindow != 0) { XEvent ev; zerostruct (ev); ev.xbutton.display = display; ev.xbutton.type = ButtonRelease; ev.xbutton.window = pluginWindow; ev.xbutton.root = RootWindow (display, DefaultScreen (display)); ev.xbutton.time = CurrentTime; ev.xbutton.x = e.x; ev.xbutton.y = e.y; ev.xbutton.x_root = e.getScreenX(); ev.xbutton.y_root = e.getScreenY(); translateJuceToXButtonModifiers (e, ev); sendEventToChild (&ev); } } void mouseWheelMove (const MouseEvent& e, float incrementX, float incrementY) { if (pluginWindow != 0) { XEvent ev; zerostruct (ev); ev.xbutton.display = display; ev.xbutton.type = ButtonPress; ev.xbutton.window = pluginWindow; ev.xbutton.root = RootWindow (display, DefaultScreen (display)); ev.xbutton.time = CurrentTime; ev.xbutton.x = e.x; ev.xbutton.y = e.y; ev.xbutton.x_root = e.getScreenX(); ev.xbutton.y_root = e.getScreenY(); translateJuceToXMouseWheelModifiers (e, incrementY, ev); sendEventToChild (&ev); // TODO - put a usleep here ? ev.xbutton.type = ButtonRelease; sendEventToChild (&ev); } } #endif #if JUCE_MAC #if ! JUCE_SUPPORT_CARBON #error "To build VSTs, you need to enable the JUCE_SUPPORT_CARBON flag in your config!" #endif class InnerWrapperComponent : public CarbonViewWrapperComponent { public: InnerWrapperComponent (VSTPluginWindow* const owner_) : owner (owner_), alreadyInside (false) { } ~InnerWrapperComponent() { deleteWindow(); } HIViewRef attachView (WindowRef windowRef, HIViewRef rootView) { owner->openPluginWindow (windowRef); return 0; } void removeView (HIViewRef) { owner->dispatch (effEditClose, 0, 0, 0, 0); owner->dispatch (effEditSleep, 0, 0, 0, 0); } bool getEmbeddedViewSize (int& w, int& h) { ERect* rect = 0; owner->dispatch (effEditGetRect, 0, 0, &rect, 0); w = rect->right - rect->left; h = rect->bottom - rect->top; return true; } void mouseDown (int x, int y) { if (! alreadyInside) { alreadyInside = true; getTopLevelComponent()->toFront (true); owner->dispatch (effEditMouse, x, y, 0, 0); alreadyInside = false; } else { PostEvent (::mouseDown, 0); } } void paint() { ComponentPeer* const peer = getPeer(); if (peer != 0) { ERect r; r.left = getScreenX() - peer->getScreenX(); r.right = r.left + getWidth(); r.top = getScreenY() - peer->getScreenY(); r.bottom = r.top + getHeight(); owner->dispatch (effEditDraw, 0, 0, &r, 0); } } private: VSTPluginWindow* const owner; bool alreadyInside; }; friend class InnerWrapperComponent; InnerWrapperComponent* innerWrapper; void resized() { innerWrapper->setSize (getWidth(), getHeight()); } #endif }; AudioProcessorEditor* VSTPluginInstance::createEditor() { if (hasEditor()) return new VSTPluginWindow (*this); return 0; } void VSTPluginInstance::handleAsyncUpdate() { // indicates that something about the plugin has changed.. updateHostDisplay(); } bool VSTPluginInstance::restoreProgramSettings (const fxProgram* const prog) { if (vst_swap (prog->chunkMagic) == 'CcnK' && vst_swap (prog->fxMagic) == 'FxCk') { changeProgramName (getCurrentProgram(), prog->prgName); for (int i = 0; i < vst_swap (prog->numParams); ++i) setParameter (i, vst_swapFloat (prog->params[i])); return true; } return false; } bool VSTPluginInstance::loadFromFXBFile (const void* const data, const int dataSize) { if (dataSize < 28) return false; const fxSet* const set = (const fxSet*) data; if ((vst_swap (set->chunkMagic) != 'CcnK' && vst_swap (set->chunkMagic) != 'KncC') || vst_swap (set->version) > fxbVersionNum) return false; if (vst_swap (set->fxMagic) == 'FxBk') { // bank of programs if (vst_swap (set->numPrograms) >= 0) { const int oldProg = getCurrentProgram(); const int numParams = vst_swap (((const fxProgram*) (set->programs))->numParams); const int progLen = sizeof (fxProgram) + (numParams - 1) * sizeof (float); for (int i = 0; i < vst_swap (set->numPrograms); ++i) { if (i != oldProg) { const fxProgram* const prog = (const fxProgram*) (((const char*) (set->programs)) + i * progLen); if (((const char*) prog) - ((const char*) set) >= dataSize) return false; if (vst_swap (set->numPrograms) > 0) setCurrentProgram (i); if (! restoreProgramSettings (prog)) return false; } } if (vst_swap (set->numPrograms) > 0) setCurrentProgram (oldProg); const fxProgram* const prog = (const fxProgram*) (((const char*) (set->programs)) + oldProg * progLen); if (((const char*) prog) - ((const char*) set) >= dataSize) return false; if (! restoreProgramSettings (prog)) return false; } } else if (vst_swap (set->fxMagic) == 'FxCk') { // single program const fxProgram* const prog = (const fxProgram*) data; if (vst_swap (prog->chunkMagic) != 'CcnK') return false; changeProgramName (getCurrentProgram(), prog->prgName); for (int i = 0; i < vst_swap (prog->numParams); ++i) setParameter (i, vst_swapFloat (prog->params[i])); } else if (vst_swap (set->fxMagic) == 'FBCh' || vst_swap (set->fxMagic) == 'hCBF') { // non-preset chunk const fxChunkSet* const cset = (const fxChunkSet*) data; if (vst_swap (cset->chunkSize) + sizeof (fxChunkSet) - 8 > (unsigned int) dataSize) return false; setChunkData (cset->chunk, vst_swap (cset->chunkSize), false); } else if (vst_swap (set->fxMagic) == 'FPCh' || vst_swap (set->fxMagic) == 'hCPF') { // preset chunk const fxProgramSet* const cset = (const fxProgramSet*) data; if (vst_swap (cset->chunkSize) + sizeof (fxProgramSet) - 8 > (unsigned int) dataSize) return false; setChunkData (cset->chunk, vst_swap (cset->chunkSize), true); changeProgramName (getCurrentProgram(), cset->name); } else { return false; } return true; } void VSTPluginInstance::setParamsInProgramBlock (fxProgram* const prog) throw() { const int numParams = getNumParameters(); prog->chunkMagic = vst_swap ('CcnK'); prog->byteSize = 0; prog->fxMagic = vst_swap ('FxCk'); prog->version = vst_swap (fxbVersionNum); prog->fxID = vst_swap (getUID()); prog->fxVersion = vst_swap (getVersionNumber()); prog->numParams = vst_swap (numParams); getCurrentProgramName().copyToBuffer (prog->prgName, sizeof (prog->prgName) - 1); for (int i = 0; i < numParams; ++i) prog->params[i] = vst_swapFloat (getParameter (i)); } bool VSTPluginInstance::saveToFXBFile (MemoryBlock& dest, bool isFXB, int maxSizeMB) { const int numPrograms = getNumPrograms(); const int numParams = getNumParameters(); if (usesChunks()) { if (isFXB) { MemoryBlock chunk; getChunkData (chunk, false, maxSizeMB); const int totalLen = sizeof (fxChunkSet) + chunk.getSize() - 8; dest.setSize (totalLen, true); fxChunkSet* const set = (fxChunkSet*) dest.getData(); set->chunkMagic = vst_swap ('CcnK'); set->byteSize = 0; set->fxMagic = vst_swap ('FBCh'); set->version = vst_swap (fxbVersionNum); set->fxID = vst_swap (getUID()); set->fxVersion = vst_swap (getVersionNumber()); set->numPrograms = vst_swap (numPrograms); set->chunkSize = vst_swap (chunk.getSize()); chunk.copyTo (set->chunk, 0, chunk.getSize()); } else { MemoryBlock chunk; getChunkData (chunk, true, maxSizeMB); const int totalLen = sizeof (fxProgramSet) + chunk.getSize() - 8; dest.setSize (totalLen, true); fxProgramSet* const set = (fxProgramSet*) dest.getData(); set->chunkMagic = vst_swap ('CcnK'); set->byteSize = 0; set->fxMagic = vst_swap ('FPCh'); set->version = vst_swap (fxbVersionNum); set->fxID = vst_swap (getUID()); set->fxVersion = vst_swap (getVersionNumber()); set->numPrograms = vst_swap (numPrograms); set->chunkSize = vst_swap (chunk.getSize()); getCurrentProgramName().copyToBuffer (set->name, sizeof (set->name) - 1); chunk.copyTo (set->chunk, 0, chunk.getSize()); } } else { if (isFXB) { const int progLen = sizeof (fxProgram) + (numParams - 1) * sizeof (float); const int len = (sizeof (fxSet) - sizeof (fxProgram)) + progLen * jmax (1, numPrograms); dest.setSize (len, true); fxSet* const set = (fxSet*) dest.getData(); set->chunkMagic = vst_swap ('CcnK'); set->byteSize = 0; set->fxMagic = vst_swap ('FxBk'); set->version = vst_swap (fxbVersionNum); set->fxID = vst_swap (getUID()); set->fxVersion = vst_swap (getVersionNumber()); set->numPrograms = vst_swap (numPrograms); const int oldProgram = getCurrentProgram(); MemoryBlock oldSettings; createTempParameterStore (oldSettings); setParamsInProgramBlock ((fxProgram*) (((char*) (set->programs)) + oldProgram * progLen)); for (int i = 0; i < numPrograms; ++i) { if (i != oldProgram) { setCurrentProgram (i); setParamsInProgramBlock ((fxProgram*) (((char*) (set->programs)) + i * progLen)); } } setCurrentProgram (oldProgram); restoreFromTempParameterStore (oldSettings); } else { const int totalLen = sizeof (fxProgram) + (numParams - 1) * sizeof (float); dest.setSize (totalLen, true); setParamsInProgramBlock ((fxProgram*) dest.getData()); } } return true; } void VSTPluginInstance::getChunkData (MemoryBlock& mb, bool isPreset, int maxSizeMB) const { if (usesChunks()) { void* data = 0; const int bytes = dispatch (effGetChunk, isPreset ? 1 : 0, 0, &data, 0.0f); if (data != 0 && bytes <= maxSizeMB * 1024 * 1024) { mb.setSize (bytes); mb.copyFrom (data, 0, bytes); } } } void VSTPluginInstance::setChunkData (const char* data, int size, bool isPreset) { if (size > 0 && usesChunks()) { dispatch (effSetChunk, isPreset ? 1 : 0, size, (void*) data, 0.0f); if (! isPreset) updateStoredProgramNames(); } } void VSTPluginInstance::timerCallback() { if (dispatch (effIdle, 0, 0, 0, 0) == 0) stopTimer(); } int VSTPluginInstance::dispatch (const int opcode, const int index, const int value, void* const ptr, float opt) const { const ScopedLock sl (lock); ++insideVSTCallback; int result = 0; try { if (effect != 0) { #if JUCE_MAC if (module->resFileId != 0) UseResFile (module->resFileId); CGrafPtr oldPort; if (getActiveEditor() != 0) { int x = 0, y = 0; getActiveEditor()->relativePositionToOtherComponent (getActiveEditor()->getTopLevelComponent(), x, y); GetPort (&oldPort); SetPortWindowPort ((WindowRef) getActiveEditor()->getWindowHandle()); SetOrigin (-x, -y); } #endif result = effect->dispatcher (effect, opcode, index, value, ptr, opt); #if JUCE_MAC if (getActiveEditor() != 0) SetPort (oldPort); module->resFileId = CurResFile(); #endif --insideVSTCallback; return result; } } catch (...) { //char s[512]; //sprintf (s, "dispatcher (%d, %d, %d, %x, %f)", opcode, index, value, (int)ptr, opt); } --insideVSTCallback; return result; } // handles non plugin-specific callbacks.. static const int defaultVSTSampleRateValue = 16384; static const int defaultVSTBlockSizeValue = 512; static VstIntPtr handleGeneralCallback (VstInt32 opcode, VstInt32 index, VstInt32 value, void *ptr, float opt) { (void) index; (void) value; (void) opt; switch (opcode) { case audioMasterCanDo: { static const char* canDos[] = { "supplyIdle", "sendVstEvents", "sendVstMidiEvent", "sendVstTimeInfo", "receiveVstEvents", "receiveVstMidiEvent", "supportShell", "shellCategory" }; for (int i = 0; i < numElementsInArray (canDos); ++i) if (strcmp (canDos[i], (const char*) ptr) == 0) return 1; return 0; } case audioMasterVersion: return 0x2400; case audioMasterCurrentId: return shellUIDToCreate; case audioMasterGetNumAutomatableParameters: return 0; case audioMasterGetAutomationState: return 1; case audioMasterGetVendorVersion: return 0x0101; case audioMasterGetVendorString: case audioMasterGetProductString: { String hostName ("Juce VST Host"); if (JUCEApplication::getInstance() != 0) hostName = JUCEApplication::getInstance()->getApplicationName(); hostName.copyToBuffer ((char*) ptr, jmin (kVstMaxVendorStrLen, kVstMaxProductStrLen) - 1); } break; case audioMasterGetSampleRate: return (VstIntPtr) defaultVSTSampleRateValue; case audioMasterGetBlockSize: return (VstIntPtr) defaultVSTBlockSizeValue; case audioMasterSetOutputSampleRate: return 0; default: DBG ("*** Unhandled VST Callback: " + String ((int) opcode)); break; } return 0; } // handles callbacks for a specific plugin VstIntPtr VSTPluginInstance::handleCallback (VstInt32 opcode, VstInt32 index, VstInt32 value, void *ptr, float opt) { switch (opcode) { case audioMasterAutomate: sendParamChangeMessageToListeners (index, opt); break; case audioMasterProcessEvents: handleMidiFromPlugin ((const VstEvents*) ptr); break; case audioMasterGetTime: #ifdef _MSC_VER #pragma warning (push) #pragma warning (disable: 4311) #endif return (VstIntPtr) &vstHostTime; #ifdef _MSC_VER #pragma warning (pop) #endif break; case audioMasterIdle: if (insideVSTCallback == 0 && MessageManager::getInstance()->isThisTheMessageThread()) { ++insideVSTCallback; #if JUCE_MAC if (getActiveEditor() != 0) dispatch (effEditIdle, 0, 0, 0, 0); #endif juce_callAnyTimersSynchronously(); handleUpdateNowIfNeeded(); for (int i = ComponentPeer::getNumPeers(); --i >= 0;) ComponentPeer::getPeer (i)->performAnyPendingRepaintsNow(); --insideVSTCallback; } break; case audioMasterUpdateDisplay: triggerAsyncUpdate(); break; case audioMasterTempoAt: // returns (10000 * bpm) break; case audioMasterNeedIdle: startTimer (50); break; case audioMasterSizeWindow: if (getActiveEditor() != 0) getActiveEditor()->setSize (index, value); return 1; case audioMasterGetSampleRate: return (VstIntPtr) (getSampleRate() > 0 ? getSampleRate() : defaultVSTSampleRateValue); case audioMasterGetBlockSize: return (VstIntPtr) (getBlockSize() > 0 ? getBlockSize() : defaultVSTBlockSizeValue); case audioMasterWantMidi: wantsMidiMessages = true; break; case audioMasterGetDirectory: #if JUCE_MAC return (VstIntPtr) (void*) &module->parentDirFSSpec; #else return (VstIntPtr) (pointer_sized_uint) (const char*) module->fullParentDirectoryPathName; #endif case audioMasterGetAutomationState: // returns 0: not supported, 1: off, 2:read, 3:write, 4:read/write break; // none of these are handled (yet).. case audioMasterBeginEdit: case audioMasterEndEdit: case audioMasterSetTime: case audioMasterPinConnected: case audioMasterGetParameterQuantization: case audioMasterIOChanged: case audioMasterGetInputLatency: case audioMasterGetOutputLatency: case audioMasterGetPreviousPlug: case audioMasterGetNextPlug: case audioMasterWillReplaceOrAccumulate: case audioMasterGetCurrentProcessLevel: case audioMasterOfflineStart: case audioMasterOfflineRead: case audioMasterOfflineWrite: case audioMasterOfflineGetCurrentPass: case audioMasterOfflineGetCurrentMetaPass: case audioMasterVendorSpecific: case audioMasterSetIcon: case audioMasterGetLanguage: case audioMasterOpenWindow: case audioMasterCloseWindow: break; default: return handleGeneralCallback (opcode, index, value, ptr, opt); } return 0; } // entry point for all callbacks from the plugin static VstIntPtr VSTCALLBACK audioMaster (AEffect* effect, VstInt32 opcode, VstInt32 index, VstIntPtr value, void* ptr, float opt) { try { if (effect != 0 && effect->resvd2 != 0) { return ((VSTPluginInstance*)(effect->resvd2)) ->handleCallback (opcode, index, value, ptr, opt); } return handleGeneralCallback (opcode, index, value, ptr, opt); } catch (...) { return 0; } } const String VSTPluginInstance::getVersion() const throw() { unsigned int v = dispatch (effGetVendorVersion, 0, 0, 0, 0); String s; if (v == 0 || v == -1) v = getVersionNumber(); if (v != 0) { int versionBits[4]; int n = 0; while (v != 0) { versionBits [n++] = (v & 0xff); v >>= 8; } s << 'V'; while (n > 0) { s << versionBits [--n]; if (n > 0) s << '.'; } } return s; } int VSTPluginInstance::getUID() const throw() { int uid = effect != 0 ? effect->uniqueID : 0; if (uid == 0) uid = module->file.hashCode(); return uid; } const String VSTPluginInstance::getCategory() const throw() { const char* result = 0; switch (dispatch (effGetPlugCategory, 0, 0, 0, 0)) { case kPlugCategEffect: result = "Effect"; break; case kPlugCategSynth: result = "Synth"; break; case kPlugCategAnalysis: result = "Anaylsis"; break; case kPlugCategMastering: result = "Mastering"; break; case kPlugCategSpacializer: result = "Spacial"; break; case kPlugCategRoomFx: result = "Reverb"; break; case kPlugSurroundFx: result = "Surround"; break; case kPlugCategRestoration: result = "Restoration"; break; case kPlugCategGenerator: result = "Tone generation"; break; default: break; } return result; } float VSTPluginInstance::getParameter (int index) { if (effect != 0 && ((unsigned int) index) < (unsigned int) effect->numParams) { try { const ScopedLock sl (lock); return effect->getParameter (effect, index); } catch (...) { } } return 0.0f; } void VSTPluginInstance::setParameter (int index, float newValue) { if (effect != 0 && ((unsigned int) index) < (unsigned int) effect->numParams) { try { const ScopedLock sl (lock); if (effect->getParameter (effect, index) != newValue) effect->setParameter (effect, index, newValue); } catch (...) { } } } const String VSTPluginInstance::getParameterName (int index) { if (effect != 0) { jassert (index >= 0 && index < effect->numParams); char nm [256]; zerostruct (nm); dispatch (effGetParamName, index, 0, nm, 0); return String (nm).trim(); } return String::empty; } const String VSTPluginInstance::getParameterLabel (int index) const { if (effect != 0) { jassert (index >= 0 && index < effect->numParams); char nm [256]; zerostruct (nm); dispatch (effGetParamLabel, index, 0, nm, 0); return String (nm).trim(); } return String::empty; } const String VSTPluginInstance::getParameterText (int index) { if (effect != 0) { jassert (index >= 0 && index < effect->numParams); char nm [256]; zerostruct (nm); dispatch (effGetParamDisplay, index, 0, nm, 0); return String (nm).trim(); } return String::empty; } bool VSTPluginInstance::isParameterAutomatable (int index) const { if (effect != 0) { jassert (index >= 0 && index < effect->numParams); return dispatch (effCanBeAutomated, index, 0, 0, 0) != 0; } return false; } void VSTPluginInstance::createTempParameterStore (MemoryBlock& dest) { dest.setSize (64 + 4 * getNumParameters()); dest.fillWith (0); getCurrentProgramName().copyToBuffer ((char*) dest.getData(), 63); float* const p = (float*) (((char*) dest.getData()) + 64); for (int i = 0; i < getNumParameters(); ++i) p[i] = getParameter(i); } void VSTPluginInstance::restoreFromTempParameterStore (const MemoryBlock& m) { changeProgramName (getCurrentProgram(), (const char*) m.getData()); float* p = (float*) (((char*) m.getData()) + 64); for (int i = 0; i < getNumParameters(); ++i) setParameter (i, p[i]); } void VSTPluginInstance::setCurrentProgram (int newIndex) { if (getNumPrograms() > 0 && newIndex != getCurrentProgram()) dispatch (effSetProgram, 0, jlimit (0, getNumPrograms() - 1, newIndex), 0, 0); } const String VSTPluginInstance::getProgramName (int index) { if (index == getCurrentProgram()) { return getCurrentProgramName(); } else if (effect != 0) { char nm [256]; zerostruct (nm); if (dispatch (effGetProgramNameIndexed, jlimit (0, getNumPrograms(), index), -1, nm, 0) != 0) { return String (nm).trim(); } } return programNames [index]; } void VSTPluginInstance::changeProgramName (int index, const String& newName) { if (index == getCurrentProgram()) { if (getNumPrograms() > 0 && newName != getCurrentProgramName()) dispatch (effSetProgramName, 0, 0, (void*) (const char*) newName.substring (0, 24), 0.0f); } else { jassertfalse // xxx not implemented! } } void VSTPluginInstance::updateStoredProgramNames() { if (effect != 0 && getNumPrograms() > 0) { char nm [256]; zerostruct (nm); // only do this if the plugin can't use indexed names.. if (dispatch (effGetProgramNameIndexed, 0, -1, nm, 0) == 0) { const int oldProgram = getCurrentProgram(); MemoryBlock oldSettings; createTempParameterStore (oldSettings); for (int i = 0; i < getNumPrograms(); ++i) { setCurrentProgram (i); getCurrentProgramName(); // (this updates the list) } setCurrentProgram (oldProgram); restoreFromTempParameterStore (oldSettings); } } } const String VSTPluginInstance::getCurrentProgramName() { if (effect != 0) { char nm [256]; zerostruct (nm); dispatch (effGetProgramName, 0, 0, nm, 0); const int index = getCurrentProgram(); if (programNames[index].isEmpty()) { while (programNames.size() < index) programNames.add (String::empty); programNames.set (index, String (nm).trim()); } return String (nm).trim(); } return String::empty; } const String VSTPluginInstance::getInputChannelName (const int index) const { if (index >= 0 && index < getNumInputChannels()) { VstPinProperties pinProps; if (dispatch (effGetInputProperties, index, 0, &pinProps, 0.0f) != 0) return String (pinProps.label, sizeof (pinProps.label)); } return String::empty; } bool VSTPluginInstance::isInputChannelStereoPair (int index) const { if (index < 0 || index >= getNumInputChannels()) return false; VstPinProperties pinProps; if (dispatch (effGetInputProperties, index, 0, &pinProps, 0.0f) != 0) return (pinProps.flags & kVstPinIsStereo) != 0; return true; } const String VSTPluginInstance::getOutputChannelName (const int index) const { if (index >= 0 && index < getNumOutputChannels()) { VstPinProperties pinProps; if (dispatch (effGetOutputProperties, index, 0, &pinProps, 0.0f) != 0) return String (pinProps.label, sizeof (pinProps.label)); } return String::empty; } bool VSTPluginInstance::isOutputChannelStereoPair (int index) const { if (index < 0 || index >= getNumOutputChannels()) return false; VstPinProperties pinProps; if (dispatch (effGetOutputProperties, index, 0, &pinProps, 0.0f) != 0) return (pinProps.flags & kVstPinIsStereo) != 0; return true; } void VSTPluginInstance::setPower (const bool on) { dispatch (effMainsChanged, 0, on ? 1 : 0, 0, 0); isPowerOn = on; } const int defaultMaxSizeMB = 64; void VSTPluginInstance::getStateInformation (MemoryBlock& destData) { saveToFXBFile (destData, true, defaultMaxSizeMB); } void VSTPluginInstance::getCurrentProgramStateInformation (MemoryBlock& destData) { saveToFXBFile (destData, false, defaultMaxSizeMB); } void VSTPluginInstance::setStateInformation (const void* data, int sizeInBytes) { loadFromFXBFile (data, sizeInBytes); } void VSTPluginInstance::setCurrentProgramStateInformation (const void* data, int sizeInBytes) { loadFromFXBFile (data, sizeInBytes); } VSTPluginFormat::VSTPluginFormat() { } VSTPluginFormat::~VSTPluginFormat() { } void VSTPluginFormat::findAllTypesForFile (OwnedArray & results, const String& fileOrIdentifier) { if (! fileMightContainThisPluginType (fileOrIdentifier)) return; PluginDescription desc; desc.fileOrIdentifier = fileOrIdentifier; desc.uid = 0; VSTPluginInstance* instance = dynamic_cast (createInstanceFromDescription (desc)); if (instance == 0) return; try { #if JUCE_MAC if (instance->module->resFileId != 0) UseResFile (instance->module->resFileId); #endif instance->fillInPluginDescription (desc); VstPlugCategory category = (VstPlugCategory) instance->dispatch (effGetPlugCategory, 0, 0, 0, 0); if (category != kPlugCategShell) { // Normal plugin... results.add (new PluginDescription (desc)); ++insideVSTCallback; instance->dispatch (effOpen, 0, 0, 0, 0); --insideVSTCallback; } else { // It's a shell plugin, so iterate all the subtypes... char shellEffectName [64]; for (;;) { zerostruct (shellEffectName); const int uid = instance->dispatch (effShellGetNextPlugin, 0, 0, shellEffectName, 0); if (uid == 0) { break; } else { desc.uid = uid; desc.name = shellEffectName; bool alreadyThere = false; for (int i = results.size(); --i >= 0;) { PluginDescription* const d = results.getUnchecked(i); if (d->isDuplicateOf (desc)) { alreadyThere = true; break; } } if (! alreadyThere) results.add (new PluginDescription (desc)); } } } } catch (...) { // crashed while loading... } deleteAndZero (instance); } AudioPluginInstance* VSTPluginFormat::createInstanceFromDescription (const PluginDescription& desc) { VSTPluginInstance* result = 0; if (fileMightContainThisPluginType (desc.fileOrIdentifier)) { File file (desc.fileOrIdentifier); const File previousWorkingDirectory (File::getCurrentWorkingDirectory()); file.getParentDirectory().setAsCurrentWorkingDirectory(); const ReferenceCountedObjectPtr module (ModuleHandle::findOrCreateModule (file)); if (module != 0) { shellUIDToCreate = desc.uid; result = new VSTPluginInstance (module); if (result->effect != 0) { result->effect->resvd2 = (VstIntPtr) (pointer_sized_int) result; result->initialise(); } else { deleteAndZero (result); } } previousWorkingDirectory.setAsCurrentWorkingDirectory(); } return result; } bool VSTPluginFormat::fileMightContainThisPluginType (const String& fileOrIdentifier) { const File f (fileOrIdentifier); #if JUCE_MAC if (f.isDirectory() && f.hasFileExtension (T(".vst"))) return true; #if JUCE_PPC FSRef fileRef; if (PlatformUtilities::makeFSRefFromPath (&fileRef, f.getFullPathName())) { const short resFileId = FSOpenResFile (&fileRef, fsRdPerm); if (resFileId != -1) { const int numEffects = Count1Resources ('aEff'); CloseResFile (resFileId); if (numEffects > 0) return true; } } #endif return false; #elif JUCE_WIN32 return f.existsAsFile() && f.hasFileExtension (T(".dll")); #elif JUCE_LINUX return f.existsAsFile() && f.hasFileExtension (T(".so")); #endif } const String VSTPluginFormat::getNameOfPluginFromIdentifier (const String& fileOrIdentifier) { return fileOrIdentifier; } bool VSTPluginFormat::doesPluginStillExist (const PluginDescription& desc) { return File (desc.fileOrIdentifier).exists(); } const StringArray VSTPluginFormat::searchPathsForPlugins (const FileSearchPath& directoriesToSearch, const bool recursive) { StringArray results; for (int j = 0; j < directoriesToSearch.getNumPaths(); ++j) recursiveFileSearch (results, directoriesToSearch [j], recursive); return results; } void VSTPluginFormat::recursiveFileSearch (StringArray& results, const File& dir, const bool recursive) { // avoid allowing the dir iterator to be recursive, because we want to avoid letting it delve inside // .component or .vst directories. DirectoryIterator iter (dir, false, "*", File::findFilesAndDirectories); while (iter.next()) { const File f (iter.getFile()); bool isPlugin = false; if (fileMightContainThisPluginType (f.getFullPathName())) { isPlugin = true; results.add (f.getFullPathName()); } if (recursive && (! isPlugin) && f.isDirectory()) recursiveFileSearch (results, f, true); } } const FileSearchPath VSTPluginFormat::getDefaultLocationsToSearch() { #if JUCE_MAC return FileSearchPath ("~/Library/Audio/Plug-Ins/VST;/Library/Audio/Plug-Ins/VST"); #elif JUCE_WIN32 const String programFiles (File::getSpecialLocation (File::globalApplicationsDirectory).getFullPathName()); return FileSearchPath (programFiles + "\\Steinberg\\VstPlugins"); #elif JUCE_LINUX return FileSearchPath ("/usr/lib/vst"); #endif } END_JUCE_NAMESPACE #endif #undef log #endif /********* End of inlined file: juce_VSTPluginFormat.cpp *********/ /********* End of inlined file: juce_VSTPluginFormat.mm *********/ /********* Start of inlined file: juce_AudioProcessor.cpp *********/ BEGIN_JUCE_NAMESPACE AudioProcessor::AudioProcessor() : playHead (0), activeEditor (0), sampleRate (0), blockSize (0), numInputChannels (0), numOutputChannels (0), latencySamples (0), suspended (false), nonRealtime (false) { } AudioProcessor::~AudioProcessor() { // ooh, nasty - the editor should have been deleted before the filter // that it refers to is deleted.. jassert (activeEditor == 0); #ifdef JUCE_DEBUG // This will fail if you've called beginParameterChangeGesture() for one // or more parameters without having made a corresponding call to endParameterChangeGesture... jassert (changingParams.countNumberOfSetBits() == 0); #endif } void AudioProcessor::setPlayHead (AudioPlayHead* const newPlayHead) throw() { playHead = newPlayHead; } void AudioProcessor::addListener (AudioProcessorListener* const newListener) throw() { const ScopedLock sl (listenerLock); listeners.addIfNotAlreadyThere (newListener); } void AudioProcessor::removeListener (AudioProcessorListener* const listenerToRemove) throw() { const ScopedLock sl (listenerLock); listeners.removeValue (listenerToRemove); } void AudioProcessor::setPlayConfigDetails (const int numIns, const int numOuts, const double sampleRate_, const int blockSize_) throw() { numInputChannels = numIns; numOutputChannels = numOuts; sampleRate = sampleRate_; blockSize = blockSize_; } void AudioProcessor::setNonRealtime (const bool nonRealtime_) throw() { nonRealtime = nonRealtime_; } void AudioProcessor::setLatencySamples (const int newLatency) { if (latencySamples != newLatency) { latencySamples = newLatency; updateHostDisplay(); } } void AudioProcessor::setParameterNotifyingHost (const int parameterIndex, const float newValue) { setParameter (parameterIndex, newValue); sendParamChangeMessageToListeners (parameterIndex, newValue); } void AudioProcessor::sendParamChangeMessageToListeners (const int parameterIndex, const float newValue) { jassert (((unsigned int) parameterIndex) < (unsigned int) getNumParameters()); for (int i = listeners.size(); --i >= 0;) { listenerLock.enter(); AudioProcessorListener* const l = (AudioProcessorListener*) listeners [i]; listenerLock.exit(); if (l != 0) l->audioProcessorParameterChanged (this, parameterIndex, newValue); } } void AudioProcessor::beginParameterChangeGesture (int parameterIndex) { jassert (((unsigned int) parameterIndex) < (unsigned int) getNumParameters()); #ifdef JUCE_DEBUG // This means you've called beginParameterChangeGesture twice in succession without a matching // call to endParameterChangeGesture. That might be fine in most hosts, but better to avoid doing it. jassert (! changingParams [parameterIndex]); changingParams.setBit (parameterIndex); #endif for (int i = listeners.size(); --i >= 0;) { listenerLock.enter(); AudioProcessorListener* const l = (AudioProcessorListener*) listeners [i]; listenerLock.exit(); if (l != 0) l->audioProcessorParameterChangeGestureBegin (this, parameterIndex); } } void AudioProcessor::endParameterChangeGesture (int parameterIndex) { jassert (((unsigned int) parameterIndex) < (unsigned int) getNumParameters()); #ifdef JUCE_DEBUG // This means you've called endParameterChangeGesture without having previously called // endParameterChangeGesture. That might be fine in most hosts, but better to keep the // calls matched correctly. jassert (changingParams [parameterIndex]); changingParams.clearBit (parameterIndex); #endif for (int i = listeners.size(); --i >= 0;) { listenerLock.enter(); AudioProcessorListener* const l = (AudioProcessorListener*) listeners [i]; listenerLock.exit(); if (l != 0) l->audioProcessorParameterChangeGestureEnd (this, parameterIndex); } } void AudioProcessor::updateHostDisplay() { for (int i = listeners.size(); --i >= 0;) { listenerLock.enter(); AudioProcessorListener* const l = (AudioProcessorListener*) listeners [i]; listenerLock.exit(); if (l != 0) l->audioProcessorChanged (this); } } bool AudioProcessor::isParameterAutomatable (int /*parameterIndex*/) const { return true; } bool AudioProcessor::isMetaParameter (int /*parameterIndex*/) const { return false; } void AudioProcessor::suspendProcessing (const bool shouldBeSuspended) { const ScopedLock sl (callbackLock); suspended = shouldBeSuspended; } void AudioProcessor::reset() { } void AudioProcessor::editorBeingDeleted (AudioProcessorEditor* const editor) throw() { const ScopedLock sl (callbackLock); jassert (activeEditor == editor); if (activeEditor == editor) activeEditor = 0; } AudioProcessorEditor* AudioProcessor::createEditorIfNeeded() { if (activeEditor != 0) return activeEditor; AudioProcessorEditor* const ed = createEditor(); if (ed != 0) { // you must give your editor comp a size before returning it.. jassert (ed->getWidth() > 0 && ed->getHeight() > 0); const ScopedLock sl (callbackLock); activeEditor = ed; } return ed; } void AudioProcessor::getCurrentProgramStateInformation (JUCE_NAMESPACE::MemoryBlock& destData) { getStateInformation (destData); } void AudioProcessor::setCurrentProgramStateInformation (const void* data, int sizeInBytes) { setStateInformation (data, sizeInBytes); } // magic number to identify memory blocks that we've stored as XML const uint32 magicXmlNumber = 0x21324356; void AudioProcessor::copyXmlToBinary (const XmlElement& xml, JUCE_NAMESPACE::MemoryBlock& destData) { const String xmlString (xml.createDocument (String::empty, true, false)); const int stringLength = xmlString.length(); destData.setSize (stringLength + 10); char* const d = (char*) destData.getData(); *(uint32*) d = swapIfBigEndian ((const uint32) magicXmlNumber); *(uint32*) (d + 4) = swapIfBigEndian ((const uint32) stringLength); xmlString.copyToBuffer (d + 8, stringLength); } XmlElement* AudioProcessor::getXmlFromBinary (const void* data, const int sizeInBytes) { if (sizeInBytes > 8 && littleEndianInt ((const char*) data) == magicXmlNumber) { const uint32 stringLength = littleEndianInt (((const char*) data) + 4); if (stringLength > 0) { XmlDocument doc (String (((const char*) data) + 8, jmin ((sizeInBytes - 8), stringLength))); return doc.getDocumentElement(); } } return 0; } void AudioProcessorListener::audioProcessorParameterChangeGestureBegin (AudioProcessor*, int) { } void AudioProcessorListener::audioProcessorParameterChangeGestureEnd (AudioProcessor*, int) { } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioProcessor.cpp *********/ /********* Start of inlined file: juce_AudioProcessorEditor.cpp *********/ BEGIN_JUCE_NAMESPACE AudioProcessorEditor::AudioProcessorEditor (AudioProcessor* const owner_) : owner (owner_) { // the filter must be valid.. jassert (owner != 0); } AudioProcessorEditor::~AudioProcessorEditor() { // if this fails, then the wrapper hasn't called editorBeingDeleted() on the // filter for some reason.. jassert (owner->getActiveEditor() != this); } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioProcessorEditor.cpp *********/ /********* Start of inlined file: juce_AudioProcessorGraph.cpp *********/ BEGIN_JUCE_NAMESPACE const int AudioProcessorGraph::midiChannelIndex = 0x1000; AudioProcessorGraph::Node::Node (const uint32 id_, AudioProcessor* const processor_) throw() : id (id_), processor (processor_), isPrepared (false) { jassert (processor_ != 0); } AudioProcessorGraph::Node::~Node() { delete processor; } void AudioProcessorGraph::Node::prepare (const double sampleRate, const int blockSize, AudioProcessorGraph* const graph) { if (! isPrepared) { isPrepared = true; AudioProcessorGraph::AudioGraphIOProcessor* const ioProc = dynamic_cast (processor); if (ioProc != 0) ioProc->setParentGraph (graph); processor->setPlayConfigDetails (processor->getNumInputChannels(), processor->getNumOutputChannels(), sampleRate, blockSize); processor->prepareToPlay (sampleRate, blockSize); } } void AudioProcessorGraph::Node::unprepare() { if (isPrepared) { isPrepared = false; processor->releaseResources(); } } AudioProcessorGraph::AudioProcessorGraph() : lastNodeId (0), renderingBuffers (1, 1), currentAudioOutputBuffer (1, 1) { } AudioProcessorGraph::~AudioProcessorGraph() { clearRenderingSequence(); clear(); } const String AudioProcessorGraph::getName() const { return "Audio Graph"; } void AudioProcessorGraph::clear() { nodes.clear(); connections.clear(); triggerAsyncUpdate(); } AudioProcessorGraph::Node* AudioProcessorGraph::getNodeForId (const uint32 nodeId) const throw() { for (int i = nodes.size(); --i >= 0;) if (nodes.getUnchecked(i)->id == nodeId) return nodes.getUnchecked(i); return 0; } AudioProcessorGraph::Node* AudioProcessorGraph::addNode (AudioProcessor* const newProcessor, uint32 nodeId) { if (newProcessor == 0) { jassertfalse return 0; } if (nodeId == 0) { nodeId = ++lastNodeId; } else { // you can't add a node with an id that already exists in the graph.. jassert (getNodeForId (nodeId) == 0); removeNode (nodeId); } lastNodeId = nodeId; Node* const n = new Node (nodeId, newProcessor); nodes.add (n); triggerAsyncUpdate(); AudioProcessorGraph::AudioGraphIOProcessor* const ioProc = dynamic_cast (n->processor); if (ioProc != 0) ioProc->setParentGraph (this); return n; } bool AudioProcessorGraph::removeNode (const uint32 nodeId) { disconnectNode (nodeId); for (int i = nodes.size(); --i >= 0;) { if (nodes.getUnchecked(i)->id == nodeId) { AudioProcessorGraph::AudioGraphIOProcessor* const ioProc = dynamic_cast (nodes.getUnchecked(i)->processor); if (ioProc != 0) ioProc->setParentGraph (0); nodes.remove (i); triggerAsyncUpdate(); return true; } } return false; } const AudioProcessorGraph::Connection* AudioProcessorGraph::getConnectionBetween (const uint32 sourceNodeId, const int sourceChannelIndex, const uint32 destNodeId, const int destChannelIndex) const throw() { for (int i = connections.size(); --i >= 0;) { const Connection* const c = connections.getUnchecked(i); if (c->sourceNodeId == sourceNodeId && c->destNodeId == destNodeId && c->sourceChannelIndex == sourceChannelIndex && c->destChannelIndex == destChannelIndex) { return c; } } return 0; } bool AudioProcessorGraph::isConnected (const uint32 possibleSourceNodeId, const uint32 possibleDestNodeId) const throw() { for (int i = connections.size(); --i >= 0;) { const Connection* const c = connections.getUnchecked(i); if (c->sourceNodeId == possibleSourceNodeId && c->destNodeId == possibleDestNodeId) { return true; } } return false; } bool AudioProcessorGraph::canConnect (const uint32 sourceNodeId, const int sourceChannelIndex, const uint32 destNodeId, const int destChannelIndex) const throw() { if (sourceChannelIndex < 0 || destChannelIndex < 0 || sourceNodeId == destNodeId || (destChannelIndex == midiChannelIndex) != (sourceChannelIndex == midiChannelIndex)) return false; const Node* const source = getNodeForId (sourceNodeId); if (source == 0 || (sourceChannelIndex != midiChannelIndex && sourceChannelIndex >= source->processor->getNumOutputChannels()) || (sourceChannelIndex == midiChannelIndex && ! source->processor->producesMidi())) return false; const Node* const dest = getNodeForId (destNodeId); if (dest == 0 || (destChannelIndex != midiChannelIndex && destChannelIndex >= dest->processor->getNumInputChannels()) || (destChannelIndex == midiChannelIndex && ! dest->processor->acceptsMidi())) return false; return getConnectionBetween (sourceNodeId, sourceChannelIndex, destNodeId, destChannelIndex) == 0; } bool AudioProcessorGraph::addConnection (const uint32 sourceNodeId, const int sourceChannelIndex, const uint32 destNodeId, const int destChannelIndex) { if (! canConnect (sourceNodeId, sourceChannelIndex, destNodeId, destChannelIndex)) return false; Connection* const c = new Connection(); c->sourceNodeId = sourceNodeId; c->sourceChannelIndex = sourceChannelIndex; c->destNodeId = destNodeId; c->destChannelIndex = destChannelIndex; connections.add (c); triggerAsyncUpdate(); return true; } void AudioProcessorGraph::removeConnection (const int index) { connections.remove (index); triggerAsyncUpdate(); } bool AudioProcessorGraph::removeConnection (const uint32 sourceNodeId, const int sourceChannelIndex, const uint32 destNodeId, const int destChannelIndex) { bool doneAnything = false; for (int i = connections.size(); --i >= 0;) { const Connection* const c = connections.getUnchecked(i); if (c->sourceNodeId == sourceNodeId && c->destNodeId == destNodeId && c->sourceChannelIndex == sourceChannelIndex && c->destChannelIndex == destChannelIndex) { removeConnection (i); doneAnything = true; triggerAsyncUpdate(); } } return doneAnything; } bool AudioProcessorGraph::disconnectNode (const uint32 nodeId) { bool doneAnything = false; for (int i = connections.size(); --i >= 0;) { const Connection* const c = connections.getUnchecked(i); if (c->sourceNodeId == nodeId || c->destNodeId == nodeId) { removeConnection (i); doneAnything = true; triggerAsyncUpdate(); } } return doneAnything; } bool AudioProcessorGraph::removeIllegalConnections() { bool doneAnything = false; for (int i = connections.size(); --i >= 0;) { const Connection* const c = connections.getUnchecked(i); const Node* const source = getNodeForId (c->sourceNodeId); const Node* const dest = getNodeForId (c->destNodeId); if (source == 0 || dest == 0 || (c->sourceChannelIndex != midiChannelIndex && (((unsigned int) c->sourceChannelIndex) >= (unsigned int) source->processor->getNumOutputChannels())) || (c->sourceChannelIndex == midiChannelIndex && ! source->processor->producesMidi()) || (c->destChannelIndex != midiChannelIndex && (((unsigned int) c->destChannelIndex) >= (unsigned int) dest->processor->getNumInputChannels())) || (c->destChannelIndex == midiChannelIndex && ! dest->processor->acceptsMidi())) { removeConnection (i); doneAnything = true; triggerAsyncUpdate(); } } return doneAnything; } namespace GraphRenderingOps { class AudioGraphRenderingOp { public: AudioGraphRenderingOp() throw() {} virtual ~AudioGraphRenderingOp() throw() {} virtual void perform (AudioSampleBuffer& sharedBufferChans, const OwnedArray & sharedMidiBuffers, const int numSamples) throw() = 0; juce_UseDebuggingNewOperator }; class ClearChannelOp : public AudioGraphRenderingOp { public: ClearChannelOp (const int channelNum_) throw() : channelNum (channelNum_) {} ~ClearChannelOp() throw() {} void perform (AudioSampleBuffer& sharedBufferChans, const OwnedArray &, const int numSamples) throw() { sharedBufferChans.clear (channelNum, 0, numSamples); } private: const int channelNum; ClearChannelOp (const ClearChannelOp&); const ClearChannelOp& operator= (const ClearChannelOp&); }; class CopyChannelOp : public AudioGraphRenderingOp { public: CopyChannelOp (const int srcChannelNum_, const int dstChannelNum_) throw() : srcChannelNum (srcChannelNum_), dstChannelNum (dstChannelNum_) {} ~CopyChannelOp() throw() {} void perform (AudioSampleBuffer& sharedBufferChans, const OwnedArray &, const int numSamples) throw() { sharedBufferChans.copyFrom (dstChannelNum, 0, sharedBufferChans, srcChannelNum, 0, numSamples); } private: const int srcChannelNum, dstChannelNum; CopyChannelOp (const CopyChannelOp&); const CopyChannelOp& operator= (const CopyChannelOp&); }; class AddChannelOp : public AudioGraphRenderingOp { public: AddChannelOp (const int srcChannelNum_, const int dstChannelNum_) throw() : srcChannelNum (srcChannelNum_), dstChannelNum (dstChannelNum_) {} ~AddChannelOp() throw() {} void perform (AudioSampleBuffer& sharedBufferChans, const OwnedArray &, const int numSamples) throw() { sharedBufferChans.addFrom (dstChannelNum, 0, sharedBufferChans, srcChannelNum, 0, numSamples); } private: const int srcChannelNum, dstChannelNum; AddChannelOp (const AddChannelOp&); const AddChannelOp& operator= (const AddChannelOp&); }; class ClearMidiBufferOp : public AudioGraphRenderingOp { public: ClearMidiBufferOp (const int bufferNum_) throw() : bufferNum (bufferNum_) {} ~ClearMidiBufferOp() throw() {} void perform (AudioSampleBuffer&, const OwnedArray & sharedMidiBuffers, const int) throw() { sharedMidiBuffers.getUnchecked (bufferNum)->clear(); } private: const int bufferNum; ClearMidiBufferOp (const ClearMidiBufferOp&); const ClearMidiBufferOp& operator= (const ClearMidiBufferOp&); }; class CopyMidiBufferOp : public AudioGraphRenderingOp { public: CopyMidiBufferOp (const int srcBufferNum_, const int dstBufferNum_) throw() : srcBufferNum (srcBufferNum_), dstBufferNum (dstBufferNum_) {} ~CopyMidiBufferOp() throw() {} void perform (AudioSampleBuffer&, const OwnedArray & sharedMidiBuffers, const int) throw() { *sharedMidiBuffers.getUnchecked (dstBufferNum) = *sharedMidiBuffers.getUnchecked (srcBufferNum); } private: const int srcBufferNum, dstBufferNum; CopyMidiBufferOp (const CopyMidiBufferOp&); const CopyMidiBufferOp& operator= (const CopyMidiBufferOp&); }; class AddMidiBufferOp : public AudioGraphRenderingOp { public: AddMidiBufferOp (const int srcBufferNum_, const int dstBufferNum_) throw() : srcBufferNum (srcBufferNum_), dstBufferNum (dstBufferNum_) {} ~AddMidiBufferOp() throw() {} void perform (AudioSampleBuffer&, const OwnedArray & sharedMidiBuffers, const int numSamples) throw() { sharedMidiBuffers.getUnchecked (dstBufferNum) ->addEvents (*sharedMidiBuffers.getUnchecked (srcBufferNum), 0, numSamples, 0); } private: const int srcBufferNum, dstBufferNum; AddMidiBufferOp (const AddMidiBufferOp&); const AddMidiBufferOp& operator= (const AddMidiBufferOp&); }; class ProcessBufferOp : public AudioGraphRenderingOp { public: ProcessBufferOp (const AudioProcessorGraph::Node::Ptr& node_, const Array & audioChannelsToUse_, const int totalChans_, const int midiBufferToUse_) throw() : node (node_), processor (node_->processor), audioChannelsToUse (audioChannelsToUse_), totalChans (jmax (1, totalChans_)), midiBufferToUse (midiBufferToUse_) { channels = (float**) juce_calloc (sizeof (float*) * totalChans); while (audioChannelsToUse.size() < totalChans) audioChannelsToUse.add (0); } ~ProcessBufferOp() throw() { juce_free (channels); } void perform (AudioSampleBuffer& sharedBufferChans, const OwnedArray & sharedMidiBuffers, const int numSamples) throw() { for (int i = totalChans; --i >= 0;) channels[i] = sharedBufferChans.getSampleData (audioChannelsToUse.getUnchecked (i), 0); AudioSampleBuffer buffer (channels, totalChans, numSamples); processor->processBlock (buffer, *sharedMidiBuffers.getUnchecked (midiBufferToUse)); } const AudioProcessorGraph::Node::Ptr node; AudioProcessor* const processor; private: Array audioChannelsToUse; float** channels; int totalChans; int midiBufferToUse; ProcessBufferOp (const ProcessBufferOp&); const ProcessBufferOp& operator= (const ProcessBufferOp&); }; /** Used to calculate the correct sequence of rendering ops needed, based on the best re-use of shared buffers at each stage. */ class RenderingOpSequenceCalculator { public: RenderingOpSequenceCalculator (AudioProcessorGraph& graph_, const VoidArray& orderedNodes_, VoidArray& renderingOps) : graph (graph_), orderedNodes (orderedNodes_) { nodeIds.add (-2); // first buffer is read-only zeros channels.add (0); midiNodeIds.add (-2); for (int i = 0; i < orderedNodes.size(); ++i) { createRenderingOpsForNode ((AudioProcessorGraph::Node*) orderedNodes.getUnchecked(i), renderingOps, i); markAnyUnusedBuffersAsFree (i); } } int getNumBuffersNeeded() const throw() { return nodeIds.size(); } int getNumMidiBuffersNeeded() const throw() { return midiNodeIds.size(); } juce_UseDebuggingNewOperator private: AudioProcessorGraph& graph; const VoidArray& orderedNodes; Array nodeIds, channels, midiNodeIds; void createRenderingOpsForNode (AudioProcessorGraph::Node* const node, VoidArray& renderingOps, const int ourRenderingIndex) { const int numIns = node->processor->getNumInputChannels(); const int numOuts = node->processor->getNumOutputChannels(); const int totalChans = jmax (numIns, numOuts); Array audioChannelsToUse; int midiBufferToUse = -1; for (int inputChan = 0; inputChan < numIns; ++inputChan) { // get a list of all the inputs to this node Array sourceNodes, sourceOutputChans; for (int i = graph.getNumConnections(); --i >= 0;) { const AudioProcessorGraph::Connection* const c = graph.getConnection (i); if (c->destNodeId == node->id && c->destChannelIndex == inputChan) { sourceNodes.add (c->sourceNodeId); sourceOutputChans.add (c->sourceChannelIndex); } } int bufIndex = -1; if (sourceNodes.size() == 0) { // unconnected input channel if (inputChan >= numOuts) { bufIndex = getReadOnlyEmptyBuffer(); jassert (bufIndex >= 0); } else { bufIndex = getFreeBuffer (false); renderingOps.add (new ClearChannelOp (bufIndex)); } } else if (sourceNodes.size() == 1) { // channel with a straightforward single input.. const int srcNode = sourceNodes.getUnchecked(0); const int srcChan = sourceOutputChans.getUnchecked(0); bufIndex = getBufferContaining (srcNode, srcChan); if (bufIndex < 0) { // if not found, this is probably a feedback loop bufIndex = getReadOnlyEmptyBuffer(); jassert (bufIndex >= 0); } if (inputChan < numOuts && isBufferNeededLater (ourRenderingIndex, inputChan, srcNode, srcChan)) { // can't mess up this channel because it's needed later by another node, so we // need to use a copy of it.. const int newFreeBuffer = getFreeBuffer (false); renderingOps.add (new CopyChannelOp (bufIndex, newFreeBuffer)); bufIndex = newFreeBuffer; } } else { // channel with a mix of several inputs.. // try to find a re-usable channel from our inputs.. int reusableInputIndex = -1; for (int i = 0; i < sourceNodes.size(); ++i) { const int sourceBufIndex = getBufferContaining (sourceNodes.getUnchecked(i), sourceOutputChans.getUnchecked(i)); if (sourceBufIndex >= 0 && ! isBufferNeededLater (ourRenderingIndex, inputChan, sourceNodes.getUnchecked(i), sourceOutputChans.getUnchecked(i))) { // we've found one of our input chans that can be re-used.. reusableInputIndex = i; bufIndex = sourceBufIndex; break; } } if (reusableInputIndex < 0) { // can't re-use any of our input chans, so get a new one and copy everything into it.. bufIndex = getFreeBuffer (false); jassert (bufIndex != 0); const int srcIndex = getBufferContaining (sourceNodes.getUnchecked (0), sourceOutputChans.getUnchecked (0)); if (srcIndex < 0) { // if not found, this is probably a feedback loop renderingOps.add (new ClearChannelOp (bufIndex)); } else { renderingOps.add (new CopyChannelOp (srcIndex, bufIndex)); } reusableInputIndex = 0; } for (int j = 0; j < sourceNodes.size(); ++j) { if (j != reusableInputIndex) { const int srcIndex = getBufferContaining (sourceNodes.getUnchecked(j), sourceOutputChans.getUnchecked(j)); if (srcIndex >= 0) renderingOps.add (new AddChannelOp (srcIndex, bufIndex)); } } } jassert (bufIndex >= 0); audioChannelsToUse.add (bufIndex); if (inputChan < numOuts) markBufferAsContaining (bufIndex, node->id, inputChan); } for (int outputChan = numIns; outputChan < numOuts; ++outputChan) { const int bufIndex = getFreeBuffer (false); jassert (bufIndex != 0); audioChannelsToUse.add (bufIndex); markBufferAsContaining (bufIndex, node->id, outputChan); } // Now the same thing for midi.. Array midiSourceNodes; for (int i = graph.getNumConnections(); --i >= 0;) { const AudioProcessorGraph::Connection* const c = graph.getConnection (i); if (c->destNodeId == node->id && c->destChannelIndex == AudioProcessorGraph::midiChannelIndex) midiSourceNodes.add (c->sourceNodeId); } if (midiSourceNodes.size() == 0) { // No midi inputs.. midiBufferToUse = getFreeBuffer (true); // need to pick a buffer even if the processor doesn't use midi if (node->processor->acceptsMidi() || node->processor->producesMidi()) renderingOps.add (new ClearMidiBufferOp (midiBufferToUse)); } else if (midiSourceNodes.size() == 1) { // One midi input.. midiBufferToUse = getBufferContaining (midiSourceNodes.getUnchecked(0), AudioProcessorGraph::midiChannelIndex); if (midiBufferToUse >= 0) { if (isBufferNeededLater (ourRenderingIndex, AudioProcessorGraph::midiChannelIndex, midiSourceNodes.getUnchecked(0), AudioProcessorGraph::midiChannelIndex)) { // can't mess up this channel because it's needed later by another node, so we // need to use a copy of it.. const int newFreeBuffer = getFreeBuffer (true); renderingOps.add (new CopyMidiBufferOp (midiBufferToUse, newFreeBuffer)); midiBufferToUse = newFreeBuffer; } } else { // probably a feedback loop, so just use an empty one.. midiBufferToUse = getFreeBuffer (true); // need to pick a buffer even if the processor doesn't use midi } } else { // More than one midi input being mixed.. int reusableInputIndex = -1; for (int i = 0; i < midiSourceNodes.size(); ++i) { const int sourceBufIndex = getBufferContaining (midiSourceNodes.getUnchecked(i), AudioProcessorGraph::midiChannelIndex); if (sourceBufIndex >= 0 && ! isBufferNeededLater (ourRenderingIndex, AudioProcessorGraph::midiChannelIndex, midiSourceNodes.getUnchecked(i), AudioProcessorGraph::midiChannelIndex)) { // we've found one of our input buffers that can be re-used.. reusableInputIndex = i; midiBufferToUse = sourceBufIndex; break; } } if (reusableInputIndex < 0) { // can't re-use any of our input buffers, so get a new one and copy everything into it.. midiBufferToUse = getFreeBuffer (true); jassert (midiBufferToUse >= 0); const int srcIndex = getBufferContaining (midiSourceNodes.getUnchecked(0), AudioProcessorGraph::midiChannelIndex); if (srcIndex >= 0) renderingOps.add (new CopyMidiBufferOp (srcIndex, midiBufferToUse)); else renderingOps.add (new ClearMidiBufferOp (midiBufferToUse)); reusableInputIndex = 0; } for (int j = 0; j < midiSourceNodes.size(); ++j) { if (j != reusableInputIndex) { const int srcIndex = getBufferContaining (midiSourceNodes.getUnchecked(j), AudioProcessorGraph::midiChannelIndex); if (srcIndex >= 0) renderingOps.add (new AddMidiBufferOp (srcIndex, midiBufferToUse)); } } } if (node->processor->producesMidi()) markBufferAsContaining (midiBufferToUse, node->id, AudioProcessorGraph::midiChannelIndex); renderingOps.add (new ProcessBufferOp (node, audioChannelsToUse, totalChans, midiBufferToUse)); } int getFreeBuffer (const bool forMidi) { if (forMidi) { for (int i = 1; i < midiNodeIds.size(); ++i) if (midiNodeIds.getUnchecked(i) < 0) return i; midiNodeIds.add (-1); return midiNodeIds.size() - 1; } else { for (int i = 1; i < nodeIds.size(); ++i) if (nodeIds.getUnchecked(i) < 0) return i; nodeIds.add (-1); channels.add (0); return nodeIds.size() - 1; } } int getReadOnlyEmptyBuffer() const throw() { return 0; } int getBufferContaining (const int nodeId, const int outputChannel) const throw() { if (outputChannel == AudioProcessorGraph::midiChannelIndex) { for (int i = midiNodeIds.size(); --i >= 0;) if (midiNodeIds.getUnchecked(i) == nodeId) return i; } else { for (int i = nodeIds.size(); --i >= 0;) if (nodeIds.getUnchecked(i) == nodeId && channels.getUnchecked(i) == outputChannel) return i; } return -1; } void markAnyUnusedBuffersAsFree (const int stepIndex) { int i; for (i = 0; i < nodeIds.size(); ++i) { if (nodeIds.getUnchecked(i) >= 0 && ! isBufferNeededLater (stepIndex, -1, nodeIds.getUnchecked(i), channels.getUnchecked(i))) { nodeIds.set (i, -1); } } for (i = 0; i < midiNodeIds.size(); ++i) { if (midiNodeIds.getUnchecked(i) >= 0 && ! isBufferNeededLater (stepIndex, -1, midiNodeIds.getUnchecked(i), AudioProcessorGraph::midiChannelIndex)) { midiNodeIds.set (i, -1); } } } bool isBufferNeededLater (int stepIndexToSearchFrom, int inputChannelOfIndexToIgnore, const int nodeId, const int outputChanIndex) const throw() { while (stepIndexToSearchFrom < orderedNodes.size()) { const AudioProcessorGraph::Node* const node = (const AudioProcessorGraph::Node*) orderedNodes.getUnchecked (stepIndexToSearchFrom); if (outputChanIndex == AudioProcessorGraph::midiChannelIndex) { if (inputChannelOfIndexToIgnore != AudioProcessorGraph::midiChannelIndex && graph.getConnectionBetween (nodeId, AudioProcessorGraph::midiChannelIndex, node->id, AudioProcessorGraph::midiChannelIndex) != 0) return true; } else { for (int i = 0; i < node->processor->getNumInputChannels(); ++i) if (i != inputChannelOfIndexToIgnore && graph.getConnectionBetween (nodeId, outputChanIndex, node->id, i) != 0) return true; } inputChannelOfIndexToIgnore = -1; ++stepIndexToSearchFrom; } return false; } void markBufferAsContaining (int bufferNum, int nodeId, int outputIndex) { if (outputIndex == AudioProcessorGraph::midiChannelIndex) { jassert (bufferNum > 0 && bufferNum < midiNodeIds.size()); midiNodeIds.set (bufferNum, nodeId); } else { jassert (bufferNum >= 0 && bufferNum < nodeIds.size()); nodeIds.set (bufferNum, nodeId); channels.set (bufferNum, outputIndex); } } RenderingOpSequenceCalculator (const RenderingOpSequenceCalculator&); const RenderingOpSequenceCalculator& operator= (const RenderingOpSequenceCalculator&); }; } void AudioProcessorGraph::clearRenderingSequence() { const ScopedLock sl (renderLock); for (int i = renderingOps.size(); --i >= 0;) { GraphRenderingOps::AudioGraphRenderingOp* const r = (GraphRenderingOps::AudioGraphRenderingOp*) renderingOps.getUnchecked(i); renderingOps.remove (i); delete r; } } bool AudioProcessorGraph::isAnInputTo (const uint32 possibleInputId, const uint32 possibleDestinationId, const int recursionCheck) const throw() { if (recursionCheck > 0) { for (int i = connections.size(); --i >= 0;) { const AudioProcessorGraph::Connection* const c = connections.getUnchecked (i); if (c->destNodeId == possibleDestinationId && (c->sourceNodeId == possibleInputId || isAnInputTo (possibleInputId, c->sourceNodeId, recursionCheck - 1))) return true; } } return false; } void AudioProcessorGraph::buildRenderingSequence() { VoidArray newRenderingOps; int numRenderingBuffersNeeded = 2; int numMidiBuffersNeeded = 1; { MessageManagerLock mml; VoidArray orderedNodes; int i; for (i = 0; i < nodes.size(); ++i) { Node* const node = nodes.getUnchecked(i); node->prepare (getSampleRate(), getBlockSize(), this); int j = 0; for (; j < orderedNodes.size(); ++j) if (isAnInputTo (node->id, ((Node*) orderedNodes.getUnchecked (j))->id, nodes.size() + 1)) break; orderedNodes.insert (j, node); } GraphRenderingOps::RenderingOpSequenceCalculator calculator (*this, orderedNodes, newRenderingOps); numRenderingBuffersNeeded = calculator.getNumBuffersNeeded(); numMidiBuffersNeeded = calculator.getNumMidiBuffersNeeded(); } VoidArray oldRenderingOps (renderingOps); { // swap over to the new rendering sequence.. const ScopedLock sl (renderLock); renderingBuffers.setSize (numRenderingBuffersNeeded, getBlockSize()); renderingBuffers.clear(); for (int i = midiBuffers.size(); --i >= 0;) midiBuffers.getUnchecked(i)->clear(); while (midiBuffers.size() < numMidiBuffersNeeded) midiBuffers.add (new MidiBuffer()); renderingOps = newRenderingOps; } for (int i = oldRenderingOps.size(); --i >= 0;) delete (GraphRenderingOps::AudioGraphRenderingOp*) oldRenderingOps.getUnchecked(i); } void AudioProcessorGraph::handleAsyncUpdate() { buildRenderingSequence(); } void AudioProcessorGraph::prepareToPlay (double /*sampleRate*/, int estimatedSamplesPerBlock) { currentAudioInputBuffer = 0; currentAudioOutputBuffer.setSize (jmax (1, getNumOutputChannels()), estimatedSamplesPerBlock); currentMidiInputBuffer = 0; currentMidiOutputBuffer.clear(); clearRenderingSequence(); buildRenderingSequence(); } void AudioProcessorGraph::releaseResources() { for (int i = 0; i < nodes.size(); ++i) nodes.getUnchecked(i)->unprepare(); renderingBuffers.setSize (1, 1); midiBuffers.clear(); currentAudioInputBuffer = 0; currentAudioOutputBuffer.setSize (1, 1); currentMidiInputBuffer = 0; currentMidiOutputBuffer.clear(); } void AudioProcessorGraph::processBlock (AudioSampleBuffer& buffer, MidiBuffer& midiMessages) { const int numSamples = buffer.getNumSamples(); const ScopedLock sl (renderLock); currentAudioInputBuffer = &buffer; currentAudioOutputBuffer.setSize (jmax (1, buffer.getNumChannels()), numSamples); currentAudioOutputBuffer.clear(); currentMidiInputBuffer = &midiMessages; currentMidiOutputBuffer.clear(); int i; for (i = 0; i < renderingOps.size(); ++i) { GraphRenderingOps::AudioGraphRenderingOp* const op = (GraphRenderingOps::AudioGraphRenderingOp*) renderingOps.getUnchecked(i); op->perform (renderingBuffers, midiBuffers, numSamples); } for (i = 0; i < buffer.getNumChannels(); ++i) buffer.copyFrom (i, 0, currentAudioOutputBuffer, i, 0, numSamples); } const String AudioProcessorGraph::getInputChannelName (const int channelIndex) const { return "Input " + String (channelIndex + 1); } const String AudioProcessorGraph::getOutputChannelName (const int channelIndex) const { return "Output " + String (channelIndex + 1); } bool AudioProcessorGraph::isInputChannelStereoPair (int /*index*/) const { return true; } bool AudioProcessorGraph::isOutputChannelStereoPair (int /*index*/) const { return true; } bool AudioProcessorGraph::acceptsMidi() const { return true; } bool AudioProcessorGraph::producesMidi() const { return true; } void AudioProcessorGraph::getStateInformation (JUCE_NAMESPACE::MemoryBlock& /*destData*/) { } void AudioProcessorGraph::setStateInformation (const void* /*data*/, int /*sizeInBytes*/) { } AudioProcessorGraph::AudioGraphIOProcessor::AudioGraphIOProcessor (const IODeviceType type_) : type (type_), graph (0) { } AudioProcessorGraph::AudioGraphIOProcessor::~AudioGraphIOProcessor() { } const String AudioProcessorGraph::AudioGraphIOProcessor::getName() const { switch (type) { case audioOutputNode: return "Audio Output"; case audioInputNode: return "Audio Input"; case midiOutputNode: return "Midi Output"; case midiInputNode: return "Midi Input"; default: break; } return String::empty; } void AudioProcessorGraph::AudioGraphIOProcessor::fillInPluginDescription (PluginDescription& d) const { d.name = getName(); d.uid = d.name.hashCode(); d.category = "I/O devices"; d.pluginFormatName = "Internal"; d.manufacturerName = "Raw Material Software"; d.version = "1.0"; d.isInstrument = false; d.numInputChannels = getNumInputChannels(); if (type == audioOutputNode && graph != 0) d.numInputChannels = graph->getNumInputChannels(); d.numOutputChannels = getNumOutputChannels(); if (type == audioInputNode && graph != 0) d.numOutputChannels = graph->getNumOutputChannels(); } void AudioProcessorGraph::AudioGraphIOProcessor::prepareToPlay (double, int) { jassert (graph != 0); } void AudioProcessorGraph::AudioGraphIOProcessor::releaseResources() { } void AudioProcessorGraph::AudioGraphIOProcessor::processBlock (AudioSampleBuffer& buffer, MidiBuffer& midiMessages) { jassert (graph != 0); switch (type) { case audioOutputNode: { for (int i = jmin (graph->currentAudioOutputBuffer.getNumChannels(), buffer.getNumChannels()); --i >= 0;) { graph->currentAudioOutputBuffer.addFrom (i, 0, buffer, i, 0, buffer.getNumSamples()); } break; } case audioInputNode: { for (int i = jmin (graph->currentAudioInputBuffer->getNumChannels(), buffer.getNumChannels()); --i >= 0;) { buffer.copyFrom (i, 0, *graph->currentAudioInputBuffer, i, 0, buffer.getNumSamples()); } break; } case midiOutputNode: graph->currentMidiOutputBuffer.addEvents (midiMessages, 0, buffer.getNumSamples(), 0); break; case midiInputNode: midiMessages.addEvents (*graph->currentMidiInputBuffer, 0, buffer.getNumSamples(), 0); break; default: break; } } bool AudioProcessorGraph::AudioGraphIOProcessor::acceptsMidi() const { return type == midiOutputNode; } bool AudioProcessorGraph::AudioGraphIOProcessor::producesMidi() const { return type == midiInputNode; } const String AudioProcessorGraph::AudioGraphIOProcessor::getInputChannelName (const int channelIndex) const { switch (type) { case audioOutputNode: return "Output " + String (channelIndex + 1); case midiOutputNode: return "Midi Output"; default: break; } return String::empty; } const String AudioProcessorGraph::AudioGraphIOProcessor::getOutputChannelName (const int channelIndex) const { switch (type) { case audioInputNode: return "Input " + String (channelIndex + 1); case midiInputNode: return "Midi Input"; default: break; } return String::empty; } bool AudioProcessorGraph::AudioGraphIOProcessor::isInputChannelStereoPair (int /*index*/) const { return type == audioInputNode || type == audioOutputNode; } bool AudioProcessorGraph::AudioGraphIOProcessor::isOutputChannelStereoPair (int index) const { return isInputChannelStereoPair (index); } bool AudioProcessorGraph::AudioGraphIOProcessor::isInput() const throw() { return type == audioInputNode || type == midiInputNode; } bool AudioProcessorGraph::AudioGraphIOProcessor::isOutput() const throw() { return type == audioOutputNode || type == midiOutputNode; } AudioProcessorEditor* AudioProcessorGraph::AudioGraphIOProcessor::createEditor() { return 0; } int AudioProcessorGraph::AudioGraphIOProcessor::getNumParameters() { return 0; } const String AudioProcessorGraph::AudioGraphIOProcessor::getParameterName (int) { return String::empty; } float AudioProcessorGraph::AudioGraphIOProcessor::getParameter (int) { return 0.0f; } const String AudioProcessorGraph::AudioGraphIOProcessor::getParameterText (int) { return String::empty; } void AudioProcessorGraph::AudioGraphIOProcessor::setParameter (int, float) { } int AudioProcessorGraph::AudioGraphIOProcessor::getNumPrograms() { return 0; } int AudioProcessorGraph::AudioGraphIOProcessor::getCurrentProgram() { return 0; } void AudioProcessorGraph::AudioGraphIOProcessor::setCurrentProgram (int) { } const String AudioProcessorGraph::AudioGraphIOProcessor::getProgramName (int) { return String::empty; } void AudioProcessorGraph::AudioGraphIOProcessor::changeProgramName (int, const String&) { } void AudioProcessorGraph::AudioGraphIOProcessor::getStateInformation (JUCE_NAMESPACE::MemoryBlock&) { } void AudioProcessorGraph::AudioGraphIOProcessor::setStateInformation (const void*, int) { } void AudioProcessorGraph::AudioGraphIOProcessor::setParentGraph (AudioProcessorGraph* const newGraph) throw() { graph = newGraph; if (graph != 0) { setPlayConfigDetails (type == audioOutputNode ? graph->getNumOutputChannels() : 0, type == audioInputNode ? graph->getNumInputChannels() : 0, getSampleRate(), getBlockSize()); updateHostDisplay(); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioProcessorGraph.cpp *********/ /********* Start of inlined file: juce_AudioProcessorPlayer.cpp *********/ BEGIN_JUCE_NAMESPACE AudioProcessorPlayer::AudioProcessorPlayer() : processor (0), sampleRate (0), blockSize (0), isPrepared (false), numInputChans (0), numOutputChans (0), tempBuffer (1, 1) { } AudioProcessorPlayer::~AudioProcessorPlayer() { setProcessor (0); } void AudioProcessorPlayer::setProcessor (AudioProcessor* const processorToPlay) { if (processor != processorToPlay) { if (processorToPlay != 0 && sampleRate > 0 && blockSize > 0) { processorToPlay->setPlayConfigDetails (numInputChans, numOutputChans, sampleRate, blockSize); processorToPlay->prepareToPlay (sampleRate, blockSize); } lock.enter(); AudioProcessor* const oldOne = isPrepared ? processor : 0; processor = processorToPlay; isPrepared = true; lock.exit(); if (oldOne != 0) oldOne->releaseResources(); } } void AudioProcessorPlayer::audioDeviceIOCallback (const float** inputChannelData, int numInputChannels, float** outputChannelData, int numOutputChannels, int numSamples) { // these should have been prepared by audioDeviceAboutToStart()... jassert (sampleRate > 0 && blockSize > 0); incomingMidi.clear(); messageCollector.removeNextBlockOfMessages (incomingMidi, numSamples); int i, totalNumChans = 0; if (numInputChannels > numOutputChannels) { // if there aren't enough output channels for the number of // inputs, we need to create some temporary extra ones (can't // use the input data in case it gets written to) tempBuffer.setSize (numInputChannels - numOutputChannels, numSamples, false, false, true); for (i = 0; i < numOutputChannels; ++i) { channels[totalNumChans] = outputChannelData[i]; memcpy (channels[totalNumChans], inputChannelData[i], sizeof (float) * numSamples); ++totalNumChans; } for (i = numOutputChannels; i < numInputChannels; ++i) { channels[totalNumChans] = tempBuffer.getSampleData (i - numOutputChannels, 0); memcpy (channels[totalNumChans], inputChannelData[i], sizeof (float) * numSamples); ++totalNumChans; } } else { for (i = 0; i < numInputChannels; ++i) { channels[totalNumChans] = outputChannelData[i]; memcpy (channels[totalNumChans], inputChannelData[i], sizeof (float) * numSamples); ++totalNumChans; } for (i = numInputChannels; i < numOutputChannels; ++i) { channels[totalNumChans] = outputChannelData[i]; zeromem (channels[totalNumChans], sizeof (float) * numSamples); ++totalNumChans; } } AudioSampleBuffer buffer (channels, totalNumChans, numSamples); const ScopedLock sl (lock); if (processor != 0) processor->processBlock (buffer, incomingMidi); } void AudioProcessorPlayer::audioDeviceAboutToStart (AudioIODevice* device) { const ScopedLock sl (lock); sampleRate = device->getCurrentSampleRate(); blockSize = device->getCurrentBufferSizeSamples(); numInputChans = device->getActiveInputChannels().countNumberOfSetBits(); numOutputChans = device->getActiveOutputChannels().countNumberOfSetBits(); messageCollector.reset (sampleRate); zeromem (channels, sizeof (channels)); if (processor != 0) { if (isPrepared) processor->releaseResources(); AudioProcessor* const oldProcessor = processor; setProcessor (0); setProcessor (oldProcessor); } } void AudioProcessorPlayer::audioDeviceStopped() { const ScopedLock sl (lock); if (processor != 0 && isPrepared) processor->releaseResources(); sampleRate = 0.0; blockSize = 0; isPrepared = false; tempBuffer.setSize (1, 1); } void AudioProcessorPlayer::handleIncomingMidiMessage (MidiInput*, const MidiMessage& message) { messageCollector.addMessageToQueue (message); } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioProcessorPlayer.cpp *********/ /********* Start of inlined file: juce_GenericAudioProcessorEditor.cpp *********/ BEGIN_JUCE_NAMESPACE class ProcessorParameterPropertyComp : public PropertyComponent, public AudioProcessorListener, public AsyncUpdater { public: ProcessorParameterPropertyComp (const String& name, AudioProcessor* const owner_, const int index_) : PropertyComponent (name), owner (owner_), index (index_) { addAndMakeVisible (slider = new ParamSlider (owner_, index_)); owner_->addListener (this); } ~ProcessorParameterPropertyComp() { owner->removeListener (this); deleteAllChildren(); } void refresh() { slider->setValue (owner->getParameter (index), false); } void audioProcessorChanged (AudioProcessor*) {} void audioProcessorParameterChanged (AudioProcessor*, int parameterIndex, float) { if (parameterIndex == index) triggerAsyncUpdate(); } void handleAsyncUpdate() { refresh(); } juce_UseDebuggingNewOperator private: AudioProcessor* const owner; const int index; Slider* slider; class ParamSlider : public Slider { public: ParamSlider (AudioProcessor* const owner_, const int index_) : Slider (String::empty), owner (owner_), index (index_) { setRange (0.0, 1.0, 0.0); setSliderStyle (Slider::LinearBar); setTextBoxIsEditable (false); setScrollWheelEnabled (false); } ~ParamSlider() { } void valueChanged() { const float newVal = (float) getValue(); if (owner->getParameter (index) != newVal) owner->setParameter (index, newVal); } const String getTextFromValue (double /*value*/) { return owner->getParameterText (index); } juce_UseDebuggingNewOperator private: AudioProcessor* const owner; const int index; }; }; GenericAudioProcessorEditor::GenericAudioProcessorEditor (AudioProcessor* const owner) : AudioProcessorEditor (owner) { setOpaque (true); addAndMakeVisible (panel = new PropertyPanel()); Array params; const int numParams = owner->getNumParameters(); int totalHeight = 0; for (int i = 0; i < numParams; ++i) { String name (owner->getParameterName (i)); if (name.trim().isEmpty()) name = "Unnamed"; ProcessorParameterPropertyComp* const pc = new ProcessorParameterPropertyComp (name, owner, i); params.add (pc); totalHeight += pc->getPreferredHeight(); } panel->addProperties (params); setSize (400, jlimit (25, 400, totalHeight)); } GenericAudioProcessorEditor::~GenericAudioProcessorEditor() { deleteAllChildren(); } void GenericAudioProcessorEditor::paint (Graphics& g) { g.fillAll (Colours::white); } void GenericAudioProcessorEditor::resized() { panel->setSize (getWidth(), getHeight()); } END_JUCE_NAMESPACE /********* End of inlined file: juce_GenericAudioProcessorEditor.cpp *********/ /********* Start of inlined file: juce_Sampler.cpp *********/ BEGIN_JUCE_NAMESPACE SamplerSound::SamplerSound (const String& name_, AudioFormatReader& source, const BitArray& midiNotes_, const int midiNoteForNormalPitch, const double attackTimeSecs, const double releaseTimeSecs, const double maxSampleLengthSeconds) : name (name_), midiNotes (midiNotes_), midiRootNote (midiNoteForNormalPitch) { sourceSampleRate = source.sampleRate; if (sourceSampleRate <= 0 || source.lengthInSamples <= 0) { data = 0; length = 0; attackSamples = 0; releaseSamples = 0; } else { length = jmin ((int) source.lengthInSamples, (int) (maxSampleLengthSeconds * sourceSampleRate)); data = new AudioSampleBuffer (jmin (2, source.numChannels), length + 4); data->readFromAudioReader (&source, 0, length + 4, 0, true, true); attackSamples = roundDoubleToInt (attackTimeSecs * sourceSampleRate); releaseSamples = roundDoubleToInt (releaseTimeSecs * sourceSampleRate); } } SamplerSound::~SamplerSound() { delete data; data = 0; } bool SamplerSound::appliesToNote (const int midiNoteNumber) { return midiNotes [midiNoteNumber]; } bool SamplerSound::appliesToChannel (const int /*midiChannel*/) { return true; } SamplerVoice::SamplerVoice() : pitchRatio (0.0), sourceSamplePosition (0.0), lgain (0.0f), rgain (0.0f), isInAttack (false), isInRelease (false) { } SamplerVoice::~SamplerVoice() { } bool SamplerVoice::canPlaySound (SynthesiserSound* sound) { return dynamic_cast (sound) != 0; } void SamplerVoice::startNote (const int midiNoteNumber, const float velocity, SynthesiserSound* s, const int /*currentPitchWheelPosition*/) { const SamplerSound* const sound = dynamic_cast (s); jassert (sound != 0); // this object can only play SamplerSounds! if (sound != 0) { const double targetFreq = MidiMessage::getMidiNoteInHertz (midiNoteNumber); const double naturalFreq = MidiMessage::getMidiNoteInHertz (sound->midiRootNote); pitchRatio = (targetFreq * sound->sourceSampleRate) / (naturalFreq * getSampleRate()); sourceSamplePosition = 0.0; lgain = velocity; rgain = velocity; isInAttack = (sound->attackSamples > 0); isInRelease = false; if (isInAttack) { attackReleaseLevel = 0.0f; attackDelta = (float) (pitchRatio / sound->attackSamples); } else { attackReleaseLevel = 1.0f; attackDelta = 0.0f; } if (sound->releaseSamples > 0) { releaseDelta = (float) (-pitchRatio / sound->releaseSamples); } else { releaseDelta = 0.0f; } } } void SamplerVoice::stopNote (const bool allowTailOff) { if (allowTailOff) { isInAttack = false; isInRelease = true; } else { clearCurrentNote(); } } void SamplerVoice::pitchWheelMoved (const int /*newValue*/) { } void SamplerVoice::controllerMoved (const int /*controllerNumber*/, const int /*newValue*/) { } void SamplerVoice::renderNextBlock (AudioSampleBuffer& outputBuffer, int startSample, int numSamples) { const SamplerSound* const playingSound = (SamplerSound*) (SynthesiserSound*) getCurrentlyPlayingSound(); if (playingSound != 0) { const float* const inL = playingSound->data->getSampleData (0, 0); const float* const inR = playingSound->data->getNumChannels() > 1 ? playingSound->data->getSampleData (1, 0) : 0; float* outL = outputBuffer.getSampleData (0, startSample); float* outR = outputBuffer.getNumChannels() > 1 ? outputBuffer.getSampleData (1, startSample) : 0; while (--numSamples >= 0) { const int pos = (int) sourceSamplePosition; const float alpha = (float) (sourceSamplePosition - pos); const float invAlpha = 1.0f - alpha; // just using a very simple linear interpolation here.. float l = (inL [pos] * invAlpha + inL [pos + 1] * alpha); float r = (inR != 0) ? (inR [pos] * invAlpha + inR [pos + 1] * alpha) : l; l *= lgain; r *= rgain; if (isInAttack) { l *= attackReleaseLevel; r *= attackReleaseLevel; attackReleaseLevel += attackDelta; if (attackReleaseLevel >= 1.0f) { attackReleaseLevel = 1.0f; isInAttack = false; } } else if (isInRelease) { l *= attackReleaseLevel; r *= attackReleaseLevel; attackReleaseLevel += releaseDelta; if (attackReleaseLevel <= 0.0f) { stopNote (false); break; } } if (outR != 0) { *outL++ += l; *outR++ += r; } else { *outL++ += (l + r) * 0.5f; } sourceSamplePosition += pitchRatio; if (sourceSamplePosition > playingSound->length) { stopNote (false); break; } } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_Sampler.cpp *********/ /********* Start of inlined file: juce_Synthesiser.cpp *********/ BEGIN_JUCE_NAMESPACE SynthesiserSound::SynthesiserSound() { } SynthesiserSound::~SynthesiserSound() { } SynthesiserVoice::SynthesiserVoice() : currentSampleRate (44100.0), currentlyPlayingNote (-1), noteOnTime (0), currentlyPlayingSound (0) { } SynthesiserVoice::~SynthesiserVoice() { } bool SynthesiserVoice::isPlayingChannel (const int midiChannel) const { return currentlyPlayingSound != 0 && currentlyPlayingSound->appliesToChannel (midiChannel); } void SynthesiserVoice::setCurrentPlaybackSampleRate (const double newRate) { currentSampleRate = newRate; } void SynthesiserVoice::clearCurrentNote() { currentlyPlayingNote = -1; currentlyPlayingSound = 0; } Synthesiser::Synthesiser() : voices (2), sounds (2), sampleRate (0), lastNoteOnCounter (0), shouldStealNotes (true) { for (int i = 0; i < numElementsInArray (lastPitchWheelValues); ++i) lastPitchWheelValues[i] = 0x2000; } Synthesiser::~Synthesiser() { } SynthesiserVoice* Synthesiser::getVoice (const int index) const throw() { const ScopedLock sl (lock); return voices [index]; } void Synthesiser::clearVoices() { const ScopedLock sl (lock); voices.clear(); } void Synthesiser::addVoice (SynthesiserVoice* const newVoice) { const ScopedLock sl (lock); voices.add (newVoice); } void Synthesiser::removeVoice (const int index) { const ScopedLock sl (lock); voices.remove (index); } void Synthesiser::clearSounds() { const ScopedLock sl (lock); sounds.clear(); } void Synthesiser::addSound (const SynthesiserSound::Ptr& newSound) { const ScopedLock sl (lock); sounds.add (newSound); } void Synthesiser::removeSound (const int index) { const ScopedLock sl (lock); sounds.remove (index); } void Synthesiser::setNoteStealingEnabled (const bool shouldStealNotes_) { shouldStealNotes = shouldStealNotes_; } void Synthesiser::setCurrentPlaybackSampleRate (const double newRate) { if (sampleRate != newRate) { const ScopedLock sl (lock); allNotesOff (0, false); sampleRate = newRate; for (int i = voices.size(); --i >= 0;) voices.getUnchecked (i)->setCurrentPlaybackSampleRate (newRate); } } void Synthesiser::renderNextBlock (AudioSampleBuffer& outputBuffer, const MidiBuffer& midiData, int startSample, int numSamples) { // must set the sample rate before using this! jassert (sampleRate != 0); const ScopedLock sl (lock); MidiBuffer::Iterator midiIterator (midiData); midiIterator.setNextSamplePosition (startSample); MidiMessage m (0xf4, 0.0); while (numSamples > 0) { int midiEventPos; const bool useEvent = midiIterator.getNextEvent (m, midiEventPos) && midiEventPos < startSample + numSamples; const int numThisTime = useEvent ? midiEventPos - startSample : numSamples; if (numThisTime > 0) { for (int i = voices.size(); --i >= 0;) voices.getUnchecked (i)->renderNextBlock (outputBuffer, startSample, numThisTime); } if (useEvent) { if (m.isNoteOn()) { const int channel = m.getChannel(); noteOn (channel, m.getNoteNumber(), m.getFloatVelocity()); } else if (m.isNoteOff()) { noteOff (m.getChannel(), m.getNoteNumber(), true); } else if (m.isAllNotesOff() || m.isAllSoundOff()) { allNotesOff (m.getChannel(), true); } else if (m.isPitchWheel()) { const int channel = m.getChannel(); const int wheelPos = m.getPitchWheelValue(); lastPitchWheelValues [channel - 1] = wheelPos; handlePitchWheel (channel, wheelPos); } else if (m.isController()) { handleController (m.getChannel(), m.getControllerNumber(), m.getControllerValue()); } } startSample += numThisTime; numSamples -= numThisTime; } } void Synthesiser::noteOn (const int midiChannel, const int midiNoteNumber, const float velocity) { const ScopedLock sl (lock); for (int i = sounds.size(); --i >= 0;) { SynthesiserSound* const sound = sounds.getUnchecked(i); if (sound->appliesToNote (midiNoteNumber) && sound->appliesToChannel (midiChannel)) { startVoice (findFreeVoice (sound, shouldStealNotes), sound, midiChannel, midiNoteNumber, velocity); } } } void Synthesiser::startVoice (SynthesiserVoice* const voice, SynthesiserSound* const sound, const int midiChannel, const int midiNoteNumber, const float velocity) { if (voice != 0 && sound != 0) { if (voice->currentlyPlayingSound != 0) voice->stopNote (false); voice->startNote (midiNoteNumber, velocity, sound, lastPitchWheelValues [midiChannel - 1]); voice->currentlyPlayingNote = midiNoteNumber; voice->noteOnTime = ++lastNoteOnCounter; voice->currentlyPlayingSound = sound; } } void Synthesiser::noteOff (const int midiChannel, const int midiNoteNumber, const bool allowTailOff) { const ScopedLock sl (lock); for (int i = voices.size(); --i >= 0;) { SynthesiserVoice* const voice = voices.getUnchecked (i); if (voice->getCurrentlyPlayingNote() == midiNoteNumber) { SynthesiserSound* const sound = voice->getCurrentlyPlayingSound(); if (sound != 0 && sound->appliesToNote (midiNoteNumber) && sound->appliesToChannel (midiChannel)) { voice->stopNote (allowTailOff); // the subclass MUST call clearCurrentNote() if it's not tailing off! RTFM for stopNote()! jassert (allowTailOff || (voice->getCurrentlyPlayingNote() < 0 && voice->getCurrentlyPlayingSound() == 0)); } } } } void Synthesiser::allNotesOff (const int midiChannel, const bool allowTailOff) { const ScopedLock sl (lock); for (int i = voices.size(); --i >= 0;) { SynthesiserVoice* const voice = voices.getUnchecked (i); if (midiChannel <= 0 || voice->isPlayingChannel (midiChannel)) voice->stopNote (allowTailOff); } } void Synthesiser::handlePitchWheel (const int midiChannel, const int wheelValue) { const ScopedLock sl (lock); for (int i = voices.size(); --i >= 0;) { SynthesiserVoice* const voice = voices.getUnchecked (i); if (midiChannel <= 0 || voice->isPlayingChannel (midiChannel)) { voice->pitchWheelMoved (wheelValue); } } } void Synthesiser::handleController (const int midiChannel, const int controllerNumber, const int controllerValue) { const ScopedLock sl (lock); for (int i = voices.size(); --i >= 0;) { SynthesiserVoice* const voice = voices.getUnchecked (i); if (midiChannel <= 0 || voice->isPlayingChannel (midiChannel)) voice->controllerMoved (controllerNumber, controllerValue); } } SynthesiserVoice* Synthesiser::findFreeVoice (SynthesiserSound* soundToPlay, const bool stealIfNoneAvailable) const { const ScopedLock sl (lock); for (int i = voices.size(); --i >= 0;) if (voices.getUnchecked (i)->getCurrentlyPlayingNote() < 0 && voices.getUnchecked (i)->canPlaySound (soundToPlay)) return voices.getUnchecked (i); if (stealIfNoneAvailable) { // currently this just steals the one that's been playing the longest, but could be made a bit smarter.. SynthesiserVoice* oldest = 0; for (int i = voices.size(); --i >= 0;) { SynthesiserVoice* const voice = voices.getUnchecked (i); if (voice->canPlaySound (soundToPlay) && (oldest == 0 || oldest->noteOnTime > voice->noteOnTime)) oldest = voice; } jassert (oldest != 0); return oldest; } return 0; } END_JUCE_NAMESPACE /********* End of inlined file: juce_Synthesiser.cpp *********/ /********* Start of inlined file: juce_ActionBroadcaster.cpp *********/ BEGIN_JUCE_NAMESPACE ActionBroadcaster::ActionBroadcaster() throw() { // are you trying to create this object before or after juce has been intialised?? jassert (MessageManager::instance != 0); } ActionBroadcaster::~ActionBroadcaster() { // all event-based objects must be deleted BEFORE juce is shut down! jassert (MessageManager::instance != 0); } void ActionBroadcaster::addActionListener (ActionListener* const listener) { actionListenerList.addActionListener (listener); } void ActionBroadcaster::removeActionListener (ActionListener* const listener) { jassert (actionListenerList.isValidMessageListener()); if (actionListenerList.isValidMessageListener()) actionListenerList.removeActionListener (listener); } void ActionBroadcaster::removeAllActionListeners() { actionListenerList.removeAllActionListeners(); } void ActionBroadcaster::sendActionMessage (const String& message) const { actionListenerList.sendActionMessage (message); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ActionBroadcaster.cpp *********/ /********* Start of inlined file: juce_ActionListenerList.cpp *********/ BEGIN_JUCE_NAMESPACE // special message of our own with a string in it class ActionMessage : public Message { public: const String message; ActionMessage (const String& messageText, void* const listener_) throw() : message (messageText) { pointerParameter = listener_; } ~ActionMessage() throw() { } private: ActionMessage (const ActionMessage&); const ActionMessage& operator= (const ActionMessage&); }; ActionListenerList::ActionListenerList() throw() { } ActionListenerList::~ActionListenerList() throw() { } void ActionListenerList::addActionListener (ActionListener* const listener) throw() { const ScopedLock sl (actionListenerLock_); jassert (listener != 0); jassert (! actionListeners_.contains (listener)); // trying to add a listener to the list twice! if (listener != 0) actionListeners_.add (listener); } void ActionListenerList::removeActionListener (ActionListener* const listener) throw() { const ScopedLock sl (actionListenerLock_); jassert (actionListeners_.contains (listener)); // trying to remove a listener that isn't on the list! actionListeners_.removeValue (listener); } void ActionListenerList::removeAllActionListeners() throw() { const ScopedLock sl (actionListenerLock_); actionListeners_.clear(); } void ActionListenerList::sendActionMessage (const String& message) const { const ScopedLock sl (actionListenerLock_); for (int i = actionListeners_.size(); --i >= 0;) { postMessage (new ActionMessage (message, (ActionListener*) actionListeners_.getUnchecked(i))); } } void ActionListenerList::handleMessage (const Message& message) { const ActionMessage& am = (const ActionMessage&) message; if (actionListeners_.contains (am.pointerParameter)) ((ActionListener*) am.pointerParameter)->actionListenerCallback (am.message); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ActionListenerList.cpp *********/ /********* Start of inlined file: juce_AsyncUpdater.cpp *********/ BEGIN_JUCE_NAMESPACE AsyncUpdater::AsyncUpdater() throw() : asyncMessagePending (false) { internalAsyncHandler.owner = this; } AsyncUpdater::~AsyncUpdater() { } void AsyncUpdater::triggerAsyncUpdate() throw() { if (! asyncMessagePending) { asyncMessagePending = true; internalAsyncHandler.postMessage (new Message()); } } void AsyncUpdater::cancelPendingUpdate() throw() { asyncMessagePending = false; } void AsyncUpdater::handleUpdateNowIfNeeded() { if (asyncMessagePending) { asyncMessagePending = false; handleAsyncUpdate(); } } void AsyncUpdater::AsyncUpdaterInternal::handleMessage (const Message&) { owner->handleUpdateNowIfNeeded(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_AsyncUpdater.cpp *********/ /********* Start of inlined file: juce_ChangeBroadcaster.cpp *********/ BEGIN_JUCE_NAMESPACE ChangeBroadcaster::ChangeBroadcaster() throw() { // are you trying to create this object before or after juce has been intialised?? jassert (MessageManager::instance != 0); } ChangeBroadcaster::~ChangeBroadcaster() { // all event-based objects must be deleted BEFORE juce is shut down! jassert (MessageManager::instance != 0); } void ChangeBroadcaster::addChangeListener (ChangeListener* const listener) throw() { changeListenerList.addChangeListener (listener); } void ChangeBroadcaster::removeChangeListener (ChangeListener* const listener) throw() { jassert (changeListenerList.isValidMessageListener()); if (changeListenerList.isValidMessageListener()) changeListenerList.removeChangeListener (listener); } void ChangeBroadcaster::removeAllChangeListeners() throw() { changeListenerList.removeAllChangeListeners(); } void ChangeBroadcaster::sendChangeMessage (void* objectThatHasChanged) throw() { changeListenerList.sendChangeMessage (objectThatHasChanged); } void ChangeBroadcaster::sendSynchronousChangeMessage (void* objectThatHasChanged) { changeListenerList.sendSynchronousChangeMessage (objectThatHasChanged); } void ChangeBroadcaster::dispatchPendingMessages() { changeListenerList.dispatchPendingMessages(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ChangeBroadcaster.cpp *********/ /********* Start of inlined file: juce_ChangeListenerList.cpp *********/ BEGIN_JUCE_NAMESPACE ChangeListenerList::ChangeListenerList() throw() : lastChangedObject (0), messagePending (false) { } ChangeListenerList::~ChangeListenerList() throw() { } void ChangeListenerList::addChangeListener (ChangeListener* const listener) throw() { const ScopedLock sl (lock); jassert (listener != 0); if (listener != 0) listeners.add (listener); } void ChangeListenerList::removeChangeListener (ChangeListener* const listener) throw() { const ScopedLock sl (lock); listeners.removeValue (listener); } void ChangeListenerList::removeAllChangeListeners() throw() { const ScopedLock sl (lock); listeners.clear(); } void ChangeListenerList::sendChangeMessage (void* const objectThatHasChanged) throw() { const ScopedLock sl (lock); if ((! messagePending) && (listeners.size() > 0)) { lastChangedObject = objectThatHasChanged; postMessage (new Message (0, 0, 0, objectThatHasChanged)); messagePending = true; } } void ChangeListenerList::handleMessage (const Message& message) { sendSynchronousChangeMessage (message.pointerParameter); } void ChangeListenerList::sendSynchronousChangeMessage (void* const objectThatHasChanged) { const ScopedLock sl (lock); messagePending = false; for (int i = listeners.size(); --i >= 0;) { ChangeListener* const l = (ChangeListener*) listeners.getUnchecked (i); { const ScopedUnlock tempUnlocker (lock); l->changeListenerCallback (objectThatHasChanged); } i = jmin (i, listeners.size()); } } void ChangeListenerList::dispatchPendingMessages() { if (messagePending) sendSynchronousChangeMessage (lastChangedObject); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ChangeListenerList.cpp *********/ /********* Start of inlined file: juce_InterprocessConnection.cpp *********/ BEGIN_JUCE_NAMESPACE InterprocessConnection::InterprocessConnection (const bool callbacksOnMessageThread, const uint32 magicMessageHeaderNumber) : Thread ("Juce IPC connection"), socket (0), pipe (0), callbackConnectionState (false), useMessageThread (callbacksOnMessageThread), magicMessageHeader (magicMessageHeaderNumber), pipeReceiveMessageTimeout (-1) { } InterprocessConnection::~InterprocessConnection() { callbackConnectionState = false; disconnect(); } bool InterprocessConnection::connectToSocket (const String& hostName, const int portNumber, const int timeOutMillisecs) { disconnect(); const ScopedLock sl (pipeAndSocketLock); socket = new StreamingSocket(); if (socket->connect (hostName, portNumber, timeOutMillisecs)) { connectionMadeInt(); startThread(); return true; } else { deleteAndZero (socket); return false; } } bool InterprocessConnection::connectToPipe (const String& pipeName, const int pipeReceiveMessageTimeoutMs) { disconnect(); NamedPipe* const newPipe = new NamedPipe(); if (newPipe->openExisting (pipeName)) { const ScopedLock sl (pipeAndSocketLock); pipeReceiveMessageTimeout = pipeReceiveMessageTimeoutMs; initialiseWithPipe (newPipe); return true; } else { delete newPipe; return false; } } bool InterprocessConnection::createPipe (const String& pipeName, const int pipeReceiveMessageTimeoutMs) { disconnect(); NamedPipe* const newPipe = new NamedPipe(); if (newPipe->createNewPipe (pipeName)) { const ScopedLock sl (pipeAndSocketLock); pipeReceiveMessageTimeout = pipeReceiveMessageTimeoutMs; initialiseWithPipe (newPipe); return true; } else { delete newPipe; return false; } } void InterprocessConnection::disconnect() { if (socket != 0) socket->close(); if (pipe != 0) { pipe->cancelPendingReads(); pipe->close(); } stopThread (4000); { const ScopedLock sl (pipeAndSocketLock); deleteAndZero (socket); deleteAndZero (pipe); } connectionLostInt(); } bool InterprocessConnection::isConnected() const { const ScopedLock sl (pipeAndSocketLock); return ((socket != 0 && socket->isConnected()) || (pipe != 0 && pipe->isOpen())) && isThreadRunning(); } const String InterprocessConnection::getConnectedHostName() const { if (pipe != 0) { return "localhost"; } else if (socket != 0) { if (! socket->isLocal()) return socket->getHostName(); return "localhost"; } return String::empty; } bool InterprocessConnection::sendMessage (const MemoryBlock& message) { uint32 messageHeader[2]; messageHeader [0] = swapIfBigEndian (magicMessageHeader); messageHeader [1] = swapIfBigEndian ((uint32) message.getSize()); MemoryBlock messageData (sizeof (messageHeader) + message.getSize()); messageData.copyFrom (messageHeader, 0, sizeof (messageHeader)); messageData.copyFrom (message.getData(), sizeof (messageHeader), message.getSize()); int bytesWritten = 0; const ScopedLock sl (pipeAndSocketLock); if (socket != 0) { bytesWritten = socket->write (messageData.getData(), messageData.getSize()); } else if (pipe != 0) { bytesWritten = pipe->write (messageData.getData(), messageData.getSize()); } if (bytesWritten < 0) { // error.. return false; } return (bytesWritten == messageData.getSize()); } void InterprocessConnection::initialiseWithSocket (StreamingSocket* const socket_) { jassert (socket == 0); socket = socket_; connectionMadeInt(); startThread(); } void InterprocessConnection::initialiseWithPipe (NamedPipe* const pipe_) { jassert (pipe == 0); pipe = pipe_; connectionMadeInt(); startThread(); } const int messageMagicNumber = 0xb734128b; void InterprocessConnection::handleMessage (const Message& message) { if (message.intParameter1 == messageMagicNumber) { switch (message.intParameter2) { case 0: { MemoryBlock* const data = (MemoryBlock*) message.pointerParameter; messageReceived (*data); delete data; break; } case 1: connectionMade(); break; case 2: connectionLost(); break; } } } void InterprocessConnection::connectionMadeInt() { if (! callbackConnectionState) { callbackConnectionState = true; if (useMessageThread) postMessage (new Message (messageMagicNumber, 1, 0, 0)); else connectionMade(); } } void InterprocessConnection::connectionLostInt() { if (callbackConnectionState) { callbackConnectionState = false; if (useMessageThread) postMessage (new Message (messageMagicNumber, 2, 0, 0)); else connectionLost(); } } void InterprocessConnection::deliverDataInt (const MemoryBlock& data) { jassert (callbackConnectionState); if (useMessageThread) postMessage (new Message (messageMagicNumber, 0, 0, new MemoryBlock (data))); else messageReceived (data); } bool InterprocessConnection::readNextMessageInt() { const int maximumMessageSize = 1024 * 1024 * 10; // sanity check uint32 messageHeader[2]; const int bytes = (socket != 0) ? socket->read (messageHeader, sizeof (messageHeader), true) : pipe->read (messageHeader, sizeof (messageHeader), pipeReceiveMessageTimeout); if (bytes == sizeof (messageHeader) && swapIfBigEndian (messageHeader[0]) == magicMessageHeader) { const int bytesInMessage = (int) swapIfBigEndian (messageHeader[1]); if (bytesInMessage > 0 && bytesInMessage < maximumMessageSize) { MemoryBlock messageData (bytesInMessage, true); int bytesRead = 0; while (bytesRead < bytesInMessage) { if (threadShouldExit()) return false; const int numThisTime = jmin (bytesInMessage, 65536); const int bytesIn = (socket != 0) ? socket->read (((char*) messageData.getData()) + bytesRead, numThisTime, true) : pipe->read (((char*) messageData.getData()) + bytesRead, numThisTime, pipeReceiveMessageTimeout); if (bytesIn <= 0) break; bytesRead += bytesIn; } if (bytesRead >= 0) deliverDataInt (messageData); } } else if (bytes < 0) { { const ScopedLock sl (pipeAndSocketLock); deleteAndZero (socket); } connectionLostInt(); return false; } return true; } void InterprocessConnection::run() { while (! threadShouldExit()) { if (socket != 0) { const int ready = socket->waitUntilReady (true, 0); if (ready < 0) { { const ScopedLock sl (pipeAndSocketLock); deleteAndZero (socket); } connectionLostInt(); break; } else if (ready > 0) { if (! readNextMessageInt()) break; } else { Thread::sleep (2); } } else if (pipe != 0) { if (! pipe->isOpen()) { { const ScopedLock sl (pipeAndSocketLock); deleteAndZero (pipe); } connectionLostInt(); break; } else { if (! readNextMessageInt()) break; } } else { break; } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_InterprocessConnection.cpp *********/ /********* Start of inlined file: juce_InterprocessConnectionServer.cpp *********/ BEGIN_JUCE_NAMESPACE InterprocessConnectionServer::InterprocessConnectionServer() : Thread ("Juce IPC server"), socket (0) { } InterprocessConnectionServer::~InterprocessConnectionServer() { stop(); } bool InterprocessConnectionServer::beginWaitingForSocket (const int portNumber) { stop(); socket = new StreamingSocket(); if (socket->createListener (portNumber)) { startThread(); return true; } deleteAndZero (socket); return false; } void InterprocessConnectionServer::stop() { signalThreadShouldExit(); if (socket != 0) socket->close(); stopThread (4000); deleteAndZero (socket); } void InterprocessConnectionServer::run() { while ((! threadShouldExit()) && socket != 0) { StreamingSocket* const clientSocket = socket->waitForNextConnection(); if (clientSocket != 0) { InterprocessConnection* newConnection = createConnectionObject(); if (newConnection != 0) { newConnection->initialiseWithSocket (clientSocket); } else { delete clientSocket; } } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_InterprocessConnectionServer.cpp *********/ /********* Start of inlined file: juce_Message.cpp *********/ BEGIN_JUCE_NAMESPACE Message::Message() throw() { } Message::~Message() throw() { } Message::Message (const int intParameter1_, const int intParameter2_, const int intParameter3_, void* const pointerParameter_) throw() : intParameter1 (intParameter1_), intParameter2 (intParameter2_), intParameter3 (intParameter3_), pointerParameter (pointerParameter_) { } END_JUCE_NAMESPACE /********* End of inlined file: juce_Message.cpp *********/ /********* Start of inlined file: juce_MessageListener.cpp *********/ BEGIN_JUCE_NAMESPACE MessageListener::MessageListener() throw() { // are you trying to create a messagelistener before or after juce has been intialised?? jassert (MessageManager::instance != 0); if (MessageManager::instance != 0) MessageManager::instance->messageListeners.add (this); } MessageListener::~MessageListener() { if (MessageManager::instance != 0) MessageManager::instance->messageListeners.removeValue (this); } void MessageListener::postMessage (Message* const message) const throw() { message->messageRecipient = const_cast (this); if (MessageManager::instance == 0) MessageManager::getInstance(); MessageManager::instance->postMessageToQueue (message); } bool MessageListener::isValidMessageListener() const throw() { return (MessageManager::instance != 0) && MessageManager::instance->messageListeners.contains (this); } END_JUCE_NAMESPACE /********* End of inlined file: juce_MessageListener.cpp *********/ /********* Start of inlined file: juce_MessageManager.cpp *********/ BEGIN_JUCE_NAMESPACE // platform-specific functions.. bool juce_dispatchNextMessageOnSystemQueue (bool returnIfNoPendingMessages); bool juce_postMessageToSystemQueue (void* message); MessageManager* MessageManager::instance = 0; static const int quitMessageId = 0xfffff321; MessageManager::MessageManager() throw() : broadcastListeners (0), quitMessagePosted (false), quitMessageReceived (false), threadWithLock (0) { messageThreadId = Thread::getCurrentThreadId(); } MessageManager::~MessageManager() throw() { deleteAndZero (broadcastListeners); doPlatformSpecificShutdown(); jassert (instance == this); instance = 0; // do this last in case this instance is still needed by doPlatformSpecificShutdown() } MessageManager* MessageManager::getInstance() throw() { if (instance == 0) { instance = new MessageManager(); doPlatformSpecificInitialisation(); } return instance; } void MessageManager::postMessageToQueue (Message* const message) { if (quitMessagePosted || ! juce_postMessageToSystemQueue (message)) delete message; } CallbackMessage::CallbackMessage() throw() {} CallbackMessage::~CallbackMessage() throw() {} void CallbackMessage::post() { if (MessageManager::instance != 0) MessageManager::instance->postCallbackMessage (this); } void MessageManager::postCallbackMessage (Message* const message) { message->messageRecipient = 0; postMessageToQueue (message); } // not for public use.. void MessageManager::deliverMessage (void* message) { Message* const m = (Message*) message; MessageListener* const recipient = m->messageRecipient; JUCE_TRY { if (messageListeners.contains (recipient)) { recipient->handleMessage (*m); } else if (recipient == 0) { if (m->intParameter1 == quitMessageId) { quitMessageReceived = true; } else if (dynamic_cast (m) != 0) { (dynamic_cast (m))->messageCallback(); } } } JUCE_CATCH_EXCEPTION delete m; } #if ! (JUCE_MAC || JUCE_IPHONE) void MessageManager::runDispatchLoop() { jassert (isThisTheMessageThread()); // must only be called by the message thread runDispatchLoopUntil (-1); } void MessageManager::stopDispatchLoop() { Message* const m = new Message (quitMessageId, 0, 0, 0); m->messageRecipient = 0; postMessageToQueue (m); quitMessagePosted = true; } bool MessageManager::runDispatchLoopUntil (int millisecondsToRunFor) { jassert (isThisTheMessageThread()); // must only be called by the message thread const int64 endTime = Time::currentTimeMillis() + millisecondsToRunFor; while ((millisecondsToRunFor < 0 || endTime > Time::currentTimeMillis()) && ! quitMessageReceived) { JUCE_TRY { if (! juce_dispatchNextMessageOnSystemQueue (millisecondsToRunFor >= 0)) { const int msToWait = (int) (endTime - Time::currentTimeMillis()); if (msToWait > 0) Thread::sleep (jmin (5, msToWait)); } } JUCE_CATCH_EXCEPTION } return ! quitMessageReceived; } #endif void MessageManager::deliverBroadcastMessage (const String& value) { if (broadcastListeners != 0) broadcastListeners->sendActionMessage (value); } void MessageManager::registerBroadcastListener (ActionListener* const listener) throw() { if (broadcastListeners == 0) broadcastListeners = new ActionListenerList(); broadcastListeners->addActionListener (listener); } void MessageManager::deregisterBroadcastListener (ActionListener* const listener) throw() { if (broadcastListeners != 0) broadcastListeners->removeActionListener (listener); } bool MessageManager::isThisTheMessageThread() const throw() { return Thread::getCurrentThreadId() == messageThreadId; } void MessageManager::setCurrentMessageThread (const Thread::ThreadID threadId) throw() { messageThreadId = threadId; } bool MessageManager::currentThreadHasLockedMessageManager() const throw() { const Thread::ThreadID thisThread = Thread::getCurrentThreadId(); return thisThread == messageThreadId || thisThread == threadWithLock; } /* The only safe way to lock the message thread while another thread does some work is by posting a special message, whose purpose is to tie up the event loop until the other thread has finished its business. Any other approach can get horribly deadlocked if the OS uses its own hidden locks which get locked before making an event callback, because if the same OS lock gets indirectly accessed from another thread inside a MM lock, you're screwed. (this is exactly what happens in Cocoa). */ class SharedLockingEvents : public ReferenceCountedObject { public: SharedLockingEvents() throw() {} ~SharedLockingEvents() {} /* This class just holds a couple of events to communicate between the MMLockMessage and the MessageManagerLock. Because both of these objects may be deleted at any time, this shared data must be kept in a separate, ref-counted container. */ WaitableEvent lockedEvent, releaseEvent; }; class MMLockMessage : public CallbackMessage { public: MMLockMessage (SharedLockingEvents* const events_) throw() : events (events_) {} ~MMLockMessage() throw() {} ReferenceCountedObjectPtr events; void messageCallback() { events->lockedEvent.signal(); events->releaseEvent.wait(); } juce_UseDebuggingNewOperator MMLockMessage (const MMLockMessage&); const MMLockMessage& operator= (const MMLockMessage&); }; MessageManagerLock::MessageManagerLock (Thread* const threadToCheck) throw() : locked (false), needsUnlocking (false) { init (threadToCheck, 0); } MessageManagerLock::MessageManagerLock (ThreadPoolJob* const jobToCheckForExitSignal) throw() : locked (false), needsUnlocking (false) { init (0, jobToCheckForExitSignal); } void MessageManagerLock::init (Thread* const threadToCheck, ThreadPoolJob* const job) throw() { if (MessageManager::instance != 0) { if (MessageManager::instance->currentThreadHasLockedMessageManager()) { locked = true; // either we're on the message thread, or this is a re-entrant call. } else { if (threadToCheck == 0 && job == 0) { MessageManager::instance->lockingLock.enter(); } else { while (! MessageManager::instance->lockingLock.tryEnter()) { if ((threadToCheck != 0 && threadToCheck->threadShouldExit()) || (job != 0 && job->shouldExit())) return; Thread::sleep (1); } } SharedLockingEvents* const events = new SharedLockingEvents(); sharedEvents = events; events->incReferenceCount(); (new MMLockMessage (events))->post(); while (! events->lockedEvent.wait (50)) { if ((threadToCheck != 0 && threadToCheck->threadShouldExit()) || (job != 0 && job->shouldExit())) { events->releaseEvent.signal(); events->decReferenceCount(); MessageManager::instance->lockingLock.exit(); return; } } jassert (MessageManager::instance->threadWithLock == 0); MessageManager::instance->threadWithLock = Thread::getCurrentThreadId(); locked = true; needsUnlocking = true; } } } MessageManagerLock::~MessageManagerLock() throw() { if (needsUnlocking && MessageManager::instance != 0) { jassert (MessageManager::instance->currentThreadHasLockedMessageManager()); ((SharedLockingEvents*) sharedEvents)->releaseEvent.signal(); ((SharedLockingEvents*) sharedEvents)->decReferenceCount(); MessageManager::instance->threadWithLock = 0; MessageManager::instance->lockingLock.exit(); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_MessageManager.cpp *********/ /********* Start of inlined file: juce_MultiTimer.cpp *********/ BEGIN_JUCE_NAMESPACE class InternalMultiTimerCallback : public Timer { public: InternalMultiTimerCallback (const int timerId_, MultiTimer& owner_) : timerId (timerId_), owner (owner_) { } ~InternalMultiTimerCallback() { } void timerCallback() { owner.timerCallback (timerId); } const int timerId; private: MultiTimer& owner; }; MultiTimer::MultiTimer() throw() { } MultiTimer::MultiTimer (const MultiTimer&) throw() { } MultiTimer::~MultiTimer() { const ScopedLock sl (timerListLock); for (int i = timers.size(); --i >= 0;) delete (InternalMultiTimerCallback*) timers.getUnchecked(i); timers.clear(); } void MultiTimer::startTimer (const int timerId, const int intervalInMilliseconds) throw() { const ScopedLock sl (timerListLock); for (int i = timers.size(); --i >= 0;) { InternalMultiTimerCallback* const t = (InternalMultiTimerCallback*) timers.getUnchecked(i); if (t->timerId == timerId) { t->startTimer (intervalInMilliseconds); return; } } InternalMultiTimerCallback* const newTimer = new InternalMultiTimerCallback (timerId, *this); timers.add (newTimer); newTimer->startTimer (intervalInMilliseconds); } void MultiTimer::stopTimer (const int timerId) throw() { const ScopedLock sl (timerListLock); for (int i = timers.size(); --i >= 0;) { InternalMultiTimerCallback* const t = (InternalMultiTimerCallback*) timers.getUnchecked(i); if (t->timerId == timerId) t->stopTimer(); } } bool MultiTimer::isTimerRunning (const int timerId) const throw() { const ScopedLock sl (timerListLock); for (int i = timers.size(); --i >= 0;) { const InternalMultiTimerCallback* const t = (InternalMultiTimerCallback*) timers.getUnchecked(i); if (t->timerId == timerId) return t->isTimerRunning(); } return false; } int MultiTimer::getTimerInterval (const int timerId) const throw() { const ScopedLock sl (timerListLock); for (int i = timers.size(); --i >= 0;) { const InternalMultiTimerCallback* const t = (InternalMultiTimerCallback*) timers.getUnchecked(i); if (t->timerId == timerId) return t->getTimerInterval(); } return 0; } END_JUCE_NAMESPACE /********* End of inlined file: juce_MultiTimer.cpp *********/ /********* Start of inlined file: juce_Timer.cpp *********/ BEGIN_JUCE_NAMESPACE class InternalTimerThread : private Thread, private MessageListener, private DeletedAtShutdown, private AsyncUpdater { private: friend class Timer; static InternalTimerThread* instance; static CriticalSection lock; Timer* volatile firstTimer; bool volatile callbackNeeded; InternalTimerThread (const InternalTimerThread&); const InternalTimerThread& operator= (const InternalTimerThread&); void addTimer (Timer* const t) throw() { #ifdef JUCE_DEBUG Timer* tt = firstTimer; while (tt != 0) { // trying to add a timer that's already here - shouldn't get to this point, // so if you get this assertion, let me know! jassert (tt != t); tt = tt->next; } jassert (t->previous == 0 && t->next == 0); #endif Timer* i = firstTimer; if (i == 0 || i->countdownMs > t->countdownMs) { t->next = firstTimer; firstTimer = t; } else { while (i->next != 0 && i->next->countdownMs <= t->countdownMs) i = i->next; jassert (i != 0); t->next = i->next; t->previous = i; i->next = t; } if (t->next != 0) t->next->previous = t; jassert ((t->next == 0 || t->next->countdownMs >= t->countdownMs) && (t->previous == 0 || t->previous->countdownMs <= t->countdownMs)); notify(); } void removeTimer (Timer* const t) throw() { #ifdef JUCE_DEBUG Timer* tt = firstTimer; bool found = false; while (tt != 0) { if (tt == t) { found = true; break; } tt = tt->next; } // trying to remove a timer that's not here - shouldn't get to this point, // so if you get this assertion, let me know! jassert (found); #endif if (t->previous != 0) { jassert (firstTimer != t); t->previous->next = t->next; } else { jassert (firstTimer == t); firstTimer = t->next; } if (t->next != 0) t->next->previous = t->previous; t->next = 0; t->previous = 0; } void decrementAllCounters (const int numMillisecs) const { Timer* t = firstTimer; while (t != 0) { t->countdownMs -= numMillisecs; t = t->next; } } void handleAsyncUpdate() { startThread (7); } public: InternalTimerThread() : Thread ("Juce Timer"), firstTimer (0), callbackNeeded (false) { triggerAsyncUpdate(); } ~InternalTimerThread() throw() { stopThread (4000); jassert (instance == this || instance == 0); if (instance == this) instance = 0; } void run() { uint32 lastTime = Time::getMillisecondCounter(); while (! threadShouldExit()) { uint32 now = Time::getMillisecondCounter(); if (now <= lastTime) { wait (2); continue; } const int elapsed = now - lastTime; lastTime = now; lock.enter(); decrementAllCounters (elapsed); const int timeUntilFirstTimer = (firstTimer != 0) ? firstTimer->countdownMs : 1000; lock.exit(); if (timeUntilFirstTimer <= 0) { callbackNeeded = true; postMessage (new Message()); // sometimes, our message could get discarded by the OS (particularly when running as an RTAS when the app has a modal loop), // so this is how long to wait before assuming the message has been lost and trying again. const uint32 messageDeliveryTimeout = now + 2000; while (callbackNeeded) { wait (4); if (threadShouldExit()) return; now = Time::getMillisecondCounter(); if (now > messageDeliveryTimeout) break; } } else { // don't wait for too long because running this loop also helps keep the // Time::getApproximateMillisecondTimer value stay up-to-date wait (jlimit (1, 50, timeUntilFirstTimer)); } } } void handleMessage (const Message&) { const ScopedLock sl (lock); while (firstTimer != 0 && firstTimer->countdownMs <= 0) { Timer* const t = firstTimer; t->countdownMs = t->periodMs; removeTimer (t); addTimer (t); const ScopedUnlock ul (lock); JUCE_TRY { t->timerCallback(); } JUCE_CATCH_EXCEPTION } callbackNeeded = false; } static void callAnyTimersSynchronously() { if (InternalTimerThread::instance != 0) { const Message m; InternalTimerThread::instance->handleMessage (m); } } static inline void add (Timer* const tim) throw() { if (instance == 0) instance = new InternalTimerThread(); const ScopedLock sl (instance->lock); instance->addTimer (tim); } static inline void remove (Timer* const tim) throw() { if (instance != 0) { const ScopedLock sl (instance->lock); instance->removeTimer (tim); } } static inline void resetCounter (Timer* const tim, const int newCounter) throw() { if (instance != 0) { tim->countdownMs = newCounter; tim->periodMs = newCounter; if ((tim->next != 0 && tim->next->countdownMs < tim->countdownMs) || (tim->previous != 0 && tim->previous->countdownMs > tim->countdownMs)) { const ScopedLock sl (instance->lock); instance->removeTimer (tim); instance->addTimer (tim); } } } }; InternalTimerThread* InternalTimerThread::instance = 0; CriticalSection InternalTimerThread::lock; void juce_callAnyTimersSynchronously() { InternalTimerThread::callAnyTimersSynchronously(); } #ifdef JUCE_DEBUG static SortedSet activeTimers; #endif Timer::Timer() throw() : countdownMs (0), periodMs (0), previous (0), next (0) { #ifdef JUCE_DEBUG activeTimers.add (this); #endif } Timer::Timer (const Timer&) throw() : countdownMs (0), periodMs (0), previous (0), next (0) { #ifdef JUCE_DEBUG activeTimers.add (this); #endif } Timer::~Timer() { stopTimer(); #ifdef JUCE_DEBUG activeTimers.removeValue (this); #endif } void Timer::startTimer (const int interval) throw() { const ScopedLock sl (InternalTimerThread::lock); #ifdef JUCE_DEBUG // this isn't a valid object! Your timer might be a dangling pointer or something.. jassert (activeTimers.contains (this)); #endif if (periodMs == 0) { countdownMs = interval; periodMs = jmax (1, interval); InternalTimerThread::add (this); } else { InternalTimerThread::resetCounter (this, interval); } } void Timer::stopTimer() throw() { const ScopedLock sl (InternalTimerThread::lock); #ifdef JUCE_DEBUG // this isn't a valid object! Your timer might be a dangling pointer or something.. jassert (activeTimers.contains (this)); #endif if (periodMs > 0) { InternalTimerThread::remove (this); periodMs = 0; } } END_JUCE_NAMESPACE /********* End of inlined file: juce_Timer.cpp *********/ /********* Start of inlined file: juce_Component.cpp *********/ BEGIN_JUCE_NAMESPACE Component* Component::componentUnderMouse = 0; Component* Component::currentlyFocusedComponent = 0; static Array modalComponentStack (4), modalComponentReturnValueKeys (4); static Array modalReturnValues (4); static const int customCommandMessage = 0x7fff0001; static const int exitModalStateMessage = 0x7fff0002; // these are also used by ComponentPeer int64 juce_recentMouseDownTimes [4] = { 0, 0, 0, 0 }; int juce_recentMouseDownX [4] = { 0, 0, 0, 0 }; int juce_recentMouseDownY [4] = { 0, 0, 0, 0 }; Component* juce_recentMouseDownComponent [4] = { 0, 0, 0, 0 }; int juce_LastMousePosX = 0; int juce_LastMousePosY = 0; int juce_MouseClickCounter = 0; bool juce_MouseHasMovedSignificantlySincePressed = false; static int countMouseClicks() throw() { int numClicks = 0; if (juce_recentMouseDownTimes[0] != 0) { if (! juce_MouseHasMovedSignificantlySincePressed) ++numClicks; for (int i = 1; i < numElementsInArray (juce_recentMouseDownTimes); ++i) { if (juce_recentMouseDownTimes[0] - juce_recentMouseDownTimes [i] < (int) (MouseEvent::getDoubleClickTimeout() * (1.0 + 0.25 * (i - 1))) && abs (juce_recentMouseDownX[0] - juce_recentMouseDownX[i]) < 8 && abs (juce_recentMouseDownY[0] - juce_recentMouseDownY[i]) < 8 && juce_recentMouseDownComponent[0] == juce_recentMouseDownComponent [i]) { ++numClicks; } else { break; } } } return numClicks; } static int unboundedMouseOffsetX = 0; static int unboundedMouseOffsetY = 0; static bool isUnboundedMouseModeOn = false; static bool isCursorVisibleUntilOffscreen; #define checkMessageManagerIsLocked jassert (MessageManager::getInstance()->currentThreadHasLockedMessageManager()); static uint32 nextComponentUID = 0; Component::Component() throw() : parentComponent_ (0), componentUID (++nextComponentUID), numDeepMouseListeners (0), childComponentList_ (16), lookAndFeel_ (0), effect_ (0), bufferedImage_ (0), mouseListeners_ (0), keyListeners_ (0), componentListeners_ (0), propertySet_ (0), componentFlags_ (0) { } Component::Component (const String& name) throw() : componentName_ (name), parentComponent_ (0), componentUID (++nextComponentUID), numDeepMouseListeners (0), childComponentList_ (16), lookAndFeel_ (0), effect_ (0), bufferedImage_ (0), mouseListeners_ (0), keyListeners_ (0), componentListeners_ (0), propertySet_ (0), componentFlags_ (0) { } Component::~Component() { if (parentComponent_ != 0) { parentComponent_->removeChildComponent (this); } else if ((currentlyFocusedComponent == this) || isParentOf (currentlyFocusedComponent)) { giveAwayFocus(); } if (componentUnderMouse == this) componentUnderMouse = 0; if (flags.hasHeavyweightPeerFlag) removeFromDesktop(); modalComponentStack.removeValue (this); for (int i = childComponentList_.size(); --i >= 0;) childComponentList_.getUnchecked(i)->parentComponent_ = 0; delete bufferedImage_; delete mouseListeners_; delete keyListeners_; delete componentListeners_; delete propertySet_; } void Component::setName (const String& name) { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked if (componentName_ != name) { componentName_ = name; if (flags.hasHeavyweightPeerFlag) { ComponentPeer* const peer = getPeer(); jassert (peer != 0); if (peer != 0) peer->setTitle (name); } if (componentListeners_ != 0) { const ComponentDeletionWatcher deletionChecker (this); for (int i = componentListeners_->size(); --i >= 0;) { ((ComponentListener*) componentListeners_->getUnchecked (i)) ->componentNameChanged (*this); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, componentListeners_->size()); } } } } void Component::setVisible (bool shouldBeVisible) { if (flags.visibleFlag != shouldBeVisible) { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked const ComponentDeletionWatcher deletionChecker (this); flags.visibleFlag = shouldBeVisible; internalRepaint (0, 0, getWidth(), getHeight()); sendFakeMouseMove(); if (! shouldBeVisible) { if (currentlyFocusedComponent == this || isParentOf (currentlyFocusedComponent)) { if (parentComponent_ != 0) parentComponent_->grabKeyboardFocus(); else giveAwayFocus(); } } sendVisibilityChangeMessage(); if ((! deletionChecker.hasBeenDeleted()) && flags.hasHeavyweightPeerFlag) { ComponentPeer* const peer = getPeer(); jassert (peer != 0); if (peer != 0) { peer->setVisible (shouldBeVisible); internalHierarchyChanged(); } } } } void Component::visibilityChanged() { } void Component::sendVisibilityChangeMessage() { const ComponentDeletionWatcher deletionChecker (this); visibilityChanged(); if ((! deletionChecker.hasBeenDeleted()) && componentListeners_ != 0) { for (int i = componentListeners_->size(); --i >= 0;) { ((ComponentListener*) componentListeners_->getUnchecked (i)) ->componentVisibilityChanged (*this); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, componentListeners_->size()); } } } bool Component::isShowing() const throw() { if (flags.visibleFlag) { if (parentComponent_ != 0) { return parentComponent_->isShowing(); } else { const ComponentPeer* const peer = getPeer(); return peer != 0 && ! peer->isMinimised(); } } return false; } class FadeOutProxyComponent : public Component, public Timer { public: FadeOutProxyComponent (Component* comp, const int fadeLengthMs, const int deltaXToMove, const int deltaYToMove, const float scaleFactorAtEnd) : lastTime (0), alpha (1.0f), scale (1.0f) { image = comp->createComponentSnapshot (Rectangle (0, 0, comp->getWidth(), comp->getHeight())); setBounds (comp->getBounds()); comp->getParentComponent()->addAndMakeVisible (this); toBehind (comp); alphaChangePerMs = -1.0f / (float)fadeLengthMs; centreX = comp->getX() + comp->getWidth() * 0.5f; xChangePerMs = deltaXToMove / (float)fadeLengthMs; centreY = comp->getY() + comp->getHeight() * 0.5f; yChangePerMs = deltaYToMove / (float)fadeLengthMs; scaleChangePerMs = (scaleFactorAtEnd - 1.0f) / (float)fadeLengthMs; setInterceptsMouseClicks (false, false); // 30 fps is enough for a fade, but we need a higher rate if it's moving as well.. startTimer (1000 / ((deltaXToMove == 0 && deltaYToMove == 0) ? 30 : 50)); } ~FadeOutProxyComponent() { delete image; } void paint (Graphics& g) { g.setOpacity (alpha); g.drawImage (image, 0, 0, getWidth(), getHeight(), 0, 0, image->getWidth(), image->getHeight()); } void timerCallback() { const uint32 now = Time::getMillisecondCounter(); if (lastTime == 0) lastTime = now; const int msPassed = (now > lastTime) ? now - lastTime : 0; lastTime = now; alpha += alphaChangePerMs * msPassed; if (alpha > 0) { if (xChangePerMs != 0.0f || yChangePerMs != 0.0f || scaleChangePerMs != 0.0f) { centreX += xChangePerMs * msPassed; centreY += yChangePerMs * msPassed; scale += scaleChangePerMs * msPassed; const int w = roundFloatToInt (image->getWidth() * scale); const int h = roundFloatToInt (image->getHeight() * scale); setBounds (roundFloatToInt (centreX) - w / 2, roundFloatToInt (centreY) - h / 2, w, h); } repaint(); } else { delete this; } } juce_UseDebuggingNewOperator private: Image* image; uint32 lastTime; float alpha, alphaChangePerMs; float centreX, xChangePerMs; float centreY, yChangePerMs; float scale, scaleChangePerMs; FadeOutProxyComponent (const FadeOutProxyComponent&); const FadeOutProxyComponent& operator= (const FadeOutProxyComponent&); }; void Component::fadeOutComponent (const int millisecondsToFade, const int deltaXToMove, const int deltaYToMove, const float scaleFactorAtEnd) { //xxx won't work for comps without parents if (isShowing() && millisecondsToFade > 0) new FadeOutProxyComponent (this, millisecondsToFade, deltaXToMove, deltaYToMove, scaleFactorAtEnd); setVisible (false); } bool Component::isValidComponent() const throw() { return (this != 0) && isValidMessageListener(); } void* Component::getWindowHandle() const throw() { const ComponentPeer* const peer = getPeer(); if (peer != 0) return peer->getNativeHandle(); return 0; } void Component::addToDesktop (int styleWanted, void* nativeWindowToAttachTo) { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked if (! isOpaque()) styleWanted |= ComponentPeer::windowIsSemiTransparent; int currentStyleFlags = 0; // don't use getPeer(), so that we only get the peer that's specifically // for this comp, and not for one of its parents. ComponentPeer* peer = ComponentPeer::getPeerFor (this); if (peer != 0) currentStyleFlags = peer->getStyleFlags(); if (styleWanted != currentStyleFlags || ! flags.hasHeavyweightPeerFlag) { const ComponentDeletionWatcher deletionChecker (this); #if JUCE_LINUX // it's wise to give the component a non-zero size before // putting it on the desktop, as X windows get confused by this, and // a (1, 1) minimum size is enforced here. setSize (jmax (1, getWidth()), jmax (1, getHeight())); #endif int x = 0, y = 0; relativePositionToGlobal (x, y); bool wasFullscreen = false; bool wasMinimised = false; ComponentBoundsConstrainer* currentConstainer = 0; Rectangle oldNonFullScreenBounds; if (peer != 0) { wasFullscreen = peer->isFullScreen(); wasMinimised = peer->isMinimised(); currentConstainer = peer->getConstrainer(); oldNonFullScreenBounds = peer->getNonFullScreenBounds(); removeFromDesktop(); setTopLeftPosition (x, y); } if (parentComponent_ != 0) parentComponent_->removeChildComponent (this); if (! deletionChecker.hasBeenDeleted()) { flags.hasHeavyweightPeerFlag = true; peer = createNewPeer (styleWanted, nativeWindowToAttachTo); Desktop::getInstance().addDesktopComponent (this); bounds_.setPosition (x, y); peer->setBounds (x, y, getWidth(), getHeight(), false); peer->setVisible (isVisible()); if (wasFullscreen) { peer->setFullScreen (true); peer->setNonFullScreenBounds (oldNonFullScreenBounds); } if (wasMinimised) peer->setMinimised (true); if (isAlwaysOnTop()) peer->setAlwaysOnTop (true); peer->setConstrainer (currentConstainer); repaint(); } internalHierarchyChanged(); } } void Component::removeFromDesktop() { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked if (flags.hasHeavyweightPeerFlag) { ComponentPeer* const peer = ComponentPeer::getPeerFor (this); flags.hasHeavyweightPeerFlag = false; jassert (peer != 0); delete peer; Desktop::getInstance().removeDesktopComponent (this); } } bool Component::isOnDesktop() const throw() { return flags.hasHeavyweightPeerFlag; } void Component::userTriedToCloseWindow() { /* This means that the user's trying to get rid of your window with the 'close window' system menu option (on windows) or possibly the task manager - you should really handle this and delete or hide your component in an appropriate way. If you want to ignore the event and don't want to trigger this assertion, just override this method and do nothing. */ jassertfalse } void Component::minimisationStateChanged (bool) { } void Component::setOpaque (const bool shouldBeOpaque) throw() { if (shouldBeOpaque != flags.opaqueFlag) { flags.opaqueFlag = shouldBeOpaque; if (flags.hasHeavyweightPeerFlag) { const ComponentPeer* const peer = ComponentPeer::getPeerFor (this); if (peer != 0) { // to make it recreate the heavyweight window addToDesktop (peer->getStyleFlags()); } } repaint(); } } bool Component::isOpaque() const throw() { return flags.opaqueFlag; } void Component::setBufferedToImage (const bool shouldBeBuffered) throw() { if (shouldBeBuffered != flags.bufferToImageFlag) { deleteAndZero (bufferedImage_); flags.bufferToImageFlag = shouldBeBuffered; } } void Component::toFront (const bool setAsForeground) { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked if (flags.hasHeavyweightPeerFlag) { ComponentPeer* const peer = getPeer(); if (peer != 0) { peer->toFront (setAsForeground); if (setAsForeground && ! hasKeyboardFocus (true)) grabKeyboardFocus(); } } else if (parentComponent_ != 0) { if (parentComponent_->childComponentList_.getLast() != this) { const int index = parentComponent_->childComponentList_.indexOf (this); if (index >= 0) { int insertIndex = -1; if (! flags.alwaysOnTopFlag) { insertIndex = parentComponent_->childComponentList_.size() - 1; while (insertIndex > 0 && parentComponent_->childComponentList_.getUnchecked (insertIndex)->isAlwaysOnTop()) { --insertIndex; } } if (index != insertIndex) { parentComponent_->childComponentList_.move (index, insertIndex); sendFakeMouseMove(); repaintParent(); } } } if (setAsForeground) { internalBroughtToFront(); grabKeyboardFocus(); } } } void Component::toBehind (Component* const other) { if (other != 0) { // the two components must belong to the same parent.. jassert (parentComponent_ == other->parentComponent_); if (parentComponent_ != 0) { const int index = parentComponent_->childComponentList_.indexOf (this); int otherIndex = parentComponent_->childComponentList_.indexOf (other); if (index >= 0 && otherIndex >= 0 && index != otherIndex - 1 && other != this) { if (index < otherIndex) --otherIndex; parentComponent_->childComponentList_.move (index, otherIndex); sendFakeMouseMove(); repaintParent(); } } else if (isOnDesktop()) { jassert (other->isOnDesktop()); if (other->isOnDesktop()) { ComponentPeer* const us = getPeer(); ComponentPeer* const them = other->getPeer(); jassert (us != 0 && them != 0); if (us != 0 && them != 0) us->toBehind (them); } } } } void Component::toBack() { if (isOnDesktop()) { jassertfalse //xxx need to add this to native window } else if (parentComponent_ != 0 && parentComponent_->childComponentList_.getFirst() != this) { const int index = parentComponent_->childComponentList_.indexOf (this); if (index > 0) { int insertIndex = 0; if (flags.alwaysOnTopFlag) { while (insertIndex < parentComponent_->childComponentList_.size() && ! parentComponent_->childComponentList_.getUnchecked (insertIndex)->isAlwaysOnTop()) { ++insertIndex; } } if (index != insertIndex) { parentComponent_->childComponentList_.move (index, insertIndex); sendFakeMouseMove(); repaintParent(); } } } } void Component::setAlwaysOnTop (const bool shouldStayOnTop) { if (shouldStayOnTop != flags.alwaysOnTopFlag) { flags.alwaysOnTopFlag = shouldStayOnTop; if (isOnDesktop()) { ComponentPeer* const peer = getPeer(); jassert (peer != 0); if (peer != 0) { if (! peer->setAlwaysOnTop (shouldStayOnTop)) { // some kinds of peer can't change their always-on-top status, so // for these, we'll need to create a new window const int oldFlags = peer->getStyleFlags(); removeFromDesktop(); addToDesktop (oldFlags); } } } if (shouldStayOnTop) toFront (false); internalHierarchyChanged(); } } bool Component::isAlwaysOnTop() const throw() { return flags.alwaysOnTopFlag; } int Component::proportionOfWidth (const float proportion) const throw() { return roundDoubleToInt (proportion * bounds_.getWidth()); } int Component::proportionOfHeight (const float proportion) const throw() { return roundDoubleToInt (proportion * bounds_.getHeight()); } int Component::getParentWidth() const throw() { return (parentComponent_ != 0) ? parentComponent_->getWidth() : getParentMonitorArea().getWidth(); } int Component::getParentHeight() const throw() { return (parentComponent_ != 0) ? parentComponent_->getHeight() : getParentMonitorArea().getHeight(); } int Component::getScreenX() const throw() { return (parentComponent_ != 0) ? parentComponent_->getScreenX() + getX() : (flags.hasHeavyweightPeerFlag ? getPeer()->getScreenX() : getX()); } int Component::getScreenY() const throw() { return (parentComponent_ != 0) ? parentComponent_->getScreenY() + getY() : (flags.hasHeavyweightPeerFlag ? getPeer()->getScreenY() : getY()); } void Component::relativePositionToGlobal (int& x, int& y) const throw() { const Component* c = this; do { if (c->flags.hasHeavyweightPeerFlag) { c->getPeer()->relativePositionToGlobal (x, y); break; } x += c->getX(); y += c->getY(); c = c->parentComponent_; } while (c != 0); } void Component::globalPositionToRelative (int& x, int& y) const throw() { if (flags.hasHeavyweightPeerFlag) { getPeer()->globalPositionToRelative (x, y); } else { if (parentComponent_ != 0) parentComponent_->globalPositionToRelative (x, y); x -= getX(); y -= getY(); } } void Component::relativePositionToOtherComponent (const Component* const targetComponent, int& x, int& y) const throw() { if (targetComponent != 0) { const Component* c = this; do { if (c == targetComponent) return; if (c->flags.hasHeavyweightPeerFlag) { c->getPeer()->relativePositionToGlobal (x, y); break; } x += c->getX(); y += c->getY(); c = c->parentComponent_; } while (c != 0); targetComponent->globalPositionToRelative (x, y); } } void Component::setBounds (int x, int y, int w, int h) { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked if (w < 0) w = 0; if (h < 0) h = 0; const bool wasResized = (getWidth() != w || getHeight() != h); const bool wasMoved = (getX() != x || getY() != y); #ifdef JUCE_DEBUG // It's a very bad idea to try to resize a window during its paint() method! jassert (! (flags.isInsidePaintCall && wasResized && isOnDesktop())); #endif if (wasMoved || wasResized) { if (flags.visibleFlag) { // send a fake mouse move to trigger enter/exit messages if needed.. sendFakeMouseMove(); if (! flags.hasHeavyweightPeerFlag) repaintParent(); } bounds_.setBounds (x, y, w, h); if (wasResized) repaint(); else if (! flags.hasHeavyweightPeerFlag) repaintParent(); if (flags.hasHeavyweightPeerFlag) { ComponentPeer* const peer = getPeer(); if (peer != 0) { if (wasMoved && wasResized) peer->setBounds (getX(), getY(), getWidth(), getHeight(), false); else if (wasMoved) peer->setPosition (getX(), getY()); else if (wasResized) peer->setSize (getWidth(), getHeight()); } } sendMovedResizedMessages (wasMoved, wasResized); } } void Component::sendMovedResizedMessages (const bool wasMoved, const bool wasResized) { JUCE_TRY { if (wasMoved) moved(); if (wasResized) { resized(); for (int i = childComponentList_.size(); --i >= 0;) { childComponentList_.getUnchecked(i)->parentSizeChanged(); i = jmin (i, childComponentList_.size()); } } if (parentComponent_ != 0) parentComponent_->childBoundsChanged (this); if (componentListeners_ != 0) { const ComponentDeletionWatcher deletionChecker (this); for (int i = componentListeners_->size(); --i >= 0;) { ((ComponentListener*) componentListeners_->getUnchecked (i)) ->componentMovedOrResized (*this, wasMoved, wasResized); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, componentListeners_->size()); } } } JUCE_CATCH_EXCEPTION } void Component::setSize (const int w, const int h) { setBounds (getX(), getY(), w, h); } void Component::setTopLeftPosition (const int x, const int y) { setBounds (x, y, getWidth(), getHeight()); } void Component::setTopRightPosition (const int x, const int y) { setTopLeftPosition (x - getWidth(), y); } void Component::setBounds (const Rectangle& r) { setBounds (r.getX(), r.getY(), r.getWidth(), r.getHeight()); } void Component::setBoundsRelative (const float x, const float y, const float w, const float h) { const int pw = getParentWidth(); const int ph = getParentHeight(); setBounds (roundFloatToInt (x * pw), roundFloatToInt (y * ph), roundFloatToInt (w * pw), roundFloatToInt (h * ph)); } void Component::setCentrePosition (const int x, const int y) { setTopLeftPosition (x - getWidth() / 2, y - getHeight() / 2); } void Component::setCentreRelative (const float x, const float y) { setCentrePosition (roundFloatToInt (getParentWidth() * x), roundFloatToInt (getParentHeight() * y)); } void Component::centreWithSize (const int width, const int height) { setBounds ((getParentWidth() - width) / 2, (getParentHeight() - height) / 2, width, height); } void Component::setBoundsInset (const BorderSize& borders) { setBounds (borders.getLeft(), borders.getTop(), getParentWidth() - (borders.getLeftAndRight()), getParentHeight() - (borders.getTopAndBottom())); } void Component::setBoundsToFit (int x, int y, int width, int height, const Justification& justification, const bool onlyReduceInSize) { // it's no good calling this method unless both the component and // target rectangle have a finite size. jassert (getWidth() > 0 && getHeight() > 0 && width > 0 && height > 0); if (getWidth() > 0 && getHeight() > 0 && width > 0 && height > 0) { int newW, newH; if (onlyReduceInSize && getWidth() <= width && getHeight() <= height) { newW = getWidth(); newH = getHeight(); } else { const double imageRatio = getHeight() / (double) getWidth(); const double targetRatio = height / (double) width; if (imageRatio <= targetRatio) { newW = width; newH = jmin (height, roundDoubleToInt (newW * imageRatio)); } else { newH = height; newW = jmin (width, roundDoubleToInt (newH / imageRatio)); } } if (newW > 0 && newH > 0) { int newX, newY; justification.applyToRectangle (newX, newY, newW, newH, x, y, width, height); setBounds (newX, newY, newW, newH); } } } bool Component::hitTest (int x, int y) { if (! flags.ignoresMouseClicksFlag) return true; if (flags.allowChildMouseClicksFlag) { for (int i = getNumChildComponents(); --i >= 0;) { Component* const c = getChildComponent (i); if (c->isVisible() && c->bounds_.contains (x, y) && c->hitTest (x - c->getX(), y - c->getY())) { return true; } } } return false; } void Component::setInterceptsMouseClicks (const bool allowClicks, const bool allowClicksOnChildComponents) throw() { flags.ignoresMouseClicksFlag = ! allowClicks; flags.allowChildMouseClicksFlag = allowClicksOnChildComponents; } void Component::getInterceptsMouseClicks (bool& allowsClicksOnThisComponent, bool& allowsClicksOnChildComponents) const throw() { allowsClicksOnThisComponent = ! flags.ignoresMouseClicksFlag; allowsClicksOnChildComponents = flags.allowChildMouseClicksFlag; } bool Component::contains (const int x, const int y) { if (((unsigned int) x) < (unsigned int) getWidth() && ((unsigned int) y) < (unsigned int) getHeight() && hitTest (x, y)) { if (parentComponent_ != 0) { return parentComponent_->contains (x + getX(), y + getY()); } else if (flags.hasHeavyweightPeerFlag) { const ComponentPeer* const peer = getPeer(); if (peer != 0) return peer->contains (x, y, true); } } return false; } bool Component::reallyContains (int x, int y, const bool returnTrueIfWithinAChild) { if (! contains (x, y)) return false; Component* p = this; while (p->parentComponent_ != 0) { x += p->getX(); y += p->getY(); p = p->parentComponent_; } const Component* const c = p->getComponentAt (x, y); return (c == this) || (returnTrueIfWithinAChild && isParentOf (c)); } Component* Component::getComponentAt (const int x, const int y) { if (flags.visibleFlag && ((unsigned int) x) < (unsigned int) getWidth() && ((unsigned int) y) < (unsigned int) getHeight() && hitTest (x, y)) { for (int i = childComponentList_.size(); --i >= 0;) { Component* const child = childComponentList_.getUnchecked(i); Component* const c = child->getComponentAt (x - child->getX(), y - child->getY()); if (c != 0) return c; } return this; } return 0; } void Component::addChildComponent (Component* const child, int zOrder) { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked if (child != 0 && child->parentComponent_ != this) { if (child->parentComponent_ != 0) child->parentComponent_->removeChildComponent (child); else child->removeFromDesktop(); child->parentComponent_ = this; if (child->isVisible()) child->repaintParent(); if (! child->isAlwaysOnTop()) { if (zOrder < 0 || zOrder > childComponentList_.size()) zOrder = childComponentList_.size(); while (zOrder > 0) { if (! childComponentList_.getUnchecked (zOrder - 1)->isAlwaysOnTop()) break; --zOrder; } } childComponentList_.insert (zOrder, child); child->internalHierarchyChanged(); internalChildrenChanged(); } } void Component::addAndMakeVisible (Component* const child, int zOrder) { if (child != 0) { child->setVisible (true); addChildComponent (child, zOrder); } } void Component::removeChildComponent (Component* const child) { removeChildComponent (childComponentList_.indexOf (child)); } Component* Component::removeChildComponent (const int index) { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked Component* const child = childComponentList_ [index]; if (child != 0) { sendFakeMouseMove(); child->repaintParent(); childComponentList_.remove (index); child->parentComponent_ = 0; JUCE_TRY { if ((currentlyFocusedComponent == child) || child->isParentOf (currentlyFocusedComponent)) { // get rid first to force the grabKeyboardFocus to change to us. giveAwayFocus(); grabKeyboardFocus(); } } #if JUCE_CATCH_UNHANDLED_EXCEPTIONS catch (const std::exception& e) { currentlyFocusedComponent = 0; Desktop::getInstance().triggerFocusCallback(); JUCEApplication::sendUnhandledException (&e, __FILE__, __LINE__); } catch (...) { currentlyFocusedComponent = 0; Desktop::getInstance().triggerFocusCallback(); JUCEApplication::sendUnhandledException (0, __FILE__, __LINE__); } #endif child->internalHierarchyChanged(); internalChildrenChanged(); } return child; } void Component::removeAllChildren() { for (int i = childComponentList_.size(); --i >= 0;) removeChildComponent (i); } void Component::deleteAllChildren() { for (int i = childComponentList_.size(); --i >= 0;) delete (removeChildComponent (i)); } int Component::getNumChildComponents() const throw() { return childComponentList_.size(); } Component* Component::getChildComponent (const int index) const throw() { return childComponentList_ [index]; } int Component::getIndexOfChildComponent (const Component* const child) const throw() { return childComponentList_.indexOf (const_cast (child)); } Component* Component::getTopLevelComponent() const throw() { const Component* comp = this; while (comp->parentComponent_ != 0) comp = comp->parentComponent_; return (Component*) comp; } bool Component::isParentOf (const Component* possibleChild) const throw() { while (possibleChild->isValidComponent()) { possibleChild = possibleChild->parentComponent_; if (possibleChild == this) return true; } return false; } void Component::parentHierarchyChanged() { } void Component::childrenChanged() { } void Component::internalChildrenChanged() { const ComponentDeletionWatcher deletionChecker (this); const bool hasListeners = componentListeners_ != 0; childrenChanged(); if (hasListeners) { if (deletionChecker.hasBeenDeleted()) return; for (int i = componentListeners_->size(); --i >= 0;) { ((ComponentListener*) componentListeners_->getUnchecked (i)) ->componentChildrenChanged (*this); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, componentListeners_->size()); } } } void Component::internalHierarchyChanged() { parentHierarchyChanged(); const ComponentDeletionWatcher deletionChecker (this); if (componentListeners_ != 0) { for (int i = componentListeners_->size(); --i >= 0;) { ((ComponentListener*) componentListeners_->getUnchecked (i)) ->componentParentHierarchyChanged (*this); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, componentListeners_->size()); } } for (int i = childComponentList_.size(); --i >= 0;) { childComponentList_.getUnchecked (i)->internalHierarchyChanged(); // you really shouldn't delete the parent component during a callback telling you // that it's changed.. jassert (! deletionChecker.hasBeenDeleted()); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, childComponentList_.size()); } } void* Component::runModalLoopCallback (void* userData) { return (void*) (pointer_sized_int) ((Component*) userData)->runModalLoop(); } int Component::runModalLoop() { if (! MessageManager::getInstance()->isThisTheMessageThread()) { // use a callback so this can be called from non-gui threads return (int) (pointer_sized_int) MessageManager::getInstance() ->callFunctionOnMessageThread (&runModalLoopCallback, (void*) this); } Component* const prevFocused = getCurrentlyFocusedComponent(); ComponentDeletionWatcher* deletionChecker = 0; if (prevFocused != 0) deletionChecker = new ComponentDeletionWatcher (prevFocused); if (! isCurrentlyModal()) enterModalState(); JUCE_TRY { while (flags.currentlyModalFlag && flags.visibleFlag) { if (! MessageManager::getInstance()->runDispatchLoopUntil (20)) break; // check whether this component was deleted during the last message if (! isValidMessageListener()) break; } } #if JUCE_CATCH_UNHANDLED_EXCEPTIONS catch (const std::exception& e) { JUCEApplication::sendUnhandledException (&e, __FILE__, __LINE__); return 0; } catch (...) { JUCEApplication::sendUnhandledException (0, __FILE__, __LINE__); return 0; } #endif const int modalIndex = modalComponentReturnValueKeys.indexOf (this); int returnValue = 0; if (modalIndex >= 0) { modalComponentReturnValueKeys.remove (modalIndex); returnValue = modalReturnValues.remove (modalIndex); } modalComponentStack.removeValue (this); if (deletionChecker != 0) { if (! deletionChecker->hasBeenDeleted()) prevFocused->grabKeyboardFocus(); delete deletionChecker; } return returnValue; } void Component::enterModalState (const bool takeKeyboardFocus) { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked // Check for an attempt to make a component modal when it already is! // This can cause nasty problems.. jassert (! flags.currentlyModalFlag); if (! isCurrentlyModal()) { modalComponentStack.add (this); modalComponentReturnValueKeys.add (this); modalReturnValues.add (0); flags.currentlyModalFlag = true; setVisible (true); if (takeKeyboardFocus) grabKeyboardFocus(); } } void Component::exitModalState (const int returnValue) { if (isCurrentlyModal()) { if (MessageManager::getInstance()->isThisTheMessageThread()) { const int modalIndex = modalComponentReturnValueKeys.indexOf (this); if (modalIndex >= 0) { modalReturnValues.set (modalIndex, returnValue); } else { modalComponentReturnValueKeys.add (this); modalReturnValues.add (returnValue); } modalComponentStack.removeValue (this); flags.currentlyModalFlag = false; bringModalComponentToFront(); } else { postMessage (new Message (exitModalStateMessage, returnValue, 0, 0)); } } } bool Component::isCurrentlyModal() const throw() { return flags.currentlyModalFlag && getCurrentlyModalComponent() == this; } bool Component::isCurrentlyBlockedByAnotherModalComponent() const throw() { Component* const mc = getCurrentlyModalComponent(); return mc != 0 && mc != this && (! mc->isParentOf (this)) && ! mc->canModalEventBeSentToComponent (this); } int JUCE_CALLTYPE Component::getNumCurrentlyModalComponents() throw() { return modalComponentStack.size(); } Component* JUCE_CALLTYPE Component::getCurrentlyModalComponent (int index) throw() { Component* const c = (Component*) (modalComponentStack [modalComponentStack.size() - index - 1]); return c->isValidComponent() ? c : 0; } void Component::bringModalComponentToFront() { ComponentPeer* lastOne = 0; for (int i = 0; i < getNumCurrentlyModalComponents(); ++i) { Component* const c = getCurrentlyModalComponent (i); if (c == 0) break; ComponentPeer* peer = c->getPeer(); if (peer != 0 && peer != lastOne) { if (lastOne == 0) { peer->toFront (true); peer->grabFocus(); } else peer->toBehind (lastOne); lastOne = peer; } } } void Component::setBroughtToFrontOnMouseClick (const bool shouldBeBroughtToFront) throw() { flags.bringToFrontOnClickFlag = shouldBeBroughtToFront; } bool Component::isBroughtToFrontOnMouseClick() const throw() { return flags.bringToFrontOnClickFlag; } void Component::setMouseCursor (const MouseCursor& cursor) throw() { cursor_ = cursor; if (flags.visibleFlag) { int mx, my; getMouseXYRelative (mx, my); if (flags.draggingFlag || reallyContains (mx, my, false)) { internalUpdateMouseCursor (false); } } } const MouseCursor Component::getMouseCursor() { return cursor_; } void Component::updateMouseCursor() const throw() { sendFakeMouseMove(); } void Component::internalUpdateMouseCursor (bool forcedUpdate) throw() { ComponentPeer* const peer = getPeer(); if (peer != 0) { MouseCursor mc (getMouseCursor()); if (isUnboundedMouseModeOn && (unboundedMouseOffsetX != 0 || unboundedMouseOffsetY != 0 || ! isCursorVisibleUntilOffscreen)) { mc = MouseCursor::NoCursor; forcedUpdate = true; } static void* currentCursorHandle = 0; if (forcedUpdate || mc.getHandle() != currentCursorHandle) { currentCursorHandle = mc.getHandle(); mc.showInWindow (peer); } } } void Component::setRepaintsOnMouseActivity (const bool shouldRepaint) throw() { flags.repaintOnMouseActivityFlag = shouldRepaint; } void Component::repaintParent() throw() { if (flags.visibleFlag) internalRepaint (0, 0, getWidth(), getHeight()); } void Component::repaint() throw() { repaint (0, 0, getWidth(), getHeight()); } void Component::repaint (const int x, const int y, const int w, const int h) throw() { deleteAndZero (bufferedImage_); if (flags.visibleFlag) internalRepaint (x, y, w, h); } void Component::internalRepaint (int x, int y, int w, int h) { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked if (x < 0) { w += x; x = 0; } if (x + w > getWidth()) w = getWidth() - x; if (w > 0) { if (y < 0) { h += y; y = 0; } if (y + h > getHeight()) h = getHeight() - y; if (h > 0) { if (parentComponent_ != 0) { x += getX(); y += getY(); if (parentComponent_->flags.visibleFlag) parentComponent_->internalRepaint (x, y, w, h); } else if (flags.hasHeavyweightPeerFlag) { ComponentPeer* const peer = getPeer(); if (peer != 0) peer->repaint (x, y, w, h); } } } } void Component::paintEntireComponent (Graphics& originalContext) { jassert (! originalContext.isClipEmpty()); #ifdef JUCE_DEBUG flags.isInsidePaintCall = true; #endif Graphics* g = &originalContext; Image* effectImage = 0; if (effect_ != 0) { effectImage = new Image (flags.opaqueFlag ? Image::RGB : Image::ARGB, getWidth(), getHeight(), ! flags.opaqueFlag); g = new Graphics (*effectImage); } g->saveState(); clipObscuredRegions (*g, g->getClipBounds(), 0, 0); if (! g->isClipEmpty()) { if (bufferedImage_ != 0) { g->setColour (Colours::black); g->drawImageAt (bufferedImage_, 0, 0); } else { if (flags.bufferToImageFlag) { if (bufferedImage_ == 0) { bufferedImage_ = new Image (flags.opaqueFlag ? Image::RGB : Image::ARGB, getWidth(), getHeight(), ! flags.opaqueFlag); Graphics imG (*bufferedImage_); paint (imG); } g->setColour (Colours::black); g->drawImageAt (bufferedImage_, 0, 0); } else { paint (*g); g->resetToDefaultState(); } } } g->restoreState(); for (int i = 0; i < childComponentList_.size(); ++i) { Component* const child = childComponentList_.getUnchecked (i); if (child->isVisible()) { g->saveState(); if (g->reduceClipRegion (child->getX(), child->getY(), child->getWidth(), child->getHeight())) { for (int j = i + 1; j < childComponentList_.size(); ++j) { const Component* const sibling = childComponentList_.getUnchecked (j); if (sibling->flags.opaqueFlag && sibling->isVisible()) g->excludeClipRegion (sibling->getX(), sibling->getY(), sibling->getWidth(), sibling->getHeight()); } if (! g->isClipEmpty()) { g->setOrigin (child->getX(), child->getY()); child->paintEntireComponent (*g); } } g->restoreState(); } } JUCE_TRY { g->saveState(); paintOverChildren (*g); g->restoreState(); } JUCE_CATCH_EXCEPTION if (effect_ != 0) { delete g; effect_->applyEffect (*effectImage, originalContext); delete effectImage; } #ifdef JUCE_DEBUG flags.isInsidePaintCall = false; #endif } Image* Component::createComponentSnapshot (const Rectangle& areaToGrab, const bool clipImageToComponentBounds) { Rectangle r (areaToGrab); if (clipImageToComponentBounds) r = r.getIntersection (Rectangle (0, 0, getWidth(), getHeight())); Image* const componentImage = new Image (flags.opaqueFlag ? Image::RGB : Image::ARGB, jmax (1, r.getWidth()), jmax (1, r.getHeight()), true); Graphics imageContext (*componentImage); imageContext.setOrigin (-r.getX(), -r.getY()); paintEntireComponent (imageContext); return componentImage; } void Component::setComponentEffect (ImageEffectFilter* const effect) { if (effect_ != effect) { effect_ = effect; repaint(); } } LookAndFeel& Component::getLookAndFeel() const throw() { const Component* c = this; do { if (c->lookAndFeel_ != 0) return *(c->lookAndFeel_); c = c->parentComponent_; } while (c != 0); return LookAndFeel::getDefaultLookAndFeel(); } void Component::setLookAndFeel (LookAndFeel* const newLookAndFeel) { if (lookAndFeel_ != newLookAndFeel) { lookAndFeel_ = newLookAndFeel; sendLookAndFeelChange(); } } void Component::lookAndFeelChanged() { } void Component::sendLookAndFeelChange() { repaint(); lookAndFeelChanged(); // (it's not a great idea to do anything that would delete this component // during the lookAndFeelChanged() callback) jassert (isValidComponent()); const ComponentDeletionWatcher deletionChecker (this); for (int i = childComponentList_.size(); --i >= 0;) { childComponentList_.getUnchecked (i)->sendLookAndFeelChange(); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, childComponentList_.size()); } } static const String getColourPropertyName (const int colourId) throw() { String s; s.preallocateStorage (18); s << T("jcclr_") << colourId; return s; } const Colour Component::findColour (const int colourId, const bool inheritFromParent) const throw() { const String customColour (getComponentProperty (getColourPropertyName (colourId), inheritFromParent, String::empty)); if (customColour.isNotEmpty()) return Colour (customColour.getIntValue()); return getLookAndFeel().findColour (colourId); } bool Component::isColourSpecified (const int colourId) const throw() { return getComponentProperty (getColourPropertyName (colourId), false, String::empty).isNotEmpty(); } void Component::removeColour (const int colourId) { if (isColourSpecified (colourId)) { removeComponentProperty (getColourPropertyName (colourId)); colourChanged(); } } void Component::setColour (const int colourId, const Colour& colour) { const String colourName (getColourPropertyName (colourId)); const String customColour (getComponentProperty (colourName, false, String::empty)); if (customColour.isEmpty() || Colour (customColour.getIntValue()) != colour) { setComponentProperty (colourName, colour); colourChanged(); } } void Component::copyAllExplicitColoursTo (Component& target) const throw() { if (propertySet_ != 0) { const StringPairArray& props = propertySet_->getAllProperties(); const StringArray& keys = props.getAllKeys(); for (int i = 0; i < keys.size(); ++i) { if (keys[i].startsWith (T("jcclr_"))) { target.setComponentProperty (keys[i], props.getAllValues() [i]); } } target.colourChanged(); } } void Component::colourChanged() { } const Rectangle Component::getUnclippedArea() const { int x = 0, y = 0, w = getWidth(), h = getHeight(); Component* p = parentComponent_; int px = getX(); int py = getY(); while (p != 0) { if (! Rectangle::intersectRectangles (x, y, w, h, -px, -py, p->getWidth(), p->getHeight())) return Rectangle(); px += p->getX(); py += p->getY(); p = p->parentComponent_; } return Rectangle (x, y, w, h); } void Component::clipObscuredRegions (Graphics& g, const Rectangle& clipRect, const int deltaX, const int deltaY) const throw() { for (int i = childComponentList_.size(); --i >= 0;) { const Component* const c = childComponentList_.getUnchecked(i); if (c->isVisible()) { Rectangle newClip (clipRect.getIntersection (c->bounds_)); if (! newClip.isEmpty()) { if (c->isOpaque()) { g.excludeClipRegion (deltaX + newClip.getX(), deltaY + newClip.getY(), newClip.getWidth(), newClip.getHeight()); } else { newClip.translate (-c->getX(), -c->getY()); c->clipObscuredRegions (g, newClip, c->getX() + deltaX, c->getY() + deltaY); } } } } } void Component::getVisibleArea (RectangleList& result, const bool includeSiblings) const { result.clear(); const Rectangle unclipped (getUnclippedArea()); if (! unclipped.isEmpty()) { result.add (unclipped); if (includeSiblings) { const Component* const c = getTopLevelComponent(); int x = 0, y = 0; c->relativePositionToOtherComponent (this, x, y); c->subtractObscuredRegions (result, x, y, Rectangle (0, 0, c->getWidth(), c->getHeight()), this); } subtractObscuredRegions (result, 0, 0, unclipped, 0); result.consolidate(); } } void Component::subtractObscuredRegions (RectangleList& result, const int deltaX, const int deltaY, const Rectangle& clipRect, const Component* const compToAvoid) const throw() { for (int i = childComponentList_.size(); --i >= 0;) { const Component* const c = childComponentList_.getUnchecked(i); if (c != compToAvoid && c->isVisible()) { if (c->isOpaque()) { Rectangle childBounds (c->bounds_.getIntersection (clipRect)); childBounds.translate (deltaX, deltaY); result.subtract (childBounds); } else { Rectangle newClip (clipRect.getIntersection (c->bounds_)); newClip.translate (-c->getX(), -c->getY()); c->subtractObscuredRegions (result, c->getX() + deltaX, c->getY() + deltaY, newClip, compToAvoid); } } } } void Component::mouseEnter (const MouseEvent&) { // base class does nothing } void Component::mouseExit (const MouseEvent&) { // base class does nothing } void Component::mouseDown (const MouseEvent&) { // base class does nothing } void Component::mouseUp (const MouseEvent&) { // base class does nothing } void Component::mouseDrag (const MouseEvent&) { // base class does nothing } void Component::mouseMove (const MouseEvent&) { // base class does nothing } void Component::mouseDoubleClick (const MouseEvent&) { // base class does nothing } void Component::mouseWheelMove (const MouseEvent& e, float wheelIncrementX, float wheelIncrementY) { // the base class just passes this event up to its parent.. if (parentComponent_ != 0) parentComponent_->mouseWheelMove (e.getEventRelativeTo (parentComponent_), wheelIncrementX, wheelIncrementY); } void Component::resized() { // base class does nothing } void Component::moved() { // base class does nothing } void Component::childBoundsChanged (Component*) { // base class does nothing } void Component::parentSizeChanged() { // base class does nothing } void Component::addComponentListener (ComponentListener* const newListener) throw() { if (componentListeners_ == 0) componentListeners_ = new VoidArray (4); componentListeners_->addIfNotAlreadyThere (newListener); } void Component::removeComponentListener (ComponentListener* const listenerToRemove) throw() { jassert (isValidComponent()); if (componentListeners_ != 0) componentListeners_->removeValue (listenerToRemove); } void Component::inputAttemptWhenModal() { bringModalComponentToFront(); getLookAndFeel().playAlertSound(); } bool Component::canModalEventBeSentToComponent (const Component*) { return false; } void Component::internalModalInputAttempt() { Component* const current = getCurrentlyModalComponent(); if (current != 0) current->inputAttemptWhenModal(); } void Component::paint (Graphics&) { // all painting is done in the subclasses jassert (! isOpaque()); // if your component's opaque, you've gotta paint it! } void Component::paintOverChildren (Graphics&) { // all painting is done in the subclasses } void Component::handleMessage (const Message& message) { if (message.intParameter1 == exitModalStateMessage) { exitModalState (message.intParameter2); } else if (message.intParameter1 == customCommandMessage) { handleCommandMessage (message.intParameter2); } } void Component::postCommandMessage (const int commandId) throw() { postMessage (new Message (customCommandMessage, commandId, 0, 0)); } void Component::handleCommandMessage (int) { // used by subclasses } void Component::addMouseListener (MouseListener* const newListener, const bool wantsEventsForAllNestedChildComponents) throw() { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked if (mouseListeners_ == 0) mouseListeners_ = new VoidArray (4); if (! mouseListeners_->contains (newListener)) { if (wantsEventsForAllNestedChildComponents) { mouseListeners_->insert (0, newListener); ++numDeepMouseListeners; } else { mouseListeners_->add (newListener); } } } void Component::removeMouseListener (MouseListener* const listenerToRemove) throw() { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked if (mouseListeners_ != 0) { const int index = mouseListeners_->indexOf (listenerToRemove); if (index >= 0) { if (index < numDeepMouseListeners) --numDeepMouseListeners; mouseListeners_->remove (index); } } } void Component::internalMouseEnter (int x, int y, int64 time) { if (isCurrentlyBlockedByAnotherModalComponent()) { // if something else is modal, always just show a normal mouse cursor if (componentUnderMouse == this) { ComponentPeer* const peer = getPeer(); if (peer != 0) { MouseCursor mc (MouseCursor::NormalCursor); mc.showInWindow (peer); } } return; } if (! flags.mouseInsideFlag) { flags.mouseInsideFlag = true; flags.mouseOverFlag = true; flags.draggingFlag = false; if (isValidComponent()) { const ComponentDeletionWatcher deletionChecker (this); if (flags.repaintOnMouseActivityFlag) repaint(); const MouseEvent me (x, y, ModifierKeys::getCurrentModifiers(), this, Time (time), x, y, Time (time), 0, false); mouseEnter (me); if (deletionChecker.hasBeenDeleted()) return; Desktop::getInstance().resetTimer(); for (int i = Desktop::getInstance().mouseListeners.size(); --i >= 0;) { ((MouseListener*) Desktop::getInstance().mouseListeners[i])->mouseEnter (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, Desktop::getInstance().mouseListeners.size()); } if (mouseListeners_ != 0) { for (int i = mouseListeners_->size(); --i >= 0;) { ((MouseListener*) mouseListeners_->getUnchecked(i))->mouseEnter (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, mouseListeners_->size()); } } const Component* p = parentComponent_; while (p != 0) { const ComponentDeletionWatcher parentDeletionChecker (p); for (int i = p->numDeepMouseListeners; --i >= 0;) { ((MouseListener*) (p->mouseListeners_->getUnchecked(i)))->mouseEnter (me); if (deletionChecker.hasBeenDeleted() || parentDeletionChecker.hasBeenDeleted()) return; i = jmin (i, p->numDeepMouseListeners); } p = p->parentComponent_; } } } if (componentUnderMouse == this) internalUpdateMouseCursor (true); } void Component::internalMouseExit (int x, int y, int64 time) { const ComponentDeletionWatcher deletionChecker (this); if (flags.draggingFlag) { internalMouseUp (ModifierKeys::getCurrentModifiers().getRawFlags(), x, y, time); if (deletionChecker.hasBeenDeleted()) return; } enableUnboundedMouseMovement (false); if (flags.mouseInsideFlag || flags.mouseOverFlag) { flags.mouseInsideFlag = false; flags.mouseOverFlag = false; flags.draggingFlag = false; if (flags.repaintOnMouseActivityFlag) repaint(); const MouseEvent me (x, y, ModifierKeys::getCurrentModifiers(), this, Time (time), x, y, Time (time), 0, false); mouseExit (me); if (deletionChecker.hasBeenDeleted()) return; Desktop::getInstance().resetTimer(); for (int i = Desktop::getInstance().mouseListeners.size(); --i >= 0;) { ((MouseListener*) Desktop::getInstance().mouseListeners[i])->mouseExit (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, Desktop::getInstance().mouseListeners.size()); } if (mouseListeners_ != 0) { for (int i = mouseListeners_->size(); --i >= 0;) { ((MouseListener*) mouseListeners_->getUnchecked (i))->mouseExit (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, mouseListeners_->size()); } } const Component* p = parentComponent_; while (p != 0) { const ComponentDeletionWatcher parentDeletionChecker (p); for (int i = p->numDeepMouseListeners; --i >= 0;) { ((MouseListener*) (p->mouseListeners_->getUnchecked (i)))->mouseExit (me); if (deletionChecker.hasBeenDeleted() || parentDeletionChecker.hasBeenDeleted()) return; i = jmin (i, p->numDeepMouseListeners); } p = p->parentComponent_; } } } class InternalDragRepeater : public Timer { public: InternalDragRepeater() {} ~InternalDragRepeater() {} void timerCallback() { Component* const c = Component::getComponentUnderMouse(); if (c != 0 && c->isMouseButtonDown()) { int x, y; c->getMouseXYRelative (x, y); // the offsets have been added on, so must be taken off before calling the // drag.. otherwise they'll be added twice x -= unboundedMouseOffsetX; y -= unboundedMouseOffsetY; c->internalMouseDrag (x, y, Time::currentTimeMillis()); } } juce_UseDebuggingNewOperator }; static InternalDragRepeater* dragRepeater = 0; void Component::beginDragAutoRepeat (const int interval) { if (interval > 0) { if (dragRepeater == 0) dragRepeater = new InternalDragRepeater(); if (dragRepeater->getTimerInterval() != interval) dragRepeater->startTimer (interval); } else { deleteAndZero (dragRepeater); } } void Component::internalMouseDown (const int x, const int y) { const ComponentDeletionWatcher deletionChecker (this); if (isCurrentlyBlockedByAnotherModalComponent()) { internalModalInputAttempt(); if (deletionChecker.hasBeenDeleted()) return; // If processing the input attempt has exited the modal loop, we'll allow the event // to be delivered.. if (isCurrentlyBlockedByAnotherModalComponent()) { // allow blocked mouse-events to go to global listeners.. const MouseEvent me (x, y, ModifierKeys::getCurrentModifiers(), this, Time (juce_recentMouseDownTimes[0]), x, y, Time (juce_recentMouseDownTimes[0]), countMouseClicks(), false); Desktop::getInstance().resetTimer(); for (int i = Desktop::getInstance().mouseListeners.size(); --i >= 0;) { ((MouseListener*) Desktop::getInstance().mouseListeners[i])->mouseDown (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, Desktop::getInstance().mouseListeners.size()); } return; } } { Component* c = this; while (c != 0) { if (c->isBroughtToFrontOnMouseClick()) { c->toFront (true); if (deletionChecker.hasBeenDeleted()) return; } c = c->parentComponent_; } } if (! flags.dontFocusOnMouseClickFlag) grabFocusInternal (focusChangedByMouseClick); if (! deletionChecker.hasBeenDeleted()) { flags.draggingFlag = true; flags.mouseOverFlag = true; if (flags.repaintOnMouseActivityFlag) repaint(); const MouseEvent me (x, y, ModifierKeys::getCurrentModifiers(), this, Time (juce_recentMouseDownTimes[0]), x, y, Time (juce_recentMouseDownTimes[0]), countMouseClicks(), false); mouseDown (me); if (deletionChecker.hasBeenDeleted()) return; Desktop::getInstance().resetTimer(); for (int i = Desktop::getInstance().mouseListeners.size(); --i >= 0;) { ((MouseListener*) Desktop::getInstance().mouseListeners[i])->mouseDown (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, Desktop::getInstance().mouseListeners.size()); } if (mouseListeners_ != 0) { for (int i = mouseListeners_->size(); --i >= 0;) { ((MouseListener*) mouseListeners_->getUnchecked (i))->mouseDown (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, mouseListeners_->size()); } } const Component* p = parentComponent_; while (p != 0) { const ComponentDeletionWatcher parentDeletionChecker (p); for (int i = p->numDeepMouseListeners; --i >= 0;) { ((MouseListener*) (p->mouseListeners_->getUnchecked (i)))->mouseDown (me); if (deletionChecker.hasBeenDeleted() || parentDeletionChecker.hasBeenDeleted()) return; i = jmin (i, p->numDeepMouseListeners); } p = p->parentComponent_; } } } void Component::internalMouseUp (const int oldModifiers, int x, int y, const int64 time) { if (isValidComponent() && flags.draggingFlag) { flags.draggingFlag = false; deleteAndZero (dragRepeater); x += unboundedMouseOffsetX; y += unboundedMouseOffsetY; juce_LastMousePosX = x; juce_LastMousePosY = y; relativePositionToGlobal (juce_LastMousePosX, juce_LastMousePosY); const ComponentDeletionWatcher deletionChecker (this); if (flags.repaintOnMouseActivityFlag) repaint(); int mdx = juce_recentMouseDownX[0]; int mdy = juce_recentMouseDownY[0]; globalPositionToRelative (mdx, mdy); const MouseEvent me (x, y, oldModifiers, this, Time (time), mdx, mdy, Time (juce_recentMouseDownTimes [0]), countMouseClicks(), juce_MouseHasMovedSignificantlySincePressed || juce_recentMouseDownTimes[0] + 300 < time); mouseUp (me); if (deletionChecker.hasBeenDeleted()) return; Desktop::getInstance().resetTimer(); for (int i = Desktop::getInstance().mouseListeners.size(); --i >= 0;) { ((MouseListener*) Desktop::getInstance().mouseListeners[i])->mouseUp (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, Desktop::getInstance().mouseListeners.size()); } if (mouseListeners_ != 0) { for (int i = mouseListeners_->size(); --i >= 0;) { ((MouseListener*) mouseListeners_->getUnchecked (i))->mouseUp (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, mouseListeners_->size()); } } { const Component* p = parentComponent_; while (p != 0) { const ComponentDeletionWatcher parentDeletionChecker (p); for (int i = p->numDeepMouseListeners; --i >= 0;) { ((MouseListener*) (p->mouseListeners_->getUnchecked (i)))->mouseUp (me); if (deletionChecker.hasBeenDeleted() || parentDeletionChecker.hasBeenDeleted()) return; i = jmin (i, p->numDeepMouseListeners); } p = p->parentComponent_; } } // check for double-click if (me.getNumberOfClicks() >= 2) { const int numListeners = (mouseListeners_ != 0) ? mouseListeners_->size() : 0; mouseDoubleClick (me); int i; for (i = Desktop::getInstance().mouseListeners.size(); --i >= 0;) { ((MouseListener*) Desktop::getInstance().mouseListeners[i])->mouseDoubleClick (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, Desktop::getInstance().mouseListeners.size()); } for (i = numListeners; --i >= 0;) { if (deletionChecker.hasBeenDeleted() || mouseListeners_ == 0) return; MouseListener* const ml = (MouseListener*)((*mouseListeners_)[i]); if (ml != 0) ml->mouseDoubleClick (me); } if (deletionChecker.hasBeenDeleted()) return; const Component* p = parentComponent_; while (p != 0) { const ComponentDeletionWatcher parentDeletionChecker (p); for (i = p->numDeepMouseListeners; --i >= 0;) { ((MouseListener*) (p->mouseListeners_->getUnchecked (i)))->mouseDoubleClick (me); if (deletionChecker.hasBeenDeleted() || parentDeletionChecker.hasBeenDeleted()) return; i = jmin (i, p->numDeepMouseListeners); } p = p->parentComponent_; } } } enableUnboundedMouseMovement (false); } void Component::internalMouseDrag (int x, int y, const int64 time) { if (isValidComponent() && flags.draggingFlag) { flags.mouseOverFlag = reallyContains (x, y, false); x += unboundedMouseOffsetX; y += unboundedMouseOffsetY; juce_LastMousePosX = x; juce_LastMousePosY = y; relativePositionToGlobal (juce_LastMousePosX, juce_LastMousePosY); juce_MouseHasMovedSignificantlySincePressed = juce_MouseHasMovedSignificantlySincePressed || abs (juce_recentMouseDownX[0] - juce_LastMousePosX) >= 4 || abs (juce_recentMouseDownY[0] - juce_LastMousePosY) >= 4; const ComponentDeletionWatcher deletionChecker (this); int mdx = juce_recentMouseDownX[0]; int mdy = juce_recentMouseDownY[0]; globalPositionToRelative (mdx, mdy); const MouseEvent me (x, y, ModifierKeys::getCurrentModifiers(), this, Time (time), mdx, mdy, Time (juce_recentMouseDownTimes[0]), countMouseClicks(), juce_MouseHasMovedSignificantlySincePressed || juce_recentMouseDownTimes[0] + 300 < time); mouseDrag (me); if (deletionChecker.hasBeenDeleted()) return; Desktop::getInstance().resetTimer(); for (int i = Desktop::getInstance().mouseListeners.size(); --i >= 0;) { ((MouseListener*) Desktop::getInstance().mouseListeners[i])->mouseDrag (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, Desktop::getInstance().mouseListeners.size()); } if (mouseListeners_ != 0) { for (int i = mouseListeners_->size(); --i >= 0;) { ((MouseListener*) mouseListeners_->getUnchecked (i))->mouseDrag (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, mouseListeners_->size()); } } const Component* p = parentComponent_; while (p != 0) { const ComponentDeletionWatcher parentDeletionChecker (p); for (int i = p->numDeepMouseListeners; --i >= 0;) { ((MouseListener*) (p->mouseListeners_->getUnchecked (i)))->mouseDrag (me); if (deletionChecker.hasBeenDeleted() || parentDeletionChecker.hasBeenDeleted()) return; i = jmin (i, p->numDeepMouseListeners); } p = p->parentComponent_; } if (this == componentUnderMouse) { if (isUnboundedMouseModeOn) { Rectangle screenArea (getParentMonitorArea().expanded (-2, -2)); int mx, my; Desktop::getMousePosition (mx, my); if (! screenArea.contains (mx, my)) { int deltaX = 0, deltaY = 0; if (mx <= screenArea.getX() || mx >= screenArea.getRight()) deltaX = getScreenX() + getWidth() / 2 - mx; if (my <= screenArea.getY() || my >= screenArea.getBottom()) deltaY = getScreenY() + getHeight() / 2 - my; unboundedMouseOffsetX -= deltaX; unboundedMouseOffsetY -= deltaY; Desktop::setMousePosition (mx + deltaX, my + deltaY); } else if (isCursorVisibleUntilOffscreen && (unboundedMouseOffsetX != 0 || unboundedMouseOffsetY != 0) && screenArea.contains (mx + unboundedMouseOffsetX, my + unboundedMouseOffsetY)) { mx += unboundedMouseOffsetX; my += unboundedMouseOffsetY; unboundedMouseOffsetX = 0; unboundedMouseOffsetY = 0; Desktop::setMousePosition (mx, my); } } internalUpdateMouseCursor (false); } } } void Component::internalMouseMove (const int x, const int y, const int64 time) { const ComponentDeletionWatcher deletionChecker (this); if (isValidComponent()) { const MouseEvent me (x, y, ModifierKeys::getCurrentModifiers(), this, Time (time), x, y, Time (time), 0, false); if (isCurrentlyBlockedByAnotherModalComponent()) { // allow blocked mouse-events to go to global listeners.. Desktop::getInstance().sendMouseMove(); } else { if (this == componentUnderMouse) internalUpdateMouseCursor (false); flags.mouseOverFlag = true; mouseMove (me); if (deletionChecker.hasBeenDeleted()) return; Desktop::getInstance().resetTimer(); for (int i = Desktop::getInstance().mouseListeners.size(); --i >= 0;) { ((MouseListener*) Desktop::getInstance().mouseListeners[i])->mouseMove (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, Desktop::getInstance().mouseListeners.size()); } if (mouseListeners_ != 0) { for (int i = mouseListeners_->size(); --i >= 0;) { ((MouseListener*) mouseListeners_->getUnchecked (i))->mouseMove (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, mouseListeners_->size()); } } const Component* p = parentComponent_; while (p != 0) { const ComponentDeletionWatcher parentDeletionChecker (p); for (int i = p->numDeepMouseListeners; --i >= 0;) { ((MouseListener*) (p->mouseListeners_->getUnchecked (i)))->mouseMove (me); if (deletionChecker.hasBeenDeleted() || parentDeletionChecker.hasBeenDeleted()) return; i = jmin (i, p->numDeepMouseListeners); } p = p->parentComponent_; } } } } void Component::internalMouseWheel (const int intAmountX, const int intAmountY, const int64 time) { const ComponentDeletionWatcher deletionChecker (this); const float wheelIncrementX = intAmountX * (1.0f / 256.0f); const float wheelIncrementY = intAmountY * (1.0f / 256.0f); int mx, my; getMouseXYRelative (mx, my); const MouseEvent me (mx, my, ModifierKeys::getCurrentModifiers(), this, Time (time), mx, my, Time (time), 0, false); if (isCurrentlyBlockedByAnotherModalComponent()) { // allow blocked mouse-events to go to global listeners.. for (int i = Desktop::getInstance().mouseListeners.size(); --i >= 0;) { ((MouseListener*) Desktop::getInstance().mouseListeners[i])->mouseWheelMove (me, wheelIncrementX, wheelIncrementY); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, Desktop::getInstance().mouseListeners.size()); } } else { mouseWheelMove (me, wheelIncrementX, wheelIncrementY); if (deletionChecker.hasBeenDeleted()) return; for (int i = Desktop::getInstance().mouseListeners.size(); --i >= 0;) { ((MouseListener*) Desktop::getInstance().mouseListeners[i])->mouseWheelMove (me, wheelIncrementX, wheelIncrementY); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, Desktop::getInstance().mouseListeners.size()); } if (mouseListeners_ != 0) { for (int i = mouseListeners_->size(); --i >= 0;) { ((MouseListener*) mouseListeners_->getUnchecked (i))->mouseWheelMove (me, wheelIncrementX, wheelIncrementY); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, mouseListeners_->size()); } } const Component* p = parentComponent_; while (p != 0) { const ComponentDeletionWatcher parentDeletionChecker (p); for (int i = p->numDeepMouseListeners; --i >= 0;) { ((MouseListener*) (p->mouseListeners_->getUnchecked (i)))->mouseWheelMove (me, wheelIncrementX, wheelIncrementY); if (deletionChecker.hasBeenDeleted() || parentDeletionChecker.hasBeenDeleted()) return; i = jmin (i, p->numDeepMouseListeners); } p = p->parentComponent_; } sendFakeMouseMove(); } } void Component::sendFakeMouseMove() const { ComponentPeer* const peer = getPeer(); if (peer != 0) peer->sendFakeMouseMove(); } void Component::broughtToFront() { } void Component::internalBroughtToFront() { if (isValidComponent()) { if (flags.hasHeavyweightPeerFlag) Desktop::getInstance().componentBroughtToFront (this); const ComponentDeletionWatcher deletionChecker (this); broughtToFront(); if (deletionChecker.hasBeenDeleted()) return; if (componentListeners_ != 0) { for (int i = componentListeners_->size(); --i >= 0;) { ((ComponentListener*) componentListeners_->getUnchecked (i)) ->componentBroughtToFront (*this); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, componentListeners_->size()); } } // when brought to the front and there's a modal component blocking this one, // we need to bring the modal one to the front instead.. Component* const cm = getCurrentlyModalComponent(); if (cm != 0 && cm->getTopLevelComponent() != getTopLevelComponent()) bringModalComponentToFront(); } } void Component::focusGained (FocusChangeType) { // base class does nothing } void Component::internalFocusGain (const FocusChangeType cause) { const ComponentDeletionWatcher deletionChecker (this); focusGained (cause); if (! deletionChecker.hasBeenDeleted()) internalChildFocusChange (cause); } void Component::focusLost (FocusChangeType) { // base class does nothing } void Component::internalFocusLoss (const FocusChangeType cause) { const ComponentDeletionWatcher deletionChecker (this); focusLost (focusChangedDirectly); if (! deletionChecker.hasBeenDeleted()) internalChildFocusChange (cause); } void Component::focusOfChildComponentChanged (FocusChangeType /*cause*/) { // base class does nothing } void Component::internalChildFocusChange (FocusChangeType cause) { const bool childIsNowFocused = hasKeyboardFocus (true); if (flags.childCompFocusedFlag != childIsNowFocused) { flags.childCompFocusedFlag = childIsNowFocused; const ComponentDeletionWatcher deletionChecker (this); focusOfChildComponentChanged (cause); if (deletionChecker.hasBeenDeleted()) return; } if (parentComponent_ != 0) parentComponent_->internalChildFocusChange (cause); } bool Component::isEnabled() const throw() { return (! flags.isDisabledFlag) && (parentComponent_ == 0 || parentComponent_->isEnabled()); } void Component::setEnabled (const bool shouldBeEnabled) { if (flags.isDisabledFlag == shouldBeEnabled) { flags.isDisabledFlag = ! shouldBeEnabled; // if any parent components are disabled, setting our flag won't make a difference, // so no need to send a change message if (parentComponent_ == 0 || parentComponent_->isEnabled()) sendEnablementChangeMessage(); } } void Component::sendEnablementChangeMessage() { const ComponentDeletionWatcher deletionChecker (this); enablementChanged(); if (deletionChecker.hasBeenDeleted()) return; for (int i = getNumChildComponents(); --i >= 0;) { Component* const c = getChildComponent (i); if (c != 0) { c->sendEnablementChangeMessage(); if (deletionChecker.hasBeenDeleted()) return; } } } void Component::enablementChanged() { } void Component::setWantsKeyboardFocus (const bool wantsFocus) throw() { flags.wantsFocusFlag = wantsFocus; } void Component::setMouseClickGrabsKeyboardFocus (const bool shouldGrabFocus) { flags.dontFocusOnMouseClickFlag = ! shouldGrabFocus; } bool Component::getMouseClickGrabsKeyboardFocus() const throw() { return ! flags.dontFocusOnMouseClickFlag; } bool Component::getWantsKeyboardFocus() const throw() { return flags.wantsFocusFlag && ! flags.isDisabledFlag; } void Component::setFocusContainer (const bool isFocusContainer) throw() { flags.isFocusContainerFlag = isFocusContainer; } bool Component::isFocusContainer() const throw() { return flags.isFocusContainerFlag; } int Component::getExplicitFocusOrder() const throw() { return getComponentPropertyInt (T("_jexfo"), false, 0); } void Component::setExplicitFocusOrder (const int newFocusOrderIndex) throw() { setComponentProperty (T("_jexfo"), newFocusOrderIndex); } KeyboardFocusTraverser* Component::createFocusTraverser() { if (flags.isFocusContainerFlag || parentComponent_ == 0) return new KeyboardFocusTraverser(); return parentComponent_->createFocusTraverser(); } void Component::takeKeyboardFocus (const FocusChangeType cause) { // give the focus to this component if (currentlyFocusedComponent != this) { JUCE_TRY { // get the focus onto our desktop window ComponentPeer* const peer = getPeer(); if (peer != 0) { const ComponentDeletionWatcher deletionChecker (this); peer->grabFocus(); if (peer->isFocused() && currentlyFocusedComponent != this) { Component* const componentLosingFocus = currentlyFocusedComponent; currentlyFocusedComponent = this; Desktop::getInstance().triggerFocusCallback(); // call this after setting currentlyFocusedComponent so that the one that's // losing it has a chance to see where focus is going if (componentLosingFocus->isValidComponent()) componentLosingFocus->internalFocusLoss (cause); if (currentlyFocusedComponent == this) { focusGained (cause); if (! deletionChecker.hasBeenDeleted()) internalChildFocusChange (cause); } } } } #if JUCE_CATCH_UNHANDLED_EXCEPTIONS catch (const std::exception& e) { currentlyFocusedComponent = 0; Desktop::getInstance().triggerFocusCallback(); JUCEApplication::sendUnhandledException (&e, __FILE__, __LINE__); } catch (...) { currentlyFocusedComponent = 0; Desktop::getInstance().triggerFocusCallback(); JUCEApplication::sendUnhandledException (0, __FILE__, __LINE__); } #endif } } void Component::grabFocusInternal (const FocusChangeType cause, const bool canTryParent) { if (isShowing()) { if (flags.wantsFocusFlag && (isEnabled() || parentComponent_ == 0)) { takeKeyboardFocus (cause); } else { if (isParentOf (currentlyFocusedComponent) && currentlyFocusedComponent->isShowing()) { // do nothing if the focused component is actually a child of ours.. } else { // find the default child component.. KeyboardFocusTraverser* const traverser = createFocusTraverser(); if (traverser != 0) { Component* const defaultComp = traverser->getDefaultComponent (this); delete traverser; if (defaultComp != 0) { defaultComp->grabFocusInternal (cause, false); return; } } if (canTryParent && parentComponent_ != 0) { // if no children want it and we're allowed to try our parent comp, // then pass up to parent, which will try our siblings. parentComponent_->grabFocusInternal (cause, true); } } } } } void Component::grabKeyboardFocus() { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked grabFocusInternal (focusChangedDirectly); } void Component::moveKeyboardFocusToSibling (const bool moveToNext) { // if component methods are being called from threads other than the message // thread, you'll need to use a MessageManagerLock object to make sure it's thread-safe. checkMessageManagerIsLocked if (parentComponent_ != 0) { KeyboardFocusTraverser* const traverser = createFocusTraverser(); if (traverser != 0) { Component* const nextComp = moveToNext ? traverser->getNextComponent (this) : traverser->getPreviousComponent (this); delete traverser; if (nextComp != 0) { if (nextComp->isCurrentlyBlockedByAnotherModalComponent()) { const ComponentDeletionWatcher deletionChecker (nextComp); internalModalInputAttempt(); if (deletionChecker.hasBeenDeleted() || nextComp->isCurrentlyBlockedByAnotherModalComponent()) return; } nextComp->grabFocusInternal (focusChangedByTabKey); return; } } parentComponent_->moveKeyboardFocusToSibling (moveToNext); } } bool Component::hasKeyboardFocus (const bool trueIfChildIsFocused) const throw() { return (currentlyFocusedComponent == this) || (trueIfChildIsFocused && isParentOf (currentlyFocusedComponent)); } Component* JUCE_CALLTYPE Component::getCurrentlyFocusedComponent() throw() { return currentlyFocusedComponent; } void Component::giveAwayFocus() { // use a copy so we can clear the value before the call Component* const componentLosingFocus = currentlyFocusedComponent; currentlyFocusedComponent = 0; Desktop::getInstance().triggerFocusCallback(); if (componentLosingFocus->isValidComponent()) componentLosingFocus->internalFocusLoss (focusChangedDirectly); } bool Component::isMouseOver() const throw() { return flags.mouseOverFlag; } bool Component::isMouseButtonDown() const throw() { return flags.draggingFlag; } bool Component::isMouseOverOrDragging() const throw() { return flags.mouseOverFlag || flags.draggingFlag; } bool JUCE_CALLTYPE Component::isMouseButtonDownAnywhere() throw() { return ModifierKeys::getCurrentModifiers().isAnyMouseButtonDown(); } void Component::getMouseXYRelative (int& mx, int& my) const throw() { Desktop::getMousePosition (mx, my); globalPositionToRelative (mx, my); mx += unboundedMouseOffsetX; my += unboundedMouseOffsetY; } void Component::enableUnboundedMouseMovement (bool enable, bool keepCursorVisibleUntilOffscreen) throw() { enable = enable && isMouseButtonDown(); isCursorVisibleUntilOffscreen = keepCursorVisibleUntilOffscreen; if (enable != isUnboundedMouseModeOn) { if ((! enable) && ((! isCursorVisibleUntilOffscreen) || unboundedMouseOffsetX != 0 || unboundedMouseOffsetY != 0)) { // when released, return the mouse to within the component's bounds int mx, my; getMouseXYRelative (mx, my); mx = jlimit (0, getWidth(), mx); my = jlimit (0, getHeight(), my); relativePositionToGlobal (mx, my); Desktop::setMousePosition (mx, my); } isUnboundedMouseModeOn = enable; unboundedMouseOffsetX = 0; unboundedMouseOffsetY = 0; internalUpdateMouseCursor (true); } } Component* JUCE_CALLTYPE Component::getComponentUnderMouse() throw() { return componentUnderMouse; } const Rectangle Component::getParentMonitorArea() const throw() { int centreX = getWidth() / 2; int centreY = getHeight() / 2; relativePositionToGlobal (centreX, centreY); return Desktop::getInstance().getMonitorAreaContaining (centreX, centreY); } void Component::addKeyListener (KeyListener* const newListener) throw() { if (keyListeners_ == 0) keyListeners_ = new VoidArray (4); keyListeners_->addIfNotAlreadyThere (newListener); } void Component::removeKeyListener (KeyListener* const listenerToRemove) throw() { if (keyListeners_ != 0) keyListeners_->removeValue (listenerToRemove); } bool Component::keyPressed (const KeyPress&) { return false; } bool Component::keyStateChanged (const bool /*isKeyDown*/) { return false; } void Component::modifierKeysChanged (const ModifierKeys& modifiers) { if (parentComponent_ != 0) parentComponent_->modifierKeysChanged (modifiers); } void Component::internalModifierKeysChanged() { sendFakeMouseMove(); modifierKeysChanged (ModifierKeys::getCurrentModifiers()); } ComponentPeer* Component::getPeer() const throw() { if (flags.hasHeavyweightPeerFlag) return ComponentPeer::getPeerFor (this); else if (parentComponent_ != 0) return parentComponent_->getPeer(); else return 0; } const String Component::getComponentProperty (const String& keyName, const bool useParentComponentIfNotFound, const String& defaultReturnValue) const throw() { if (propertySet_ != 0 && ((! useParentComponentIfNotFound) || propertySet_->containsKey (keyName))) return propertySet_->getValue (keyName, defaultReturnValue); if (useParentComponentIfNotFound && (parentComponent_ != 0)) return parentComponent_->getComponentProperty (keyName, true, defaultReturnValue); return defaultReturnValue; } int Component::getComponentPropertyInt (const String& keyName, const bool useParentComponentIfNotFound, const int defaultReturnValue) const throw() { if (propertySet_ != 0 && ((! useParentComponentIfNotFound) || propertySet_->containsKey (keyName))) return propertySet_->getIntValue (keyName, defaultReturnValue); if (useParentComponentIfNotFound && (parentComponent_ != 0)) return parentComponent_->getComponentPropertyInt (keyName, true, defaultReturnValue); return defaultReturnValue; } double Component::getComponentPropertyDouble (const String& keyName, const bool useParentComponentIfNotFound, const double defaultReturnValue) const throw() { if (propertySet_ != 0 && ((! useParentComponentIfNotFound) || propertySet_->containsKey (keyName))) return propertySet_->getDoubleValue (keyName, defaultReturnValue); if (useParentComponentIfNotFound && (parentComponent_ != 0)) return parentComponent_->getComponentPropertyDouble (keyName, true, defaultReturnValue); return defaultReturnValue; } bool Component::getComponentPropertyBool (const String& keyName, const bool useParentComponentIfNotFound, const bool defaultReturnValue) const throw() { if (propertySet_ != 0 && ((! useParentComponentIfNotFound) || propertySet_->containsKey (keyName))) return propertySet_->getBoolValue (keyName, defaultReturnValue); if (useParentComponentIfNotFound && (parentComponent_ != 0)) return parentComponent_->getComponentPropertyBool (keyName, true, defaultReturnValue); return defaultReturnValue; } const Colour Component::getComponentPropertyColour (const String& keyName, const bool useParentComponentIfNotFound, const Colour& defaultReturnValue) const throw() { return Colour ((uint32) getComponentPropertyInt (keyName, useParentComponentIfNotFound, defaultReturnValue.getARGB())); } void Component::setComponentProperty (const String& keyName, const String& value) throw() { if (propertySet_ == 0) propertySet_ = new PropertySet(); propertySet_->setValue (keyName, value); } void Component::setComponentProperty (const String& keyName, const int value) throw() { if (propertySet_ == 0) propertySet_ = new PropertySet(); propertySet_->setValue (keyName, value); } void Component::setComponentProperty (const String& keyName, const double value) throw() { if (propertySet_ == 0) propertySet_ = new PropertySet(); propertySet_->setValue (keyName, value); } void Component::setComponentProperty (const String& keyName, const bool value) throw() { if (propertySet_ == 0) propertySet_ = new PropertySet(); propertySet_->setValue (keyName, value); } void Component::setComponentProperty (const String& keyName, const Colour& colour) throw() { setComponentProperty (keyName, (int) colour.getARGB()); } void Component::removeComponentProperty (const String& keyName) throw() { if (propertySet_ != 0) propertySet_->removeValue (keyName); } ComponentDeletionWatcher::ComponentDeletionWatcher (const Component* const componentToWatch_) throw() : componentToWatch (componentToWatch_), componentUID (componentToWatch_->getComponentUID()) { // not possible to check on an already-deleted object.. jassert (componentToWatch_->isValidComponent()); } ComponentDeletionWatcher::~ComponentDeletionWatcher() throw() {} bool ComponentDeletionWatcher::hasBeenDeleted() const throw() { return ! (componentToWatch->isValidComponent() && componentToWatch->getComponentUID() == componentUID); } const Component* ComponentDeletionWatcher::getComponent() const throw() { return hasBeenDeleted() ? 0 : componentToWatch; } END_JUCE_NAMESPACE /********* End of inlined file: juce_Component.cpp *********/ /********* Start of inlined file: juce_ComponentListener.cpp *********/ BEGIN_JUCE_NAMESPACE void ComponentListener::componentMovedOrResized (Component&, bool, bool) { } void ComponentListener::componentBroughtToFront (Component&) { } void ComponentListener::componentVisibilityChanged (Component&) { } void ComponentListener::componentChildrenChanged (Component&) { } void ComponentListener::componentParentHierarchyChanged (Component&) { } void ComponentListener::componentNameChanged (Component&) { } END_JUCE_NAMESPACE /********* End of inlined file: juce_ComponentListener.cpp *********/ /********* Start of inlined file: juce_Desktop.cpp *********/ BEGIN_JUCE_NAMESPACE extern void juce_updateMultiMonitorInfo (Array & monitorCoords, const bool clipToWorkArea) throw(); static Desktop* juce_desktopInstance = 0; Desktop::Desktop() throw() : mouseListeners (2), desktopComponents (4), monitorCoordsClipped (2), monitorCoordsUnclipped (2), lastMouseX (0), lastMouseY (0), kioskModeComponent (0) { refreshMonitorSizes(); } Desktop::~Desktop() throw() { jassert (juce_desktopInstance == this); juce_desktopInstance = 0; // doh! If you don't delete all your windows before exiting, you're going to // be leaking memory! jassert (desktopComponents.size() == 0); } Desktop& JUCE_CALLTYPE Desktop::getInstance() throw() { if (juce_desktopInstance == 0) juce_desktopInstance = new Desktop(); return *juce_desktopInstance; } void Desktop::refreshMonitorSizes() throw() { const Array oldClipped (monitorCoordsClipped); const Array oldUnclipped (monitorCoordsUnclipped); monitorCoordsClipped.clear(); monitorCoordsUnclipped.clear(); juce_updateMultiMonitorInfo (monitorCoordsClipped, true); juce_updateMultiMonitorInfo (monitorCoordsUnclipped, false); jassert (monitorCoordsClipped.size() > 0 && monitorCoordsClipped.size() == monitorCoordsUnclipped.size()); if (oldClipped != monitorCoordsClipped || oldUnclipped != monitorCoordsUnclipped) { for (int i = ComponentPeer::getNumPeers(); --i >= 0;) { ComponentPeer* const p = ComponentPeer::getPeer (i); if (p != 0) p->handleScreenSizeChange(); } } } int Desktop::getNumDisplayMonitors() const throw() { return monitorCoordsClipped.size(); } const Rectangle Desktop::getDisplayMonitorCoordinates (const int index, const bool clippedToWorkArea) const throw() { return clippedToWorkArea ? monitorCoordsClipped [index] : monitorCoordsUnclipped [index]; } const RectangleList Desktop::getAllMonitorDisplayAreas (const bool clippedToWorkArea) const throw() { RectangleList rl; for (int i = 0; i < getNumDisplayMonitors(); ++i) rl.addWithoutMerging (getDisplayMonitorCoordinates (i, clippedToWorkArea)); return rl; } const Rectangle Desktop::getMainMonitorArea (const bool clippedToWorkArea) const throw() { return getDisplayMonitorCoordinates (0, clippedToWorkArea); } const Rectangle Desktop::getMonitorAreaContaining (int cx, int cy, const bool clippedToWorkArea) const throw() { Rectangle best (getMainMonitorArea (clippedToWorkArea)); double bestDistance = 1.0e10; for (int i = getNumDisplayMonitors(); --i >= 0;) { const Rectangle rect (getDisplayMonitorCoordinates (i, clippedToWorkArea)); if (rect.contains (cx, cy)) return rect; const double distance = juce_hypot ((double) (rect.getCentreX() - cx), (double) (rect.getCentreY() - cy)); if (distance < bestDistance) { bestDistance = distance; best = rect; } } return best; } int Desktop::getNumComponents() const throw() { return desktopComponents.size(); } Component* Desktop::getComponent (const int index) const throw() { return (Component*) desktopComponents [index]; } Component* Desktop::findComponentAt (const int screenX, const int screenY) const { for (int i = desktopComponents.size(); --i >= 0;) { Component* const c = (Component*) desktopComponents.getUnchecked(i); int x = screenX, y = screenY; c->globalPositionToRelative (x, y); if (c->contains (x, y)) return c->getComponentAt (x, y); } return 0; } void Desktop::addDesktopComponent (Component* const c) throw() { jassert (c != 0); jassert (! desktopComponents.contains (c)); desktopComponents.addIfNotAlreadyThere (c); } void Desktop::removeDesktopComponent (Component* const c) throw() { desktopComponents.removeValue (c); } void Desktop::componentBroughtToFront (Component* const c) throw() { const int index = desktopComponents.indexOf (c); jassert (index >= 0); if (index >= 0) desktopComponents.move (index, -1); } // from Component.cpp extern int juce_recentMouseDownX [4]; extern int juce_recentMouseDownY [4]; extern int juce_MouseClickCounter; void Desktop::getLastMouseDownPosition (int& x, int& y) throw() { x = juce_recentMouseDownX [0]; y = juce_recentMouseDownY [0]; } int Desktop::getMouseButtonClickCounter() throw() { return juce_MouseClickCounter; } void Desktop::addGlobalMouseListener (MouseListener* const listener) throw() { jassert (listener != 0); if (listener != 0) { mouseListeners.add (listener); resetTimer(); } } void Desktop::removeGlobalMouseListener (MouseListener* const listener) throw() { mouseListeners.removeValue (listener); resetTimer(); } void Desktop::addFocusChangeListener (FocusChangeListener* const listener) throw() { jassert (listener != 0); if (listener != 0) focusListeners.add (listener); } void Desktop::removeFocusChangeListener (FocusChangeListener* const listener) throw() { focusListeners.removeValue (listener); } void Desktop::triggerFocusCallback() throw() { triggerAsyncUpdate(); } void Desktop::handleAsyncUpdate() { for (int i = focusListeners.size(); --i >= 0;) { ((FocusChangeListener*) focusListeners.getUnchecked (i))->globalFocusChanged (Component::getCurrentlyFocusedComponent()); i = jmin (i, focusListeners.size()); } } void Desktop::timerCallback() { int x, y; getMousePosition (x, y); if (lastMouseX != x || lastMouseY != y) sendMouseMove(); } void Desktop::sendMouseMove() { if (mouseListeners.size() > 0) { startTimer (20); int x, y; getMousePosition (x, y); lastMouseX = x; lastMouseY = y; Component* const target = findComponentAt (x, y); if (target != 0) { target->globalPositionToRelative (x, y); ComponentDeletionWatcher deletionChecker (target); const MouseEvent me (x, y, ModifierKeys::getCurrentModifiers(), target, Time::getCurrentTime(), x, y, Time::getCurrentTime(), 0, false); for (int i = mouseListeners.size(); --i >= 0;) { if (ModifierKeys::getCurrentModifiers().isAnyMouseButtonDown()) ((MouseListener*) mouseListeners[i])->mouseDrag (me); else ((MouseListener*) mouseListeners[i])->mouseMove (me); if (deletionChecker.hasBeenDeleted()) return; i = jmin (i, mouseListeners.size()); } } } } void Desktop::resetTimer() throw() { if (mouseListeners.size() == 0) stopTimer(); else startTimer (100); getMousePosition (lastMouseX, lastMouseY); } extern void juce_setKioskComponent (Component* kioskModeComponent, bool enableOrDisable, bool allowMenusAndBars); void Desktop::setKioskModeComponent (Component* componentToUse, const bool allowMenusAndBars) { if (kioskModeComponent != componentToUse) { // agh! Don't delete a component without first stopping it being the kiosk comp jassert (kioskModeComponent == 0 || kioskModeComponent->isValidComponent()); // agh! Don't remove a component from the desktop if it's the kiosk comp! jassert (kioskModeComponent == 0 || kioskModeComponent->isOnDesktop()); if (kioskModeComponent->isValidComponent()) { juce_setKioskComponent (kioskModeComponent, false, allowMenusAndBars); kioskModeComponent->setBounds (kioskComponentOriginalBounds); } kioskModeComponent = componentToUse; if (kioskModeComponent != 0) { jassert (kioskModeComponent->isValidComponent()); // Only components that are already on the desktop can be put into kiosk mode! jassert (kioskModeComponent->isOnDesktop()); kioskComponentOriginalBounds = kioskModeComponent->getBounds(); juce_setKioskComponent (kioskModeComponent, true, allowMenusAndBars); } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_Desktop.cpp *********/ /********* Start of inlined file: juce_ArrowButton.cpp *********/ BEGIN_JUCE_NAMESPACE ArrowButton::ArrowButton (const String& name, float arrowDirectionInRadians, const Colour& arrowColour) : Button (name), colour (arrowColour) { path.lineTo (0.0f, 1.0f); path.lineTo (1.0f, 0.5f); path.closeSubPath(); path.applyTransform (AffineTransform::rotation (float_Pi * 2.0f * arrowDirectionInRadians, 0.5f, 0.5f)); setComponentEffect (&shadow); buttonStateChanged(); } ArrowButton::~ArrowButton() { } void ArrowButton::paintButton (Graphics& g, bool /*isMouseOverButton*/, bool /*isButtonDown*/) { g.setColour (colour); g.fillPath (path, path.getTransformToScaleToFit ((float) offset, (float) offset, (float) (getWidth() - 3), (float) (getHeight() - 3), false)); } void ArrowButton::buttonStateChanged() { offset = (isDown()) ? 1 : 0; shadow.setShadowProperties ((isDown()) ? 1.2f : 3.0f, 0.3f, -1, 0); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ArrowButton.cpp *********/ /********* Start of inlined file: juce_Button.cpp *********/ BEGIN_JUCE_NAMESPACE Button::Button (const String& name) : Component (name), shortcuts (2), keySource (0), text (name), buttonListeners (2), repeatTimer (0), buttonPressTime (0), lastTimeCallbackTime (0), commandManagerToUse (0), autoRepeatDelay (-1), autoRepeatSpeed (0), autoRepeatMinimumDelay (-1), radioGroupId (0), commandID (0), connectedEdgeFlags (0), buttonState (buttonNormal), isOn (false), clickTogglesState (false), needsToRelease (false), needsRepainting (false), isKeyDown (false), triggerOnMouseDown (false), generateTooltip (false) { setWantsKeyboardFocus (true); } Button::~Button() { if (commandManagerToUse != 0) commandManagerToUse->removeListener (this); delete repeatTimer; clearShortcuts(); } void Button::setButtonText (const String& newText) throw() { if (text != newText) { text = newText; repaint(); } } void Button::setTooltip (const String& newTooltip) { SettableTooltipClient::setTooltip (newTooltip); generateTooltip = false; } const String Button::getTooltip() { if (generateTooltip && commandManagerToUse != 0 && commandID != 0) { String tt (commandManagerToUse->getDescriptionOfCommand (commandID)); Array keyPresses (commandManagerToUse->getKeyMappings()->getKeyPressesAssignedToCommand (commandID)); for (int i = 0; i < keyPresses.size(); ++i) { const String key (keyPresses.getReference(i).getTextDescription()); if (key.length() == 1) tt << " [shortcut: '" << key << "']"; else tt << " [" << key << ']'; } return tt; } return SettableTooltipClient::getTooltip(); } void Button::setConnectedEdges (const int connectedEdgeFlags_) throw() { if (connectedEdgeFlags != connectedEdgeFlags_) { connectedEdgeFlags = connectedEdgeFlags_; repaint(); } } void Button::setToggleState (const bool shouldBeOn, const bool sendChangeNotification) { if (shouldBeOn != isOn) { const ComponentDeletionWatcher deletionWatcher (this); isOn = shouldBeOn; repaint(); if (sendChangeNotification) sendClickMessage (ModifierKeys()); if ((! deletionWatcher.hasBeenDeleted()) && isOn) turnOffOtherButtonsInGroup (sendChangeNotification); } } void Button::setClickingTogglesState (const bool shouldToggle) throw() { clickTogglesState = shouldToggle; // if you've got clickTogglesState turned on, you shouldn't also connect the button // up to be a command invoker. Instead, your command handler must flip the state of whatever // it is that this button represents, and the button will update its state to reflect this // in the applicationCommandListChanged() method. jassert (commandManagerToUse == 0 || ! clickTogglesState); } bool Button::getClickingTogglesState() const throw() { return clickTogglesState; } void Button::setRadioGroupId (const int newGroupId) { if (radioGroupId != newGroupId) { radioGroupId = newGroupId; if (isOn) turnOffOtherButtonsInGroup (true); } } void Button::turnOffOtherButtonsInGroup (const bool sendChangeNotification) { Component* const p = getParentComponent(); if (p != 0 && radioGroupId != 0) { const ComponentDeletionWatcher deletionWatcher (this); for (int i = p->getNumChildComponents(); --i >= 0;) { Component* const c = p->getChildComponent (i); if (c != this) { Button* const b = dynamic_cast (c); if (b != 0 && b->getRadioGroupId() == radioGroupId) { b->setToggleState (false, sendChangeNotification); if (deletionWatcher.hasBeenDeleted()) return; } } } } } void Button::enablementChanged() { updateState (0); repaint(); } Button::ButtonState Button::updateState (const MouseEvent* const e) throw() { ButtonState state = buttonNormal; if (isEnabled() && isVisible() && ! isCurrentlyBlockedByAnotherModalComponent()) { int mx, my; if (e == 0) { getMouseXYRelative (mx, my); } else { const MouseEvent e2 (e->getEventRelativeTo (this)); mx = e2.x; my = e2.y; } const bool over = reallyContains (mx, my, true); const bool down = isMouseButtonDown(); if ((down && (over || (triggerOnMouseDown && buttonState == buttonDown))) || isKeyDown) state = buttonDown; else if (over) state = buttonOver; } setState (state); return state; } void Button::setState (const ButtonState newState) { if (buttonState != newState) { buttonState = newState; repaint(); if (buttonState == buttonDown) { buttonPressTime = Time::getApproximateMillisecondCounter(); lastTimeCallbackTime = buttonPressTime; } sendStateMessage(); } } bool Button::isDown() const throw() { return buttonState == buttonDown; } bool Button::isOver() const throw() { return buttonState != buttonNormal; } void Button::buttonStateChanged() { } uint32 Button::getMillisecondsSinceButtonDown() const throw() { const uint32 now = Time::getApproximateMillisecondCounter(); return now > buttonPressTime ? now - buttonPressTime : 0; } void Button::setTriggeredOnMouseDown (const bool isTriggeredOnMouseDown) throw() { triggerOnMouseDown = isTriggeredOnMouseDown; } void Button::clicked() { } void Button::clicked (const ModifierKeys& /*modifiers*/) { clicked(); } static const int clickMessageId = 0x2f3f4f99; void Button::triggerClick() { postCommandMessage (clickMessageId); } void Button::internalClickCallback (const ModifierKeys& modifiers) { if (clickTogglesState) setToggleState ((radioGroupId != 0) || ! isOn, false); sendClickMessage (modifiers); } void Button::flashButtonState() throw() { if (isEnabled()) { needsToRelease = true; setState (buttonDown); getRepeatTimer().startTimer (100); } } void Button::handleCommandMessage (int commandId) { if (commandId == clickMessageId) { if (isEnabled()) { flashButtonState(); internalClickCallback (ModifierKeys::getCurrentModifiers()); } } else { Component::handleCommandMessage (commandId); } } void Button::addButtonListener (ButtonListener* const newListener) throw() { jassert (newListener != 0); jassert (! buttonListeners.contains (newListener)); // trying to add a listener to the list twice! if (newListener != 0) buttonListeners.add (newListener); } void Button::removeButtonListener (ButtonListener* const listener) throw() { jassert (buttonListeners.contains (listener)); // trying to remove a listener that isn't on the list! buttonListeners.removeValue (listener); } void Button::sendClickMessage (const ModifierKeys& modifiers) { const ComponentDeletionWatcher cdw (this); if (commandManagerToUse != 0 && commandID != 0) { ApplicationCommandTarget::InvocationInfo info (commandID); info.invocationMethod = ApplicationCommandTarget::InvocationInfo::fromButton; info.originatingComponent = this; commandManagerToUse->invoke (info, true); } clicked (modifiers); if (! cdw.hasBeenDeleted()) { for (int i = buttonListeners.size(); --i >= 0;) { ButtonListener* const bl = (ButtonListener*) buttonListeners[i]; if (bl != 0) { bl->buttonClicked (this); if (cdw.hasBeenDeleted()) return; } } } } void Button::sendStateMessage() { const ComponentDeletionWatcher cdw (this); buttonStateChanged(); if (cdw.hasBeenDeleted()) return; for (int i = buttonListeners.size(); --i >= 0;) { ButtonListener* const bl = (ButtonListener*) buttonListeners[i]; if (bl != 0) { bl->buttonStateChanged (this); if (cdw.hasBeenDeleted()) return; } } } void Button::paint (Graphics& g) { if (needsToRelease && isEnabled()) { needsToRelease = false; needsRepainting = true; } paintButton (g, isOver(), isDown()); } void Button::mouseEnter (const MouseEvent& e) { updateState (&e); } void Button::mouseExit (const MouseEvent& e) { updateState (&e); } void Button::mouseDown (const MouseEvent& e) { updateState (&e); if (isDown()) { if (autoRepeatDelay >= 0) getRepeatTimer().startTimer (autoRepeatDelay); if (triggerOnMouseDown) internalClickCallback (e.mods); } } void Button::mouseUp (const MouseEvent& e) { const bool wasDown = isDown(); updateState (&e); if (wasDown && isOver() && ! triggerOnMouseDown) internalClickCallback (e.mods); } void Button::mouseDrag (const MouseEvent& e) { const ButtonState oldState = buttonState; updateState (&e); if (autoRepeatDelay >= 0 && buttonState != oldState && isDown()) getRepeatTimer().startTimer (autoRepeatSpeed); } void Button::focusGained (FocusChangeType) { updateState (0); repaint(); } void Button::focusLost (FocusChangeType) { updateState (0); repaint(); } void Button::setVisible (bool shouldBeVisible) { if (shouldBeVisible != isVisible()) { Component::setVisible (shouldBeVisible); if (! shouldBeVisible) needsToRelease = false; updateState (0); } else { Component::setVisible (shouldBeVisible); } } void Button::parentHierarchyChanged() { Component* const newKeySource = (shortcuts.size() == 0) ? 0 : getTopLevelComponent(); if (newKeySource != keySource) { if (keySource->isValidComponent()) keySource->removeKeyListener (this); keySource = newKeySource; if (keySource->isValidComponent()) keySource->addKeyListener (this); } } void Button::setCommandToTrigger (ApplicationCommandManager* const commandManagerToUse_, const int commandID_, const bool generateTooltip_) { commandID = commandID_; generateTooltip = generateTooltip_; if (commandManagerToUse != commandManagerToUse_) { if (commandManagerToUse != 0) commandManagerToUse->removeListener (this); commandManagerToUse = commandManagerToUse_; if (commandManagerToUse != 0) commandManagerToUse->addListener (this); // if you've got clickTogglesState turned on, you shouldn't also connect the button // up to be a command invoker. Instead, your command handler must flip the state of whatever // it is that this button represents, and the button will update its state to reflect this // in the applicationCommandListChanged() method. jassert (commandManagerToUse == 0 || ! clickTogglesState); } if (commandManagerToUse != 0) applicationCommandListChanged(); else setEnabled (true); } void Button::applicationCommandInvoked (const ApplicationCommandTarget::InvocationInfo& info) { if (info.commandID == commandID && (info.commandFlags & ApplicationCommandInfo::dontTriggerVisualFeedback) == 0) { flashButtonState(); } } void Button::applicationCommandListChanged() { if (commandManagerToUse != 0) { ApplicationCommandInfo info (0); ApplicationCommandTarget* const target = commandManagerToUse->getTargetForCommand (commandID, info); setEnabled (target != 0 && (info.flags & ApplicationCommandInfo::isDisabled) == 0); if (target != 0) setToggleState ((info.flags & ApplicationCommandInfo::isTicked) != 0, false); } } void Button::addShortcut (const KeyPress& key) { if (key.isValid()) { jassert (! isRegisteredForShortcut (key)); // already registered! shortcuts.add (key); parentHierarchyChanged(); } } void Button::clearShortcuts() { shortcuts.clear(); parentHierarchyChanged(); } bool Button::isShortcutPressed() const throw() { if (! isCurrentlyBlockedByAnotherModalComponent()) { for (int i = shortcuts.size(); --i >= 0;) if (shortcuts.getReference(i).isCurrentlyDown()) return true; } return false; } bool Button::isRegisteredForShortcut (const KeyPress& key) const throw() { for (int i = shortcuts.size(); --i >= 0;) if (key == shortcuts.getReference(i)) return true; return false; } bool Button::keyStateChanged (const bool, Component*) { if (! isEnabled()) return false; const bool wasDown = isKeyDown; isKeyDown = isShortcutPressed(); if (autoRepeatDelay >= 0 && (isKeyDown && ! wasDown)) getRepeatTimer().startTimer (autoRepeatDelay); updateState (0); if (isEnabled() && wasDown && ! isKeyDown) { internalClickCallback (ModifierKeys::getCurrentModifiers()); // (return immediately - this button may now have been deleted) return true; } return wasDown || isKeyDown; } bool Button::keyPressed (const KeyPress&, Component*) { // returning true will avoid forwarding events for keys that we're using as shortcuts return isShortcutPressed(); } bool Button::keyPressed (const KeyPress& key) { if (isEnabled() && key.isKeyCode (KeyPress::returnKey)) { triggerClick(); return true; } return false; } void Button::setRepeatSpeed (const int initialDelayMillisecs, const int repeatMillisecs, const int minimumDelayInMillisecs) throw() { autoRepeatDelay = initialDelayMillisecs; autoRepeatSpeed = repeatMillisecs; autoRepeatMinimumDelay = jmin (autoRepeatSpeed, minimumDelayInMillisecs); } void Button::repeatTimerCallback() throw() { if (needsRepainting) { getRepeatTimer().stopTimer(); updateState (0); needsRepainting = false; } else if (autoRepeatSpeed > 0 && (isKeyDown || (updateState (0) == buttonDown))) { int repeatSpeed = autoRepeatSpeed; if (autoRepeatMinimumDelay >= 0) { double timeHeldDown = jmin (1.0, getMillisecondsSinceButtonDown() / 4000.0); timeHeldDown *= timeHeldDown; repeatSpeed = repeatSpeed + (int) (timeHeldDown * (autoRepeatMinimumDelay - repeatSpeed)); } repeatSpeed = jmax (1, repeatSpeed); getRepeatTimer().startTimer (repeatSpeed); const uint32 now = Time::getApproximateMillisecondCounter(); const int numTimesToCallback = (now > lastTimeCallbackTime) ? jmax (1, (now - lastTimeCallbackTime) / repeatSpeed) : 1; lastTimeCallbackTime = now; const ComponentDeletionWatcher cdw (this); for (int i = numTimesToCallback; --i >= 0;) { internalClickCallback (ModifierKeys::getCurrentModifiers()); if (cdw.hasBeenDeleted() || ! isDown()) return; } } else if (! needsToRelease) { getRepeatTimer().stopTimer(); } } class InternalButtonRepeatTimer : public Timer { public: InternalButtonRepeatTimer (Button& owner_) throw() : owner (owner_) { } ~InternalButtonRepeatTimer() { } void timerCallback() { owner.repeatTimerCallback(); } private: Button& owner; InternalButtonRepeatTimer (const InternalButtonRepeatTimer&); const InternalButtonRepeatTimer& operator= (const InternalButtonRepeatTimer&); }; Timer& Button::getRepeatTimer() throw() { if (repeatTimer == 0) repeatTimer = new InternalButtonRepeatTimer (*this); return *repeatTimer; } END_JUCE_NAMESPACE /********* End of inlined file: juce_Button.cpp *********/ /********* Start of inlined file: juce_DrawableButton.cpp *********/ BEGIN_JUCE_NAMESPACE DrawableButton::DrawableButton (const String& name, const DrawableButton::ButtonStyle buttonStyle) : Button (name), style (buttonStyle), normalImage (0), overImage (0), downImage (0), disabledImage (0), normalImageOn (0), overImageOn (0), downImageOn (0), disabledImageOn (0), edgeIndent (3) { if (buttonStyle == ImageOnButtonBackground) { backgroundOff = Colour (0xffbbbbff); backgroundOn = Colour (0xff3333ff); } else { backgroundOff = Colours::transparentBlack; backgroundOn = Colour (0xaabbbbff); } } DrawableButton::~DrawableButton() { deleteImages(); } void DrawableButton::deleteImages() { deleteAndZero (normalImage); deleteAndZero (overImage); deleteAndZero (downImage); deleteAndZero (disabledImage); deleteAndZero (normalImageOn); deleteAndZero (overImageOn); deleteAndZero (downImageOn); deleteAndZero (disabledImageOn); } void DrawableButton::setImages (const Drawable* normal, const Drawable* over, const Drawable* down, const Drawable* disabled, const Drawable* normalOn, const Drawable* overOn, const Drawable* downOn, const Drawable* disabledOn) { deleteImages(); jassert (normal != 0); // you really need to give it at least a normal image.. if (normal != 0) normalImage = normal->createCopy(); if (over != 0) overImage = over->createCopy(); if (down != 0) downImage = down->createCopy(); if (disabled != 0) disabledImage = disabled->createCopy(); if (normalOn != 0) normalImageOn = normalOn->createCopy(); if (overOn != 0) overImageOn = overOn->createCopy(); if (downOn != 0) downImageOn = downOn->createCopy(); if (disabledOn != 0) disabledImageOn = disabledOn->createCopy(); repaint(); } void DrawableButton::setButtonStyle (const DrawableButton::ButtonStyle newStyle) { if (style != newStyle) { style = newStyle; repaint(); } } void DrawableButton::setBackgroundColours (const Colour& toggledOffColour, const Colour& toggledOnColour) { if (backgroundOff != toggledOffColour || backgroundOn != toggledOnColour) { backgroundOff = toggledOffColour; backgroundOn = toggledOnColour; repaint(); } } const Colour& DrawableButton::getBackgroundColour() const throw() { return getToggleState() ? backgroundOn : backgroundOff; } void DrawableButton::setEdgeIndent (const int numPixelsIndent) { edgeIndent = numPixelsIndent; repaint(); } void DrawableButton::paintButton (Graphics& g, bool isMouseOverButton, bool isButtonDown) { Rectangle imageSpace; if (style == ImageOnButtonBackground) { const int insetX = getWidth() / 4; const int insetY = getHeight() / 4; imageSpace.setBounds (insetX, insetY, getWidth() - insetX * 2, getHeight() - insetY * 2); getLookAndFeel().drawButtonBackground (g, *this, getBackgroundColour(), isMouseOverButton, isButtonDown); } else { g.fillAll (getBackgroundColour()); const int textH = (style == ImageAboveTextLabel) ? jmin (16, proportionOfHeight (0.25f)) : 0; const int indentX = jmin (edgeIndent, proportionOfWidth (0.3f)); const int indentY = jmin (edgeIndent, proportionOfHeight (0.3f)); imageSpace.setBounds (indentX, indentY, getWidth() - indentX * 2, getHeight() - indentY * 2 - textH); if (textH > 0) { g.setFont ((float) textH); g.setColour (Colours::black.withAlpha (isEnabled() ? 1.0f : 0.4f)); g.drawFittedText (getButtonText(), 2, getHeight() - textH - 1, getWidth() - 4, textH, Justification::centred, 1); } } g.setImageResamplingQuality (Graphics::mediumResamplingQuality); g.setOpacity (1.0f); const Drawable* imageToDraw = 0; if (isEnabled()) { imageToDraw = getCurrentImage(); } else { imageToDraw = getToggleState() ? disabledImageOn : disabledImage; if (imageToDraw == 0) { g.setOpacity (0.4f); imageToDraw = getNormalImage(); } } if (imageToDraw != 0) { if (style == ImageRaw) { imageToDraw->draw (g); } else { imageToDraw->drawWithin (g, imageSpace.getX(), imageSpace.getY(), imageSpace.getWidth(), imageSpace.getHeight(), RectanglePlacement::centred); } } } const Drawable* DrawableButton::getCurrentImage() const throw() { if (isDown()) return getDownImage(); if (isOver()) return getOverImage(); return getNormalImage(); } const Drawable* DrawableButton::getNormalImage() const throw() { return (getToggleState() && normalImageOn != 0) ? normalImageOn : normalImage; } const Drawable* DrawableButton::getOverImage() const throw() { const Drawable* d = normalImage; if (getToggleState()) { if (overImageOn != 0) d = overImageOn; else if (normalImageOn != 0) d = normalImageOn; else if (overImage != 0) d = overImage; } else { if (overImage != 0) d = overImage; } return d; } const Drawable* DrawableButton::getDownImage() const throw() { const Drawable* d = normalImage; if (getToggleState()) { if (downImageOn != 0) d = downImageOn; else if (overImageOn != 0) d = overImageOn; else if (normalImageOn != 0) d = normalImageOn; else if (downImage != 0) d = downImage; else d = getOverImage(); } else { if (downImage != 0) d = downImage; else d = getOverImage(); } return d; } END_JUCE_NAMESPACE /********* End of inlined file: juce_DrawableButton.cpp *********/ /********* Start of inlined file: juce_HyperlinkButton.cpp *********/ BEGIN_JUCE_NAMESPACE HyperlinkButton::HyperlinkButton (const String& linkText, const URL& linkURL) : Button (linkText), url (linkURL), font (14.0f, Font::underlined), resizeFont (true), justification (Justification::centred) { setMouseCursor (MouseCursor::PointingHandCursor); setTooltip (linkURL.toString (false)); } HyperlinkButton::~HyperlinkButton() { } void HyperlinkButton::setFont (const Font& newFont, const bool resizeToMatchComponentHeight, const Justification& justificationType) { font = newFont; resizeFont = resizeToMatchComponentHeight; justification = justificationType; repaint(); } void HyperlinkButton::setURL (const URL& newURL) throw() { url = newURL; setTooltip (newURL.toString (false)); } const Font HyperlinkButton::getFontToUse() const { Font f (font); if (resizeFont) f.setHeight (getHeight() * 0.7f); return f; } void HyperlinkButton::changeWidthToFitText() { setSize (getFontToUse().getStringWidth (getName()) + 6, getHeight()); } void HyperlinkButton::colourChanged() { repaint(); } void HyperlinkButton::clicked() { if (url.isWellFormed()) url.launchInDefaultBrowser(); } void HyperlinkButton::paintButton (Graphics& g, bool isMouseOverButton, bool isButtonDown) { const Colour textColour (findColour (textColourId)); if (isEnabled()) g.setColour ((isMouseOverButton) ? textColour.darker ((isButtonDown) ? 1.3f : 0.4f) : textColour); else g.setColour (textColour.withMultipliedAlpha (0.4f)); g.setFont (getFontToUse()); g.drawText (getButtonText(), 2, 0, getWidth() - 2, getHeight(), justification.getOnlyHorizontalFlags() | Justification::verticallyCentred, true); } END_JUCE_NAMESPACE /********* End of inlined file: juce_HyperlinkButton.cpp *********/ /********* Start of inlined file: juce_ImageButton.cpp *********/ BEGIN_JUCE_NAMESPACE ImageButton::ImageButton (const String& text_) : Button (text_), scaleImageToFit (true), preserveProportions (true), alphaThreshold (0), imageX (0), imageY (0), imageW (0), imageH (0), normalImage (0), overImage (0), downImage (0) { } ImageButton::~ImageButton() { deleteImages(); } void ImageButton::deleteImages() { if (normalImage != 0) { if (ImageCache::isImageInCache (normalImage)) ImageCache::release (normalImage); else delete normalImage; } if (overImage != 0) { if (ImageCache::isImageInCache (overImage)) ImageCache::release (overImage); else delete overImage; } if (downImage != 0) { if (ImageCache::isImageInCache (downImage)) ImageCache::release (downImage); else delete downImage; } } void ImageButton::setImages (const bool resizeButtonNowToFitThisImage, const bool rescaleImagesWhenButtonSizeChanges, const bool preserveImageProportions, Image* const normalImage_, const float imageOpacityWhenNormal, const Colour& overlayColourWhenNormal, Image* const overImage_, const float imageOpacityWhenOver, const Colour& overlayColourWhenOver, Image* const downImage_, const float imageOpacityWhenDown, const Colour& overlayColourWhenDown, const float hitTestAlphaThreshold) { deleteImages(); normalImage = normalImage_; overImage = overImage_; downImage = downImage_; if (resizeButtonNowToFitThisImage && normalImage != 0) { imageW = normalImage->getWidth(); imageH = normalImage->getHeight(); setSize (imageW, imageH); } scaleImageToFit = rescaleImagesWhenButtonSizeChanges; preserveProportions = preserveImageProportions; normalOpacity = imageOpacityWhenNormal; normalOverlay = overlayColourWhenNormal; overOpacity = imageOpacityWhenOver; overOverlay = overlayColourWhenOver; downOpacity = imageOpacityWhenDown; downOverlay = overlayColourWhenDown; alphaThreshold = (unsigned char) jlimit (0, 0xff, roundFloatToInt (255.0f * hitTestAlphaThreshold)); repaint(); } Image* ImageButton::getCurrentImage() const { if (isDown() || getToggleState()) return getDownImage(); if (isOver()) return getOverImage(); return getNormalImage(); } Image* ImageButton::getNormalImage() const throw() { return normalImage; } Image* ImageButton::getOverImage() const throw() { return (overImage != 0) ? overImage : normalImage; } Image* ImageButton::getDownImage() const throw() { return (downImage != 0) ? downImage : getOverImage(); } void ImageButton::paintButton (Graphics& g, bool isMouseOverButton, bool isButtonDown) { if (! isEnabled()) { isMouseOverButton = false; isButtonDown = false; } Image* const im = getCurrentImage(); if (im != 0) { const int iw = im->getWidth(); const int ih = im->getHeight(); imageW = getWidth(); imageH = getHeight(); imageX = (imageW - iw) >> 1; imageY = (imageH - ih) >> 1; if (scaleImageToFit) { if (preserveProportions) { int newW, newH; const float imRatio = ih / (float)iw; const float destRatio = imageH / (float)imageW; if (imRatio > destRatio) { newW = roundFloatToInt (imageH / imRatio); newH = imageH; } else { newW = imageW; newH = roundFloatToInt (imageW * imRatio); } imageX = (imageW - newW) / 2; imageY = (imageH - newH) / 2; imageW = newW; imageH = newH; } else { imageX = 0; imageY = 0; } } if (! scaleImageToFit) { imageW = iw; imageH = ih; } getLookAndFeel().drawImageButton (g, im, imageX, imageY, imageW, imageH, isButtonDown ? downOverlay : (isMouseOverButton ? overOverlay : normalOverlay), isButtonDown ? downOpacity : (isMouseOverButton ? overOpacity : normalOpacity), *this); } } bool ImageButton::hitTest (int x, int y) { if (alphaThreshold == 0) return true; Image* const im = getCurrentImage(); return im == 0 || (imageW > 0 && imageH > 0 && alphaThreshold < im->getPixelAt (((x - imageX) * im->getWidth()) / imageW, ((y - imageY) * im->getHeight()) / imageH).getAlpha()); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ImageButton.cpp *********/ /********* Start of inlined file: juce_ShapeButton.cpp *********/ BEGIN_JUCE_NAMESPACE ShapeButton::ShapeButton (const String& text, const Colour& normalColour_, const Colour& overColour_, const Colour& downColour_) : Button (text), normalColour (normalColour_), overColour (overColour_), downColour (downColour_), maintainShapeProportions (false), outlineWidth (0.0f) { } ShapeButton::~ShapeButton() { } void ShapeButton::setColours (const Colour& newNormalColour, const Colour& newOverColour, const Colour& newDownColour) { normalColour = newNormalColour; overColour = newOverColour; downColour = newDownColour; } void ShapeButton::setOutline (const Colour& newOutlineColour, const float newOutlineWidth) { outlineColour = newOutlineColour; outlineWidth = newOutlineWidth; } void ShapeButton::setShape (const Path& newShape, const bool resizeNowToFitThisShape, const bool maintainShapeProportions_, const bool hasShadow) { shape = newShape; maintainShapeProportions = maintainShapeProportions_; shadow.setShadowProperties (3.0f, 0.5f, 0, 0); setComponentEffect ((hasShadow) ? &shadow : 0); if (resizeNowToFitThisShape) { float x, y, w, h; shape.getBounds (x, y, w, h); shape.applyTransform (AffineTransform::translation (-x, -y)); if (hasShadow) { w += 4.0f; h += 4.0f; shape.applyTransform (AffineTransform::translation (2.0f, 2.0f)); } setSize (1 + (int) (w + outlineWidth), 1 + (int) (h + outlineWidth)); } } void ShapeButton::paintButton (Graphics& g, bool isMouseOverButton, bool isButtonDown) { if (! isEnabled()) { isMouseOverButton = false; isButtonDown = false; } g.setColour ((isButtonDown) ? downColour : (isMouseOverButton) ? overColour : normalColour); int w = getWidth(); int h = getHeight(); if (getComponentEffect() != 0) { w -= 4; h -= 4; } const float offset = (outlineWidth * 0.5f) + (isButtonDown ? 1.5f : 0.0f); const AffineTransform trans (shape.getTransformToScaleToFit (offset, offset, w - offset - outlineWidth, h - offset - outlineWidth, maintainShapeProportions)); g.fillPath (shape, trans); if (outlineWidth > 0.0f) { g.setColour (outlineColour); g.strokePath (shape, PathStrokeType (outlineWidth), trans); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ShapeButton.cpp *********/ /********* Start of inlined file: juce_TextButton.cpp *********/ BEGIN_JUCE_NAMESPACE TextButton::TextButton (const String& name, const String& toolTip) : Button (name) { setTooltip (toolTip); } TextButton::~TextButton() { } void TextButton::paintButton (Graphics& g, bool isMouseOverButton, bool isButtonDown) { getLookAndFeel().drawButtonBackground (g, *this, findColour (getToggleState() ? buttonOnColourId : buttonColourId), isMouseOverButton, isButtonDown); getLookAndFeel().drawButtonText (g, *this, isMouseOverButton, isButtonDown); } void TextButton::colourChanged() { repaint(); } const Font TextButton::getFont() { return Font (jmin (15.0f, getHeight() * 0.6f)); } void TextButton::changeWidthToFitText (const int newHeight) { if (newHeight >= 0) setSize (jmax (1, getWidth()), newHeight); setSize (getFont().getStringWidth (getButtonText()) + getHeight(), getHeight()); } END_JUCE_NAMESPACE /********* End of inlined file: juce_TextButton.cpp *********/ /********* Start of inlined file: juce_ToggleButton.cpp *********/ BEGIN_JUCE_NAMESPACE ToggleButton::ToggleButton (const String& buttonText) : Button (buttonText) { setClickingTogglesState (true); } ToggleButton::~ToggleButton() { } void ToggleButton::paintButton (Graphics& g, bool isMouseOverButton, bool isButtonDown) { getLookAndFeel().drawToggleButton (g, *this, isMouseOverButton, isButtonDown); } void ToggleButton::changeWidthToFitText() { getLookAndFeel().changeToggleButtonWidthToFitText (*this); } void ToggleButton::colourChanged() { repaint(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ToggleButton.cpp *********/ /********* Start of inlined file: juce_ToolbarButton.cpp *********/ BEGIN_JUCE_NAMESPACE ToolbarButton::ToolbarButton (const int itemId_, const String& buttonText, Drawable* const normalImage_, Drawable* const toggledOnImage_) : ToolbarItemComponent (itemId_, buttonText, true), normalImage (normalImage_), toggledOnImage (toggledOnImage_) { } ToolbarButton::~ToolbarButton() { delete normalImage; delete toggledOnImage; } bool ToolbarButton::getToolbarItemSizes (int toolbarDepth, bool /*isToolbarVertical*/, int& preferredSize, int& minSize, int& maxSize) { preferredSize = minSize = maxSize = toolbarDepth; return true; } void ToolbarButton::paintButtonArea (Graphics& g, int width, int height, bool /*isMouseOver*/, bool /*isMouseDown*/) { Drawable* d = normalImage; if (getToggleState() && toggledOnImage != 0) d = toggledOnImage; if (! isEnabled()) { Image im (Image::ARGB, width, height, true); Graphics g2 (im); d->drawWithin (g2, 0, 0, width, height, RectanglePlacement::centred); im.desaturate(); g.drawImageAt (&im, 0, 0); } else { d->drawWithin (g, 0, 0, width, height, RectanglePlacement::centred); } } void ToolbarButton::contentAreaChanged (const Rectangle&) { } END_JUCE_NAMESPACE /********* End of inlined file: juce_ToolbarButton.cpp *********/ /********* Start of inlined file: juce_ComboBox.cpp *********/ BEGIN_JUCE_NAMESPACE ComboBox::ComboBox (const String& name) : Component (name), items (4), currentIndex (-1), isButtonDown (false), separatorPending (false), menuActive (false), listeners (2), label (0) { noChoicesMessage = TRANS("(no choices)"); setRepaintsOnMouseActivity (true); lookAndFeelChanged(); } ComboBox::~ComboBox() { if (menuActive) PopupMenu::dismissAllActiveMenus(); deleteAllChildren(); } void ComboBox::setEditableText (const bool isEditable) { label->setEditable (isEditable, isEditable, false); setWantsKeyboardFocus (! isEditable); resized(); } bool ComboBox::isTextEditable() const throw() { return label->isEditable(); } void ComboBox::setJustificationType (const Justification& justification) throw() { label->setJustificationType (justification); } const Justification ComboBox::getJustificationType() const throw() { return label->getJustificationType(); } void ComboBox::setTooltip (const String& newTooltip) { SettableTooltipClient::setTooltip (newTooltip); label->setTooltip (newTooltip); } void ComboBox::addItem (const String& newItemText, const int newItemId) throw() { // you can't add empty strings to the list.. jassert (newItemText.isNotEmpty()); // IDs must be non-zero, as zero is used to indicate a lack of selecion. jassert (newItemId != 0); // you shouldn't use duplicate item IDs! jassert (getItemForId (newItemId) == 0); if (newItemText.isNotEmpty() && newItemId != 0) { if (separatorPending) { separatorPending = false; ItemInfo* const item = new ItemInfo(); item->itemId = 0; item->isEnabled = false; item->isHeading = false; items.add (item); } ItemInfo* const item = new ItemInfo(); item->name = newItemText; item->itemId = newItemId; item->isEnabled = true; item->isHeading = false; items.add (item); } } void ComboBox::addSeparator() throw() { separatorPending = (items.size() > 0); } void ComboBox::addSectionHeading (const String& headingName) throw() { // you can't add empty strings to the list.. jassert (headingName.isNotEmpty()); if (headingName.isNotEmpty()) { if (separatorPending) { separatorPending = false; ItemInfo* const item = new ItemInfo(); item->itemId = 0; item->isEnabled = false; item->isHeading = false; items.add (item); } ItemInfo* const item = new ItemInfo(); item->name = headingName; item->itemId = 0; item->isEnabled = true; item->isHeading = true; items.add (item); } } void ComboBox::setItemEnabled (const int itemId, const bool isEnabled) throw() { ItemInfo* const item = getItemForId (itemId); if (item != 0) item->isEnabled = isEnabled; } void ComboBox::changeItemText (const int itemId, const String& newText) throw() { ItemInfo* const item = getItemForId (itemId); jassert (item != 0); if (item != 0) item->name = newText; } void ComboBox::clear (const bool dontSendChangeMessage) { items.clear(); separatorPending = false; if (! label->isEditable()) setSelectedItemIndex (-1, dontSendChangeMessage); } ComboBox::ItemInfo* ComboBox::getItemForId (const int itemId) const throw() { jassert (itemId != 0); if (itemId != 0) { for (int i = items.size(); --i >= 0;) if (items.getUnchecked(i)->itemId == itemId) return items.getUnchecked(i); } return 0; } ComboBox::ItemInfo* ComboBox::getItemForIndex (const int index) const throw() { int n = 0; for (int i = 0; i < items.size(); ++i) { ItemInfo* const item = items.getUnchecked(i); if (item->isRealItem()) { if (n++ == index) return item; } } return 0; } int ComboBox::getNumItems() const throw() { int n = 0; for (int i = items.size(); --i >= 0;) { ItemInfo* const item = items.getUnchecked(i); if (item->isRealItem()) ++n; } return n; } const String ComboBox::getItemText (const int index) const throw() { ItemInfo* const item = getItemForIndex (index); if (item != 0) return item->name; return String::empty; } int ComboBox::getItemId (const int index) const throw() { ItemInfo* const item = getItemForIndex (index); return (item != 0) ? item->itemId : 0; } bool ComboBox::ItemInfo::isSeparator() const throw() { return name.isEmpty(); } bool ComboBox::ItemInfo::isRealItem() const throw() { return ! (isHeading || name.isEmpty()); } int ComboBox::getSelectedItemIndex() const throw() { return (currentIndex >= 0 && getText() == getItemText (currentIndex)) ? currentIndex : -1; } void ComboBox::setSelectedItemIndex (const int index, const bool dontSendChangeMessage) throw() { if (currentIndex != index || label->getText() != getItemText (currentIndex)) { if (((unsigned int) index) < (unsigned int) getNumItems()) currentIndex = index; else currentIndex = -1; label->setText (getItemText (currentIndex), false); if (! dontSendChangeMessage) triggerAsyncUpdate(); } } void ComboBox::setSelectedId (const int newItemId, const bool dontSendChangeMessage) throw() { for (int i = getNumItems(); --i >= 0;) { if (getItemId(i) == newItemId) { setSelectedItemIndex (i, dontSendChangeMessage); break; } } } int ComboBox::getSelectedId() const throw() { const ItemInfo* const item = getItemForIndex (currentIndex); return (item != 0 && getText() == item->name) ? item->itemId : 0; } void ComboBox::addListener (ComboBoxListener* const listener) throw() { jassert (listener != 0); if (listener != 0) listeners.add (listener); } void ComboBox::removeListener (ComboBoxListener* const listener) throw() { listeners.removeValue (listener); } void ComboBox::handleAsyncUpdate() { for (int i = listeners.size(); --i >= 0;) { ((ComboBoxListener*) listeners.getUnchecked (i))->comboBoxChanged (this); i = jmin (i, listeners.size()); } } const String ComboBox::getText() const throw() { return label->getText(); } void ComboBox::setText (const String& newText, const bool dontSendChangeMessage) throw() { for (int i = items.size(); --i >= 0;) { ItemInfo* const item = items.getUnchecked(i); if (item->isRealItem() && item->name == newText) { setSelectedId (item->itemId, dontSendChangeMessage); return; } } currentIndex = -1; if (label->getText() != newText) { label->setText (newText, false); if (! dontSendChangeMessage) triggerAsyncUpdate(); } repaint(); } void ComboBox::showEditor() { jassert (isTextEditable()); // you probably shouldn't do this to a non-editable combo box? label->showEditor(); } void ComboBox::setTextWhenNothingSelected (const String& newMessage) throw() { textWhenNothingSelected = newMessage; repaint(); } const String ComboBox::getTextWhenNothingSelected() const throw() { return textWhenNothingSelected; } void ComboBox::setTextWhenNoChoicesAvailable (const String& newMessage) throw() { noChoicesMessage = newMessage; } const String ComboBox::getTextWhenNoChoicesAvailable() const throw() { return noChoicesMessage; } void ComboBox::paint (Graphics& g) { getLookAndFeel().drawComboBox (g, getWidth(), getHeight(), isButtonDown, label->getRight(), 0, getWidth() - label->getRight(), getHeight(), *this); if (textWhenNothingSelected.isNotEmpty() && label->getText().isEmpty() && ! label->isBeingEdited()) { g.setColour (findColour (textColourId).withMultipliedAlpha (0.5f)); g.setFont (label->getFont()); g.drawFittedText (textWhenNothingSelected, label->getX() + 2, label->getY() + 1, label->getWidth() - 4, label->getHeight() - 2, label->getJustificationType(), jmax (1, (int) (label->getHeight() / label->getFont().getHeight()))); } } void ComboBox::resized() { if (getHeight() > 0 && getWidth() > 0) getLookAndFeel().positionComboBoxText (*this, *label); } void ComboBox::enablementChanged() { repaint(); } void ComboBox::lookAndFeelChanged() { repaint(); Label* const newLabel = getLookAndFeel().createComboBoxTextBox (*this); if (label != 0) { newLabel->setEditable (label->isEditable()); newLabel->setJustificationType (label->getJustificationType()); newLabel->setTooltip (label->getTooltip()); newLabel->setText (label->getText(), false); } delete label; label = newLabel; addAndMakeVisible (newLabel); newLabel->addListener (this); newLabel->addMouseListener (this, false); newLabel->setColour (Label::backgroundColourId, Colours::transparentBlack); newLabel->setColour (Label::textColourId, findColour (ComboBox::textColourId)); newLabel->setColour (TextEditor::textColourId, findColour (ComboBox::textColourId)); newLabel->setColour (TextEditor::backgroundColourId, Colours::transparentBlack); newLabel->setColour (TextEditor::highlightColourId, findColour (TextEditor::highlightColourId)); newLabel->setColour (TextEditor::outlineColourId, Colours::transparentBlack); resized(); } void ComboBox::colourChanged() { lookAndFeelChanged(); } bool ComboBox::keyPressed (const KeyPress& key) { bool used = false; if (key.isKeyCode (KeyPress::upKey) || key.isKeyCode (KeyPress::leftKey)) { setSelectedItemIndex (jmax (0, currentIndex - 1)); used = true; } else if (key.isKeyCode (KeyPress::downKey) || key.isKeyCode (KeyPress::rightKey)) { setSelectedItemIndex (jmin (currentIndex + 1, getNumItems() - 1)); used = true; } else if (key.isKeyCode (KeyPress::returnKey)) { showPopup(); used = true; } return used; } bool ComboBox::keyStateChanged (const bool isKeyDown) { // only forward key events that aren't used by this component return isKeyDown && (KeyPress::isKeyCurrentlyDown (KeyPress::upKey) || KeyPress::isKeyCurrentlyDown (KeyPress::leftKey) || KeyPress::isKeyCurrentlyDown (KeyPress::downKey) || KeyPress::isKeyCurrentlyDown (KeyPress::rightKey)); } void ComboBox::focusGained (FocusChangeType) { repaint(); } void ComboBox::focusLost (FocusChangeType) { repaint(); } void ComboBox::labelTextChanged (Label*) { triggerAsyncUpdate(); } void ComboBox::showPopup() { if (! menuActive) { const int currentId = getSelectedId(); ComponentDeletionWatcher deletionWatcher (this); PopupMenu menu; menu.setLookAndFeel (&getLookAndFeel()); for (int i = 0; i < items.size(); ++i) { const ItemInfo* const item = items.getUnchecked(i); if (item->isSeparator()) menu.addSeparator(); else if (item->isHeading) menu.addSectionHeader (item->name); else menu.addItem (item->itemId, item->name, item->isEnabled, item->itemId == currentId); } if (items.size() == 0) menu.addItem (1, noChoicesMessage, false); const int itemHeight = jlimit (12, 24, getHeight()); menuActive = true; const int resultId = menu.showAt (this, currentId, getWidth(), 1, itemHeight); if (deletionWatcher.hasBeenDeleted()) return; menuActive = false; if (resultId != 0) setSelectedId (resultId); } } void ComboBox::mouseDown (const MouseEvent& e) { beginDragAutoRepeat (300); isButtonDown = isEnabled(); if (isButtonDown && (e.eventComponent == this || ! label->isEditable())) { showPopup(); } } void ComboBox::mouseDrag (const MouseEvent& e) { beginDragAutoRepeat (50); if (isButtonDown && ! e.mouseWasClicked()) showPopup(); } void ComboBox::mouseUp (const MouseEvent& e2) { if (isButtonDown) { isButtonDown = false; repaint(); const MouseEvent e (e2.getEventRelativeTo (this)); if (reallyContains (e.x, e.y, true) && (e2.eventComponent == this || ! label->isEditable())) { showPopup(); } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ComboBox.cpp *********/ /********* Start of inlined file: juce_Label.cpp *********/ BEGIN_JUCE_NAMESPACE Label::Label (const String& componentName, const String& labelText) : Component (componentName), text (labelText), font (15.0f), justification (Justification::centredLeft), editor (0), listeners (2), ownerComponent (0), deletionWatcher (0), horizontalBorderSize (3), verticalBorderSize (1), minimumHorizontalScale (0.7f), editSingleClick (false), editDoubleClick (false), lossOfFocusDiscardsChanges (false) { setColour (TextEditor::textColourId, Colours::black); setColour (TextEditor::backgroundColourId, Colours::transparentBlack); setColour (TextEditor::outlineColourId, Colours::transparentBlack); } Label::~Label() { if (ownerComponent != 0 && ! deletionWatcher->hasBeenDeleted()) ownerComponent->removeComponentListener (this); deleteAndZero (deletionWatcher); if (editor != 0) delete editor; } void Label::setText (const String& newText, const bool broadcastChangeMessage) { hideEditor (true); if (text != newText) { text = newText; repaint(); textWasChanged(); if (ownerComponent != 0 && ! deletionWatcher->hasBeenDeleted()) componentMovedOrResized (*ownerComponent, true, true); if (broadcastChangeMessage) callChangeListeners(); } } const String Label::getText (const bool returnActiveEditorContents) const throw() { return (returnActiveEditorContents && isBeingEdited()) ? editor->getText() : text; } void Label::setFont (const Font& newFont) throw() { font = newFont; repaint(); } const Font& Label::getFont() const throw() { return font; } void Label::setEditable (const bool editOnSingleClick, const bool editOnDoubleClick, const bool lossOfFocusDiscardsChanges_) throw() { editSingleClick = editOnSingleClick; editDoubleClick = editOnDoubleClick; lossOfFocusDiscardsChanges = lossOfFocusDiscardsChanges_; setWantsKeyboardFocus (editOnSingleClick || editOnDoubleClick); setFocusContainer (editOnSingleClick || editOnDoubleClick); } void Label::setJustificationType (const Justification& justification_) throw() { justification = justification_; repaint(); } void Label::setBorderSize (int h, int v) { horizontalBorderSize = h; verticalBorderSize = v; repaint(); } void Label::attachToComponent (Component* owner, const bool onLeft) { if (ownerComponent != 0 && ! deletionWatcher->hasBeenDeleted()) ownerComponent->removeComponentListener (this); deleteAndZero (deletionWatcher); ownerComponent = owner; leftOfOwnerComp = onLeft; if (ownerComponent != 0) { deletionWatcher = new ComponentDeletionWatcher (owner); setVisible (owner->isVisible()); ownerComponent->addComponentListener (this); componentParentHierarchyChanged (*ownerComponent); componentMovedOrResized (*ownerComponent, true, true); } } void Label::componentMovedOrResized (Component& component, bool /*wasMoved*/, bool /*wasResized*/) { if (leftOfOwnerComp) { setSize (jmin (getFont().getStringWidth (text) + 8, component.getX()), component.getHeight()); setTopRightPosition (component.getX(), component.getY()); } else { setSize (component.getWidth(), 8 + roundFloatToInt (getFont().getHeight())); setTopLeftPosition (component.getX(), component.getY() - getHeight()); } } void Label::componentParentHierarchyChanged (Component& component) { if (component.getParentComponent() != 0) component.getParentComponent()->addChildComponent (this); } void Label::componentVisibilityChanged (Component& component) { setVisible (component.isVisible()); } void Label::textWasEdited() { } void Label::textWasChanged() { } void Label::showEditor() { if (editor == 0) { addAndMakeVisible (editor = createEditorComponent()); editor->setText (getText(), false); editor->addListener (this); editor->grabKeyboardFocus(); editor->setHighlightedRegion (0, text.length()); editor->addListener (this); resized(); repaint(); editorShown (editor); enterModalState(); editor->grabKeyboardFocus(); } } void Label::editorShown (TextEditor* editorComponent) { } void Label::editorAboutToBeHidden (TextEditor* editorComponent) { } bool Label::updateFromTextEditorContents() { jassert (editor != 0); const String newText (editor->getText()); if (text != newText) { text = newText; repaint(); textWasChanged(); if (ownerComponent != 0 && ! deletionWatcher->hasBeenDeleted()) componentMovedOrResized (*ownerComponent, true, true); return true; } return false; } void Label::hideEditor (const bool discardCurrentEditorContents) { if (editor != 0) { editorAboutToBeHidden (editor); const bool changed = (! discardCurrentEditorContents) && updateFromTextEditorContents(); deleteAndZero (editor); repaint(); if (changed) textWasEdited(); exitModalState (0); if (changed && isValidComponent()) callChangeListeners(); } } void Label::inputAttemptWhenModal() { if (editor != 0) { if (lossOfFocusDiscardsChanges) textEditorEscapeKeyPressed (*editor); else textEditorReturnKeyPressed (*editor); } } bool Label::isBeingEdited() const throw() { return editor != 0; } TextEditor* Label::createEditorComponent() { TextEditor* const ed = new TextEditor (getName()); ed->setFont (font); // copy these colours from our own settings.. const int cols[] = { TextEditor::backgroundColourId, TextEditor::textColourId, TextEditor::highlightColourId, TextEditor::highlightedTextColourId, TextEditor::caretColourId, TextEditor::outlineColourId, TextEditor::focusedOutlineColourId, TextEditor::shadowColourId }; for (int i = 0; i < numElementsInArray (cols); ++i) ed->setColour (cols[i], findColour (cols[i])); return ed; } void Label::paint (Graphics& g) { getLookAndFeel().drawLabel (g, *this); } void Label::mouseUp (const MouseEvent& e) { if (editSingleClick && e.mouseWasClicked() && contains (e.x, e.y) && ! e.mods.isPopupMenu()) { showEditor(); } } void Label::mouseDoubleClick (const MouseEvent& e) { if (editDoubleClick && ! e.mods.isPopupMenu()) showEditor(); } void Label::resized() { if (editor != 0) editor->setBoundsInset (BorderSize (0)); } void Label::focusGained (FocusChangeType cause) { if (editSingleClick && cause == focusChangedByTabKey) showEditor(); } void Label::enablementChanged() { repaint(); } void Label::colourChanged() { repaint(); } void Label::setMinimumHorizontalScale (const float newScale) { if (minimumHorizontalScale != newScale) { minimumHorizontalScale = newScale; repaint(); } } // We'll use a custom focus traverser here to make sure focus goes from the // text editor to another component rather than back to the label itself. class LabelKeyboardFocusTraverser : public KeyboardFocusTraverser { public: LabelKeyboardFocusTraverser() {} Component* getNextComponent (Component* current) { return KeyboardFocusTraverser::getNextComponent (dynamic_cast (current) != 0 ? current->getParentComponent() : current); } Component* getPreviousComponent (Component* current) { return KeyboardFocusTraverser::getPreviousComponent (dynamic_cast (current) != 0 ? current->getParentComponent() : current); } }; KeyboardFocusTraverser* Label::createFocusTraverser() { return new LabelKeyboardFocusTraverser(); } void Label::addListener (LabelListener* const listener) throw() { jassert (listener != 0); if (listener != 0) listeners.add (listener); } void Label::removeListener (LabelListener* const listener) throw() { listeners.removeValue (listener); } void Label::callChangeListeners() { for (int i = listeners.size(); --i >= 0;) { ((LabelListener*) listeners.getUnchecked (i))->labelTextChanged (this); i = jmin (i, listeners.size()); } } void Label::textEditorTextChanged (TextEditor& ed) { if (editor != 0) { jassert (&ed == editor); if (! (hasKeyboardFocus (true) || isCurrentlyBlockedByAnotherModalComponent())) { if (lossOfFocusDiscardsChanges) textEditorEscapeKeyPressed (ed); else textEditorReturnKeyPressed (ed); } } } void Label::textEditorReturnKeyPressed (TextEditor& ed) { if (editor != 0) { jassert (&ed == editor); (void) ed; const bool changed = updateFromTextEditorContents(); hideEditor (true); if (changed) { textWasEdited(); if (isValidComponent()) callChangeListeners(); } } } void Label::textEditorEscapeKeyPressed (TextEditor& ed) { if (editor != 0) { jassert (&ed == editor); (void) ed; editor->setText (text, false); hideEditor (true); } } void Label::textEditorFocusLost (TextEditor& ed) { textEditorTextChanged (ed); } END_JUCE_NAMESPACE /********* End of inlined file: juce_Label.cpp *********/ /********* Start of inlined file: juce_ListBox.cpp *********/ BEGIN_JUCE_NAMESPACE class ListBoxRowComponent : public Component { public: ListBoxRowComponent (ListBox& owner_) : owner (owner_), row (-1), selected (false), isDragging (false) { } ~ListBoxRowComponent() { deleteAllChildren(); } void paint (Graphics& g) { if (owner.getModel() != 0) owner.getModel()->paintListBoxItem (row, g, getWidth(), getHeight(), selected); } void update (const int row_, const bool selected_) { if (row != row_ || selected != selected_) { repaint(); row = row_; selected = selected_; } if (owner.getModel() != 0) { Component* const customComp = owner.getModel()->refreshComponentForRow (row_, selected_, getChildComponent (0)); if (customComp != 0) { addAndMakeVisible (customComp); customComp->setBounds (0, 0, getWidth(), getHeight()); for (int i = getNumChildComponents(); --i >= 0;) if (getChildComponent (i) != customComp) delete getChildComponent (i); } else { deleteAllChildren(); } } } void mouseDown (const MouseEvent& e) { isDragging = false; selectRowOnMouseUp = false; if (isEnabled()) { if (! selected) { owner.selectRowsBasedOnModifierKeys (row, e.mods); if (owner.getModel() != 0) owner.getModel()->listBoxItemClicked (row, e); } else { selectRowOnMouseUp = true; } } } void mouseUp (const MouseEvent& e) { if (isEnabled() && selectRowOnMouseUp && ! isDragging) { owner.selectRowsBasedOnModifierKeys (row, e.mods); if (owner.getModel() != 0) owner.getModel()->listBoxItemClicked (row, e); } } void mouseDoubleClick (const MouseEvent& e) { if (owner.getModel() != 0 && isEnabled()) owner.getModel()->listBoxItemDoubleClicked (row, e); } void mouseDrag (const MouseEvent& e) { if (isEnabled() && owner.getModel() != 0 && ! (e.mouseWasClicked() || isDragging)) { const SparseSet selectedRows (owner.getSelectedRows()); if (selectedRows.size() > 0) { const String dragDescription (owner.getModel()->getDragSourceDescription (selectedRows)); if (dragDescription.isNotEmpty()) { isDragging = true; DragAndDropContainer* const dragContainer = DragAndDropContainer::findParentDragContainerFor (this); if (dragContainer != 0) { Image* dragImage = owner.createSnapshotOfSelectedRows(); dragImage->multiplyAllAlphas (0.6f); dragContainer->startDragging (dragDescription, &owner, dragImage, true); } else { // to be able to do a drag-and-drop operation, the listbox needs to // be inside a component which is also a DragAndDropContainer. jassertfalse } } } } } void resized() { if (getNumChildComponents() > 0) getChildComponent(0)->setBounds (0, 0, getWidth(), getHeight()); } juce_UseDebuggingNewOperator bool neededFlag; private: ListBox& owner; int row; bool selected, isDragging, selectRowOnMouseUp; ListBoxRowComponent (const ListBoxRowComponent&); const ListBoxRowComponent& operator= (const ListBoxRowComponent&); }; class ListViewport : public Viewport { public: int firstIndex, firstWholeIndex, lastWholeIndex; bool hasUpdated; ListViewport (ListBox& owner_) : owner (owner_) { setWantsKeyboardFocus (false); setViewedComponent (new Component()); getViewedComponent()->addMouseListener (this, false); getViewedComponent()->setWantsKeyboardFocus (false); } ~ListViewport() { getViewedComponent()->removeMouseListener (this); getViewedComponent()->deleteAllChildren(); } ListBoxRowComponent* getComponentForRow (const int row) const throw() { return (ListBoxRowComponent*) getViewedComponent() ->getChildComponent (row % jmax (1, getViewedComponent()->getNumChildComponents())); } int getRowNumberOfComponent (Component* const rowComponent) const throw() { const int index = getIndexOfChildComponent (rowComponent); const int num = getViewedComponent()->getNumChildComponents(); for (int i = num; --i >= 0;) if (((firstIndex + i) % jmax (1, num)) == index) return firstIndex + i; return -1; } Component* getComponentForRowIfOnscreen (const int row) const throw() { return (row >= firstIndex && row < firstIndex + getViewedComponent()->getNumChildComponents()) ? getComponentForRow (row) : 0; } void visibleAreaChanged (int, int, int, int) { updateVisibleArea (true); if (owner.getModel() != 0) owner.getModel()->listWasScrolled(); } void updateVisibleArea (const bool makeSureItUpdatesContent) { hasUpdated = false; const int newX = getViewedComponent()->getX(); int newY = getViewedComponent()->getY(); const int newW = jmax (owner.minimumRowWidth, getMaximumVisibleWidth()); const int newH = owner.totalItems * owner.getRowHeight(); if (newY + newH < getMaximumVisibleHeight() && newH > getMaximumVisibleHeight()) newY = getMaximumVisibleHeight() - newH; getViewedComponent()->setBounds (newX, newY, newW, newH); if (makeSureItUpdatesContent && ! hasUpdated) updateContents(); } void updateContents() { hasUpdated = true; const int rowHeight = owner.getRowHeight(); if (rowHeight > 0) { const int y = getViewPositionY(); const int w = getViewedComponent()->getWidth(); const int numNeeded = 2 + getMaximumVisibleHeight() / rowHeight; while (numNeeded > getViewedComponent()->getNumChildComponents()) getViewedComponent()->addAndMakeVisible (new ListBoxRowComponent (owner)); jassert (numNeeded >= 0); while (numNeeded < getViewedComponent()->getNumChildComponents()) { Component* const rowToRemove = getViewedComponent()->getChildComponent (getViewedComponent()->getNumChildComponents() - 1); delete rowToRemove; } firstIndex = y / rowHeight; firstWholeIndex = (y + rowHeight - 1) / rowHeight; lastWholeIndex = (y + getMaximumVisibleHeight() - 1) / rowHeight; for (int i = 0; i < numNeeded; ++i) { const int row = i + firstIndex; ListBoxRowComponent* const rowComp = getComponentForRow (row); if (rowComp != 0) { rowComp->setBounds (0, row * rowHeight, w, rowHeight); rowComp->update (row, owner.isRowSelected (row)); } } } if (owner.headerComponent != 0) owner.headerComponent->setBounds (owner.outlineThickness + getViewedComponent()->getX(), owner.outlineThickness, jmax (owner.getWidth() - owner.outlineThickness * 2, getViewedComponent()->getWidth()), owner.headerComponent->getHeight()); } void paint (Graphics& g) { if (isOpaque()) g.fillAll (owner.findColour (ListBox::backgroundColourId)); } bool keyPressed (const KeyPress& key) { if (key.isKeyCode (KeyPress::upKey) || key.isKeyCode (KeyPress::downKey) || key.isKeyCode (KeyPress::pageUpKey) || key.isKeyCode (KeyPress::pageDownKey) || key.isKeyCode (KeyPress::homeKey) || key.isKeyCode (KeyPress::endKey)) { // we want to avoid these keypresses going to the viewport, and instead allow // them to pass up to our listbox.. return false; } return Viewport::keyPressed (key); } juce_UseDebuggingNewOperator private: ListBox& owner; ListViewport (const ListViewport&); const ListViewport& operator= (const ListViewport&); }; ListBox::ListBox (const String& name, ListBoxModel* const model_) : Component (name), model (model_), headerComponent (0), totalItems (0), rowHeight (22), minimumRowWidth (0), outlineThickness (0), lastRowSelected (-1), mouseMoveSelects (false), multipleSelection (false), hasDoneInitialUpdate (false) { addAndMakeVisible (viewport = new ListViewport (*this)); setWantsKeyboardFocus (true); colourChanged(); } ListBox::~ListBox() { deleteAllChildren(); } void ListBox::setModel (ListBoxModel* const newModel) { if (model != newModel) { model = newModel; updateContent(); } } void ListBox::setMultipleSelectionEnabled (bool b) { multipleSelection = b; } void ListBox::setMouseMoveSelectsRows (bool b) { mouseMoveSelects = b; if (b) addMouseListener (this, true); } void ListBox::paint (Graphics& g) { if (! hasDoneInitialUpdate) updateContent(); g.fillAll (findColour (backgroundColourId)); } void ListBox::paintOverChildren (Graphics& g) { if (outlineThickness > 0) { g.setColour (findColour (outlineColourId)); g.drawRect (0, 0, getWidth(), getHeight(), outlineThickness); } } void ListBox::resized() { viewport->setBoundsInset (BorderSize (outlineThickness + ((headerComponent != 0) ? headerComponent->getHeight() : 0), outlineThickness, outlineThickness, outlineThickness)); viewport->setSingleStepSizes (20, getRowHeight()); viewport->updateVisibleArea (false); } void ListBox::visibilityChanged() { viewport->updateVisibleArea (true); } Viewport* ListBox::getViewport() const throw() { return viewport; } void ListBox::updateContent() { hasDoneInitialUpdate = true; totalItems = (model != 0) ? model->getNumRows() : 0; bool selectionChanged = false; if (selected [selected.size() - 1] >= totalItems) { selected.removeRange (totalItems, INT_MAX - totalItems); lastRowSelected = getSelectedRow (0); selectionChanged = true; } viewport->updateVisibleArea (isVisible()); viewport->resized(); if (selectionChanged && model != 0) model->selectedRowsChanged (lastRowSelected); } void ListBox::selectRow (const int row, bool dontScroll, bool deselectOthersFirst) { selectRowInternal (row, dontScroll, deselectOthersFirst, false); } void ListBox::selectRowInternal (const int row, bool dontScroll, bool deselectOthersFirst, bool isMouseClick) { if (! multipleSelection) deselectOthersFirst = true; if ((! isRowSelected (row)) || (deselectOthersFirst && getNumSelectedRows() > 1)) { if (((unsigned int) row) < (unsigned int) totalItems) { if (deselectOthersFirst) selected.clear(); selected.addRange (row, 1); if (getHeight() == 0 || getWidth() == 0) dontScroll = true; viewport->hasUpdated = false; if (row < viewport->firstWholeIndex && ! dontScroll) { viewport->setViewPosition (viewport->getViewPositionX(), row * getRowHeight()); } else if (row >= viewport->lastWholeIndex && ! dontScroll) { const int rowsOnScreen = viewport->lastWholeIndex - viewport->firstWholeIndex; if (row >= lastRowSelected + rowsOnScreen && rowsOnScreen < totalItems - 1 && ! isMouseClick) { viewport->setViewPosition (viewport->getViewPositionX(), jlimit (0, jmax (0, totalItems - rowsOnScreen), row) * getRowHeight()); } else { viewport->setViewPosition (viewport->getViewPositionX(), jmax (0, (row + 1) * getRowHeight() - viewport->getMaximumVisibleHeight())); } } if (! viewport->hasUpdated) viewport->updateContents(); lastRowSelected = row; model->selectedRowsChanged (row); } else { if (deselectOthersFirst) deselectAllRows(); } } } void ListBox::deselectRow (const int row) { if (selected.contains (row)) { selected.removeRange (row, 1); if (row == lastRowSelected) lastRowSelected = getSelectedRow (0); viewport->updateContents(); model->selectedRowsChanged (lastRowSelected); } } void ListBox::setSelectedRows (const SparseSet& setOfRowsToBeSelected, const bool sendNotificationEventToModel) { selected = setOfRowsToBeSelected; selected.removeRange (totalItems, INT_MAX - totalItems); if (! isRowSelected (lastRowSelected)) lastRowSelected = getSelectedRow (0); viewport->updateContents(); if ((model != 0) && sendNotificationEventToModel) model->selectedRowsChanged (lastRowSelected); } const SparseSet ListBox::getSelectedRows() const { return selected; } void ListBox::selectRangeOfRows (int firstRow, int lastRow) { if (multipleSelection && (firstRow != lastRow)) { const int numRows = totalItems - 1; firstRow = jlimit (0, jmax (0, numRows), firstRow); lastRow = jlimit (0, jmax (0, numRows), lastRow); selected.addRange (jmin (firstRow, lastRow), abs (firstRow - lastRow) + 1); selected.removeRange (lastRow, 1); } selectRowInternal (lastRow, false, false, true); } void ListBox::flipRowSelection (const int row) { if (isRowSelected (row)) deselectRow (row); else selectRowInternal (row, false, false, true); } void ListBox::deselectAllRows() { if (! selected.isEmpty()) { selected.clear(); lastRowSelected = -1; viewport->updateContents(); if (model != 0) model->selectedRowsChanged (lastRowSelected); } } void ListBox::selectRowsBasedOnModifierKeys (const int row, const ModifierKeys& mods) { if (multipleSelection && mods.isCommandDown()) { flipRowSelection (row); } else if (multipleSelection && mods.isShiftDown() && lastRowSelected >= 0) { selectRangeOfRows (lastRowSelected, row); } else if ((! mods.isPopupMenu()) || ! isRowSelected (row)) { selectRowInternal (row, false, true, true); } } int ListBox::getNumSelectedRows() const { return selected.size(); } int ListBox::getSelectedRow (const int index) const { return (((unsigned int) index) < (unsigned int) selected.size()) ? selected [index] : -1; } bool ListBox::isRowSelected (const int row) const { return selected.contains (row); } int ListBox::getLastRowSelected() const { return (isRowSelected (lastRowSelected)) ? lastRowSelected : -1; } int ListBox::getRowContainingPosition (const int x, const int y) const throw() { if (((unsigned int) x) < (unsigned int) getWidth()) { const int row = (viewport->getViewPositionY() + y - viewport->getY()) / rowHeight; if (((unsigned int) row) < (unsigned int) totalItems) return row; } return -1; } int ListBox::getInsertionIndexForPosition (const int x, const int y) const throw() { if (((unsigned int) x) < (unsigned int) getWidth()) { const int row = (viewport->getViewPositionY() + y + rowHeight / 2 - viewport->getY()) / rowHeight; return jlimit (0, totalItems, row); } return -1; } Component* ListBox::getComponentForRowNumber (const int row) const throw() { Component* const listRowComp = viewport->getComponentForRowIfOnscreen (row); return listRowComp != 0 ? listRowComp->getChildComponent (0) : 0; } int ListBox::getRowNumberOfComponent (Component* const rowComponent) const throw() { return viewport->getRowNumberOfComponent (rowComponent); } const Rectangle ListBox::getRowPosition (const int rowNumber, const bool relativeToComponentTopLeft) const throw() { const int rowHeight = getRowHeight(); int y = viewport->getY() + rowHeight * rowNumber; if (relativeToComponentTopLeft) y -= viewport->getViewPositionY(); return Rectangle (viewport->getX(), y, viewport->getViewedComponent()->getWidth(), rowHeight); } void ListBox::setVerticalPosition (const double proportion) { const int offscreen = viewport->getViewedComponent()->getHeight() - viewport->getHeight(); viewport->setViewPosition (viewport->getViewPositionX(), jmax (0, roundDoubleToInt (proportion * offscreen))); } double ListBox::getVerticalPosition() const { const int offscreen = viewport->getViewedComponent()->getHeight() - viewport->getHeight(); return (offscreen > 0) ? viewport->getViewPositionY() / (double) offscreen : 0; } int ListBox::getVisibleRowWidth() const throw() { return viewport->getViewWidth(); } void ListBox::scrollToEnsureRowIsOnscreen (const int row) { if (row < viewport->firstWholeIndex) { viewport->setViewPosition (viewport->getViewPositionX(), row * getRowHeight()); } else if (row >= viewport->lastWholeIndex) { viewport->setViewPosition (viewport->getViewPositionX(), jmax (0, (row + 1) * getRowHeight() - viewport->getMaximumVisibleHeight())); } } bool ListBox::keyPressed (const KeyPress& key) { const int numVisibleRows = viewport->getHeight() / getRowHeight(); const bool multiple = multipleSelection && (lastRowSelected >= 0) && (key.getModifiers().isShiftDown() || key.getModifiers().isCtrlDown() || key.getModifiers().isCommandDown()); if (key.isKeyCode (KeyPress::upKey)) { if (multiple) selectRangeOfRows (lastRowSelected, lastRowSelected - 1); else selectRow (jmax (0, lastRowSelected - 1)); } else if (key.isKeyCode (KeyPress::returnKey) && isRowSelected (lastRowSelected)) { if (model != 0) model->returnKeyPressed (lastRowSelected); } else if (key.isKeyCode (KeyPress::pageUpKey)) { if (multiple) selectRangeOfRows (lastRowSelected, lastRowSelected - numVisibleRows); else selectRow (jmax (0, jmax (0, lastRowSelected) - numVisibleRows)); } else if (key.isKeyCode (KeyPress::pageDownKey)) { if (multiple) selectRangeOfRows (lastRowSelected, lastRowSelected + numVisibleRows); else selectRow (jmin (totalItems - 1, jmax (0, lastRowSelected) + numVisibleRows)); } else if (key.isKeyCode (KeyPress::homeKey)) { if (multiple && key.getModifiers().isShiftDown()) selectRangeOfRows (lastRowSelected, 0); else selectRow (0); } else if (key.isKeyCode (KeyPress::endKey)) { if (multiple && key.getModifiers().isShiftDown()) selectRangeOfRows (lastRowSelected, totalItems - 1); else selectRow (totalItems - 1); } else if (key.isKeyCode (KeyPress::downKey)) { if (multiple) selectRangeOfRows (lastRowSelected, lastRowSelected + 1); else selectRow (jmin (totalItems - 1, jmax (0, lastRowSelected) + 1)); } else if ((key.isKeyCode (KeyPress::deleteKey) || key.isKeyCode (KeyPress::backspaceKey)) && isRowSelected (lastRowSelected)) { if (model != 0) model->deleteKeyPressed (lastRowSelected); } else if (multiple && key == KeyPress (T('a'), ModifierKeys::commandModifier, 0)) { selectRangeOfRows (0, INT_MAX); } else { return false; } return true; } bool ListBox::keyStateChanged (const bool isKeyDown) { return isKeyDown && (KeyPress::isKeyCurrentlyDown (KeyPress::upKey) || KeyPress::isKeyCurrentlyDown (KeyPress::pageUpKey) || KeyPress::isKeyCurrentlyDown (KeyPress::downKey) || KeyPress::isKeyCurrentlyDown (KeyPress::pageDownKey) || KeyPress::isKeyCurrentlyDown (KeyPress::homeKey) || KeyPress::isKeyCurrentlyDown (KeyPress::endKey) || KeyPress::isKeyCurrentlyDown (KeyPress::returnKey)); } void ListBox::mouseWheelMove (const MouseEvent& e, float wheelIncrementX, float wheelIncrementY) { getHorizontalScrollBar()->mouseWheelMove (e, wheelIncrementX, 0); getVerticalScrollBar()->mouseWheelMove (e, 0, wheelIncrementY); } void ListBox::mouseMove (const MouseEvent& e) { if (mouseMoveSelects) { const MouseEvent e2 (e.getEventRelativeTo (this)); selectRow (getRowContainingPosition (e2.x, e2.y), true); lastMouseX = e2.x; lastMouseY = e2.y; } } void ListBox::mouseExit (const MouseEvent& e) { mouseMove (e); } void ListBox::mouseUp (const MouseEvent& e) { if (e.mouseWasClicked() && model != 0) model->backgroundClicked(); } void ListBox::setRowHeight (const int newHeight) { rowHeight = jmax (1, newHeight); viewport->setSingleStepSizes (20, rowHeight); updateContent(); } int ListBox::getNumRowsOnScreen() const throw() { return viewport->getMaximumVisibleHeight() / rowHeight; } void ListBox::setMinimumContentWidth (const int newMinimumWidth) { minimumRowWidth = newMinimumWidth; updateContent(); } int ListBox::getVisibleContentWidth() const throw() { return viewport->getMaximumVisibleWidth(); } ScrollBar* ListBox::getVerticalScrollBar() const throw() { return viewport->getVerticalScrollBar(); } ScrollBar* ListBox::getHorizontalScrollBar() const throw() { return viewport->getHorizontalScrollBar(); } void ListBox::colourChanged() { setOpaque (findColour (backgroundColourId).isOpaque()); viewport->setOpaque (isOpaque()); repaint(); } void ListBox::setOutlineThickness (const int outlineThickness_) { outlineThickness = outlineThickness_; resized(); } void ListBox::setHeaderComponent (Component* const newHeaderComponent) { if (headerComponent != newHeaderComponent) { if (headerComponent != 0) delete headerComponent; headerComponent = newHeaderComponent; addAndMakeVisible (newHeaderComponent); ListBox::resized(); } } void ListBox::repaintRow (const int rowNumber) throw() { const Rectangle r (getRowPosition (rowNumber, true)); repaint (r.getX(), r.getY(), r.getWidth(), r.getHeight()); } Image* ListBox::createSnapshotOfSelectedRows() { Image* snapshot = new Image (Image::ARGB, getWidth(), getHeight(), true); Graphics g (*snapshot); const int firstRow = getRowContainingPosition (0, 0); for (int i = getNumRowsOnScreen() + 2; --i >= 0;) { Component* rowComp = viewport->getComponentForRowIfOnscreen (firstRow + i); if (rowComp != 0 && isRowSelected (firstRow + i)) { g.saveState(); int x = 0, y = 0; rowComp->relativePositionToOtherComponent (this, x, y); g.setOrigin (x, y); g.reduceClipRegion (0, 0, rowComp->getWidth(), rowComp->getHeight()); rowComp->paintEntireComponent (g); g.restoreState(); } } return snapshot; } Component* ListBoxModel::refreshComponentForRow (int, bool, Component* existingComponentToUpdate) { (void) existingComponentToUpdate; jassert (existingComponentToUpdate == 0); // indicates a failure in the code the recycles the components return 0; } void ListBoxModel::listBoxItemClicked (int, const MouseEvent&) { } void ListBoxModel::listBoxItemDoubleClicked (int, const MouseEvent&) { } void ListBoxModel::backgroundClicked() { } void ListBoxModel::selectedRowsChanged (int) { } void ListBoxModel::deleteKeyPressed (int) { } void ListBoxModel::returnKeyPressed (int) { } void ListBoxModel::listWasScrolled() { } const String ListBoxModel::getDragSourceDescription (const SparseSet&) { return String::empty; } END_JUCE_NAMESPACE /********* End of inlined file: juce_ListBox.cpp *********/ /********* Start of inlined file: juce_ProgressBar.cpp *********/ BEGIN_JUCE_NAMESPACE ProgressBar::ProgressBar (double& progress_) : progress (progress_), displayPercentage (true), lastCallbackTime (0) { currentValue = jlimit (0.0, 1.0, progress); } ProgressBar::~ProgressBar() { } void ProgressBar::setPercentageDisplay (const bool shouldDisplayPercentage) { displayPercentage = shouldDisplayPercentage; repaint(); } void ProgressBar::setTextToDisplay (const String& text) { displayPercentage = false; displayedMessage = text; } void ProgressBar::lookAndFeelChanged() { setOpaque (findColour (backgroundColourId).isOpaque()); } void ProgressBar::colourChanged() { lookAndFeelChanged(); } void ProgressBar::paint (Graphics& g) { String text; if (displayPercentage) { if (currentValue >= 0 && currentValue <= 1.0) text << roundDoubleToInt (currentValue * 100.0) << T("%"); } else { text = displayedMessage; } getLookAndFeel().drawProgressBar (g, *this, getWidth(), getHeight(), currentValue, text); } void ProgressBar::visibilityChanged() { if (isVisible()) startTimer (30); else stopTimer(); } void ProgressBar::timerCallback() { double newProgress = progress; if (currentValue != newProgress || newProgress < 0 || newProgress >= 1.0 || currentMessage != displayedMessage) { if (currentValue < newProgress && newProgress >= 0 && newProgress < 1.0 && currentValue >= 0 && currentValue < 1.0) { const uint32 now = Time::getMillisecondCounter(); const int timeSinceLastCallback = (int) (now - lastCallbackTime); lastCallbackTime = now; newProgress = jmin (currentValue + 0.00018 * timeSinceLastCallback, newProgress); } currentValue = newProgress; currentMessage = displayedMessage; repaint(); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ProgressBar.cpp *********/ /********* Start of inlined file: juce_Slider.cpp *********/ BEGIN_JUCE_NAMESPACE class SliderPopupDisplayComponent : public BubbleComponent { public: SliderPopupDisplayComponent (Slider* const owner_) : owner (owner_), font (15.0f, Font::bold) { setAlwaysOnTop (true); } ~SliderPopupDisplayComponent() { } void paintContent (Graphics& g, int w, int h) { g.setFont (font); g.setColour (Colours::black); g.drawFittedText (text, 0, 0, w, h, Justification::centred, 1); } void getContentSize (int& w, int& h) { w = font.getStringWidth (text) + 18; h = (int) (font.getHeight() * 1.6f); } void updatePosition (const String& newText) { if (text != newText) { text = newText; repaint(); } BubbleComponent::setPosition (owner); } juce_UseDebuggingNewOperator private: Slider* owner; Font font; String text; SliderPopupDisplayComponent (const SliderPopupDisplayComponent&); const SliderPopupDisplayComponent& operator= (const SliderPopupDisplayComponent&); }; Slider::Slider (const String& name) : Component (name), listeners (2), currentValue (0.0), valueMin (0.0), valueMax (0.0), minimum (0), maximum (10), interval (0), skewFactor (1.0), velocityModeSensitivity (1.0), velocityModeOffset (0.0), velocityModeThreshold (1), rotaryStart (float_Pi * 1.2f), rotaryEnd (float_Pi * 2.8f), numDecimalPlaces (7), sliderRegionStart (0), sliderRegionSize (1), sliderBeingDragged (-1), pixelsForFullDragExtent (250), style (LinearHorizontal), textBoxPos (TextBoxLeft), textBoxWidth (80), textBoxHeight (20), incDecButtonMode (incDecButtonsNotDraggable), editableText (true), doubleClickToValue (false), isVelocityBased (false), userKeyOverridesVelocity (true), rotaryStop (true), incDecButtonsSideBySide (false), sendChangeOnlyOnRelease (false), popupDisplayEnabled (false), menuEnabled (false), menuShown (false), scrollWheelEnabled (true), snapsToMousePos (true), valueBox (0), incButton (0), decButton (0), popupDisplay (0), parentForPopupDisplay (0) { setWantsKeyboardFocus (false); setRepaintsOnMouseActivity (true); lookAndFeelChanged(); updateText(); } Slider::~Slider() { deleteAndZero (popupDisplay); deleteAllChildren(); } void Slider::handleAsyncUpdate() { cancelPendingUpdate(); for (int i = listeners.size(); --i >= 0;) { ((SliderListener*) listeners.getUnchecked (i))->sliderValueChanged (this); i = jmin (i, listeners.size()); } } void Slider::sendDragStart() { startedDragging(); for (int i = listeners.size(); --i >= 0;) { ((SliderListener*) listeners.getUnchecked (i))->sliderDragStarted (this); i = jmin (i, listeners.size()); } } void Slider::sendDragEnd() { stoppedDragging(); sliderBeingDragged = -1; for (int i = listeners.size(); --i >= 0;) { ((SliderListener*) listeners.getUnchecked (i))->sliderDragEnded (this); i = jmin (i, listeners.size()); } } void Slider::addListener (SliderListener* const listener) throw() { jassert (listener != 0); if (listener != 0) listeners.add (listener); } void Slider::removeListener (SliderListener* const listener) throw() { listeners.removeValue (listener); } void Slider::setSliderStyle (const SliderStyle newStyle) { if (style != newStyle) { style = newStyle; repaint(); lookAndFeelChanged(); } } void Slider::setRotaryParameters (const float startAngleRadians, const float endAngleRadians, const bool stopAtEnd) { // make sure the values are sensible.. jassert (rotaryStart >= 0 && rotaryEnd >= 0); jassert (rotaryStart < float_Pi * 4.0f && rotaryEnd < float_Pi * 4.0f); jassert (rotaryStart < rotaryEnd); rotaryStart = startAngleRadians; rotaryEnd = endAngleRadians; rotaryStop = stopAtEnd; } void Slider::setVelocityBasedMode (const bool velBased) throw() { isVelocityBased = velBased; } void Slider::setVelocityModeParameters (const double sensitivity, const int threshold, const double offset, const bool userCanPressKeyToSwapMode) throw() { jassert (threshold >= 0); jassert (sensitivity > 0); jassert (offset >= 0); velocityModeSensitivity = sensitivity; velocityModeOffset = offset; velocityModeThreshold = threshold; userKeyOverridesVelocity = userCanPressKeyToSwapMode; } void Slider::setSkewFactor (const double factor) throw() { skewFactor = factor; } void Slider::setSkewFactorFromMidPoint (const double sliderValueToShowAtMidPoint) throw() { if (maximum > minimum) skewFactor = log (0.5) / log ((sliderValueToShowAtMidPoint - minimum) / (maximum - minimum)); } void Slider::setMouseDragSensitivity (const int distanceForFullScaleDrag) { jassert (distanceForFullScaleDrag > 0); pixelsForFullDragExtent = distanceForFullScaleDrag; } void Slider::setIncDecButtonsMode (const IncDecButtonMode mode) { if (incDecButtonMode != mode) { incDecButtonMode = mode; lookAndFeelChanged(); } } void Slider::setTextBoxStyle (const TextEntryBoxPosition newPosition, const bool isReadOnly, const int textEntryBoxWidth, const int textEntryBoxHeight) { textBoxPos = newPosition; editableText = ! isReadOnly; textBoxWidth = textEntryBoxWidth; textBoxHeight = textEntryBoxHeight; repaint(); lookAndFeelChanged(); } void Slider::setTextBoxIsEditable (const bool shouldBeEditable) throw() { editableText = shouldBeEditable; if (valueBox != 0) valueBox->setEditable (shouldBeEditable && isEnabled()); } void Slider::showTextBox() { jassert (editableText); // this should probably be avoided in read-only sliders. if (valueBox != 0) valueBox->showEditor(); } void Slider::hideTextBox (const bool discardCurrentEditorContents) { if (valueBox != 0) { valueBox->hideEditor (discardCurrentEditorContents); if (discardCurrentEditorContents) updateText(); } } void Slider::setChangeNotificationOnlyOnRelease (const bool onlyNotifyOnRelease) throw() { sendChangeOnlyOnRelease = onlyNotifyOnRelease; } void Slider::setSliderSnapsToMousePosition (const bool shouldSnapToMouse) throw() { snapsToMousePos = shouldSnapToMouse; } void Slider::setPopupDisplayEnabled (const bool enabled, Component* const parentComponentToUse) throw() { popupDisplayEnabled = enabled; parentForPopupDisplay = parentComponentToUse; } void Slider::colourChanged() { lookAndFeelChanged(); } void Slider::lookAndFeelChanged() { const String previousTextBoxContent (valueBox != 0 ? valueBox->getText() : getTextFromValue (currentValue)); deleteAllChildren(); valueBox = 0; LookAndFeel& lf = getLookAndFeel(); if (textBoxPos != NoTextBox) { addAndMakeVisible (valueBox = getLookAndFeel().createSliderTextBox (*this)); valueBox->setWantsKeyboardFocus (false); valueBox->setText (previousTextBoxContent, false); valueBox->setEditable (editableText && isEnabled()); valueBox->addListener (this); if (style == LinearBar) valueBox->addMouseListener (this, false); valueBox->setTooltip (getTooltip()); } if (style == IncDecButtons) { addAndMakeVisible (incButton = lf.createSliderButton (true)); incButton->addButtonListener (this); addAndMakeVisible (decButton = lf.createSliderButton (false)); decButton->addButtonListener (this); if (incDecButtonMode != incDecButtonsNotDraggable) { incButton->addMouseListener (this, false); decButton->addMouseListener (this, false); } else { incButton->setRepeatSpeed (300, 100, 20); incButton->addMouseListener (decButton, false); decButton->setRepeatSpeed (300, 100, 20); decButton->addMouseListener (incButton, false); } incButton->setTooltip (getTooltip()); decButton->setTooltip (getTooltip()); } setComponentEffect (lf.getSliderEffect()); resized(); repaint(); } void Slider::setRange (const double newMin, const double newMax, const double newInt) { if (minimum != newMin || maximum != newMax || interval != newInt) { minimum = newMin; maximum = newMax; interval = newInt; // figure out the number of DPs needed to display all values at this // interval setting. numDecimalPlaces = 7; if (newInt != 0) { int v = abs ((int) (newInt * 10000000)); while ((v % 10) == 0) { --numDecimalPlaces; v /= 10; } } // keep the current values inside the new range.. if (style != TwoValueHorizontal && style != TwoValueVertical) { setValue (currentValue, false, false); } else { setMinValue (getMinValue(), false, false); setMaxValue (getMaxValue(), false, false); } updateText(); } } void Slider::triggerChangeMessage (const bool synchronous) { if (synchronous) handleAsyncUpdate(); else triggerAsyncUpdate(); valueChanged(); } double Slider::getValue() const throw() { // for a two-value style slider, you should use the getMinValue() and getMaxValue() // methods to get the two values. jassert (style != TwoValueHorizontal && style != TwoValueVertical); return currentValue; } void Slider::setValue (double newValue, const bool sendUpdateMessage, const bool sendMessageSynchronously) { // for a two-value style slider, you should use the setMinValue() and setMaxValue() // methods to set the two values. jassert (style != TwoValueHorizontal && style != TwoValueVertical); newValue = constrainedValue (newValue); if (style == ThreeValueHorizontal || style == ThreeValueVertical) { jassert (valueMin <= valueMax); newValue = jlimit (valueMin, valueMax, newValue); } if (currentValue != newValue) { if (valueBox != 0) valueBox->hideEditor (true); currentValue = newValue; updateText(); repaint(); if (popupDisplay != 0) { ((SliderPopupDisplayComponent*) popupDisplay)->updatePosition (getTextFromValue (currentValue)); popupDisplay->repaint(); } if (sendUpdateMessage) triggerChangeMessage (sendMessageSynchronously); } } double Slider::getMinValue() const throw() { // The minimum value only applies to sliders that are in two- or three-value mode. jassert (style == TwoValueHorizontal || style == TwoValueVertical || style == ThreeValueHorizontal || style == ThreeValueVertical); return valueMin; } double Slider::getMaxValue() const throw() { // The maximum value only applies to sliders that are in two- or three-value mode. jassert (style == TwoValueHorizontal || style == TwoValueVertical || style == ThreeValueHorizontal || style == ThreeValueVertical); return valueMax; } void Slider::setMinValue (double newValue, const bool sendUpdateMessage, const bool sendMessageSynchronously, const bool allowNudgingOfOtherValues) { // The minimum value only applies to sliders that are in two- or three-value mode. jassert (style == TwoValueHorizontal || style == TwoValueVertical || style == ThreeValueHorizontal || style == ThreeValueVertical); newValue = constrainedValue (newValue); if (style == TwoValueHorizontal || style == TwoValueVertical) { if (allowNudgingOfOtherValues && newValue > valueMax) setMaxValue (newValue, sendUpdateMessage, sendMessageSynchronously); newValue = jmin (valueMax, newValue); } else { if (allowNudgingOfOtherValues && newValue > currentValue) setValue (newValue, sendUpdateMessage, sendMessageSynchronously); newValue = jmin (currentValue, newValue); } if (valueMin != newValue) { valueMin = newValue; repaint(); if (popupDisplay != 0) { ((SliderPopupDisplayComponent*) popupDisplay)->updatePosition (getTextFromValue (valueMin)); popupDisplay->repaint(); } if (sendUpdateMessage) triggerChangeMessage (sendMessageSynchronously); } } void Slider::setMaxValue (double newValue, const bool sendUpdateMessage, const bool sendMessageSynchronously, const bool allowNudgingOfOtherValues) { // The maximum value only applies to sliders that are in two- or three-value mode. jassert (style == TwoValueHorizontal || style == TwoValueVertical || style == ThreeValueHorizontal || style == ThreeValueVertical); newValue = constrainedValue (newValue); if (style == TwoValueHorizontal || style == TwoValueVertical) { if (allowNudgingOfOtherValues && newValue < valueMin) setMinValue (newValue, sendUpdateMessage, sendMessageSynchronously); newValue = jmax (valueMin, newValue); } else { if (allowNudgingOfOtherValues && newValue < currentValue) setValue (newValue, sendUpdateMessage, sendMessageSynchronously); newValue = jmax (currentValue, newValue); } if (valueMax != newValue) { valueMax = newValue; repaint(); if (popupDisplay != 0) { ((SliderPopupDisplayComponent*) popupDisplay)->updatePosition (getTextFromValue (valueMax)); popupDisplay->repaint(); } if (sendUpdateMessage) triggerChangeMessage (sendMessageSynchronously); } } void Slider::setDoubleClickReturnValue (const bool isDoubleClickEnabled, const double valueToSetOnDoubleClick) throw() { doubleClickToValue = isDoubleClickEnabled; doubleClickReturnValue = valueToSetOnDoubleClick; } double Slider::getDoubleClickReturnValue (bool& isEnabled_) const throw() { isEnabled_ = doubleClickToValue; return doubleClickReturnValue; } void Slider::updateText() { if (valueBox != 0) valueBox->setText (getTextFromValue (currentValue), false); } void Slider::setTextValueSuffix (const String& suffix) { if (textSuffix != suffix) { textSuffix = suffix; updateText(); } } const String Slider::getTextFromValue (double v) { if (numDecimalPlaces > 0) return String (v, numDecimalPlaces) + textSuffix; else return String (roundDoubleToInt (v)) + textSuffix; } double Slider::getValueFromText (const String& text) { String t (text.trimStart()); if (t.endsWith (textSuffix)) t = t.substring (0, t.length() - textSuffix.length()); while (t.startsWithChar (T('+'))) t = t.substring (1).trimStart(); return t.initialSectionContainingOnly (T("0123456789.,-")) .getDoubleValue(); } double Slider::proportionOfLengthToValue (double proportion) { if (skewFactor != 1.0 && proportion > 0.0) proportion = exp (log (proportion) / skewFactor); return minimum + (maximum - minimum) * proportion; } double Slider::valueToProportionOfLength (double value) { const double n = (value - minimum) / (maximum - minimum); return skewFactor == 1.0 ? n : pow (n, skewFactor); } double Slider::snapValue (double attemptedValue, const bool) { return attemptedValue; } void Slider::startedDragging() { } void Slider::stoppedDragging() { } void Slider::valueChanged() { } void Slider::enablementChanged() { repaint(); } void Slider::setPopupMenuEnabled (const bool menuEnabled_) throw() { menuEnabled = menuEnabled_; } void Slider::setScrollWheelEnabled (const bool enabled) throw() { scrollWheelEnabled = enabled; } void Slider::labelTextChanged (Label* label) { const double newValue = snapValue (getValueFromText (label->getText()), false); if (getValue() != newValue) { sendDragStart(); setValue (newValue, true, true); sendDragEnd(); } updateText(); // force a clean-up of the text, needed in case setValue() hasn't done this. } void Slider::buttonClicked (Button* button) { if (style == IncDecButtons) { sendDragStart(); if (button == incButton) setValue (snapValue (getValue() + interval, false), true, true); else if (button == decButton) setValue (snapValue (getValue() - interval, false), true, true); sendDragEnd(); } } double Slider::constrainedValue (double value) const throw() { if (interval > 0) value = minimum + interval * floor ((value - minimum) / interval + 0.5); if (value <= minimum || maximum <= minimum) value = minimum; else if (value >= maximum) value = maximum; return value; } float Slider::getLinearSliderPos (const double value) { double sliderPosProportional; if (maximum > minimum) { if (value < minimum) { sliderPosProportional = 0.0; } else if (value > maximum) { sliderPosProportional = 1.0; } else { sliderPosProportional = valueToProportionOfLength (value); jassert (sliderPosProportional >= 0 && sliderPosProportional <= 1.0); } } else { sliderPosProportional = 0.5; } if (isVertical() || style == IncDecButtons) sliderPosProportional = 1.0 - sliderPosProportional; return (float) (sliderRegionStart + sliderPosProportional * sliderRegionSize); } bool Slider::isHorizontal() const throw() { return style == LinearHorizontal || style == LinearBar || style == TwoValueHorizontal || style == ThreeValueHorizontal; } bool Slider::isVertical() const throw() { return style == LinearVertical || style == TwoValueVertical || style == ThreeValueVertical; } bool Slider::incDecDragDirectionIsHorizontal() const throw() { return incDecButtonMode == incDecButtonsDraggable_Horizontal || (incDecButtonMode == incDecButtonsDraggable_AutoDirection && incDecButtonsSideBySide); } float Slider::getPositionOfValue (const double value) { if (isHorizontal() || isVertical()) { return getLinearSliderPos (value); } else { jassertfalse // not a valid call on a slider that doesn't work linearly! return 0.0f; } } void Slider::paint (Graphics& g) { if (style != IncDecButtons) { if (style == Rotary || style == RotaryHorizontalDrag || style == RotaryVerticalDrag) { const float sliderPos = (float) valueToProportionOfLength (currentValue); jassert (sliderPos >= 0 && sliderPos <= 1.0f); getLookAndFeel().drawRotarySlider (g, sliderRect.getX(), sliderRect.getY(), sliderRect.getWidth(), sliderRect.getHeight(), sliderPos, rotaryStart, rotaryEnd, *this); } else { getLookAndFeel().drawLinearSlider (g, sliderRect.getX(), sliderRect.getY(), sliderRect.getWidth(), sliderRect.getHeight(), getLinearSliderPos (currentValue), getLinearSliderPos (valueMin), getLinearSliderPos (valueMax), style, *this); } if (style == LinearBar && valueBox == 0) { g.setColour (findColour (Slider::textBoxOutlineColourId)); g.drawRect (0, 0, getWidth(), getHeight(), 1); } } } void Slider::resized() { int minXSpace = 0; int minYSpace = 0; if (textBoxPos == TextBoxLeft || textBoxPos == TextBoxRight) minXSpace = 30; else minYSpace = 15; const int tbw = jmax (0, jmin (textBoxWidth, getWidth() - minXSpace)); const int tbh = jmax (0, jmin (textBoxHeight, getHeight() - minYSpace)); if (style == LinearBar) { if (valueBox != 0) valueBox->setBounds (0, 0, getWidth(), getHeight()); } else { if (textBoxPos == NoTextBox) { sliderRect.setBounds (0, 0, getWidth(), getHeight()); } else if (textBoxPos == TextBoxLeft) { valueBox->setBounds (0, (getHeight() - tbh) / 2, tbw, tbh); sliderRect.setBounds (tbw, 0, getWidth() - tbw, getHeight()); } else if (textBoxPos == TextBoxRight) { valueBox->setBounds (getWidth() - tbw, (getHeight() - tbh) / 2, tbw, tbh); sliderRect.setBounds (0, 0, getWidth() - tbw, getHeight()); } else if (textBoxPos == TextBoxAbove) { valueBox->setBounds ((getWidth() - tbw) / 2, 0, tbw, tbh); sliderRect.setBounds (0, tbh, getWidth(), getHeight() - tbh); } else if (textBoxPos == TextBoxBelow) { valueBox->setBounds ((getWidth() - tbw) / 2, getHeight() - tbh, tbw, tbh); sliderRect.setBounds (0, 0, getWidth(), getHeight() - tbh); } } const int indent = getLookAndFeel().getSliderThumbRadius (*this); if (style == LinearBar) { const int barIndent = 1; sliderRegionStart = barIndent; sliderRegionSize = getWidth() - barIndent * 2; sliderRect.setBounds (sliderRegionStart, barIndent, sliderRegionSize, getHeight() - barIndent * 2); } else if (isHorizontal()) { sliderRegionStart = sliderRect.getX() + indent; sliderRegionSize = jmax (1, sliderRect.getWidth() - indent * 2); sliderRect.setBounds (sliderRegionStart, sliderRect.getY(), sliderRegionSize, sliderRect.getHeight()); } else if (isVertical()) { sliderRegionStart = sliderRect.getY() + indent; sliderRegionSize = jmax (1, sliderRect.getHeight() - indent * 2); sliderRect.setBounds (sliderRect.getX(), sliderRegionStart, sliderRect.getWidth(), sliderRegionSize); } else { sliderRegionStart = 0; sliderRegionSize = 100; } if (style == IncDecButtons) { Rectangle buttonRect (sliderRect); if (textBoxPos == TextBoxLeft || textBoxPos == TextBoxRight) buttonRect.expand (-2, 0); else buttonRect.expand (0, -2); incDecButtonsSideBySide = buttonRect.getWidth() > buttonRect.getHeight(); if (incDecButtonsSideBySide) { decButton->setBounds (buttonRect.getX(), buttonRect.getY(), buttonRect.getWidth() / 2, buttonRect.getHeight()); decButton->setConnectedEdges (Button::ConnectedOnRight); incButton->setBounds (buttonRect.getCentreX(), buttonRect.getY(), buttonRect.getWidth() / 2, buttonRect.getHeight()); incButton->setConnectedEdges (Button::ConnectedOnLeft); } else { incButton->setBounds (buttonRect.getX(), buttonRect.getY(), buttonRect.getWidth(), buttonRect.getHeight() / 2); incButton->setConnectedEdges (Button::ConnectedOnBottom); decButton->setBounds (buttonRect.getX(), buttonRect.getCentreY(), buttonRect.getWidth(), buttonRect.getHeight() / 2); decButton->setConnectedEdges (Button::ConnectedOnTop); } } } void Slider::focusOfChildComponentChanged (FocusChangeType) { repaint(); } void Slider::mouseDown (const MouseEvent& e) { mouseWasHidden = false; incDecDragged = false; mouseXWhenLastDragged = e.x; mouseYWhenLastDragged = e.y; mouseDragStartX = e.getMouseDownX(); mouseDragStartY = e.getMouseDownY(); if (isEnabled()) { if (e.mods.isPopupMenu() && menuEnabled) { menuShown = true; PopupMenu m; m.addItem (1, TRANS ("velocity-sensitive mode"), true, isVelocityBased); m.addSeparator(); if (style == Rotary || style == RotaryHorizontalDrag || style == RotaryVerticalDrag) { PopupMenu rotaryMenu; rotaryMenu.addItem (2, TRANS ("use circular dragging"), true, style == Rotary); rotaryMenu.addItem (3, TRANS ("use left-right dragging"), true, style == RotaryHorizontalDrag); rotaryMenu.addItem (4, TRANS ("use up-down dragging"), true, style == RotaryVerticalDrag); m.addSubMenu (TRANS ("rotary mode"), rotaryMenu); } const int r = m.show(); if (r == 1) { setVelocityBasedMode (! isVelocityBased); } else if (r == 2) { setSliderStyle (Rotary); } else if (r == 3) { setSliderStyle (RotaryHorizontalDrag); } else if (r == 4) { setSliderStyle (RotaryVerticalDrag); } } else if (maximum > minimum) { menuShown = false; if (valueBox != 0) valueBox->hideEditor (true); sliderBeingDragged = 0; if (style == TwoValueHorizontal || style == TwoValueVertical || style == ThreeValueHorizontal || style == ThreeValueVertical) { const float mousePos = (float) (isVertical() ? e.y : e.x); const float normalPosDistance = fabsf (getLinearSliderPos (currentValue) - mousePos); const float minPosDistance = fabsf (getLinearSliderPos (valueMin) - 0.1f - mousePos); const float maxPosDistance = fabsf (getLinearSliderPos (valueMax) + 0.1f - mousePos); if (style == TwoValueHorizontal || style == TwoValueVertical) { if (maxPosDistance <= minPosDistance) sliderBeingDragged = 2; else sliderBeingDragged = 1; } else if (style == ThreeValueHorizontal || style == ThreeValueVertical) { if (normalPosDistance >= minPosDistance && maxPosDistance >= minPosDistance) sliderBeingDragged = 1; else if (normalPosDistance >= maxPosDistance) sliderBeingDragged = 2; } } minMaxDiff = valueMax - valueMin; lastAngle = rotaryStart + (rotaryEnd - rotaryStart) * valueToProportionOfLength (currentValue); if (sliderBeingDragged == 2) valueWhenLastDragged = valueMax; else if (sliderBeingDragged == 1) valueWhenLastDragged = valueMin; else valueWhenLastDragged = currentValue; valueOnMouseDown = valueWhenLastDragged; if (popupDisplayEnabled) { SliderPopupDisplayComponent* const popup = new SliderPopupDisplayComponent (this); popupDisplay = popup; if (parentForPopupDisplay != 0) { parentForPopupDisplay->addChildComponent (popup); } else { popup->addToDesktop (0); } popup->setVisible (true); } sendDragStart(); mouseDrag (e); } } } void Slider::mouseUp (const MouseEvent&) { if (isEnabled() && (! menuShown) && (maximum > minimum) && (style != IncDecButtons || incDecDragged)) { restoreMouseIfHidden(); if (sendChangeOnlyOnRelease && valueOnMouseDown != currentValue) triggerChangeMessage (false); sendDragEnd(); deleteAndZero (popupDisplay); if (style == IncDecButtons) { incButton->setState (Button::buttonNormal); decButton->setState (Button::buttonNormal); } } } void Slider::restoreMouseIfHidden() { if (mouseWasHidden) { mouseWasHidden = false; Component* c = Component::getComponentUnderMouse(); if (c == 0) c = this; c->enableUnboundedMouseMovement (false); const double pos = (sliderBeingDragged == 2) ? getMaxValue() : ((sliderBeingDragged == 1) ? getMinValue() : currentValue); if (style == RotaryHorizontalDrag || style == RotaryVerticalDrag) { int x, y, downX, downY; Desktop::getMousePosition (x, y); Desktop::getLastMouseDownPosition (downX, downY); if (style == RotaryHorizontalDrag) { const double posDiff = valueToProportionOfLength (pos) - valueToProportionOfLength (valueOnMouseDown); x = roundDoubleToInt (pixelsForFullDragExtent * posDiff + downX); y = downY; } else { const double posDiff = valueToProportionOfLength (valueOnMouseDown) - valueToProportionOfLength (pos); x = downX; y = roundDoubleToInt (pixelsForFullDragExtent * posDiff + downY); } Desktop::setMousePosition (x, y); } else { const int pixelPos = (int) getLinearSliderPos (pos); int x = isHorizontal() ? pixelPos : (getWidth() / 2); int y = isVertical() ? pixelPos : (getHeight() / 2); relativePositionToGlobal (x, y); Desktop::setMousePosition (x, y); } } } void Slider::modifierKeysChanged (const ModifierKeys& modifiers) { if (isEnabled() && style != IncDecButtons && style != Rotary && isVelocityBased == modifiers.isAnyModifierKeyDown()) { restoreMouseIfHidden(); } } static double smallestAngleBetween (double a1, double a2) { return jmin (fabs (a1 - a2), fabs (a1 + double_Pi * 2.0 - a2), fabs (a2 + double_Pi * 2.0 - a1)); } void Slider::mouseDrag (const MouseEvent& e) { if (isEnabled() && (! menuShown) && (maximum > minimum)) { if (style == Rotary) { int dx = e.x - sliderRect.getCentreX(); int dy = e.y - sliderRect.getCentreY(); if (dx * dx + dy * dy > 25) { double angle = atan2 ((double) dx, (double) -dy); while (angle < 0.0) angle += double_Pi * 2.0; if (rotaryStop && ! e.mouseWasClicked()) { if (fabs (angle - lastAngle) > double_Pi) { if (angle >= lastAngle) angle -= double_Pi * 2.0; else angle += double_Pi * 2.0; } if (angle >= lastAngle) angle = jmin (angle, (double) jmax (rotaryStart, rotaryEnd)); else angle = jmax (angle, (double) jmin (rotaryStart, rotaryEnd)); } else { while (angle < rotaryStart) angle += double_Pi * 2.0; if (angle > rotaryEnd) { if (smallestAngleBetween (angle, rotaryStart) <= smallestAngleBetween (angle, rotaryEnd)) angle = rotaryStart; else angle = rotaryEnd; } } const double proportion = (angle - rotaryStart) / (rotaryEnd - rotaryStart); valueWhenLastDragged = proportionOfLengthToValue (jlimit (0.0, 1.0, proportion)); lastAngle = angle; } } else { if (style == LinearBar && e.mouseWasClicked() && valueBox != 0 && valueBox->isEditable()) return; if (style == IncDecButtons && ! incDecDragged) { if (e.getDistanceFromDragStart() < 10 || e.mouseWasClicked()) return; incDecDragged = true; mouseDragStartX = e.x; mouseDragStartY = e.y; } if ((isVelocityBased == (userKeyOverridesVelocity ? e.mods.testFlags (ModifierKeys::ctrlModifier | ModifierKeys::commandModifier | ModifierKeys::altModifier) : false)) || ((maximum - minimum) / sliderRegionSize < interval)) { const int mousePos = (isHorizontal() || style == RotaryHorizontalDrag) ? e.x : e.y; double scaledMousePos = (mousePos - sliderRegionStart) / (double) sliderRegionSize; if (style == RotaryHorizontalDrag || style == RotaryVerticalDrag || style == IncDecButtons || ((style == LinearHorizontal || style == LinearVertical || style == LinearBar) && ! snapsToMousePos)) { const int mouseDiff = (style == RotaryHorizontalDrag || style == LinearHorizontal || style == LinearBar || (style == IncDecButtons && incDecDragDirectionIsHorizontal())) ? e.x - mouseDragStartX : mouseDragStartY - e.y; double newPos = valueToProportionOfLength (valueOnMouseDown) + mouseDiff * (1.0 / pixelsForFullDragExtent); valueWhenLastDragged = proportionOfLengthToValue (jlimit (0.0, 1.0, newPos)); if (style == IncDecButtons) { incButton->setState (mouseDiff < 0 ? Button::buttonNormal : Button::buttonDown); decButton->setState (mouseDiff > 0 ? Button::buttonNormal : Button::buttonDown); } } else { if (isVertical()) scaledMousePos = 1.0 - scaledMousePos; valueWhenLastDragged = proportionOfLengthToValue (jlimit (0.0, 1.0, scaledMousePos)); } } else { const int mouseDiff = (isHorizontal() || style == RotaryHorizontalDrag || (style == IncDecButtons && incDecDragDirectionIsHorizontal())) ? e.x - mouseXWhenLastDragged : e.y - mouseYWhenLastDragged; const double maxSpeed = jmax (200, sliderRegionSize); double speed = jlimit (0.0, maxSpeed, (double) abs (mouseDiff)); if (speed != 0) { speed = 0.2 * velocityModeSensitivity * (1.0 + sin (double_Pi * (1.5 + jmin (0.5, velocityModeOffset + jmax (0.0, (double) (speed - velocityModeThreshold)) / maxSpeed)))); if (mouseDiff < 0) speed = -speed; if (isVertical() || style == RotaryVerticalDrag || (style == IncDecButtons && ! incDecDragDirectionIsHorizontal())) speed = -speed; const double currentPos = valueToProportionOfLength (valueWhenLastDragged); valueWhenLastDragged = proportionOfLengthToValue (jlimit (0.0, 1.0, currentPos + speed)); e.originalComponent->enableUnboundedMouseMovement (true, false); mouseWasHidden = true; } } } valueWhenLastDragged = jlimit (minimum, maximum, valueWhenLastDragged); if (sliderBeingDragged == 0) { setValue (snapValue (valueWhenLastDragged, true), ! sendChangeOnlyOnRelease, true); } else if (sliderBeingDragged == 1) { setMinValue (snapValue (valueWhenLastDragged, true), ! sendChangeOnlyOnRelease, false, true); if (e.mods.isShiftDown()) setMaxValue (getMinValue() + minMaxDiff, false, false, true); else minMaxDiff = valueMax - valueMin; } else { jassert (sliderBeingDragged == 2); setMaxValue (snapValue (valueWhenLastDragged, true), ! sendChangeOnlyOnRelease, false, true); if (e.mods.isShiftDown()) setMinValue (getMaxValue() - minMaxDiff, false, false, true); else minMaxDiff = valueMax - valueMin; } mouseXWhenLastDragged = e.x; mouseYWhenLastDragged = e.y; } } void Slider::mouseDoubleClick (const MouseEvent&) { if (doubleClickToValue && isEnabled() && style != IncDecButtons && minimum <= doubleClickReturnValue && maximum >= doubleClickReturnValue) { sendDragStart(); setValue (doubleClickReturnValue, true, true); sendDragEnd(); } } void Slider::mouseWheelMove (const MouseEvent& e, float wheelIncrementX, float wheelIncrementY) { if (scrollWheelEnabled && isEnabled() && style != TwoValueHorizontal && style != TwoValueVertical) { if (maximum > minimum && ! isMouseButtonDownAnywhere()) { if (valueBox != 0) valueBox->hideEditor (false); const double proportionDelta = (wheelIncrementX != 0 ? -wheelIncrementX : wheelIncrementY) * 0.15f; const double currentPos = valueToProportionOfLength (currentValue); const double newValue = proportionOfLengthToValue (jlimit (0.0, 1.0, currentPos + proportionDelta)); double delta = (newValue != currentValue) ? jmax (fabs (newValue - currentValue), interval) : 0; if (currentValue > newValue) delta = -delta; sendDragStart(); setValue (snapValue (currentValue + delta, false), true, true); sendDragEnd(); } } else { Component::mouseWheelMove (e, wheelIncrementX, wheelIncrementY); } } void SliderListener::sliderDragStarted (Slider*) { } void SliderListener::sliderDragEnded (Slider*) { } END_JUCE_NAMESPACE /********* End of inlined file: juce_Slider.cpp *********/ /********* Start of inlined file: juce_TableHeaderComponent.cpp *********/ BEGIN_JUCE_NAMESPACE class DragOverlayComp : public Component { public: DragOverlayComp (Image* const image_) : image (image_) { image->multiplyAllAlphas (0.8f); setAlwaysOnTop (true); } ~DragOverlayComp() { delete image; } void paint (Graphics& g) { g.drawImageAt (image, 0, 0); } private: Image* image; DragOverlayComp (const DragOverlayComp&); const DragOverlayComp& operator= (const DragOverlayComp&); }; TableHeaderComponent::TableHeaderComponent() : listeners (2), dragOverlayComp (0), columnsChanged (false), columnsResized (false), sortChanged (false), menuActive (true), stretchToFit (false), columnIdBeingResized (0), columnIdBeingDragged (0), columnIdUnderMouse (0), lastDeliberateWidth (0) { } TableHeaderComponent::~TableHeaderComponent() { delete dragOverlayComp; } void TableHeaderComponent::setPopupMenuActive (const bool hasMenu) { menuActive = hasMenu; } bool TableHeaderComponent::isPopupMenuActive() const throw() { return menuActive; } int TableHeaderComponent::getNumColumns (const bool onlyCountVisibleColumns) const throw() { if (onlyCountVisibleColumns) { int num = 0; for (int i = columns.size(); --i >= 0;) if (columns.getUnchecked(i)->isVisible()) ++num; return num; } else { return columns.size(); } } const String TableHeaderComponent::getColumnName (const int columnId) const throw() { const ColumnInfo* const ci = getInfoForId (columnId); return ci != 0 ? ci->name : String::empty; } void TableHeaderComponent::setColumnName (const int columnId, const String& newName) { ColumnInfo* const ci = getInfoForId (columnId); if (ci != 0 && ci->name != newName) { ci->name = newName; sendColumnsChanged(); } } void TableHeaderComponent::addColumn (const String& columnName, const int columnId, const int width, const int minimumWidth, const int maximumWidth, const int propertyFlags, const int insertIndex) { // can't have a duplicate or null ID! jassert (columnId != 0 && getIndexOfColumnId (columnId, false) < 0); jassert (width > 0); ColumnInfo* const ci = new ColumnInfo(); ci->name = columnName; ci->id = columnId; ci->width = width; ci->lastDeliberateWidth = width; ci->minimumWidth = minimumWidth; ci->maximumWidth = maximumWidth; if (ci->maximumWidth < 0) ci->maximumWidth = INT_MAX; jassert (ci->maximumWidth >= ci->minimumWidth); ci->propertyFlags = propertyFlags; columns.insert (insertIndex, ci); sendColumnsChanged(); } void TableHeaderComponent::removeColumn (const int columnIdToRemove) { const int index = getIndexOfColumnId (columnIdToRemove, false); if (index >= 0) { columns.remove (index); sortChanged = true; sendColumnsChanged(); } } void TableHeaderComponent::removeAllColumns() { if (columns.size() > 0) { columns.clear(); sendColumnsChanged(); } } void TableHeaderComponent::moveColumn (const int columnId, int newIndex) { const int currentIndex = getIndexOfColumnId (columnId, false); newIndex = visibleIndexToTotalIndex (newIndex); if (columns [currentIndex] != 0 && currentIndex != newIndex) { columns.move (currentIndex, newIndex); sendColumnsChanged(); } } void TableHeaderComponent::setColumnWidth (const int columnId, const int newWidth) { ColumnInfo* const ci = getInfoForId (columnId); if (ci != 0 && ci->width != newWidth) { const int numColumns = getNumColumns (true); ci->lastDeliberateWidth = ci->width = jlimit (ci->minimumWidth, ci->maximumWidth, newWidth); if (stretchToFit) { const int index = getIndexOfColumnId (columnId, true) + 1; if (((unsigned int) index) < (unsigned int) numColumns) { const int x = getColumnPosition (index).getX(); if (lastDeliberateWidth == 0) lastDeliberateWidth = getTotalWidth(); resizeColumnsToFit (visibleIndexToTotalIndex (index), lastDeliberateWidth - x); } } repaint(); columnsResized = true; triggerAsyncUpdate(); } } int TableHeaderComponent::getIndexOfColumnId (const int columnId, const bool onlyCountVisibleColumns) const throw() { int n = 0; for (int i = 0; i < columns.size(); ++i) { if ((! onlyCountVisibleColumns) || columns.getUnchecked(i)->isVisible()) { if (columns.getUnchecked(i)->id == columnId) return n; ++n; } } return -1; } int TableHeaderComponent::getColumnIdOfIndex (int index, const bool onlyCountVisibleColumns) const throw() { if (onlyCountVisibleColumns) index = visibleIndexToTotalIndex (index); const ColumnInfo* const ci = columns [index]; return (ci != 0) ? ci->id : 0; } const Rectangle TableHeaderComponent::getColumnPosition (const int index) const throw() { int x = 0, width = 0, n = 0; for (int i = 0; i < columns.size(); ++i) { x += width; if (columns.getUnchecked(i)->isVisible()) { width = columns.getUnchecked(i)->width; if (n++ == index) break; } else { width = 0; } } return Rectangle (x, 0, width, getHeight()); } int TableHeaderComponent::getColumnIdAtX (const int xToFind) const throw() { if (xToFind >= 0) { int x = 0; for (int i = 0; i < columns.size(); ++i) { const ColumnInfo* const ci = columns.getUnchecked(i); if (ci->isVisible()) { x += ci->width; if (xToFind < x) return ci->id; } } } return 0; } int TableHeaderComponent::getTotalWidth() const throw() { int w = 0; for (int i = columns.size(); --i >= 0;) if (columns.getUnchecked(i)->isVisible()) w += columns.getUnchecked(i)->width; return w; } void TableHeaderComponent::setStretchToFitActive (const bool shouldStretchToFit) { stretchToFit = shouldStretchToFit; lastDeliberateWidth = getTotalWidth(); resized(); } bool TableHeaderComponent::isStretchToFitActive() const throw() { return stretchToFit; } void TableHeaderComponent::resizeAllColumnsToFit (int targetTotalWidth) { if (stretchToFit && getWidth() > 0 && columnIdBeingResized == 0 && columnIdBeingDragged == 0) { lastDeliberateWidth = targetTotalWidth; resizeColumnsToFit (0, targetTotalWidth); } } void TableHeaderComponent::resizeColumnsToFit (int firstColumnIndex, int targetTotalWidth) { targetTotalWidth = jmax (targetTotalWidth, 0); StretchableObjectResizer sor; int i; for (i = firstColumnIndex; i < columns.size(); ++i) { ColumnInfo* const ci = columns.getUnchecked(i); if (ci->isVisible()) sor.addItem (ci->lastDeliberateWidth, ci->minimumWidth, ci->maximumWidth); } sor.resizeToFit (targetTotalWidth); int visIndex = 0; for (i = firstColumnIndex; i < columns.size(); ++i) { ColumnInfo* const ci = columns.getUnchecked(i); if (ci->isVisible()) { const int newWidth = jlimit (ci->minimumWidth, ci->maximumWidth, (int) floor (sor.getItemSize (visIndex++))); if (newWidth != ci->width) { ci->width = newWidth; repaint(); columnsResized = true; triggerAsyncUpdate(); } } } } void TableHeaderComponent::setColumnVisible (const int columnId, const bool shouldBeVisible) { ColumnInfo* const ci = getInfoForId (columnId); if (ci != 0 && shouldBeVisible != ci->isVisible()) { if (shouldBeVisible) ci->propertyFlags |= visible; else ci->propertyFlags &= ~visible; sendColumnsChanged(); resized(); } } bool TableHeaderComponent::isColumnVisible (const int columnId) const { const ColumnInfo* const ci = getInfoForId (columnId); return ci != 0 && ci->isVisible(); } void TableHeaderComponent::setSortColumnId (const int columnId, const bool sortForwards) { if (getSortColumnId() != columnId || isSortedForwards() != sortForwards) { for (int i = columns.size(); --i >= 0;) columns.getUnchecked(i)->propertyFlags &= ~(sortedForwards | sortedBackwards); ColumnInfo* const ci = getInfoForId (columnId); if (ci != 0) ci->propertyFlags |= (sortForwards ? sortedForwards : sortedBackwards); reSortTable(); } } int TableHeaderComponent::getSortColumnId() const throw() { for (int i = columns.size(); --i >= 0;) if ((columns.getUnchecked(i)->propertyFlags & (sortedForwards | sortedBackwards)) != 0) return columns.getUnchecked(i)->id; return 0; } bool TableHeaderComponent::isSortedForwards() const throw() { for (int i = columns.size(); --i >= 0;) if ((columns.getUnchecked(i)->propertyFlags & (sortedForwards | sortedBackwards)) != 0) return (columns.getUnchecked(i)->propertyFlags & sortedForwards) != 0; return true; } void TableHeaderComponent::reSortTable() { sortChanged = true; repaint(); triggerAsyncUpdate(); } const String TableHeaderComponent::toString() const { String s; XmlElement doc (T("TABLELAYOUT")); doc.setAttribute (T("sortedCol"), getSortColumnId()); doc.setAttribute (T("sortForwards"), isSortedForwards()); for (int i = 0; i < columns.size(); ++i) { const ColumnInfo* const ci = columns.getUnchecked (i); XmlElement* const e = new XmlElement (T("COLUMN")); doc.addChildElement (e); e->setAttribute (T("id"), ci->id); e->setAttribute (T("visible"), ci->isVisible()); e->setAttribute (T("width"), ci->width); } return doc.createDocument (String::empty, true, false); } void TableHeaderComponent::restoreFromString (const String& storedVersion) { XmlDocument doc (storedVersion); XmlElement* const storedXml = doc.getDocumentElement(); int index = 0; if (storedXml != 0 && storedXml->hasTagName (T("TABLELAYOUT"))) { forEachXmlChildElement (*storedXml, col) { const int tabId = col->getIntAttribute (T("id")); ColumnInfo* const ci = getInfoForId (tabId); if (ci != 0) { columns.move (columns.indexOf (ci), index); ci->width = col->getIntAttribute (T("width")); setColumnVisible (tabId, col->getBoolAttribute (T("visible"))); } ++index; } columnsResized = true; sendColumnsChanged(); setSortColumnId (storedXml->getIntAttribute (T("sortedCol")), storedXml->getBoolAttribute (T("sortForwards"), true)); } delete storedXml; } void TableHeaderComponent::addListener (TableHeaderListener* const newListener) throw() { listeners.addIfNotAlreadyThere (newListener); } void TableHeaderComponent::removeListener (TableHeaderListener* const listenerToRemove) throw() { listeners.removeValue (listenerToRemove); } void TableHeaderComponent::columnClicked (int columnId, const ModifierKeys& mods) { const ColumnInfo* const ci = getInfoForId (columnId); if (ci != 0 && (ci->propertyFlags & sortable) != 0 && ! mods.isPopupMenu()) setSortColumnId (columnId, (ci->propertyFlags & sortedForwards) == 0); } void TableHeaderComponent::addMenuItems (PopupMenu& menu, const int /*columnIdClicked*/) { for (int i = 0; i < columns.size(); ++i) { const ColumnInfo* const ci = columns.getUnchecked(i); if ((ci->propertyFlags & appearsOnColumnMenu) != 0) menu.addItem (ci->id, ci->name, (ci->propertyFlags & (sortedForwards | sortedBackwards)) == 0, isColumnVisible (ci->id)); } } void TableHeaderComponent::reactToMenuItem (const int menuReturnId, const int /*columnIdClicked*/) { if (getIndexOfColumnId (menuReturnId, false) >= 0) setColumnVisible (menuReturnId, ! isColumnVisible (menuReturnId)); } void TableHeaderComponent::paint (Graphics& g) { LookAndFeel& lf = getLookAndFeel(); lf.drawTableHeaderBackground (g, *this); const Rectangle clip (g.getClipBounds()); int x = 0; for (int i = 0; i < columns.size(); ++i) { const ColumnInfo* const ci = columns.getUnchecked(i); if (ci->isVisible()) { if (x + ci->width > clip.getX() && (ci->id != columnIdBeingDragged || dragOverlayComp == 0 || ! dragOverlayComp->isVisible())) { g.saveState(); g.setOrigin (x, 0); g.reduceClipRegion (0, 0, ci->width, getHeight()); lf.drawTableHeaderColumn (g, ci->name, ci->id, ci->width, getHeight(), ci->id == columnIdUnderMouse, ci->id == columnIdUnderMouse && isMouseButtonDown(), ci->propertyFlags); g.restoreState(); } x += ci->width; if (x >= clip.getRight()) break; } } } void TableHeaderComponent::resized() { } void TableHeaderComponent::mouseMove (const MouseEvent& e) { updateColumnUnderMouse (e.x, e.y); } void TableHeaderComponent::mouseEnter (const MouseEvent& e) { updateColumnUnderMouse (e.x, e.y); } void TableHeaderComponent::mouseExit (const MouseEvent& e) { updateColumnUnderMouse (e.x, e.y); } void TableHeaderComponent::mouseDown (const MouseEvent& e) { repaint(); columnIdBeingResized = 0; columnIdBeingDragged = 0; if (columnIdUnderMouse != 0) { draggingColumnOffset = e.x - getColumnPosition (getIndexOfColumnId (columnIdUnderMouse, true)).getX(); if (e.mods.isPopupMenu()) columnClicked (columnIdUnderMouse, e.mods); } if (menuActive && e.mods.isPopupMenu()) showColumnChooserMenu (columnIdUnderMouse); } void TableHeaderComponent::mouseDrag (const MouseEvent& e) { if (columnIdBeingResized == 0 && columnIdBeingDragged == 0 && ! (e.mouseWasClicked() || e.mods.isPopupMenu())) { deleteAndZero (dragOverlayComp); columnIdBeingResized = getResizeDraggerAt (e.getMouseDownX()); if (columnIdBeingResized != 0) { const ColumnInfo* const ci = getInfoForId (columnIdBeingResized); initialColumnWidth = ci->width; } else { beginDrag (e); } } if (columnIdBeingResized != 0) { const ColumnInfo* const ci = getInfoForId (columnIdBeingResized); if (ci != 0) { int w = jlimit (ci->minimumWidth, ci->maximumWidth, initialColumnWidth + e.getDistanceFromDragStartX()); if (stretchToFit) { // prevent us dragging a column too far right if we're in stretch-to-fit mode int minWidthOnRight = 0; for (int i = getIndexOfColumnId (columnIdBeingResized, false) + 1; i < columns.size(); ++i) if (columns.getUnchecked (i)->isVisible()) minWidthOnRight += columns.getUnchecked (i)->minimumWidth; const Rectangle currentPos (getColumnPosition (getIndexOfColumnId (columnIdBeingResized, true))); w = jmax (ci->minimumWidth, jmin (w, getWidth() - minWidthOnRight - currentPos.getX())); } setColumnWidth (columnIdBeingResized, w); } } else if (columnIdBeingDragged != 0) { if (e.y >= -50 && e.y < getHeight() + 50) { if (dragOverlayComp != 0) { dragOverlayComp->setVisible (true); dragOverlayComp->setBounds (jlimit (0, jmax (0, getTotalWidth() - dragOverlayComp->getWidth()), e.x - draggingColumnOffset), 0, dragOverlayComp->getWidth(), getHeight()); for (int i = columns.size(); --i >= 0;) { const int currentIndex = getIndexOfColumnId (columnIdBeingDragged, true); int newIndex = currentIndex; if (newIndex > 0) { // if the previous column isn't draggable, we can't move our column // past it, because that'd change the undraggable column's position.. const ColumnInfo* const previous = columns.getUnchecked (newIndex - 1); if ((previous->propertyFlags & draggable) != 0) { const int leftOfPrevious = getColumnPosition (newIndex - 1).getX(); const int rightOfCurrent = getColumnPosition (newIndex).getRight(); if (abs (dragOverlayComp->getX() - leftOfPrevious) < abs (dragOverlayComp->getRight() - rightOfCurrent)) { --newIndex; } } } if (newIndex < columns.size() - 1) { // if the next column isn't draggable, we can't move our column // past it, because that'd change the undraggable column's position.. const ColumnInfo* const nextCol = columns.getUnchecked (newIndex + 1); if ((nextCol->propertyFlags & draggable) != 0) { const int leftOfCurrent = getColumnPosition (newIndex).getX(); const int rightOfNext = getColumnPosition (newIndex + 1).getRight(); if (abs (dragOverlayComp->getX() - leftOfCurrent) > abs (dragOverlayComp->getRight() - rightOfNext)) { ++newIndex; } } } if (newIndex != currentIndex) moveColumn (columnIdBeingDragged, newIndex); else break; } } } else { endDrag (draggingColumnOriginalIndex); } } } void TableHeaderComponent::beginDrag (const MouseEvent& e) { if (columnIdBeingDragged == 0) { columnIdBeingDragged = getColumnIdAtX (e.getMouseDownX()); const ColumnInfo* const ci = getInfoForId (columnIdBeingDragged); if (ci == 0 || (ci->propertyFlags & draggable) == 0) { columnIdBeingDragged = 0; } else { draggingColumnOriginalIndex = getIndexOfColumnId (columnIdBeingDragged, true); const Rectangle columnRect (getColumnPosition (draggingColumnOriginalIndex)); const int temp = columnIdBeingDragged; columnIdBeingDragged = 0; addAndMakeVisible (dragOverlayComp = new DragOverlayComp (createComponentSnapshot (columnRect, false))); columnIdBeingDragged = temp; dragOverlayComp->setBounds (columnRect); for (int i = listeners.size(); --i >= 0;) { listeners.getUnchecked(i)->tableColumnDraggingChanged (this, columnIdBeingDragged); i = jmin (i, listeners.size() - 1); } } } } void TableHeaderComponent::endDrag (const int finalIndex) { if (columnIdBeingDragged != 0) { moveColumn (columnIdBeingDragged, finalIndex); columnIdBeingDragged = 0; repaint(); for (int i = listeners.size(); --i >= 0;) { listeners.getUnchecked(i)->tableColumnDraggingChanged (this, 0); i = jmin (i, listeners.size() - 1); } } } void TableHeaderComponent::mouseUp (const MouseEvent& e) { mouseDrag (e); for (int i = columns.size(); --i >= 0;) if (columns.getUnchecked (i)->isVisible()) columns.getUnchecked (i)->lastDeliberateWidth = columns.getUnchecked (i)->width; columnIdBeingResized = 0; repaint(); endDrag (getIndexOfColumnId (columnIdBeingDragged, true)); updateColumnUnderMouse (e.x, e.y); if (columnIdUnderMouse != 0 && e.mouseWasClicked() && ! e.mods.isPopupMenu()) columnClicked (columnIdUnderMouse, e.mods); deleteAndZero (dragOverlayComp); } const MouseCursor TableHeaderComponent::getMouseCursor() { int x, y; getMouseXYRelative (x, y); if (columnIdBeingResized != 0 || (getResizeDraggerAt (x) != 0 && ! isMouseButtonDown())) return MouseCursor (MouseCursor::LeftRightResizeCursor); return Component::getMouseCursor(); } bool TableHeaderComponent::ColumnInfo::isVisible() const throw() { return (propertyFlags & TableHeaderComponent::visible) != 0; } TableHeaderComponent::ColumnInfo* TableHeaderComponent::getInfoForId (const int id) const throw() { for (int i = columns.size(); --i >= 0;) if (columns.getUnchecked(i)->id == id) return columns.getUnchecked(i); return 0; } int TableHeaderComponent::visibleIndexToTotalIndex (const int visibleIndex) const throw() { int n = 0; for (int i = 0; i < columns.size(); ++i) { if (columns.getUnchecked(i)->isVisible()) { if (n == visibleIndex) return i; ++n; } } return -1; } void TableHeaderComponent::sendColumnsChanged() { if (stretchToFit && lastDeliberateWidth > 0) resizeAllColumnsToFit (lastDeliberateWidth); repaint(); columnsChanged = true; triggerAsyncUpdate(); } void TableHeaderComponent::handleAsyncUpdate() { const bool changed = columnsChanged || sortChanged; const bool sized = columnsResized || changed; const bool sorted = sortChanged; columnsChanged = false; columnsResized = false; sortChanged = false; if (sorted) { for (int i = listeners.size(); --i >= 0;) { listeners.getUnchecked(i)->tableSortOrderChanged (this); i = jmin (i, listeners.size() - 1); } } if (changed) { for (int i = listeners.size(); --i >= 0;) { listeners.getUnchecked(i)->tableColumnsChanged (this); i = jmin (i, listeners.size() - 1); } } if (sized) { for (int i = listeners.size(); --i >= 0;) { listeners.getUnchecked(i)->tableColumnsResized (this); i = jmin (i, listeners.size() - 1); } } } int TableHeaderComponent::getResizeDraggerAt (const int mouseX) const throw() { if (((unsigned int) mouseX) < (unsigned int) getWidth()) { const int draggableDistance = 3; int x = 0; for (int i = 0; i < columns.size(); ++i) { const ColumnInfo* const ci = columns.getUnchecked(i); if (ci->isVisible()) { if (abs (mouseX - (x + ci->width)) <= draggableDistance && (ci->propertyFlags & resizable) != 0) return ci->id; x += ci->width; } } } return 0; } void TableHeaderComponent::updateColumnUnderMouse (int x, int y) { const int newCol = (reallyContains (x, y, true) && getResizeDraggerAt (x) == 0) ? getColumnIdAtX (x) : 0; if (newCol != columnIdUnderMouse) { columnIdUnderMouse = newCol; repaint(); } } void TableHeaderComponent::showColumnChooserMenu (const int columnIdClicked) { PopupMenu m; addMenuItems (m, columnIdClicked); if (m.getNumItems() > 0) { const int result = m.show(); if (result != 0) reactToMenuItem (result, columnIdClicked); } } void TableHeaderListener::tableColumnDraggingChanged (TableHeaderComponent*, int) { } END_JUCE_NAMESPACE /********* End of inlined file: juce_TableHeaderComponent.cpp *********/ /********* Start of inlined file: juce_TableListBox.cpp *********/ BEGIN_JUCE_NAMESPACE static const tchar* const tableColumnPropertyTag = T("_tableColumnID"); class TableListRowComp : public Component { public: TableListRowComp (TableListBox& owner_) : owner (owner_), row (-1), isSelected (false) { } ~TableListRowComp() { deleteAllChildren(); } void paint (Graphics& g) { TableListBoxModel* const model = owner.getModel(); if (model != 0) { const TableHeaderComponent* const header = owner.getHeader(); model->paintRowBackground (g, row, getWidth(), getHeight(), isSelected); const int numColumns = header->getNumColumns (true); for (int i = 0; i < numColumns; ++i) { if (! columnsWithComponents [i]) { const int columnId = header->getColumnIdOfIndex (i, true); Rectangle columnRect (header->getColumnPosition (i)); columnRect.setSize (columnRect.getWidth(), getHeight()); g.saveState(); g.reduceClipRegion (columnRect); g.setOrigin (columnRect.getX(), 0); model->paintCell (g, row, columnId, columnRect.getWidth(), columnRect.getHeight(), isSelected); g.restoreState(); } } } } void update (const int newRow, const bool isNowSelected) { if (newRow != row || isNowSelected != isSelected) { row = newRow; isSelected = isNowSelected; repaint(); } if (row < owner.getNumRows()) { jassert (row >= 0); const tchar* const tagPropertyName = T("_tableLastUseNum"); const int newTag = Random::getSystemRandom().nextInt(); const TableHeaderComponent* const header = owner.getHeader(); const int numColumns = header->getNumColumns (true); int i; columnsWithComponents.clear(); if (owner.getModel() != 0) { for (i = 0; i < numColumns; ++i) { const int columnId = header->getColumnIdOfIndex (i, true); Component* const newComp = owner.getModel()->refreshComponentForCell (row, columnId, isSelected, findChildComponentForColumn (columnId)); if (newComp != 0) { addAndMakeVisible (newComp); newComp->setComponentProperty (tagPropertyName, newTag); newComp->setComponentProperty (tableColumnPropertyTag, columnId); const Rectangle columnRect (header->getColumnPosition (i)); newComp->setBounds (columnRect.getX(), 0, columnRect.getWidth(), getHeight()); columnsWithComponents.setBit (i); } } } for (i = getNumChildComponents(); --i >= 0;) { Component* const c = getChildComponent (i); if (c->getComponentPropertyInt (tagPropertyName, false, 0) != newTag) delete c; } } else { columnsWithComponents.clear(); deleteAllChildren(); } } void resized() { for (int i = getNumChildComponents(); --i >= 0;) { Component* const c = getChildComponent (i); const int columnId = c->getComponentPropertyInt (tableColumnPropertyTag, false, 0); if (columnId != 0) { const Rectangle columnRect (owner.getHeader()->getColumnPosition (owner.getHeader()->getIndexOfColumnId (columnId, true))); c->setBounds (columnRect.getX(), 0, columnRect.getWidth(), getHeight()); } } } void mouseDown (const MouseEvent& e) { isDragging = false; selectRowOnMouseUp = false; if (isEnabled()) { if (! isSelected) { owner.selectRowsBasedOnModifierKeys (row, e.mods); const int columnId = owner.getHeader()->getColumnIdAtX (e.x); if (columnId != 0 && owner.getModel() != 0) owner.getModel()->cellClicked (row, columnId, e); } else { selectRowOnMouseUp = true; } } } void mouseDrag (const MouseEvent& e) { if (isEnabled() && owner.getModel() != 0 && ! (e.mouseWasClicked() || isDragging)) { const SparseSet selectedRows (owner.getSelectedRows()); if (selectedRows.size() > 0) { const String dragDescription (owner.getModel()->getDragSourceDescription (selectedRows)); if (dragDescription.isNotEmpty()) { isDragging = true; DragAndDropContainer* const dragContainer = DragAndDropContainer::findParentDragContainerFor (this); if (dragContainer != 0) { Image* dragImage = owner.createSnapshotOfSelectedRows(); dragImage->multiplyAllAlphas (0.6f); dragContainer->startDragging (dragDescription, &owner, dragImage, true); } else { // to be able to do a drag-and-drop operation, the listbox needs to // be inside a component which is also a DragAndDropContainer. jassertfalse } } } } } void mouseUp (const MouseEvent& e) { if (selectRowOnMouseUp && e.mouseWasClicked() && isEnabled()) { owner.selectRowsBasedOnModifierKeys (row, e.mods); const int columnId = owner.getHeader()->getColumnIdAtX (e.x); if (columnId != 0 && owner.getModel() != 0) owner.getModel()->cellClicked (row, columnId, e); } } void mouseDoubleClick (const MouseEvent& e) { const int columnId = owner.getHeader()->getColumnIdAtX (e.x); if (columnId != 0 && owner.getModel() != 0) owner.getModel()->cellDoubleClicked (row, columnId, e); } juce_UseDebuggingNewOperator private: TableListBox& owner; int row; bool isSelected, isDragging, selectRowOnMouseUp; BitArray columnsWithComponents; Component* findChildComponentForColumn (const int columnId) const { for (int i = getNumChildComponents(); --i >= 0;) { Component* const c = getChildComponent (i); if (c->getComponentPropertyInt (tableColumnPropertyTag, false, 0) == columnId) return c; } return 0; } TableListRowComp (const TableListRowComp&); const TableListRowComp& operator= (const TableListRowComp&); }; class TableListBoxHeader : public TableHeaderComponent { public: TableListBoxHeader (TableListBox& owner_) : owner (owner_) { } ~TableListBoxHeader() { } void addMenuItems (PopupMenu& menu, const int columnIdClicked) { if (owner.isAutoSizeMenuOptionShown()) { menu.addItem (0xf836743, TRANS("Auto-size this column"), columnIdClicked != 0); menu.addItem (0xf836744, TRANS("Auto-size all columns"), owner.getHeader()->getNumColumns (true) > 0); menu.addSeparator(); } TableHeaderComponent::addMenuItems (menu, columnIdClicked); } void reactToMenuItem (const int menuReturnId, const int columnIdClicked) { if (menuReturnId == 0xf836743) { owner.autoSizeColumn (columnIdClicked); } else if (menuReturnId == 0xf836744) { owner.autoSizeAllColumns(); } else { TableHeaderComponent::reactToMenuItem (menuReturnId, columnIdClicked); } } juce_UseDebuggingNewOperator private: TableListBox& owner; TableListBoxHeader (const TableListBoxHeader&); const TableListBoxHeader& operator= (const TableListBoxHeader&); }; TableListBox::TableListBox (const String& name, TableListBoxModel* const model_) : ListBox (name, 0), model (model_), autoSizeOptionsShown (true) { ListBox::model = this; header = new TableListBoxHeader (*this); header->setSize (100, 28); header->addListener (this); setHeaderComponent (header); } TableListBox::~TableListBox() { deleteAllChildren(); } void TableListBox::setModel (TableListBoxModel* const newModel) { if (model != newModel) { model = newModel; updateContent(); } } int TableListBox::getHeaderHeight() const throw() { return header->getHeight(); } void TableListBox::setHeaderHeight (const int newHeight) { header->setSize (header->getWidth(), newHeight); resized(); } void TableListBox::autoSizeColumn (const int columnId) { const int width = model != 0 ? model->getColumnAutoSizeWidth (columnId) : 0; if (width > 0) header->setColumnWidth (columnId, width); } void TableListBox::autoSizeAllColumns() { for (int i = 0; i < header->getNumColumns (true); ++i) autoSizeColumn (header->getColumnIdOfIndex (i, true)); } void TableListBox::setAutoSizeMenuOptionShown (const bool shouldBeShown) { autoSizeOptionsShown = shouldBeShown; } bool TableListBox::isAutoSizeMenuOptionShown() const throw() { return autoSizeOptionsShown; } const Rectangle TableListBox::getCellPosition (const int columnId, const int rowNumber, const bool relativeToComponentTopLeft) const { Rectangle headerCell (header->getColumnPosition (header->getIndexOfColumnId (columnId, true))); if (relativeToComponentTopLeft) headerCell.translate (header->getX(), 0); const Rectangle row (getRowPosition (rowNumber, relativeToComponentTopLeft)); return Rectangle (headerCell.getX(), row.getY(), headerCell.getWidth(), row.getHeight()); } void TableListBox::scrollToEnsureColumnIsOnscreen (const int columnId) { ScrollBar* const scrollbar = getHorizontalScrollBar(); if (scrollbar != 0) { const Rectangle pos (header->getColumnPosition (header->getIndexOfColumnId (columnId, true))); double x = scrollbar->getCurrentRangeStart(); const double w = scrollbar->getCurrentRangeSize(); if (pos.getX() < x) x = pos.getX(); else if (pos.getRight() > x + w) x += jmax (0.0, pos.getRight() - (x + w)); scrollbar->setCurrentRangeStart (x); } } int TableListBox::getNumRows() { return model != 0 ? model->getNumRows() : 0; } void TableListBox::paintListBoxItem (int, Graphics&, int, int, bool) { } Component* TableListBox::refreshComponentForRow (int rowNumber, bool isRowSelected_, Component* existingComponentToUpdate) { if (existingComponentToUpdate == 0) existingComponentToUpdate = new TableListRowComp (*this); ((TableListRowComp*) existingComponentToUpdate)->update (rowNumber, isRowSelected_); return existingComponentToUpdate; } void TableListBox::selectedRowsChanged (int row) { if (model != 0) model->selectedRowsChanged (row); } void TableListBox::deleteKeyPressed (int row) { if (model != 0) model->deleteKeyPressed (row); } void TableListBox::returnKeyPressed (int row) { if (model != 0) model->returnKeyPressed (row); } void TableListBox::backgroundClicked() { if (model != 0) model->backgroundClicked(); } void TableListBox::listWasScrolled() { if (model != 0) model->listWasScrolled(); } void TableListBox::tableColumnsChanged (TableHeaderComponent*) { setMinimumContentWidth (header->getTotalWidth()); repaint(); updateColumnComponents(); } void TableListBox::tableColumnsResized (TableHeaderComponent*) { setMinimumContentWidth (header->getTotalWidth()); repaint(); updateColumnComponents(); } void TableListBox::tableSortOrderChanged (TableHeaderComponent*) { if (model != 0) model->sortOrderChanged (header->getSortColumnId(), header->isSortedForwards()); } void TableListBox::tableColumnDraggingChanged (TableHeaderComponent*, int columnIdNowBeingDragged_) { columnIdNowBeingDragged = columnIdNowBeingDragged_; repaint(); } void TableListBox::resized() { ListBox::resized(); header->resizeAllColumnsToFit (getVisibleContentWidth()); setMinimumContentWidth (header->getTotalWidth()); } void TableListBox::updateColumnComponents() const { const int firstRow = getRowContainingPosition (0, 0); for (int i = firstRow + getNumRowsOnScreen() + 2; --i >= firstRow;) { TableListRowComp* const rowComp = dynamic_cast (getComponentForRowNumber (i)); if (rowComp != 0) rowComp->resized(); } } void TableListBoxModel::cellClicked (int, int, const MouseEvent&) { } void TableListBoxModel::cellDoubleClicked (int, int, const MouseEvent&) { } void TableListBoxModel::backgroundClicked() { } void TableListBoxModel::sortOrderChanged (int, const bool) { } int TableListBoxModel::getColumnAutoSizeWidth (int) { return 0; } void TableListBoxModel::selectedRowsChanged (int) { } void TableListBoxModel::deleteKeyPressed (int) { } void TableListBoxModel::returnKeyPressed (int) { } void TableListBoxModel::listWasScrolled() { } const String TableListBoxModel::getDragSourceDescription (const SparseSet&) { return String::empty; } Component* TableListBoxModel::refreshComponentForCell (int, int, bool, Component* existingComponentToUpdate) { (void) existingComponentToUpdate; jassert (existingComponentToUpdate == 0); // indicates a failure in the code the recycles the components return 0; } END_JUCE_NAMESPACE /********* End of inlined file: juce_TableListBox.cpp *********/ /********* Start of inlined file: juce_TextEditor.cpp *********/ BEGIN_JUCE_NAMESPACE #define SHOULD_WRAP(x, wrapwidth) (((x) - 0.0001f) >= (wrapwidth)) // a word or space that can't be broken down any further struct TextAtom { String atomText; float width; uint16 numChars; bool isWhitespace() const throw() { return CharacterFunctions::isWhitespace (atomText[0]); } bool isNewLine() const throw() { return atomText[0] == T('\r') || atomText[0] == T('\n'); } const String getText (const tchar passwordCharacter) const throw() { if (passwordCharacter == 0) return atomText; else return String::repeatedString (String::charToString (passwordCharacter), atomText.length()); } const String getTrimmedText (const tchar passwordCharacter) const throw() { if (passwordCharacter == 0) return atomText.substring (0, numChars); else if (isNewLine()) return String::empty; else return String::repeatedString (String::charToString (passwordCharacter), numChars); } }; // a run of text with a single font and colour class UniformTextSection { public: UniformTextSection (const String& text, const Font& font_, const Colour& colour_, const tchar passwordCharacter) throw() : font (font_), colour (colour_), atoms (64) { initialiseAtoms (text, passwordCharacter); } UniformTextSection (const UniformTextSection& other) throw() : font (other.font), colour (other.colour), atoms (64) { for (int i = 0; i < other.atoms.size(); ++i) atoms.add (new TextAtom (*(const TextAtom*) other.atoms.getUnchecked(i))); } ~UniformTextSection() throw() { // (no need to delete the atoms, as they're explicitly deleted by the caller) } void clear() throw() { for (int i = atoms.size(); --i >= 0;) { TextAtom* const atom = getAtom(i); delete atom; } atoms.clear(); } int getNumAtoms() const throw() { return atoms.size(); } TextAtom* getAtom (const int index) const throw() { return (TextAtom*) atoms.getUnchecked (index); } void append (const UniformTextSection& other, const tchar passwordCharacter) throw() { if (other.atoms.size() > 0) { TextAtom* const lastAtom = (TextAtom*) atoms.getLast(); int i = 0; if (lastAtom != 0) { if (! CharacterFunctions::isWhitespace (lastAtom->atomText.getLastCharacter())) { TextAtom* const first = other.getAtom(0); if (! CharacterFunctions::isWhitespace (first->atomText[0])) { lastAtom->atomText += first->atomText; lastAtom->numChars = (uint16) (lastAtom->numChars + first->numChars); lastAtom->width = font.getStringWidthFloat (lastAtom->getText (passwordCharacter)); delete first; ++i; } } } while (i < other.atoms.size()) { atoms.add (other.getAtom(i)); ++i; } } } UniformTextSection* split (const int indexToBreakAt, const tchar passwordCharacter) throw() { UniformTextSection* const section2 = new UniformTextSection (String::empty, font, colour, passwordCharacter); int index = 0; for (int i = 0; i < atoms.size(); ++i) { TextAtom* const atom = getAtom(i); const int nextIndex = index + atom->numChars; if (index == indexToBreakAt) { int j; for (j = i; j < atoms.size(); ++j) section2->atoms.add (getAtom (j)); for (j = atoms.size(); --j >= i;) atoms.remove (j); break; } else if (indexToBreakAt >= index && indexToBreakAt < nextIndex) { TextAtom* const secondAtom = new TextAtom(); secondAtom->atomText = atom->atomText.substring (indexToBreakAt - index); secondAtom->width = font.getStringWidthFloat (secondAtom->getText (passwordCharacter)); secondAtom->numChars = (uint16) secondAtom->atomText.length(); section2->atoms.add (secondAtom); atom->atomText = atom->atomText.substring (0, indexToBreakAt - index); atom->width = font.getStringWidthFloat (atom->getText (passwordCharacter)); atom->numChars = (uint16) (indexToBreakAt - index); int j; for (j = i + 1; j < atoms.size(); ++j) section2->atoms.add (getAtom (j)); for (j = atoms.size(); --j > i;) atoms.remove (j); break; } index = nextIndex; } return section2; } const String getAllText() const throw() { String s; s.preallocateStorage (getTotalLength()); tchar* endOfString = (tchar*) &(s[0]); for (int i = 0; i < atoms.size(); ++i) { const TextAtom* const atom = getAtom(i); memcpy (endOfString, &(atom->atomText[0]), atom->numChars * sizeof (tchar)); endOfString += atom->numChars; } *endOfString = 0; jassert ((endOfString - (tchar*) &(s[0])) <= getTotalLength()); return s; } const String getTextSubstring (const int startCharacter, const int endCharacter) const throw() { int index = 0; int totalLen = 0; int i; for (i = 0; i < atoms.size(); ++i) { const TextAtom* const atom = getAtom (i); const int nextIndex = index + atom->numChars; if (startCharacter < nextIndex) { if (endCharacter <= index) break; const int start = jmax (0, startCharacter - index); const int end = jmin (endCharacter - index, atom->numChars); jassert (end >= start); totalLen += end - start; } index = nextIndex; } String s; s.preallocateStorage (totalLen + 1); tchar* psz = (tchar*) (const tchar*) s; index = 0; for (i = 0; i < atoms.size(); ++i) { const TextAtom* const atom = getAtom (i); const int nextIndex = index + atom->numChars; if (startCharacter < nextIndex) { if (endCharacter <= index) break; const int start = jmax (0, startCharacter - index); const int len = jmin (endCharacter - index, atom->numChars) - start; memcpy (psz, ((const tchar*) atom->atomText) + start, len * sizeof (tchar)); psz += len; *psz = 0; } index = nextIndex; } return s; } int getTotalLength() const throw() { int c = 0; for (int i = atoms.size(); --i >= 0;) c += getAtom(i)->numChars; return c; } void setFont (const Font& newFont, const tchar passwordCharacter) throw() { if (font != newFont) { font = newFont; for (int i = atoms.size(); --i >= 0;) { TextAtom* const atom = (TextAtom*) atoms.getUnchecked(i); atom->width = newFont.getStringWidthFloat (atom->getText (passwordCharacter)); } } } juce_UseDebuggingNewOperator Font font; Colour colour; private: VoidArray atoms; void initialiseAtoms (const String& textToParse, const tchar passwordCharacter) throw() { int i = 0; const int len = textToParse.length(); const tchar* const text = (const tchar*) textToParse; while (i < len) { int start = i; // create a whitespace atom unless it starts with non-ws if (CharacterFunctions::isWhitespace (text[i]) && text[i] != T('\r') && text[i] != T('\n')) { while (i < len && CharacterFunctions::isWhitespace (text[i]) && text[i] != T('\r') && text[i] != T('\n')) { ++i; } } else { if (text[i] == T('\r')) { ++i; if ((i < len) && (text[i] == T('\n'))) { ++start; ++i; } } else if (text[i] == T('\n')) { ++i; } else { while ((i < len) && ! CharacterFunctions::isWhitespace (text[i])) ++i; } } TextAtom* const atom = new TextAtom(); atom->atomText = String (text + start, i - start); atom->width = font.getStringWidthFloat (atom->getText (passwordCharacter)); atom->numChars = (uint16) (i - start); atoms.add (atom); } } const UniformTextSection& operator= (const UniformTextSection& other); }; class TextEditorIterator { public: TextEditorIterator (const VoidArray& sections_, const float wordWrapWidth_, const tchar passwordCharacter_) throw() : indexInText (0), lineY (0), lineHeight (0), maxDescent (0), atomX (0), atomRight (0), atom (0), currentSection (0), sections (sections_), sectionIndex (0), atomIndex (0), wordWrapWidth (wordWrapWidth_), passwordCharacter (passwordCharacter_) { jassert (wordWrapWidth_ > 0); if (sections.size() > 0) currentSection = (const UniformTextSection*) sections.getUnchecked (sectionIndex); if (currentSection != 0) { lineHeight = currentSection->font.getHeight(); maxDescent = currentSection->font.getDescent(); } } TextEditorIterator (const TextEditorIterator& other) throw() : indexInText (other.indexInText), lineY (other.lineY), lineHeight (other.lineHeight), maxDescent (other.maxDescent), atomX (other.atomX), atomRight (other.atomRight), atom (other.atom), currentSection (other.currentSection), sections (other.sections), sectionIndex (other.sectionIndex), atomIndex (other.atomIndex), wordWrapWidth (other.wordWrapWidth), passwordCharacter (other.passwordCharacter), tempAtom (other.tempAtom) { } ~TextEditorIterator() throw() { } bool next() throw() { if (atom == &tempAtom) { const int numRemaining = tempAtom.atomText.length() - tempAtom.numChars; if (numRemaining > 0) { tempAtom.atomText = tempAtom.atomText.substring (tempAtom.numChars); atomX = 0; if (tempAtom.numChars > 0) lineY += lineHeight; indexInText += tempAtom.numChars; GlyphArrangement g; g.addLineOfText (currentSection->font, atom->getText (passwordCharacter), 0.0f, 0.0f); int split; for (split = 0; split < g.getNumGlyphs(); ++split) if (SHOULD_WRAP (g.getGlyph (split).getRight(), wordWrapWidth)) break; if (split > 0 && split <= numRemaining) { tempAtom.numChars = (uint16) split; tempAtom.width = g.getGlyph (split - 1).getRight(); atomRight = atomX + tempAtom.width; return true; } } } bool forceNewLine = false; if (sectionIndex >= sections.size()) { moveToEndOfLastAtom(); return false; } else if (atomIndex >= currentSection->getNumAtoms() - 1) { if (atomIndex >= currentSection->getNumAtoms()) { if (++sectionIndex >= sections.size()) { moveToEndOfLastAtom(); return false; } atomIndex = 0; currentSection = (const UniformTextSection*) sections.getUnchecked (sectionIndex); lineHeight = jmax (lineHeight, currentSection->font.getHeight()); maxDescent = jmax (maxDescent, currentSection->font.getDescent()); } else { const TextAtom* const lastAtom = currentSection->getAtom (atomIndex); if (! lastAtom->isWhitespace()) { // handle the case where the last atom in a section is actually part of the same // word as the first atom of the next section... float right = atomRight + lastAtom->width; float lineHeight2 = lineHeight; float maxDescent2 = maxDescent; for (int section = sectionIndex + 1; section < sections.size(); ++section) { const UniformTextSection* const s = (const UniformTextSection*) sections.getUnchecked (section); if (s->getNumAtoms() == 0) break; const TextAtom* const nextAtom = s->getAtom (0); if (nextAtom->isWhitespace()) break; right += nextAtom->width; lineHeight2 = jmax (lineHeight2, s->font.getHeight()); maxDescent2 = jmax (maxDescent2, s->font.getDescent()); if (SHOULD_WRAP (right, wordWrapWidth)) { lineHeight = lineHeight2; maxDescent = maxDescent2; forceNewLine = true; break; } if (s->getNumAtoms() > 1) break; } } } } if (atom != 0) { atomX = atomRight; indexInText += atom->numChars; if (atom->isNewLine()) { atomX = 0; lineY += lineHeight; } } atom = currentSection->getAtom (atomIndex); atomRight = atomX + atom->width; ++atomIndex; if (SHOULD_WRAP (atomRight, wordWrapWidth) || forceNewLine) { if (atom->isWhitespace()) { // leave whitespace at the end of a line, but truncate it to avoid scrolling atomRight = jmin (atomRight, wordWrapWidth); } else { return wrapCurrentAtom(); } } return true; } bool wrapCurrentAtom() throw() { atomRight = atom->width; if (SHOULD_WRAP (atomRight, wordWrapWidth)) // atom too big to fit on a line, so break it up.. { tempAtom = *atom; tempAtom.width = 0; tempAtom.numChars = 0; atom = &tempAtom; if (atomX > 0) { atomX = 0; lineY += lineHeight; } return next(); } atomX = 0; lineY += lineHeight; return true; } void draw (Graphics& g, const UniformTextSection*& lastSection) const throw() { if (passwordCharacter != 0 || ! atom->isWhitespace()) { if (lastSection != currentSection) { lastSection = currentSection; g.setColour (currentSection->colour); g.setFont (currentSection->font); } jassert (atom->getTrimmedText (passwordCharacter).isNotEmpty()); GlyphArrangement ga; ga.addLineOfText (currentSection->font, atom->getTrimmedText (passwordCharacter), atomX, (float) roundFloatToInt (lineY + lineHeight - maxDescent)); ga.draw (g); } } void drawSelection (Graphics& g, const int selectionStart, const int selectionEnd) const throw() { const int startX = roundFloatToInt (indexToX (selectionStart)); const int endX = roundFloatToInt (indexToX (selectionEnd)); const int y = roundFloatToInt (lineY); const int nextY = roundFloatToInt (lineY + lineHeight); g.fillRect (startX, y, endX - startX, nextY - y); } void drawSelectedText (Graphics& g, const int selectionStart, const int selectionEnd, const Colour& selectedTextColour) const throw() { if (passwordCharacter != 0 || ! atom->isWhitespace()) { GlyphArrangement ga; ga.addLineOfText (currentSection->font, atom->getTrimmedText (passwordCharacter), atomX, (float) roundFloatToInt (lineY + lineHeight - maxDescent)); if (selectionEnd < indexInText + atom->numChars) { GlyphArrangement ga2 (ga); ga2.removeRangeOfGlyphs (0, selectionEnd - indexInText); ga.removeRangeOfGlyphs (selectionEnd - indexInText, -1); g.setColour (currentSection->colour); ga2.draw (g); } if (selectionStart > indexInText) { GlyphArrangement ga2 (ga); ga2.removeRangeOfGlyphs (selectionStart - indexInText, -1); ga.removeRangeOfGlyphs (0, selectionStart - indexInText); g.setColour (currentSection->colour); ga2.draw (g); } g.setColour (selectedTextColour); ga.draw (g); } } float indexToX (const int indexToFind) const throw() { if (indexToFind <= indexInText) return atomX; if (indexToFind >= indexInText + atom->numChars) return atomRight; GlyphArrangement g; g.addLineOfText (currentSection->font, atom->getText (passwordCharacter), atomX, 0.0f); return jmin (atomRight, g.getGlyph (indexToFind - indexInText).getLeft()); } int xToIndex (const float xToFind) const throw() { if (xToFind <= atomX || atom->isNewLine()) return indexInText; if (xToFind >= atomRight) return indexInText + atom->numChars; GlyphArrangement g; g.addLineOfText (currentSection->font, atom->getText (passwordCharacter), atomX, 0.0f); int j; for (j = 0; j < atom->numChars; ++j) if ((g.getGlyph(j).getLeft() + g.getGlyph(j).getRight()) / 2 > xToFind) break; return indexInText + j; } void updateLineHeight() throw() { float x = atomRight; int tempSectionIndex = sectionIndex; int tempAtomIndex = atomIndex; const UniformTextSection* currentSection = (const UniformTextSection*) sections.getUnchecked (tempSectionIndex); while (! SHOULD_WRAP (x, wordWrapWidth)) { if (tempSectionIndex >= sections.size()) break; bool checkSize = false; if (tempAtomIndex >= currentSection->getNumAtoms()) { if (++tempSectionIndex >= sections.size()) break; tempAtomIndex = 0; currentSection = (const UniformTextSection*) sections.getUnchecked (tempSectionIndex); checkSize = true; } const TextAtom* const atom = currentSection->getAtom (tempAtomIndex); if (atom == 0) break; x += atom->width; if (SHOULD_WRAP (x, wordWrapWidth) || atom->isNewLine()) break; if (checkSize) { lineHeight = jmax (lineHeight, currentSection->font.getHeight()); maxDescent = jmax (maxDescent, currentSection->font.getDescent()); } ++tempAtomIndex; } } bool getCharPosition (const int index, float& cx, float& cy, float& lineHeight_) throw() { while (next()) { if (indexInText + atom->numChars >= index) { updateLineHeight(); if (indexInText + atom->numChars > index) { cx = indexToX (index); cy = lineY; lineHeight_ = lineHeight; return true; } } } cx = atomX; cy = lineY; lineHeight_ = lineHeight; return false; } juce_UseDebuggingNewOperator int indexInText; float lineY, lineHeight, maxDescent; float atomX, atomRight; const TextAtom* atom; const UniformTextSection* currentSection; private: const VoidArray& sections; int sectionIndex, atomIndex; const float wordWrapWidth; const tchar passwordCharacter; TextAtom tempAtom; const TextEditorIterator& operator= (const TextEditorIterator&); void moveToEndOfLastAtom() throw() { if (atom != 0) { atomX = atomRight; if (atom->isNewLine()) { atomX = 0.0f; lineY += lineHeight; } } } }; class TextEditorInsertAction : public UndoableAction { TextEditor& owner; const String text; const int insertIndex, oldCaretPos, newCaretPos; const Font font; const Colour colour; TextEditorInsertAction (const TextEditorInsertAction&); const TextEditorInsertAction& operator= (const TextEditorInsertAction&); public: TextEditorInsertAction (TextEditor& owner_, const String& text_, const int insertIndex_, const Font& font_, const Colour& colour_, const int oldCaretPos_, const int newCaretPos_) throw() : owner (owner_), text (text_), insertIndex (insertIndex_), oldCaretPos (oldCaretPos_), newCaretPos (newCaretPos_), font (font_), colour (colour_) { } ~TextEditorInsertAction() { } bool perform() { owner.insert (text, insertIndex, font, colour, 0, newCaretPos); return true; } bool undo() { owner.remove (insertIndex, insertIndex + text.length(), 0, oldCaretPos); return true; } int getSizeInUnits() { return text.length() + 16; } }; class TextEditorRemoveAction : public UndoableAction { TextEditor& owner; const int startIndex, endIndex, oldCaretPos, newCaretPos; VoidArray removedSections; TextEditorRemoveAction (const TextEditorRemoveAction&); const TextEditorRemoveAction& operator= (const TextEditorRemoveAction&); public: TextEditorRemoveAction (TextEditor& owner_, const int startIndex_, const int endIndex_, const int oldCaretPos_, const int newCaretPos_, const VoidArray& removedSections_) throw() : owner (owner_), startIndex (startIndex_), endIndex (endIndex_), oldCaretPos (oldCaretPos_), newCaretPos (newCaretPos_), removedSections (removedSections_) { } ~TextEditorRemoveAction() { for (int i = removedSections.size(); --i >= 0;) { UniformTextSection* const section = (UniformTextSection*) removedSections.getUnchecked (i); section->clear(); delete section; } } bool perform() { owner.remove (startIndex, endIndex, 0, newCaretPos); return true; } bool undo() { owner.reinsert (startIndex, removedSections); owner.moveCursorTo (oldCaretPos, false); return true; } int getSizeInUnits() { int n = 0; for (int i = removedSections.size(); --i >= 0;) { UniformTextSection* const section = (UniformTextSection*) removedSections.getUnchecked (i); n += section->getTotalLength(); } return n + 16; } }; class TextHolderComponent : public Component, public Timer { TextEditor* const owner; TextHolderComponent (const TextHolderComponent&); const TextHolderComponent& operator= (const TextHolderComponent&); public: TextHolderComponent (TextEditor* const owner_) : owner (owner_) { setWantsKeyboardFocus (false); setInterceptsMouseClicks (false, true); } ~TextHolderComponent() { } void paint (Graphics& g) { owner->drawContent (g); } void timerCallback() { owner->timerCallbackInt(); } const MouseCursor getMouseCursor() { return owner->getMouseCursor(); } }; class TextEditorViewport : public Viewport { TextEditor* const owner; float lastWordWrapWidth; TextEditorViewport (const TextEditorViewport&); const TextEditorViewport& operator= (const TextEditorViewport&); public: TextEditorViewport (TextEditor* const owner_) : owner (owner_), lastWordWrapWidth (0) { } ~TextEditorViewport() { } void visibleAreaChanged (int, int, int, int) { const float wordWrapWidth = owner->getWordWrapWidth(); if (wordWrapWidth != lastWordWrapWidth) { lastWordWrapWidth = wordWrapWidth; owner->updateTextHolderSize(); } } }; const int flashSpeedIntervalMs = 380; const int textChangeMessageId = 0x10003001; const int returnKeyMessageId = 0x10003002; const int escapeKeyMessageId = 0x10003003; const int focusLossMessageId = 0x10003004; TextEditor::TextEditor (const String& name, const tchar passwordCharacter_) : Component (name), borderSize (1, 1, 1, 3), readOnly (false), multiline (false), wordWrap (false), returnKeyStartsNewLine (false), caretVisible (true), popupMenuEnabled (true), selectAllTextWhenFocused (false), scrollbarVisible (true), wasFocused (false), caretFlashState (true), keepCursorOnScreen (true), tabKeyUsed (false), menuActive (false), cursorX (0), cursorY (0), cursorHeight (0), maxTextLength (0), selectionStart (0), selectionEnd (0), leftIndent (4), topIndent (4), lastTransactionTime (0), currentFont (14.0f), totalNumChars (0), caretPosition (0), sections (8), passwordCharacter (passwordCharacter_), dragType (notDragging), listeners (2) { setOpaque (true); addAndMakeVisible (viewport = new TextEditorViewport (this)); viewport->setViewedComponent (textHolder = new TextHolderComponent (this)); viewport->setWantsKeyboardFocus (false); viewport->setScrollBarsShown (false, false); setMouseCursor (MouseCursor::IBeamCursor); setWantsKeyboardFocus (true); } TextEditor::~TextEditor() { clearInternal (0); delete viewport; } void TextEditor::newTransaction() throw() { lastTransactionTime = Time::getApproximateMillisecondCounter(); undoManager.beginNewTransaction(); } void TextEditor::doUndoRedo (const bool isRedo) { if (! isReadOnly()) { if ((isRedo) ? undoManager.redo() : undoManager.undo()) { scrollToMakeSureCursorIsVisible(); repaint(); textChanged(); } } } void TextEditor::setMultiLine (const bool shouldBeMultiLine, const bool shouldWordWrap) { multiline = shouldBeMultiLine; wordWrap = shouldWordWrap && shouldBeMultiLine; setScrollbarsShown (scrollbarVisible); viewport->setViewPosition (0, 0); resized(); scrollToMakeSureCursorIsVisible(); } bool TextEditor::isMultiLine() const throw() { return multiline; } void TextEditor::setScrollbarsShown (bool enabled) throw() { scrollbarVisible = enabled; enabled = enabled && isMultiLine(); viewport->setScrollBarsShown (enabled, enabled); } void TextEditor::setReadOnly (const bool shouldBeReadOnly) { readOnly = shouldBeReadOnly; enablementChanged(); } bool TextEditor::isReadOnly() const throw() { return readOnly || ! isEnabled(); } void TextEditor::setReturnKeyStartsNewLine (const bool shouldStartNewLine) { returnKeyStartsNewLine = shouldStartNewLine; } void TextEditor::setTabKeyUsedAsCharacter (const bool shouldTabKeyBeUsed) throw() { tabKeyUsed = shouldTabKeyBeUsed; } void TextEditor::setPopupMenuEnabled (const bool b) throw() { popupMenuEnabled = b; } void TextEditor::setSelectAllWhenFocused (const bool b) throw() { selectAllTextWhenFocused = b; } const Font TextEditor::getFont() const throw() { return currentFont; } void TextEditor::setFont (const Font& newFont) throw() { currentFont = newFont; scrollToMakeSureCursorIsVisible(); } void TextEditor::applyFontToAllText (const Font& newFont) { currentFont = newFont; const Colour overallColour (findColour (textColourId)); for (int i = sections.size(); --i >= 0;) { UniformTextSection* const uts = (UniformTextSection*) sections.getUnchecked(i); uts->setFont (newFont, passwordCharacter); uts->colour = overallColour; } coalesceSimilarSections(); updateTextHolderSize(); scrollToMakeSureCursorIsVisible(); repaint(); } void TextEditor::colourChanged() { setOpaque (findColour (backgroundColourId).isOpaque()); repaint(); } void TextEditor::setCaretVisible (const bool shouldCaretBeVisible) throw() { caretVisible = shouldCaretBeVisible; if (shouldCaretBeVisible) textHolder->startTimer (flashSpeedIntervalMs); setMouseCursor (shouldCaretBeVisible ? MouseCursor::IBeamCursor : MouseCursor::NormalCursor); } void TextEditor::setInputRestrictions (const int maxLen, const String& chars) throw() { maxTextLength = jmax (0, maxLen); allowedCharacters = chars; } void TextEditor::setTextToShowWhenEmpty (const String& text, const Colour& colourToUse) throw() { textToShowWhenEmpty = text; colourForTextWhenEmpty = colourToUse; } void TextEditor::setPasswordCharacter (const tchar newPasswordCharacter) throw() { if (passwordCharacter != newPasswordCharacter) { passwordCharacter = newPasswordCharacter; resized(); repaint(); } } void TextEditor::setScrollBarThickness (const int newThicknessPixels) { viewport->setScrollBarThickness (newThicknessPixels); } void TextEditor::setScrollBarButtonVisibility (const bool buttonsVisible) { viewport->setScrollBarButtonVisibility (buttonsVisible); } void TextEditor::clear() { clearInternal (0); updateTextHolderSize(); undoManager.clearUndoHistory(); } void TextEditor::setText (const String& newText, const bool sendTextChangeMessage) { const int newLength = newText.length(); if (newLength != getTotalNumChars() || getText() != newText) { const int oldCursorPos = caretPosition; const bool cursorWasAtEnd = oldCursorPos >= getTotalNumChars(); clearInternal (0); insert (newText, 0, currentFont, findColour (textColourId), 0, caretPosition); // if you're adding text with line-feeds to a single-line text editor, it // ain't gonna look right! jassert (multiline || ! newText.containsAnyOf (T("\r\n"))); if (cursorWasAtEnd && ! isMultiLine()) moveCursorTo (getTotalNumChars(), false); else moveCursorTo (oldCursorPos, false); if (sendTextChangeMessage) textChanged(); repaint(); } updateTextHolderSize(); scrollToMakeSureCursorIsVisible(); undoManager.clearUndoHistory(); } void TextEditor::textChanged() throw() { updateTextHolderSize(); postCommandMessage (textChangeMessageId); } void TextEditor::returnPressed() { postCommandMessage (returnKeyMessageId); } void TextEditor::escapePressed() { postCommandMessage (escapeKeyMessageId); } void TextEditor::addListener (TextEditorListener* const newListener) throw() { jassert (newListener != 0) if (newListener != 0) listeners.add (newListener); } void TextEditor::removeListener (TextEditorListener* const listenerToRemove) throw() { listeners.removeValue (listenerToRemove); } void TextEditor::timerCallbackInt() { const bool newState = (! caretFlashState) && ! isCurrentlyBlockedByAnotherModalComponent(); if (caretFlashState != newState) { caretFlashState = newState; if (caretFlashState) wasFocused = true; if (caretVisible && hasKeyboardFocus (false) && ! isReadOnly()) { repaintCaret(); } } const unsigned int now = Time::getApproximateMillisecondCounter(); if (now > lastTransactionTime + 200) newTransaction(); } void TextEditor::repaintCaret() { if (! findColour (caretColourId).isTransparent()) repaint (borderSize.getLeft() + textHolder->getX() + leftIndent + roundFloatToInt (cursorX) - 1, borderSize.getTop() + textHolder->getY() + topIndent + roundFloatToInt (cursorY) - 1, 4, roundFloatToInt (cursorHeight) + 2); } void TextEditor::repaintText (int textStartIndex, int textEndIndex) { if (textStartIndex > textEndIndex && textEndIndex > 0) swapVariables (textStartIndex, textEndIndex); float x = 0, y = 0, lh = currentFont.getHeight(); const float wordWrapWidth = getWordWrapWidth(); if (wordWrapWidth > 0) { TextEditorIterator i (sections, wordWrapWidth, passwordCharacter); i.getCharPosition (textStartIndex, x, y, lh); const int y1 = (int) y; int y2; if (textEndIndex >= 0) { i.getCharPosition (textEndIndex, x, y, lh); y2 = (int) (y + lh * 2.0f); } else { y2 = textHolder->getHeight(); } textHolder->repaint (0, y1, textHolder->getWidth(), y2 - y1); } } void TextEditor::moveCaret (int newCaretPos) throw() { if (newCaretPos < 0) newCaretPos = 0; else if (newCaretPos > getTotalNumChars()) newCaretPos = getTotalNumChars(); if (newCaretPos != getCaretPosition()) { repaintCaret(); caretFlashState = true; caretPosition = newCaretPos; textHolder->startTimer (flashSpeedIntervalMs); scrollToMakeSureCursorIsVisible(); repaintCaret(); } } void TextEditor::setCaretPosition (const int newIndex) throw() { moveCursorTo (newIndex, false); } int TextEditor::getCaretPosition() const throw() { return caretPosition; } void TextEditor::scrollEditorToPositionCaret (const int desiredCaretX, const int desiredCaretY) throw() { updateCaretPosition(); int vx = roundFloatToInt (cursorX) - desiredCaretX; int vy = roundFloatToInt (cursorY) - desiredCaretY; if (desiredCaretX < jmax (1, proportionOfWidth (0.05f))) { vx += desiredCaretX - proportionOfWidth (0.2f); } else if (desiredCaretX > jmax (0, viewport->getMaximumVisibleWidth() - (wordWrap ? 2 : 10))) { vx += desiredCaretX + (isMultiLine() ? proportionOfWidth (0.2f) : 10) - viewport->getMaximumVisibleWidth(); } vx = jlimit (0, jmax (0, textHolder->getWidth() + 8 - viewport->getMaximumVisibleWidth()), vx); if (! isMultiLine()) { vy = viewport->getViewPositionY(); } else { vy = jlimit (0, jmax (0, textHolder->getHeight() - viewport->getMaximumVisibleHeight()), vy); const int curH = roundFloatToInt (cursorHeight); if (desiredCaretY < 0) { vy = jmax (0, desiredCaretY + vy); } else if (desiredCaretY > jmax (0, viewport->getMaximumVisibleHeight() - topIndent - curH)) { vy += desiredCaretY + 2 + curH + topIndent - viewport->getMaximumVisibleHeight(); } } viewport->setViewPosition (vx, vy); } const Rectangle TextEditor::getCaretRectangle() throw() { updateCaretPosition(); return Rectangle (roundFloatToInt (cursorX) - viewport->getX(), roundFloatToInt (cursorY) - viewport->getY(), 1, roundFloatToInt (cursorHeight)); } float TextEditor::getWordWrapWidth() const throw() { return (wordWrap) ? (float) (viewport->getMaximumVisibleWidth() - leftIndent - leftIndent / 2) : 1.0e10f; } void TextEditor::updateTextHolderSize() throw() { const float wordWrapWidth = getWordWrapWidth(); if (wordWrapWidth > 0) { float maxWidth = 0.0f; TextEditorIterator i (sections, wordWrapWidth, passwordCharacter); while (i.next()) maxWidth = jmax (maxWidth, i.atomRight); const int w = leftIndent + roundFloatToInt (maxWidth); const int h = topIndent + roundFloatToInt (jmax (i.lineY + i.lineHeight, currentFont.getHeight())); textHolder->setSize (w + 1, h + 1); } } int TextEditor::getTextWidth() const throw() { return textHolder->getWidth(); } int TextEditor::getTextHeight() const throw() { return textHolder->getHeight(); } void TextEditor::setIndents (const int newLeftIndent, const int newTopIndent) throw() { leftIndent = newLeftIndent; topIndent = newTopIndent; } void TextEditor::setBorder (const BorderSize& border) throw() { borderSize = border; resized(); } const BorderSize TextEditor::getBorder() const throw() { return borderSize; } void TextEditor::setScrollToShowCursor (const bool shouldScrollToShowCursor) throw() { keepCursorOnScreen = shouldScrollToShowCursor; } void TextEditor::updateCaretPosition() throw() { cursorHeight = currentFont.getHeight(); // (in case the text is empty and the call below doesn't set this value) getCharPosition (caretPosition, cursorX, cursorY, cursorHeight); } void TextEditor::scrollToMakeSureCursorIsVisible() throw() { updateCaretPosition(); if (keepCursorOnScreen) { int x = viewport->getViewPositionX(); int y = viewport->getViewPositionY(); const int relativeCursorX = roundFloatToInt (cursorX) - x; const int relativeCursorY = roundFloatToInt (cursorY) - y; if (relativeCursorX < jmax (1, proportionOfWidth (0.05f))) { x += relativeCursorX - proportionOfWidth (0.2f); } else if (relativeCursorX > jmax (0, viewport->getMaximumVisibleWidth() - (wordWrap ? 2 : 10))) { x += relativeCursorX + (isMultiLine() ? proportionOfWidth (0.2f) : 10) - viewport->getMaximumVisibleWidth(); } x = jlimit (0, jmax (0, textHolder->getWidth() + 8 - viewport->getMaximumVisibleWidth()), x); if (! isMultiLine()) { y = (getHeight() - textHolder->getHeight() - topIndent) / -2; } else { const int curH = roundFloatToInt (cursorHeight); if (relativeCursorY < 0) { y = jmax (0, relativeCursorY + y); } else if (relativeCursorY > jmax (0, viewport->getMaximumVisibleHeight() - topIndent - curH)) { y += relativeCursorY + 2 + curH + topIndent - viewport->getMaximumVisibleHeight(); } } viewport->setViewPosition (x, y); } } void TextEditor::moveCursorTo (const int newPosition, const bool isSelecting) throw() { if (isSelecting) { moveCaret (newPosition); const int oldSelStart = selectionStart; const int oldSelEnd = selectionEnd; if (dragType == notDragging) { if (abs (getCaretPosition() - selectionStart) < abs (getCaretPosition() - selectionEnd)) dragType = draggingSelectionStart; else dragType = draggingSelectionEnd; } if (dragType == draggingSelectionStart) { selectionStart = getCaretPosition(); if (selectionEnd < selectionStart) { swapVariables (selectionStart, selectionEnd); dragType = draggingSelectionEnd; } } else { selectionEnd = getCaretPosition(); if (selectionEnd < selectionStart) { swapVariables (selectionStart, selectionEnd); dragType = draggingSelectionStart; } } jassert (selectionStart <= selectionEnd); jassert (oldSelStart <= oldSelEnd); repaintText (jmin (oldSelStart, selectionStart), jmax (oldSelEnd, selectionEnd)); } else { dragType = notDragging; if (selectionEnd > selectionStart) repaintText (selectionStart, selectionEnd); moveCaret (newPosition); selectionStart = getCaretPosition(); selectionEnd = getCaretPosition(); } } int TextEditor::getTextIndexAt (const int x, const int y) throw() { return indexAtPosition ((float) (x + viewport->getViewPositionX() - leftIndent), (float) (y + viewport->getViewPositionY() - topIndent)); } void TextEditor::insertTextAtCursor (String newText) { if (allowedCharacters.isNotEmpty()) newText = newText.retainCharacters (allowedCharacters); if (! isMultiLine()) newText = newText.replaceCharacters (T("\r\n"), T(" ")); else newText = newText.replace (T("\r\n"), T("\n")); const int newCaretPos = selectionStart + newText.length(); const int insertIndex = selectionStart; remove (selectionStart, selectionEnd, &undoManager, newText.isNotEmpty() ? newCaretPos - 1 : newCaretPos); if (maxTextLength > 0) newText = newText.substring (0, maxTextLength - getTotalNumChars()); if (newText.isNotEmpty()) insert (newText, insertIndex, currentFont, findColour (textColourId), &undoManager, newCaretPos); textChanged(); } void TextEditor::setHighlightedRegion (int startPos, int numChars) throw() { moveCursorTo (startPos, false); moveCursorTo (startPos + numChars, true); } void TextEditor::copy() { if (passwordCharacter == 0) { const String selection (getTextSubstring (selectionStart, selectionEnd)); if (selection.isNotEmpty()) SystemClipboard::copyTextToClipboard (selection); } } void TextEditor::paste() { if (! isReadOnly()) { const String clip (SystemClipboard::getTextFromClipboard()); if (clip.isNotEmpty()) insertTextAtCursor (clip); } } void TextEditor::cut() { if (! isReadOnly()) { moveCaret (selectionEnd); insertTextAtCursor (String::empty); } } void TextEditor::drawContent (Graphics& g) { const float wordWrapWidth = getWordWrapWidth(); if (wordWrapWidth > 0) { g.setOrigin (leftIndent, topIndent); const Rectangle clip (g.getClipBounds()); Colour selectedTextColour; TextEditorIterator i (sections, wordWrapWidth, passwordCharacter); while (i.lineY + 200.0 < clip.getY() && i.next()) {} if (selectionStart < selectionEnd) { g.setColour (findColour (highlightColourId) .withMultipliedAlpha (hasKeyboardFocus (true) ? 1.0f : 0.5f)); selectedTextColour = findColour (highlightedTextColourId); TextEditorIterator i2 (i); while (i2.next() && i2.lineY < clip.getBottom()) { i2.updateLineHeight(); if (i2.lineY + i2.lineHeight >= clip.getY() && selectionEnd >= i2.indexInText && selectionStart <= i2.indexInText + i2.atom->numChars) { i2.drawSelection (g, selectionStart, selectionEnd); } } } const UniformTextSection* lastSection = 0; while (i.next() && i.lineY < clip.getBottom()) { i.updateLineHeight(); if (i.lineY + i.lineHeight >= clip.getY()) { if (selectionEnd >= i.indexInText && selectionStart <= i.indexInText + i.atom->numChars) { i.drawSelectedText (g, selectionStart, selectionEnd, selectedTextColour); lastSection = 0; } else { i.draw (g, lastSection); } } } } } void TextEditor::paint (Graphics& g) { getLookAndFeel().fillTextEditorBackground (g, getWidth(), getHeight(), *this); } void TextEditor::paintOverChildren (Graphics& g) { if (caretFlashState && hasKeyboardFocus (false) && caretVisible && ! isReadOnly()) { g.setColour (findColour (caretColourId)); g.fillRect (borderSize.getLeft() + textHolder->getX() + leftIndent + cursorX, borderSize.getTop() + textHolder->getY() + topIndent + cursorY, 2.0f, cursorHeight); } if (textToShowWhenEmpty.isNotEmpty() && (! hasKeyboardFocus (false)) && getTotalNumChars() == 0) { g.setColour (colourForTextWhenEmpty); g.setFont (getFont()); if (isMultiLine()) { g.drawText (textToShowWhenEmpty, 0, 0, getWidth(), getHeight(), Justification::centred, true); } else { g.drawText (textToShowWhenEmpty, leftIndent, topIndent, viewport->getWidth() - leftIndent, viewport->getHeight() - topIndent, Justification::centredLeft, true); } } getLookAndFeel().drawTextEditorOutline (g, getWidth(), getHeight(), *this); } void TextEditor::mouseDown (const MouseEvent& e) { beginDragAutoRepeat (100); newTransaction(); if (wasFocused || ! selectAllTextWhenFocused) { if (! (popupMenuEnabled && e.mods.isPopupMenu())) { moveCursorTo (getTextIndexAt (e.x, e.y), e.mods.isShiftDown()); } else { PopupMenu m; addPopupMenuItems (m, &e); menuActive = true; const int result = m.show(); menuActive = false; if (result != 0) performPopupMenuAction (result); } } } void TextEditor::mouseDrag (const MouseEvent& e) { if (wasFocused || ! selectAllTextWhenFocused) { if (! (popupMenuEnabled && e.mods.isPopupMenu())) { moveCursorTo (getTextIndexAt (e.x, e.y), true); } } } void TextEditor::mouseUp (const MouseEvent& e) { newTransaction(); textHolder->startTimer (flashSpeedIntervalMs); if (wasFocused || ! selectAllTextWhenFocused) { if (! (popupMenuEnabled && e.mods.isPopupMenu())) { moveCaret (getTextIndexAt (e.x, e.y)); } } wasFocused = true; } void TextEditor::mouseDoubleClick (const MouseEvent& e) { int tokenEnd = getTextIndexAt (e.x, e.y); int tokenStart = tokenEnd; if (e.getNumberOfClicks() > 3) { tokenStart = 0; tokenEnd = getTotalNumChars(); } else { const String t (getText()); const int totalLength = getTotalNumChars(); while (tokenEnd < totalLength) { if (CharacterFunctions::isLetterOrDigit (t [tokenEnd])) ++tokenEnd; else break; } tokenStart = tokenEnd; while (tokenStart > 0) { if (CharacterFunctions::isLetterOrDigit (t [tokenStart - 1])) --tokenStart; else break; } if (e.getNumberOfClicks() > 2) { while (tokenEnd < totalLength) { if (t [tokenEnd] != T('\r') && t [tokenEnd] != T('\n')) ++tokenEnd; else break; } while (tokenStart > 0) { if (t [tokenStart - 1] != T('\r') && t [tokenStart - 1] != T('\n')) --tokenStart; else break; } } } moveCursorTo (tokenEnd, false); moveCursorTo (tokenStart, true); } void TextEditor::mouseWheelMove (const MouseEvent& e, float wheelIncrementX, float wheelIncrementY) { if (! viewport->useMouseWheelMoveIfNeeded (e, wheelIncrementX, wheelIncrementY)) Component::mouseWheelMove (e, wheelIncrementX, wheelIncrementY); } bool TextEditor::keyPressed (const KeyPress& key) { if (isReadOnly() && key != KeyPress (T('c'), ModifierKeys::commandModifier, 0)) return false; const bool moveInWholeWordSteps = key.getModifiers().isCtrlDown() || key.getModifiers().isAltDown(); if (key.isKeyCode (KeyPress::leftKey) || key.isKeyCode (KeyPress::upKey)) { newTransaction(); int newPos; if (isMultiLine() && key.isKeyCode (KeyPress::upKey)) newPos = indexAtPosition (cursorX, cursorY - 1); else if (moveInWholeWordSteps) newPos = findWordBreakBefore (getCaretPosition()); else newPos = getCaretPosition() - 1; moveCursorTo (newPos, key.getModifiers().isShiftDown()); } else if (key.isKeyCode (KeyPress::rightKey) || key.isKeyCode (KeyPress::downKey)) { newTransaction(); int newPos; if (isMultiLine() && key.isKeyCode (KeyPress::downKey)) newPos = indexAtPosition (cursorX, cursorY + cursorHeight + 1); else if (moveInWholeWordSteps) newPos = findWordBreakAfter (getCaretPosition()); else newPos = getCaretPosition() + 1; moveCursorTo (newPos, key.getModifiers().isShiftDown()); } else if (key.isKeyCode (KeyPress::pageDownKey) && isMultiLine()) { newTransaction(); moveCursorTo (indexAtPosition (cursorX, cursorY + cursorHeight + viewport->getViewHeight()), key.getModifiers().isShiftDown()); } else if (key.isKeyCode (KeyPress::pageUpKey) && isMultiLine()) { newTransaction(); moveCursorTo (indexAtPosition (cursorX, cursorY - viewport->getViewHeight()), key.getModifiers().isShiftDown()); } else if (key.isKeyCode (KeyPress::homeKey)) { newTransaction(); if (isMultiLine() && ! moveInWholeWordSteps) moveCursorTo (indexAtPosition (0.0f, cursorY), key.getModifiers().isShiftDown()); else moveCursorTo (0, key.getModifiers().isShiftDown()); } else if (key.isKeyCode (KeyPress::endKey)) { newTransaction(); if (isMultiLine() && ! moveInWholeWordSteps) moveCursorTo (indexAtPosition ((float) textHolder->getWidth(), cursorY), key.getModifiers().isShiftDown()); else moveCursorTo (getTotalNumChars(), key.getModifiers().isShiftDown()); } else if (key.isKeyCode (KeyPress::backspaceKey)) { if (moveInWholeWordSteps) { moveCursorTo (findWordBreakBefore (getCaretPosition()), true); } else { if (selectionStart == selectionEnd && selectionStart > 0) --selectionStart; } cut(); } else if (key.isKeyCode (KeyPress::deleteKey)) { if (key.getModifiers().isShiftDown()) copy(); if (selectionStart == selectionEnd && selectionEnd < getTotalNumChars()) { ++selectionEnd; } cut(); } else if (key == KeyPress (T('c'), ModifierKeys::commandModifier, 0) || key == KeyPress (KeyPress::insertKey, ModifierKeys::ctrlModifier, 0)) { newTransaction(); copy(); } else if (key == KeyPress (T('x'), ModifierKeys::commandModifier, 0)) { newTransaction(); copy(); cut(); } else if (key == KeyPress (T('v'), ModifierKeys::commandModifier, 0) || key == KeyPress (KeyPress::insertKey, ModifierKeys::shiftModifier, 0)) { newTransaction(); paste(); } else if (key == KeyPress (T('z'), ModifierKeys::commandModifier, 0)) { newTransaction(); doUndoRedo (false); } else if (key == KeyPress (T('y'), ModifierKeys::commandModifier, 0)) { newTransaction(); doUndoRedo (true); } else if (key == KeyPress (T('a'), ModifierKeys::commandModifier, 0)) { newTransaction(); moveCursorTo (getTotalNumChars(), false); moveCursorTo (0, true); } else if (key == KeyPress::returnKey) { newTransaction(); if (returnKeyStartsNewLine) insertTextAtCursor (T("\n")); else returnPressed(); } else if (key.isKeyCode (KeyPress::escapeKey)) { newTransaction(); moveCursorTo (getCaretPosition(), false); escapePressed(); } else if (key.getTextCharacter() >= ' ' || (tabKeyUsed && (key.getTextCharacter() == '\t'))) { insertTextAtCursor (String::charToString (key.getTextCharacter())); lastTransactionTime = Time::getApproximateMillisecondCounter(); } else { return false; } return true; } bool TextEditor::keyStateChanged (const bool isKeyDown) { if (! isKeyDown) return false; #if JUCE_WIN32 if (KeyPress (KeyPress::F4Key, ModifierKeys::altModifier, 0).isCurrentlyDown()) return false; // We need to explicitly allow alt-F4 to pass through on Windows #endif // (overridden to avoid forwarding key events to the parent) return ! ModifierKeys::getCurrentModifiers().isCommandDown(); } const int baseMenuItemID = 0x7fff0000; void TextEditor::addPopupMenuItems (PopupMenu& m, const MouseEvent*) { const bool writable = ! isReadOnly(); if (passwordCharacter == 0) { m.addItem (baseMenuItemID + 1, TRANS("cut"), writable); m.addItem (baseMenuItemID + 2, TRANS("copy"), selectionStart < selectionEnd); m.addItem (baseMenuItemID + 3, TRANS("paste"), writable); } m.addItem (baseMenuItemID + 4, TRANS("delete"), writable); m.addSeparator(); m.addItem (baseMenuItemID + 5, TRANS("select all")); m.addSeparator(); m.addItem (baseMenuItemID + 6, TRANS("undo"), undoManager.canUndo()); m.addItem (baseMenuItemID + 7, TRANS("redo"), undoManager.canRedo()); } void TextEditor::performPopupMenuAction (const int menuItemID) { switch (menuItemID) { case baseMenuItemID + 1: copy(); cut(); break; case baseMenuItemID + 2: copy(); break; case baseMenuItemID + 3: paste(); break; case baseMenuItemID + 4: cut(); break; case baseMenuItemID + 5: moveCursorTo (getTotalNumChars(), false); moveCursorTo (0, true); break; case baseMenuItemID + 6: doUndoRedo (false); break; case baseMenuItemID + 7: doUndoRedo (true); break; default: break; } } void TextEditor::focusGained (FocusChangeType) { newTransaction(); caretFlashState = true; if (selectAllTextWhenFocused) { moveCursorTo (0, false); moveCursorTo (getTotalNumChars(), true); } repaint(); if (caretVisible) textHolder->startTimer (flashSpeedIntervalMs); ComponentPeer* const peer = getPeer(); if (peer != 0 && ! isReadOnly()) peer->textInputRequired (getScreenX() - peer->getScreenX(), getScreenY() - peer->getScreenY()); } void TextEditor::focusLost (FocusChangeType) { newTransaction(); wasFocused = false; textHolder->stopTimer(); caretFlashState = false; postCommandMessage (focusLossMessageId); repaint(); } void TextEditor::resized() { viewport->setBoundsInset (borderSize); viewport->setSingleStepSizes (16, roundFloatToInt (currentFont.getHeight())); updateTextHolderSize(); if (! isMultiLine()) { scrollToMakeSureCursorIsVisible(); } else { updateCaretPosition(); } } void TextEditor::handleCommandMessage (const int commandId) { const ComponentDeletionWatcher deletionChecker (this); for (int i = listeners.size(); --i >= 0;) { TextEditorListener* const tl = (TextEditorListener*) listeners [i]; if (tl != 0) { switch (commandId) { case textChangeMessageId: tl->textEditorTextChanged (*this); break; case returnKeyMessageId: tl->textEditorReturnKeyPressed (*this); break; case escapeKeyMessageId: tl->textEditorEscapeKeyPressed (*this); break; case focusLossMessageId: tl->textEditorFocusLost (*this); break; default: jassertfalse break; } if (i > 0 && deletionChecker.hasBeenDeleted()) return; } } } void TextEditor::enablementChanged() { setMouseCursor (MouseCursor (isReadOnly() ? MouseCursor::NormalCursor : MouseCursor::IBeamCursor)); repaint(); } void TextEditor::clearInternal (UndoManager* const um) throw() { remove (0, getTotalNumChars(), um, caretPosition); } void TextEditor::insert (const String& text, const int insertIndex, const Font& font, const Colour& colour, UndoManager* const um, const int caretPositionToMoveTo) throw() { if (text.isNotEmpty()) { if (um != 0) { um->perform (new TextEditorInsertAction (*this, text, insertIndex, font, colour, caretPosition, caretPositionToMoveTo)); } else { repaintText (insertIndex, -1); // must do this before and after changing the data, in case // a line gets moved due to word wrap int index = 0; int nextIndex = 0; for (int i = 0; i < sections.size(); ++i) { nextIndex = index + ((UniformTextSection*) sections.getUnchecked(i))->getTotalLength(); if (insertIndex == index) { sections.insert (i, new UniformTextSection (text, font, colour, passwordCharacter)); break; } else if (insertIndex > index && insertIndex < nextIndex) { splitSection (i, insertIndex - index); sections.insert (i + 1, new UniformTextSection (text, font, colour, passwordCharacter)); break; } index = nextIndex; } if (nextIndex == insertIndex) sections.add (new UniformTextSection (text, font, colour, passwordCharacter)); coalesceSimilarSections(); totalNumChars = -1; moveCursorTo (caretPositionToMoveTo, false); repaintText (insertIndex, -1); } } } void TextEditor::reinsert (const int insertIndex, const VoidArray& sectionsToInsert) throw() { int index = 0; int nextIndex = 0; for (int i = 0; i < sections.size(); ++i) { nextIndex = index + ((UniformTextSection*) sections.getUnchecked(i))->getTotalLength(); if (insertIndex == index) { for (int j = sectionsToInsert.size(); --j >= 0;) sections.insert (i, new UniformTextSection (*(UniformTextSection*) sectionsToInsert.getUnchecked(j))); break; } else if (insertIndex > index && insertIndex < nextIndex) { splitSection (i, insertIndex - index); for (int j = sectionsToInsert.size(); --j >= 0;) sections.insert (i + 1, new UniformTextSection (*(UniformTextSection*) sectionsToInsert.getUnchecked(j))); break; } index = nextIndex; } if (nextIndex == insertIndex) { for (int j = 0; j < sectionsToInsert.size(); ++j) sections.add (new UniformTextSection (*(UniformTextSection*) sectionsToInsert.getUnchecked(j))); } coalesceSimilarSections(); totalNumChars = -1; } void TextEditor::remove (const int startIndex, int endIndex, UndoManager* const um, const int caretPositionToMoveTo) throw() { if (endIndex > startIndex) { int index = 0; for (int i = 0; i < sections.size(); ++i) { const int nextIndex = index + ((UniformTextSection*) sections[i])->getTotalLength(); if (startIndex > index && startIndex < nextIndex) { splitSection (i, startIndex - index); --i; } else if (endIndex > index && endIndex < nextIndex) { splitSection (i, endIndex - index); --i; } else { index = nextIndex; if (index > endIndex) break; } } index = 0; if (um != 0) { VoidArray removedSections; for (int i = 0; i < sections.size(); ++i) { if (endIndex <= startIndex) break; UniformTextSection* const section = (UniformTextSection*) sections.getUnchecked (i); const int nextIndex = index + section->getTotalLength(); if (startIndex <= index && endIndex >= nextIndex) removedSections.add (new UniformTextSection (*section)); index = nextIndex; } um->perform (new TextEditorRemoveAction (*this, startIndex, endIndex, caretPosition, caretPositionToMoveTo, removedSections)); } else { for (int i = 0; i < sections.size(); ++i) { if (endIndex <= startIndex) break; UniformTextSection* const section = (UniformTextSection*) sections.getUnchecked (i); const int nextIndex = index + section->getTotalLength(); if (startIndex <= index && endIndex >= nextIndex) { sections.remove(i); endIndex -= (nextIndex - index); section->clear(); delete section; --i; } else { index = nextIndex; } } coalesceSimilarSections(); totalNumChars = -1; moveCursorTo (caretPositionToMoveTo, false); repaintText (startIndex, -1); } } } const String TextEditor::getText() const throw() { String t; for (int i = 0; i < sections.size(); ++i) t += ((const UniformTextSection*) sections.getUnchecked(i))->getAllText(); return t; } const String TextEditor::getTextSubstring (const int startCharacter, const int endCharacter) const throw() { String t; int index = 0; for (int i = 0; i < sections.size(); ++i) { const UniformTextSection* const s = (const UniformTextSection*) sections.getUnchecked(i); const int nextIndex = index + s->getTotalLength(); if (startCharacter < nextIndex) { if (endCharacter <= index) break; const int start = jmax (index, startCharacter); t += s->getTextSubstring (start - index, endCharacter - index); } index = nextIndex; } return t; } const String TextEditor::getHighlightedText() const throw() { return getTextSubstring (getHighlightedRegionStart(), getHighlightedRegionStart() + getHighlightedRegionLength()); } int TextEditor::getTotalNumChars() throw() { if (totalNumChars < 0) { totalNumChars = 0; for (int i = sections.size(); --i >= 0;) totalNumChars += ((const UniformTextSection*) sections.getUnchecked(i))->getTotalLength(); } return totalNumChars; } bool TextEditor::isEmpty() const throw() { if (totalNumChars != 0) { for (int i = sections.size(); --i >= 0;) if (((const UniformTextSection*) sections.getUnchecked(i))->getTotalLength() > 0) return false; } return true; } void TextEditor::getCharPosition (const int index, float& cx, float& cy, float& lineHeight) const throw() { const float wordWrapWidth = getWordWrapWidth(); if (wordWrapWidth > 0 && sections.size() > 0) { TextEditorIterator i (sections, wordWrapWidth, passwordCharacter); i.getCharPosition (index, cx, cy, lineHeight); } else { cx = cy = 0; lineHeight = currentFont.getHeight(); } } int TextEditor::indexAtPosition (const float x, const float y) throw() { const float wordWrapWidth = getWordWrapWidth(); if (wordWrapWidth > 0) { TextEditorIterator i (sections, wordWrapWidth, passwordCharacter); while (i.next()) { if (i.lineY + getHeight() > y) i.updateLineHeight(); if (i.lineY + i.lineHeight > y) { if (i.lineY > y) return jmax (0, i.indexInText - 1); if (i.atomX >= x) return i.indexInText; if (x < i.atomRight) return i.xToIndex (x); } } } return getTotalNumChars(); } static int getCharacterCategory (const tchar character) throw() { return CharacterFunctions::isLetterOrDigit (character) ? 2 : (CharacterFunctions::isWhitespace (character) ? 0 : 1); } int TextEditor::findWordBreakAfter (const int position) const throw() { const String t (getTextSubstring (position, position + 512)); const int totalLength = t.length(); int i = 0; while (i < totalLength && CharacterFunctions::isWhitespace (t[i])) ++i; const int type = getCharacterCategory (t[i]); while (i < totalLength && type == getCharacterCategory (t[i])) ++i; while (i < totalLength && CharacterFunctions::isWhitespace (t[i])) ++i; return position + i; } int TextEditor::findWordBreakBefore (const int position) const throw() { if (position <= 0) return 0; const int startOfBuffer = jmax (0, position - 512); const String t (getTextSubstring (startOfBuffer, position)); int i = position - startOfBuffer; while (i > 0 && CharacterFunctions::isWhitespace (t [i - 1])) --i; if (i > 0) { const int type = getCharacterCategory (t [i - 1]); while (i > 0 && type == getCharacterCategory (t [i - 1])) --i; } jassert (startOfBuffer + i >= 0); return startOfBuffer + i; } void TextEditor::splitSection (const int sectionIndex, const int charToSplitAt) throw() { jassert (sections[sectionIndex] != 0); sections.insert (sectionIndex + 1, ((UniformTextSection*) sections.getUnchecked (sectionIndex)) ->split (charToSplitAt, passwordCharacter)); } void TextEditor::coalesceSimilarSections() throw() { for (int i = 0; i < sections.size() - 1; ++i) { UniformTextSection* const s1 = (UniformTextSection*) (sections.getUnchecked (i)); UniformTextSection* const s2 = (UniformTextSection*) (sections.getUnchecked (i + 1)); if (s1->font == s2->font && s1->colour == s2->colour) { s1->append (*s2, passwordCharacter); sections.remove (i + 1); delete s2; --i; } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_TextEditor.cpp *********/ /********* Start of inlined file: juce_Toolbar.cpp *********/ BEGIN_JUCE_NAMESPACE const tchar* const Toolbar::toolbarDragDescriptor = T("_toolbarItem_"); class ToolbarSpacerComp : public ToolbarItemComponent { public: ToolbarSpacerComp (const int itemId, const float fixedSize_, const bool drawBar_) : ToolbarItemComponent (itemId, String::empty, false), fixedSize (fixedSize_), drawBar (drawBar_) { } ~ToolbarSpacerComp() { } bool getToolbarItemSizes (int toolbarThickness, bool /*isToolbarVertical*/, int& preferredSize, int& minSize, int& maxSize) { if (fixedSize <= 0) { preferredSize = toolbarThickness * 2; minSize = 4; maxSize = 32768; } else { maxSize = roundFloatToInt (toolbarThickness * fixedSize); minSize = drawBar ? maxSize : jmin (4, maxSize); preferredSize = maxSize; if (getEditingMode() == editableOnPalette) preferredSize = maxSize = toolbarThickness / (drawBar ? 3 : 2); } return true; } void paintButtonArea (Graphics&, int, int, bool, bool) { } void contentAreaChanged (const Rectangle&) { } int getResizeOrder() const throw() { return fixedSize <= 0 ? 0 : 1; } void paint (Graphics& g) { const int w = getWidth(); const int h = getHeight(); if (drawBar) { g.setColour (findColour (Toolbar::separatorColourId, true)); const float thickness = 0.2f; if (isToolbarVertical()) g.fillRect (w * 0.1f, h * (0.5f - thickness * 0.5f), w * 0.8f, h * thickness); else g.fillRect (w * (0.5f - thickness * 0.5f), h * 0.1f, w * thickness, h * 0.8f); } if (getEditingMode() != normalMode && ! drawBar) { g.setColour (findColour (Toolbar::separatorColourId, true)); const int indentX = jmin (2, (w - 3) / 2); const int indentY = jmin (2, (h - 3) / 2); g.drawRect (indentX, indentY, w - indentX * 2, h - indentY * 2, 1); if (fixedSize <= 0) { float x1, y1, x2, y2, x3, y3, x4, y4, hw, hl; if (isToolbarVertical()) { x1 = w * 0.5f; y1 = h * 0.4f; x2 = x1; y2 = indentX * 2.0f; x3 = x1; y3 = h * 0.6f; x4 = x1; y4 = h - y2; hw = w * 0.15f; hl = w * 0.2f; } else { x1 = w * 0.4f; y1 = h * 0.5f; x2 = indentX * 2.0f; y2 = y1; x3 = w * 0.6f; y3 = y1; x4 = w - x2; y4 = y1; hw = h * 0.15f; hl = h * 0.2f; } Path p; p.addArrow (x1, y1, x2, y2, 1.5f, hw, hl); p.addArrow (x3, y3, x4, y4, 1.5f, hw, hl); g.fillPath (p); } } } juce_UseDebuggingNewOperator private: const float fixedSize; const bool drawBar; ToolbarSpacerComp (const ToolbarSpacerComp&); const ToolbarSpacerComp& operator= (const ToolbarSpacerComp&); }; class MissingItemsComponent : public PopupMenuCustomComponent { public: MissingItemsComponent (Toolbar& owner_, const int height_) : PopupMenuCustomComponent (true), owner (owner_), height (height_) { for (int i = owner_.items.size(); --i >= 0;) { ToolbarItemComponent* const tc = owner_.items.getUnchecked(i); if (dynamic_cast (tc) == 0 && ! tc->isVisible()) { oldIndexes.insert (0, i); addAndMakeVisible (tc, 0); } } layout (400); } ~MissingItemsComponent() { // deleting the toolbar while its menu it open?? jassert (owner.isValidComponent()); for (int i = 0; i < getNumChildComponents(); ++i) { ToolbarItemComponent* const tc = dynamic_cast (getChildComponent (i)); if (tc != 0) { tc->setVisible (false); const int index = oldIndexes.remove (i); owner.addChildComponent (tc, index); --i; } } owner.resized(); } void layout (const int preferredWidth) { const int indent = 8; int x = indent; int y = indent; int maxX = 0; for (int i = 0; i < getNumChildComponents(); ++i) { ToolbarItemComponent* const tc = dynamic_cast (getChildComponent (i)); if (tc != 0) { int preferredSize = 1, minSize = 1, maxSize = 1; if (tc->getToolbarItemSizes (height, false, preferredSize, minSize, maxSize)) { if (x + preferredSize > preferredWidth && x > indent) { x = indent; y += height; } tc->setBounds (x, y, preferredSize, height); x += preferredSize; maxX = jmax (maxX, x); } } } setSize (maxX + 8, y + height + 8); } void getIdealSize (int& idealWidth, int& idealHeight) { idealWidth = getWidth(); idealHeight = getHeight(); } juce_UseDebuggingNewOperator private: Toolbar& owner; const int height; Array oldIndexes; MissingItemsComponent (const MissingItemsComponent&); const MissingItemsComponent& operator= (const MissingItemsComponent&); }; Toolbar::Toolbar() : vertical (false), isEditingActive (false), toolbarStyle (Toolbar::iconsOnly) { addChildComponent (missingItemsButton = getLookAndFeel().createToolbarMissingItemsButton (*this)); missingItemsButton->setAlwaysOnTop (true); missingItemsButton->addButtonListener (this); } Toolbar::~Toolbar() { animator.cancelAllAnimations (true); deleteAllChildren(); } void Toolbar::setVertical (const bool shouldBeVertical) { if (vertical != shouldBeVertical) { vertical = shouldBeVertical; resized(); } } void Toolbar::clear() { for (int i = items.size(); --i >= 0;) { ToolbarItemComponent* const tc = items.getUnchecked(i); items.remove (i); delete tc; } resized(); } ToolbarItemComponent* Toolbar::createItem (ToolbarItemFactory& factory, const int itemId) { if (itemId == ToolbarItemFactory::separatorBarId) return new ToolbarSpacerComp (itemId, 0.1f, true); else if (itemId == ToolbarItemFactory::spacerId) return new ToolbarSpacerComp (itemId, 0.5f, false); else if (itemId == ToolbarItemFactory::flexibleSpacerId) return new ToolbarSpacerComp (itemId, 0, false); return factory.createItem (itemId); } void Toolbar::addItemInternal (ToolbarItemFactory& factory, const int itemId, const int insertIndex) { // An ID can't be zero - this might indicate a mistake somewhere? jassert (itemId != 0); ToolbarItemComponent* const tc = createItem (factory, itemId); if (tc != 0) { #ifdef JUCE_DEBUG Array allowedIds; factory.getAllToolbarItemIds (allowedIds); // If your factory can create an item for a given ID, it must also return // that ID from its getAllToolbarItemIds() method! jassert (allowedIds.contains (itemId)); #endif items.insert (insertIndex, tc); addAndMakeVisible (tc, insertIndex); } } void Toolbar::addItem (ToolbarItemFactory& factory, const int itemId, const int insertIndex) { addItemInternal (factory, itemId, insertIndex); resized(); } void Toolbar::addDefaultItems (ToolbarItemFactory& factoryToUse) { Array ids; factoryToUse.getDefaultItemSet (ids); clear(); for (int i = 0; i < ids.size(); ++i) addItemInternal (factoryToUse, ids.getUnchecked (i), -1); resized(); } void Toolbar::removeToolbarItem (const int itemIndex) { ToolbarItemComponent* const tc = getItemComponent (itemIndex); if (tc != 0) { items.removeValue (tc); delete tc; resized(); } } int Toolbar::getNumItems() const throw() { return items.size(); } int Toolbar::getItemId (const int itemIndex) const throw() { ToolbarItemComponent* const tc = getItemComponent (itemIndex); return tc != 0 ? tc->getItemId() : 0; } ToolbarItemComponent* Toolbar::getItemComponent (const int itemIndex) const throw() { return items [itemIndex]; } ToolbarItemComponent* Toolbar::getNextActiveComponent (int index, const int delta) const { for (;;) { index += delta; ToolbarItemComponent* const tc = getItemComponent (index); if (tc == 0) break; if (tc->isActive) return tc; } return 0; } void Toolbar::setStyle (const ToolbarItemStyle& newStyle) { if (toolbarStyle != newStyle) { toolbarStyle = newStyle; updateAllItemPositions (false); } } const String Toolbar::toString() const { String s (T("TB:")); for (int i = 0; i < getNumItems(); ++i) s << getItemId(i) << T(' '); return s.trimEnd(); } bool Toolbar::restoreFromString (ToolbarItemFactory& factoryToUse, const String& savedVersion) { if (! savedVersion.startsWith (T("TB:"))) return false; StringArray tokens; tokens.addTokens (savedVersion.substring (3), false); clear(); for (int i = 0; i < tokens.size(); ++i) addItemInternal (factoryToUse, tokens[i].getIntValue(), -1); resized(); return true; } void Toolbar::paint (Graphics& g) { getLookAndFeel().paintToolbarBackground (g, getWidth(), getHeight(), *this); } int Toolbar::getThickness() const throw() { return vertical ? getWidth() : getHeight(); } int Toolbar::getLength() const throw() { return vertical ? getHeight() : getWidth(); } void Toolbar::setEditingActive (const bool active) { if (isEditingActive != active) { isEditingActive = active; updateAllItemPositions (false); } } void Toolbar::resized() { updateAllItemPositions (false); } void Toolbar::updateAllItemPositions (const bool animate) { if (getWidth() > 0 && getHeight() > 0) { StretchableObjectResizer resizer; int i; for (i = 0; i < items.size(); ++i) { ToolbarItemComponent* const tc = items.getUnchecked(i); tc->setEditingMode (isEditingActive ? ToolbarItemComponent::editableOnToolbar : ToolbarItemComponent::normalMode); tc->setStyle (toolbarStyle); ToolbarSpacerComp* const spacer = dynamic_cast (tc); int preferredSize = 1, minSize = 1, maxSize = 1; if (tc->getToolbarItemSizes (getThickness(), isVertical(), preferredSize, minSize, maxSize)) { tc->isActive = true; resizer.addItem (preferredSize, minSize, maxSize, spacer != 0 ? spacer->getResizeOrder() : 2); } else { tc->isActive = false; tc->setVisible (false); } } resizer.resizeToFit (getLength()); int totalLength = 0; for (i = 0; i < resizer.getNumItems(); ++i) totalLength += (int) resizer.getItemSize (i); const bool itemsOffTheEnd = totalLength > getLength(); const int extrasButtonSize = getThickness() / 2; missingItemsButton->setSize (extrasButtonSize, extrasButtonSize); missingItemsButton->setVisible (itemsOffTheEnd); missingItemsButton->setEnabled (! isEditingActive); if (vertical) missingItemsButton->setCentrePosition (getWidth() / 2, getHeight() - 4 - extrasButtonSize / 2); else missingItemsButton->setCentrePosition (getWidth() - 4 - extrasButtonSize / 2, getHeight() / 2); const int maxLength = itemsOffTheEnd ? (vertical ? missingItemsButton->getY() : missingItemsButton->getX()) - 4 : getLength(); int pos = 0, activeIndex = 0; for (i = 0; i < items.size(); ++i) { ToolbarItemComponent* const tc = items.getUnchecked(i); if (tc->isActive) { const int size = (int) resizer.getItemSize (activeIndex++); Rectangle newBounds; if (vertical) newBounds.setBounds (0, pos, getWidth(), size); else newBounds.setBounds (pos, 0, size, getHeight()); if (animate) { animator.animateComponent (tc, newBounds, 200, 3.0, 0.0); } else { animator.cancelAnimation (tc, false); tc->setBounds (newBounds); } pos += size; tc->setVisible (pos <= maxLength && ((! tc->isBeingDragged) || tc->getEditingMode() == ToolbarItemComponent::editableOnPalette)); } } } } void Toolbar::buttonClicked (Button*) { jassert (missingItemsButton->isShowing()); if (missingItemsButton->isShowing()) { PopupMenu m; m.addCustomItem (1, new MissingItemsComponent (*this, getThickness())); m.showAt (missingItemsButton); } } bool Toolbar::isInterestedInDragSource (const String& sourceDescription, Component* /*sourceComponent*/) { return sourceDescription == toolbarDragDescriptor && isEditingActive; } void Toolbar::itemDragMove (const String&, Component* sourceComponent, int x, int y) { ToolbarItemComponent* const tc = dynamic_cast (sourceComponent); if (tc != 0) { if (getNumItems() == 0) { if (tc->getEditingMode() == ToolbarItemComponent::editableOnPalette) { ToolbarItemPalette* const palette = tc->findParentComponentOfClass ((ToolbarItemPalette*) 0); if (palette != 0) palette->replaceComponent (tc); } else { jassert (tc->getEditingMode() == ToolbarItemComponent::editableOnToolbar); } items.add (tc); addChildComponent (tc); updateAllItemPositions (false); } else { for (int i = getNumItems(); --i >= 0;) { int currentIndex = getIndexOfChildComponent (tc); if (currentIndex < 0) { if (tc->getEditingMode() == ToolbarItemComponent::editableOnPalette) { ToolbarItemPalette* const palette = tc->findParentComponentOfClass ((ToolbarItemPalette*) 0); if (palette != 0) palette->replaceComponent (tc); } else { jassert (tc->getEditingMode() == ToolbarItemComponent::editableOnToolbar); } items.add (tc); addChildComponent (tc); currentIndex = getIndexOfChildComponent (tc); updateAllItemPositions (true); } int newIndex = currentIndex; const int dragObjectLeft = vertical ? (y - tc->dragOffsetY) : (x - tc->dragOffsetX); const int dragObjectRight = dragObjectLeft + (vertical ? tc->getHeight() : tc->getWidth()); const Rectangle current (animator.getComponentDestination (getChildComponent (newIndex))); ToolbarItemComponent* const prev = getNextActiveComponent (newIndex, -1); if (prev != 0) { const Rectangle previousPos (animator.getComponentDestination (prev)); if (abs (dragObjectLeft - (vertical ? previousPos.getY() : previousPos.getX()) < abs (dragObjectRight - (vertical ? current.getBottom() : current.getRight())))) { newIndex = getIndexOfChildComponent (prev); } } ToolbarItemComponent* const next = getNextActiveComponent (newIndex, 1); if (next != 0) { const Rectangle nextPos (animator.getComponentDestination (next)); if (abs (dragObjectLeft - (vertical ? current.getY() : current.getX()) > abs (dragObjectRight - (vertical ? nextPos.getBottom() : nextPos.getRight())))) { newIndex = getIndexOfChildComponent (next) + 1; } } if (newIndex != currentIndex) { items.removeValue (tc); removeChildComponent (tc); addChildComponent (tc, newIndex); items.insert (newIndex, tc); updateAllItemPositions (true); } else { break; } } } } } void Toolbar::itemDragExit (const String&, Component* sourceComponent) { ToolbarItemComponent* const tc = dynamic_cast (sourceComponent); if (tc != 0) { if (isParentOf (tc)) { items.removeValue (tc); removeChildComponent (tc); updateAllItemPositions (true); } } } void Toolbar::itemDropped (const String&, Component*, int, int) { } void Toolbar::mouseDown (const MouseEvent& e) { if (e.mods.isPopupMenu()) { } } class ToolbarCustomisationDialog : public DialogWindow { public: ToolbarCustomisationDialog (ToolbarItemFactory& factory, Toolbar* const toolbar_, const int optionFlags) : DialogWindow (TRANS("Add/remove items from toolbar"), Colours::white, true, true), toolbar (toolbar_) { setContentComponent (new CustomiserPanel (factory, toolbar, optionFlags), true, true); setResizable (true, true); setResizeLimits (400, 300, 1500, 1000); positionNearBar(); } ~ToolbarCustomisationDialog() { setContentComponent (0, true); } void closeButtonPressed() { setVisible (false); } bool canModalEventBeSentToComponent (const Component* comp) { return toolbar->isParentOf (comp); } void positionNearBar() { const Rectangle screenSize (toolbar->getParentMonitorArea()); const int tbx = toolbar->getScreenX(); const int tby = toolbar->getScreenY(); const int gap = 8; int x, y; if (toolbar->isVertical()) { y = tby; if (tbx > screenSize.getCentreX()) x = tbx - getWidth() - gap; else x = tbx + toolbar->getWidth() + gap; } else { x = tbx + (toolbar->getWidth() - getWidth()) / 2; if (tby > screenSize.getCentreY()) y = tby - getHeight() - gap; else y = tby + toolbar->getHeight() + gap; } setTopLeftPosition (x, y); } private: Toolbar* const toolbar; class CustomiserPanel : public Component, private ComboBoxListener, private ButtonListener { public: CustomiserPanel (ToolbarItemFactory& factory_, Toolbar* const toolbar_, const int optionFlags) : factory (factory_), toolbar (toolbar_), styleBox (0), defaultButton (0) { addAndMakeVisible (palette = new ToolbarItemPalette (factory, toolbar)); if ((optionFlags & (Toolbar::allowIconsOnlyChoice | Toolbar::allowIconsWithTextChoice | Toolbar::allowTextOnlyChoice)) != 0) { addAndMakeVisible (styleBox = new ComboBox (String::empty)); styleBox->setEditableText (false); if ((optionFlags & Toolbar::allowIconsOnlyChoice) != 0) styleBox->addItem (TRANS("Show icons only"), 1); if ((optionFlags & Toolbar::allowIconsWithTextChoice) != 0) styleBox->addItem (TRANS("Show icons and descriptions"), 2); if ((optionFlags & Toolbar::allowTextOnlyChoice) != 0) styleBox->addItem (TRANS("Show descriptions only"), 3); if (toolbar_->getStyle() == Toolbar::iconsOnly) styleBox->setSelectedId (1); else if (toolbar_->getStyle() == Toolbar::iconsWithText) styleBox->setSelectedId (2); else if (toolbar_->getStyle() == Toolbar::textOnly) styleBox->setSelectedId (3); styleBox->addListener (this); } if ((optionFlags & Toolbar::showResetToDefaultsButton) != 0) { addAndMakeVisible (defaultButton = new TextButton (TRANS ("Restore to default set of items"))); defaultButton->addButtonListener (this); } addAndMakeVisible (instructions = new Label (String::empty, TRANS ("You can drag the items above and drop them onto a toolbar to add them.\n\nItems on the toolbar can also be dragged around to change their order, or dragged off the edge to delete them."))); instructions->setFont (Font (13.0f)); setSize (500, 300); } ~CustomiserPanel() { deleteAllChildren(); } void comboBoxChanged (ComboBox*) { if (styleBox->getSelectedId() == 1) toolbar->setStyle (Toolbar::iconsOnly); else if (styleBox->getSelectedId() == 2) toolbar->setStyle (Toolbar::iconsWithText); else if (styleBox->getSelectedId() == 3) toolbar->setStyle (Toolbar::textOnly); palette->resized(); // to make it update the styles } void buttonClicked (Button*) { toolbar->addDefaultItems (factory); } void paint (Graphics& g) { Colour background; DialogWindow* const dw = findParentComponentOfClass ((DialogWindow*) 0); if (dw != 0) background = dw->getBackgroundColour(); g.setColour (background.contrasting().withAlpha (0.3f)); g.fillRect (palette->getX(), palette->getBottom() - 1, palette->getWidth(), 1); } void resized() { palette->setBounds (0, 0, getWidth(), getHeight() - 120); if (styleBox != 0) styleBox->setBounds (10, getHeight() - 110, 200, 22); if (defaultButton != 0) { defaultButton->changeWidthToFitText (22); defaultButton->setTopLeftPosition (240, getHeight() - 110); } instructions->setBounds (10, getHeight() - 80, getWidth() - 20, 80); } private: ToolbarItemFactory& factory; Toolbar* const toolbar; Label* instructions; ToolbarItemPalette* palette; ComboBox* styleBox; TextButton* defaultButton; }; }; void Toolbar::showCustomisationDialog (ToolbarItemFactory& factory, const int optionFlags) { setEditingActive (true); ToolbarCustomisationDialog dw (factory, this, optionFlags); dw.runModalLoop(); jassert (isValidComponent()); // ? deleting the toolbar while it's being edited? setEditingActive (false); } END_JUCE_NAMESPACE /********* End of inlined file: juce_Toolbar.cpp *********/ /********* Start of inlined file: juce_ToolbarItemComponent.cpp *********/ BEGIN_JUCE_NAMESPACE ToolbarItemFactory::ToolbarItemFactory() { } ToolbarItemFactory::~ToolbarItemFactory() { } class ItemDragAndDropOverlayComponent : public Component { public: ItemDragAndDropOverlayComponent() : isDragging (false) { setAlwaysOnTop (true); setRepaintsOnMouseActivity (true); setMouseCursor (MouseCursor::DraggingHandCursor); } ~ItemDragAndDropOverlayComponent() { } void paint (Graphics& g) { ToolbarItemComponent* const tc = dynamic_cast (getParentComponent()); if (isMouseOverOrDragging() && tc != 0 && tc->getEditingMode() == ToolbarItemComponent::editableOnToolbar) { g.setColour (findColour (Toolbar::editingModeOutlineColourId, true)); g.drawRect (0, 0, getWidth(), getHeight(), jmin (2, (getWidth() - 1) / 2, (getHeight() - 1) / 2)); } } void mouseDown (const MouseEvent& e) { isDragging = false; ToolbarItemComponent* const tc = dynamic_cast (getParentComponent()); if (tc != 0) { tc->dragOffsetX = e.x; tc->dragOffsetY = e.y; } } void mouseDrag (const MouseEvent& e) { if (! (isDragging || e.mouseWasClicked())) { isDragging = true; DragAndDropContainer* const dnd = DragAndDropContainer::findParentDragContainerFor (this); if (dnd != 0) { dnd->startDragging (Toolbar::toolbarDragDescriptor, getParentComponent(), 0, true); ToolbarItemComponent* const tc = dynamic_cast (getParentComponent()); if (tc != 0) { tc->isBeingDragged = true; if (tc->getEditingMode() == ToolbarItemComponent::editableOnToolbar) tc->setVisible (false); } } } } void mouseUp (const MouseEvent&) { isDragging = false; ToolbarItemComponent* const tc = dynamic_cast (getParentComponent()); if (tc != 0) { tc->isBeingDragged = false; Toolbar* const tb = tc->getToolbar(); if (tb != 0) tb->updateAllItemPositions (true); else if (tc->getEditingMode() == ToolbarItemComponent::editableOnToolbar) delete tc; } } void parentSizeChanged() { setBounds (0, 0, getParentWidth(), getParentHeight()); } juce_UseDebuggingNewOperator private: bool isDragging; ItemDragAndDropOverlayComponent (const ItemDragAndDropOverlayComponent&); const ItemDragAndDropOverlayComponent& operator= (const ItemDragAndDropOverlayComponent&); }; ToolbarItemComponent::ToolbarItemComponent (const int itemId_, const String& labelText, const bool isBeingUsedAsAButton_) : Button (labelText), itemId (itemId_), mode (normalMode), toolbarStyle (Toolbar::iconsOnly), overlayComp (0), dragOffsetX (0), dragOffsetY (0), isActive (true), isBeingDragged (false), isBeingUsedAsAButton (isBeingUsedAsAButton_) { // Your item ID can't be 0! jassert (itemId_ != 0); } ToolbarItemComponent::~ToolbarItemComponent() { jassert (overlayComp == 0 || overlayComp->isValidComponent()); delete overlayComp; } Toolbar* ToolbarItemComponent::getToolbar() const { return dynamic_cast (getParentComponent()); } bool ToolbarItemComponent::isToolbarVertical() const { const Toolbar* const t = getToolbar(); return t != 0 && t->isVertical(); } void ToolbarItemComponent::setStyle (const Toolbar::ToolbarItemStyle& newStyle) { if (toolbarStyle != newStyle) { toolbarStyle = newStyle; repaint(); resized(); } } void ToolbarItemComponent::paintButton (Graphics& g, bool isMouseOver, bool isMouseDown) { if (isBeingUsedAsAButton) getLookAndFeel().paintToolbarButtonBackground (g, getWidth(), getHeight(), isMouseOver, isMouseDown, *this); if (toolbarStyle != Toolbar::iconsOnly) { const int indent = contentArea.getX(); int y = indent; int h = getHeight() - indent * 2; if (toolbarStyle == Toolbar::iconsWithText) { y = contentArea.getBottom() + indent / 2; h -= contentArea.getHeight(); } getLookAndFeel().paintToolbarButtonLabel (g, indent, y, getWidth() - indent * 2, h, getButtonText(), *this); } if (! contentArea.isEmpty()) { g.saveState(); g.setOrigin (contentArea.getX(), contentArea.getY()); g.reduceClipRegion (0, 0, contentArea.getWidth(), contentArea.getHeight()); paintButtonArea (g, contentArea.getWidth(), contentArea.getHeight(), isMouseOver, isMouseDown); g.restoreState(); } } void ToolbarItemComponent::resized() { if (toolbarStyle != Toolbar::textOnly) { const int indent = jmin (proportionOfWidth (0.08f), proportionOfHeight (0.08f)); contentArea = Rectangle (indent, indent, getWidth() - indent * 2, toolbarStyle == Toolbar::iconsWithText ? proportionOfHeight (0.55f) : (getHeight() - indent * 2)); } else { contentArea = Rectangle(); } contentAreaChanged (contentArea); } void ToolbarItemComponent::setEditingMode (const ToolbarEditingMode newMode) { if (mode != newMode) { mode = newMode; repaint(); if (mode == normalMode) { jassert (overlayComp == 0 || overlayComp->isValidComponent()); delete overlayComp; overlayComp = 0; } else if (overlayComp == 0) { addAndMakeVisible (overlayComp = new ItemDragAndDropOverlayComponent()); overlayComp->parentSizeChanged(); } resized(); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ToolbarItemComponent.cpp *********/ /********* Start of inlined file: juce_ToolbarItemPalette.cpp *********/ BEGIN_JUCE_NAMESPACE ToolbarItemPalette::ToolbarItemPalette (ToolbarItemFactory& factory_, Toolbar* const toolbar_) : factory (factory_), toolbar (toolbar_) { Component* const itemHolder = new Component(); Array allIds; factory_.getAllToolbarItemIds (allIds); for (int i = 0; i < allIds.size(); ++i) { ToolbarItemComponent* const tc = Toolbar::createItem (factory_, allIds.getUnchecked (i)); jassert (tc != 0); if (tc != 0) { itemHolder->addAndMakeVisible (tc); tc->setEditingMode (ToolbarItemComponent::editableOnPalette); } } viewport = new Viewport(); viewport->setViewedComponent (itemHolder); addAndMakeVisible (viewport); } ToolbarItemPalette::~ToolbarItemPalette() { viewport->getViewedComponent()->deleteAllChildren(); deleteAllChildren(); } void ToolbarItemPalette::resized() { viewport->setBoundsInset (BorderSize (1)); Component* const itemHolder = viewport->getViewedComponent(); const int indent = 8; const int preferredWidth = viewport->getWidth() - viewport->getScrollBarThickness() - indent; const int height = toolbar->getThickness(); int x = indent; int y = indent; int maxX = 0; for (int i = 0; i < itemHolder->getNumChildComponents(); ++i) { ToolbarItemComponent* const tc = dynamic_cast (itemHolder->getChildComponent (i)); if (tc != 0) { tc->setStyle (toolbar->getStyle()); int preferredSize = 1, minSize = 1, maxSize = 1; if (tc->getToolbarItemSizes (height, false, preferredSize, minSize, maxSize)) { if (x + preferredSize > preferredWidth && x > indent) { x = indent; y += height; } tc->setBounds (x, y, preferredSize, height); x += preferredSize + 8; maxX = jmax (maxX, x); } } } itemHolder->setSize (maxX, y + height + 8); } void ToolbarItemPalette::replaceComponent (ToolbarItemComponent* const comp) { ToolbarItemComponent* const tc = Toolbar::createItem (factory, comp->getItemId()); jassert (tc != 0); if (tc != 0) { tc->setBounds (comp->getBounds()); tc->setStyle (toolbar->getStyle()); tc->setEditingMode (comp->getEditingMode()); viewport->getViewedComponent()->addAndMakeVisible (tc, getIndexOfChildComponent (comp)); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ToolbarItemPalette.cpp *********/ /********* Start of inlined file: juce_TreeView.cpp *********/ BEGIN_JUCE_NAMESPACE class TreeViewContentComponent : public Component, public TooltipClient { public: TreeViewContentComponent (TreeView* const owner_) : owner (owner_), buttonUnderMouse (0), isDragging (false) { } ~TreeViewContentComponent() { deleteAllChildren(); } void mouseDown (const MouseEvent& e) { updateButtonUnderMouse (e); isDragging = false; needSelectionOnMouseUp = false; Rectangle pos; TreeViewItem* const item = findItemAt (e.y, pos); if (item == 0) return; // (if the open/close buttons are hidden, we'll treat clicks to the left of the item // as selection clicks) if (e.x < pos.getX() && owner->openCloseButtonsVisible) { if (e.x >= pos.getX() - owner->getIndentSize()) item->setOpen (! item->isOpen()); // (clicks to the left of an open/close button are ignored) } else { // mouse-down inside the body of the item.. if (! owner->isMultiSelectEnabled()) item->setSelected (true, true); else if (item->isSelected()) needSelectionOnMouseUp = ! e.mods.isPopupMenu(); else selectBasedOnModifiers (item, e.mods); MouseEvent e2 (e); e2.x -= pos.getX(); e2.y -= pos.getY(); if (e2.x >= 0) item->itemClicked (e2); } } void mouseUp (const MouseEvent& e) { updateButtonUnderMouse (e); if (needSelectionOnMouseUp && e.mouseWasClicked()) { Rectangle pos; TreeViewItem* const item = findItemAt (e.y, pos); if (item != 0) selectBasedOnModifiers (item, e.mods); } } void mouseDoubleClick (const MouseEvent& e) { if (e.getNumberOfClicks() != 3) // ignore triple clicks { Rectangle pos; TreeViewItem* const item = findItemAt (e.y, pos); if (item != 0 && (e.x >= pos.getX() || ! owner->openCloseButtonsVisible)) { MouseEvent e2 (e); e2.x -= pos.getX(); e2.y -= pos.getY(); item->itemDoubleClicked (e2); } } } void mouseDrag (const MouseEvent& e) { if (isEnabled() && ! (e.mouseWasClicked() || isDragging)) { isDragging = true; Rectangle pos; TreeViewItem* const item = findItemAt (e.getMouseDownY(), pos); if (item != 0 && e.getMouseDownX() >= pos.getX()) { const String dragDescription (item->getDragSourceDescription()); if (dragDescription.isNotEmpty()) { DragAndDropContainer* const dragContainer = DragAndDropContainer::findParentDragContainerFor (this); if (dragContainer != 0) { pos.setSize (pos.getWidth(), item->itemHeight); Image* dragImage = Component::createComponentSnapshot (pos, true); dragImage->multiplyAllAlphas (0.6f); dragContainer->startDragging (dragDescription, owner, dragImage, true); } else { // to be able to do a drag-and-drop operation, the treeview needs to // be inside a component which is also a DragAndDropContainer. jassertfalse } } } } } void mouseMove (const MouseEvent& e) { updateButtonUnderMouse (e); } void mouseExit (const MouseEvent& e) { updateButtonUnderMouse (e); } void paint (Graphics& g); TreeViewItem* findItemAt (int y, Rectangle& itemPosition) const; void updateComponents() { const int visibleTop = -getY(); const int visibleBottom = visibleTop + getParentHeight(); BitArray itemsToKeep; TreeViewItem* item = owner->rootItem; int y = (item != 0 && !owner->rootItemVisible) ? -item->itemHeight : 0; while (item != 0 && y < visibleBottom) { y += item->itemHeight; if (y >= visibleTop) { const int index = rowComponentIds.indexOf (item->uid); if (index < 0) { Component* const comp = item->createItemComponent(); if (comp != 0) { addAndMakeVisible (comp); itemsToKeep.setBit (rowComponentItems.size()); rowComponentItems.add (item); rowComponentIds.add (item->uid); rowComponents.add (comp); } } else { itemsToKeep.setBit (index); } } item = item->getNextVisibleItem (true); } for (int i = rowComponentItems.size(); --i >= 0;) { Component* const comp = (Component*) (rowComponents.getUnchecked(i)); bool keep = false; if ((itemsToKeep[i] || (comp == Component::getComponentUnderMouse() && comp->isMouseButtonDown())) && isParentOf (comp)) { if (itemsToKeep[i]) { const TreeViewItem* const item = (TreeViewItem*) rowComponentItems.getUnchecked(i); Rectangle pos (item->getItemPosition (false)); pos.setSize (pos.getWidth(), item->itemHeight); if (pos.getBottom() >= visibleTop && pos.getY() < visibleBottom) { keep = true; comp->setBounds (pos); } } else { comp->setSize (0, 0); } } if (! keep) { delete comp; rowComponents.remove (i); rowComponentIds.remove (i); rowComponentItems.remove (i); } } } void updateButtonUnderMouse (const MouseEvent& e) { TreeViewItem* newItem = 0; if (owner->openCloseButtonsVisible) { Rectangle pos; TreeViewItem* item = findItemAt (e.y, pos); if (item != 0 && e.x < pos.getX() && e.x >= pos.getX() - owner->getIndentSize()) { newItem = item; if (! newItem->mightContainSubItems()) newItem = 0; } } if (buttonUnderMouse != newItem) { if (buttonUnderMouse != 0 && containsItem (buttonUnderMouse)) { const Rectangle r (buttonUnderMouse->getItemPosition (false)); repaint (0, r.getY(), r.getX(), buttonUnderMouse->getItemHeight()); } buttonUnderMouse = newItem; if (buttonUnderMouse != 0) { const Rectangle r (buttonUnderMouse->getItemPosition (false)); repaint (0, r.getY(), r.getX(), buttonUnderMouse->getItemHeight()); } } } bool isMouseOverButton (TreeViewItem* item) const throw() { return item == buttonUnderMouse; } void resized() { owner->itemsChanged(); } const String getTooltip() { int x, y; getMouseXYRelative (x, y); Rectangle pos; TreeViewItem* const item = findItemAt (y, pos); if (item != 0) return item->getTooltip(); return owner->getTooltip(); } juce_UseDebuggingNewOperator private: TreeView* const owner; VoidArray rowComponentItems; Array rowComponentIds; VoidArray rowComponents; TreeViewItem* buttonUnderMouse; bool isDragging, needSelectionOnMouseUp; TreeViewContentComponent (const TreeViewContentComponent&); const TreeViewContentComponent& operator= (const TreeViewContentComponent&); void selectBasedOnModifiers (TreeViewItem* const item, const ModifierKeys& modifiers) { TreeViewItem* firstSelected = 0; if (modifiers.isShiftDown() && ((firstSelected = owner->getSelectedItem (0)) != 0)) { TreeViewItem* const lastSelected = owner->getSelectedItem (owner->getNumSelectedItems() - 1); jassert (lastSelected != 0); int rowStart = firstSelected->getRowNumberInTree(); int rowEnd = lastSelected->getRowNumberInTree(); if (rowStart > rowEnd) swapVariables (rowStart, rowEnd); int ourRow = item->getRowNumberInTree(); int otherEnd = ourRow < rowEnd ? rowStart : rowEnd; if (ourRow > otherEnd) swapVariables (ourRow, otherEnd); for (int i = ourRow; i <= otherEnd; ++i) owner->getItemOnRow (i)->setSelected (true, false); } else { const bool cmd = modifiers.isCommandDown(); item->setSelected ((! cmd) || (! item->isSelected()), ! cmd); } } bool containsItem (TreeViewItem* const item) const { for (int i = rowComponentItems.size(); --i >= 0;) if ((TreeViewItem*) rowComponentItems.getUnchecked (i) == item) return true; return false; } }; class TreeViewport : public Viewport { public: TreeViewport() throw() {} ~TreeViewport() throw() {} void updateComponents() { if (getViewedComponent() != 0) ((TreeViewContentComponent*) getViewedComponent())->updateComponents(); repaint(); } void visibleAreaChanged (int, int, int, int) { updateComponents(); } juce_UseDebuggingNewOperator private: TreeViewport (const TreeViewport&); const TreeViewport& operator= (const TreeViewport&); }; TreeView::TreeView (const String& componentName) : Component (componentName), rootItem (0), indentSize (24), defaultOpenness (false), needsRecalculating (true), rootItemVisible (true), multiSelectEnabled (false), openCloseButtonsVisible (true) { addAndMakeVisible (viewport = new TreeViewport()); viewport->setViewedComponent (new TreeViewContentComponent (this)); viewport->setWantsKeyboardFocus (false); setWantsKeyboardFocus (true); } TreeView::~TreeView() { if (rootItem != 0) rootItem->setOwnerView (0); deleteAllChildren(); } void TreeView::setRootItem (TreeViewItem* const newRootItem) { if (rootItem != newRootItem) { if (newRootItem != 0) { jassert (newRootItem->ownerView == 0); // can't use a tree item in more than one tree at once.. if (newRootItem->ownerView != 0) newRootItem->ownerView->setRootItem (0); } if (rootItem != 0) rootItem->setOwnerView (0); rootItem = newRootItem; if (newRootItem != 0) newRootItem->setOwnerView (this); needsRecalculating = true; handleAsyncUpdate(); if (rootItem != 0 && (defaultOpenness || ! rootItemVisible)) { rootItem->setOpen (false); // force a re-open rootItem->setOpen (true); } } } void TreeView::deleteRootItem() { TreeViewItem* const oldItem = rootItem; setRootItem (0); delete oldItem; } void TreeView::setRootItemVisible (const bool shouldBeVisible) { rootItemVisible = shouldBeVisible; if (rootItem != 0 && (defaultOpenness || ! rootItemVisible)) { rootItem->setOpen (false); // force a re-open rootItem->setOpen (true); } itemsChanged(); } void TreeView::colourChanged() { setOpaque (findColour (backgroundColourId).isOpaque()); repaint(); } void TreeView::setIndentSize (const int newIndentSize) { if (indentSize != newIndentSize) { indentSize = newIndentSize; resized(); } } void TreeView::setDefaultOpenness (const bool isOpenByDefault) { if (defaultOpenness != isOpenByDefault) { defaultOpenness = isOpenByDefault; itemsChanged(); } } void TreeView::setMultiSelectEnabled (const bool canMultiSelect) { multiSelectEnabled = canMultiSelect; } void TreeView::setOpenCloseButtonsVisible (const bool shouldBeVisible) { if (openCloseButtonsVisible != shouldBeVisible) { openCloseButtonsVisible = shouldBeVisible; itemsChanged(); } } void TreeView::clearSelectedItems() { if (rootItem != 0) rootItem->deselectAllRecursively(); } int TreeView::getNumSelectedItems() const throw() { return (rootItem != 0) ? rootItem->countSelectedItemsRecursively() : 0; } TreeViewItem* TreeView::getSelectedItem (const int index) const throw() { return (rootItem != 0) ? rootItem->getSelectedItemWithIndex (index) : 0; } int TreeView::getNumRowsInTree() const { if (rootItem != 0) return rootItem->getNumRows() - (rootItemVisible ? 0 : 1); return 0; } TreeViewItem* TreeView::getItemOnRow (int index) const { if (! rootItemVisible) ++index; if (rootItem != 0 && index >= 0) return rootItem->getItemOnRow (index); return 0; } XmlElement* TreeView::getOpennessState (const bool alsoIncludeScrollPosition) const { XmlElement* e = 0; if (rootItem != 0) { e = rootItem->createXmlOpenness(); if (e != 0 && alsoIncludeScrollPosition) e->setAttribute (T("scrollPos"), viewport->getViewPositionY()); } return e; } void TreeView::restoreOpennessState (const XmlElement& newState) { if (rootItem != 0) { rootItem->restoreFromXml (newState); if (newState.hasAttribute (T("scrollPos"))) viewport->setViewPosition (viewport->getViewPositionX(), newState.getIntAttribute (T("scrollPos"))); } } void TreeView::paint (Graphics& g) { g.fillAll (findColour (backgroundColourId)); } void TreeView::resized() { viewport->setBounds (0, 0, getWidth(), getHeight()); itemsChanged(); handleAsyncUpdate(); } void TreeView::enablementChanged() { repaint(); } void TreeView::moveSelectedRow (int delta) { if (delta == 0) return; int rowSelected = 0; TreeViewItem* const firstSelected = getSelectedItem (0); if (firstSelected != 0) rowSelected = firstSelected->getRowNumberInTree(); rowSelected = jlimit (0, getNumRowsInTree() - 1, rowSelected + delta); for (;;) { TreeViewItem* item = getItemOnRow (rowSelected); if (item != 0) { if (! item->canBeSelected()) { // if the row we want to highlight doesn't allow it, try skipping // to the next item.. const int nextRowToTry = jlimit (0, getNumRowsInTree() - 1, rowSelected + (delta < 0 ? -1 : 1)); if (rowSelected != nextRowToTry) { rowSelected = nextRowToTry; continue; } else { break; } } item->setSelected (true, true); scrollToKeepItemVisible (item); } break; } } void TreeView::scrollToKeepItemVisible (TreeViewItem* item) { if (item != 0 && item->ownerView == this) { handleAsyncUpdate(); item = item->getDeepestOpenParentItem(); int y = item->y; int viewTop = viewport->getViewPositionY(); if (y < viewTop) { viewport->setViewPosition (viewport->getViewPositionX(), y); } else if (y + item->itemHeight > viewTop + viewport->getViewHeight()) { viewport->setViewPosition (viewport->getViewPositionX(), (y + item->itemHeight) - viewport->getViewHeight()); } } } bool TreeView::keyPressed (const KeyPress& key) { if (key.isKeyCode (KeyPress::upKey)) { moveSelectedRow (-1); } else if (key.isKeyCode (KeyPress::downKey)) { moveSelectedRow (1); } else if (key.isKeyCode (KeyPress::pageDownKey) || key.isKeyCode (KeyPress::pageUpKey)) { if (rootItem != 0) { int rowsOnScreen = getHeight() / jmax (1, rootItem->itemHeight); if (key.isKeyCode (KeyPress::pageUpKey)) rowsOnScreen = -rowsOnScreen; moveSelectedRow (rowsOnScreen); } } else if (key.isKeyCode (KeyPress::homeKey)) { moveSelectedRow (-0x3fffffff); } else if (key.isKeyCode (KeyPress::endKey)) { moveSelectedRow (0x3fffffff); } else if (key.isKeyCode (KeyPress::returnKey)) { TreeViewItem* const firstSelected = getSelectedItem (0); if (firstSelected != 0) firstSelected->setOpen (! firstSelected->isOpen()); } else if (key.isKeyCode (KeyPress::leftKey)) { TreeViewItem* const firstSelected = getSelectedItem (0); if (firstSelected != 0) { if (firstSelected->isOpen()) { firstSelected->setOpen (false); } else { TreeViewItem* parent = firstSelected->parentItem; if ((! rootItemVisible) && parent == rootItem) parent = 0; if (parent != 0) { parent->setSelected (true, true); scrollToKeepItemVisible (parent); } } } } else if (key.isKeyCode (KeyPress::rightKey)) { TreeViewItem* const firstSelected = getSelectedItem (0); if (firstSelected != 0) { if (firstSelected->isOpen() || ! firstSelected->mightContainSubItems()) moveSelectedRow (1); else firstSelected->setOpen (true); } } else { return false; } return true; } void TreeView::itemsChanged() throw() { needsRecalculating = true; repaint(); triggerAsyncUpdate(); } void TreeView::handleAsyncUpdate() { if (needsRecalculating) { needsRecalculating = false; const ScopedLock sl (nodeAlterationLock); if (rootItem != 0) rootItem->updatePositions (rootItemVisible ? 0 : -rootItem->itemHeight); ((TreeViewport*) viewport)->updateComponents(); if (rootItem != 0) { viewport->getViewedComponent() ->setSize (jmax (viewport->getMaximumVisibleWidth(), rootItem->totalWidth), rootItem->totalHeight - (rootItemVisible ? 0 : rootItem->itemHeight)); } else { viewport->getViewedComponent()->setSize (0, 0); } } } void TreeViewContentComponent::paint (Graphics& g) { if (owner->rootItem != 0) { owner->handleAsyncUpdate(); if (! owner->rootItemVisible) g.setOrigin (0, -owner->rootItem->itemHeight); owner->rootItem->paintRecursively (g, getWidth()); } } TreeViewItem* TreeViewContentComponent::findItemAt (int y, Rectangle& itemPosition) const { if (owner->rootItem != 0) { owner->handleAsyncUpdate(); if (! owner->rootItemVisible) y += owner->rootItem->itemHeight; TreeViewItem* const ti = owner->rootItem->findItemRecursively (y); if (ti != 0) itemPosition = ti->getItemPosition (false); return ti; } return 0; } #define opennessDefault 0 #define opennessClosed 1 #define opennessOpen 2 TreeViewItem::TreeViewItem() : ownerView (0), parentItem (0), subItems (8), y (0), itemHeight (0), totalHeight (0), selected (false), redrawNeeded (true), drawLinesInside (true), drawsInLeftMargin (false), openness (opennessDefault) { static int nextUID = 0; uid = nextUID++; } TreeViewItem::~TreeViewItem() { } const String TreeViewItem::getUniqueName() const { return String::empty; } void TreeViewItem::itemOpennessChanged (bool) { } int TreeViewItem::getNumSubItems() const throw() { return subItems.size(); } TreeViewItem* TreeViewItem::getSubItem (const int index) const throw() { return subItems [index]; } void TreeViewItem::clearSubItems() { if (subItems.size() > 0) { if (ownerView != 0) { const ScopedLock sl (ownerView->nodeAlterationLock); subItems.clear(); treeHasChanged(); } else { subItems.clear(); } } } void TreeViewItem::addSubItem (TreeViewItem* const newItem, const int insertPosition) { if (newItem != 0) { newItem->parentItem = this; newItem->setOwnerView (ownerView); newItem->y = 0; newItem->itemHeight = newItem->getItemHeight(); newItem->totalHeight = 0; newItem->itemWidth = newItem->getItemWidth(); newItem->totalWidth = 0; if (ownerView != 0) { const ScopedLock sl (ownerView->nodeAlterationLock); subItems.insert (insertPosition, newItem); treeHasChanged(); if (newItem->isOpen()) newItem->itemOpennessChanged (true); } else { subItems.insert (insertPosition, newItem); if (newItem->isOpen()) newItem->itemOpennessChanged (true); } } } void TreeViewItem::removeSubItem (const int index, const bool deleteItem) { if (ownerView != 0) ownerView->nodeAlterationLock.enter(); if (((unsigned int) index) < (unsigned int) subItems.size()) { subItems.remove (index, deleteItem); treeHasChanged(); } if (ownerView != 0) ownerView->nodeAlterationLock.exit(); } bool TreeViewItem::isOpen() const throw() { if (openness == opennessDefault) return ownerView != 0 && ownerView->defaultOpenness; else return openness == opennessOpen; } void TreeViewItem::setOpen (const bool shouldBeOpen) { if (isOpen() != shouldBeOpen) { openness = shouldBeOpen ? opennessOpen : opennessClosed; treeHasChanged(); itemOpennessChanged (isOpen()); } } bool TreeViewItem::isSelected() const throw() { return selected; } void TreeViewItem::deselectAllRecursively() { setSelected (false, false); for (int i = 0; i < subItems.size(); ++i) subItems.getUnchecked(i)->deselectAllRecursively(); } void TreeViewItem::setSelected (const bool shouldBeSelected, const bool deselectOtherItemsFirst) { if (shouldBeSelected && ! canBeSelected()) return; if (deselectOtherItemsFirst) getTopLevelItem()->deselectAllRecursively(); if (shouldBeSelected != selected) { selected = shouldBeSelected; if (ownerView != 0) ownerView->repaint(); itemSelectionChanged (shouldBeSelected); } } void TreeViewItem::paintItem (Graphics&, int, int) { } void TreeViewItem::paintOpenCloseButton (Graphics& g, int width, int height, bool isMouseOver) { ownerView->getLookAndFeel() .drawTreeviewPlusMinusBox (g, 0, 0, width, height, ! isOpen(), isMouseOver); } void TreeViewItem::itemClicked (const MouseEvent&) { } void TreeViewItem::itemDoubleClicked (const MouseEvent&) { if (mightContainSubItems()) setOpen (! isOpen()); } void TreeViewItem::itemSelectionChanged (bool) { } const String TreeViewItem::getTooltip() { return String::empty; } const String TreeViewItem::getDragSourceDescription() { return String::empty; } const Rectangle TreeViewItem::getItemPosition (const bool relativeToTreeViewTopLeft) const throw() { const int indentX = getIndentX(); int width = itemWidth; if (ownerView != 0 && width < 0) width = ownerView->viewport->getViewWidth() - indentX; Rectangle r (indentX, y, jmax (0, width), totalHeight); if (relativeToTreeViewTopLeft) r.setPosition (r.getX() - ownerView->viewport->getViewPositionX(), r.getY() - ownerView->viewport->getViewPositionY()); return r; } void TreeViewItem::treeHasChanged() const throw() { if (ownerView != 0) ownerView->itemsChanged(); } void TreeViewItem::repaintItem() const { if (ownerView != 0 && areAllParentsOpen()) { const Rectangle r (getItemPosition (true)); ownerView->viewport->repaint (0, r.getY(), r.getRight(), r.getHeight()); } } bool TreeViewItem::areAllParentsOpen() const throw() { return parentItem == 0 || (parentItem->isOpen() && parentItem->areAllParentsOpen()); } void TreeViewItem::updatePositions (int newY) { y = newY; itemHeight = getItemHeight(); totalHeight = itemHeight; itemWidth = getItemWidth(); totalWidth = jmax (itemWidth, 0) + getIndentX(); if (isOpen()) { newY += totalHeight; for (int i = 0; i < subItems.size(); ++i) { TreeViewItem* const ti = subItems.getUnchecked(i); ti->updatePositions (newY); newY += ti->totalHeight; totalHeight += ti->totalHeight; totalWidth = jmax (totalWidth, ti->totalWidth); } } } TreeViewItem* TreeViewItem::getDeepestOpenParentItem() throw() { TreeViewItem* result = this; TreeViewItem* item = this; while (item->parentItem != 0) { item = item->parentItem; if (! item->isOpen()) result = item; } return result; } void TreeViewItem::setOwnerView (TreeView* const newOwner) throw() { ownerView = newOwner; for (int i = subItems.size(); --i >= 0;) subItems.getUnchecked(i)->setOwnerView (newOwner); } int TreeViewItem::getIndentX() const throw() { const int indentWidth = ownerView->getIndentSize(); int x = ownerView->rootItemVisible ? indentWidth : 0; if (! ownerView->openCloseButtonsVisible) x -= indentWidth; TreeViewItem* p = parentItem; while (p != 0) { x += indentWidth; p = p->parentItem; } return x; } void TreeViewItem::setDrawsInLeftMargin (bool canDrawInLeftMargin) throw() { drawsInLeftMargin = canDrawInLeftMargin; } void TreeViewItem::paintRecursively (Graphics& g, int width) { jassert (ownerView != 0); if (ownerView == 0) return; const int indent = getIndentX(); const int itemW = itemWidth < 0 ? width - indent : itemWidth; g.setColour (ownerView->findColour (TreeView::linesColourId)); const float halfH = itemHeight * 0.5f; int depth = 0; TreeViewItem* p = parentItem; while (p != 0) { ++depth; p = p->parentItem; } if (! ownerView->rootItemVisible) --depth; const int indentWidth = ownerView->getIndentSize(); if (depth >= 0 && ownerView->openCloseButtonsVisible) { float x = (depth + 0.5f) * indentWidth; if (depth >= 0) { if (parentItem != 0 && parentItem->drawLinesInside) g.drawLine (x, 0, x, isLastOfSiblings() ? halfH : (float) itemHeight); if ((parentItem != 0 && parentItem->drawLinesInside) || (parentItem == 0 && drawLinesInside)) g.drawLine (x, halfH, x + indentWidth / 2, halfH); } p = parentItem; int d = depth; while (p != 0 && --d >= 0) { x -= (float) indentWidth; if ((p->parentItem == 0 || p->parentItem->drawLinesInside) && ! p->isLastOfSiblings()) { g.drawLine (x, 0, x, (float) itemHeight); } p = p->parentItem; } if (mightContainSubItems()) { g.saveState(); g.setOrigin (depth * indentWidth, 0); g.reduceClipRegion (0, 0, indentWidth, itemHeight); paintOpenCloseButton (g, indentWidth, itemHeight, ((TreeViewContentComponent*) ownerView->viewport->getViewedComponent()) ->isMouseOverButton (this)); g.restoreState(); } } { g.saveState(); g.setOrigin (indent, 0); if (g.reduceClipRegion (drawsInLeftMargin ? -indent : 0, 0, drawsInLeftMargin ? itemW + indent : itemW, itemHeight)) paintItem (g, itemW, itemHeight); g.restoreState(); } if (isOpen()) { const Rectangle clip (g.getClipBounds()); for (int i = 0; i < subItems.size(); ++i) { TreeViewItem* const ti = subItems.getUnchecked(i); const int relY = ti->y - y; if (relY >= clip.getBottom()) break; if (relY + ti->totalHeight >= clip.getY()) { g.saveState(); g.setOrigin (0, relY); if (g.reduceClipRegion (0, 0, width, ti->totalHeight)) ti->paintRecursively (g, width); g.restoreState(); } } } } bool TreeViewItem::isLastOfSiblings() const throw() { return parentItem == 0 || parentItem->subItems.getLast() == this; } TreeViewItem* TreeViewItem::getTopLevelItem() throw() { return (parentItem == 0) ? this : parentItem->getTopLevelItem(); } int TreeViewItem::getNumRows() const throw() { int num = 1; if (isOpen()) { for (int i = subItems.size(); --i >= 0;) num += subItems.getUnchecked(i)->getNumRows(); } return num; } TreeViewItem* TreeViewItem::getItemOnRow (int index) throw() { if (index == 0) return this; if (index > 0 && isOpen()) { --index; for (int i = 0; i < subItems.size(); ++i) { TreeViewItem* const item = subItems.getUnchecked(i); if (index == 0) return item; const int numRows = item->getNumRows(); if (numRows > index) return item->getItemOnRow (index); index -= numRows; } } return 0; } TreeViewItem* TreeViewItem::findItemRecursively (int y) throw() { if (((unsigned int) y) < (unsigned int) totalHeight) { const int h = itemHeight; if (y < h) return this; if (isOpen()) { y -= h; for (int i = 0; i < subItems.size(); ++i) { TreeViewItem* const ti = subItems.getUnchecked(i); if (ti->totalHeight >= y) return ti->findItemRecursively (y); y -= ti->totalHeight; } } } return 0; } int TreeViewItem::countSelectedItemsRecursively() const throw() { int total = 0; if (isSelected()) ++total; for (int i = subItems.size(); --i >= 0;) total += subItems.getUnchecked(i)->countSelectedItemsRecursively(); return total; } TreeViewItem* TreeViewItem::getSelectedItemWithIndex (int index) throw() { if (isSelected()) { if (index == 0) return this; --index; } if (index >= 0) { for (int i = 0; i < subItems.size(); ++i) { TreeViewItem* const item = subItems.getUnchecked(i); TreeViewItem* const found = item->getSelectedItemWithIndex (index); if (found != 0) return found; index -= item->countSelectedItemsRecursively(); } } return 0; } int TreeViewItem::getRowNumberInTree() const throw() { if (parentItem != 0 && ownerView != 0) { int n = 1 + parentItem->getRowNumberInTree(); int ourIndex = parentItem->subItems.indexOf (this); jassert (ourIndex >= 0); while (--ourIndex >= 0) n += parentItem->subItems [ourIndex]->getNumRows(); if (parentItem->parentItem == 0 && ! ownerView->rootItemVisible) --n; return n; } else { return 0; } } void TreeViewItem::setLinesDrawnForSubItems (const bool drawLines) throw() { drawLinesInside = drawLines; } TreeViewItem* TreeViewItem::getNextVisibleItem (const bool recurse) const throw() { if (recurse && isOpen() && subItems.size() > 0) return subItems [0]; if (parentItem != 0) { const int nextIndex = parentItem->subItems.indexOf (this) + 1; if (nextIndex >= parentItem->subItems.size()) return parentItem->getNextVisibleItem (false); return parentItem->subItems [nextIndex]; } return 0; } void TreeViewItem::restoreFromXml (const XmlElement& e) { if (e.hasTagName (T("CLOSED"))) { setOpen (false); } else if (e.hasTagName (T("OPEN"))) { setOpen (true); forEachXmlChildElement (e, n) { const String id (n->getStringAttribute (T("id"))); for (int i = 0; i < subItems.size(); ++i) { TreeViewItem* const ti = subItems.getUnchecked(i); if (ti->getUniqueName() == id) { ti->restoreFromXml (*n); break; } } } } } XmlElement* TreeViewItem::createXmlOpenness() const { if (openness != opennessDefault) { const String name (getUniqueName()); if (name.isNotEmpty()) { XmlElement* e; if (isOpen()) { e = new XmlElement (T("OPEN")); for (int i = 0; i < subItems.size(); ++i) e->addChildElement (subItems.getUnchecked(i)->createXmlOpenness()); } else { e = new XmlElement (T("CLOSED")); } e->setAttribute (T("id"), name); return e; } else { // trying to save the openness for an element that has no name - this won't // work because it needs the names to identify what to open. jassertfalse } } return 0; } END_JUCE_NAMESPACE /********* End of inlined file: juce_TreeView.cpp *********/ /********* Start of inlined file: juce_DirectoryContentsDisplayComponent.cpp *********/ BEGIN_JUCE_NAMESPACE DirectoryContentsDisplayComponent::DirectoryContentsDisplayComponent (DirectoryContentsList& listToShow) : fileList (listToShow), listeners (2) { } DirectoryContentsDisplayComponent::~DirectoryContentsDisplayComponent() { } FileBrowserListener::~FileBrowserListener() { } void DirectoryContentsDisplayComponent::addListener (FileBrowserListener* const listener) throw() { jassert (listener != 0); if (listener != 0) listeners.add (listener); } void DirectoryContentsDisplayComponent::removeListener (FileBrowserListener* const listener) throw() { listeners.removeValue (listener); } void DirectoryContentsDisplayComponent::sendSelectionChangeMessage() { const ComponentDeletionWatcher deletionWatcher (dynamic_cast (this)); for (int i = listeners.size(); --i >= 0;) { ((FileBrowserListener*) listeners.getUnchecked (i))->selectionChanged(); if (deletionWatcher.hasBeenDeleted()) return; i = jmin (i, listeners.size() - 1); } } void DirectoryContentsDisplayComponent::sendMouseClickMessage (const File& file, const MouseEvent& e) { if (fileList.getDirectory().exists()) { const ComponentDeletionWatcher deletionWatcher (dynamic_cast (this)); for (int i = listeners.size(); --i >= 0;) { ((FileBrowserListener*) listeners.getUnchecked (i))->fileClicked (file, e); if (deletionWatcher.hasBeenDeleted()) return; i = jmin (i, listeners.size() - 1); } } } void DirectoryContentsDisplayComponent::sendDoubleClickMessage (const File& file) { if (fileList.getDirectory().exists()) { const ComponentDeletionWatcher deletionWatcher (dynamic_cast (this)); for (int i = listeners.size(); --i >= 0;) { ((FileBrowserListener*) listeners.getUnchecked (i))->fileDoubleClicked (file); if (deletionWatcher.hasBeenDeleted()) return; i = jmin (i, listeners.size() - 1); } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_DirectoryContentsDisplayComponent.cpp *********/ /********* Start of inlined file: juce_DirectoryContentsList.cpp *********/ BEGIN_JUCE_NAMESPACE void* juce_findFileStart (const String& directory, const String& wildCard, String& firstResultFile, bool* isDirectory, bool* isHidden, int64* fileSize, Time* modTime, Time* creationTime, bool* isReadOnly) throw(); bool juce_findFileNext (void* handle, String& resultFile, bool* isDirectory, bool* isHidden, int64* fileSize, Time* modTime, Time* creationTime, bool* isReadOnly) throw(); void juce_findFileClose (void* handle) throw(); DirectoryContentsList::DirectoryContentsList (const FileFilter* const fileFilter_, TimeSliceThread& thread_) : fileFilter (fileFilter_), thread (thread_), includeDirectories (false), includeFiles (false), ignoreHiddenFiles (true), fileFindHandle (0), shouldStop (true) { } DirectoryContentsList::~DirectoryContentsList() { clear(); } void DirectoryContentsList::setIgnoresHiddenFiles (const bool shouldIgnoreHiddenFiles) { ignoreHiddenFiles = shouldIgnoreHiddenFiles; } const File& DirectoryContentsList::getDirectory() const throw() { return root; } void DirectoryContentsList::setDirectory (const File& directory, const bool includeDirectories_, const bool includeFiles_) { if (directory != root || includeDirectories != includeDirectories_ || includeFiles != includeFiles_) { clear(); root = directory; includeDirectories = includeDirectories_; includeFiles = includeFiles_; refresh(); } } void DirectoryContentsList::clear() { shouldStop = true; thread.removeTimeSliceClient (this); if (fileFindHandle != 0) { juce_findFileClose (fileFindHandle); fileFindHandle = 0; } if (files.size() > 0) { files.clear(); changed(); } } void DirectoryContentsList::refresh() { clear(); if (root.isDirectory()) { String fileFound; bool fileFoundIsDir, isHidden, isReadOnly; int64 fileSize; Time modTime, creationTime; String path (root.getFullPathName()); if (! path.endsWithChar (File::separator)) path += File::separator; jassert (fileFindHandle == 0); fileFindHandle = juce_findFileStart (path, T("*"), fileFound, &fileFoundIsDir, &isHidden, &fileSize, &modTime, &creationTime, &isReadOnly); if (fileFindHandle != 0 && fileFound.isNotEmpty()) { if (addFile (fileFound, fileFoundIsDir, isHidden, fileSize, modTime, creationTime, isReadOnly)) { changed(); } } shouldStop = false; thread.addTimeSliceClient (this); } } int DirectoryContentsList::getNumFiles() const { return files.size(); } bool DirectoryContentsList::getFileInfo (const int index, FileInfo& result) const { const ScopedLock sl (fileListLock); const FileInfo* const info = files [index]; if (info != 0) { result = *info; return true; } return false; } const File DirectoryContentsList::getFile (const int index) const { const ScopedLock sl (fileListLock); const FileInfo* const info = files [index]; if (info != 0) return root.getChildFile (info->filename); return File::nonexistent; } bool DirectoryContentsList::isStillLoading() const { return fileFindHandle != 0; } void DirectoryContentsList::changed() { sendChangeMessage (this); } bool DirectoryContentsList::useTimeSlice() { const uint32 startTime = Time::getApproximateMillisecondCounter(); bool hasChanged = false; for (int i = 100; --i >= 0;) { if (! checkNextFile (hasChanged)) { if (hasChanged) changed(); return false; } if (shouldStop || (Time::getApproximateMillisecondCounter() > startTime + 150)) break; } if (hasChanged) changed(); return true; } bool DirectoryContentsList::checkNextFile (bool& hasChanged) { if (fileFindHandle != 0) { String fileFound; bool fileFoundIsDir, isHidden, isReadOnly; int64 fileSize; Time modTime, creationTime; if (juce_findFileNext (fileFindHandle, fileFound, &fileFoundIsDir, &isHidden, &fileSize, &modTime, &creationTime, &isReadOnly)) { if (addFile (fileFound, fileFoundIsDir, isHidden, fileSize, modTime, creationTime, isReadOnly)) { hasChanged = true; } return true; } else { juce_findFileClose (fileFindHandle); fileFindHandle = 0; } } return false; } int DirectoryContentsList::compareElements (const DirectoryContentsList::FileInfo* const first, const DirectoryContentsList::FileInfo* const second) throw() { #if JUCE_WINDOWS if (first->isDirectory != second->isDirectory) return first->isDirectory ? -1 : 1; #endif return first->filename.compareIgnoreCase (second->filename); } bool DirectoryContentsList::addFile (const String& filename, const bool isDir, const bool isHidden, const int64 fileSize, const Time& modTime, const Time& creationTime, const bool isReadOnly) { if (filename == T("..") || filename == T(".") || (ignoreHiddenFiles && isHidden)) return false; const File file (root.getChildFile (filename)); if (((isDir && includeDirectories) || ((! isDir) && includeFiles)) && (fileFilter == 0 || ((! isDir) && fileFilter->isFileSuitable (file)) || (isDir && fileFilter->isDirectorySuitable (file)))) { FileInfo* const info = new FileInfo(); info->filename = filename; info->fileSize = fileSize; info->modificationTime = modTime; info->creationTime = creationTime; info->isDirectory = isDir; info->isReadOnly = isReadOnly; const ScopedLock sl (fileListLock); for (int i = files.size(); --i >= 0;) { if (files.getUnchecked(i)->filename == info->filename) { delete info; return false; } } files.addSorted (*this, info); return true; } return false; } END_JUCE_NAMESPACE /********* End of inlined file: juce_DirectoryContentsList.cpp *********/ /********* Start of inlined file: juce_FileBrowserComponent.cpp *********/ BEGIN_JUCE_NAMESPACE class DirectoriesOnlyFilter : public FileFilter { public: DirectoriesOnlyFilter() : FileFilter (String::empty) {} bool isFileSuitable (const File&) const { return false; } bool isDirectorySuitable (const File&) const { return true; } }; FileBrowserComponent::FileBrowserComponent (FileChooserMode mode_, const File& initialFileOrDirectory, const FileFilter* fileFilter, FilePreviewComponent* previewComp_, const bool useTreeView, const bool filenameTextBoxIsReadOnly) : directoriesOnlyFilter (0), mode (mode_), listeners (2), previewComp (previewComp_), thread ("Juce FileBrowser") { String filename; if (initialFileOrDirectory == File::nonexistent) { currentRoot = File::getCurrentWorkingDirectory(); } else if (initialFileOrDirectory.isDirectory()) { currentRoot = initialFileOrDirectory; } else { currentRoot = initialFileOrDirectory.getParentDirectory(); filename = initialFileOrDirectory.getFileName(); } if (mode_ == chooseDirectoryMode) fileFilter = directoriesOnlyFilter = new DirectoriesOnlyFilter(); fileList = new DirectoryContentsList (fileFilter, thread); if (useTreeView) { FileTreeComponent* const tree = new FileTreeComponent (*fileList); addAndMakeVisible (tree); fileListComponent = tree; } else { FileListComponent* const list = new FileListComponent (*fileList); list->setOutlineThickness (1); addAndMakeVisible (list); fileListComponent = list; } fileListComponent->addListener (this); addAndMakeVisible (currentPathBox = new ComboBox ("path")); currentPathBox->setEditableText (true); StringArray rootNames, rootPaths; const BitArray separators (getRoots (rootNames, rootPaths)); for (int i = 0; i < rootNames.size(); ++i) { if (separators [i]) currentPathBox->addSeparator(); currentPathBox->addItem (rootNames[i], i + 1); } currentPathBox->addSeparator(); currentPathBox->addListener (this); addAndMakeVisible (filenameBox = new TextEditor()); filenameBox->setMultiLine (false); filenameBox->setSelectAllWhenFocused (true); filenameBox->setText (filename, false); filenameBox->addListener (this); filenameBox->setReadOnly (filenameTextBoxIsReadOnly); Label* label = new Label ("f", (mode == chooseDirectoryMode) ? TRANS("folder:") : TRANS("file:")); addAndMakeVisible (label); label->attachToComponent (filenameBox, true); addAndMakeVisible (goUpButton = getLookAndFeel().createFileBrowserGoUpButton()); goUpButton->addButtonListener (this); goUpButton->setTooltip (TRANS ("go up to parent directory")); if (previewComp != 0) addAndMakeVisible (previewComp); setRoot (currentRoot); thread.startThread (4); } FileBrowserComponent::~FileBrowserComponent() { if (previewComp != 0) removeChildComponent (previewComp); deleteAllChildren(); deleteAndZero (fileList); delete directoriesOnlyFilter; thread.stopThread (10000); } void FileBrowserComponent::addListener (FileBrowserListener* const newListener) throw() { jassert (newListener != 0) if (newListener != 0) listeners.add (newListener); } void FileBrowserComponent::removeListener (FileBrowserListener* const listener) throw() { listeners.removeValue (listener); } const File FileBrowserComponent::getCurrentFile() const throw() { return currentRoot.getChildFile (filenameBox->getText()); } bool FileBrowserComponent::currentFileIsValid() const { if (mode == saveFileMode) return ! getCurrentFile().isDirectory(); else if (mode == loadFileMode) return getCurrentFile().existsAsFile(); else if (mode == chooseDirectoryMode) return getCurrentFile().isDirectory(); jassertfalse return false; } const File FileBrowserComponent::getRoot() const { return currentRoot; } void FileBrowserComponent::setRoot (const File& newRootDirectory) { if (currentRoot != newRootDirectory) { fileListComponent->scrollToTop(); if (mode == chooseDirectoryMode) filenameBox->setText (String::empty, false); String path (newRootDirectory.getFullPathName()); if (path.isEmpty()) path += File::separator; StringArray rootNames, rootPaths; getRoots (rootNames, rootPaths); if (! rootPaths.contains (path, true)) { bool alreadyListed = false; for (int i = currentPathBox->getNumItems(); --i >= 0;) { if (currentPathBox->getItemText (i).equalsIgnoreCase (path)) { alreadyListed = true; break; } } if (! alreadyListed) currentPathBox->addItem (path, currentPathBox->getNumItems() + 2); } } currentRoot = newRootDirectory; fileList->setDirectory (currentRoot, true, true); String currentRootName (currentRoot.getFullPathName()); if (currentRootName.isEmpty()) currentRootName += File::separator; currentPathBox->setText (currentRootName, true); goUpButton->setEnabled (currentRoot.getParentDirectory().isDirectory() && currentRoot.getParentDirectory() != currentRoot); } void FileBrowserComponent::goUp() { setRoot (getRoot().getParentDirectory()); } void FileBrowserComponent::refresh() { fileList->refresh(); } const String FileBrowserComponent::getActionVerb() const { return (mode == chooseDirectoryMode) ? TRANS("Choose") : ((mode == saveFileMode) ? TRANS("Save") : TRANS("Open")); } FilePreviewComponent* FileBrowserComponent::getPreviewComponent() const throw() { return previewComp; } void FileBrowserComponent::resized() { getLookAndFeel() .layoutFileBrowserComponent (*this, fileListComponent, previewComp, currentPathBox, filenameBox, goUpButton); } void FileBrowserComponent::sendListenerChangeMessage() { ComponentDeletionWatcher deletionWatcher (this); if (previewComp != 0) previewComp->selectedFileChanged (getCurrentFile()); jassert (! deletionWatcher.hasBeenDeleted()); for (int i = listeners.size(); --i >= 0;) { ((FileBrowserListener*) listeners.getUnchecked (i))->selectionChanged(); if (deletionWatcher.hasBeenDeleted()) return; i = jmin (i, listeners.size() - 1); } } void FileBrowserComponent::selectionChanged() { const File selected (fileListComponent->getSelectedFile()); if ((mode == chooseDirectoryMode && selected.isDirectory()) || selected.existsAsFile()) { filenameBox->setText (selected.getRelativePathFrom (getRoot()), false); } sendListenerChangeMessage(); } void FileBrowserComponent::fileClicked (const File& f, const MouseEvent& e) { ComponentDeletionWatcher deletionWatcher (this); for (int i = listeners.size(); --i >= 0;) { ((FileBrowserListener*) listeners.getUnchecked (i))->fileClicked (f, e); if (deletionWatcher.hasBeenDeleted()) return; i = jmin (i, listeners.size() - 1); } } void FileBrowserComponent::fileDoubleClicked (const File& f) { if (f.isDirectory()) { setRoot (f); } else { ComponentDeletionWatcher deletionWatcher (this); for (int i = listeners.size(); --i >= 0;) { ((FileBrowserListener*) listeners.getUnchecked (i))->fileDoubleClicked (f); if (deletionWatcher.hasBeenDeleted()) return; i = jmin (i, listeners.size() - 1); } } } bool FileBrowserComponent::keyPressed (const KeyPress& key) { #if JUCE_LINUX || JUCE_WINDOWS if (key.getModifiers().isCommandDown() && (key.getKeyCode() == 'H' || key.getKeyCode() == 'h')) { fileList->setIgnoresHiddenFiles (! fileList->ignoresHiddenFiles()); fileList->refresh(); return true; } #endif return false; } void FileBrowserComponent::textEditorTextChanged (TextEditor&) { sendListenerChangeMessage(); } void FileBrowserComponent::textEditorReturnKeyPressed (TextEditor&) { if (filenameBox->getText().containsChar (File::separator)) { const File f (currentRoot.getChildFile (filenameBox->getText())); if (f.isDirectory()) { setRoot (f); filenameBox->setText (String::empty); } else { setRoot (f.getParentDirectory()); filenameBox->setText (f.getFileName()); } } else { fileDoubleClicked (getCurrentFile()); } } void FileBrowserComponent::textEditorEscapeKeyPressed (TextEditor&) { } void FileBrowserComponent::textEditorFocusLost (TextEditor&) { if (mode != saveFileMode) selectionChanged(); } void FileBrowserComponent::buttonClicked (Button*) { goUp(); } void FileBrowserComponent::comboBoxChanged (ComboBox*) { const String newText (currentPathBox->getText().trim().unquoted()); if (newText.isNotEmpty()) { const int index = currentPathBox->getSelectedId() - 1; StringArray rootNames, rootPaths; getRoots (rootNames, rootPaths); if (rootPaths [index].isNotEmpty()) { setRoot (File (rootPaths [index])); } else { File f (newText); for (;;) { if (f.isDirectory()) { setRoot (f); break; } if (f.getParentDirectory() == f) break; f = f.getParentDirectory(); } } } } const BitArray FileBrowserComponent::getRoots (StringArray& rootNames, StringArray& rootPaths) { BitArray separators; #if JUCE_WINDOWS OwnedArray roots; File::findFileSystemRoots (roots); rootPaths.clear(); for (int i = 0; i < roots.size(); ++i) { const File* const drive = roots.getUnchecked(i); String name (drive->getFullPathName()); rootPaths.add (name); if (drive->isOnHardDisk()) { String volume (drive->getVolumeLabel()); if (volume.isEmpty()) volume = TRANS("Hard Drive"); name << " [" << drive->getVolumeLabel() << ']'; } else if (drive->isOnCDRomDrive()) { name << TRANS(" [CD/DVD drive]"); } rootNames.add (name); } separators.setBit (rootPaths.size()); rootPaths.add (File::getSpecialLocation (File::userDocumentsDirectory).getFullPathName()); rootNames.add ("Documents"); rootPaths.add (File::getSpecialLocation (File::userDesktopDirectory).getFullPathName()); rootNames.add ("Desktop"); #endif #if JUCE_MAC rootPaths.add (File::getSpecialLocation (File::userHomeDirectory).getFullPathName()); rootNames.add ("Home folder"); rootPaths.add (File::getSpecialLocation (File::userDocumentsDirectory).getFullPathName()); rootNames.add ("Documents"); rootPaths.add (File::getSpecialLocation (File::userDesktopDirectory).getFullPathName()); rootNames.add ("Desktop"); separators.setBit (rootPaths.size()); OwnedArray volumes; File vol ("/Volumes"); vol.findChildFiles (volumes, File::findDirectories, false); for (int i = 0; i < volumes.size(); ++i) { const File* const volume = volumes.getUnchecked(i); if (volume->isDirectory() && ! volume->getFileName().startsWithChar (T('.'))) { rootPaths.add (volume->getFullPathName()); rootNames.add (volume->getFileName()); } } #endif #if JUCE_LINUX rootPaths.add ("/"); rootNames.add ("/"); rootPaths.add (File::getSpecialLocation (File::userHomeDirectory).getFullPathName()); rootNames.add ("Home folder"); rootPaths.add (File::getSpecialLocation (File::userDesktopDirectory).getFullPathName()); rootNames.add ("Desktop"); #endif return separators; } END_JUCE_NAMESPACE /********* End of inlined file: juce_FileBrowserComponent.cpp *********/ /********* Start of inlined file: juce_FileChooser.cpp *********/ BEGIN_JUCE_NAMESPACE FileChooser::FileChooser (const String& chooserBoxTitle, const File& currentFileOrDirectory, const String& fileFilters, const bool useNativeDialogBox_) : title (chooserBoxTitle), filters (fileFilters), startingFile (currentFileOrDirectory), useNativeDialogBox (useNativeDialogBox_) { #if JUCE_LINUX useNativeDialogBox = false; #endif if (! fileFilters.containsNonWhitespaceChars()) filters = T("*"); } FileChooser::~FileChooser() { } bool FileChooser::browseForFileToOpen (FilePreviewComponent* previewComponent) { return showDialog (false, false, false, false, previewComponent); } bool FileChooser::browseForMultipleFilesToOpen (FilePreviewComponent* previewComponent) { return showDialog (false, false, false, true, previewComponent); } bool FileChooser::browseForFileToSave (const bool warnAboutOverwritingExistingFiles) { return showDialog (false, true, warnAboutOverwritingExistingFiles, false, 0); } bool FileChooser::browseForDirectory() { return showDialog (true, false, false, false, 0); } const File FileChooser::getResult() const { // if you've used a multiple-file select, you should use the getResults() method // to retrieve all the files that were chosen. jassert (results.size() <= 1); const File* const f = results.getFirst(); if (f != 0) return *f; return File::nonexistent; } const OwnedArray & FileChooser::getResults() const { return results; } bool FileChooser::showDialog (const bool isDirectory, const bool isSave, const bool warnAboutOverwritingExistingFiles, const bool selectMultipleFiles, FilePreviewComponent* const previewComponent) { ComponentDeletionWatcher* currentlyFocusedChecker = 0; Component* const currentlyFocused = Component::getCurrentlyFocusedComponent(); if (currentlyFocused != 0) currentlyFocusedChecker = new ComponentDeletionWatcher (currentlyFocused); results.clear(); // the preview component needs to be the right size before you pass it in here.. jassert (previewComponent == 0 || (previewComponent->getWidth() > 10 && previewComponent->getHeight() > 10)); #if JUCE_WINDOWS if (useNativeDialogBox) #else if (useNativeDialogBox && (previewComponent == 0)) #endif { showPlatformDialog (results, title, startingFile, filters, isDirectory, isSave, warnAboutOverwritingExistingFiles, selectMultipleFiles, previewComponent); } else { jassert (! selectMultipleFiles); // not yet implemented for juce dialogs! WildcardFileFilter wildcard (filters, String::empty); FileBrowserComponent browserComponent (isDirectory ? FileBrowserComponent::chooseDirectoryMode : (isSave ? FileBrowserComponent::saveFileMode : FileBrowserComponent::loadFileMode), startingFile, &wildcard, previewComponent); FileChooserDialogBox box (title, String::empty, browserComponent, warnAboutOverwritingExistingFiles, browserComponent.findColour (AlertWindow::backgroundColourId)); if (box.show()) results.add (new File (browserComponent.getCurrentFile())); } if (currentlyFocused != 0 && ! currentlyFocusedChecker->hasBeenDeleted()) currentlyFocused->grabKeyboardFocus(); delete currentlyFocusedChecker; return results.size() > 0; } FilePreviewComponent::FilePreviewComponent() { } FilePreviewComponent::~FilePreviewComponent() { } END_JUCE_NAMESPACE /********* End of inlined file: juce_FileChooser.cpp *********/ /********* Start of inlined file: juce_FileChooserDialogBox.cpp *********/ BEGIN_JUCE_NAMESPACE FileChooserDialogBox::FileChooserDialogBox (const String& name, const String& instructions, FileBrowserComponent& chooserComponent, const bool warnAboutOverwritingExistingFiles_, const Colour& backgroundColour) : ResizableWindow (name, backgroundColour, true), warnAboutOverwritingExistingFiles (warnAboutOverwritingExistingFiles_) { content = new ContentComponent(); content->setName (name); content->instructions = instructions; content->chooserComponent = &chooserComponent; content->addAndMakeVisible (&chooserComponent); content->okButton = new TextButton (chooserComponent.getActionVerb()); content->addAndMakeVisible (content->okButton); content->okButton->addButtonListener (this); content->okButton->setEnabled (chooserComponent.currentFileIsValid()); content->okButton->addShortcut (KeyPress (KeyPress::returnKey, 0, 0)); content->cancelButton = new TextButton (TRANS("Cancel")); content->addAndMakeVisible (content->cancelButton); content->cancelButton->addButtonListener (this); content->cancelButton->addShortcut (KeyPress (KeyPress::escapeKey, 0, 0)); setContentComponent (content); setResizable (true, true); setResizeLimits (300, 300, 1200, 1000); content->chooserComponent->addListener (this); } FileChooserDialogBox::~FileChooserDialogBox() { content->chooserComponent->removeListener (this); } bool FileChooserDialogBox::show (int w, int h) { if (w <= 0) { Component* const previewComp = content->chooserComponent->getPreviewComponent(); if (previewComp != 0) w = 400 + previewComp->getWidth(); else w = 600; } if (h <= 0) h = 500; centreWithSize (w, h); const bool ok = (runModalLoop() != 0); setVisible (false); return ok; } void FileChooserDialogBox::buttonClicked (Button* button) { if (button == content->okButton) { if (warnAboutOverwritingExistingFiles && content->chooserComponent->getMode() == FileBrowserComponent::saveFileMode && content->chooserComponent->getCurrentFile().exists()) { if (! AlertWindow::showOkCancelBox (AlertWindow::WarningIcon, TRANS("File already exists"), TRANS("There's already a file called:\n\n") + content->chooserComponent->getCurrentFile().getFullPathName() + T("\n\nAre you sure you want to overwrite it?"), TRANS("overwrite"), TRANS("cancel"))) { return; } } exitModalState (1); } else if (button == content->cancelButton) closeButtonPressed(); } void FileChooserDialogBox::closeButtonPressed() { setVisible (false); } void FileChooserDialogBox::selectionChanged() { content->okButton->setEnabled (content->chooserComponent->currentFileIsValid()); } void FileChooserDialogBox::fileClicked (const File&, const MouseEvent&) { } void FileChooserDialogBox::fileDoubleClicked (const File&) { selectionChanged(); content->okButton->triggerClick(); } FileChooserDialogBox::ContentComponent::ContentComponent() { setInterceptsMouseClicks (false, true); } FileChooserDialogBox::ContentComponent::~ContentComponent() { delete okButton; delete cancelButton; } void FileChooserDialogBox::ContentComponent::paint (Graphics& g) { g.setColour (Colours::black); text.draw (g); } void FileChooserDialogBox::ContentComponent::resized() { getLookAndFeel().createFileChooserHeaderText (getName(), instructions, text, getWidth()); float left, top, right, bottom; text.getBoundingBox (0, text.getNumGlyphs(), left, top, right, bottom, false); const int y = roundFloatToInt (bottom) + 10; const int buttonHeight = 26; const int buttonY = getHeight() - buttonHeight - 8; chooserComponent->setBounds (0, y, getWidth(), buttonY - y - 20); okButton->setBounds (proportionOfWidth (0.25f), buttonY, proportionOfWidth (0.2f), buttonHeight); cancelButton->setBounds (proportionOfWidth (0.55f), buttonY, proportionOfWidth (0.2f), buttonHeight); } END_JUCE_NAMESPACE /********* End of inlined file: juce_FileChooserDialogBox.cpp *********/ /********* Start of inlined file: juce_FileFilter.cpp *********/ BEGIN_JUCE_NAMESPACE FileFilter::FileFilter (const String& filterDescription) : description (filterDescription) { } FileFilter::~FileFilter() { } const String& FileFilter::getDescription() const throw() { return description; } END_JUCE_NAMESPACE /********* End of inlined file: juce_FileFilter.cpp *********/ /********* Start of inlined file: juce_FileListComponent.cpp *********/ BEGIN_JUCE_NAMESPACE Image* juce_createIconForFile (const File& file); FileListComponent::FileListComponent (DirectoryContentsList& listToShow) : ListBox (String::empty, 0), DirectoryContentsDisplayComponent (listToShow) { setModel (this); fileList.addChangeListener (this); } FileListComponent::~FileListComponent() { fileList.removeChangeListener (this); deleteAllChildren(); } const File FileListComponent::getSelectedFile() const { return fileList.getFile (getSelectedRow()); } void FileListComponent::scrollToTop() { getVerticalScrollBar()->setCurrentRangeStart (0); } void FileListComponent::changeListenerCallback (void*) { updateContent(); if (lastDirectory != fileList.getDirectory()) { lastDirectory = fileList.getDirectory(); deselectAllRows(); } } class FileListItemComponent : public Component, public TimeSliceClient, public AsyncUpdater { public: FileListItemComponent (FileListComponent& owner_, TimeSliceThread& thread_) throw() : owner (owner_), thread (thread_), icon (0) { } ~FileListItemComponent() throw() { thread.removeTimeSliceClient (this); clearIcon(); } void paint (Graphics& g) { getLookAndFeel().drawFileBrowserRow (g, getWidth(), getHeight(), file.getFileName(), icon, fileSize, modTime, isDirectory, highlighted, index); } void mouseDown (const MouseEvent& e) { owner.selectRowsBasedOnModifierKeys (index, e.mods); owner.sendMouseClickMessage (file, e); } void mouseDoubleClick (const MouseEvent&) { owner.sendDoubleClickMessage (file); } void update (const File& root, const DirectoryContentsList::FileInfo* const fileInfo, const int index_, const bool highlighted_) throw() { thread.removeTimeSliceClient (this); if (highlighted_ != highlighted || index_ != index) { index = index_; highlighted = highlighted_; repaint(); } File newFile; String newFileSize; String newModTime; if (fileInfo != 0) { newFile = root.getChildFile (fileInfo->filename); newFileSize = File::descriptionOfSizeInBytes (fileInfo->fileSize); newModTime = fileInfo->modificationTime.formatted (T("%d %b '%y %H:%M")); } if (newFile != file || fileSize != newFileSize || modTime != newModTime) { file = newFile; fileSize = newFileSize; modTime = newModTime; isDirectory = fileInfo != 0 && fileInfo->isDirectory; repaint(); clearIcon(); } if (file != File::nonexistent && icon == 0 && ! isDirectory) { updateIcon (true); if (icon == 0) thread.addTimeSliceClient (this); } } bool useTimeSlice() { updateIcon (false); return false; } void handleAsyncUpdate() { repaint(); } juce_UseDebuggingNewOperator private: FileListComponent& owner; TimeSliceThread& thread; bool highlighted; int index; File file; String fileSize; String modTime; Image* icon; bool isDirectory; void clearIcon() throw() { ImageCache::release (icon); icon = 0; } void updateIcon (const bool onlyUpdateIfCached) throw() { if (icon == 0) { const int hashCode = (file.getFullPathName() + T("_iconCacheSalt")).hashCode(); Image* im = ImageCache::getFromHashCode (hashCode); if (im == 0 && ! onlyUpdateIfCached) { im = juce_createIconForFile (file); if (im != 0) ImageCache::addImageToCache (im, hashCode); } if (im != 0) { icon = im; triggerAsyncUpdate(); } } } }; int FileListComponent::getNumRows() { return fileList.getNumFiles(); } void FileListComponent::paintListBoxItem (int, Graphics&, int, int, bool) { } Component* FileListComponent::refreshComponentForRow (int row, bool isSelected, Component* existingComponentToUpdate) { FileListItemComponent* comp = dynamic_cast (existingComponentToUpdate); if (comp == 0) { delete existingComponentToUpdate; existingComponentToUpdate = comp = new FileListItemComponent (*this, fileList.getTimeSliceThread()); } DirectoryContentsList::FileInfo fileInfo; if (fileList.getFileInfo (row, fileInfo)) comp->update (fileList.getDirectory(), &fileInfo, row, isSelected); else comp->update (fileList.getDirectory(), 0, row, isSelected); return comp; } void FileListComponent::selectedRowsChanged (int /*lastRowSelected*/) { sendSelectionChangeMessage(); } void FileListComponent::deleteKeyPressed (int /*currentSelectedRow*/) { } void FileListComponent::returnKeyPressed (int currentSelectedRow) { sendDoubleClickMessage (fileList.getFile (currentSelectedRow)); } END_JUCE_NAMESPACE /********* End of inlined file: juce_FileListComponent.cpp *********/ /********* Start of inlined file: juce_FilenameComponent.cpp *********/ BEGIN_JUCE_NAMESPACE FilenameComponent::FilenameComponent (const String& name, const File& currentFile, const bool canEditFilename, const bool isDirectory, const bool isForSaving, const String& fileBrowserWildcard, const String& enforcedSuffix_, const String& textWhenNothingSelected) : Component (name), maxRecentFiles (30), isDir (isDirectory), isSaving (isForSaving), isFileDragOver (false), wildcard (fileBrowserWildcard), enforcedSuffix (enforcedSuffix_) { addAndMakeVisible (filenameBox = new ComboBox (T("fn"))); filenameBox->setEditableText (canEditFilename); filenameBox->addListener (this); filenameBox->setTextWhenNothingSelected (textWhenNothingSelected); filenameBox->setTextWhenNoChoicesAvailable (TRANS("(no recently seleced files)")); browseButton = 0; setBrowseButtonText (T("...")); setCurrentFile (currentFile, true); } FilenameComponent::~FilenameComponent() { deleteAllChildren(); } void FilenameComponent::paintOverChildren (Graphics& g) { if (isFileDragOver) { g.setColour (Colours::red.withAlpha (0.2f)); g.drawRect (0, 0, getWidth(), getHeight(), 3); } } void FilenameComponent::resized() { getLookAndFeel().layoutFilenameComponent (*this, filenameBox, browseButton); } void FilenameComponent::setBrowseButtonText (const String& newBrowseButtonText) { browseButtonText = newBrowseButtonText; lookAndFeelChanged(); } void FilenameComponent::lookAndFeelChanged() { deleteAndZero (browseButton); addAndMakeVisible (browseButton = getLookAndFeel().createFilenameComponentBrowseButton (browseButtonText)); browseButton->setConnectedEdges (Button::ConnectedOnLeft); resized(); browseButton->addButtonListener (this); } void FilenameComponent::setTooltip (const String& newTooltip) { SettableTooltipClient::setTooltip (newTooltip); filenameBox->setTooltip (newTooltip); } void FilenameComponent::setDefaultBrowseTarget (const File& newDefaultDirectory) throw() { defaultBrowseFile = newDefaultDirectory; } void FilenameComponent::buttonClicked (Button*) { FileChooser fc (TRANS("Choose a new file"), getCurrentFile() == File::nonexistent ? defaultBrowseFile : getCurrentFile(), wildcard); if (isDir ? fc.browseForDirectory() : (isSaving ? fc.browseForFileToSave (false) : fc.browseForFileToOpen())) { setCurrentFile (fc.getResult(), true); } } void FilenameComponent::comboBoxChanged (ComboBox*) { setCurrentFile (getCurrentFile(), true); } bool FilenameComponent::isInterestedInFileDrag (const StringArray&) { return true; } void FilenameComponent::filesDropped (const StringArray& filenames, int, int) { isFileDragOver = false; repaint(); const File f (filenames[0]); if (f.exists() && (f.isDirectory() == isDir)) setCurrentFile (f, true); } void FilenameComponent::fileDragEnter (const StringArray&, int, int) { isFileDragOver = true; repaint(); } void FilenameComponent::fileDragExit (const StringArray&) { isFileDragOver = false; repaint(); } const File FilenameComponent::getCurrentFile() const { File f (filenameBox->getText()); if (enforcedSuffix.isNotEmpty()) f = f.withFileExtension (enforcedSuffix); return f; } void FilenameComponent::setCurrentFile (File newFile, const bool addToRecentlyUsedList, const bool sendChangeNotification) { if (enforcedSuffix.isNotEmpty()) newFile = newFile.withFileExtension (enforcedSuffix); if (newFile.getFullPathName() != lastFilename) { lastFilename = newFile.getFullPathName(); if (addToRecentlyUsedList) addRecentlyUsedFile (newFile); filenameBox->setText (lastFilename, true); if (sendChangeNotification) triggerAsyncUpdate(); } } void FilenameComponent::setFilenameIsEditable (const bool shouldBeEditable) { filenameBox->setEditableText (shouldBeEditable); } const StringArray FilenameComponent::getRecentlyUsedFilenames() const { StringArray names; for (int i = 0; i < filenameBox->getNumItems(); ++i) names.add (filenameBox->getItemText (i)); return names; } void FilenameComponent::setRecentlyUsedFilenames (const StringArray& filenames) { if (filenames != getRecentlyUsedFilenames()) { filenameBox->clear(); for (int i = 0; i < jmin (filenames.size(), maxRecentFiles); ++i) filenameBox->addItem (filenames[i], i + 1); } } void FilenameComponent::setMaxNumberOfRecentFiles (const int newMaximum) { maxRecentFiles = jmax (1, newMaximum); setRecentlyUsedFilenames (getRecentlyUsedFilenames()); } void FilenameComponent::addRecentlyUsedFile (const File& file) { StringArray files (getRecentlyUsedFilenames()); if (file.getFullPathName().isNotEmpty()) { files.removeString (file.getFullPathName(), true); files.insert (0, file.getFullPathName()); setRecentlyUsedFilenames (files); } } void FilenameComponent::addListener (FilenameComponentListener* const listener) throw() { jassert (listener != 0); if (listener != 0) listeners.add (listener); } void FilenameComponent::removeListener (FilenameComponentListener* const listener) throw() { listeners.removeValue (listener); } void FilenameComponent::handleAsyncUpdate() { for (int i = listeners.size(); --i >= 0;) { ((FilenameComponentListener*) listeners.getUnchecked (i))->filenameComponentChanged (this); i = jmin (i, listeners.size()); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_FilenameComponent.cpp *********/ /********* Start of inlined file: juce_FileSearchPathListComponent.cpp *********/ BEGIN_JUCE_NAMESPACE FileSearchPathListComponent::FileSearchPathListComponent() { addAndMakeVisible (listBox = new ListBox (String::empty, this)); listBox->setColour (ListBox::backgroundColourId, Colours::black.withAlpha (0.02f)); listBox->setColour (ListBox::outlineColourId, Colours::black.withAlpha (0.1f)); listBox->setOutlineThickness (1); addAndMakeVisible (addButton = new TextButton ("+")); addButton->addButtonListener (this); addButton->setConnectedEdges (Button::ConnectedOnLeft | Button::ConnectedOnRight | Button::ConnectedOnBottom | Button::ConnectedOnTop); addAndMakeVisible (removeButton = new TextButton ("-")); removeButton->addButtonListener (this); removeButton->setConnectedEdges (Button::ConnectedOnLeft | Button::ConnectedOnRight | Button::ConnectedOnBottom | Button::ConnectedOnTop); addAndMakeVisible (changeButton = new TextButton (TRANS("change..."))); changeButton->addButtonListener (this); addAndMakeVisible (upButton = new DrawableButton (String::empty, DrawableButton::ImageOnButtonBackground)); upButton->addButtonListener (this); { Path arrowPath; arrowPath.addArrow (50.0f, 100.0f, 50.0f, 0.0, 40.0f, 100.0f, 50.0f); DrawablePath arrowImage; arrowImage.setSolidFill (Colours::black.withAlpha (0.4f)); arrowImage.setPath (arrowPath); ((DrawableButton*) upButton)->setImages (&arrowImage); } addAndMakeVisible (downButton = new DrawableButton (String::empty, DrawableButton::ImageOnButtonBackground)); downButton->addButtonListener (this); { Path arrowPath; arrowPath.addArrow (50.0f, 0.0f, 50.0f, 100.0f, 40.0f, 100.0f, 50.0f); DrawablePath arrowImage; arrowImage.setSolidFill (Colours::black.withAlpha (0.4f)); arrowImage.setPath (arrowPath); ((DrawableButton*) downButton)->setImages (&arrowImage); } updateButtons(); } FileSearchPathListComponent::~FileSearchPathListComponent() { deleteAllChildren(); } void FileSearchPathListComponent::updateButtons() throw() { const bool anythingSelected = listBox->getNumSelectedRows() > 0; removeButton->setEnabled (anythingSelected); changeButton->setEnabled (anythingSelected); upButton->setEnabled (anythingSelected); downButton->setEnabled (anythingSelected); } void FileSearchPathListComponent::changed() throw() { listBox->updateContent(); listBox->repaint(); updateButtons(); } void FileSearchPathListComponent::setPath (const FileSearchPath& newPath) { if (newPath.toString() != path.toString()) { path = newPath; changed(); } } void FileSearchPathListComponent::setDefaultBrowseTarget (const File& newDefaultDirectory) throw() { defaultBrowseTarget = newDefaultDirectory; } int FileSearchPathListComponent::getNumRows() { return path.getNumPaths(); } void FileSearchPathListComponent::paintListBoxItem (int rowNumber, Graphics& g, int width, int height, bool rowIsSelected) { if (rowIsSelected) g.fillAll (findColour (TextEditor::highlightColourId)); g.setColour (findColour (ListBox::textColourId)); Font f (height * 0.7f); f.setHorizontalScale (0.9f); g.setFont (f); g.drawText (path [rowNumber].getFullPathName(), 4, 0, width - 6, height, Justification::centredLeft, true); } void FileSearchPathListComponent::deleteKeyPressed (int row) { if (((unsigned int) row) < (unsigned int) path.getNumPaths()) { path.remove (row); changed(); } } void FileSearchPathListComponent::returnKeyPressed (int row) { FileChooser chooser (TRANS("Change folder..."), path [row], T("*")); if (chooser.browseForDirectory()) { path.remove (row); path.add (chooser.getResult(), row); changed(); } } void FileSearchPathListComponent::listBoxItemDoubleClicked (int row, const MouseEvent&) { returnKeyPressed (row); } void FileSearchPathListComponent::selectedRowsChanged (int) { updateButtons(); } void FileSearchPathListComponent::paint (Graphics& g) { g.fillAll (findColour (backgroundColourId)); } void FileSearchPathListComponent::resized() { const int buttonH = 22; const int buttonY = getHeight() - buttonH - 4; listBox->setBounds (2, 2, getWidth() - 4, buttonY - 5); addButton->setBounds (2, buttonY, buttonH, buttonH); removeButton->setBounds (addButton->getRight(), buttonY, buttonH, buttonH); ((TextButton*) changeButton)->changeWidthToFitText (buttonH); downButton->setSize (buttonH * 2, buttonH); upButton->setSize (buttonH * 2, buttonH); downButton->setTopRightPosition (getWidth() - 2, buttonY); upButton->setTopRightPosition (downButton->getX() - 4, buttonY); changeButton->setTopRightPosition (upButton->getX() - 8, buttonY); } bool FileSearchPathListComponent::isInterestedInFileDrag (const StringArray&) { return true; } void FileSearchPathListComponent::filesDropped (const StringArray& filenames, int, int mouseY) { for (int i = filenames.size(); --i >= 0;) { const File f (filenames[i]); if (f.isDirectory()) { const int row = listBox->getRowContainingPosition (0, mouseY - listBox->getY()); path.add (f, row); changed(); } } } void FileSearchPathListComponent::buttonClicked (Button* button) { const int currentRow = listBox->getSelectedRow(); if (button == removeButton) { deleteKeyPressed (currentRow); } else if (button == addButton) { File start (defaultBrowseTarget); if (start == File::nonexistent) start = path [0]; if (start == File::nonexistent) start = File::getCurrentWorkingDirectory(); FileChooser chooser (TRANS("Add a folder..."), start, T("*")); if (chooser.browseForDirectory()) { path.add (chooser.getResult(), currentRow); } } else if (button == changeButton) { returnKeyPressed (currentRow); } else if (button == upButton) { if (currentRow > 0 && currentRow < path.getNumPaths()) { const File f (path[currentRow]); path.remove (currentRow); path.add (f, currentRow - 1); listBox->selectRow (currentRow - 1); } } else if (button == downButton) { if (currentRow >= 0 && currentRow < path.getNumPaths() - 1) { const File f (path[currentRow]); path.remove (currentRow); path.add (f, currentRow + 1); listBox->selectRow (currentRow + 1); } } changed(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_FileSearchPathListComponent.cpp *********/ /********* Start of inlined file: juce_FileTreeComponent.cpp *********/ BEGIN_JUCE_NAMESPACE Image* juce_createIconForFile (const File& file); class FileListTreeItem : public TreeViewItem, public TimeSliceClient, public AsyncUpdater, public ChangeListener { public: FileListTreeItem (FileTreeComponent& owner_, DirectoryContentsList* const parentContentsList_, const int indexInContentsList_, const File& file_, TimeSliceThread& thread_) throw() : file (file_), owner (owner_), parentContentsList (parentContentsList_), indexInContentsList (indexInContentsList_), subContentsList (0), canDeleteSubContentsList (false), thread (thread_), icon (0) { DirectoryContentsList::FileInfo fileInfo; if (parentContentsList_ != 0 && parentContentsList_->getFileInfo (indexInContentsList_, fileInfo)) { fileSize = File::descriptionOfSizeInBytes (fileInfo.fileSize); modTime = fileInfo.modificationTime.formatted (T("%d %b '%y %H:%M")); isDirectory = fileInfo.isDirectory; } else { isDirectory = true; } } ~FileListTreeItem() throw() { thread.removeTimeSliceClient (this); clearSubItems(); ImageCache::release (icon); if (canDeleteSubContentsList) delete subContentsList; } bool mightContainSubItems() { return isDirectory; } const String getUniqueName() const { return file.getFullPathName(); } int getItemHeight() const { return 22; } const String getDragSourceDescription() { return owner.getDragAndDropDescription(); } void itemOpennessChanged (bool isNowOpen) { if (isNowOpen) { clearSubItems(); isDirectory = file.isDirectory(); if (isDirectory) { if (subContentsList == 0) { jassert (parentContentsList != 0); DirectoryContentsList* const l = new DirectoryContentsList (parentContentsList->getFilter(), thread); l->setDirectory (file, true, true); setSubContentsList (l); canDeleteSubContentsList = true; } changeListenerCallback (0); } } } void setSubContentsList (DirectoryContentsList* newList) throw() { jassert (subContentsList == 0); subContentsList = newList; newList->addChangeListener (this); } void changeListenerCallback (void*) { clearSubItems(); if (isOpen() && subContentsList != 0) { for (int i = 0; i < subContentsList->getNumFiles(); ++i) { FileListTreeItem* const item = new FileListTreeItem (owner, subContentsList, i, subContentsList->getFile(i), thread); addSubItem (item); } } } void paintItem (Graphics& g, int width, int height) { if (file != File::nonexistent) { updateIcon (true); if (icon == 0) thread.addTimeSliceClient (this); } owner.getLookAndFeel() .drawFileBrowserRow (g, width, height, file.getFileName(), icon, fileSize, modTime, isDirectory, isSelected(), indexInContentsList); } void itemClicked (const MouseEvent& e) { owner.sendMouseClickMessage (file, e); } void itemDoubleClicked (const MouseEvent& e) { TreeViewItem::itemDoubleClicked (e); owner.sendDoubleClickMessage (file); } void itemSelectionChanged (bool) { owner.sendSelectionChangeMessage(); } bool useTimeSlice() { updateIcon (false); thread.removeTimeSliceClient (this); return false; } void handleAsyncUpdate() { owner.repaint(); } const File file; juce_UseDebuggingNewOperator private: FileTreeComponent& owner; DirectoryContentsList* parentContentsList; int indexInContentsList; DirectoryContentsList* subContentsList; bool isDirectory, canDeleteSubContentsList; TimeSliceThread& thread; Image* icon; String fileSize; String modTime; void updateIcon (const bool onlyUpdateIfCached) throw() { if (icon == 0) { const int hashCode = (file.getFullPathName() + T("_iconCacheSalt")).hashCode(); Image* im = ImageCache::getFromHashCode (hashCode); if (im == 0 && ! onlyUpdateIfCached) { im = juce_createIconForFile (file); if (im != 0) ImageCache::addImageToCache (im, hashCode); } if (im != 0) { icon = im; triggerAsyncUpdate(); } } } }; FileTreeComponent::FileTreeComponent (DirectoryContentsList& listToShow) : DirectoryContentsDisplayComponent (listToShow) { FileListTreeItem* const root = new FileListTreeItem (*this, 0, 0, listToShow.getDirectory(), listToShow.getTimeSliceThread()); root->setSubContentsList (&listToShow); setRootItemVisible (false); setRootItem (root); } FileTreeComponent::~FileTreeComponent() { TreeViewItem* const root = getRootItem(); setRootItem (0); delete root; } const File FileTreeComponent::getSelectedFile() const { return getSelectedFile (0); } const File FileTreeComponent::getSelectedFile (const int index) const throw() { const FileListTreeItem* const item = dynamic_cast (getSelectedItem (index)); if (item != 0) return item->file; return File::nonexistent; } void FileTreeComponent::scrollToTop() { getViewport()->getVerticalScrollBar()->setCurrentRangeStart (0); } void FileTreeComponent::setDragAndDropDescription (const String& description) throw() { dragAndDropDescription = description; } END_JUCE_NAMESPACE /********* End of inlined file: juce_FileTreeComponent.cpp *********/ /********* Start of inlined file: juce_ImagePreviewComponent.cpp *********/ BEGIN_JUCE_NAMESPACE ImagePreviewComponent::ImagePreviewComponent() : currentThumbnail (0) { } ImagePreviewComponent::~ImagePreviewComponent() { delete currentThumbnail; } void ImagePreviewComponent::getThumbSize (int& w, int& h) const { const int availableW = proportionOfWidth (0.97f); const int availableH = getHeight() - 13 * 4; const double scale = jmin (1.0, availableW / (double) w, availableH / (double) h); w = roundDoubleToInt (scale * w); h = roundDoubleToInt (scale * h); } void ImagePreviewComponent::selectedFileChanged (const File& file) { if (fileToLoad != file) { fileToLoad = file; startTimer (100); } } void ImagePreviewComponent::timerCallback() { stopTimer(); deleteAndZero (currentThumbnail); currentDetails = String::empty; repaint(); FileInputStream* const in = fileToLoad.createInputStream(); if (in != 0) { ImageFileFormat* const format = ImageFileFormat::findImageFormatForStream (*in); if (format != 0) { currentThumbnail = format->decodeImage (*in); if (currentThumbnail != 0) { int w = currentThumbnail->getWidth(); int h = currentThumbnail->getHeight(); currentDetails << fileToLoad.getFileName() << "\n" << format->getFormatName() << "\n" << w << " x " << h << " pixels\n" << File::descriptionOfSizeInBytes (fileToLoad.getSize()); getThumbSize (w, h); Image* const reduced = currentThumbnail->createCopy (w, h); delete currentThumbnail; currentThumbnail = reduced; } } delete in; } } void ImagePreviewComponent::paint (Graphics& g) { if (currentThumbnail != 0) { g.setFont (13.0f); int w = currentThumbnail->getWidth(); int h = currentThumbnail->getHeight(); getThumbSize (w, h); const int numLines = 4; const int totalH = 13 * numLines + h + 4; const int y = (getHeight() - totalH) / 2; g.drawImageWithin (currentThumbnail, (getWidth() - w) / 2, y, w, h, RectanglePlacement::centred | RectanglePlacement::onlyReduceInSize, false); g.drawFittedText (currentDetails, 0, y + h + 4, getWidth(), 100, Justification::centredTop, numLines); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ImagePreviewComponent.cpp *********/ /********* Start of inlined file: juce_WildcardFileFilter.cpp *********/ BEGIN_JUCE_NAMESPACE WildcardFileFilter::WildcardFileFilter (const String& wildcardPatterns, const String& description) : FileFilter (description.isEmpty() ? wildcardPatterns : (description + T(" (") + wildcardPatterns + T(")"))) { wildcards.addTokens (wildcardPatterns.toLowerCase(), T(";,"), T("\"'")); wildcards.trim(); wildcards.removeEmptyStrings(); // special case for *.*, because people use it to mean "any file", but it // would actually ignore files with no extension. for (int i = wildcards.size(); --i >= 0;) if (wildcards[i] == T("*.*")) wildcards.set (i, T("*")); } WildcardFileFilter::~WildcardFileFilter() { } bool WildcardFileFilter::isFileSuitable (const File& file) const { const String filename (file.getFileName()); for (int i = wildcards.size(); --i >= 0;) if (filename.matchesWildcard (wildcards[i], true)) return true; return false; } bool WildcardFileFilter::isDirectorySuitable (const File&) const { return true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_WildcardFileFilter.cpp *********/ /********* Start of inlined file: juce_KeyboardFocusTraverser.cpp *********/ BEGIN_JUCE_NAMESPACE KeyboardFocusTraverser::KeyboardFocusTraverser() { } KeyboardFocusTraverser::~KeyboardFocusTraverser() { } // This will sort a set of components, so that they are ordered in terms of // left-to-right and then top-to-bottom. class ScreenPositionComparator { public: ScreenPositionComparator() {} static int compareElements (const Component* const first, const Component* const second) throw() { int explicitOrder1 = first->getExplicitFocusOrder(); if (explicitOrder1 <= 0) explicitOrder1 = INT_MAX / 2; int explicitOrder2 = second->getExplicitFocusOrder(); if (explicitOrder2 <= 0) explicitOrder2 = INT_MAX / 2; if (explicitOrder1 != explicitOrder2) return explicitOrder1 - explicitOrder2; const int diff = first->getY() - second->getY(); return (diff == 0) ? first->getX() - second->getX() : diff; } }; static void findAllFocusableComponents (Component* const parent, Array & comps) { if (parent->getNumChildComponents() > 0) { Array localComps; ScreenPositionComparator comparator; int i; for (i = parent->getNumChildComponents(); --i >= 0;) { Component* const c = parent->getChildComponent (i); if (c->isVisible() && c->isEnabled()) localComps.addSorted (comparator, c); } for (i = 0; i < localComps.size(); ++i) { Component* const c = localComps.getUnchecked (i); if (c->getWantsKeyboardFocus()) comps.add (c); if (! c->isFocusContainer()) findAllFocusableComponents (c, comps); } } } static Component* getIncrementedComponent (Component* const current, const int delta) throw() { Component* focusContainer = current->getParentComponent(); if (focusContainer != 0) { while (focusContainer->getParentComponent() != 0 && ! focusContainer->isFocusContainer()) focusContainer = focusContainer->getParentComponent(); if (focusContainer != 0) { Array comps; findAllFocusableComponents (focusContainer, comps); if (comps.size() > 0) { const int index = comps.indexOf (current); return comps [(index + comps.size() + delta) % comps.size()]; } } } return 0; } Component* KeyboardFocusTraverser::getNextComponent (Component* current) { return getIncrementedComponent (current, 1); } Component* KeyboardFocusTraverser::getPreviousComponent (Component* current) { return getIncrementedComponent (current, -1); } Component* KeyboardFocusTraverser::getDefaultComponent (Component* parentComponent) { Array comps; if (parentComponent != 0) findAllFocusableComponents (parentComponent, comps); return comps.getFirst(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_KeyboardFocusTraverser.cpp *********/ /********* Start of inlined file: juce_KeyListener.cpp *********/ BEGIN_JUCE_NAMESPACE bool KeyListener::keyStateChanged (const bool, Component*) { return false; } END_JUCE_NAMESPACE /********* End of inlined file: juce_KeyListener.cpp *********/ /********* Start of inlined file: juce_KeyMappingEditorComponent.cpp *********/ BEGIN_JUCE_NAMESPACE // N.B. these two includes are put here deliberately to avoid problems with // old GCCs failing on long include paths const int maxKeys = 3; class KeyMappingChangeButton : public Button { public: KeyMappingChangeButton (KeyMappingEditorComponent* const owner_, const CommandID commandID_, const String& keyName, const int keyNum_) : Button (keyName), owner (owner_), commandID (commandID_), keyNum (keyNum_) { setWantsKeyboardFocus (false); setTriggeredOnMouseDown (keyNum >= 0); if (keyNum_ < 0) setTooltip (TRANS("adds a new key-mapping")); else setTooltip (TRANS("click to change this key-mapping")); } ~KeyMappingChangeButton() { } void paintButton (Graphics& g, bool isOver, bool isDown) { if (keyNum >= 0) { if (isEnabled()) { const float alpha = isDown ? 0.3f : (isOver ? 0.15f : 0.08f); g.fillAll (owner->textColour.withAlpha (alpha)); g.setOpacity (0.3f); g.drawBevel (0, 0, getWidth(), getHeight(), 2); } g.setColour (owner->textColour); g.setFont (getHeight() * 0.6f); g.drawFittedText (getName(), 3, 0, getWidth() - 6, getHeight(), Justification::centred, 1); } else { const float thickness = 7.0f; const float indent = 22.0f; Path p; p.addEllipse (0.0f, 0.0f, 100.0f, 100.0f); p.addRectangle (indent, 50.0f - thickness, 100.0f - indent * 2.0f, thickness * 2.0f); p.addRectangle (50.0f - thickness, indent, thickness * 2.0f, 50.0f - indent - thickness); p.addRectangle (50.0f - thickness, 50.0f + thickness, thickness * 2.0f, 50.0f - indent - thickness); p.setUsingNonZeroWinding (false); g.setColour (owner->textColour.withAlpha (isDown ? 0.7f : (isOver ? 0.5f : 0.3f))); g.fillPath (p, p.getTransformToScaleToFit (2.0f, 2.0f, getWidth() - 4.0f, getHeight() - 4.0f, true)); } if (hasKeyboardFocus (false)) { g.setColour (owner->textColour.withAlpha (0.4f)); g.drawRect (0, 0, getWidth(), getHeight()); } } void clicked() { if (keyNum >= 0) { // existing key clicked.. PopupMenu m; m.addItem (1, TRANS("change this key-mapping")); m.addSeparator(); m.addItem (2, TRANS("remove this key-mapping")); const int res = m.show(); if (res == 1) { owner->assignNewKey (commandID, keyNum); } else if (res == 2) { owner->getMappings()->removeKeyPress (commandID, keyNum); } } else { // + button pressed.. owner->assignNewKey (commandID, -1); } } void fitToContent (const int h) throw() { if (keyNum < 0) { setSize (h, h); } else { Font f (h * 0.6f); setSize (jlimit (h * 4, h * 8, 6 + f.getStringWidth (getName())), h); } } juce_UseDebuggingNewOperator private: KeyMappingEditorComponent* const owner; const CommandID commandID; const int keyNum; KeyMappingChangeButton (const KeyMappingChangeButton&); const KeyMappingChangeButton& operator= (const KeyMappingChangeButton&); }; class KeyMappingItemComponent : public Component { public: KeyMappingItemComponent (KeyMappingEditorComponent* const owner_, const CommandID commandID_) : owner (owner_), commandID (commandID_) { setInterceptsMouseClicks (false, true); const bool isReadOnly = owner_->isCommandReadOnly (commandID); const Array keyPresses (owner_->getMappings()->getKeyPressesAssignedToCommand (commandID)); for (int i = 0; i < jmin (maxKeys, keyPresses.size()); ++i) { KeyMappingChangeButton* const kb = new KeyMappingChangeButton (owner_, commandID, owner_->getDescriptionForKeyPress (keyPresses.getReference (i)), i); kb->setEnabled (! isReadOnly); addAndMakeVisible (kb); } KeyMappingChangeButton* const kb = new KeyMappingChangeButton (owner_, commandID, String::empty, -1); addChildComponent (kb); kb->setVisible (keyPresses.size() < maxKeys && ! isReadOnly); } ~KeyMappingItemComponent() { deleteAllChildren(); } void paint (Graphics& g) { g.setFont (getHeight() * 0.7f); g.setColour (owner->textColour); g.drawFittedText (owner->getMappings()->getCommandManager()->getNameOfCommand (commandID), 4, 0, jmax (40, getChildComponent (0)->getX() - 5), getHeight(), Justification::centredLeft, true); } void resized() { int x = getWidth() - 4; for (int i = getNumChildComponents(); --i >= 0;) { KeyMappingChangeButton* const kb = dynamic_cast (getChildComponent (i)); kb->fitToContent (getHeight() - 2); kb->setTopRightPosition (x, 1); x -= kb->getWidth() + 5; } } juce_UseDebuggingNewOperator private: KeyMappingEditorComponent* const owner; const CommandID commandID; KeyMappingItemComponent (const KeyMappingItemComponent&); const KeyMappingItemComponent& operator= (const KeyMappingItemComponent&); }; class KeyMappingTreeViewItem : public TreeViewItem { public: KeyMappingTreeViewItem (KeyMappingEditorComponent* const owner_, const CommandID commandID_) : owner (owner_), commandID (commandID_) { } ~KeyMappingTreeViewItem() { } const String getUniqueName() const { return String ((int) commandID) + "_id"; } bool mightContainSubItems() { return false; } int getItemHeight() const { return 20; } Component* createItemComponent() { return new KeyMappingItemComponent (owner, commandID); } juce_UseDebuggingNewOperator private: KeyMappingEditorComponent* const owner; const CommandID commandID; KeyMappingTreeViewItem (const KeyMappingTreeViewItem&); const KeyMappingTreeViewItem& operator= (const KeyMappingTreeViewItem&); }; class KeyCategoryTreeViewItem : public TreeViewItem { public: KeyCategoryTreeViewItem (KeyMappingEditorComponent* const owner_, const String& name) : owner (owner_), categoryName (name) { } ~KeyCategoryTreeViewItem() { } const String getUniqueName() const { return categoryName + "_cat"; } bool mightContainSubItems() { return true; } int getItemHeight() const { return 28; } void paintItem (Graphics& g, int width, int height) { g.setFont (height * 0.6f, Font::bold); g.setColour (owner->textColour); g.drawText (categoryName, 2, 0, width - 2, height, Justification::centredLeft, true); } void itemOpennessChanged (bool isNowOpen) { if (isNowOpen) { if (getNumSubItems() == 0) { Array commands (owner->getMappings()->getCommandManager()->getCommandsInCategory (categoryName)); for (int i = 0; i < commands.size(); ++i) { if (owner->shouldCommandBeIncluded (commands[i])) addSubItem (new KeyMappingTreeViewItem (owner, commands[i])); } } } else { clearSubItems(); } } juce_UseDebuggingNewOperator private: KeyMappingEditorComponent* owner; String categoryName; KeyCategoryTreeViewItem (const KeyCategoryTreeViewItem&); const KeyCategoryTreeViewItem& operator= (const KeyCategoryTreeViewItem&); }; KeyMappingEditorComponent::KeyMappingEditorComponent (KeyPressMappingSet* const mappingManager, const bool showResetToDefaultButton) : mappings (mappingManager), textColour (Colours::black) { jassert (mappingManager != 0); // can't be null! mappingManager->addChangeListener (this); setLinesDrawnForSubItems (false); resetButton = 0; if (showResetToDefaultButton) { addAndMakeVisible (resetButton = new TextButton (TRANS("reset to defaults"))); resetButton->addButtonListener (this); } addAndMakeVisible (tree = new TreeView()); tree->setColour (TreeView::backgroundColourId, backgroundColour); tree->setRootItemVisible (false); tree->setDefaultOpenness (true); tree->setRootItem (this); } KeyMappingEditorComponent::~KeyMappingEditorComponent() { mappings->removeChangeListener (this); deleteAllChildren(); } bool KeyMappingEditorComponent::mightContainSubItems() { return true; } const String KeyMappingEditorComponent::getUniqueName() const { return T("keys"); } void KeyMappingEditorComponent::setColours (const Colour& mainBackground, const Colour& textColour_) { backgroundColour = mainBackground; textColour = textColour_; tree->setColour (TreeView::backgroundColourId, backgroundColour); } void KeyMappingEditorComponent::parentHierarchyChanged() { changeListenerCallback (0); } void KeyMappingEditorComponent::resized() { int h = getHeight(); if (resetButton != 0) { const int buttonHeight = 20; h -= buttonHeight + 8; int x = getWidth() - 8; const int y = h + 6; resetButton->changeWidthToFitText (buttonHeight); resetButton->setTopRightPosition (x, y); } tree->setBounds (0, 0, getWidth(), h); } void KeyMappingEditorComponent::buttonClicked (Button* button) { if (button == resetButton) { if (AlertWindow::showOkCancelBox (AlertWindow::QuestionIcon, TRANS("Reset to defaults"), TRANS("Are you sure you want to reset all the key-mappings to their default state?"), TRANS("Reset"))) { mappings->resetToDefaultMappings(); } } } void KeyMappingEditorComponent::changeListenerCallback (void*) { XmlElement* openness = tree->getOpennessState (true); clearSubItems(); const StringArray categories (mappings->getCommandManager()->getCommandCategories()); for (int i = 0; i < categories.size(); ++i) { const Array commands (mappings->getCommandManager()->getCommandsInCategory (categories[i])); int count = 0; for (int j = 0; j < commands.size(); ++j) if (shouldCommandBeIncluded (commands[j])) ++count; if (count > 0) addSubItem (new KeyCategoryTreeViewItem (this, categories[i])); } if (openness != 0) { tree->restoreOpennessState (*openness); delete openness; } } class KeyEntryWindow : public AlertWindow { public: KeyEntryWindow (KeyMappingEditorComponent* const owner_) : AlertWindow (TRANS("New key-mapping"), TRANS("Please press a key combination now..."), AlertWindow::NoIcon), owner (owner_) { addButton (TRANS("ok"), 1); addButton (TRANS("cancel"), 0); // (avoid return + escape keys getting processed by the buttons..) for (int i = getNumChildComponents(); --i >= 0;) getChildComponent (i)->setWantsKeyboardFocus (false); setWantsKeyboardFocus (true); grabKeyboardFocus(); } ~KeyEntryWindow() { } bool keyPressed (const KeyPress& key) { lastPress = key; String message (TRANS("Key: ") + owner->getDescriptionForKeyPress (key)); const CommandID previousCommand = owner->getMappings()->findCommandForKeyPress (key); if (previousCommand != 0) { message << "\n\n" << TRANS("(Currently assigned to \"") << owner->getMappings()->getCommandManager()->getNameOfCommand (previousCommand) << "\")"; } setMessage (message); return true; } bool keyStateChanged (const bool) { return true; } KeyPress lastPress; juce_UseDebuggingNewOperator private: KeyMappingEditorComponent* owner; KeyEntryWindow (const KeyEntryWindow&); const KeyEntryWindow& operator= (const KeyEntryWindow&); }; void KeyMappingEditorComponent::assignNewKey (const CommandID commandID, const int index) { KeyEntryWindow entryWindow (this); if (entryWindow.runModalLoop() != 0) { entryWindow.setVisible (false); if (entryWindow.lastPress.isValid()) { const CommandID previousCommand = mappings->findCommandForKeyPress (entryWindow.lastPress); if (previousCommand != 0) { if (! AlertWindow::showOkCancelBox (AlertWindow::WarningIcon, TRANS("Change key-mapping"), TRANS("This key is already assigned to the command \"") + mappings->getCommandManager()->getNameOfCommand (previousCommand) + TRANS("\"\n\nDo you want to re-assign it to this new command instead?"), TRANS("re-assign"), TRANS("cancel"))) { return; } } mappings->removeKeyPress (entryWindow.lastPress); if (index >= 0) mappings->removeKeyPress (commandID, index); mappings->addKeyPress (commandID, entryWindow.lastPress, index); } } } bool KeyMappingEditorComponent::shouldCommandBeIncluded (const CommandID commandID) { const ApplicationCommandInfo* const ci = mappings->getCommandManager()->getCommandForID (commandID); return (ci != 0) && ((ci->flags & ApplicationCommandInfo::hiddenFromKeyEditor) == 0); } bool KeyMappingEditorComponent::isCommandReadOnly (const CommandID commandID) { const ApplicationCommandInfo* const ci = mappings->getCommandManager()->getCommandForID (commandID); return (ci != 0) && ((ci->flags & ApplicationCommandInfo::readOnlyInKeyEditor) != 0); } const String KeyMappingEditorComponent::getDescriptionForKeyPress (const KeyPress& key) { return key.getTextDescription(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_KeyMappingEditorComponent.cpp *********/ /********* Start of inlined file: juce_KeyPress.cpp *********/ BEGIN_JUCE_NAMESPACE KeyPress::KeyPress() throw() : keyCode (0), mods (0), textCharacter (0) { } KeyPress::KeyPress (const int keyCode_, const ModifierKeys& mods_, const juce_wchar textCharacter_) throw() : keyCode (keyCode_), mods (mods_), textCharacter (textCharacter_) { } KeyPress::KeyPress (const int keyCode_) throw() : keyCode (keyCode_), textCharacter (0) { } KeyPress::KeyPress (const KeyPress& other) throw() : keyCode (other.keyCode), mods (other.mods), textCharacter (other.textCharacter) { } const KeyPress& KeyPress::operator= (const KeyPress& other) throw() { keyCode = other.keyCode; mods = other.mods; textCharacter = other.textCharacter; return *this; } bool KeyPress::operator== (const KeyPress& other) const throw() { return mods.getRawFlags() == other.mods.getRawFlags() && (textCharacter == other.textCharacter || textCharacter == 0 || other.textCharacter == 0) && (keyCode == other.keyCode || (keyCode < 256 && other.keyCode < 256 && CharacterFunctions::toLowerCase ((tchar) keyCode) == CharacterFunctions::toLowerCase ((tchar) other.keyCode))); } bool KeyPress::operator!= (const KeyPress& other) const throw() { return ! operator== (other); } bool KeyPress::isCurrentlyDown() const throw() { return isKeyCurrentlyDown (keyCode) && (ModifierKeys::getCurrentModifiers().getRawFlags() & ModifierKeys::allKeyboardModifiers) == (mods.getRawFlags() & ModifierKeys::allKeyboardModifiers); } struct KeyNameAndCode { const char* name; int code; }; static const KeyNameAndCode keyNameTranslations[] = { { "spacebar", KeyPress::spaceKey }, { "return", KeyPress::returnKey }, { "escape", KeyPress::escapeKey }, { "backspace", KeyPress::backspaceKey }, { "cursor left", KeyPress::leftKey }, { "cursor right", KeyPress::rightKey }, { "cursor up", KeyPress::upKey }, { "cursor down", KeyPress::downKey }, { "page up", KeyPress::pageUpKey }, { "page down", KeyPress::pageDownKey }, { "home", KeyPress::homeKey }, { "end", KeyPress::endKey }, { "delete", KeyPress::deleteKey }, { "insert", KeyPress::insertKey }, { "tab", KeyPress::tabKey }, { "play", KeyPress::playKey }, { "stop", KeyPress::stopKey }, { "fast forward", KeyPress::fastForwardKey }, { "rewind", KeyPress::rewindKey } }; static const tchar* const numberPadPrefix = T("numpad "); const KeyPress KeyPress::createFromDescription (const String& desc) throw() { int modifiers = 0; if (desc.containsWholeWordIgnoreCase (T("ctrl")) || desc.containsWholeWordIgnoreCase (T("control")) || desc.containsWholeWordIgnoreCase (T("ctl"))) modifiers |= ModifierKeys::ctrlModifier; if (desc.containsWholeWordIgnoreCase (T("shift")) || desc.containsWholeWordIgnoreCase (T("shft"))) modifiers |= ModifierKeys::shiftModifier; if (desc.containsWholeWordIgnoreCase (T("alt")) || desc.containsWholeWordIgnoreCase (T("option"))) modifiers |= ModifierKeys::altModifier; if (desc.containsWholeWordIgnoreCase (T("command")) || desc.containsWholeWordIgnoreCase (T("cmd"))) modifiers |= ModifierKeys::commandModifier; int key = 0; for (int i = 0; i < numElementsInArray (keyNameTranslations); ++i) { if (desc.containsWholeWordIgnoreCase (String (keyNameTranslations[i].name))) { key = keyNameTranslations[i].code; break; } } if (key == 0) { // see if it's a numpad key.. if (desc.containsIgnoreCase (numberPadPrefix)) { const tchar lastChar = desc.trimEnd().getLastCharacter(); if (lastChar >= T('0') && lastChar <= T('9')) key = numberPad0 + lastChar - T('0'); else if (lastChar == T('+')) key = numberPadAdd; else if (lastChar == T('-')) key = numberPadSubtract; else if (lastChar == T('*')) key = numberPadMultiply; else if (lastChar == T('/')) key = numberPadDivide; else if (lastChar == T('.')) key = numberPadDecimalPoint; else if (lastChar == T('=')) key = numberPadEquals; else if (desc.endsWith (T("separator"))) key = numberPadSeparator; else if (desc.endsWith (T("delete"))) key = numberPadDelete; } if (key == 0) { // see if it's a function key.. for (int i = 1; i <= 12; ++i) if (desc.containsWholeWordIgnoreCase (T("f") + String (i))) key = F1Key + i - 1; if (key == 0) { // give up and use the hex code.. const int hexCode = desc.fromFirstOccurrenceOf (T("#"), false, false) .toLowerCase() .retainCharacters (T("0123456789abcdef")) .getHexValue32(); if (hexCode > 0) key = hexCode; else key = CharacterFunctions::toUpperCase (desc.getLastCharacter()); } } } return KeyPress (key, ModifierKeys (modifiers), 0); } const String KeyPress::getTextDescription() const throw() { String desc; if (keyCode > 0) { // some keyboard layouts use a shift-key to get the slash, but in those cases, we // want to store it as being a slash, not shift+whatever. if (textCharacter == T('/')) return "/"; if (mods.isCtrlDown()) desc << "ctrl + "; if (mods.isShiftDown()) desc << "shift + "; #if JUCE_MAC // only do this on the mac, because on Windows ctrl and command are the same, // and this would get confusing if (mods.isCommandDown()) desc << "command + "; if (mods.isAltDown()) desc << "option + "; #else if (mods.isAltDown()) desc << "alt + "; #endif for (int i = 0; i < numElementsInArray (keyNameTranslations); ++i) if (keyCode == keyNameTranslations[i].code) return desc + keyNameTranslations[i].name; if (keyCode >= F1Key && keyCode <= F16Key) desc << 'F' << (1 + keyCode - F1Key); else if (keyCode >= numberPad0 && keyCode <= numberPad9) desc << numberPadPrefix << (keyCode - numberPad0); else if (keyCode >= 33 && keyCode < 176) desc += CharacterFunctions::toUpperCase ((tchar) keyCode); else if (keyCode == numberPadAdd) desc << numberPadPrefix << '+'; else if (keyCode == numberPadSubtract) desc << numberPadPrefix << '-'; else if (keyCode == numberPadMultiply) desc << numberPadPrefix << '*'; else if (keyCode == numberPadDivide) desc << numberPadPrefix << '/'; else if (keyCode == numberPadSeparator) desc << numberPadPrefix << "separator"; else if (keyCode == numberPadDecimalPoint) desc << numberPadPrefix << '.'; else if (keyCode == numberPadDelete) desc << numberPadPrefix << "delete"; else desc << '#' << String::toHexString (keyCode); } return desc; } END_JUCE_NAMESPACE /********* End of inlined file: juce_KeyPress.cpp *********/ /********* Start of inlined file: juce_KeyPressMappingSet.cpp *********/ BEGIN_JUCE_NAMESPACE KeyPressMappingSet::KeyPressMappingSet (ApplicationCommandManager* const commandManager_) throw() : commandManager (commandManager_) { // A manager is needed to get the descriptions of commands, and will be called when // a command is invoked. So you can't leave this null.. jassert (commandManager_ != 0); Desktop::getInstance().addFocusChangeListener (this); } KeyPressMappingSet::KeyPressMappingSet (const KeyPressMappingSet& other) throw() : commandManager (other.commandManager) { Desktop::getInstance().addFocusChangeListener (this); } KeyPressMappingSet::~KeyPressMappingSet() { Desktop::getInstance().removeFocusChangeListener (this); } const Array KeyPressMappingSet::getKeyPressesAssignedToCommand (const CommandID commandID) const throw() { for (int i = 0; i < mappings.size(); ++i) if (mappings.getUnchecked(i)->commandID == commandID) return mappings.getUnchecked (i)->keypresses; return Array (); } void KeyPressMappingSet::addKeyPress (const CommandID commandID, const KeyPress& newKeyPress, int insertIndex) throw() { if (findCommandForKeyPress (newKeyPress) != commandID) { removeKeyPress (newKeyPress); if (newKeyPress.isValid()) { for (int i = mappings.size(); --i >= 0;) { if (mappings.getUnchecked(i)->commandID == commandID) { mappings.getUnchecked(i)->keypresses.insert (insertIndex, newKeyPress); sendChangeMessage (this); return; } } const ApplicationCommandInfo* const ci = commandManager->getCommandForID (commandID); if (ci != 0) { CommandMapping* const cm = new CommandMapping(); cm->commandID = commandID; cm->keypresses.add (newKeyPress); cm->wantsKeyUpDownCallbacks = (ci->flags & ApplicationCommandInfo::wantsKeyUpDownCallbacks) != 0; mappings.add (cm); sendChangeMessage (this); } } } } void KeyPressMappingSet::resetToDefaultMappings() throw() { mappings.clear(); for (int i = 0; i < commandManager->getNumCommands(); ++i) { const ApplicationCommandInfo* const ci = commandManager->getCommandForIndex (i); for (int j = 0; j < ci->defaultKeypresses.size(); ++j) { addKeyPress (ci->commandID, ci->defaultKeypresses.getReference (j)); } } sendChangeMessage (this); } void KeyPressMappingSet::resetToDefaultMapping (const CommandID commandID) throw() { clearAllKeyPresses (commandID); const ApplicationCommandInfo* const ci = commandManager->getCommandForID (commandID); for (int j = 0; j < ci->defaultKeypresses.size(); ++j) { addKeyPress (ci->commandID, ci->defaultKeypresses.getReference (j)); } } void KeyPressMappingSet::clearAllKeyPresses() throw() { if (mappings.size() > 0) { sendChangeMessage (this); mappings.clear(); } } void KeyPressMappingSet::clearAllKeyPresses (const CommandID commandID) throw() { for (int i = mappings.size(); --i >= 0;) { if (mappings.getUnchecked(i)->commandID == commandID) { mappings.remove (i); sendChangeMessage (this); } } } void KeyPressMappingSet::removeKeyPress (const KeyPress& keypress) throw() { if (keypress.isValid()) { for (int i = mappings.size(); --i >= 0;) { CommandMapping* const cm = mappings.getUnchecked(i); for (int j = cm->keypresses.size(); --j >= 0;) { if (keypress == cm->keypresses [j]) { cm->keypresses.remove (j); sendChangeMessage (this); } } } } } void KeyPressMappingSet::removeKeyPress (const CommandID commandID, const int keyPressIndex) throw() { for (int i = mappings.size(); --i >= 0;) { if (mappings.getUnchecked(i)->commandID == commandID) { mappings.getUnchecked(i)->keypresses.remove (keyPressIndex); sendChangeMessage (this); break; } } } CommandID KeyPressMappingSet::findCommandForKeyPress (const KeyPress& keyPress) const throw() { for (int i = 0; i < mappings.size(); ++i) if (mappings.getUnchecked(i)->keypresses.contains (keyPress)) return mappings.getUnchecked(i)->commandID; return 0; } bool KeyPressMappingSet::containsMapping (const CommandID commandID, const KeyPress& keyPress) const throw() { for (int i = mappings.size(); --i >= 0;) if (mappings.getUnchecked(i)->commandID == commandID) return mappings.getUnchecked(i)->keypresses.contains (keyPress); return false; } void KeyPressMappingSet::invokeCommand (const CommandID commandID, const KeyPress& key, const bool isKeyDown, const int millisecsSinceKeyPressed, Component* const originatingComponent) const { ApplicationCommandTarget::InvocationInfo info (commandID); info.invocationMethod = ApplicationCommandTarget::InvocationInfo::fromKeyPress; info.isKeyDown = isKeyDown; info.keyPress = key; info.millisecsSinceKeyPressed = millisecsSinceKeyPressed; info.originatingComponent = originatingComponent; commandManager->invoke (info, false); } bool KeyPressMappingSet::restoreFromXml (const XmlElement& xmlVersion) { if (xmlVersion.hasTagName (T("KEYMAPPINGS"))) { if (xmlVersion.getBoolAttribute (T("basedOnDefaults"), true)) { // if the XML was created as a set of differences from the default mappings, // (i.e. by calling createXml (true)), then we need to first restore the defaults. resetToDefaultMappings(); } else { // if the XML was created calling createXml (false), then we need to clear all // the keys and treat the xml as describing the entire set of mappings. clearAllKeyPresses(); } forEachXmlChildElement (xmlVersion, map) { const CommandID commandId = map->getStringAttribute (T("commandId")).getHexValue32(); if (commandId != 0) { const KeyPress key (KeyPress::createFromDescription (map->getStringAttribute (T("key")))); if (map->hasTagName (T("MAPPING"))) { addKeyPress (commandId, key); } else if (map->hasTagName (T("UNMAPPING"))) { if (containsMapping (commandId, key)) removeKeyPress (key); } } } return true; } return false; } XmlElement* KeyPressMappingSet::createXml (const bool saveDifferencesFromDefaultSet) const { KeyPressMappingSet* defaultSet = 0; if (saveDifferencesFromDefaultSet) { defaultSet = new KeyPressMappingSet (commandManager); defaultSet->resetToDefaultMappings(); } XmlElement* const doc = new XmlElement (T("KEYMAPPINGS")); doc->setAttribute (T("basedOnDefaults"), saveDifferencesFromDefaultSet); int i; for (i = 0; i < mappings.size(); ++i) { const CommandMapping* const cm = mappings.getUnchecked(i); for (int j = 0; j < cm->keypresses.size(); ++j) { if (defaultSet == 0 || ! defaultSet->containsMapping (cm->commandID, cm->keypresses.getReference (j))) { XmlElement* const map = new XmlElement (T("MAPPING")); map->setAttribute (T("commandId"), String::toHexString ((int) cm->commandID)); map->setAttribute (T("description"), commandManager->getDescriptionOfCommand (cm->commandID)); map->setAttribute (T("key"), cm->keypresses.getReference (j).getTextDescription()); doc->addChildElement (map); } } } if (defaultSet != 0) { for (i = 0; i < defaultSet->mappings.size(); ++i) { const CommandMapping* const cm = defaultSet->mappings.getUnchecked(i); for (int j = 0; j < cm->keypresses.size(); ++j) { if (! containsMapping (cm->commandID, cm->keypresses.getReference (j))) { XmlElement* const map = new XmlElement (T("UNMAPPING")); map->setAttribute (T("commandId"), String::toHexString ((int) cm->commandID)); map->setAttribute (T("description"), commandManager->getDescriptionOfCommand (cm->commandID)); map->setAttribute (T("key"), cm->keypresses.getReference (j).getTextDescription()); doc->addChildElement (map); } } } delete defaultSet; } return doc; } bool KeyPressMappingSet::keyPressed (const KeyPress& key, Component* originatingComponent) { bool used = false; const CommandID commandID = findCommandForKeyPress (key); const ApplicationCommandInfo* const ci = commandManager->getCommandForID (commandID); if (ci != 0 && (ci->flags & ApplicationCommandInfo::wantsKeyUpDownCallbacks) == 0) { ApplicationCommandInfo info (0); if (commandManager->getTargetForCommand (commandID, info) != 0 && (info.flags & ApplicationCommandInfo::isDisabled) == 0) { invokeCommand (commandID, key, true, 0, originatingComponent); used = true; } else { if (originatingComponent != 0) originatingComponent->getLookAndFeel().playAlertSound(); } } return used; } bool KeyPressMappingSet::keyStateChanged (const bool /*isKeyDown*/, Component* originatingComponent) { bool used = false; const uint32 now = Time::getMillisecondCounter(); for (int i = mappings.size(); --i >= 0;) { CommandMapping* const cm = mappings.getUnchecked(i); if (cm->wantsKeyUpDownCallbacks) { for (int j = cm->keypresses.size(); --j >= 0;) { const KeyPress key (cm->keypresses.getReference (j)); const bool isDown = key.isCurrentlyDown(); int keyPressEntryIndex = 0; bool wasDown = false; for (int k = keysDown.size(); --k >= 0;) { if (key == keysDown.getUnchecked(k)->key) { keyPressEntryIndex = k; wasDown = true; used = true; break; } } if (isDown != wasDown) { int millisecs = 0; if (isDown) { KeyPressTime* const k = new KeyPressTime(); k->key = key; k->timeWhenPressed = now; keysDown.add (k); } else { const uint32 pressTime = keysDown.getUnchecked (keyPressEntryIndex)->timeWhenPressed; if (now > pressTime) millisecs = now - pressTime; keysDown.remove (keyPressEntryIndex); } invokeCommand (cm->commandID, key, isDown, millisecs, originatingComponent); used = true; } } } } return used; } void KeyPressMappingSet::globalFocusChanged (Component* focusedComponent) { if (focusedComponent != 0) focusedComponent->keyStateChanged (false); } END_JUCE_NAMESPACE /********* End of inlined file: juce_KeyPressMappingSet.cpp *********/ /********* Start of inlined file: juce_ModifierKeys.cpp *********/ BEGIN_JUCE_NAMESPACE ModifierKeys::ModifierKeys (const int flags_) throw() : flags (flags_) { } ModifierKeys::ModifierKeys (const ModifierKeys& other) throw() : flags (other.flags) { } const ModifierKeys& ModifierKeys::operator= (const ModifierKeys& other) throw() { flags = other.flags; return *this; } int ModifierKeys::currentModifierFlags = 0; const ModifierKeys ModifierKeys::getCurrentModifiers() throw() { return ModifierKeys (currentModifierFlags); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ModifierKeys.cpp *********/ /********* Start of inlined file: juce_ComponentAnimator.cpp *********/ BEGIN_JUCE_NAMESPACE struct AnimationTask { AnimationTask (Component* const comp) : component (comp), watcher (comp) { } Component* component; ComponentDeletionWatcher watcher; Rectangle destination; int msElapsed, msTotal; double startSpeed, midSpeed, endSpeed, lastProgress; double left, top, right, bottom; bool useTimeslice (const int elapsed) { if (watcher.hasBeenDeleted()) return false; msElapsed += elapsed; double newProgress = msElapsed / (double) msTotal; if (newProgress >= 0 && newProgress < 1.0) { newProgress = timeToDistance (newProgress); const double delta = (newProgress - lastProgress) / (1.0 - lastProgress); jassert (newProgress >= lastProgress); lastProgress = newProgress; left += (destination.getX() - left) * delta; top += (destination.getY() - top) * delta; right += (destination.getRight() - right) * delta; bottom += (destination.getBottom() - bottom) * delta; if (delta < 1.0) { const Rectangle newBounds (roundDoubleToInt (left), roundDoubleToInt (top), roundDoubleToInt (right - left), roundDoubleToInt (bottom - top)); if (newBounds != destination) { component->setBounds (newBounds); return true; } } } component->setBounds (destination); return false; } void moveToFinalDestination() { if (! watcher.hasBeenDeleted()) component->setBounds (destination); } private: inline double timeToDistance (const double time) const { return (time < 0.5) ? time * (startSpeed + time * (midSpeed - startSpeed)) : 0.5 * (startSpeed + 0.5 * (midSpeed - startSpeed)) + (time - 0.5) * (midSpeed + (time - 0.5) * (endSpeed - midSpeed)); } }; ComponentAnimator::ComponentAnimator() : lastTime (0) { } ComponentAnimator::~ComponentAnimator() { cancelAllAnimations (false); jassert (tasks.size() == 0); } void* ComponentAnimator::findTaskFor (Component* const component) const { for (int i = tasks.size(); --i >= 0;) if (component == ((AnimationTask*) tasks.getUnchecked(i))->component) return tasks.getUnchecked(i); return 0; } void ComponentAnimator::animateComponent (Component* const component, const Rectangle& finalPosition, const int millisecondsToSpendMoving, const double startSpeed, const double endSpeed) { if (component != 0) { AnimationTask* at = (AnimationTask*) findTaskFor (component); if (at == 0) { at = new AnimationTask (component); tasks.add (at); sendChangeMessage (this); } at->msElapsed = 0; at->lastProgress = 0; at->msTotal = jmax (1, millisecondsToSpendMoving); at->destination = finalPosition; // the speeds must be 0 or greater! jassert (startSpeed >= 0 && endSpeed >= 0) const double invTotalDistance = 4.0 / (startSpeed + endSpeed + 2.0); at->startSpeed = jmax (0.0, startSpeed * invTotalDistance); at->midSpeed = invTotalDistance; at->endSpeed = jmax (0.0, endSpeed * invTotalDistance); at->left = component->getX(); at->top = component->getY(); at->right = component->getRight(); at->bottom = component->getBottom(); if (! isTimerRunning()) { lastTime = Time::getMillisecondCounter(); startTimer (1000 / 50); } } } void ComponentAnimator::cancelAllAnimations (const bool moveComponentsToTheirFinalPositions) { for (int i = tasks.size(); --i >= 0;) { AnimationTask* const at = (AnimationTask*) tasks.getUnchecked(i); if (moveComponentsToTheirFinalPositions) at->moveToFinalDestination(); delete at; tasks.remove (i); sendChangeMessage (this); } } void ComponentAnimator::cancelAnimation (Component* const component, const bool moveComponentToItsFinalPosition) { AnimationTask* const at = (AnimationTask*) findTaskFor (component); if (at != 0) { if (moveComponentToItsFinalPosition) at->moveToFinalDestination(); tasks.removeValue (at); delete at; sendChangeMessage (this); } } const Rectangle ComponentAnimator::getComponentDestination (Component* const component) { AnimationTask* const at = (AnimationTask*) findTaskFor (component); if (at != 0) return at->destination; else if (component != 0) return component->getBounds(); return Rectangle(); } bool ComponentAnimator::isAnimating (Component* component) const { return findTaskFor (component) != 0; } void ComponentAnimator::timerCallback() { const uint32 timeNow = Time::getMillisecondCounter(); if (lastTime == 0 || lastTime == timeNow) lastTime = timeNow; const int elapsed = timeNow - lastTime; for (int i = tasks.size(); --i >= 0;) { AnimationTask* const at = (AnimationTask*) tasks.getUnchecked(i); if (! at->useTimeslice (elapsed)) { tasks.remove (i); delete at; sendChangeMessage (this); } } lastTime = timeNow; if (tasks.size() == 0) stopTimer(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ComponentAnimator.cpp *********/ /********* Start of inlined file: juce_ComponentBoundsConstrainer.cpp *********/ BEGIN_JUCE_NAMESPACE ComponentBoundsConstrainer::ComponentBoundsConstrainer() throw() : minW (0), maxW (0x3fffffff), minH (0), maxH (0x3fffffff), minOffTop (0), minOffLeft (0), minOffBottom (0), minOffRight (0), aspectRatio (0.0) { } ComponentBoundsConstrainer::~ComponentBoundsConstrainer() { } void ComponentBoundsConstrainer::setMinimumWidth (const int minimumWidth) throw() { minW = minimumWidth; } void ComponentBoundsConstrainer::setMaximumWidth (const int maximumWidth) throw() { maxW = maximumWidth; } void ComponentBoundsConstrainer::setMinimumHeight (const int minimumHeight) throw() { minH = minimumHeight; } void ComponentBoundsConstrainer::setMaximumHeight (const int maximumHeight) throw() { maxH = maximumHeight; } void ComponentBoundsConstrainer::setMinimumSize (const int minimumWidth, const int minimumHeight) throw() { jassert (maxW >= minimumWidth); jassert (maxH >= minimumHeight); jassert (minimumWidth > 0 && minimumHeight > 0); minW = minimumWidth; minH = minimumHeight; if (minW > maxW) maxW = minW; if (minH > maxH) maxH = minH; } void ComponentBoundsConstrainer::setMaximumSize (const int maximumWidth, const int maximumHeight) throw() { jassert (maximumWidth >= minW); jassert (maximumHeight >= minH); jassert (maximumWidth > 0 && maximumHeight > 0); maxW = jmax (minW, maximumWidth); maxH = jmax (minH, maximumHeight); } void ComponentBoundsConstrainer::setSizeLimits (const int minimumWidth, const int minimumHeight, const int maximumWidth, const int maximumHeight) throw() { jassert (maximumWidth >= minimumWidth); jassert (maximumHeight >= minimumHeight); jassert (maximumWidth > 0 && maximumHeight > 0); jassert (minimumWidth > 0 && minimumHeight > 0); minW = jmax (0, minimumWidth); minH = jmax (0, minimumHeight); maxW = jmax (minW, maximumWidth); maxH = jmax (minH, maximumHeight); } void ComponentBoundsConstrainer::setMinimumOnscreenAmounts (const int minimumWhenOffTheTop, const int minimumWhenOffTheLeft, const int minimumWhenOffTheBottom, const int minimumWhenOffTheRight) throw() { minOffTop = minimumWhenOffTheTop; minOffLeft = minimumWhenOffTheLeft; minOffBottom = minimumWhenOffTheBottom; minOffRight = minimumWhenOffTheRight; } void ComponentBoundsConstrainer::setFixedAspectRatio (const double widthOverHeight) throw() { aspectRatio = jmax (0.0, widthOverHeight); } double ComponentBoundsConstrainer::getFixedAspectRatio() const throw() { return aspectRatio; } void ComponentBoundsConstrainer::setBoundsForComponent (Component* const component, int x, int y, int w, int h, const bool isStretchingTop, const bool isStretchingLeft, const bool isStretchingBottom, const bool isStretchingRight) { jassert (component != 0); Rectangle limits; Component* const p = component->getParentComponent(); if (p == 0) limits = Desktop::getInstance().getAllMonitorDisplayAreas().getBounds(); else limits.setSize (p->getWidth(), p->getHeight()); if (component->isOnDesktop()) { ComponentPeer* const peer = component->getPeer(); const BorderSize border (peer->getFrameSize()); x -= border.getLeft(); y -= border.getTop(); w += border.getLeftAndRight(); h += border.getTopAndBottom(); checkBounds (x, y, w, h, border.addedTo (component->getBounds()), limits, isStretchingTop, isStretchingLeft, isStretchingBottom, isStretchingRight); x += border.getLeft(); y += border.getTop(); w -= border.getLeftAndRight(); h -= border.getTopAndBottom(); } else { checkBounds (x, y, w, h, component->getBounds(), limits, isStretchingTop, isStretchingLeft, isStretchingBottom, isStretchingRight); } applyBoundsToComponent (component, x, y, w, h); } void ComponentBoundsConstrainer::checkComponentBounds (Component* component) { setBoundsForComponent (component, component->getX(), component->getY(), component->getWidth(), component->getHeight(), false, false, false, false); } void ComponentBoundsConstrainer::applyBoundsToComponent (Component* component, int x, int y, int w, int h) { component->setBounds (x, y, w, h); } void ComponentBoundsConstrainer::resizeStart() { } void ComponentBoundsConstrainer::resizeEnd() { } void ComponentBoundsConstrainer::checkBounds (int& x, int& y, int& w, int& h, const Rectangle& old, const Rectangle& limits, const bool isStretchingTop, const bool isStretchingLeft, const bool isStretchingBottom, const bool isStretchingRight) { // constrain the size if it's being stretched.. if (isStretchingLeft) { x = jlimit (old.getRight() - maxW, old.getRight() - minW, x); w = old.getRight() - x; } if (isStretchingRight) { w = jlimit (minW, maxW, w); } if (isStretchingTop) { y = jlimit (old.getBottom() - maxH, old.getBottom() - minH, y); h = old.getBottom() - y; } if (isStretchingBottom) { h = jlimit (minH, maxH, h); } // constrain the aspect ratio if one has been specified.. if (aspectRatio > 0.0 && w > 0 && h > 0) { bool adjustWidth; if ((isStretchingTop || isStretchingBottom) && ! (isStretchingLeft || isStretchingRight)) { adjustWidth = true; } else if ((isStretchingLeft || isStretchingRight) && ! (isStretchingTop || isStretchingBottom)) { adjustWidth = false; } else { const double oldRatio = (old.getHeight() > 0) ? fabs (old.getWidth() / (double) old.getHeight()) : 0.0; const double newRatio = fabs (w / (double) h); adjustWidth = (oldRatio > newRatio); } if (adjustWidth) { w = roundDoubleToInt (h * aspectRatio); if (w > maxW || w < minW) { w = jlimit (minW, maxW, w); h = roundDoubleToInt (w / aspectRatio); } } else { h = roundDoubleToInt (w / aspectRatio); if (h > maxH || h < minH) { h = jlimit (minH, maxH, h); w = roundDoubleToInt (h * aspectRatio); } } if ((isStretchingTop || isStretchingBottom) && ! (isStretchingLeft || isStretchingRight)) { x = old.getX() + (old.getWidth() - w) / 2; } else if ((isStretchingLeft || isStretchingRight) && ! (isStretchingTop || isStretchingBottom)) { y = old.getY() + (old.getHeight() - h) / 2; } else { if (isStretchingLeft) x = old.getRight() - w; if (isStretchingTop) y = old.getBottom() - h; } } // ...and constrain the position if limits have been set for that. if (minOffTop > 0 || minOffLeft > 0 || minOffBottom > 0 || minOffRight > 0) { if (minOffTop > 0) { const int limit = limits.getY() + jmin (minOffTop - h, 0); if (y < limit) { if (isStretchingTop) h -= (limit - y); y = limit; } } if (minOffLeft > 0) { const int limit = limits.getX() + jmin (minOffLeft - w, 0); if (x < limit) { if (isStretchingLeft) w -= (limit - x); x = limit; } } if (minOffBottom > 0) { const int limit = limits.getBottom() - jmin (minOffBottom, h); if (y > limit) { if (isStretchingBottom) h += (limit - y); else y = limit; } } if (minOffRight > 0) { const int limit = limits.getRight() - jmin (minOffRight, w); if (x > limit) { if (isStretchingRight) w += (limit - x); else x = limit; } } } jassert (w >= 0 && h >= 0); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ComponentBoundsConstrainer.cpp *********/ /********* Start of inlined file: juce_ComponentMovementWatcher.cpp *********/ BEGIN_JUCE_NAMESPACE ComponentMovementWatcher::ComponentMovementWatcher (Component* const component_) : component (component_), lastPeer (0), registeredParentComps (4), reentrant (false) { jassert (component != 0); // can't use this with a null pointer.. #ifdef JUCE_DEBUG deletionWatcher = new ComponentDeletionWatcher (component_); #endif component->addComponentListener (this); registerWithParentComps(); } ComponentMovementWatcher::~ComponentMovementWatcher() { component->removeComponentListener (this); unregister(); #ifdef JUCE_DEBUG delete deletionWatcher; #endif } void ComponentMovementWatcher::componentParentHierarchyChanged (Component&) { #ifdef JUCE_DEBUG // agh! don't delete the target component without deleting this object first! jassert (! deletionWatcher->hasBeenDeleted()); #endif if (! reentrant) { reentrant = true; ComponentPeer* const peer = component->getPeer(); if (peer != lastPeer) { ComponentDeletionWatcher watcher (component); componentPeerChanged(); if (watcher.hasBeenDeleted()) return; lastPeer = peer; } unregister(); registerWithParentComps(); reentrant = false; componentMovedOrResized (*component, true, true); } } void ComponentMovementWatcher::componentMovedOrResized (Component&, bool wasMoved, bool wasResized) { #ifdef JUCE_DEBUG // agh! don't delete the target component without deleting this object first! jassert (! deletionWatcher->hasBeenDeleted()); #endif if (wasMoved) { int x = 0, y = 0; component->relativePositionToOtherComponent (component->getTopLevelComponent(), x, y); wasMoved = (lastX != x || lastY != y); lastX = x; lastY = y; } wasResized = (lastWidth != component->getWidth() || lastHeight != component->getHeight()); lastWidth = component->getWidth(); lastHeight = component->getHeight(); if (wasMoved || wasResized) componentMovedOrResized (wasMoved, wasResized); } void ComponentMovementWatcher::registerWithParentComps() throw() { Component* p = component->getParentComponent(); while (p != 0) { p->addComponentListener (this); registeredParentComps.add (p); p = p->getParentComponent(); } } void ComponentMovementWatcher::unregister() throw() { for (int i = registeredParentComps.size(); --i >= 0;) ((Component*) registeredParentComps.getUnchecked(i))->removeComponentListener (this); registeredParentComps.clear(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ComponentMovementWatcher.cpp *********/ /********* Start of inlined file: juce_GroupComponent.cpp *********/ BEGIN_JUCE_NAMESPACE GroupComponent::GroupComponent (const String& componentName, const String& labelText) : Component (componentName), text (labelText), justification (Justification::left) { setInterceptsMouseClicks (false, true); } GroupComponent::~GroupComponent() { } void GroupComponent::setText (const String& newText) throw() { if (text != newText) { text = newText; repaint(); } } const String GroupComponent::getText() const throw() { return text; } void GroupComponent::setTextLabelPosition (const Justification& newJustification) { if (justification.getFlags() != newJustification.getFlags()) { justification = newJustification; repaint(); } } void GroupComponent::paint (Graphics& g) { getLookAndFeel() .drawGroupComponentOutline (g, getWidth(), getHeight(), text, justification, *this); } void GroupComponent::enablementChanged() { repaint(); } void GroupComponent::colourChanged() { repaint(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_GroupComponent.cpp *********/ /********* Start of inlined file: juce_MultiDocumentPanel.cpp *********/ BEGIN_JUCE_NAMESPACE MultiDocumentPanelWindow::MultiDocumentPanelWindow (const Colour& backgroundColour) : DocumentWindow (String::empty, backgroundColour, DocumentWindow::maximiseButton | DocumentWindow::closeButton, false) { } MultiDocumentPanelWindow::~MultiDocumentPanelWindow() { } void MultiDocumentPanelWindow::maximiseButtonPressed() { MultiDocumentPanel* const owner = getOwner(); jassert (owner != 0); // these windows are only designed to be used inside a MultiDocumentPanel! if (owner != 0) owner->setLayoutMode (MultiDocumentPanel::MaximisedWindowsWithTabs); } void MultiDocumentPanelWindow::closeButtonPressed() { MultiDocumentPanel* const owner = getOwner(); jassert (owner != 0); // these windows are only designed to be used inside a MultiDocumentPanel! if (owner != 0) owner->closeDocument (getContentComponent(), true); } void MultiDocumentPanelWindow::activeWindowStatusChanged() { DocumentWindow::activeWindowStatusChanged(); updateOrder(); } void MultiDocumentPanelWindow::broughtToFront() { DocumentWindow::broughtToFront(); updateOrder(); } void MultiDocumentPanelWindow::updateOrder() { MultiDocumentPanel* const owner = getOwner(); if (owner != 0) owner->updateOrder(); } MultiDocumentPanel* MultiDocumentPanelWindow::getOwner() const throw() { // (unable to use the syntax findParentComponentOfClass () because of a VC6 compiler bug) return findParentComponentOfClass ((MultiDocumentPanel*) 0); } class MDITabbedComponentInternal : public TabbedComponent { public: MDITabbedComponentInternal() : TabbedComponent (TabbedButtonBar::TabsAtTop) { } ~MDITabbedComponentInternal() { } void currentTabChanged (const int, const String&) { // (unable to use the syntax findParentComponentOfClass () because of a VC6 compiler bug) MultiDocumentPanel* const owner = findParentComponentOfClass ((MultiDocumentPanel*) 0); if (owner != 0) owner->updateOrder(); } }; MultiDocumentPanel::MultiDocumentPanel() : mode (MaximisedWindowsWithTabs), tabComponent (0), backgroundColour (Colours::lightblue), maximumNumDocuments (0), numDocsBeforeTabsUsed (0) { setOpaque (true); } MultiDocumentPanel::~MultiDocumentPanel() { closeAllDocuments (false); } static bool shouldDeleteComp (Component* const c) { return c->getComponentPropertyBool (T("mdiDocumentDelete_"), false); } bool MultiDocumentPanel::closeAllDocuments (const bool checkItsOkToCloseFirst) { while (components.size() > 0) if (! closeDocument (components.getLast(), checkItsOkToCloseFirst)) return false; return true; } MultiDocumentPanelWindow* MultiDocumentPanel::createNewDocumentWindow() { return new MultiDocumentPanelWindow (backgroundColour); } void MultiDocumentPanel::addWindow (Component* component) { MultiDocumentPanelWindow* const dw = createNewDocumentWindow(); dw->setResizable (true, false); dw->setContentComponent (component, false, true); dw->setName (component->getName()); dw->setBackgroundColour (component->getComponentPropertyColour (T("mdiDocumentBkg_"), false, backgroundColour)); int x = 4; Component* const topComp = getChildComponent (getNumChildComponents() - 1); if (topComp != 0 && topComp->getX() == x && topComp->getY() == x) x += 16; dw->setTopLeftPosition (x, x); if (component->getComponentProperty (T("mdiDocumentPos_"), false, String::empty).isNotEmpty()) dw->restoreWindowStateFromString (component->getComponentProperty (T("mdiDocumentPos_"), false, String::empty)); addAndMakeVisible (dw); dw->toFront (true); } bool MultiDocumentPanel::addDocument (Component* const component, const Colour& docColour, const bool deleteWhenRemoved) { // If you try passing a full DocumentWindow or ResizableWindow in here, you'll end up // with a frame-within-a-frame! Just pass in the bare content component. jassert (dynamic_cast (component) == 0); if (component == 0 || (maximumNumDocuments > 0 && components.size() >= maximumNumDocuments)) return false; components.add (component); component->setComponentProperty (T("mdiDocumentDelete_"), deleteWhenRemoved); component->setComponentProperty (T("mdiDocumentBkg_"), docColour); component->addComponentListener (this); if (mode == FloatingWindows) { if (isFullscreenWhenOneDocument()) { if (components.size() == 1) { addAndMakeVisible (component); } else { if (components.size() == 2) addWindow (components.getFirst()); addWindow (component); } } else { addWindow (component); } } else { if (tabComponent == 0 && components.size() > numDocsBeforeTabsUsed) { addAndMakeVisible (tabComponent = new MDITabbedComponentInternal()); Array temp (components); for (int i = 0; i < temp.size(); ++i) tabComponent->addTab (temp[i]->getName(), docColour, temp[i], false); resized(); } else { if (tabComponent != 0) tabComponent->addTab (component->getName(), docColour, component, false); else addAndMakeVisible (component); } setActiveDocument (component); } resized(); activeDocumentChanged(); return true; } bool MultiDocumentPanel::closeDocument (Component* component, const bool checkItsOkToCloseFirst) { if (components.contains (component)) { if (checkItsOkToCloseFirst && ! tryToCloseDocument (component)) return false; component->removeComponentListener (this); const bool shouldDelete = shouldDeleteComp (component); component->removeComponentProperty (T("mdiDocumentDelete_")); component->removeComponentProperty (T("mdiDocumentBkg_")); if (mode == FloatingWindows) { for (int i = getNumChildComponents(); --i >= 0;) { MultiDocumentPanelWindow* const dw = dynamic_cast (getChildComponent (i)); if (dw != 0 && dw->getContentComponent() == component) { dw->setContentComponent (0, false); delete dw; break; } } if (shouldDelete) delete component; components.removeValue (component); if (isFullscreenWhenOneDocument() && components.size() == 1) { for (int i = getNumChildComponents(); --i >= 0;) { MultiDocumentPanelWindow* const dw = dynamic_cast (getChildComponent (i)); if (dw != 0) { dw->setContentComponent (0, false); delete dw; } } addAndMakeVisible (components.getFirst()); } } else { jassert (components.indexOf (component) >= 0); if (tabComponent != 0) { for (int i = tabComponent->getNumTabs(); --i >= 0;) if (tabComponent->getTabContentComponent (i) == component) tabComponent->removeTab (i); } else { removeChildComponent (component); } if (shouldDelete) delete component; if (tabComponent != 0 && tabComponent->getNumTabs() <= numDocsBeforeTabsUsed) deleteAndZero (tabComponent); components.removeValue (component); if (components.size() > 0 && tabComponent == 0) addAndMakeVisible (components.getFirst()); } resized(); activeDocumentChanged(); } else { jassertfalse } return true; } int MultiDocumentPanel::getNumDocuments() const throw() { return components.size(); } Component* MultiDocumentPanel::getDocument (const int index) const throw() { return components [index]; } Component* MultiDocumentPanel::getActiveDocument() const throw() { if (mode == FloatingWindows) { for (int i = getNumChildComponents(); --i >= 0;) { MultiDocumentPanelWindow* const dw = dynamic_cast (getChildComponent (i)); if (dw != 0 && dw->isActiveWindow()) return dw->getContentComponent(); } } return components.getLast(); } void MultiDocumentPanel::setActiveDocument (Component* component) { if (mode == FloatingWindows) { component = getContainerComp (component); if (component != 0) component->toFront (true); } else if (tabComponent != 0) { jassert (components.indexOf (component) >= 0); for (int i = tabComponent->getNumTabs(); --i >= 0;) { if (tabComponent->getTabContentComponent (i) == component) { tabComponent->setCurrentTabIndex (i); break; } } } else { component->grabKeyboardFocus(); } } void MultiDocumentPanel::activeDocumentChanged() { } void MultiDocumentPanel::setMaximumNumDocuments (const int newNumber) { maximumNumDocuments = newNumber; } void MultiDocumentPanel::useFullscreenWhenOneDocument (const bool shouldUseTabs) { numDocsBeforeTabsUsed = shouldUseTabs ? 1 : 0; } bool MultiDocumentPanel::isFullscreenWhenOneDocument() const throw() { return numDocsBeforeTabsUsed != 0; } void MultiDocumentPanel::setLayoutMode (const LayoutMode newLayoutMode) { if (mode != newLayoutMode) { mode = newLayoutMode; if (mode == FloatingWindows) { deleteAndZero (tabComponent); } else { for (int i = getNumChildComponents(); --i >= 0;) { MultiDocumentPanelWindow* const dw = dynamic_cast (getChildComponent (i)); if (dw != 0) { dw->getContentComponent()->setComponentProperty (T("mdiDocumentPos_"), dw->getWindowStateAsString()); dw->setContentComponent (0, false); delete dw; } } } resized(); const Array tempComps (components); components.clear(); for (int i = 0; i < tempComps.size(); ++i) { Component* const c = tempComps.getUnchecked(i); addDocument (c, c->getComponentPropertyColour (T("mdiDocumentBkg_"), false, Colours::white), shouldDeleteComp (c)); } } } void MultiDocumentPanel::setBackgroundColour (const Colour& newBackgroundColour) { if (backgroundColour != newBackgroundColour) { backgroundColour = newBackgroundColour; setOpaque (newBackgroundColour.isOpaque()); repaint(); } } void MultiDocumentPanel::paint (Graphics& g) { g.fillAll (backgroundColour); } void MultiDocumentPanel::resized() { if (mode == MaximisedWindowsWithTabs || components.size() == numDocsBeforeTabsUsed) { for (int i = getNumChildComponents(); --i >= 0;) getChildComponent (i)->setBounds (0, 0, getWidth(), getHeight()); } setWantsKeyboardFocus (components.size() == 0); } Component* MultiDocumentPanel::getContainerComp (Component* c) const { if (mode == FloatingWindows) { for (int i = 0; i < getNumChildComponents(); ++i) { MultiDocumentPanelWindow* const dw = dynamic_cast (getChildComponent (i)); if (dw != 0 && dw->getContentComponent() == c) { c = dw; break; } } } return c; } void MultiDocumentPanel::componentNameChanged (Component&) { if (mode == FloatingWindows) { for (int i = 0; i < getNumChildComponents(); ++i) { MultiDocumentPanelWindow* const dw = dynamic_cast (getChildComponent (i)); if (dw != 0) dw->setName (dw->getContentComponent()->getName()); } } else if (tabComponent != 0) { for (int i = tabComponent->getNumTabs(); --i >= 0;) tabComponent->setTabName (i, tabComponent->getTabContentComponent (i)->getName()); } } void MultiDocumentPanel::updateOrder() { const Array oldList (components); if (mode == FloatingWindows) { components.clear(); for (int i = 0; i < getNumChildComponents(); ++i) { MultiDocumentPanelWindow* const dw = dynamic_cast (getChildComponent (i)); if (dw != 0) components.add (dw->getContentComponent()); } } else { if (tabComponent != 0) { Component* const current = tabComponent->getCurrentContentComponent(); if (current != 0) { components.removeValue (current); components.add (current); } } } if (components != oldList) activeDocumentChanged(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_MultiDocumentPanel.cpp *********/ /********* Start of inlined file: juce_ResizableBorderComponent.cpp *********/ BEGIN_JUCE_NAMESPACE const int zoneL = 1; const int zoneR = 2; const int zoneT = 4; const int zoneB = 8; ResizableBorderComponent::ResizableBorderComponent (Component* const componentToResize, ComponentBoundsConstrainer* const constrainer_) : component (componentToResize), constrainer (constrainer_), borderSize (5), mouseZone (0) { } ResizableBorderComponent::~ResizableBorderComponent() { } void ResizableBorderComponent::paint (Graphics& g) { getLookAndFeel().drawResizableFrame (g, getWidth(), getHeight(), borderSize); } void ResizableBorderComponent::mouseEnter (const MouseEvent& e) { updateMouseZone (e); } void ResizableBorderComponent::mouseMove (const MouseEvent& e) { updateMouseZone (e); } void ResizableBorderComponent::mouseDown (const MouseEvent& e) { if (component->isValidComponent()) { updateMouseZone (e); originalX = component->getX(); originalY = component->getY(); originalW = component->getWidth(); originalH = component->getHeight(); if (constrainer != 0) constrainer->resizeStart(); } else { jassertfalse } } void ResizableBorderComponent::mouseDrag (const MouseEvent& e) { if (! component->isValidComponent()) { jassertfalse return; } int x = originalX; int y = originalY; int w = originalW; int h = originalH; const int dx = e.getDistanceFromDragStartX(); const int dy = e.getDistanceFromDragStartY(); if ((mouseZone & zoneL) != 0) { x += dx; w -= dx; } if ((mouseZone & zoneT) != 0) { y += dy; h -= dy; } if ((mouseZone & zoneR) != 0) w += dx; if ((mouseZone & zoneB) != 0) h += dy; if (constrainer != 0) constrainer->setBoundsForComponent (component, x, y, w, h, (mouseZone & zoneT) != 0, (mouseZone & zoneL) != 0, (mouseZone & zoneB) != 0, (mouseZone & zoneR) != 0); else component->setBounds (x, y, w, h); } void ResizableBorderComponent::mouseUp (const MouseEvent&) { if (constrainer != 0) constrainer->resizeEnd(); } bool ResizableBorderComponent::hitTest (int x, int y) { return x < borderSize.getLeft() || x >= getWidth() - borderSize.getRight() || y < borderSize.getTop() || y >= getHeight() - borderSize.getBottom(); } void ResizableBorderComponent::setBorderThickness (const BorderSize& newBorderSize) throw() { if (borderSize != newBorderSize) { borderSize = newBorderSize; repaint(); } } const BorderSize ResizableBorderComponent::getBorderThickness() const throw() { return borderSize; } void ResizableBorderComponent::updateMouseZone (const MouseEvent& e) throw() { int newZone = 0; if (ResizableBorderComponent::hitTest (e.x, e.y)) { if (e.x < jmax (borderSize.getLeft(), proportionOfWidth (0.1f), jmin (10, proportionOfWidth (0.33f)))) newZone |= zoneL; else if (e.x >= jmin (getWidth() - borderSize.getRight(), proportionOfWidth (0.9f), getWidth() - jmin (10, proportionOfWidth (0.33f)))) newZone |= zoneR; if (e.y < jmax (borderSize.getTop(), proportionOfHeight (0.1f), jmin (10, proportionOfHeight (0.33f)))) newZone |= zoneT; else if (e.y >= jmin (getHeight() - borderSize.getBottom(), proportionOfHeight (0.9f), getHeight() - jmin (10, proportionOfHeight (0.33f)))) newZone |= zoneB; } if (mouseZone != newZone) { mouseZone = newZone; MouseCursor::StandardCursorType mc = MouseCursor::NormalCursor; switch (newZone) { case (zoneL | zoneT): mc = MouseCursor::TopLeftCornerResizeCursor; break; case zoneT: mc = MouseCursor::TopEdgeResizeCursor; break; case (zoneR | zoneT): mc = MouseCursor::TopRightCornerResizeCursor; break; case zoneL: mc = MouseCursor::LeftEdgeResizeCursor; break; case zoneR: mc = MouseCursor::RightEdgeResizeCursor; break; case (zoneL | zoneB): mc = MouseCursor::BottomLeftCornerResizeCursor; break; case zoneB: mc = MouseCursor::BottomEdgeResizeCursor; break; case (zoneR | zoneB): mc = MouseCursor::BottomRightCornerResizeCursor; break; default: break; } setMouseCursor (mc); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ResizableBorderComponent.cpp *********/ /********* Start of inlined file: juce_ResizableCornerComponent.cpp *********/ BEGIN_JUCE_NAMESPACE ResizableCornerComponent::ResizableCornerComponent (Component* const componentToResize, ComponentBoundsConstrainer* const constrainer_) : component (componentToResize), constrainer (constrainer_) { setRepaintsOnMouseActivity (true); setMouseCursor (MouseCursor::BottomRightCornerResizeCursor); } ResizableCornerComponent::~ResizableCornerComponent() { } void ResizableCornerComponent::paint (Graphics& g) { getLookAndFeel() .drawCornerResizer (g, getWidth(), getHeight(), isMouseOverOrDragging(), isMouseButtonDown()); } void ResizableCornerComponent::mouseDown (const MouseEvent&) { if (component->isValidComponent()) { originalX = component->getX(); originalY = component->getY(); originalW = component->getWidth(); originalH = component->getHeight(); if (constrainer != 0) constrainer->resizeStart(); } else { jassertfalse } } void ResizableCornerComponent::mouseDrag (const MouseEvent& e) { if (! component->isValidComponent()) { jassertfalse return; } int x = originalX; int y = originalY; int w = originalW + e.getDistanceFromDragStartX(); int h = originalH + e.getDistanceFromDragStartY(); if (constrainer != 0) constrainer->setBoundsForComponent (component, x, y, w, h, false, false, true, true); else component->setBounds (x, y, w, h); } void ResizableCornerComponent::mouseUp (const MouseEvent&) { if (constrainer != 0) constrainer->resizeStart(); } bool ResizableCornerComponent::hitTest (int x, int y) { if (getWidth() <= 0) return false; const int yAtX = getHeight() - (getHeight() * x / getWidth()); return y >= yAtX - getHeight() / 4; } END_JUCE_NAMESPACE /********* End of inlined file: juce_ResizableCornerComponent.cpp *********/ /********* Start of inlined file: juce_ScrollBar.cpp *********/ BEGIN_JUCE_NAMESPACE class ScrollbarButton : public Button { public: int direction; ScrollbarButton (const int direction_, ScrollBar& owner_) throw() : Button (String::empty), direction (direction_), owner (owner_) { setWantsKeyboardFocus (false); } ~ScrollbarButton() { } void paintButton (Graphics& g, bool isMouseOver, bool isMouseDown) { getLookAndFeel() .drawScrollbarButton (g, owner, getWidth(), getHeight(), direction, owner.isVertical(), isMouseOver, isMouseDown); } void clicked() { owner.moveScrollbarInSteps ((direction == 1 || direction == 2) ? 1 : -1); } juce_UseDebuggingNewOperator private: ScrollBar& owner; ScrollbarButton (const ScrollbarButton&); const ScrollbarButton& operator= (const ScrollbarButton&); }; ScrollBar::ScrollBar (const bool vertical_, const bool buttonsAreVisible) : minimum (0.0), maximum (1.0), rangeStart (0.0), rangeSize (0.1), singleStepSize (0.1), thumbAreaStart (0), thumbAreaSize (0), thumbStart (0), thumbSize (0), initialDelayInMillisecs (100), repeatDelayInMillisecs (50), minimumDelayInMillisecs (10), vertical (vertical_), isDraggingThumb (false), alwaysVisible (false), upButton (0), downButton (0), listeners (2) { setButtonVisibility (buttonsAreVisible); setRepaintsOnMouseActivity (true); setFocusContainer (true); } ScrollBar::~ScrollBar() { deleteAllChildren(); } void ScrollBar::setRangeLimits (const double newMinimum, const double newMaximum) throw() { minimum = newMinimum; maximum = newMaximum; jassert (maximum >= minimum); // these can't be the wrong way round! setCurrentRangeStart (rangeStart); updateThumbPosition(); } void ScrollBar::setCurrentRange (double newStart, double newSize) throw() { newSize = jlimit (0.0, maximum - minimum, newSize); newStart = jlimit (minimum, maximum - newSize, newStart); if (rangeStart != newStart || rangeSize != newSize) { rangeStart = newStart; rangeSize = newSize; updateThumbPosition(); triggerAsyncUpdate(); } } void ScrollBar::setCurrentRangeStart (double newStart) throw() { setCurrentRange (newStart, rangeSize); } void ScrollBar::setSingleStepSize (const double newSingleStepSize) throw() { singleStepSize = newSingleStepSize; } void ScrollBar::moveScrollbarInSteps (const int howManySteps) throw() { setCurrentRangeStart (rangeStart + howManySteps * singleStepSize); } void ScrollBar::moveScrollbarInPages (const int howManyPages) throw() { setCurrentRangeStart (rangeStart + howManyPages * rangeSize); } void ScrollBar::scrollToTop() throw() { setCurrentRangeStart (minimum); } void ScrollBar::scrollToBottom() throw() { setCurrentRangeStart (maximum - rangeSize); } void ScrollBar::setButtonRepeatSpeed (const int initialDelayInMillisecs_, const int repeatDelayInMillisecs_, const int minimumDelayInMillisecs_) throw() { initialDelayInMillisecs = initialDelayInMillisecs_; repeatDelayInMillisecs = repeatDelayInMillisecs_; minimumDelayInMillisecs = minimumDelayInMillisecs_; if (upButton != 0) { upButton->setRepeatSpeed (initialDelayInMillisecs, repeatDelayInMillisecs, minimumDelayInMillisecs); downButton->setRepeatSpeed (initialDelayInMillisecs, repeatDelayInMillisecs, minimumDelayInMillisecs); } } void ScrollBar::addListener (ScrollBarListener* const listener) throw() { jassert (listener != 0); if (listener != 0) listeners.add (listener); } void ScrollBar::removeListener (ScrollBarListener* const listener) throw() { listeners.removeValue (listener); } void ScrollBar::handleAsyncUpdate() { const double value = getCurrentRangeStart(); for (int i = listeners.size(); --i >= 0;) { ((ScrollBarListener*) listeners.getUnchecked (i))->scrollBarMoved (this, value); i = jmin (i, listeners.size()); } } void ScrollBar::updateThumbPosition() throw() { int newThumbSize = roundDoubleToInt ((maximum > minimum) ? (rangeSize * thumbAreaSize) / (maximum - minimum) : thumbAreaSize); if (newThumbSize < getLookAndFeel().getMinimumScrollbarThumbSize (*this)) newThumbSize = jmin (getLookAndFeel().getMinimumScrollbarThumbSize (*this), thumbAreaSize - 1); if (newThumbSize > thumbAreaSize) newThumbSize = thumbAreaSize; int newThumbStart = thumbAreaStart; if (maximum - minimum > rangeSize) newThumbStart += roundDoubleToInt (((rangeStart - minimum) * (thumbAreaSize - newThumbSize)) / ((maximum - minimum) - rangeSize)); setVisible (alwaysVisible || (maximum - minimum > rangeSize && rangeSize > 0.0)); if (thumbStart != newThumbStart || thumbSize != newThumbSize) { const int repaintStart = jmin (thumbStart, newThumbStart) - 4; const int repaintSize = jmax (thumbStart + thumbSize, newThumbStart + newThumbSize) + 8 - repaintStart; if (vertical) repaint (0, repaintStart, getWidth(), repaintSize); else repaint (repaintStart, 0, repaintSize, getHeight()); thumbStart = newThumbStart; thumbSize = newThumbSize; } } void ScrollBar::setOrientation (const bool shouldBeVertical) throw() { if (vertical != shouldBeVertical) { vertical = shouldBeVertical; if (upButton != 0) { ((ScrollbarButton*) upButton)->direction = (vertical) ? 0 : 3; ((ScrollbarButton*) downButton)->direction = (vertical) ? 2 : 1; } updateThumbPosition(); } } void ScrollBar::setButtonVisibility (const bool buttonsAreVisible) { deleteAndZero (upButton); deleteAndZero (downButton); if (buttonsAreVisible) { addAndMakeVisible (upButton = new ScrollbarButton ((vertical) ? 0 : 3, *this)); addAndMakeVisible (downButton = new ScrollbarButton ((vertical) ? 2 : 1, *this)); setButtonRepeatSpeed (initialDelayInMillisecs, repeatDelayInMillisecs, minimumDelayInMillisecs); } updateThumbPosition(); } void ScrollBar::setAutoHide (const bool shouldHideWhenFullRange) { alwaysVisible = ! shouldHideWhenFullRange; updateThumbPosition(); } void ScrollBar::paint (Graphics& g) { if (thumbAreaSize > 0) { LookAndFeel& lf = getLookAndFeel(); const int thumb = (thumbAreaSize > lf.getMinimumScrollbarThumbSize (*this)) ? thumbSize : 0; if (vertical) { lf.drawScrollbar (g, *this, 0, thumbAreaStart, getWidth(), thumbAreaSize, vertical, thumbStart, thumb, isMouseOver(), isMouseButtonDown()); } else { lf.drawScrollbar (g, *this, thumbAreaStart, 0, thumbAreaSize, getHeight(), vertical, thumbStart, thumb, isMouseOver(), isMouseButtonDown()); } } } void ScrollBar::lookAndFeelChanged() { setComponentEffect (getLookAndFeel().getScrollbarEffect()); } void ScrollBar::resized() { const int length = ((vertical) ? getHeight() : getWidth()); const int buttonSize = (upButton != 0) ? jmin (getLookAndFeel().getScrollbarButtonSize (*this), (length >> 1)) : 0; if (length < 32 + getLookAndFeel().getMinimumScrollbarThumbSize (*this)) { thumbAreaStart = length >> 1; thumbAreaSize = 0; } else { thumbAreaStart = buttonSize; thumbAreaSize = length - (buttonSize << 1); } if (upButton != 0) { if (vertical) { upButton->setBounds (0, 0, getWidth(), buttonSize); downButton->setBounds (0, thumbAreaStart + thumbAreaSize, getWidth(), buttonSize); } else { upButton->setBounds (0, 0, buttonSize, getHeight()); downButton->setBounds (thumbAreaStart + thumbAreaSize, 0, buttonSize, getHeight()); } } updateThumbPosition(); } void ScrollBar::mouseDown (const MouseEvent& e) { isDraggingThumb = false; lastMousePos = vertical ? e.y : e.x; dragStartMousePos = lastMousePos; dragStartRange = rangeStart; if (dragStartMousePos < thumbStart) { moveScrollbarInPages (-1); startTimer (400); } else if (dragStartMousePos >= thumbStart + thumbSize) { moveScrollbarInPages (1); startTimer (400); } else { isDraggingThumb = (thumbAreaSize > getLookAndFeel().getMinimumScrollbarThumbSize (*this)) && (thumbAreaSize > thumbSize); } } void ScrollBar::mouseDrag (const MouseEvent& e) { if (isDraggingThumb) { const int deltaPixels = ((vertical) ? e.y : e.x) - dragStartMousePos; setCurrentRangeStart (dragStartRange + deltaPixels * ((maximum - minimum) - rangeSize) / (thumbAreaSize - thumbSize)); } else { lastMousePos = (vertical) ? e.y : e.x; } } void ScrollBar::mouseUp (const MouseEvent&) { isDraggingThumb = false; stopTimer(); repaint(); } void ScrollBar::mouseWheelMove (const MouseEvent&, float wheelIncrementX, float wheelIncrementY) { float increment = vertical ? wheelIncrementY : wheelIncrementX; if (increment < 0) increment = jmin (increment * 10.0f, -1.0f); else if (increment > 0) increment = jmax (increment * 10.0f, 1.0f); setCurrentRangeStart (rangeStart - singleStepSize * increment); } void ScrollBar::timerCallback() { if (isMouseButtonDown()) { startTimer (40); if (lastMousePos < thumbStart) setCurrentRangeStart (rangeStart - rangeSize); else if (lastMousePos > thumbStart + thumbSize) setCurrentRangeStart (rangeStart + rangeSize); } else { stopTimer(); } } bool ScrollBar::keyPressed (const KeyPress& key) { if (! isVisible()) return false; if (key.isKeyCode (KeyPress::upKey) || key.isKeyCode (KeyPress::leftKey)) moveScrollbarInSteps (-1); else if (key.isKeyCode (KeyPress::downKey) || key.isKeyCode (KeyPress::rightKey)) moveScrollbarInSteps (1); else if (key.isKeyCode (KeyPress::pageUpKey)) moveScrollbarInPages (-1); else if (key.isKeyCode (KeyPress::pageDownKey)) moveScrollbarInPages (1); else if (key.isKeyCode (KeyPress::homeKey)) scrollToTop(); else if (key.isKeyCode (KeyPress::endKey)) scrollToBottom(); else return false; return true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_ScrollBar.cpp *********/ /********* Start of inlined file: juce_StretchableLayoutManager.cpp *********/ BEGIN_JUCE_NAMESPACE StretchableLayoutManager::StretchableLayoutManager() : totalSize (0) { } StretchableLayoutManager::~StretchableLayoutManager() { } void StretchableLayoutManager::clearAllItems() { items.clear(); totalSize = 0; } void StretchableLayoutManager::setItemLayout (const int itemIndex, const double minimumSize, const double maximumSize, const double preferredSize) { ItemLayoutProperties* layout = getInfoFor (itemIndex); if (layout == 0) { layout = new ItemLayoutProperties(); layout->itemIndex = itemIndex; int i; for (i = 0; i < items.size(); ++i) if (items.getUnchecked (i)->itemIndex > itemIndex) break; items.insert (i, layout); } layout->minSize = minimumSize; layout->maxSize = maximumSize; layout->preferredSize = preferredSize; layout->currentSize = 0; } bool StretchableLayoutManager::getItemLayout (const int itemIndex, double& minimumSize, double& maximumSize, double& preferredSize) const { const ItemLayoutProperties* const layout = getInfoFor (itemIndex); if (layout != 0) { minimumSize = layout->minSize; maximumSize = layout->maxSize; preferredSize = layout->preferredSize; return true; } return false; } void StretchableLayoutManager::setTotalSize (const int newTotalSize) { totalSize = newTotalSize; fitComponentsIntoSpace (0, items.size(), totalSize, 0); } int StretchableLayoutManager::getItemCurrentPosition (const int itemIndex) const { int pos = 0; for (int i = 0; i < itemIndex; ++i) { const ItemLayoutProperties* const layout = getInfoFor (i); if (layout != 0) pos += layout->currentSize; } return pos; } int StretchableLayoutManager::getItemCurrentAbsoluteSize (const int itemIndex) const { const ItemLayoutProperties* const layout = getInfoFor (itemIndex); if (layout != 0) return layout->currentSize; return 0; } double StretchableLayoutManager::getItemCurrentRelativeSize (const int itemIndex) const { const ItemLayoutProperties* const layout = getInfoFor (itemIndex); if (layout != 0) return -layout->currentSize / (double) totalSize; return 0; } void StretchableLayoutManager::setItemPosition (const int itemIndex, int newPosition) { for (int i = items.size(); --i >= 0;) { const ItemLayoutProperties* const layout = items.getUnchecked(i); if (layout->itemIndex == itemIndex) { int realTotalSize = jmax (totalSize, getMinimumSizeOfItems (0, items.size())); const int minSizeAfterThisComp = getMinimumSizeOfItems (i, items.size()); const int maxSizeAfterThisComp = getMaximumSizeOfItems (i + 1, items.size()); newPosition = jmax (newPosition, totalSize - maxSizeAfterThisComp - layout->currentSize); newPosition = jmin (newPosition, realTotalSize - minSizeAfterThisComp); int endPos = fitComponentsIntoSpace (0, i, newPosition, 0); endPos += layout->currentSize; fitComponentsIntoSpace (i + 1, items.size(), totalSize - endPos, endPos); updatePrefSizesToMatchCurrentPositions(); break; } } } void StretchableLayoutManager::layOutComponents (Component** const components, int numComponents, int x, int y, int w, int h, const bool vertically, const bool resizeOtherDimension) { setTotalSize (vertically ? h : w); int pos = vertically ? y : x; for (int i = 0; i < numComponents; ++i) { const ItemLayoutProperties* const layout = getInfoFor (i); if (layout != 0) { Component* const c = components[i]; if (c != 0) { if (i == numComponents - 1) { // if it's the last item, crop it to exactly fit the available space.. if (resizeOtherDimension) { if (vertically) c->setBounds (x, pos, w, jmax (layout->currentSize, h - pos)); else c->setBounds (pos, y, jmax (layout->currentSize, w - pos), h); } else { if (vertically) c->setBounds (c->getX(), pos, c->getWidth(), jmax (layout->currentSize, h - pos)); else c->setBounds (pos, c->getY(), jmax (layout->currentSize, w - pos), c->getHeight()); } } else { if (resizeOtherDimension) { if (vertically) c->setBounds (x, pos, w, layout->currentSize); else c->setBounds (pos, y, layout->currentSize, h); } else { if (vertically) c->setBounds (c->getX(), pos, c->getWidth(), layout->currentSize); else c->setBounds (pos, c->getY(), layout->currentSize, c->getHeight()); } } } pos += layout->currentSize; } } } StretchableLayoutManager::ItemLayoutProperties* StretchableLayoutManager::getInfoFor (const int itemIndex) const { for (int i = items.size(); --i >= 0;) if (items.getUnchecked(i)->itemIndex == itemIndex) return items.getUnchecked(i); return 0; } int StretchableLayoutManager::fitComponentsIntoSpace (const int startIndex, const int endIndex, const int availableSpace, int startPos) { // calculate the total sizes int i; double totalIdealSize = 0.0; int totalMinimums = 0; for (i = startIndex; i < endIndex; ++i) { ItemLayoutProperties* const layout = items.getUnchecked (i); layout->currentSize = sizeToRealSize (layout->minSize, totalSize); totalMinimums += layout->currentSize; totalIdealSize += sizeToRealSize (layout->preferredSize, availableSpace); } if (totalIdealSize <= 0) totalIdealSize = 1.0; // now calc the best sizes.. int extraSpace = availableSpace - totalMinimums; while (extraSpace > 0) { int numWantingMoreSpace = 0; int numHavingTakenExtraSpace = 0; // first figure out how many comps want a slice of the extra space.. for (i = startIndex; i < endIndex; ++i) { ItemLayoutProperties* const layout = items.getUnchecked (i); double sizeWanted = sizeToRealSize (layout->preferredSize, availableSpace); const int bestSize = jlimit (layout->currentSize, jmax (layout->currentSize, sizeToRealSize (layout->maxSize, totalSize)), roundDoubleToInt (sizeWanted * availableSpace / totalIdealSize)); if (bestSize > layout->currentSize) ++numWantingMoreSpace; } // ..share out the extra space.. for (i = startIndex; i < endIndex; ++i) { ItemLayoutProperties* const layout = items.getUnchecked (i); double sizeWanted = sizeToRealSize (layout->preferredSize, availableSpace); int bestSize = jlimit (layout->currentSize, jmax (layout->currentSize, sizeToRealSize (layout->maxSize, totalSize)), roundDoubleToInt (sizeWanted * availableSpace / totalIdealSize)); const int extraWanted = bestSize - layout->currentSize; if (extraWanted > 0) { const int extraAllowed = jmin (extraWanted, extraSpace / jmax (1, numWantingMoreSpace)); if (extraAllowed > 0) { ++numHavingTakenExtraSpace; --numWantingMoreSpace; layout->currentSize += extraAllowed; extraSpace -= extraAllowed; } } } if (numHavingTakenExtraSpace <= 0) break; } // ..and calculate the end position for (i = startIndex; i < endIndex; ++i) { ItemLayoutProperties* const layout = items.getUnchecked(i); startPos += layout->currentSize; } return startPos; } int StretchableLayoutManager::getMinimumSizeOfItems (const int startIndex, const int endIndex) const { int totalMinimums = 0; for (int i = startIndex; i < endIndex; ++i) totalMinimums += sizeToRealSize (items.getUnchecked (i)->minSize, totalSize); return totalMinimums; } int StretchableLayoutManager::getMaximumSizeOfItems (const int startIndex, const int endIndex) const { int totalMaximums = 0; for (int i = startIndex; i < endIndex; ++i) totalMaximums += sizeToRealSize (items.getUnchecked (i)->maxSize, totalSize); return totalMaximums; } void StretchableLayoutManager::updatePrefSizesToMatchCurrentPositions() { for (int i = 0; i < items.size(); ++i) { ItemLayoutProperties* const layout = items.getUnchecked (i); layout->preferredSize = (layout->preferredSize < 0) ? getItemCurrentRelativeSize (i) : getItemCurrentAbsoluteSize (i); } } int StretchableLayoutManager::sizeToRealSize (double size, int totalSpace) { if (size < 0) size *= -totalSpace; return roundDoubleToInt (size); } END_JUCE_NAMESPACE /********* End of inlined file: juce_StretchableLayoutManager.cpp *********/ /********* Start of inlined file: juce_StretchableLayoutResizerBar.cpp *********/ BEGIN_JUCE_NAMESPACE StretchableLayoutResizerBar::StretchableLayoutResizerBar (StretchableLayoutManager* layout_, const int itemIndex_, const bool isVertical_) : layout (layout_), itemIndex (itemIndex_), isVertical (isVertical_) { setRepaintsOnMouseActivity (true); setMouseCursor (MouseCursor (isVertical_ ? MouseCursor::LeftRightResizeCursor : MouseCursor::UpDownResizeCursor)); } StretchableLayoutResizerBar::~StretchableLayoutResizerBar() { } void StretchableLayoutResizerBar::paint (Graphics& g) { getLookAndFeel().drawStretchableLayoutResizerBar (g, getWidth(), getHeight(), isVertical, isMouseOver(), isMouseButtonDown()); } void StretchableLayoutResizerBar::mouseDown (const MouseEvent&) { mouseDownPos = layout->getItemCurrentPosition (itemIndex); } void StretchableLayoutResizerBar::mouseDrag (const MouseEvent& e) { const int desiredPos = mouseDownPos + (isVertical ? e.getDistanceFromDragStartX() : e.getDistanceFromDragStartY()); layout->setItemPosition (itemIndex, desiredPos); hasBeenMoved(); } void StretchableLayoutResizerBar::hasBeenMoved() { if (getParentComponent() != 0) getParentComponent()->resized(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_StretchableLayoutResizerBar.cpp *********/ /********* Start of inlined file: juce_StretchableObjectResizer.cpp *********/ BEGIN_JUCE_NAMESPACE StretchableObjectResizer::StretchableObjectResizer() { } StretchableObjectResizer::~StretchableObjectResizer() { } void StretchableObjectResizer::addItem (const double size, const double minSize, const double maxSize, const int order) { jassert (order >= 0 && order < INT_MAX); // the order must be >= 0 and less than INT_MAX Item* const item = new Item(); item->size = size; item->minSize = minSize; item->maxSize = maxSize; item->order = order; items.add (item); } double StretchableObjectResizer::getItemSize (const int index) const throw() { const Item* const it = items [index]; return it != 0 ? it->size : 0; } void StretchableObjectResizer::resizeToFit (const double targetSize) { int order = 0; for (;;) { double currentSize = 0; double minSize = 0; double maxSize = 0; int nextHighestOrder = INT_MAX; for (int i = 0; i < items.size(); ++i) { const Item* const it = items.getUnchecked(i); currentSize += it->size; if (it->order <= order) { minSize += it->minSize; maxSize += it->maxSize; } else { minSize += it->size; maxSize += it->size; nextHighestOrder = jmin (nextHighestOrder, it->order); } } const double thisIterationTarget = jlimit (minSize, maxSize, targetSize); if (thisIterationTarget >= currentSize) { const double availableExtraSpace = maxSize - currentSize; const double targetAmountOfExtraSpace = thisIterationTarget - currentSize; const double scale = targetAmountOfExtraSpace / availableExtraSpace; for (int i = 0; i < items.size(); ++i) { Item* const it = items.getUnchecked(i); if (it->order <= order) it->size = jmin (it->maxSize, it->size + (it->maxSize - it->size) * scale); } } else { const double amountOfSlack = currentSize - minSize; const double targetAmountOfSlack = thisIterationTarget - minSize; const double scale = targetAmountOfSlack / amountOfSlack; for (int i = 0; i < items.size(); ++i) { Item* const it = items.getUnchecked(i); if (it->order <= order) it->size = jmax (it->minSize, it->minSize + (it->size - it->minSize) * scale); } } if (nextHighestOrder < INT_MAX) order = nextHighestOrder; else break; } } END_JUCE_NAMESPACE /********* End of inlined file: juce_StretchableObjectResizer.cpp *********/ /********* Start of inlined file: juce_TabbedButtonBar.cpp *********/ BEGIN_JUCE_NAMESPACE TabBarButton::TabBarButton (const String& name, TabbedButtonBar* const owner_, const int index) : Button (name), owner (owner_), tabIndex (index), overlapPixels (0) { shadow.setShadowProperties (2.2f, 0.7f, 0, 0); setComponentEffect (&shadow); setWantsKeyboardFocus (false); } TabBarButton::~TabBarButton() { } void TabBarButton::paintButton (Graphics& g, bool isMouseOverButton, bool isButtonDown) { int x, y, w, h; getActiveArea (x, y, w, h); g.setOrigin (x, y); getLookAndFeel() .drawTabButton (g, w, h, owner->getTabBackgroundColour (tabIndex), tabIndex, getButtonText(), *this, owner->getOrientation(), isMouseOverButton, isButtonDown, getToggleState()); } void TabBarButton::clicked (const ModifierKeys& mods) { if (mods.isPopupMenu()) owner->popupMenuClickOnTab (tabIndex, getButtonText()); else owner->setCurrentTabIndex (tabIndex); } bool TabBarButton::hitTest (int mx, int my) { int x, y, w, h; getActiveArea (x, y, w, h); if (owner->getOrientation() == TabbedButtonBar::TabsAtLeft || owner->getOrientation() == TabbedButtonBar::TabsAtRight) { if (((unsigned int) mx) < (unsigned int) getWidth() && my >= y + overlapPixels && my < y + h - overlapPixels) return true; } else { if (mx >= x + overlapPixels && mx < x + w - overlapPixels && ((unsigned int) my) < (unsigned int) getHeight()) return true; } Path p; getLookAndFeel() .createTabButtonShape (p, w, h, tabIndex, getButtonText(), *this, owner->getOrientation(), false, false, getToggleState()); return p.contains ((float) (mx - x), (float) (my - y)); } int TabBarButton::getBestTabLength (const int depth) { return jlimit (depth * 2, depth * 7, getLookAndFeel().getTabButtonBestWidth (tabIndex, getButtonText(), depth, *this)); } void TabBarButton::getActiveArea (int& x, int& y, int& w, int& h) { x = 0; y = 0; int r = getWidth(); int b = getHeight(); const int spaceAroundImage = getLookAndFeel().getTabButtonSpaceAroundImage(); if (owner->getOrientation() != TabbedButtonBar::TabsAtLeft) r -= spaceAroundImage; if (owner->getOrientation() != TabbedButtonBar::TabsAtRight) x += spaceAroundImage; if (owner->getOrientation() != TabbedButtonBar::TabsAtBottom) y += spaceAroundImage; if (owner->getOrientation() != TabbedButtonBar::TabsAtTop) b -= spaceAroundImage; w = r - x; h = b - y; } class TabAreaBehindFrontButtonComponent : public Component { public: TabAreaBehindFrontButtonComponent (TabbedButtonBar* const owner_) : owner (owner_) { setInterceptsMouseClicks (false, false); } ~TabAreaBehindFrontButtonComponent() { } void paint (Graphics& g) { getLookAndFeel() .drawTabAreaBehindFrontButton (g, getWidth(), getHeight(), *owner, owner->getOrientation()); } void enablementChanged() { repaint(); } private: TabbedButtonBar* const owner; TabAreaBehindFrontButtonComponent (const TabAreaBehindFrontButtonComponent&); const TabAreaBehindFrontButtonComponent& operator= (const TabAreaBehindFrontButtonComponent&); }; TabbedButtonBar::TabbedButtonBar (const Orientation orientation_) : orientation (orientation_), currentTabIndex (-1), extraTabsButton (0) { setInterceptsMouseClicks (false, true); addAndMakeVisible (behindFrontTab = new TabAreaBehindFrontButtonComponent (this)); setFocusContainer (true); } TabbedButtonBar::~TabbedButtonBar() { deleteAllChildren(); } void TabbedButtonBar::setOrientation (const Orientation newOrientation) { orientation = newOrientation; for (int i = getNumChildComponents(); --i >= 0;) getChildComponent (i)->resized(); resized(); } TabBarButton* TabbedButtonBar::createTabButton (const String& name, const int index) { return new TabBarButton (name, this, index); } void TabbedButtonBar::clearTabs() { tabs.clear(); tabColours.clear(); currentTabIndex = -1; deleteAndZero (extraTabsButton); removeChildComponent (behindFrontTab); deleteAllChildren(); addChildComponent (behindFrontTab); setCurrentTabIndex (-1); } void TabbedButtonBar::addTab (const String& tabName, const Colour& tabBackgroundColour, int insertIndex) { jassert (tabName.isNotEmpty()); // you have to give them all a name.. if (tabName.isNotEmpty()) { if (((unsigned int) insertIndex) > (unsigned int) tabs.size()) insertIndex = tabs.size(); for (int i = tabs.size(); --i >= insertIndex;) { TabBarButton* const tb = getTabButton (i); if (tb != 0) tb->tabIndex++; } tabs.insert (insertIndex, tabName); tabColours.insert (insertIndex, tabBackgroundColour); TabBarButton* const tb = createTabButton (tabName, insertIndex); jassert (tb != 0); // your createTabButton() mustn't return zero! addAndMakeVisible (tb, insertIndex); resized(); if (currentTabIndex < 0) setCurrentTabIndex (0); } } void TabbedButtonBar::setTabName (const int tabIndex, const String& newName) { if (((unsigned int) tabIndex) < (unsigned int) tabs.size() && tabs[tabIndex] != newName) { tabs.set (tabIndex, newName); TabBarButton* const tb = getTabButton (tabIndex); if (tb != 0) tb->setButtonText (newName); resized(); } } void TabbedButtonBar::removeTab (const int tabIndex) { if (((unsigned int) tabIndex) < (unsigned int) tabs.size()) { const int oldTabIndex = currentTabIndex; if (currentTabIndex == tabIndex) currentTabIndex = -1; tabs.remove (tabIndex); tabColours.remove (tabIndex); TabBarButton* const tb = getTabButton (tabIndex); if (tb != 0) delete tb; for (int i = tabIndex + 1; i <= tabs.size(); ++i) { TabBarButton* const tb = getTabButton (i); if (tb != 0) tb->tabIndex--; } resized(); setCurrentTabIndex (jlimit (0, jmax (0, tabs.size() - 1), oldTabIndex)); } } void TabbedButtonBar::moveTab (const int currentIndex, const int newIndex) { tabs.move (currentIndex, newIndex); tabColours.move (currentIndex, newIndex); resized(); } int TabbedButtonBar::getNumTabs() const { return tabs.size(); } const StringArray TabbedButtonBar::getTabNames() const { return tabs; } void TabbedButtonBar::setCurrentTabIndex (int newIndex, const bool sendChangeMessage_) { if (currentTabIndex != newIndex) { if (((unsigned int) newIndex) >= (unsigned int) tabs.size()) newIndex = -1; currentTabIndex = newIndex; for (int i = 0; i < getNumChildComponents(); ++i) { TabBarButton* const tb = dynamic_cast (getChildComponent (i)); if (tb != 0) tb->setToggleState (tb->tabIndex == newIndex, false); } resized(); if (sendChangeMessage_) sendChangeMessage (this); currentTabChanged (newIndex, newIndex >= 0 ? tabs [newIndex] : String::empty); } } TabBarButton* TabbedButtonBar::getTabButton (const int index) const { for (int i = getNumChildComponents(); --i >= 0;) { TabBarButton* const tb = dynamic_cast (getChildComponent (i)); if (tb != 0 && tb->tabIndex == index) return tb; } return 0; } void TabbedButtonBar::lookAndFeelChanged() { deleteAndZero (extraTabsButton); resized(); } void TabbedButtonBar::resized() { const double minimumScale = 0.7; int depth = getWidth(); int length = getHeight(); if (orientation == TabsAtTop || orientation == TabsAtBottom) swapVariables (depth, length); const int overlap = getLookAndFeel().getTabButtonOverlap (depth) + getLookAndFeel().getTabButtonSpaceAroundImage() * 2; int i, totalLength = overlap; int numVisibleButtons = tabs.size(); for (i = 0; i < getNumChildComponents(); ++i) { TabBarButton* const tb = dynamic_cast (getChildComponent (i)); if (tb != 0) { totalLength += tb->getBestTabLength (depth) - overlap; tb->overlapPixels = overlap / 2; } } double scale = 1.0; if (totalLength > length) scale = jmax (minimumScale, length / (double) totalLength); const bool isTooBig = totalLength * scale > length; int tabsButtonPos = 0; if (isTooBig) { if (extraTabsButton == 0) { addAndMakeVisible (extraTabsButton = getLookAndFeel().createTabBarExtrasButton()); extraTabsButton->addButtonListener (this); extraTabsButton->setAlwaysOnTop (true); extraTabsButton->setTriggeredOnMouseDown (true); } const int buttonSize = jmin (proportionOfWidth (0.7f), proportionOfHeight (0.7f)); extraTabsButton->setSize (buttonSize, buttonSize); if (orientation == TabsAtTop || orientation == TabsAtBottom) { tabsButtonPos = getWidth() - buttonSize / 2 - 1; extraTabsButton->setCentrePosition (tabsButtonPos, getHeight() / 2); } else { tabsButtonPos = getHeight() - buttonSize / 2 - 1; extraTabsButton->setCentrePosition (getWidth() / 2, tabsButtonPos); } totalLength = 0; for (i = 0; i < tabs.size(); ++i) { TabBarButton* const tb = getTabButton (i); if (tb != 0) { const int newLength = totalLength + tb->getBestTabLength (depth); if (i > 0 && newLength * minimumScale > tabsButtonPos) { totalLength += overlap; break; } numVisibleButtons = i + 1; totalLength = newLength - overlap; } } scale = jmax (minimumScale, tabsButtonPos / (double) totalLength); } else { deleteAndZero (extraTabsButton); } int pos = 0; TabBarButton* frontTab = 0; for (i = 0; i < tabs.size(); ++i) { TabBarButton* const tb = getTabButton (i); if (tb != 0) { const int bestLength = roundDoubleToInt (scale * tb->getBestTabLength (depth)); if (i < numVisibleButtons) { if (orientation == TabsAtTop || orientation == TabsAtBottom) tb->setBounds (pos, 0, bestLength, getHeight()); else tb->setBounds (0, pos, getWidth(), bestLength); tb->toBack(); if (tb->tabIndex == currentTabIndex) frontTab = tb; tb->setVisible (true); } else { tb->setVisible (false); } pos += bestLength - overlap; } } behindFrontTab->setBounds (0, 0, getWidth(), getHeight()); if (frontTab != 0) { frontTab->toFront (false); behindFrontTab->toBehind (frontTab); } } const Colour TabbedButtonBar::getTabBackgroundColour (const int tabIndex) { return tabColours [tabIndex]; } void TabbedButtonBar::setTabBackgroundColour (const int tabIndex, const Colour& newColour) { if (((unsigned int) tabIndex) < (unsigned int) tabColours.size() && tabColours [tabIndex] != newColour) { tabColours.set (tabIndex, newColour); repaint(); } } void TabbedButtonBar::buttonClicked (Button* button) { if (extraTabsButton == button) { PopupMenu m; for (int i = 0; i < tabs.size(); ++i) { TabBarButton* const tb = getTabButton (i); if (tb != 0 && ! tb->isVisible()) m.addItem (tb->tabIndex + 1, tabs[i], true, i == currentTabIndex); } const int res = m.showAt (extraTabsButton); if (res != 0) setCurrentTabIndex (res - 1); } } void TabbedButtonBar::currentTabChanged (const int, const String&) { } void TabbedButtonBar::popupMenuClickOnTab (const int, const String&) { } END_JUCE_NAMESPACE /********* End of inlined file: juce_TabbedButtonBar.cpp *********/ /********* Start of inlined file: juce_TabbedComponent.cpp *********/ BEGIN_JUCE_NAMESPACE class TabCompButtonBar : public TabbedButtonBar { public: TabCompButtonBar (TabbedComponent* const owner_, const TabbedButtonBar::Orientation orientation) : TabbedButtonBar (orientation), owner (owner_) { } ~TabCompButtonBar() { } void currentTabChanged (const int newCurrentTabIndex, const String& newTabName) { owner->changeCallback (newCurrentTabIndex, newTabName); } void popupMenuClickOnTab (const int tabIndex, const String& tabName) { owner->popupMenuClickOnTab (tabIndex, tabName); } const Colour getTabBackgroundColour (const int tabIndex) { return owner->tabs->getTabBackgroundColour (tabIndex); } TabBarButton* createTabButton (const String& tabName, const int tabIndex) { return owner->createTabButton (tabName, tabIndex); } juce_UseDebuggingNewOperator private: TabbedComponent* const owner; TabCompButtonBar (const TabCompButtonBar&); const TabCompButtonBar& operator= (const TabCompButtonBar&); }; TabbedComponent::TabbedComponent (const TabbedButtonBar::Orientation orientation) : panelComponent (0), tabDepth (30), outlineThickness (1), edgeIndent (0) { addAndMakeVisible (tabs = new TabCompButtonBar (this, orientation)); } TabbedComponent::~TabbedComponent() { clearTabs(); delete tabs; } void TabbedComponent::setOrientation (const TabbedButtonBar::Orientation orientation) { tabs->setOrientation (orientation); resized(); } TabbedButtonBar::Orientation TabbedComponent::getOrientation() const throw() { return tabs->getOrientation(); } void TabbedComponent::setTabBarDepth (const int newDepth) { if (tabDepth != newDepth) { tabDepth = newDepth; resized(); } } TabBarButton* TabbedComponent::createTabButton (const String& tabName, const int tabIndex) { return new TabBarButton (tabName, tabs, tabIndex); } void TabbedComponent::clearTabs() { if (panelComponent != 0) { panelComponent->setVisible (false); removeChildComponent (panelComponent); panelComponent = 0; } tabs->clearTabs(); for (int i = contentComponents.size(); --i >= 0;) { Component* const c = contentComponents.getUnchecked(i); // be careful not to delete these components until they've been removed from the tab component jassert (c == 0 || c->isValidComponent()); if (c != 0 && c->getComponentPropertyBool (T("deleteByTabComp_"), false, false)) delete c; } contentComponents.clear(); } void TabbedComponent::addTab (const String& tabName, const Colour& tabBackgroundColour, Component* const contentComponent, const bool deleteComponentWhenNotNeeded, const int insertIndex) { contentComponents.insert (insertIndex, contentComponent); if (contentComponent != 0) contentComponent->setComponentProperty (T("deleteByTabComp_"), deleteComponentWhenNotNeeded); tabs->addTab (tabName, tabBackgroundColour, insertIndex); } void TabbedComponent::setTabName (const int tabIndex, const String& newName) { tabs->setTabName (tabIndex, newName); } void TabbedComponent::removeTab (const int tabIndex) { Component* const c = contentComponents [tabIndex]; if (c != 0 && c->getComponentPropertyBool (T("deleteByTabComp_"), false, false)) { if (c == panelComponent) panelComponent = 0; delete c; } contentComponents.remove (tabIndex); tabs->removeTab (tabIndex); } int TabbedComponent::getNumTabs() const { return tabs->getNumTabs(); } const StringArray TabbedComponent::getTabNames() const { return tabs->getTabNames(); } Component* TabbedComponent::getTabContentComponent (const int tabIndex) const throw() { return contentComponents [tabIndex]; } const Colour TabbedComponent::getTabBackgroundColour (const int tabIndex) const throw() { return tabs->getTabBackgroundColour (tabIndex); } void TabbedComponent::setTabBackgroundColour (const int tabIndex, const Colour& newColour) { tabs->setTabBackgroundColour (tabIndex, newColour); if (getCurrentTabIndex() == tabIndex) repaint(); } void TabbedComponent::setCurrentTabIndex (const int newTabIndex, const bool sendChangeMessage) { tabs->setCurrentTabIndex (newTabIndex, sendChangeMessage); } int TabbedComponent::getCurrentTabIndex() const { return tabs->getCurrentTabIndex(); } const String& TabbedComponent::getCurrentTabName() const { return tabs->getCurrentTabName(); } void TabbedComponent::setOutline (int thickness) { outlineThickness = thickness; repaint(); } void TabbedComponent::setIndent (const int indentThickness) { edgeIndent = indentThickness; } void TabbedComponent::paint (Graphics& g) { g.fillAll (findColour (backgroundColourId)); const TabbedButtonBar::Orientation o = getOrientation(); int x = 0; int y = 0; int r = getWidth(); int b = getHeight(); if (o == TabbedButtonBar::TabsAtTop) y += tabDepth; else if (o == TabbedButtonBar::TabsAtBottom) b -= tabDepth; else if (o == TabbedButtonBar::TabsAtLeft) x += tabDepth; else if (o == TabbedButtonBar::TabsAtRight) r -= tabDepth; g.reduceClipRegion (x, y, r - x, b - y); g.fillAll (tabs->getTabBackgroundColour (getCurrentTabIndex())); if (outlineThickness > 0) { if (o == TabbedButtonBar::TabsAtTop) --y; else if (o == TabbedButtonBar::TabsAtBottom) ++b; else if (o == TabbedButtonBar::TabsAtLeft) --x; else if (o == TabbedButtonBar::TabsAtRight) ++r; g.setColour (findColour (outlineColourId)); g.drawRect (x, y, r - x, b - y, outlineThickness); } } void TabbedComponent::resized() { const TabbedButtonBar::Orientation o = getOrientation(); const int indent = edgeIndent + outlineThickness; BorderSize indents (indent); if (o == TabbedButtonBar::TabsAtTop) { tabs->setBounds (0, 0, getWidth(), tabDepth); indents.setTop (tabDepth + edgeIndent); } else if (o == TabbedButtonBar::TabsAtBottom) { tabs->setBounds (0, getHeight() - tabDepth, getWidth(), tabDepth); indents.setBottom (tabDepth + edgeIndent); } else if (o == TabbedButtonBar::TabsAtLeft) { tabs->setBounds (0, 0, tabDepth, getHeight()); indents.setLeft (tabDepth + edgeIndent); } else if (o == TabbedButtonBar::TabsAtRight) { tabs->setBounds (getWidth() - tabDepth, 0, tabDepth, getHeight()); indents.setRight (tabDepth + edgeIndent); } const Rectangle bounds (indents.subtractedFrom (Rectangle (0, 0, getWidth(), getHeight()))); for (int i = contentComponents.size(); --i >= 0;) if (contentComponents.getUnchecked (i) != 0) contentComponents.getUnchecked (i)->setBounds (bounds); } void TabbedComponent::lookAndFeelChanged() { for (int i = contentComponents.size(); --i >= 0;) if (contentComponents.getUnchecked (i) != 0) contentComponents.getUnchecked (i)->lookAndFeelChanged(); } void TabbedComponent::changeCallback (const int newCurrentTabIndex, const String& newTabName) { if (panelComponent != 0) { panelComponent->setVisible (false); removeChildComponent (panelComponent); panelComponent = 0; } if (getCurrentTabIndex() >= 0) { panelComponent = contentComponents [getCurrentTabIndex()]; if (panelComponent != 0) { // do these ops as two stages instead of addAndMakeVisible() so that the // component has always got a parent when it gets the visibilityChanged() callback addChildComponent (panelComponent); panelComponent->setVisible (true); panelComponent->toFront (true); } repaint(); } resized(); currentTabChanged (newCurrentTabIndex, newTabName); } void TabbedComponent::currentTabChanged (const int, const String&) { } void TabbedComponent::popupMenuClickOnTab (const int, const String&) { } END_JUCE_NAMESPACE /********* End of inlined file: juce_TabbedComponent.cpp *********/ /********* Start of inlined file: juce_Viewport.cpp *********/ BEGIN_JUCE_NAMESPACE Viewport::Viewport (const String& componentName) : Component (componentName), contentComp (0), lastVX (0), lastVY (0), lastVW (0), lastVH (0), scrollBarThickness (0), singleStepX (16), singleStepY (16), showHScrollbar (true), showVScrollbar (true) { // content holder is used to clip the contents so they don't overlap the scrollbars addAndMakeVisible (contentHolder = new Component()); contentHolder->setInterceptsMouseClicks (false, true); verticalScrollBar = new ScrollBar (true); horizontalScrollBar = new ScrollBar (false); addChildComponent (verticalScrollBar); addChildComponent (horizontalScrollBar); verticalScrollBar->addListener (this); horizontalScrollBar->addListener (this); setInterceptsMouseClicks (false, true); setWantsKeyboardFocus (true); } Viewport::~Viewport() { contentHolder->deleteAllChildren(); deleteAllChildren(); } void Viewport::visibleAreaChanged (int, int, int, int) { } void Viewport::setViewedComponent (Component* const newViewedComponent) { if (contentComp != newViewedComponent) { if (contentComp->isValidComponent()) { Component* const oldComp = contentComp; contentComp = 0; delete oldComp; } contentComp = newViewedComponent; if (contentComp != 0) { contentComp->setTopLeftPosition (0, 0); contentHolder->addAndMakeVisible (contentComp); contentComp->addComponentListener (this); } updateVisibleRegion(); } } int Viewport::getMaximumVisibleWidth() const throw() { return jmax (0, getWidth() - (verticalScrollBar->isVisible() ? getScrollBarThickness() : 0)); } int Viewport::getMaximumVisibleHeight() const throw() { return jmax (0, getHeight() - (horizontalScrollBar->isVisible() ? getScrollBarThickness() : 0)); } void Viewport::setViewPosition (const int xPixelsOffset, const int yPixelsOffset) { if (contentComp != 0) contentComp->setTopLeftPosition (-xPixelsOffset, -yPixelsOffset); } void Viewport::setViewPositionProportionately (const double x, const double y) { if (contentComp != 0) setViewPosition (jmax (0, roundDoubleToInt (x * (contentComp->getWidth() - getWidth()))), jmax (0, roundDoubleToInt (y * (contentComp->getHeight() - getHeight())))); } void Viewport::componentMovedOrResized (Component&, bool, bool) { updateVisibleRegion(); } void Viewport::resized() { updateVisibleRegion(); } void Viewport::updateVisibleRegion() { if (contentComp != 0) { const int newVX = -contentComp->getX(); const int newVY = -contentComp->getY(); if (newVX == 0 && newVY == 0 && contentComp->getWidth() <= getWidth() && contentComp->getHeight() <= getHeight()) { horizontalScrollBar->setVisible (false); verticalScrollBar->setVisible (false); } horizontalScrollBar->setRangeLimits (0.0, contentComp->getWidth()); horizontalScrollBar->setCurrentRange (newVX, getMaximumVisibleWidth()); horizontalScrollBar->setSingleStepSize (singleStepX); if (! (contentComp->getWidth() > 0 && showHScrollbar && getHeight() > getScrollBarThickness())) horizontalScrollBar->setVisible (false); verticalScrollBar->setRangeLimits (0.0, contentComp->getHeight()); verticalScrollBar->setCurrentRange (newVY, getMaximumVisibleHeight()); verticalScrollBar->setSingleStepSize (singleStepY); if (! (contentComp->getHeight() > 0 && showVScrollbar && getWidth() > getScrollBarThickness())) verticalScrollBar->setVisible (false); if (verticalScrollBar->isVisible()) { horizontalScrollBar->setCurrentRange (newVX, getMaximumVisibleWidth()); verticalScrollBar->setCurrentRange (newVY, getMaximumVisibleHeight()); verticalScrollBar ->setBounds (getMaximumVisibleWidth(), 0, getScrollBarThickness(), getMaximumVisibleHeight()); } if (horizontalScrollBar->isVisible()) { horizontalScrollBar->setCurrentRange (newVX, getMaximumVisibleWidth()); horizontalScrollBar ->setBounds (0, getMaximumVisibleHeight(), getMaximumVisibleWidth(), getScrollBarThickness()); } contentHolder->setSize (getMaximumVisibleWidth(), getMaximumVisibleHeight()); const int newVW = jmin (contentComp->getRight(), getMaximumVisibleWidth()); const int newVH = jmin (contentComp->getBottom(), getMaximumVisibleHeight()); if (newVX != lastVX || newVY != lastVY || newVW != lastVW || newVH != lastVH) { lastVX = newVX; lastVY = newVY; lastVW = newVW; lastVH = newVH; visibleAreaChanged (newVX, newVY, newVW, newVH); } horizontalScrollBar->handleUpdateNowIfNeeded(); verticalScrollBar->handleUpdateNowIfNeeded(); } else { horizontalScrollBar->setVisible (false); verticalScrollBar->setVisible (false); } } void Viewport::setSingleStepSizes (const int stepX, const int stepY) { singleStepX = stepX; singleStepY = stepY; updateVisibleRegion(); } void Viewport::setScrollBarsShown (const bool showVerticalScrollbarIfNeeded, const bool showHorizontalScrollbarIfNeeded) { showVScrollbar = showVerticalScrollbarIfNeeded; showHScrollbar = showHorizontalScrollbarIfNeeded; updateVisibleRegion(); } void Viewport::setScrollBarThickness (const int thickness) { scrollBarThickness = thickness; updateVisibleRegion(); } int Viewport::getScrollBarThickness() const throw() { return (scrollBarThickness > 0) ? scrollBarThickness : getLookAndFeel().getDefaultScrollbarWidth(); } void Viewport::setScrollBarButtonVisibility (const bool buttonsVisible) { verticalScrollBar->setButtonVisibility (buttonsVisible); horizontalScrollBar->setButtonVisibility (buttonsVisible); } void Viewport::scrollBarMoved (ScrollBar* scrollBarThatHasMoved, const double newRangeStart) { if (scrollBarThatHasMoved == horizontalScrollBar) { setViewPosition (roundDoubleToInt (newRangeStart), getViewPositionY()); } else if (scrollBarThatHasMoved == verticalScrollBar) { setViewPosition (getViewPositionX(), roundDoubleToInt (newRangeStart)); } } void Viewport::mouseWheelMove (const MouseEvent& e, float wheelIncrementX, float wheelIncrementY) { if (! useMouseWheelMoveIfNeeded (e, wheelIncrementX, wheelIncrementY)) Component::mouseWheelMove (e, wheelIncrementX, wheelIncrementY); } bool Viewport::useMouseWheelMoveIfNeeded (const MouseEvent& e, float wheelIncrementX, float wheelIncrementY) { if (! (e.mods.isAltDown() || e.mods.isCtrlDown())) { const bool hasVertBar = verticalScrollBar->isVisible(); const bool hasHorzBar = horizontalScrollBar->isVisible(); if (hasHorzBar && (wheelIncrementX != 0 || e.mods.isShiftDown() || ! hasVertBar)) { if (wheelIncrementX == 0 && ! hasVertBar) wheelIncrementX = wheelIncrementY; horizontalScrollBar->mouseWheelMove (e.getEventRelativeTo (horizontalScrollBar), wheelIncrementX, wheelIncrementY); return true; } else if (hasVertBar && wheelIncrementY != 0) { verticalScrollBar->mouseWheelMove (e.getEventRelativeTo (verticalScrollBar), wheelIncrementX, wheelIncrementY); return true; } } return false; } bool Viewport::keyPressed (const KeyPress& key) { const bool isUpDownKey = key.isKeyCode (KeyPress::upKey) || key.isKeyCode (KeyPress::downKey) || key.isKeyCode (KeyPress::pageUpKey) || key.isKeyCode (KeyPress::pageDownKey) || key.isKeyCode (KeyPress::homeKey) || key.isKeyCode (KeyPress::endKey); if (verticalScrollBar->isVisible() && isUpDownKey) return verticalScrollBar->keyPressed (key); const bool isLeftRightKey = key.isKeyCode (KeyPress::leftKey) || key.isKeyCode (KeyPress::rightKey); if (horizontalScrollBar->isVisible() && (isUpDownKey || isLeftRightKey)) return horizontalScrollBar->keyPressed (key); return false; } END_JUCE_NAMESPACE /********* End of inlined file: juce_Viewport.cpp *********/ /********* Start of inlined file: juce_LookAndFeel.cpp *********/ BEGIN_JUCE_NAMESPACE static const Colour createBaseColour (const Colour& buttonColour, const bool hasKeyboardFocus, const bool isMouseOverButton, const bool isButtonDown) throw() { const float sat = hasKeyboardFocus ? 1.3f : 0.9f; const Colour baseColour (buttonColour.withMultipliedSaturation (sat)); if (isButtonDown) return baseColour.contrasting (0.2f); else if (isMouseOverButton) return baseColour.contrasting (0.1f); return baseColour; } static String defaultSansName, defaultSerifName, defaultFixedName; void clearUpDefaultFontNames() throw() { defaultSansName = String::empty; defaultSerifName = String::empty; defaultFixedName = String::empty; } LookAndFeel::LookAndFeel() { /* if this fails it means you're trying to create a LookAndFeel object before the static Colours have been initialised. That ain't gonna work. It probably means that you're using a static LookAndFeel object and that your compiler has decided to intialise it before the Colours class. */ jassert (Colours::white == Colour (0xffffffff)); // set up the standard set of colours.. #define textButtonColour 0xffbbbbff #define textHighlightColour 0x401111ee #define standardOutlineColour 0xb2808080 static const int standardColours[] = { TextButton::buttonColourId, textButtonColour, TextButton::buttonOnColourId, 0xff4444ff, TextButton::textColourId, 0xff000000, ComboBox::buttonColourId, 0xffbbbbff, ComboBox::outlineColourId, standardOutlineColour, ToggleButton::textColourId, 0xff000000, TextEditor::backgroundColourId, 0xffffffff, TextEditor::textColourId, 0xff000000, TextEditor::highlightColourId, textHighlightColour, TextEditor::highlightedTextColourId, 0xff000000, TextEditor::caretColourId, 0xff000000, TextEditor::outlineColourId, 0x00000000, TextEditor::focusedOutlineColourId, textButtonColour, TextEditor::shadowColourId, 0x38000000, Label::backgroundColourId, 0x00000000, Label::textColourId, 0xff000000, Label::outlineColourId, 0x00000000, ScrollBar::backgroundColourId, 0x00000000, ScrollBar::thumbColourId, 0xffffffff, ScrollBar::trackColourId, 0xffffffff, TreeView::linesColourId, 0x4c000000, TreeView::backgroundColourId, 0x00000000, PopupMenu::backgroundColourId, 0xffffffff, PopupMenu::textColourId, 0xff000000, PopupMenu::headerTextColourId, 0xff000000, PopupMenu::highlightedTextColourId, 0xffffffff, PopupMenu::highlightedBackgroundColourId, 0x991111aa, ComboBox::textColourId, 0xff000000, ComboBox::backgroundColourId, 0xffffffff, ComboBox::arrowColourId, 0x99000000, ListBox::backgroundColourId, 0xffffffff, ListBox::outlineColourId, standardOutlineColour, ListBox::textColourId, 0xff000000, Slider::backgroundColourId, 0x00000000, Slider::thumbColourId, textButtonColour, Slider::trackColourId, 0x7fffffff, Slider::rotarySliderFillColourId, 0x7f0000ff, Slider::rotarySliderOutlineColourId, 0x66000000, Slider::textBoxTextColourId, 0xff000000, Slider::textBoxBackgroundColourId, 0xffffffff, Slider::textBoxHighlightColourId, textHighlightColour, Slider::textBoxOutlineColourId, standardOutlineColour, ResizableWindow::backgroundColourId, 0xff777777, //DocumentWindow::textColourId, 0xff000000, // (this is deliberately not set) AlertWindow::backgroundColourId, 0xffededed, AlertWindow::textColourId, 0xff000000, AlertWindow::outlineColourId, 0xff666666, ProgressBar::backgroundColourId, 0xffeeeeee, ProgressBar::foregroundColourId, 0xffaaaaee, TooltipWindow::backgroundColourId, 0xffeeeebb, TooltipWindow::textColourId, 0xff000000, TooltipWindow::outlineColourId, 0x4c000000, TabbedComponent::backgroundColourId, 0x00000000, TabbedComponent::outlineColourId, 0xff777777, TabbedButtonBar::tabOutlineColourId, 0x80000000, TabbedButtonBar::frontOutlineColourId, 0x90000000, Toolbar::backgroundColourId, 0xfff6f8f9, Toolbar::separatorColourId, 0x4c000000, Toolbar::buttonMouseOverBackgroundColourId, 0x4c0000ff, Toolbar::buttonMouseDownBackgroundColourId, 0x800000ff, Toolbar::labelTextColourId, 0xff000000, Toolbar::editingModeOutlineColourId, 0xffff0000, HyperlinkButton::textColourId, 0xcc1111ee, GroupComponent::outlineColourId, 0x66000000, GroupComponent::textColourId, 0xff000000, DirectoryContentsDisplayComponent::highlightColourId, textHighlightColour, DirectoryContentsDisplayComponent::textColourId, 0xff000000, 0x1000440, /*LassoComponent::lassoFillColourId*/ 0x66dddddd, 0x1000441, /*LassoComponent::lassoOutlineColourId*/ 0x99111111, MidiKeyboardComponent::whiteNoteColourId, 0xffffffff, MidiKeyboardComponent::blackNoteColourId, 0xff000000, MidiKeyboardComponent::keySeparatorLineColourId, 0x66000000, MidiKeyboardComponent::mouseOverKeyOverlayColourId, 0x80ffff00, MidiKeyboardComponent::keyDownOverlayColourId, 0xffb6b600, MidiKeyboardComponent::textLabelColourId, 0xff000000, MidiKeyboardComponent::upDownButtonBackgroundColourId, 0xffd3d3d3, MidiKeyboardComponent::upDownButtonArrowColourId, 0xff000000, ColourSelector::backgroundColourId, 0xffe5e5e5, ColourSelector::labelTextColourId, 0xff000000, FileSearchPathListComponent::backgroundColourId, 0xffffffff, }; for (int i = 0; i < numElementsInArray (standardColours); i += 2) setColour (standardColours [i], Colour (standardColours [i + 1])); if (defaultSansName.isEmpty()) Typeface::getDefaultFontNames (defaultSansName, defaultSerifName, defaultFixedName); defaultSans = defaultSansName; defaultSerif = defaultSerifName; defaultFixed = defaultFixedName; } LookAndFeel::~LookAndFeel() { } const Colour LookAndFeel::findColour (const int colourId) const throw() { const int index = colourIds.indexOf (colourId); if (index >= 0) return colours [index]; jassertfalse return Colours::black; } void LookAndFeel::setColour (const int colourId, const Colour& colour) throw() { const int index = colourIds.indexOf (colourId); if (index >= 0) colours.set (index, colour); colourIds.add (colourId); colours.add (colour); } bool LookAndFeel::isColourSpecified (const int colourId) const throw() { return colourIds.contains (colourId); } static LookAndFeel* defaultLF = 0; static LookAndFeel* currentDefaultLF = 0; LookAndFeel& LookAndFeel::getDefaultLookAndFeel() throw() { // if this happens, your app hasn't initialised itself properly.. if you're // trying to hack your own main() function, have a look at // JUCEApplication::initialiseForGUI() jassert (currentDefaultLF != 0); return *currentDefaultLF; } void LookAndFeel::setDefaultLookAndFeel (LookAndFeel* newDefaultLookAndFeel) throw() { if (newDefaultLookAndFeel == 0) { if (defaultLF == 0) defaultLF = new LookAndFeel(); newDefaultLookAndFeel = defaultLF; } currentDefaultLF = newDefaultLookAndFeel; for (int i = Desktop::getInstance().getNumComponents(); --i >= 0;) { Component* const c = Desktop::getInstance().getComponent (i); if (c != 0) c->sendLookAndFeelChange(); } } void LookAndFeel::clearDefaultLookAndFeel() throw() { if (currentDefaultLF == defaultLF) currentDefaultLF = 0; deleteAndZero (defaultLF); } const Typeface::Ptr LookAndFeel::getTypefaceForFont (const Font& font) { String faceName (font.getTypefaceName()); if (faceName == Typeface::defaultTypefaceNameSans) faceName = defaultSans; else if (faceName == Typeface::defaultTypefaceNameSerif) faceName = defaultSerif; else if (faceName == Typeface::defaultTypefaceNameMono) faceName = defaultFixed; return new Typeface (faceName, font.isBold(), font.isItalic()); } void LookAndFeel::setDefaultSansSerifTypefaceName (const String& newName) { defaultSans = newName; } void LookAndFeel::drawButtonBackground (Graphics& g, Button& button, const Colour& backgroundColour, bool isMouseOverButton, bool isButtonDown) { const int width = button.getWidth(); const int height = button.getHeight(); const float outlineThickness = button.isEnabled() ? ((isButtonDown || isMouseOverButton) ? 1.2f : 0.7f) : 0.4f; const float halfThickness = outlineThickness * 0.5f; const float indentL = button.isConnectedOnLeft() ? 0.1f : halfThickness; const float indentR = button.isConnectedOnRight() ? 0.1f : halfThickness; const float indentT = button.isConnectedOnTop() ? 0.1f : halfThickness; const float indentB = button.isConnectedOnBottom() ? 0.1f : halfThickness; const Colour baseColour (createBaseColour (backgroundColour, button.hasKeyboardFocus (true), isMouseOverButton, isButtonDown) .withMultipliedAlpha (button.isEnabled() ? 1.0f : 0.5f)); drawGlassLozenge (g, indentL, indentT, width - indentL - indentR, height - indentT - indentB, baseColour, outlineThickness, -1.0f, button.isConnectedOnLeft(), button.isConnectedOnRight(), button.isConnectedOnTop(), button.isConnectedOnBottom()); } const Font LookAndFeel::getFontForTextButton (TextButton& button) { return button.getFont(); } void LookAndFeel::drawButtonText (Graphics& g, TextButton& button, bool /*isMouseOverButton*/, bool /*isButtonDown*/) { g.setFont (getFontForTextButton (button)); g.setColour (button.findColour (TextButton::textColourId) .withMultipliedAlpha (button.isEnabled() ? 1.0f : 0.5f)); const int yIndent = jmin (4, button.proportionOfHeight (0.3f)); const int cornerSize = jmin (button.getHeight(), button.getWidth()) / 2; const int fontHeight = roundFloatToInt (g.getCurrentFont().getHeight() * 0.6f); const int leftIndent = jmin (fontHeight, 2 + cornerSize / (button.isConnectedOnLeft() ? 4 : 2)); const int rightIndent = jmin (fontHeight, 2 + cornerSize / (button.isConnectedOnRight() ? 4 : 2)); g.drawFittedText (button.getButtonText(), leftIndent, yIndent, button.getWidth() - leftIndent - rightIndent, button.getHeight() - yIndent * 2, Justification::centred, 2); } void LookAndFeel::drawTickBox (Graphics& g, Component& component, int x, int y, int w, int h, const bool ticked, const bool isEnabled, const bool isMouseOverButton, const bool isButtonDown) { const float boxSize = w * 0.7f; drawGlassSphere (g, (float) x, y + (h - boxSize) * 0.5f, boxSize, createBaseColour (component.findColour (TextButton::buttonColourId) .withMultipliedAlpha (isEnabled ? 1.0f : 0.5f), true, isMouseOverButton, isButtonDown), isEnabled ? ((isButtonDown || isMouseOverButton) ? 1.1f : 0.5f) : 0.3f); if (ticked) { Path tick; tick.startNewSubPath (1.5f, 3.0f); tick.lineTo (3.0f, 6.0f); tick.lineTo (6.0f, 0.0f); g.setColour (isEnabled ? Colours::black : Colours::grey); const AffineTransform trans (AffineTransform::scale (w / 9.0f, h / 9.0f) .translated ((float) x, (float) y)); g.strokePath (tick, PathStrokeType (2.5f), trans); } } void LookAndFeel::drawToggleButton (Graphics& g, ToggleButton& button, bool isMouseOverButton, bool isButtonDown) { if (button.hasKeyboardFocus (true)) { g.setColour (button.findColour (TextEditor::focusedOutlineColourId)); g.drawRect (0, 0, button.getWidth(), button.getHeight()); } const int tickWidth = jmin (20, button.getHeight() - 4); drawTickBox (g, button, 4, (button.getHeight() - tickWidth) / 2, tickWidth, tickWidth, button.getToggleState(), button.isEnabled(), isMouseOverButton, isButtonDown); g.setColour (button.findColour (ToggleButton::textColourId)); g.setFont (jmin (15.0f, button.getHeight() * 0.6f)); if (! button.isEnabled()) g.setOpacity (0.5f); const int textX = tickWidth + 5; g.drawFittedText (button.getButtonText(), textX, 4, button.getWidth() - textX - 2, button.getHeight() - 8, Justification::centredLeft, 10); } void LookAndFeel::changeToggleButtonWidthToFitText (ToggleButton& button) { Font font (jmin (15.0f, button.getHeight() * 0.6f)); const int tickWidth = jmin (24, button.getHeight()); button.setSize (font.getStringWidth (button.getButtonText()) + tickWidth + 8, button.getHeight()); } AlertWindow* LookAndFeel::createAlertWindow (const String& title, const String& message, const String& button1, const String& button2, const String& button3, AlertWindow::AlertIconType iconType, int numButtons, Component* associatedComponent) { AlertWindow* aw = new AlertWindow (title, message, iconType, associatedComponent); if (numButtons == 1) { aw->addButton (button1, 0, KeyPress (KeyPress::escapeKey, 0, 0), KeyPress (KeyPress::returnKey, 0, 0)); } else { const KeyPress button1ShortCut (CharacterFunctions::toLowerCase (button1[0]), 0, 0); KeyPress button2ShortCut (CharacterFunctions::toLowerCase (button2[0]), 0, 0); if (button1ShortCut == button2ShortCut) button2ShortCut = KeyPress(); if (numButtons == 2) { aw->addButton (button1, 1, KeyPress (KeyPress::returnKey, 0, 0), button1ShortCut); aw->addButton (button2, 0, KeyPress (KeyPress::escapeKey, 0, 0), button2ShortCut); } else if (numButtons == 3) { aw->addButton (button1, 1, button1ShortCut); aw->addButton (button2, 2, button2ShortCut); aw->addButton (button3, 0, KeyPress (KeyPress::escapeKey, 0, 0)); } } return aw; } void LookAndFeel::drawAlertBox (Graphics& g, AlertWindow& alert, const Rectangle& textArea, TextLayout& textLayout) { g.fillAll (alert.findColour (AlertWindow::backgroundColourId)); int iconSpaceUsed = 0; Justification alignment (Justification::horizontallyCentred); const int iconWidth = 80; int iconSize = jmin (iconWidth + 50, alert.getHeight() + 20); if (alert.containsAnyExtraComponents() || alert.getNumButtons() > 2) iconSize = jmin (iconSize, textArea.getHeight() + 50); const Rectangle iconRect (iconSize / -10, iconSize / -10, iconSize, iconSize); if (alert.getAlertType() != AlertWindow::NoIcon) { Path icon; uint32 colour; char character; if (alert.getAlertType() == AlertWindow::WarningIcon) { colour = 0x55ff5555; character = '!'; icon.addTriangle (iconRect.getX() + iconRect.getWidth() * 0.5f, (float) iconRect.getY(), (float) iconRect.getRight(), (float) iconRect.getBottom(), (float) iconRect.getX(), (float) iconRect.getBottom()); icon = icon.createPathWithRoundedCorners (5.0f); } else { colour = alert.getAlertType() == AlertWindow::InfoIcon ? 0x605555ff : 0x40b69900; character = alert.getAlertType() == AlertWindow::InfoIcon ? 'i' : '?'; icon.addEllipse ((float) iconRect.getX(), (float) iconRect.getY(), (float) iconRect.getWidth(), (float) iconRect.getHeight()); } GlyphArrangement ga; ga.addFittedText (Font (iconRect.getHeight() * 0.9f, Font::bold), String::charToString (character), (float) iconRect.getX(), (float) iconRect.getY(), (float) iconRect.getWidth(), (float) iconRect.getHeight(), Justification::centred, false); ga.createPath (icon); icon.setUsingNonZeroWinding (false); g.setColour (Colour (colour)); g.fillPath (icon); iconSpaceUsed = iconWidth; alignment = Justification::left; } g.setColour (alert.findColour (AlertWindow::textColourId)); textLayout.drawWithin (g, textArea.getX() + iconSpaceUsed, textArea.getY(), textArea.getWidth() - iconSpaceUsed, textArea.getHeight(), alignment.getFlags() | Justification::top); g.setColour (alert.findColour (AlertWindow::outlineColourId)); g.drawRect (0, 0, alert.getWidth(), alert.getHeight()); } int LookAndFeel::getAlertBoxWindowFlags() { return ComponentPeer::windowAppearsOnTaskbar | ComponentPeer::windowHasDropShadow; } int LookAndFeel::getAlertWindowButtonHeight() { return 28; } const Font LookAndFeel::getAlertWindowFont() { return Font (12.0f); } void LookAndFeel::drawProgressBar (Graphics& g, ProgressBar& progressBar, int width, int height, double progress, const String& textToShow) { const Colour background (progressBar.findColour (ProgressBar::backgroundColourId)); const Colour foreground (progressBar.findColour (ProgressBar::foregroundColourId)); g.fillAll (background); if (progress >= 0.0f && progress < 1.0f) { drawGlassLozenge (g, 1.0f, 1.0f, (float) jlimit (0.0, width - 2.0, progress * (width - 2.0)), (float) (height - 2), foreground, 0.5f, 0.0f, true, true, true, true); } else { // spinning bar.. g.setColour (foreground); const int stripeWidth = height * 2; const int position = (Time::getMillisecondCounter() / 15) % stripeWidth; Path p; for (float x = (float) (- position); x < width + stripeWidth; x += stripeWidth) p.addQuadrilateral (x, 0.0f, x + stripeWidth * 0.5f, 0.0f, x, (float) height, x - stripeWidth * 0.5f, (float) height); Image im (Image::ARGB, width, height, true); { Graphics g (im); drawGlassLozenge (g, 1.0f, 1.0f, (float) (width - 2), (float) (height - 2), foreground, 0.5f, 0.0f, true, true, true, true); } ImageBrush ib (&im, 0, 0, 0.85f); g.setBrush (&ib); g.fillPath (p); } if (textToShow.isNotEmpty()) { g.setColour (Colour::contrasting (background, foreground)); g.setFont (height * 0.6f); g.drawText (textToShow, 0, 0, width, height, Justification::centred, false); } } void LookAndFeel::drawSpinningWaitAnimation (Graphics& g, int x, int y, int w, int h) { const float radius = jmin (w, h) * 0.4f; const float thickness = radius * 0.15f; Path p; p.addRoundedRectangle (radius * 0.4f, thickness * -0.5f, radius * 0.6f, thickness, thickness * 0.5f); const float cx = x + w * 0.5f; const float cy = y + h * 0.5f; const uint32 animationIndex = (Time::getMillisecondCounter() / (1000 / 10)) % 12; const Colour col (g.getCurrentColour()); for (int i = 0; i < 12; ++i) { const int n = (i + 12 - animationIndex) % 12; g.setColour (col.withMultipliedAlpha ((n + 1) / 12.0f)); g.fillPath (p, AffineTransform::rotation (i * (float_Pi / 6.0f)) .translated (cx, cy)); } } void LookAndFeel::drawScrollbarButton (Graphics& g, ScrollBar& scrollbar, int width, int height, int buttonDirection, bool /*isScrollbarVertical*/, bool /*isMouseOverButton*/, bool isButtonDown) { Path p; if (buttonDirection == 0) p.addTriangle (width * 0.5f, height * 0.2f, width * 0.1f, height * 0.7f, width * 0.9f, height * 0.7f); else if (buttonDirection == 1) p.addTriangle (width * 0.8f, height * 0.5f, width * 0.3f, height * 0.1f, width * 0.3f, height * 0.9f); else if (buttonDirection == 2) p.addTriangle (width * 0.5f, height * 0.8f, width * 0.1f, height * 0.3f, width * 0.9f, height * 0.3f); else if (buttonDirection == 3) p.addTriangle (width * 0.2f, height * 0.5f, width * 0.7f, height * 0.1f, width * 0.7f, height * 0.9f); if (isButtonDown) g.setColour (scrollbar.findColour (ScrollBar::thumbColourId).contrasting (0.2f)); else g.setColour (scrollbar.findColour (ScrollBar::thumbColourId)); g.fillPath (p); g.setColour (Colour (0x80000000)); g.strokePath (p, PathStrokeType (0.5f)); } void LookAndFeel::drawScrollbar (Graphics& g, ScrollBar& scrollbar, int x, int y, int width, int height, bool isScrollbarVertical, int thumbStartPosition, int thumbSize, bool /*isMouseOver*/, bool /*isMouseDown*/) { g.fillAll (scrollbar.findColour (ScrollBar::backgroundColourId)); Path slotPath, thumbPath; const float slotIndent = jmin (width, height) > 15 ? 1.0f : 0.0f; const float slotIndentx2 = slotIndent * 2.0f; const float thumbIndent = slotIndent + 1.0f; const float thumbIndentx2 = thumbIndent * 2.0f; float gx1 = 0.0f, gy1 = 0.0f, gx2 = 0.0f, gy2 = 0.0f; if (isScrollbarVertical) { slotPath.addRoundedRectangle (x + slotIndent, y + slotIndent, width - slotIndentx2, height - slotIndentx2, (width - slotIndentx2) * 0.5f); if (thumbSize > 0) thumbPath.addRoundedRectangle (x + thumbIndent, thumbStartPosition + thumbIndent, width - thumbIndentx2, thumbSize - thumbIndentx2, (width - thumbIndentx2) * 0.5f); gx1 = (float) x; gx2 = x + width * 0.7f; } else { slotPath.addRoundedRectangle (x + slotIndent, y + slotIndent, width - slotIndentx2, height - slotIndentx2, (height - slotIndentx2) * 0.5f); if (thumbSize > 0) thumbPath.addRoundedRectangle (thumbStartPosition + thumbIndent, y + thumbIndent, thumbSize - thumbIndentx2, height - thumbIndentx2, (height - thumbIndentx2) * 0.5f); gy1 = (float) y; gy2 = y + height * 0.7f; } const Colour thumbColour (scrollbar.findColour (ScrollBar::trackColourId)); GradientBrush gb (thumbColour.overlaidWith (Colour (0x44000000)), gx1, gy1, thumbColour.overlaidWith (Colour (0x19000000)), gx2, gy2, false); g.setBrush (&gb); g.fillPath (slotPath); if (isScrollbarVertical) { gx1 = x + width * 0.6f; gx2 = (float) x + width; } else { gy1 = y + height * 0.6f; gy2 = (float) y + height; } GradientBrush gb2 (Colours::transparentBlack, gx1, gy1, Colour (0x19000000), gx2, gy2, false); g.setBrush (&gb2); g.fillPath (slotPath); g.setColour (thumbColour); g.fillPath (thumbPath); GradientBrush gb3 (Colour (0x10000000), gx1, gy1, Colours::transparentBlack, gx2, gy2, false); g.saveState(); g.setBrush (&gb3); if (isScrollbarVertical) g.reduceClipRegion (x + width / 2, y, width, height); else g.reduceClipRegion (x, y + height / 2, width, height); g.fillPath (thumbPath); g.restoreState(); g.setColour (Colour (0x4c000000)); g.strokePath (thumbPath, PathStrokeType (0.4f)); } ImageEffectFilter* LookAndFeel::getScrollbarEffect() { return 0; } int LookAndFeel::getMinimumScrollbarThumbSize (ScrollBar& scrollbar) { return jmin (scrollbar.getWidth(), scrollbar.getHeight()) * 2; } int LookAndFeel::getDefaultScrollbarWidth() { return 18; } int LookAndFeel::getScrollbarButtonSize (ScrollBar& scrollbar) { return 2 + (scrollbar.isVertical() ? scrollbar.getWidth() : scrollbar.getHeight()); } const Path LookAndFeel::getTickShape (const float height) { static const unsigned char tickShapeData[] = { 109,0,224,168,68,0,0,119,67,108,0,224,172,68,0,128,146,67,113,0,192,148,68,0,0,219,67,0,96,110,68,0,224,56,68,113,0,64,51,68,0,32,130,68,0,64,20,68,0,224, 162,68,108,0,128,3,68,0,128,168,68,113,0,128,221,67,0,192,175,68,0,0,207,67,0,32,179,68,113,0,0,201,67,0,224,173,68,0,0,181,67,0,224,161,68,108,0,128,168,67, 0,128,154,68,113,0,128,141,67,0,192,138,68,0,128,108,67,0,64,131,68,113,0,0,62,67,0,128,119,68,0,0,5,67,0,128,114,68,113,0,0,102,67,0,192,88,68,0,128,155, 67,0,192,88,68,113,0,0,190,67,0,192,88,68,0,128,232,67,0,224,131,68,108,0,128,246,67,0,192,139,68,113,0,64,33,68,0,128,87,68,0,0,93,68,0,224,26,68,113,0, 96,140,68,0,128,188,67,0,224,168,68,0,0,119,67,99,101 }; Path p; p.loadPathFromData (tickShapeData, sizeof (tickShapeData)); p.scaleToFit (0, 0, height * 2.0f, height, true); return p; } const Path LookAndFeel::getCrossShape (const float height) { static const unsigned char crossShapeData[] = { 109,0,0,17,68,0,96,145,68,108,0,192,13,68,0,192,147,68,113,0,0,213,67,0,64,174,68,0,0,168,67,0,64,174,68,113,0,0,104,67,0,64,174,68,0,0,5,67,0,64, 153,68,113,0,0,18,67,0,64,153,68,0,0,24,67,0,64,153,68,113,0,0,135,67,0,64,153,68,0,128,207,67,0,224,130,68,108,0,0,220,67,0,0,126,68,108,0,0,204,67, 0,128,117,68,113,0,0,138,67,0,64,82,68,0,0,138,67,0,192,57,68,113,0,0,138,67,0,192,37,68,0,128,210,67,0,64,10,68,113,0,128,220,67,0,64,45,68,0,0,8, 68,0,128,78,68,108,0,192,14,68,0,0,87,68,108,0,64,20,68,0,0,80,68,113,0,192,57,68,0,0,32,68,0,128,88,68,0,0,32,68,113,0,64,112,68,0,0,32,68,0, 128,124,68,0,64,68,68,113,0,0,121,68,0,192,67,68,0,128,119,68,0,192,67,68,113,0,192,108,68,0,192,67,68,0,32,89,68,0,96,82,68,113,0,128,69,68,0,0,97,68, 0,0,56,68,0,64,115,68,108,0,64,49,68,0,128,124,68,108,0,192,55,68,0,96,129,68,113,0,0,92,68,0,224,146,68,0,192,129,68,0,224,146,68,113,0,64,110,68,0,64, 168,68,0,64,87,68,0,64,168,68,113,0,128,66,68,0,64,168,68,0,64,27,68,0,32,150,68,99,101 }; Path p; p.loadPathFromData (crossShapeData, sizeof (crossShapeData)); p.scaleToFit (0, 0, height * 2.0f, height, true); return p; } void LookAndFeel::drawTreeviewPlusMinusBox (Graphics& g, int x, int y, int w, int h, bool isPlus, bool /*isMouseOver*/) { const int boxSize = ((jmin (16, w, h) << 1) / 3) | 1; x += (w - boxSize) >> 1; y += (h - boxSize) >> 1; w = boxSize; h = boxSize; g.setColour (Colour (0xe5ffffff)); g.fillRect (x, y, w, h); g.setColour (Colour (0x80000000)); g.drawRect (x, y, w, h); const float size = boxSize / 2 + 1.0f; const float centre = (float) (boxSize / 2); g.fillRect (x + (w - size) * 0.5f, y + centre, size, 1.0f); if (isPlus) g.fillRect (x + centre, y + (h - size) * 0.5f, 1.0f, size); } void LookAndFeel::drawBubble (Graphics& g, float tipX, float tipY, float boxX, float boxY, float boxW, float boxH) { int side = 0; if (tipX < boxX) side = 1; else if (tipX > boxX + boxW) side = 3; else if (tipY > boxY + boxH) side = 2; const float indent = 2.0f; Path p; p.addBubble (boxX + indent, boxY + indent, boxW - indent * 2.0f, boxH - indent * 2.0f, 5.0f, tipX, tipY, side, 0.5f, jmin (15.0f, boxW * 0.3f, boxH * 0.3f)); //xxx need to take comp as param for colour g.setColour (findColour (TooltipWindow::backgroundColourId).withAlpha (0.9f)); g.fillPath (p); //xxx as above g.setColour (findColour (TooltipWindow::textColourId).withAlpha (0.4f)); g.strokePath (p, PathStrokeType (1.33f)); } const Font LookAndFeel::getPopupMenuFont() { return Font (17.0f); } void LookAndFeel::getIdealPopupMenuItemSize (const String& text, const bool isSeparator, int standardMenuItemHeight, int& idealWidth, int& idealHeight) { if (isSeparator) { idealWidth = 50; idealHeight = standardMenuItemHeight > 0 ? standardMenuItemHeight / 2 : 10; } else { Font font (getPopupMenuFont()); if (standardMenuItemHeight > 0 && font.getHeight() > standardMenuItemHeight / 1.3f) font.setHeight (standardMenuItemHeight / 1.3f); idealHeight = standardMenuItemHeight > 0 ? standardMenuItemHeight : roundFloatToInt (font.getHeight() * 1.3f); idealWidth = font.getStringWidth (text) + idealHeight * 2; } } void LookAndFeel::drawPopupMenuBackground (Graphics& g, int width, int height) { const Colour background (findColour (PopupMenu::backgroundColourId)); g.fillAll (background); g.setColour (background.overlaidWith (Colour (0x2badd8e6))); for (int i = 0; i < height; i += 3) g.fillRect (0, i, width, 1); #if ! JUCE_MAC g.setColour (findColour (PopupMenu::textColourId).withAlpha (0.6f)); g.drawRect (0, 0, width, height); #endif } void LookAndFeel::drawPopupMenuUpDownArrow (Graphics& g, int width, int height, bool isScrollUpArrow) { const Colour background (findColour (PopupMenu::backgroundColourId)); GradientBrush gb (background, 0.0f, height * 0.5f, background.withAlpha (0.0f), 0.0f, isScrollUpArrow ? ((float) height) : 0.0f, false); g.setBrush (&gb); g.fillRect (1, 1, width - 2, height - 2); const float hw = width * 0.5f; const float arrowW = height * 0.3f; const float y1 = height * (isScrollUpArrow ? 0.6f : 0.3f); const float y2 = height * (isScrollUpArrow ? 0.3f : 0.6f); Path p; p.addTriangle (hw - arrowW, y1, hw + arrowW, y1, hw, y2); g.setColour (findColour (PopupMenu::textColourId).withAlpha (0.5f)); g.fillPath (p); } void LookAndFeel::drawPopupMenuItem (Graphics& g, int width, int height, const bool isSeparator, const bool isActive, const bool isHighlighted, const bool isTicked, const bool hasSubMenu, const String& text, const String& shortcutKeyText, Image* image, const Colour* const textColourToUse) { const float halfH = height * 0.5f; if (isSeparator) { const float separatorIndent = 5.5f; g.setColour (Colour (0x33000000)); g.drawLine (separatorIndent, halfH, width - separatorIndent, halfH); g.setColour (Colour (0x66ffffff)); g.drawLine (separatorIndent, halfH + 1.0f, width - separatorIndent, halfH + 1.0f); } else { Colour textColour (findColour (PopupMenu::textColourId)); if (textColourToUse != 0) textColour = *textColourToUse; if (isHighlighted) { g.setColour (findColour (PopupMenu::highlightedBackgroundColourId)); g.fillRect (1, 1, width - 2, height - 2); g.setColour (findColour (PopupMenu::highlightedTextColourId)); } else { g.setColour (textColour); } if (! isActive) g.setOpacity (0.3f); Font font (getPopupMenuFont()); if (font.getHeight() > height / 1.3f) font.setHeight (height / 1.3f); g.setFont (font); const int leftBorder = (height * 5) / 4; const int rightBorder = 4; if (image != 0) { g.drawImageWithin (image, 2, 1, leftBorder - 4, height - 2, RectanglePlacement::centred | RectanglePlacement::onlyReduceInSize, false); } else if (isTicked) { const Path tick (getTickShape (1.0f)); const float th = font.getAscent(); const float ty = halfH - th * 0.5f; g.fillPath (tick, tick.getTransformToScaleToFit (2.0f, ty, (float) (leftBorder - 4), th, true)); } g.drawFittedText (text, leftBorder, 0, width - (leftBorder + rightBorder), height, Justification::centredLeft, 1); if (shortcutKeyText.isNotEmpty()) { Font f2 (g.getCurrentFont()); f2.setHeight (f2.getHeight() * 0.75f); f2.setHorizontalScale (0.95f); g.setFont (f2); g.drawText (shortcutKeyText, leftBorder, 0, width - (leftBorder + rightBorder + 4), height, Justification::centredRight, true); } if (hasSubMenu) { const float arrowH = 0.6f * getPopupMenuFont().getAscent(); const float x = width - height * 0.6f; Path p; p.addTriangle (x, halfH - arrowH * 0.5f, x, halfH + arrowH * 0.5f, x + arrowH * 0.6f, halfH); g.fillPath (p); } } } int LookAndFeel::getMenuWindowFlags() { return ComponentPeer::windowHasDropShadow; } void LookAndFeel::drawMenuBarBackground (Graphics& g, int width, int height, bool, MenuBarComponent& menuBar) { const Colour baseColour (createBaseColour (menuBar.findColour (PopupMenu::backgroundColourId), false, false, false)); if (menuBar.isEnabled()) { drawShinyButtonShape (g, -4.0f, 0.0f, width + 8.0f, (float) height, 0.0f, baseColour, 0.4f, true, true, true, true); } else { g.fillAll (baseColour); } } const Font LookAndFeel::getMenuBarFont (MenuBarComponent& menuBar, int /*itemIndex*/, const String& /*itemText*/) { return Font (menuBar.getHeight() * 0.7f); } int LookAndFeel::getMenuBarItemWidth (MenuBarComponent& menuBar, int itemIndex, const String& itemText) { return getMenuBarFont (menuBar, itemIndex, itemText) .getStringWidth (itemText) + menuBar.getHeight(); } void LookAndFeel::drawMenuBarItem (Graphics& g, int width, int height, int itemIndex, const String& itemText, bool isMouseOverItem, bool isMenuOpen, bool /*isMouseOverBar*/, MenuBarComponent& menuBar) { if (! menuBar.isEnabled()) { g.setColour (menuBar.findColour (PopupMenu::textColourId) .withMultipliedAlpha (0.5f)); } else if (isMenuOpen || isMouseOverItem) { g.fillAll (menuBar.findColour (PopupMenu::highlightedBackgroundColourId)); g.setColour (menuBar.findColour (PopupMenu::highlightedTextColourId)); } else { g.setColour (menuBar.findColour (PopupMenu::textColourId)); } g.setFont (getMenuBarFont (menuBar, itemIndex, itemText)); g.drawFittedText (itemText, 0, 0, width, height, Justification::centred, 1); } void LookAndFeel::fillTextEditorBackground (Graphics& g, int /*width*/, int /*height*/, TextEditor& textEditor) { g.fillAll (textEditor.findColour (TextEditor::backgroundColourId)); } void LookAndFeel::drawTextEditorOutline (Graphics& g, int width, int height, TextEditor& textEditor) { if (textEditor.isEnabled()) { if (textEditor.hasKeyboardFocus (true) && ! textEditor.isReadOnly()) { const int border = 2; g.setColour (textEditor.findColour (TextEditor::focusedOutlineColourId)); g.drawRect (0, 0, width, height, border); g.setOpacity (1.0f); const Colour shadowColour (textEditor.findColour (TextEditor::shadowColourId).withMultipliedAlpha (0.75f)); g.drawBevel (0, 0, width, height + 2, border + 2, shadowColour, shadowColour); } else { g.setColour (textEditor.findColour (TextEditor::outlineColourId)); g.drawRect (0, 0, width, height); g.setOpacity (1.0f); const Colour shadowColour (textEditor.findColour (TextEditor::shadowColourId)); g.drawBevel (0, 0, width, height + 2, 3, shadowColour, shadowColour); } } } void LookAndFeel::drawComboBox (Graphics& g, int width, int height, const bool isButtonDown, int buttonX, int buttonY, int buttonW, int buttonH, ComboBox& box) { g.fillAll (box.findColour (ComboBox::backgroundColourId)); if (box.isEnabled() && box.hasKeyboardFocus (false)) { g.setColour (box.findColour (TextButton::buttonColourId)); g.drawRect (0, 0, width, height, 2); } else { g.setColour (box.findColour (ComboBox::outlineColourId)); g.drawRect (0, 0, width, height); } const float outlineThickness = box.isEnabled() ? (isButtonDown ? 1.2f : 0.5f) : 0.3f; const Colour baseColour (createBaseColour (box.findColour (ComboBox::buttonColourId), box.hasKeyboardFocus (true), false, isButtonDown) .withMultipliedAlpha (box.isEnabled() ? 1.0f : 0.5f)); drawGlassLozenge (g, buttonX + outlineThickness, buttonY + outlineThickness, buttonW - outlineThickness * 2.0f, buttonH - outlineThickness * 2.0f, baseColour, outlineThickness, -1.0f, true, true, true, true); if (box.isEnabled()) { const float arrowX = 0.3f; const float arrowH = 0.2f; Path p; p.addTriangle (buttonX + buttonW * 0.5f, buttonY + buttonH * (0.45f - arrowH), buttonX + buttonW * (1.0f - arrowX), buttonY + buttonH * 0.45f, buttonX + buttonW * arrowX, buttonY + buttonH * 0.45f); p.addTriangle (buttonX + buttonW * 0.5f, buttonY + buttonH * (0.55f + arrowH), buttonX + buttonW * (1.0f - arrowX), buttonY + buttonH * 0.55f, buttonX + buttonW * arrowX, buttonY + buttonH * 0.55f); g.setColour (box.findColour (ComboBox::arrowColourId)); g.fillPath (p); } } const Font LookAndFeel::getComboBoxFont (ComboBox& box) { return Font (jmin (15.0f, box.getHeight() * 0.85f)); } Label* LookAndFeel::createComboBoxTextBox (ComboBox&) { return new Label (String::empty, String::empty); } void LookAndFeel::positionComboBoxText (ComboBox& box, Label& label) { label.setBounds (1, 1, box.getWidth() + 3 - box.getHeight(), box.getHeight() - 2); label.setFont (getComboBoxFont (box)); } void LookAndFeel::drawLabel (Graphics& g, Label& label) { g.fillAll (label.findColour (Label::backgroundColourId)); if (! label.isBeingEdited()) { const float alpha = label.isEnabled() ? 1.0f : 0.5f; g.setColour (label.findColour (Label::textColourId).withMultipliedAlpha (alpha)); g.setFont (label.getFont()); g.drawFittedText (label.getText(), label.getHorizontalBorderSize(), label.getVerticalBorderSize(), label.getWidth() - 2 * label.getHorizontalBorderSize(), label.getHeight() - 2 * label.getVerticalBorderSize(), label.getJustificationType(), jmax (1, (int) (label.getHeight() / label.getFont().getHeight())), label.getMinimumHorizontalScale()); g.setColour (label.findColour (Label::outlineColourId).withMultipliedAlpha (alpha)); g.drawRect (0, 0, label.getWidth(), label.getHeight()); } else if (label.isEnabled()) { g.setColour (label.findColour (Label::outlineColourId)); g.drawRect (0, 0, label.getWidth(), label.getHeight()); } } void LookAndFeel::drawLinearSliderBackground (Graphics& g, int x, int y, int width, int height, float /*sliderPos*/, float /*minSliderPos*/, float /*maxSliderPos*/, const Slider::SliderStyle /*style*/, Slider& slider) { const float sliderRadius = (float) (getSliderThumbRadius (slider) - 2); const Colour trackColour (slider.findColour (Slider::trackColourId)); const Colour gradCol1 (trackColour.overlaidWith (Colours::black.withAlpha (slider.isEnabled() ? 0.25f : 0.13f))); const Colour gradCol2 (trackColour.overlaidWith (Colour (0x14000000))); Path indent; if (slider.isHorizontal()) { const float iy = y + height * 0.5f - sliderRadius * 0.5f; const float ih = sliderRadius; GradientBrush gb (gradCol1, 0.0f, iy, gradCol2, 0.0f, iy + ih, false); g.setBrush (&gb); indent.addRoundedRectangle (x - sliderRadius * 0.5f, iy, width + sliderRadius, ih, 5.0f); g.fillPath (indent); } else { const float ix = x + width * 0.5f - sliderRadius * 0.5f; const float iw = sliderRadius; GradientBrush gb (gradCol1, ix, 0.0f, gradCol2, ix + iw, 0.0f, false); g.setBrush (&gb); indent.addRoundedRectangle (ix, y - sliderRadius * 0.5f, iw, height + sliderRadius, 5.0f); g.fillPath (indent); } g.setColour (Colour (0x4c000000)); g.strokePath (indent, PathStrokeType (0.5f)); } void LookAndFeel::drawLinearSliderThumb (Graphics& g, int x, int y, int width, int height, float sliderPos, float minSliderPos, float maxSliderPos, const Slider::SliderStyle style, Slider& slider) { const float sliderRadius = (float) (getSliderThumbRadius (slider) - 2); Colour knobColour (createBaseColour (slider.findColour (Slider::thumbColourId), slider.hasKeyboardFocus (false) && slider.isEnabled(), slider.isMouseOverOrDragging() && slider.isEnabled(), slider.isMouseButtonDown() && slider.isEnabled())); const float outlineThickness = slider.isEnabled() ? 0.8f : 0.3f; if (style == Slider::LinearHorizontal || style == Slider::LinearVertical) { float kx, ky; if (style == Slider::LinearVertical) { kx = x + width * 0.5f; ky = sliderPos; } else { kx = sliderPos; ky = y + height * 0.5f; } drawGlassSphere (g, kx - sliderRadius, ky - sliderRadius, sliderRadius * 2.0f, knobColour, outlineThickness); } else { if (style == Slider::ThreeValueVertical) { drawGlassSphere (g, x + width * 0.5f - sliderRadius, sliderPos - sliderRadius, sliderRadius * 2.0f, knobColour, outlineThickness); } else if (style == Slider::ThreeValueHorizontal) { drawGlassSphere (g,sliderPos - sliderRadius, y + height * 0.5f - sliderRadius, sliderRadius * 2.0f, knobColour, outlineThickness); } if (style == Slider::TwoValueVertical || style == Slider::ThreeValueVertical) { const float sr = jmin (sliderRadius, width * 0.4f); drawGlassPointer (g, jmax (0.0f, x + width * 0.5f - sliderRadius * 2.0f), minSliderPos - sliderRadius, sliderRadius * 2.0f, knobColour, outlineThickness, 1); drawGlassPointer (g, jmin (x + width - sliderRadius * 2.0f, x + width * 0.5f), maxSliderPos - sr, sliderRadius * 2.0f, knobColour, outlineThickness, 3); } else if (style == Slider::TwoValueHorizontal || style == Slider::ThreeValueHorizontal) { const float sr = jmin (sliderRadius, height * 0.4f); drawGlassPointer (g, minSliderPos - sr, jmax (0.0f, y + height * 0.5f - sliderRadius * 2.0f), sliderRadius * 2.0f, knobColour, outlineThickness, 2); drawGlassPointer (g, maxSliderPos - sliderRadius, jmin (y + height - sliderRadius * 2.0f, y + height * 0.5f), sliderRadius * 2.0f, knobColour, outlineThickness, 4); } } } void LookAndFeel::drawLinearSlider (Graphics& g, int x, int y, int width, int height, float sliderPos, float minSliderPos, float maxSliderPos, const Slider::SliderStyle style, Slider& slider) { g.fillAll (slider.findColour (Slider::backgroundColourId)); if (style == Slider::LinearBar) { const bool isMouseOver = slider.isMouseOverOrDragging() && slider.isEnabled(); Colour baseColour (createBaseColour (slider.findColour (Slider::thumbColourId) .withMultipliedSaturation (slider.isEnabled() ? 1.0f : 0.5f), false, isMouseOver, isMouseOver || slider.isMouseButtonDown())); drawShinyButtonShape (g, (float) x, (float) y, sliderPos - (float) x, (float) height, 0.0f, baseColour, slider.isEnabled() ? 0.9f : 0.3f, true, true, true, true); } else { drawLinearSliderBackground (g, x, y, width, height, sliderPos, minSliderPos, maxSliderPos, style, slider); drawLinearSliderThumb (g, x, y, width, height, sliderPos, minSliderPos, maxSliderPos, style, slider); } } int LookAndFeel::getSliderThumbRadius (Slider& slider) { return jmin (7, slider.getHeight() / 2, slider.getWidth() / 2) + 2; } void LookAndFeel::drawRotarySlider (Graphics& g, int x, int y, int width, int height, float sliderPos, const float rotaryStartAngle, const float rotaryEndAngle, Slider& slider) { const float radius = jmin (width / 2, height / 2) - 2.0f; const float centreX = x + width * 0.5f; const float centreY = y + height * 0.5f; const float rx = centreX - radius; const float ry = centreY - radius; const float rw = radius * 2.0f; const float angle = rotaryStartAngle + sliderPos * (rotaryEndAngle - rotaryStartAngle); const bool isMouseOver = slider.isMouseOverOrDragging() && slider.isEnabled(); if (radius > 12.0f) { if (slider.isEnabled()) g.setColour (slider.findColour (Slider::rotarySliderFillColourId).withAlpha (isMouseOver ? 1.0f : 0.7f)); else g.setColour (Colour (0x80808080)); const float thickness = 0.7f; { Path filledArc; filledArc.addPieSegment (rx, ry, rw, rw, rotaryStartAngle, angle, thickness); g.fillPath (filledArc); } if (thickness > 0) { const float innerRadius = radius * 0.2f; Path p; p.addTriangle (-innerRadius, 0.0f, 0.0f, -radius * thickness * 1.1f, innerRadius, 0.0f); p.addEllipse (-innerRadius, -innerRadius, innerRadius * 2.0f, innerRadius * 2.0f); g.fillPath (p, AffineTransform::rotation (angle).translated (centreX, centreY)); } if (slider.isEnabled()) { g.setColour (slider.findColour (Slider::rotarySliderOutlineColourId)); Path outlineArc; outlineArc.addPieSegment (rx, ry, rw, rw, rotaryStartAngle, rotaryEndAngle, thickness); outlineArc.closeSubPath(); g.strokePath (outlineArc, PathStrokeType (slider.isEnabled() ? (isMouseOver ? 2.0f : 1.2f) : 0.3f)); } } else { if (slider.isEnabled()) g.setColour (slider.findColour (Slider::rotarySliderFillColourId).withAlpha (isMouseOver ? 1.0f : 0.7f)); else g.setColour (Colour (0x80808080)); Path p; p.addEllipse (-0.4f * rw, -0.4f * rw, rw * 0.8f, rw * 0.8f); PathStrokeType (rw * 0.1f).createStrokedPath (p, p); p.addLineSegment (0.0f, 0.0f, 0.0f, -radius, rw * 0.2f); g.fillPath (p, AffineTransform::rotation (angle).translated (centreX, centreY)); } } Button* LookAndFeel::createSliderButton (const bool isIncrement) { return new TextButton (isIncrement ? "+" : "-", String::empty); } class SliderLabelComp : public Label { public: SliderLabelComp() : Label (String::empty, String::empty) {} ~SliderLabelComp() {} void mouseWheelMove (const MouseEvent&, float, float) {} }; Label* LookAndFeel::createSliderTextBox (Slider& slider) { Label* const l = new SliderLabelComp(); l->setJustificationType (Justification::centred); l->setColour (Label::textColourId, slider.findColour (Slider::textBoxTextColourId)); l->setColour (Label::backgroundColourId, (slider.getSliderStyle() == Slider::LinearBar) ? Colours::transparentBlack : slider.findColour (Slider::textBoxBackgroundColourId)); l->setColour (Label::outlineColourId, slider.findColour (Slider::textBoxOutlineColourId)); l->setColour (TextEditor::textColourId, slider.findColour (Slider::textBoxTextColourId)); l->setColour (TextEditor::backgroundColourId, slider.findColour (Slider::textBoxBackgroundColourId) .withAlpha (slider.getSliderStyle() == Slider::LinearBar ? 0.7f : 1.0f)); l->setColour (TextEditor::outlineColourId, slider.findColour (Slider::textBoxOutlineColourId)); return l; } ImageEffectFilter* LookAndFeel::getSliderEffect() { return 0; } static const TextLayout layoutTooltipText (const String& text) throw() { const float tooltipFontSize = 12.0f; const int maxToolTipWidth = 400; const Font f (tooltipFontSize, Font::bold); TextLayout tl (text, f); tl.layout (maxToolTipWidth, Justification::left, true); return tl; } void LookAndFeel::getTooltipSize (const String& tipText, int& width, int& height) { const TextLayout tl (layoutTooltipText (tipText)); width = tl.getWidth() + 14; height = tl.getHeight() + 6; } void LookAndFeel::drawTooltip (Graphics& g, const String& text, int width, int height) { g.fillAll (findColour (TooltipWindow::backgroundColourId)); const Colour textCol (findColour (TooltipWindow::textColourId)); #if ! JUCE_MAC // The mac windows already have a non-optional 1 pix outline, so don't double it here.. g.setColour (findColour (TooltipWindow::outlineColourId)); g.drawRect (0, 0, width, height, 1); #endif const TextLayout tl (layoutTooltipText (text)); g.setColour (findColour (TooltipWindow::textColourId)); tl.drawWithin (g, 0, 0, width, height, Justification::centred); } Button* LookAndFeel::createFilenameComponentBrowseButton (const String& text) { return new TextButton (text, TRANS("click to browse for a different file")); } void LookAndFeel::layoutFilenameComponent (FilenameComponent& filenameComp, ComboBox* filenameBox, Button* browseButton) { browseButton->setSize (80, filenameComp.getHeight()); TextButton* const tb = dynamic_cast (browseButton); if (tb != 0) tb->changeWidthToFitText(); browseButton->setTopRightPosition (filenameComp.getWidth(), 0); filenameBox->setBounds (0, 0, browseButton->getX(), filenameComp.getHeight()); } void LookAndFeel::drawImageButton (Graphics& g, Image* image, int imageX, int imageY, int imageW, int imageH, const Colour& overlayColour, float imageOpacity, ImageButton& button) { if (! button.isEnabled()) imageOpacity *= 0.3f; if (! overlayColour.isOpaque()) { g.setOpacity (imageOpacity); g.drawImage (image, imageX, imageY, imageW, imageH, 0, 0, image->getWidth(), image->getHeight(), false); } if (! overlayColour.isTransparent()) { g.setColour (overlayColour); g.drawImage (image, imageX, imageY, imageW, imageH, 0, 0, image->getWidth(), image->getHeight(), true); } } void LookAndFeel::drawCornerResizer (Graphics& g, int w, int h, bool /*isMouseOver*/, bool /*isMouseDragging*/) { const float lineThickness = jmin (w, h) * 0.075f; for (float i = 0.0f; i < 1.0f; i += 0.3f) { g.setColour (Colours::lightgrey); g.drawLine (w * i, h + 1.0f, w + 1.0f, h * i, lineThickness); g.setColour (Colours::darkgrey); g.drawLine (w * i + lineThickness, h + 1.0f, w + 1.0f, h * i + lineThickness, lineThickness); } } void LookAndFeel::drawResizableFrame (Graphics&, int /*w*/, int /*h*/, const BorderSize& /*borders*/) { } void LookAndFeel::fillResizableWindowBackground (Graphics& g, int /*w*/, int /*h*/, const BorderSize& /*border*/, ResizableWindow& window) { g.fillAll (window.getBackgroundColour()); } void LookAndFeel::drawResizableWindowBorder (Graphics& g, int w, int h, const BorderSize& border, ResizableWindow&) { g.setColour (Colour (0x80000000)); g.drawRect (0, 0, w, h); g.setColour (Colour (0x19000000)); g.drawRect (border.getLeft() - 1, border.getTop() - 1, w + 2 - border.getLeftAndRight(), h + 2 - border.getTopAndBottom()); } void LookAndFeel::drawDocumentWindowTitleBar (DocumentWindow& window, Graphics& g, int w, int h, int titleSpaceX, int titleSpaceW, const Image* icon, bool drawTitleTextOnLeft) { const bool isActive = window.isActiveWindow(); GradientBrush gb (window.getBackgroundColour(), 0.0f, 0.0f, window.getBackgroundColour().contrasting (isActive ? 0.15f : 0.05f), 0.0f, (float) h, false); g.setBrush (&gb); g.fillAll(); g.setFont (h * 0.65f, Font::bold); int textW = g.getCurrentFont().getStringWidth (window.getName()); int iconW = 0; int iconH = 0; if (icon != 0) { iconH = (int) g.getCurrentFont().getHeight(); iconW = icon->getWidth() * iconH / icon->getHeight() + 4; } textW = jmin (titleSpaceW, textW + iconW); int textX = drawTitleTextOnLeft ? titleSpaceX : jmax (titleSpaceX, (w - textW) / 2); if (textX + textW > titleSpaceX + titleSpaceW) textX = titleSpaceX + titleSpaceW - textW; if (icon != 0) { g.setOpacity (isActive ? 1.0f : 0.6f); g.drawImageWithin (icon, textX, (h - iconH) / 2, iconW, iconH, RectanglePlacement::centred, false); textX += iconW; textW -= iconW; } if (window.isColourSpecified (DocumentWindow::textColourId) || isColourSpecified (DocumentWindow::textColourId)) g.setColour (findColour (DocumentWindow::textColourId)); else g.setColour (window.getBackgroundColour().contrasting (isActive ? 0.7f : 0.4f)); g.drawText (window.getName(), textX, 0, textW, h, Justification::centredLeft, true); } class GlassWindowButton : public Button { public: GlassWindowButton (const String& name, const Colour& col, const Path& normalShape_, const Path& toggledShape_) throw() : Button (name), colour (col), normalShape (normalShape_), toggledShape (toggledShape_) { } ~GlassWindowButton() { } void paintButton (Graphics& g, bool isMouseOverButton, bool isButtonDown) { float alpha = isMouseOverButton ? (isButtonDown ? 1.0f : 0.8f) : 0.55f; if (! isEnabled()) alpha *= 0.5f; float x = 0, y = 0, diam; if (getWidth() < getHeight()) { diam = (float) getWidth(); y = (getHeight() - getWidth()) * 0.5f; } else { diam = (float) getHeight(); y = (getWidth() - getHeight()) * 0.5f; } x += diam * 0.05f; y += diam * 0.05f; diam *= 0.9f; GradientBrush gb1 (Colour::greyLevel (0.9f).withAlpha (alpha), 0, y + diam, Colour::greyLevel (0.6f).withAlpha (alpha), 0, y, false); g.setBrush (&gb1); g.fillEllipse (x, y, diam, diam); x += 2.0f; y += 2.0f; diam -= 4.0f; LookAndFeel::drawGlassSphere (g, x, y, diam, colour.withAlpha (alpha), 1.0f); Path& p = getToggleState() ? toggledShape : normalShape; const AffineTransform t (p.getTransformToScaleToFit (x + diam * 0.3f, y + diam * 0.3f, diam * 0.4f, diam * 0.4f, true)); g.setColour (Colours::black.withAlpha (alpha * 0.6f)); g.fillPath (p, t); } juce_UseDebuggingNewOperator private: Colour colour; Path normalShape, toggledShape; GlassWindowButton (const GlassWindowButton&); const GlassWindowButton& operator= (const GlassWindowButton&); }; Button* LookAndFeel::createDocumentWindowButton (int buttonType) { Path shape; const float crossThickness = 0.25f; if (buttonType == DocumentWindow::closeButton) { shape.addLineSegment (0.0f, 0.0f, 1.0f, 1.0f, crossThickness * 1.4f); shape.addLineSegment (1.0f, 0.0f, 0.0f, 1.0f, crossThickness * 1.4f); return new GlassWindowButton ("close", Colour (0xffdd1100), shape, shape); } else if (buttonType == DocumentWindow::minimiseButton) { shape.addLineSegment (0.0f, 0.5f, 1.0f, 0.5f, crossThickness); return new GlassWindowButton ("minimise", Colour (0xffaa8811), shape, shape); } else if (buttonType == DocumentWindow::maximiseButton) { shape.addLineSegment (0.5f, 0.0f, 0.5f, 1.0f, crossThickness); shape.addLineSegment (0.0f, 0.5f, 1.0f, 0.5f, crossThickness); Path fullscreenShape; fullscreenShape.startNewSubPath (45.0f, 100.0f); fullscreenShape.lineTo (0.0f, 100.0f); fullscreenShape.lineTo (0.0f, 0.0f); fullscreenShape.lineTo (100.0f, 0.0f); fullscreenShape.lineTo (100.0f, 45.0f); fullscreenShape.addRectangle (45.0f, 45.0f, 100.0f, 100.0f); PathStrokeType (30.0f).createStrokedPath (fullscreenShape, fullscreenShape); return new GlassWindowButton ("maximise", Colour (0xff119911), shape, fullscreenShape); } jassertfalse return 0; } void LookAndFeel::positionDocumentWindowButtons (DocumentWindow&, int titleBarX, int titleBarY, int titleBarW, int titleBarH, Button* minimiseButton, Button* maximiseButton, Button* closeButton, bool positionTitleBarButtonsOnLeft) { const int buttonW = titleBarH - titleBarH / 8; int x = positionTitleBarButtonsOnLeft ? titleBarX + 4 : titleBarX + titleBarW - buttonW - buttonW / 4; if (closeButton != 0) { closeButton->setBounds (x, titleBarY, buttonW, titleBarH); x += positionTitleBarButtonsOnLeft ? buttonW : -(buttonW + buttonW / 4); } if (positionTitleBarButtonsOnLeft) swapVariables (minimiseButton, maximiseButton); if (maximiseButton != 0) { maximiseButton->setBounds (x, titleBarY, buttonW, titleBarH); x += positionTitleBarButtonsOnLeft ? buttonW : -buttonW; } if (minimiseButton != 0) minimiseButton->setBounds (x, titleBarY, buttonW, titleBarH); } int LookAndFeel::getDefaultMenuBarHeight() { return 24; } DropShadower* LookAndFeel::createDropShadowerForComponent (Component*) { return new DropShadower (0.4f, 1, 5, 10); } void LookAndFeel::drawStretchableLayoutResizerBar (Graphics& g, int w, int h, bool /*isVerticalBar*/, bool isMouseOver, bool isMouseDragging) { float alpha = 0.5f; if (isMouseOver || isMouseDragging) { g.fillAll (Colour (0x190000ff)); alpha = 1.0f; } const float cx = w * 0.5f; const float cy = h * 0.5f; const float cr = jmin (w, h) * 0.4f; GradientBrush gb (Colours::white.withAlpha (alpha), cx + cr * 0.1f, cy + cr, Colours::black.withAlpha (alpha), cx, cy - cr * 4.0f, true); g.setBrush (&gb); g.fillEllipse (cx - cr, cy - cr, cr * 2.0f, cr * 2.0f); } void LookAndFeel::drawGroupComponentOutline (Graphics& g, int width, int height, const String& text, const Justification& position, GroupComponent& group) { const float textH = 15.0f; const float indent = 3.0f; const float textEdgeGap = 4.0f; float cs = 5.0f; Font f (textH); Path p; float x = indent; float y = f.getAscent() - 3.0f; float w = jmax (0.0f, width - x * 2.0f); float h = jmax (0.0f, height - y - indent); cs = jmin (cs, w * 0.5f, h * 0.5f); const float cs2 = 2.0f * cs; float textW = text.isEmpty() ? 0 : jlimit (0.0f, jmax (0.0f, w - cs2 - textEdgeGap * 2), f.getStringWidth (text) + textEdgeGap * 2.0f); float textX = cs + textEdgeGap; if (position.testFlags (Justification::horizontallyCentred)) textX = cs + (w - cs2 - textW) * 0.5f; else if (position.testFlags (Justification::right)) textX = w - cs - textW - textEdgeGap; p.startNewSubPath (x + textX + textW, y); p.lineTo (x + w - cs, y); p.addArc (x + w - cs2, y, cs2, cs2, 0, float_Pi * 0.5f); p.lineTo (x + w, y + h - cs); p.addArc (x + w - cs2, y + h - cs2, cs2, cs2, float_Pi * 0.5f, float_Pi); p.lineTo (x + cs, y + h); p.addArc (x, y + h - cs2, cs2, cs2, float_Pi, float_Pi * 1.5f); p.lineTo (x, y + cs); p.addArc (x, y, cs2, cs2, float_Pi * 1.5f, float_Pi * 2.0f); p.lineTo (x + textX, y); const float alpha = group.isEnabled() ? 1.0f : 0.5f; g.setColour (group.findColour (GroupComponent::outlineColourId) .withMultipliedAlpha (alpha)); g.strokePath (p, PathStrokeType (2.0f)); g.setColour (group.findColour (GroupComponent::textColourId) .withMultipliedAlpha (alpha)); g.setFont (f); g.drawText (text, roundFloatToInt (x + textX), 0, roundFloatToInt (textW), roundFloatToInt (textH), Justification::centred, true); } int LookAndFeel::getTabButtonOverlap (int tabDepth) { return 1 + tabDepth / 3; } int LookAndFeel::getTabButtonSpaceAroundImage() { return 4; } void LookAndFeel::createTabButtonShape (Path& p, int width, int height, int /*tabIndex*/, const String& /*text*/, Button& /*button*/, TabbedButtonBar::Orientation orientation, const bool /*isMouseOver*/, const bool /*isMouseDown*/, const bool /*isFrontTab*/) { const float w = (float) width; const float h = (float) height; float length = w; float depth = h; if (orientation == TabbedButtonBar::TabsAtLeft || orientation == TabbedButtonBar::TabsAtRight) { swapVariables (length, depth); } const float indent = (float) getTabButtonOverlap ((int) depth); const float overhang = 4.0f; if (orientation == TabbedButtonBar::TabsAtLeft) { p.startNewSubPath (w, 0.0f); p.lineTo (0.0f, indent); p.lineTo (0.0f, h - indent); p.lineTo (w, h); p.lineTo (w + overhang, h + overhang); p.lineTo (w + overhang, -overhang); } else if (orientation == TabbedButtonBar::TabsAtRight) { p.startNewSubPath (0.0f, 0.0f); p.lineTo (w, indent); p.lineTo (w, h - indent); p.lineTo (0.0f, h); p.lineTo (-overhang, h + overhang); p.lineTo (-overhang, -overhang); } else if (orientation == TabbedButtonBar::TabsAtBottom) { p.startNewSubPath (0.0f, 0.0f); p.lineTo (indent, h); p.lineTo (w - indent, h); p.lineTo (w, 0.0f); p.lineTo (w + overhang, -overhang); p.lineTo (-overhang, -overhang); } else { p.startNewSubPath (0.0f, h); p.lineTo (indent, 0.0f); p.lineTo (w - indent, 0.0f); p.lineTo (w, h); p.lineTo (w + overhang, h + overhang); p.lineTo (-overhang, h + overhang); } p.closeSubPath(); p = p.createPathWithRoundedCorners (3.0f); } void LookAndFeel::fillTabButtonShape (Graphics& g, const Path& path, const Colour& preferredColour, int /*tabIndex*/, const String& /*text*/, Button& button, TabbedButtonBar::Orientation /*orientation*/, const bool /*isMouseOver*/, const bool /*isMouseDown*/, const bool isFrontTab) { g.setColour (isFrontTab ? preferredColour : preferredColour.withMultipliedAlpha (0.9f)); g.fillPath (path); g.setColour (button.findColour (isFrontTab ? TabbedButtonBar::frontOutlineColourId : TabbedButtonBar::tabOutlineColourId, false) .withMultipliedAlpha (button.isEnabled() ? 1.0f : 0.5f)); g.strokePath (path, PathStrokeType (isFrontTab ? 1.0f : 0.5f)); } void LookAndFeel::drawTabButtonText (Graphics& g, int x, int y, int w, int h, const Colour& preferredBackgroundColour, int /*tabIndex*/, const String& text, Button& button, TabbedButtonBar::Orientation orientation, const bool isMouseOver, const bool isMouseDown, const bool isFrontTab) { int length = w; int depth = h; if (orientation == TabbedButtonBar::TabsAtLeft || orientation == TabbedButtonBar::TabsAtRight) { swapVariables (length, depth); } Font font (depth * 0.6f); font.setUnderline (button.hasKeyboardFocus (false)); GlyphArrangement textLayout; textLayout.addFittedText (font, text.trim(), 0.0f, 0.0f, (float) length, (float) depth, Justification::centred, jmax (1, depth / 12)); AffineTransform transform; if (orientation == TabbedButtonBar::TabsAtLeft) { transform = transform.rotated (float_Pi * -0.5f) .translated ((float) x, (float) (y + h)); } else if (orientation == TabbedButtonBar::TabsAtRight) { transform = transform.rotated (float_Pi * 0.5f) .translated ((float) (x + w), (float) y); } else { transform = transform.translated ((float) x, (float) y); } if (isFrontTab && (button.isColourSpecified (TabbedButtonBar::frontTextColourId) || isColourSpecified (TabbedButtonBar::frontTextColourId))) g.setColour (findColour (TabbedButtonBar::frontTextColourId)); else if (button.isColourSpecified (TabbedButtonBar::tabTextColourId) || isColourSpecified (TabbedButtonBar::tabTextColourId)) g.setColour (findColour (TabbedButtonBar::tabTextColourId)); else g.setColour (preferredBackgroundColour.contrasting()); if (! (isMouseOver || isMouseDown)) g.setOpacity (0.8f); if (! button.isEnabled()) g.setOpacity (0.3f); textLayout.draw (g, transform); } int LookAndFeel::getTabButtonBestWidth (int /*tabIndex*/, const String& text, int tabDepth, Button&) { Font f (tabDepth * 0.6f); return f.getStringWidth (text.trim()) + getTabButtonOverlap (tabDepth) * 2; } void LookAndFeel::drawTabButton (Graphics& g, int w, int h, const Colour& preferredColour, int tabIndex, const String& text, Button& button, TabbedButtonBar::Orientation orientation, const bool isMouseOver, const bool isMouseDown, const bool isFrontTab) { int length = w; int depth = h; if (orientation == TabbedButtonBar::TabsAtLeft || orientation == TabbedButtonBar::TabsAtRight) { swapVariables (length, depth); } Path tabShape; createTabButtonShape (tabShape, w, h, tabIndex, text, button, orientation, isMouseOver, isMouseDown, isFrontTab); fillTabButtonShape (g, tabShape, preferredColour, tabIndex, text, button, orientation, isMouseOver, isMouseDown, isFrontTab); const int indent = getTabButtonOverlap (depth); int x = 0, y = 0; if (orientation == TabbedButtonBar::TabsAtLeft || orientation == TabbedButtonBar::TabsAtRight) { y += indent; h -= indent * 2; } else { x += indent; w -= indent * 2; } drawTabButtonText (g, x, y, w, h, preferredColour, tabIndex, text, button, orientation, isMouseOver, isMouseDown, isFrontTab); } void LookAndFeel::drawTabAreaBehindFrontButton (Graphics& g, int w, int h, TabbedButtonBar& tabBar, TabbedButtonBar::Orientation orientation) { const float shadowSize = 0.2f; float x1 = 0.0f, y1 = 0.0f, x2 = 0.0f, y2 = 0.0f; Rectangle shadowRect; if (orientation == TabbedButtonBar::TabsAtLeft) { x1 = (float) w; x2 = w * (1.0f - shadowSize); shadowRect.setBounds ((int) x2, 0, w - (int) x2, h); } else if (orientation == TabbedButtonBar::TabsAtRight) { x2 = w * shadowSize; shadowRect.setBounds (0, 0, (int) x2, h); } else if (orientation == TabbedButtonBar::TabsAtBottom) { y2 = h * shadowSize; shadowRect.setBounds (0, 0, w, (int) y2); } else { y1 = (float) h; y2 = h * (1.0f - shadowSize); shadowRect.setBounds (0, (int) y2, w, h - (int) y2); } GradientBrush gb (Colours::black.withAlpha (tabBar.isEnabled() ? 0.3f : 0.15f), x1, y1, Colours::transparentBlack, x2, y2, false); g.setBrush (&gb); shadowRect.expand (2, 2); g.fillRect (shadowRect); g.setColour (Colour (0x80000000)); if (orientation == TabbedButtonBar::TabsAtLeft) { g.fillRect (w - 1, 0, 1, h); } else if (orientation == TabbedButtonBar::TabsAtRight) { g.fillRect (0, 0, 1, h); } else if (orientation == TabbedButtonBar::TabsAtBottom) { g.fillRect (0, 0, w, 1); } else { g.fillRect (0, h - 1, w, 1); } } Button* LookAndFeel::createTabBarExtrasButton() { const float thickness = 7.0f; const float indent = 22.0f; Path p; p.addEllipse (-10.0f, -10.0f, 120.0f, 120.0f); DrawablePath ellipse; ellipse.setPath (p); ellipse.setSolidFill (Colour (0x99ffffff)); p.clear(); p.addEllipse (0.0f, 0.0f, 100.0f, 100.0f); p.addRectangle (indent, 50.0f - thickness, 100.0f - indent * 2.0f, thickness * 2.0f); p.addRectangle (50.0f - thickness, indent, thickness * 2.0f, 50.0f - indent - thickness); p.addRectangle (50.0f - thickness, 50.0f + thickness, thickness * 2.0f, 50.0f - indent - thickness); p.setUsingNonZeroWinding (false); DrawablePath dp; dp.setPath (p); dp.setSolidFill (Colour (0x59000000)); DrawableComposite normalImage; normalImage.insertDrawable (ellipse); normalImage.insertDrawable (dp); dp.setSolidFill (Colour (0xcc000000)); DrawableComposite overImage; overImage.insertDrawable (ellipse); overImage.insertDrawable (dp); DrawableButton* db = new DrawableButton (T("tabs"), DrawableButton::ImageFitted); db->setImages (&normalImage, &overImage, 0); return db; } void LookAndFeel::drawTableHeaderBackground (Graphics& g, TableHeaderComponent& header) { g.fillAll (Colours::white); const int w = header.getWidth(); const int h = header.getHeight(); GradientBrush gb (Colour (0xffe8ebf9), 0.0f, h * 0.5f, Colour (0xfff6f8f9), 0.0f, h - 1.0f, false); g.setBrush (&gb); g.fillRect (0, h / 2, w, h); g.setColour (Colour (0x33000000)); g.fillRect (0, h - 1, w, 1); for (int i = header.getNumColumns (true); --i >= 0;) g.fillRect (header.getColumnPosition (i).getRight() - 1, 0, 1, h - 1); } void LookAndFeel::drawTableHeaderColumn (Graphics& g, const String& columnName, int /*columnId*/, int width, int height, bool isMouseOver, bool isMouseDown, int columnFlags) { if (isMouseDown) g.fillAll (Colour (0x8899aadd)); else if (isMouseOver) g.fillAll (Colour (0x5599aadd)); int rightOfText = width - 4; if ((columnFlags & (TableHeaderComponent::sortedForwards | TableHeaderComponent::sortedBackwards)) != 0) { const float top = height * ((columnFlags & TableHeaderComponent::sortedForwards) != 0 ? 0.35f : (1.0f - 0.35f)); const float bottom = height - top; const float w = height * 0.5f; const float x = rightOfText - (w * 1.25f); rightOfText = (int) x; Path sortArrow; sortArrow.addTriangle (x, bottom, x + w * 0.5f, top, x + w, bottom); g.setColour (Colour (0x99000000)); g.fillPath (sortArrow); } g.setColour (Colours::black); g.setFont (height * 0.5f, Font::bold); const int textX = 4; g.drawFittedText (columnName, textX, 0, rightOfText - textX, height, Justification::centredLeft, 1); } void LookAndFeel::paintToolbarBackground (Graphics& g, int w, int h, Toolbar& toolbar) { const Colour background (toolbar.findColour (Toolbar::backgroundColourId)); GradientBrush gb (background, 0.0f, 0.0f, background.darker (0.1f), toolbar.isVertical() ? w - 1.0f : 0.0f, toolbar.isVertical() ? 0.0f : h - 1.0f, false); g.setBrush (&gb); g.fillAll(); } Button* LookAndFeel::createToolbarMissingItemsButton (Toolbar& /*toolbar*/) { return createTabBarExtrasButton(); } void LookAndFeel::paintToolbarButtonBackground (Graphics& g, int /*width*/, int /*height*/, bool isMouseOver, bool isMouseDown, ToolbarItemComponent& component) { if (isMouseDown) g.fillAll (component.findColour (Toolbar::buttonMouseDownBackgroundColourId, true)); else if (isMouseOver) g.fillAll (component.findColour (Toolbar::buttonMouseOverBackgroundColourId, true)); } void LookAndFeel::paintToolbarButtonLabel (Graphics& g, int x, int y, int width, int height, const String& text, ToolbarItemComponent& component) { g.setColour (component.findColour (Toolbar::labelTextColourId, true) .withAlpha (component.isEnabled() ? 1.0f : 0.25f)); const float fontHeight = jmin (14.0f, height * 0.85f); g.setFont (fontHeight); g.drawFittedText (text, x, y, width, height, Justification::centred, jmax (1, height / (int) fontHeight)); } void LookAndFeel::drawPropertyPanelSectionHeader (Graphics& g, const String& name, bool isOpen, int width, int height) { const int buttonSize = (height * 3) / 4; const int buttonIndent = (height - buttonSize) / 2; drawTreeviewPlusMinusBox (g, buttonIndent, buttonIndent, buttonSize, buttonSize, ! isOpen); const int textX = buttonIndent * 2 + buttonSize + 2; g.setColour (Colours::black); g.setFont (height * 0.7f, Font::bold); g.drawText (name, textX, 0, width - textX - 4, height, Justification::centredLeft, true); } void LookAndFeel::drawPropertyComponentBackground (Graphics& g, int width, int height, PropertyComponent&) { g.setColour (Colour (0x66ffffff)); g.fillRect (0, 0, width, height - 1); } void LookAndFeel::drawPropertyComponentLabel (Graphics& g, int, int height, PropertyComponent& component) { g.setColour (Colours::black); if (! component.isEnabled()) g.setOpacity (g.getCurrentColour().getFloatAlpha() * 0.6f); g.setFont (jmin (height, 24) * 0.65f); const Rectangle r (getPropertyComponentContentPosition (component)); g.drawFittedText (component.getName(), 3, r.getY(), r.getX() - 5, r.getHeight(), Justification::centredLeft, 2); } const Rectangle LookAndFeel::getPropertyComponentContentPosition (PropertyComponent& component) { return Rectangle (component.getWidth() / 3, 1, component.getWidth() - component.getWidth() / 3 - 1, component.getHeight() - 3); } void LookAndFeel::createFileChooserHeaderText (const String& title, const String& instructions, GlyphArrangement& text, int width) { text.clear(); text.addJustifiedText (Font (17.0f, Font::bold), title, 8.0f, 22.0f, width - 16.0f, Justification::centred); text.addJustifiedText (Font (14.0f), instructions, 8.0f, 24.0f + 16.0f, width - 16.0f, Justification::centred); } void LookAndFeel::drawFileBrowserRow (Graphics& g, int width, int height, const String& filename, Image* icon, const String& fileSizeDescription, const String& fileTimeDescription, const bool isDirectory, const bool isItemSelected, const int /*itemIndex*/) { if (isItemSelected) g.fillAll (findColour (DirectoryContentsDisplayComponent::highlightColourId)); g.setColour (findColour (DirectoryContentsDisplayComponent::textColourId)); g.setFont (height * 0.7f); Image* im = icon; Image* toRelease = 0; if (im == 0) { toRelease = im = (isDirectory ? getDefaultFolderImage() : getDefaultDocumentFileImage()); } const int x = 32; if (im != 0) { g.drawImageWithin (im, 2, 2, x - 4, height - 4, RectanglePlacement::centred | RectanglePlacement::onlyReduceInSize, false); ImageCache::release (toRelease); } if (width > 450 && ! isDirectory) { const int sizeX = roundFloatToInt (width * 0.7f); const int dateX = roundFloatToInt (width * 0.8f); g.drawFittedText (filename, x, 0, sizeX - x, height, Justification::centredLeft, 1); g.setFont (height * 0.5f); g.setColour (Colours::darkgrey); if (! isDirectory) { g.drawFittedText (fileSizeDescription, sizeX, 0, dateX - sizeX - 8, height, Justification::centredRight, 1); g.drawFittedText (fileTimeDescription, dateX, 0, width - 8 - dateX, height, Justification::centredRight, 1); } } else { g.drawFittedText (filename, x, 0, width - x, height, Justification::centredLeft, 1); } } Button* LookAndFeel::createFileBrowserGoUpButton() { DrawableButton* goUpButton = new DrawableButton ("up", DrawableButton::ImageOnButtonBackground); Path arrowPath; arrowPath.addArrow (50.0f, 100.0f, 50.0f, 0.0, 40.0f, 100.0f, 50.0f); DrawablePath arrowImage; arrowImage.setSolidFill (Colours::black.withAlpha (0.4f)); arrowImage.setPath (arrowPath); goUpButton->setImages (&arrowImage); return goUpButton; } void LookAndFeel::layoutFileBrowserComponent (FileBrowserComponent& browserComp, DirectoryContentsDisplayComponent* fileListComponent, FilePreviewComponent* previewComp, ComboBox* currentPathBox, TextEditor* filenameBox, Button* goUpButton) { const int x = 8; int w = browserComp.getWidth() - x - x; if (previewComp != 0) { const int previewWidth = w / 3; previewComp->setBounds (x + w - previewWidth, 0, previewWidth, browserComp.getHeight()); w -= previewWidth + 4; } int y = 4; const int controlsHeight = 22; const int bottomSectionHeight = controlsHeight + 8; const int upButtonWidth = 50; currentPathBox->setBounds (x, y, w - upButtonWidth - 6, controlsHeight); goUpButton->setBounds (x + w - upButtonWidth, y, upButtonWidth, controlsHeight); y += controlsHeight + 4; Component* const listAsComp = dynamic_cast (fileListComponent); listAsComp->setBounds (x, y, w, browserComp.getHeight() - y - bottomSectionHeight); y = listAsComp->getBottom() + 4; filenameBox->setBounds (x + 50, y, w - 50, controlsHeight); } Image* LookAndFeel::getDefaultFolderImage() { static const unsigned char foldericon_png[] = { 137,80,78,71,13,10,26,10,0,0,0,13,73,72,68,82,0,0,0,32,0,0,0,28,8,6,0,0,0,0,194,189,34,0,0,0,4,103,65,77,65,0,0,175,200,55,5, 138,233,0,0,0,25,116,69,88,116,83,111,102,116,119,97,114,101,0,65,100,111,98,101,32,73,109,97,103,101,82,101,97,100,121,113,201,101,60,0,0,9,46,73,68,65,84,120,218,98,252,255,255,63,3,50,240,41,95,192, 197,205,198,32,202,204,202,33,241,254,235,47,133,47,191,24,180,213,164,133,152,69,24,222,44,234,42,77,188,245,31,170,129,145,145,145,1,29,128,164,226,91,86,113,252,248,207,200,171,37,39,204,239,170,43, 254,206,218,88,231,61,62,61,0,1,196,2,149,96,116,200,158,102,194,202,201,227,197,193,206,166,194,204,193,33,195,202,204,38,42,197,197,42,196,193,202,33,240,241,231,15,134,151,95,127,9,2,149,22,0,241,47, 152,230,128,134,245,204,63,191,188,103,83,144,16,16,228,229,102,151,76,239,217,32,199,204,198,169,205,254,159,65,245,203,79,6,169,131,151,30,47,1,42,91,10,196,127,208,236,101,76,235,90,43,101,160,40,242, 19,32,128,64,78,98,52,12,41,149,145,215,52,89,162,38,35,107,39,196,203,203,192,206,194,206,192,197,198,202,192,203,197,198,192,205,193,206,240,252,227,103,134,139,55,175,191,127,243,242,78,219,187,207, 63,215,255,98,23,48,228,227,96,83,98,102,102,85,225,224,228,80,20,224,230,86,226,225,228,150,103,101,97,101,230,227,228,96,224,0,234,191,243,252,5,195,222,19,199,38,191,127,112,161,83,66,199,86,141,131, 149,69,146,133,153,69,137,149,133,89,157,141,131,77,83,140,143,243,219,255,31,159,123,0,2,136,69,90,207,129,157,71,68,42,66,71,73,209,210,81,91,27,24,142,140,12,127,255,253,103,0,185,236,31,3,144,6,50, 148,68,216,25,216,24,117,4,239,11,243,214,49,50,51,84,178,48,114,240,112,177,114,177,240,115,113,49,241,112,112,48,176,179,178,51,176,48,49,3,85,255,99,248,253,247,15,195,247,159,191,25,30,191,126,253, 71,74,76,200,66,75,197,119,138,168,144,160,150,168,0,183,160,152,32,15,175,188,184,32,199,175,191,127,25,214,31,184,120,247,236,209,253,159,0,2,136,133,95,70,93,74,88,80,196,83,69,66,130,149,9,104,219, 151,31,191,193,150,194,146,6,136,102,102,98,100,16,227,231,103,16,23,210,230,101,101,102,100,248,255,143,137,225,223,63,6,6,22,102,38,134,239,191,126,49,220,123,241,134,225,227,247,175,64,7,252,101,96, 97,249,207,192,193,198,200,160,171,34,192,108,165,235,104,42,204,207,101,42,194,199,197,192,199,201,198,192,197,193,202,192,198,202,194,176,247,194,3,134,155,183,110,61,188,127,124,221,19,128,0,92,146, 49,14,64,64,16,69,63,153,85,16,52,18,74,71,112,6,87,119,0,165,160,86,138,32,172,216,29,49,182,84,253,169,94,94,230,127,17,87,133,34,146,174,3,88,126,240,219,164,147,113,31,145,244,152,112,179,211,130, 34,31,203,113,162,233,6,36,49,163,174,74,124,140,60,141,144,165,161,220,228,25,3,24,105,255,17,168,101,1,139,245,188,93,104,251,73,239,235,50,90,189,111,175,0,98,249,254,254,249,175,239,223,190,126,6, 5,27,19,47,90,170,102,0,249,158,129,129,141,133,25,228,20,6,38,38,72,74,7,185,243,243,247,239,12,23,31,60,98,228,231,253,207,144,227,107,206,32,202,199,193,240,249,251,127,134,95,191,255,49,124,249,250, 159,225,237,239,95,12,63,127,1,35,229,31,194,71,32,71,63,123,251,245,223,197,27,183,159,189,187,178,103,61,80,232,59,64,0,177,48,252,5,134,225,255,191,223,126,254,250,13,182,132,1,41,167,176,3,53,128, 188,254,226,253,103,96,212,252,96,120,247,249,203,255,79,223,191,254,255,250,235,199,191,239,63,191,255,87,145,17,100,73,116,181,100,252,249,243,63,195,149,123,223,193,14,132,101,55,96,52,3,125,255,15, 204,254,15,132,160,232,253,13,20,124,248,226,227,223,23,207,30,221,120,119,255,226,109,160,210,31,0,1,196,242,231,219,135,175,140,255,126,190,7,197,37,35,19,34,216,65,248,211,143,111,255,79,223,121,240, 255,211,183,79,76,220,156,172,12,236,204,140,140,252,124,28,140,250,226,82,140,106,82,34,140,124,156,156,12,175,222,253,1,90,4,137,162,63,127,33,161,6,178,242,215,239,255,224,160,255,15,198,12,64,7,48, 128,211,200,253,151,111,254,254,248,240,236,44,80,217,71,80,246,4,8,32,160,31,255,255,100,102,248,243,238,199,159,63,16,221,16,19,128,248,31,195,181,199,207,254,255,253,247,133,49,212,78,27,104,8,11,40, 94,25,184,216,89,129,108,38,70,144,242,183,31,17,105,230,63,148,248,15,97,49,252,248,249,15,20,85,72,105,9,148,187,254,49,220,127,254,242,207,243,75,135,14,128,130,31,84,64,1,4,16,203,247,143,175,127, 48,253,254,246,234,7,48,206,96,137,13,4,64,65,248,234,195,7,6,7,3,57,70,33,46,97,134,111,63,254,50,252,5,250,244,51,216,103,255,192,185,0,150,91,80,44,135,242,127,253,129,164,23,24,96,102,250,207,112, 255,213,219,255,247,31,63,188,251,246,201,173,199,176,2,13,32,128,88,62,188,121,241,243,211,231,207,31,126,2,147,236,63,168,6,144,193,223,190,255,254,207,198,198,192,40,35,44,206,240,252,205,79,6,132, 223,24,224,150,32,251,28,25,128,211,29,19,170,24,51,48,88,111,61,127,206,248,254,245,179,139,192,18,247,219,239,239,95,192,249,9,32,128,88,126,124,249,248,231,203,183,111,159,128,33,240,15,24,68,160,180, 2,204,223,140,12,111,63,127,102,16,228,229,4,6,53,35,195,31,176,119,25,112,3,70,84,55,0,203,50,112,33,134,108,249,103,160,7,159,189,126,253,235,235,227,203,7,255,255,251,247,13,86,63,0,4,16,168,46,248, 199,250,231,243,235,159,191,126,254,248,245,251,47,23,11,51,51,48,184,152,24,94,127,250,248,95,68,136,151,241,243,55,96,208,51,160,218,255,31,139,27,144,197,254,98,201,202,79,223,124,96,120,245,232,250, 185,119,143,174,95,250,243,243,219,119,152,60,64,0,129,2,234,223,183,215,15,95,48,254,255,253,3,146,109,192,229,5,195,135,47,159,25,248,184,121,24,126,0,227,29,88,240,49,252,101,36,14,255,1,90,249,7,156, 222,17,24,24,164,12,207,223,189,99,248,250,252,230,97,96,229,245,2,104,231,111,152,3,0,2,8,228,128,191,15,239,220,120,255,255,223,159,47,160,116,0,42,44,222,124,250,244,239,207,255,63,12,236,108,236,64, 67,65,81,0,52,244,63,113,248,47,52,10,96,14,98,2,230,191,119,223,127,48,60,121,254,248,235,151,55,207,46,1,163,252,35,114,128,1,4,16,40,10,254,191,121,249,252,199,175,159,63,191,254,2,230,45,118,22,22, 134,219,207,94,252,231,224,100,103,250,247,15,148,32,64,85,12,34,14,254,227,72,6,255,225,9,240,63,138,26,46,96,214,189,249,244,37,195,139,167,143,30,124,253,246,253,9,40,245,255,71,202,30,0,1,196,2,226, 0,243,232,159,239,63,127,124,253,11,202,94,64,169,23,31,62,50,138,137,242,49,50,0,211,195,223,255,80,7,252,199,159,6,224,137,145,9,146,231,153,160,165,218,23,96,29,240,244,237,59,134,111,175,31,95,250, 252,230,241,83,244,182,1,64,0,177,192,28,14,76,132,31,128,169,19,88,220,126,253,207,206,198,196,32,38,36,0,244,61,11,176,148,251,139,145,3,208,29,0,178,16,82,228,66,42,174,223,192,26,8,152,162,25,222, 125,248,200,240,242,253,39,134,151,79,238,126,254,242,242,238,177,15,47,30,190,5,215,242,72,0,32,128,224,14,96,254,255,231,61,168,92,123,241,254,253,127,1,62,78,6,78,110,78,134,223,64,195,254,50,98,183, 24,36,12,202,179,224,202,9,88,228,253,132,90,250,246,211,71,134,55,175,94,254,122,255,250,249,247,15,175,159,126,249,251,237,195,135,95,175,110,31,122,117,251,244,49,160,150,111,255,209,218,128,0,1,152, 44,183,21,0,65,32,136,110,247,254,255,243,122,9,187,64,105,174,74,22,138,25,173,80,208,194,188,238,156,151,217,217,15,32,182,197,37,83,201,4,31,243,178,169,232,242,214,224,223,252,103,175,35,85,1,41,129, 228,148,142,8,214,30,32,149,6,161,204,109,182,53,236,184,156,78,142,147,195,153,89,35,198,3,87,166,249,220,227,198,59,218,48,252,223,185,111,30,1,132,228,128,127,31,222,124,248,248,27,24,152,28,60,220, 220,12,44,172,172,224,224,103,5,102,98,144,133,160,236,244,229,231,47,134,239,223,127,49,188,121,251,158,225,241,179,103,12,31,223,189,254,251,227,221,139,55,191,62,188,120,246,235,205,189,59,207,238, 94,58,241,228,254,109,144,101,159,128,248,51,40,9,32,97,80,217,255,15,221,1,0,1,4,143,130,207,159,191,126,252,246,234,213,111,94,126,94,118,73,94,9,198,127,64,223,126,252,246,147,225,243,215,239,12,223, 128,229,198,251,15,239,24,62,189,126,249,227,203,171,135,47,63,189,122,252,228,235,155,199,247,95,63,188,118,227,197,227,123,247,127,255,250,249,30,104,198,7,32,126,11,181,252,7,212,183,160,4,247,7,155, 197,48,0,16,64,112,7,60,121,241,238,189,16,207,15,134,63,63,216,25,95,125,248,198,112,227,241,27,134,15,239,223,50,124,126,245,228,253,143,55,143,158,191,123,116,237,226,171,135,55,175,126,253,252,225, 229,183,47,159,95,254,253,245,227,253,175,159,223,223,193,124,7,181,20,84,105,252,70,143,103,124,0,32,128,224,14,224,102,253,251,81,144,253,223,235,167,207,30,254,124,127,231,252,155,143,175,159,188,250, 246,254,249,125,96,60,62,248,250,233,253,147,119,207,238,221,6,150,214,175,129,106,191,130,18,19,146,133,120,125,72,8,0,4,16,34,27,190,121,112,251,3,211,159,69,143,110,223,229,120,255,232,230,221,215, 79,239,62,4,102,203,207,72,241,9,11,218,63,72,89,137,20,207,98,100,93,16,0,8,32,70,144,1,64,14,168,209,199,7,196,194,160,166,27,212,135,95,96,65,10,173,95,254,34,219,6,51,128,88,7,96,235,21,129,0,64,0, 193,28,192,8,174,53,33,152,1,155,133,184,12,196,165,4,151,133,232,0,32,192,0,151,97,210,163,246,134,208,52,0,0,0,0,73,69,78,68,174,66,96,130,0,0}; return ImageCache::getFromMemory (foldericon_png, sizeof (foldericon_png)); } Image* LookAndFeel::getDefaultDocumentFileImage() { static const unsigned char fileicon_png[] = { 137,80,78,71,13,10,26,10,0,0,0,13,73,72,68,82,0,0,0,32,0,0,0,32,8,6,0,0,0,115,122,122,244,0,0,0,4,103,65,77,65,0,0,175,200,55,5, 138,233,0,0,0,25,116,69,88,116,83,111,102,116,119,97,114,101,0,65,100,111,98,101,32,73,109,97,103,101,82,101,97,100,121,113,201,101,60,0,0,4,99,73,68,65,84,120,218,98,252,255,255,63,3,12,48,50,50,50,1, 169,127,200,98,148,2,160,153,204,64,243,254,226,146,7,8,32,22,52,203,255,107,233,233,91,76,93,176,184,232,239,239,95,127,24,40,112,8,19,51,203,255,179,23,175,108,1,90,190,28,104,54,43,80,232,207,127,44, 62,3,8,32,6,144,24,84,156,25,132,189,252,3,146,255,83,9,220,127,254,242,134,162,138,170,10,208,92,144,3,152,97,118,33,99,128,0,98,66,114,11,200,1,92,255,254,252,225,32,215,215,32,127,64,240,127,80,60, 50,40,72,136,169,47,95,179,118,130,136,148,140,0,40,80,128,33,193,136,174,7,32,128,144,29,192,8,117,41,59,209,22,66,241,191,255,16,12,244,19,195,63,48,134,240,255,0,9,115,125,93,239,252,130,130,108,168, 249,44,232,102,0,4,16,19,22,62,51,33,11,255,195,44,4,211,255,25,96,16,33,6,117,24,56,226,25,24,202,139,10,75,226,51,115,66,160,105,13,197,17,0,1,196,68,172,79,255,33,91,206,192,192,128,176,22,17,10,200, 234,32,161,240,31,24,10,255,24,152,153,153,184,39,244,247,117,107,234,234,105,131,66,1,154,224,193,0,32,128,240,58,0,22,180,255,144,18,13,40,136,33,113,140,36,255,15,17,26,48,12,81,15,145,255,254,251, 31,131,0,59,171,84,81,73,105,33,208,216,191,200,161,12,16,64,44,248,131,251,63,10,31,198,253,143,38,6,83,7,11,33,228,232,2,123,4,202,226,228,96,151,132,166,49,144,35,126,131,196,0,2,136,5,103,60,51,252, 71,49,12,213,130,255,168,226,232,150,254,255,15,143,6,80,202,3,133,16,200,198,63,127,193,229,17,39,16,127,135,217,7,16,64,88,67,0,28,143,255,25,225,46,135,249,18,155,133,240,178,4,205,145,8,62,52,186, 32,234,152,160,118,194,179,35,64,0,177,96,11,123,144,236,95,104,92,162,228,113,36,11,81,125,140,112,56,186,131,96,226,176,172,137,148,229,193,0,32,128,88,112,167,248,255,112,223,48,34,165,110,6,124,190, 253,143,61,106,192,9,19,73,28,25,0,4,16,206,40,248,251,15,45,104,209,130,21,51,222,145,18,238,127,180,68,8,244,250,95,164,16,66,6,0,1,196,130,45,253,195,12,250,135,53,206,255,195,131,18,213,98,236,81, 243,31,154,11,144,115,8,50,0,8,32,156,81,0,203,227,12,80,223,98,230,4,68,72,96,38,78,84,11,65,9,250,47,146,3,145,1,64,0,97,117,192,95,112,34,68,138,130,255,176,224,251,143,226,51,6,6,68,29,192,136,20, 77,200,69,54,35,3,36,49,255,69,77,132,112,0,16,64,44,56,139,94,36,7,96,102,59,164,108,249,31,181,82,98,64,203,174,255,144,234,142,127,88,146,33,64,0,97,205,134,240,120,67,75,76,136,224,198,140,22,6,44, 142,66,201,41,255,177,231,2,128,0,194,25,5,255,254,161,134,192,127,6,28,229,0,129,242,1,150,56,33,81,138,209,28,96,0,8,32,172,81,0,78,3,104,190,68,182,224,31,146,197,224,56,6,146,140,176,202,135,17,169, 96,130,40,64,56,0,139,93,0,1,132,61,10,64,248,31,106,156,162,199,55,204,65,255,144,178,38,74,84,252,71,51,239,63,246,68,8,16,64,44,216,74,1,88,217,13,203,191,32,1,80,58,7,133,224,127,6,68,114,6,241,65, 81,197,8,101,255,71,114,33,92,237,127,228,52,128,233,2,128,0,98,193,149,3,64,117,193,255,127,255,81,75,191,127,168,5,18,136,255,31,45,161,49,32,151,134,72,252,127,12,216,203,98,128,0,98,193,210,144,135, 248,30,201,242,127,208,252,140,145,27,160,113,206,136,148,197,192,121,159,17,53,184,225,149,17,22,23,0,4,16,11,182,150,237,63,168,207,96,142,248,143,163,72,6,203,253,67,13,61,6,104,14,66,46,17,254,65, 19,40,182,16,0,8,32,22,108,109,235,255,176,234,24,35,79,255,199,222,30,64,81,135,90,35,194,211,4,142,92,0,16,64,88,29,0,107,7,254,251,247,31,53,78,241,54,207,80,29,135,209,96,249,143,189,46,0,8,32,116, 7,252,101,102,103,103,228,103,99,96,248,193,198,137,53,248,49,125,204,128,225,227,255,88,18,54,47,176,25,202,205,195,205,6,109,11,194,149,0,4,16,35,204,85,208,254,27,159,128,176,176,142,166,182,142,21, 48,4,248,129,41,143,13,217,16,70,52,95,147,0,254,0,187,69,95,223,188,122,125,235,206,141,107,7,129,252,247,64,123,193,237,66,128,0,66,118,0,168,189,198,3,196,252,32,135,64,105,54,228,230,19,185,29,100, 168,175,191,0,241,7,32,254,4,196,159,129,246,254,2,73,2,4,16,11,90,72,125,135,210,63,161,138,153,169,212,75,255,15,117,196,15,40,134,119,215,1,2,12,0,187,0,132,247,216,161,197,124,0,0,0,0,73,69,78,68, 174,66,96,130,0,0}; return ImageCache::getFromMemory (fileicon_png, sizeof (fileicon_png)); } void LookAndFeel::playAlertSound() { PlatformUtilities::beep(); } void LookAndFeel::drawLevelMeter (Graphics& g, int width, int height, float level) { g.setColour (Colours::white.withAlpha (0.7f)); g.fillRoundedRectangle (0.0f, 0.0f, (float) width, (float) height, 3.0f); g.setColour (Colours::black.withAlpha (0.2f)); g.drawRoundedRectangle (1.0f, 1.0f, width - 2.0f, height - 2.0f, 3.0f, 1.0f); const int totalBlocks = 7; const int numBlocks = roundDoubleToInt (totalBlocks * level); const float w = (width - 6.0f) / (float) totalBlocks; for (int i = 0; i < totalBlocks; ++i) { if (i >= numBlocks) g.setColour (Colours::lightblue.withAlpha (0.6f)); else g.setColour (i < totalBlocks - 1 ? Colours::blue.withAlpha (0.5f) : Colours::red); g.fillRoundedRectangle (3.0f + i * w + w * 0.1f, 3.0f, w * 0.8f, height - 6.0f, w * 0.4f); } } static void createRoundedPath (Path& p, const float x, const float y, const float w, const float h, const float cs, const bool curveTopLeft, const bool curveTopRight, const bool curveBottomLeft, const bool curveBottomRight) throw() { const float cs2 = 2.0f * cs; if (curveTopLeft) { p.startNewSubPath (x, y + cs); p.addArc (x, y, cs2, cs2, float_Pi * 1.5f, float_Pi * 2.0f); } else { p.startNewSubPath (x, y); } if (curveTopRight) { p.lineTo (x + w - cs, y); p.addArc (x + w - cs2, y, cs2, cs2, 0.0f, float_Pi * 0.5f); } else { p.lineTo (x + w, y); } if (curveBottomRight) { p.lineTo (x + w, y + h - cs); p.addArc (x + w - cs2, y + h - cs2, cs2, cs2, float_Pi * 0.5f, float_Pi); } else { p.lineTo (x + w, y + h); } if (curveBottomLeft) { p.lineTo (x + cs, y + h); p.addArc (x, y + h - cs2, cs2, cs2, float_Pi, float_Pi * 1.5f); } else { p.lineTo (x, y + h); } p.closeSubPath(); } void LookAndFeel::drawShinyButtonShape (Graphics& g, float x, float y, float w, float h, float maxCornerSize, const Colour& baseColour, const float strokeWidth, const bool flatOnLeft, const bool flatOnRight, const bool flatOnTop, const bool flatOnBottom) throw() { if (w <= strokeWidth * 1.1f || h <= strokeWidth * 1.1f) return; const float cs = jmin (maxCornerSize, w * 0.5f, h * 0.5f); Path outline; createRoundedPath (outline, x, y, w, h, cs, ! (flatOnLeft || flatOnTop), ! (flatOnRight || flatOnTop), ! (flatOnLeft || flatOnBottom), ! (flatOnRight || flatOnBottom)); ColourGradient cg (baseColour, 0.0f, y, baseColour.overlaidWith (Colour (0x070000ff)), 0.0f, y + h, false); cg.addColour (0.5, baseColour.overlaidWith (Colour (0x33ffffff))); cg.addColour (0.51, baseColour.overlaidWith (Colour (0x110000ff))); GradientBrush gb (cg); g.setBrush (&gb); g.fillPath (outline); g.setColour (Colour (0x80000000)); g.strokePath (outline, PathStrokeType (strokeWidth)); } void LookAndFeel::drawGlassSphere (Graphics& g, const float x, const float y, const float diameter, const Colour& colour, const float outlineThickness) throw() { if (diameter <= outlineThickness) return; Path p; p.addEllipse (x, y, diameter, diameter); { ColourGradient cg (Colours::white.overlaidWith (colour.withMultipliedAlpha (0.3f)), 0, y, Colours::white.overlaidWith (colour.withMultipliedAlpha (0.3f)), 0, y + diameter, false); cg.addColour (0.4, Colours::white.overlaidWith (colour)); GradientBrush gb (cg); g.setBrush (&gb); g.fillPath (p); } { GradientBrush gb (Colours::white, 0, y + diameter * 0.06f, Colours::transparentWhite, 0, y + diameter * 0.3f, false); g.setBrush (&gb); g.fillEllipse (x + diameter * 0.2f, y + diameter * 0.05f, diameter * 0.6f, diameter * 0.4f); } { ColourGradient cg (Colours::transparentBlack, x + diameter * 0.5f, y + diameter * 0.5f, Colours::black.withAlpha (0.5f * outlineThickness * colour.getFloatAlpha()), x, y + diameter * 0.5f, true); cg.addColour (0.7, Colours::transparentBlack); cg.addColour (0.8, Colours::black.withAlpha (0.1f * outlineThickness)); GradientBrush gb (cg); g.setBrush (&gb); g.fillPath (p); } g.setColour (Colours::black.withAlpha (0.5f * colour.getFloatAlpha())); g.drawEllipse (x, y, diameter, diameter, outlineThickness); } void LookAndFeel::drawGlassPointer (Graphics& g, const float x, const float y, const float diameter, const Colour& colour, const float outlineThickness, const int direction) throw() { if (diameter <= outlineThickness) return; Path p; p.startNewSubPath (x + diameter * 0.5f, y); p.lineTo (x + diameter, y + diameter * 0.6f); p.lineTo (x + diameter, y + diameter); p.lineTo (x, y + diameter); p.lineTo (x, y + diameter * 0.6f); p.closeSubPath(); p.applyTransform (AffineTransform::rotation (direction * (float_Pi * 0.5f), x + diameter * 0.5f, y + diameter * 0.5f)); { ColourGradient cg (Colours::white.overlaidWith (colour.withMultipliedAlpha (0.3f)), 0, y, Colours::white.overlaidWith (colour.withMultipliedAlpha (0.3f)), 0, y + diameter, false); cg.addColour (0.4, Colours::white.overlaidWith (colour)); GradientBrush gb (cg); g.setBrush (&gb); g.fillPath (p); } { ColourGradient cg (Colours::transparentBlack, x + diameter * 0.5f, y + diameter * 0.5f, Colours::black.withAlpha (0.5f * outlineThickness * colour.getFloatAlpha()), x - diameter * 0.2f, y + diameter * 0.5f, true); cg.addColour (0.5, Colours::transparentBlack); cg.addColour (0.7, Colours::black.withAlpha (0.07f * outlineThickness)); GradientBrush gb (cg); g.setBrush (&gb); g.fillPath (p); } g.setColour (Colours::black.withAlpha (0.5f * colour.getFloatAlpha())); g.strokePath (p, PathStrokeType (outlineThickness)); } void LookAndFeel::drawGlassLozenge (Graphics& g, const float x, const float y, const float width, const float height, const Colour& colour, const float outlineThickness, const float cornerSize, const bool flatOnLeft, const bool flatOnRight, const bool flatOnTop, const bool flatOnBottom) throw() { if (width <= outlineThickness || height <= outlineThickness) return; const int intX = (int) x; const int intY = (int) y; const int intW = (int) width; const int intH = (int) height; const float cs = cornerSize < 0 ? jmin (width * 0.5f, height * 0.5f) : cornerSize; const float edgeBlurRadius = height * 0.75f + (height - cs * 2.0f); const int intEdge = (int) edgeBlurRadius; Path outline; createRoundedPath (outline, x, y, width, height, cs, ! (flatOnLeft || flatOnTop), ! (flatOnRight || flatOnTop), ! (flatOnLeft || flatOnBottom), ! (flatOnRight || flatOnBottom)); { ColourGradient cg (colour.darker (0.2f), 0, y, colour.darker (0.2f), 0, y + height, false); cg.addColour (0.03, colour.withMultipliedAlpha (0.3f)); cg.addColour (0.4, colour); cg.addColour (0.97, colour.withMultipliedAlpha (0.3f)); GradientBrush gb (cg); g.setBrush (&gb); g.fillPath (outline); } ColourGradient cg (Colours::transparentBlack, x + edgeBlurRadius, y + height * 0.5f, colour.darker (0.2f), x, y + height * 0.5f, true); cg.addColour (jlimit (0.0, 1.0, 1.0 - (cs * 0.5f) / edgeBlurRadius), Colours::transparentBlack); cg.addColour (jlimit (0.0, 1.0, 1.0 - (cs * 0.25f) / edgeBlurRadius), colour.darker (0.2f).withMultipliedAlpha (0.3f)); if (! (flatOnLeft || flatOnTop || flatOnBottom)) { GradientBrush gb (cg); g.saveState(); g.setBrush (&gb); g.reduceClipRegion (intX, intY, intEdge, intH); g.fillPath (outline); g.restoreState(); } if (! (flatOnRight || flatOnTop || flatOnBottom)) { cg.x1 = x + width - edgeBlurRadius; cg.x2 = x + width; GradientBrush gb (cg); g.saveState(); g.setBrush (&gb); g.reduceClipRegion (intX + intW - intEdge, intY, 2 + intEdge, intH); g.fillPath (outline); g.restoreState(); } { const float leftIndent = flatOnLeft ? 0.0f : cs * 0.4f; const float rightIndent = flatOnRight ? 0.0f : cs * 0.4f; Path highlight; createRoundedPath (highlight, x + leftIndent, y + cs * 0.1f, width - (leftIndent + rightIndent), height * 0.4f, cs * 0.4f, ! (flatOnLeft || flatOnTop), ! (flatOnRight || flatOnTop), ! (flatOnLeft || flatOnBottom), ! (flatOnRight || flatOnBottom)); GradientBrush gb (colour.brighter (10.0f), 0, y + height * 0.06f, Colours::transparentWhite, 0, y + height * 0.4f, false); g.setBrush (&gb); g.fillPath (highlight); } g.setColour (colour.darker().withMultipliedAlpha (1.5f)); g.strokePath (outline, PathStrokeType (outlineThickness)); } END_JUCE_NAMESPACE /********* End of inlined file: juce_LookAndFeel.cpp *********/ /********* Start of inlined file: juce_OldSchoolLookAndFeel.cpp *********/ BEGIN_JUCE_NAMESPACE OldSchoolLookAndFeel::OldSchoolLookAndFeel() { setColour (TextButton::buttonColourId, Colour (0xffbbbbff)); setColour (ListBox::outlineColourId, findColour (ComboBox::outlineColourId)); setColour (ScrollBar::thumbColourId, Colour (0xffbbbbdd)); setColour (ScrollBar::backgroundColourId, Colours::transparentBlack); setColour (Slider::thumbColourId, Colours::white); setColour (Slider::trackColourId, Colour (0x7f000000)); setColour (Slider::textBoxOutlineColourId, Colours::grey); setColour (ProgressBar::backgroundColourId, Colours::white.withAlpha (0.6f)); setColour (ProgressBar::foregroundColourId, Colours::green.withAlpha (0.7f)); setColour (PopupMenu::backgroundColourId, Colour (0xffeef5f8)); setColour (PopupMenu::highlightedBackgroundColourId, Colour (0xbfa4c2ce)); setColour (PopupMenu::highlightedTextColourId, Colours::black); setColour (TextEditor::focusedOutlineColourId, findColour (TextButton::buttonColourId)); scrollbarShadow.setShadowProperties (2.2f, 0.5f, 0, 0); } OldSchoolLookAndFeel::~OldSchoolLookAndFeel() { } void OldSchoolLookAndFeel::drawButtonBackground (Graphics& g, Button& button, const Colour& backgroundColour, bool isMouseOverButton, bool isButtonDown) { const int width = button.getWidth(); const int height = button.getHeight(); const float indent = 2.0f; const int cornerSize = jmin (roundFloatToInt (width * 0.4f), roundFloatToInt (height * 0.4f)); Path p; p.addRoundedRectangle (indent, indent, width - indent * 2.0f, height - indent * 2.0f, (float) cornerSize); Colour bc (backgroundColour.withMultipliedSaturation (0.3f)); if (isMouseOverButton) { if (isButtonDown) bc = bc.brighter(); else if (bc.getBrightness() > 0.5f) bc = bc.darker (0.1f); else bc = bc.brighter (0.1f); } g.setColour (bc); g.fillPath (p); g.setColour (bc.contrasting().withAlpha ((isMouseOverButton) ? 0.6f : 0.4f)); g.strokePath (p, PathStrokeType ((isMouseOverButton) ? 2.0f : 1.4f)); } void OldSchoolLookAndFeel::drawTickBox (Graphics& g, Component& /*component*/, int x, int y, int w, int h, const bool ticked, const bool isEnabled, const bool /*isMouseOverButton*/, const bool isButtonDown) { Path box; box.addRoundedRectangle (0.0f, 2.0f, 6.0f, 6.0f, 1.0f); g.setColour (isEnabled ? Colours::blue.withAlpha (isButtonDown ? 0.3f : 0.1f) : Colours::lightgrey.withAlpha (0.1f)); AffineTransform trans (AffineTransform::scale (w / 9.0f, h / 9.0f) .translated ((float) x, (float) y)); g.fillPath (box, trans); g.setColour (Colours::black.withAlpha (0.6f)); g.strokePath (box, PathStrokeType (0.9f), trans); if (ticked) { Path tick; tick.startNewSubPath (1.5f, 3.0f); tick.lineTo (3.0f, 6.0f); tick.lineTo (6.0f, 0.0f); g.setColour (isEnabled ? Colours::black : Colours::grey); g.strokePath (tick, PathStrokeType (2.5f), trans); } } void OldSchoolLookAndFeel::drawToggleButton (Graphics& g, ToggleButton& button, bool isMouseOverButton, bool isButtonDown) { if (button.hasKeyboardFocus (true)) { g.setColour (button.findColour (TextEditor::focusedOutlineColourId)); g.drawRect (0, 0, button.getWidth(), button.getHeight()); } const int tickWidth = jmin (20, button.getHeight() - 4); drawTickBox (g, button, 4, (button.getHeight() - tickWidth) / 2, tickWidth, tickWidth, button.getToggleState(), button.isEnabled(), isMouseOverButton, isButtonDown); g.setColour (button.findColour (ToggleButton::textColourId)); g.setFont (jmin (15.0f, button.getHeight() * 0.6f)); if (! button.isEnabled()) g.setOpacity (0.5f); const int textX = tickWidth + 5; g.drawFittedText (button.getButtonText(), textX, 4, button.getWidth() - textX - 2, button.getHeight() - 8, Justification::centredLeft, 10); } void OldSchoolLookAndFeel::drawProgressBar (Graphics& g, ProgressBar& progressBar, int width, int height, double progress, const String& textToShow) { if (progress < 0 || progress >= 1.0) { LookAndFeel::drawProgressBar (g, progressBar, width, height, progress, textToShow); } else { const Colour background (progressBar.findColour (ProgressBar::backgroundColourId)); const Colour foreground (progressBar.findColour (ProgressBar::foregroundColourId)); g.fillAll (background); g.setColour (foreground); g.fillRect (1, 1, jlimit (0, width - 2, roundDoubleToInt (progress * (width - 2))), height - 2); if (textToShow.isNotEmpty()) { g.setColour (Colour::contrasting (background, foreground)); g.setFont (height * 0.6f); g.drawText (textToShow, 0, 0, width, height, Justification::centred, false); } } } void OldSchoolLookAndFeel::drawScrollbarButton (Graphics& g, ScrollBar& bar, int width, int height, int buttonDirection, bool isScrollbarVertical, bool isMouseOverButton, bool isButtonDown) { if (isScrollbarVertical) width -= 2; else height -= 2; Path p; if (buttonDirection == 0) p.addTriangle (width * 0.5f, height * 0.2f, width * 0.1f, height * 0.7f, width * 0.9f, height * 0.7f); else if (buttonDirection == 1) p.addTriangle (width * 0.8f, height * 0.5f, width * 0.3f, height * 0.1f, width * 0.3f, height * 0.9f); else if (buttonDirection == 2) p.addTriangle (width * 0.5f, height * 0.8f, width * 0.1f, height * 0.3f, width * 0.9f, height * 0.3f); else if (buttonDirection == 3) p.addTriangle (width * 0.2f, height * 0.5f, width * 0.7f, height * 0.1f, width * 0.7f, height * 0.9f); if (isButtonDown) g.setColour (Colours::white); else if (isMouseOverButton) g.setColour (Colours::white.withAlpha (0.7f)); else g.setColour (bar.findColour (ScrollBar::thumbColourId).withAlpha (0.5f)); g.fillPath (p); g.setColour (Colours::black.withAlpha (0.5f)); g.strokePath (p, PathStrokeType (0.5f)); } void OldSchoolLookAndFeel::drawScrollbar (Graphics& g, ScrollBar& bar, int x, int y, int width, int height, bool isScrollbarVertical, int thumbStartPosition, int thumbSize, bool isMouseOver, bool isMouseDown) { g.fillAll (bar.findColour (ScrollBar::backgroundColourId)); g.setColour (bar.findColour (ScrollBar::thumbColourId) .withAlpha ((isMouseOver || isMouseDown) ? 0.4f : 0.15f)); if (thumbSize > 0.0f) { Rectangle thumb; if (isScrollbarVertical) { width -= 2; g.fillRect (x + roundFloatToInt (width * 0.35f), y, roundFloatToInt (width * 0.3f), height); thumb.setBounds (x + 1, thumbStartPosition, width - 2, thumbSize); } else { height -= 2; g.fillRect (x, y + roundFloatToInt (height * 0.35f), width, roundFloatToInt (height * 0.3f)); thumb.setBounds (thumbStartPosition, y + 1, thumbSize, height - 2); } g.setColour (bar.findColour (ScrollBar::thumbColourId) .withAlpha ((isMouseOver || isMouseDown) ? 0.95f : 0.7f)); g.fillRect (thumb); g.setColour (Colours::black.withAlpha ((isMouseOver || isMouseDown) ? 0.4f : 0.25f)); g.drawRect (thumb.getX(), thumb.getY(), thumb.getWidth(), thumb.getHeight()); if (thumbSize > 16) { for (int i = 3; --i >= 0;) { const float linePos = thumbStartPosition + thumbSize / 2 + (i - 1) * 4.0f; g.setColour (Colours::black.withAlpha (0.15f)); if (isScrollbarVertical) { g.drawLine (x + width * 0.2f, linePos, width * 0.8f, linePos); g.setColour (Colours::white.withAlpha (0.15f)); g.drawLine (width * 0.2f, linePos - 1, width * 0.8f, linePos - 1); } else { g.drawLine (linePos, height * 0.2f, linePos, height * 0.8f); g.setColour (Colours::white.withAlpha (0.15f)); g.drawLine (linePos - 1, height * 0.2f, linePos - 1, height * 0.8f); } } } } } ImageEffectFilter* OldSchoolLookAndFeel::getScrollbarEffect() { return &scrollbarShadow; } void OldSchoolLookAndFeel::drawPopupMenuBackground (Graphics& g, int width, int height) { g.fillAll (findColour (PopupMenu::backgroundColourId)); g.setColour (Colours::black.withAlpha (0.6f)); g.drawRect (0, 0, width, height); } void OldSchoolLookAndFeel::drawMenuBarBackground (Graphics& g, int /*width*/, int /*height*/, bool, MenuBarComponent& menuBar) { g.fillAll (menuBar.findColour (PopupMenu::backgroundColourId)); } void OldSchoolLookAndFeel::drawTextEditorOutline (Graphics& g, int width, int height, TextEditor& textEditor) { if (textEditor.isEnabled()) { g.setColour (textEditor.findColour (TextEditor::outlineColourId)); g.drawRect (0, 0, width, height); } } void OldSchoolLookAndFeel::drawComboBox (Graphics& g, int width, int height, const bool isButtonDown, int buttonX, int buttonY, int buttonW, int buttonH, ComboBox& box) { g.fillAll (box.findColour (ComboBox::backgroundColourId)); g.setColour (box.findColour ((isButtonDown) ? ComboBox::buttonColourId : ComboBox::backgroundColourId)); g.fillRect (buttonX, buttonY, buttonW, buttonH); g.setColour (box.findColour (ComboBox::outlineColourId)); g.drawRect (0, 0, width, height); const float arrowX = 0.2f; const float arrowH = 0.3f; if (box.isEnabled()) { Path p; p.addTriangle (buttonX + buttonW * 0.5f, buttonY + buttonH * (0.45f - arrowH), buttonX + buttonW * (1.0f - arrowX), buttonY + buttonH * 0.45f, buttonX + buttonW * arrowX, buttonY + buttonH * 0.45f); p.addTriangle (buttonX + buttonW * 0.5f, buttonY + buttonH * (0.55f + arrowH), buttonX + buttonW * (1.0f - arrowX), buttonY + buttonH * 0.55f, buttonX + buttonW * arrowX, buttonY + buttonH * 0.55f); g.setColour (box.findColour ((isButtonDown) ? ComboBox::backgroundColourId : ComboBox::buttonColourId)); g.fillPath (p); } } const Font OldSchoolLookAndFeel::getComboBoxFont (ComboBox& box) { Font f (jmin (15.0f, box.getHeight() * 0.85f)); f.setHorizontalScale (0.9f); return f; } static void drawTriangle (Graphics& g, float x1, float y1, float x2, float y2, float x3, float y3, const Colour& fill, const Colour& outline) throw() { Path p; p.addTriangle (x1, y1, x2, y2, x3, y3); g.setColour (fill); g.fillPath (p); g.setColour (outline); g.strokePath (p, PathStrokeType (0.3f)); } void OldSchoolLookAndFeel::drawLinearSlider (Graphics& g, int x, int y, int w, int h, float sliderPos, float minSliderPos, float maxSliderPos, const Slider::SliderStyle style, Slider& slider) { g.fillAll (slider.findColour (Slider::backgroundColourId)); if (style == Slider::LinearBar) { g.setColour (slider.findColour (Slider::thumbColourId)); g.fillRect (x, y, (int) sliderPos - x, h); g.setColour (slider.findColour (Slider::textBoxTextColourId).withMultipliedAlpha (0.5f)); g.drawRect (x, y, (int) sliderPos - x, h); } else { g.setColour (slider.findColour (Slider::trackColourId) .withMultipliedAlpha (slider.isEnabled() ? 1.0f : 0.3f)); if (slider.isHorizontal()) { g.fillRect (x, y + roundFloatToInt (h * 0.6f), w, roundFloatToInt (h * 0.2f)); } else { g.fillRect (x + roundFloatToInt (w * 0.5f - jmin (3.0f, w * 0.1f)), y, jmin (4, roundFloatToInt (w * 0.2f)), h); } float alpha = 0.35f; if (slider.isEnabled()) alpha = slider.isMouseOverOrDragging() ? 1.0f : 0.7f; const Colour fill (slider.findColour (Slider::thumbColourId).withAlpha (alpha)); const Colour outline (Colours::black.withAlpha (slider.isEnabled() ? 0.7f : 0.35f)); if (style == Slider::TwoValueVertical || style == Slider::ThreeValueVertical) { drawTriangle (g, x + w * 0.5f + jmin (4.0f, w * 0.3f), minSliderPos, x + w * 0.5f - jmin (8.0f, w * 0.4f), minSliderPos - 7.0f, x + w * 0.5f - jmin (8.0f, w * 0.4f), minSliderPos, fill, outline); drawTriangle (g, x + w * 0.5f + jmin (4.0f, w * 0.3f), maxSliderPos, x + w * 0.5f - jmin (8.0f, w * 0.4f), maxSliderPos, x + w * 0.5f - jmin (8.0f, w * 0.4f), maxSliderPos + 7.0f, fill, outline); } else if (style == Slider::TwoValueHorizontal || style == Slider::ThreeValueHorizontal) { drawTriangle (g, minSliderPos, y + h * 0.6f - jmin (4.0f, h * 0.3f), minSliderPos - 7.0f, y + h * 0.9f , minSliderPos, y + h * 0.9f, fill, outline); drawTriangle (g, maxSliderPos, y + h * 0.6f - jmin (4.0f, h * 0.3f), maxSliderPos, y + h * 0.9f, maxSliderPos + 7.0f, y + h * 0.9f, fill, outline); } if (style == Slider::LinearHorizontal || style == Slider::ThreeValueHorizontal) { drawTriangle (g, sliderPos, y + h * 0.9f, sliderPos - 7.0f, y + h * 0.2f, sliderPos + 7.0f, y + h * 0.2f, fill, outline); } else if (style == Slider::LinearVertical || style == Slider::ThreeValueVertical) { drawTriangle (g, x + w * 0.5f - jmin (4.0f, w * 0.3f), sliderPos, x + w * 0.5f + jmin (8.0f, w * 0.4f), sliderPos - 7.0f, x + w * 0.5f + jmin (8.0f, w * 0.4f), sliderPos + 7.0f, fill, outline); } } } Button* OldSchoolLookAndFeel::createSliderButton (const bool isIncrement) { if (isIncrement) return new ArrowButton ("u", 0.75f, Colours::white.withAlpha (0.8f)); else return new ArrowButton ("d", 0.25f, Colours::white.withAlpha (0.8f)); } ImageEffectFilter* OldSchoolLookAndFeel::getSliderEffect() { return &scrollbarShadow; } int OldSchoolLookAndFeel::getSliderThumbRadius (Slider&) { return 8; } void OldSchoolLookAndFeel::drawCornerResizer (Graphics& g, int w, int h, bool isMouseOver, bool isMouseDragging) { g.setColour ((isMouseOver || isMouseDragging) ? Colours::lightgrey : Colours::darkgrey); const float lineThickness = jmin (w, h) * 0.1f; for (float i = 0.0f; i < 1.0f; i += 0.3f) { g.drawLine (w * i, h + 1.0f, w + 1.0f, h * i, lineThickness); } } Button* OldSchoolLookAndFeel::createDocumentWindowButton (int buttonType) { Path shape; if (buttonType == DocumentWindow::closeButton) { shape.addLineSegment (0.0f, 0.0f, 1.0f, 1.0f, 0.35f); shape.addLineSegment (1.0f, 0.0f, 0.0f, 1.0f, 0.35f); ShapeButton* const b = new ShapeButton ("close", Colour (0x7fff3333), Colour (0xd7ff3333), Colour (0xf7ff3333)); b->setShape (shape, true, true, true); return b; } else if (buttonType == DocumentWindow::minimiseButton) { shape.addLineSegment (0.0f, 0.5f, 1.0f, 0.5f, 0.25f); DrawableButton* b = new DrawableButton ("minimise", DrawableButton::ImageFitted); DrawablePath dp; dp.setPath (shape); dp.setSolidFill (Colours::black.withAlpha (0.3f)); b->setImages (&dp); return b; } else if (buttonType == DocumentWindow::maximiseButton) { shape.addLineSegment (0.5f, 0.0f, 0.5f, 1.0f, 0.25f); shape.addLineSegment (0.0f, 0.5f, 1.0f, 0.5f, 0.25f); DrawableButton* b = new DrawableButton ("maximise", DrawableButton::ImageFitted); DrawablePath dp; dp.setPath (shape); dp.setSolidFill (Colours::black.withAlpha (0.3f)); b->setImages (&dp); return b; } jassertfalse return 0; } void OldSchoolLookAndFeel::positionDocumentWindowButtons (DocumentWindow&, int titleBarX, int titleBarY, int titleBarW, int titleBarH, Button* minimiseButton, Button* maximiseButton, Button* closeButton, bool positionTitleBarButtonsOnLeft) { titleBarY += titleBarH / 8; titleBarH -= titleBarH / 4; const int buttonW = titleBarH; int x = positionTitleBarButtonsOnLeft ? titleBarX + 4 : titleBarX + titleBarW - buttonW - 4; if (closeButton != 0) { closeButton->setBounds (x, titleBarY, buttonW, titleBarH); x += positionTitleBarButtonsOnLeft ? buttonW + buttonW / 5 : -(buttonW + buttonW / 5); } if (positionTitleBarButtonsOnLeft) swapVariables (minimiseButton, maximiseButton); if (maximiseButton != 0) { maximiseButton->setBounds (x, titleBarY - 2, buttonW, titleBarH); x += positionTitleBarButtonsOnLeft ? buttonW : -buttonW; } if (minimiseButton != 0) minimiseButton->setBounds (x, titleBarY - 2, buttonW, titleBarH); } END_JUCE_NAMESPACE /********* End of inlined file: juce_OldSchoolLookAndFeel.cpp *********/ /********* Start of inlined file: juce_MenuBarComponent.cpp *********/ BEGIN_JUCE_NAMESPACE class DummyMenuComponent : public Component { DummyMenuComponent (const DummyMenuComponent&); const DummyMenuComponent& operator= (const DummyMenuComponent&); public: DummyMenuComponent() {} ~DummyMenuComponent() {} void inputAttemptWhenModal() { exitModalState (0); } }; MenuBarComponent::MenuBarComponent (MenuBarModel* model_) : model (0), itemUnderMouse (-1), currentPopupIndex (-1), indexToShowAgain (-1), lastMouseX (0), lastMouseY (0), inModalState (false), currentPopup (0) { setRepaintsOnMouseActivity (true); setWantsKeyboardFocus (false); setMouseClickGrabsKeyboardFocus (false); setModel (model_); } MenuBarComponent::~MenuBarComponent() { setModel (0); Desktop::getInstance().removeGlobalMouseListener (this); deleteAndZero (currentPopup); } void MenuBarComponent::setModel (MenuBarModel* const newModel) { if (model != newModel) { if (model != 0) model->removeListener (this); model = newModel; if (model != 0) model->addListener (this); repaint(); menuBarItemsChanged (0); } } void MenuBarComponent::paint (Graphics& g) { const bool isMouseOverBar = currentPopupIndex >= 0 || itemUnderMouse >= 0 || isMouseOver(); getLookAndFeel().drawMenuBarBackground (g, getWidth(), getHeight(), isMouseOverBar, *this); if (model != 0) { for (int i = 0; i < menuNames.size(); ++i) { g.saveState(); g.setOrigin (xPositions [i], 0); g.reduceClipRegion (0, 0, xPositions[i + 1] - xPositions[i], getHeight()); getLookAndFeel().drawMenuBarItem (g, xPositions[i + 1] - xPositions[i], getHeight(), i, menuNames[i], i == itemUnderMouse, i == currentPopupIndex, isMouseOverBar, *this); g.restoreState(); } } } void MenuBarComponent::resized() { xPositions.clear(); int x = 2; xPositions.add (x); for (int i = 0; i < menuNames.size(); ++i) { x += getLookAndFeel().getMenuBarItemWidth (*this, i, menuNames[i]); xPositions.add (x); } } int MenuBarComponent::getItemAt (const int x, const int y) { for (int i = 0; i < xPositions.size(); ++i) if (x >= xPositions[i] && x < xPositions[i + 1]) return reallyContains (x, y, true) ? i : -1; return -1; } void MenuBarComponent::repaintMenuItem (int index) { if (((unsigned int) index) < (unsigned int) xPositions.size()) { const int x1 = xPositions [index]; const int x2 = xPositions [index + 1]; repaint (x1 - 2, 0, x2 - x1 + 4, getHeight()); } } void MenuBarComponent::updateItemUnderMouse (int x, int y) { const int newItem = getItemAt (x, y); if (itemUnderMouse != newItem) { repaintMenuItem (itemUnderMouse); itemUnderMouse = newItem; repaintMenuItem (itemUnderMouse); } } void MenuBarComponent::hideCurrentMenu() { deleteAndZero (currentPopup); repaint(); } void MenuBarComponent::showMenu (int index) { if (index != currentPopupIndex) { if (inModalState) { hideCurrentMenu(); indexToShowAgain = index; return; } indexToShowAgain = -1; currentPopupIndex = -1; itemUnderMouse = index; deleteAndZero (currentPopup); menuBarItemsChanged (0); Component* const prevFocused = getCurrentlyFocusedComponent(); ComponentDeletionWatcher* prevCompDeletionChecker = 0; if (prevFocused != 0) prevCompDeletionChecker = new ComponentDeletionWatcher (prevFocused); ComponentDeletionWatcher deletionChecker (this); enterModalState (false); inModalState = true; int result = 0; ApplicationCommandManager* managerOfChosenCommand = 0; Desktop::getInstance().addGlobalMouseListener (this); for (;;) { const int x = getScreenX() + xPositions [itemUnderMouse]; const int w = xPositions [itemUnderMouse + 1] - xPositions [itemUnderMouse]; currentPopupIndex = itemUnderMouse; indexToShowAgain = -1; repaint(); if (((unsigned int) itemUnderMouse) < (unsigned int) menuNames.size()) { PopupMenu m (model->getMenuForIndex (itemUnderMouse, menuNames [itemUnderMouse])); currentPopup = m.createMenuComponent (x, getScreenY(), w, getHeight(), 0, w, 0, 0, true, this, &managerOfChosenCommand, this); } if (currentPopup == 0) { currentPopup = new DummyMenuComponent(); addAndMakeVisible (currentPopup); } currentPopup->enterModalState (false); currentPopup->toFront (false); // need to do this after making it modal, or it could // be stuck behind other comps that are already modal.. result = currentPopup->runModalLoop(); if (deletionChecker.hasBeenDeleted()) { delete prevCompDeletionChecker; return; } const int lastPopupIndex = currentPopupIndex; deleteAndZero (currentPopup); currentPopupIndex = -1; if (result != 0) { topLevelIndexClicked = lastPopupIndex; break; } else if (indexToShowAgain >= 0) { menuBarItemsChanged (0); repaint(); itemUnderMouse = indexToShowAgain; if (((unsigned int) itemUnderMouse) >= (unsigned int) menuNames.size()) break; } else { break; } } Desktop::getInstance().removeGlobalMouseListener (this); inModalState = false; exitModalState (0); if (prevCompDeletionChecker != 0) { if (! prevCompDeletionChecker->hasBeenDeleted()) prevFocused->grabKeyboardFocus(); delete prevCompDeletionChecker; } int mx, my; getMouseXYRelative (mx, my); updateItemUnderMouse (mx, my); repaint(); if (result != 0) { if (managerOfChosenCommand != 0) { ApplicationCommandTarget::InvocationInfo info (result); info.invocationMethod = ApplicationCommandTarget::InvocationInfo::fromMenu; managerOfChosenCommand->invoke (info, true); } postCommandMessage (result); } } } void MenuBarComponent::handleCommandMessage (int commandId) { if (model != 0) model->menuItemSelected (commandId, topLevelIndexClicked); } void MenuBarComponent::mouseEnter (const MouseEvent& e) { if (e.eventComponent == this) updateItemUnderMouse (e.x, e.y); } void MenuBarComponent::mouseExit (const MouseEvent& e) { if (e.eventComponent == this) updateItemUnderMouse (e.x, e.y); } void MenuBarComponent::mouseDown (const MouseEvent& e) { const MouseEvent e2 (e.getEventRelativeTo (this)); if (currentPopupIndex < 0) { updateItemUnderMouse (e2.x, e2.y); currentPopupIndex = -2; showMenu (itemUnderMouse); } } void MenuBarComponent::mouseDrag (const MouseEvent& e) { const MouseEvent e2 (e.getEventRelativeTo (this)); const int item = getItemAt (e2.x, e2.y); if (item >= 0) showMenu (item); } void MenuBarComponent::mouseUp (const MouseEvent& e) { const MouseEvent e2 (e.getEventRelativeTo (this)); updateItemUnderMouse (e2.x, e2.y); if (itemUnderMouse < 0 && dynamic_cast (currentPopup) != 0) hideCurrentMenu(); } void MenuBarComponent::mouseMove (const MouseEvent& e) { const MouseEvent e2 (e.getEventRelativeTo (this)); if (lastMouseX != e2.x || lastMouseY != e2.y) { if (currentPopupIndex >= 0) { const int item = getItemAt (e2.x, e2.y); if (item >= 0) showMenu (item); } else { updateItemUnderMouse (e2.x, e2.y); } lastMouseX = e2.x; lastMouseY = e2.y; } } bool MenuBarComponent::keyPressed (const KeyPress& key) { bool used = false; const int numMenus = menuNames.size(); const int currentIndex = jlimit (0, menuNames.size() - 1, currentPopupIndex); if (key.isKeyCode (KeyPress::leftKey)) { showMenu ((currentIndex + numMenus - 1) % numMenus); used = true; } else if (key.isKeyCode (KeyPress::rightKey)) { showMenu ((currentIndex + 1) % numMenus); used = true; } return used; } void MenuBarComponent::inputAttemptWhenModal() { hideCurrentMenu(); } void MenuBarComponent::menuBarItemsChanged (MenuBarModel* /*menuBarModel*/) { StringArray newNames; if (model != 0) newNames = model->getMenuBarNames(); if (newNames != menuNames) { menuNames = newNames; repaint(); resized(); } } void MenuBarComponent::menuCommandInvoked (MenuBarModel* /*menuBarModel*/, const ApplicationCommandTarget::InvocationInfo& info) { if (model == 0 || (info.commandFlags & ApplicationCommandInfo::dontTriggerVisualFeedback) != 0) return; for (int i = 0; i < menuNames.size(); ++i) { const PopupMenu menu (model->getMenuForIndex (i, menuNames [i])); if (menu.containsCommandItem (info.commandID)) { itemUnderMouse = i; repaintMenuItem (i); startTimer (200); break; } } } void MenuBarComponent::timerCallback() { stopTimer(); int mx, my; getMouseXYRelative (mx, my); updateItemUnderMouse (mx, my); } END_JUCE_NAMESPACE /********* End of inlined file: juce_MenuBarComponent.cpp *********/ /********* Start of inlined file: juce_MenuBarModel.cpp *********/ BEGIN_JUCE_NAMESPACE MenuBarModel::MenuBarModel() throw() : manager (0) { } MenuBarModel::~MenuBarModel() { setApplicationCommandManagerToWatch (0); } void MenuBarModel::menuItemsChanged() { triggerAsyncUpdate(); } void MenuBarModel::setApplicationCommandManagerToWatch (ApplicationCommandManager* const newManager) throw() { if (manager != newManager) { if (manager != 0) manager->removeListener (this); manager = newManager; if (manager != 0) manager->addListener (this); } } void MenuBarModel::addListener (MenuBarModelListener* const newListener) throw() { jassert (newListener != 0); jassert (! listeners.contains (newListener)); // trying to add a listener to the list twice! if (newListener != 0) listeners.add (newListener); } void MenuBarModel::removeListener (MenuBarModelListener* const listenerToRemove) throw() { // Trying to remove a listener that isn't on the list! // If this assertion happens because this object is a dangling pointer, make sure you've not // deleted this menu model while it's still being used by something (e.g. by a MenuBarComponent) jassert (listeners.contains (listenerToRemove)); listeners.removeValue (listenerToRemove); } void MenuBarModel::handleAsyncUpdate() { for (int i = listeners.size(); --i >= 0;) { ((MenuBarModelListener*) listeners.getUnchecked (i))->menuBarItemsChanged (this); i = jmin (i, listeners.size()); } } void MenuBarModel::applicationCommandInvoked (const ApplicationCommandTarget::InvocationInfo& info) { for (int i = listeners.size(); --i >= 0;) { ((MenuBarModelListener*) listeners.getUnchecked (i))->menuCommandInvoked (this, info); i = jmin (i, listeners.size()); } } void MenuBarModel::applicationCommandListChanged() { menuItemsChanged(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_MenuBarModel.cpp *********/ /********* Start of inlined file: juce_PopupMenu.cpp *********/ BEGIN_JUCE_NAMESPACE static VoidArray activeMenuWindows; class MenuItemInfo { public: const int itemId; String text; const Colour textColour; const bool active, isSeparator, isTicked, usesColour; Image* image; PopupMenuCustomComponent* const customComp; PopupMenu* subMenu; ApplicationCommandManager* const commandManager; MenuItemInfo() throw() : itemId (0), active (true), isSeparator (true), isTicked (false), usesColour (false), image (0), customComp (0), subMenu (0), commandManager (0) { } MenuItemInfo (const int itemId_, const String& text_, const bool active_, const bool isTicked_, const Image* im, const Colour& textColour_, const bool usesColour_, PopupMenuCustomComponent* const customComp_, const PopupMenu* const subMenu_, ApplicationCommandManager* const commandManager_) throw() : itemId (itemId_), text (text_), textColour (textColour_), active (active_), isSeparator (false), isTicked (isTicked_), usesColour (usesColour_), image (0), customComp (customComp_), commandManager (commandManager_) { subMenu = (subMenu_ != 0) ? new PopupMenu (*subMenu_) : 0; if (customComp != 0) customComp->refCount_++; if (im != 0) image = im->createCopy(); if (commandManager_ != 0 && itemId_ != 0) { String shortcutKey; Array keyPresses (commandManager_->getKeyMappings() ->getKeyPressesAssignedToCommand (itemId_)); for (int i = 0; i < keyPresses.size(); ++i) { const String key (keyPresses.getReference(i).getTextDescription()); if (shortcutKey.isNotEmpty()) shortcutKey << ", "; if (key.length() == 1) shortcutKey << "shortcut: '" << key << '\''; else shortcutKey << key; } shortcutKey = shortcutKey.trim(); if (shortcutKey.isNotEmpty()) text << "" << shortcutKey; } } MenuItemInfo (const MenuItemInfo& other) throw() : itemId (other.itemId), text (other.text), textColour (other.textColour), active (other.active), isSeparator (other.isSeparator), isTicked (other.isTicked), usesColour (other.usesColour), customComp (other.customComp), commandManager (other.commandManager) { if (other.subMenu != 0) subMenu = new PopupMenu (*(other.subMenu)); else subMenu = 0; if (other.image != 0) image = other.image->createCopy(); else image = 0; if (customComp != 0) customComp->refCount_++; } ~MenuItemInfo() throw() { delete subMenu; delete image; if (customComp != 0 && --(customComp->refCount_) == 0) delete customComp; } bool canBeTriggered() const throw() { return active && ! (isSeparator || (subMenu != 0)); } bool hasActiveSubMenu() const throw() { return active && (subMenu != 0); } juce_UseDebuggingNewOperator private: const MenuItemInfo& operator= (const MenuItemInfo&); }; class MenuItemComponent : public Component { bool isHighlighted; public: MenuItemInfo itemInfo; MenuItemComponent (const MenuItemInfo& itemInfo_) : isHighlighted (false), itemInfo (itemInfo_) { if (itemInfo.customComp != 0) addAndMakeVisible (itemInfo.customComp); } ~MenuItemComponent() { if (itemInfo.customComp != 0) removeChildComponent (itemInfo.customComp); } void getIdealSize (int& idealWidth, int& idealHeight, const int standardItemHeight) { if (itemInfo.customComp != 0) { itemInfo.customComp->getIdealSize (idealWidth, idealHeight); } else { getLookAndFeel().getIdealPopupMenuItemSize (itemInfo.text, itemInfo.isSeparator, standardItemHeight, idealWidth, idealHeight); } } void paint (Graphics& g) { if (itemInfo.customComp == 0) { String mainText (itemInfo.text); String endText; const int endIndex = mainText.indexOf (T("")); if (endIndex >= 0) { endText = mainText.substring (endIndex + 5).trim(); mainText = mainText.substring (0, endIndex); } getLookAndFeel() .drawPopupMenuItem (g, getWidth(), getHeight(), itemInfo.isSeparator, itemInfo.active, isHighlighted, itemInfo.isTicked, itemInfo.subMenu != 0, mainText, endText, itemInfo.image, itemInfo.usesColour ? &(itemInfo.textColour) : 0); } } void resized() { if (getNumChildComponents() > 0) getChildComponent(0)->setBounds (2, 0, getWidth() - 4, getHeight()); } void setHighlighted (bool shouldBeHighlighted) { shouldBeHighlighted = shouldBeHighlighted && itemInfo.active; if (isHighlighted != shouldBeHighlighted) { isHighlighted = shouldBeHighlighted; if (itemInfo.customComp != 0) { itemInfo.customComp->isHighlighted = shouldBeHighlighted; itemInfo.customComp->repaint(); } repaint(); } } private: MenuItemComponent (const MenuItemComponent&); const MenuItemComponent& operator= (const MenuItemComponent&); }; static const int scrollZone = 24; static const int borderSize = 2; static const int timerInterval = 50; static const int dismissCommandId = 0x6287345f; static bool wasHiddenBecauseOfAppChange = false; class PopupMenuWindow : public Component, private Timer { public: PopupMenuWindow() throw() : Component (T("menu")), owner (0), currentChild (0), activeSubMenu (0), menuBarComponent (0), managerOfChosenCommand (0), componentAttachedTo (0), attachedCompWatcher (0), lastMouseX (0), lastMouseY (0), minimumWidth (0), maximumNumColumns (7), standardItemHeight (0), isOver (false), hasBeenOver (false), isDown (false), needsToScroll (false), hideOnExit (false), disableMouseMoves (false), hasAnyJuceCompHadFocus (false), numColumns (0), contentHeight (0), childYOffset (0), timeEnteredCurrentChildComp (0), scrollAcceleration (1.0) { menuCreationTime = lastFocused = lastScroll = Time::getMillisecondCounter(); setWantsKeyboardFocus (true); setMouseClickGrabsKeyboardFocus (false); setOpaque (true); setAlwaysOnTop (true); Desktop::getInstance().addGlobalMouseListener (this); activeMenuWindows.add (this); } ~PopupMenuWindow() { activeMenuWindows.removeValue (this); Desktop::getInstance().removeGlobalMouseListener (this); jassert (activeSubMenu == 0 || activeSubMenu->isValidComponent()); delete activeSubMenu; deleteAllChildren(); delete attachedCompWatcher; } static PopupMenuWindow* create (const PopupMenu& menu, const bool dismissOnMouseUp, PopupMenuWindow* const owner_, const int minX, const int maxX, const int minY, const int maxY, const int minimumWidth, const int maximumNumColumns, const int standardItemHeight, const bool alignToRectangle, const int itemIdThatMustBeVisible, Component* const menuBarComponent, ApplicationCommandManager** managerOfChosenCommand, Component* const componentAttachedTo) throw() { if (menu.items.size() > 0) { int totalItems = 0; PopupMenuWindow* const mw = new PopupMenuWindow(); mw->setLookAndFeel (menu.lookAndFeel); mw->setWantsKeyboardFocus (false); mw->minimumWidth = minimumWidth; mw->maximumNumColumns = maximumNumColumns; mw->standardItemHeight = standardItemHeight; mw->dismissOnMouseUp = dismissOnMouseUp; for (int i = 0; i < menu.items.size(); ++i) { MenuItemInfo* const item = (MenuItemInfo*) menu.items.getUnchecked(i); mw->addItem (*item); ++totalItems; } if (totalItems == 0) { delete mw; } else { mw->owner = owner_; mw->menuBarComponent = menuBarComponent; mw->managerOfChosenCommand = managerOfChosenCommand; mw->componentAttachedTo = componentAttachedTo; delete mw->attachedCompWatcher; mw->attachedCompWatcher = componentAttachedTo != 0 ? new ComponentDeletionWatcher (componentAttachedTo) : 0; mw->calculateWindowPos (minX, maxX, minY, maxY, alignToRectangle); mw->setTopLeftPosition (mw->windowPos.getX(), mw->windowPos.getY()); mw->updateYPositions(); if (itemIdThatMustBeVisible != 0) { const int y = minY - mw->windowPos.getY(); mw->ensureItemIsVisible (itemIdThatMustBeVisible, (((unsigned int) y) < (unsigned int) mw->windowPos.getHeight()) ? y : -1); } mw->resizeToBestWindowPos(); mw->addToDesktop (ComponentPeer::windowIsTemporary | mw->getLookAndFeel().getMenuWindowFlags()); return mw; } } return 0; } void paint (Graphics& g) { getLookAndFeel().drawPopupMenuBackground (g, getWidth(), getHeight()); } void paintOverChildren (Graphics& g) { if (isScrolling()) { LookAndFeel& lf = getLookAndFeel(); if (isScrollZoneActive (false)) lf.drawPopupMenuUpDownArrow (g, getWidth(), scrollZone, true); if (isScrollZoneActive (true)) { g.setOrigin (0, getHeight() - scrollZone); lf.drawPopupMenuUpDownArrow (g, getWidth(), scrollZone, false); } } } bool isScrollZoneActive (bool bottomOne) const { return isScrolling() && (bottomOne ? childYOffset < contentHeight - windowPos.getHeight() : childYOffset > 0); } void addItem (const MenuItemInfo& item) throw() { MenuItemComponent* const mic = new MenuItemComponent (item); addAndMakeVisible (mic); int itemW = 80; int itemH = 16; mic->getIdealSize (itemW, itemH, standardItemHeight); mic->setSize (itemW, jlimit (2, 600, itemH)); mic->addMouseListener (this, false); } // hide this and all sub-comps void hide (const MenuItemInfo* const item) throw() { if (isVisible()) { jassert (activeSubMenu == 0 || activeSubMenu->isValidComponent()); deleteAndZero (activeSubMenu); currentChild = 0; exitModalState (item != 0 ? item->itemId : 0); setVisible (false); if (item != 0 && item->commandManager != 0 && item->itemId != 0) { *managerOfChosenCommand = item->commandManager; } } } void dismissMenu (const MenuItemInfo* const item) throw() { if (owner != 0) { owner->dismissMenu (item); } else { if (item != 0) { // need a copy of this on the stack as the one passed in will get deleted during this call const MenuItemInfo mi (*item); hide (&mi); } else { hide (0); } } } void mouseMove (const MouseEvent&) { timerCallback(); } void mouseDown (const MouseEvent&) { timerCallback(); } void mouseDrag (const MouseEvent&) { timerCallback(); } void mouseUp (const MouseEvent&) { timerCallback(); } void mouseWheelMove (const MouseEvent&, float /*amountX*/, float amountY) { alterChildYPos (roundFloatToInt (-10.0f * amountY * scrollZone)); lastMouseX = -1; } bool keyPressed (const KeyPress& key) { if (key.isKeyCode (KeyPress::downKey)) { selectNextItem (1); } else if (key.isKeyCode (KeyPress::upKey)) { selectNextItem (-1); } else if (key.isKeyCode (KeyPress::leftKey)) { PopupMenuWindow* parentWindow = owner; if (parentWindow != 0) { MenuItemComponent* currentChildOfParent = (parentWindow != 0) ? parentWindow->currentChild : 0; hide (0); if (parentWindow->isValidComponent()) parentWindow->setCurrentlyHighlightedChild (currentChildOfParent); disableTimerUntilMouseMoves(); } else if (menuBarComponent != 0) { menuBarComponent->keyPressed (key); } } else if (key.isKeyCode (KeyPress::rightKey)) { disableTimerUntilMouseMoves(); if (showSubMenuFor (currentChild)) { jassert (activeSubMenu == 0 || activeSubMenu->isValidComponent()); if (activeSubMenu != 0 && activeSubMenu->isVisible()) activeSubMenu->selectNextItem (1); } else if (menuBarComponent != 0) { menuBarComponent->keyPressed (key); } } else if (key.isKeyCode (KeyPress::returnKey)) { triggerCurrentlyHighlightedItem(); } else if (key.isKeyCode (KeyPress::escapeKey)) { dismissMenu (0); } else { return false; } return true; } void inputAttemptWhenModal() { timerCallback(); if (! isOverAnyMenu()) { if (componentAttachedTo != 0 && ! attachedCompWatcher->hasBeenDeleted()) { // we want to dismiss the menu, but if we do it synchronously, then // the mouse-click will be allowed to pass through. That's good, except // when the user clicks on the button that orginally popped the menu up, // as they'll expect the menu to go away, and in fact it'll just // come back. So only dismiss synchronously if they're not on the original // comp that we're attached to. int mx, my; componentAttachedTo->getMouseXYRelative (mx, my); if (componentAttachedTo->reallyContains (mx, my, true)) { postCommandMessage (dismissCommandId); // dismiss asynchrounously return; } } dismissMenu (0); } } void handleCommandMessage (int commandId) { Component::handleCommandMessage (commandId); if (commandId == dismissCommandId) dismissMenu (0); } void timerCallback() { if (! isVisible()) return; if (attachedCompWatcher != 0 && attachedCompWatcher->hasBeenDeleted()) { dismissMenu (0); return; } PopupMenuWindow* currentlyModalWindow = dynamic_cast (Component::getCurrentlyModalComponent()); if (currentlyModalWindow != 0 && ! treeContains (currentlyModalWindow)) return; startTimer (timerInterval); // do this in case it was called from a mouse // move rather than a real timer callback int mx, my; Desktop::getMousePosition (mx, my); int x = mx, y = my; globalPositionToRelative (x, y); const uint32 now = Time::getMillisecondCounter(); if (now > timeEnteredCurrentChildComp + 100 && reallyContains (x, y, true) && currentChild->isValidComponent() && (! disableMouseMoves) && ! (activeSubMenu != 0 && activeSubMenu->isVisible())) { showSubMenuFor (currentChild); } if (mx != lastMouseX || my != lastMouseY || now > lastMouseMoveTime + 350) { highlightItemUnderMouse (mx, my, x, y); } bool overScrollArea = false; if (isScrolling() && (isOver || (isDown && ((unsigned int) x) < (unsigned int) getWidth())) && ((isScrollZoneActive (false) && y < scrollZone) || (isScrollZoneActive (true) && y > getHeight() - scrollZone))) { if (now > lastScroll + 20) { scrollAcceleration = jmin (4.0, scrollAcceleration * 1.04); int amount = 0; for (int i = 0; i < getNumChildComponents() && amount == 0; ++i) amount = ((int) scrollAcceleration) * getChildComponent (i)->getHeight(); alterChildYPos (y < scrollZone ? -amount : amount); lastScroll = now; } overScrollArea = true; lastMouseX = -1; // trigger a mouse-move } else { scrollAcceleration = 1.0; } const bool wasDown = isDown; bool isOverAny = isOverAnyMenu(); if (hideOnExit && hasBeenOver && (! isOverAny) && activeSubMenu != 0) { activeSubMenu->updateMouseOverStatus (mx, my); isOverAny = isOverAnyMenu(); } if (hideOnExit && hasBeenOver && ! isOverAny) { hide (0); } else { isDown = hasBeenOver && (ModifierKeys::getCurrentModifiers().isAnyMouseButtonDown() || ModifierKeys::getCurrentModifiersRealtime().isAnyMouseButtonDown()); bool anyFocused = Process::isForegroundProcess(); if (anyFocused && Component::getCurrentlyFocusedComponent() == 0) { // because no component at all may have focus, our test here will // only be triggered when something has focus and then loses it. anyFocused = ! hasAnyJuceCompHadFocus; for (int i = ComponentPeer::getNumPeers(); --i >= 0;) { if (ComponentPeer::getPeer (i)->isFocused()) { anyFocused = true; hasAnyJuceCompHadFocus = true; break; } } } if (! anyFocused) { if (now > lastFocused + 10) { wasHiddenBecauseOfAppChange = true; dismissMenu (0); return; // may have been deleted by the previous call.. } } else if (wasDown && now > menuCreationTime + 250 && ! (isDown || overScrollArea)) { isOver = reallyContains (x, y, true); if (isOver) { triggerCurrentlyHighlightedItem(); } else if ((hasBeenOver || ! dismissOnMouseUp) && ! isOverAny) { dismissMenu (0); } return; // may have been deleted by the previous calls.. } else { lastFocused = now; } } } juce_UseDebuggingNewOperator private: PopupMenuWindow* owner; MenuItemComponent* currentChild; PopupMenuWindow* activeSubMenu; Component* menuBarComponent; ApplicationCommandManager** managerOfChosenCommand; Component* componentAttachedTo; ComponentDeletionWatcher* attachedCompWatcher; Rectangle windowPos; int lastMouseX, lastMouseY; int minimumWidth, maximumNumColumns, standardItemHeight; bool isOver, hasBeenOver, isDown, needsToScroll; bool dismissOnMouseUp, hideOnExit, disableMouseMoves, hasAnyJuceCompHadFocus; int numColumns, contentHeight, childYOffset; Array columnWidths; uint32 menuCreationTime, lastFocused, lastScroll, lastMouseMoveTime, timeEnteredCurrentChildComp; double scrollAcceleration; bool overlaps (const Rectangle& r) const throw() { return r.intersects (getBounds()) || (owner != 0 && owner->overlaps (r)); } bool isOverAnyMenu() const throw() { return (owner != 0) ? owner->isOverAnyMenu() : isOverChildren(); } bool isOverChildren() const throw() { jassert (activeSubMenu == 0 || activeSubMenu->isValidComponent()); return isVisible() && (isOver || (activeSubMenu != 0 && activeSubMenu->isOverChildren())); } void updateMouseOverStatus (const int mx, const int my) throw() { int rx = mx, ry = my; globalPositionToRelative (rx, ry); isOver = reallyContains (rx, ry, true); if (activeSubMenu != 0) activeSubMenu->updateMouseOverStatus (mx, my); } bool treeContains (const PopupMenuWindow* const window) const throw() { const PopupMenuWindow* mw = this; while (mw->owner != 0) mw = mw->owner; while (mw != 0) { if (mw == window) return true; mw = mw->activeSubMenu; } return false; } void calculateWindowPos (const int minX, const int maxX, const int minY, const int maxY, const bool alignToRectangle) { const Rectangle mon (Desktop::getInstance() .getMonitorAreaContaining ((minX + maxX) / 2, (minY + maxY) / 2, #if JUCE_MAC true)); #else false)); // on windows, don't stop the menu overlapping the taskbar #endif int x, y, widthToUse, heightToUse; layoutMenuItems (mon.getWidth() - 24, widthToUse, heightToUse); if (alignToRectangle) { x = minX; const int spaceUnder = mon.getHeight() - (maxY - mon.getY()); const int spaceOver = minY - mon.getY(); if (heightToUse < spaceUnder - 30 || spaceUnder >= spaceOver) y = maxY; else y = minY - heightToUse; } else { bool tendTowardsRight = (minX + maxX) / 2 < mon.getCentreX(); if (owner != 0) { if (owner->owner != 0) { const bool ownerGoingRight = (owner->getX() + owner->getWidth() / 2 > owner->owner->getX() + owner->owner->getWidth() / 2); if (ownerGoingRight && maxX + widthToUse < mon.getRight() - 4) tendTowardsRight = true; else if ((! ownerGoingRight) && minX > widthToUse + 4) tendTowardsRight = false; } else if (maxX + widthToUse < mon.getRight() - 32) { tendTowardsRight = true; } } const int biggestSpace = jmax (mon.getRight() - maxX, minX - mon.getX()) - 32; if (biggestSpace < widthToUse) { layoutMenuItems (biggestSpace + (maxX - minX) / 3, widthToUse, heightToUse); if (numColumns > 1) layoutMenuItems (biggestSpace - 4, widthToUse, heightToUse); tendTowardsRight = (mon.getRight() - maxX) >= (minX - mon.getX()); } if (tendTowardsRight) x = jmin (mon.getRight() - widthToUse - 4, maxX); else x = jmax (mon.getX() + 4, minX - widthToUse); y = minY; if ((minY + maxY) / 2 > mon.getCentreY()) y = jmax (mon.getY(), maxY - heightToUse); } x = jlimit (mon.getX() + 1, mon.getRight() - (widthToUse + 6), x); y = jlimit (mon.getY() + 1, mon.getBottom() - (heightToUse + 6), y); windowPos.setBounds (x, y, widthToUse, heightToUse); // sets this flag if it's big enough to obscure any of its parent menus hideOnExit = (owner != 0) && owner->windowPos.intersects (windowPos.expanded (-4, -4)); } void layoutMenuItems (const int maxMenuW, int& width, int& height) { numColumns = 0; contentHeight = 0; const int maxMenuH = getParentHeight() - 24; int totalW; do { ++numColumns; totalW = workOutBestSize (numColumns, maxMenuW); if (totalW > maxMenuW) { numColumns = jmax (1, numColumns - 1); totalW = workOutBestSize (numColumns, maxMenuW); // to update col widths break; } else if (totalW > maxMenuW / 2 || contentHeight < maxMenuH) { break; } } while (numColumns < maximumNumColumns); const int actualH = jmin (contentHeight, maxMenuH); needsToScroll = contentHeight > actualH; width = updateYPositions(); height = actualH + borderSize * 2; } int workOutBestSize (const int numColumns, const int maxMenuW) { int totalW = 0; contentHeight = 0; int childNum = 0; for (int col = 0; col < numColumns; ++col) { int i, colW = 50, colH = 0; const int numChildren = jmin (getNumChildComponents() - childNum, (getNumChildComponents() + numColumns - 1) / numColumns); for (i = numChildren; --i >= 0;) { colW = jmax (colW, getChildComponent (childNum + i)->getWidth()); colH += getChildComponent (childNum + i)->getHeight(); } colW = jmin (maxMenuW / jmax (1, numColumns - 2), colW + borderSize * 2); columnWidths.set (col, colW); totalW += colW; contentHeight = jmax (contentHeight, colH); childNum += numChildren; } if (totalW < minimumWidth) { totalW = minimumWidth; for (int col = 0; col < numColumns; ++col) columnWidths.set (0, totalW / numColumns); } return totalW; } void ensureItemIsVisible (const int itemId, int wantedY) { jassert (itemId != 0) for (int i = getNumChildComponents(); --i >= 0;) { MenuItemComponent* const m = (MenuItemComponent*) getChildComponent (i); if (m != 0 && m->itemInfo.itemId == itemId && windowPos.getHeight() > scrollZone * 4) { const int currentY = m->getY(); if (wantedY > 0 || currentY < 0 || m->getBottom() > windowPos.getHeight()) { if (wantedY < 0) wantedY = jlimit (scrollZone, jmax (scrollZone, windowPos.getHeight() - (scrollZone + m->getHeight())), currentY); const Rectangle mon (Desktop::getInstance() .getMonitorAreaContaining (windowPos.getX(), windowPos.getY(), true)); int deltaY = wantedY - currentY; const int newY = jlimit (mon.getY(), mon.getBottom() - windowPos.getHeight(), windowPos.getY() + deltaY); deltaY -= newY - windowPos.getY(); childYOffset -= deltaY; windowPos.setPosition (windowPos.getX(), newY); updateYPositions(); } break; } } } void resizeToBestWindowPos() { Rectangle r (windowPos); if (childYOffset < 0) { r.setBounds (r.getX(), r.getY() - childYOffset, r.getWidth(), r.getHeight() + childYOffset); } else if (childYOffset > 0) { const int spaceAtBottom = r.getHeight() - (contentHeight - childYOffset); if (spaceAtBottom > 0) r.setSize (r.getWidth(), r.getHeight() - spaceAtBottom); } setBounds (r); updateYPositions(); } void alterChildYPos (const int delta) { if (isScrolling()) { childYOffset += delta; if (delta < 0) { childYOffset = jmax (childYOffset, 0); } else if (delta > 0) { childYOffset = jmin (childYOffset, contentHeight - windowPos.getHeight() + borderSize); } updateYPositions(); } else { childYOffset = 0; } resizeToBestWindowPos(); repaint(); } int updateYPositions() { int x = 0; int childNum = 0; for (int col = 0; col < numColumns; ++col) { const int numChildren = jmin (getNumChildComponents() - childNum, (getNumChildComponents() + numColumns - 1) / numColumns); const int colW = columnWidths [col]; int y = borderSize - (childYOffset + (getY() - windowPos.getY())); for (int i = 0; i < numChildren; ++i) { Component* const c = getChildComponent (childNum + i); c->setBounds (x, y, colW, c->getHeight()); y += c->getHeight(); } x += colW; childNum += numChildren; } return x; } bool isScrolling() const throw() { return childYOffset != 0 || needsToScroll; } void setCurrentlyHighlightedChild (MenuItemComponent* const child) throw() { if (currentChild->isValidComponent()) currentChild->setHighlighted (false); currentChild = child; if (currentChild != 0) { currentChild->setHighlighted (true); timeEnteredCurrentChildComp = Time::getApproximateMillisecondCounter(); } } bool showSubMenuFor (MenuItemComponent* const childComp) { jassert (activeSubMenu == 0 || activeSubMenu->isValidComponent()); deleteAndZero (activeSubMenu); if (childComp->isValidComponent() && childComp->itemInfo.hasActiveSubMenu()) { int left = 0, top = 0; childComp->relativePositionToGlobal (left, top); int right = childComp->getWidth(), bottom = childComp->getHeight(); childComp->relativePositionToGlobal (right, bottom); activeSubMenu = PopupMenuWindow::create (*(childComp->itemInfo.subMenu), dismissOnMouseUp, this, left, right, top, bottom, 0, maximumNumColumns, standardItemHeight, false, 0, menuBarComponent, managerOfChosenCommand, componentAttachedTo); if (activeSubMenu != 0) { activeSubMenu->setVisible (true); activeSubMenu->enterModalState (false); activeSubMenu->toFront (false); return true; } } return false; } void highlightItemUnderMouse (const int mx, const int my, const int x, const int y) { isOver = reallyContains (x, y, true); if (isOver) hasBeenOver = true; if (abs (lastMouseX - mx) > 2 || abs (lastMouseY - my) > 2) { lastMouseMoveTime = Time::getApproximateMillisecondCounter(); if (disableMouseMoves && isOver) disableMouseMoves = false; } if (disableMouseMoves) return; bool isMovingTowardsMenu = false; jassert (activeSubMenu == 0 || activeSubMenu->isValidComponent()) if (isOver && (activeSubMenu != 0) && (mx != lastMouseX || my != lastMouseY)) { // try to intelligently guess whether the user is moving the mouse towards a currently-open // submenu. To do this, look at whether the mouse stays inside a triangular region that // extends from the last mouse pos to the submenu's rectangle.. float subX = (float) activeSubMenu->getScreenX(); if (activeSubMenu->getX() > getX()) { lastMouseX -= 2; // to enlarge the triangle a bit, in case the mouse only moves a couple of pixels } else { lastMouseX += 2; subX += activeSubMenu->getWidth(); } Path areaTowardsSubMenu; areaTowardsSubMenu.addTriangle ((float) lastMouseX, (float) lastMouseY, subX, (float) activeSubMenu->getScreenY(), subX, (float) (activeSubMenu->getScreenY() + activeSubMenu->getHeight())); isMovingTowardsMenu = areaTowardsSubMenu.contains ((float) mx, (float) my); } lastMouseX = mx; lastMouseY = my; if (! isMovingTowardsMenu) { Component* c = getComponentAt (x, y); if (c == this) c = 0; MenuItemComponent* mic = dynamic_cast (c); if (mic == 0 && c != 0) mic = c->findParentComponentOfClass ((MenuItemComponent*) 0); if (mic != currentChild && (isOver || (activeSubMenu == 0) || ! activeSubMenu->isVisible())) { if (isOver && (c != 0) && (activeSubMenu != 0)) { activeSubMenu->hide (0); } if (! isOver) mic = 0; setCurrentlyHighlightedChild (mic); } } } void triggerCurrentlyHighlightedItem() { if (currentChild->isValidComponent() && currentChild->itemInfo.canBeTriggered() && (currentChild->itemInfo.customComp == 0 || currentChild->itemInfo.customComp->isTriggeredAutomatically)) { dismissMenu (¤tChild->itemInfo); } } void selectNextItem (const int delta) { disableTimerUntilMouseMoves(); MenuItemComponent* mic = 0; bool wasLastOne = (currentChild == 0); const int numItems = getNumChildComponents(); for (int i = 0; i < numItems + 1; ++i) { int index = (delta > 0) ? i : (numItems - 1 - i); index = (index + numItems) % numItems; mic = dynamic_cast (getChildComponent (index)); if (mic != 0 && (mic->itemInfo.canBeTriggered() || mic->itemInfo.hasActiveSubMenu()) && wasLastOne) break; if (mic == currentChild) wasLastOne = true; } setCurrentlyHighlightedChild (mic); } void disableTimerUntilMouseMoves() throw() { disableMouseMoves = true; if (owner != 0) owner->disableTimerUntilMouseMoves(); } PopupMenuWindow (const PopupMenuWindow&); const PopupMenuWindow& operator= (const PopupMenuWindow&); }; PopupMenu::PopupMenu() throw() : items (8), lookAndFeel (0), separatorPending (false) { } PopupMenu::PopupMenu (const PopupMenu& other) throw() : items (8), lookAndFeel (other.lookAndFeel), separatorPending (false) { items.ensureStorageAllocated (other.items.size()); for (int i = 0; i < other.items.size(); ++i) items.add (new MenuItemInfo (*(const MenuItemInfo*) other.items.getUnchecked(i))); } const PopupMenu& PopupMenu::operator= (const PopupMenu& other) throw() { if (this != &other) { lookAndFeel = other.lookAndFeel; clear(); items.ensureStorageAllocated (other.items.size()); for (int i = 0; i < other.items.size(); ++i) items.add (new MenuItemInfo (*(const MenuItemInfo*) other.items.getUnchecked(i))); } return *this; } PopupMenu::~PopupMenu() throw() { clear(); } void PopupMenu::clear() throw() { for (int i = items.size(); --i >= 0;) { MenuItemInfo* const mi = (MenuItemInfo*) items.getUnchecked(i); delete mi; } items.clear(); separatorPending = false; } void PopupMenu::addSeparatorIfPending() { if (separatorPending) { separatorPending = false; if (items.size() > 0) items.add (new MenuItemInfo()); } } void PopupMenu::addItem (const int itemResultId, const String& itemText, const bool isActive, const bool isTicked, const Image* const iconToUse) throw() { jassert (itemResultId != 0); // 0 is used as a return value to indicate that the user // didn't pick anything, so you shouldn't use it as the id // for an item.. addSeparatorIfPending(); items.add (new MenuItemInfo (itemResultId, itemText, isActive, isTicked, iconToUse, Colours::black, false, 0, 0, 0)); } void PopupMenu::addCommandItem (ApplicationCommandManager* commandManager, const int commandID, const String& displayName) throw() { jassert (commandManager != 0 && commandID != 0); const ApplicationCommandInfo* const registeredInfo = commandManager->getCommandForID (commandID); if (registeredInfo != 0) { ApplicationCommandInfo info (*registeredInfo); ApplicationCommandTarget* const target = commandManager->getTargetForCommand (commandID, info); addSeparatorIfPending(); items.add (new MenuItemInfo (commandID, displayName.isNotEmpty() ? displayName : info.shortName, target != 0 && (info.flags & ApplicationCommandInfo::isDisabled) == 0, (info.flags & ApplicationCommandInfo::isTicked) != 0, 0, Colours::black, false, 0, 0, commandManager)); } } void PopupMenu::addColouredItem (const int itemResultId, const String& itemText, const Colour& itemTextColour, const bool isActive, const bool isTicked, const Image* const iconToUse) throw() { jassert (itemResultId != 0); // 0 is used as a return value to indicate that the user // didn't pick anything, so you shouldn't use it as the id // for an item.. addSeparatorIfPending(); items.add (new MenuItemInfo (itemResultId, itemText, isActive, isTicked, iconToUse, itemTextColour, true, 0, 0, 0)); } void PopupMenu::addCustomItem (const int itemResultId, PopupMenuCustomComponent* const customComponent) throw() { jassert (itemResultId != 0); // 0 is used as a return value to indicate that the user // didn't pick anything, so you shouldn't use it as the id // for an item.. addSeparatorIfPending(); items.add (new MenuItemInfo (itemResultId, String::empty, true, false, 0, Colours::black, false, customComponent, 0, 0)); } class NormalComponentWrapper : public PopupMenuCustomComponent { public: NormalComponentWrapper (Component* const comp, const int w, const int h, const bool triggerMenuItemAutomaticallyWhenClicked) : PopupMenuCustomComponent (triggerMenuItemAutomaticallyWhenClicked), width (w), height (h) { addAndMakeVisible (comp); } ~NormalComponentWrapper() {} void getIdealSize (int& idealWidth, int& idealHeight) { idealWidth = width; idealHeight = height; } void resized() { if (getChildComponent(0) != 0) getChildComponent(0)->setBounds (0, 0, getWidth(), getHeight()); } juce_UseDebuggingNewOperator private: const int width, height; NormalComponentWrapper (const NormalComponentWrapper&); const NormalComponentWrapper& operator= (const NormalComponentWrapper&); }; void PopupMenu::addCustomItem (const int itemResultId, Component* customComponent, int idealWidth, int idealHeight, const bool triggerMenuItemAutomaticallyWhenClicked) throw() { addCustomItem (itemResultId, new NormalComponentWrapper (customComponent, idealWidth, idealHeight, triggerMenuItemAutomaticallyWhenClicked)); } void PopupMenu::addSubMenu (const String& subMenuName, const PopupMenu& subMenu, const bool isActive, Image* const iconToUse, const bool isTicked) throw() { addSeparatorIfPending(); items.add (new MenuItemInfo (0, subMenuName, isActive && (subMenu.getNumItems() > 0), isTicked, iconToUse, Colours::black, false, 0, &subMenu, 0)); } void PopupMenu::addSeparator() throw() { separatorPending = true; } class HeaderItemComponent : public PopupMenuCustomComponent { public: HeaderItemComponent (const String& name) : PopupMenuCustomComponent (false) { setName (name); } ~HeaderItemComponent() { } void paint (Graphics& g) { Font f (getLookAndFeel().getPopupMenuFont()); f.setBold (true); g.setFont (f); g.setColour (findColour (PopupMenu::headerTextColourId)); g.drawFittedText (getName(), 12, 0, getWidth() - 16, proportionOfHeight (0.8f), Justification::bottomLeft, 1); } void getIdealSize (int& idealWidth, int& idealHeight) { getLookAndFeel().getIdealPopupMenuItemSize (getName(), false, -1, idealWidth, idealHeight); idealHeight += idealHeight / 2; idealWidth += idealWidth / 4; } juce_UseDebuggingNewOperator }; void PopupMenu::addSectionHeader (const String& title) throw() { addCustomItem (0X4734a34f, new HeaderItemComponent (title)); } Component* PopupMenu::createMenuComponent (const int x, const int y, const int w, const int h, const int itemIdThatMustBeVisible, const int minimumWidth, const int maximumNumColumns, const int standardItemHeight, const bool alignToRectangle, Component* menuBarComponent, ApplicationCommandManager** managerOfChosenCommand, Component* const componentAttachedTo) throw() { PopupMenuWindow* const pw = PopupMenuWindow::create (*this, ModifierKeys::getCurrentModifiers().isAnyMouseButtonDown(), 0, x, x + w, y, y + h, minimumWidth, maximumNumColumns, standardItemHeight, alignToRectangle, itemIdThatMustBeVisible, menuBarComponent, managerOfChosenCommand, componentAttachedTo); if (pw != 0) pw->setVisible (true); return pw; } int PopupMenu::showMenu (const int x, const int y, const int w, const int h, const int itemIdThatMustBeVisible, const int minimumWidth, const int maximumNumColumns, const int standardItemHeight, const bool alignToRectangle, Component* const componentAttachedTo) throw() { Component* const prevFocused = Component::getCurrentlyFocusedComponent(); ComponentDeletionWatcher* deletionChecker1 = 0; if (prevFocused != 0) deletionChecker1 = new ComponentDeletionWatcher (prevFocused); Component* const prevTopLevel = (prevFocused != 0) ? prevFocused->getTopLevelComponent() : 0; ComponentDeletionWatcher* deletionChecker2 = 0; if (prevTopLevel != 0) deletionChecker2 = new ComponentDeletionWatcher (prevTopLevel); wasHiddenBecauseOfAppChange = false; int result = 0; ApplicationCommandManager* managerOfChosenCommand = 0; Component* const popupComp = createMenuComponent (x, y, w, h, itemIdThatMustBeVisible, minimumWidth, maximumNumColumns > 0 ? maximumNumColumns : 7, standardItemHeight, alignToRectangle, 0, &managerOfChosenCommand, componentAttachedTo); if (popupComp != 0) { popupComp->enterModalState (false); popupComp->toFront (false); // need to do this after making it modal, or it could // be stuck behind other comps that are already modal.. result = popupComp->runModalLoop(); delete popupComp; if (! wasHiddenBecauseOfAppChange) { if (deletionChecker2 != 0 && ! deletionChecker2->hasBeenDeleted()) prevTopLevel->toFront (true); if (deletionChecker1 != 0 && ! deletionChecker1->hasBeenDeleted()) prevFocused->grabKeyboardFocus(); } } delete deletionChecker1; delete deletionChecker2; if (managerOfChosenCommand != 0 && result != 0) { ApplicationCommandTarget::InvocationInfo info (result); info.invocationMethod = ApplicationCommandTarget::InvocationInfo::fromMenu; managerOfChosenCommand->invoke (info, true); } return result; } int PopupMenu::show (const int itemIdThatMustBeVisible, const int minimumWidth, const int maximumNumColumns, const int standardItemHeight) { int x, y; Desktop::getMousePosition (x, y); return showAt (x, y, itemIdThatMustBeVisible, minimumWidth, maximumNumColumns, standardItemHeight); } int PopupMenu::showAt (const int screenX, const int screenY, const int itemIdThatMustBeVisible, const int minimumWidth, const int maximumNumColumns, const int standardItemHeight) { return showMenu (screenX, screenY, 1, 1, itemIdThatMustBeVisible, minimumWidth, maximumNumColumns, standardItemHeight, false, 0); } int PopupMenu::showAt (Component* componentToAttachTo, const int itemIdThatMustBeVisible, const int minimumWidth, const int maximumNumColumns, const int standardItemHeight) { if (componentToAttachTo != 0) { return showMenu (componentToAttachTo->getScreenX(), componentToAttachTo->getScreenY(), componentToAttachTo->getWidth(), componentToAttachTo->getHeight(), itemIdThatMustBeVisible, minimumWidth, maximumNumColumns, standardItemHeight, true, componentToAttachTo); } else { return show (itemIdThatMustBeVisible, minimumWidth, maximumNumColumns, standardItemHeight); } } void JUCE_CALLTYPE PopupMenu::dismissAllActiveMenus() throw() { for (int i = activeMenuWindows.size(); --i >= 0;) { PopupMenuWindow* const pmw = (PopupMenuWindow*) activeMenuWindows[i]; if (pmw != 0) pmw->dismissMenu (0); } } int PopupMenu::getNumItems() const throw() { int num = 0; for (int i = items.size(); --i >= 0;) if (! ((MenuItemInfo*) items.getUnchecked(i))->isSeparator) ++num; return num; } bool PopupMenu::containsCommandItem (const int commandID) const throw() { for (int i = items.size(); --i >= 0;) { const MenuItemInfo* mi = (const MenuItemInfo*) items.getUnchecked (i); if ((mi->itemId == commandID && mi->commandManager != 0) || (mi->subMenu != 0 && mi->subMenu->containsCommandItem (commandID))) { return true; } } return false; } bool PopupMenu::containsAnyActiveItems() const throw() { for (int i = items.size(); --i >= 0;) { const MenuItemInfo* const mi = (const MenuItemInfo*) items.getUnchecked (i); if (mi->subMenu != 0) { if (mi->subMenu->containsAnyActiveItems()) return true; } else if (mi->active) { return true; } } return false; } void PopupMenu::setLookAndFeel (LookAndFeel* const newLookAndFeel) throw() { lookAndFeel = newLookAndFeel; } PopupMenuCustomComponent::PopupMenuCustomComponent (const bool isTriggeredAutomatically_) : refCount_ (0), isHighlighted (false), isTriggeredAutomatically (isTriggeredAutomatically_) { } PopupMenuCustomComponent::~PopupMenuCustomComponent() { jassert (refCount_ == 0); // should be deleted only by the menu component, as they keep a ref-count. } void PopupMenuCustomComponent::triggerMenuItem() { MenuItemComponent* const mic = dynamic_cast (getParentComponent()); if (mic != 0) { PopupMenuWindow* const pmw = dynamic_cast (mic->getParentComponent()); if (pmw != 0) { pmw->dismissMenu (&mic->itemInfo); } else { // something must have gone wrong with the component hierarchy if this happens.. jassertfalse } } else { // why isn't this component inside a menu? Not much point triggering the item if // there's no menu. jassertfalse } } PopupMenu::MenuItemIterator::MenuItemIterator (const PopupMenu& menu_) throw() : subMenu (0), itemId (0), isSeparator (false), isTicked (false), isEnabled (false), isCustomComponent (false), isSectionHeader (false), customColour (0), customImage (0), menu (menu_), index (0) { } PopupMenu::MenuItemIterator::~MenuItemIterator() throw() { } bool PopupMenu::MenuItemIterator::next() throw() { if (index >= menu.items.size()) return false; const MenuItemInfo* const item = (const MenuItemInfo*) menu.items.getUnchecked (index); ++index; itemName = item->customComp != 0 ? item->customComp->getName() : item->text; subMenu = item->subMenu; itemId = item->itemId; isSeparator = item->isSeparator; isTicked = item->isTicked; isEnabled = item->active; isSectionHeader = dynamic_cast (item->customComp) != 0; isCustomComponent = (! isSectionHeader) && item->customComp != 0; customColour = item->usesColour ? &(item->textColour) : 0; customImage = item->image; commandManager = item->commandManager; return true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_PopupMenu.cpp *********/ /********* Start of inlined file: juce_ComponentDragger.cpp *********/ BEGIN_JUCE_NAMESPACE ComponentDragger::ComponentDragger() : constrainer (0), originalX (0), originalY (0) { } ComponentDragger::~ComponentDragger() { } void ComponentDragger::startDraggingComponent (Component* const componentToDrag, ComponentBoundsConstrainer* const constrainer_) { jassert (componentToDrag->isValidComponent()); if (componentToDrag->isValidComponent()) { constrainer = constrainer_; originalX = 0; originalY = 0; componentToDrag->relativePositionToGlobal (originalX, originalY); } } void ComponentDragger::dragComponent (Component* const componentToDrag, const MouseEvent& e) { jassert (componentToDrag->isValidComponent()); jassert (e.mods.isAnyMouseButtonDown()); // (the event has to be a drag event..) if (componentToDrag->isValidComponent()) { int x = originalX; int y = originalY; int w = componentToDrag->getWidth(); int h = componentToDrag->getHeight(); const Component* const parentComp = componentToDrag->getParentComponent(); if (parentComp != 0) parentComp->globalPositionToRelative (x, y); x += e.getDistanceFromDragStartX(); y += e.getDistanceFromDragStartY(); if (constrainer != 0) constrainer->setBoundsForComponent (componentToDrag, x, y, w, h, false, false, false, false); else componentToDrag->setBounds (x, y, w, h); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ComponentDragger.cpp *********/ /********* Start of inlined file: juce_DragAndDropContainer.cpp *********/ BEGIN_JUCE_NAMESPACE bool juce_performDragDropFiles (const StringArray& files, const bool copyFiles, bool& shouldStop); bool juce_performDragDropText (const String& text, bool& shouldStop); class DragImageComponent : public Component, public Timer { private: Image* image; Component* const source; DragAndDropContainer* const owner; ComponentDeletionWatcher* sourceWatcher; Component* mouseDragSource; ComponentDeletionWatcher* mouseDragSourceWatcher; DragAndDropTarget* currentlyOver; ComponentDeletionWatcher* currentlyOverWatcher; String dragDesc; int xOff, yOff; bool hasCheckedForExternalDrag, drawImage; DragImageComponent (const DragImageComponent&); const DragImageComponent& operator= (const DragImageComponent&); public: DragImageComponent (Image* const im, const String& desc, Component* const s, DragAndDropContainer* const o) : image (im), source (s), owner (o), currentlyOver (0), currentlyOverWatcher (0), dragDesc (desc), hasCheckedForExternalDrag (false), drawImage (true) { setSize (im->getWidth(), im->getHeight()); sourceWatcher = new ComponentDeletionWatcher (source); mouseDragSource = Component::getComponentUnderMouse(); if (mouseDragSource == 0) mouseDragSource = source; mouseDragSourceWatcher = new ComponentDeletionWatcher (mouseDragSource); mouseDragSource->addMouseListener (this, false); int mx, my; Desktop::getLastMouseDownPosition (mx, my); source->globalPositionToRelative (mx, my); xOff = jlimit (0, im->getWidth(), mx); yOff = jlimit (0, im->getHeight(), my); startTimer (200); setInterceptsMouseClicks (false, false); setAlwaysOnTop (true); } ~DragImageComponent() { if (owner->dragImageComponent == this) owner->dragImageComponent = 0; if (! mouseDragSourceWatcher->hasBeenDeleted()) { mouseDragSource->removeMouseListener (this); if (currentlyOverWatcher != 0 && ! currentlyOverWatcher->hasBeenDeleted()) if (currentlyOver->isInterestedInDragSource (dragDesc, source)) currentlyOver->itemDragExit (dragDesc, source); } delete mouseDragSourceWatcher; delete sourceWatcher; delete image; delete currentlyOverWatcher; } void paint (Graphics& g) { if (isOpaque()) g.fillAll (Colours::white); if (drawImage) { g.setOpacity (1.0f); g.drawImageAt (image, 0, 0); } } DragAndDropTarget* findTarget (const int screenX, const int screenY, int& relX, int& relY) const throw() { Component* hit = getParentComponent(); if (hit == 0) { hit = Desktop::getInstance().findComponentAt (screenX, screenY); } else { int rx = screenX, ry = screenY; hit->globalPositionToRelative (rx, ry); hit = hit->getComponentAt (rx, ry); } // (note: use a local copy of the dragDesc member in case the callback runs // a modal loop and deletes this object before the method completes) const String dragDescLocal (dragDesc); while (hit != 0) { DragAndDropTarget* const ddt = dynamic_cast (hit); if (ddt != 0 && ddt->isInterestedInDragSource (dragDescLocal, source)) { relX = screenX; relY = screenY; hit->globalPositionToRelative (relX, relY); return ddt; } hit = hit->getParentComponent(); } return 0; } void mouseUp (const MouseEvent& e) { if (e.originalComponent != this) { if (! mouseDragSourceWatcher->hasBeenDeleted()) mouseDragSource->removeMouseListener (this); bool dropAccepted = false; DragAndDropTarget* ddt = 0; int relX = 0, relY = 0; if (isVisible()) { setVisible (false); ddt = findTarget (e.getScreenX(), e.getScreenY(), relX, relY); // fade this component and remove it - it'll be deleted later by the timer callback dropAccepted = ddt != 0; setVisible (true); if (dropAccepted || sourceWatcher->hasBeenDeleted()) { fadeOutComponent (120); } else { int targetX = source->getWidth() / 2; int targetY = source->getHeight() / 2; source->relativePositionToGlobal (targetX, targetY); int ourCentreX = getWidth() / 2; int ourCentreY = getHeight() / 2; relativePositionToGlobal (ourCentreX, ourCentreY); fadeOutComponent (120, targetX - ourCentreX, targetY - ourCentreY); } } if (getParentComponent() != 0) getParentComponent()->removeChildComponent (this); if (dropAccepted && ddt != 0) { // (note: use a local copy of the dragDesc member in case the callback runs // a modal loop and deletes this object before the method completes) const String dragDescLocal (dragDesc); currentlyOver = 0; deleteAndZero (currentlyOverWatcher); ddt->itemDropped (dragDescLocal, source, relX, relY); } // careful - this object could now be deleted.. } } void updateLocation (const bool canDoExternalDrag, int x, int y) { // (note: use a local copy of the dragDesc member in case the callback runs // a modal loop and deletes this object before it returns) const String dragDescLocal (dragDesc); int newX = x - xOff; int newY = y - yOff; if (getParentComponent() != 0) getParentComponent()->globalPositionToRelative (newX, newY); if (newX != getX() || newY != getY()) { setTopLeftPosition (newX, newY); int relX = 0, relY = 0; DragAndDropTarget* const ddt = findTarget (x, y, relX, relY); drawImage = (ddt == 0) || ddt->shouldDrawDragImageWhenOver(); if (ddt != currentlyOver) { if (currentlyOverWatcher != 0 && ! currentlyOverWatcher->hasBeenDeleted()) { Component* const over = dynamic_cast (currentlyOver); if (over != 0 && over->isValidComponent() && ! (sourceWatcher->hasBeenDeleted()) && currentlyOver->isInterestedInDragSource (dragDescLocal, source)) { currentlyOver->itemDragExit (dragDescLocal, source); } } currentlyOver = ddt; deleteAndZero (currentlyOverWatcher); if (ddt != 0) { currentlyOverWatcher = new ComponentDeletionWatcher (dynamic_cast (ddt)); if (currentlyOver->isInterestedInDragSource (dragDescLocal, source)) currentlyOver->itemDragEnter (dragDescLocal, source, relX, relY); } } else if (currentlyOverWatcher != 0 && currentlyOverWatcher->hasBeenDeleted()) { currentlyOver = 0; deleteAndZero (currentlyOverWatcher); } if (currentlyOver != 0 && currentlyOver->isInterestedInDragSource (dragDescLocal, source)) currentlyOver->itemDragMove (dragDescLocal, source, relX, relY); if (currentlyOver == 0 && canDoExternalDrag && ! hasCheckedForExternalDrag) { if (Desktop::getInstance().findComponentAt (x, y) == 0) { hasCheckedForExternalDrag = true; StringArray files; bool canMoveFiles = false; if (owner->shouldDropFilesWhenDraggedExternally (dragDescLocal, source, files, canMoveFiles) && files.size() > 0) { ComponentDeletionWatcher cdw (this); setVisible (false); if (ModifierKeys::getCurrentModifiersRealtime().isAnyMouseButtonDown()) DragAndDropContainer::performExternalDragDropOfFiles (files, canMoveFiles); if (! cdw.hasBeenDeleted()) delete this; return; } } } } } void mouseDrag (const MouseEvent& e) { if (e.originalComponent != this) updateLocation (true, e.getScreenX(), e.getScreenY()); } void timerCallback() { if (sourceWatcher->hasBeenDeleted()) { delete this; } else if (! isMouseButtonDownAnywhere()) { if (! mouseDragSourceWatcher->hasBeenDeleted()) mouseDragSource->removeMouseListener (this); delete this; } } }; DragAndDropContainer::DragAndDropContainer() : dragImageComponent (0) { } DragAndDropContainer::~DragAndDropContainer() { if (dragImageComponent != 0) delete dragImageComponent; } void DragAndDropContainer::startDragging (const String& sourceDescription, Component* sourceComponent, Image* im, const bool allowDraggingToExternalWindows) { if (dragImageComponent != 0) { if (im != 0) delete im; } else { Component* const thisComp = dynamic_cast (this); if (thisComp != 0) { int mx, my; Desktop::getLastMouseDownPosition (mx, my); if (im == 0) { im = sourceComponent->createComponentSnapshot (Rectangle (0, 0, sourceComponent->getWidth(), sourceComponent->getHeight())); if (im->getFormat() != Image::ARGB) { Image* newIm = new Image (Image::ARGB, im->getWidth(), im->getHeight(), true); Graphics g2 (*newIm); g2.drawImageAt (im, 0, 0); delete im; im = newIm; } im->multiplyAllAlphas (0.6f); const int lo = 150; const int hi = 400; int rx = mx, ry = my; sourceComponent->globalPositionToRelative (rx, ry); const int cx = jlimit (0, im->getWidth(), rx); const int cy = jlimit (0, im->getHeight(), ry); for (int y = im->getHeight(); --y >= 0;) { const double dy = (y - cy) * (y - cy); for (int x = im->getWidth(); --x >= 0;) { const int dx = x - cx; const int distance = roundDoubleToInt (sqrt (dx * dx + dy)); if (distance > lo) { const float alpha = (distance > hi) ? 0 : (hi - distance) / (float) (hi - lo) + Random::getSystemRandom().nextFloat() * 0.008f; im->multiplyAlphaAt (x, y, alpha); } } } } DragImageComponent* const dic = new DragImageComponent (im, sourceDescription, sourceComponent, this); dragImageComponent = dic; currentDragDesc = sourceDescription; if (allowDraggingToExternalWindows) { if (! Desktop::canUseSemiTransparentWindows()) dic->setOpaque (true); dic->addToDesktop (ComponentPeer::windowIgnoresMouseClicks | ComponentPeer::windowIsTemporary | ComponentPeer::windowIgnoresKeyPresses); } else thisComp->addChildComponent (dic); dic->updateLocation (false, mx, my); dic->setVisible (true); } else { // this class must only be implemented by an object that // is also a Component. jassertfalse if (im != 0) delete im; } } } bool DragAndDropContainer::isDragAndDropActive() const { return dragImageComponent != 0; } const String DragAndDropContainer::getCurrentDragDescription() const { return (dragImageComponent != 0) ? currentDragDesc : String::empty; } DragAndDropContainer* DragAndDropContainer::findParentDragContainerFor (Component* c) { if (c == 0) return 0; // (unable to use the syntax findParentComponentOfClass () because of a VC6 compiler bug) return c->findParentComponentOfClass ((DragAndDropContainer*) 0); } bool DragAndDropContainer::shouldDropFilesWhenDraggedExternally (const String&, Component*, StringArray&, bool&) { return false; } void DragAndDropTarget::itemDragEnter (const String&, Component*, int, int) { } void DragAndDropTarget::itemDragMove (const String&, Component*, int, int) { } void DragAndDropTarget::itemDragExit (const String&, Component*) { } bool DragAndDropTarget::shouldDrawDragImageWhenOver() { return true; } void FileDragAndDropTarget::fileDragEnter (const StringArray&, int, int) { } void FileDragAndDropTarget::fileDragMove (const StringArray&, int, int) { } void FileDragAndDropTarget::fileDragExit (const StringArray&) { } END_JUCE_NAMESPACE /********* End of inlined file: juce_DragAndDropContainer.cpp *********/ /********* Start of inlined file: juce_MouseCursor.cpp *********/ BEGIN_JUCE_NAMESPACE void* juce_createMouseCursorFromImage (const Image& image, int hotspotX, int hotspotY) throw(); void* juce_createStandardMouseCursor (MouseCursor::StandardCursorType type) throw(); // isStandard set depending on which interface was used to create the cursor void juce_deleteMouseCursor (void* const cursorHandle, const bool isStandard) throw(); static CriticalSection mouseCursorLock; static VoidArray standardCursors (2); class RefCountedMouseCursor { public: RefCountedMouseCursor (const MouseCursor::StandardCursorType t) throw() : refCount (1), standardType (t), isStandard (true) { handle = juce_createStandardMouseCursor (standardType); standardCursors.add (this); } RefCountedMouseCursor (Image& image, const int hotSpotX, const int hotSpotY) throw() : refCount (1), standardType (MouseCursor::NormalCursor), isStandard (false) { handle = juce_createMouseCursorFromImage (image, hotSpotX, hotSpotY); } ~RefCountedMouseCursor() throw() { juce_deleteMouseCursor (handle, isStandard); standardCursors.removeValue (this); } void decRef() throw() { if (--refCount == 0) delete this; } void incRef() throw() { ++refCount; } void* getHandle() const throw() { return handle; } static RefCountedMouseCursor* findInstance (MouseCursor::StandardCursorType type) throw() { const ScopedLock sl (mouseCursorLock); for (int i = 0; i < standardCursors.size(); i++) { RefCountedMouseCursor* const r = (RefCountedMouseCursor*) standardCursors.getUnchecked(i); if (r->standardType == type) { r->incRef(); return r; } } return new RefCountedMouseCursor (type); } juce_UseDebuggingNewOperator private: void* handle; int refCount; const MouseCursor::StandardCursorType standardType; const bool isStandard; const RefCountedMouseCursor& operator= (const RefCountedMouseCursor&); }; MouseCursor::MouseCursor() throw() { cursorHandle = RefCountedMouseCursor::findInstance (NormalCursor); } MouseCursor::MouseCursor (const StandardCursorType type) throw() { cursorHandle = RefCountedMouseCursor::findInstance (type); } MouseCursor::MouseCursor (Image& image, const int hotSpotX, const int hotSpotY) throw() { cursorHandle = new RefCountedMouseCursor (image, hotSpotX, hotSpotY); } MouseCursor::MouseCursor (const MouseCursor& other) throw() : cursorHandle (other.cursorHandle) { const ScopedLock sl (mouseCursorLock); cursorHandle->incRef(); } MouseCursor::~MouseCursor() throw() { const ScopedLock sl (mouseCursorLock); cursorHandle->decRef(); } const MouseCursor& MouseCursor::operator= (const MouseCursor& other) throw() { if (this != &other) { const ScopedLock sl (mouseCursorLock); cursorHandle->decRef(); cursorHandle = other.cursorHandle; cursorHandle->incRef(); } return *this; } bool MouseCursor::operator== (const MouseCursor& other) const throw() { return cursorHandle == other.cursorHandle; } bool MouseCursor::operator!= (const MouseCursor& other) const throw() { return cursorHandle != other.cursorHandle; } void* MouseCursor::getHandle() const throw() { return cursorHandle->getHandle(); } void MouseCursor::showWaitCursor() throw() { const MouseCursor mc (MouseCursor::WaitCursor); mc.showInAllWindows(); } void MouseCursor::hideWaitCursor() throw() { if (Component::getComponentUnderMouse()->isValidComponent()) { Component::getComponentUnderMouse()->getMouseCursor().showInAllWindows(); } else { const MouseCursor mc (MouseCursor::NormalCursor); mc.showInAllWindows(); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_MouseCursor.cpp *********/ /********* Start of inlined file: juce_MouseEvent.cpp *********/ BEGIN_JUCE_NAMESPACE MouseEvent::MouseEvent (const int x_, const int y_, const ModifierKeys& mods_, Component* const originator, const Time& eventTime_, const int mouseDownX_, const int mouseDownY_, const Time& mouseDownTime_, const int numberOfClicks_, const bool mouseWasDragged) throw() : x (x_), y (y_), mods (mods_), eventComponent (originator), originalComponent (originator), eventTime (eventTime_), mouseDownX (mouseDownX_), mouseDownY (mouseDownY_), mouseDownTime (mouseDownTime_), numberOfClicks (numberOfClicks_), wasMovedSinceMouseDown (mouseWasDragged) { } MouseEvent::~MouseEvent() throw() { } bool MouseEvent::mouseWasClicked() const throw() { return ! wasMovedSinceMouseDown; } int MouseEvent::getMouseDownX() const throw() { return mouseDownX; } int MouseEvent::getMouseDownY() const throw() { return mouseDownY; } int MouseEvent::getDistanceFromDragStartX() const throw() { return x - mouseDownX; } int MouseEvent::getDistanceFromDragStartY() const throw() { return y - mouseDownY; } int MouseEvent::getDistanceFromDragStart() const throw() { return roundDoubleToInt (juce_hypot (getDistanceFromDragStartX(), getDistanceFromDragStartY())); } int MouseEvent::getLengthOfMousePress() const throw() { if (mouseDownTime.toMilliseconds() > 0) return jmax (0, (int) (eventTime - mouseDownTime).inMilliseconds()); return 0; } int MouseEvent::getScreenX() const throw() { int sx = x, sy = y; eventComponent->relativePositionToGlobal (sx, sy); return sx; } int MouseEvent::getScreenY() const throw() { int sx = x, sy = y; eventComponent->relativePositionToGlobal (sx, sy); return sy; } int MouseEvent::getMouseDownScreenX() const throw() { int sx = mouseDownX, sy = mouseDownY; eventComponent->relativePositionToGlobal (sx, sy); return sx; } int MouseEvent::getMouseDownScreenY() const throw() { int sx = mouseDownX, sy = mouseDownY; eventComponent->relativePositionToGlobal (sx, sy); return sy; } const MouseEvent MouseEvent::getEventRelativeTo (Component* const otherComponent) const throw() { if (otherComponent == 0) { jassertfalse return *this; } MouseEvent me (*this); eventComponent->relativePositionToOtherComponent (otherComponent, me.x, me.y); eventComponent->relativePositionToOtherComponent (otherComponent, me.mouseDownX, me.mouseDownY); me.eventComponent = otherComponent; return me; } static int doubleClickTimeOutMs = 400; void MouseEvent::setDoubleClickTimeout (const int newTime) throw() { doubleClickTimeOutMs = newTime; } int MouseEvent::getDoubleClickTimeout() throw() { return doubleClickTimeOutMs; } END_JUCE_NAMESPACE /********* End of inlined file: juce_MouseEvent.cpp *********/ /********* Start of inlined file: juce_MouseHoverDetector.cpp *********/ BEGIN_JUCE_NAMESPACE MouseHoverDetector::MouseHoverDetector (const int hoverTimeMillisecs_) : source (0), hoverTimeMillisecs (hoverTimeMillisecs_), hasJustHovered (false) { internalTimer.owner = this; } MouseHoverDetector::~MouseHoverDetector() { setHoverComponent (0); } void MouseHoverDetector::setHoverTimeMillisecs (const int newTimeInMillisecs) { hoverTimeMillisecs = newTimeInMillisecs; } void MouseHoverDetector::setHoverComponent (Component* const newSourceComponent) { if (source != newSourceComponent) { internalTimer.stopTimer(); hasJustHovered = false; if (source != 0) { // ! you need to delete the hover detector before deleting its component jassert (source->isValidComponent()); source->removeMouseListener (&internalTimer); } source = newSourceComponent; if (newSourceComponent != 0) newSourceComponent->addMouseListener (&internalTimer, false); } } void MouseHoverDetector::hoverTimerCallback() { internalTimer.stopTimer(); if (source != 0) { int mx, my; source->getMouseXYRelative (mx, my); if (source->reallyContains (mx, my, false)) { hasJustHovered = true; mouseHovered (mx, my); } } } void MouseHoverDetector::checkJustHoveredCallback() { if (hasJustHovered) { hasJustHovered = false; mouseMovedAfterHover(); } } void MouseHoverDetector::HoverDetectorInternal::timerCallback() { owner->hoverTimerCallback(); } void MouseHoverDetector::HoverDetectorInternal::mouseEnter (const MouseEvent&) { stopTimer(); owner->checkJustHoveredCallback(); } void MouseHoverDetector::HoverDetectorInternal::mouseExit (const MouseEvent&) { stopTimer(); owner->checkJustHoveredCallback(); } void MouseHoverDetector::HoverDetectorInternal::mouseDown (const MouseEvent&) { stopTimer(); owner->checkJustHoveredCallback(); } void MouseHoverDetector::HoverDetectorInternal::mouseUp (const MouseEvent&) { stopTimer(); owner->checkJustHoveredCallback(); } void MouseHoverDetector::HoverDetectorInternal::mouseMove (const MouseEvent& e) { if (lastX != e.x || lastY != e.y) // to avoid fake mouse-moves setting it off { lastX = e.x; lastY = e.y; if (owner->source != 0) startTimer (owner->hoverTimeMillisecs); owner->checkJustHoveredCallback(); } } void MouseHoverDetector::HoverDetectorInternal::mouseWheelMove (const MouseEvent&, float, float) { stopTimer(); owner->checkJustHoveredCallback(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_MouseHoverDetector.cpp *********/ /********* Start of inlined file: juce_MouseListener.cpp *********/ BEGIN_JUCE_NAMESPACE void MouseListener::mouseEnter (const MouseEvent&) { } void MouseListener::mouseExit (const MouseEvent&) { } void MouseListener::mouseDown (const MouseEvent&) { } void MouseListener::mouseUp (const MouseEvent&) { } void MouseListener::mouseDrag (const MouseEvent&) { } void MouseListener::mouseMove (const MouseEvent&) { } void MouseListener::mouseDoubleClick (const MouseEvent&) { } void MouseListener::mouseWheelMove (const MouseEvent&, float, float) { } END_JUCE_NAMESPACE /********* End of inlined file: juce_MouseListener.cpp *********/ /********* Start of inlined file: juce_BooleanPropertyComponent.cpp *********/ BEGIN_JUCE_NAMESPACE BooleanPropertyComponent::BooleanPropertyComponent (const String& name, const String& buttonTextWhenTrue, const String& buttonTextWhenFalse) : PropertyComponent (name), onText (buttonTextWhenTrue), offText (buttonTextWhenFalse) { addAndMakeVisible (button = new ToggleButton (String::empty)); button->setClickingTogglesState (false); button->addButtonListener (this); } BooleanPropertyComponent::~BooleanPropertyComponent() { deleteAllChildren(); } void BooleanPropertyComponent::paint (Graphics& g) { PropertyComponent::paint (g); const Rectangle r (button->getBounds()); g.setColour (Colours::white); g.fillRect (r); g.setColour (findColour (ComboBox::outlineColourId)); g.drawRect (r.getX(), r.getY(), r.getWidth(), r.getHeight()); } void BooleanPropertyComponent::refresh() { button->setToggleState (getState(), false); button->setButtonText (button->getToggleState() ? onText : offText); } void BooleanPropertyComponent::buttonClicked (Button*) { setState (! getState()); } END_JUCE_NAMESPACE /********* End of inlined file: juce_BooleanPropertyComponent.cpp *********/ /********* Start of inlined file: juce_ButtonPropertyComponent.cpp *********/ BEGIN_JUCE_NAMESPACE ButtonPropertyComponent::ButtonPropertyComponent (const String& name, const bool triggerOnMouseDown) : PropertyComponent (name) { addAndMakeVisible (button = new TextButton (String::empty)); button->setTriggeredOnMouseDown (triggerOnMouseDown); button->addButtonListener (this); } ButtonPropertyComponent::~ButtonPropertyComponent() { deleteAllChildren(); } void ButtonPropertyComponent::refresh() { button->setButtonText (getButtonText()); } void ButtonPropertyComponent::buttonClicked (Button*) { buttonClicked(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ButtonPropertyComponent.cpp *********/ /********* Start of inlined file: juce_ChoicePropertyComponent.cpp *********/ BEGIN_JUCE_NAMESPACE ChoicePropertyComponent::ChoicePropertyComponent (const String& name) : PropertyComponent (name), comboBox (0) { } ChoicePropertyComponent::~ChoicePropertyComponent() { deleteAllChildren(); } const StringArray& ChoicePropertyComponent::getChoices() const throw() { return choices; } void ChoicePropertyComponent::refresh() { if (comboBox == 0) { addAndMakeVisible (comboBox = new ComboBox (String::empty)); for (int i = 0; i < choices.size(); ++i) { if (choices[i].isNotEmpty()) comboBox->addItem (choices[i], i + 1); else comboBox->addSeparator(); } comboBox->setEditableText (false); comboBox->addListener (this); } comboBox->setSelectedId (getIndex() + 1, true); } void ChoicePropertyComponent::comboBoxChanged (ComboBox*) { const int newIndex = comboBox->getSelectedId() - 1; if (newIndex != getIndex()) setIndex (newIndex); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ChoicePropertyComponent.cpp *********/ /********* Start of inlined file: juce_PropertyComponent.cpp *********/ BEGIN_JUCE_NAMESPACE PropertyComponent::PropertyComponent (const String& name, const int preferredHeight_) : Component (name), preferredHeight (preferredHeight_) { jassert (name.isNotEmpty()); } PropertyComponent::~PropertyComponent() { } void PropertyComponent::paint (Graphics& g) { getLookAndFeel().drawPropertyComponentBackground (g, getWidth(), getHeight(), *this); getLookAndFeel().drawPropertyComponentLabel (g, getWidth(), getHeight(), *this); } void PropertyComponent::resized() { if (getNumChildComponents() > 0) getChildComponent (0)->setBounds (getLookAndFeel().getPropertyComponentContentPosition (*this)); } void PropertyComponent::enablementChanged() { repaint(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_PropertyComponent.cpp *********/ /********* Start of inlined file: juce_PropertyPanel.cpp *********/ BEGIN_JUCE_NAMESPACE class PropertyHolderComponent : public Component { public: PropertyHolderComponent() { } ~PropertyHolderComponent() { deleteAllChildren(); } void paint (Graphics&) { } void updateLayout (const int width); void refreshAll() const; }; class PropertySectionComponent : public Component { public: PropertySectionComponent (const String& sectionTitle, const Array & newProperties, const bool open) : Component (sectionTitle), titleHeight (sectionTitle.isNotEmpty() ? 22 : 0), isOpen_ (open) { for (int i = newProperties.size(); --i >= 0;) { addAndMakeVisible (newProperties.getUnchecked(i)); newProperties.getUnchecked(i)->refresh(); } } ~PropertySectionComponent() { deleteAllChildren(); } void paint (Graphics& g) { if (titleHeight > 0) getLookAndFeel().drawPropertyPanelSectionHeader (g, getName(), isOpen(), getWidth(), titleHeight); } void resized() { int y = titleHeight; for (int i = getNumChildComponents(); --i >= 0;) { PropertyComponent* const pec = dynamic_cast (getChildComponent (i)); if (pec != 0) { const int prefH = pec->getPreferredHeight(); pec->setBounds (1, y, getWidth() - 2, prefH); y += prefH; } } } int getPreferredHeight() const { int y = titleHeight; if (isOpen()) { for (int i = 0; i < getNumChildComponents(); ++i) { PropertyComponent* pec = dynamic_cast (getChildComponent (i)); if (pec != 0) y += pec->getPreferredHeight(); } } return y; } void setOpen (const bool open) { if (isOpen_ != open) { isOpen_ = open; for (int i = 0; i < getNumChildComponents(); ++i) { PropertyComponent* pec = dynamic_cast (getChildComponent (i)); if (pec != 0) pec->setVisible (open); } // (unable to use the syntax findParentComponentOfClass () because of a VC6 compiler bug) PropertyPanel* const pp = findParentComponentOfClass ((PropertyPanel*) 0); if (pp != 0) pp->resized(); } } bool isOpen() const throw() { return isOpen_; } void refreshAll() const { for (int i = 0; i < getNumChildComponents(); ++i) { PropertyComponent* pec = dynamic_cast (getChildComponent (i)); if (pec != 0) pec->refresh(); } } void mouseDown (const MouseEvent&) { } void mouseUp (const MouseEvent& e) { if (e.getMouseDownX() < titleHeight && e.x < titleHeight && e.y < titleHeight && e.getNumberOfClicks() != 2) { setOpen (! isOpen()); } } void mouseDoubleClick (const MouseEvent& e) { if (e.y < titleHeight) setOpen (! isOpen()); } private: int titleHeight; bool isOpen_; }; void PropertyHolderComponent::updateLayout (const int width) { int y = 0; for (int i = getNumChildComponents(); --i >= 0;) { PropertySectionComponent* const section = dynamic_cast (getChildComponent (i)); if (section != 0) { const int prefH = section->getPreferredHeight(); section->setBounds (0, y, width, prefH); y += prefH; } } setSize (width, y); repaint(); } void PropertyHolderComponent::refreshAll() const { for (int i = getNumChildComponents(); --i >= 0;) { PropertySectionComponent* const section = dynamic_cast (getChildComponent (i)); if (section != 0) section->refreshAll(); } } PropertyPanel::PropertyPanel() { messageWhenEmpty = TRANS("(nothing selected)"); addAndMakeVisible (viewport = new Viewport()); viewport->setViewedComponent (propertyHolderComponent = new PropertyHolderComponent()); viewport->setFocusContainer (true); } PropertyPanel::~PropertyPanel() { clear(); deleteAllChildren(); } void PropertyPanel::paint (Graphics& g) { if (propertyHolderComponent->getNumChildComponents() == 0) { g.setColour (Colours::black.withAlpha (0.5f)); g.setFont (14.0f); g.drawText (messageWhenEmpty, 0, 0, getWidth(), 30, Justification::centred, true); } } void PropertyPanel::resized() { viewport->setBounds (0, 0, getWidth(), getHeight()); updatePropHolderLayout(); } void PropertyPanel::clear() { if (propertyHolderComponent->getNumChildComponents() > 0) { propertyHolderComponent->deleteAllChildren(); repaint(); } } void PropertyPanel::addProperties (const Array & newProperties) { if (propertyHolderComponent->getNumChildComponents() == 0) repaint(); propertyHolderComponent->addAndMakeVisible (new PropertySectionComponent (String::empty, newProperties, true), 0); updatePropHolderLayout(); } void PropertyPanel::addSection (const String& sectionTitle, const Array & newProperties, const bool shouldBeOpen) { jassert (sectionTitle.isNotEmpty()); if (propertyHolderComponent->getNumChildComponents() == 0) repaint(); propertyHolderComponent->addAndMakeVisible (new PropertySectionComponent (sectionTitle, newProperties, shouldBeOpen), 0); updatePropHolderLayout(); } void PropertyPanel::updatePropHolderLayout() const { const int maxWidth = viewport->getMaximumVisibleWidth(); ((PropertyHolderComponent*) propertyHolderComponent)->updateLayout (maxWidth); const int newMaxWidth = viewport->getMaximumVisibleWidth(); if (maxWidth != newMaxWidth) { // need to do this twice because of scrollbars changing the size, etc. ((PropertyHolderComponent*) propertyHolderComponent)->updateLayout (newMaxWidth); } } void PropertyPanel::refreshAll() const { ((PropertyHolderComponent*) propertyHolderComponent)->refreshAll(); } const StringArray PropertyPanel::getSectionNames() const { StringArray s; for (int i = 0; i < propertyHolderComponent->getNumChildComponents(); ++i) { PropertySectionComponent* const section = dynamic_cast (propertyHolderComponent->getChildComponent (i)); if (section != 0 && section->getName().isNotEmpty()) s.add (section->getName()); } return s; } bool PropertyPanel::isSectionOpen (const int sectionIndex) const { int index = 0; for (int i = 0; i < propertyHolderComponent->getNumChildComponents(); ++i) { PropertySectionComponent* const section = dynamic_cast (propertyHolderComponent->getChildComponent (i)); if (section != 0 && section->getName().isNotEmpty()) { if (index == sectionIndex) return section->isOpen(); ++index; } } return false; } void PropertyPanel::setSectionOpen (const int sectionIndex, const bool shouldBeOpen) { int index = 0; for (int i = 0; i < propertyHolderComponent->getNumChildComponents(); ++i) { PropertySectionComponent* const section = dynamic_cast (propertyHolderComponent->getChildComponent (i)); if (section != 0 && section->getName().isNotEmpty()) { if (index == sectionIndex) { section->setOpen (shouldBeOpen); break; } ++index; } } } void PropertyPanel::setSectionEnabled (const int sectionIndex, const bool shouldBeEnabled) { int index = 0; for (int i = 0; i < propertyHolderComponent->getNumChildComponents(); ++i) { PropertySectionComponent* const section = dynamic_cast (propertyHolderComponent->getChildComponent (i)); if (section != 0 && section->getName().isNotEmpty()) { if (index == sectionIndex) { section->setEnabled (shouldBeEnabled); break; } ++index; } } } XmlElement* PropertyPanel::getOpennessState() const { XmlElement* const xml = new XmlElement (T("PROPERTYPANELSTATE")); const StringArray sections (getSectionNames()); for (int i = 0; i < sections.size(); ++i) { if (sections[i].isNotEmpty()) { XmlElement* const e = new XmlElement (T("SECTION")); e->setAttribute (T("name"), sections[i]); e->setAttribute (T("open"), isSectionOpen (i) ? 1 : 0); xml->addChildElement (e); } } return xml; } void PropertyPanel::restoreOpennessState (const XmlElement& xml) { if (xml.hasTagName (T("PROPERTYPANELSTATE"))) { const StringArray sections (getSectionNames()); forEachXmlChildElementWithTagName (xml, e, T("SECTION")) { setSectionOpen (sections.indexOf (e->getStringAttribute (T("name"))), e->getBoolAttribute (T("open"))); } } } void PropertyPanel::setMessageWhenEmpty (const String& newMessage) { if (messageWhenEmpty != newMessage) { messageWhenEmpty = newMessage; repaint(); } } const String& PropertyPanel::getMessageWhenEmpty() const throw() { return messageWhenEmpty; } END_JUCE_NAMESPACE /********* End of inlined file: juce_PropertyPanel.cpp *********/ /********* Start of inlined file: juce_SliderPropertyComponent.cpp *********/ BEGIN_JUCE_NAMESPACE SliderPropertyComponent::SliderPropertyComponent (const String& name, const double rangeMin, const double rangeMax, const double interval, const double skewFactor) : PropertyComponent (name) { addAndMakeVisible (slider = new Slider (name)); slider->setRange (rangeMin, rangeMax, interval); slider->setSkewFactor (skewFactor); slider->setSliderStyle (Slider::LinearBar); slider->addListener (this); } SliderPropertyComponent::~SliderPropertyComponent() { deleteAllChildren(); } void SliderPropertyComponent::refresh() { slider->setValue (getValue(), false); } void SliderPropertyComponent::sliderValueChanged (Slider*) { if (getValue() != slider->getValue()) setValue (slider->getValue()); } END_JUCE_NAMESPACE /********* End of inlined file: juce_SliderPropertyComponent.cpp *********/ /********* Start of inlined file: juce_TextPropertyComponent.cpp *********/ BEGIN_JUCE_NAMESPACE class TextPropLabel : public Label { TextPropertyComponent& owner; int maxChars; bool isMultiline; public: TextPropLabel (TextPropertyComponent& owner_, const int maxChars_, const bool isMultiline_) : Label (String::empty, String::empty), owner (owner_), maxChars (maxChars_), isMultiline (isMultiline_) { setEditable (true, true, false); setColour (backgroundColourId, Colours::white); setColour (outlineColourId, findColour (ComboBox::outlineColourId)); } ~TextPropLabel() { } TextEditor* createEditorComponent() { TextEditor* const textEditor = Label::createEditorComponent(); textEditor->setInputRestrictions (maxChars); if (isMultiline) { textEditor->setMultiLine (true, true); textEditor->setReturnKeyStartsNewLine (true); } return textEditor; } void textWasEdited() { owner.textWasEdited(); } }; TextPropertyComponent::TextPropertyComponent (const String& name, const int maxNumChars, const bool isMultiLine) : PropertyComponent (name) { addAndMakeVisible (textEditor = new TextPropLabel (*this, maxNumChars, isMultiLine)); if (isMultiLine) { textEditor->setJustificationType (Justification::topLeft); preferredHeight = 120; } } TextPropertyComponent::~TextPropertyComponent() { deleteAllChildren(); } void TextPropertyComponent::refresh() { textEditor->setText (getText(), false); } void TextPropertyComponent::textWasEdited() { const String newText (textEditor->getText()); if (getText() != newText) setText (newText); } END_JUCE_NAMESPACE /********* End of inlined file: juce_TextPropertyComponent.cpp *********/ /********* Start of inlined file: juce_AudioDeviceSelectorComponent.cpp *********/ BEGIN_JUCE_NAMESPACE class SimpleDeviceManagerInputLevelMeter : public Component, public Timer { public: SimpleDeviceManagerInputLevelMeter (AudioDeviceManager* const manager_) : manager (manager_), level (0) { startTimer (50); manager->enableInputLevelMeasurement (true); } ~SimpleDeviceManagerInputLevelMeter() { manager->enableInputLevelMeasurement (false); } void timerCallback() { const float newLevel = (float) manager->getCurrentInputLevel(); if (fabsf (level - newLevel) > 0.005f) { level = newLevel; repaint(); } } void paint (Graphics& g) { getLookAndFeel().drawLevelMeter (g, getWidth(), getHeight(), (float) exp (log (level) / 3.0)); // (add a bit of a skew to make the level more obvious) } private: AudioDeviceManager* const manager; float level; }; class MidiInputSelectorComponentListBox : public ListBox, public ListBoxModel { public: MidiInputSelectorComponentListBox (AudioDeviceManager& deviceManager_, const String& noItemsMessage_, const int minNumber_, const int maxNumber_) : ListBox (String::empty, 0), deviceManager (deviceManager_), noItemsMessage (noItemsMessage_), minNumber (minNumber_), maxNumber (maxNumber_) { items = MidiInput::getDevices(); setModel (this); setOutlineThickness (1); } ~MidiInputSelectorComponentListBox() { } int getNumRows() { return items.size(); } void paintListBoxItem (int row, Graphics& g, int width, int height, bool rowIsSelected) { if (((unsigned int) row) < (unsigned int) items.size()) { if (rowIsSelected) g.fillAll (findColour (TextEditor::highlightColourId) .withMultipliedAlpha (0.3f)); const String item (items [row]); bool enabled = deviceManager.isMidiInputEnabled (item); const int x = getTickX(); const int tickW = height - height / 4; getLookAndFeel().drawTickBox (g, *this, x - tickW, (height - tickW) / 2, tickW, tickW, enabled, true, true, false); g.setFont (height * 0.6f); g.setColour (findColour (ListBox::textColourId, true).withMultipliedAlpha (enabled ? 1.0f : 0.6f)); g.drawText (item, x, 0, width - x - 2, height, Justification::centredLeft, true); } } void listBoxItemClicked (int row, const MouseEvent& e) { selectRow (row); if (e.x < getTickX()) flipEnablement (row); } void listBoxItemDoubleClicked (int row, const MouseEvent&) { flipEnablement (row); } void returnKeyPressed (int row) { flipEnablement (row); } void paint (Graphics& g) { ListBox::paint (g); if (items.size() == 0) { g.setColour (Colours::grey); g.setFont (13.0f); g.drawText (noItemsMessage, 0, 0, getWidth(), getHeight() / 2, Justification::centred, true); } } int getBestHeight (const int preferredHeight) { const int extra = getOutlineThickness() * 2; return jmax (getRowHeight() * 2 + extra, jmin (getRowHeight() * getNumRows() + extra, preferredHeight)); } juce_UseDebuggingNewOperator private: AudioDeviceManager& deviceManager; const String noItemsMessage; StringArray items; int minNumber, maxNumber; void flipEnablement (const int row) { if (((unsigned int) row) < (unsigned int) items.size()) { const String item (items [row]); deviceManager.setMidiInputEnabled (item, ! deviceManager.isMidiInputEnabled (item)); } } int getTickX() const throw() { return getRowHeight() + 5; } MidiInputSelectorComponentListBox (const MidiInputSelectorComponentListBox&); const MidiInputSelectorComponentListBox& operator= (const MidiInputSelectorComponentListBox&); }; class AudioDeviceSettingsPanel : public Component, public ComboBoxListener, public ChangeListener, public ButtonListener { public: AudioDeviceSettingsPanel (AudioIODeviceType* type_, AudioIODeviceType::DeviceSetupDetails& setup_, const bool hideAdvancedOptionsWithButton) : type (type_), setup (setup_) { sampleRateDropDown = 0; sampleRateLabel = 0; bufferSizeDropDown = 0; bufferSizeLabel = 0; outputDeviceDropDown = 0; outputDeviceLabel = 0; inputDeviceDropDown = 0; inputDeviceLabel = 0; testButton = 0; inputLevelMeter = 0; showUIButton = 0; inputChanList = 0; outputChanList = 0; inputChanLabel = 0; outputChanLabel = 0; showAdvancedSettingsButton = 0; if (hideAdvancedOptionsWithButton) { addAndMakeVisible (showAdvancedSettingsButton = new TextButton (TRANS("Show advanced settings..."))); showAdvancedSettingsButton->addButtonListener (this); } type->scanForDevices(); setup.manager->addChangeListener (this); changeListenerCallback (0); } ~AudioDeviceSettingsPanel() { setup.manager->removeChangeListener (this); deleteAndZero (outputDeviceLabel); deleteAndZero (inputDeviceLabel); deleteAndZero (sampleRateLabel); deleteAndZero (bufferSizeLabel); deleteAndZero (showUIButton); deleteAndZero (inputChanLabel); deleteAndZero (outputChanLabel); deleteAndZero (showAdvancedSettingsButton); deleteAllChildren(); } void resized() { const int lx = proportionOfWidth (0.35f); const int w = proportionOfWidth (0.4f); const int h = 24; const int space = 6; const int dh = h + space; int y = 0; if (outputDeviceDropDown != 0) { outputDeviceDropDown->setBounds (lx, y, w, h); if (testButton != 0) testButton->setBounds (proportionOfWidth (0.77f), outputDeviceDropDown->getY(), proportionOfWidth (0.18f), h); y += dh; } if (inputDeviceDropDown != 0) { inputDeviceDropDown->setBounds (lx, y, w, h); inputLevelMeter->setBounds (proportionOfWidth (0.77f), inputDeviceDropDown->getY(), proportionOfWidth (0.18f), h); y += dh; } const int maxBoxHeight = 100;//(getHeight() - y - dh * 2) / numBoxes; if (outputChanList != 0) { const int bh = outputChanList->getBestHeight (maxBoxHeight); outputChanList->setBounds (lx, y, proportionOfWidth (0.55f), bh); y += bh + space; } if (inputChanList != 0) { const int bh = inputChanList->getBestHeight (maxBoxHeight); inputChanList->setBounds (lx, y, proportionOfWidth (0.55f), bh); y += bh + space; } y += space * 2; if (showAdvancedSettingsButton != 0) { showAdvancedSettingsButton->changeWidthToFitText (h); showAdvancedSettingsButton->setTopLeftPosition (lx, y); } if (sampleRateDropDown != 0) { sampleRateDropDown->setVisible (showAdvancedSettingsButton == 0 || ! showAdvancedSettingsButton->isVisible()); sampleRateDropDown->setBounds (lx, y, w, h); y += dh; } if (bufferSizeDropDown != 0) { bufferSizeDropDown->setVisible (showAdvancedSettingsButton == 0 || ! showAdvancedSettingsButton->isVisible()); bufferSizeDropDown->setBounds (lx, y, w, h); y += dh; } if (showUIButton != 0) { showUIButton->setVisible (showAdvancedSettingsButton == 0 || ! showAdvancedSettingsButton->isVisible()); showUIButton->changeWidthToFitText (h); showUIButton->setTopLeftPosition (lx, y); } } void comboBoxChanged (ComboBox* comboBoxThatHasChanged) { if (comboBoxThatHasChanged == 0) return; AudioDeviceManager::AudioDeviceSetup config; setup.manager->getAudioDeviceSetup (config); String error; if (comboBoxThatHasChanged == outputDeviceDropDown || comboBoxThatHasChanged == inputDeviceDropDown) { if (outputDeviceDropDown != 0) config.outputDeviceName = outputDeviceDropDown->getSelectedId() < 0 ? String::empty : outputDeviceDropDown->getText(); if (inputDeviceDropDown != 0) config.inputDeviceName = inputDeviceDropDown->getSelectedId() < 0 ? String::empty : inputDeviceDropDown->getText(); if (! type->hasSeparateInputsAndOutputs()) config.inputDeviceName = config.outputDeviceName; if (comboBoxThatHasChanged == inputDeviceDropDown) config.useDefaultInputChannels = true; else config.useDefaultOutputChannels = true; error = setup.manager->setAudioDeviceSetup (config, true); showCorrectDeviceName (inputDeviceDropDown, true); showCorrectDeviceName (outputDeviceDropDown, false); updateControlPanelButton(); resized(); } else if (comboBoxThatHasChanged == sampleRateDropDown) { if (sampleRateDropDown->getSelectedId() > 0) { config.sampleRate = sampleRateDropDown->getSelectedId(); error = setup.manager->setAudioDeviceSetup (config, true); } } else if (comboBoxThatHasChanged == bufferSizeDropDown) { if (bufferSizeDropDown->getSelectedId() > 0) { config.bufferSize = bufferSizeDropDown->getSelectedId(); error = setup.manager->setAudioDeviceSetup (config, true); } } if (error.isNotEmpty()) { AlertWindow::showMessageBox (AlertWindow::WarningIcon, T("Error when trying to open audio device!"), error); } } void buttonClicked (Button* button) { if (button == showAdvancedSettingsButton) { showAdvancedSettingsButton->setVisible (false); resized(); } else if (button == showUIButton) { AudioIODevice* const device = setup.manager->getCurrentAudioDevice(); if (device != 0 && device->showControlPanel()) { setup.manager->closeAudioDevice(); setup.manager->restartLastAudioDevice(); getTopLevelComponent()->toFront (true); } } else if (button == testButton && testButton != 0) { setup.manager->playTestSound(); } } void updateControlPanelButton() { AudioIODevice* const currentDevice = setup.manager->getCurrentAudioDevice(); deleteAndZero (showUIButton); if (currentDevice != 0 && currentDevice->hasControlPanel()) { addAndMakeVisible (showUIButton = new TextButton (TRANS ("show this device's control panel"), TRANS ("opens the device's own control panel"))); showUIButton->addButtonListener (this); } resized(); } void changeListenerCallback (void*) { AudioIODevice* const currentDevice = setup.manager->getCurrentAudioDevice(); if (setup.maxNumOutputChannels > 0 || ! type->hasSeparateInputsAndOutputs()) { if (outputDeviceDropDown == 0) { outputDeviceDropDown = new ComboBox (String::empty); outputDeviceDropDown->addListener (this); addAndMakeVisible (outputDeviceDropDown); outputDeviceLabel = new Label (String::empty, type->hasSeparateInputsAndOutputs() ? TRANS ("output:") : TRANS ("device:")); outputDeviceLabel->attachToComponent (outputDeviceDropDown, true); if (setup.maxNumOutputChannels > 0) { addAndMakeVisible (testButton = new TextButton (TRANS ("Test"))); testButton->addButtonListener (this); } } addNamesToDeviceBox (*outputDeviceDropDown, false); } if (setup.maxNumInputChannels > 0 && type->hasSeparateInputsAndOutputs()) { if (inputDeviceDropDown == 0) { inputDeviceDropDown = new ComboBox (String::empty); inputDeviceDropDown->addListener (this); addAndMakeVisible (inputDeviceDropDown); inputDeviceLabel = new Label (String::empty, TRANS ("input:")); inputDeviceLabel->attachToComponent (inputDeviceDropDown, true); addAndMakeVisible (inputLevelMeter = new SimpleDeviceManagerInputLevelMeter (setup.manager)); } addNamesToDeviceBox (*inputDeviceDropDown, true); } updateControlPanelButton(); showCorrectDeviceName (inputDeviceDropDown, true); showCorrectDeviceName (outputDeviceDropDown, false); if (currentDevice != 0) { if (setup.maxNumOutputChannels > 0 && setup.minNumOutputChannels < setup.manager->getCurrentAudioDevice()->getOutputChannelNames().size()) { if (outputChanList == 0) { addAndMakeVisible (outputChanList = new ChannelSelectorListBox (setup, ChannelSelectorListBox::audioOutputType, TRANS ("(no audio output channels found)"))); outputChanLabel = new Label (String::empty, TRANS ("active output channels:")); outputChanLabel->attachToComponent (outputChanList, true); } outputChanList->refresh(); } else { deleteAndZero (outputChanLabel); deleteAndZero (outputChanList); } if (setup.maxNumInputChannels > 0 && setup.minNumInputChannels < setup.manager->getCurrentAudioDevice()->getInputChannelNames().size()) { if (inputChanList == 0) { addAndMakeVisible (inputChanList = new ChannelSelectorListBox (setup, ChannelSelectorListBox::audioInputType, TRANS ("(no audio input channels found)"))); inputChanLabel = new Label (String::empty, TRANS ("active input channels:")); inputChanLabel->attachToComponent (inputChanList, true); } inputChanList->refresh(); } else { deleteAndZero (inputChanLabel); deleteAndZero (inputChanList); } // sample rate.. { if (sampleRateDropDown == 0) { addAndMakeVisible (sampleRateDropDown = new ComboBox (String::empty)); sampleRateDropDown->addListener (this); delete sampleRateLabel; sampleRateLabel = new Label (String::empty, TRANS ("sample rate:")); sampleRateLabel->attachToComponent (sampleRateDropDown, true); } else { sampleRateDropDown->clear(); sampleRateDropDown->removeListener (this); } const int numRates = currentDevice->getNumSampleRates(); for (int i = 0; i < numRates; ++i) { const int rate = roundDoubleToInt (currentDevice->getSampleRate (i)); sampleRateDropDown->addItem (String (rate) + T(" Hz"), rate); } sampleRateDropDown->setSelectedId (roundDoubleToInt (currentDevice->getCurrentSampleRate()), true); sampleRateDropDown->addListener (this); } // buffer size { if (bufferSizeDropDown == 0) { addAndMakeVisible (bufferSizeDropDown = new ComboBox (String::empty)); bufferSizeDropDown->addListener (this); delete bufferSizeLabel; bufferSizeLabel = new Label (String::empty, TRANS ("audio buffer size:")); bufferSizeLabel->attachToComponent (bufferSizeDropDown, true); } else { bufferSizeDropDown->clear(); } const int numBufferSizes = currentDevice->getNumBufferSizesAvailable(); double currentRate = currentDevice->getCurrentSampleRate(); if (currentRate == 0) currentRate = 48000.0; for (int i = 0; i < numBufferSizes; ++i) { const int bs = currentDevice->getBufferSizeSamples (i); bufferSizeDropDown->addItem (String (bs) + T(" samples (") + String (bs * 1000.0 / currentRate, 1) + T(" ms)"), bs); } bufferSizeDropDown->setSelectedId (currentDevice->getCurrentBufferSizeSamples(), true); } } else { jassert (setup.manager->getCurrentAudioDevice() == 0); // not the correct device type! deleteAndZero (sampleRateLabel); deleteAndZero (bufferSizeLabel); deleteAndZero (sampleRateDropDown); deleteAndZero (bufferSizeDropDown); if (outputDeviceDropDown != 0) outputDeviceDropDown->setSelectedId (-1, true); if (inputDeviceDropDown != 0) inputDeviceDropDown->setSelectedId (-1, true); } resized(); setSize (getWidth(), getLowestY() + 4); } private: AudioIODeviceType* const type; const AudioIODeviceType::DeviceSetupDetails setup; ComboBox* outputDeviceDropDown; ComboBox* inputDeviceDropDown; ComboBox* sampleRateDropDown; ComboBox* bufferSizeDropDown; Label* outputDeviceLabel; Label* inputDeviceLabel; Label* sampleRateLabel; Label* bufferSizeLabel; Label* inputChanLabel; Label* outputChanLabel; TextButton* testButton; Component* inputLevelMeter; TextButton* showUIButton; TextButton* showAdvancedSettingsButton; void showCorrectDeviceName (ComboBox* const box, const bool isInput) { if (box != 0) { AudioIODevice* const currentDevice = dynamic_cast (setup.manager->getCurrentAudioDevice()); const int index = type->getIndexOfDevice (currentDevice, isInput); box->setSelectedId (index + 1, true); if (testButton != 0 && ! isInput) testButton->setEnabled (index >= 0); } } void addNamesToDeviceBox (ComboBox& combo, bool isInputs) { const StringArray devs (type->getDeviceNames (isInputs)); combo.clear (true); for (int i = 0; i < devs.size(); ++i) combo.addItem (devs[i], i + 1); combo.addItem (TRANS("<< none >>"), -1); combo.setSelectedId (-1, true); } int getLowestY() const { int y = 0; for (int i = getNumChildComponents(); --i >= 0;) y = jmax (y, getChildComponent (i)->getBottom()); return y; } class ChannelSelectorListBox : public ListBox, public ListBoxModel { public: enum BoxType { audioInputType, audioOutputType }; ChannelSelectorListBox (const AudioIODeviceType::DeviceSetupDetails& setup_, const BoxType type_, const String& noItemsMessage_) : ListBox (String::empty, 0), setup (setup_), type (type_), noItemsMessage (noItemsMessage_) { refresh(); setModel (this); setOutlineThickness (1); } ~ChannelSelectorListBox() { } void refresh() { items.clear(); AudioIODevice* const currentDevice = setup.manager->getCurrentAudioDevice(); if (currentDevice != 0) { if (type == audioInputType) items = currentDevice->getInputChannelNames(); else if (type == audioOutputType) items = currentDevice->getOutputChannelNames(); if (setup.useStereoPairs) { StringArray pairs; for (int i = 0; i < items.size(); i += 2) { String name (items[i]); String name2 (items[i + 1]); String commonBit; for (int j = 0; j < name.length(); ++j) if (name.substring (0, j).equalsIgnoreCase (name2.substring (0, j))) commonBit = name.substring (0, j); pairs.add (name.trim() + " + " + name2.substring (commonBit.length()).trim()); } items = pairs; } } updateContent(); repaint(); } int getNumRows() { return items.size(); } void paintListBoxItem (int row, Graphics& g, int width, int height, bool rowIsSelected) { if (((unsigned int) row) < (unsigned int) items.size()) { if (rowIsSelected) g.fillAll (findColour (TextEditor::highlightColourId) .withMultipliedAlpha (0.3f)); const String item (items [row]); bool enabled = false; AudioDeviceManager::AudioDeviceSetup config; setup.manager->getAudioDeviceSetup (config); if (setup.useStereoPairs) { if (type == audioInputType) enabled = config.inputChannels [row * 2] || config.inputChannels [row * 2 + 1]; else if (type == audioOutputType) enabled = config.outputChannels [row * 2] || config.outputChannels [row * 2 + 1]; } else { if (type == audioInputType) enabled = config.inputChannels [row]; else if (type == audioOutputType) enabled = config.outputChannels [row]; } const int x = getTickX(); const int tickW = height - height / 4; getLookAndFeel().drawTickBox (g, *this, x - tickW, (height - tickW) / 2, tickW, tickW, enabled, true, true, false); g.setFont (height * 0.6f); g.setColour (findColour (ListBox::textColourId, true).withMultipliedAlpha (enabled ? 1.0f : 0.6f)); g.drawText (item, x, 0, width - x - 2, height, Justification::centredLeft, true); } } void listBoxItemClicked (int row, const MouseEvent& e) { selectRow (row); if (e.x < getTickX()) flipEnablement (row); } void listBoxItemDoubleClicked (int row, const MouseEvent&) { flipEnablement (row); } void returnKeyPressed (int row) { flipEnablement (row); } void paint (Graphics& g) { ListBox::paint (g); if (items.size() == 0) { g.setColour (Colours::grey); g.setFont (13.0f); g.drawText (noItemsMessage, 0, 0, getWidth(), getHeight() / 2, Justification::centred, true); } } int getBestHeight (int maxHeight) { return getRowHeight() * jlimit (2, jmax (2, maxHeight / getRowHeight()), getNumRows()) + getOutlineThickness() * 2; } juce_UseDebuggingNewOperator private: const AudioIODeviceType::DeviceSetupDetails setup; const BoxType type; const String noItemsMessage; StringArray items; void flipEnablement (const int row) { jassert (type == audioInputType || type == audioOutputType); if (((unsigned int) row) < (unsigned int) items.size()) { AudioDeviceManager::AudioDeviceSetup config; setup.manager->getAudioDeviceSetup (config); if (setup.useStereoPairs) { BitArray bits; BitArray& original = (type == audioInputType ? config.inputChannels : config.outputChannels); int i; for (i = 0; i < 256; i += 2) bits.setBit (i / 2, original [i] || original [i + 1]); if (type == audioInputType) { config.useDefaultInputChannels = false; flipBit (bits, row, setup.minNumInputChannels / 2, setup.maxNumInputChannels / 2); } else { config.useDefaultOutputChannels = false; flipBit (bits, row, setup.minNumOutputChannels / 2, setup.maxNumOutputChannels / 2); } for (i = 0; i < 256; ++i) original.setBit (i, bits [i / 2]); } else { if (type == audioInputType) { config.useDefaultInputChannels = false; flipBit (config.inputChannels, row, setup.minNumInputChannels, setup.maxNumInputChannels); } else { config.useDefaultOutputChannels = false; flipBit (config.outputChannels, row, setup.minNumOutputChannels, setup.maxNumOutputChannels); } } String error (setup.manager->setAudioDeviceSetup (config, true)); if (! error.isEmpty()) { //xxx } } } static void flipBit (BitArray& chans, int index, int minNumber, int maxNumber) { const int numActive = chans.countNumberOfSetBits(); if (chans [index]) { if (numActive > minNumber) chans.setBit (index, false); } else { if (numActive >= maxNumber) { const int firstActiveChan = chans.findNextSetBit(); chans.setBit (index > firstActiveChan ? firstActiveChan : chans.getHighestBit(), false); } chans.setBit (index, true); } } int getTickX() const throw() { return getRowHeight() + 5; } ChannelSelectorListBox (const ChannelSelectorListBox&); const ChannelSelectorListBox& operator= (const ChannelSelectorListBox&); }; ChannelSelectorListBox* inputChanList; ChannelSelectorListBox* outputChanList; AudioDeviceSettingsPanel (const AudioDeviceSettingsPanel&); const AudioDeviceSettingsPanel& operator= (const AudioDeviceSettingsPanel&); }; AudioDeviceSelectorComponent::AudioDeviceSelectorComponent (AudioDeviceManager& deviceManager_, const int minInputChannels_, const int maxInputChannels_, const int minOutputChannels_, const int maxOutputChannels_, const bool showMidiInputOptions, const bool showMidiOutputSelector, const bool showChannelsAsStereoPairs_, const bool hideAdvancedOptionsWithButton_) : deviceManager (deviceManager_), deviceTypeDropDown (0), deviceTypeDropDownLabel (0), audioDeviceSettingsComp (0), minOutputChannels (minOutputChannels_), maxOutputChannels (maxOutputChannels_), minInputChannels (minInputChannels_), maxInputChannels (maxInputChannels_), showChannelsAsStereoPairs (showChannelsAsStereoPairs_), hideAdvancedOptionsWithButton (hideAdvancedOptionsWithButton_) { jassert (minOutputChannels >= 0 && minOutputChannels <= maxOutputChannels); jassert (minInputChannels >= 0 && minInputChannels <= maxInputChannels); if (deviceManager_.getAvailableDeviceTypes().size() > 1) { deviceTypeDropDown = new ComboBox (String::empty); for (int i = 0; i < deviceManager_.getAvailableDeviceTypes().size(); ++i) { deviceTypeDropDown ->addItem (deviceManager_.getAvailableDeviceTypes().getUnchecked(i)->getTypeName(), i + 1); } addAndMakeVisible (deviceTypeDropDown); deviceTypeDropDown->addListener (this); deviceTypeDropDownLabel = new Label (String::empty, TRANS ("audio device type:")); deviceTypeDropDownLabel->setJustificationType (Justification::centredRight); deviceTypeDropDownLabel->attachToComponent (deviceTypeDropDown, true); } if (showMidiInputOptions) { addAndMakeVisible (midiInputsList = new MidiInputSelectorComponentListBox (deviceManager, TRANS("(no midi inputs available)"), 0, 0)); midiInputsLabel = new Label (String::empty, TRANS ("active midi inputs:")); midiInputsLabel->setJustificationType (Justification::topRight); midiInputsLabel->attachToComponent (midiInputsList, true); } else { midiInputsList = 0; midiInputsLabel = 0; } if (showMidiOutputSelector) { addAndMakeVisible (midiOutputSelector = new ComboBox (String::empty)); midiOutputSelector->addListener (this); midiOutputLabel = new Label ("lm", TRANS("Midi Output:")); midiOutputLabel->attachToComponent (midiOutputSelector, true); } else { midiOutputSelector = 0; midiOutputLabel = 0; } deviceManager_.addChangeListener (this); changeListenerCallback (0); } AudioDeviceSelectorComponent::~AudioDeviceSelectorComponent() { deviceManager.removeChangeListener (this); deleteAllChildren(); } void AudioDeviceSelectorComponent::resized() { const int lx = proportionOfWidth (0.35f); const int w = proportionOfWidth (0.4f); const int h = 24; const int space = 6; const int dh = h + space; int y = 15; if (deviceTypeDropDown != 0) { deviceTypeDropDown->setBounds (lx, y, proportionOfWidth (0.3f), h); y += dh + space * 2; } if (audioDeviceSettingsComp != 0) { audioDeviceSettingsComp->setBounds (0, y, getWidth(), audioDeviceSettingsComp->getHeight()); y += audioDeviceSettingsComp->getHeight() + space; } if (midiInputsList != 0) { const int bh = midiInputsList->getBestHeight (jmin (h * 8, getHeight() - y - space - h)); midiInputsList->setBounds (lx, y, w, bh); y += bh + space; } if (midiOutputSelector != 0) midiOutputSelector->setBounds (lx, y, w, h); } void AudioDeviceSelectorComponent::childBoundsChanged (Component* child) { if (child == audioDeviceSettingsComp) resized(); } void AudioDeviceSelectorComponent::buttonClicked (Button*) { AudioIODevice* const device = deviceManager.getCurrentAudioDevice(); if (device != 0 && device->hasControlPanel()) { if (device->showControlPanel()) deviceManager.restartLastAudioDevice(); getTopLevelComponent()->toFront (true); } } void AudioDeviceSelectorComponent::comboBoxChanged (ComboBox* comboBoxThatHasChanged) { if (comboBoxThatHasChanged == deviceTypeDropDown) { AudioIODeviceType* const type = deviceManager.getAvailableDeviceTypes() [deviceTypeDropDown->getSelectedId() - 1]; if (type != 0) { deleteAndZero (audioDeviceSettingsComp); deviceManager.setCurrentAudioDeviceType (type->getTypeName(), true); changeListenerCallback (0); // needed in case the type hasn't actally changed } } else if (comboBoxThatHasChanged == midiOutputSelector) { deviceManager.setDefaultMidiOutput (midiOutputSelector->getText()); } } void AudioDeviceSelectorComponent::changeListenerCallback (void*) { if (deviceTypeDropDown != 0) { deviceTypeDropDown->setText (deviceManager.getCurrentAudioDeviceType(), false); } if (audioDeviceSettingsComp == 0 || audioDeviceSettingsCompType != deviceManager.getCurrentAudioDeviceType()) { audioDeviceSettingsCompType = deviceManager.getCurrentAudioDeviceType(); deleteAndZero (audioDeviceSettingsComp); AudioIODeviceType* const type = deviceManager.getAvailableDeviceTypes() [deviceTypeDropDown == 0 ? 0 : deviceTypeDropDown->getSelectedId() - 1]; if (type != 0) { AudioIODeviceType::DeviceSetupDetails details; details.manager = &deviceManager; details.minNumInputChannels = minInputChannels; details.maxNumInputChannels = maxInputChannels; details.minNumOutputChannels = minOutputChannels; details.maxNumOutputChannels = maxOutputChannels; details.useStereoPairs = showChannelsAsStereoPairs; audioDeviceSettingsComp = new AudioDeviceSettingsPanel (type, details, hideAdvancedOptionsWithButton); if (audioDeviceSettingsComp != 0) { addAndMakeVisible (audioDeviceSettingsComp); audioDeviceSettingsComp->resized(); } } } if (midiInputsList != 0) { midiInputsList->updateContent(); midiInputsList->repaint(); } if (midiOutputSelector != 0) { midiOutputSelector->clear(); const StringArray midiOuts (MidiOutput::getDevices()); midiOutputSelector->addItem (TRANS("<< none >>"), -1); midiOutputSelector->addSeparator(); for (int i = 0; i < midiOuts.size(); ++i) midiOutputSelector->addItem (midiOuts[i], i + 1); int current = -1; if (deviceManager.getDefaultMidiOutput() != 0) current = 1 + midiOuts.indexOf (deviceManager.getDefaultMidiOutputName()); midiOutputSelector->setSelectedId (current, true); } resized(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_AudioDeviceSelectorComponent.cpp *********/ /********* Start of inlined file: juce_BubbleComponent.cpp *********/ BEGIN_JUCE_NAMESPACE BubbleComponent::BubbleComponent() : side (0), allowablePlacements (above | below | left | right), arrowTipX (0.0f), arrowTipY (0.0f) { setInterceptsMouseClicks (false, false); shadow.setShadowProperties (5.0f, 0.35f, 0, 0); setComponentEffect (&shadow); } BubbleComponent::~BubbleComponent() { } void BubbleComponent::paint (Graphics& g) { int x = content.getX(); int y = content.getY(); int w = content.getWidth(); int h = content.getHeight(); int cw, ch; getContentSize (cw, ch); if (side == 3) x += w - cw; else if (side != 1) x += (w - cw) / 2; w = cw; if (side == 2) y += h - ch; else if (side != 0) y += (h - ch) / 2; h = ch; getLookAndFeel().drawBubble (g, arrowTipX, arrowTipY, (float) x, (float) y, (float) w, (float) h); const int cx = x + (w - cw) / 2; const int cy = y + (h - ch) / 2; const int indent = 3; g.setOrigin (cx + indent, cy + indent); g.reduceClipRegion (0, 0, cw - indent * 2, ch - indent * 2); paintContent (g, cw - indent * 2, ch - indent * 2); } void BubbleComponent::setAllowedPlacement (const int newPlacement) { allowablePlacements = newPlacement; } void BubbleComponent::setPosition (Component* componentToPointTo) { jassert (componentToPointTo->isValidComponent()); int tx = 0; int ty = 0; if (getParentComponent() != 0) componentToPointTo->relativePositionToOtherComponent (getParentComponent(), tx, ty); else componentToPointTo->relativePositionToGlobal (tx, ty); setPosition (Rectangle (tx, ty, componentToPointTo->getWidth(), componentToPointTo->getHeight())); } void BubbleComponent::setPosition (const int arrowTipX, const int arrowTipY) { setPosition (Rectangle (arrowTipX, arrowTipY, 1, 1)); } void BubbleComponent::setPosition (const Rectangle& rectangleToPointTo) { Rectangle availableSpace; if (getParentComponent() != 0) { availableSpace.setSize (getParentComponent()->getWidth(), getParentComponent()->getHeight()); } else { availableSpace = getParentMonitorArea(); } int x = 0; int y = 0; int w = 150; int h = 30; getContentSize (w, h); w += 30; h += 30; const float edgeIndent = 2.0f; const int arrowLength = jmin (10, h / 3, w / 3); int spaceAbove = ((allowablePlacements & above) != 0) ? jmax (0, rectangleToPointTo.getY() - availableSpace.getY()) : -1; int spaceBelow = ((allowablePlacements & below) != 0) ? jmax (0, availableSpace.getBottom() - rectangleToPointTo.getBottom()) : -1; int spaceLeft = ((allowablePlacements & left) != 0) ? jmax (0, rectangleToPointTo.getX() - availableSpace.getX()) : -1; int spaceRight = ((allowablePlacements & right) != 0) ? jmax (0, availableSpace.getRight() - rectangleToPointTo.getRight()) : -1; // look at whether the component is elongated, and if so, try to position next to its longer dimension. if (rectangleToPointTo.getWidth() > rectangleToPointTo.getHeight() * 2 && (spaceAbove > h + 20 || spaceBelow > h + 20)) { spaceLeft = spaceRight = 0; } else if (rectangleToPointTo.getWidth() < rectangleToPointTo.getHeight() / 2 && (spaceLeft > w + 20 || spaceRight > w + 20)) { spaceAbove = spaceBelow = 0; } if (jmax (spaceAbove, spaceBelow) >= jmax (spaceLeft, spaceRight)) { x = rectangleToPointTo.getX() + (rectangleToPointTo.getWidth() - w) / 2; arrowTipX = w * 0.5f; content.setSize (w, h - arrowLength); if (spaceAbove >= spaceBelow) { // above y = rectangleToPointTo.getY() - h; content.setPosition (0, 0); arrowTipY = h - edgeIndent; side = 2; } else { // below y = rectangleToPointTo.getBottom(); content.setPosition (0, arrowLength); arrowTipY = edgeIndent; side = 0; } } else { y = rectangleToPointTo.getY() + (rectangleToPointTo.getHeight() - h) / 2; arrowTipY = h * 0.5f; content.setSize (w - arrowLength, h); if (spaceLeft > spaceRight) { // on the left x = rectangleToPointTo.getX() - w; content.setPosition (0, 0); arrowTipX = w - edgeIndent; side = 3; } else { // on the right x = rectangleToPointTo.getRight(); content.setPosition (arrowLength, 0); arrowTipX = edgeIndent; side = 1; } } setBounds (x, y, w, h); } END_JUCE_NAMESPACE /********* End of inlined file: juce_BubbleComponent.cpp *********/ /********* Start of inlined file: juce_BubbleMessageComponent.cpp *********/ BEGIN_JUCE_NAMESPACE BubbleMessageComponent::BubbleMessageComponent (int fadeOutLengthMs) : fadeOutLength (fadeOutLengthMs), deleteAfterUse (false) { } BubbleMessageComponent::~BubbleMessageComponent() { fadeOutComponent (fadeOutLength); } void BubbleMessageComponent::showAt (int x, int y, const String& text, const int numMillisecondsBeforeRemoving, const bool removeWhenMouseClicked, const bool deleteSelfAfterUse) { textLayout.clear(); textLayout.setText (text, Font (14.0f)); textLayout.layout (256, Justification::centredLeft, true); setPosition (x, y); init (numMillisecondsBeforeRemoving, removeWhenMouseClicked, deleteSelfAfterUse); } void BubbleMessageComponent::showAt (Component* const component, const String& text, const int numMillisecondsBeforeRemoving, const bool removeWhenMouseClicked, const bool deleteSelfAfterUse) { textLayout.clear(); textLayout.setText (text, Font (14.0f)); textLayout.layout (256, Justification::centredLeft, true); setPosition (component); init (numMillisecondsBeforeRemoving, removeWhenMouseClicked, deleteSelfAfterUse); } void BubbleMessageComponent::init (const int numMillisecondsBeforeRemoving, const bool removeWhenMouseClicked, const bool deleteSelfAfterUse) { setVisible (true); deleteAfterUse = deleteSelfAfterUse; if (numMillisecondsBeforeRemoving > 0) expiryTime = Time::getMillisecondCounter() + numMillisecondsBeforeRemoving; else expiryTime = 0; startTimer (77); mouseClickCounter = Desktop::getInstance().getMouseButtonClickCounter(); if (! (removeWhenMouseClicked && isShowing())) mouseClickCounter += 0xfffff; repaint(); } void BubbleMessageComponent::getContentSize (int& w, int& h) { w = textLayout.getWidth() + 16; h = textLayout.getHeight() + 16; } void BubbleMessageComponent::paintContent (Graphics& g, int w, int h) { g.setColour (findColour (TooltipWindow::textColourId)); textLayout.drawWithin (g, 0, 0, w, h, Justification::centred); } void BubbleMessageComponent::timerCallback() { if (Desktop::getInstance().getMouseButtonClickCounter() > mouseClickCounter) { stopTimer(); setVisible (false); if (deleteAfterUse) delete this; } else if (expiryTime != 0 && Time::getMillisecondCounter() > expiryTime) { stopTimer(); fadeOutComponent (fadeOutLength); if (deleteAfterUse) delete this; } } END_JUCE_NAMESPACE /********* End of inlined file: juce_BubbleMessageComponent.cpp *********/ /********* Start of inlined file: juce_ColourSelector.cpp *********/ BEGIN_JUCE_NAMESPACE static const int swatchesPerRow = 8; static const int swatchHeight = 22; class ColourComponentSlider : public Slider { public: ColourComponentSlider (const String& name) : Slider (name) { setRange (0.0, 255.0, 1.0); } ~ColourComponentSlider() { } const String getTextFromValue (double currentValue) { return String::formatted (T("%02X"), (int)currentValue); } double getValueFromText (const String& text) { return (double) text.getHexValue32(); } private: ColourComponentSlider (const ColourComponentSlider&); const ColourComponentSlider& operator= (const ColourComponentSlider&); }; class ColourSpaceMarker : public Component { public: ColourSpaceMarker() { setInterceptsMouseClicks (false, false); } ~ColourSpaceMarker() { } void paint (Graphics& g) { g.setColour (Colour::greyLevel (0.1f)); g.drawEllipse (1.0f, 1.0f, getWidth() - 2.0f, getHeight() - 2.0f, 1.0f); g.setColour (Colour::greyLevel (0.9f)); g.drawEllipse (2.0f, 2.0f, getWidth() - 4.0f, getHeight() - 4.0f, 1.0f); } private: ColourSpaceMarker (const ColourSpaceMarker&); const ColourSpaceMarker& operator= (const ColourSpaceMarker&); }; class ColourSpaceView : public Component { ColourSelector* const owner; float& h; float& s; float& v; float lastHue; ColourSpaceMarker* marker; const int edge; public: ColourSpaceView (ColourSelector* owner_, float& h_, float& s_, float& v_, const int edgeSize) : owner (owner_), h (h_), s (s_), v (v_), lastHue (0.0f), edge (edgeSize) { addAndMakeVisible (marker = new ColourSpaceMarker()); setMouseCursor (MouseCursor::CrosshairCursor); } ~ColourSpaceView() { deleteAllChildren(); } void paint (Graphics& g) { const float hue = h; const float xScale = 1.0f / (getWidth() - edge * 2); const float yScale = 1.0f / (getHeight() - edge * 2); const Rectangle clip (g.getClipBounds()); const int x1 = jmax (clip.getX(), edge) & ~1; const int x2 = jmin (clip.getRight(), getWidth() - edge) | 1; const int y1 = jmax (clip.getY(), edge) & ~1; const int y2 = jmin (clip.getBottom(), getHeight() - edge) | 1; for (int y = y1; y < y2; y += 2) { const float v = jlimit (0.0f, 1.0f, 1.0f - (y - edge) * yScale); for (int x = x1; x < x2; x += 2) { const float s = jlimit (0.0f, 1.0f, (x - edge) * xScale); g.setColour (Colour (hue, s, v, 1.0f)); g.fillRect (x, y, 2, 2); } } } void mouseDown (const MouseEvent& e) { mouseDrag (e); } void mouseDrag (const MouseEvent& e) { const float s = (e.x - edge) / (float) (getWidth() - edge * 2); const float v = 1.0f - (e.y - edge) / (float) (getHeight() - edge * 2); owner->setSV (s, v); } void updateIfNeeded() { if (lastHue != h) { lastHue = h; repaint(); } resized(); } void resized() { marker->setBounds (roundFloatToInt ((getWidth() - edge * 2) * s), roundFloatToInt ((getHeight() - edge * 2) * (1.0f - v)), edge * 2, edge * 2); } private: ColourSpaceView (const ColourSpaceView&); const ColourSpaceView& operator= (const ColourSpaceView&); }; class HueSelectorMarker : public Component { public: HueSelectorMarker() { setInterceptsMouseClicks (false, false); } ~HueSelectorMarker() { } void paint (Graphics& g) { Path p; p.addTriangle (1.0f, 1.0f, getWidth() * 0.3f, getHeight() * 0.5f, 1.0f, getHeight() - 1.0f); p.addTriangle (getWidth() - 1.0f, 1.0f, getWidth() * 0.7f, getHeight() * 0.5f, getWidth() - 1.0f, getHeight() - 1.0f); g.setColour (Colours::white.withAlpha (0.75f)); g.fillPath (p); g.setColour (Colours::black.withAlpha (0.75f)); g.strokePath (p, PathStrokeType (1.2f)); } private: HueSelectorMarker (const HueSelectorMarker&); const HueSelectorMarker& operator= (const HueSelectorMarker&); }; class HueSelectorComp : public Component { public: HueSelectorComp (ColourSelector* owner_, float& h_, float& s_, float& v_, const int edgeSize) : owner (owner_), h (h_), s (s_), v (v_), lastHue (0.0f), edge (edgeSize) { addAndMakeVisible (marker = new HueSelectorMarker()); } ~HueSelectorComp() { deleteAllChildren(); } void paint (Graphics& g) { const float yScale = 1.0f / (getHeight() - edge * 2); const Rectangle clip (g.getClipBounds()); for (int y = jmin (clip.getBottom(), getHeight() - edge); --y >= jmax (edge, clip.getY());) { g.setColour (Colour ((y - edge) * yScale, 1.0f, 1.0f, 1.0f)); g.fillRect (edge, y, getWidth() - edge * 2, 1); } } void resized() { marker->setBounds (0, roundFloatToInt ((getHeight() - edge * 2) * h), getWidth(), edge * 2); } void mouseDown (const MouseEvent& e) { mouseDrag (e); } void mouseDrag (const MouseEvent& e) { const float hue = (e.y - edge) / (float) (getHeight() - edge * 2); owner->setHue (hue); } void updateIfNeeded() { resized(); } private: ColourSelector* const owner; float& h; float& s; float& v; float lastHue; HueSelectorMarker* marker; const int edge; HueSelectorComp (const HueSelectorComp&); const HueSelectorComp& operator= (const HueSelectorComp&); }; class SwatchComponent : public Component { public: SwatchComponent (ColourSelector* owner_, int index_) : owner (owner_), index (index_) { } ~SwatchComponent() { } void paint (Graphics& g) { const Colour colour (owner->getSwatchColour (index)); g.fillCheckerBoard (0, 0, getWidth(), getHeight(), 6, 6, Colour (0xffdddddd).overlaidWith (colour), Colour (0xffffffff).overlaidWith (colour)); } void mouseDown (const MouseEvent&) { PopupMenu m; m.addItem (1, TRANS("Use this swatch as the current colour")); m.addSeparator(); m.addItem (2, TRANS("Set this swatch to the current colour")); const int r = m.showAt (this); if (r == 1) { owner->setCurrentColour (owner->getSwatchColour (index)); } else if (r == 2) { if (owner->getSwatchColour (index) != owner->getCurrentColour()) { owner->setSwatchColour (index, owner->getCurrentColour()); repaint(); } } } private: ColourSelector* const owner; const int index; SwatchComponent (const SwatchComponent&); const SwatchComponent& operator= (const SwatchComponent&); }; ColourSelector::ColourSelector (const int flags_, const int edgeGap_, const int gapAroundColourSpaceComponent) : colour (Colours::white), flags (flags_), topSpace (0), edgeGap (edgeGap_) { // not much point having a selector with no components in it! jassert ((flags_ & (showColourAtTop | showSliders | showColourspace)) != 0); updateHSV(); if ((flags & showSliders) != 0) { addAndMakeVisible (sliders[0] = new ColourComponentSlider (TRANS ("red"))); addAndMakeVisible (sliders[1] = new ColourComponentSlider (TRANS ("green"))); addAndMakeVisible (sliders[2] = new ColourComponentSlider (TRANS ("blue"))); addChildComponent (sliders[3] = new ColourComponentSlider (TRANS ("alpha"))); sliders[3]->setVisible ((flags & showAlphaChannel) != 0); for (int i = 4; --i >= 0;) sliders[i]->addListener (this); } else { zeromem (sliders, sizeof (sliders)); } if ((flags & showColourspace) != 0) { addAndMakeVisible (colourSpace = new ColourSpaceView (this, h, s, v, gapAroundColourSpaceComponent)); addAndMakeVisible (hueSelector = new HueSelectorComp (this, h, s, v, gapAroundColourSpaceComponent)); } else { colourSpace = 0; hueSelector = 0; } update(); } ColourSelector::~ColourSelector() { dispatchPendingMessages(); deleteAllChildren(); } const Colour ColourSelector::getCurrentColour() const { return ((flags & showAlphaChannel) != 0) ? colour : colour.withAlpha ((uint8) 0xff); } void ColourSelector::setCurrentColour (const Colour& c) { if (c != colour) { colour = ((flags & showAlphaChannel) != 0) ? c : c.withAlpha ((uint8) 0xff); updateHSV(); update(); } } void ColourSelector::setHue (float newH) { newH = jlimit (0.0f, 1.0f, newH); if (h != newH) { h = newH; colour = Colour (h, s, v, colour.getFloatAlpha()); update(); } } void ColourSelector::setSV (float newS, float newV) { newS = jlimit (0.0f, 1.0f, newS); newV = jlimit (0.0f, 1.0f, newV); if (s != newS || v != newV) { s = newS; v = newV; colour = Colour (h, s, v, colour.getFloatAlpha()); update(); } } void ColourSelector::updateHSV() { colour.getHSB (h, s, v); } void ColourSelector::update() { if (sliders[0] != 0) { sliders[0]->setValue ((int) colour.getRed()); sliders[1]->setValue ((int) colour.getGreen()); sliders[2]->setValue ((int) colour.getBlue()); sliders[3]->setValue ((int) colour.getAlpha()); } if (colourSpace != 0) { ((ColourSpaceView*) colourSpace)->updateIfNeeded(); ((HueSelectorComp*) hueSelector)->updateIfNeeded(); } if ((flags & showColourAtTop) != 0) repaint (0, edgeGap, getWidth(), topSpace - edgeGap); sendChangeMessage (this); } void ColourSelector::paint (Graphics& g) { g.fillAll (findColour (backgroundColourId)); if ((flags & showColourAtTop) != 0) { const Colour colour (getCurrentColour()); g.fillCheckerBoard (edgeGap, edgeGap, getWidth() - edgeGap - edgeGap, topSpace - edgeGap - edgeGap, 10, 10, Colour (0xffdddddd).overlaidWith (colour), Colour (0xffffffff).overlaidWith (colour)); g.setColour (Colours::white.overlaidWith (colour).contrasting()); g.setFont (14.0f, true); g.drawText (((flags & showAlphaChannel) != 0) ? String::formatted (T("#%02X%02X%02X%02X"), (int) colour.getAlpha(), (int) colour.getRed(), (int) colour.getGreen(), (int) colour.getBlue()) : String::formatted (T("#%02X%02X%02X"), (int) colour.getRed(), (int) colour.getGreen(), (int) colour.getBlue()), 0, edgeGap, getWidth(), topSpace - edgeGap * 2, Justification::centred, false); } if ((flags & showSliders) != 0) { g.setColour (findColour (labelTextColourId)); g.setFont (11.0f); for (int i = 4; --i >= 0;) { if (sliders[i]->isVisible()) g.drawText (sliders[i]->getName() + T(":"), 0, sliders[i]->getY(), sliders[i]->getX() - 8, sliders[i]->getHeight(), Justification::centredRight, false); } } } void ColourSelector::resized() { const int numSliders = ((flags & showAlphaChannel) != 0) ? 4 : 3; const int numSwatches = getNumSwatches(); const int swatchSpace = numSwatches > 0 ? edgeGap + swatchHeight * ((numSwatches + 7) / swatchesPerRow) : 0; const int sliderSpace = ((flags & showSliders) != 0) ? jmin (22 * numSliders + edgeGap, proportionOfHeight (0.3f)) : 0; topSpace = ((flags & showColourAtTop) != 0) ? jmin (30 + edgeGap * 2, proportionOfHeight (0.2f)) : edgeGap; int y = topSpace; if ((flags & showColourspace) != 0) { const int hueWidth = jmin (50, proportionOfWidth (0.15f)); colourSpace->setBounds (edgeGap, y, getWidth() - hueWidth - edgeGap - 4, getHeight() - topSpace - sliderSpace - swatchSpace - edgeGap); hueSelector->setBounds (colourSpace->getRight() + 4, y, getWidth() - edgeGap - (colourSpace->getRight() + 4), colourSpace->getHeight()); y = getHeight() - sliderSpace - swatchSpace - edgeGap; } if ((flags & showSliders) != 0) { const int sliderHeight = jmax (4, sliderSpace / numSliders); for (int i = 0; i < numSliders; ++i) { sliders[i]->setBounds (proportionOfWidth (0.2f), y, proportionOfWidth (0.72f), sliderHeight - 2); y += sliderHeight; } } if (numSwatches > 0) { const int startX = 8; const int xGap = 4; const int yGap = 4; const int swatchWidth = (getWidth() - startX * 2) / swatchesPerRow; y += edgeGap; if (swatchComponents.size() != numSwatches) { int i; for (i = swatchComponents.size(); --i >= 0;) { SwatchComponent* const sc = (SwatchComponent*) swatchComponents.getUnchecked(i); delete sc; } for (i = 0; i < numSwatches; ++i) { SwatchComponent* const sc = new SwatchComponent (this, i); swatchComponents.add (sc); addAndMakeVisible (sc); } } int x = startX; for (int i = 0; i < swatchComponents.size(); ++i) { SwatchComponent* const sc = (SwatchComponent*) swatchComponents.getUnchecked(i); sc->setBounds (x + xGap / 2, y + yGap / 2, swatchWidth - xGap, swatchHeight - yGap); if (((i + 1) % swatchesPerRow) == 0) { x = startX; y += swatchHeight; } else { x += swatchWidth; } } } } void ColourSelector::sliderValueChanged (Slider*) { if (sliders[0] != 0) setCurrentColour (Colour ((uint8) sliders[0]->getValue(), (uint8) sliders[1]->getValue(), (uint8) sliders[2]->getValue(), (uint8) sliders[3]->getValue())); } int ColourSelector::getNumSwatches() const { return 0; } const Colour ColourSelector::getSwatchColour (const int) const { jassertfalse // if you've overridden getNumSwatches(), you also need to implement this method return Colours::black; } void ColourSelector::setSwatchColour (const int, const Colour&) const { jassertfalse // if you've overridden getNumSwatches(), you also need to implement this method } END_JUCE_NAMESPACE /********* End of inlined file: juce_ColourSelector.cpp *********/ /********* Start of inlined file: juce_DropShadower.cpp *********/ BEGIN_JUCE_NAMESPACE class ShadowWindow : public Component { Component* owner; Image** shadowImageSections; const int type; // 0 = left, 1 = right, 2 = top, 3 = bottom. left + right are full-height public: ShadowWindow (Component* const owner_, const int type_, Image** const shadowImageSections_) : owner (owner_), shadowImageSections (shadowImageSections_), type (type_) { setInterceptsMouseClicks (false, false); if (owner_->isOnDesktop()) { setSize (1, 1); // to keep the OS happy by not having zero-size windows addToDesktop (ComponentPeer::windowIgnoresMouseClicks | ComponentPeer::windowIsTemporary | ComponentPeer::windowIgnoresKeyPresses); } else if (owner_->getParentComponent() != 0) { owner_->getParentComponent()->addChildComponent (this); } } ~ShadowWindow() { } void paint (Graphics& g) { Image* const topLeft = shadowImageSections [type * 3]; Image* const bottomRight = shadowImageSections [type * 3 + 1]; Image* const filler = shadowImageSections [type * 3 + 2]; ImageBrush fillBrush (filler, 0, 0, 1.0f); g.setOpacity (1.0f); if (type < 2) { int imH = jmin (topLeft->getHeight(), getHeight() / 2); g.drawImage (topLeft, 0, 0, topLeft->getWidth(), imH, 0, 0, topLeft->getWidth(), imH); imH = jmin (bottomRight->getHeight(), getHeight() - getHeight() / 2); g.drawImage (bottomRight, 0, getHeight() - imH, bottomRight->getWidth(), imH, 0, bottomRight->getHeight() - imH, bottomRight->getWidth(), imH); g.setBrush (&fillBrush); g.fillRect (0, topLeft->getHeight(), getWidth(), getHeight() - (topLeft->getHeight() + bottomRight->getHeight())); } else { int imW = jmin (topLeft->getWidth(), getWidth() / 2); g.drawImage (topLeft, 0, 0, imW, topLeft->getHeight(), 0, 0, imW, topLeft->getHeight()); imW = jmin (bottomRight->getWidth(), getWidth() - getWidth() / 2); g.drawImage (bottomRight, getWidth() - imW, 0, imW, bottomRight->getHeight(), bottomRight->getWidth() - imW, 0, imW, bottomRight->getHeight()); g.setBrush (&fillBrush); g.fillRect (topLeft->getWidth(), 0, getWidth() - (topLeft->getWidth() + bottomRight->getWidth()), getHeight()); } } void resized() { repaint(); // (needed for correct repainting) } private: ShadowWindow (const ShadowWindow&); const ShadowWindow& operator= (const ShadowWindow&); }; DropShadower::DropShadower (const float alpha_, const int xOffset_, const int yOffset_, const float blurRadius_) : owner (0), numShadows (0), shadowEdge (jmax (xOffset_, yOffset_) + (int) blurRadius_), xOffset (xOffset_), yOffset (yOffset_), alpha (alpha_), blurRadius (blurRadius_), inDestructor (false), reentrant (false) { } DropShadower::~DropShadower() { if (owner != 0) owner->removeComponentListener (this); inDestructor = true; deleteShadowWindows(); } void DropShadower::deleteShadowWindows() { if (numShadows > 0) { int i; for (i = numShadows; --i >= 0;) delete shadowWindows[i]; for (i = 12; --i >= 0;) delete shadowImageSections[i]; numShadows = 0; } } void DropShadower::setOwner (Component* componentToFollow) { if (componentToFollow != owner) { if (owner != 0) owner->removeComponentListener (this); // (the component can't be null) jassert (componentToFollow != 0); owner = componentToFollow; jassert (owner != 0); jassert (owner->isOpaque()); // doesn't work properly for semi-transparent comps! owner->addComponentListener (this); updateShadows(); } } void DropShadower::componentMovedOrResized (Component&, bool /*wasMoved*/, bool /*wasResized*/) { updateShadows(); } void DropShadower::componentBroughtToFront (Component&) { bringShadowWindowsToFront(); } void DropShadower::componentChildrenChanged (Component&) { } void DropShadower::componentParentHierarchyChanged (Component&) { deleteShadowWindows(); updateShadows(); } void DropShadower::componentVisibilityChanged (Component&) { updateShadows(); } void DropShadower::updateShadows() { if (reentrant || inDestructor || (owner == 0)) return; reentrant = true; ComponentPeer* const nw = owner->getPeer(); const bool isOwnerVisible = owner->isVisible() && (nw == 0 || ! nw->isMinimised()); const bool createShadowWindows = numShadows == 0 && owner->getWidth() > 0 && owner->getHeight() > 0 && isOwnerVisible && (Desktop::canUseSemiTransparentWindows() || owner->getParentComponent() != 0); if (createShadowWindows) { // keep a cached version of the image to save doing the gaussian too often String imageId; imageId << shadowEdge << T(',') << xOffset << T(',') << yOffset << T(',') << alpha; const int hash = imageId.hashCode(); Image* bigIm = ImageCache::getFromHashCode (hash); if (bigIm == 0) { bigIm = new Image (Image::ARGB, shadowEdge * 5, shadowEdge * 5, true); Graphics bigG (*bigIm); bigG.setColour (Colours::black.withAlpha (alpha)); bigG.fillRect (shadowEdge + xOffset, shadowEdge + yOffset, bigIm->getWidth() - (shadowEdge * 2), bigIm->getHeight() - (shadowEdge * 2)); ImageConvolutionKernel blurKernel (roundFloatToInt (blurRadius * 2.0f)); blurKernel.createGaussianBlur (blurRadius); blurKernel.applyToImage (*bigIm, 0, xOffset, yOffset, bigIm->getWidth(), bigIm->getHeight()); ImageCache::addImageToCache (bigIm, hash); } const int iw = bigIm->getWidth(); const int ih = bigIm->getHeight(); const int shadowEdge2 = shadowEdge * 2; setShadowImage (bigIm, 0, shadowEdge, shadowEdge2, 0, 0); setShadowImage (bigIm, 1, shadowEdge, shadowEdge2, 0, ih - shadowEdge2); setShadowImage (bigIm, 2, shadowEdge, shadowEdge, 0, shadowEdge2); setShadowImage (bigIm, 3, shadowEdge, shadowEdge2, iw - shadowEdge, 0); setShadowImage (bigIm, 4, shadowEdge, shadowEdge2, iw - shadowEdge, ih - shadowEdge2); setShadowImage (bigIm, 5, shadowEdge, shadowEdge, iw - shadowEdge, shadowEdge2); setShadowImage (bigIm, 6, shadowEdge, shadowEdge, shadowEdge, 0); setShadowImage (bigIm, 7, shadowEdge, shadowEdge, iw - shadowEdge2, 0); setShadowImage (bigIm, 8, shadowEdge, shadowEdge, shadowEdge2, 0); setShadowImage (bigIm, 9, shadowEdge, shadowEdge, shadowEdge, ih - shadowEdge); setShadowImage (bigIm, 10, shadowEdge, shadowEdge, iw - shadowEdge2, ih - shadowEdge); setShadowImage (bigIm, 11, shadowEdge, shadowEdge, shadowEdge2, ih - shadowEdge); ImageCache::release (bigIm); for (int i = 0; i < 4; ++i) { shadowWindows[numShadows] = new ShadowWindow (owner, i, shadowImageSections); ++numShadows; } } if (numShadows > 0) { for (int i = numShadows; --i >= 0;) { shadowWindows[i]->setAlwaysOnTop (owner->isAlwaysOnTop()); shadowWindows[i]->setVisible (isOwnerVisible); } const int x = owner->getX(); const int y = owner->getY() - shadowEdge; const int w = owner->getWidth(); const int h = owner->getHeight() + shadowEdge + shadowEdge; shadowWindows[0]->setBounds (x - shadowEdge, y, shadowEdge, h); shadowWindows[1]->setBounds (x + w, y, shadowEdge, h); shadowWindows[2]->setBounds (x, y, w, shadowEdge); shadowWindows[3]->setBounds (x, owner->getBottom(), w, shadowEdge); } reentrant = false; if (createShadowWindows) bringShadowWindowsToFront(); } void DropShadower::setShadowImage (Image* const src, const int num, const int w, const int h, const int sx, const int sy) throw() { shadowImageSections[num] = new Image (Image::ARGB, w, h, true); Graphics g (*shadowImageSections[num]); g.drawImage (src, 0, 0, w, h, sx, sy, w, h); } void DropShadower::bringShadowWindowsToFront() { if (! (inDestructor || reentrant)) { updateShadows(); reentrant = true; for (int i = numShadows; --i >= 0;) shadowWindows[i]->toBehind (owner); reentrant = false; } } END_JUCE_NAMESPACE /********* End of inlined file: juce_DropShadower.cpp *********/ /********* Start of inlined file: juce_MagnifierComponent.cpp *********/ BEGIN_JUCE_NAMESPACE class MagnifyingPeer : public ComponentPeer { public: MagnifyingPeer (Component* const component_, MagnifierComponent* const magnifierComp_) : ComponentPeer (component_, 0), magnifierComp (magnifierComp_) { } ~MagnifyingPeer() { } void* getNativeHandle() const { return 0; } void setVisible (bool) {} void setTitle (const String&) {} void setPosition (int, int) {} void setSize (int, int) {} void setBounds (int, int, int, int, const bool) {} void setMinimised (bool) {} bool isMinimised() const { return false; } void setFullScreen (bool) {} bool isFullScreen() const { return false; } const BorderSize getFrameSize() const { return BorderSize (0); } bool setAlwaysOnTop (bool) { return true; } void toFront (bool) {} void toBehind (ComponentPeer*) {} void setIcon (const Image&) {} bool isFocused() const { return magnifierComp->hasKeyboardFocus (true); } void grabFocus() { ComponentPeer* peer = magnifierComp->getPeer(); if (peer != 0) peer->grabFocus(); } void textInputRequired (int x, int y) { ComponentPeer* peer = magnifierComp->getPeer(); if (peer != 0) peer->textInputRequired (x, y); } void getBounds (int& x, int& y, int& w, int& h) const { x = magnifierComp->getScreenX(); y = magnifierComp->getScreenY(); w = component->getWidth(); h = component->getHeight(); } int getScreenX() const { return magnifierComp->getScreenX(); } int getScreenY() const { return magnifierComp->getScreenY(); } void relativePositionToGlobal (int& x, int& y) { const double zoom = magnifierComp->getScaleFactor(); x = roundDoubleToInt (x * zoom); y = roundDoubleToInt (y * zoom); magnifierComp->relativePositionToGlobal (x, y); } void globalPositionToRelative (int& x, int& y) { magnifierComp->globalPositionToRelative (x, y); const double zoom = magnifierComp->getScaleFactor(); x = roundDoubleToInt (x / zoom); y = roundDoubleToInt (y / zoom); } bool contains (int x, int y, bool) const { return ((unsigned int) x) < (unsigned int) magnifierComp->getWidth() && ((unsigned int) y) < (unsigned int) magnifierComp->getHeight(); } void repaint (int x, int y, int w, int h) { const double zoom = magnifierComp->getScaleFactor(); magnifierComp->repaint ((int) (x * zoom), (int) (y * zoom), roundDoubleToInt (w * zoom) + 1, roundDoubleToInt (h * zoom) + 1); } void performAnyPendingRepaintsNow() { } juce_UseDebuggingNewOperator private: MagnifierComponent* const magnifierComp; MagnifyingPeer (const MagnifyingPeer&); const MagnifyingPeer& operator= (const MagnifyingPeer&); }; class PeerHolderComp : public Component { public: PeerHolderComp (MagnifierComponent* const magnifierComp_) : magnifierComp (magnifierComp_) { setVisible (true); } ~PeerHolderComp() { } ComponentPeer* createNewPeer (int, void*) { return new MagnifyingPeer (this, magnifierComp); } void childBoundsChanged (Component* c) { if (c != 0) { setSize (c->getWidth(), c->getHeight()); magnifierComp->childBoundsChanged (this); } } void mouseWheelMove (const MouseEvent& e, float ix, float iy) { // unhandled mouse wheel moves can be referred upwards to the parent comp.. Component* const p = magnifierComp->getParentComponent(); if (p != 0) p->mouseWheelMove (e.getEventRelativeTo (p), ix, iy); } private: MagnifierComponent* const magnifierComp; PeerHolderComp (const PeerHolderComp&); const PeerHolderComp& operator= (const PeerHolderComp&); }; MagnifierComponent::MagnifierComponent (Component* const content_, const bool deleteContentCompWhenNoLongerNeeded) : content (content_), scaleFactor (0.0), peer (0), deleteContent (deleteContentCompWhenNoLongerNeeded), quality (Graphics::lowResamplingQuality) { holderComp = new PeerHolderComp (this); setScaleFactor (1.0); } MagnifierComponent::~MagnifierComponent() { delete holderComp; if (deleteContent) delete content; } void MagnifierComponent::setScaleFactor (double newScaleFactor) { jassert (newScaleFactor > 0.0); // hmm - unlikely to work well with a negative scale factor newScaleFactor = jlimit (1.0 / 8.0, 1000.0, newScaleFactor); if (scaleFactor != newScaleFactor) { scaleFactor = newScaleFactor; if (scaleFactor == 1.0) { holderComp->removeFromDesktop(); peer = 0; addChildComponent (content); childBoundsChanged (content); } else { holderComp->addAndMakeVisible (content); holderComp->childBoundsChanged (content); childBoundsChanged (holderComp); holderComp->addToDesktop (0); peer = holderComp->getPeer(); } repaint(); } } void MagnifierComponent::setResamplingQuality (Graphics::ResamplingQuality newQuality) { quality = newQuality; } void MagnifierComponent::paint (Graphics& g) { const int w = holderComp->getWidth(); const int h = holderComp->getHeight(); if (w == 0 || h == 0) return; const Rectangle r (g.getClipBounds()); const int srcX = (int) (r.getX() / scaleFactor); const int srcY = (int) (r.getY() / scaleFactor); int srcW = roundDoubleToInt (r.getRight() / scaleFactor) - srcX; int srcH = roundDoubleToInt (r.getBottom() / scaleFactor) - srcY; if (scaleFactor >= 1.0) { ++srcW; ++srcH; } Image temp (Image::ARGB, jmax (w, srcX + srcW), jmax (h, srcY + srcH), false); temp.clear (srcX, srcY, srcW, srcH); Graphics g2 (temp); g2.reduceClipRegion (srcX, srcY, srcW, srcH); holderComp->paintEntireComponent (g2); g.setImageResamplingQuality (quality); g.drawImage (&temp, 0, 0, (int) (w * scaleFactor), (int) (h * scaleFactor), 0, 0, w, h, false); } void MagnifierComponent::childBoundsChanged (Component* c) { if (c != 0) setSize (roundDoubleToInt (c->getWidth() * scaleFactor), roundDoubleToInt (c->getHeight() * scaleFactor)); } void MagnifierComponent::mouseDown (const MouseEvent& e) { if (peer != 0) peer->handleMouseDown (scaleInt (e.x), scaleInt (e.y), e.eventTime.toMilliseconds()); } void MagnifierComponent::mouseUp (const MouseEvent& e) { if (peer != 0) peer->handleMouseUp (e.mods.getRawFlags(), scaleInt (e.x), scaleInt (e.y), e.eventTime.toMilliseconds()); } void MagnifierComponent::mouseDrag (const MouseEvent& e) { if (peer != 0) peer->handleMouseDrag (scaleInt (e.x), scaleInt (e.y), e.eventTime.toMilliseconds()); } void MagnifierComponent::mouseMove (const MouseEvent& e) { if (peer != 0) peer->handleMouseMove (scaleInt (e.x), scaleInt (e.y), e.eventTime.toMilliseconds()); } void MagnifierComponent::mouseEnter (const MouseEvent& e) { if (peer != 0) peer->handleMouseEnter (scaleInt (e.x), scaleInt (e.y), e.eventTime.toMilliseconds()); } void MagnifierComponent::mouseExit (const MouseEvent& e) { if (peer != 0) peer->handleMouseExit (scaleInt (e.x), scaleInt (e.y), e.eventTime.toMilliseconds()); } void MagnifierComponent::mouseWheelMove (const MouseEvent& e, float ix, float iy) { if (peer != 0) peer->handleMouseWheel (roundFloatToInt (ix * 256.0f), roundFloatToInt (iy * 256.0f), e.eventTime.toMilliseconds()); else Component::mouseWheelMove (e, ix, iy); } int MagnifierComponent::scaleInt (const int n) const throw() { return roundDoubleToInt (n / scaleFactor); } END_JUCE_NAMESPACE /********* End of inlined file: juce_MagnifierComponent.cpp *********/ /********* Start of inlined file: juce_MidiKeyboardComponent.cpp *********/ BEGIN_JUCE_NAMESPACE class MidiKeyboardUpDownButton : public Button { public: MidiKeyboardUpDownButton (MidiKeyboardComponent* const owner_, const int delta_) : Button (String::empty), owner (owner_), delta (delta_) { setOpaque (true); } ~MidiKeyboardUpDownButton() { } void clicked() { int note = owner->getLowestVisibleKey(); if (delta < 0) note = (note - 1) / 12; else note = note / 12 + 1; owner->setLowestVisibleKey (note * 12); } void paintButton (Graphics& g, bool isMouseOverButton, bool isButtonDown) { owner->drawUpDownButton (g, getWidth(), getHeight(), isMouseOverButton, isButtonDown, delta > 0); } private: MidiKeyboardComponent* const owner; const int delta; MidiKeyboardUpDownButton (const MidiKeyboardUpDownButton&); const MidiKeyboardUpDownButton& operator= (const MidiKeyboardUpDownButton&); }; MidiKeyboardComponent::MidiKeyboardComponent (MidiKeyboardState& state_, const Orientation orientation_) : state (state_), xOffset (0), blackNoteLength (1), keyWidth (16.0f), orientation (orientation_), midiChannel (1), midiInChannelMask (0xffff), velocity (1.0f), noteUnderMouse (-1), mouseDownNote (-1), rangeStart (0), rangeEnd (127), firstKey (12 * 4), canScroll (true), mouseDragging (false), keyPresses (4), keyPressNotes (16), keyMappingOctave (6), octaveNumForMiddleC (3) { addChildComponent (scrollDown = new MidiKeyboardUpDownButton (this, -1)); addChildComponent (scrollUp = new MidiKeyboardUpDownButton (this, 1)); // initialise with a default set of querty key-mappings.. const char* const keymap = "awsedftgyhujkolp;"; for (int i = String (keymap).length(); --i >= 0;) setKeyPressForNote (KeyPress (keymap[i], 0, 0), i); setOpaque (true); setWantsKeyboardFocus (true); state.addListener (this); } MidiKeyboardComponent::~MidiKeyboardComponent() { state.removeListener (this); jassert (mouseDownNote < 0 && keysPressed.countNumberOfSetBits() == 0); // leaving stuck notes! deleteAllChildren(); } void MidiKeyboardComponent::setKeyWidth (const float widthInPixels) { keyWidth = widthInPixels; resized(); } void MidiKeyboardComponent::setOrientation (const Orientation newOrientation) { if (orientation != newOrientation) { orientation = newOrientation; resized(); } } void MidiKeyboardComponent::setAvailableRange (const int lowestNote, const int highestNote) { jassert (lowestNote >= 0 && lowestNote <= 127); jassert (highestNote >= 0 && highestNote <= 127); jassert (lowestNote <= highestNote); if (rangeStart != lowestNote || rangeEnd != highestNote) { rangeStart = jlimit (0, 127, lowestNote); rangeEnd = jlimit (0, 127, highestNote); firstKey = jlimit (rangeStart, rangeEnd, firstKey); resized(); } } void MidiKeyboardComponent::setLowestVisibleKey (int noteNumber) { noteNumber = jlimit (rangeStart, rangeEnd, noteNumber); if (noteNumber != firstKey) { firstKey = noteNumber; sendChangeMessage (this); resized(); } } void MidiKeyboardComponent::setScrollButtonsVisible (const bool canScroll_) { if (canScroll != canScroll_) { canScroll = canScroll_; resized(); } } void MidiKeyboardComponent::colourChanged() { repaint(); } void MidiKeyboardComponent::setMidiChannel (const int midiChannelNumber) { jassert (midiChannelNumber > 0 && midiChannelNumber <= 16); if (midiChannel != midiChannelNumber) { resetAnyKeysInUse(); midiChannel = jlimit (1, 16, midiChannelNumber); } } void MidiKeyboardComponent::setMidiChannelsToDisplay (const int midiChannelMask) { midiInChannelMask = midiChannelMask; triggerAsyncUpdate(); } void MidiKeyboardComponent::setVelocity (const float velocity_) { velocity = jlimit (0.0f, 1.0f, velocity_); } void MidiKeyboardComponent::getKeyPosition (int midiNoteNumber, const float keyWidth, int& x, int& w) const { jassert (midiNoteNumber >= 0 && midiNoteNumber < 128); static const float blackNoteWidth = 0.7f; static const float notePos[] = { 0.0f, 1 - blackNoteWidth * 0.6f, 1.0f, 2 - blackNoteWidth * 0.4f, 2.0f, 3.0f, 4 - blackNoteWidth * 0.7f, 4.0f, 5 - blackNoteWidth * 0.5f, 5.0f, 6 - blackNoteWidth * 0.3f, 6.0f }; static const float widths[] = { 1.0f, blackNoteWidth, 1.0f, blackNoteWidth, 1.0f, 1.0f, blackNoteWidth, 1.0f, blackNoteWidth, 1.0f, blackNoteWidth, 1.0f }; const int octave = midiNoteNumber / 12; const int note = midiNoteNumber % 12; x = roundFloatToInt (octave * 7.0f * keyWidth + notePos [note] * keyWidth); w = roundFloatToInt (widths [note] * keyWidth); } void MidiKeyboardComponent::getKeyPos (int midiNoteNumber, int& x, int& w) const { getKeyPosition (midiNoteNumber, keyWidth, x, w); int rx, rw; getKeyPosition (rangeStart, keyWidth, rx, rw); x -= xOffset + rx; } int MidiKeyboardComponent::getKeyStartPosition (const int midiNoteNumber) const { int x, y; getKeyPos (midiNoteNumber, x, y); return x; } static const uint8 whiteNotes[] = { 0, 2, 4, 5, 7, 9, 11 }; static const uint8 blackNotes[] = { 1, 3, 6, 8, 10 }; int MidiKeyboardComponent::xyToNote (int x, int y) { if (! reallyContains (x, y, false)) return -1; if (orientation != horizontalKeyboard) { swapVariables (x, y); if (orientation == verticalKeyboardFacingLeft) y = getWidth() - y; else x = getHeight() - x; } return remappedXYToNote (x + xOffset, y); } int MidiKeyboardComponent::remappedXYToNote (int x, int y) const { if (y < blackNoteLength) { for (int octaveStart = 12 * (rangeStart / 12); octaveStart <= rangeEnd; octaveStart += 12) { for (int i = 0; i < 5; ++i) { const int note = octaveStart + blackNotes [i]; if (note >= rangeStart && note <= rangeEnd) { int kx, kw; getKeyPos (note, kx, kw); kx += xOffset; if (x >= kx && x < kx + kw) return note; } } } } for (int octaveStart = 12 * (rangeStart / 12); octaveStart <= rangeEnd; octaveStart += 12) { for (int i = 0; i < 7; ++i) { const int note = octaveStart + whiteNotes [i]; if (note >= rangeStart && note <= rangeEnd) { int kx, kw; getKeyPos (note, kx, kw); kx += xOffset; if (x >= kx && x < kx + kw) return note; } } } return -1; } void MidiKeyboardComponent::repaintNote (const int noteNum) { if (noteNum >= rangeStart && noteNum <= rangeEnd) { int x, w; getKeyPos (noteNum, x, w); if (orientation == horizontalKeyboard) repaint (x, 0, w, getHeight()); else if (orientation == verticalKeyboardFacingLeft) repaint (0, x, getWidth(), w); else if (orientation == verticalKeyboardFacingRight) repaint (0, getHeight() - x - w, getWidth(), w); } } void MidiKeyboardComponent::paint (Graphics& g) { g.fillAll (Colours::white.overlaidWith (findColour (whiteNoteColourId))); const Colour lineColour (findColour (keySeparatorLineColourId)); const Colour textColour (findColour (textLabelColourId)); int x, w, octave; for (octave = 0; octave < 128; octave += 12) { for (int white = 0; white < 7; ++white) { const int noteNum = octave + whiteNotes [white]; if (noteNum >= rangeStart && noteNum <= rangeEnd) { getKeyPos (noteNum, x, w); if (orientation == horizontalKeyboard) drawWhiteNote (noteNum, g, x, 0, w, getHeight(), state.isNoteOnForChannels (midiInChannelMask, noteNum), noteUnderMouse == noteNum, lineColour, textColour); else if (orientation == verticalKeyboardFacingLeft) drawWhiteNote (noteNum, g, 0, x, getWidth(), w, state.isNoteOnForChannels (midiInChannelMask, noteNum), noteUnderMouse == noteNum, lineColour, textColour); else if (orientation == verticalKeyboardFacingRight) drawWhiteNote (noteNum, g, 0, getHeight() - x - w, getWidth(), w, state.isNoteOnForChannels (midiInChannelMask, noteNum), noteUnderMouse == noteNum, lineColour, textColour); } } } float x1 = 0.0f, y1 = 0.0f, x2 = 0.0f, y2 = 0.0f; if (orientation == verticalKeyboardFacingLeft) { x1 = getWidth() - 1.0f; x2 = getWidth() - 5.0f; } else if (orientation == verticalKeyboardFacingRight) x2 = 5.0f; else y2 = 5.0f; GradientBrush gb (Colours::black.withAlpha (0.3f), x1, y1, Colours::transparentBlack, x2, y2, false); g.setBrush (&gb); getKeyPos (rangeEnd, x, w); x += w; if (orientation == verticalKeyboardFacingLeft) g.fillRect (getWidth() - 5, 0, 5, x); else if (orientation == verticalKeyboardFacingRight) g.fillRect (0, 0, 5, x); else g.fillRect (0, 0, x, 5); g.setColour (lineColour); if (orientation == verticalKeyboardFacingLeft) g.fillRect (0, 0, 1, x); else if (orientation == verticalKeyboardFacingRight) g.fillRect (getWidth() - 1, 0, 1, x); else g.fillRect (0, getHeight() - 1, x, 1); const Colour blackNoteColour (findColour (blackNoteColourId)); for (octave = 0; octave < 128; octave += 12) { for (int black = 0; black < 5; ++black) { const int noteNum = octave + blackNotes [black]; if (noteNum >= rangeStart && noteNum <= rangeEnd) { getKeyPos (noteNum, x, w); if (orientation == horizontalKeyboard) drawBlackNote (noteNum, g, x, 0, w, blackNoteLength, state.isNoteOnForChannels (midiInChannelMask, noteNum), noteUnderMouse == noteNum, blackNoteColour); else if (orientation == verticalKeyboardFacingLeft) drawBlackNote (noteNum, g, getWidth() - blackNoteLength, x, blackNoteLength, w, state.isNoteOnForChannels (midiInChannelMask, noteNum), noteUnderMouse == noteNum, blackNoteColour); else if (orientation == verticalKeyboardFacingRight) drawBlackNote (noteNum, g, 0, getHeight() - x - w, blackNoteLength, w, state.isNoteOnForChannels (midiInChannelMask, noteNum), noteUnderMouse == noteNum, blackNoteColour); } } } } void MidiKeyboardComponent::drawWhiteNote (int midiNoteNumber, Graphics& g, int x, int y, int w, int h, bool isDown, bool isOver, const Colour& lineColour, const Colour& textColour) { Colour c (Colours::transparentWhite); if (isDown) c = findColour (keyDownOverlayColourId); if (isOver) c = c.overlaidWith (findColour (mouseOverKeyOverlayColourId)); g.setColour (c); g.fillRect (x, y, w, h); const String text (getWhiteNoteText (midiNoteNumber)); if (! text.isEmpty()) { g.setColour (textColour); Font f (jmin (12.0f, keyWidth * 0.9f)); f.setHorizontalScale (0.8f); g.setFont (f); Justification justification (Justification::centredBottom); if (orientation == verticalKeyboardFacingLeft) justification = Justification::centredLeft; else if (orientation == verticalKeyboardFacingRight) justification = Justification::centredRight; g.drawFittedText (text, x + 2, y + 2, w - 4, h - 4, justification, 1); } g.setColour (lineColour); if (orientation == horizontalKeyboard) g.fillRect (x, y, 1, h); else if (orientation == verticalKeyboardFacingLeft) g.fillRect (x, y, w, 1); else if (orientation == verticalKeyboardFacingRight) g.fillRect (x, y + h - 1, w, 1); if (midiNoteNumber == rangeEnd) { if (orientation == horizontalKeyboard) g.fillRect (x + w, y, 1, h); else if (orientation == verticalKeyboardFacingLeft) g.fillRect (x, y + h, w, 1); else if (orientation == verticalKeyboardFacingRight) g.fillRect (x, y - 1, w, 1); } } void MidiKeyboardComponent::drawBlackNote (int /*midiNoteNumber*/, Graphics& g, int x, int y, int w, int h, bool isDown, bool isOver, const Colour& noteFillColour) { Colour c (noteFillColour); if (isDown) c = c.overlaidWith (findColour (keyDownOverlayColourId)); if (isOver) c = c.overlaidWith (findColour (mouseOverKeyOverlayColourId)); g.setColour (c); g.fillRect (x, y, w, h); if (isDown) { g.setColour (noteFillColour); g.drawRect (x, y, w, h); } else { const int xIndent = jmax (1, jmin (w, h) / 8); g.setColour (c.brighter()); if (orientation == horizontalKeyboard) g.fillRect (x + xIndent, y, w - xIndent * 2, 7 * h / 8); else if (orientation == verticalKeyboardFacingLeft) g.fillRect (x + w / 8, y + xIndent, w - w / 8, h - xIndent * 2); else if (orientation == verticalKeyboardFacingRight) g.fillRect (x, y + xIndent, 7 * w / 8, h - xIndent * 2); } } void MidiKeyboardComponent::setOctaveForMiddleC (const int octaveNumForMiddleC_) throw() { octaveNumForMiddleC = octaveNumForMiddleC_; repaint(); } const String MidiKeyboardComponent::getWhiteNoteText (const int midiNoteNumber) { if (keyWidth > 14.0f && midiNoteNumber % 12 == 0) return MidiMessage::getMidiNoteName (midiNoteNumber, true, true, octaveNumForMiddleC); return String::empty; } void MidiKeyboardComponent::drawUpDownButton (Graphics& g, int w, int h, const bool isMouseOver, const bool isButtonDown, const bool movesOctavesUp) { g.fillAll (findColour (upDownButtonBackgroundColourId)); float angle; if (orientation == MidiKeyboardComponent::horizontalKeyboard) angle = movesOctavesUp ? 0.0f : 0.5f; else if (orientation == MidiKeyboardComponent::verticalKeyboardFacingLeft) angle = movesOctavesUp ? 0.25f : 0.75f; else angle = movesOctavesUp ? 0.75f : 0.25f; Path path; path.lineTo (0.0f, 1.0f); path.lineTo (1.0f, 0.5f); path.closeSubPath(); path.applyTransform (AffineTransform::rotation (float_Pi * 2.0f * angle, 0.5f, 0.5f)); g.setColour (findColour (upDownButtonArrowColourId) .withAlpha (isButtonDown ? 1.0f : (isMouseOver ? 0.6f : 0.4f))); g.fillPath (path, path.getTransformToScaleToFit (1.0f, 1.0f, w - 2.0f, h - 2.0f, true)); } void MidiKeyboardComponent::resized() { int w = getWidth(); int h = getHeight(); if (w > 0 && h > 0) { if (orientation != horizontalKeyboard) swapVariables (w, h); blackNoteLength = roundFloatToInt (h * 0.7f); int kx2, kw2; getKeyPos (rangeEnd, kx2, kw2); kx2 += kw2; if (firstKey != rangeStart) { int kx1, kw1; getKeyPos (rangeStart, kx1, kw1); if (kx2 - kx1 <= w) { firstKey = rangeStart; sendChangeMessage (this); repaint(); } } const bool showScrollButtons = canScroll && (firstKey > rangeStart || kx2 > w + xOffset * 2); scrollDown->setVisible (showScrollButtons); scrollUp->setVisible (showScrollButtons); xOffset = 0; if (showScrollButtons) { const int scrollButtonW = jmin (12, w / 2); if (orientation == horizontalKeyboard) { scrollDown->setBounds (0, 0, scrollButtonW, getHeight()); scrollUp->setBounds (getWidth() - scrollButtonW, 0, scrollButtonW, getHeight()); } else if (orientation == verticalKeyboardFacingLeft) { scrollDown->setBounds (0, 0, getWidth(), scrollButtonW); scrollUp->setBounds (0, getHeight() - scrollButtonW, getWidth(), scrollButtonW); } else if (orientation == verticalKeyboardFacingRight) { scrollDown->setBounds (0, getHeight() - scrollButtonW, getWidth(), scrollButtonW); scrollUp->setBounds (0, 0, getWidth(), scrollButtonW); } int endOfLastKey, kw; getKeyPos (rangeEnd, endOfLastKey, kw); endOfLastKey += kw; const int spaceAvailable = w - scrollButtonW * 2; const int lastStartKey = remappedXYToNote (endOfLastKey - spaceAvailable, 0) + 1; if (lastStartKey >= 0 && firstKey > lastStartKey) { firstKey = jlimit (rangeStart, rangeEnd, lastStartKey); sendChangeMessage (this); } int newOffset = 0; getKeyPos (firstKey, newOffset, kw); xOffset = newOffset - scrollButtonW; } else { firstKey = rangeStart; } timerCallback(); repaint(); } } void MidiKeyboardComponent::handleNoteOn (MidiKeyboardState*, int /*midiChannel*/, int /*midiNoteNumber*/, float /*velocity*/) { triggerAsyncUpdate(); } void MidiKeyboardComponent::handleNoteOff (MidiKeyboardState*, int /*midiChannel*/, int /*midiNoteNumber*/) { triggerAsyncUpdate(); } void MidiKeyboardComponent::handleAsyncUpdate() { for (int i = rangeStart; i <= rangeEnd; ++i) { if (keysCurrentlyDrawnDown[i] != state.isNoteOnForChannels (midiInChannelMask, i)) { keysCurrentlyDrawnDown.setBit (i, state.isNoteOnForChannels (midiInChannelMask, i)); repaintNote (i); } } } void MidiKeyboardComponent::resetAnyKeysInUse() { if (keysPressed.countNumberOfSetBits() > 0 || mouseDownNote > 0) { state.allNotesOff (midiChannel); keysPressed.clear(); mouseDownNote = -1; } } void MidiKeyboardComponent::updateNoteUnderMouse (int x, int y) { const int newNote = (mouseDragging || isMouseOver()) ? xyToNote (x, y) : -1; if (noteUnderMouse != newNote) { if (mouseDownNote >= 0) { state.noteOff (midiChannel, mouseDownNote); mouseDownNote = -1; } if (mouseDragging && newNote >= 0) { state.noteOn (midiChannel, newNote, velocity); mouseDownNote = newNote; } repaintNote (noteUnderMouse); noteUnderMouse = newNote; repaintNote (noteUnderMouse); } else if (mouseDownNote >= 0 && ! mouseDragging) { state.noteOff (midiChannel, mouseDownNote); mouseDownNote = -1; } } void MidiKeyboardComponent::mouseMove (const MouseEvent& e) { updateNoteUnderMouse (e.x, e.y); stopTimer(); } void MidiKeyboardComponent::mouseDrag (const MouseEvent& e) { const int newNote = xyToNote (e.x, e.y); if (newNote >= 0) mouseDraggedToKey (newNote, e); updateNoteUnderMouse (e.x, e.y); } bool MidiKeyboardComponent::mouseDownOnKey (int /*midiNoteNumber*/, const MouseEvent&) { return true; } void MidiKeyboardComponent::mouseDraggedToKey (int /*midiNoteNumber*/, const MouseEvent&) { } void MidiKeyboardComponent::mouseDown (const MouseEvent& e) { const int newNote = xyToNote (e.x, e.y); mouseDragging = false; if (newNote >= 0 && mouseDownOnKey (newNote, e)) { repaintNote (noteUnderMouse); noteUnderMouse = -1; mouseDragging = true; updateNoteUnderMouse (e.x, e.y); startTimer (500); } } void MidiKeyboardComponent::mouseUp (const MouseEvent& e) { mouseDragging = false; updateNoteUnderMouse (e.x, e.y); stopTimer(); } void MidiKeyboardComponent::mouseEnter (const MouseEvent& e) { updateNoteUnderMouse (e.x, e.y); } void MidiKeyboardComponent::mouseExit (const MouseEvent& e) { updateNoteUnderMouse (e.x, e.y); } void MidiKeyboardComponent::mouseWheelMove (const MouseEvent&, float ix, float iy) { setLowestVisibleKey (getLowestVisibleKey() + roundFloatToInt ((ix != 0 ? ix : iy) * 5.0f)); } void MidiKeyboardComponent::timerCallback() { int mx, my; getMouseXYRelative (mx, my); updateNoteUnderMouse (mx, my); } void MidiKeyboardComponent::clearKeyMappings() { resetAnyKeysInUse(); keyPressNotes.clear(); keyPresses.clear(); } void MidiKeyboardComponent::setKeyPressForNote (const KeyPress& key, const int midiNoteOffsetFromC) { removeKeyPressForNote (midiNoteOffsetFromC); keyPressNotes.add (midiNoteOffsetFromC); keyPresses.add (key); } void MidiKeyboardComponent::removeKeyPressForNote (const int midiNoteOffsetFromC) { for (int i = keyPressNotes.size(); --i >= 0;) { if (keyPressNotes.getUnchecked (i) == midiNoteOffsetFromC) { keyPressNotes.remove (i); keyPresses.remove (i); } } } void MidiKeyboardComponent::setKeyPressBaseOctave (const int newOctaveNumber) { jassert (newOctaveNumber >= 0 && newOctaveNumber <= 10); keyMappingOctave = newOctaveNumber; } bool MidiKeyboardComponent::keyStateChanged (const bool /*isKeyDown*/) { bool keyPressUsed = false; for (int i = keyPresses.size(); --i >= 0;) { const int note = 12 * keyMappingOctave + keyPressNotes.getUnchecked (i); if (keyPresses.getReference(i).isCurrentlyDown()) { if (! keysPressed [note]) { keysPressed.setBit (note); state.noteOn (midiChannel, note, velocity); keyPressUsed = true; } } else { if (keysPressed [note]) { keysPressed.clearBit (note); state.noteOff (midiChannel, note); keyPressUsed = true; } } } return keyPressUsed; } void MidiKeyboardComponent::focusLost (FocusChangeType) { resetAnyKeysInUse(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_MidiKeyboardComponent.cpp *********/ /********* Start of inlined file: juce_OpenGLComponent.cpp *********/ #if JUCE_OPENGL BEGIN_JUCE_NAMESPACE extern void juce_glViewport (const int w, const int h); OpenGLPixelFormat::OpenGLPixelFormat (const int bitsPerRGBComponent, const int alphaBits_, const int depthBufferBits_, const int stencilBufferBits_) throw() : redBits (bitsPerRGBComponent), greenBits (bitsPerRGBComponent), blueBits (bitsPerRGBComponent), alphaBits (alphaBits_), depthBufferBits (depthBufferBits_), stencilBufferBits (stencilBufferBits_), accumulationBufferRedBits (0), accumulationBufferGreenBits (0), accumulationBufferBlueBits (0), accumulationBufferAlphaBits (0), fullSceneAntiAliasingNumSamples (0) { } bool OpenGLPixelFormat::operator== (const OpenGLPixelFormat& other) const throw() { return memcmp (this, &other, sizeof (other)) == 0; } static VoidArray knownContexts; OpenGLContext::OpenGLContext() throw() { knownContexts.add (this); } OpenGLContext::~OpenGLContext() { knownContexts.removeValue (this); } OpenGLContext* OpenGLContext::getCurrentContext() { for (int i = knownContexts.size(); --i >= 0;) { OpenGLContext* const oglc = (OpenGLContext*) knownContexts.getUnchecked(i); if (oglc->isActive()) return oglc; } return 0; } class OpenGLComponentWatcher : public ComponentMovementWatcher { public: OpenGLComponentWatcher (OpenGLComponent* const owner_) : ComponentMovementWatcher (owner_), owner (owner_), wasShowing (false) { } ~OpenGLComponentWatcher() {} void componentMovedOrResized (bool /*wasMoved*/, bool /*wasResized*/) { owner->updateContextPosition(); } void componentPeerChanged() { const ScopedLock sl (owner->getContextLock()); owner->deleteContext(); } void componentVisibilityChanged (Component&) { const bool isShowingNow = owner->isShowing(); if (wasShowing != isShowingNow) { wasShowing = isShowingNow; owner->updateContextPosition(); } } juce_UseDebuggingNewOperator private: OpenGLComponent* const owner; bool wasShowing; }; OpenGLComponent::OpenGLComponent() : context (0), contextToShareListsWith (0), needToUpdateViewport (true) { setOpaque (true); componentWatcher = new OpenGLComponentWatcher (this); } OpenGLComponent::~OpenGLComponent() { deleteContext(); delete componentWatcher; } void OpenGLComponent::deleteContext() { const ScopedLock sl (contextLock); deleteAndZero (context); } void OpenGLComponent::updateContextPosition() { needToUpdateViewport = true; if (getWidth() > 0 && getHeight() > 0) { Component* const topComp = getTopLevelComponent(); if (topComp->getPeer() != 0) { const ScopedLock sl (contextLock); if (context != 0) context->updateWindowPosition (getScreenX() - topComp->getScreenX(), getScreenY() - topComp->getScreenY(), getWidth(), getHeight(), topComp->getHeight()); } } } const OpenGLPixelFormat OpenGLComponent::getPixelFormat() const { OpenGLPixelFormat pf; const ScopedLock sl (contextLock); if (context != 0) pf = context->getPixelFormat(); return pf; } void OpenGLComponent::setPixelFormat (const OpenGLPixelFormat& formatToUse) { if (! (preferredPixelFormat == formatToUse)) { const ScopedLock sl (contextLock); deleteContext(); preferredPixelFormat = formatToUse; } } void OpenGLComponent::shareWith (OpenGLContext* context) { if (contextToShareListsWith != context) { const ScopedLock sl (contextLock); deleteContext(); contextToShareListsWith = context; } } bool OpenGLComponent::makeCurrentContextActive() { if (context == 0) { const ScopedLock sl (contextLock); if (isShowing() && getTopLevelComponent()->getPeer() != 0) { context = OpenGLContext::createContextForWindow (this, preferredPixelFormat, contextToShareListsWith); if (context != 0) { updateContextPosition(); if (context->makeActive()) newOpenGLContextCreated(); } } } return context != 0 && context->makeActive(); } void OpenGLComponent::makeCurrentContextInactive() { if (context != 0) context->makeInactive(); } bool OpenGLComponent::isActiveContext() const throw() { return context != 0 && context->isActive(); } void OpenGLComponent::swapBuffers() { if (context != 0) context->swapBuffers(); } void OpenGLComponent::paint (Graphics&) { if (renderAndSwapBuffers()) { ComponentPeer* const peer = getPeer(); if (peer != 0) { peer->addMaskedRegion (getScreenX() - peer->getScreenX(), getScreenY() - peer->getScreenY(), getWidth(), getHeight()); } } } bool OpenGLComponent::renderAndSwapBuffers() { const ScopedLock sl (contextLock); if (! makeCurrentContextActive()) return false; if (needToUpdateViewport) { needToUpdateViewport = false; juce_glViewport (getWidth(), getHeight()); } renderOpenGL(); swapBuffers(); return true; } void OpenGLComponent::internalRepaint (int x, int y, int w, int h) { Component::internalRepaint (x, y, w, h); if (context != 0) context->repaint(); } END_JUCE_NAMESPACE #endif /********* End of inlined file: juce_OpenGLComponent.cpp *********/ /********* Start of inlined file: juce_PreferencesPanel.cpp *********/ BEGIN_JUCE_NAMESPACE PreferencesPanel::PreferencesPanel() : currentPage (0), buttonSize (70) { } PreferencesPanel::~PreferencesPanel() { deleteAllChildren(); } void PreferencesPanel::addSettingsPage (const String& title, const Drawable* icon, const Drawable* overIcon, const Drawable* downIcon) { DrawableButton* button = new DrawableButton (title, DrawableButton::ImageAboveTextLabel); button->setImages (icon, overIcon, downIcon); button->setRadioGroupId (1); button->addButtonListener (this); button->setClickingTogglesState (true); button->setWantsKeyboardFocus (false); addAndMakeVisible (button); resized(); if (currentPage == 0) setCurrentPage (title); } void PreferencesPanel::addSettingsPage (const String& title, const char* imageData, const int imageDataSize) { DrawableImage icon, iconOver, iconDown; icon.setImage (ImageCache::getFromMemory (imageData, imageDataSize), true); iconOver.setImage (ImageCache::getFromMemory (imageData, imageDataSize), true); iconOver.setOverlayColour (Colours::black.withAlpha (0.12f)); iconDown.setImage (ImageCache::getFromMemory (imageData, imageDataSize), true); iconDown.setOverlayColour (Colours::black.withAlpha (0.25f)); addSettingsPage (title, &icon, &iconOver, &iconDown); } class PrefsDialogWindow : public DialogWindow { public: PrefsDialogWindow (const String& dialogtitle, const Colour& backgroundColour) : DialogWindow (dialogtitle, backgroundColour, true) { } ~PrefsDialogWindow() { } void closeButtonPressed() { exitModalState (0); } private: PrefsDialogWindow (const PrefsDialogWindow&); const PrefsDialogWindow& operator= (const PrefsDialogWindow&); }; void PreferencesPanel::showInDialogBox (const String& dialogtitle, int dialogWidth, int dialogHeight, const Colour& backgroundColour) { setSize (dialogWidth, dialogHeight); PrefsDialogWindow dw (dialogtitle, backgroundColour); dw.setContentComponent (this, true, true); dw.centreAroundComponent (0, dw.getWidth(), dw.getHeight()); dw.runModalLoop(); dw.setContentComponent (0, false, false); } void PreferencesPanel::resized() { int x = 0; for (int i = 0; i < getNumChildComponents(); ++i) { Component* c = getChildComponent (i); if (dynamic_cast (c) == 0) { c->setBounds (0, buttonSize + 5, getWidth(), getHeight() - buttonSize - 5); } else { c->setBounds (x, 0, buttonSize, buttonSize); x += buttonSize; } } } void PreferencesPanel::paint (Graphics& g) { g.setColour (Colours::grey); g.fillRect (0, buttonSize + 2, getWidth(), 1); } void PreferencesPanel::setCurrentPage (const String& pageName) { if (currentPageName != pageName) { currentPageName = pageName; deleteAndZero (currentPage); currentPage = createComponentForPage (pageName); if (currentPage != 0) { addAndMakeVisible (currentPage); currentPage->toBack(); resized(); } for (int i = 0; i < getNumChildComponents(); ++i) { DrawableButton* db = dynamic_cast (getChildComponent (i)); if (db != 0 && db->getName() == pageName) { db->setToggleState (true, false); break; } } } } void PreferencesPanel::buttonClicked (Button*) { for (int i = 0; i < getNumChildComponents(); ++i) { DrawableButton* db = dynamic_cast (getChildComponent (i)); if (db != 0 && db->getToggleState()) { setCurrentPage (db->getName()); break; } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_PreferencesPanel.cpp *********/ /********* Start of inlined file: juce_SystemTrayIconComponent.cpp *********/ #if JUCE_WINDOWS || JUCE_LINUX BEGIN_JUCE_NAMESPACE SystemTrayIconComponent::SystemTrayIconComponent() { addToDesktop (0); } SystemTrayIconComponent::~SystemTrayIconComponent() { } END_JUCE_NAMESPACE #endif /********* End of inlined file: juce_SystemTrayIconComponent.cpp *********/ /********* Start of inlined file: juce_AlertWindow.cpp *********/ BEGIN_JUCE_NAMESPACE static const int titleH = 24; static const int iconWidth = 80; class AlertWindowTextEditor : public TextEditor { public: #if JUCE_LINUX #define PASSWORD_CHAR 0x2022 #else #define PASSWORD_CHAR 0x25cf #endif AlertWindowTextEditor (const String& name, const bool isPasswordBox) : TextEditor (name, isPasswordBox ? (const tchar) PASSWORD_CHAR : (const tchar) 0) { setSelectAllWhenFocused (true); } ~AlertWindowTextEditor() { } void returnPressed() { // pass these up the component hierarchy to be trigger the buttons getParentComponent()->keyPressed (KeyPress (KeyPress::returnKey, 0, T('\n'))); } void escapePressed() { // pass these up the component hierarchy to be trigger the buttons getParentComponent()->keyPressed (KeyPress (KeyPress::escapeKey, 0, 0)); } private: AlertWindowTextEditor (const AlertWindowTextEditor&); const AlertWindowTextEditor& operator= (const AlertWindowTextEditor&); }; AlertWindow::AlertWindow (const String& title, const String& message, AlertIconType iconType, Component* associatedComponent_) : TopLevelWindow (title, true), alertIconType (iconType), associatedComponent (associatedComponent_) { if (message.isEmpty()) text = T(" "); // to force an update if the message is empty setMessage (message); for (int i = Desktop::getInstance().getNumComponents(); --i >= 0;) { Component* const c = Desktop::getInstance().getComponent (i); if (c != 0 && c->isAlwaysOnTop() && c->isShowing()) { setAlwaysOnTop (true); break; } } if (JUCEApplication::getInstance() == 0) setAlwaysOnTop (true); // for a plugin, make it always-on-top because the host windows are often top-level lookAndFeelChanged(); constrainer.setMinimumOnscreenAmounts (0x10000, 0x10000, 0x10000, 0x10000); } AlertWindow::~AlertWindow() { for (int i = customComps.size(); --i >= 0;) removeChildComponent ((Component*) customComps[i]); deleteAllChildren(); } void AlertWindow::userTriedToCloseWindow() { exitModalState (0); } void AlertWindow::setMessage (const String& message) { const String newMessage (message.substring (0, 2048)); if (text != newMessage) { text = newMessage; font.setHeight (15.0f); Font titleFont (font.getHeight() * 1.1f, Font::bold); textLayout.setText (getName() + T("\n\n"), titleFont); textLayout.appendText (text, font); updateLayout (true); repaint(); } } void AlertWindow::buttonClicked (Button* button) { for (int i = 0; i < buttons.size(); i++) { TextButton* const c = (TextButton*) buttons[i]; if (button->getName() == c->getName()) { if (c->getParentComponent() != 0) c->getParentComponent()->exitModalState (c->getCommandID()); break; } } } void AlertWindow::addButton (const String& name, const int returnValue, const KeyPress& shortcutKey1, const KeyPress& shortcutKey2) { TextButton* const b = new TextButton (name, String::empty); b->setWantsKeyboardFocus (true); b->setMouseClickGrabsKeyboardFocus (false); b->setCommandToTrigger (0, returnValue, false); b->addShortcut (shortcutKey1); b->addShortcut (shortcutKey2); b->addButtonListener (this); b->changeWidthToFitText (getLookAndFeel().getAlertWindowButtonHeight()); addAndMakeVisible (b, 0); buttons.add (b); updateLayout (false); } int AlertWindow::getNumButtons() const { return buttons.size(); } void AlertWindow::addTextEditor (const String& name, const String& initialContents, const String& onScreenLabel, const bool isPasswordBox) { AlertWindowTextEditor* const tc = new AlertWindowTextEditor (name, isPasswordBox); tc->setColour (TextEditor::outlineColourId, findColour (ComboBox::outlineColourId)); tc->setFont (font); tc->setText (initialContents); tc->setCaretPosition (initialContents.length()); addAndMakeVisible (tc); textBoxes.add (tc); allComps.add (tc); textboxNames.add (onScreenLabel); updateLayout (false); } const String AlertWindow::getTextEditorContents (const String& nameOfTextEditor) const { for (int i = textBoxes.size(); --i >= 0;) if (((TextEditor*)textBoxes[i])->getName() == nameOfTextEditor) return ((TextEditor*)textBoxes[i])->getText(); return String::empty; } void AlertWindow::addComboBox (const String& name, const StringArray& items, const String& onScreenLabel) { ComboBox* const cb = new ComboBox (name); for (int i = 0; i < items.size(); ++i) cb->addItem (items[i], i + 1); addAndMakeVisible (cb); cb->setSelectedItemIndex (0); comboBoxes.add (cb); allComps.add (cb); comboBoxNames.add (onScreenLabel); updateLayout (false); } ComboBox* AlertWindow::getComboBoxComponent (const String& nameOfList) const { for (int i = comboBoxes.size(); --i >= 0;) if (((ComboBox*) comboBoxes[i])->getName() == nameOfList) return (ComboBox*) comboBoxes[i]; return 0; } class AlertTextComp : public TextEditor { AlertTextComp (const AlertTextComp&); const AlertTextComp& operator= (const AlertTextComp&); int bestWidth; public: AlertTextComp (const String& message, const Font& font) { setReadOnly (true); setMultiLine (true, true); setCaretVisible (false); setScrollbarsShown (true); lookAndFeelChanged(); setWantsKeyboardFocus (false); setFont (font); setText (message, false); bestWidth = 2 * (int) sqrt (font.getHeight() * font.getStringWidth (message)); setColour (TextEditor::backgroundColourId, Colours::transparentBlack); setColour (TextEditor::outlineColourId, Colours::transparentBlack); setColour (TextEditor::shadowColourId, Colours::transparentBlack); } ~AlertTextComp() { } int getPreferredWidth() const throw() { return bestWidth; } void updateLayout (const int width) { TextLayout text; text.appendText (getText(), getFont()); text.layout (width - 8, Justification::topLeft, true); setSize (width, jmin (width, text.getHeight() + (int) getFont().getHeight())); } }; void AlertWindow::addTextBlock (const String& text) { AlertTextComp* const c = new AlertTextComp (text, font); textBlocks.add (c); allComps.add (c); addAndMakeVisible (c); updateLayout (false); } void AlertWindow::addProgressBarComponent (double& progressValue) { ProgressBar* const pb = new ProgressBar (progressValue); progressBars.add (pb); allComps.add (pb); addAndMakeVisible (pb); updateLayout (false); } void AlertWindow::addCustomComponent (Component* const component) { customComps.add (component); allComps.add (component); addAndMakeVisible (component); updateLayout (false); } int AlertWindow::getNumCustomComponents() const { return customComps.size(); } Component* AlertWindow::getCustomComponent (const int index) const { return (Component*) customComps [index]; } Component* AlertWindow::removeCustomComponent (const int index) { Component* const c = getCustomComponent (index); if (c != 0) { customComps.removeValue (c); allComps.removeValue (c); removeChildComponent (c); updateLayout (false); } return c; } void AlertWindow::paint (Graphics& g) { getLookAndFeel().drawAlertBox (g, *this, textArea, textLayout); g.setColour (findColour (textColourId)); g.setFont (getLookAndFeel().getAlertWindowFont()); int i; for (i = textBoxes.size(); --i >= 0;) { if (textboxNames[i].isNotEmpty()) { const TextEditor* const te = (TextEditor*) textBoxes[i]; g.drawFittedText (textboxNames[i], te->getX(), te->getY() - 14, te->getWidth(), 14, Justification::centredLeft, 1); } } for (i = comboBoxNames.size(); --i >= 0;) { if (comboBoxNames[i].isNotEmpty()) { const ComboBox* const cb = (ComboBox*) comboBoxes[i]; g.drawFittedText (comboBoxNames[i], cb->getX(), cb->getY() - 14, cb->getWidth(), 14, Justification::centredLeft, 1); } } } void AlertWindow::updateLayout (const bool onlyIncreaseSize) { const int wid = jmax (font.getStringWidth (text), font.getStringWidth (getName())); const int sw = (int) sqrt (font.getHeight() * wid); int w = jmin (300 + sw * 2, (int) (getParentWidth() * 0.7f)); const int edgeGap = 10; int iconSpace; if (alertIconType == NoIcon) { textLayout.layout (w, Justification::horizontallyCentred, true); iconSpace = 0; } else { textLayout.layout (w, Justification::left, true); iconSpace = iconWidth; } w = jmax (350, textLayout.getWidth() + iconSpace + edgeGap * 4); w = jmin (w, (int) (getParentWidth() * 0.7f)); const int textLayoutH = textLayout.getHeight(); const int textBottom = 16 + titleH + textLayoutH; int h = textBottom; int buttonW = 40; int i; for (i = 0; i < buttons.size(); ++i) buttonW += 16 + ((const TextButton*) buttons[i])->getWidth(); w = jmax (buttonW, w); h += (textBoxes.size() + comboBoxes.size() + progressBars.size()) * 50; if (buttons.size() > 0) h += 20 + ((TextButton*) buttons[0])->getHeight(); for (i = customComps.size(); --i >= 0;) { w = jmax (w, ((Component*) customComps[i])->getWidth() + 40); h += 10 + ((Component*) customComps[i])->getHeight(); } for (i = textBlocks.size(); --i >= 0;) { const AlertTextComp* const ac = (AlertTextComp*) textBlocks[i]; w = jmax (w, ac->getPreferredWidth()); } w = jmin (w, (int) (getParentWidth() * 0.7f)); for (i = textBlocks.size(); --i >= 0;) { AlertTextComp* const ac = (AlertTextComp*) textBlocks[i]; ac->updateLayout ((int) (w * 0.8f)); h += ac->getHeight() + 10; } h = jmin (getParentHeight() - 50, h); if (onlyIncreaseSize) { w = jmax (w, getWidth()); h = jmax (h, getHeight()); } if (! isVisible()) { centreAroundComponent (associatedComponent, w, h); } else { const int cx = getX() + getWidth() / 2; const int cy = getY() + getHeight() / 2; setBounds (cx - w / 2, cy - h / 2, w, h); } textArea.setBounds (edgeGap, edgeGap, w - (edgeGap * 2), h - edgeGap); const int spacer = 16; int totalWidth = -spacer; for (i = buttons.size(); --i >= 0;) totalWidth += ((TextButton*) buttons[i])->getWidth() + spacer; int x = (w - totalWidth) / 2; int y = (int) (getHeight() * 0.95f); for (i = 0; i < buttons.size(); ++i) { TextButton* const c = (TextButton*) buttons[i]; int ny = proportionOfHeight (0.95f) - c->getHeight(); c->setTopLeftPosition (x, ny); if (ny < y) y = ny; x += c->getWidth() + spacer; c->toFront (false); } y = textBottom; for (i = 0; i < allComps.size(); ++i) { Component* const c = (Component*) allComps[i]; const int h = 22; const int comboIndex = comboBoxes.indexOf (c); if (comboIndex >= 0 && comboBoxNames [comboIndex].isNotEmpty()) y += 18; const int tbIndex = textBoxes.indexOf (c); if (tbIndex >= 0 && textboxNames[tbIndex].isNotEmpty()) y += 18; if (customComps.contains (c) || textBlocks.contains (c)) { c->setTopLeftPosition ((getWidth() - c->getWidth()) / 2, y); y += c->getHeight() + 10; } else { c->setBounds (proportionOfWidth (0.1f), y, proportionOfWidth (0.8f), h); y += h + 10; } } setWantsKeyboardFocus (getNumChildComponents() == 0); } bool AlertWindow::containsAnyExtraComponents() const { return textBoxes.size() + comboBoxes.size() + progressBars.size() + customComps.size() > 0; } void AlertWindow::mouseDown (const MouseEvent&) { dragger.startDraggingComponent (this, &constrainer); } void AlertWindow::mouseDrag (const MouseEvent& e) { dragger.dragComponent (this, e); } bool AlertWindow::keyPressed (const KeyPress& key) { for (int i = buttons.size(); --i >= 0;) { TextButton* const b = (TextButton*) buttons[i]; if (b->isRegisteredForShortcut (key)) { b->triggerClick(); return true; } } if (key.isKeyCode (KeyPress::escapeKey) && buttons.size() == 0) { exitModalState (0); return true; } else if (key.isKeyCode (KeyPress::returnKey) && buttons.size() == 1) { ((TextButton*) buttons.getFirst())->triggerClick(); return true; } return false; } void AlertWindow::lookAndFeelChanged() { const int flags = getLookAndFeel().getAlertBoxWindowFlags(); setUsingNativeTitleBar ((flags & ComponentPeer::windowHasTitleBar) != 0); setDropShadowEnabled (isOpaque() && (flags & ComponentPeer::windowHasDropShadow) != 0); } int AlertWindow::getDesktopWindowStyleFlags() const { return getLookAndFeel().getAlertBoxWindowFlags(); } struct AlertWindowInfo { String title, message, button1, button2, button3; AlertWindow::AlertIconType iconType; int numButtons; Component* associatedComponent; int run() const { return (int) (pointer_sized_int) MessageManager::getInstance()->callFunctionOnMessageThread (showCallback, (void*) this); } private: int show() const { jassert (associatedComponent == 0 || associatedComponent->isValidComponent()); // has your comp been deleted? LookAndFeel& lf = associatedComponent->isValidComponent() ? associatedComponent->getLookAndFeel() : LookAndFeel::getDefaultLookAndFeel(); Component* const alertBox = lf.createAlertWindow (title, message, button1, button2, button3, iconType, numButtons, associatedComponent); jassert (alertBox != 0); // you have to return one of these! const int result = alertBox->runModalLoop(); delete alertBox; return result; } static void* showCallback (void* userData) { return (void*) (pointer_sized_int) ((const AlertWindowInfo*) userData)->show(); } }; void AlertWindow::showMessageBox (AlertIconType iconType, const String& title, const String& message, const String& buttonText, Component* associatedComponent) { AlertWindowInfo info; info.title = title; info.message = message; info.button1 = buttonText.isEmpty() ? TRANS("ok") : buttonText; info.iconType = iconType; info.numButtons = 1; info.associatedComponent = associatedComponent; info.run(); } bool AlertWindow::showOkCancelBox (AlertIconType iconType, const String& title, const String& message, const String& button1Text, const String& button2Text, Component* associatedComponent) { AlertWindowInfo info; info.title = title; info.message = message; info.button1 = button1Text.isEmpty() ? TRANS("ok") : button1Text; info.button2 = button2Text.isEmpty() ? TRANS("cancel") : button2Text; info.iconType = iconType; info.numButtons = 2; info.associatedComponent = associatedComponent; return info.run() != 0; } int AlertWindow::showYesNoCancelBox (AlertIconType iconType, const String& title, const String& message, const String& button1Text, const String& button2Text, const String& button3Text, Component* associatedComponent) { AlertWindowInfo info; info.title = title; info.message = message; info.button1 = button1Text.isEmpty() ? TRANS("yes") : button1Text; info.button2 = button2Text.isEmpty() ? TRANS("no") : button2Text; info.button3 = button3Text.isEmpty() ? TRANS("cancel") : button3Text; info.iconType = iconType; info.numButtons = 3; info.associatedComponent = associatedComponent; return info.run(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_AlertWindow.cpp *********/ /********* Start of inlined file: juce_ComponentPeer.cpp *********/ BEGIN_JUCE_NAMESPACE //#define JUCE_ENABLE_REPAINT_DEBUGGING 1 // these are over in juce_component.cpp extern int64 juce_recentMouseDownTimes[4]; extern int juce_recentMouseDownX [4]; extern int juce_recentMouseDownY [4]; extern Component* juce_recentMouseDownComponent [4]; extern int juce_LastMousePosX; extern int juce_LastMousePosY; extern int juce_MouseClickCounter; extern bool juce_MouseHasMovedSignificantlySincePressed; static const int fakeMouseMoveMessage = 0x7fff00ff; static VoidArray heavyweightPeers (4); ComponentPeer::ComponentPeer (Component* const component_, const int styleFlags_) throw() : component (component_), styleFlags (styleFlags_), lastPaintTime (0), constrainer (0), lastFocusedComponent (0), dragAndDropTargetComponent (0), lastDragAndDropCompUnderMouse (0), fakeMouseMessageSent (false), isWindowMinimised (false) { heavyweightPeers.add (this); } ComponentPeer::~ComponentPeer() { heavyweightPeers.removeValue (this); delete dragAndDropTargetComponent; Desktop::getInstance().triggerFocusCallback(); } int ComponentPeer::getNumPeers() throw() { return heavyweightPeers.size(); } ComponentPeer* ComponentPeer::getPeer (const int index) throw() { return (ComponentPeer*) heavyweightPeers [index]; } ComponentPeer* ComponentPeer::getPeerFor (const Component* const component) throw() { for (int i = heavyweightPeers.size(); --i >= 0;) { ComponentPeer* const peer = (ComponentPeer*) heavyweightPeers.getUnchecked(i); if (peer->getComponent() == component) return peer; } return 0; } bool ComponentPeer::isValidPeer (const ComponentPeer* const peer) throw() { return heavyweightPeers.contains (const_cast (peer)); } void ComponentPeer::updateCurrentModifiers() throw() { ModifierKeys::updateCurrentModifiers(); } void ComponentPeer::handleMouseEnter (int x, int y, const int64 time) { jassert (component->isValidComponent()); updateCurrentModifiers(); Component* c = component->getComponentAt (x, y); const ComponentDeletionWatcher deletionChecker (component); if (c != Component::componentUnderMouse && Component::componentUnderMouse != 0) { jassert (Component::componentUnderMouse->isValidComponent()); const int oldX = x; const int oldY = y; component->relativePositionToOtherComponent (Component::componentUnderMouse, x, y); Component::componentUnderMouse->internalMouseExit (x, y, time); Component::componentUnderMouse = 0; if (deletionChecker.hasBeenDeleted()) return; c = component->getComponentAt (oldX, oldY); } Component::componentUnderMouse = c; if (Component::componentUnderMouse != 0) { component->relativePositionToOtherComponent (Component::componentUnderMouse, x, y); Component::componentUnderMouse->internalMouseEnter (x, y, time); } } void ComponentPeer::handleMouseMove (int x, int y, const int64 time) { jassert (component->isValidComponent()); updateCurrentModifiers(); fakeMouseMessageSent = false; const ComponentDeletionWatcher deletionChecker (component); Component* c = component->getComponentAt (x, y); if (c != Component::componentUnderMouse) { const int oldX = x; const int oldY = y; if (Component::componentUnderMouse != 0) { component->relativePositionToOtherComponent (Component::componentUnderMouse, x, y); Component::componentUnderMouse->internalMouseExit (x, y, time); x = oldX; y = oldY; Component::componentUnderMouse = 0; if (deletionChecker.hasBeenDeleted()) return; // if this window has just been deleted.. c = component->getComponentAt (x, y); } Component::componentUnderMouse = c; if (c != 0) { component->relativePositionToOtherComponent (c, x, y); c->internalMouseEnter (x, y, time); x = oldX; y = oldY; if (deletionChecker.hasBeenDeleted()) return; // if this window has just been deleted.. } } if (Component::componentUnderMouse != 0) { component->relativePositionToOtherComponent (Component::componentUnderMouse, x, y); Component::componentUnderMouse->internalMouseMove (x, y, time); } } void ComponentPeer::handleMouseDown (int x, int y, const int64 time) { ++juce_MouseClickCounter; updateCurrentModifiers(); int numMouseButtonsDown = 0; if (ModifierKeys::getCurrentModifiers().isLeftButtonDown()) ++numMouseButtonsDown; if (ModifierKeys::getCurrentModifiers().isRightButtonDown()) ++numMouseButtonsDown; if (ModifierKeys::getCurrentModifiers().isMiddleButtonDown()) ++numMouseButtonsDown; if (numMouseButtonsDown == 1) { Component::componentUnderMouse = component->getComponentAt (x, y); if (Component::componentUnderMouse != 0) { // can't set these in the mouseDownInt() method, because it's re-entrant, so do it here.. for (int i = numElementsInArray (juce_recentMouseDownTimes); --i > 0;) { juce_recentMouseDownTimes [i] = juce_recentMouseDownTimes [i - 1]; juce_recentMouseDownX [i] = juce_recentMouseDownX [i - 1]; juce_recentMouseDownY [i] = juce_recentMouseDownY [i - 1]; juce_recentMouseDownComponent [i] = juce_recentMouseDownComponent [i - 1]; } juce_recentMouseDownTimes[0] = time; juce_recentMouseDownX[0] = x; juce_recentMouseDownY[0] = y; juce_recentMouseDownComponent[0] = Component::componentUnderMouse; relativePositionToGlobal (juce_recentMouseDownX[0], juce_recentMouseDownY[0]); juce_MouseHasMovedSignificantlySincePressed = false; component->relativePositionToOtherComponent (Component::componentUnderMouse, x, y); Component::componentUnderMouse->internalMouseDown (x, y); } } } void ComponentPeer::handleMouseDrag (int x, int y, const int64 time) { updateCurrentModifiers(); if (Component::componentUnderMouse != 0) { component->relativePositionToOtherComponent (Component::componentUnderMouse, x, y); Component::componentUnderMouse->internalMouseDrag (x, y, time); } } void ComponentPeer::handleMouseUp (const int oldModifiers, int x, int y, const int64 time) { updateCurrentModifiers(); int numMouseButtonsDown = 0; if ((oldModifiers & ModifierKeys::leftButtonModifier) != 0) ++numMouseButtonsDown; if ((oldModifiers & ModifierKeys::rightButtonModifier) != 0) ++numMouseButtonsDown; if ((oldModifiers & ModifierKeys::middleButtonModifier) != 0) ++numMouseButtonsDown; if (numMouseButtonsDown == 1) { const ComponentDeletionWatcher deletionChecker (component); Component* c = component->getComponentAt (x, y); if (c != Component::componentUnderMouse) { const int oldX = x; const int oldY = y; if (Component::componentUnderMouse != 0) { component->relativePositionToOtherComponent (Component::componentUnderMouse, x, y); Component::componentUnderMouse->internalMouseUp (oldModifiers, x, y, time); x = oldX; y = oldY; if (Component::componentUnderMouse != 0) Component::componentUnderMouse->internalMouseExit (x, y, time); if (deletionChecker.hasBeenDeleted()) return; c = component->getComponentAt (oldX, oldY); } Component::componentUnderMouse = c; if (Component::componentUnderMouse != 0) { component->relativePositionToOtherComponent (Component::componentUnderMouse, x, y); Component::componentUnderMouse->internalMouseEnter (x, y, time); } } else { if (Component::componentUnderMouse != 0) { component->relativePositionToOtherComponent (Component::componentUnderMouse, x, y); Component::componentUnderMouse->internalMouseUp (oldModifiers, x, y, time); } } } } void ComponentPeer::handleMouseExit (int x, int y, const int64 time) { jassert (component->isValidComponent()); updateCurrentModifiers(); if (Component::componentUnderMouse != 0) { component->relativePositionToOtherComponent (Component::componentUnderMouse, x, y); Component::componentUnderMouse->internalMouseExit (x, y, time); Component::componentUnderMouse = 0; } } void ComponentPeer::handleMouseWheel (const int amountX, const int amountY, const int64 time) { updateCurrentModifiers(); if (Component::componentUnderMouse != 0) Component::componentUnderMouse->internalMouseWheel (amountX, amountY, time); } void ComponentPeer::sendFakeMouseMove() throw() { if ((! fakeMouseMessageSent) && component->flags.hasHeavyweightPeerFlag && ! ModifierKeys::getCurrentModifiers().isAnyMouseButtonDown()) { if (! isMinimised()) { int realX, realY, realW, realH; getBounds (realX, realY, realW, realH); component->bounds_.setBounds (realX, realY, realW, realH); } int x, y; component->getMouseXYRelative (x, y); if (((unsigned int) x) < (unsigned int) component->getWidth() && ((unsigned int) y) < (unsigned int) component->getHeight() && contains (x, y, false)) { postMessage (new Message (fakeMouseMoveMessage, x, y, 0)); } fakeMouseMessageSent = true; } } void ComponentPeer::handleMessage (const Message& message) { if (message.intParameter1 == fakeMouseMoveMessage) { if (! ModifierKeys::getCurrentModifiers().isAnyMouseButtonDown()) handleMouseMove (message.intParameter2, message.intParameter3, Time::currentTimeMillis()); } } void ComponentPeer::handlePaint (LowLevelGraphicsContext& contextToPaintTo) { Graphics g (&contextToPaintTo); #if JUCE_ENABLE_REPAINT_DEBUGGING g.saveState(); #endif JUCE_TRY { component->paintEntireComponent (g); } JUCE_CATCH_EXCEPTION #if JUCE_ENABLE_REPAINT_DEBUGGING // enabling this code will fill all areas that get repainted with a colour overlay, to show // clearly when things are being repainted. { g.restoreState(); g.fillAll (Colour ((uint8) Random::getSystemRandom().nextInt (255), (uint8) Random::getSystemRandom().nextInt (255), (uint8) Random::getSystemRandom().nextInt (255), (uint8) 0x50)); } #endif } bool ComponentPeer::handleKeyPress (const int keyCode, const juce_wchar textCharacter) { updateCurrentModifiers(); Component* target = Component::currentlyFocusedComponent->isValidComponent() ? Component::currentlyFocusedComponent : component; if (target->isCurrentlyBlockedByAnotherModalComponent()) { Component* const currentModalComp = Component::getCurrentlyModalComponent(); if (currentModalComp != 0) target = currentModalComp; } const KeyPress keyInfo (keyCode, ModifierKeys::getCurrentModifiers().getRawFlags() & ModifierKeys::allKeyboardModifiers, textCharacter); bool keyWasUsed = false; while (target != 0) { const ComponentDeletionWatcher deletionChecker (target); if (target->keyListeners_ != 0) { for (int i = target->keyListeners_->size(); --i >= 0;) { keyWasUsed = ((KeyListener*) target->keyListeners_->getUnchecked(i))->keyPressed (keyInfo, target); if (keyWasUsed || deletionChecker.hasBeenDeleted()) return keyWasUsed; i = jmin (i, target->keyListeners_->size()); } } keyWasUsed = target->keyPressed (keyInfo); if (keyWasUsed || deletionChecker.hasBeenDeleted()) break; if (keyInfo.isKeyCode (KeyPress::tabKey) && Component::getCurrentlyFocusedComponent() != 0) { Component* const currentlyFocused = Component::getCurrentlyFocusedComponent(); currentlyFocused->moveKeyboardFocusToSibling (! keyInfo.getModifiers().isShiftDown()); keyWasUsed = (currentlyFocused != Component::getCurrentlyFocusedComponent()); break; } target = target->parentComponent_; } return keyWasUsed; } bool ComponentPeer::handleKeyUpOrDown (const bool isKeyDown) { updateCurrentModifiers(); Component* target = Component::currentlyFocusedComponent->isValidComponent() ? Component::currentlyFocusedComponent : component; if (target->isCurrentlyBlockedByAnotherModalComponent()) { Component* const currentModalComp = Component::getCurrentlyModalComponent(); if (currentModalComp != 0) target = currentModalComp; } bool keyWasUsed = false; while (target != 0) { const ComponentDeletionWatcher deletionChecker (target); keyWasUsed = target->keyStateChanged (isKeyDown); if (keyWasUsed || deletionChecker.hasBeenDeleted()) break; if (target->keyListeners_ != 0) { for (int i = target->keyListeners_->size(); --i >= 0;) { keyWasUsed = ((KeyListener*) target->keyListeners_->getUnchecked(i))->keyStateChanged (isKeyDown, target); if (keyWasUsed || deletionChecker.hasBeenDeleted()) return keyWasUsed; i = jmin (i, target->keyListeners_->size()); } } target = target->parentComponent_; } return keyWasUsed; } void ComponentPeer::handleModifierKeysChange() { updateCurrentModifiers(); Component* target = Component::getComponentUnderMouse(); if (target == 0) target = Component::getCurrentlyFocusedComponent(); if (target == 0) target = component; if (target->isValidComponent()) target->internalModifierKeysChanged(); } void ComponentPeer::handleBroughtToFront() { updateCurrentModifiers(); if (component != 0) component->internalBroughtToFront(); } void ComponentPeer::setConstrainer (ComponentBoundsConstrainer* const newConstrainer) throw() { constrainer = newConstrainer; } void ComponentPeer::handleMovedOrResized() { jassert (component->isValidComponent()); updateCurrentModifiers(); const bool nowMinimised = isMinimised(); if (component->flags.hasHeavyweightPeerFlag && ! nowMinimised) { const ComponentDeletionWatcher deletionChecker (component); int realX, realY, realW, realH; getBounds (realX, realY, realW, realH); const bool wasMoved = (component->getX() != realX || component->getY() != realY); const bool wasResized = (component->getWidth() != realW || component->getHeight() != realH); if (wasMoved || wasResized) { component->bounds_.setBounds (realX, realY, realW, realH); if (wasResized) component->repaint(); component->sendMovedResizedMessages (wasMoved, wasResized); if (deletionChecker.hasBeenDeleted()) return; } } if (isWindowMinimised != nowMinimised) { isWindowMinimised = nowMinimised; component->minimisationStateChanged (nowMinimised); component->sendVisibilityChangeMessage(); } if (! isFullScreen()) lastNonFullscreenBounds = component->getBounds(); } void ComponentPeer::handleFocusGain() { updateCurrentModifiers(); if (component->isParentOf (lastFocusedComponent)) { Component::currentlyFocusedComponent = lastFocusedComponent; Desktop::getInstance().triggerFocusCallback(); lastFocusedComponent->internalFocusGain (Component::focusChangedDirectly); } else { if (! component->isCurrentlyBlockedByAnotherModalComponent()) component->grabKeyboardFocus(); else Component::bringModalComponentToFront(); } } void ComponentPeer::handleFocusLoss() { updateCurrentModifiers(); if (component->hasKeyboardFocus (true)) { lastFocusedComponent = Component::currentlyFocusedComponent; if (lastFocusedComponent != 0) { Component::currentlyFocusedComponent = 0; Desktop::getInstance().triggerFocusCallback(); lastFocusedComponent->internalFocusLoss (Component::focusChangedByMouseClick); } } } Component* ComponentPeer::getLastFocusedSubcomponent() const throw() { return (component->isParentOf (lastFocusedComponent) && lastFocusedComponent->isShowing()) ? lastFocusedComponent : component; } void ComponentPeer::handleScreenSizeChange() { updateCurrentModifiers(); component->parentSizeChanged(); handleMovedOrResized(); } void ComponentPeer::setNonFullScreenBounds (const Rectangle& newBounds) throw() { lastNonFullscreenBounds = newBounds; } const Rectangle& ComponentPeer::getNonFullScreenBounds() const throw() { return lastNonFullscreenBounds; } static FileDragAndDropTarget* findDragAndDropTarget (Component* c, const StringArray& files, FileDragAndDropTarget* const lastOne) { while (c != 0) { FileDragAndDropTarget* const t = dynamic_cast (c); if (t != 0 && (t == lastOne || t->isInterestedInFileDrag (files))) return t; c = c->getParentComponent(); } return 0; } void ComponentPeer::handleFileDragMove (const StringArray& files, int x, int y) { updateCurrentModifiers(); FileDragAndDropTarget* lastTarget = 0; if (dragAndDropTargetComponent != 0 && ! dragAndDropTargetComponent->hasBeenDeleted()) lastTarget = const_cast (dynamic_cast (dragAndDropTargetComponent->getComponent())); FileDragAndDropTarget* newTarget = 0; Component* const compUnderMouse = component->getComponentAt (x, y); if (compUnderMouse != lastDragAndDropCompUnderMouse) { lastDragAndDropCompUnderMouse = compUnderMouse; newTarget = findDragAndDropTarget (compUnderMouse, files, lastTarget); if (newTarget != lastTarget) { if (lastTarget != 0) lastTarget->fileDragExit (files); deleteAndZero (dragAndDropTargetComponent); if (newTarget != 0) { Component* const targetComp = dynamic_cast (newTarget); int mx = x, my = y; component->relativePositionToOtherComponent (targetComp, mx, my); dragAndDropTargetComponent = new ComponentDeletionWatcher (dynamic_cast (newTarget)); newTarget->fileDragEnter (files, mx, my); } } } else { newTarget = lastTarget; } if (newTarget != 0) { Component* const targetComp = dynamic_cast (newTarget); component->relativePositionToOtherComponent (targetComp, x, y); newTarget->fileDragMove (files, x, y); } } void ComponentPeer::handleFileDragExit (const StringArray& files) { handleFileDragMove (files, -1, -1); jassert (dragAndDropTargetComponent == 0); lastDragAndDropCompUnderMouse = 0; } void ComponentPeer::handleFileDragDrop (const StringArray& files, int x, int y) { handleFileDragMove (files, x, y); if (dragAndDropTargetComponent != 0 && ! dragAndDropTargetComponent->hasBeenDeleted()) { FileDragAndDropTarget* const target = const_cast (dynamic_cast (dragAndDropTargetComponent->getComponent())); deleteAndZero (dragAndDropTargetComponent); lastDragAndDropCompUnderMouse = 0; if (target != 0) { Component* const targetComp = dynamic_cast (target); if (targetComp->isCurrentlyBlockedByAnotherModalComponent()) { targetComp->internalModalInputAttempt(); if (targetComp->isCurrentlyBlockedByAnotherModalComponent()) return; } component->relativePositionToOtherComponent (targetComp, x, y); target->filesDropped (files, x, y); } } } void ComponentPeer::handleUserClosingWindow() { updateCurrentModifiers(); component->userTriedToCloseWindow(); } void ComponentPeer::bringModalComponentToFront() { Component::bringModalComponentToFront(); } void ComponentPeer::clearMaskedRegion() throw() { maskedRegion.clear(); } void ComponentPeer::addMaskedRegion (int x, int y, int w, int h) throw() { maskedRegion.add (x, y, w, h); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ComponentPeer.cpp *********/ /********* Start of inlined file: juce_DialogWindow.cpp *********/ BEGIN_JUCE_NAMESPACE DialogWindow::DialogWindow (const String& name, const Colour& backgroundColour_, const bool escapeKeyTriggersCloseButton_, const bool addToDesktop_) : DocumentWindow (name, backgroundColour_, DocumentWindow::closeButton, addToDesktop_), escapeKeyTriggersCloseButton (escapeKeyTriggersCloseButton_) { } DialogWindow::~DialogWindow() { } void DialogWindow::resized() { DocumentWindow::resized(); const KeyPress esc (KeyPress::escapeKey, 0, 0); if (escapeKeyTriggersCloseButton && getCloseButton() != 0 && ! getCloseButton()->isRegisteredForShortcut (esc)) { getCloseButton()->addShortcut (esc); } } class TempDialogWindow : public DialogWindow { public: TempDialogWindow (const String& title, const Colour& colour, const bool escapeCloses) : DialogWindow (title, colour, escapeCloses, true) { } ~TempDialogWindow() { } void closeButtonPressed() { setVisible (false); } private: TempDialogWindow (const TempDialogWindow&); const TempDialogWindow& operator= (const TempDialogWindow&); }; int DialogWindow::showModalDialog (const String& dialogTitle, Component* contentComponent, Component* componentToCentreAround, const Colour& colour, const bool escapeKeyTriggersCloseButton, const bool shouldBeResizable, const bool useBottomRightCornerResizer) { TempDialogWindow dw (dialogTitle, colour, escapeKeyTriggersCloseButton); dw.setContentComponent (contentComponent, true, true); dw.centreAroundComponent (componentToCentreAround, dw.getWidth(), dw.getHeight()); dw.setResizable (shouldBeResizable, useBottomRightCornerResizer); const int result = dw.runModalLoop(); dw.setContentComponent (0, false); return result; } END_JUCE_NAMESPACE /********* End of inlined file: juce_DialogWindow.cpp *********/ /********* Start of inlined file: juce_DocumentWindow.cpp *********/ BEGIN_JUCE_NAMESPACE DocumentWindow::DocumentWindow (const String& title, const Colour& backgroundColour, const int requiredButtons_, const bool addToDesktop_) : ResizableWindow (title, backgroundColour, addToDesktop_), titleBarHeight (26), menuBarHeight (24), requiredButtons (requiredButtons_), #if JUCE_MAC positionTitleBarButtonsOnLeft (true), #else positionTitleBarButtonsOnLeft (false), #endif drawTitleTextCentred (true), titleBarIcon (0), menuBar (0), menuBarModel (0) { zeromem (titleBarButtons, sizeof (titleBarButtons)); setResizeLimits (128, 128, 32768, 32768); lookAndFeelChanged(); } DocumentWindow::~DocumentWindow() { for (int i = 0; i < 3; ++i) delete titleBarButtons[i]; delete titleBarIcon; delete menuBar; } void DocumentWindow::repaintTitleBar() { const Rectangle titleBarArea (getTitleBarArea()); repaint (titleBarArea.getX(), titleBarArea.getY(), titleBarArea.getWidth(), titleBarArea.getHeight()); } void DocumentWindow::setName (const String& newName) { if (newName != getName()) { Component::setName (newName); repaintTitleBar(); } } void DocumentWindow::setIcon (const Image* imageToUse) { deleteAndZero (titleBarIcon); if (imageToUse != 0) titleBarIcon = imageToUse->createCopy(); repaintTitleBar(); } void DocumentWindow::setTitleBarHeight (const int newHeight) { titleBarHeight = newHeight; resized(); repaintTitleBar(); } void DocumentWindow::setTitleBarButtonsRequired (const int requiredButtons_, const bool positionTitleBarButtonsOnLeft_) { requiredButtons = requiredButtons_; positionTitleBarButtonsOnLeft = positionTitleBarButtonsOnLeft_; lookAndFeelChanged(); } void DocumentWindow::setTitleBarTextCentred (const bool textShouldBeCentred) { drawTitleTextCentred = textShouldBeCentred; repaintTitleBar(); } void DocumentWindow::setMenuBar (MenuBarModel* menuBarModel_, const int menuBarHeight_) { if (menuBarModel != menuBarModel_) { delete menuBar; menuBar = 0; menuBarModel = menuBarModel_; menuBarHeight = (menuBarHeight_ > 0) ? menuBarHeight_ : getLookAndFeel().getDefaultMenuBarHeight(); if (menuBarModel != 0) { // (call the Component method directly to avoid the assertion in ResizableWindow) Component::addAndMakeVisible (menuBar = new MenuBarComponent (menuBarModel)); menuBar->setEnabled (isActiveWindow()); } resized(); } } void DocumentWindow::closeButtonPressed() { /* If you've got a close button, you have to override this method to get rid of your window! If the window is just a pop-up, you should override this method and make it delete the window in whatever way is appropriate for your app. E.g. you might just want to call "delete this". If your app is centred around this window such that the whole app should quit when the window is closed, then you will probably want to use this method as an opportunity to call JUCEApplication::quit(), and leave the window to be deleted later by your JUCEApplication::shutdown() method. (Doing it this way means that your window will still get cleaned-up if the app is quit by some other means (e.g. a cmd-Q on the mac or closing it via the taskbar icon on Windows). */ jassertfalse } void DocumentWindow::minimiseButtonPressed() { setMinimised (true); } void DocumentWindow::maximiseButtonPressed() { setFullScreen (! isFullScreen()); } void DocumentWindow::paint (Graphics& g) { ResizableWindow::paint (g); if (resizableBorder == 0) { g.setColour (getBackgroundColour().overlaidWith (Colour (0x80000000))); const BorderSize border (getBorderThickness()); g.fillRect (0, 0, getWidth(), border.getTop()); g.fillRect (0, border.getTop(), border.getLeft(), getHeight() - border.getTopAndBottom()); g.fillRect (getWidth() - border.getRight(), border.getTop(), border.getRight(), getHeight() - border.getTopAndBottom()); g.fillRect (0, getHeight() - border.getBottom(), getWidth(), border.getBottom()); } const Rectangle titleBarArea (getTitleBarArea()); g.setOrigin (titleBarArea.getX(), titleBarArea.getY()); g.reduceClipRegion (0, 0, titleBarArea.getWidth(), titleBarArea.getHeight()); int titleSpaceX1 = 6; int titleSpaceX2 = titleBarArea.getWidth() - 6; for (int i = 0; i < 3; ++i) { if (titleBarButtons[i] != 0) { if (positionTitleBarButtonsOnLeft) titleSpaceX1 = jmax (titleSpaceX1, titleBarButtons[i]->getRight() + (getWidth() - titleBarButtons[i]->getRight()) / 8); else titleSpaceX2 = jmin (titleSpaceX2, titleBarButtons[i]->getX() - (titleBarButtons[i]->getX() / 8)); } } getLookAndFeel().drawDocumentWindowTitleBar (*this, g, titleBarArea.getWidth(), titleBarArea.getHeight(), titleSpaceX1, jmax (1, titleSpaceX2 - titleSpaceX1), titleBarIcon, ! drawTitleTextCentred); } void DocumentWindow::resized() { ResizableWindow::resized(); if (titleBarButtons[1] != 0) titleBarButtons[1]->setToggleState (isFullScreen(), false); const Rectangle titleBarArea (getTitleBarArea()); getLookAndFeel() .positionDocumentWindowButtons (*this, titleBarArea.getX(), titleBarArea.getY(), titleBarArea.getWidth(), titleBarArea.getHeight(), titleBarButtons[0], titleBarButtons[1], titleBarButtons[2], positionTitleBarButtonsOnLeft); if (menuBar != 0) menuBar->setBounds (titleBarArea.getX(), titleBarArea.getBottom(), titleBarArea.getWidth(), menuBarHeight); } const BorderSize DocumentWindow::getBorderThickness() { return BorderSize ((isFullScreen() || isUsingNativeTitleBar()) ? 0 : (resizableBorder != 0 ? 4 : 1)); } const BorderSize DocumentWindow::getContentComponentBorder() { BorderSize border (getBorderThickness()); border.setTop (border.getTop() + (isUsingNativeTitleBar() ? 0 : titleBarHeight) + (menuBar != 0 ? menuBarHeight : 0)); return border; } int DocumentWindow::getTitleBarHeight() const { return isUsingNativeTitleBar() ? 0 : jmin (titleBarHeight, getHeight() - 4); } const Rectangle DocumentWindow::getTitleBarArea() { const BorderSize border (getBorderThickness()); return Rectangle (border.getLeft(), border.getTop(), getWidth() - border.getLeftAndRight(), getTitleBarHeight()); } Button* DocumentWindow::getCloseButton() const throw() { return titleBarButtons[2]; } Button* DocumentWindow::getMinimiseButton() const throw() { return titleBarButtons[0]; } Button* DocumentWindow::getMaximiseButton() const throw() { return titleBarButtons[1]; } int DocumentWindow::getDesktopWindowStyleFlags() const { int flags = ResizableWindow::getDesktopWindowStyleFlags(); if ((requiredButtons & minimiseButton) != 0) flags |= ComponentPeer::windowHasMinimiseButton; if ((requiredButtons & maximiseButton) != 0) flags |= ComponentPeer::windowHasMaximiseButton; if ((requiredButtons & closeButton) != 0) flags |= ComponentPeer::windowHasCloseButton; return flags; } void DocumentWindow::lookAndFeelChanged() { int i; for (i = 0; i < 3; ++i) deleteAndZero (titleBarButtons[i]); if (! isUsingNativeTitleBar()) { titleBarButtons[0] = ((requiredButtons & minimiseButton) != 0) ? getLookAndFeel().createDocumentWindowButton (minimiseButton) : 0; titleBarButtons[1] = ((requiredButtons & maximiseButton) != 0) ? getLookAndFeel().createDocumentWindowButton (maximiseButton) : 0; titleBarButtons[2] = ((requiredButtons & closeButton) != 0) ? getLookAndFeel().createDocumentWindowButton (closeButton) : 0; for (i = 0; i < 3; ++i) { if (titleBarButtons[i] != 0) { buttonListener.owner = this; titleBarButtons[i]->addButtonListener (&buttonListener); titleBarButtons[i]->setWantsKeyboardFocus (false); // (call the Component method directly to avoid the assertion in ResizableWindow) Component::addAndMakeVisible (titleBarButtons[i]); } } if (getCloseButton() != 0) { #if JUCE_MAC getCloseButton()->addShortcut (KeyPress (T('w'), ModifierKeys::commandModifier, 0)); #else getCloseButton()->addShortcut (KeyPress (KeyPress::F4Key, ModifierKeys::altModifier, 0)); #endif } } activeWindowStatusChanged(); ResizableWindow::lookAndFeelChanged(); } void DocumentWindow::parentHierarchyChanged() { lookAndFeelChanged(); } void DocumentWindow::activeWindowStatusChanged() { ResizableWindow::activeWindowStatusChanged(); for (int i = 0; i < 3; ++i) if (titleBarButtons[i] != 0) titleBarButtons[i]->setEnabled (isActiveWindow()); if (menuBar != 0) menuBar->setEnabled (isActiveWindow()); } void DocumentWindow::mouseDoubleClick (const MouseEvent& e) { if (getTitleBarArea().contains (e.x, e.y) && getMaximiseButton() != 0) { getMaximiseButton()->triggerClick(); } } void DocumentWindow::userTriedToCloseWindow() { closeButtonPressed(); } DocumentWindow::ButtonListenerProxy::ButtonListenerProxy() { } void DocumentWindow::ButtonListenerProxy::buttonClicked (Button* button) { if (button == owner->getMinimiseButton()) { owner->minimiseButtonPressed(); } else if (button == owner->getMaximiseButton()) { owner->maximiseButtonPressed(); } else if (button == owner->getCloseButton()) { owner->closeButtonPressed(); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_DocumentWindow.cpp *********/ /********* Start of inlined file: juce_ResizableWindow.cpp *********/ BEGIN_JUCE_NAMESPACE ResizableWindow::ResizableWindow (const String& name, const bool addToDesktop_) : TopLevelWindow (name, addToDesktop_), resizableCorner (0), resizableBorder (0), contentComponent (0), resizeToFitContent (false), fullscreen (false), lastNonFullScreenPos (50, 50, 256, 256), constrainer (0) #ifdef JUCE_DEBUG , hasBeenResized (false) #endif { defaultConstrainer.setMinimumOnscreenAmounts (0x10000, 16, 24, 16); lastNonFullScreenPos.setBounds (50, 50, 256, 256); if (addToDesktop_) Component::addToDesktop (getDesktopWindowStyleFlags()); } ResizableWindow::ResizableWindow (const String& name, const Colour& backgroundColour_, const bool addToDesktop_) : TopLevelWindow (name, addToDesktop_), resizableCorner (0), resizableBorder (0), contentComponent (0), resizeToFitContent (false), fullscreen (false), lastNonFullScreenPos (50, 50, 256, 256), constrainer (0) #ifdef JUCE_DEBUG , hasBeenResized (false) #endif { setBackgroundColour (backgroundColour_); defaultConstrainer.setMinimumOnscreenAmounts (0x10000, 16, 24, 16); if (addToDesktop_) Component::addToDesktop (getDesktopWindowStyleFlags()); } ResizableWindow::~ResizableWindow() { deleteAndZero (resizableCorner); deleteAndZero (resizableBorder); deleteAndZero (contentComponent); // have you been adding your own components directly to this window..? tut tut tut. // Read the instructions for using a ResizableWindow! jassert (getNumChildComponents() == 0); } int ResizableWindow::getDesktopWindowStyleFlags() const { int flags = TopLevelWindow::getDesktopWindowStyleFlags(); if (isResizable() && (flags & ComponentPeer::windowHasTitleBar) != 0) flags |= ComponentPeer::windowIsResizable; return flags; } void ResizableWindow::setContentComponent (Component* const newContentComponent, const bool deleteOldOne, const bool resizeToFit) { resizeToFitContent = resizeToFit; if (contentComponent != newContentComponent) { if (deleteOldOne) delete contentComponent; else removeChildComponent (contentComponent); contentComponent = newContentComponent; Component::addAndMakeVisible (contentComponent); } if (resizeToFit) childBoundsChanged (contentComponent); resized(); // must always be called to position the new content comp } void ResizableWindow::setContentComponentSize (int width, int height) { jassert (width > 0 && height > 0); // not a great idea to give it a zero size.. const BorderSize border (getContentComponentBorder()); setSize (width + border.getLeftAndRight(), height + border.getTopAndBottom()); } const BorderSize ResizableWindow::getBorderThickness() { return BorderSize (isUsingNativeTitleBar() ? 0 : ((resizableBorder != 0 && ! isFullScreen()) ? 5 : 3)); } const BorderSize ResizableWindow::getContentComponentBorder() { return getBorderThickness(); } void ResizableWindow::moved() { updateLastPos(); } void ResizableWindow::visibilityChanged() { TopLevelWindow::visibilityChanged(); updateLastPos(); } void ResizableWindow::resized() { if (resizableBorder != 0) { resizableBorder->setVisible (! isFullScreen()); resizableBorder->setBorderThickness (getBorderThickness()); resizableBorder->setSize (getWidth(), getHeight()); resizableBorder->toBack(); } if (resizableCorner != 0) { resizableCorner->setVisible (! isFullScreen()); const int resizerSize = 18; resizableCorner->setBounds (getWidth() - resizerSize, getHeight() - resizerSize, resizerSize, resizerSize); } if (contentComponent != 0) contentComponent->setBoundsInset (getContentComponentBorder()); updateLastPos(); #ifdef JUCE_DEBUG hasBeenResized = true; #endif } void ResizableWindow::childBoundsChanged (Component* child) { if ((child == contentComponent) && (child != 0) && resizeToFitContent) { // not going to look very good if this component has a zero size.. jassert (child->getWidth() > 0); jassert (child->getHeight() > 0); const BorderSize borders (getContentComponentBorder()); setSize (child->getWidth() + borders.getLeftAndRight(), child->getHeight() + borders.getTopAndBottom()); } } void ResizableWindow::activeWindowStatusChanged() { const BorderSize borders (getContentComponentBorder()); repaint (0, 0, getWidth(), borders.getTop()); repaint (0, borders.getTop(), borders.getLeft(), getHeight() - borders.getBottom() - borders.getTop()); repaint (0, getHeight() - borders.getBottom(), getWidth(), borders.getBottom()); repaint (getWidth() - borders.getRight(), borders.getTop(), borders.getRight(), getHeight() - borders.getBottom() - borders.getTop()); } void ResizableWindow::setResizable (const bool shouldBeResizable, const bool useBottomRightCornerResizer) { if (shouldBeResizable) { if (useBottomRightCornerResizer) { deleteAndZero (resizableBorder); if (resizableCorner == 0) { Component::addChildComponent (resizableCorner = new ResizableCornerComponent (this, constrainer)); resizableCorner->setAlwaysOnTop (true); } } else { deleteAndZero (resizableCorner); if (resizableBorder == 0) Component::addChildComponent (resizableBorder = new ResizableBorderComponent (this, constrainer)); } } else { deleteAndZero (resizableCorner); deleteAndZero (resizableBorder); } if (isUsingNativeTitleBar()) recreateDesktopWindow(); childBoundsChanged (contentComponent); resized(); } bool ResizableWindow::isResizable() const throw() { return resizableCorner != 0 || resizableBorder != 0; } void ResizableWindow::setResizeLimits (const int newMinimumWidth, const int newMinimumHeight, const int newMaximumWidth, const int newMaximumHeight) throw() { // if you've set up a custom constrainer then these settings won't have any effect.. jassert (constrainer == &defaultConstrainer || constrainer == 0); if (constrainer == 0) setConstrainer (&defaultConstrainer); defaultConstrainer.setSizeLimits (newMinimumWidth, newMinimumHeight, newMaximumWidth, newMaximumHeight); setBoundsConstrained (getX(), getY(), getWidth(), getHeight()); } void ResizableWindow::setConstrainer (ComponentBoundsConstrainer* newConstrainer) { if (constrainer != newConstrainer) { constrainer = newConstrainer; const bool useBottomRightCornerResizer = resizableCorner != 0; const bool shouldBeResizable = useBottomRightCornerResizer || resizableBorder != 0; deleteAndZero (resizableCorner); deleteAndZero (resizableBorder); setResizable (shouldBeResizable, useBottomRightCornerResizer); ComponentPeer* const peer = getPeer(); if (peer != 0) peer->setConstrainer (newConstrainer); } } void ResizableWindow::setBoundsConstrained (int x, int y, int w, int h) { if (constrainer != 0) constrainer->setBoundsForComponent (this, x, y, w, h, false, false, false, false); else setBounds (x, y, w, h); } void ResizableWindow::paint (Graphics& g) { getLookAndFeel().fillResizableWindowBackground (g, getWidth(), getHeight(), getBorderThickness(), *this); if (! isFullScreen()) { getLookAndFeel().drawResizableWindowBorder (g, getWidth(), getHeight(), getBorderThickness(), *this); } #ifdef JUCE_DEBUG /* If this fails, then you've probably written a subclass with a resized() callback but forgotten to make it call its parent class's resized() method. It's important when you override methods like resized(), moved(), etc., that you make sure the base class methods also get called. Of course you shouldn't really be overriding ResizableWindow::resized() anyway, because your content should all be inside the content component - and it's the content component's resized() method that you should be using to do your layout. */ jassert (hasBeenResized || (getWidth() == 0 && getHeight() == 0)); #endif } void ResizableWindow::lookAndFeelChanged() { resized(); if (isOnDesktop()) { Component::addToDesktop (getDesktopWindowStyleFlags()); ComponentPeer* const peer = getPeer(); if (peer != 0) peer->setConstrainer (constrainer); } } const Colour ResizableWindow::getBackgroundColour() const throw() { return findColour (backgroundColourId, false); } void ResizableWindow::setBackgroundColour (const Colour& newColour) { Colour backgroundColour (newColour); if (! Desktop::canUseSemiTransparentWindows()) backgroundColour = newColour.withAlpha (1.0f); setColour (backgroundColourId, backgroundColour); setOpaque (backgroundColour.isOpaque()); repaint(); } bool ResizableWindow::isFullScreen() const { if (isOnDesktop()) { ComponentPeer* const peer = getPeer(); return peer != 0 && peer->isFullScreen(); } return fullscreen; } void ResizableWindow::setFullScreen (const bool shouldBeFullScreen) { if (shouldBeFullScreen != isFullScreen()) { updateLastPos(); fullscreen = shouldBeFullScreen; if (isOnDesktop()) { ComponentPeer* const peer = getPeer(); if (peer != 0) { // keep a copy of this intact in case the real one gets messed-up while we're un-maximising const Rectangle lastPos (lastNonFullScreenPos); peer->setFullScreen (shouldBeFullScreen); if (! shouldBeFullScreen) setBounds (lastPos); } else { jassertfalse } } else { if (shouldBeFullScreen) setBounds (0, 0, getParentWidth(), getParentHeight()); else setBounds (lastNonFullScreenPos); } resized(); } } bool ResizableWindow::isMinimised() const { ComponentPeer* const peer = getPeer(); return (peer != 0) && peer->isMinimised(); } void ResizableWindow::setMinimised (const bool shouldMinimise) { if (shouldMinimise != isMinimised()) { ComponentPeer* const peer = getPeer(); if (peer != 0) { updateLastPos(); peer->setMinimised (shouldMinimise); } else { jassertfalse } } } void ResizableWindow::updateLastPos() { if (isShowing() && ! (isFullScreen() || isMinimised())) { lastNonFullScreenPos = getBounds(); } } void ResizableWindow::parentSizeChanged() { if (isFullScreen() && getParentComponent() != 0) { setBounds (0, 0, getParentWidth(), getParentHeight()); } } const String ResizableWindow::getWindowStateAsString() { updateLastPos(); String s; if (isFullScreen()) s << "fs "; s << lastNonFullScreenPos.getX() << T(' ') << lastNonFullScreenPos.getY() << T(' ') << lastNonFullScreenPos.getWidth() << T(' ') << lastNonFullScreenPos.getHeight(); return s; } bool ResizableWindow::restoreWindowStateFromString (const String& s) { StringArray tokens; tokens.addTokens (s, false); tokens.removeEmptyStrings(); tokens.trim(); const bool fs = tokens[0].startsWithIgnoreCase (T("fs")); const int n = fs ? 1 : 0; if (tokens.size() != 4 + n) return false; Rectangle r (tokens[n].getIntValue(), tokens[n + 1].getIntValue(), tokens[n + 2].getIntValue(), tokens[n + 3].getIntValue()); if (r.isEmpty()) return false; const Rectangle screen (Desktop::getInstance().getMonitorAreaContaining (r.getX(), r.getY())); if (! screen.contains (r)) { r.setSize (jmin (r.getWidth(), screen.getWidth()), jmin (r.getHeight(), screen.getHeight())); r.setPosition (jlimit (screen.getX(), screen.getRight() - r.getWidth(), r.getX()), jlimit (screen.getY(), screen.getBottom() - r.getHeight(), r.getY())); } lastNonFullScreenPos = r; if (isOnDesktop()) { ComponentPeer* const peer = getPeer(); if (peer != 0) peer->setNonFullScreenBounds (r); } setFullScreen (fs); if (! fs) setBoundsConstrained (r.getX(), r.getY(), r.getWidth(), r.getHeight()); return true; } void ResizableWindow::mouseDown (const MouseEvent&) { if (! isFullScreen()) dragger.startDraggingComponent (this, constrainer); } void ResizableWindow::mouseDrag (const MouseEvent& e) { if (! isFullScreen()) dragger.dragComponent (this, e); } #ifdef JUCE_DEBUG void ResizableWindow::addChildComponent (Component* const child, int zOrder) { /* Agh! You shouldn't add components directly to a ResizableWindow - this class manages its child components automatically, and if you add your own it'll cause trouble. Instead, use setContentComponent() to give it a component which will be automatically resized and kept in the right place - then you can add subcomponents to the content comp. See the notes for the ResizableWindow class for more info. If you really know what you're doing and want to avoid this assertion, just call Component::addChildComponent directly. */ jassertfalse Component::addChildComponent (child, zOrder); } void ResizableWindow::addAndMakeVisible (Component* const child, int zOrder) { /* Agh! You shouldn't add components directly to a ResizableWindow - this class manages its child components automatically, and if you add your own it'll cause trouble. Instead, use setContentComponent() to give it a component which will be automatically resized and kept in the right place - then you can add subcomponents to the content comp. See the notes for the ResizableWindow class for more info. If you really know what you're doing and want to avoid this assertion, just call Component::addAndMakeVisible directly. */ jassertfalse Component::addAndMakeVisible (child, zOrder); } #endif END_JUCE_NAMESPACE /********* End of inlined file: juce_ResizableWindow.cpp *********/ /********* Start of inlined file: juce_SplashScreen.cpp *********/ BEGIN_JUCE_NAMESPACE SplashScreen::SplashScreen() : backgroundImage (0), isImageInCache (false) { setOpaque (true); } SplashScreen::~SplashScreen() { if (isImageInCache) ImageCache::release (backgroundImage); else delete backgroundImage; } void SplashScreen::show (const String& title, Image* const backgroundImage_, const int minimumTimeToDisplayFor, const bool useDropShadow, const bool removeOnMouseClick) { backgroundImage = backgroundImage_; jassert (backgroundImage_ != 0); if (backgroundImage_ != 0) { isImageInCache = ImageCache::isImageInCache (backgroundImage_); setOpaque (! backgroundImage_->hasAlphaChannel()); show (title, backgroundImage_->getWidth(), backgroundImage_->getHeight(), minimumTimeToDisplayFor, useDropShadow, removeOnMouseClick); } } void SplashScreen::show (const String& title, const int width, const int height, const int minimumTimeToDisplayFor, const bool useDropShadow, const bool removeOnMouseClick) { setName (title); setAlwaysOnTop (true); setVisible (true); centreWithSize (width, height); addToDesktop (useDropShadow ? ComponentPeer::windowHasDropShadow : 0); toFront (false); MessageManager::getInstance()->runDispatchLoopUntil (300); repaint(); originalClickCounter = removeOnMouseClick ? Desktop::getMouseButtonClickCounter() : INT_MAX; earliestTimeToDelete = Time::getCurrentTime() + RelativeTime::milliseconds (minimumTimeToDisplayFor); startTimer (50); } void SplashScreen::paint (Graphics& g) { if (backgroundImage != 0) { g.setOpacity (1.0f); g.drawImage (backgroundImage, 0, 0, getWidth(), getHeight(), 0, 0, backgroundImage->getWidth(), backgroundImage->getHeight()); } } void SplashScreen::timerCallback() { if (Time::getCurrentTime() > earliestTimeToDelete || Desktop::getMouseButtonClickCounter() > originalClickCounter) { delete this; } } END_JUCE_NAMESPACE /********* End of inlined file: juce_SplashScreen.cpp *********/ /********* Start of inlined file: juce_ThreadWithProgressWindow.cpp *********/ BEGIN_JUCE_NAMESPACE ThreadWithProgressWindow::ThreadWithProgressWindow (const String& title, const bool hasProgressBar, const bool hasCancelButton, const int timeOutMsWhenCancelling_, const String& cancelButtonText) : Thread ("Juce Progress Window"), progress (0.0), timeOutMsWhenCancelling (timeOutMsWhenCancelling_) { alertWindow = LookAndFeel::getDefaultLookAndFeel() .createAlertWindow (title, String::empty, cancelButtonText, String::empty, String::empty, AlertWindow::NoIcon, hasCancelButton ? 1 : 0, 0); if (hasProgressBar) alertWindow->addProgressBarComponent (progress); } ThreadWithProgressWindow::~ThreadWithProgressWindow() { stopThread (timeOutMsWhenCancelling); delete alertWindow; } bool ThreadWithProgressWindow::runThread (const int priority) { startThread (priority); startTimer (100); { const ScopedLock sl (messageLock); alertWindow->setMessage (message); } const bool finishedNaturally = alertWindow->runModalLoop() != 0; stopThread (timeOutMsWhenCancelling); alertWindow->setVisible (false); return finishedNaturally; } void ThreadWithProgressWindow::setProgress (const double newProgress) { progress = newProgress; } void ThreadWithProgressWindow::setStatusMessage (const String& newStatusMessage) { const ScopedLock sl (messageLock); message = newStatusMessage; } void ThreadWithProgressWindow::timerCallback() { if (! isThreadRunning()) { // thread has finished normally.. alertWindow->exitModalState (1); alertWindow->setVisible (false); } else { const ScopedLock sl (messageLock); alertWindow->setMessage (message); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_ThreadWithProgressWindow.cpp *********/ /********* Start of inlined file: juce_TooltipWindow.cpp *********/ BEGIN_JUCE_NAMESPACE TooltipWindow::TooltipWindow (Component* const parentComponent, const int millisecondsBeforeTipAppears_) : Component ("tooltip"), millisecondsBeforeTipAppears (millisecondsBeforeTipAppears_), mouseX (0), mouseY (0), lastHideTime (0), lastComponentUnderMouse (0), changedCompsSinceShown (true) { startTimer (123); setAlwaysOnTop (true); setOpaque (true); if (parentComponent != 0) parentComponent->addChildComponent (this); } TooltipWindow::~TooltipWindow() { hide(); } void TooltipWindow::setMillisecondsBeforeTipAppears (const int newTimeMs) throw() { millisecondsBeforeTipAppears = newTimeMs; } void TooltipWindow::paint (Graphics& g) { getLookAndFeel().drawTooltip (g, tipShowing, getWidth(), getHeight()); } void TooltipWindow::mouseEnter (const MouseEvent&) { hide(); } void TooltipWindow::showFor (Component* const c, const String& tip) { jassert (tip.isNotEmpty()); tipShowing = tip; int mx, my; Desktop::getMousePosition (mx, my); if (getParentComponent() != 0) getParentComponent()->globalPositionToRelative (mx, my); int x, y, w, h; getLookAndFeel().getTooltipSize (tip, w, h); if (mx > getParentWidth() / 2) x = mx - (w + 12); else x = mx + 24; if (my > getParentHeight() / 2) y = my - (h + 6); else y = my + 6; setBounds (x, y, w, h); setVisible (true); if (getParentComponent() == 0) { addToDesktop (ComponentPeer::windowHasDropShadow | ComponentPeer::windowIsTemporary | ComponentPeer::windowIgnoresKeyPresses); } toFront (false); } const String TooltipWindow::getTipFor (Component* const c) { if (c->isValidComponent() && Process::isForegroundProcess() && ! Component::isMouseButtonDownAnywhere()) { TooltipClient* const ttc = dynamic_cast (c); if (ttc != 0 && ! c->isCurrentlyBlockedByAnotherModalComponent()) return ttc->getTooltip(); } return String::empty; } void TooltipWindow::hide() { tipShowing = String::empty; removeFromDesktop(); setVisible (false); } void TooltipWindow::timerCallback() { const unsigned int now = Time::getApproximateMillisecondCounter(); Component* const newComp = Component::getComponentUnderMouse(); const String newTip (getTipFor (newComp)); const bool tipChanged = (newTip != lastTipUnderMouse || newComp != lastComponentUnderMouse); lastComponentUnderMouse = newComp; lastTipUnderMouse = newTip; const int clickCount = Desktop::getInstance().getMouseButtonClickCounter(); const bool mouseWasClicked = clickCount > mouseClicks; mouseClicks = clickCount; int mx, my; Desktop::getMousePosition (mx, my); const bool mouseMovedQuickly = (abs (mx - mouseX) + abs (my - mouseY) > 12); mouseX = mx; mouseY = my; if (tipChanged || mouseWasClicked || mouseMovedQuickly) lastCompChangeTime = now; if (isVisible() || now < lastHideTime + 500) { // if a tip is currently visible (or has just disappeared), update to a new one // immediately if needed.. if (newComp == 0 || mouseWasClicked || newTip.isEmpty()) { if (isVisible()) { lastHideTime = now; hide(); } } else if (tipChanged) { showFor (newComp, newTip); } } else { // if there isn't currently a tip, but one is needed, only let it // appear after a timeout.. if (newTip.isNotEmpty() && newTip != tipShowing && now > lastCompChangeTime + millisecondsBeforeTipAppears) { showFor (newComp, newTip); } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_TooltipWindow.cpp *********/ /********* Start of inlined file: juce_TopLevelWindow.cpp *********/ BEGIN_JUCE_NAMESPACE /** Keeps track of the active top level window. */ class TopLevelWindowManager : public Timer, public DeletedAtShutdown { public: TopLevelWindowManager() : windows (8), currentActive (0) { } ~TopLevelWindowManager() { clearSingletonInstance(); } juce_DeclareSingleton_SingleThreaded_Minimal (TopLevelWindowManager) void timerCallback() { startTimer (jmin (1731, getTimerInterval() * 2)); TopLevelWindow* active = 0; if (Process::isForegroundProcess()) { active = currentActive; Component* const c = Component::getCurrentlyFocusedComponent(); TopLevelWindow* tlw = dynamic_cast (c); if (tlw == 0 && c != 0) // (unable to use the syntax findParentComponentOfClass () because of a VC6 compiler bug) tlw = c->findParentComponentOfClass ((TopLevelWindow*) 0); if (tlw != 0) active = tlw; } if (active != currentActive) { currentActive = active; for (int i = windows.size(); --i >= 0;) { TopLevelWindow* const tlw = (TopLevelWindow*) windows.getUnchecked (i); tlw->setWindowActive (isWindowActive (tlw)); i = jmin (i, windows.size() - 1); } Desktop::getInstance().triggerFocusCallback(); } } bool addWindow (TopLevelWindow* const w) throw() { windows.add (w); startTimer (10); return isWindowActive (w); } void removeWindow (TopLevelWindow* const w) throw() { startTimer (10); if (currentActive == w) currentActive = 0; windows.removeValue (w); if (windows.size() == 0) deleteInstance(); } VoidArray windows; private: TopLevelWindow* currentActive; bool isWindowActive (TopLevelWindow* const tlw) const throw() { return (tlw == currentActive || tlw->isParentOf (currentActive) || tlw->hasKeyboardFocus (true)) && tlw->isShowing(); } TopLevelWindowManager (const TopLevelWindowManager&); const TopLevelWindowManager& operator= (const TopLevelWindowManager&); }; juce_ImplementSingleton_SingleThreaded (TopLevelWindowManager) void juce_CheckCurrentlyFocusedTopLevelWindow() throw() { if (TopLevelWindowManager::getInstanceWithoutCreating() != 0) TopLevelWindowManager::getInstanceWithoutCreating()->startTimer (20); } TopLevelWindow::TopLevelWindow (const String& name, const bool addToDesktop_) : Component (name), useDropShadow (true), useNativeTitleBar (false), windowIsActive_ (false), shadower (0) { setOpaque (true); if (addToDesktop_) Component::addToDesktop (getDesktopWindowStyleFlags()); else setDropShadowEnabled (true); setWantsKeyboardFocus (true); setBroughtToFrontOnMouseClick (true); windowIsActive_ = TopLevelWindowManager::getInstance()->addWindow (this); } TopLevelWindow::~TopLevelWindow() { deleteAndZero (shadower); TopLevelWindowManager::getInstance()->removeWindow (this); } void TopLevelWindow::focusOfChildComponentChanged (FocusChangeType) { if (hasKeyboardFocus (true)) TopLevelWindowManager::getInstance()->timerCallback(); else TopLevelWindowManager::getInstance()->startTimer (10); } void TopLevelWindow::setWindowActive (const bool isNowActive) throw() { if (windowIsActive_ != isNowActive) { windowIsActive_ = isNowActive; activeWindowStatusChanged(); } } void TopLevelWindow::activeWindowStatusChanged() { } void TopLevelWindow::parentHierarchyChanged() { setDropShadowEnabled (useDropShadow); } void TopLevelWindow::visibilityChanged() { if (isShowing()) toFront (true); } int TopLevelWindow::getDesktopWindowStyleFlags() const { int flags = ComponentPeer::windowAppearsOnTaskbar; if (useDropShadow) flags |= ComponentPeer::windowHasDropShadow; if (useNativeTitleBar) flags |= ComponentPeer::windowHasTitleBar; return flags; } void TopLevelWindow::setDropShadowEnabled (const bool useShadow) { useDropShadow = useShadow; if (isOnDesktop()) { deleteAndZero (shadower); Component::addToDesktop (getDesktopWindowStyleFlags()); } else { if (useShadow && isOpaque()) { if (shadower == 0) { shadower = getLookAndFeel().createDropShadowerForComponent (this); if (shadower != 0) shadower->setOwner (this); } } else { deleteAndZero (shadower); } } } void TopLevelWindow::setUsingNativeTitleBar (const bool useNativeTitleBar_) { if (useNativeTitleBar != useNativeTitleBar_) { useNativeTitleBar = useNativeTitleBar_; recreateDesktopWindow(); sendLookAndFeelChange(); } } void TopLevelWindow::recreateDesktopWindow() { if (isOnDesktop()) { Component::addToDesktop (getDesktopWindowStyleFlags()); toFront (true); } } void TopLevelWindow::addToDesktop (int windowStyleFlags, void* nativeWindowToAttachTo) { /* It's not recommended to change the desktop window flags directly for a TopLevelWindow, because this class needs to make sure its layout corresponds with settings like whether it's got a native title bar or not. If you need custom flags for your window, you can override the getDesktopWindowStyleFlags() method. If you do this, it's best to call the base class's getDesktopWindowStyleFlags() method, then add or remove whatever flags are necessary from this value before returning it. */ jassert ((windowStyleFlags & ~ComponentPeer::windowIsSemiTransparent) == (getDesktopWindowStyleFlags() & ~ComponentPeer::windowIsSemiTransparent)); Component::addToDesktop (windowStyleFlags, nativeWindowToAttachTo); if (windowStyleFlags != getDesktopWindowStyleFlags()) sendLookAndFeelChange(); } void TopLevelWindow::centreAroundComponent (Component* c, const int width, const int height) { if (c == 0) c = TopLevelWindow::getActiveTopLevelWindow(); if (c == 0) { centreWithSize (width, height); } else { int x = (c->getWidth() - width) / 2; int y = (c->getHeight() - height) / 2; c->relativePositionToGlobal (x, y); Rectangle parentArea (c->getParentMonitorArea()); if (getParentComponent() != 0) { getParentComponent()->globalPositionToRelative (x, y); parentArea.setBounds (0, 0, getParentWidth(), getParentHeight()); } parentArea.reduce (12, 12); setBounds (jlimit (parentArea.getX(), jmax (parentArea.getX(), parentArea.getRight() - width), x), jlimit (parentArea.getY(), jmax (parentArea.getY(), parentArea.getBottom() - height), y), width, height); } } int TopLevelWindow::getNumTopLevelWindows() throw() { return TopLevelWindowManager::getInstance()->windows.size(); } TopLevelWindow* TopLevelWindow::getTopLevelWindow (const int index) throw() { return (TopLevelWindow*) TopLevelWindowManager::getInstance()->windows [index]; } TopLevelWindow* TopLevelWindow::getActiveTopLevelWindow() throw() { TopLevelWindow* best = 0; int bestNumTWLParents = -1; for (int i = TopLevelWindow::getNumTopLevelWindows(); --i >= 0;) { TopLevelWindow* const tlw = TopLevelWindow::getTopLevelWindow (i); if (tlw->isActiveWindow()) { int numTWLParents = 0; const Component* c = tlw->getParentComponent(); while (c != 0) { if (dynamic_cast (c) != 0) ++numTWLParents; c = c->getParentComponent(); } if (bestNumTWLParents < numTWLParents) { best = tlw; bestNumTWLParents = numTWLParents; } } } return best; } END_JUCE_NAMESPACE /********* End of inlined file: juce_TopLevelWindow.cpp *********/ /********* Start of inlined file: juce_Brush.cpp *********/ BEGIN_JUCE_NAMESPACE Brush::Brush() throw() { } Brush::~Brush() throw() { } void Brush::paintVerticalLine (LowLevelGraphicsContext& context, int x, float y1, float y2) throw() { Path p; p.addRectangle ((float) x, y1, 1.0f, y2 - y1); paintPath (context, p, AffineTransform::identity); } void Brush::paintHorizontalLine (LowLevelGraphicsContext& context, int y, float x1, float x2) throw() { Path p; p.addRectangle (x1, (float) y, x2 - x1, 1.0f); paintPath (context, p, AffineTransform::identity); } void Brush::paintLine (LowLevelGraphicsContext& context, float x1, float y1, float x2, float y2) throw() { Path p; p.addLineSegment (x1, y1, x2, y2, 1.0f); paintPath (context, p, AffineTransform::identity); } END_JUCE_NAMESPACE /********* End of inlined file: juce_Brush.cpp *********/ /********* Start of inlined file: juce_GradientBrush.cpp *********/ BEGIN_JUCE_NAMESPACE GradientBrush::GradientBrush (const Colour& colour1, const float x1, const float y1, const Colour& colour2, const float x2, const float y2, const bool isRadial) throw() : gradient (colour1, x1, y1, colour2, x2, y2, isRadial) { } GradientBrush::GradientBrush (const ColourGradient& gradient_) throw() : gradient (gradient_) { } GradientBrush::~GradientBrush() throw() { } Brush* GradientBrush::createCopy() const throw() { return new GradientBrush (gradient); } void GradientBrush::applyTransform (const AffineTransform& transform) throw() { gradient.transform = gradient.transform.followedBy (transform); } void GradientBrush::multiplyOpacity (const float multiple) throw() { gradient.multiplyOpacity (multiple); } bool GradientBrush::isInvisible() const throw() { return gradient.isInvisible(); } void GradientBrush::paintPath (LowLevelGraphicsContext& context, const Path& path, const AffineTransform& transform) throw() { context.fillPathWithGradient (path, transform, gradient, EdgeTable::Oversampling_4times); } void GradientBrush::paintRectangle (LowLevelGraphicsContext& context, int x, int y, int w, int h) throw() { context.fillRectWithGradient (x, y, w, h, gradient); } void GradientBrush::paintAlphaChannel (LowLevelGraphicsContext& context, const Image& alphaChannelImage, int imageX, int imageY, int x, int y, int w, int h) throw() { context.saveState(); if (context.reduceClipRegion (x, y, w, h)) context.fillAlphaChannelWithGradient (alphaChannelImage, imageX, imageY, gradient); context.restoreState(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_GradientBrush.cpp *********/ /********* Start of inlined file: juce_ImageBrush.cpp *********/ BEGIN_JUCE_NAMESPACE ImageBrush::ImageBrush (Image* const image_, const int anchorX_, const int anchorY_, const float opacity_) throw() : image (image_), anchorX (anchorX_), anchorY (anchorY_), opacity (opacity_) { jassert (image != 0); // not much point creating a brush without an image, is there? if (image != 0) { if (image->getWidth() == 0 || image->getHeight() == 0) { jassertfalse // you've passed in an empty image - not exactly brilliant for tiling. image = 0; } } } ImageBrush::~ImageBrush() throw() { } Brush* ImageBrush::createCopy() const throw() { return new ImageBrush (image, anchorX, anchorY, opacity); } void ImageBrush::multiplyOpacity (const float multiple) throw() { opacity *= multiple; } bool ImageBrush::isInvisible() const throw() { return opacity == 0.0f; } void ImageBrush::applyTransform (const AffineTransform& /*transform*/) throw() { //xxx should probably be smarter and warp the image } void ImageBrush::getStartXY (int& x, int& y) const throw() { x -= anchorX; y -= anchorY; const int iw = image->getWidth(); const int ih = image->getHeight(); if (x < 0) x = ((x / iw) - 1) * iw; else x = (x / iw) * iw; if (y < 0) y = ((y / ih) - 1) * ih; else y = (y / ih) * ih; x += anchorX; y += anchorY; } void ImageBrush::paintRectangle (LowLevelGraphicsContext& context, int x, int y, int w, int h) throw() { context.saveState(); if (image != 0 && context.reduceClipRegion (x, y, w, h)) { const int right = x + w; const int bottom = y + h; const int iw = image->getWidth(); const int ih = image->getHeight(); int startX = x; getStartXY (startX, y); while (y < bottom) { x = startX; while (x < right) { context.blendImage (*image, x, y, iw, ih, 0, 0, opacity); x += iw; } y += ih; } } context.restoreState(); } void ImageBrush::paintPath (LowLevelGraphicsContext& context, const Path& path, const AffineTransform& transform) throw() { if (image != 0) { Rectangle clip (context.getClipBounds()); { float x, y, w, h; path.getBoundsTransformed (transform, x, y, w, h); clip = clip.getIntersection (Rectangle ((int) floorf (x), (int) floorf (y), 2 + (int) floorf (w), 2 + (int) floorf (h))); } int x = clip.getX(); int y = clip.getY(); const int right = clip.getRight(); const int bottom = clip.getBottom(); const int iw = image->getWidth(); const int ih = image->getHeight(); int startX = x; getStartXY (startX, y); while (y < bottom) { x = startX; while (x < right) { context.fillPathWithImage (path, transform, *image, x, y, opacity, EdgeTable::Oversampling_4times); x += iw; } y += ih; } } } void ImageBrush::paintAlphaChannel (LowLevelGraphicsContext& context, const Image& alphaChannelImage, int imageX, int imageY, int x, int y, int w, int h) throw() { context.saveState(); if (image != 0 && context.reduceClipRegion (x, y, w, h)) { const Rectangle clip (context.getClipBounds()); x = clip.getX(); y = clip.getY(); const int right = clip.getRight(); const int bottom = clip.getBottom(); const int iw = image->getWidth(); const int ih = image->getHeight(); int startX = x; getStartXY (startX, y); while (y < bottom) { x = startX; while (x < right) { context.fillAlphaChannelWithImage (alphaChannelImage, imageX, imageY, *image, x, y, opacity); x += iw; } y += ih; } } context.restoreState(); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ImageBrush.cpp *********/ /********* Start of inlined file: juce_SolidColourBrush.cpp *********/ BEGIN_JUCE_NAMESPACE SolidColourBrush::SolidColourBrush() throw() : colour (0xff000000) { } SolidColourBrush::SolidColourBrush (const Colour& colour_) throw() : colour (colour_) { } SolidColourBrush::~SolidColourBrush() throw() { } Brush* SolidColourBrush::createCopy() const throw() { return new SolidColourBrush (colour); } void SolidColourBrush::applyTransform (const AffineTransform& /*transform*/) throw() { } void SolidColourBrush::multiplyOpacity (const float multiple) throw() { colour = colour.withMultipliedAlpha (multiple); } bool SolidColourBrush::isInvisible() const throw() { return colour.isTransparent(); } void SolidColourBrush::paintPath (LowLevelGraphicsContext& context, const Path& path, const AffineTransform& transform) throw() { if (! colour.isTransparent()) context.fillPathWithColour (path, transform, colour, EdgeTable::Oversampling_4times); } void SolidColourBrush::paintRectangle (LowLevelGraphicsContext& context, int x, int y, int w, int h) throw() { if (! colour.isTransparent()) context.fillRectWithColour (x, y, w, h, colour, false); } void SolidColourBrush::paintAlphaChannel (LowLevelGraphicsContext& context, const Image& alphaChannelImage, int imageX, int imageY, int x, int y, int w, int h) throw() { if (! colour.isTransparent()) { context.saveState(); if (context.reduceClipRegion (x, y, w, h)) context.fillAlphaChannelWithColour (alphaChannelImage, imageX, imageY, colour); context.restoreState(); } } void SolidColourBrush::paintVerticalLine (LowLevelGraphicsContext& context, int x, float y1, float y2) throw() { context.drawVerticalLine (x, y1, y2, colour); } void SolidColourBrush::paintHorizontalLine (LowLevelGraphicsContext& context, int y, float x1, float x2) throw() { context.drawHorizontalLine (y, x1, x2, colour); } void SolidColourBrush::paintLine (LowLevelGraphicsContext& context, float x1, float y1, float x2, float y2) throw() { context.drawLine (x1, y1, x2, y2, colour); } END_JUCE_NAMESPACE /********* End of inlined file: juce_SolidColourBrush.cpp *********/ /********* Start of inlined file: juce_Colour.cpp *********/ BEGIN_JUCE_NAMESPACE static forcedinline uint8 floatAlphaToInt (const float alpha) { return (uint8) jlimit (0, 0xff, roundFloatToInt (alpha * 255.0f)); } static const float oneOver255 = 1.0f / 255.0f; Colour::Colour() throw() : argb (0) { } Colour::Colour (const Colour& other) throw() : argb (other.argb) { } const Colour& Colour::operator= (const Colour& other) throw() { argb = other.argb; return *this; } bool Colour::operator== (const Colour& other) const throw() { return argb.getARGB() == other.argb.getARGB(); } bool Colour::operator!= (const Colour& other) const throw() { return argb.getARGB() != other.argb.getARGB(); } Colour::Colour (const uint32 argb_) throw() : argb (argb_) { } Colour::Colour (const uint8 red, const uint8 green, const uint8 blue) throw() { argb.setARGB (0xff, red, green, blue); } const Colour Colour::fromRGB (const uint8 red, const uint8 green, const uint8 blue) throw() { return Colour (red, green, blue); } Colour::Colour (const uint8 red, const uint8 green, const uint8 blue, const uint8 alpha) throw() { argb.setARGB (alpha, red, green, blue); } const Colour Colour::fromRGBA (const uint8 red, const uint8 green, const uint8 blue, const uint8 alpha) throw() { return Colour (red, green, blue, alpha); } Colour::Colour (const uint8 red, const uint8 green, const uint8 blue, const float alpha) throw() { argb.setARGB (floatAlphaToInt (alpha), red, green, blue); } const Colour Colour::fromRGBAFloat (const uint8 red, const uint8 green, const uint8 blue, const float alpha) throw() { return Colour (red, green, blue, alpha); } static void convertHSBtoRGB (float h, float s, float v, uint8& r, uint8& g, uint8& b) throw() { v = jlimit (0.0f, 1.0f, v); v *= 255.0f; const uint8 intV = (uint8) roundFloatToInt (v); if (s <= 0) { r = intV; g = intV; b = intV; } else { s = jmin (1.0f, s); h = jlimit (0.0f, 1.0f, h); h = (h - floorf (h)) * 6.0f + 0.00001f; // need a small adjustment to compensate for rounding errors const float f = h - floorf (h); const uint8 x = (uint8) roundFloatToInt (v * (1.0f - s)); const float y = v * (1.0f - s * f); const float z = v * (1.0f - (s * (1.0f - f))); if (h < 1.0f) { r = intV; g = (uint8) roundFloatToInt (z); b = x; } else if (h < 2.0f) { r = (uint8) roundFloatToInt (y); g = intV; b = x; } else if (h < 3.0f) { r = x; g = intV; b = (uint8) roundFloatToInt (z); } else if (h < 4.0f) { r = x; g = (uint8) roundFloatToInt (y); b = intV; } else if (h < 5.0f) { r = (uint8) roundFloatToInt (z); g = x; b = intV; } else if (h < 6.0f) { r = intV; g = x; b = (uint8) roundFloatToInt (y); } else { r = 0; g = 0; b = 0; } } } Colour::Colour (const float hue, const float saturation, const float brightness, const float alpha) throw() { uint8 r = getRed(), g = getGreen(), b = getBlue(); convertHSBtoRGB (hue, saturation, brightness, r, g, b); argb.setARGB (floatAlphaToInt (alpha), r, g, b); } const Colour Colour::fromHSV (const float hue, const float saturation, const float brightness, const float alpha) throw() { return Colour (hue, saturation, brightness, alpha); } Colour::Colour (const float hue, const float saturation, const float brightness, const uint8 alpha) throw() { uint8 r = getRed(), g = getGreen(), b = getBlue(); convertHSBtoRGB (hue, saturation, brightness, r, g, b); argb.setARGB (alpha, r, g, b); } Colour::~Colour() throw() { } const PixelARGB Colour::getPixelARGB() const throw() { PixelARGB p (argb); p.premultiply(); return p; } uint32 Colour::getARGB() const throw() { return argb.getARGB(); } bool Colour::isTransparent() const throw() { return getAlpha() == 0; } bool Colour::isOpaque() const throw() { return getAlpha() == 0xff; } const Colour Colour::withAlpha (const uint8 newAlpha) const throw() { PixelARGB newCol (argb); newCol.setAlpha (newAlpha); return Colour (newCol.getARGB()); } const Colour Colour::withAlpha (const float newAlpha) const throw() { jassert (newAlpha >= 0 && newAlpha <= 1.0f); PixelARGB newCol (argb); newCol.setAlpha (floatAlphaToInt (newAlpha)); return Colour (newCol.getARGB()); } const Colour Colour::withMultipliedAlpha (const float alphaMultiplier) const throw() { jassert (alphaMultiplier >= 0); PixelARGB newCol (argb); newCol.setAlpha ((uint8) jmin (0xff, roundFloatToInt (alphaMultiplier * newCol.getAlpha()))); return Colour (newCol.getARGB()); } const Colour Colour::overlaidWith (const Colour& src) const throw() { const int destAlpha = getAlpha(); if (destAlpha > 0) { const int invA = 0xff - (int) src.getAlpha(); const int resA = 0xff - (((0xff - destAlpha) * invA) >> 8); if (resA > 0) { const int da = (invA * destAlpha) / resA; return Colour ((uint8) (src.getRed() + ((((int) getRed() - src.getRed()) * da) >> 8)), (uint8) (src.getGreen() + ((((int) getGreen() - src.getGreen()) * da) >> 8)), (uint8) (src.getBlue() + ((((int) getBlue() - src.getBlue()) * da) >> 8)), (uint8) resA); } return *this; } else { return src; } } float Colour::getFloatRed() const throw() { return getRed() * oneOver255; } float Colour::getFloatGreen() const throw() { return getGreen() * oneOver255; } float Colour::getFloatBlue() const throw() { return getBlue() * oneOver255; } float Colour::getFloatAlpha() const throw() { return getAlpha() * oneOver255; } void Colour::getHSB (float& h, float& s, float& v) const throw() { const int r = getRed(); const int g = getGreen(); const int b = getBlue(); const int hi = jmax (r, g, b); const int lo = jmin (r, g, b); if (hi != 0) { s = (hi - lo) / (float) hi; if (s != 0) { const float invDiff = 1.0f / (hi - lo); const float red = (hi - r) * invDiff; const float green = (hi - g) * invDiff; const float blue = (hi - b) * invDiff; if (r == hi) h = blue - green; else if (g == hi) h = 2.0f + red - blue; else h = 4.0f + green - red; h *= 1.0f / 6.0f; if (h < 0) ++h; } else { h = 0; } } else { s = 0; h = 0; } v = hi * oneOver255; } float Colour::getHue() const throw() { float h, s, b; getHSB (h, s, b); return h; } const Colour Colour::withHue (const float hue) const throw() { float h, s, b; getHSB (h, s, b); return Colour (hue, s, b, getAlpha()); } const Colour Colour::withRotatedHue (const float amountToRotate) const throw() { float h, s, b; getHSB (h, s, b); h += amountToRotate; h -= floorf (h); return Colour (h, s, b, getAlpha()); } float Colour::getSaturation() const throw() { float h, s, b; getHSB (h, s, b); return s; } const Colour Colour::withSaturation (const float saturation) const throw() { float h, s, b; getHSB (h, s, b); return Colour (h, saturation, b, getAlpha()); } const Colour Colour::withMultipliedSaturation (const float amount) const throw() { float h, s, b; getHSB (h, s, b); return Colour (h, jmin (1.0f, s * amount), b, getAlpha()); } float Colour::getBrightness() const throw() { float h, s, b; getHSB (h, s, b); return b; } const Colour Colour::withBrightness (const float brightness) const throw() { float h, s, b; getHSB (h, s, b); return Colour (h, s, brightness, getAlpha()); } const Colour Colour::withMultipliedBrightness (const float amount) const throw() { float h, s, b; getHSB (h, s, b); b *= amount; if (b > 1.0f) b = 1.0f; return Colour (h, s, b, getAlpha()); } const Colour Colour::brighter (float amount) const throw() { amount = 1.0f / (1.0f + amount); return Colour ((uint8) (255 - (amount * (255 - getRed()))), (uint8) (255 - (amount * (255 - getGreen()))), (uint8) (255 - (amount * (255 - getBlue()))), getAlpha()); } const Colour Colour::darker (float amount) const throw() { amount = 1.0f / (1.0f + amount); return Colour ((uint8) (amount * getRed()), (uint8) (amount * getGreen()), (uint8) (amount * getBlue()), getAlpha()); } const Colour Colour::greyLevel (const float brightness) throw() { const uint8 level = (uint8) jlimit (0x00, 0xff, roundFloatToInt (brightness * 255.0f)); return Colour (level, level, level); } const Colour Colour::contrasting (const float amount) const throw() { return overlaidWith ((((int) getRed() + (int) getGreen() + (int) getBlue() >= 3 * 128) ? Colours::black : Colours::white).withAlpha (amount)); } const Colour Colour::contrasting (const Colour& colour1, const Colour& colour2) throw() { const float b1 = colour1.getBrightness(); const float b2 = colour2.getBrightness(); float best = 0.0f; float bestDist = 0.0f; for (float i = 0.0f; i < 1.0f; i += 0.02f) { const float d1 = fabsf (i - b1); const float d2 = fabsf (i - b2); const float dist = jmin (d1, d2, 1.0f - d1, 1.0f - d2); if (dist > bestDist) { best = i; bestDist = dist; } } return colour1.overlaidWith (colour2.withMultipliedAlpha (0.5f)) .withBrightness (best); } const String Colour::toString() const throw() { return String::toHexString ((int) argb.getARGB()); } const Colour Colour::fromString (const String& encodedColourString) { return Colour ((uint32) encodedColourString.getHexValue32()); } END_JUCE_NAMESPACE /********* End of inlined file: juce_Colour.cpp *********/ /********* Start of inlined file: juce_ColourGradient.cpp *********/ BEGIN_JUCE_NAMESPACE ColourGradient::ColourGradient() throw() : colours (4) { #ifdef JUCE_DEBUG x1 = 987654.0f; #endif } ColourGradient::ColourGradient (const Colour& colour1, const float x1_, const float y1_, const Colour& colour2, const float x2_, const float y2_, const bool isRadial_) throw() : x1 (x1_), y1 (y1_), x2 (x2_), y2 (y2_), isRadial (isRadial_), colours (4) { colours.add (0); colours.add (colour1.getARGB()); colours.add (1 << 16); colours.add (colour2.getARGB()); } ColourGradient::~ColourGradient() throw() { } void ColourGradient::clearColours() throw() { colours.clear(); } void ColourGradient::addColour (const double proportionAlongGradient, const Colour& colour) throw() { // must be within the two end-points jassert (proportionAlongGradient >= 0 && proportionAlongGradient <= 1.0); const uint32 pos = jlimit (0, 65535, roundDoubleToInt (proportionAlongGradient * 65536.0)); int i; for (i = 0; i < colours.size(); i += 2) if (colours.getUnchecked(i) > pos) break; colours.insert (i, pos); colours.insert (i + 1, colour.getARGB()); } void ColourGradient::multiplyOpacity (const float multiplier) throw() { for (int i = 1; i < colours.size(); i += 2) { const Colour c (colours.getUnchecked(i)); colours.set (i, c.withMultipliedAlpha (multiplier).getARGB()); } } int ColourGradient::getNumColours() const throw() { return colours.size() >> 1; } double ColourGradient::getColourPosition (const int index) const throw() { return jlimit (0.0, 1.0, colours [index << 1] / 65535.0); } const Colour ColourGradient::getColour (const int index) const throw() { return Colour (colours [(index << 1) + 1]); } PixelARGB* ColourGradient::createLookupTable (int& numEntries) const throw() { #ifdef JUCE_DEBUG // trying to use the object without setting its co-ordinates? Have a careful read of // the comments for the constructors. jassert (x1 != 987654.0f); #endif const int numColours = colours.size() >> 1; float tx1 = x1, ty1 = y1, tx2 = x2, ty2 = y2; transform.transformPoint (tx1, ty1); transform.transformPoint (tx2, ty2); const double distance = juce_hypot (tx1 - tx2, ty1 - ty2); numEntries = jlimit (1, (numColours - 1) << 8, 3 * (int) distance); PixelARGB* const lookupTable = (PixelARGB*) juce_calloc (numEntries * sizeof (PixelARGB)); if (numColours >= 2) { jassert (colours.getUnchecked (0) == 0); // the first colour specified has to go at position 0 PixelARGB pix1 (colours.getUnchecked (1)); pix1.premultiply(); int index = 0; for (int j = 2; j < colours.size(); j += 2) { const int numToDo = ((colours.getUnchecked (j) * (numEntries - 1)) >> 16) - index; PixelARGB pix2 (colours.getUnchecked (j + 1)); pix2.premultiply(); for (int i = 0; i < numToDo; ++i) { jassert (index >= 0 && index < numEntries); lookupTable[index] = pix1; lookupTable[index].tween (pix2, (i << 8) / numToDo); ++index; } pix1 = pix2; } while (index < numEntries) lookupTable [index++] = pix1; } else { jassertfalse // no colours specified! } return lookupTable; } bool ColourGradient::isOpaque() const throw() { for (int i = 1; i < colours.size(); i += 2) if (PixelARGB (colours.getUnchecked(i)).getAlpha() < 0xff) return false; return true; } bool ColourGradient::isInvisible() const throw() { for (int i = 1; i < colours.size(); i += 2) if (PixelARGB (colours.getUnchecked(i)).getAlpha() > 0) return false; return true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_ColourGradient.cpp *********/ /********* Start of inlined file: juce_Colours.cpp *********/ BEGIN_JUCE_NAMESPACE const Colour Colours::transparentBlack (0); const Colour Colours::transparentWhite (0x00ffffff); const Colour Colours::aliceblue (0xfff0f8ff); const Colour Colours::antiquewhite (0xfffaebd7); const Colour Colours::aqua (0xff00ffff); const Colour Colours::aquamarine (0xff7fffd4); const Colour Colours::azure (0xfff0ffff); const Colour Colours::beige (0xfff5f5dc); const Colour Colours::bisque (0xffffe4c4); const Colour Colours::black (0xff000000); const Colour Colours::blanchedalmond (0xffffebcd); const Colour Colours::blue (0xff0000ff); const Colour Colours::blueviolet (0xff8a2be2); const Colour Colours::brown (0xffa52a2a); const Colour Colours::burlywood (0xffdeb887); const Colour Colours::cadetblue (0xff5f9ea0); const Colour Colours::chartreuse (0xff7fff00); const Colour Colours::chocolate (0xffd2691e); const Colour Colours::coral (0xffff7f50); const Colour Colours::cornflowerblue (0xff6495ed); const Colour Colours::cornsilk (0xfffff8dc); const Colour Colours::crimson (0xffdc143c); const Colour Colours::cyan (0xff00ffff); const Colour Colours::darkblue (0xff00008b); const Colour Colours::darkcyan (0xff008b8b); const Colour Colours::darkgoldenrod (0xffb8860b); const Colour Colours::darkgrey (0xff555555); const Colour Colours::darkgreen (0xff006400); const Colour Colours::darkkhaki (0xffbdb76b); const Colour Colours::darkmagenta (0xff8b008b); const Colour Colours::darkolivegreen (0xff556b2f); const Colour Colours::darkorange (0xffff8c00); const Colour Colours::darkorchid (0xff9932cc); const Colour Colours::darkred (0xff8b0000); const Colour Colours::darksalmon (0xffe9967a); const Colour Colours::darkseagreen (0xff8fbc8f); const Colour Colours::darkslateblue (0xff483d8b); const Colour Colours::darkslategrey (0xff2f4f4f); const Colour Colours::darkturquoise (0xff00ced1); const Colour Colours::darkviolet (0xff9400d3); const Colour Colours::deeppink (0xffff1493); const Colour Colours::deepskyblue (0xff00bfff); const Colour Colours::dimgrey (0xff696969); const Colour Colours::dodgerblue (0xff1e90ff); const Colour Colours::firebrick (0xffb22222); const Colour Colours::floralwhite (0xfffffaf0); const Colour Colours::forestgreen (0xff228b22); const Colour Colours::fuchsia (0xffff00ff); const Colour Colours::gainsboro (0xffdcdcdc); const Colour Colours::gold (0xffffd700); const Colour Colours::goldenrod (0xffdaa520); const Colour Colours::grey (0xff808080); const Colour Colours::green (0xff008000); const Colour Colours::greenyellow (0xffadff2f); const Colour Colours::honeydew (0xfff0fff0); const Colour Colours::hotpink (0xffff69b4); const Colour Colours::indianred (0xffcd5c5c); const Colour Colours::indigo (0xff4b0082); const Colour Colours::ivory (0xfffffff0); const Colour Colours::khaki (0xfff0e68c); const Colour Colours::lavender (0xffe6e6fa); const Colour Colours::lavenderblush (0xfffff0f5); const Colour Colours::lemonchiffon (0xfffffacd); const Colour Colours::lightblue (0xffadd8e6); const Colour Colours::lightcoral (0xfff08080); const Colour Colours::lightcyan (0xffe0ffff); const Colour Colours::lightgoldenrodyellow (0xfffafad2); const Colour Colours::lightgreen (0xff90ee90); const Colour Colours::lightgrey (0xffd3d3d3); const Colour Colours::lightpink (0xffffb6c1); const Colour Colours::lightsalmon (0xffffa07a); const Colour Colours::lightseagreen (0xff20b2aa); const Colour Colours::lightskyblue (0xff87cefa); const Colour Colours::lightslategrey (0xff778899); const Colour Colours::lightsteelblue (0xffb0c4de); const Colour Colours::lightyellow (0xffffffe0); const Colour Colours::lime (0xff00ff00); const Colour Colours::limegreen (0xff32cd32); const Colour Colours::linen (0xfffaf0e6); const Colour Colours::magenta (0xffff00ff); const Colour Colours::maroon (0xff800000); const Colour Colours::mediumaquamarine (0xff66cdaa); const Colour Colours::mediumblue (0xff0000cd); const Colour Colours::mediumorchid (0xffba55d3); const Colour Colours::mediumpurple (0xff9370db); const Colour Colours::mediumseagreen (0xff3cb371); const Colour Colours::mediumslateblue (0xff7b68ee); const Colour Colours::mediumspringgreen (0xff00fa9a); const Colour Colours::mediumturquoise (0xff48d1cc); const Colour Colours::mediumvioletred (0xffc71585); const Colour Colours::midnightblue (0xff191970); const Colour Colours::mintcream (0xfff5fffa); const Colour Colours::mistyrose (0xffffe4e1); const Colour Colours::navajowhite (0xffffdead); const Colour Colours::navy (0xff000080); const Colour Colours::oldlace (0xfffdf5e6); const Colour Colours::olive (0xff808000); const Colour Colours::olivedrab (0xff6b8e23); const Colour Colours::orange (0xffffa500); const Colour Colours::orangered (0xffff4500); const Colour Colours::orchid (0xffda70d6); const Colour Colours::palegoldenrod (0xffeee8aa); const Colour Colours::palegreen (0xff98fb98); const Colour Colours::paleturquoise (0xffafeeee); const Colour Colours::palevioletred (0xffdb7093); const Colour Colours::papayawhip (0xffffefd5); const Colour Colours::peachpuff (0xffffdab9); const Colour Colours::peru (0xffcd853f); const Colour Colours::pink (0xffffc0cb); const Colour Colours::plum (0xffdda0dd); const Colour Colours::powderblue (0xffb0e0e6); const Colour Colours::purple (0xff800080); const Colour Colours::red (0xffff0000); const Colour Colours::rosybrown (0xffbc8f8f); const Colour Colours::royalblue (0xff4169e1); const Colour Colours::saddlebrown (0xff8b4513); const Colour Colours::salmon (0xfffa8072); const Colour Colours::sandybrown (0xfff4a460); const Colour Colours::seagreen (0xff2e8b57); const Colour Colours::seashell (0xfffff5ee); const Colour Colours::sienna (0xffa0522d); const Colour Colours::silver (0xffc0c0c0); const Colour Colours::skyblue (0xff87ceeb); const Colour Colours::slateblue (0xff6a5acd); const Colour Colours::slategrey (0xff708090); const Colour Colours::snow (0xfffffafa); const Colour Colours::springgreen (0xff00ff7f); const Colour Colours::steelblue (0xff4682b4); const Colour Colours::tan (0xffd2b48c); const Colour Colours::teal (0xff008080); const Colour Colours::thistle (0xffd8bfd8); const Colour Colours::tomato (0xffff6347); const Colour Colours::turquoise (0xff40e0d0); const Colour Colours::violet (0xffee82ee); const Colour Colours::wheat (0xfff5deb3); const Colour Colours::white (0xffffffff); const Colour Colours::whitesmoke (0xfff5f5f5); const Colour Colours::yellow (0xffffff00); const Colour Colours::yellowgreen (0xff9acd32); const Colour Colours::findColourForName (const String& colourName, const Colour& defaultColour) { static const int presets[] = { // (first value is the string's hashcode, second is ARGB) 0x05978fff, 0xff000000, /* black */ 0x06bdcc29, 0xffffffff, /* white */ 0x002e305a, 0xff0000ff, /* blue */ 0x00308adf, 0xff808080, /* grey */ 0x05e0cf03, 0xff008000, /* green */ 0x0001b891, 0xffff0000, /* red */ 0xd43c6474, 0xffffff00, /* yellow */ 0x620886da, 0xfff0f8ff, /* aliceblue */ 0x20a2676a, 0xfffaebd7, /* antiquewhite */ 0x002dcebc, 0xff00ffff, /* aqua */ 0x46bb5f7e, 0xff7fffd4, /* aquamarine */ 0x0590228f, 0xfff0ffff, /* azure */ 0x05947fe4, 0xfff5f5dc, /* beige */ 0xad388e35, 0xffffe4c4, /* bisque */ 0x00674f7e, 0xffffebcd, /* blanchedalmond */ 0x39129959, 0xff8a2be2, /* blueviolet */ 0x059a8136, 0xffa52a2a, /* brown */ 0x89cea8f9, 0xffdeb887, /* burlywood */ 0x0fa260cf, 0xff5f9ea0, /* cadetblue */ 0x6b748956, 0xff7fff00, /* chartreuse */ 0x2903623c, 0xffd2691e, /* chocolate */ 0x05a74431, 0xffff7f50, /* coral */ 0x618d42dd, 0xff6495ed, /* cornflowerblue */ 0xe4b479fd, 0xfffff8dc, /* cornsilk */ 0x3d8c4edf, 0xffdc143c, /* crimson */ 0x002ed323, 0xff00ffff, /* cyan */ 0x67cc74d0, 0xff00008b, /* darkblue */ 0x67cd1799, 0xff008b8b, /* darkcyan */ 0x31bbd168, 0xffb8860b, /* darkgoldenrod */ 0x67cecf55, 0xff555555, /* darkgrey */ 0x920b194d, 0xff006400, /* darkgreen */ 0x923edd4c, 0xffbdb76b, /* darkkhaki */ 0x5c293873, 0xff8b008b, /* darkmagenta */ 0x6b6671fe, 0xff556b2f, /* darkolivegreen */ 0xbcfd2524, 0xffff8c00, /* darkorange */ 0xbcfdf799, 0xff9932cc, /* darkorchid */ 0x55ee0d5b, 0xff8b0000, /* darkred */ 0xc2e5f564, 0xffe9967a, /* darksalmon */ 0x61be858a, 0xff8fbc8f, /* darkseagreen */ 0xc2b0f2bd, 0xff483d8b, /* darkslateblue */ 0xc2b34d42, 0xff2f4f4f, /* darkslategrey */ 0x7cf2b06b, 0xff00ced1, /* darkturquoise */ 0xc8769375, 0xff9400d3, /* darkviolet */ 0x25832862, 0xffff1493, /* deeppink */ 0xfcad568f, 0xff00bfff, /* deepskyblue */ 0x634c8b67, 0xff696969, /* dimgrey */ 0x45c1ce55, 0xff1e90ff, /* dodgerblue */ 0xef19e3cb, 0xffb22222, /* firebrick */ 0xb852b195, 0xfffffaf0, /* floralwhite */ 0xd086fd06, 0xff228b22, /* forestgreen */ 0xe106b6d7, 0xffff00ff, /* fuchsia */ 0x7880d61e, 0xffdcdcdc, /* gainsboro */ 0x00308060, 0xffffd700, /* gold */ 0xb3b3bc1e, 0xffdaa520, /* goldenrod */ 0xbab8a537, 0xffadff2f, /* greenyellow */ 0xe4cacafb, 0xfff0fff0, /* honeydew */ 0x41892743, 0xffff69b4, /* hotpink */ 0xd5796f1a, 0xffcd5c5c, /* indianred */ 0xb969fed2, 0xff4b0082, /* indigo */ 0x05fef6a9, 0xfffffff0, /* ivory */ 0x06149302, 0xfff0e68c, /* khaki */ 0xad5a05c7, 0xffe6e6fa, /* lavender */ 0x7c4d5b99, 0xfffff0f5, /* lavenderblush */ 0x195756f0, 0xfffffacd, /* lemonchiffon */ 0x28e4ea70, 0xffadd8e6, /* lightblue */ 0xf3c7ccdb, 0xfff08080, /* lightcoral */ 0x28e58d39, 0xffe0ffff, /* lightcyan */ 0x21234e3c, 0xfffafad2, /* lightgoldenrodyellow */ 0xf40157ad, 0xff90ee90, /* lightgreen */ 0x28e744f5, 0xffd3d3d3, /* lightgrey */ 0x28eb3b8c, 0xffffb6c1, /* lightpink */ 0x9fb78304, 0xffffa07a, /* lightsalmon */ 0x50632b2a, 0xff20b2aa, /* lightseagreen */ 0x68fb7b25, 0xff87cefa, /* lightskyblue */ 0xa8a35ba2, 0xff778899, /* lightslategrey */ 0xa20d484f, 0xffb0c4de, /* lightsteelblue */ 0xaa2cf10a, 0xffffffe0, /* lightyellow */ 0x0032afd5, 0xff00ff00, /* lime */ 0x607bbc4e, 0xff32cd32, /* limegreen */ 0x06234efa, 0xfffaf0e6, /* linen */ 0x316858a9, 0xffff00ff, /* magenta */ 0xbf8ca470, 0xff800000, /* maroon */ 0xbd58e0b3, 0xff66cdaa, /* mediumaquamarine */ 0x967dfd4f, 0xff0000cd, /* mediumblue */ 0x056f5c58, 0xffba55d3, /* mediumorchid */ 0x07556b71, 0xff9370db, /* mediumpurple */ 0x5369b689, 0xff3cb371, /* mediumseagreen */ 0x066be19e, 0xff7b68ee, /* mediumslateblue */ 0x3256b281, 0xff00fa9a, /* mediumspringgreen */ 0xc0ad9f4c, 0xff48d1cc, /* mediumturquoise */ 0x628e63dd, 0xffc71585, /* mediumvioletred */ 0x168eb32a, 0xff191970, /* midnightblue */ 0x4306b960, 0xfff5fffa, /* mintcream */ 0x4cbc0e6b, 0xffffe4e1, /* mistyrose */ 0xe97218a6, 0xffffdead, /* navajowhite */ 0x00337bb6, 0xff000080, /* navy */ 0xadd2d33e, 0xfffdf5e6, /* oldlace */ 0x064ee1db, 0xff808000, /* olive */ 0x9e33a98a, 0xff6b8e23, /* olivedrab */ 0xc3de262e, 0xffffa500, /* orange */ 0x58bebba3, 0xffff4500, /* orangered */ 0xc3def8a3, 0xffda70d6, /* orchid */ 0x28cb4834, 0xffeee8aa, /* palegoldenrod */ 0x3d9dd619, 0xff98fb98, /* palegreen */ 0x74022737, 0xffafeeee, /* paleturquoise */ 0x15e2ebc8, 0xffdb7093, /* palevioletred */ 0x5fd898e2, 0xffffefd5, /* papayawhip */ 0x93e1b776, 0xffffdab9, /* peachpuff */ 0x003472f8, 0xffcd853f, /* peru */ 0x00348176, 0xffffc0cb, /* pink */ 0x00348d94, 0xffdda0dd, /* plum */ 0xd036be93, 0xffb0e0e6, /* powderblue */ 0xc5c507bc, 0xff800080, /* purple */ 0xa89d65b3, 0xffbc8f8f, /* rosybrown */ 0xbd9413e1, 0xff4169e1, /* royalblue */ 0xf456044f, 0xff8b4513, /* saddlebrown */ 0xc9c6f66e, 0xfffa8072, /* salmon */ 0x0bb131e1, 0xfff4a460, /* sandybrown */ 0x34636c14, 0xff2e8b57, /* seagreen */ 0x3507fb41, 0xfffff5ee, /* seashell */ 0xca348772, 0xffa0522d, /* sienna */ 0xca37d30d, 0xffc0c0c0, /* silver */ 0x80da74fb, 0xff87ceeb, /* skyblue */ 0x44a8dd73, 0xff6a5acd, /* slateblue */ 0x44ab37f8, 0xff708090, /* slategrey */ 0x0035f183, 0xfffffafa, /* snow */ 0xd5440d16, 0xff00ff7f, /* springgreen */ 0x3e1524a5, 0xff4682b4, /* steelblue */ 0x0001bfa1, 0xffd2b48c, /* tan */ 0x0036425c, 0xff008080, /* teal */ 0xafc8858f, 0xffd8bfd8, /* thistle */ 0xcc41600a, 0xffff6347, /* tomato */ 0xfeea9b21, 0xff40e0d0, /* turquoise */ 0xcf57947f, 0xffee82ee, /* violet */ 0x06bdbae7, 0xfff5deb3, /* wheat */ 0x10802ee6, 0xfff5f5f5, /* whitesmoke */ 0xe1b5130f, 0xff9acd32 /* yellowgreen */ }; const int hash = colourName.trim().toLowerCase().hashCode(); for (int i = 0; i < numElementsInArray (presets); i += 2) if (presets [i] == hash) return Colour (presets [i + 1]); return defaultColour; } END_JUCE_NAMESPACE /********* End of inlined file: juce_Colours.cpp *********/ /********* Start of inlined file: juce_EdgeTable.cpp *********/ BEGIN_JUCE_NAMESPACE EdgeTable::EdgeTable (const int top_, const int height_, const OversamplingLevel oversampling_, const int expectedEdgesPerLine) throw() : top (top_), height (height_), maxEdgesPerLine (expectedEdgesPerLine), lineStrideElements ((expectedEdgesPerLine << 1) + 1), oversampling (oversampling_) { table = (int*) juce_calloc ((height << (int)oversampling_) * lineStrideElements * sizeof (int)); } EdgeTable::EdgeTable (const EdgeTable& other) throw() : table (0) { operator= (other); } const EdgeTable& EdgeTable::operator= (const EdgeTable& other) throw() { juce_free (table); top = other.top; height = other.height; maxEdgesPerLine = other.maxEdgesPerLine; lineStrideElements = other.lineStrideElements; oversampling = other.oversampling; const int tableSize = (height << (int)oversampling) * lineStrideElements * sizeof (int); table = (int*) juce_malloc (tableSize); memcpy (table, other.table, tableSize); return *this; } EdgeTable::~EdgeTable() throw() { juce_free (table); } void EdgeTable::remapTableForNumEdges (const int newNumEdgesPerLine) throw() { if (newNumEdgesPerLine != maxEdgesPerLine) { maxEdgesPerLine = newNumEdgesPerLine; const int newLineStrideElements = maxEdgesPerLine * 2 + 1; int* const newTable = (int*) juce_malloc ((height << (int) oversampling) * newLineStrideElements * sizeof (int)); for (int i = 0; i < (height << (int) oversampling); ++i) { const int* srcLine = table + lineStrideElements * i; int* dstLine = newTable + newLineStrideElements * i; int num = *srcLine++; *dstLine++ = num; num <<= 1; while (--num >= 0) *dstLine++ = *srcLine++; } juce_free (table); table = newTable; lineStrideElements = newLineStrideElements; } } void EdgeTable::optimiseTable() throw() { int maxLineElements = 0; for (int i = height; --i >= 0;) maxLineElements = jmax (maxLineElements, table [i * lineStrideElements]); remapTableForNumEdges (maxLineElements); } void EdgeTable::addEdgePoint (const int x, const int y, const int winding) throw() { jassert (y >= 0 && y < (height << oversampling)) int* lineStart = table + lineStrideElements * y; int n = lineStart[0]; if (n >= maxEdgesPerLine) { remapTableForNumEdges (maxEdgesPerLine + juce_edgeTableDefaultEdgesPerLine); jassert (n < maxEdgesPerLine); lineStart = table + lineStrideElements * y; } n <<= 1; int* const line = lineStart + 1; while (n > 0) { const int cx = line [n - 2]; if (cx <= x) break; line [n] = cx; line [n + 1] = line [n - 1]; n -= 2; } line [n] = x; line [n + 1] = winding; lineStart[0]++; } void EdgeTable::addPath (const Path& path, const AffineTransform& transform) throw() { const int windingAmount = 256 / (1 << (int) oversampling); const float timesOversampling = (float) (1 << (int) oversampling); const int bottomLimit = (height << (int) oversampling); PathFlatteningIterator iter (path, transform); while (iter.next()) { int y1 = roundFloatToInt (iter.y1 * timesOversampling) - (top << (int) oversampling); int y2 = roundFloatToInt (iter.y2 * timesOversampling) - (top << (int) oversampling); if (y1 != y2) { const double x1 = 256.0 * iter.x1; const double x2 = 256.0 * iter.x2; const double multiplier = (x2 - x1) / (y2 - y1); const int oldY1 = y1; int winding; if (y1 > y2) { swapVariables (y1, y2); winding = windingAmount; } else { winding = -windingAmount; } jassert (y1 < y2); if (y1 < 0) y1 = 0; if (y2 > bottomLimit) y2 = bottomLimit; while (y1 < y2) { addEdgePoint (roundDoubleToInt (x1 + multiplier * (y1 - oldY1)), y1, winding); ++y1; } } } if (! path.isUsingNonZeroWinding()) { // if it's an alternate-winding path, we need to go through and // make sure all the windings are alternating. int* lineStart = table; for (int i = height << (int) oversampling; --i >= 0;) { int* line = lineStart; lineStart += lineStrideElements; int num = *line; while (--num >= 0) { line += 2; *line = abs (*line); if (--num >= 0) { line += 2; *line = -abs (*line); } } } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_EdgeTable.cpp *********/ /********* Start of inlined file: juce_Graphics.cpp *********/ BEGIN_JUCE_NAMESPACE static const Graphics::ResamplingQuality defaultQuality = Graphics::mediumResamplingQuality; #define MINIMUM_COORD -0x3fffffff #define MAXIMUM_COORD 0x3fffffff #undef ASSERT_COORDS_ARE_SENSIBLE_NUMBERS #define ASSERT_COORDS_ARE_SENSIBLE_NUMBERS(x, y, w, h) \ jassert ((int) x >= MINIMUM_COORD \ && (int) x <= MAXIMUM_COORD \ && (int) y >= MINIMUM_COORD \ && (int) y <= MAXIMUM_COORD \ && (int) w >= MINIMUM_COORD \ && (int) w <= MAXIMUM_COORD \ && (int) h >= MINIMUM_COORD \ && (int) h <= MAXIMUM_COORD); LowLevelGraphicsContext::LowLevelGraphicsContext() { } LowLevelGraphicsContext::~LowLevelGraphicsContext() { } Graphics::Graphics (Image& imageToDrawOnto) throw() : context (imageToDrawOnto.createLowLevelContext()), ownsContext (true), state (new GraphicsState()), saveStatePending (false) { } Graphics::Graphics (LowLevelGraphicsContext* const internalContext) throw() : context (internalContext), ownsContext (false), state (new GraphicsState()), saveStatePending (false) { } Graphics::~Graphics() throw() { delete state; if (ownsContext) delete context; } void Graphics::resetToDefaultState() throw() { setColour (Colours::black); state->font.resetToDefaultState(); state->quality = defaultQuality; } bool Graphics::isVectorDevice() const throw() { return context->isVectorDevice(); } bool Graphics::reduceClipRegion (const int x, const int y, const int w, const int h) throw() { saveStateIfPending(); return context->reduceClipRegion (x, y, w, h); } bool Graphics::reduceClipRegion (const RectangleList& clipRegion) throw() { saveStateIfPending(); return context->reduceClipRegion (clipRegion); } void Graphics::excludeClipRegion (const int x, const int y, const int w, const int h) throw() { saveStateIfPending(); context->excludeClipRegion (x, y, w, h); } bool Graphics::isClipEmpty() const throw() { return context->isClipEmpty(); } const Rectangle Graphics::getClipBounds() const throw() { return context->getClipBounds(); } void Graphics::saveState() throw() { saveStateIfPending(); saveStatePending = true; } void Graphics::restoreState() throw() { if (saveStatePending) { saveStatePending = false; } else { const int stackSize = stateStack.size(); if (stackSize > 0) { context->restoreState(); delete state; state = stateStack.getUnchecked (stackSize - 1); stateStack.removeLast (1, false); } else { // Trying to call restoreState() more times than you've called saveState() ! // Be careful to correctly match each saveState() with exactly one call to restoreState(). jassertfalse } } } void Graphics::saveStateIfPending() throw() { if (saveStatePending) { saveStatePending = false; context->saveState(); stateStack.add (new GraphicsState (*state)); } } void Graphics::setOrigin (const int newOriginX, const int newOriginY) throw() { saveStateIfPending(); context->setOrigin (newOriginX, newOriginY); } bool Graphics::clipRegionIntersects (const int x, const int y, const int w, const int h) const throw() { return context->clipRegionIntersects (x, y, w, h); } void Graphics::setColour (const Colour& newColour) throw() { saveStateIfPending(); state->colour = newColour; deleteAndZero (state->brush); } const Colour& Graphics::getCurrentColour() const throw() { return state->colour; } void Graphics::setOpacity (const float newOpacity) throw() { saveStateIfPending(); state->colour = state->colour.withAlpha (newOpacity); } void Graphics::setBrush (const Brush* const newBrush) throw() { saveStateIfPending(); delete state->brush; if (newBrush != 0) state->brush = newBrush->createCopy(); else state->brush = 0; } Graphics::GraphicsState::GraphicsState() throw() : colour (Colours::black), brush (0), quality (defaultQuality) { } Graphics::GraphicsState::GraphicsState (const GraphicsState& other) throw() : colour (other.colour), brush (other.brush != 0 ? other.brush->createCopy() : 0), font (other.font), quality (other.quality) { } Graphics::GraphicsState::~GraphicsState() throw() { delete brush; } void Graphics::setFont (const Font& newFont) throw() { saveStateIfPending(); state->font = newFont; } void Graphics::setFont (const float newFontHeight, const int newFontStyleFlags) throw() { saveStateIfPending(); state->font.setSizeAndStyle (newFontHeight, newFontStyleFlags, 1.0f, 0.0f); } const Font& Graphics::getCurrentFont() const throw() { return state->font; } void Graphics::drawSingleLineText (const String& text, const int startX, const int baselineY) const throw() { if (text.isNotEmpty() && startX < context->getClipBounds().getRight()) { GlyphArrangement arr; arr.addLineOfText (state->font, text, (float) startX, (float) baselineY); arr.draw (*this); } } void Graphics::drawTextAsPath (const String& text, const AffineTransform& transform) const throw() { if (text.isNotEmpty()) { GlyphArrangement arr; arr.addLineOfText (state->font, text, 0.0f, 0.0f); arr.draw (*this, transform); } } void Graphics::drawMultiLineText (const String& text, const int startX, const int baselineY, const int maximumLineWidth) const throw() { if (text.isNotEmpty() && startX < context->getClipBounds().getRight()) { GlyphArrangement arr; arr.addJustifiedText (state->font, text, (float) startX, (float) baselineY, (float) maximumLineWidth, Justification::left); arr.draw (*this); } } void Graphics::drawText (const String& text, const int x, const int y, const int width, const int height, const Justification& justificationType, const bool useEllipsesIfTooBig) const throw() { if (text.isNotEmpty() && context->clipRegionIntersects (x, y, width, height)) { GlyphArrangement arr; arr.addCurtailedLineOfText (state->font, text, 0.0f, 0.0f, (float)width, useEllipsesIfTooBig); arr.justifyGlyphs (0, arr.getNumGlyphs(), (float) x, (float) y, (float) width, (float) height, justificationType); arr.draw (*this); } } void Graphics::drawFittedText (const String& text, const int x, const int y, const int width, const int height, const Justification& justification, const int maximumNumberOfLines, const float minimumHorizontalScale) const throw() { if (text.isNotEmpty() && width > 0 && height > 0 && context->clipRegionIntersects (x, y, width, height)) { GlyphArrangement arr; arr.addFittedText (state->font, text, (float) x, (float) y, (float) width, (float) height, justification, maximumNumberOfLines, minimumHorizontalScale); arr.draw (*this); } } void Graphics::fillRect (int x, int y, int width, int height) const throw() { // passing in a silly number can cause maths problems in rendering! ASSERT_COORDS_ARE_SENSIBLE_NUMBERS (x, y, width, height); SolidColourBrush colourBrush (state->colour); (state->brush != 0 ? *(state->brush) : (Brush&) colourBrush).paintRectangle (*context, x, y, width, height); } void Graphics::fillRect (const Rectangle& r) const throw() { fillRect (r.getX(), r.getY(), r.getWidth(), r.getHeight()); } void Graphics::fillRect (const float x, const float y, const float width, const float height) const throw() { // passing in a silly number can cause maths problems in rendering! ASSERT_COORDS_ARE_SENSIBLE_NUMBERS (x, y, width, height); Path p; p.addRectangle (x, y, width, height); fillPath (p); } void Graphics::setPixel (int x, int y) const throw() { if (context->clipRegionIntersects (x, y, 1, 1)) { SolidColourBrush colourBrush (state->colour); (state->brush != 0 ? *(state->brush) : (Brush&) colourBrush).paintRectangle (*context, x, y, 1, 1); } } void Graphics::fillAll() const throw() { fillRect (context->getClipBounds()); } void Graphics::fillAll (const Colour& colourToUse) const throw() { if (! colourToUse.isTransparent()) { const Rectangle clip (context->getClipBounds()); context->fillRectWithColour (clip.getX(), clip.getY(), clip.getWidth(), clip.getHeight(), colourToUse, false); } } void Graphics::fillPath (const Path& path, const AffineTransform& transform) const throw() { if ((! context->isClipEmpty()) && ! path.isEmpty()) { SolidColourBrush colourBrush (state->colour); (state->brush != 0 ? *(state->brush) : (Brush&) colourBrush).paintPath (*context, path, transform); } } void Graphics::strokePath (const Path& path, const PathStrokeType& strokeType, const AffineTransform& transform) const throw() { if ((! state->colour.isTransparent()) || state->brush != 0) { Path stroke; strokeType.createStrokedPath (stroke, path, transform); fillPath (stroke); } } void Graphics::drawRect (const int x, const int y, const int width, const int height, const int lineThickness) const throw() { // passing in a silly number can cause maths problems in rendering! ASSERT_COORDS_ARE_SENSIBLE_NUMBERS (x, y, width, height); SolidColourBrush colourBrush (state->colour); Brush& b = (state->brush != 0 ? *(state->brush) : (Brush&) colourBrush); b.paintRectangle (*context, x, y, width, lineThickness); b.paintRectangle (*context, x, y + lineThickness, lineThickness, height - lineThickness * 2); b.paintRectangle (*context, x + width - lineThickness, y + lineThickness, lineThickness, height - lineThickness * 2); b.paintRectangle (*context, x, y + height - lineThickness, width, lineThickness); } void Graphics::drawRect (const float x, const float y, const float width, const float height, const float lineThickness) const throw() { // passing in a silly number can cause maths problems in rendering! ASSERT_COORDS_ARE_SENSIBLE_NUMBERS (x, y, width, height); Path p; p.addRectangle (x, y, width, lineThickness); p.addRectangle (x, y + lineThickness, lineThickness, height - lineThickness * 2.0f); p.addRectangle (x + width - lineThickness, y + lineThickness, lineThickness, height - lineThickness * 2.0f); p.addRectangle (x, y + height - lineThickness, width, lineThickness); fillPath (p); } void Graphics::drawRect (const Rectangle& r, const int lineThickness) const throw() { drawRect (r.getX(), r.getY(), r.getWidth(), r.getHeight(), lineThickness); } void Graphics::drawBevel (const int x, const int y, const int width, const int height, const int bevelThickness, const Colour& topLeftColour, const Colour& bottomRightColour, const bool useGradient, const bool sharpEdgeOnOutside) const throw() { // passing in a silly number can cause maths problems in rendering! ASSERT_COORDS_ARE_SENSIBLE_NUMBERS (x, y, width, height); if (clipRegionIntersects (x, y, width, height)) { const float oldOpacity = state->colour.getFloatAlpha(); const float ramp = oldOpacity / bevelThickness; for (int i = bevelThickness; --i >= 0;) { const float op = useGradient ? ramp * (sharpEdgeOnOutside ? bevelThickness - i : i) : oldOpacity; context->fillRectWithColour (x + i, y + i, width - i * 2, 1, topLeftColour.withMultipliedAlpha (op), false); context->fillRectWithColour (x + i, y + i + 1, 1, height - i * 2 - 2, topLeftColour.withMultipliedAlpha (op * 0.75f), false); context->fillRectWithColour (x + i, y + height - i - 1, width - i * 2, 1, bottomRightColour.withMultipliedAlpha (op), false); context->fillRectWithColour (x + width - i - 1, y + i + 1, 1, height - i * 2 - 2, bottomRightColour.withMultipliedAlpha (op * 0.75f), false); } } } void Graphics::fillEllipse (const float x, const float y, const float width, const float height) const throw() { // passing in a silly number can cause maths problems in rendering! ASSERT_COORDS_ARE_SENSIBLE_NUMBERS (x, y, width, height); Path p; p.addEllipse (x, y, width, height); fillPath (p); } void Graphics::drawEllipse (const float x, const float y, const float width, const float height, const float lineThickness) const throw() { // passing in a silly number can cause maths problems in rendering! ASSERT_COORDS_ARE_SENSIBLE_NUMBERS (x, y, width, height); Path p; p.addEllipse (x, y, width, height); strokePath (p, PathStrokeType (lineThickness)); } void Graphics::fillRoundedRectangle (const float x, const float y, const float width, const float height, const float cornerSize) const throw() { // passing in a silly number can cause maths problems in rendering! ASSERT_COORDS_ARE_SENSIBLE_NUMBERS (x, y, width, height); Path p; p.addRoundedRectangle (x, y, width, height, cornerSize); fillPath (p); } void Graphics::fillRoundedRectangle (const Rectangle& r, const float cornerSize) const throw() { fillRoundedRectangle ((float) r.getX(), (float) r.getY(), (float) r.getWidth(), (float) r.getHeight(), cornerSize); } void Graphics::drawRoundedRectangle (const float x, const float y, const float width, const float height, const float cornerSize, const float lineThickness) const throw() { // passing in a silly number can cause maths problems in rendering! ASSERT_COORDS_ARE_SENSIBLE_NUMBERS (x, y, width, height); Path p; p.addRoundedRectangle (x, y, width, height, cornerSize); strokePath (p, PathStrokeType (lineThickness)); } void Graphics::drawRoundedRectangle (const Rectangle& r, const float cornerSize, const float lineThickness) const throw() { drawRoundedRectangle ((float) r.getX(), (float) r.getY(), (float) r.getWidth(), (float) r.getHeight(), cornerSize, lineThickness); } void Graphics::drawArrow (const float startX, const float startY, const float endX, const float endY, const float lineThickness, const float arrowheadWidth, const float arrowheadLength) const throw() { Path p; p.addArrow (startX, startY, endX, endY, lineThickness, arrowheadWidth, arrowheadLength); fillPath (p); } void Graphics::fillCheckerBoard (int x, int y, int width, int height, const int checkWidth, const int checkHeight, const Colour& colour1, const Colour& colour2) const throw() { jassert (checkWidth > 0 && checkHeight > 0); // can't be zero or less! if (checkWidth > 0 && checkHeight > 0) { if (colour1 == colour2) { context->fillRectWithColour (x, y, width, height, colour1, false); } else { const Rectangle clip (context->getClipBounds()); const int right = jmin (x + width, clip.getRight()); const int bottom = jmin (y + height, clip.getBottom()); int cy = 0; while (y < bottom) { int cx = cy; for (int xx = x; xx < right; xx += checkWidth) context->fillRectWithColour (xx, y, jmin (checkWidth, right - xx), jmin (checkHeight, bottom - y), ((cx++ & 1) == 0) ? colour1 : colour2, false); ++cy; y += checkHeight; } } } } void Graphics::drawVerticalLine (const int x, float top, float bottom) const throw() { SolidColourBrush colourBrush (state->colour); (state->brush != 0 ? *(state->brush) : (Brush&) colourBrush).paintVerticalLine (*context, x, top, bottom); } void Graphics::drawHorizontalLine (const int y, float left, float right) const throw() { SolidColourBrush colourBrush (state->colour); (state->brush != 0 ? *(state->brush) : (Brush&) colourBrush).paintHorizontalLine (*context, y, left, right); } void Graphics::drawLine (float x1, float y1, float x2, float y2) const throw() { if (! context->isClipEmpty()) { SolidColourBrush colourBrush (state->colour); (state->brush != 0 ? *(state->brush) : (Brush&) colourBrush).paintLine (*context, x1, y1, x2, y2); } } void Graphics::drawLine (const float startX, const float startY, const float endX, const float endY, const float lineThickness) const throw() { Path p; p.addLineSegment (startX, startY, endX, endY, lineThickness); fillPath (p); } void Graphics::drawLine (const Line& line) const throw() { drawLine (line.getStartX(), line.getStartY(), line.getEndX(), line.getEndY()); } void Graphics::drawLine (const Line& line, const float lineThickness) const throw() { drawLine (line.getStartX(), line.getStartY(), line.getEndX(), line.getEndY(), lineThickness); } void Graphics::drawDashedLine (const float startX, const float startY, const float endX, const float endY, const float* const dashLengths, const int numDashLengths, const float lineThickness) const throw() { const double dx = endX - startX; const double dy = endY - startY; const double totalLen = juce_hypot (dx, dy); if (totalLen >= 0.5) { const double onePixAlpha = 1.0 / totalLen; double alpha = 0.0; float x = startX; float y = startY; int n = 0; while (alpha < 1.0f) { alpha = jmin (1.0, alpha + dashLengths[n++] * onePixAlpha); n = n % numDashLengths; const float oldX = x; const float oldY = y; x = (float) (startX + dx * alpha); y = (float) (startY + dy * alpha); if ((n & 1) != 0) { if (lineThickness != 1.0f) drawLine (oldX, oldY, x, y, lineThickness); else drawLine (oldX, oldY, x, y); } } } } void Graphics::setImageResamplingQuality (const Graphics::ResamplingQuality newQuality) throw() { saveStateIfPending(); state->quality = newQuality; } void Graphics::drawImageAt (const Image* const imageToDraw, const int topLeftX, const int topLeftY, const bool fillAlphaChannelWithCurrentBrush) const throw() { if (imageToDraw != 0) { const int imageW = imageToDraw->getWidth(); const int imageH = imageToDraw->getHeight(); drawImage (imageToDraw, topLeftX, topLeftY, imageW, imageH, 0, 0, imageW, imageH, fillAlphaChannelWithCurrentBrush); } } void Graphics::drawImageWithin (const Image* const imageToDraw, const int destX, const int destY, const int destW, const int destH, const RectanglePlacement& placementWithinTarget, const bool fillAlphaChannelWithCurrentBrush) const throw() { // passing in a silly number can cause maths problems in rendering! ASSERT_COORDS_ARE_SENSIBLE_NUMBERS (destX, destY, destW, destH); if (imageToDraw != 0) { const int imageW = imageToDraw->getWidth(); const int imageH = imageToDraw->getHeight(); if (imageW > 0 && imageH > 0) { double newX = 0.0, newY = 0.0; double newW = imageW; double newH = imageH; placementWithinTarget.applyTo (newX, newY, newW, newH, destX, destY, destW, destH); if (newW > 0 && newH > 0) { drawImage (imageToDraw, roundDoubleToInt (newX), roundDoubleToInt (newY), roundDoubleToInt (newW), roundDoubleToInt (newH), 0, 0, imageW, imageH, fillAlphaChannelWithCurrentBrush); } } } } void Graphics::drawImage (const Image* const imageToDraw, int dx, int dy, int dw, int dh, int sx, int sy, int sw, int sh, const bool fillAlphaChannelWithCurrentBrush) const throw() { // passing in a silly number can cause maths problems in rendering! ASSERT_COORDS_ARE_SENSIBLE_NUMBERS (dx, dy, dw, dh); ASSERT_COORDS_ARE_SENSIBLE_NUMBERS (sx, sy, sw, sh); if (imageToDraw == 0 || ! context->clipRegionIntersects (dx, dy, dw, dh)) return; if (sw == dw && sh == dh) { if (sx < 0) { dx -= sx; dw += sx; sw += sx; sx = 0; } if (sx + sw > imageToDraw->getWidth()) { const int amount = sx + sw - imageToDraw->getWidth(); dw -= amount; sw -= amount; } if (sy < 0) { dy -= sy; dh += sy; sh += sy; sy = 0; } if (sy + sh > imageToDraw->getHeight()) { const int amount = sy + sh - imageToDraw->getHeight(); dh -= amount; sh -= amount; } if (dw <= 0 || dh <= 0 || sw <= 0 || sh <= 0) return; if (fillAlphaChannelWithCurrentBrush) { SolidColourBrush colourBrush (state->colour); (state->brush != 0 ? *(state->brush) : (Brush&) colourBrush) .paintAlphaChannel (*context, *imageToDraw, dx - sx, dy - sy, dx, dy, dw, dh); } else { context->blendImage (*imageToDraw, dx, dy, dw, dh, sx, sy, state->colour.getFloatAlpha()); } } else { if (dw <= 0 || dh <= 0 || sw <= 0 || sh <= 0) return; if (fillAlphaChannelWithCurrentBrush) { if (imageToDraw->isRGB()) { fillRect (dx, dy, dw, dh); } else { int tx = dx; int ty = dy; int tw = dw; int th = dh; if (context->getClipBounds().intersectRectangle (tx, ty, tw, th)) { Image temp (imageToDraw->getFormat(), tw, th, true); Graphics g (temp); g.setImageResamplingQuality (state->quality); g.setOrigin (dx - tx, dy - ty); g.drawImage (imageToDraw, 0, 0, dw, dh, sx, sy, sw, sh, false); SolidColourBrush colourBrush (state->colour); (state->brush != 0 ? *(state->brush) : (Brush&) colourBrush) .paintAlphaChannel (*context, temp, tx, ty, tx, ty, tw, th); } } } else { context->blendImageRescaling (*imageToDraw, dx, dy, dw, dh, sx, sy, sw, sh, state->colour.getFloatAlpha(), state->quality); } } } void Graphics::drawImageTransformed (const Image* const imageToDraw, int sourceClipX, int sourceClipY, int sourceClipWidth, int sourceClipHeight, const AffineTransform& transform, const bool fillAlphaChannelWithCurrentBrush) const throw() { if (imageToDraw != 0 && (! context->isClipEmpty()) && ! transform.isSingularity()) { if (transform.isIdentity()) { drawImage (imageToDraw, sourceClipX, sourceClipY, sourceClipWidth, sourceClipHeight, sourceClipX, sourceClipY, sourceClipWidth, sourceClipHeight, fillAlphaChannelWithCurrentBrush); } else if (fillAlphaChannelWithCurrentBrush) { Path p; p.addRectangle ((float) sourceClipX, (float) sourceClipY, (float) sourceClipWidth, (float) sourceClipHeight); p.applyTransform (transform); float dx, dy, dw, dh; p.getBounds (dx, dy, dw, dh); int tx = (int) dx; int ty = (int) dy; int tw = roundFloatToInt (dw) + 2; int th = roundFloatToInt (dh) + 2; if (context->getClipBounds().intersectRectangle (tx, ty, tw, th)) { Image temp (imageToDraw->getFormat(), tw, th, true); Graphics g (temp); g.setImageResamplingQuality (state->quality); g.drawImageTransformed (imageToDraw, sourceClipX, sourceClipY, sourceClipWidth, sourceClipHeight, transform.translated ((float) -tx, (float) -ty), false); SolidColourBrush colourBrush (state->colour); (state->brush != 0 ? *(state->brush) : (Brush&) colourBrush).paintAlphaChannel (*context, temp, tx, ty, tx, ty, tw, th); } } else { context->blendImageWarping (*imageToDraw, sourceClipX, sourceClipY, sourceClipWidth, sourceClipHeight, transform, state->colour.getFloatAlpha(), state->quality); } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_Graphics.cpp *********/ /********* Start of inlined file: juce_Justification.cpp *********/ BEGIN_JUCE_NAMESPACE Justification::Justification (const Justification& other) throw() : flags (other.flags) { } const Justification& Justification::operator= (const Justification& other) throw() { flags = other.flags; return *this; } int Justification::getOnlyVerticalFlags() const throw() { return flags & (top | bottom | verticallyCentred); } int Justification::getOnlyHorizontalFlags() const throw() { return flags & (left | right | horizontallyCentred | horizontallyJustified); } void Justification::applyToRectangle (int& x, int& y, const int w, const int h, const int spaceX, const int spaceY, const int spaceW, const int spaceH) const throw() { if ((flags & horizontallyCentred) != 0) { x = spaceX + ((spaceW - w) >> 1); } else if ((flags & right) != 0) { x = spaceX + spaceW - w; } else { x = spaceX; } if ((flags & verticallyCentred) != 0) { y = spaceY + ((spaceH - h) >> 1); } else if ((flags & bottom) != 0) { y = spaceY + spaceH - h; } else { y = spaceY; } } END_JUCE_NAMESPACE /********* End of inlined file: juce_Justification.cpp *********/ /********* Start of inlined file: juce_LowLevelGraphicsPostScriptRenderer.cpp *********/ BEGIN_JUCE_NAMESPACE #if JUCE_MSVC #pragma warning (disable: 4996) // deprecated sprintf warning #endif // this will throw an assertion if you try to draw something that's not // possible in postscript #define WARN_ABOUT_NON_POSTSCRIPT_OPERATIONS 0 #if defined (JUCE_DEBUG) && WARN_ABOUT_NON_POSTSCRIPT_OPERATIONS #define notPossibleInPostscriptAssert jassertfalse #else #define notPossibleInPostscriptAssert #endif LowLevelGraphicsPostScriptRenderer::LowLevelGraphicsPostScriptRenderer (OutputStream& resultingPostScript, const String& documentTitle, const int totalWidth_, const int totalHeight_) : out (resultingPostScript), totalWidth (totalWidth_), totalHeight (totalHeight_), xOffset (0), yOffset (0), needToClip (true) { clip = new RectangleList (Rectangle (0, 0, totalWidth_, totalHeight_)); const float scale = jmin ((520.0f / totalWidth_), (750.0f / totalHeight)); out << "%!PS-Adobe-3.0 EPSF-3.0" "\n%%BoundingBox: 0 0 600 824" "\n%%Pages: 0" "\n%%Creator: Raw Material Software JUCE" "\n%%Title: " << documentTitle << "\n%%CreationDate: none" "\n%%LanguageLevel: 2" "\n%%EndComments" "\n%%BeginProlog" "\n%%BeginResource: JRes" "\n/bd {bind def} bind def" "\n/c {setrgbcolor} bd" "\n/m {moveto} bd" "\n/l {lineto} bd" "\n/rl {rlineto} bd" "\n/ct {curveto} bd" "\n/cp {closepath} bd" "\n/pr {3 index 3 index moveto 1 index 0 rlineto 0 1 index rlineto pop neg 0 rlineto pop pop closepath} bd" "\n/doclip {initclip newpath} bd" "\n/endclip {clip newpath} bd" "\n%%EndResource" "\n%%EndProlog" "\n%%BeginSetup" "\n%%EndSetup" "\n%%Page: 1 1" "\n%%BeginPageSetup" "\n%%EndPageSetup\n\n" << "40 800 translate\n" << scale << ' ' << scale << " scale\n\n"; } LowLevelGraphicsPostScriptRenderer::~LowLevelGraphicsPostScriptRenderer() { delete clip; } bool LowLevelGraphicsPostScriptRenderer::isVectorDevice() const { return true; } void LowLevelGraphicsPostScriptRenderer::setOrigin (int x, int y) { if (x != 0 || y != 0) { xOffset += x; yOffset += y; needToClip = true; } } bool LowLevelGraphicsPostScriptRenderer::reduceClipRegion (int x, int y, int w, int h) { needToClip = true; return clip->clipTo (Rectangle (x + xOffset, y + yOffset, w, h)); } bool LowLevelGraphicsPostScriptRenderer::reduceClipRegion (const RectangleList& clipRegion) { needToClip = true; return clip->clipTo (clipRegion); } void LowLevelGraphicsPostScriptRenderer::excludeClipRegion (int x, int y, int w, int h) { needToClip = true; clip->subtract (Rectangle (x + xOffset, y + yOffset, w, h)); } bool LowLevelGraphicsPostScriptRenderer::clipRegionIntersects (int x, int y, int w, int h) { return clip->intersectsRectangle (Rectangle (x + xOffset, y + yOffset, w, h)); } const Rectangle LowLevelGraphicsPostScriptRenderer::getClipBounds() const { return clip->getBounds().translated (-xOffset, -yOffset); } bool LowLevelGraphicsPostScriptRenderer::isClipEmpty() const { return clip->isEmpty(); } LowLevelGraphicsPostScriptRenderer::SavedState::SavedState (RectangleList* const clip_, const int xOffset_, const int yOffset_) : clip (clip_), xOffset (xOffset_), yOffset (yOffset_) { } LowLevelGraphicsPostScriptRenderer::SavedState::~SavedState() { delete clip; } void LowLevelGraphicsPostScriptRenderer::saveState() { stateStack.add (new SavedState (new RectangleList (*clip), xOffset, yOffset)); } void LowLevelGraphicsPostScriptRenderer::restoreState() { SavedState* const top = stateStack.getLast(); if (top != 0) { clip->swapWith (*top->clip); xOffset = top->xOffset; yOffset = top->yOffset; stateStack.removeLast(); needToClip = true; } else { jassertfalse // trying to pop with an empty stack! } } void LowLevelGraphicsPostScriptRenderer::writeClip() { if (needToClip) { needToClip = false; out << "doclip "; int itemsOnLine = 0; for (RectangleList::Iterator i (*clip); i.next();) { if (++itemsOnLine == 6) { itemsOnLine = 0; out << '\n'; } const Rectangle& r = *i.getRectangle(); out << r.getX() << ' ' << -r.getY() << ' ' << r.getWidth() << ' ' << -r.getHeight() << " pr "; } out << "endclip\n"; } } void LowLevelGraphicsPostScriptRenderer::writeColour (const Colour& colour) { Colour c (Colours::white.overlaidWith (colour)); if (lastColour != c) { lastColour = c; out << String (c.getFloatRed(), 3) << ' ' << String (c.getFloatGreen(), 3) << ' ' << String (c.getFloatBlue(), 3) << " c\n"; } } void LowLevelGraphicsPostScriptRenderer::writeXY (const float x, const float y) const { out << String (x, 2) << ' ' << String (-y, 2) << ' '; } void LowLevelGraphicsPostScriptRenderer::writePath (const Path& path) const { out << "newpath "; float lastX = 0.0f; float lastY = 0.0f; int itemsOnLine = 0; Path::Iterator i (path); while (i.next()) { if (++itemsOnLine == 4) { itemsOnLine = 0; out << '\n'; } switch (i.elementType) { case Path::Iterator::startNewSubPath: writeXY (i.x1, i.y1); lastX = i.x1; lastY = i.y1; out << "m "; break; case Path::Iterator::lineTo: writeXY (i.x1, i.y1); lastX = i.x1; lastY = i.y1; out << "l "; break; case Path::Iterator::quadraticTo: { const float cp1x = lastX + (i.x1 - lastX) * 2.0f / 3.0f; const float cp1y = lastY + (i.y1 - lastY) * 2.0f / 3.0f; const float cp2x = cp1x + (i.x2 - lastX) / 3.0f; const float cp2y = cp1y + (i.y2 - lastY) / 3.0f; writeXY (cp1x, cp1y); writeXY (cp2x, cp2y); writeXY (i.x2, i.y2); out << "ct "; lastX = i.x2; lastY = i.y2; } break; case Path::Iterator::cubicTo: writeXY (i.x1, i.y1); writeXY (i.x2, i.y2); writeXY (i.x3, i.y3); out << "ct "; lastX = i.x3; lastY = i.y3; break; case Path::Iterator::closePath: out << "cp "; break; default: jassertfalse break; } } out << '\n'; } void LowLevelGraphicsPostScriptRenderer::writeTransform (const AffineTransform& trans) const { out << "[ " << trans.mat00 << ' ' << trans.mat10 << ' ' << trans.mat01 << ' ' << trans.mat11 << ' ' << trans.mat02 << ' ' << trans.mat12 << " ] concat "; } void LowLevelGraphicsPostScriptRenderer::fillRectWithColour (int x, int y, int w, int h, const Colour& colour, const bool /*replaceExistingContents*/) { writeClip(); writeColour (colour); x += xOffset; y += yOffset; out << x << ' ' << -(y + h) << ' ' << w << ' ' << h << " rectfill\n"; } void LowLevelGraphicsPostScriptRenderer::fillRectWithGradient (int x, int y, int w, int h, const ColourGradient& gradient) { Path p; p.addRectangle ((float) x, (float) y, (float) w, (float) h); fillPathWithGradient (p, AffineTransform::identity, gradient, EdgeTable::Oversampling_256times); } void LowLevelGraphicsPostScriptRenderer::fillPathWithColour (const Path& path, const AffineTransform& t, const Colour& colour, EdgeTable::OversamplingLevel /*quality*/) { writeClip(); Path p (path); p.applyTransform (t.translated ((float) xOffset, (float) yOffset)); writePath (p); writeColour (colour); out << "fill\n"; } void LowLevelGraphicsPostScriptRenderer::fillPathWithGradient (const Path& path, const AffineTransform& t, const ColourGradient& gradient, EdgeTable::OversamplingLevel /*quality*/) { // this doesn't work correctly yet - it could be improved to handle solid gradients, but // postscript can't do semi-transparent ones. notPossibleInPostscriptAssert // you can disable this warning by setting the WARN_ABOUT_NON_POSTSCRIPT_OPERATIONS flag at the top of this file writeClip(); out << "gsave "; { Path p (path); p.applyTransform (t.translated ((float) xOffset, (float) yOffset)); writePath (p); out << "clip\n"; } int numColours = 256; PixelARGB* const colours = gradient.createLookupTable (numColours); for (int i = numColours; --i >= 0;) colours[i].unpremultiply(); const Rectangle bounds (clip->getBounds()); // ideally this would draw lots of lines or ellipses to approximate the gradient, but for the // time-being, this just fills it with the average colour.. writeColour (Colour (colours [numColours / 2].getARGB())); out << bounds.getX() << ' ' << -bounds.getBottom() << ' ' << bounds.getWidth() << ' ' << bounds.getHeight() << " rectfill\n"; juce_free (colours); out << "grestore\n"; } void LowLevelGraphicsPostScriptRenderer::fillPathWithImage (const Path& path, const AffineTransform& transform, const Image& sourceImage, int imageX, int imageY, float opacity, EdgeTable::OversamplingLevel /*quality*/) { writeClip(); out << "gsave "; Path p (path); p.applyTransform (transform.translated ((float) xOffset, (float) yOffset)); writePath (p); out << "clip\n"; blendImage (sourceImage, imageX, imageY, sourceImage.getWidth(), sourceImage.getHeight(), 0, 0, opacity); out << "grestore\n"; } void LowLevelGraphicsPostScriptRenderer::fillAlphaChannelWithColour (const Image& /*clipImage*/, int x, int y, const Colour& colour) { x += xOffset; y += yOffset; writeClip(); writeColour (colour); notPossibleInPostscriptAssert // you can disable this warning by setting the WARN_ABOUT_NON_POSTSCRIPT_OPERATIONS flag at the top of this file } void LowLevelGraphicsPostScriptRenderer::fillAlphaChannelWithGradient (const Image& /*alphaChannelImage*/, int imageX, int imageY, const ColourGradient& /*gradient*/) { imageX += xOffset; imageY += yOffset; writeClip(); notPossibleInPostscriptAssert // you can disable this warning by setting the WARN_ABOUT_NON_POSTSCRIPT_OPERATIONS flag at the top of this file } void LowLevelGraphicsPostScriptRenderer::fillAlphaChannelWithImage (const Image& /*alphaImage*/, int alphaImageX, int alphaImageY, const Image& /*fillerImage*/, int fillerImageX, int fillerImageY, float /*opacity*/) { alphaImageX += xOffset; alphaImageY += yOffset; fillerImageX += xOffset; fillerImageY += yOffset; writeClip(); notPossibleInPostscriptAssert // you can disable this warning by setting the WARN_ABOUT_NON_POSTSCRIPT_OPERATIONS flag at the top of this file } void LowLevelGraphicsPostScriptRenderer::blendImageRescaling (const Image& sourceImage, int dx, int dy, int dw, int dh, int sx, int sy, int sw, int sh, float alpha, const Graphics::ResamplingQuality quality) { if (sw > 0 && sh > 0) { jassert (sx >= 0 && sx + sw <= sourceImage.getWidth()); jassert (sy >= 0 && sy + sh <= sourceImage.getHeight()); if (sw == dw && sh == dh) { blendImage (sourceImage, dx, dy, dw, dh, sx, sy, alpha); } else { blendImageWarping (sourceImage, sx, sy, sw, sh, AffineTransform::scale (dw / (float) sw, dh / (float) sh) .translated ((float) (dx - sx), (float) (dy - sy)), alpha, quality); } } } void LowLevelGraphicsPostScriptRenderer::blendImage (const Image& sourceImage, int dx, int dy, int dw, int dh, int sx, int sy, float opacity) { blendImageWarping (sourceImage, sx, sy, dw, dh, AffineTransform::translation ((float) dx, (float) dy), opacity, Graphics::highResamplingQuality); } void LowLevelGraphicsPostScriptRenderer::writeImage (const Image& im, const int sx, const int sy, const int maxW, const int maxH) const { out << "{<\n"; const int w = jmin (maxW, im.getWidth()); const int h = jmin (maxH, im.getHeight()); int charsOnLine = 0; int lineStride, pixelStride; const uint8* data = im.lockPixelDataReadOnly (0, 0, w, h, lineStride, pixelStride); Colour pixel; for (int y = h; --y >= 0;) { for (int x = 0; x < w; ++x) { const uint8* pixelData = data + lineStride * y + pixelStride * x; if (x >= sx && y >= sy) { if (im.isARGB()) { PixelARGB p (*(const PixelARGB*) pixelData); p.unpremultiply(); pixel = Colours::white.overlaidWith (Colour (p.getARGB())); } else if (im.isRGB()) { pixel = Colour (((const PixelRGB*) pixelData)->getARGB()); } else { pixel = Colour ((uint8) 0, (uint8) 0, (uint8) 0, *pixelData); } } else { pixel = Colours::transparentWhite; } char colourString [16]; sprintf (colourString, "%x%x%x", pixel.getRed(), pixel.getGreen(), pixel.getBlue()); out << (const char*) colourString; charsOnLine += 3; if (charsOnLine > 100) { out << '\n'; charsOnLine = 0; } } } im.releasePixelDataReadOnly (data); out << "\n>}\n"; } void LowLevelGraphicsPostScriptRenderer::blendImageWarping (const Image& sourceImage, int srcClipX, int srcClipY, int srcClipW, int srcClipH, const AffineTransform& t, float /*opacity*/, const Graphics::ResamplingQuality /*quality*/) { const int w = jmin (sourceImage.getWidth(), srcClipX + srcClipW); const int h = jmin (sourceImage.getHeight(), srcClipY + srcClipH); writeClip(); out << "gsave "; writeTransform (t.translated ((float) xOffset, (float) yOffset) .scaled (1.0f, -1.0f)); RectangleList imageClip; sourceImage.createSolidAreaMask (imageClip, 0.5f); imageClip.clipTo (Rectangle (srcClipX, srcClipY, srcClipW, srcClipH)); out << "newpath "; int itemsOnLine = 0; for (RectangleList::Iterator i (imageClip); i.next();) { if (++itemsOnLine == 6) { out << '\n'; itemsOnLine = 0; } const Rectangle& r = *i.getRectangle(); out << r.getX() << ' ' << r.getY() << ' ' << r.getWidth() << ' ' << r.getHeight() << " pr "; } out << " clip newpath\n"; out << w << ' ' << h << " scale\n"; out << w << ' ' << h << " 8 [" << w << " 0 0 -" << h << ' ' << (int) 0 << ' ' << h << " ]\n"; writeImage (sourceImage, srcClipX, srcClipY, srcClipW, srcClipH); out << "false 3 colorimage grestore\n"; needToClip = true; } void LowLevelGraphicsPostScriptRenderer::drawLine (double x1, double y1, double x2, double y2, const Colour& colour) { Path p; p.addLineSegment ((float) x1, (float) y1, (float) x2, (float) y2, 1.0f); fillPathWithColour (p, AffineTransform::identity, colour, EdgeTable::Oversampling_256times); } void LowLevelGraphicsPostScriptRenderer::drawVerticalLine (const int x, double top, double bottom, const Colour& col) { drawLine (x, top, x, bottom, col); } void LowLevelGraphicsPostScriptRenderer::drawHorizontalLine (const int y, double left, double right, const Colour& col) { drawLine (left, y, right, y, col); } END_JUCE_NAMESPACE /********* End of inlined file: juce_LowLevelGraphicsPostScriptRenderer.cpp *********/ /********* Start of inlined file: juce_LowLevelGraphicsSoftwareRenderer.cpp *********/ BEGIN_JUCE_NAMESPACE #if (JUCE_WINDOWS || JUCE_LINUX) && ! JUCE_64BIT #define JUCE_USE_SSE_INSTRUCTIONS 1 #endif #if JUCE_DEBUG && JUCE_MSVC #pragma warning (disable: 4714) #endif #define MINIMUM_COORD -0x3fffffff #define MAXIMUM_COORD 0x3fffffff #undef ASSERT_COORDS_ARE_SENSIBLE_NUMBERS #define ASSERT_COORDS_ARE_SENSIBLE_NUMBERS(x, y, w, h) \ jassert ((int) x >= MINIMUM_COORD \ && (int) x <= MAXIMUM_COORD \ && (int) y >= MINIMUM_COORD \ && (int) y <= MAXIMUM_COORD \ && (int) w >= 0 \ && (int) w < MAXIMUM_COORD \ && (int) h >= 0 \ && (int) h < MAXIMUM_COORD); static void replaceRectRGB (uint8* pixels, const int w, int h, const int stride, const Colour& colour) throw() { const PixelARGB blendColour (colour.getPixelARGB()); if (w < 32) { while (--h >= 0) { PixelRGB* dest = (PixelRGB*) pixels; for (int i = w; --i >= 0;) (dest++)->set (blendColour); pixels += stride; } } else { // for wider fills, it's worth using some optimisations.. const uint8 r = blendColour.getRed(); const uint8 g = blendColour.getGreen(); const uint8 b = blendColour.getBlue(); if (r == g && r == b) // if all the component values are the same, we can cheat.. { while (--h >= 0) { memset (pixels, r, w * 3); pixels += stride; } } else { PixelRGB filler [4]; filler[0].set (blendColour); filler[1].set (blendColour); filler[2].set (blendColour); filler[3].set (blendColour); const int* const intFiller = (const int*) filler; while (--h >= 0) { uint8* dest = (uint8*) pixels; int i = w; while ((i > 8) && (((pointer_sized_int) dest & 7) != 0)) { ((PixelRGB*) dest)->set (blendColour); dest += 3; --i; } while (i >= 4) { ((int*) dest) [0] = intFiller[0]; ((int*) dest) [1] = intFiller[1]; ((int*) dest) [2] = intFiller[2]; dest += 12; i -= 4; } while (--i >= 0) { ((PixelRGB*) dest)->set (blendColour); dest += 3; } pixels += stride; } } } } static void replaceRectARGB (uint8* pixels, const int w, int h, const int stride, const Colour& colour) throw() { const PixelARGB blendColour (colour.getPixelARGB()); while (--h >= 0) { PixelARGB* const dest = (PixelARGB*) pixels; for (int i = 0; i < w; ++i) dest[i] = blendColour; pixels += stride; } } static void blendRectRGB (uint8* pixels, const int w, int h, const int stride, const Colour& colour) throw() { if (colour.isOpaque()) { replaceRectRGB (pixels, w, h, stride, colour); } else { const PixelARGB blendColour (colour.getPixelARGB()); const int alpha = blendColour.getAlpha(); if (alpha <= 0) return; #if JUCE_USE_SSE_INSTRUCTIONS if (SystemStats::hasSSE()) { int64 rgb0 = (((int64) blendColour.getRed()) << 32) | (int64) ((blendColour.getGreen() << 16) | blendColour.getBlue()); const int invAlpha = 0xff - alpha; int64 aaaa = (invAlpha << 16) | invAlpha; aaaa = (aaaa << 16) | aaaa; #ifndef JUCE_GCC __asm { movq mm1, aaaa movq mm2, rgb0 pxor mm7, mm7 } while (--h >= 0) { __asm { mov edx, pixels mov ebx, w pixloop: prefetchnta [edx] mov ax, [edx + 1] shl eax, 8 mov al, [edx] movd mm0, eax punpcklbw mm0, mm7 pmullw mm0, mm1 psrlw mm0, 8 paddw mm0, mm2 packuswb mm0, mm7 movd eax, mm0 mov [edx], al inc edx shr eax, 8 mov [edx], ax add edx, 2 dec ebx jg pixloop } pixels += stride; } __asm emms #else __asm__ __volatile__ ( "\tpush %%ebx \n" "\tmovq %[aaaa], %%mm1 \n" "\tmovq %[rgb0], %%mm2 \n" "\tpxor %%mm7, %%mm7 \n" ".lineLoop2: \n" "\tmovl %%esi,%%edx \n" "\tmovl %[w], %%ebx \n" ".pixLoop2: \n" "\tprefetchnta (%%edx) \n" "\tmov (%%edx), %%ax \n" "\tshl $8, %%eax \n" "\tmov 2(%%edx), %%al \n" "\tmovd %%eax, %%mm0 \n" "\tpunpcklbw %%mm7, %%mm0 \n" "\tpmullw %%mm1, %%mm0 \n" "\tpsrlw $8, %%mm0 \n" "\tpaddw %%mm2, %%mm0 \n" "\tpackuswb %%mm7, %%mm0 \n" "\tmovd %%mm0, %%eax \n" "\tmovb %%al, (%%edx) \n" "\tinc %%edx \n" "\tshr $8, %%eax \n" "\tmovw %%ax, (%%edx) \n" "\tadd $2, %%edx \n" "\tdec %%ebx \n" "\tjg .pixLoop2 \n" "\tadd %%edi, %%esi \n" "\tdec %%ecx \n" "\tjg .lineLoop2 \n" "\tpop %%ebx \n" "\temms \n" : /* No output registers */ : [aaaa] "m" (aaaa), /* Input registers */ [rgb0] "m" (rgb0), [w] "m" (w), "c" (h), [stride] "D" (stride), [pixels] "S" (pixels) : "cc", "eax", "edx", "memory" /* Clobber list */ ); #endif } else #endif { while (--h >= 0) { PixelRGB* dest = (PixelRGB*) pixels; for (int i = w; --i >= 0;) (dest++)->blend (blendColour); pixels += stride; } } } } static void blendRectARGB (uint8* pixels, const int w, int h, const int stride, const Colour& colour) throw() { if (colour.isOpaque()) { replaceRectARGB (pixels, w, h, stride, colour); } else { const PixelARGB blendColour (colour.getPixelARGB()); const int alpha = blendColour.getAlpha(); if (alpha <= 0) return; while (--h >= 0) { PixelARGB* dest = (PixelARGB*) pixels; for (int i = w; --i >= 0;) (dest++)->blend (blendColour); pixels += stride; } } } static void blendAlphaMapARGB (uint8* destPixel, const int imageStride, const uint8* alphaValues, const int w, int h, const int pixelStride, const int lineStride, const Colour& colour) throw() { const PixelARGB srcPix (colour.getPixelARGB()); while (--h >= 0) { PixelARGB* dest = (PixelARGB*) destPixel; const uint8* src = alphaValues; int i = w; while (--i >= 0) { unsigned int srcAlpha = *src; src += pixelStride; if (srcAlpha > 0) dest->blend (srcPix, srcAlpha); ++dest; } alphaValues += lineStride; destPixel += imageStride; } } static void blendAlphaMapRGB (uint8* destPixel, const int imageStride, const uint8* alphaValues, int const width, int height, const int pixelStride, const int lineStride, const Colour& colour) throw() { const PixelARGB srcPix (colour.getPixelARGB()); while (--height >= 0) { PixelRGB* dest = (PixelRGB*) destPixel; const uint8* src = alphaValues; int i = width; while (--i >= 0) { unsigned int srcAlpha = *src; src += pixelStride; if (srcAlpha > 0) dest->blend (srcPix, srcAlpha); ++dest; } alphaValues += lineStride; destPixel += imageStride; } } template class SolidColourEdgeTableRenderer { uint8* const data; const int stride; PixelType* linePixels; PixelARGB sourceColour; SolidColourEdgeTableRenderer (const SolidColourEdgeTableRenderer&); const SolidColourEdgeTableRenderer& operator= (const SolidColourEdgeTableRenderer&); public: SolidColourEdgeTableRenderer (uint8* const data_, const int stride_, const Colour& colour) throw() : data (data_), stride (stride_), sourceColour (colour.getPixelARGB()) { } forcedinline void setEdgeTableYPos (const int y) throw() { linePixels = (PixelType*) (data + stride * y); } forcedinline void handleEdgeTablePixel (const int x, const int alphaLevel) const throw() { linePixels[x].blend (sourceColour, alphaLevel); } forcedinline void handleEdgeTableLine (const int x, int width, const int alphaLevel) const throw() { PixelARGB p (sourceColour); p.multiplyAlpha (alphaLevel); PixelType* dest = linePixels + x; if (p.getAlpha() < 0xff) { do { dest->blend (p); ++dest; } while (--width > 0); } else { do { dest->set (p); ++dest; } while (--width > 0); } } }; class AlphaBitmapRenderer { uint8* data; int stride; uint8* lineStart; AlphaBitmapRenderer (const AlphaBitmapRenderer&); const AlphaBitmapRenderer& operator= (const AlphaBitmapRenderer&); public: AlphaBitmapRenderer (uint8* const data_, const int stride_) throw() : data (data_), stride (stride_) { } forcedinline void setEdgeTableYPos (const int y) throw() { lineStart = data + (stride * y); } forcedinline void handleEdgeTablePixel (const int x, const int alphaLevel) const throw() { lineStart [x] = (uint8) alphaLevel; } forcedinline void handleEdgeTableLine (const int x, int width, const int alphaLevel) const throw() { uint8* d = lineStart + x; while (--width >= 0) *d++ = (uint8) alphaLevel; } }; static const int numScaleBits = 12; class LinearGradientPixelGenerator { const PixelARGB* const lookupTable; const int numEntries; PixelARGB linePix; int start, scale; double grad, yTerm; bool vertical, horizontal; LinearGradientPixelGenerator (const LinearGradientPixelGenerator&); const LinearGradientPixelGenerator& operator= (const LinearGradientPixelGenerator&); public: LinearGradientPixelGenerator (const ColourGradient& gradient, const PixelARGB* const lookupTable_, const int numEntries_) : lookupTable (lookupTable_), numEntries (numEntries_) { jassert (numEntries_ >= 0); float x1 = gradient.x1; float y1 = gradient.y1; float x2 = gradient.x2; float y2 = gradient.y2; if (! gradient.transform.isIdentity()) { Line l (x2, y2, x1, y1); const Point p3 = l.getPointAlongLine (0.0, 100.0f); float x3 = p3.getX(); float y3 = p3.getY(); gradient.transform.transformPoint (x1, y1); gradient.transform.transformPoint (x2, y2); gradient.transform.transformPoint (x3, y3); Line l2 (x2, y2, x3, y3); float prop = l2.findNearestPointTo (x1, y1); const Point newP2 (l2.getPointAlongLineProportionally (prop)); x2 = newP2.getX(); y2 = newP2.getY(); } vertical = fabs (x1 - x2) < 0.001f; horizontal = fabs (y1 - y2) < 0.001f; if (vertical) { scale = roundDoubleToInt ((numEntries << numScaleBits) / (double) (y2 - y1)); start = roundDoubleToInt (y1 * scale); } else if (horizontal) { scale = roundDoubleToInt ((numEntries << numScaleBits) / (double) (x2 - x1)); start = roundDoubleToInt (x1 * scale); } else { grad = (y2 - y1) / (double) (x1 - x2); yTerm = y1 - x1 / grad; scale = roundDoubleToInt ((numEntries << numScaleBits) / (yTerm * grad - (y2 * grad - x2))); grad *= scale; } } forcedinline void setY (const int y) throw() { if (vertical) linePix = lookupTable [jlimit (0, numEntries, (y * scale - start) >> numScaleBits)]; else if (! horizontal) start = roundDoubleToInt ((y - yTerm) * grad); } forcedinline const PixelARGB getPixel (const int x) const throw() { if (vertical) return linePix; return lookupTable [jlimit (0, numEntries, (x * scale - start) >> numScaleBits)]; } }; class RadialGradientPixelGenerator { protected: const PixelARGB* const lookupTable; const int numEntries; const double gx1, gy1; double maxDist, invScale; double dy; RadialGradientPixelGenerator (const RadialGradientPixelGenerator&); const RadialGradientPixelGenerator& operator= (const RadialGradientPixelGenerator&); public: RadialGradientPixelGenerator (const ColourGradient& gradient, const PixelARGB* const lookupTable_, const int numEntries_) throw() : lookupTable (lookupTable_), numEntries (numEntries_), gx1 (gradient.x1), gy1 (gradient.y1) { jassert (numEntries_ >= 0); const float dx = gradient.x1 - gradient.x2; const float dy = gradient.y1 - gradient.y2; maxDist = dx * dx + dy * dy; invScale = (numEntries + 1) / sqrt (maxDist); } forcedinline void setY (const int y) throw() { dy = y - gy1; dy *= dy; } forcedinline const PixelARGB getPixel (const int px) const throw() { double x = px - gx1; x *= x; x += dy; if (x >= maxDist) return lookupTable [numEntries]; else return lookupTable [jmin (numEntries, roundDoubleToInt (sqrt (x) * invScale))]; } }; class TransformedRadialGradientPixelGenerator : public RadialGradientPixelGenerator { double tM10, tM00, lineYM01, lineYM11; AffineTransform inverseTransform; TransformedRadialGradientPixelGenerator (const TransformedRadialGradientPixelGenerator&); const TransformedRadialGradientPixelGenerator& operator= (const TransformedRadialGradientPixelGenerator&); public: TransformedRadialGradientPixelGenerator (const ColourGradient& gradient, const PixelARGB* const lookupTable_, const int numEntries_) throw() : RadialGradientPixelGenerator (gradient, lookupTable_, numEntries_), inverseTransform (gradient.transform.inverted()) { tM10 = inverseTransform.mat10; tM00 = inverseTransform.mat00; } forcedinline void setY (const int y) throw() { lineYM01 = inverseTransform.mat01 * y + inverseTransform.mat02 - gx1; lineYM11 = inverseTransform.mat11 * y + inverseTransform.mat12 - gy1; } forcedinline const PixelARGB getPixel (const int px) const throw() { double x = px; const double y = tM10 * x + lineYM11; x = tM00 * x + lineYM01; x *= x; x += y * y; if (x >= maxDist) return lookupTable [numEntries]; else return lookupTable [jmin (numEntries, roundDoubleToInt (sqrt (x) * invScale))]; } }; template class GradientEdgeTableRenderer : public GradientType { uint8* const data; const int stride; PixelType* linePixels; GradientEdgeTableRenderer (const GradientEdgeTableRenderer&); const GradientEdgeTableRenderer& operator= (const GradientEdgeTableRenderer&); public: GradientEdgeTableRenderer (uint8* const data_, const int stride_, const ColourGradient& gradient, const PixelARGB* const lookupTable, const int numEntries) throw() : GradientType (gradient, lookupTable, numEntries - 1), data (data_), stride (stride_) { } forcedinline void setEdgeTableYPos (const int y) throw() { linePixels = (PixelType*) (data + stride * y); GradientType::setY (y); } forcedinline void handleEdgeTablePixel (const int x, const int alphaLevel) const throw() { linePixels[x].blend (GradientType::getPixel (x), alphaLevel); } forcedinline void handleEdgeTableLine (int x, int width, const int alphaLevel) const throw() { PixelType* dest = linePixels + x; if (alphaLevel < 0xff) { do { (dest++)->blend (GradientType::getPixel (x++), alphaLevel); } while (--width > 0); } else { do { (dest++)->blend (GradientType::getPixel (x++)); } while (--width > 0); } } }; template class ImageFillEdgeTableRenderer { uint8* const destImageData; const uint8* srcImageData; int stride, srcStride, extraAlpha; DestPixelType* linePixels; SrcPixelType* sourceLineStart; ImageFillEdgeTableRenderer (const ImageFillEdgeTableRenderer&); const ImageFillEdgeTableRenderer& operator= (const ImageFillEdgeTableRenderer&); public: ImageFillEdgeTableRenderer (uint8* const destImageData_, const int stride_, const uint8* srcImageData_, const int srcStride_, int extraAlpha_, SrcPixelType*) throw() // dummy param to avoid compiler error : destImageData (destImageData_), srcImageData (srcImageData_), stride (stride_), srcStride (srcStride_), extraAlpha (extraAlpha_) { } forcedinline void setEdgeTableYPos (int y) throw() { linePixels = (DestPixelType*) (destImageData + stride * y); sourceLineStart = (SrcPixelType*) (srcImageData + srcStride * y); } forcedinline void handleEdgeTablePixel (const int x, int alphaLevel) const throw() { alphaLevel = (alphaLevel * extraAlpha) >> 8; linePixels[x].blend (sourceLineStart [x], alphaLevel); } forcedinline void handleEdgeTableLine (int x, int width, int alphaLevel) const throw() { DestPixelType* dest = linePixels + x; alphaLevel = (alphaLevel * extraAlpha) >> 8; if (alphaLevel < 0xfe) { do { dest++ ->blend (sourceLineStart [x++], alphaLevel); } while (--width > 0); } else { do { dest++ ->blend (sourceLineStart [x++]); } while (--width > 0); } } }; static void blendRowOfPixels (PixelARGB* dst, const PixelRGB* src, int width) throw() { while (--width >= 0) (dst++)->set (*src++); } static void blendRowOfPixels (PixelRGB* dst, const PixelRGB* src, int width) throw() { memcpy (dst, src, 3 * width); } static void blendRowOfPixels (PixelRGB* dst, const PixelARGB* src, int width) throw() { while (--width >= 0) (dst++)->blend (*src++); } static void blendRowOfPixels (PixelARGB* dst, const PixelARGB* src, int width) throw() { while (--width >= 0) (dst++)->blend (*src++); } static void blendRowOfPixels (PixelARGB* dst, const PixelRGB* src, int width, const uint8 alpha) throw() { while (--width >= 0) (dst++)->blend (*src++, alpha); } static void blendRowOfPixels (PixelRGB* dst, const PixelRGB* src, int width, const uint8 alpha) throw() { uint8* d = (uint8*) dst; const uint8* s = (const uint8*) src; const int inverseAlpha = 0xff - alpha; while (--width >= 0) { d[0] = (uint8) (s[0] + (((d[0] - s[0]) * inverseAlpha) >> 8)); d[1] = (uint8) (s[1] + (((d[1] - s[1]) * inverseAlpha) >> 8)); d[2] = (uint8) (s[2] + (((d[2] - s[2]) * inverseAlpha) >> 8)); d += 3; s += 3; } } static void blendRowOfPixels (PixelRGB* dst, const PixelARGB* src, int width, const uint8 alpha) throw() { while (--width >= 0) (dst++)->blend (*src++, alpha); } static void blendRowOfPixels (PixelARGB* dst, const PixelARGB* src, int width, const uint8 alpha) throw() { while (--width >= 0) (dst++)->blend (*src++, alpha); } template static void overlayImage (DestPixelType* dest, const int destStride, const SrcPixelType* src, const int srcStride, const int width, int height, const uint8 alpha) throw() { if (alpha < 0xff) { while (--height >= 0) { blendRowOfPixels (dest, src, width, alpha); dest = (DestPixelType*) (((uint8*) dest) + destStride); src = (const SrcPixelType*) (((const uint8*) src) + srcStride); } } else { while (--height >= 0) { blendRowOfPixels (dest, src, width); dest = (DestPixelType*) (((uint8*) dest) + destStride); src = (const SrcPixelType*) (((const uint8*) src) + srcStride); } } } template static void transformedImageRender (Image& destImage, const Image& sourceImage, const int destClipX, const int destClipY, const int destClipW, const int destClipH, const int srcClipX, const int srcClipY, const int srcClipWidth, const int srcClipHeight, double srcX, double srcY, const double lineDX, const double lineDY, const double pixelDX, const double pixelDY, const uint8 alpha, const Graphics::ResamplingQuality quality, DestPixelType*, SrcPixelType*) throw() // forced by a compiler bug to include dummy // parameters of the templated classes to // make it use the correct instance of this function.. { int destStride, destPixelStride; uint8* const destPixels = destImage.lockPixelDataReadWrite (destClipX, destClipY, destClipW, destClipH, destStride, destPixelStride); int srcStride, srcPixelStride; const uint8* const srcPixels = sourceImage.lockPixelDataReadOnly (srcClipX, srcClipY, srcClipWidth, srcClipHeight, srcStride, srcPixelStride); if (quality == Graphics::lowResamplingQuality) // nearest-neighbour.. { if (alpha == 255) { for (int y = 0; y < destClipH; ++y) { double sx = srcX; double sy = srcY; DestPixelType* dest = (DestPixelType*) (destPixels + destStride * y); for (int x = destClipW; --x >= 0;) { const int ix = ((int) sx) - srcClipX; if (((unsigned int) ix) < (unsigned int) srcClipWidth) { const int iy = ((int) sy) - srcClipY; if (((unsigned int) iy) < (unsigned int) srcClipHeight) { const SrcPixelType* const src = (const SrcPixelType*) (srcPixels + srcStride * iy + srcPixelStride * ix); dest->set (*src); } } ++dest; sx += pixelDX; sy += pixelDY; } srcX += lineDX; srcY += lineDY; } } else { for (int y = 0; y < destClipH; ++y) { double sx = srcX; double sy = srcY; DestPixelType* dest = (DestPixelType*) (destPixels + destStride * y); for (int x = destClipW; --x >= 0;) { const int ix = ((int) sx) - srcClipX; if (((unsigned int) ix) < (unsigned int) srcClipWidth) { const int iy = ((int) sy) - srcClipY; if (((unsigned int) iy) < (unsigned int) srcClipHeight) { const SrcPixelType* const src = (const SrcPixelType*) (srcPixels + srcStride * iy + srcPixelStride * ix); dest->blend (*src, alpha); } } ++dest; sx += pixelDX; sy += pixelDY; } srcX += lineDX; srcY += lineDY; } } } else { jassert (quality == Graphics::mediumResamplingQuality); // (only bilinear is implemented, so that's what you'll get here..) for (int y = 0; y < destClipH; ++y) { double sx = srcX - (srcClipWidth == destClipW ? 0.0 : 0.5); double sy = srcY - (srcClipHeight == destClipH ? 0.0 : 0.5); DestPixelType* dest = (DestPixelType*) (destPixels + destStride * y); for (int x = 0; x < destClipW; ++x) { const double fx = floor (sx); const double fy = floor (sy); const int ix = roundDoubleToInt (fx) - srcClipX; const int iy = roundDoubleToInt (fy) - srcClipY; if (ix < srcClipWidth && iy < srcClipHeight) { PixelARGB p1 (0), p2 (0), p3 (0), p4 (0); const SrcPixelType* src = (const SrcPixelType*) (srcPixels + srcStride * iy + srcPixelStride * ix); if (iy >= 0) { if (ix >= 0) p1.set (src[0]); if (((unsigned int) (ix + 1)) < (unsigned int) srcClipWidth) p2.set (src[1]); } if (((unsigned int) (iy + 1)) < (unsigned int) srcClipHeight) { src = (const SrcPixelType*) (((const uint8*) src) + srcStride); if (ix >= 0) p3.set (src[0]); if (((unsigned int) (ix + 1)) < (unsigned int) srcClipWidth) p4.set (src[1]); } const int dx = roundDoubleToInt ((sx - fx) * 255.0); p1.tween (p2, dx); p3.tween (p4, dx); p1.tween (p3, roundDoubleToInt ((sy - fy) * 255.0)); if (p1.getAlpha() > 0) dest->blend (p1, alpha); } ++dest; sx += pixelDX; sy += pixelDY; } srcX += lineDX; srcY += lineDY; } } destImage.releasePixelDataReadWrite (destPixels); sourceImage.releasePixelDataReadOnly (srcPixels); } template static void renderAlphaMap (DestPixelType* destPixels, int destStride, SrcPixelType* srcPixels, int srcStride, const uint8* alphaValues, const int lineStride, const int pixelStride, int width, int height, const int extraAlpha) throw() { while (--height >= 0) { SrcPixelType* srcPix = srcPixels; srcPixels = (SrcPixelType*) (((const uint8*) srcPixels) + srcStride); DestPixelType* destPix = destPixels; destPixels = (DestPixelType*) (((uint8*) destPixels) + destStride); const uint8* alpha = alphaValues; alphaValues += lineStride; if (extraAlpha < 0x100) { for (int i = width; --i >= 0;) { destPix++ ->blend (*srcPix++, (extraAlpha * *alpha) >> 8); alpha += pixelStride; } } else { for (int i = width; --i >= 0;) { destPix++ ->blend (*srcPix++, *alpha); alpha += pixelStride; } } } } LowLevelGraphicsSoftwareRenderer::LowLevelGraphicsSoftwareRenderer (Image& image_) : image (image_), xOffset (0), yOffset (0), stateStack (20) { clip = new RectangleList (Rectangle (0, 0, image_.getWidth(), image_.getHeight())); } LowLevelGraphicsSoftwareRenderer::~LowLevelGraphicsSoftwareRenderer() { delete clip; } bool LowLevelGraphicsSoftwareRenderer::isVectorDevice() const { return false; } void LowLevelGraphicsSoftwareRenderer::setOrigin (int x, int y) { xOffset += x; yOffset += y; } bool LowLevelGraphicsSoftwareRenderer::reduceClipRegion (int x, int y, int w, int h) { return clip->clipTo (Rectangle (x + xOffset, y + yOffset, w, h)); } bool LowLevelGraphicsSoftwareRenderer::reduceClipRegion (const RectangleList& clipRegion) { RectangleList temp (clipRegion); temp.offsetAll (xOffset, yOffset); return clip->clipTo (temp); } void LowLevelGraphicsSoftwareRenderer::excludeClipRegion (int x, int y, int w, int h) { clip->subtract (Rectangle (x + xOffset, y + yOffset, w, h)); } bool LowLevelGraphicsSoftwareRenderer::clipRegionIntersects (int x, int y, int w, int h) { return clip->intersectsRectangle (Rectangle (x + xOffset, y + yOffset, w, h)); } const Rectangle LowLevelGraphicsSoftwareRenderer::getClipBounds() const { return clip->getBounds().translated (-xOffset, -yOffset); } bool LowLevelGraphicsSoftwareRenderer::isClipEmpty() const { return clip->isEmpty(); } LowLevelGraphicsSoftwareRenderer::SavedState::SavedState (RectangleList* const clip_, const int xOffset_, const int yOffset_) : clip (clip_), xOffset (xOffset_), yOffset (yOffset_) { } LowLevelGraphicsSoftwareRenderer::SavedState::~SavedState() { delete clip; } void LowLevelGraphicsSoftwareRenderer::saveState() { stateStack.add (new SavedState (new RectangleList (*clip), xOffset, yOffset)); } void LowLevelGraphicsSoftwareRenderer::restoreState() { SavedState* const top = stateStack.getLast(); if (top != 0) { clip->swapWith (*top->clip); xOffset = top->xOffset; yOffset = top->yOffset; stateStack.removeLast(); } else { jassertfalse // trying to pop with an empty stack! } } void LowLevelGraphicsSoftwareRenderer::fillRectWithColour (int x, int y, int w, int h, const Colour& colour, const bool replaceExistingContents) { x += xOffset; y += yOffset; for (RectangleList::Iterator i (*clip); i.next();) { clippedFillRectWithColour (*i.getRectangle(), x, y, w, h, colour, replaceExistingContents); } } void LowLevelGraphicsSoftwareRenderer::clippedFillRectWithColour (const Rectangle& clipRect, int x, int y, int w, int h, const Colour& colour, const bool replaceExistingContents) { if (clipRect.intersectRectangle (x, y, w, h)) { int stride, pixelStride; uint8* const pixels = (uint8*) image.lockPixelDataReadWrite (x, y, w, h, stride, pixelStride); if (image.getFormat() == Image::RGB) { if (replaceExistingContents) replaceRectRGB (pixels, w, h, stride, colour); else blendRectRGB (pixels, w, h, stride, colour); } else if (image.getFormat() == Image::ARGB) { if (replaceExistingContents) replaceRectARGB (pixels, w, h, stride, colour); else blendRectARGB (pixels, w, h, stride, colour); } else { jassertfalse // not done! } image.releasePixelDataReadWrite (pixels); } } void LowLevelGraphicsSoftwareRenderer::fillRectWithGradient (int x, int y, int w, int h, const ColourGradient& gradient) { Path p; p.addRectangle ((float) x, (float) y, (float) w, (float) h); fillPathWithGradient (p, AffineTransform::identity, gradient, EdgeTable::Oversampling_none); } bool LowLevelGraphicsSoftwareRenderer::getPathBounds (int clipX, int clipY, int clipW, int clipH, const Path& path, const AffineTransform& transform, int& x, int& y, int& w, int& h) const { float tx, ty, tw, th; path.getBoundsTransformed (transform, tx, ty, tw, th); x = roundDoubleToInt (tx) - 1; y = roundDoubleToInt (ty) - 1; w = roundDoubleToInt (tw) + 2; h = roundDoubleToInt (th) + 2; // seems like this operation is using some crazy out-of-range numbers.. ASSERT_COORDS_ARE_SENSIBLE_NUMBERS (x, y, w, h); return Rectangle::intersectRectangles (x, y, w, h, clipX, clipY, clipW, clipH); } void LowLevelGraphicsSoftwareRenderer::fillPathWithColour (const Path& path, const AffineTransform& t, const Colour& colour, EdgeTable::OversamplingLevel quality) { for (RectangleList::Iterator i (*clip); i.next();) { const Rectangle& r = *i.getRectangle(); clippedFillPathWithColour (r.getX(), r.getY(), r.getWidth(), r.getHeight(), path, t, colour, quality); } } void LowLevelGraphicsSoftwareRenderer::clippedFillPathWithColour (int clipX, int clipY, int clipW, int clipH, const Path& path, const AffineTransform& t, const Colour& colour, EdgeTable::OversamplingLevel quality) { const AffineTransform transform (t.translated ((float) xOffset, (float) yOffset)); int cx, cy, cw, ch; if (getPathBounds (clipX, clipY, clipW, clipH, path, transform, cx, cy, cw, ch)) { EdgeTable edgeTable (0, ch, quality); edgeTable.addPath (path, transform.translated ((float) -cx, (float) -cy)); int stride, pixelStride; uint8* const pixels = (uint8*) image.lockPixelDataReadWrite (cx, cy, cw, ch, stride, pixelStride); if (image.getFormat() == Image::RGB) { jassert (pixelStride == 3); SolidColourEdgeTableRenderer renderer (pixels, stride, colour); edgeTable.iterate (renderer, 0, 0, cw, ch, 0); } else if (image.getFormat() == Image::ARGB) { jassert (pixelStride == 4); SolidColourEdgeTableRenderer renderer (pixels, stride, colour); edgeTable.iterate (renderer, 0, 0, cw, ch, 0); } else if (image.getFormat() == Image::SingleChannel) { jassert (pixelStride == 1); AlphaBitmapRenderer renderer (pixels, stride); edgeTable.iterate (renderer, 0, 0, cw, ch, 0); } image.releasePixelDataReadWrite (pixels); } } void LowLevelGraphicsSoftwareRenderer::fillPathWithGradient (const Path& path, const AffineTransform& t, const ColourGradient& gradient, EdgeTable::OversamplingLevel quality) { for (RectangleList::Iterator i (*clip); i.next();) { const Rectangle& r = *i.getRectangle(); clippedFillPathWithGradient (r.getX(), r.getY(), r.getWidth(), r.getHeight(), path, t, gradient, quality); } } void LowLevelGraphicsSoftwareRenderer::clippedFillPathWithGradient (int clipX, int clipY, int clipW, int clipH, const Path& path, const AffineTransform& t, const ColourGradient& gradient, EdgeTable::OversamplingLevel quality) { const AffineTransform transform (t.translated ((float) xOffset, (float) yOffset)); int cx, cy, cw, ch; if (getPathBounds (clipX, clipY, clipW, clipH, path, transform, cx, cy, cw, ch)) { int stride, pixelStride; uint8* const pixels = (uint8*) image.lockPixelDataReadWrite (cx, cy, cw, ch, stride, pixelStride); ColourGradient g2 (gradient); const bool isIdentity = g2.transform.isIdentity(); if (isIdentity) { g2.x1 += xOffset - cx; g2.x2 += xOffset - cx; g2.y1 += yOffset - cy; g2.y2 += yOffset - cy; } else { g2.transform = g2.transform.translated ((float) (xOffset - cx), (float) (yOffset - cy)); } int numLookupEntries; PixelARGB* const lookupTable = g2.createLookupTable (numLookupEntries); jassert (numLookupEntries > 0); EdgeTable edgeTable (0, ch, quality); edgeTable.addPath (path, transform.translated ((float) -cx, (float) -cy)); if (image.getFormat() == Image::RGB) { jassert (pixelStride == 3); if (g2.isRadial) { if (isIdentity) { GradientEdgeTableRenderer renderer (pixels, stride, g2, lookupTable, numLookupEntries); edgeTable.iterate (renderer, 0, 0, cw, ch, 0); } else { GradientEdgeTableRenderer renderer (pixels, stride, g2, lookupTable, numLookupEntries); edgeTable.iterate (renderer, 0, 0, cw, ch, 0); } } else { GradientEdgeTableRenderer renderer (pixels, stride, g2, lookupTable, numLookupEntries); edgeTable.iterate (renderer, 0, 0, cw, ch, 0); } } else if (image.getFormat() == Image::ARGB) { jassert (pixelStride == 4); if (g2.isRadial) { if (isIdentity) { GradientEdgeTableRenderer renderer (pixels, stride, g2, lookupTable, numLookupEntries); edgeTable.iterate (renderer, 0, 0, cw, ch, 0); } else { GradientEdgeTableRenderer renderer (pixels, stride, g2, lookupTable, numLookupEntries); edgeTable.iterate (renderer, 0, 0, cw, ch, 0); } } else { GradientEdgeTableRenderer renderer (pixels, stride, g2, lookupTable, numLookupEntries); edgeTable.iterate (renderer, 0, 0, cw, ch, 0); } } else if (image.getFormat() == Image::SingleChannel) { jassertfalse // not done! } juce_free (lookupTable); image.releasePixelDataReadWrite (pixels); } } void LowLevelGraphicsSoftwareRenderer::fillPathWithImage (const Path& path, const AffineTransform& transform, const Image& sourceImage, int imageX, int imageY, float opacity, EdgeTable::OversamplingLevel quality) { imageX += xOffset; imageY += yOffset; for (RectangleList::Iterator i (*clip); i.next();) { const Rectangle& r = *i.getRectangle(); clippedFillPathWithImage (r.getX(), r.getY(), r.getWidth(), r.getHeight(), path, transform, sourceImage, imageX, imageY, opacity, quality); } } void LowLevelGraphicsSoftwareRenderer::clippedFillPathWithImage (int x, int y, int w, int h, const Path& path, const AffineTransform& transform, const Image& sourceImage, int imageX, int imageY, float opacity, EdgeTable::OversamplingLevel quality) { if (Rectangle::intersectRectangles (x, y, w, h, imageX, imageY, sourceImage.getWidth(), sourceImage.getHeight())) { EdgeTable edgeTable (0, h, quality); edgeTable.addPath (path, transform.translated ((float) (xOffset - x), (float) (yOffset - y))); int stride, pixelStride; uint8* const pixels = (uint8*) image.lockPixelDataReadWrite (x, y, w, h, stride, pixelStride); int srcStride, srcPixelStride; const uint8* const srcPix = (const uint8*) sourceImage.lockPixelDataReadOnly (x - imageX, y - imageY, w, h, srcStride, srcPixelStride); const int alpha = jlimit (0, 255, roundDoubleToInt (opacity * 255.0f)); if (image.getFormat() == Image::RGB) { if (sourceImage.getFormat() == Image::RGB) { ImageFillEdgeTableRenderer renderer (pixels, stride, srcPix, srcStride, alpha, (PixelRGB*) 0); edgeTable.iterate (renderer, 0, 0, w, h, 0); } else if (sourceImage.getFormat() == Image::ARGB) { ImageFillEdgeTableRenderer renderer (pixels, stride, srcPix, srcStride, alpha, (PixelARGB*) 0); edgeTable.iterate (renderer, 0, 0, w, h, 0); } else { jassertfalse // not done! } } else if (image.getFormat() == Image::ARGB) { if (sourceImage.getFormat() == Image::RGB) { ImageFillEdgeTableRenderer renderer (pixels, stride, srcPix, srcStride, alpha, (PixelRGB*) 0); edgeTable.iterate (renderer, 0, 0, w, h, 0); } else if (sourceImage.getFormat() == Image::ARGB) { ImageFillEdgeTableRenderer renderer (pixels, stride, srcPix, srcStride, alpha, (PixelARGB*) 0); edgeTable.iterate (renderer, 0, 0, w, h, 0); } else { jassertfalse // not done! } } else { jassertfalse // not done! } sourceImage.releasePixelDataReadOnly (srcPix); image.releasePixelDataReadWrite (pixels); } } void LowLevelGraphicsSoftwareRenderer::fillAlphaChannelWithColour (const Image& clipImage, int x, int y, const Colour& colour) { x += xOffset; y += yOffset; for (RectangleList::Iterator i (*clip); i.next();) { const Rectangle& r = *i.getRectangle(); clippedFillAlphaChannelWithColour (r.getX(), r.getY(), r.getWidth(), r.getHeight(), clipImage, x, y, colour); } } void LowLevelGraphicsSoftwareRenderer::clippedFillAlphaChannelWithColour (int clipX, int clipY, int clipW, int clipH, const Image& clipImage, int x, int y, const Colour& colour) { int w = clipImage.getWidth(); int h = clipImage.getHeight(); int sx = 0; int sy = 0; if (x < clipX) { sx = clipX - x; w -= clipX - x; x = clipX; } if (y < clipY) { sy = clipY - y; h -= clipY - y; y = clipY; } if (x + w > clipX + clipW) w = clipX + clipW - x; if (y + h > clipY + clipH) h = clipY + clipH - y; if (w > 0 && h > 0) { int stride, alphaStride, pixelStride; uint8* const pixels = (uint8*) image.lockPixelDataReadWrite (x, y, w, h, stride, pixelStride); const uint8* const alphaValues = clipImage.lockPixelDataReadOnly (sx, sy, w, h, alphaStride, pixelStride); #if JUCE_BIG_ENDIAN const uint8* const alphas = alphaValues; #else const uint8* const alphas = alphaValues + (clipImage.getFormat() == Image::ARGB ? 3 : 0); #endif if (image.getFormat() == Image::RGB) { blendAlphaMapRGB (pixels, stride, alphas, w, h, pixelStride, alphaStride, colour); } else if (image.getFormat() == Image::ARGB) { blendAlphaMapARGB (pixels, stride, alphas, w, h, pixelStride, alphaStride, colour); } else { jassertfalse // not done! } clipImage.releasePixelDataReadOnly (alphaValues); image.releasePixelDataReadWrite (pixels); } } void LowLevelGraphicsSoftwareRenderer::fillAlphaChannelWithGradient (const Image& alphaChannelImage, int imageX, int imageY, const ColourGradient& gradient) { imageX += xOffset; imageY += yOffset; for (RectangleList::Iterator i (*clip); i.next();) { const Rectangle& r = *i.getRectangle(); clippedFillAlphaChannelWithGradient (r.getX(), r.getY(), r.getWidth(), r.getHeight(), alphaChannelImage, imageX, imageY, gradient); } } void LowLevelGraphicsSoftwareRenderer::clippedFillAlphaChannelWithGradient (int x, int y, int w, int h, const Image& alphaChannelImage, int imageX, int imageY, const ColourGradient& gradient) { if (Rectangle::intersectRectangles (x, y, w, h, imageX, imageY, alphaChannelImage.getWidth(), alphaChannelImage.getHeight())) { ColourGradient g2 (gradient); g2.x1 += xOffset - x; g2.x2 += xOffset - x; g2.y1 += yOffset - y; g2.y2 += yOffset - y; Image temp (g2.isOpaque() ? Image::RGB : Image::ARGB, w, h, true); LowLevelGraphicsSoftwareRenderer tempG (temp); tempG.fillRectWithGradient (0, 0, w, h, g2); clippedFillAlphaChannelWithImage (x, y, w, h, alphaChannelImage, imageX, imageY, temp, x, y, 1.0f); } } void LowLevelGraphicsSoftwareRenderer::fillAlphaChannelWithImage (const Image& alphaImage, int alphaImageX, int alphaImageY, const Image& fillerImage, int fillerImageX, int fillerImageY, float opacity) { alphaImageX += xOffset; alphaImageY += yOffset; fillerImageX += xOffset; fillerImageY += yOffset; for (RectangleList::Iterator i (*clip); i.next();) { const Rectangle& r = *i.getRectangle(); clippedFillAlphaChannelWithImage (r.getX(), r.getY(), r.getWidth(), r.getHeight(), alphaImage, alphaImageX, alphaImageY, fillerImage, fillerImageX, fillerImageY, opacity); } } void LowLevelGraphicsSoftwareRenderer::clippedFillAlphaChannelWithImage (int x, int y, int w, int h, const Image& alphaImage, int alphaImageX, int alphaImageY, const Image& fillerImage, int fillerImageX, int fillerImageY, float opacity) { if (Rectangle::intersectRectangles (x, y, w, h, alphaImageX, alphaImageY, alphaImage.getWidth(), alphaImage.getHeight()) && Rectangle::intersectRectangles (x, y, w, h, fillerImageX, fillerImageY, fillerImage.getWidth(), fillerImage.getHeight())) { int dstStride, dstPixStride; uint8* const dstPix = image.lockPixelDataReadWrite (x, y, w, h, dstStride, dstPixStride); int srcStride, srcPixStride; const uint8* const srcPix = fillerImage.lockPixelDataReadOnly (x - fillerImageX, y - fillerImageY, w, h, srcStride, srcPixStride); int maskStride, maskPixStride; const uint8* const alpha = alphaImage.lockPixelDataReadOnly (x - alphaImageX, y - alphaImageY, w, h, maskStride, maskPixStride); #if JUCE_BIG_ENDIAN const uint8* const alphaValues = alpha; #else const uint8* const alphaValues = alpha + (alphaImage.getFormat() == Image::ARGB ? 3 : 0); #endif const int extraAlpha = jlimit (0, 0x100, roundDoubleToInt (opacity * 256.0f)); if (image.getFormat() == Image::RGB) { if (fillerImage.getFormat() == Image::RGB) { renderAlphaMap ((PixelRGB*) dstPix, dstStride, (const PixelRGB*) srcPix, srcStride, alphaValues, maskStride, maskPixStride, w, h, extraAlpha); } else if (fillerImage.getFormat() == Image::ARGB) { renderAlphaMap ((PixelRGB*) dstPix, dstStride, (const PixelARGB*) srcPix, srcStride, alphaValues, maskStride, maskPixStride, w, h, extraAlpha); } else { jassertfalse // not done! } } else if (image.getFormat() == Image::ARGB) { if (fillerImage.getFormat() == Image::RGB) { renderAlphaMap ((PixelARGB*) dstPix, dstStride, (const PixelRGB*) srcPix, srcStride, alphaValues, maskStride, maskPixStride, w, h, extraAlpha); } else if (fillerImage.getFormat() == Image::ARGB) { renderAlphaMap ((PixelARGB*) dstPix, dstStride, (const PixelARGB*) srcPix, srcStride, alphaValues, maskStride, maskPixStride, w, h, extraAlpha); } else { jassertfalse // not done! } } else { jassertfalse // not done! } alphaImage.releasePixelDataReadOnly (alphaValues); fillerImage.releasePixelDataReadOnly (srcPix); image.releasePixelDataReadWrite (dstPix); } } void LowLevelGraphicsSoftwareRenderer::blendImage (const Image& sourceImage, int dx, int dy, int dw, int dh, int sx, int sy, float opacity) { dx += xOffset; dy += yOffset; for (RectangleList::Iterator i (*clip); i.next();) { const Rectangle& r = *i.getRectangle(); clippedBlendImage (r.getX(), r.getY(), r.getWidth(), r.getHeight(), sourceImage, dx, dy, dw, dh, sx, sy, opacity); } } void LowLevelGraphicsSoftwareRenderer::clippedBlendImage (int clipX, int clipY, int clipW, int clipH, const Image& sourceImage, int dx, int dy, int dw, int dh, int sx, int sy, float opacity) { if (dx < clipX) { sx += clipX - dx; dw -= clipX - dx; dx = clipX; } if (dy < clipY) { sy += clipY - dy; dh -= clipY - dy; dy = clipY; } if (dx + dw > clipX + clipW) dw = clipX + clipW - dx; if (dy + dh > clipY + clipH) dh = clipY + clipH - dy; if (dw <= 0 || dh <= 0) return; const uint8 alpha = (uint8) jlimit (0, 0xff, roundDoubleToInt (opacity * 256.0f)); if (alpha == 0) return; int dstStride, dstPixelStride; uint8* const dstPixels = image.lockPixelDataReadWrite (dx, dy, dw, dh, dstStride, dstPixelStride); int srcStride, srcPixelStride; const uint8* const srcPixels = sourceImage.lockPixelDataReadOnly (sx, sy, dw, dh, srcStride, srcPixelStride); if (image.getFormat() == Image::ARGB) { if (sourceImage.getFormat() == Image::ARGB) { overlayImage ((PixelARGB*) dstPixels, dstStride, (PixelARGB*) srcPixels, srcStride, dw, dh, alpha); } else if (sourceImage.getFormat() == Image::RGB) { overlayImage ((PixelARGB*) dstPixels, dstStride, (PixelRGB*) srcPixels, srcStride, dw, dh, alpha); } else { jassertfalse } } else if (image.getFormat() == Image::RGB) { if (sourceImage.getFormat() == Image::ARGB) { overlayImage ((PixelRGB*) dstPixels, dstStride, (PixelARGB*) srcPixels, srcStride, dw, dh, alpha); } else if (sourceImage.getFormat() == Image::RGB) { overlayImage ((PixelRGB*) dstPixels, dstStride, (PixelRGB*) srcPixels, srcStride, dw, dh, alpha); } else { jassertfalse } } else { jassertfalse } image.releasePixelDataReadWrite (dstPixels); sourceImage.releasePixelDataReadOnly (srcPixels); } void LowLevelGraphicsSoftwareRenderer::blendImageRescaling (const Image& sourceImage, int dx, int dy, int dw, int dh, int sx, int sy, int sw, int sh, float alpha, const Graphics::ResamplingQuality quality) { if (sw > 0 && sh > 0) { if (sw == dw && sh == dh) { blendImage (sourceImage, dx, dy, dw, dh, sx, sy, alpha); } else { blendImageWarping (sourceImage, sx, sy, sw, sh, AffineTransform::translation ((float) -sx, (float) -sy) .scaled (dw / (float) sw, dh / (float) sh) .translated ((float) dx, (float) dy), alpha, quality); } } } void LowLevelGraphicsSoftwareRenderer::blendImageWarping (const Image& sourceImage, int srcClipX, int srcClipY, int srcClipW, int srcClipH, const AffineTransform& t, float opacity, const Graphics::ResamplingQuality quality) { const AffineTransform transform (t.translated ((float) xOffset, (float) yOffset)); for (RectangleList::Iterator i (*clip); i.next();) { const Rectangle& r = *i.getRectangle(); clippedBlendImageWarping (r.getX(), r.getY(), r.getWidth(), r.getHeight(), sourceImage, srcClipX, srcClipY, srcClipW, srcClipH, transform, opacity, quality); } } void LowLevelGraphicsSoftwareRenderer::clippedBlendImageWarping (int destClipX, int destClipY, int destClipW, int destClipH, const Image& sourceImage, int srcClipX, int srcClipY, int srcClipW, int srcClipH, const AffineTransform& transform, float opacity, const Graphics::ResamplingQuality quality) { if (opacity > 0 && destClipW > 0 && destClipH > 0 && ! transform.isSingularity()) { Rectangle::intersectRectangles (srcClipX, srcClipY, srcClipW, srcClipH, 0, 0, sourceImage.getWidth(), sourceImage.getHeight()); if (srcClipW <= 0 || srcClipH <= 0) return; jassert (srcClipX >= 0 && srcClipY >= 0); Path imageBounds; imageBounds.addRectangle ((float) srcClipX, (float) srcClipY, (float) srcClipW, (float) srcClipH); imageBounds.applyTransform (transform); float imX, imY, imW, imH; imageBounds.getBounds (imX, imY, imW, imH); if (Rectangle::intersectRectangles (destClipX, destClipY, destClipW, destClipH, (int) floorf (imX), (int) floorf (imY), 1 + roundDoubleToInt (imW), 1 + roundDoubleToInt (imH))) { const uint8 alpha = (uint8) jlimit (0, 0xff, roundDoubleToInt (opacity * 256.0f)); float srcX1 = (float) destClipX; float srcY1 = (float) destClipY; float srcX2 = (float) (destClipX + destClipW); float srcY2 = srcY1; float srcX3 = srcX1; float srcY3 = (float) (destClipY + destClipH); AffineTransform inverse (transform.inverted()); inverse.transformPoint (srcX1, srcY1); inverse.transformPoint (srcX2, srcY2); inverse.transformPoint (srcX3, srcY3); const double lineDX = (double) (srcX3 - srcX1) / destClipH; const double lineDY = (double) (srcY3 - srcY1) / destClipH; const double pixelDX = (double) (srcX2 - srcX1) / destClipW; const double pixelDY = (double) (srcY2 - srcY1) / destClipW; if (image.getFormat() == Image::ARGB) { if (sourceImage.getFormat() == Image::ARGB) { transformedImageRender (image, sourceImage, destClipX, destClipY, destClipW, destClipH, srcClipX, srcClipY, srcClipW, srcClipH, srcX1, srcY1, lineDX, lineDY, pixelDX, pixelDY, alpha, quality, (PixelARGB*)0, (PixelARGB*)0); } else if (sourceImage.getFormat() == Image::RGB) { transformedImageRender (image, sourceImage, destClipX, destClipY, destClipW, destClipH, srcClipX, srcClipY, srcClipW, srcClipH, srcX1, srcY1, lineDX, lineDY, pixelDX, pixelDY, alpha, quality, (PixelARGB*)0, (PixelRGB*)0); } else { jassertfalse } } else if (image.getFormat() == Image::RGB) { if (sourceImage.getFormat() == Image::ARGB) { transformedImageRender (image, sourceImage, destClipX, destClipY, destClipW, destClipH, srcClipX, srcClipY, srcClipW, srcClipH, srcX1, srcY1, lineDX, lineDY, pixelDX, pixelDY, alpha, quality, (PixelRGB*)0, (PixelARGB*)0); } else if (sourceImage.getFormat() == Image::RGB) { transformedImageRender (image, sourceImage, destClipX, destClipY, destClipW, destClipH, srcClipX, srcClipY, srcClipW, srcClipH, srcX1, srcY1, lineDX, lineDY, pixelDX, pixelDY, alpha, quality, (PixelRGB*)0, (PixelRGB*)0); } else { jassertfalse } } else { jassertfalse } } } } void LowLevelGraphicsSoftwareRenderer::drawLine (double x1, double y1, double x2, double y2, const Colour& colour) { x1 += xOffset; y1 += yOffset; x2 += xOffset; y2 += yOffset; for (RectangleList::Iterator i (*clip); i.next();) { const Rectangle& r = *i.getRectangle(); clippedDrawLine (r.getX(), r.getY(), r.getWidth(), r.getHeight(), x1, y1, x2, y2, colour); } } void LowLevelGraphicsSoftwareRenderer::clippedDrawLine (int clipX, int clipY, int clipW, int clipH, double x1, double y1, double x2, double y2, const Colour& colour) { if (clipW > 0 && clipH > 0) { if (x1 == x2) { if (y2 < y1) swapVariables (y1, y2); clippedDrawVerticalLine (clipX, clipY, clipW, clipH, roundDoubleToInt (x1), y1, y2, colour); } else if (y1 == y2) { if (x2 < x1) swapVariables (x1, x2); clippedDrawHorizontalLine (clipX, clipY, clipW, clipH, roundDoubleToInt (y1), x1, x2, colour); } else { double gradient = (y2 - y1) / (x2 - x1); if (fabs (gradient) > 1.0) { gradient = 1.0 / gradient; int y = roundDoubleToInt (y1); const int startY = y; int endY = roundDoubleToInt (y2); if (y > endY) swapVariables (y, endY); while (y < endY) { const double x = x1 + gradient * (y - startY); clippedDrawHorizontalLine (clipX, clipY, clipW, clipH, y, x, x + 1.0, colour); ++y; } } else { int x = roundDoubleToInt (x1); const int startX = x; int endX = roundDoubleToInt (x2); if (x > endX) swapVariables (x, endX); while (x < endX) { const double y = y1 + gradient * (x - startX); clippedDrawVerticalLine (clipX, clipY, clipW, clipH, x, y, y + 1.0, colour); ++x; } } } } } void LowLevelGraphicsSoftwareRenderer::drawVerticalLine (const int x, double top, double bottom, const Colour& col) { for (RectangleList::Iterator i (*clip); i.next();) { const Rectangle& r = *i.getRectangle(); clippedDrawVerticalLine (r.getX(), r.getY(), r.getWidth(), r.getHeight(), x + xOffset, top + yOffset, bottom + yOffset, col); } } void LowLevelGraphicsSoftwareRenderer::clippedDrawVerticalLine (int clipX, int clipY, int clipW, int clipH, const int x, double top, double bottom, const Colour& col) { jassert (top <= bottom); if (((unsigned int) (x - clipX)) < (unsigned int) clipW && top < clipY + clipH && bottom > clipY && clipW > 0) { if (top < clipY) top = clipY; if (bottom > clipY + clipH) bottom = clipY + clipH; if (bottom > top) drawVertical (x, top, bottom, col); } } void LowLevelGraphicsSoftwareRenderer::drawHorizontalLine (const int y, double left, double right, const Colour& col) { for (RectangleList::Iterator i (*clip); i.next();) { const Rectangle& r = *i.getRectangle(); clippedDrawHorizontalLine (r.getX(), r.getY(), r.getWidth(), r.getHeight(), y + yOffset, left + xOffset, right + xOffset, col); } } void LowLevelGraphicsSoftwareRenderer::clippedDrawHorizontalLine (int clipX, int clipY, int clipW, int clipH, const int y, double left, double right, const Colour& col) { jassert (left <= right); if (((unsigned int) (y - clipY)) < (unsigned int) clipH && left < clipX + clipW && right > clipX && clipW > 0) { if (left < clipX) left = clipX; if (right > clipX + clipW) right = clipX + clipW; if (right > left) drawHorizontal (y, left, right, col); } } void LowLevelGraphicsSoftwareRenderer::drawVertical (const int x, const double top, const double bottom, const Colour& col) { int wholeStart = (int) top; const int wholeEnd = (int) bottom; const int lastAlpha = roundDoubleToInt (255.0 * (bottom - wholeEnd)); const int totalPixels = (wholeEnd - wholeStart) + (lastAlpha > 0 ? 1 : 0); if (totalPixels <= 0) return; int lineStride, dstPixelStride; uint8* const dstPixels = image.lockPixelDataReadWrite (x, wholeStart, 1, totalPixels, lineStride, dstPixelStride); uint8* dest = dstPixels; PixelARGB colour (col.getPixelARGB()); if (wholeEnd == wholeStart) { if (image.getFormat() == Image::ARGB) ((PixelARGB*) dest)->blend (colour, roundDoubleToInt (255.0 * (bottom - top))); else if (image.getFormat() == Image::RGB) ((PixelRGB*) dest)->blend (colour, roundDoubleToInt (255.0 * (bottom - top))); else { jassertfalse } } else { if (image.getFormat() == Image::ARGB) { ((PixelARGB*) dest)->blend (colour, roundDoubleToInt (255.0 * (1.0 - (top - wholeStart)))); ++wholeStart; dest += lineStride; if (colour.getAlpha() == 0xff) { while (wholeEnd > wholeStart) { ((PixelARGB*) dest)->set (colour); ++wholeStart; dest += lineStride; } } else { while (wholeEnd > wholeStart) { ((PixelARGB*) dest)->blend (colour); ++wholeStart; dest += lineStride; } } if (lastAlpha > 0) { ((PixelARGB*) dest)->blend (colour, lastAlpha); } } else if (image.getFormat() == Image::RGB) { ((PixelRGB*) dest)->blend (colour, roundDoubleToInt (255.0 * (1.0 - (top - wholeStart)))); ++wholeStart; dest += lineStride; if (colour.getAlpha() == 0xff) { while (wholeEnd > wholeStart) { ((PixelRGB*) dest)->set (colour); ++wholeStart; dest += lineStride; } } else { while (wholeEnd > wholeStart) { ((PixelRGB*) dest)->blend (colour); ++wholeStart; dest += lineStride; } } if (lastAlpha > 0) { ((PixelRGB*) dest)->blend (colour, lastAlpha); } } else { jassertfalse } } image.releasePixelDataReadWrite (dstPixels); } void LowLevelGraphicsSoftwareRenderer::drawHorizontal (const int y, const double top, const double bottom, const Colour& col) { int wholeStart = (int) top; const int wholeEnd = (int) bottom; const int lastAlpha = roundDoubleToInt (255.0 * (bottom - wholeEnd)); const int totalPixels = (wholeEnd - wholeStart) + (lastAlpha > 0 ? 1 : 0); if (totalPixels <= 0) return; int lineStride, dstPixelStride; uint8* const dstPixels = image.lockPixelDataReadWrite (wholeStart, y, totalPixels, 1, lineStride, dstPixelStride); uint8* dest = dstPixels; PixelARGB colour (col.getPixelARGB()); if (wholeEnd == wholeStart) { if (image.getFormat() == Image::ARGB) ((PixelARGB*) dest)->blend (colour, roundDoubleToInt (255.0 * (bottom - top))); else if (image.getFormat() == Image::RGB) ((PixelRGB*) dest)->blend (colour, roundDoubleToInt (255.0 * (bottom - top))); else { jassertfalse } } else { if (image.getFormat() == Image::ARGB) { ((PixelARGB*) dest)->blend (colour, roundDoubleToInt (255.0 * (1.0 - (top - wholeStart)))); dest += dstPixelStride; ++wholeStart; if (colour.getAlpha() == 0xff) { while (wholeEnd > wholeStart) { ((PixelARGB*) dest)->set (colour); dest += dstPixelStride; ++wholeStart; } } else { while (wholeEnd > wholeStart) { ((PixelARGB*) dest)->blend (colour); dest += dstPixelStride; ++wholeStart; } } if (lastAlpha > 0) { ((PixelARGB*) dest)->blend (colour, lastAlpha); } } else if (image.getFormat() == Image::RGB) { ((PixelRGB*) dest)->blend (colour, roundDoubleToInt (255.0 * (1.0 - (top - wholeStart)))); dest += dstPixelStride; ++wholeStart; if (colour.getAlpha() == 0xff) { while (wholeEnd > wholeStart) { ((PixelRGB*) dest)->set (colour); dest += dstPixelStride; ++wholeStart; } } else { while (wholeEnd > wholeStart) { ((PixelRGB*) dest)->blend (colour); dest += dstPixelStride; ++wholeStart; } } if (lastAlpha > 0) { ((PixelRGB*) dest)->blend (colour, lastAlpha); } } else { jassertfalse } } image.releasePixelDataReadWrite (dstPixels); } END_JUCE_NAMESPACE /********* End of inlined file: juce_LowLevelGraphicsSoftwareRenderer.cpp *********/ /********* Start of inlined file: juce_RectanglePlacement.cpp *********/ BEGIN_JUCE_NAMESPACE RectanglePlacement::RectanglePlacement (const RectanglePlacement& other) throw() : flags (other.flags) { } const RectanglePlacement& RectanglePlacement::operator= (const RectanglePlacement& other) throw() { flags = other.flags; return *this; } void RectanglePlacement::applyTo (double& x, double& y, double& w, double& h, const double dx, const double dy, const double dw, const double dh) const throw() { if (w == 0 || h == 0) return; if ((flags & stretchToFit) != 0) { x = dx; y = dy; w = dw; h = dh; } else { double scale = (flags & fillDestination) != 0 ? jmax (dw / w, dh / h) : jmin (dw / w, dh / h); if ((flags & onlyReduceInSize) != 0) scale = jmin (scale, 1.0); if ((flags & onlyIncreaseInSize) != 0) scale = jmax (scale, 1.0); w *= scale; h *= scale; if ((flags & xLeft) != 0) x = dx; else if ((flags & xRight) != 0) x = dx + dw - w; else x = dx + (dw - w) * 0.5; if ((flags & yTop) != 0) y = dy; else if ((flags & yBottom) != 0) y = dy + dh - h; else y = dy + (dh - h) * 0.5; } } const AffineTransform RectanglePlacement::getTransformToFit (float x, float y, float w, float h, const float dx, const float dy, const float dw, const float dh) const throw() { if (w == 0 || h == 0) return AffineTransform::identity; const float scaleX = dw / w; const float scaleY = dh / h; if ((flags & stretchToFit) != 0) return AffineTransform::translation (-x, -y) .scaled (scaleX, scaleY) .translated (dx, dy); float scale = (flags & fillDestination) != 0 ? jmax (scaleX, scaleY) : jmin (scaleX, scaleY); if ((flags & onlyReduceInSize) != 0) scale = jmin (scale, 1.0f); if ((flags & onlyIncreaseInSize) != 0) scale = jmax (scale, 1.0f); w *= scale; h *= scale; float newX = dx; if ((flags & xRight) != 0) newX += dw - w; // right else if ((flags & xLeft) == 0) newX += (dw - w) / 2.0f; // centre float newY = dy; if ((flags & yBottom) != 0) newY += dh - h; // bottom else if ((flags & yTop) == 0) newY += (dh - h) / 2.0f; // centre return AffineTransform::translation (-x, -y) .scaled (scale, scale) .translated (newX, newY); } END_JUCE_NAMESPACE /********* End of inlined file: juce_RectanglePlacement.cpp *********/ /********* Start of inlined file: juce_Drawable.cpp *********/ BEGIN_JUCE_NAMESPACE Drawable::RenderingContext::RenderingContext (Graphics& g_, const AffineTransform& transform_, const float opacity_) throw() : g (g_), transform (transform_), opacity (opacity_) { } Drawable::Drawable() { } Drawable::~Drawable() { } void Drawable::draw (Graphics& g, const AffineTransform& transform) const { const RenderingContext context (g, transform, g.getCurrentColour().getFloatAlpha()); render (context); } void Drawable::drawAt (Graphics& g, const float x, const float y) const { draw (g, AffineTransform::translation (x, y)); } void Drawable::drawWithin (Graphics& g, const int destX, const int destY, const int destW, const int destH, const RectanglePlacement& placement) const { if (destW > 0 && destH > 0) { float x, y, w, h; getBounds (x, y, w, h); draw (g, placement.getTransformToFit (x, y, w, h, (float) destX, (float) destY, (float) destW, (float) destH)); } } Drawable* Drawable::createFromImageData (const void* data, const int numBytes) { Drawable* result = 0; Image* const image = ImageFileFormat::loadFrom (data, numBytes); if (image != 0) { DrawableImage* const di = new DrawableImage(); di->setImage (image, true); result = di; } else { const String asString (String::createStringFromData (data, numBytes)); XmlDocument doc (asString); XmlElement* const outer = doc.getDocumentElement (true); if (outer != 0 && outer->hasTagName (T("svg"))) { XmlElement* const svg = doc.getDocumentElement(); if (svg != 0) { result = Drawable::createFromSVG (*svg); delete svg; } } delete outer; } return result; } Drawable* Drawable::createFromImageDataStream (InputStream& dataSource) { MemoryBlock mb; dataSource.readIntoMemoryBlock (mb); return createFromImageData (mb.getData(), mb.getSize()); } Drawable* Drawable::createFromImageFile (const File& file) { FileInputStream* fin = file.createInputStream(); if (fin == 0) return 0; Drawable* d = createFromImageDataStream (*fin); delete fin; return d; } Drawable* Drawable::readFromBinaryStream (InputStream& input) { char header[8]; if (input.read (header, sizeof (header)) != sizeof (header)) return 0; DrawableComposite* result = 0; if (memcmp (header, "JuceDrw1", sizeof (header)) == 0) { result = new DrawableComposite(); if (! result->readBinary (input)) deleteAndZero (result); } return result; } bool Drawable::writeToBinaryStream (OutputStream& output) const { output.write ("JuceDrw1", 8); return writeBinary (output); } Drawable* Drawable::readFromXml (const XmlElement& xml) { DrawableComposite* result = 0; if (xml.hasTagName (T("JuceDrawable"))) { result = new DrawableComposite(); if (! result->readXml (xml)) deleteAndZero (result); } return result; } XmlElement* Drawable::createXml() const { if (dynamic_cast (this) == 0) { DrawableComposite tempDC; tempDC.insertDrawable (const_cast (this)); XmlElement* result = tempDC.createXml(); tempDC.removeDrawable (0, false); return result; } else { XmlElement* e = new XmlElement (T("JuceDrawable")); writeXml (*e); return e; } } END_JUCE_NAMESPACE /********* End of inlined file: juce_Drawable.cpp *********/ /********* Start of inlined file: juce_DrawableComposite.cpp *********/ BEGIN_JUCE_NAMESPACE DrawableComposite::DrawableComposite() { } DrawableComposite::~DrawableComposite() { } void DrawableComposite::insertDrawable (Drawable* drawable, const AffineTransform& transform, const int index) { if (drawable != 0) { if (! drawables.contains (drawable)) { drawables.insert (index, drawable); if (transform.isIdentity()) transforms.insert (index, 0); else transforms.insert (index, new AffineTransform (transform)); } else { jassertfalse // trying to add a drawable that's already in here! } } } void DrawableComposite::insertDrawable (const Drawable& drawable, const AffineTransform& transform, const int index) { insertDrawable (drawable.createCopy(), transform, index); } void DrawableComposite::removeDrawable (const int index, const bool deleteDrawable) { drawables.remove (index, deleteDrawable); transforms.remove (index); } void DrawableComposite::bringToFront (const int index) { if (index >= 0 && index < drawables.size() - 1) { drawables.move (index, -1); transforms.move (index, -1); } } void DrawableComposite::render (const Drawable::RenderingContext& context) const { if (drawables.size() > 0 && context.opacity > 0) { if (context.opacity >= 1.0f || drawables.size() == 1) { Drawable::RenderingContext contextCopy (context); for (int i = 0; i < drawables.size(); ++i) { const AffineTransform* const t = transforms.getUnchecked(i); contextCopy.transform = (t == 0) ? context.transform : t->followedBy (context.transform); drawables.getUnchecked(i)->render (contextCopy); } } else { // To correctly render a whole composite layer with an overall transparency, // we need to render everything opaquely into a temp buffer, then blend that // with the target opacity... const Rectangle clipBounds (context.g.getClipBounds()); Image tempImage (Image::ARGB, clipBounds.getWidth(), clipBounds.getHeight(), true); { Graphics tempG (tempImage); tempG.setOrigin (-clipBounds.getX(), -clipBounds.getY()); Drawable::RenderingContext tempContext (tempG, context.transform, 1.0f); render (tempContext); } context.g.setOpacity (context.opacity); context.g.drawImageAt (&tempImage, clipBounds.getX(), clipBounds.getY()); } } } void DrawableComposite::getBounds (float& x, float& y, float& width, float& height) const { Path totalPath; for (int i = 0; i < drawables.size(); ++i) { drawables.getUnchecked(i)->getBounds (x, y, width, height); if (width > 0.0f && height > 0.0f) { Path outline; outline.addRectangle (x, y, width, height); const AffineTransform* const t = transforms.getUnchecked(i); if (t == 0) totalPath.addPath (outline); else totalPath.addPath (outline, *t); } } totalPath.getBounds (x, y, width, height); } bool DrawableComposite::hitTest (float x, float y) const { for (int i = 0; i < drawables.size(); ++i) { float tx = x; float ty = y; const AffineTransform* const t = transforms.getUnchecked(i); if (t != 0) t->inverted().transformPoint (tx, ty); if (drawables.getUnchecked(i)->hitTest (tx, ty)) return true; } return false; } Drawable* DrawableComposite::createCopy() const { DrawableComposite* const dc = new DrawableComposite(); for (int i = 0; i < drawables.size(); ++i) { dc->drawables.add (drawables.getUnchecked(i)->createCopy()); const AffineTransform* const t = transforms.getUnchecked(i); dc->transforms.add (t != 0 ? new AffineTransform (*t) : 0); } return dc; } const char juce_drawableCompositeTransformFlag = 't'; const char juce_drawableCompositeBinaryType = 'C'; const char juce_drawablePathBinaryType = 'P'; const char juce_drawableImageBinaryType = 'I'; const char juce_drawableTextBinaryType = 'T'; bool DrawableComposite::readBinary (InputStream& input) { AffineTransform transform; while (! input.isExhausted()) { const int n = input.readByte(); if (n == 0) break; if (n == juce_drawableCompositeTransformFlag) { float f[6]; for (int i = 0; i < 6; ++i) f[i] = input.readFloat(); transform = AffineTransform (f[0], f[1], f[2], f[3], f[4], f[5]); } else { Drawable* d = 0; switch (n) { case juce_drawableCompositeBinaryType: d = new DrawableComposite(); break; case juce_drawablePathBinaryType: d = new DrawablePath(); break; case juce_drawableImageBinaryType: d = new DrawableImage(); break; case juce_drawableTextBinaryType: d = new DrawableText(); break; default: jassertfalse; return false; } d->setName (input.readString()); if (! d->readBinary (input)) { delete d; return false; } insertDrawable (d, transform); transform = AffineTransform::identity; } } return true; } bool DrawableComposite::writeBinary (OutputStream& output) const { for (int i = 0; i < drawables.size(); ++i) { AffineTransform* transform = transforms.getUnchecked(i); if (transform != 0) { output.writeByte (juce_drawableCompositeTransformFlag); output.writeFloat (transform->mat00); output.writeFloat (transform->mat01); output.writeFloat (transform->mat02); output.writeFloat (transform->mat10); output.writeFloat (transform->mat11); output.writeFloat (transform->mat12); } Drawable* const d = drawables.getUnchecked(i); char typeFlag; if (dynamic_cast (d) != 0) typeFlag = juce_drawableCompositeBinaryType; else if (dynamic_cast (d) != 0) typeFlag = juce_drawablePathBinaryType; else if (dynamic_cast (d) != 0) typeFlag = juce_drawableImageBinaryType; else if (dynamic_cast (d) != 0) typeFlag = juce_drawableTextBinaryType; else { jassertfalse; continue; } output.writeByte (typeFlag); output.writeString (d->getName()); d->writeBinary (output); } output.writeByte (0); return true; } const tchar* juce_drawableCompositeXmlTag = T("Group"); const tchar* juce_drawablePathXmlTag = T("Path"); const tchar* juce_drawableImageXmlTag = T("Image"); const tchar* juce_drawableTextXmlTag = T("Text"); bool DrawableComposite::readXml (const XmlElement& xml) { forEachXmlChildElement (xml, e) { Drawable* d = 0; if (e->hasTagName (juce_drawableCompositeXmlTag)) d = new DrawableComposite(); else if (e->hasTagName (juce_drawablePathXmlTag)) d = new DrawablePath(); else if (e->hasTagName (juce_drawableImageXmlTag)) d = new DrawableImage(); else if (e->hasTagName (juce_drawableTextXmlTag)) d = new DrawableText(); else { jassertfalse; return false; } d->setName (e->getStringAttribute (T("id"))); if (! d->readXml (*e)) { jassertfalse; delete d; return false; } AffineTransform transform; const String transformAtt (e->getStringAttribute (T("transform"))); if (transformAtt.isNotEmpty()) { StringArray tokens; tokens.addTokens (transformAtt.trim(), false); tokens.removeEmptyStrings (true); if (tokens.size() == 6) { float f[6]; for (int i = 0; i < 6; ++i) f[i] = (float) tokens[i].getDoubleValue(); transform = AffineTransform (f[0], f[1], f[2], f[3], f[4], f[5]); } } insertDrawable (d, transform); } return true; } void DrawableComposite::writeXml (XmlElement& xml) const { for (int i = 0; i < drawables.size(); ++i) { XmlElement* e = 0; Drawable* const d = drawables.getUnchecked(i); if (dynamic_cast (d) != 0) e = new XmlElement (juce_drawableCompositeXmlTag); else if (dynamic_cast (d) != 0) e = new XmlElement (juce_drawablePathXmlTag); else if (dynamic_cast (d) != 0) e = new XmlElement (juce_drawableImageXmlTag); else if (dynamic_cast (d) != 0) e = new XmlElement (juce_drawableTextXmlTag); else { jassertfalse; continue; } AffineTransform* transform = transforms.getUnchecked(i); if (transform != 0) { String t; t << transform->mat00 << " " << transform->mat01 << " " << transform->mat02 << " " << transform->mat10 << " " << transform->mat11 << " " << transform->mat12; e->setAttribute (T("transform"), t); } if (d->getName().isNotEmpty()) e->setAttribute (T("id"), d->getName()); d->writeXml (*e); xml.addChildElement (e); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_DrawableComposite.cpp *********/ /********* Start of inlined file: juce_DrawableImage.cpp *********/ BEGIN_JUCE_NAMESPACE DrawableImage::DrawableImage() : image (0), canDeleteImage (false), opacity (1.0f), overlayColour (0x00000000) { } DrawableImage::~DrawableImage() { clearImage(); } void DrawableImage::clearImage() { if (canDeleteImage && image != 0) { if (ImageCache::isImageInCache (image)) ImageCache::release (image); else delete image; } image = 0; } void DrawableImage::setImage (const Image& imageToCopy) { clearImage(); image = new Image (imageToCopy); canDeleteImage = true; } void DrawableImage::setImage (Image* imageToUse, const bool releaseWhenNotNeeded) { clearImage(); image = imageToUse; canDeleteImage = releaseWhenNotNeeded; } void DrawableImage::setOpacity (const float newOpacity) { opacity = newOpacity; } void DrawableImage::setOverlayColour (const Colour& newOverlayColour) { overlayColour = newOverlayColour; } void DrawableImage::render (const Drawable::RenderingContext& context) const { if (image != 0) { if (opacity > 0.0f && ! overlayColour.isOpaque()) { context.g.setOpacity (context.opacity * opacity); context.g.drawImageTransformed (image, 0, 0, image->getWidth(), image->getHeight(), context.transform, false); } if (! overlayColour.isTransparent()) { context.g.setColour (overlayColour.withMultipliedAlpha (context.opacity)); context.g.drawImageTransformed (image, 0, 0, image->getWidth(), image->getHeight(), context.transform, true); } } } void DrawableImage::getBounds (float& x, float& y, float& width, float& height) const { x = 0.0f; y = 0.0f; width = 0.0f; height = 0.0f; if (image != 0) { width = (float) image->getWidth(); height = (float) image->getHeight(); } } bool DrawableImage::hitTest (float x, float y) const { return image != 0 && x >= 0.0f && y >= 0.0f && x < image->getWidth() && y < image->getHeight() && image->getPixelAt (roundFloatToInt (x), roundFloatToInt (y)).getAlpha() >= 127; } Drawable* DrawableImage::createCopy() const { DrawableImage* const di = new DrawableImage(); di->opacity = opacity; di->overlayColour = overlayColour; if (image != 0) { if ((! canDeleteImage) || ! ImageCache::isImageInCache (image)) { di->setImage (*image); } else { ImageCache::incReferenceCount (image); di->setImage (image, true); } } return di; } bool DrawableImage::readBinary (InputStream& input) { opacity = input.readFloat(); overlayColour = Colour (input.readInt()); const int dataLen = input.readInt(); if (dataLen > 0) { MemoryBlock imageData; input.readIntoMemoryBlock (imageData, dataLen); Image* im = ImageFileFormat::loadFrom (imageData.getData(), imageData.getSize()); if (im == 0) return false; setImage (im, true); } return true; } bool DrawableImage::writeBinary (OutputStream& output) const { MemoryOutputStream imageData; if (image != 0) { PNGImageFormat pngFormat; if (! pngFormat.writeImageToStream (*image, imageData)) return false; } output.writeFloat (opacity); output.writeInt (overlayColour.getARGB()); output.writeInt (imageData.getDataSize()); output.write (imageData.getData(), imageData.getDataSize()); return true; } bool DrawableImage::readXml (const XmlElement& xml) { opacity = (float) xml.getDoubleAttribute (T("opacity"), 1.0); overlayColour = Colour (xml.getStringAttribute (T("overlay"), T("0")).getHexValue32()); MemoryBlock imageData; if (imageData.fromBase64Encoding (xml.getAllSubText())) { Image* const im = ImageFileFormat::loadFrom (imageData.getData(), imageData.getSize()); if (im == 0) return false; setImage (im, true); } return true; } void DrawableImage::writeXml (XmlElement& xml) const { if (opacity < 1.0f) xml.setAttribute (T("opacity"), (double) opacity); if (! overlayColour.isTransparent()) xml.setAttribute (T("overlay"), String::toHexString ((int) overlayColour.getARGB())); if (image != 0) { MemoryOutputStream imageData; PNGImageFormat pngFormat; if (pngFormat.writeImageToStream (*image, imageData)) { String base64 (MemoryBlock (imageData.getData(), imageData.getDataSize()).toBase64Encoding()); for (int i = (base64.length() & ~127); i >= 0; i -= 128) base64 = base64.substring (0, i) + "\n" + base64.substring (i); xml.addTextElement (base64); } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_DrawableImage.cpp *********/ /********* Start of inlined file: juce_DrawablePath.cpp *********/ BEGIN_JUCE_NAMESPACE DrawablePath::DrawablePath() : fillBrush (new SolidColourBrush (Colours::black)), strokeBrush (0), strokeType (0.0f) { } DrawablePath::~DrawablePath() { delete fillBrush; delete strokeBrush; } void DrawablePath::setPath (const Path& newPath) { path = newPath; updateOutline(); } void DrawablePath::setSolidFill (const Colour& newColour) { delete fillBrush; fillBrush = new SolidColourBrush (newColour); } void DrawablePath::setFillBrush (const Brush& newBrush) { delete fillBrush; fillBrush = newBrush.createCopy(); } void DrawablePath::setOutline (const float thickness, const Colour& colour) { strokeType = PathStrokeType (thickness); delete strokeBrush; strokeBrush = new SolidColourBrush (colour); updateOutline(); } void DrawablePath::setOutline (const PathStrokeType& strokeType_, const Brush& newStrokeBrush) { strokeType = strokeType_; delete strokeBrush; strokeBrush = newStrokeBrush.createCopy(); updateOutline(); } void DrawablePath::render (const Drawable::RenderingContext& context) const { { Brush* const tempBrush = fillBrush->createCopy(); tempBrush->applyTransform (context.transform); tempBrush->multiplyOpacity (context.opacity); context.g.setBrush (tempBrush); context.g.fillPath (path, context.transform); delete tempBrush; } if (strokeBrush != 0 && strokeType.getStrokeThickness() > 0.0f) { Brush* const tempBrush = strokeBrush->createCopy(); tempBrush->applyTransform (context.transform); tempBrush->multiplyOpacity (context.opacity); context.g.setBrush (tempBrush); context.g.fillPath (outline, context.transform); delete tempBrush; } } void DrawablePath::updateOutline() { outline.clear(); strokeType.createStrokedPath (outline, path, AffineTransform::identity, 4.0f); } void DrawablePath::getBounds (float& x, float& y, float& width, float& height) const { if (strokeType.getStrokeThickness() > 0.0f) outline.getBounds (x, y, width, height); else path.getBounds (x, y, width, height); } bool DrawablePath::hitTest (float x, float y) const { return path.contains (x, y) || outline.contains (x, y); } Drawable* DrawablePath::createCopy() const { DrawablePath* const dp = new DrawablePath(); dp->path = path; dp->setFillBrush (*fillBrush); if (strokeBrush != 0) dp->setOutline (strokeType, *strokeBrush); return dp; } static Brush* readBrushFromBinary (InputStream& input) { switch (input.readByte()) { case 1: return new SolidColourBrush (Colour ((uint32) input.readInt())); case 2: { ColourGradient gradient; gradient.x1 = input.readFloat(); gradient.y1 = input.readFloat(); gradient.x2 = input.readFloat(); gradient.y2 = input.readFloat(); gradient.isRadial = input.readByte() != 0; const int numColours = input.readCompressedInt(); for (int i = 0; i < numColours; ++i) { double proportion = (double) input.readFloat(); const Colour colour ((uint32) input.readInt()); gradient.addColour (proportion, colour); } return new GradientBrush (gradient); } case 3: { jassertfalse; //xxx TODO return new ImageBrush (0, 0, 0, 0); } default: break; } return 0; } static void writeBrushToBinary (OutputStream& output, const Brush* const brush) { if (brush == 0) { output.writeByte (0); return; } const SolidColourBrush* cb; const GradientBrush* gb; const ImageBrush* ib; if ((cb = dynamic_cast (brush)) != 0) { output.writeByte (1); output.writeInt ((int) cb->getColour().getARGB()); } else if ((gb = dynamic_cast (brush)) != 0) { output.writeByte (2); const ColourGradient& g = gb->getGradient(); output.writeFloat (g.x1); output.writeFloat (g.y1); output.writeFloat (g.x2); output.writeFloat (g.y2); output.writeByte (g.isRadial ? 1 : 0); output.writeCompressedInt (g.getNumColours()); for (int i = 0; i < g.getNumColours(); ++i) { output.writeFloat ((float) g.getColourPosition (i)); output.writeInt ((int) g.getColour (i).getARGB()); } } else if ((ib = dynamic_cast (brush)) != 0) { output.writeByte (3); jassertfalse; //xxx TODO } } static Brush* readBrushFromXml (const XmlElement* xml) { if (xml == 0) return 0; const String type (xml->getStringAttribute (T("type"))); if (type.equalsIgnoreCase (T("solid"))) return new SolidColourBrush (Colour ((uint32) xml->getStringAttribute (T("colour"), T("ff000000")).getHexValue32())); if (type.equalsIgnoreCase (T("gradient"))) { ColourGradient gradient; gradient.x1 = (float) xml->getDoubleAttribute (T("x1")); gradient.y1 = (float) xml->getDoubleAttribute (T("y1")); gradient.x2 = (float) xml->getDoubleAttribute (T("x2")); gradient.y2 = (float) xml->getDoubleAttribute (T("y2")); gradient.isRadial = xml->getBoolAttribute (T("radial"), false); StringArray colours; colours.addTokens (xml->getStringAttribute (T("colours")), false); for (int i = 0; i < colours.size() / 2; ++i) gradient.addColour (colours[i * 2].getDoubleValue(), Colour ((uint32) colours[i * 2 + 1].getHexValue32())); return new GradientBrush (gradient); } if (type.equalsIgnoreCase (T("image"))) { jassertfalse; //xxx TODO return new ImageBrush (0, 0, 0, 0); } return 0; } static XmlElement* writeBrushToXml (const String& tagName, const Brush* brush) { if (brush == 0) return 0; XmlElement* const xml = new XmlElement (tagName); const SolidColourBrush* cb; const GradientBrush* gb; const ImageBrush* ib; if ((cb = dynamic_cast (brush)) != 0) { xml->setAttribute (T("type"), T("solid")); xml->setAttribute (T("colour"), String::toHexString ((int) cb->getColour().getARGB())); } else if ((gb = dynamic_cast (brush)) != 0) { xml->setAttribute (T("type"), T("gradient")); const ColourGradient& g = gb->getGradient(); xml->setAttribute (T("x1"), g.x1); xml->setAttribute (T("y1"), g.y1); xml->setAttribute (T("x2"), g.x2); xml->setAttribute (T("y2"), g.y2); xml->setAttribute (T("radial"), g.isRadial); String s; for (int i = 0; i < g.getNumColours(); ++i) s << " " << g.getColourPosition (i) << " " << String::toHexString ((int) g.getColour(i).getARGB()); xml->setAttribute (T("colours"), s.trimStart()); } else if ((ib = dynamic_cast (brush)) != 0) { xml->setAttribute (T("type"), T("image")); jassertfalse; //xxx TODO } return xml; } bool DrawablePath::readBinary (InputStream& input) { delete fillBrush; fillBrush = readBrushFromBinary (input); delete strokeBrush; strokeBrush = readBrushFromBinary (input); const float strokeThickness = input.readFloat(); const int jointStyle = input.readByte(); const int endStyle = input.readByte(); strokeType = PathStrokeType (strokeThickness, jointStyle == 1 ? PathStrokeType::curved : (jointStyle == 2 ? PathStrokeType::beveled : PathStrokeType::mitered), endStyle == 1 ? PathStrokeType::square : (endStyle == 2 ? PathStrokeType::rounded : PathStrokeType::butt)); const int pathSize = input.readInt(); MemoryBlock pathData; input.readIntoMemoryBlock (pathData, pathSize); if (pathData.getSize() != pathSize) return false; path.clear(); path.loadPathFromData ((const uint8*) pathData.getData(), pathSize); updateOutline(); return true; } bool DrawablePath::writeBinary (OutputStream& output) const { writeBrushToBinary (output, fillBrush); writeBrushToBinary (output, strokeBrush); output.writeFloat (strokeType.getStrokeThickness()); output.writeByte (strokeType.getJointStyle() == PathStrokeType::mitered ? 0 : (strokeType.getJointStyle() == PathStrokeType::curved ? 1 : 2)); output.writeByte (strokeType.getEndStyle() == PathStrokeType::butt ? 0 : (strokeType.getEndStyle() == PathStrokeType::square ? 1 : 2)); MemoryOutputStream out; path.writePathToStream (out); output.writeInt (out.getDataSize()); output.write (out.getData(), out.getDataSize()); return true; } bool DrawablePath::readXml (const XmlElement& xml) { delete fillBrush; fillBrush = readBrushFromXml (xml.getChildByName (T("fill"))); delete strokeBrush; strokeBrush = readBrushFromXml (xml.getChildByName (T("stroke"))); const String jointStyle (xml.getStringAttribute (T("jointStyle"), String::empty)); const String endStyle (xml.getStringAttribute (T("capStyle"), String::empty)); strokeType = PathStrokeType ((float) xml.getDoubleAttribute (T("strokeWidth"), 0.0), jointStyle.equalsIgnoreCase (T("curved")) ? PathStrokeType::curved : (jointStyle.equalsIgnoreCase (T("bevel")) ? PathStrokeType::beveled : PathStrokeType::mitered), endStyle.equalsIgnoreCase (T("square")) ? PathStrokeType::square : (endStyle.equalsIgnoreCase (T("round")) ? PathStrokeType::rounded : PathStrokeType::butt)); path.clear(); path.restoreFromString (xml.getAllSubText()); updateOutline(); return true; } void DrawablePath::writeXml (XmlElement& xml) const { xml.addChildElement (writeBrushToXml (T("fill"), fillBrush)); xml.addChildElement (writeBrushToXml (T("stroke"), strokeBrush)); xml.setAttribute (T("strokeWidth"), (double) strokeType.getStrokeThickness()); xml.setAttribute (T("jointStyle"), strokeType.getJointStyle() == PathStrokeType::mitered ? T("miter") : (strokeType.getJointStyle() == PathStrokeType::curved ? T("curved") : T("bevel"))); xml.setAttribute (T("capStyle"), strokeType.getEndStyle() == PathStrokeType::butt ? T("butt") : (strokeType.getEndStyle() == PathStrokeType::square ? T("square") : T("round"))); xml.addTextElement (path.toString()); } END_JUCE_NAMESPACE /********* End of inlined file: juce_DrawablePath.cpp *********/ /********* Start of inlined file: juce_DrawableText.cpp *********/ BEGIN_JUCE_NAMESPACE DrawableText::DrawableText() : colour (Colours::white) { } DrawableText::~DrawableText() { } void DrawableText::setText (const GlyphArrangement& newText) { text = newText; } void DrawableText::setText (const String& newText, const Font& fontToUse) { text.clear(); text.addLineOfText (fontToUse, newText, 0.0f, 0.0f); } void DrawableText::setColour (const Colour& newColour) { colour = newColour; } void DrawableText::render (const Drawable::RenderingContext& context) const { context.g.setColour (colour.withMultipliedAlpha (context.opacity)); text.draw (context.g, context.transform); } void DrawableText::getBounds (float& x, float& y, float& width, float& height) const { text.getBoundingBox (0, -1, x, y, width, height, false); // (really returns top, left, bottom, right) width -= x; height -= y; } bool DrawableText::hitTest (float x, float y) const { return text.findGlyphIndexAt (x, y) >= 0; } Drawable* DrawableText::createCopy() const { DrawableText* const dt = new DrawableText(); dt->text = text; dt->colour = colour; return dt; } bool DrawableText::readBinary (InputStream& input) { jassertfalse; //xxx TODO return false; } bool DrawableText::writeBinary (OutputStream& output) const { jassertfalse; //xxx TODO return false; } bool DrawableText::readXml (const XmlElement& xml) { jassertfalse; //xxx TODO return false; } void DrawableText::writeXml (XmlElement& xml) const { jassertfalse; //xxx TODO } END_JUCE_NAMESPACE /********* End of inlined file: juce_DrawableText.cpp *********/ /********* Start of inlined file: juce_SVGParser.cpp *********/ BEGIN_JUCE_NAMESPACE class SVGState { public: SVGState (const XmlElement* const topLevel) : topLevelXml (topLevel), x (0), y (0), width (512), height (512), viewBoxW (0), viewBoxH (0) { } ~SVGState() { } Drawable* parseSVGElement (const XmlElement& xml) { if (! xml.hasTagName (T("svg"))) return 0; DrawableComposite* const drawable = new DrawableComposite(); drawable->setName (xml.getStringAttribute (T("id"))); SVGState newState (*this); if (xml.hasAttribute (T("transform"))) newState.addTransform (xml); newState.x = getCoordLength (xml.getStringAttribute (T("x"), String (newState.x)), viewBoxW); newState.y = getCoordLength (xml.getStringAttribute (T("y"), String (newState.y)), viewBoxH); newState.width = getCoordLength (xml.getStringAttribute (T("width"), String (newState.width)), viewBoxW); newState.height = getCoordLength (xml.getStringAttribute (T("height"), String (newState.height)), viewBoxH); if (xml.hasAttribute (T("viewBox"))) { const String viewParams (xml.getStringAttribute (T("viewBox"))); int i = 0; float vx, vy, vw, vh; if (parseCoords (viewParams, vx, vy, i, true) && parseCoords (viewParams, vw, vh, i, true) && vw > 0 && vh > 0) { newState.viewBoxW = vw; newState.viewBoxH = vh; int placementFlags = 0; const String aspect (xml.getStringAttribute (T("preserveAspectRatio"))); if (aspect.containsIgnoreCase (T("none"))) { placementFlags = RectanglePlacement::stretchToFit; } else { if (aspect.containsIgnoreCase (T("slice"))) placementFlags |= RectanglePlacement::fillDestination; if (aspect.containsIgnoreCase (T("xMin"))) placementFlags |= RectanglePlacement::xLeft; else if (aspect.containsIgnoreCase (T("xMax"))) placementFlags |= RectanglePlacement::xRight; else placementFlags |= RectanglePlacement::xMid; if (aspect.containsIgnoreCase (T("yMin"))) placementFlags |= RectanglePlacement::yTop; else if (aspect.containsIgnoreCase (T("yMax"))) placementFlags |= RectanglePlacement::yBottom; else placementFlags |= RectanglePlacement::yMid; } const RectanglePlacement placement (placementFlags); newState.transform = placement.getTransformToFit (vx, vy, vw, vh, 0.0f, 0.0f, newState.width, newState.height) .followedBy (newState.transform); } } else { if (viewBoxW == 0) newState.viewBoxW = newState.width; if (viewBoxH == 0) newState.viewBoxH = newState.height; } newState.parseSubElements (xml, drawable); return drawable; } private: const XmlElement* const topLevelXml; float x, y, width, height, viewBoxW, viewBoxH; AffineTransform transform; String cssStyleText; void parseSubElements (const XmlElement& xml, DrawableComposite* const parentDrawable) { forEachXmlChildElement (xml, e) { Drawable* d = 0; if (e->hasTagName (T("g"))) d = parseGroupElement (*e); else if (e->hasTagName (T("svg"))) d = parseSVGElement (*e); else if (e->hasTagName (T("path"))) d = parsePath (*e); else if (e->hasTagName (T("rect"))) d = parseRect (*e); else if (e->hasTagName (T("circle"))) d = parseCircle (*e); else if (e->hasTagName (T("ellipse"))) d = parseEllipse (*e); else if (e->hasTagName (T("line"))) d = parseLine (*e); else if (e->hasTagName (T("polyline"))) d = parsePolygon (*e, true); else if (e->hasTagName (T("polygon"))) d = parsePolygon (*e, false); else if (e->hasTagName (T("text"))) d = parseText (*e); else if (e->hasTagName (T("switch"))) d = parseSwitch (*e); else if (e->hasTagName (T("style"))) parseCSSStyle (*e); parentDrawable->insertDrawable (d); } } DrawableComposite* parseSwitch (const XmlElement& xml) { const XmlElement* const group = xml.getChildByName (T("g")); if (group != 0) return parseGroupElement (*group); return 0; } DrawableComposite* parseGroupElement (const XmlElement& xml) { DrawableComposite* const drawable = new DrawableComposite(); drawable->setName (xml.getStringAttribute (T("id"))); if (xml.hasAttribute (T("transform"))) { SVGState newState (*this); newState.addTransform (xml); newState.parseSubElements (xml, drawable); } else { parseSubElements (xml, drawable); } return drawable; } Drawable* parsePath (const XmlElement& xml) const { const String d (xml.getStringAttribute (T("d")).trimStart()); Path path; if (getStyleAttribute (&xml, T("fill-rule")).trim().equalsIgnoreCase (T("evenodd"))) path.setUsingNonZeroWinding (false); int index = 0; float lastX = 0, lastY = 0; float lastX2 = 0, lastY2 = 0; tchar lastCommandChar = 0; bool carryOn = true; const String validCommandChars (T("MmLlHhVvCcSsQqTtAaZz")); for (;;) { float x, y, x2, y2, x3, y3; const bool isRelative = (d[index] >= 'a' && d[index] <= 'z'); if (validCommandChars.containsChar (d[index])) lastCommandChar = d [index++]; switch (lastCommandChar) { case T('M'): case T('m'): case T('L'): case T('l'): if (parseCoords (d, x, y, index, false)) { if (isRelative) { x += lastX; y += lastY; } if (lastCommandChar == T('M') || lastCommandChar == T('m')) path.startNewSubPath (x, y); else path.lineTo (x, y); lastX2 = lastX; lastY2 = lastY; lastX = x; lastY = y; } else { ++index; } break; case T('H'): case T('h'): if (parseCoord (d, x, index, false, true)) { if (isRelative) x += lastX; path.lineTo (x, lastY); lastX2 = lastX; lastX = x; } else { ++index; } break; case T('V'): case T('v'): if (parseCoord (d, y, index, false, false)) { if (isRelative) y += lastY; path.lineTo (lastX, y); lastY2 = lastY; lastY = y; } else { ++index; } break; case T('C'): case T('c'): if (parseCoords (d, x, y, index, false) && parseCoords (d, x2, y2, index, false) && parseCoords (d, x3, y3, index, false)) { if (isRelative) { x += lastX; y += lastY; x2 += lastX; y2 += lastY; x3 += lastX; y3 += lastY; } path.cubicTo (x, y, x2, y2, x3, y3); lastX2 = x2; lastY2 = y2; lastX = x3; lastY = y3; } else { ++index; } break; case T('S'): case T('s'): if (parseCoords (d, x, y, index, false) && parseCoords (d, x3, y3, index, false)) { if (isRelative) { x += lastX; y += lastY; x3 += lastX; y3 += lastY; } x2 = lastX + (lastX - lastX2); y2 = lastY + (lastY - lastY2); path.cubicTo (x2, y2, x, y, x3, y3); lastX2 = x; lastY2 = y; lastX = x3; lastY = y3; } else { ++index; } break; case T('Q'): case T('q'): if (parseCoords (d, x, y, index, false) && parseCoords (d, x2, y2, index, false)) { if (isRelative) { x += lastX; y += lastY; x2 += lastX; y2 += lastY; } path.quadraticTo (x, y, x2, y2); lastX2 = x; lastY2 = y; lastX = x2; lastY = y2; } else { ++index; } break; case T('T'): case T('t'): if (parseCoords (d, x, y, index, false)) { if (isRelative) { x += lastX; y += lastY; } x2 = lastX + (lastX - lastX2); y2 = lastY + (lastY - lastY2); path.quadraticTo (x2, y2, x, y); lastX2 = x2; lastY2 = y2; lastX = x; lastY = y; } else { ++index; } break; case T('A'): case T('a'): if (parseCoords (d, x, y, index, false)) { String num; if (parseNextNumber (d, num, index, false)) { const float angle = num.getFloatValue() * (180.0f / float_Pi); if (parseNextNumber (d, num, index, false)) { const bool largeArc = num.getIntValue() != 0; if (parseNextNumber (d, num, index, false)) { const bool sweep = num.getIntValue() != 0; if (parseCoords (d, x2, y2, index, false)) { if (isRelative) { x2 += lastX; y2 += lastY; } if (lastX != x2 || lastY != y2) { double centreX, centreY, startAngle, deltaAngle; double rx = x, ry = y; endpointToCentreParameters (lastX, lastY, x2, y2, angle, largeArc, sweep, rx, ry, centreX, centreY, startAngle, deltaAngle); path.addCentredArc ((float) centreX, (float) centreY, (float) rx, (float) ry, angle, (float) startAngle, (float) (startAngle + deltaAngle), false); path.lineTo (x2, y2); } lastX2 = lastX; lastY2 = lastY; lastX = x2; lastY = y2; } } } } } else { ++index; } break; case T('Z'): case T('z'): path.closeSubPath(); while (CharacterFunctions::isWhitespace (d [index])) ++index; break; default: carryOn = false; break; } if (! carryOn) break; } return parseShape (xml, path); } Drawable* parseRect (const XmlElement& xml) const { Path rect; const bool hasRX = xml.hasAttribute (T("rx")); const bool hasRY = xml.hasAttribute (T("ry")); if (hasRX || hasRY) { float rx = getCoordLength (xml.getStringAttribute (T("rx")), viewBoxW); float ry = getCoordLength (xml.getStringAttribute (T("ry")), viewBoxH); if (! hasRX) rx = ry; else if (! hasRY) ry = rx; rect.addRoundedRectangle (getCoordLength (xml.getStringAttribute (T("x")), viewBoxW), getCoordLength (xml.getStringAttribute (T("y")), viewBoxH), getCoordLength (xml.getStringAttribute (T("width")), viewBoxW), getCoordLength (xml.getStringAttribute (T("height")), viewBoxH), rx, ry); } else { rect.addRectangle (getCoordLength (xml.getStringAttribute (T("x")), viewBoxW), getCoordLength (xml.getStringAttribute (T("y")), viewBoxH), getCoordLength (xml.getStringAttribute (T("width")), viewBoxW), getCoordLength (xml.getStringAttribute (T("height")), viewBoxH)); } return parseShape (xml, rect); } Drawable* parseCircle (const XmlElement& xml) const { Path circle; const float cx = getCoordLength (xml.getStringAttribute (T("cx")), viewBoxW); const float cy = getCoordLength (xml.getStringAttribute (T("cy")), viewBoxH); const float radius = getCoordLength (xml.getStringAttribute (T("r")), viewBoxW); circle.addEllipse (cx - radius, cy - radius, radius * 2.0f, radius * 2.0f); return parseShape (xml, circle); } Drawable* parseEllipse (const XmlElement& xml) const { Path ellipse; const float cx = getCoordLength (xml.getStringAttribute (T("cx")), viewBoxW); const float cy = getCoordLength (xml.getStringAttribute (T("cy")), viewBoxH); const float radiusX = getCoordLength (xml.getStringAttribute (T("rx")), viewBoxW); const float radiusY = getCoordLength (xml.getStringAttribute (T("ry")), viewBoxH); ellipse.addEllipse (cx - radiusX, cy - radiusY, radiusX * 2.0f, radiusY * 2.0f); return parseShape (xml, ellipse); } Drawable* parseLine (const XmlElement& xml) const { Path line; const float x1 = getCoordLength (xml.getStringAttribute (T("x1")), viewBoxW); const float y1 = getCoordLength (xml.getStringAttribute (T("y1")), viewBoxH); const float x2 = getCoordLength (xml.getStringAttribute (T("x2")), viewBoxW); const float y2 = getCoordLength (xml.getStringAttribute (T("y2")), viewBoxH); line.startNewSubPath (x1, y1); line.lineTo (x2, y2); return parseShape (xml, line); } Drawable* parsePolygon (const XmlElement& xml, const bool isPolyline) const { const String points (xml.getStringAttribute (T("points"))); Path path; int index = 0; float x, y; if (parseCoords (points, x, y, index, true)) { float firstX = x; float firstY = y; float lastX = 0, lastY = 0; path.startNewSubPath (x, y); while (parseCoords (points, x, y, index, true)) { lastX = x; lastY = y; path.lineTo (x, y); } if ((! isPolyline) || (firstX == lastX && firstY == lastY)) path.closeSubPath(); } return parseShape (xml, path); } Drawable* parseShape (const XmlElement& xml, Path& path, const bool parseTransform = true) const { if (parseTransform && xml.hasAttribute (T("transform"))) { SVGState newState (*this); newState.addTransform (xml); return newState.parseShape (xml, path, false); } DrawablePath* dp = new DrawablePath(); dp->setName (xml.getStringAttribute (T("id"))); dp->setSolidFill (Colours::transparentBlack); path.applyTransform (transform); dp->setPath (path); Path::Iterator iter (path); bool containsClosedSubPath = false; while (iter.next()) { if (iter.elementType == Path::Iterator::closePath) { containsClosedSubPath = true; break; } } Brush* const fillBrush = getBrushForFill (path, getStyleAttribute (&xml, T("fill")), getStyleAttribute (&xml, T("fill-opacity")), getStyleAttribute (&xml, T("opacity")), containsClosedSubPath ? Colours::black : Colours::transparentBlack); if (fillBrush != 0) { if (! fillBrush->isInvisible()) { fillBrush->applyTransform (transform); dp->setFillBrush (*fillBrush); } delete fillBrush; } const String strokeType (getStyleAttribute (&xml, T("stroke"))); if (strokeType.isNotEmpty() && ! strokeType.equalsIgnoreCase (T("none"))) { Brush* const strokeBrush = getBrushForFill (path, strokeType, getStyleAttribute (&xml, T("stroke-opacity")), getStyleAttribute (&xml, T("opacity")), Colours::transparentBlack); if (strokeBrush != 0) { const PathStrokeType stroke (getStrokeFor (&xml)); if (! strokeBrush->isInvisible()) { strokeBrush->applyTransform (transform); dp->setOutline (stroke, *strokeBrush); } delete strokeBrush; } } return dp; } const XmlElement* findLinkedElement (const XmlElement* e) const { const String id (e->getStringAttribute (T("xlink:href"))); if (! id.startsWithChar (T('#'))) return 0; return findElementForId (topLevelXml, id.substring (1)); } void addGradientStopsIn (ColourGradient& cg, const XmlElement* const fillXml) const { if (fillXml == 0) return; forEachXmlChildElementWithTagName (*fillXml, e, T("stop")) { int index = 0; Colour col (parseColour (getStyleAttribute (e, T("stop-color")), index, Colours::black)); const String opacity (getStyleAttribute (e, T("stop-opacity"), T("1"))); col = col.withMultipliedAlpha (jlimit (0.0f, 1.0f, opacity.getFloatValue())); double offset = e->getDoubleAttribute (T("offset")); if (e->getStringAttribute (T("offset")).containsChar (T('%'))) offset *= 0.01; cg.addColour (jlimit (0.0, 1.0, offset), col); } } Brush* getBrushForFill (const Path& path, const String& fill, const String& fillOpacity, const String& overallOpacity, const Colour& defaultColour) const { float opacity = 1.0f; if (overallOpacity.isNotEmpty()) opacity = jlimit (0.0f, 1.0f, overallOpacity.getFloatValue()); if (fillOpacity.isNotEmpty()) opacity *= (jlimit (0.0f, 1.0f, fillOpacity.getFloatValue())); if (fill.startsWithIgnoreCase (T("url"))) { const String id (fill.fromFirstOccurrenceOf (T("#"), false, false) .upToLastOccurrenceOf (T(")"), false, false).trim()); const XmlElement* const fillXml = findElementForId (topLevelXml, id); if (fillXml != 0 && (fillXml->hasTagName (T("linearGradient")) || fillXml->hasTagName (T("radialGradient")))) { const XmlElement* inheritedFrom = findLinkedElement (fillXml); ColourGradient cg; addGradientStopsIn (cg, inheritedFrom); addGradientStopsIn (cg, fillXml); if (cg.getNumColours() > 0) { cg.addColour (0.0, cg.getColour (0)); cg.addColour (1.0, cg.getColour (cg.getNumColours() - 1)); } else { cg.addColour (0.0, Colours::black); cg.addColour (1.0, Colours::black); } if (overallOpacity.isNotEmpty()) cg.multiplyOpacity (overallOpacity.getFloatValue()); jassert (cg.getNumColours() > 0); cg.isRadial = fillXml->hasTagName (T("radialGradient")); cg.transform = parseTransform (fillXml->getStringAttribute (T("gradientTransform"))); float width = viewBoxW; float height = viewBoxH; float dx = 0.0; float dy = 0.0; const bool userSpace = fillXml->getStringAttribute (T("gradientUnits")).equalsIgnoreCase (T("userSpaceOnUse")); if (! userSpace) path.getBounds (dx, dy, width, height); if (cg.isRadial) { cg.x1 = dx + getCoordLength (fillXml->getStringAttribute (T("cx"), T("50%")), width); cg.y1 = dy + getCoordLength (fillXml->getStringAttribute (T("cy"), T("50%")), height); const float radius = getCoordLength (fillXml->getStringAttribute (T("r"), T("50%")), width); cg.x2 = cg.x1 + radius; cg.y2 = cg.y1; //xxx (the fx, fy focal point isn't handled properly here..) } else { cg.x1 = dx + getCoordLength (fillXml->getStringAttribute (T("x1"), T("0%")), width); cg.y1 = dy + getCoordLength (fillXml->getStringAttribute (T("y1"), T("0%")), height); cg.x2 = dx + getCoordLength (fillXml->getStringAttribute (T("x2"), T("100%")), width); cg.y2 = dy + getCoordLength (fillXml->getStringAttribute (T("y2"), T("0%")), height); if (cg.x1 == cg.x2 && cg.y1 == cg.y2) return new SolidColourBrush (cg.getColour (cg.getNumColours() - 1)); } return new GradientBrush (cg); } } if (fill.equalsIgnoreCase (T("none"))) return new SolidColourBrush (Colours::transparentBlack); int i = 0; Colour colour (parseColour (fill, i, defaultColour)); colour = colour.withMultipliedAlpha (opacity); return new SolidColourBrush (colour); } const PathStrokeType getStrokeFor (const XmlElement* const xml) const { const String width (getStyleAttribute (xml, T("stroke-width"))); const String cap (getStyleAttribute (xml, T("stroke-linecap"))); const String join (getStyleAttribute (xml, T("stroke-linejoin"))); //const String mitreLimit (getStyleAttribute (xml, T("stroke-miterlimit"))); //const String dashArray (getStyleAttribute (xml, T("stroke-dasharray"))); //const String dashOffset (getStyleAttribute (xml, T("stroke-dashoffset"))); PathStrokeType::JointStyle joinStyle = PathStrokeType::mitered; PathStrokeType::EndCapStyle capStyle = PathStrokeType::butt; if (join.equalsIgnoreCase (T("round"))) joinStyle = PathStrokeType::curved; else if (join.equalsIgnoreCase (T("bevel"))) joinStyle = PathStrokeType::beveled; if (cap.equalsIgnoreCase (T("round"))) capStyle = PathStrokeType::rounded; else if (cap.equalsIgnoreCase (T("square"))) capStyle = PathStrokeType::square; float ox = 0.0f, oy = 0.0f; transform.transformPoint (ox, oy); float x = getCoordLength (width, viewBoxW), y = 0.0f; transform.transformPoint (x, y); return PathStrokeType (width.isNotEmpty() ? juce_hypotf (x - ox, y - oy) : 1.0f, joinStyle, capStyle); } Drawable* parseText (const XmlElement& xml) { Array xCoords, yCoords, dxCoords, dyCoords; getCoordList (xCoords, getInheritedAttribute (&xml, T("x")), true, true); getCoordList (yCoords, getInheritedAttribute (&xml, T("y")), true, false); getCoordList (dxCoords, getInheritedAttribute (&xml, T("dx")), true, true); getCoordList (dyCoords, getInheritedAttribute (&xml, T("dy")), true, false); //xxx not done text yet! forEachXmlChildElement (xml, e) { if (e->isTextElement()) { const String text (e->getText()); Path path; Drawable* s = parseShape (*e, path); delete s; } else if (e->hasTagName (T("tspan"))) { Drawable* s = parseText (*e); delete s; } } return 0; } void addTransform (const XmlElement& xml) { transform = parseTransform (xml.getStringAttribute (T("transform"))) .followedBy (transform); } bool parseCoord (const String& s, float& value, int& index, const bool allowUnits, const bool isX) const { String number; if (! parseNextNumber (s, number, index, allowUnits)) { value = 0; return false; } value = getCoordLength (number, isX ? viewBoxW : viewBoxH); return true; } bool parseCoords (const String& s, float& x, float& y, int& index, const bool allowUnits) const { return parseCoord (s, x, index, allowUnits, true) && parseCoord (s, y, index, allowUnits, false); } float getCoordLength (const String& s, const float sizeForProportions) const { float n = s.getFloatValue(); const int len = s.length(); if (len > 2) { const float dpi = 96.0f; const tchar n1 = s [len - 2]; const tchar n2 = s [len - 1]; if (n1 == T('i') && n2 == T('n')) n *= dpi; else if (n1 == T('m') && n2 == T('m')) n *= dpi / 25.4f; else if (n1 == T('c') && n2 == T('m')) n *= dpi / 2.54f; else if (n1 == T('p') && n2 == T('c')) n *= 15.0f; else if (n2 == T('%')) n *= 0.01f * sizeForProportions; } return n; } void getCoordList (Array & coords, const String& list, const bool allowUnits, const bool isX) const { int index = 0; float value; while (parseCoord (list, value, index, allowUnits, isX)) coords.add (value); } void parseCSSStyle (const XmlElement& xml) { cssStyleText = xml.getAllSubText() + T("\n") + cssStyleText; } const String getStyleAttribute (const XmlElement* xml, const String& attributeName, const String& defaultValue = String::empty) const { if (xml->hasAttribute (attributeName)) return xml->getStringAttribute (attributeName, defaultValue); const String styleAtt (xml->getStringAttribute (T("style"))); if (styleAtt.isNotEmpty()) { const String value (getAttributeFromStyleList (styleAtt, attributeName, String::empty)); if (value.isNotEmpty()) return value; } else if (xml->hasAttribute (T("class"))) { const String className (T(".") + xml->getStringAttribute (T("class"))); int index = cssStyleText.indexOfIgnoreCase (className + T(" ")); if (index < 0) index = cssStyleText.indexOfIgnoreCase (className + T("{")); if (index >= 0) { const int openBracket = cssStyleText.indexOfChar (index, T('{')); if (openBracket > index) { const int closeBracket = cssStyleText.indexOfChar (openBracket, T('}')); if (closeBracket > openBracket) { const String value (getAttributeFromStyleList (cssStyleText.substring (openBracket + 1, closeBracket), attributeName, defaultValue)); if (value.isNotEmpty()) return value; } } } } xml = const_cast (topLevelXml)->findParentElementOf (xml); if (xml != 0) return getStyleAttribute (xml, attributeName, defaultValue); return defaultValue; } const String getInheritedAttribute (const XmlElement* xml, const String& attributeName) const { if (xml->hasAttribute (attributeName)) return xml->getStringAttribute (attributeName); xml = const_cast (topLevelXml)->findParentElementOf (xml); if (xml != 0) return getInheritedAttribute (xml, attributeName); return String::empty; } static bool isIdentifierChar (const tchar c) { return CharacterFunctions::isLetter (c) || c == T('-'); } static const String getAttributeFromStyleList (const String& list, const String& attributeName, const String& defaultValue) { int i = 0; for (;;) { i = list.indexOf (i, attributeName); if (i < 0) break; if ((i == 0 || (i > 0 && ! isIdentifierChar (list [i - 1]))) && ! isIdentifierChar (list [i + attributeName.length()])) { i = list.indexOfChar (i, T(':')); if (i < 0) break; int end = list.indexOfChar (i, T(';')); if (end < 0) end = 0x7ffff; return list.substring (i + 1, end).trim(); } ++i; } return defaultValue; } static bool parseNextNumber (const String& source, String& value, int& index, const bool allowUnits) { const tchar* const s = (const tchar*) source; while (CharacterFunctions::isWhitespace (s[index]) || s[index] == T(',')) ++index; int start = index; if (CharacterFunctions::isDigit (s[index]) || s[index] == T('.') || s[index] == T('-')) ++index; while (CharacterFunctions::isDigit (s[index]) || s[index] == T('.')) ++index; if ((s[index] == T('e') || s[index] == T('E')) && (CharacterFunctions::isDigit (s[index + 1]) || s[index + 1] == T('-') || s[index + 1] == T('+'))) { index += 2; while (CharacterFunctions::isDigit (s[index])) ++index; } if (allowUnits) { while (CharacterFunctions::isLetter (s[index])) ++index; } if (index == start) return false; value = String (s + start, index - start); while (CharacterFunctions::isWhitespace (s[index]) || s[index] == T(',')) ++index; return true; } static const Colour parseColour (const String& s, int& index, const Colour& defaultColour) { if (s [index] == T('#')) { uint32 hex [6]; zeromem (hex, sizeof (hex)); int numChars = 0; for (int i = 6; --i >= 0;) { const int hexValue = CharacterFunctions::getHexDigitValue (s [++index]); if (hexValue >= 0) hex [numChars++] = hexValue; else break; } if (numChars <= 3) return Colour ((uint8) (hex [0] * 0x11), (uint8) (hex [1] * 0x11), (uint8) (hex [2] * 0x11)); else return Colour ((uint8) ((hex [0] << 4) + hex [1]), (uint8) ((hex [2] << 4) + hex [3]), (uint8) ((hex [4] << 4) + hex [5])); } else if (s [index] == T('r') && s [index + 1] == T('g') && s [index + 2] == T('b')) { const int openBracket = s.indexOfChar (index, T('(')); const int closeBracket = s.indexOfChar (openBracket, T(')')); if (openBracket >= 3 && closeBracket > openBracket) { index = closeBracket; StringArray tokens; tokens.addTokens (s.substring (openBracket + 1, closeBracket), T(","), T("")); tokens.trim(); tokens.removeEmptyStrings(); if (tokens[0].containsChar (T('%'))) return Colour ((uint8) roundDoubleToInt (2.55 * tokens[0].getDoubleValue()), (uint8) roundDoubleToInt (2.55 * tokens[1].getDoubleValue()), (uint8) roundDoubleToInt (2.55 * tokens[2].getDoubleValue())); else return Colour ((uint8) tokens[0].getIntValue(), (uint8) tokens[1].getIntValue(), (uint8) tokens[2].getIntValue()); } } return Colours::findColourForName (s, defaultColour); } static const AffineTransform parseTransform (String t) { AffineTransform result; while (t.isNotEmpty()) { StringArray tokens; tokens.addTokens (t.fromFirstOccurrenceOf (T("("), false, false) .upToFirstOccurrenceOf (T(")"), false, false), T(", "), 0); tokens.removeEmptyStrings (true); float numbers [6]; for (int i = 0; i < 6; ++i) numbers[i] = tokens[i].getFloatValue(); AffineTransform trans; if (t.startsWithIgnoreCase (T("matrix"))) { trans = AffineTransform (numbers[0], numbers[2], numbers[4], numbers[1], numbers[3], numbers[5]); } else if (t.startsWithIgnoreCase (T("translate"))) { trans = trans.translated (numbers[0], numbers[1]); } else if (t.startsWithIgnoreCase (T("scale"))) { if (tokens.size() == 1) trans = trans.scaled (numbers[0], numbers[0]); else trans = trans.scaled (numbers[0], numbers[1]); } else if (t.startsWithIgnoreCase (T("rotate"))) { if (tokens.size() != 3) trans = trans.rotated (numbers[0] / (180.0f / float_Pi)); else trans = trans.rotated (numbers[0] / (180.0f / float_Pi), numbers[1], numbers[2]); } else if (t.startsWithIgnoreCase (T("skewX"))) { trans = AffineTransform (1.0f, tanf (numbers[0] * (float_Pi / 180.0f)), 0.0f, 0.0f, 1.0f, 0.0f); } else if (t.startsWithIgnoreCase (T("skewY"))) { trans = AffineTransform (1.0f, 0.0f, 0.0f, tanf (numbers[0] * (float_Pi / 180.0f)), 1.0f, 0.0f); } result = trans.followedBy (result); t = t.fromFirstOccurrenceOf (T(")"), false, false).trimStart(); } return result; } static void endpointToCentreParameters (const double x1, const double y1, const double x2, const double y2, const double angle, const bool largeArc, const bool sweep, double& rx, double& ry, double& centreX, double& centreY, double& startAngle, double& deltaAngle) { const double midX = (x1 - x2) * 0.5; const double midY = (y1 - y2) * 0.5; const double cosAngle = cos (angle); const double sinAngle = sin (angle); const double xp = cosAngle * midX + sinAngle * midY; const double yp = cosAngle * midY - sinAngle * midX; const double xp2 = xp * xp; const double yp2 = yp * yp; double rx2 = rx * rx; double ry2 = ry * ry; const double s = (xp2 / rx2) + (yp2 / ry2); double c; if (s <= 1.0) { c = sqrt (jmax (0.0, ((rx2 * ry2) - (rx2 * yp2) - (ry2 * xp2)) / (( rx2 * yp2) + (ry2 * xp2)))); if (largeArc == sweep) c = -c; } else { const double s2 = sqrt (s); rx *= s2; ry *= s2; rx2 = rx * rx; ry2 = ry * ry; c = 0; } const double cpx = ((rx * yp) / ry) * c; const double cpy = ((-ry * xp) / rx) * c; centreX = ((x1 + x2) * 0.5) + (cosAngle * cpx) - (sinAngle * cpy); centreY = ((y1 + y2) * 0.5) + (sinAngle * cpx) + (cosAngle * cpy); const double ux = (xp - cpx) / rx; const double uy = (yp - cpy) / ry; const double vx = (-xp - cpx) / rx; const double vy = (-yp - cpy) / ry; const double length = juce_hypot (ux, uy); startAngle = acos (jlimit (-1.0, 1.0, ux / length)); if (uy < 0) startAngle = -startAngle; startAngle += double_Pi * 0.5; deltaAngle = acos (jlimit (-1.0, 1.0, ((ux * vx) + (uy * vy)) / (length * juce_hypot (vx, vy)))); if ((ux * vy) - (uy * vx) < 0) deltaAngle = -deltaAngle; if (sweep) { if (deltaAngle < 0) deltaAngle += double_Pi * 2.0; } else { if (deltaAngle > 0) deltaAngle -= double_Pi * 2.0; } deltaAngle = fmod (deltaAngle, double_Pi * 2.0); } static const XmlElement* findElementForId (const XmlElement* const parent, const String& id) { forEachXmlChildElement (*parent, e) { if (e->compareAttribute (T("id"), id)) return e; const XmlElement* const found = findElementForId (e, id); if (found != 0) return found; } return 0; } const SVGState& operator= (const SVGState&); }; Drawable* Drawable::createFromSVG (const XmlElement& svgDocument) { SVGState state (&svgDocument); return state.parseSVGElement (svgDocument); } END_JUCE_NAMESPACE /********* End of inlined file: juce_SVGParser.cpp *********/ /********* Start of inlined file: juce_DropShadowEffect.cpp *********/ BEGIN_JUCE_NAMESPACE #if JUCE_MSVC #pragma optimize ("t", on) // try to avoid slowing everything down in debug builds #endif DropShadowEffect::DropShadowEffect() : offsetX (0), offsetY (0), radius (4), opacity (0.6f) { } DropShadowEffect::~DropShadowEffect() { } void DropShadowEffect::setShadowProperties (const float newRadius, const float newOpacity, const int newShadowOffsetX, const int newShadowOffsetY) { radius = jmax (1.1f, newRadius); offsetX = newShadowOffsetX; offsetY = newShadowOffsetY; opacity = newOpacity; } void DropShadowEffect::applyEffect (Image& image, Graphics& g) { const int w = image.getWidth(); const int h = image.getHeight(); int lineStride, pixelStride; const PixelARGB* srcPixels = (const PixelARGB*) image.lockPixelDataReadOnly (0, 0, image.getWidth(), image.getHeight(), lineStride, pixelStride); Image shadowImage (Image::SingleChannel, w, h, false); int destStride, destPixelStride; uint8* const shadowChannel = (uint8*) shadowImage.lockPixelDataReadWrite (0, 0, w, h, destStride, destPixelStride); const int filter = roundFloatToInt (63.0f / radius); const int radiusMinus1 = roundFloatToInt ((radius - 1.0f) * 63.0f); for (int x = w; --x >= 0;) { int shadowAlpha = 0; const PixelARGB* src = srcPixels + x; uint8* shadowPix = shadowChannel + x; for (int y = h; --y >= 0;) { shadowAlpha = ((shadowAlpha * radiusMinus1 + (src->getAlpha() << 6)) * filter) >> 12; *shadowPix = (uint8) shadowAlpha; src = (const PixelARGB*) (((const uint8*) src) + lineStride); shadowPix += destStride; } } for (int y = h; --y >= 0;) { int shadowAlpha = 0; uint8* shadowPix = shadowChannel + y * destStride; for (int x = w; --x >= 0;) { shadowAlpha = ((shadowAlpha * radiusMinus1 + (*shadowPix << 6)) * filter) >> 12; *shadowPix++ = (uint8) shadowAlpha; } } image.releasePixelDataReadOnly (srcPixels); shadowImage.releasePixelDataReadWrite (shadowChannel); g.setColour (Colours::black.withAlpha (opacity)); g.drawImageAt (&shadowImage, offsetX, offsetY, true); g.setOpacity (1.0f); g.drawImageAt (&image, 0, 0); } END_JUCE_NAMESPACE /********* End of inlined file: juce_DropShadowEffect.cpp *********/ /********* Start of inlined file: juce_GlowEffect.cpp *********/ BEGIN_JUCE_NAMESPACE GlowEffect::GlowEffect() : radius (2.0f), colour (Colours::white) { } GlowEffect::~GlowEffect() { } void GlowEffect::setGlowProperties (const float newRadius, const Colour& newColour) { radius = newRadius; colour = newColour; } void GlowEffect::applyEffect (Image& image, Graphics& g) { const int w = image.getWidth(); const int h = image.getHeight(); Image temp (image.getFormat(), w, h, true); ImageConvolutionKernel blurKernel (roundFloatToInt (radius * 2.0f)); blurKernel.createGaussianBlur (radius); blurKernel.rescaleAllValues (radius); blurKernel.applyToImage (temp, &image, 0, 0, w, h); g.setColour (colour); g.drawImageAt (&temp, 0, 0, true); g.setOpacity (1.0f); g.drawImageAt (&image, 0, 0, false); } END_JUCE_NAMESPACE /********* End of inlined file: juce_GlowEffect.cpp *********/ /********* Start of inlined file: juce_ReduceOpacityEffect.cpp *********/ BEGIN_JUCE_NAMESPACE ReduceOpacityEffect::ReduceOpacityEffect (const float opacity_) : opacity (opacity_) { } ReduceOpacityEffect::~ReduceOpacityEffect() { } void ReduceOpacityEffect::setOpacity (const float newOpacity) { opacity = jlimit (0.0f, 1.0f, newOpacity); } void ReduceOpacityEffect::applyEffect (Image& image, Graphics& g) { g.setOpacity (opacity); g.drawImageAt (&image, 0, 0); } END_JUCE_NAMESPACE /********* End of inlined file: juce_ReduceOpacityEffect.cpp *********/ /********* Start of inlined file: juce_Font.cpp *********/ BEGIN_JUCE_NAMESPACE static const float minFontHeight = 0.1f; static const float maxFontHeight = 10000.0f; static const float defaultFontHeight = 14.0f; Font::Font() throw() : typefaceName (Typeface::defaultTypefaceNameSans), height (defaultFontHeight), horizontalScale (1.0f), kerning (0), ascent (0), styleFlags (Font::plain) { } void Font::resetToDefaultState() throw() { typefaceName = Typeface::defaultTypefaceNameSans; height = defaultFontHeight; horizontalScale = 1.0f; kerning = 0; ascent = 0; styleFlags = Font::plain; typeface = 0; } Font::Font (const float fontHeight, const int styleFlags_) throw() : typefaceName (Typeface::defaultTypefaceNameSans), height (jlimit (minFontHeight, maxFontHeight, fontHeight)), horizontalScale (1.0f), kerning (0), ascent (0), styleFlags (styleFlags_) { } Font::Font (const String& typefaceName_, const float fontHeight, const int styleFlags_) throw() : typefaceName (typefaceName_), height (jlimit (minFontHeight, maxFontHeight, fontHeight)), horizontalScale (1.0f), kerning (0), ascent (0), styleFlags (styleFlags_) { } Font::Font (const Font& other) throw() : typefaceName (other.typefaceName), height (other.height), horizontalScale (other.horizontalScale), kerning (other.kerning), ascent (other.ascent), styleFlags (other.styleFlags), typeface (other.typeface) { } const Font& Font::operator= (const Font& other) throw() { if (this != &other) { typefaceName = other.typefaceName; height = other.height; styleFlags = other.styleFlags; horizontalScale = other.horizontalScale; kerning = other.kerning; ascent = other.ascent; typeface = other.typeface; } return *this; } Font::~Font() throw() { } Font::Font (const Typeface& face) throw() : height (11.0f), horizontalScale (1.0f), kerning (0), ascent (0), styleFlags (plain) { typefaceName = face.getName(); setBold (face.isBold()); setItalic (face.isItalic()); typeface = new Typeface (face); } bool Font::operator== (const Font& other) const throw() { return height == other.height && horizontalScale == other.horizontalScale && kerning == other.kerning && styleFlags == other.styleFlags && typefaceName == other.typefaceName; } bool Font::operator!= (const Font& other) const throw() { return ! operator== (other); } void Font::setTypefaceName (const String& faceName) throw() { typefaceName = faceName; typeface = 0; ascent = 0; } static String fallbackFont; const String Font::getFallbackFontName() throw() { return fallbackFont; } void Font::setFallbackFontName (const String& name) throw() { fallbackFont = name; } void Font::setHeight (float newHeight) throw() { height = jlimit (minFontHeight, maxFontHeight, newHeight); } void Font::setHeightWithoutChangingWidth (float newHeight) throw() { newHeight = jlimit (minFontHeight, maxFontHeight, newHeight); horizontalScale *= (height / newHeight); height = newHeight; } void Font::setStyleFlags (const int newFlags) throw() { if (styleFlags != newFlags) { styleFlags = newFlags; typeface = 0; ascent = 0; } } void Font::setSizeAndStyle (const float newHeight, const int newStyleFlags, const float newHorizontalScale, const float newKerningAmount) throw() { height = jlimit (minFontHeight, maxFontHeight, newHeight); horizontalScale = newHorizontalScale; kerning = newKerningAmount; setStyleFlags (newStyleFlags); } void Font::setHorizontalScale (const float scaleFactor) throw() { horizontalScale = scaleFactor; } void Font::setExtraKerningFactor (const float extraKerning) throw() { kerning = extraKerning; } void Font::setBold (const bool shouldBeBold) throw() { setStyleFlags (shouldBeBold ? (styleFlags | bold) : (styleFlags & ~bold)); } bool Font::isBold() const throw() { return (styleFlags & bold) != 0; } void Font::setItalic (const bool shouldBeItalic) throw() { setStyleFlags (shouldBeItalic ? (styleFlags | italic) : (styleFlags & ~italic)); } bool Font::isItalic() const throw() { return (styleFlags & italic) != 0; } void Font::setUnderline (const bool shouldBeUnderlined) throw() { setStyleFlags (shouldBeUnderlined ? (styleFlags | underlined) : (styleFlags & ~underlined)); } bool Font::isUnderlined() const throw() { return (styleFlags & underlined) != 0; } float Font::getAscent() const throw() { if (ascent == 0) ascent = getTypeface()->getAscent(); return height * ascent; } float Font::getDescent() const throw() { return height - getAscent(); } int Font::getStringWidth (const String& text) const throw() { return roundFloatToInt (getStringWidthFloat (text)); } float Font::getStringWidthFloat (const String& text) const throw() { float x = 0.0f; if (text.isNotEmpty()) { Typeface* const typeface = getTypeface(); const juce_wchar* t = (const juce_wchar*) text; do { const TypefaceGlyphInfo* const glyph = typeface->getGlyph (*t++); if (glyph != 0) x += kerning + glyph->getHorizontalSpacing (*t); } while (*t != 0); x *= height; x *= horizontalScale; } return x; } Typeface* Font::getTypeface() const throw() { if (typeface == 0) typeface = Typeface::getTypefaceFor (*this); return typeface; } void Font::findFonts (OwnedArray& destArray) throw() { const StringArray names (findAllTypefaceNames()); for (int i = 0; i < names.size(); ++i) destArray.add (new Font (names[i], defaultFontHeight, Font::plain)); } END_JUCE_NAMESPACE /********* End of inlined file: juce_Font.cpp *********/ /********* Start of inlined file: juce_GlyphArrangement.cpp *********/ BEGIN_JUCE_NAMESPACE #define SHOULD_WRAP(x, wrapwidth) (((x) - 0.0001f) >= (wrapwidth)) class FontGlyphAlphaMap { public: bool draw (const Graphics& g, float x, const float y) const throw() { if (bitmap1 == 0) return false; x += xOrigin; const float xFloor = floorf (x); const int intX = (int) xFloor; g.drawImageAt (((x - xFloor) >= 0.5f && bitmap2 != 0) ? bitmap2 : bitmap1, intX, (int) floorf (y + yOrigin), true); return true; } juce_UseDebuggingNewOperator private: Image* bitmap1; Image* bitmap2; float xOrigin, yOrigin; int lastAccessCount; Typeface::Ptr typeface; float height, horizontalScale; juce_wchar character; friend class GlyphCache; FontGlyphAlphaMap() throw() : bitmap1 (0), bitmap2 (0), lastAccessCount (0), height (0), horizontalScale (0), character (0) { } ~FontGlyphAlphaMap() throw() { delete bitmap1; delete bitmap2; } class AlphaBitmapRenderer { uint8* const data; const int stride; uint8* lineStart; AlphaBitmapRenderer (const AlphaBitmapRenderer&); const AlphaBitmapRenderer& operator= (const AlphaBitmapRenderer&); public: AlphaBitmapRenderer (uint8* const data_, const int stride_) throw() : data (data_), stride (stride_) { } forcedinline void setEdgeTableYPos (const int y) throw() { lineStart = data + (stride * y); } forcedinline void handleEdgeTablePixel (const int x, const int alphaLevel) const throw() { lineStart [x] = (uint8) alphaLevel; } forcedinline void handleEdgeTableLine (const int x, int width, const int alphaLevel) const throw() { uint8* d = lineStart + x; while (--width >= 0) *d++ = (uint8) alphaLevel; } }; Image* createAlphaMapFromPath (const Path& path, float& topLeftX, float& topLeftY, float xScale, float yScale, const float subPixelOffsetX) throw() { Image* im = 0; float px, py, pw, ph; path.getBounds (px, py, pw, ph); topLeftX = floorf (px * xScale); topLeftY = floorf (py * yScale); int bitmapWidth = roundFloatToInt (pw * xScale) + 2; int bitmapHeight = roundFloatToInt (ph * yScale) + 2; im = new Image (Image::SingleChannel, bitmapWidth, bitmapHeight, true); EdgeTable edgeTable (0, bitmapHeight, EdgeTable::Oversampling_16times); edgeTable.addPath (path, AffineTransform::scale (xScale, yScale) .translated (subPixelOffsetX - topLeftX, -topLeftY)); int stride, pixelStride; uint8* const pixels = (uint8*) im->lockPixelDataReadWrite (0, 0, bitmapWidth, bitmapHeight, stride, pixelStride); jassert (pixelStride == 1); AlphaBitmapRenderer renderer (pixels, stride); edgeTable.iterate (renderer, 0, 0, bitmapWidth, bitmapHeight, 0); im->releasePixelDataReadWrite (pixels); return im; } void generate (Typeface* const face, const juce_wchar character_, const float fontHeight, const float fontHorizontalScale) throw() { character = character_; typeface = face; height = fontHeight; horizontalScale = fontHorizontalScale; const Path* const glyphPath = face->getOutlineForGlyph (character_); deleteAndZero (bitmap1); deleteAndZero (bitmap2); const float fontHScale = fontHeight * fontHorizontalScale; if (glyphPath != 0 && ! glyphPath->isEmpty()) { bitmap1 = createAlphaMapFromPath (*glyphPath, xOrigin, yOrigin, fontHScale, fontHeight, 0.0f); if (fontHScale < 24.0f) bitmap2 = createAlphaMapFromPath (*glyphPath, xOrigin, yOrigin, fontHScale, fontHeight, 0.5f); } else { xOrigin = yOrigin = 0; } } }; static const int defaultNumGlyphsToCache = 120; class GlyphCache; static GlyphCache* cacheInstance = 0; class GlyphCache : private DeletedAtShutdown { public: static GlyphCache* getInstance() throw() { if (cacheInstance == 0) cacheInstance = new GlyphCache(); return cacheInstance; } const FontGlyphAlphaMap& getGlyphFor (Typeface* const typeface, const float fontHeight, const float fontHorizontalScale, const juce_wchar character) throw() { ++accessCounter; int oldestCounter = INT_MAX; int oldestIndex = 0; for (int i = numGlyphs; --i >= 0;) { FontGlyphAlphaMap& g = glyphs[i]; if (g.character == character && g.height == fontHeight && g.typeface->hashCode() == typeface->hashCode() && g.horizontalScale == fontHorizontalScale) { g.lastAccessCount = accessCounter; ++hits; return g; } if (oldestCounter > g.lastAccessCount) { oldestCounter = g.lastAccessCount; oldestIndex = i; } } ++misses; if (hits + misses > (numGlyphs << 4)) { if (misses * 2 > hits) setCacheSize (numGlyphs + 32); hits = 0; misses = 0; oldestIndex = 0; } FontGlyphAlphaMap& oldest = glyphs [oldestIndex]; oldest.lastAccessCount = accessCounter; oldest.generate (typeface, character, fontHeight, fontHorizontalScale); return oldest; } void setCacheSize (const int num) throw() { if (numGlyphs != num) { numGlyphs = num; if (glyphs != 0) delete[] glyphs; glyphs = new FontGlyphAlphaMap [numGlyphs]; hits = 0; misses = 0; } } juce_UseDebuggingNewOperator private: FontGlyphAlphaMap* glyphs; int numGlyphs, accessCounter; int hits, misses; GlyphCache() throw() : glyphs (0), numGlyphs (0), accessCounter (0) { setCacheSize (defaultNumGlyphsToCache); } ~GlyphCache() throw() { delete[] glyphs; jassert (cacheInstance == this); cacheInstance = 0; } GlyphCache (const GlyphCache&); const GlyphCache& operator= (const GlyphCache&); }; PositionedGlyph::PositionedGlyph() throw() { } void PositionedGlyph::draw (const Graphics& g) const throw() { if (! glyphInfo->isWhitespace()) { if (fontHeight < 100.0f && fontHeight > 0.1f && ! g.isVectorDevice()) { const FontGlyphAlphaMap& alphaMap = GlyphCache::getInstance()->getGlyphFor (glyphInfo->getTypeface(), fontHeight, fontHorizontalScale, getCharacter()); alphaMap.draw (g, x, y); } else { // that's a bit of a dodgy size, isn't it?? jassert (fontHeight > 0.0f && fontHeight < 4000.0f); draw (g, AffineTransform::identity); } } } void PositionedGlyph::draw (const Graphics& g, const AffineTransform& transform) const throw() { if (! glyphInfo->isWhitespace()) { g.fillPath (glyphInfo->getPath(), AffineTransform::scale (fontHeight * fontHorizontalScale, fontHeight) .translated (x, y) .followedBy (transform)); } } void PositionedGlyph::createPath (Path& path) const throw() { if (! glyphInfo->isWhitespace()) { path.addPath (glyphInfo->getPath(), AffineTransform::scale (fontHeight * fontHorizontalScale, fontHeight) .translated (x, y)); } } bool PositionedGlyph::hitTest (float px, float py) const throw() { if (px >= getLeft() && px < getRight() && py >= getTop() && py < getBottom() && fontHeight > 0.0f && ! glyphInfo->isWhitespace()) { AffineTransform::translation (-x, -y) .scaled (1.0f / (fontHeight * fontHorizontalScale), 1.0f / fontHeight) .transformPoint (px, py); return glyphInfo->getPath().contains (px, py); } return false; } void PositionedGlyph::moveBy (const float deltaX, const float deltaY) throw() { x += deltaX; y += deltaY; } GlyphArrangement::GlyphArrangement() throw() : numGlyphs (0), numAllocated (0), glyphs (0) { } GlyphArrangement::GlyphArrangement (const GlyphArrangement& other) throw() : numGlyphs (0), numAllocated (0), glyphs (0) { addGlyphArrangement (other); } const GlyphArrangement& GlyphArrangement::operator= (const GlyphArrangement& other) throw() { if (this != &other) { clear(); addGlyphArrangement (other); } return *this; } GlyphArrangement::~GlyphArrangement() throw() { clear(); juce_free (glyphs); } void GlyphArrangement::ensureNumGlyphsAllocated (const int minGlyphs) throw() { if (numAllocated <= minGlyphs) { numAllocated = minGlyphs + 2; if (glyphs == 0) glyphs = (PositionedGlyph*) juce_malloc (numAllocated * sizeof (PositionedGlyph)); else glyphs = (PositionedGlyph*) juce_realloc (glyphs, numAllocated * sizeof (PositionedGlyph)); } } void GlyphArrangement::incGlyphRefCount (const int i) const throw() { jassert (((unsigned int) i) < (unsigned int) numGlyphs); if (glyphs[i].glyphInfo != 0 && glyphs[i].glyphInfo->getTypeface() != 0) glyphs[i].glyphInfo->getTypeface()->incReferenceCount(); } void GlyphArrangement::decGlyphRefCount (const int i) const throw() { if (glyphs[i].glyphInfo != 0 && glyphs[i].glyphInfo->getTypeface() != 0) glyphs[i].glyphInfo->getTypeface()->decReferenceCount(); } void GlyphArrangement::clear() throw() { for (int i = numGlyphs; --i >= 0;) decGlyphRefCount (i); numGlyphs = 0; } PositionedGlyph& GlyphArrangement::getGlyph (const int index) const throw() { jassert (((unsigned int) index) < (unsigned int) numGlyphs); return glyphs [index]; } void GlyphArrangement::addGlyphArrangement (const GlyphArrangement& other) throw() { ensureNumGlyphsAllocated (numGlyphs + other.numGlyphs); memcpy (glyphs + numGlyphs, other.glyphs, other.numGlyphs * sizeof (PositionedGlyph)); for (int i = other.numGlyphs; --i >= 0;) incGlyphRefCount (numGlyphs++); } void GlyphArrangement::removeLast() throw() { if (numGlyphs > 0) decGlyphRefCount (--numGlyphs); } void GlyphArrangement::removeRangeOfGlyphs (int startIndex, const int num) throw() { jassert (startIndex >= 0); if (startIndex < 0) startIndex = 0; if (num < 0 || startIndex + num >= numGlyphs) { while (numGlyphs > startIndex) removeLast(); } else if (num > 0) { int i; for (i = startIndex; i < startIndex + num; ++i) decGlyphRefCount (i); for (i = numGlyphs - (startIndex + num); --i >= 0;) { glyphs [startIndex] = glyphs [startIndex + num]; ++startIndex; } numGlyphs -= num; } } void GlyphArrangement::addLineOfText (const Font& font, const String& text, const float xOffset, const float yOffset) throw() { addCurtailedLineOfText (font, text, xOffset, yOffset, 1.0e10f, false); } void GlyphArrangement::addCurtailedLineOfText (const Font& font, const String& text, float xOffset, const float yOffset, const float maxWidthPixels, const bool useEllipsis) throw() { const int textLen = text.length(); if (textLen > 0) { ensureNumGlyphsAllocated (numGlyphs + textLen + 3); // extra chars for ellipsis Typeface* const typeface = font.getTypeface(); const float fontHeight = font.getHeight(); const float ascent = font.getAscent(); const float fontHorizontalScale = font.getHorizontalScale(); const float heightTimesScale = fontHorizontalScale * fontHeight; const float kerningFactor = font.getExtraKerningFactor(); const float startX = xOffset; const juce_wchar* const unicodeText = (const juce_wchar*) text; for (int i = 0; i < textLen; ++i) { const TypefaceGlyphInfo* const glyph = typeface->getGlyph (unicodeText[i]); if (glyph != 0) { jassert (numAllocated > numGlyphs); ensureNumGlyphsAllocated (numGlyphs); PositionedGlyph& pg = glyphs [numGlyphs]; pg.glyphInfo = glyph; pg.x = xOffset; pg.y = yOffset; pg.w = heightTimesScale * glyph->getHorizontalSpacing (0); pg.fontHeight = fontHeight; pg.fontAscent = ascent; pg.fontHorizontalScale = fontHorizontalScale; pg.isUnderlined = font.isUnderlined(); xOffset += heightTimesScale * (kerningFactor + glyph->getHorizontalSpacing (unicodeText [i + 1])); if (xOffset - startX > maxWidthPixels + 1.0f) { // curtail the string if it's too wide.. if (useEllipsis && textLen > 3 && numGlyphs >= 3) appendEllipsis (font, startX + maxWidthPixels); break; } else { if (glyph->getTypeface() != 0) glyph->getTypeface()->incReferenceCount(); ++numGlyphs; } } } } } void GlyphArrangement::appendEllipsis (const Font& font, const float maxXPixels) throw() { const TypefaceGlyphInfo* const dotGlyph = font.getTypeface()->getGlyph (T('.')); if (dotGlyph != 0) { if (numGlyphs > 0) { PositionedGlyph& glyph = glyphs [numGlyphs - 1]; const float fontHeight = glyph.fontHeight; const float fontHorizontalScale = glyph.fontHorizontalScale; const float fontAscent = glyph.fontAscent; const float dx = fontHeight * fontHorizontalScale * (font.getExtraKerningFactor() + dotGlyph->getHorizontalSpacing (T('.'))); float xOffset = 0.0f, yOffset = 0.0f; for (int dotPos = 3; --dotPos >= 0 && numGlyphs > 0;) { removeLast(); jassert (numAllocated > numGlyphs); PositionedGlyph& pg = glyphs [numGlyphs]; xOffset = pg.x; yOffset = pg.y; if (numGlyphs == 0 || xOffset + dx * 3 <= maxXPixels) break; } for (int i = 3; --i >= 0;) { jassert (numAllocated > numGlyphs); ensureNumGlyphsAllocated (numGlyphs); PositionedGlyph& pg = glyphs [numGlyphs]; pg.glyphInfo = dotGlyph; pg.x = xOffset; pg.y = yOffset; pg.w = dx; pg.fontHeight = fontHeight; pg.fontAscent = fontAscent; pg.fontHorizontalScale = fontHorizontalScale; pg.isUnderlined = font.isUnderlined(); xOffset += dx; if (dotGlyph->getTypeface() != 0) dotGlyph->getTypeface()->incReferenceCount(); ++numGlyphs; } } } } void GlyphArrangement::addJustifiedText (const Font& font, const String& text, float x, float y, const float maxLineWidth, const Justification& horizontalLayout) throw() { int lineStartIndex = numGlyphs; addLineOfText (font, text, x, y); const float originalY = y; while (lineStartIndex < numGlyphs) { int i = lineStartIndex; if (glyphs[i].getCharacter() != T('\n') && glyphs[i].getCharacter() != T('\r')) ++i; const float lineMaxX = glyphs [lineStartIndex].getLeft() + maxLineWidth; int lastWordBreakIndex = -1; while (i < numGlyphs) { PositionedGlyph& pg = glyphs[i]; const juce_wchar c = pg.getCharacter(); if (c == T('\r') || c == T('\n')) { ++i; if (c == T('\r') && i < numGlyphs && glyphs [i].getCharacter() == T('\n')) ++i; break; } else if (pg.isWhitespace()) { lastWordBreakIndex = i + 1; } else if (SHOULD_WRAP (pg.getRight(), lineMaxX)) { if (lastWordBreakIndex >= 0) i = lastWordBreakIndex; break; } ++i; } const float currentLineStartX = glyphs [lineStartIndex].getLeft(); float currentLineEndX = currentLineStartX; for (int j = i; --j >= lineStartIndex;) { if (! glyphs[j].isWhitespace()) { currentLineEndX = glyphs[j].getRight(); break; } } float deltaX = 0.0f; if (horizontalLayout.testFlags (Justification::horizontallyJustified)) spreadOutLine (lineStartIndex, i - lineStartIndex, maxLineWidth); else if (horizontalLayout.testFlags (Justification::horizontallyCentred)) deltaX = (maxLineWidth - (currentLineEndX - currentLineStartX)) * 0.5f; else if (horizontalLayout.testFlags (Justification::right)) deltaX = maxLineWidth - (currentLineEndX - currentLineStartX); moveRangeOfGlyphs (lineStartIndex, i - lineStartIndex, x + deltaX - currentLineStartX, y - originalY); lineStartIndex = i; y += font.getHeight(); } } void GlyphArrangement::addFittedText (const Font& f, const String& text, float x, float y, float width, float height, const Justification& layout, int maximumLines, const float minimumHorizontalScale) throw() { // doesn't make much sense if this is outside a sensible range of 0.5 to 1.0 jassert (minimumHorizontalScale > 0 && minimumHorizontalScale <= 1.0f); if (text.containsAnyOf (T("\r\n"))) { GlyphArrangement ga; ga.addJustifiedText (f, text, x, y, width, layout); float l, t, r, b; ga.getBoundingBox (0, -1, l, t, r, b, false); float dy = y - t; if (layout.testFlags (Justification::verticallyCentred)) dy += (height - (b - t)) * 0.5f; else if (layout.testFlags (Justification::bottom)) dy += height - (b - t); ga.moveRangeOfGlyphs (0, -1, 0.0f, dy); addGlyphArrangement (ga); return; } int startIndex = numGlyphs; addLineOfText (f, text.trim(), x, y); if (numGlyphs > startIndex) { float lineWidth = glyphs[numGlyphs - 1].getRight() - glyphs[startIndex].getLeft(); if (lineWidth <= 0) return; if (lineWidth * minimumHorizontalScale < width) { if (lineWidth > width) { stretchRangeOfGlyphs (startIndex, numGlyphs - startIndex, width / lineWidth); } justifyGlyphs (startIndex, numGlyphs - startIndex, x, y, width, height, layout); } else if (maximumLines <= 1) { const float ratio = jmax (minimumHorizontalScale, width / lineWidth); stretchRangeOfGlyphs (startIndex, numGlyphs - startIndex, ratio); while (numGlyphs > 0 && glyphs [numGlyphs - 1].x + glyphs [numGlyphs - 1].w >= x + width) removeLast(); appendEllipsis (f, x + width); justifyGlyphs (startIndex, numGlyphs - startIndex, x, y, width, height, layout); } else { Font font (f); String txt (text.trim()); const int length = txt.length(); int numLines = 1; const int originalStartIndex = startIndex; if (length <= 12 && ! txt.containsAnyOf (T(" -\t\r\n"))) maximumLines = 1; maximumLines = jmin (maximumLines, length); while (numLines < maximumLines) { ++numLines; const float newFontHeight = height / (float)numLines; if (newFontHeight < 8.0f) break; if (newFontHeight < font.getHeight()) { font.setHeight (newFontHeight); while (numGlyphs > startIndex) removeLast(); addLineOfText (font, txt, x, y); lineWidth = glyphs[numGlyphs - 1].getRight() - glyphs[startIndex].getLeft(); } if (numLines > lineWidth / width) break; } if (numLines < 1) numLines = 1; float lineY = y; float widthPerLine = lineWidth / numLines; int lastLineStartIndex = 0; for (int line = 0; line < numLines; ++line) { int i = startIndex; lastLineStartIndex = i; float lineStartX = glyphs[startIndex].getLeft(); while (i < numGlyphs) { lineWidth = (glyphs[i].getRight() - lineStartX); if (lineWidth > widthPerLine) { // got to a point where the line's too long, so skip forward to find a // good place to break it.. const int searchStartIndex = i; while (i < numGlyphs) { if ((glyphs[i].getRight() - lineStartX) * minimumHorizontalScale < width) { if (glyphs[i].isWhitespace() || glyphs[i].getCharacter() == T('-')) { ++i; break; } } else { // can't find a suitable break, so try looking backwards.. i = searchStartIndex; for (int back = 1; back < jmin (5, i - startIndex - 1); ++back) { if (glyphs[i - back].isWhitespace() || glyphs[i - back].getCharacter() == T('-')) { i -= back - 1; break; } } break; } ++i; } break; } ++i; } int wsStart = i; while (wsStart > 0 && glyphs[wsStart - 1].isWhitespace()) --wsStart; int wsEnd = i; while (wsEnd < numGlyphs && glyphs[wsEnd].isWhitespace()) ++wsEnd; removeRangeOfGlyphs (wsStart, wsEnd - wsStart); i = jmax (wsStart, startIndex + 1); lineWidth = glyphs[i - 1].getRight() - lineStartX; if (lineWidth > width) { stretchRangeOfGlyphs (startIndex, i - startIndex, width / lineWidth); } justifyGlyphs (startIndex, i - startIndex, x, lineY, width, font.getHeight(), layout.getOnlyHorizontalFlags() | Justification::verticallyCentred); startIndex = i; lineY += font.getHeight(); if (startIndex >= numGlyphs) break; } if (startIndex < numGlyphs) { while (numGlyphs > startIndex) removeLast(); if (startIndex - originalStartIndex > 4) { const float lineStartX = glyphs[lastLineStartIndex].getLeft(); appendEllipsis (font, lineStartX + width); lineWidth = glyphs[startIndex - 1].getRight() - lineStartX; if (lineWidth > width) { stretchRangeOfGlyphs (lastLineStartIndex, startIndex - lastLineStartIndex, width / lineWidth); } justifyGlyphs (lastLineStartIndex, startIndex - lastLineStartIndex, x, lineY - font.getHeight(), width, font.getHeight(), layout.getOnlyHorizontalFlags() | Justification::verticallyCentred); } startIndex = numGlyphs; } justifyGlyphs (originalStartIndex, startIndex - originalStartIndex, x, y, width, height, layout.getFlags() & ~Justification::horizontallyJustified); } } } void GlyphArrangement::moveRangeOfGlyphs (int startIndex, int num, const float dx, const float dy) throw() { jassert (startIndex >= 0); if (dx != 0.0f || dy != 0.0f) { if (num < 0 || startIndex + num > numGlyphs) num = numGlyphs - startIndex; while (--num >= 0) { jassert (((unsigned int) startIndex) <= (unsigned int) numGlyphs); glyphs [startIndex++].moveBy (dx, dy); } } } void GlyphArrangement::stretchRangeOfGlyphs (int startIndex, int num, const float horizontalScaleFactor) throw() { jassert (startIndex >= 0); if (num < 0 || startIndex + num > numGlyphs) num = numGlyphs - startIndex; if (num > 0) { const float xAnchor = glyphs[startIndex].getLeft(); while (--num >= 0) { jassert (((unsigned int) startIndex) <= (unsigned int) numGlyphs); PositionedGlyph& pg = glyphs[startIndex++]; pg.x = xAnchor + (pg.x - xAnchor) * horizontalScaleFactor; pg.fontHorizontalScale *= horizontalScaleFactor; pg.w *= horizontalScaleFactor; } } } void GlyphArrangement::getBoundingBox (int startIndex, int num, float& left, float& top, float& right, float& bottom, const bool includeWhitespace) const throw() { jassert (startIndex >= 0); if (num < 0 || startIndex + num > numGlyphs) num = numGlyphs - startIndex; left = 0.0f; top = 0.0f; right = 0.0f; bottom = 0.0f; bool isFirst = true; while (--num >= 0) { const PositionedGlyph& pg = glyphs [startIndex++]; if (includeWhitespace || ! pg.isWhitespace()) { if (isFirst) { isFirst = false; left = pg.getLeft(); top = pg.getTop(); right = pg.getRight(); bottom = pg.getBottom(); } else { left = jmin (left, pg.getLeft()); top = jmin (top, pg.getTop()); right = jmax (right, pg.getRight()); bottom = jmax (bottom, pg.getBottom()); } } } } void GlyphArrangement::justifyGlyphs (const int startIndex, const int num, const float x, const float y, const float width, const float height, const Justification& justification) throw() { jassert (num >= 0 && startIndex >= 0); if (numGlyphs > 0 && num > 0) { float left, top, right, bottom; getBoundingBox (startIndex, num, left, top, right, bottom, ! justification.testFlags (Justification::horizontallyJustified | Justification::horizontallyCentred)); float deltaX = 0.0f; if (justification.testFlags (Justification::horizontallyJustified)) deltaX = x - left; else if (justification.testFlags (Justification::horizontallyCentred)) deltaX = x + (width - (right - left)) * 0.5f - left; else if (justification.testFlags (Justification::right)) deltaX = (x + width) - right; else deltaX = x - left; float deltaY = 0.0f; if (justification.testFlags (Justification::top)) deltaY = y - top; else if (justification.testFlags (Justification::bottom)) deltaY = (y + height) - bottom; else deltaY = y + (height - (bottom - top)) * 0.5f - top; moveRangeOfGlyphs (startIndex, num, deltaX, deltaY); if (justification.testFlags (Justification::horizontallyJustified)) { int lineStart = 0; float baseY = glyphs [startIndex].getBaselineY(); int i; for (i = 0; i < num; ++i) { const float glyphY = glyphs [startIndex + i].getBaselineY(); if (glyphY != baseY) { spreadOutLine (startIndex + lineStart, i - lineStart, width); lineStart = i; baseY = glyphY; } } if (i > lineStart) spreadOutLine (startIndex + lineStart, i - lineStart, width); } } } void GlyphArrangement::spreadOutLine (const int start, const int num, const float targetWidth) throw() { if (start + num < numGlyphs && glyphs [start + num - 1].getCharacter() != T('\r') && glyphs [start + num - 1].getCharacter() != T('\n')) { int numSpaces = 0; int spacesAtEnd = 0; for (int i = 0; i < num; ++i) { if (glyphs [start + i].isWhitespace()) { ++spacesAtEnd; ++numSpaces; } else { spacesAtEnd = 0; } } numSpaces -= spacesAtEnd; if (numSpaces > 0) { const float startX = glyphs [start].getLeft(); const float endX = glyphs [start + num - 1 - spacesAtEnd].getRight(); const float extraPaddingBetweenWords = (targetWidth - (endX - startX)) / (float) numSpaces; float deltaX = 0.0f; for (int i = 0; i < num; ++i) { glyphs [start + i].moveBy (deltaX, 0.0); if (glyphs [start + i].isWhitespace()) deltaX += extraPaddingBetweenWords; } } } } void GlyphArrangement::draw (const Graphics& g) const throw() { for (int i = 0; i < numGlyphs; ++i) { glyphs[i].draw (g); if (glyphs[i].isUnderlined) { const float lineThickness = (glyphs[i].fontHeight - glyphs[i].fontAscent) * 0.3f; juce_wchar nextChar = 0; if (i < numGlyphs - 1 && glyphs[i + 1].y == glyphs[i].y) { nextChar = glyphs[i + 1].glyphInfo->getCharacter(); } g.fillRect (glyphs[i].x, glyphs[i].y + lineThickness * 2.0f, glyphs[i].fontHeight * glyphs[i].fontHorizontalScale * glyphs[i].glyphInfo->getHorizontalSpacing (nextChar), lineThickness); } } } void GlyphArrangement::draw (const Graphics& g, const AffineTransform& transform) const throw() { for (int i = 0; i < numGlyphs; ++i) { glyphs[i].draw (g, transform); if (glyphs[i].isUnderlined) { const float lineThickness = (glyphs[i].fontHeight - glyphs[i].fontAscent) * 0.3f; juce_wchar nextChar = 0; if (i < numGlyphs - 1 && glyphs[i + 1].y == glyphs[i].y) { nextChar = glyphs[i + 1].glyphInfo->getCharacter(); } Path p; p.addLineSegment (glyphs[i].x, glyphs[i].y + lineThickness * 2.5f, glyphs[i].x + glyphs[i].fontHeight * glyphs[i].fontHorizontalScale * glyphs[i].glyphInfo->getHorizontalSpacing (nextChar), glyphs[i].y + lineThickness * 2.5f, lineThickness); g.fillPath (p, transform); } } } void GlyphArrangement::createPath (Path& path) const throw() { for (int i = 0; i < numGlyphs; ++i) glyphs[i].createPath (path); } int GlyphArrangement::findGlyphIndexAt (float x, float y) const throw() { for (int i = 0; i < numGlyphs; ++i) if (glyphs[i].hitTest (x, y)) return i; return -1; } END_JUCE_NAMESPACE /********* End of inlined file: juce_GlyphArrangement.cpp *********/ /********* Start of inlined file: juce_TextLayout.cpp *********/ BEGIN_JUCE_NAMESPACE class TextLayoutToken { public: String text; Font font; int x, y, w, h; int line, lineHeight; bool isWhitespace, isNewLine; TextLayoutToken (const String& t, const Font& f, const bool isWhitespace_) throw() : text (t), font (f), x(0), y(0), isWhitespace (isWhitespace_) { w = font.getStringWidth (t); h = roundFloatToInt (f.getHeight()); isNewLine = t.containsAnyOf (T("\r\n")); } TextLayoutToken (const TextLayoutToken& other) throw() : text (other.text), font (other.font), x (other.x), y (other.y), w (other.w), h (other.h), line (other.line), lineHeight (other.lineHeight), isWhitespace (other.isWhitespace), isNewLine (other.isNewLine) { } ~TextLayoutToken() throw() { } void draw (Graphics& g, const int xOffset, const int yOffset) throw() { if (! isWhitespace) { g.setFont (font); g.drawSingleLineText (text.trimEnd(), xOffset + x, yOffset + y + (lineHeight - h) + roundFloatToInt (font.getAscent())); } } juce_UseDebuggingNewOperator }; TextLayout::TextLayout() throw() : tokens (64), totalLines (0) { } TextLayout::TextLayout (const String& text, const Font& font) throw() : tokens (64), totalLines (0) { appendText (text, font); } TextLayout::TextLayout (const TextLayout& other) throw() : tokens (64), totalLines (0) { *this = other; } const TextLayout& TextLayout::operator= (const TextLayout& other) throw() { if (this != &other) { clear(); totalLines = other.totalLines; for (int i = 0; i < other.tokens.size(); ++i) tokens.add (new TextLayoutToken (*(const TextLayoutToken*)(other.tokens.getUnchecked(i)))); } return *this; } TextLayout::~TextLayout() throw() { clear(); } void TextLayout::clear() throw() { for (int i = tokens.size(); --i >= 0;) { TextLayoutToken* const t = (TextLayoutToken*)tokens.getUnchecked(i); delete t; } tokens.clear(); totalLines = 0; } void TextLayout::appendText (const String& text, const Font& font) throw() { const tchar* t = text; String currentString; int lastCharType = 0; for (;;) { const tchar c = *t++; if (c == 0) break; int charType; if (c == T('\r') || c == T('\n')) { charType = 0; } else if (CharacterFunctions::isWhitespace (c)) { charType = 2; } else { charType = 1; } if (charType == 0 || charType != lastCharType) { if (currentString.isNotEmpty()) { tokens.add (new TextLayoutToken (currentString, font, lastCharType == 2 || lastCharType == 0)); } currentString = String::charToString (c); if (c == T('\r') && *t == T('\n')) currentString += *t++; } else { currentString += c; } lastCharType = charType; } if (currentString.isNotEmpty()) tokens.add (new TextLayoutToken (currentString, font, lastCharType == 2)); } void TextLayout::setText (const String& text, const Font& font) throw() { clear(); appendText (text, font); } void TextLayout::layout (int maxWidth, const Justification& justification, const bool attemptToBalanceLineLengths) throw() { if (attemptToBalanceLineLengths) { const int originalW = maxWidth; int bestWidth = maxWidth; float bestLineProportion = 0.0f; while (maxWidth > originalW / 2) { layout (maxWidth, justification, false); if (getNumLines() <= 1) return; const int lastLineW = getLineWidth (getNumLines() - 1); const int lastButOneLineW = getLineWidth (getNumLines() - 2); const float prop = lastLineW / (float) lastButOneLineW; if (prop > 0.9f) return; if (prop > bestLineProportion) { bestLineProportion = prop; bestWidth = maxWidth; } maxWidth -= 10; } layout (bestWidth, justification, false); } else { int x = 0; int y = 0; int h = 0; totalLines = 0; int i; for (i = 0; i < tokens.size(); ++i) { TextLayoutToken* const t = (TextLayoutToken*)tokens.getUnchecked(i); t->x = x; t->y = y; t->line = totalLines; x += t->w; h = jmax (h, t->h); const TextLayoutToken* nextTok = (TextLayoutToken*) tokens [i + 1]; if (nextTok == 0) break; if (t->isNewLine || ((! nextTok->isWhitespace) && x + nextTok->w > maxWidth)) { // finished a line, so go back and update the heights of the things on it for (int j = i; j >= 0; --j) { TextLayoutToken* const tok = (TextLayoutToken*)tokens.getUnchecked(j); if (tok->line == totalLines) tok->lineHeight = h; else break; } x = 0; y += h; h = 0; ++totalLines; } } // finished a line, so go back and update the heights of the things on it for (int j = jmin (i, tokens.size() - 1); j >= 0; --j) { TextLayoutToken* const t = (TextLayoutToken*) tokens.getUnchecked(j); if (t->line == totalLines) t->lineHeight = h; else break; } ++totalLines; if (! justification.testFlags (Justification::left)) { int totalW = getWidth(); for (i = totalLines; --i >= 0;) { const int lineW = getLineWidth (i); int dx = 0; if (justification.testFlags (Justification::horizontallyCentred)) dx = (totalW - lineW) / 2; else if (justification.testFlags (Justification::right)) dx = totalW - lineW; for (int j = tokens.size(); --j >= 0;) { TextLayoutToken* const t = (TextLayoutToken*)tokens.getUnchecked(j); if (t->line == i) t->x += dx; } } } } } int TextLayout::getLineWidth (const int lineNumber) const throw() { int maxW = 0; for (int i = tokens.size(); --i >= 0;) { const TextLayoutToken* const t = (TextLayoutToken*) tokens.getUnchecked(i); if (t->line == lineNumber && ! t->isWhitespace) maxW = jmax (maxW, t->x + t->w); } return maxW; } int TextLayout::getWidth() const throw() { int maxW = 0; for (int i = tokens.size(); --i >= 0;) { const TextLayoutToken* const t = (TextLayoutToken*) tokens.getUnchecked(i); if (! t->isWhitespace) maxW = jmax (maxW, t->x + t->w); } return maxW; } int TextLayout::getHeight() const throw() { int maxH = 0; for (int i = tokens.size(); --i >= 0;) { const TextLayoutToken* const t = (TextLayoutToken*) tokens.getUnchecked(i); if (! t->isWhitespace) maxH = jmax (maxH, t->y + t->h); } return maxH; } void TextLayout::draw (Graphics& g, const int xOffset, const int yOffset) const throw() { for (int i = tokens.size(); --i >= 0;) ((TextLayoutToken*) tokens.getUnchecked(i))->draw (g, xOffset, yOffset); } void TextLayout::drawWithin (Graphics& g, int x, int y, int w, int h, const Justification& justification) const throw() { justification.applyToRectangle (x, y, getWidth(), getHeight(), x, y, w, h); draw (g, x, y); } END_JUCE_NAMESPACE /********* End of inlined file: juce_TextLayout.cpp *********/ /********* Start of inlined file: juce_Typeface.cpp *********/ BEGIN_JUCE_NAMESPACE TypefaceGlyphInfo::TypefaceGlyphInfo (const juce_wchar character_, const Path& shape, const float horizontalSeparation, Typeface* const typeface_) throw() : character (character_), path (shape), width (horizontalSeparation), typeface (typeface_) { } TypefaceGlyphInfo::~TypefaceGlyphInfo() throw() { } float TypefaceGlyphInfo::getHorizontalSpacing (const juce_wchar subsequentCharacter) const throw() { if (subsequentCharacter != 0) { const KerningPair* const pairs = (const KerningPair*) kerningPairs.getData(); const int numPairs = getNumKerningPairs(); for (int i = 0; i < numPairs; ++i) if (pairs [i].character2 == subsequentCharacter) return width + pairs [i].kerningAmount; } return width; } void TypefaceGlyphInfo::addKerningPair (const juce_wchar subsequentCharacter, const float extraKerningAmount) throw() { const int numPairs = getNumKerningPairs(); kerningPairs.setSize ((numPairs + 1) * sizeof (KerningPair)); KerningPair& p = getKerningPair (numPairs); p.character2 = subsequentCharacter; p.kerningAmount = extraKerningAmount; } TypefaceGlyphInfo::KerningPair& TypefaceGlyphInfo::getKerningPair (const int index) const throw() { return ((KerningPair*) kerningPairs.getData()) [index]; } int TypefaceGlyphInfo::getNumKerningPairs() const throw() { return kerningPairs.getSize() / sizeof (KerningPair); } const tchar* Typeface::defaultTypefaceNameSans = T(""); const tchar* Typeface::defaultTypefaceNameSerif = T(""); const tchar* Typeface::defaultTypefaceNameMono = T(""); Typeface::Typeface() throw() : hash (0), isFullyPopulated (false) { zeromem (lookupTable, sizeof (lookupTable)); } Typeface::Typeface (const Typeface& other) : typefaceName (other.typefaceName), ascent (other.ascent), bold (other.bold), italic (other.italic), isFullyPopulated (other.isFullyPopulated), defaultCharacter (other.defaultCharacter) { zeromem (lookupTable, sizeof (lookupTable)); for (int i = 0; i < other.glyphs.size(); ++i) addGlyphCopy ((const TypefaceGlyphInfo*) other.glyphs.getUnchecked(i)); updateHashCode(); } Typeface::Typeface (const String& faceName, const bool bold, const bool italic) : isFullyPopulated (false) { zeromem (lookupTable, sizeof (lookupTable)); initialiseTypefaceCharacteristics (faceName, bold, italic, false); updateHashCode(); } Typeface::~Typeface() { clear(); } const Typeface& Typeface::operator= (const Typeface& other) throw() { if (this != &other) { clear(); typefaceName = other.typefaceName; ascent = other.ascent; bold = other.bold; italic = other.italic; isFullyPopulated = other.isFullyPopulated; defaultCharacter = other.defaultCharacter; for (int i = 0; i < other.glyphs.size(); ++i) addGlyphCopy ((const TypefaceGlyphInfo*) other.glyphs.getUnchecked(i)); updateHashCode(); } return *this; } void Typeface::updateHashCode() throw() { hash = typefaceName.hashCode(); if (bold) hash ^= 0xffff; if (italic) hash ^= 0xffff0000; } void Typeface::clear() throw() { zeromem (lookupTable, sizeof (lookupTable)); typefaceName = String::empty; bold = false; italic = false; for (int i = glyphs.size(); --i >= 0;) { TypefaceGlyphInfo* const g = (TypefaceGlyphInfo*) (glyphs.getUnchecked(i)); delete g; } glyphs.clear(); updateHashCode(); } Typeface::Typeface (InputStream& serialisedTypefaceStream) { zeromem (lookupTable, sizeof (lookupTable)); isFullyPopulated = true; GZIPDecompressorInputStream gzin (&serialisedTypefaceStream, false); BufferedInputStream in (&gzin, 32768, false); typefaceName = in.readString(); bold = in.readBool(); italic = in.readBool(); ascent = in.readFloat(); defaultCharacter = (juce_wchar) in.readShort(); int i, numChars = in.readInt(); for (i = 0; i < numChars; ++i) { const juce_wchar c = (juce_wchar) in.readShort(); const float width = in.readFloat(); Path p; p.loadPathFromStream (in); addGlyph (c, p, width); } const int numKerningPairs = in.readInt(); for (i = 0; i < numKerningPairs; ++i) { const juce_wchar char1 = (juce_wchar) in.readShort(); const juce_wchar char2 = (juce_wchar) in.readShort(); addKerningPair (char1, char2, in.readFloat()); } updateHashCode(); } void Typeface::serialise (OutputStream& outputStream) { GZIPCompressorOutputStream out (&outputStream); out.writeString (typefaceName); out.writeBool (bold); out.writeBool (italic); out.writeFloat (ascent); out.writeShort ((short) (unsigned short) defaultCharacter); out.writeInt (glyphs.size()); int i, numKerningPairs = 0; for (i = 0; i < glyphs.size(); ++i) { const TypefaceGlyphInfo& g = *(const TypefaceGlyphInfo*)(glyphs.getUnchecked (i)); out.writeShort ((short) (unsigned short) g.character); out.writeFloat (g.width); g.path.writePathToStream (out); numKerningPairs += g.getNumKerningPairs(); } out.writeInt (numKerningPairs); for (i = 0; i < glyphs.size(); ++i) { const TypefaceGlyphInfo& g = *(const TypefaceGlyphInfo*)(glyphs.getUnchecked (i)); for (int j = 0; j < g.getNumKerningPairs(); ++j) { const TypefaceGlyphInfo::KerningPair& p = g.getKerningPair (j); out.writeShort ((short) (unsigned short) g.character); out.writeShort ((short) (unsigned short) p.character2); out.writeFloat (p.kerningAmount); } } } const Path* Typeface::getOutlineForGlyph (const juce_wchar character) throw() { const TypefaceGlyphInfo* const g = (const TypefaceGlyphInfo*) getGlyph (character); if (g != 0) return &(g->path); else return 0; } const TypefaceGlyphInfo* Typeface::getGlyph (const juce_wchar character) throw() { if (((unsigned int) character) < 128 && lookupTable [character] > 0) return (const TypefaceGlyphInfo*) glyphs [(int) lookupTable [character]]; for (int i = 0; i < glyphs.size(); ++i) { const TypefaceGlyphInfo* const g = (const TypefaceGlyphInfo*) glyphs.getUnchecked(i); if (g->character == character) return g; } if ((! isFullyPopulated) && findAndAddSystemGlyph (character)) { for (int i = 0; i < glyphs.size(); ++i) { const TypefaceGlyphInfo* const g = (const TypefaceGlyphInfo*) glyphs.getUnchecked(i); if (g->character == character) return g; } } if (CharacterFunctions::isWhitespace (character) && character != L' ') { const TypefaceGlyphInfo* spaceGlyph = getGlyph (L' '); if (spaceGlyph != 0) { // Add a copy of the empty glyph, mapped onto this character addGlyph (character, spaceGlyph->getPath(), spaceGlyph->getHorizontalSpacing (0)); spaceGlyph = (const TypefaceGlyphInfo*) glyphs [(int) lookupTable [character]]; } return spaceGlyph; } else if (character != defaultCharacter) { const Font fallbackFont (Font::getFallbackFontName(), 10, 0); Typeface* const fallbackTypeface = fallbackFont.getTypeface(); if (fallbackTypeface != 0 && fallbackTypeface != this) return fallbackTypeface->getGlyph (character); return getGlyph (defaultCharacter); } return 0; } void Typeface::addGlyph (const juce_wchar character, const Path& path, const float horizontalSpacing) throw() { #ifdef JUCE_DEBUG for (int i = 0; i < glyphs.size(); ++i) { const TypefaceGlyphInfo* const g = (const TypefaceGlyphInfo*) glyphs.getUnchecked(i); if (g->character == character) jassertfalse; } #endif if (((unsigned int) character) < 128) lookupTable [character] = (short) glyphs.size(); glyphs.add (new TypefaceGlyphInfo (character, path, horizontalSpacing, this)); } void Typeface::addGlyphCopy (const TypefaceGlyphInfo* const glyphInfoToCopy) throw() { if (glyphInfoToCopy != 0) { if (glyphInfoToCopy->character > 0 && glyphInfoToCopy->character < 128) lookupTable [glyphInfoToCopy->character] = (short) glyphs.size(); TypefaceGlyphInfo* const newOne = new TypefaceGlyphInfo (glyphInfoToCopy->character, glyphInfoToCopy->path, glyphInfoToCopy->width, this); newOne->kerningPairs = glyphInfoToCopy->kerningPairs; glyphs.add (newOne); } } void Typeface::addKerningPair (const juce_wchar char1, const juce_wchar char2, const float extraAmount) throw() { TypefaceGlyphInfo* const g = (TypefaceGlyphInfo*) getGlyph (char1); if (g != 0) g->addKerningPair (char2, extraAmount); } void Typeface::setName (const String& name) throw() { typefaceName = name; updateHashCode(); } void Typeface::setAscent (const float newAscent) throw() { ascent = newAscent; } void Typeface::setDefaultCharacter (const juce_wchar newDefaultCharacter) throw() { defaultCharacter = newDefaultCharacter; } void Typeface::setBold (const bool shouldBeBold) throw() { bold = shouldBeBold; updateHashCode(); } void Typeface::setItalic (const bool shouldBeItalic) throw() { italic = shouldBeItalic; updateHashCode(); } class TypefaceCache; static TypefaceCache* typefaceCacheInstance = 0; void clearUpDefaultFontNames() throw(); // in juce_LookAndFeel.cpp class TypefaceCache : private DeletedAtShutdown { private: struct CachedFace { CachedFace() throw() : lastUsageCount (0), flags (0) { } String typefaceName; int lastUsageCount; int flags; Typeface::Ptr typeFace; }; int counter; OwnedArray faces; TypefaceCache (const TypefaceCache&); const TypefaceCache& operator= (const TypefaceCache&); public: TypefaceCache (int numToCache = 10) : counter (1), faces (2) { while (--numToCache >= 0) { CachedFace* const face = new CachedFace(); face->typeFace = new Typeface(); faces.add (face); } } ~TypefaceCache() { faces.clear(); jassert (typefaceCacheInstance == this); typefaceCacheInstance = 0; clearUpDefaultFontNames(); } static TypefaceCache* getInstance() throw() { if (typefaceCacheInstance == 0) typefaceCacheInstance = new TypefaceCache(); return typefaceCacheInstance; } const Typeface::Ptr findTypefaceFor (const Font& font) throw() { const int flags = font.getStyleFlags() & (Font::bold | Font::italic); int i; for (i = faces.size(); --i >= 0;) { CachedFace* const face = faces.getUnchecked(i); if (face->flags == flags && face->typefaceName == font.getTypefaceName()) { face->lastUsageCount = ++counter; return face->typeFace; } } int replaceIndex = 0; int bestLastUsageCount = INT_MAX; for (i = faces.size(); --i >= 0;) { const int lu = faces.getUnchecked(i)->lastUsageCount; if (bestLastUsageCount > lu) { bestLastUsageCount = lu; replaceIndex = i; } } CachedFace* const face = faces.getUnchecked (replaceIndex); face->typefaceName = font.getTypefaceName(); face->flags = flags; face->lastUsageCount = ++counter; face->typeFace = LookAndFeel::getDefaultLookAndFeel().getTypefaceForFont (font); return face->typeFace; } }; const Typeface::Ptr Typeface::getTypefaceFor (const Font& font) throw() { return TypefaceCache::getInstance()->findTypefaceFor (font); } END_JUCE_NAMESPACE /********* End of inlined file: juce_Typeface.cpp *********/ /********* Start of inlined file: juce_AffineTransform.cpp *********/ BEGIN_JUCE_NAMESPACE AffineTransform::AffineTransform() throw() : mat00 (1.0f), mat01 (0), mat02 (0), mat10 (0), mat11 (1.0f), mat12 (0) { } AffineTransform::AffineTransform (const AffineTransform& other) throw() : mat00 (other.mat00), mat01 (other.mat01), mat02 (other.mat02), mat10 (other.mat10), mat11 (other.mat11), mat12 (other.mat12) { } AffineTransform::AffineTransform (const float mat00_, const float mat01_, const float mat02_, const float mat10_, const float mat11_, const float mat12_) throw() : mat00 (mat00_), mat01 (mat01_), mat02 (mat02_), mat10 (mat10_), mat11 (mat11_), mat12 (mat12_) { } const AffineTransform& AffineTransform::operator= (const AffineTransform& other) throw() { mat00 = other.mat00; mat01 = other.mat01; mat02 = other.mat02; mat10 = other.mat10; mat11 = other.mat11; mat12 = other.mat12; return *this; } bool AffineTransform::operator== (const AffineTransform& other) const throw() { return mat00 == other.mat00 && mat01 == other.mat01 && mat02 == other.mat02 && mat10 == other.mat10 && mat11 == other.mat11 && mat12 == other.mat12; } bool AffineTransform::operator!= (const AffineTransform& other) const throw() { return ! operator== (other); } bool AffineTransform::isIdentity() const throw() { return (mat01 == 0) && (mat02 == 0) && (mat10 == 0) && (mat12 == 0) && (mat00 == 1.0f) && (mat11 == 1.0f); } const AffineTransform AffineTransform::identity; const AffineTransform AffineTransform::followedBy (const AffineTransform& other) const throw() { return AffineTransform (other.mat00 * mat00 + other.mat01 * mat10, other.mat00 * mat01 + other.mat01 * mat11, other.mat00 * mat02 + other.mat01 * mat12 + other.mat02, other.mat10 * mat00 + other.mat11 * mat10, other.mat10 * mat01 + other.mat11 * mat11, other.mat10 * mat02 + other.mat11 * mat12 + other.mat12); } const AffineTransform AffineTransform::followedBy (const float omat00, const float omat01, const float omat02, const float omat10, const float omat11, const float omat12) const throw() { return AffineTransform (omat00 * mat00 + omat01 * mat10, omat00 * mat01 + omat01 * mat11, omat00 * mat02 + omat01 * mat12 + omat02, omat10 * mat00 + omat11 * mat10, omat10 * mat01 + omat11 * mat11, omat10 * mat02 + omat11 * mat12 + omat12); } const AffineTransform AffineTransform::translated (const float dx, const float dy) const throw() { return followedBy (1.0f, 0, dx, 0, 1.0f, dy); } const AffineTransform AffineTransform::translation (const float dx, const float dy) throw() { return AffineTransform (1.0f, 0, dx, 0, 1.0f, dy); } const AffineTransform AffineTransform::rotated (const float rad) const throw() { const float cosRad = cosf (rad); const float sinRad = sinf (rad); return followedBy (cosRad, -sinRad, 0, sinRad, cosRad, 0); } const AffineTransform AffineTransform::rotation (const float rad) throw() { const float cosRad = cosf (rad); const float sinRad = sinf (rad); return AffineTransform (cosRad, -sinRad, 0, sinRad, cosRad, 0); } const AffineTransform AffineTransform::rotated (const float angle, const float pivotX, const float pivotY) const throw() { return translated (-pivotX, -pivotY) .rotated (angle) .translated (pivotX, pivotY); } const AffineTransform AffineTransform::rotation (const float angle, const float pivotX, const float pivotY) throw() { return translation (-pivotX, -pivotY) .rotated (angle) .translated (pivotX, pivotY); } const AffineTransform AffineTransform::scaled (const float factorX, const float factorY) const throw() { return followedBy (factorX, 0, 0, 0, factorY, 0); } const AffineTransform AffineTransform::scale (const float factorX, const float factorY) throw() { return AffineTransform (factorX, 0, 0, 0, factorY, 0); } const AffineTransform AffineTransform::sheared (const float shearX, const float shearY) const throw() { return followedBy (1.0f, shearX, 0, shearY, 1.0f, 0); } const AffineTransform AffineTransform::inverted() const throw() { double determinant = (mat00 * mat11 - mat10 * mat01); if (determinant != 0.0) { determinant = 1.0 / determinant; const float dst00 = (float) (mat11 * determinant); const float dst10 = (float) (-mat10 * determinant); const float dst01 = (float) (-mat01 * determinant); const float dst11 = (float) (mat00 * determinant); return AffineTransform (dst00, dst01, -mat02 * dst00 - mat12 * dst01, dst10, dst11, -mat02 * dst10 - mat12 * dst11); } else { // singularity.. return *this; } } bool AffineTransform::isSingularity() const throw() { return (mat00 * mat11 - mat10 * mat01) == 0.0; } void AffineTransform::transformPoint (float& x, float& y) const throw() { const float oldX = x; x = mat00 * oldX + mat01 * y + mat02; y = mat10 * oldX + mat11 * y + mat12; } void AffineTransform::transformPoint (double& x, double& y) const throw() { const double oldX = x; x = mat00 * oldX + mat01 * y + mat02; y = mat10 * oldX + mat11 * y + mat12; } END_JUCE_NAMESPACE /********* End of inlined file: juce_AffineTransform.cpp *********/ /********* Start of inlined file: juce_BorderSize.cpp *********/ BEGIN_JUCE_NAMESPACE BorderSize::BorderSize() throw() : top (0), left (0), bottom (0), right (0) { } BorderSize::BorderSize (const BorderSize& other) throw() : top (other.top), left (other.left), bottom (other.bottom), right (other.right) { } BorderSize::BorderSize (const int topGap, const int leftGap, const int bottomGap, const int rightGap) throw() : top (topGap), left (leftGap), bottom (bottomGap), right (rightGap) { } BorderSize::BorderSize (const int allGaps) throw() : top (allGaps), left (allGaps), bottom (allGaps), right (allGaps) { } BorderSize::~BorderSize() throw() { } void BorderSize::setTop (const int newTopGap) throw() { top = newTopGap; } void BorderSize::setLeft (const int newLeftGap) throw() { left = newLeftGap; } void BorderSize::setBottom (const int newBottomGap) throw() { bottom = newBottomGap; } void BorderSize::setRight (const int newRightGap) throw() { right = newRightGap; } const Rectangle BorderSize::subtractedFrom (const Rectangle& r) const throw() { return Rectangle (r.getX() + left, r.getY() + top, r.getWidth() - (left + right), r.getHeight() - (top + bottom)); } void BorderSize::subtractFrom (Rectangle& r) const throw() { r.setBounds (r.getX() + left, r.getY() + top, r.getWidth() - (left + right), r.getHeight() - (top + bottom)); } const Rectangle BorderSize::addedTo (const Rectangle& r) const throw() { return Rectangle (r.getX() - left, r.getY() - top, r.getWidth() + (left + right), r.getHeight() + (top + bottom)); } void BorderSize::addTo (Rectangle& r) const throw() { r.setBounds (r.getX() - left, r.getY() - top, r.getWidth() + (left + right), r.getHeight() + (top + bottom)); } bool BorderSize::operator== (const BorderSize& other) const throw() { return top == other.top && left == other.left && bottom == other.bottom && right == other.right; } bool BorderSize::operator!= (const BorderSize& other) const throw() { return ! operator== (other); } END_JUCE_NAMESPACE /********* End of inlined file: juce_BorderSize.cpp *********/ /********* Start of inlined file: juce_Line.cpp *********/ BEGIN_JUCE_NAMESPACE static bool juce_lineIntersection (const float x1, const float y1, const float x2, const float y2, const float x3, const float y3, const float x4, const float y4, float& intersectionX, float& intersectionY) throw() { if (x2 != x3 || y2 != y3) { const float dx1 = x2 - x1; const float dy1 = y2 - y1; const float dx2 = x4 - x3; const float dy2 = y4 - y3; const float divisor = dx1 * dy2 - dx2 * dy1; if (divisor == 0) { if (! ((dx1 == 0 && dy1 == 0) || (dx2 == 0 && dy2 == 0))) { if (dy1 == 0 && dy2 != 0) { const float along = (y1 - y3) / dy2; intersectionX = x3 + along * dx2; intersectionY = y1; return along >= 0 && along <= 1.0f; } else if (dy2 == 0 && dy1 != 0) { const float along = (y3 - y1) / dy1; intersectionX = x1 + along * dx1; intersectionY = y3; return along >= 0 && along <= 1.0f; } else if (dx1 == 0 && dx2 != 0) { const float along = (x1 - x3) / dx2; intersectionX = x1; intersectionY = y3 + along * dy2; return along >= 0 && along <= 1.0f; } else if (dx2 == 0 && dx1 != 0) { const float along = (x3 - x1) / dx1; intersectionX = x3; intersectionY = y1 + along * dy1; return along >= 0 && along <= 1.0f; } } intersectionX = 0.5f * (x2 + x3); intersectionY = 0.5f * (y2 + y3); return false; } const float along1 = ((y1 - y3) * dx2 - (x1 - x3) * dy2) / divisor; intersectionX = x1 + along1 * dx1; intersectionY = y1 + along1 * dy1; if (along1 < 0 || along1 > 1.0f) return false; const float along2 = ((y1 - y3) * dx1 - (x1 - x3) * dy1) / divisor; return along2 >= 0 && along2 <= 1.0f; } intersectionX = x2; intersectionY = y2; return true; } Line::Line() throw() : startX (0.0f), startY (0.0f), endX (0.0f), endY (0.0f) { } Line::Line (const Line& other) throw() : startX (other.startX), startY (other.startY), endX (other.endX), endY (other.endY) { } Line::Line (const float startX_, const float startY_, const float endX_, const float endY_) throw() : startX (startX_), startY (startY_), endX (endX_), endY (endY_) { } Line::Line (const Point& start, const Point& end) throw() : startX (start.getX()), startY (start.getY()), endX (end.getX()), endY (end.getY()) { } const Line& Line::operator= (const Line& other) throw() { startX = other.startX; startY = other.startY; endX = other.endX; endY = other.endY; return *this; } Line::~Line() throw() { } const Point Line::getStart() const throw() { return Point (startX, startY); } const Point Line::getEnd() const throw() { return Point (endX, endY); } void Line::setStart (const float newStartX, const float newStartY) throw() { startX = newStartX; startY = newStartY; } void Line::setStart (const Point& newStart) throw() { startX = newStart.getX(); startY = newStart.getY(); } void Line::setEnd (const float newEndX, const float newEndY) throw() { endX = newEndX; endY = newEndY; } void Line::setEnd (const Point& newEnd) throw() { endX = newEnd.getX(); endY = newEnd.getY(); } bool Line::operator== (const Line& other) const throw() { return startX == other.startX && startY == other.startY && endX == other.endX && endY == other.endY; } bool Line::operator!= (const Line& other) const throw() { return startX != other.startX || startY != other.startY || endX != other.endX || endY != other.endY; } void Line::applyTransform (const AffineTransform& transform) throw() { transform.transformPoint (startX, startY); transform.transformPoint (endX, endY); } float Line::getLength() const throw() { return (float) juce_hypot (startX - endX, startY - endY); } float Line::getAngle() const throw() { return atan2f (endX - startX, endY - startY); } const Point Line::getPointAlongLine (const float distanceFromStart) const throw() { const float alpha = distanceFromStart / getLength(); return Point (startX + (endX - startX) * alpha, startY + (endY - startY) * alpha); } const Point Line::getPointAlongLine (const float offsetX, const float offsetY) const throw() { const float dx = endX - startX; const float dy = endY - startY; const double length = juce_hypot (dx, dy); if (length == 0) return Point (startX, startY); else return Point (startX + (float) (((dx * offsetX) - (dy * offsetY)) / length), startY + (float) (((dy * offsetX) + (dx * offsetY)) / length)); } const Point Line::getPointAlongLineProportionally (const float alpha) const throw() { return Point (startX + (endX - startX) * alpha, startY + (endY - startY) * alpha); } float Line::getDistanceFromLine (const float x, const float y) const throw() { const double dx = endX - startX; const double dy = endY - startY; const double length = dx * dx + dy * dy; if (length > 0) { const double prop = ((x - startX) * dx + (y - startY) * dy) / length; if (prop >= 0.0f && prop < 1.0f) { return (float) juce_hypot (x - (startX + prop * dx), y - (startY + prop * dy)); } } return (float) jmin (juce_hypot (x - startX, y - startY), juce_hypot (x - endX, y - endY)); } float Line::findNearestPointTo (const float x, const float y) const throw() { const double dx = endX - startX; const double dy = endY - startY; const double length = dx * dx + dy * dy; if (length <= 0.0) return 0.0f; return jlimit (0.0f, 1.0f, (float) (((x - startX) * dx + (y - startY) * dy) / length)); } const Line Line::withShortenedStart (const float distanceToShortenBy) const throw() { const float length = getLength(); return Line (getPointAlongLine (jmin (distanceToShortenBy, length)), getEnd()); } const Line Line::withShortenedEnd (const float distanceToShortenBy) const throw() { const float length = getLength(); return Line (getStart(), getPointAlongLine (length - jmin (distanceToShortenBy, length))); } bool Line::clipToPath (const Path& path, const bool keepSectionOutsidePath) throw() { const bool startInside = path.contains (startX, startY); const bool endInside = path.contains (endX, endY); if (startInside == endInside) { if (keepSectionOutsidePath != startInside) { // entirely outside the path return false; } else { // entirely inside the path startX = 0.0f; startY = 0.0f; endX = 0.0f; endY = 0.0f; return true; } } else { bool changed = false; PathFlatteningIterator iter (path, AffineTransform::identity); while (iter.next()) { float ix, iy; if (intersects (Line (iter.x1, iter.y1, iter.x2, iter.y2), ix, iy)) { if ((startInside && keepSectionOutsidePath) || (endInside && ! keepSectionOutsidePath)) { setStart (ix, iy); } else { setEnd (ix, iy); } changed = true; } } return changed; } } bool Line::intersects (const Line& line, float& intersectionX, float& intersectionY) const throw() { return juce_lineIntersection (startX, startY, endX, endY, line.startX, line.startY, line.endX, line.endY, intersectionX, intersectionY); } bool Line::isVertical() const throw() { return startX == endX; } bool Line::isHorizontal() const throw() { return startY == endY; } bool Line::isPointAbove (const float x, const float y) const throw() { return startX != endX && y < ((endY - startY) * (x - startX)) / (endX - startX) + startY; } END_JUCE_NAMESPACE /********* End of inlined file: juce_Line.cpp *********/ /********* Start of inlined file: juce_Path.cpp *********/ BEGIN_JUCE_NAMESPACE // tests that some co-ords aren't NaNs #define CHECK_COORDS_ARE_VALID(x, y) \ jassert (x == x && y == y); const float Path::lineMarker = 100001.0f; const float Path::moveMarker = 100002.0f; const float Path::quadMarker = 100003.0f; const float Path::cubicMarker = 100004.0f; const float Path::closeSubPathMarker = 100005.0f; static const int defaultGranularity = 32; Path::Path() throw() : ArrayAllocationBase (defaultGranularity), numElements (0), pathXMin (0), pathXMax (0), pathYMin (0), pathYMax (0), useNonZeroWinding (true) { } Path::~Path() throw() { } Path::Path (const Path& other) throw() : ArrayAllocationBase (defaultGranularity), numElements (other.numElements), pathXMin (other.pathXMin), pathXMax (other.pathXMax), pathYMin (other.pathYMin), pathYMax (other.pathYMax), useNonZeroWinding (other.useNonZeroWinding) { if (numElements > 0) { setAllocatedSize (numElements); memcpy (elements, other.elements, numElements * sizeof (float)); } } const Path& Path::operator= (const Path& other) throw() { if (this != &other) { ensureAllocatedSize (other.numElements); numElements = other.numElements; pathXMin = other.pathXMin; pathXMax = other.pathXMax; pathYMin = other.pathYMin; pathYMax = other.pathYMax; useNonZeroWinding = other.useNonZeroWinding; if (numElements > 0) memcpy (elements, other.elements, numElements * sizeof (float)); } return *this; } void Path::clear() throw() { numElements = 0; pathXMin = 0; pathYMin = 0; pathYMax = 0; pathXMax = 0; } void Path::swapWithPath (Path& other) { swapVariables (this->numAllocated, other.numAllocated); swapVariables (this->elements, other.elements); swapVariables (this->numElements, other.numElements); swapVariables (this->pathXMin, other.pathXMin); swapVariables (this->pathXMax, other.pathXMax); swapVariables (this->pathYMin, other.pathYMin); swapVariables (this->pathYMax, other.pathYMax); swapVariables (this->useNonZeroWinding, other.useNonZeroWinding); } void Path::setUsingNonZeroWinding (const bool isNonZero) throw() { useNonZeroWinding = isNonZero; } void Path::scaleToFit (const float x, const float y, const float w, const float h, const bool preserveProportions) throw() { applyTransform (getTransformToScaleToFit (x, y, w, h, preserveProportions)); } bool Path::isEmpty() const throw() { int i = 0; while (i < numElements) { const float type = elements [i++]; if (type == moveMarker) { i += 2; } else if (type == lineMarker || type == quadMarker || type == cubicMarker) { return false; } } return true; } void Path::getBounds (float& x, float& y, float& w, float& h) const throw() { x = pathXMin; y = pathYMin; w = pathXMax - pathXMin; h = pathYMax - pathYMin; } void Path::getBoundsTransformed (const AffineTransform& transform, float& x, float& y, float& w, float& h) const throw() { float x1 = pathXMin; float y1 = pathYMin; transform.transformPoint (x1, y1); float x2 = pathXMax; float y2 = pathYMin; transform.transformPoint (x2, y2); float x3 = pathXMin; float y3 = pathYMax; transform.transformPoint (x3, y3); float x4 = pathXMax; float y4 = pathYMax; transform.transformPoint (x4, y4); x = jmin (x1, x2, x3, x4); y = jmin (y1, y2, y3, y4); w = jmax (x1, x2, x3, x4) - x; h = jmax (y1, y2, y3, y4) - y; } void Path::startNewSubPath (const float x, const float y) throw() { CHECK_COORDS_ARE_VALID (x, y); if (numElements == 0) { pathXMin = pathXMax = x; pathYMin = pathYMax = y; } else { pathXMin = jmin (pathXMin, x); pathXMax = jmax (pathXMax, x); pathYMin = jmin (pathYMin, y); pathYMax = jmax (pathYMax, y); } ensureAllocatedSize (numElements + 3); elements [numElements++] = moveMarker; elements [numElements++] = x; elements [numElements++] = y; } void Path::lineTo (const float x, const float y) throw() { CHECK_COORDS_ARE_VALID (x, y); if (numElements == 0) startNewSubPath (0, 0); ensureAllocatedSize (numElements + 3); elements [numElements++] = lineMarker; elements [numElements++] = x; elements [numElements++] = y; pathXMin = jmin (pathXMin, x); pathXMax = jmax (pathXMax, x); pathYMin = jmin (pathYMin, y); pathYMax = jmax (pathYMax, y); } void Path::quadraticTo (const float x1, const float y1, const float x2, const float y2) throw() { CHECK_COORDS_ARE_VALID (x1, y1); CHECK_COORDS_ARE_VALID (x2, y2); if (numElements == 0) startNewSubPath (0, 0); ensureAllocatedSize (numElements + 5); elements [numElements++] = quadMarker; elements [numElements++] = x1; elements [numElements++] = y1; elements [numElements++] = x2; elements [numElements++] = y2; pathXMin = jmin (pathXMin, x1, x2); pathXMax = jmax (pathXMax, x1, x2); pathYMin = jmin (pathYMin, y1, y2); pathYMax = jmax (pathYMax, y1, y2); } void Path::cubicTo (const float x1, const float y1, const float x2, const float y2, const float x3, const float y3) throw() { CHECK_COORDS_ARE_VALID (x1, y1); CHECK_COORDS_ARE_VALID (x2, y2); CHECK_COORDS_ARE_VALID (x3, y3); if (numElements == 0) startNewSubPath (0, 0); ensureAllocatedSize (numElements + 7); elements [numElements++] = cubicMarker; elements [numElements++] = x1; elements [numElements++] = y1; elements [numElements++] = x2; elements [numElements++] = y2; elements [numElements++] = x3; elements [numElements++] = y3; pathXMin = jmin (pathXMin, x1, x2, x3); pathXMax = jmax (pathXMax, x1, x2, x3); pathYMin = jmin (pathYMin, y1, y2, y3); pathYMax = jmax (pathYMax, y1, y2, y3); } void Path::closeSubPath() throw() { if (numElements > 0 && elements [numElements - 1] != closeSubPathMarker) { ensureAllocatedSize (numElements + 1); elements [numElements++] = closeSubPathMarker; } } const Point Path::getCurrentPosition() const { int i = numElements - 1; if (i > 0 && elements[i] == closeSubPathMarker) { while (i >= 0) { if (elements[i] == moveMarker) { i += 2; break; } --i; } } if (i > 0) return Point (elements [i - 1], elements [i]); return Point (0.0f, 0.0f); } void Path::addRectangle (const float x, const float y, const float w, const float h) throw() { startNewSubPath (x, y + h); lineTo (x, y); lineTo (x + w, y); lineTo (x + w, y + h); closeSubPath(); } void Path::addRoundedRectangle (const float x, const float y, const float w, const float h, float csx, float csy) throw() { csx = jmin (csx, w * 0.5f); csy = jmin (csy, h * 0.5f); const float cs45x = csx * 0.45f; const float cs45y = csy * 0.45f; const float x2 = x + w; const float y2 = y + h; startNewSubPath (x + csx, y); lineTo (x2 - csx, y); cubicTo (x2 - cs45x, y, x2, y + cs45y, x2, y + csy); lineTo (x2, y2 - csy); cubicTo (x2, y2 - cs45y, x2 - cs45x, y2, x2 - csx, y2); lineTo (x + csx, y2); cubicTo (x + cs45x, y2, x, y2 - cs45y, x, y2 - csy); lineTo (x, y + csy); cubicTo (x, y + cs45y, x + cs45x, y, x + csx, y); closeSubPath(); } void Path::addRoundedRectangle (const float x, const float y, const float w, const float h, float cs) throw() { addRoundedRectangle (x, y, w, h, cs, cs); } void Path::addTriangle (const float x1, const float y1, const float x2, const float y2, const float x3, const float y3) throw() { startNewSubPath (x1, y1); lineTo (x2, y2); lineTo (x3, y3); closeSubPath(); } void Path::addQuadrilateral (const float x1, const float y1, const float x2, const float y2, const float x3, const float y3, const float x4, const float y4) throw() { startNewSubPath (x1, y1); lineTo (x2, y2); lineTo (x3, y3); lineTo (x4, y4); closeSubPath(); } void Path::addEllipse (const float x, const float y, const float w, const float h) throw() { const float hw = w * 0.5f; const float hw55 = hw * 0.55f; const float hh = h * 0.5f; const float hh45 = hh * 0.55f; const float cx = x + hw; const float cy = y + hh; startNewSubPath (cx, cy - hh); cubicTo (cx + hw55, cy - hh, cx + hw, cy - hh45, cx + hw, cy); cubicTo (cx + hw, cy + hh45, cx + hw55, cy + hh, cx, cy + hh); cubicTo (cx - hw55, cy + hh, cx - hw, cy + hh45, cx - hw, cy); cubicTo (cx - hw, cy - hh45, cx - hw55, cy - hh, cx, cy - hh); closeSubPath(); } void Path::addArc (const float x, const float y, const float w, const float h, const float fromRadians, const float toRadians, const bool startAsNewSubPath) throw() { const float radiusX = w / 2.0f; const float radiusY = h / 2.0f; addCentredArc (x + radiusX, y + radiusY, radiusX, radiusY, 0.0f, fromRadians, toRadians, startAsNewSubPath); } static const float ellipseAngularIncrement = 0.05f; void Path::addCentredArc (const float centreX, const float centreY, const float radiusX, const float radiusY, const float rotationOfEllipse, const float fromRadians, const float toRadians, const bool startAsNewSubPath) throw() { if (radiusX > 0.0f && radiusY > 0.0f) { const AffineTransform rotation (AffineTransform::rotation (rotationOfEllipse, centreX, centreY)); float angle = fromRadians; if (startAsNewSubPath) { float x = centreX + radiusX * sinf (angle); float y = centreY - radiusY * cosf (angle); if (rotationOfEllipse != 0) rotation.transformPoint (x, y); startNewSubPath (x, y); } if (fromRadians < toRadians) { if (startAsNewSubPath) angle += ellipseAngularIncrement; while (angle < toRadians) { float x = centreX + radiusX * sinf (angle); float y = centreY - radiusY * cosf (angle); if (rotationOfEllipse != 0) rotation.transformPoint (x, y); lineTo (x, y); angle += ellipseAngularIncrement; } } else { if (startAsNewSubPath) angle -= ellipseAngularIncrement; while (angle > toRadians) { float x = centreX + radiusX * sinf (angle); float y = centreY - radiusY * cosf (angle); if (rotationOfEllipse != 0) rotation.transformPoint (x, y); lineTo (x, y); angle -= ellipseAngularIncrement; } } float x = centreX + radiusX * sinf (toRadians); float y = centreY - radiusY * cosf (toRadians); if (rotationOfEllipse != 0) rotation.transformPoint (x, y); lineTo (x, y); } } void Path::addPieSegment (const float x, const float y, const float width, const float height, const float fromRadians, const float toRadians, const float innerCircleProportionalSize) { float hw = width * 0.5f; float hh = height * 0.5f; const float centreX = x + hw; const float centreY = y + hh; startNewSubPath (centreX + hw * sinf (fromRadians), centreY - hh * cosf (fromRadians)); addArc (x, y, width, height, fromRadians, toRadians); if (fabs (fromRadians - toRadians) > float_Pi * 1.999f) { closeSubPath(); if (innerCircleProportionalSize > 0) { hw *= innerCircleProportionalSize; hh *= innerCircleProportionalSize; startNewSubPath (centreX + hw * sinf (toRadians), centreY - hh * cosf (toRadians)); addArc (centreX - hw, centreY - hh, hw * 2.0f, hh * 2.0f, toRadians, fromRadians); } } else { if (innerCircleProportionalSize > 0) { hw *= innerCircleProportionalSize; hh *= innerCircleProportionalSize; addArc (centreX - hw, centreY - hh, hw * 2.0f, hh * 2.0f, toRadians, fromRadians); } else { lineTo (centreX, centreY); } } closeSubPath(); } static void perpendicularOffset (const float x1, const float y1, const float x2, const float y2, const float offsetX, const float offsetY, float& resultX, float& resultY) throw() { const float dx = x2 - x1; const float dy = y2 - y1; const float len = juce_hypotf (dx, dy); if (len == 0) { resultX = x1; resultY = y1; } else { resultX = x1 + ((dx * offsetX) - (dy * offsetY)) / len; resultY = y1 + ((dy * offsetX) + (dx * offsetY)) / len; } } void Path::addLineSegment (const float startX, const float startY, const float endX, const float endY, float lineThickness) throw() { lineThickness *= 0.5f; float x, y; perpendicularOffset (startX, startY, endX, endY, 0, lineThickness, x, y); startNewSubPath (x, y); perpendicularOffset (startX, startY, endX, endY, 0, -lineThickness, x, y); lineTo (x, y); perpendicularOffset (endX, endY, startX, startY, 0, lineThickness, x, y); lineTo (x, y); perpendicularOffset (endX, endY, startX, startY, 0, -lineThickness, x, y); lineTo (x, y); closeSubPath(); } void Path::addArrow (const float startX, const float startY, const float endX, const float endY, float lineThickness, float arrowheadWidth, float arrowheadLength) throw() { lineThickness *= 0.5f; arrowheadWidth *= 0.5f; arrowheadLength = jmin (arrowheadLength, 0.8f * juce_hypotf (startX - endX, startY - endY)); float x, y; perpendicularOffset (startX, startY, endX, endY, 0, lineThickness, x, y); startNewSubPath (x, y); perpendicularOffset (startX, startY, endX, endY, 0, -lineThickness, x, y); lineTo (x, y); perpendicularOffset (endX, endY, startX, startY, arrowheadLength, lineThickness, x, y); lineTo (x, y); perpendicularOffset (endX, endY, startX, startY, arrowheadLength, arrowheadWidth, x, y); lineTo (x, y); perpendicularOffset (endX, endY, startX, startY, 0, 0, x, y); lineTo (x, y); perpendicularOffset (endX, endY, startX, startY, arrowheadLength, -arrowheadWidth, x, y); lineTo (x, y); perpendicularOffset (endX, endY, startX, startY, arrowheadLength, -lineThickness, x, y); lineTo (x, y); closeSubPath(); } void Path::addStar (const float centreX, const float centreY, const int numberOfPoints, const float innerRadius, const float outerRadius, const float startAngle) { jassert (numberOfPoints > 1); // this would be silly. if (numberOfPoints > 1) { const float angleBetweenPoints = float_Pi * 2.0f / numberOfPoints; for (int i = 0; i < numberOfPoints; ++i) { float angle = startAngle + i * angleBetweenPoints; const float x = centreX + outerRadius * sinf (angle); const float y = centreY - outerRadius * cosf (angle); if (i == 0) startNewSubPath (x, y); else lineTo (x, y); angle += angleBetweenPoints * 0.5f; lineTo (centreX + innerRadius * sinf (angle), centreY - innerRadius * cosf (angle)); } closeSubPath(); } } void Path::addBubble (float x, float y, float w, float h, float cs, float tipX, float tipY, int whichSide, float arrowPos, float arrowWidth) { if (w > 1.0f && h > 1.0f) { cs = jmin (cs, w * 0.5f, h * 0.5f); const float cs2 = 2.0f * cs; startNewSubPath (x + cs, y); if (whichSide == 0) { const float halfArrowW = jmin (arrowWidth, w - cs2) * 0.5f; const float arrowX1 = x + cs + jmax (0.0f, (w - cs2) * arrowPos - halfArrowW); lineTo (arrowX1, y); lineTo (tipX, tipY); lineTo (arrowX1 + halfArrowW * 2.0f, y); } lineTo (x + w - cs, y); if (cs > 0.0f) addArc (x + w - cs2, y, cs2, cs2, 0, float_Pi * 0.5f); if (whichSide == 3) { const float halfArrowH = jmin (arrowWidth, h - cs2) * 0.5f; const float arrowY1 = y + cs + jmax (0.0f, (h - cs2) * arrowPos - halfArrowH); lineTo (x + w, arrowY1); lineTo (tipX, tipY); lineTo (x + w, arrowY1 + halfArrowH * 2.0f); } lineTo (x + w, y + h - cs); if (cs > 0.0f) addArc (x + w - cs2, y + h - cs2, cs2, cs2, float_Pi * 0.5f, float_Pi); if (whichSide == 2) { const float halfArrowW = jmin (arrowWidth, w - cs2) * 0.5f; const float arrowX1 = x + cs + jmax (0.0f, (w - cs2) * arrowPos - halfArrowW); lineTo (arrowX1 + halfArrowW * 2.0f, y + h); lineTo (tipX, tipY); lineTo (arrowX1, y + h); } lineTo (x + cs, y + h); if (cs > 0.0f) addArc (x, y + h - cs2, cs2, cs2, float_Pi, float_Pi * 1.5f); if (whichSide == 1) { const float halfArrowH = jmin (arrowWidth, h - cs2) * 0.5f; const float arrowY1 = y + cs + jmax (0.0f, (h - cs2) * arrowPos - halfArrowH); lineTo (x, arrowY1 + halfArrowH * 2.0f); lineTo (tipX, tipY); lineTo (x, arrowY1); } lineTo (x, y + cs); if (cs > 0.0f) addArc (x, y, cs2, cs2, float_Pi * 1.5f, float_Pi * 2.0f - ellipseAngularIncrement); closeSubPath(); } } void Path::addPath (const Path& other) throw() { int i = 0; while (i < other.numElements) { const float type = other.elements [i++]; if (type == moveMarker) { startNewSubPath (other.elements [i], other.elements [i + 1]); i += 2; } else if (type == lineMarker) { lineTo (other.elements [i], other.elements [i + 1]); i += 2; } else if (type == quadMarker) { quadraticTo (other.elements [i], other.elements [i + 1], other.elements [i + 2], other.elements [i + 3]); i += 4; } else if (type == cubicMarker) { cubicTo (other.elements [i], other.elements [i + 1], other.elements [i + 2], other.elements [i + 3], other.elements [i + 4], other.elements [i + 5]); i += 6; } else if (type == closeSubPathMarker) { closeSubPath(); } else { // something's gone wrong with the element list! jassertfalse } } } void Path::addPath (const Path& other, const AffineTransform& transformToApply) throw() { int i = 0; while (i < other.numElements) { const float type = other.elements [i++]; if (type == closeSubPathMarker) { closeSubPath(); } else { float x = other.elements [i++]; float y = other.elements [i++]; transformToApply.transformPoint (x, y); if (type == moveMarker) { startNewSubPath (x, y); } else if (type == lineMarker) { lineTo (x, y); } else if (type == quadMarker) { float x2 = other.elements [i++]; float y2 = other.elements [i++]; transformToApply.transformPoint (x2, y2); quadraticTo (x, y, x2, y2); } else if (type == cubicMarker) { float x2 = other.elements [i++]; float y2 = other.elements [i++]; float x3 = other.elements [i++]; float y3 = other.elements [i++]; transformToApply.transformPoint (x2, y2); transformToApply.transformPoint (x3, y3); cubicTo (x, y, x2, y2, x3, y3); } else { // something's gone wrong with the element list! jassertfalse } } } } void Path::applyTransform (const AffineTransform& transform) throw() { int i = 0; pathYMin = pathXMin = 0; pathYMax = pathXMax = 0; bool setMaxMin = false; while (i < numElements) { const float type = elements [i++]; if (type == moveMarker) { transform.transformPoint (elements [i], elements [i + 1]); if (setMaxMin) { pathXMin = jmin (pathXMin, elements [i]); pathXMax = jmax (pathXMax, elements [i]); pathYMin = jmin (pathYMin, elements [i + 1]); pathYMax = jmax (pathYMax, elements [i + 1]); } else { pathXMin = pathXMax = elements [i]; pathYMin = pathYMax = elements [i + 1]; setMaxMin = true; } i += 2; } else if (type == lineMarker) { transform.transformPoint (elements [i], elements [i + 1]); pathXMin = jmin (pathXMin, elements [i]); pathXMax = jmax (pathXMax, elements [i]); pathYMin = jmin (pathYMin, elements [i + 1]); pathYMax = jmax (pathYMax, elements [i + 1]); i += 2; } else if (type == quadMarker) { transform.transformPoint (elements [i], elements [i + 1]); transform.transformPoint (elements [i + 2], elements [i + 3]); pathXMin = jmin (pathXMin, elements [i], elements [i + 2]); pathXMax = jmax (pathXMax, elements [i], elements [i + 2]); pathYMin = jmin (pathYMin, elements [i + 1], elements [i + 3]); pathYMax = jmax (pathYMax, elements [i + 1], elements [i + 3]); i += 4; } else if (type == cubicMarker) { transform.transformPoint (elements [i], elements [i + 1]); transform.transformPoint (elements [i + 2], elements [i + 3]); transform.transformPoint (elements [i + 4], elements [i + 5]); pathXMin = jmin (pathXMin, elements [i], elements [i + 2], elements [i + 4]); pathXMax = jmax (pathXMax, elements [i], elements [i + 2], elements [i + 4]); pathYMin = jmin (pathYMin, elements [i + 1], elements [i + 3], elements [i + 5]); pathYMax = jmax (pathYMax, elements [i + 1], elements [i + 3], elements [i + 5]); i += 6; } } } const AffineTransform Path::getTransformToScaleToFit (const float x, const float y, const float w, const float h, const bool preserveProportions, const Justification& justification) const throw() { float sx, sy, sw, sh; getBounds (sx, sy, sw, sh); if (preserveProportions) { if (w <= 0 || h <= 0 || sw <= 0 || sh <= 0) return AffineTransform::identity; float newW, newH; const float srcRatio = sh / sw; if (srcRatio > h / w) { newW = h / srcRatio; newH = h; } else { newW = w; newH = w * srcRatio; } float newXCentre = x; float newYCentre = y; if (justification.testFlags (Justification::left)) newXCentre += newW * 0.5f; else if (justification.testFlags (Justification::right)) newXCentre += w - newW * 0.5f; else newXCentre += w * 0.5f; if (justification.testFlags (Justification::top)) newYCentre += newH * 0.5f; else if (justification.testFlags (Justification::bottom)) newYCentre += h - newH * 0.5f; else newYCentre += h * 0.5f; return AffineTransform::translation (sw * -0.5f - sx, sh * -0.5f - sy) .scaled (newW / sw, newH / sh) .translated (newXCentre, newYCentre); } else { return AffineTransform::translation (-sx, -sy) .scaled (w / sw, h / sh) .translated (x, y); } } bool Path::contains (const float x, const float y, const float tolerence) const throw() { if (x <= pathXMin || x >= pathXMax || y <= pathYMin || y >= pathYMax) return false; PathFlatteningIterator i (*this, AffineTransform::identity, tolerence); int positiveCrossings = 0; int negativeCrossings = 0; while (i.next()) { if ((i.y1 <= y && i.y2 > y) || (i.y2 <= y && i.y1 > y)) { const float intersectX = i.x1 + (i.x2 - i.x1) * (y - i.y1) / (i.y2 - i.y1); if (intersectX <= x) { if (i.y1 < i.y2) ++positiveCrossings; else ++negativeCrossings; } } } return (useNonZeroWinding) ? (negativeCrossings != positiveCrossings) : ((negativeCrossings + positiveCrossings) & 1) != 0; } bool Path::intersectsLine (const float x1, const float y1, const float x2, const float y2, const float tolerence) throw() { PathFlatteningIterator i (*this, AffineTransform::identity, tolerence); const Line line1 (x1, y1, x2, y2); while (i.next()) { const Line line2 (i.x1, i.y1, i.x2, i.y2); float ix, iy; if (line1.intersects (line2, ix, iy)) return true; } return false; } const Path Path::createPathWithRoundedCorners (const float cornerRadius) const throw() { if (cornerRadius <= 0.01f) return *this; int indexOfPathStart = 0, indexOfPathStartThis = 0; int n = 0; bool lastWasLine = false, firstWasLine = false; Path p; while (n < numElements) { const float type = elements [n++]; if (type == moveMarker) { indexOfPathStart = p.numElements; indexOfPathStartThis = n - 1; const float x = elements [n++]; const float y = elements [n++]; p.startNewSubPath (x, y); lastWasLine = false; firstWasLine = (elements [n] == lineMarker); } else if (type == lineMarker || type == closeSubPathMarker) { float startX = 0, startY = 0, joinX = 0, joinY = 0, endX, endY; if (type == lineMarker) { endX = elements [n++]; endY = elements [n++]; if (n > 8) { startX = elements [n - 8]; startY = elements [n - 7]; joinX = elements [n - 5]; joinY = elements [n - 4]; } } else { endX = elements [indexOfPathStartThis + 1]; endY = elements [indexOfPathStartThis + 2]; if (n > 6) { startX = elements [n - 6]; startY = elements [n - 5]; joinX = elements [n - 3]; joinY = elements [n - 2]; } } if (lastWasLine) { const double len1 = juce_hypot (startX - joinX, startY - joinY); if (len1 > 0) { const double propNeeded = jmin (0.5, cornerRadius / len1); p.elements [p.numElements - 2] = (float) (joinX - (joinX - startX) * propNeeded); p.elements [p.numElements - 1] = (float) (joinY - (joinY - startY) * propNeeded); } const double len2 = juce_hypot (endX - joinX, endY - joinY); if (len2 > 0) { const double propNeeded = jmin (0.5, cornerRadius / len2); p.quadraticTo (joinX, joinY, (float) (joinX + (endX - joinX) * propNeeded), (float) (joinY + (endY - joinY) * propNeeded)); } p.lineTo (endX, endY); } else if (type == lineMarker) { p.lineTo (endX, endY); lastWasLine = true; } if (type == closeSubPathMarker) { if (firstWasLine) { startX = elements [n - 3]; startY = elements [n - 2]; joinX = endX; joinY = endY; endX = elements [indexOfPathStartThis + 4]; endY = elements [indexOfPathStartThis + 5]; const double len1 = juce_hypot (startX - joinX, startY - joinY); if (len1 > 0) { const double propNeeded = jmin (0.5, cornerRadius / len1); p.elements [p.numElements - 2] = (float) (joinX - (joinX - startX) * propNeeded); p.elements [p.numElements - 1] = (float) (joinY - (joinY - startY) * propNeeded); } const double len2 = juce_hypot (endX - joinX, endY - joinY); if (len2 > 0) { const double propNeeded = jmin (0.5, cornerRadius / len2); endX = (float) (joinX + (endX - joinX) * propNeeded); endY = (float) (joinY + (endY - joinY) * propNeeded); p.quadraticTo (joinX, joinY, endX, endY); p.elements [indexOfPathStart + 1] = endX; p.elements [indexOfPathStart + 2] = endY; } } p.closeSubPath(); } } else if (type == quadMarker) { lastWasLine = false; const float x1 = elements [n++]; const float y1 = elements [n++]; const float x2 = elements [n++]; const float y2 = elements [n++]; p.quadraticTo (x1, y1, x2, y2); } else if (type == cubicMarker) { lastWasLine = false; const float x1 = elements [n++]; const float y1 = elements [n++]; const float x2 = elements [n++]; const float y2 = elements [n++]; const float x3 = elements [n++]; const float y3 = elements [n++]; p.cubicTo (x1, y1, x2, y2, x3, y3); } } return p; } void Path::loadPathFromStream (InputStream& source) { while (! source.isExhausted()) { switch (source.readByte()) { case 'm': { const float x = source.readFloat(); const float y = source.readFloat(); startNewSubPath (x, y); break; } case 'l': { const float x = source.readFloat(); const float y = source.readFloat(); lineTo (x, y); break; } case 'q': { const float x1 = source.readFloat(); const float y1 = source.readFloat(); const float x2 = source.readFloat(); const float y2 = source.readFloat(); quadraticTo (x1, y1, x2, y2); break; } case 'b': { const float x1 = source.readFloat(); const float y1 = source.readFloat(); const float x2 = source.readFloat(); const float y2 = source.readFloat(); const float x3 = source.readFloat(); const float y3 = source.readFloat(); cubicTo (x1, y1, x2, y2, x3, y3); break; } case 'c': closeSubPath(); break; case 'n': useNonZeroWinding = true; break; case 'z': useNonZeroWinding = false; break; case 'e': return; // end of path marker default: jassertfalse // illegal char in the stream break; } } } void Path::loadPathFromData (const unsigned char* const data, const int numberOfBytes) throw() { MemoryInputStream in ((const char*) data, numberOfBytes, false); loadPathFromStream (in); } void Path::writePathToStream (OutputStream& dest) const { dest.writeByte ((useNonZeroWinding) ? 'n' : 'z'); int i = 0; while (i < numElements) { const float type = elements [i++]; if (type == moveMarker) { dest.writeByte ('m'); dest.writeFloat (elements [i++]); dest.writeFloat (elements [i++]); } else if (type == lineMarker) { dest.writeByte ('l'); dest.writeFloat (elements [i++]); dest.writeFloat (elements [i++]); } else if (type == quadMarker) { dest.writeByte ('q'); dest.writeFloat (elements [i++]); dest.writeFloat (elements [i++]); dest.writeFloat (elements [i++]); dest.writeFloat (elements [i++]); } else if (type == cubicMarker) { dest.writeByte ('b'); dest.writeFloat (elements [i++]); dest.writeFloat (elements [i++]); dest.writeFloat (elements [i++]); dest.writeFloat (elements [i++]); dest.writeFloat (elements [i++]); dest.writeFloat (elements [i++]); } else if (type == closeSubPathMarker) { dest.writeByte ('c'); } } dest.writeByte ('e'); // marks the end-of-path } const String Path::toString() const { String s; s.preallocateStorage (numElements * 4); if (! useNonZeroWinding) s << T("a "); int i = 0; float lastMarker = 0.0f; while (i < numElements) { const float marker = elements [i++]; tchar markerChar = 0; int numCoords = 0; if (marker == moveMarker) { markerChar = T('m'); numCoords = 2; } else if (marker == lineMarker) { markerChar = T('l'); numCoords = 2; } else if (marker == quadMarker) { markerChar = T('q'); numCoords = 4; } else if (marker == cubicMarker) { markerChar = T('c'); numCoords = 6; } else { jassert (marker == closeSubPathMarker); markerChar = T('z'); } if (marker != lastMarker) { s << markerChar << T(' '); lastMarker = marker; } while (--numCoords >= 0 && i < numElements) { String n (elements [i++], 3); while (n.endsWithChar (T('0'))) n = n.dropLastCharacters (1); if (n.endsWithChar (T('.'))) n = n.dropLastCharacters (1); s << n << T(' '); } } return s.trimEnd(); } static const String nextToken (const tchar*& t) { while (CharacterFunctions::isWhitespace (*t)) ++t; const tchar* const start = t; while (*t != 0 && ! CharacterFunctions::isWhitespace (*t)) ++t; const int length = (int) (t - start); while (CharacterFunctions::isWhitespace (*t)) ++t; return String (start, length); } void Path::restoreFromString (const String& stringVersion) { clear(); setUsingNonZeroWinding (true); const tchar* t = stringVersion; tchar marker = T('m'); int numValues = 2; float values [6]; while (*t != 0) { const String token (nextToken (t)); const tchar firstChar = token[0]; int startNum = 0; if (firstChar == T('m') || firstChar == T('l')) { marker = firstChar; numValues = 2; } else if (firstChar == T('q')) { marker = firstChar; numValues = 4; } else if (firstChar == T('c')) { marker = firstChar; numValues = 6; } else if (firstChar == T('z')) { marker = firstChar; numValues = 0; } else if (firstChar == T('a')) { setUsingNonZeroWinding (false); continue; } else { ++startNum; values [0] = token.getFloatValue(); } for (int i = startNum; i < numValues; ++i) values [i] = nextToken (t).getFloatValue(); switch (marker) { case T('m'): startNewSubPath (values[0], values[1]); break; case T('l'): lineTo (values[0], values[1]); break; case T('q'): quadraticTo (values[0], values[1], values[2], values[3]); break; case T('c'): cubicTo (values[0], values[1], values[2], values[3], values[4], values[5]); break; case T('z'): closeSubPath(); break; default: jassertfalse // illegal string format? break; } } } Path::Iterator::Iterator (const Path& path_) : path (path_), index (0) { } Path::Iterator::~Iterator() { } bool Path::Iterator::next() { const float* const elements = path.elements; if (index < path.numElements) { const float type = elements [index++]; if (type == moveMarker) { elementType = startNewSubPath; x1 = elements [index++]; y1 = elements [index++]; } else if (type == lineMarker) { elementType = lineTo; x1 = elements [index++]; y1 = elements [index++]; } else if (type == quadMarker) { elementType = quadraticTo; x1 = elements [index++]; y1 = elements [index++]; x2 = elements [index++]; y2 = elements [index++]; } else if (type == cubicMarker) { elementType = cubicTo; x1 = elements [index++]; y1 = elements [index++]; x2 = elements [index++]; y2 = elements [index++]; x3 = elements [index++]; y3 = elements [index++]; } else if (type == closeSubPathMarker) { elementType = closePath; } return true; } return false; } END_JUCE_NAMESPACE /********* End of inlined file: juce_Path.cpp *********/ /********* Start of inlined file: juce_PathIterator.cpp *********/ BEGIN_JUCE_NAMESPACE #if JUCE_MSVC #pragma optimize ("t", on) #endif PathFlatteningIterator::PathFlatteningIterator (const Path& path_, const AffineTransform& transform_, float tolerence_) throw() : x2 (0), y2 (0), closesSubPath (false), subPathIndex (-1), path (path_), transform (transform_), points (path_.elements), tolerence (tolerence_ * tolerence_), subPathCloseX (0), subPathCloseY (0), index (0), stackSize (32) { stackBase = (float*) juce_malloc (stackSize * sizeof (float)); isIdentityTransform = transform.isIdentity(); stackPos = stackBase; } PathFlatteningIterator::~PathFlatteningIterator() throw() { juce_free (stackBase); } bool PathFlatteningIterator::next() throw() { x1 = x2; y1 = y2; float x3 = 0; float y3 = 0; float x4 = 0; float y4 = 0; float type; for (;;) { if (stackPos == stackBase) { if (index >= path.numElements) { return false; } else { type = points [index++]; if (type != Path::closeSubPathMarker) { x2 = points [index++]; y2 = points [index++]; if (! isIdentityTransform) transform.transformPoint (x2, y2); if (type == Path::quadMarker) { x3 = points [index++]; y3 = points [index++]; if (! isIdentityTransform) transform.transformPoint (x3, y3); } else if (type == Path::cubicMarker) { x3 = points [index++]; y3 = points [index++]; x4 = points [index++]; y4 = points [index++]; if (! isIdentityTransform) { transform.transformPoint (x3, y3); transform.transformPoint (x4, y4); } } } } } else { type = *--stackPos; if (type != Path::closeSubPathMarker) { x2 = *--stackPos; y2 = *--stackPos; if (type == Path::quadMarker) { x3 = *--stackPos; y3 = *--stackPos; } else if (type == Path::cubicMarker) { x3 = *--stackPos; y3 = *--stackPos; x4 = *--stackPos; y4 = *--stackPos; } } } if (type == Path::lineMarker) { ++subPathIndex; closesSubPath = (stackPos == stackBase) && (index < path.numElements) && (points [index] == Path::closeSubPathMarker) && x2 == subPathCloseX && y2 == subPathCloseY; return true; } else if (type == Path::quadMarker) { const int offset = (int) (stackPos - stackBase); if (offset >= stackSize - 10) { stackSize <<= 1; stackBase = (float*) juce_realloc (stackBase, stackSize * sizeof (float)); stackPos = stackBase + offset; } const float dx1 = x1 - x2; const float dy1 = y1 - y2; const float dx2 = x2 - x3; const float dy2 = y2 - y3; const float m1x = (x1 + x2) * 0.5f; const float m1y = (y1 + y2) * 0.5f; const float m2x = (x2 + x3) * 0.5f; const float m2y = (y2 + y3) * 0.5f; const float m3x = (m1x + m2x) * 0.5f; const float m3y = (m1y + m2y) * 0.5f; if (dx1*dx1 + dy1*dy1 + dx2*dx2 + dy2*dy2 > tolerence) { *stackPos++ = y3; *stackPos++ = x3; *stackPos++ = m2y; *stackPos++ = m2x; *stackPos++ = Path::quadMarker; *stackPos++ = m3y; *stackPos++ = m3x; *stackPos++ = m1y; *stackPos++ = m1x; *stackPos++ = Path::quadMarker; } else { *stackPos++ = y3; *stackPos++ = x3; *stackPos++ = Path::lineMarker; *stackPos++ = m3y; *stackPos++ = m3x; *stackPos++ = Path::lineMarker; } jassert (stackPos < stackBase + stackSize); } else if (type == Path::cubicMarker) { const int offset = (int) (stackPos - stackBase); if (offset >= stackSize - 16) { stackSize <<= 1; stackBase = (float*) juce_realloc (stackBase, stackSize * sizeof (float)); stackPos = stackBase + offset; } const float dx1 = x1 - x2; const float dy1 = y1 - y2; const float dx2 = x2 - x3; const float dy2 = y2 - y3; const float dx3 = x3 - x4; const float dy3 = y3 - y4; const float m1x = (x1 + x2) * 0.5f; const float m1y = (y1 + y2) * 0.5f; const float m2x = (x3 + x2) * 0.5f; const float m2y = (y3 + y2) * 0.5f; const float m3x = (x3 + x4) * 0.5f; const float m3y = (y3 + y4) * 0.5f; const float m4x = (m1x + m2x) * 0.5f; const float m4y = (m1y + m2y) * 0.5f; const float m5x = (m3x + m2x) * 0.5f; const float m5y = (m3y + m2y) * 0.5f; if (dx1*dx1 + dy1*dy1 + dx2*dx2 + dy2*dy2 + dx3*dx3 + dy3*dy3 > tolerence) { *stackPos++ = y4; *stackPos++ = x4; *stackPos++ = m3y; *stackPos++ = m3x; *stackPos++ = m5y; *stackPos++ = m5x; *stackPos++ = Path::cubicMarker; *stackPos++ = (m4y + m5y) * 0.5f; *stackPos++ = (m4x + m5x) * 0.5f; *stackPos++ = m4y; *stackPos++ = m4x; *stackPos++ = m1y; *stackPos++ = m1x; *stackPos++ = Path::cubicMarker; } else { *stackPos++ = y4; *stackPos++ = x4; *stackPos++ = Path::lineMarker; *stackPos++ = m5y; *stackPos++ = m5x; *stackPos++ = Path::lineMarker; *stackPos++ = m4y; *stackPos++ = m4x; *stackPos++ = Path::lineMarker; } } else if (type == Path::closeSubPathMarker) { if (x2 != subPathCloseX || y2 != subPathCloseY) { x1 = x2; y1 = y2; x2 = subPathCloseX; y2 = subPathCloseY; closesSubPath = true; return true; } } else { jassert (type == Path::moveMarker); subPathIndex = -1; subPathCloseX = x1 = x2; subPathCloseY = y1 = y2; } } } END_JUCE_NAMESPACE /********* End of inlined file: juce_PathIterator.cpp *********/ /********* Start of inlined file: juce_PathStrokeType.cpp *********/ BEGIN_JUCE_NAMESPACE PathStrokeType::PathStrokeType (const float strokeThickness, const JointStyle jointStyle_, const EndCapStyle endStyle_) throw() : thickness (strokeThickness), jointStyle (jointStyle_), endStyle (endStyle_) { } PathStrokeType::PathStrokeType (const PathStrokeType& other) throw() : thickness (other.thickness), jointStyle (other.jointStyle), endStyle (other.endStyle) { } const PathStrokeType& PathStrokeType::operator= (const PathStrokeType& other) throw() { thickness = other.thickness; jointStyle = other.jointStyle; endStyle = other.endStyle; return *this; } PathStrokeType::~PathStrokeType() throw() { } bool PathStrokeType::operator== (const PathStrokeType& other) const throw() { return thickness == other.thickness && jointStyle == other.jointStyle && endStyle == other.endStyle; } bool PathStrokeType::operator!= (const PathStrokeType& other) const throw() { return ! operator== (other); } static bool lineIntersection (const float x1, const float y1, const float x2, const float y2, const float x3, const float y3, const float x4, const float y4, float& intersectionX, float& intersectionY, float& distanceBeyondLine1EndSquared) throw() { if (x2 != x3 || y2 != y3) { const float dx1 = x2 - x1; const float dy1 = y2 - y1; const float dx2 = x4 - x3; const float dy2 = y4 - y3; const float divisor = dx1 * dy2 - dx2 * dy1; if (divisor == 0) { if (! ((dx1 == 0 && dy1 == 0) || (dx2 == 0 && dy2 == 0))) { if (dy1 == 0 && dy2 != 0) { const float along = (y1 - y3) / dy2; intersectionX = x3 + along * dx2; intersectionY = y1; distanceBeyondLine1EndSquared = intersectionX - x2; distanceBeyondLine1EndSquared *= distanceBeyondLine1EndSquared; if ((x2 > x1) == (intersectionX < x2)) distanceBeyondLine1EndSquared = -distanceBeyondLine1EndSquared; return along >= 0 && along <= 1.0f; } else if (dy2 == 0 && dy1 != 0) { const float along = (y3 - y1) / dy1; intersectionX = x1 + along * dx1; intersectionY = y3; distanceBeyondLine1EndSquared = (along - 1.0f) * dx1; distanceBeyondLine1EndSquared *= distanceBeyondLine1EndSquared; if (along < 1.0f) distanceBeyondLine1EndSquared = -distanceBeyondLine1EndSquared; return along >= 0 && along <= 1.0f; } else if (dx1 == 0 && dx2 != 0) { const float along = (x1 - x3) / dx2; intersectionX = x1; intersectionY = y3 + along * dy2; distanceBeyondLine1EndSquared = intersectionY - y2; distanceBeyondLine1EndSquared *= distanceBeyondLine1EndSquared; if ((y2 > y1) == (intersectionY < y2)) distanceBeyondLine1EndSquared = -distanceBeyondLine1EndSquared; return along >= 0 && along <= 1.0f; } else if (dx2 == 0 && dx1 != 0) { const float along = (x3 - x1) / dx1; intersectionX = x3; intersectionY = y1 + along * dy1; distanceBeyondLine1EndSquared = (along - 1.0f) * dy1; distanceBeyondLine1EndSquared *= distanceBeyondLine1EndSquared; if (along < 1.0f) distanceBeyondLine1EndSquared = -distanceBeyondLine1EndSquared; return along >= 0 && along <= 1.0f; } } intersectionX = 0.5f * (x2 + x3); intersectionY = 0.5f * (y2 + y3); distanceBeyondLine1EndSquared = 0.0f; return false; } else { const float along1 = ((y1 - y3) * dx2 - (x1 - x3) * dy2) / divisor; intersectionX = x1 + along1 * dx1; intersectionY = y1 + along1 * dy1; if (along1 >= 0 && along1 <= 1.0f) { const float along2 = ((y1 - y3) * dx1 - (x1 - x3) * dy1); if (along2 >= 0 && along2 <= divisor) { distanceBeyondLine1EndSquared = 0.0f; return true; } } distanceBeyondLine1EndSquared = along1 - 1.0f; distanceBeyondLine1EndSquared *= distanceBeyondLine1EndSquared; distanceBeyondLine1EndSquared *= (dx1 * dx1 + dy1 * dy1); if (along1 < 1.0f) distanceBeyondLine1EndSquared = -distanceBeyondLine1EndSquared; return false; } } intersectionX = x2; intersectionY = y2; distanceBeyondLine1EndSquared = 0.0f; return true; } // part of stroke drawing stuff static void addEdgeAndJoint (Path& destPath, const PathStrokeType::JointStyle style, const float maxMiterExtensionSquared, const float width, const float x1, const float y1, const float x2, const float y2, const float x3, const float y3, const float x4, const float y4, const float midX, const float midY) throw() { if (style == PathStrokeType::beveled || (x3 == x4 && y3 == y4) || (x1 == x2 && y1 == y2)) { destPath.lineTo (x2, y2); destPath.lineTo (x3, y3); } else { float jx, jy, distanceBeyondLine1EndSquared; // if they intersect, use this point.. if (lineIntersection (x1, y1, x2, y2, x3, y3, x4, y4, jx, jy, distanceBeyondLine1EndSquared)) { destPath.lineTo (jx, jy); } else { if (style == PathStrokeType::mitered) { if (distanceBeyondLine1EndSquared < maxMiterExtensionSquared && distanceBeyondLine1EndSquared > 0.0f) { destPath.lineTo (jx, jy); } else { // the end sticks out too far, so just use a blunt joint destPath.lineTo (x2, y2); destPath.lineTo (x3, y3); } } else { // curved joints float angle = atan2f (x2 - midX, y2 - midY); float angle2 = atan2f (x3 - midX, y3 - midY); while (angle < angle2 - 0.01f) angle2 -= float_Pi * 2.0f; destPath.lineTo (x2, y2); while (angle > angle2) { destPath.lineTo (midX + width * sinf (angle), midY + width * cosf (angle)); angle -= 0.1f; } destPath.lineTo (x3, y3); } } } } static inline void addLineEnd (Path& destPath, const PathStrokeType::EndCapStyle style, const float x1, const float y1, const float x2, const float y2, const float width) throw() { if (style == PathStrokeType::butt) { destPath.lineTo (x2, y2); } else { float offx1, offy1, offx2, offy2; float dx = x2 - x1; float dy = y2 - y1; const float len = juce_hypotf (dx, dy); if (len == 0) { offx1 = offx2 = x1; offy1 = offy2 = y1; } else { const float offset = width / len; dx *= offset; dy *= offset; offx1 = x1 + dy; offy1 = y1 - dx; offx2 = x2 + dy; offy2 = y2 - dx; } if (style == PathStrokeType::square) { // sqaure ends destPath.lineTo (offx1, offy1); destPath.lineTo (offx2, offy2); destPath.lineTo (x2, y2); } else { // rounded ends const float midx = (offx1 + offx2) * 0.5f; const float midy = (offy1 + offy2) * 0.5f; destPath.cubicTo (x1 + (offx1 - x1) * 0.55f, y1 + (offy1 - y1) * 0.55f, offx1 + (midx - offx1) * 0.45f, offy1 + (midy - offy1) * 0.45f, midx, midy); destPath.cubicTo (midx + (offx2 - midx) * 0.55f, midy + (offy2 - midy) * 0.55f, offx2 + (x2 - offx2) * 0.45f, offy2 + (y2 - offy2) * 0.45f, x2, y2); } } } struct LineSection { LineSection() throw() {} LineSection (int) throw() {} float x1, y1, x2, y2; // original line float lx1, ly1, lx2, ly2; // the left-hand stroke float rx1, ry1, rx2, ry2; // the right-hand stroke }; static void addSubPath (Path& destPath, const Array & subPath, const bool isClosed, const float width, const float maxMiterExtensionSquared, const PathStrokeType::JointStyle jointStyle, const PathStrokeType::EndCapStyle endStyle) throw() { jassert (subPath.size() > 0); const LineSection& firstLine = subPath.getReference (0); float lastX1 = firstLine.lx1; float lastY1 = firstLine.ly1; float lastX2 = firstLine.lx2; float lastY2 = firstLine.ly2; if (isClosed) { destPath.startNewSubPath (lastX1, lastY1); } else { destPath.startNewSubPath (firstLine.rx2, firstLine.ry2); addLineEnd (destPath, endStyle, firstLine.rx2, firstLine.ry2, lastX1, lastY1, width); } int i; for (i = 1; i < subPath.size(); ++i) { const LineSection& l = subPath.getReference (i); addEdgeAndJoint (destPath, jointStyle, maxMiterExtensionSquared, width, lastX1, lastY1, lastX2, lastY2, l.lx1, l.ly1, l.lx2, l.ly2, l.x1, l.y1); lastX1 = l.lx1; lastY1 = l.ly1; lastX2 = l.lx2; lastY2 = l.ly2; } const LineSection& lastLine = subPath.getReference (subPath.size() - 1); if (isClosed) { const LineSection& l = subPath.getReference (0); addEdgeAndJoint (destPath, jointStyle, maxMiterExtensionSquared, width, lastX1, lastY1, lastX2, lastY2, l.lx1, l.ly1, l.lx2, l.ly2, l.x1, l.y1); destPath.closeSubPath(); destPath.startNewSubPath (lastLine.rx1, lastLine.ry1); } else { destPath.lineTo (lastX2, lastY2); addLineEnd (destPath, endStyle, lastX2, lastY2, lastLine.rx1, lastLine.ry1, width); } lastX1 = lastLine.rx1; lastY1 = lastLine.ry1; lastX2 = lastLine.rx2; lastY2 = lastLine.ry2; for (i = subPath.size() - 1; --i >= 0;) { const LineSection& l = subPath.getReference (i); addEdgeAndJoint (destPath, jointStyle, maxMiterExtensionSquared, width, lastX1, lastY1, lastX2, lastY2, l.rx1, l.ry1, l.rx2, l.ry2, l.x2, l.y2); lastX1 = l.rx1; lastY1 = l.ry1; lastX2 = l.rx2; lastY2 = l.ry2; } if (isClosed) { addEdgeAndJoint (destPath, jointStyle, maxMiterExtensionSquared, width, lastX1, lastY1, lastX2, lastY2, lastLine.rx1, lastLine.ry1, lastLine.rx2, lastLine.ry2, lastLine.x2, lastLine.y2); } else { // do the last line destPath.lineTo (lastX2, lastY2); } destPath.closeSubPath(); } void PathStrokeType::createStrokedPath (Path& destPath, const Path& source, const AffineTransform& transform, const float extraAccuracy) const throw() { if (thickness <= 0) { destPath.clear(); return; } const Path* sourcePath = &source; Path temp; if (sourcePath == &destPath) { destPath.swapWithPath (temp); sourcePath = &temp; } else { destPath.clear(); } destPath.setUsingNonZeroWinding (true); const float maxMiterExtensionSquared = 9.0f * thickness * thickness; const float width = 0.5f * thickness; // Iterate the path, creating a list of the // left/right-hand lines along either side of it... PathFlatteningIterator it (*sourcePath, transform, 9.0f / extraAccuracy); Array subPath; LineSection l; l.x1 = 0; l.y1 = 0; const float minSegmentLength = 2.0f / (extraAccuracy * extraAccuracy); while (it.next()) { if (it.subPathIndex == 0) { if (subPath.size() > 0) { addSubPath (destPath, subPath, false, width, maxMiterExtensionSquared, jointStyle, endStyle); subPath.clearQuick(); } l.x1 = it.x1; l.y1 = it.y1; } l.x2 = it.x2; l.y2 = it.y2; float dx = l.x2 - l.x1; float dy = l.y2 - l.y1; const float hypotSquared = dx*dx + dy*dy; if (it.closesSubPath || hypotSquared > minSegmentLength || it.isLastInSubpath()) { const float len = sqrtf (hypotSquared); if (len == 0) { l.rx1 = l.rx2 = l.lx1 = l.lx2 = l.x1; l.ry1 = l.ry2 = l.ly1 = l.ly2 = l.y1; } else { const float offset = width / len; dx *= offset; dy *= offset; l.rx2 = l.x1 - dy; l.ry2 = l.y1 + dx; l.lx1 = l.x1 + dy; l.ly1 = l.y1 - dx; l.lx2 = l.x2 + dy; l.ly2 = l.y2 - dx; l.rx1 = l.x2 - dy; l.ry1 = l.y2 + dx; } subPath.add (l); if (it.closesSubPath) { addSubPath (destPath, subPath, true, width, maxMiterExtensionSquared, jointStyle, endStyle); subPath.clearQuick(); } else { l.x1 = it.x2; l.y1 = it.y2; } } } if (subPath.size() > 0) addSubPath (destPath, subPath, false, width, maxMiterExtensionSquared, jointStyle, endStyle); } void PathStrokeType::createDashedStroke (Path& destPath, const Path& sourcePath, const float* dashLengths, int numDashLengths, const AffineTransform& transform, const float extraAccuracy) const throw() { if (thickness <= 0) return; // this should really be an even number.. jassert ((numDashLengths & 1) == 0); Path newDestPath; PathFlatteningIterator it (sourcePath, transform, 9.0f / extraAccuracy); bool first = true; int dashNum = 0; float pos = 0.0f, lineLen = 0.0f, lineEndPos = 0.0f; float dx = 0.0f, dy = 0.0f; for (;;) { const bool isSolid = ((dashNum & 1) == 0); const float dashLen = dashLengths [dashNum++ % numDashLengths]; jassert (dashLen > 0); // must be a positive increment! if (dashLen <= 0) break; pos += dashLen; while (pos > lineEndPos) { if (! it.next()) { if (isSolid && ! first) newDestPath.lineTo (it.x2, it.y2); createStrokedPath (destPath, newDestPath, AffineTransform::identity, extraAccuracy); return; } if (isSolid && ! first) newDestPath.lineTo (it.x1, it.y1); else newDestPath.startNewSubPath (it.x1, it.y1); dx = it.x2 - it.x1; dy = it.y2 - it.y1; lineLen = juce_hypotf (dx, dy); lineEndPos += lineLen; first = it.closesSubPath; } const float alpha = (pos - (lineEndPos - lineLen)) / lineLen; if (isSolid) newDestPath.lineTo (it.x1 + dx * alpha, it.y1 + dy * alpha); else newDestPath.startNewSubPath (it.x1 + dx * alpha, it.y1 + dy * alpha); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_PathStrokeType.cpp *********/ /********* Start of inlined file: juce_Point.cpp *********/ BEGIN_JUCE_NAMESPACE Point::Point() throw() : x (0.0f), y (0.0f) { } Point::Point (const Point& other) throw() : x (other.x), y (other.y) { } const Point& Point::operator= (const Point& other) throw() { x = other.x; y = other.y; return *this; } Point::Point (const float x_, const float y_) throw() : x (x_), y (y_) { } Point::~Point() throw() { } void Point::setXY (const float x_, const float y_) throw() { x = x_; y = y_; } void Point::applyTransform (const AffineTransform& transform) throw() { transform.transformPoint (x, y); } END_JUCE_NAMESPACE /********* End of inlined file: juce_Point.cpp *********/ /********* Start of inlined file: juce_PositionedRectangle.cpp *********/ BEGIN_JUCE_NAMESPACE PositionedRectangle::PositionedRectangle() throw() : x (0.0), y (0.0), w (0.0), h (0.0), xMode (anchorAtLeftOrTop | absoluteFromParentTopLeft), yMode (anchorAtLeftOrTop | absoluteFromParentTopLeft), wMode (absoluteSize), hMode (absoluteSize) { } PositionedRectangle::PositionedRectangle (const PositionedRectangle& other) throw() : x (other.x), y (other.y), w (other.w), h (other.h), xMode (other.xMode), yMode (other.yMode), wMode (other.wMode), hMode (other.hMode) { } const PositionedRectangle& PositionedRectangle::operator= (const PositionedRectangle& other) throw() { if (this != &other) { x = other.x; y = other.y; w = other.w; h = other.h; xMode = other.xMode; yMode = other.yMode; wMode = other.wMode; hMode = other.hMode; } return *this; } PositionedRectangle::~PositionedRectangle() throw() { } const bool PositionedRectangle::operator== (const PositionedRectangle& other) const throw() { return x == other.x && y == other.y && w == other.w && h == other.h && xMode == other.xMode && yMode == other.yMode && wMode == other.wMode && hMode == other.hMode; } const bool PositionedRectangle::operator!= (const PositionedRectangle& other) const throw() { return ! operator== (other); } PositionedRectangle::PositionedRectangle (const String& stringVersion) throw() { StringArray tokens; tokens.addTokens (stringVersion, false); decodePosString (tokens [0], xMode, x); decodePosString (tokens [1], yMode, y); decodeSizeString (tokens [2], wMode, w); decodeSizeString (tokens [3], hMode, h); } const String PositionedRectangle::toString() const throw() { String s; s.preallocateStorage (12); addPosDescription (s, xMode, x); s << T(' '); addPosDescription (s, yMode, y); s << T(' '); addSizeDescription (s, wMode, w); s << T(' '); addSizeDescription (s, hMode, h); return s; } const Rectangle PositionedRectangle::getRectangle (const Rectangle& target) const throw() { jassert (! target.isEmpty()); double x_, y_, w_, h_; applyPosAndSize (x_, w_, x, w, xMode, wMode, target.getX(), target.getWidth()); applyPosAndSize (y_, h_, y, h, yMode, hMode, target.getY(), target.getHeight()); return Rectangle (roundDoubleToInt (x_), roundDoubleToInt (y_), roundDoubleToInt (w_), roundDoubleToInt (h_)); } void PositionedRectangle::getRectangleDouble (const Rectangle& target, double& x_, double& y_, double& w_, double& h_) const throw() { jassert (! target.isEmpty()); applyPosAndSize (x_, w_, x, w, xMode, wMode, target.getX(), target.getWidth()); applyPosAndSize (y_, h_, y, h, yMode, hMode, target.getY(), target.getHeight()); } void PositionedRectangle::applyToComponent (Component& comp) const throw() { comp.setBounds (getRectangle (Rectangle (0, 0, comp.getParentWidth(), comp.getParentHeight()))); } void PositionedRectangle::updateFrom (const Rectangle& rectangle, const Rectangle& target) throw() { updatePosAndSize (x, w, rectangle.getX(), rectangle.getWidth(), xMode, wMode, target.getX(), target.getWidth()); updatePosAndSize (y, h, rectangle.getY(), rectangle.getHeight(), yMode, hMode, target.getY(), target.getHeight()); } void PositionedRectangle::updateFromDouble (const double newX, const double newY, const double newW, const double newH, const Rectangle& target) throw() { updatePosAndSize (x, w, newX, newW, xMode, wMode, target.getX(), target.getWidth()); updatePosAndSize (y, h, newY, newH, yMode, hMode, target.getY(), target.getHeight()); } void PositionedRectangle::updateFromComponent (const Component& comp) throw() { if (comp.getParentComponent() == 0 && ! comp.isOnDesktop()) updateFrom (comp.getBounds(), Rectangle()); else updateFrom (comp.getBounds(), Rectangle (0, 0, comp.getParentWidth(), comp.getParentHeight())); } PositionedRectangle::AnchorPoint PositionedRectangle::getAnchorPointX() const throw() { return (AnchorPoint) (xMode & (anchorAtLeftOrTop | anchorAtRightOrBottom | anchorAtCentre)); } PositionedRectangle::PositionMode PositionedRectangle::getPositionModeX() const throw() { return (PositionMode) (xMode & (absoluteFromParentTopLeft | absoluteFromParentBottomRight | absoluteFromParentCentre | proportionOfParentSize)); } PositionedRectangle::AnchorPoint PositionedRectangle::getAnchorPointY() const throw() { return (AnchorPoint) (yMode & (anchorAtLeftOrTop | anchorAtRightOrBottom | anchorAtCentre)); } PositionedRectangle::PositionMode PositionedRectangle::getPositionModeY() const throw() { return (PositionMode) (yMode & (absoluteFromParentTopLeft | absoluteFromParentBottomRight | absoluteFromParentCentre | proportionOfParentSize)); } PositionedRectangle::SizeMode PositionedRectangle::getWidthMode() const throw() { return (SizeMode) wMode; } PositionedRectangle::SizeMode PositionedRectangle::getHeightMode() const throw() { return (SizeMode) hMode; } void PositionedRectangle::setModes (const AnchorPoint xAnchor, const PositionMode xMode_, const AnchorPoint yAnchor, const PositionMode yMode_, const SizeMode widthMode, const SizeMode heightMode, const Rectangle& target) throw() { if (xMode != (xAnchor | xMode_) || wMode != widthMode) { double tx, tw; applyPosAndSize (tx, tw, x, w, xMode, wMode, target.getX(), target.getWidth()); xMode = (uint8) (xAnchor | xMode_); wMode = (uint8) widthMode; updatePosAndSize (x, w, tx, tw, xMode, wMode, target.getX(), target.getWidth()); } if (yMode != (yAnchor | yMode_) || hMode != heightMode) { double ty, th; applyPosAndSize (ty, th, y, h, yMode, hMode, target.getY(), target.getHeight()); yMode = (uint8) (yAnchor | yMode_); hMode = (uint8) heightMode; updatePosAndSize (y, h, ty, th, yMode, hMode, target.getY(), target.getHeight()); } } bool PositionedRectangle::isPositionAbsolute() const throw() { return xMode == absoluteFromParentTopLeft && yMode == absoluteFromParentTopLeft && wMode == absoluteSize && hMode == absoluteSize; } void PositionedRectangle::addPosDescription (String& s, const uint8 mode, const double value) const throw() { if ((mode & proportionOfParentSize) != 0) { s << (roundDoubleToInt (value * 100000.0) / 1000.0) << T('%'); } else { s << (roundDoubleToInt (value * 100.0) / 100.0); if ((mode & absoluteFromParentBottomRight) != 0) s << T('R'); else if ((mode & absoluteFromParentCentre) != 0) s << T('C'); } if ((mode & anchorAtRightOrBottom) != 0) s << T('r'); else if ((mode & anchorAtCentre) != 0) s << T('c'); } void PositionedRectangle::addSizeDescription (String& s, const uint8 mode, const double value) const throw() { if (mode == proportionalSize) s << (roundDoubleToInt (value * 100000.0) / 1000.0) << T('%'); else if (mode == parentSizeMinusAbsolute) s << (roundDoubleToInt (value * 100.0) / 100.0) << T('M'); else s << (roundDoubleToInt (value * 100.0) / 100.0); } void PositionedRectangle::decodePosString (const String& s, uint8& mode, double& value) throw() { if (s.containsChar (T('r'))) mode = anchorAtRightOrBottom; else if (s.containsChar (T('c'))) mode = anchorAtCentre; else mode = anchorAtLeftOrTop; if (s.containsChar (T('%'))) { mode |= proportionOfParentSize; value = s.removeCharacters (T("%rcRC")).getDoubleValue() / 100.0; } else { if (s.containsChar (T('R'))) mode |= absoluteFromParentBottomRight; else if (s.containsChar (T('C'))) mode |= absoluteFromParentCentre; else mode |= absoluteFromParentTopLeft; value = s.removeCharacters (T("rcRC")).getDoubleValue(); } } void PositionedRectangle::decodeSizeString (const String& s, uint8& mode, double& value) throw() { if (s.containsChar (T('%'))) { mode = proportionalSize; value = s.upToFirstOccurrenceOf (T("%"), false, false).getDoubleValue() / 100.0; } else if (s.containsChar (T('M'))) { mode = parentSizeMinusAbsolute; value = s.getDoubleValue(); } else { mode = absoluteSize; value = s.getDoubleValue(); } } void PositionedRectangle::applyPosAndSize (double& xOut, double& wOut, const double x_, const double w_, const uint8 xMode_, const uint8 wMode_, const int parentPos, const int parentSize) const throw() { if (wMode_ == proportionalSize) wOut = roundDoubleToInt (w_ * parentSize); else if (wMode_ == parentSizeMinusAbsolute) wOut = jmax (0, parentSize - roundDoubleToInt (w_)); else wOut = roundDoubleToInt (w_); if ((xMode_ & proportionOfParentSize) != 0) xOut = parentPos + x_ * parentSize; else if ((xMode_ & absoluteFromParentBottomRight) != 0) xOut = (parentPos + parentSize) - x_; else if ((xMode_ & absoluteFromParentCentre) != 0) xOut = x_ + (parentPos + parentSize / 2); else xOut = x_ + parentPos; if ((xMode_ & anchorAtRightOrBottom) != 0) xOut -= wOut; else if ((xMode_ & anchorAtCentre) != 0) xOut -= wOut / 2; } void PositionedRectangle::updatePosAndSize (double& xOut, double& wOut, double x_, const double w_, const uint8 xMode_, const uint8 wMode_, const int parentPos, const int parentSize) const throw() { if (wMode_ == proportionalSize) { if (parentSize > 0) wOut = w_ / parentSize; } else if (wMode_ == parentSizeMinusAbsolute) wOut = parentSize - w_; else wOut = w_; if ((xMode_ & anchorAtRightOrBottom) != 0) x_ += w_; else if ((xMode_ & anchorAtCentre) != 0) x_ += w_ / 2; if ((xMode_ & proportionOfParentSize) != 0) { if (parentSize > 0) xOut = (x_ - parentPos) / parentSize; } else if ((xMode_ & absoluteFromParentBottomRight) != 0) xOut = (parentPos + parentSize) - x_; else if ((xMode_ & absoluteFromParentCentre) != 0) xOut = x_ - (parentPos + parentSize / 2); else xOut = x_ - parentPos; } END_JUCE_NAMESPACE /********* End of inlined file: juce_PositionedRectangle.cpp *********/ /********* Start of inlined file: juce_Rectangle.cpp *********/ BEGIN_JUCE_NAMESPACE Rectangle::Rectangle() throw() : x (0), y (0), w (0), h (0) { } Rectangle::Rectangle (const int x_, const int y_, const int w_, const int h_) throw() : x (x_), y (y_), w (w_), h (h_) { } Rectangle::Rectangle (const int w_, const int h_) throw() : x (0), y (0), w (w_), h (h_) { } Rectangle::Rectangle (const Rectangle& other) throw() : x (other.x), y (other.y), w (other.w), h (other.h) { } Rectangle::~Rectangle() throw() { } bool Rectangle::isEmpty() const throw() { return w <= 0 || h <= 0; } void Rectangle::setBounds (const int x_, const int y_, const int w_, const int h_) throw() { x = x_; y = y_; w = w_; h = h_; } void Rectangle::setPosition (const int x_, const int y_) throw() { x = x_; y = y_; } void Rectangle::setSize (const int w_, const int h_) throw() { w = w_; h = h_; } void Rectangle::setLeft (const int newLeft) throw() { w = jmax (0, x + w - newLeft); x = newLeft; } void Rectangle::setTop (const int newTop) throw() { h = jmax (0, y + h - newTop); y = newTop; } void Rectangle::setRight (const int newRight) throw() { x = jmin (x, newRight); w = newRight - x; } void Rectangle::setBottom (const int newBottom) throw() { y = jmin (y, newBottom); h = newBottom - y; } void Rectangle::translate (const int dx, const int dy) throw() { x += dx; y += dy; } const Rectangle Rectangle::translated (const int dx, const int dy) const throw() { return Rectangle (x + dx, y + dy, w, h); } void Rectangle::expand (const int deltaX, const int deltaY) throw() { const int nw = jmax (0, w + deltaX + deltaX); const int nh = jmax (0, h + deltaY + deltaY); setBounds (x - deltaX, y - deltaY, nw, nh); } const Rectangle Rectangle::expanded (const int deltaX, const int deltaY) const throw() { const int nw = jmax (0, w + deltaX + deltaX); const int nh = jmax (0, h + deltaY + deltaY); return Rectangle (x - deltaX, y - deltaY, nw, nh); } void Rectangle::reduce (const int deltaX, const int deltaY) throw() { expand (-deltaX, -deltaY); } const Rectangle Rectangle::reduced (const int deltaX, const int deltaY) const throw() { return expanded (-deltaX, -deltaY); } bool Rectangle::operator== (const Rectangle& other) const throw() { return x == other.x && y == other.y && w == other.w && h == other.h; } bool Rectangle::operator!= (const Rectangle& other) const throw() { return x != other.x || y != other.y || w != other.w || h != other.h; } bool Rectangle::contains (const int px, const int py) const throw() { return px >= x && py >= y && px < x + w && py < y + h; } bool Rectangle::contains (const Rectangle& other) const throw() { return x <= other.x && y <= other.y && x + w >= other.x + other.w && y + h >= other.y + other.h; } bool Rectangle::intersects (const Rectangle& other) const throw() { return x + w > other.x && y + h > other.y && x < other.x + other.w && y < other.y + other.h && w > 0 && h > 0; } const Rectangle Rectangle::getIntersection (const Rectangle& other) const throw() { const int nx = jmax (x, other.x); const int ny = jmax (y, other.y); const int nw = jmin (x + w, other.x + other.w) - nx; const int nh = jmin (y + h, other.y + other.h) - ny; if (nw >= 0 && nh >= 0) return Rectangle (nx, ny, nw, nh); else return Rectangle(); } bool Rectangle::intersectRectangle (int& x1, int& y1, int& w1, int& h1) const throw() { const int maxX = jmax (x1, x); w1 = jmin (x1 + w1, x + w) - maxX; if (w1 > 0) { const int maxY = jmax (y1, y); h1 = jmin (y1 + h1, y + h) - maxY; if (h1 > 0) { x1 = maxX; y1 = maxY; return true; } } return false; } bool Rectangle::intersectRectangles (int& x1, int& y1, int& w1, int& h1, int x2, int y2, int w2, int h2) throw() { const int x = jmax (x1, x2); w1 = jmin (x1 + w1, x2 + w2) - x; if (w1 > 0) { const int y = jmax (y1, y2); h1 = jmin (y1 + h1, y2 + h2) - y; if (h1 > 0) { x1 = x; y1 = y; return true; } } return false; } const Rectangle Rectangle::getUnion (const Rectangle& other) const throw() { const int newX = jmin (x, other.x); const int newY = jmin (y, other.y); return Rectangle (newX, newY, jmax (x + w, other.x + other.w) - newX, jmax (y + h, other.y + other.h) - newY); } bool Rectangle::enlargeIfAdjacent (const Rectangle& other) throw() { if (x == other.x && getRight() == other.getRight() && (other.getBottom() >= y && other.y <= getBottom())) { const int newY = jmin (y, other.y); h = jmax (getBottom(), other.getBottom()) - newY; y = newY; return true; } else if (y == other.y && getBottom() == other.getBottom() && (other.getRight() >= x && other.x <= getRight())) { const int newX = jmin (x, other.x); w = jmax (getRight(), other.getRight()) - newX; x = newX; return true; } return false; } bool Rectangle::reduceIfPartlyContainedIn (const Rectangle& other) throw() { int inside = 0; const int otherR = other.getRight(); if (x >= other.x && x < otherR) inside = 1; const int otherB = other.getBottom(); if (y >= other.y && y < otherB) inside |= 2; const int r = x + w; if (r >= other.x && r < otherR) inside |= 4; const int b = y + h; if (b >= other.y && b < otherB) inside |= 8; switch (inside) { case 1 + 2 + 8: w = r - otherR; x = otherR; return true; case 1 + 2 + 4: h = b - otherB; y = otherB; return true; case 2 + 4 + 8: w = other.x - x; return true; case 1 + 4 + 8: h = other.y - y; return true; } return false; } const String Rectangle::toString() const throw() { String s; s.preallocateStorage (16); s << x << T(' ') << y << T(' ') << w << T(' ') << h; return s; } const Rectangle Rectangle::fromString (const String& stringVersion) { StringArray toks; toks.addTokens (stringVersion.trim(), T(",; \t\r\n"), 0); return Rectangle (toks[0].trim().getIntValue(), toks[1].trim().getIntValue(), toks[2].trim().getIntValue(), toks[3].trim().getIntValue()); } END_JUCE_NAMESPACE /********* End of inlined file: juce_Rectangle.cpp *********/ /********* Start of inlined file: juce_RectangleList.cpp *********/ BEGIN_JUCE_NAMESPACE RectangleList::RectangleList() throw() { } RectangleList::RectangleList (const Rectangle& rect) throw() { if (! rect.isEmpty()) rects.add (rect); } RectangleList::RectangleList (const RectangleList& other) throw() : rects (other.rects) { } const RectangleList& RectangleList::operator= (const RectangleList& other) throw() { if (this != &other) rects = other.rects; return *this; } RectangleList::~RectangleList() throw() { } void RectangleList::clear() throw() { rects.clearQuick(); } const Rectangle RectangleList::getRectangle (const int index) const throw() { if (((unsigned int) index) < (unsigned int) rects.size()) return rects.getReference (index); return Rectangle(); } bool RectangleList::isEmpty() const throw() { return rects.size() == 0; } RectangleList::Iterator::Iterator (const RectangleList& list) throw() : current (0), owner (list), index (list.rects.size()) { } RectangleList::Iterator::~Iterator() throw() { } bool RectangleList::Iterator::next() throw() { if (--index >= 0) { current = & (owner.rects.getReference (index)); return true; } return false; } void RectangleList::add (const Rectangle& rect) throw() { if (! rect.isEmpty()) { if (rects.size() == 0) { rects.add (rect); } else { bool anyOverlaps = false; int i; for (i = rects.size(); --i >= 0;) { Rectangle& ourRect = rects.getReference (i); if (rect.intersects (ourRect)) { if (rect.contains (ourRect)) rects.remove (i); else if (! ourRect.reduceIfPartlyContainedIn (rect)) anyOverlaps = true; } } if (anyOverlaps && rects.size() > 0) { RectangleList r (rect); for (i = rects.size(); --i >= 0;) { const Rectangle& ourRect = rects.getReference (i); if (rect.intersects (ourRect)) { r.subtract (ourRect); if (r.rects.size() == 0) return; } } for (i = r.getNumRectangles(); --i >= 0;) rects.add (r.rects.getReference (i)); } else { rects.add (rect); } } } } void RectangleList::addWithoutMerging (const Rectangle& rect) throw() { rects.add (rect); } void RectangleList::add (const int x, const int y, const int w, const int h) throw() { if (rects.size() == 0) { if (w > 0 && h > 0) rects.add (Rectangle (x, y, w, h)); } else { add (Rectangle (x, y, w, h)); } } void RectangleList::add (const RectangleList& other) throw() { for (int i = 0; i < other.rects.size(); ++i) add (other.rects.getReference (i)); } void RectangleList::subtract (const Rectangle& rect) throw() { const int originalNumRects = rects.size(); if (originalNumRects > 0) { const int x1 = rect.x; const int y1 = rect.y; const int x2 = x1 + rect.w; const int y2 = y1 + rect.h; for (int i = getNumRectangles(); --i >= 0;) { Rectangle& r = rects.getReference (i); const int rx1 = r.x; const int ry1 = r.y; const int rx2 = rx1 + r.w; const int ry2 = ry1 + r.h; if (! (x2 <= rx1 || x1 >= rx2 || y2 <= ry1 || y1 >= ry2)) { if (x1 > rx1 && x1 < rx2) { if (y1 <= ry1 && y2 >= ry2 && x2 >= rx2) { r.w = x1 - rx1; } else { r.x = x1; r.w = rx2 - x1; rects.insert (i + 1, Rectangle (rx1, ry1, x1 - rx1, ry2 - ry1)); i += 2; } } else if (x2 > rx1 && x2 < rx2) { r.x = x2; r.w = rx2 - x2; if (y1 > ry1 || y2 < ry2 || x1 > rx1) { rects.insert (i + 1, Rectangle (rx1, ry1, x2 - rx1, ry2 - ry1)); i += 2; } } else if (y1 > ry1 && y1 < ry2) { if (x1 <= rx1 && x2 >= rx2 && y2 >= ry2) { r.h = y1 - ry1; } else { r.y = y1; r.h = ry2 - y1; rects.insert (i + 1, Rectangle (rx1, ry1, rx2 - rx1, y1 - ry1)); i += 2; } } else if (y2 > ry1 && y2 < ry2) { r.y = y2; r.h = ry2 - y2; if (x1 > rx1 || x2 < rx2 || y1 > ry1) { rects.insert (i + 1, Rectangle (rx1, ry1, rx2 - rx1, y2 - ry1)); i += 2; } } else { rects.remove (i); } } } if (rects.size() > originalNumRects + 10) consolidate(); } } void RectangleList::subtract (const RectangleList& otherList) throw() { for (int i = otherList.rects.size(); --i >= 0;) subtract (otherList.rects.getReference (i)); } bool RectangleList::clipTo (const Rectangle& rect) throw() { bool notEmpty = false; if (rect.isEmpty()) { clear(); } else { for (int i = rects.size(); --i >= 0;) { Rectangle& r = rects.getReference (i); if (! rect.intersectRectangle (r.x, r.y, r.w, r.h)) rects.remove (i); else notEmpty = true; } } return notEmpty; } bool RectangleList::clipTo (const RectangleList& other) throw() { if (rects.size() == 0) return false; RectangleList result; for (int j = 0; j < rects.size(); ++j) { const Rectangle& rect = rects.getReference (j); for (int i = other.rects.size(); --i >= 0;) { Rectangle r (other.rects.getReference (i)); if (rect.intersectRectangle (r.x, r.y, r.w, r.h)) result.rects.add (r); } } swapWith (result); return ! isEmpty(); } bool RectangleList::getIntersectionWith (const Rectangle& rect, RectangleList& destRegion) const throw() { destRegion.clear(); if (! rect.isEmpty()) { for (int i = rects.size(); --i >= 0;) { Rectangle r (rects.getReference (i)); if (rect.intersectRectangle (r.x, r.y, r.w, r.h)) destRegion.rects.add (r); } } return destRegion.rects.size() > 0; } void RectangleList::swapWith (RectangleList& otherList) throw() { rects.swapWithArray (otherList.rects); } void RectangleList::consolidate() throw() { int i; for (i = 0; i < getNumRectangles() - 1; ++i) { Rectangle& r = rects.getReference (i); const int rx1 = r.x; const int ry1 = r.y; const int rx2 = rx1 + r.w; const int ry2 = ry1 + r.h; for (int j = rects.size(); --j > i;) { Rectangle& r2 = rects.getReference (j); const int jrx1 = r2.x; const int jry1 = r2.y; const int jrx2 = jrx1 + r2.w; const int jry2 = jry1 + r2.h; // if the vertical edges of any blocks are touching and their horizontals don't // line up, split them horizontally.. if (jrx1 == rx2 || jrx2 == rx1) { if (jry1 > ry1 && jry1 < ry2) { r.h = jry1 - ry1; rects.add (Rectangle (rx1, jry1, rx2 - rx1, ry2 - jry1)); i = -1; break; } if (jry2 > ry1 && jry2 < ry2) { r.h = jry2 - ry1; rects.add (Rectangle (rx1, jry2, rx2 - rx1, ry2 - jry2)); i = -1; break; } else if (ry1 > jry1 && ry1 < jry2) { r2.h = ry1 - jry1; rects.add (Rectangle (jrx1, ry1, jrx2 - jrx1, jry2 - ry1)); i = -1; break; } else if (ry2 > jry1 && ry2 < jry2) { r2.h = ry2 - jry1; rects.add (Rectangle (jrx1, ry2, jrx2 - jrx1, jry2 - ry2)); i = -1; break; } } } } for (i = 0; i < rects.size() - 1; ++i) { Rectangle& r = rects.getReference (i); for (int j = rects.size(); --j > i;) { if (r.enlargeIfAdjacent (rects.getReference (j))) { rects.remove (j); i = -1; break; } } } } bool RectangleList::containsPoint (const int x, const int y) const throw() { for (int i = getNumRectangles(); --i >= 0;) if (rects.getReference (i).contains (x, y)) return true; return false; } bool RectangleList::containsRectangle (const Rectangle& rectangleToCheck) const throw() { if (rects.size() > 1) { RectangleList r (rectangleToCheck); for (int i = rects.size(); --i >= 0;) { r.subtract (rects.getReference (i)); if (r.rects.size() == 0) return true; } } else if (rects.size() > 0) { return rects.getReference (0).contains (rectangleToCheck); } return false; } bool RectangleList::intersectsRectangle (const Rectangle& rectangleToCheck) const throw() { for (int i = rects.size(); --i >= 0;) if (rects.getReference (i).intersects (rectangleToCheck)) return true; return false; } bool RectangleList::intersects (const RectangleList& other) const throw() { for (int i = rects.size(); --i >= 0;) if (other.intersectsRectangle (rects.getReference (i))) return true; return false; } const Rectangle RectangleList::getBounds() const throw() { if (rects.size() <= 1) { if (rects.size() == 0) return Rectangle(); else return rects.getReference (0); } else { const Rectangle& r = rects.getReference (0); int minX = r.x; int minY = r.y; int maxX = minX + r.w; int maxY = minY + r.h; for (int i = rects.size(); --i > 0;) { const Rectangle& r2 = rects.getReference (i); minX = jmin (minX, r2.x); minY = jmin (minY, r2.y); maxX = jmax (maxX, r2.getRight()); maxY = jmax (maxY, r2.getBottom()); } return Rectangle (minX, minY, maxX - minX, maxY - minY); } } void RectangleList::offsetAll (const int dx, const int dy) throw() { for (int i = rects.size(); --i >= 0;) { Rectangle& r = rects.getReference (i); r.x += dx; r.y += dy; } } const Path RectangleList::toPath() const throw() { Path p; for (int i = rects.size(); --i >= 0;) { const Rectangle& r = rects.getReference (i); p.addRectangle ((float) r.x, (float) r.y, (float) r.w, (float) r.h); } return p; } END_JUCE_NAMESPACE /********* End of inlined file: juce_RectangleList.cpp *********/ /********* Start of inlined file: juce_Image.cpp *********/ BEGIN_JUCE_NAMESPACE static const int fullAlphaThreshold = 253; Image::Image (const PixelFormat format_, const int imageWidth_, const int imageHeight_) : format (format_), imageWidth (imageWidth_), imageHeight (imageHeight_), imageData (0) { jassert (format_ == RGB || format_ == ARGB || format_ == SingleChannel); jassert (imageWidth_ > 0 && imageHeight_ > 0); // it's illegal to create a zero-sized image - the // actual image will be at least 1x1. } Image::Image (const PixelFormat format_, const int imageWidth_, const int imageHeight_, const bool clearImage) : format (format_), imageWidth (imageWidth_), imageHeight (imageHeight_) { jassert (format_ == RGB || format_ == ARGB || format_ == SingleChannel); jassert (imageWidth_ > 0 && imageHeight_ > 0); // it's illegal to create a zero-sized image - the // actual image will be at least 1x1. pixelStride = (format == RGB) ? 3 : ((format == ARGB) ? 4 : 1); lineStride = (pixelStride * jmax (1, imageWidth_) + 3) & ~3; const int dataSize = lineStride * jmax (1, imageHeight_); imageData = (uint8*) (clearImage ? juce_calloc (dataSize) : juce_malloc (dataSize)); } Image::Image (const Image& other) : format (other.format), imageWidth (other.imageWidth), imageHeight (other.imageHeight) { pixelStride = (format == RGB) ? 3 : ((format == ARGB) ? 4 : 1); lineStride = (pixelStride * jmax (1, imageWidth) + 3) & ~3; const int dataSize = lineStride * jmax (1, imageHeight); imageData = (uint8*) juce_malloc (dataSize); int ls, ps; const uint8* srcData = other.lockPixelDataReadOnly (0, 0, imageWidth, imageHeight, ls, ps); setPixelData (0, 0, imageWidth, imageHeight, srcData, ls); other.releasePixelDataReadOnly (srcData); } Image::~Image() { juce_free (imageData); } LowLevelGraphicsContext* Image::createLowLevelContext() { return new LowLevelGraphicsSoftwareRenderer (*this); } uint8* Image::lockPixelDataReadWrite (int x, int y, int w, int h, int& ls, int& ps) { jassert (x >= 0 && y >= 0 && w > 0 && h > 0 && x + w <= imageWidth && y + h <= imageHeight); w = w; h = h; ls = lineStride; ps = pixelStride; return imageData + x * pixelStride + y * lineStride; } void Image::releasePixelDataReadWrite (void*) { } const uint8* Image::lockPixelDataReadOnly (int x, int y, int w, int h, int& ls, int& ps) const { jassert (x >= 0 && y >= 0 && w > 0 && h > 0 && x + w <= imageWidth && y + h <= imageHeight); w = w; h = h; ls = lineStride; ps = pixelStride; return imageData + x * pixelStride + y * lineStride; } void Image::releasePixelDataReadOnly (const void*) const { } void Image::setPixelData (int x, int y, int w, int h, const uint8* sourcePixelData, int sourceLineStride) { jassert (x >= 0 && y >= 0 && w > 0 && h > 0 && x + w <= imageWidth && y + h <= imageHeight); if (Rectangle::intersectRectangles (x, y, w, h, 0, 0, imageWidth, imageHeight)) { int ls, ps; uint8* dest = lockPixelDataReadWrite (x, y, w, h, ls, ps); for (int i = 0; i < h; ++i) { memcpy (dest + ls * i, sourcePixelData + sourceLineStride * i, w * pixelStride); } releasePixelDataReadWrite (dest); } } void Image::clear (int dx, int dy, int dw, int dh, const Colour& colourToClearTo) { const PixelARGB col (colourToClearTo.getPixelARGB()); int ls, ps; uint8* dstData = lockPixelDataReadWrite (dx, dy, dw, dh, ls, ps); uint8* dest = dstData; while (--dh >= 0) { uint8* line = dest; dest += ls; if (isARGB()) { for (int x = dw; --x >= 0;) { ((PixelARGB*) line)->set (col); line += ps; } } else if (isRGB()) { for (int x = dw; --x >= 0;) { ((PixelRGB*) line)->set (col); line += ps; } } else { for (int x = dw; --x >= 0;) { *line = col.getAlpha(); line += ps; } } } releasePixelDataReadWrite (dstData); } Image* Image::createCopy (int newWidth, int newHeight, const Graphics::ResamplingQuality quality) const { if (newWidth < 0) newWidth = imageWidth; if (newHeight < 0) newHeight = imageHeight; Image* const newImage = new Image (format, newWidth, newHeight, true); Graphics g (*newImage); g.setImageResamplingQuality (quality); g.drawImage (this, 0, 0, newWidth, newHeight, 0, 0, imageWidth, imageHeight, false); return newImage; } const Colour Image::getPixelAt (const int x, const int y) const { Colour c; if (((unsigned int) x) < (unsigned int) imageWidth && ((unsigned int) y) < (unsigned int) imageHeight) { int ls, ps; const uint8* const pixels = lockPixelDataReadOnly (x, y, 1, 1, ls, ps); if (isARGB()) { PixelARGB p (*(const PixelARGB*) pixels); p.unpremultiply(); c = Colour (p.getARGB()); } else if (isRGB()) c = Colour (((const PixelRGB*) pixels)->getARGB()); else c = Colour ((uint8) 0, (uint8) 0, (uint8) 0, *pixels); releasePixelDataReadOnly (pixels); } return c; } void Image::setPixelAt (const int x, const int y, const Colour& colour) { if (((unsigned int) x) < (unsigned int) imageWidth && ((unsigned int) y) < (unsigned int) imageHeight) { int ls, ps; uint8* const pixels = lockPixelDataReadWrite (x, y, 1, 1, ls, ps); const PixelARGB col (colour.getPixelARGB()); if (isARGB()) ((PixelARGB*) pixels)->set (col); else if (isRGB()) ((PixelRGB*) pixels)->set (col); else *pixels = col.getAlpha(); releasePixelDataReadWrite (pixels); } } void Image::multiplyAlphaAt (const int x, const int y, const float multiplier) { if (((unsigned int) x) < (unsigned int) imageWidth && ((unsigned int) y) < (unsigned int) imageHeight && hasAlphaChannel()) { int ls, ps; uint8* const pixels = lockPixelDataReadWrite (x, y, 1, 1, ls, ps); if (isARGB()) ((PixelARGB*) pixels)->multiplyAlpha (multiplier); else *pixels = (uint8) (*pixels * multiplier); releasePixelDataReadWrite (pixels); } } void Image::multiplyAllAlphas (const float amountToMultiplyBy) { if (hasAlphaChannel()) { int ls, ps; uint8* const pixels = lockPixelDataReadWrite (0, 0, getWidth(), getHeight(), ls, ps); if (isARGB()) { for (int y = 0; y < imageHeight; ++y) { uint8* p = pixels + y * ls; for (int x = 0; x < imageWidth; ++x) { ((PixelARGB*) p)->multiplyAlpha (amountToMultiplyBy); p += ps; } } } else { for (int y = 0; y < imageHeight; ++y) { uint8* p = pixels + y * ls; for (int x = 0; x < imageWidth; ++x) { *p = (uint8) (*p * amountToMultiplyBy); p += ps; } } } releasePixelDataReadWrite (pixels); } else { jassertfalse // can't do this without an alpha-channel! } } void Image::desaturate() { if (isARGB() || isRGB()) { int ls, ps; uint8* const pixels = lockPixelDataReadWrite (0, 0, getWidth(), getHeight(), ls, ps); if (isARGB()) { for (int y = 0; y < imageHeight; ++y) { uint8* p = pixels + y * ls; for (int x = 0; x < imageWidth; ++x) { ((PixelARGB*) p)->desaturate(); p += ps; } } } else { for (int y = 0; y < imageHeight; ++y) { uint8* p = pixels + y * ls; for (int x = 0; x < imageWidth; ++x) { ((PixelRGB*) p)->desaturate(); p += ps; } } } releasePixelDataReadWrite (pixels); } } void Image::createSolidAreaMask (RectangleList& result, const float alphaThreshold) const { if (hasAlphaChannel()) { const uint8 threshold = (uint8) jlimit (0, 255, roundFloatToInt (alphaThreshold * 255.0f)); SparseSet pixelsOnRow; int ls, ps; const uint8* const pixels = lockPixelDataReadOnly (0, 0, imageWidth, imageHeight, ls, ps); for (int y = 0; y < imageHeight; ++y) { pixelsOnRow.clear(); const uint8* lineData = pixels + ls * y; if (isARGB()) { for (int x = 0; x < imageWidth; ++x) { if (((const PixelARGB*) lineData)->getAlpha() >= threshold) pixelsOnRow.addRange (x, 1); lineData += ps; } } else { for (int x = 0; x < imageWidth; ++x) { if (*lineData >= threshold) pixelsOnRow.addRange (x, 1); lineData += ps; } } for (int i = 0; i < pixelsOnRow.getNumRanges(); ++i) { int x, w; if (pixelsOnRow.getRange (i, x, w)) result.add (Rectangle (x, y, w, 1)); } result.consolidate(); } releasePixelDataReadOnly (pixels); } else { result.add (0, 0, imageWidth, imageHeight); } } void Image::moveImageSection (int dx, int dy, int sx, int sy, int w, int h) { if (dx < 0) { w += dx; sx -= dx; dx = 0; } if (dy < 0) { h += dy; sy -= dy; dy = 0; } if (sx < 0) { w += sx; dx -= sx; sx = 0; } if (sy < 0) { h += sy; dy -= sy; sy = 0; } const int minX = jmin (dx, sx); const int minY = jmin (dy, sy); w = jmin (w, getWidth() - jmax (sx, dx)); h = jmin (h, getHeight() - jmax (sy, dy)); if (w > 0 && h > 0) { const int maxX = jmax (dx, sx) + w; const int maxY = jmax (dy, sy) + h; int ls, ps; uint8* const pixels = lockPixelDataReadWrite (minX, minY, maxX - minX, maxY - minY, ls, ps); uint8* dst = pixels + ls * (dy - minY) + ps * (dx - minX); const uint8* src = pixels + ls * (sy - minY) + ps * (sx - minX); const int lineSize = ps * w; if (dy > sy) { while (--h >= 0) { const int offset = h * ls; memmove (dst + offset, src + offset, lineSize); } } else if (dst != src) { while (--h >= 0) { memmove (dst, src, lineSize); dst += ls; src += ls; } } releasePixelDataReadWrite (pixels); } } END_JUCE_NAMESPACE /********* End of inlined file: juce_Image.cpp *********/ /********* Start of inlined file: juce_ImageCache.cpp *********/ BEGIN_JUCE_NAMESPACE struct CachedImageInfo { Image* image; int64 hashCode; int refCount; unsigned int releaseTime; juce_UseDebuggingNewOperator }; static ImageCache* instance = 0; static int cacheTimeout = 5000; ImageCache::ImageCache() throw() : images (4) { } ImageCache::~ImageCache() { const ScopedLock sl (lock); for (int i = images.size(); --i >= 0;) { CachedImageInfo* const ci = (CachedImageInfo*)(images.getUnchecked(i)); delete ci->image; delete ci; } images.clear(); jassert (instance == this); instance = 0; } Image* ImageCache::getFromHashCode (const int64 hashCode) { if (instance != 0) { const ScopedLock sl (instance->lock); for (int i = instance->images.size(); --i >= 0;) { CachedImageInfo* const ci = (CachedImageInfo*) instance->images.getUnchecked(i); if (ci->hashCode == hashCode) { atomicIncrement (ci->refCount); return ci->image; } } } return 0; } void ImageCache::addImageToCache (Image* const image, const int64 hashCode) { if (image != 0) { if (instance == 0) instance = new ImageCache(); CachedImageInfo* const newC = new CachedImageInfo(); newC->hashCode = hashCode; newC->image = image; newC->refCount = 1; newC->releaseTime = 0; const ScopedLock sl (instance->lock); instance->images.add (newC); } } void ImageCache::release (Image* const imageToRelease) { if (imageToRelease != 0 && instance != 0) { const ScopedLock sl (instance->lock); for (int i = instance->images.size(); --i >= 0;) { CachedImageInfo* const ci = (CachedImageInfo*) instance->images.getUnchecked(i); if (ci->image == imageToRelease) { if (--(ci->refCount) == 0) ci->releaseTime = Time::getApproximateMillisecondCounter(); if (! instance->isTimerRunning()) instance->startTimer (999); break; } } } } bool ImageCache::isImageInCache (Image* const imageToLookFor) { if (instance != 0) { const ScopedLock sl (instance->lock); for (int i = instance->images.size(); --i >= 0;) if (((const CachedImageInfo*) instance->images.getUnchecked(i))->image == imageToLookFor) return true; } return false; } void ImageCache::incReferenceCount (Image* const image) { if (instance != 0) { const ScopedLock sl (instance->lock); for (int i = instance->images.size(); --i >= 0;) { CachedImageInfo* const ci = (CachedImageInfo*) instance->images.getUnchecked(i); if (ci->image == image) { ci->refCount++; return; } } } jassertfalse // (trying to inc the ref count of an image that's not in the cache) } void ImageCache::timerCallback() { int numberStillNeedingReleasing = 0; const unsigned int now = Time::getApproximateMillisecondCounter(); const ScopedLock sl (lock); for (int i = images.size(); --i >= 0;) { CachedImageInfo* const ci = (CachedImageInfo*) images.getUnchecked(i); if (ci->refCount <= 0) { if (now > ci->releaseTime + cacheTimeout || now < ci->releaseTime - 1000) { images.remove (i); delete ci->image; delete ci; } else { ++numberStillNeedingReleasing; } } } if (numberStillNeedingReleasing == 0) stopTimer(); } Image* ImageCache::getFromFile (const File& file) { const int64 hashCode = file.getFullPathName().hashCode64(); Image* image = getFromHashCode (hashCode); if (image == 0) { image = ImageFileFormat::loadFrom (file); addImageToCache (image, hashCode); } return image; } Image* ImageCache::getFromMemory (const void* imageData, const int dataSize) { const int64 hashCode = (int64) (pointer_sized_int) imageData; Image* image = getFromHashCode (hashCode); if (image == 0) { image = ImageFileFormat::loadFrom (imageData, dataSize); addImageToCache (image, hashCode); } return image; } void ImageCache::setCacheTimeout (const int millisecs) { cacheTimeout = millisecs; } END_JUCE_NAMESPACE /********* End of inlined file: juce_ImageCache.cpp *********/ /********* Start of inlined file: juce_ImageConvolutionKernel.cpp *********/ BEGIN_JUCE_NAMESPACE ImageConvolutionKernel::ImageConvolutionKernel (const int size_) throw() : size (size_) { values = new float* [size]; for (int i = size; --i >= 0;) values[i] = new float [size]; clear(); } ImageConvolutionKernel::~ImageConvolutionKernel() throw() { for (int i = size; --i >= 0;) delete[] values[i]; delete[] values; } void ImageConvolutionKernel::setKernelValue (const int x, const int y, const float value) throw() { if (((unsigned int) x) < (unsigned int) size && ((unsigned int) y) < (unsigned int) size) { values[x][y] = value; } else { jassertfalse } } void ImageConvolutionKernel::clear() throw() { for (int y = size; --y >= 0;) for (int x = size; --x >= 0;) values[x][y] = 0; } void ImageConvolutionKernel::setOverallSum (const float desiredTotalSum) throw() { double currentTotal = 0.0; for (int y = size; --y >= 0;) for (int x = size; --x >= 0;) currentTotal += values[x][y]; rescaleAllValues ((float) (desiredTotalSum / currentTotal)); } void ImageConvolutionKernel::rescaleAllValues (const float multiplier) throw() { for (int y = size; --y >= 0;) for (int x = size; --x >= 0;) values[x][y] *= multiplier; } void ImageConvolutionKernel::createGaussianBlur (const float radius) throw() { const double radiusFactor = -1.0 / (radius * radius * 2); const int centre = size >> 1; for (int y = size; --y >= 0;) { for (int x = size; --x >= 0;) { const int cx = x - centre; const int cy = y - centre; values[x][y] = (float) exp (radiusFactor * (cx * cx + cy * cy)); } } setOverallSum (1.0f); } void ImageConvolutionKernel::applyToImage (Image& destImage, const Image* sourceImage, int dx, int dy, int dw, int dh) const { Image* imageCreated = 0; if (sourceImage == 0) { sourceImage = imageCreated = destImage.createCopy(); } else { jassert (sourceImage->getWidth() == destImage.getWidth() && sourceImage->getHeight() == destImage.getHeight() && sourceImage->getFormat() == destImage.getFormat()); if (sourceImage->getWidth() != destImage.getWidth() || sourceImage->getHeight() != destImage.getHeight() || sourceImage->getFormat() != destImage.getFormat()) return; } const int imageWidth = destImage.getWidth(); const int imageHeight = destImage.getHeight(); if (dx >= imageWidth || dy >= imageHeight) return; if (dx + dw > imageWidth) dw = imageWidth - dx; if (dy + dh > imageHeight) dh = imageHeight - dy; const int dx2 = dx + dw; const int dy2 = dy + dh; int lineStride, pixelStride; uint8* pixels = destImage.lockPixelDataReadWrite (dx, dy, dw, dh, lineStride, pixelStride); uint8* line = pixels; int srcLineStride, srcPixelStride; const uint8* srcPixels = sourceImage->lockPixelDataReadOnly (0, 0, sourceImage->getWidth(), sourceImage->getHeight(), srcLineStride, srcPixelStride); if (pixelStride == 4) { for (int y = dy; y < dy2; ++y) { uint8* dest = line; line += lineStride; for (int x = dx; x < dx2; ++x) { float c1 = 0; float c2 = 0; float c3 = 0; float c4 = 0; for (int yy = 0; yy < size; ++yy) { const int sy = y + yy - (size >> 1); if (sy >= imageHeight) break; if (sy >= 0) { int sx = x - (size >> 1); const uint8* src = srcPixels + srcLineStride * sy + srcPixelStride * sx; for (int xx = 0; xx < size; ++xx) { if (sx >= imageWidth) break; if (sx >= 0) { const float kernelMult = values[xx][yy]; c1 += kernelMult * *src++; c2 += kernelMult * *src++; c3 += kernelMult * *src++; c4 += kernelMult * *src++; } else { src += 4; } ++sx; } } } *dest++ = (uint8) jmin (0xff, roundFloatToInt (c1)); *dest++ = (uint8) jmin (0xff, roundFloatToInt (c2)); *dest++ = (uint8) jmin (0xff, roundFloatToInt (c3)); *dest++ = (uint8) jmin (0xff, roundFloatToInt (c4)); } } } else if (pixelStride == 3) { for (int y = dy; y < dy2; ++y) { uint8* dest = line; line += lineStride; for (int x = dx; x < dx2; ++x) { float c1 = 0; float c2 = 0; float c3 = 0; for (int yy = 0; yy < size; ++yy) { const int sy = y + yy - (size >> 1); if (sy >= imageHeight) break; if (sy >= 0) { int sx = x - (size >> 1); const uint8* src = srcPixels + srcLineStride * sy + srcPixelStride * sx; for (int xx = 0; xx < size; ++xx) { if (sx >= imageWidth) break; if (sx >= 0) { const float kernelMult = values[xx][yy]; c1 += kernelMult * *src++; c2 += kernelMult * *src++; c3 += kernelMult * *src++; } else { src += 3; } ++sx; } } } *dest++ = (uint8) roundFloatToInt (c1); *dest++ = (uint8) roundFloatToInt (c2); *dest++ = (uint8) roundFloatToInt (c3); } } } sourceImage->releasePixelDataReadOnly (srcPixels); destImage.releasePixelDataReadWrite (pixels); if (imageCreated != 0) delete imageCreated; } END_JUCE_NAMESPACE /********* End of inlined file: juce_ImageConvolutionKernel.cpp *********/ /********* Start of inlined file: juce_ImageFileFormat.cpp *********/ BEGIN_JUCE_NAMESPACE /********* Start of inlined file: juce_GIFLoader.h *********/ #ifndef __JUCE_GIFLOADER_JUCEHEADER__ #define __JUCE_GIFLOADER_JUCEHEADER__ #ifndef DOXYGEN static const int maxGifCode = 1 << 12; /** Used internally by ImageFileFormat - don't use this class directly in your application. @see ImageFileFormat */ class GIFLoader { public: GIFLoader (InputStream& in); ~GIFLoader() throw(); Image* getImage() const throw() { return image; } private: Image* image; InputStream& input; uint8 buffer [300]; uint8 palette [256][4]; bool dataBlockIsZero, fresh, finished; int currentBit, lastBit, lastByteIndex; int codeSize, setCodeSize; int maxCode, maxCodeSize; int firstcode, oldcode; int clearCode, end_code; int table [2] [maxGifCode]; int stack [2 * maxGifCode]; int *sp; bool getSizeFromHeader (int& width, int& height); bool readPalette (const int numCols); int readDataBlock (unsigned char* dest); int processExtension (int type, int& transparent); int readLZWByte (bool initialise, int input_code_size); int getCode (int code_size, bool initialise); bool readImage (int width, int height, int interlace, int transparent); GIFLoader (const GIFLoader&); const GIFLoader& operator= (const GIFLoader&); }; #endif // DOXYGEN #endif // __JUCE_GIFLOADER_JUCEHEADER__ /********* End of inlined file: juce_GIFLoader.h *********/ Image* juce_loadPNGImageFromStream (InputStream& inputStream) throw(); bool juce_writePNGImageToStream (const Image& image, OutputStream& out) throw(); PNGImageFormat::PNGImageFormat() throw() {} PNGImageFormat::~PNGImageFormat() throw() {} const String PNGImageFormat::getFormatName() { return T("PNG"); } bool PNGImageFormat::canUnderstand (InputStream& in) { const int bytesNeeded = 4; char header [bytesNeeded]; return in.read (header, bytesNeeded) == bytesNeeded && header[1] == 'P' && header[2] == 'N' && header[3] == 'G'; } Image* PNGImageFormat::decodeImage (InputStream& in) { return juce_loadPNGImageFromStream (in); } bool PNGImageFormat::writeImageToStream (const Image& sourceImage, OutputStream& destStream) { return juce_writePNGImageToStream (sourceImage, destStream); } Image* juce_loadJPEGImageFromStream (InputStream& inputStream) throw(); bool juce_writeJPEGImageToStream (const Image& image, OutputStream& out, float quality) throw(); JPEGImageFormat::JPEGImageFormat() throw() : quality (-1.0f) { } JPEGImageFormat::~JPEGImageFormat() throw() {} void JPEGImageFormat::setQuality (const float newQuality) { quality = newQuality; } const String JPEGImageFormat::getFormatName() { return T("JPEG"); } bool JPEGImageFormat::canUnderstand (InputStream& in) { const int bytesNeeded = 10; uint8 header [bytesNeeded]; if (in.read (header, bytesNeeded) == bytesNeeded) { return header[0] == 0xff && header[1] == 0xd8 && header[2] == 0xff && (header[3] == 0xe0 || header[3] == 0xe1); } return false; } Image* JPEGImageFormat::decodeImage (InputStream& in) { return juce_loadJPEGImageFromStream (in); } bool JPEGImageFormat::writeImageToStream (const Image& sourceImage, OutputStream& destStream) { return juce_writeJPEGImageToStream (sourceImage, destStream, quality); } class GIFImageFormat : public ImageFileFormat { public: GIFImageFormat() throw() {} ~GIFImageFormat() throw() {} const String getFormatName() { return T("GIF"); } bool canUnderstand (InputStream& in) { const int bytesNeeded = 4; char header [bytesNeeded]; return (in.read (header, bytesNeeded) == bytesNeeded) && header[0] == 'G' && header[1] == 'I' && header[2] == 'F'; } Image* decodeImage (InputStream& in) { GIFLoader* const loader = new GIFLoader (in); Image* const im = loader->getImage(); delete loader; return im; } bool writeImageToStream (const Image& /*sourceImage*/, OutputStream& /*destStream*/) { return false; } }; ImageFileFormat* ImageFileFormat::findImageFormatForStream (InputStream& input) { static PNGImageFormat png; static JPEGImageFormat jpg; static GIFImageFormat gif; ImageFileFormat* formats[4]; int numFormats = 0; formats [numFormats++] = &png; formats [numFormats++] = &jpg; formats [numFormats++] = &gif; const int64 streamPos = input.getPosition(); for (int i = 0; i < numFormats; ++i) { const bool found = formats[i]->canUnderstand (input); input.setPosition (streamPos); if (found) return formats[i]; } return 0; } Image* ImageFileFormat::loadFrom (InputStream& input) { ImageFileFormat* const format = findImageFormatForStream (input); if (format != 0) return format->decodeImage (input); return 0; } Image* ImageFileFormat::loadFrom (const File& file) { InputStream* const in = file.createInputStream(); if (in != 0) { BufferedInputStream b (in, 8192, true); return loadFrom (b); } return 0; } Image* ImageFileFormat::loadFrom (const void* rawData, const int numBytes) { if (rawData != 0 && numBytes > 4) { MemoryInputStream stream (rawData, numBytes, false); return loadFrom (stream); } return 0; } END_JUCE_NAMESPACE /********* End of inlined file: juce_ImageFileFormat.cpp *********/ /********* Start of inlined file: juce_GIFLoader.cpp *********/ BEGIN_JUCE_NAMESPACE static inline int makeWord (const unsigned char a, const unsigned char b) throw() { return (b << 8) | a; } GIFLoader::GIFLoader (InputStream& in) : image (0), input (in), dataBlockIsZero (false), fresh (false), finished (false) { currentBit = lastBit = lastByteIndex = 0; maxCode = maxCodeSize = codeSize = setCodeSize = 0; firstcode = oldcode = 0; clearCode = end_code = 0; int imageWidth, imageHeight; int transparent = -1; if (! getSizeFromHeader (imageWidth, imageHeight)) return; if ((imageWidth <= 0) || (imageHeight <= 0)) return; unsigned char buf [16]; if (in.read (buf, 3) != 3) return; int numColours = 2 << (buf[0] & 7); if ((buf[0] & 0x80) != 0) readPalette (numColours); for (;;) { if (input.read (buf, 1) != 1) break; if (buf[0] == ';') break; if (buf[0] == '!') { if (input.read (buf, 1) != 1) break; if (processExtension (buf[0], transparent) < 0) break; continue; } if (buf[0] != ',') continue; if (input.read (buf, 9) != 9) break; imageWidth = makeWord (buf[4], buf[5]); imageHeight = makeWord (buf[6], buf[7]); numColours = 2 << (buf[8] & 7); if ((buf[8] & 0x80) != 0) if (! readPalette (numColours)) break; image = new Image ((transparent >= 0) ? Image::ARGB : Image::RGB, imageWidth, imageHeight, (transparent >= 0)); readImage (imageWidth, imageHeight, (buf[8] & 0x40) != 0, transparent); break; } } GIFLoader::~GIFLoader() throw() { } bool GIFLoader::getSizeFromHeader (int& w, int& h) { unsigned char b [8]; if (input.read (b, 6) == 6) { if ((strncmp ("GIF87a", (char*) b, 6) == 0) || (strncmp ("GIF89a", (char*) b, 6) == 0)) { if (input.read (b, 4) == 4) { w = makeWord (b[0], b[1]); h = makeWord (b[2], b[3]); return true; } } } return false; } bool GIFLoader::readPalette (const int numCols) { unsigned char rgb[4]; for (int i = 0; i < numCols; ++i) { input.read (rgb, 3); palette [i][0] = rgb[0]; palette [i][1] = rgb[1]; palette [i][2] = rgb[2]; palette [i][3] = 0xff; } return true; } int GIFLoader::readDataBlock (unsigned char* const dest) { unsigned char n; if (input.read (&n, 1) == 1) { dataBlockIsZero = (n == 0); if (dataBlockIsZero || (input.read (dest, n) == n)) return n; } return -1; } int GIFLoader::processExtension (const int type, int& transparent) { unsigned char b [300]; int n = 0; if (type == 0xf9) { n = readDataBlock (b); if (n < 0) return 1; if ((b[0] & 0x1) != 0) transparent = b[3]; } do { n = readDataBlock (b); } while (n > 0); return n; } int GIFLoader::getCode (const int codeSize, const bool initialise) { if (initialise) { currentBit = 0; lastBit = 0; finished = false; return 0; } if ((currentBit + codeSize) >= lastBit) { if (finished) return -1; buffer[0] = buffer [lastByteIndex - 2]; buffer[1] = buffer [lastByteIndex - 1]; const int n = readDataBlock (&buffer[2]); if (n == 0) finished = true; lastByteIndex = 2 + n; currentBit = (currentBit - lastBit) + 16; lastBit = (2 + n) * 8 ; } int result = 0; int i = currentBit; for (int j = 0; j < codeSize; ++j) { result |= ((buffer[i >> 3] & (1 << (i & 7))) != 0) << j; ++i; } currentBit += codeSize; return result; } int GIFLoader::readLZWByte (const bool initialise, const int inputCodeSize) { int code, incode, i; if (initialise) { setCodeSize = inputCodeSize; codeSize = setCodeSize + 1; clearCode = 1 << setCodeSize; end_code = clearCode + 1; maxCodeSize = 2 * clearCode; maxCode = clearCode + 2; getCode (0, true); fresh = true; for (i = 0; i < clearCode; ++i) { table[0][i] = 0; table[1][i] = i; } for (; i < maxGifCode; ++i) { table[0][i] = 0; table[1][i] = 0; } sp = stack; return 0; } else if (fresh) { fresh = false; do { firstcode = oldcode = getCode (codeSize, false); } while (firstcode == clearCode); return firstcode; } if (sp > stack) return *--sp; while ((code = getCode (codeSize, false)) >= 0) { if (code == clearCode) { for (i = 0; i < clearCode; ++i) { table[0][i] = 0; table[1][i] = i; } for (; i < maxGifCode; ++i) { table[0][i] = 0; table[1][i] = 0; } codeSize = setCodeSize + 1; maxCodeSize = 2 * clearCode; maxCode = clearCode + 2; sp = stack; firstcode = oldcode = getCode (codeSize, false); return firstcode; } else if (code == end_code) { if (dataBlockIsZero) return -2; unsigned char buf [260]; int n; while ((n = readDataBlock (buf)) > 0) {} if (n != 0) return -2; } incode = code; if (code >= maxCode) { *sp++ = firstcode; code = oldcode; } while (code >= clearCode) { *sp++ = table[1][code]; if (code == table[0][code]) return -2; code = table[0][code]; } *sp++ = firstcode = table[1][code]; if ((code = maxCode) < maxGifCode) { table[0][code] = oldcode; table[1][code] = firstcode; ++maxCode; if ((maxCode >= maxCodeSize) && (maxCodeSize < maxGifCode)) { maxCodeSize <<= 1; ++codeSize; } } oldcode = incode; if (sp > stack) return *--sp; } return code; } bool GIFLoader::readImage (const int width, const int height, const int interlace, const int transparent) { unsigned char c; if (input.read (&c, 1) != 1 || readLZWByte (true, c) < 0) return false; if (transparent >= 0) { palette [transparent][0] = 0; palette [transparent][1] = 0; palette [transparent][2] = 0; palette [transparent][3] = 0; } int index; int xpos = 0, ypos = 0, pass = 0; int stride, pixelStride; uint8* const pixels = image->lockPixelDataReadWrite (0, 0, width, height, stride, pixelStride); uint8* p = pixels; const bool hasAlpha = image->hasAlphaChannel(); while ((index = readLZWByte (false, c)) >= 0) { const uint8* const paletteEntry = palette [index]; if (hasAlpha) { ((PixelARGB*) p)->setARGB (paletteEntry[3], paletteEntry[0], paletteEntry[1], paletteEntry[2]); ((PixelARGB*) p)->premultiply(); p += pixelStride; } else { ((PixelRGB*) p)->setARGB (0, paletteEntry[0], paletteEntry[1], paletteEntry[2]); p += pixelStride; } ++xpos; if (xpos == width) { xpos = 0; if (interlace) { switch (pass) { case 0: case 1: ypos += 8; break; case 2: ypos += 4; break; case 3: ypos += 2; break; } while (ypos >= height) { ++pass; switch (pass) { case 1: ypos = 4; break; case 2: ypos = 2; break; case 3: ypos = 1; break; default: return true; } } } else { ++ypos; } p = pixels + xpos * pixelStride + ypos * stride; } if (ypos >= height) break; } image->releasePixelDataReadWrite (pixels); return true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_GIFLoader.cpp *********/ #endif //============================================================================== // some files include lots of library code, so leave them to the end to avoid cluttering // up the build for the clean files. /********* Start of inlined file: juce_GZIPCompressorOutputStream.cpp *********/ namespace zlibNamespace { #if JUCE_INCLUDE_ZLIB_CODE #undef OS_CODE #undef fdopen /********* Start of inlined file: zlib.h *********/ #ifndef ZLIB_H #define ZLIB_H /********* Start of inlined file: zconf.h *********/ /* @(#) $Id: zconf.h,v 1.1 2007/06/07 17:54:37 jules_rms Exp $ */ #ifndef ZCONF_H #define ZCONF_H // *** Just a few hacks here to make it compile nicely with Juce.. #define Z_PREFIX 1 #undef __MACTYPES__ #ifdef _MSC_VER #pragma warning (disable : 4131 4127 4244 4267) #endif /* * If you *really* need a unique prefix for all types and library functions, * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it. */ #ifdef Z_PREFIX # define deflateInit_ z_deflateInit_ # define deflate z_deflate # define deflateEnd z_deflateEnd # define inflateInit_ z_inflateInit_ # define inflate z_inflate # define inflateEnd z_inflateEnd # define deflateInit2_ z_deflateInit2_ # define deflateSetDictionary z_deflateSetDictionary # define deflateCopy z_deflateCopy # define deflateReset z_deflateReset # define deflateParams z_deflateParams # define deflateBound z_deflateBound # define deflatePrime z_deflatePrime # define inflateInit2_ z_inflateInit2_ # define inflateSetDictionary z_inflateSetDictionary # define inflateSync z_inflateSync # define inflateSyncPoint z_inflateSyncPoint # define inflateCopy z_inflateCopy # define inflateReset z_inflateReset # define inflateBack z_inflateBack # define inflateBackEnd z_inflateBackEnd # define compress z_compress # define compress2 z_compress2 # define compressBound z_compressBound # define uncompress z_uncompress # define adler32 z_adler32 # define crc32 z_crc32 # define get_crc_table z_get_crc_table # define zError z_zError # define alloc_func z_alloc_func # define free_func z_free_func # define in_func z_in_func # define out_func z_out_func # define Byte z_Byte # define uInt z_uInt # define uLong z_uLong # define Bytef z_Bytef # define charf z_charf # define intf z_intf # define uIntf z_uIntf # define uLongf z_uLongf # define voidpf z_voidpf # define voidp z_voidp #endif #if defined(__MSDOS__) && !defined(MSDOS) # define MSDOS #endif #if (defined(OS_2) || defined(__OS2__)) && !defined(OS2) # define OS2 #endif #if defined(_WINDOWS) && !defined(WINDOWS) # define WINDOWS #endif #if defined(_WIN32) || defined(_WIN32_WCE) || defined(__WIN32__) # ifndef WIN32 # define WIN32 # endif #endif #if (defined(MSDOS) || defined(OS2) || defined(WINDOWS)) && !defined(WIN32) # if !defined(__GNUC__) && !defined(__FLAT__) && !defined(__386__) # ifndef SYS16BIT # define SYS16BIT # endif # endif #endif /* * Compile with -DMAXSEG_64K if the alloc function cannot allocate more * than 64k bytes at a time (needed on systems with 16-bit int). */ #ifdef SYS16BIT # define MAXSEG_64K #endif #ifdef MSDOS # define UNALIGNED_OK #endif #ifdef __STDC_VERSION__ # ifndef STDC # define STDC # endif # if __STDC_VERSION__ >= 199901L # ifndef STDC99 # define STDC99 # endif # endif #endif #if !defined(STDC) && (defined(__STDC__) || defined(__cplusplus)) # define STDC #endif #if !defined(STDC) && (defined(__GNUC__) || defined(__BORLANDC__)) # define STDC #endif #if !defined(STDC) && (defined(MSDOS) || defined(WINDOWS) || defined(WIN32)) # define STDC #endif #if !defined(STDC) && (defined(OS2) || defined(__HOS_AIX__)) # define STDC #endif #if defined(__OS400__) && !defined(STDC) /* iSeries (formerly AS/400). */ # define STDC #endif #ifndef STDC # ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */ # define const /* note: need a more gentle solution here */ # endif #endif /* Some Mac compilers merge all .h files incorrectly: */ #if defined(__MWERKS__)||defined(applec)||defined(THINK_C)||defined(__SC__) # define NO_DUMMY_DECL #endif /* Maximum value for memLevel in deflateInit2 */ #ifndef MAX_MEM_LEVEL # ifdef MAXSEG_64K # define MAX_MEM_LEVEL 8 # else # define MAX_MEM_LEVEL 9 # endif #endif /* Maximum value for windowBits in deflateInit2 and inflateInit2. * WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files * created by gzip. (Files created by minigzip can still be extracted by * gzip.) */ #ifndef MAX_WBITS # define MAX_WBITS 15 /* 32K LZ77 window */ #endif /* The memory requirements for deflate are (in bytes): (1 << (windowBits+2)) + (1 << (memLevel+9)) that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values) plus a few kilobytes for small objects. For example, if you want to reduce the default memory requirements from 256K to 128K, compile with make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7" Of course this will generally degrade compression (there's no free lunch). The memory requirements for inflate are (in bytes) 1 << windowBits that is, 32K for windowBits=15 (default value) plus a few kilobytes for small objects. */ /* Type declarations */ #ifndef OF /* function prototypes */ # ifdef STDC # define OF(args) args # else # define OF(args) () # endif #endif /* The following definitions for FAR are needed only for MSDOS mixed * model programming (small or medium model with some far allocations). * This was tested only with MSC; for other MSDOS compilers you may have * to define NO_MEMCPY in zutil.h. If you don't need the mixed model, * just define FAR to be empty. */ #ifdef SYS16BIT # if defined(M_I86SM) || defined(M_I86MM) /* MSC small or medium model */ # define SMALL_MEDIUM # ifdef _MSC_VER # define FAR _far # else # define FAR far # endif # endif # if (defined(__SMALL__) || defined(__MEDIUM__)) /* Turbo C small or medium model */ # define SMALL_MEDIUM # ifdef __BORLANDC__ # define FAR _far # else # define FAR far # endif # endif #endif #if defined(WINDOWS) || defined(WIN32) /* If building or using zlib as a DLL, define ZLIB_DLL. * This is not mandatory, but it offers a little performance increase. */ # ifdef ZLIB_DLL # if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500)) # ifdef ZLIB_INTERNAL # define ZEXTERN extern __declspec(dllexport) # else # define ZEXTERN extern __declspec(dllimport) # endif # endif # endif /* ZLIB_DLL */ /* If building or using zlib with the WINAPI/WINAPIV calling convention, * define ZLIB_WINAPI. * Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI. */ # ifdef ZLIB_WINAPI # ifdef FAR # undef FAR # endif # include /* No need for _export, use ZLIB.DEF instead. */ /* For complete Windows compatibility, use WINAPI, not __stdcall. */ # define ZEXPORT WINAPI # ifdef WIN32 # define ZEXPORTVA WINAPIV # else # define ZEXPORTVA FAR CDECL # endif # endif #endif #if defined (__BEOS__) # ifdef ZLIB_DLL # ifdef ZLIB_INTERNAL # define ZEXPORT __declspec(dllexport) # define ZEXPORTVA __declspec(dllexport) # else # define ZEXPORT __declspec(dllimport) # define ZEXPORTVA __declspec(dllimport) # endif # endif #endif #ifndef ZEXTERN # define ZEXTERN extern #endif #ifndef ZEXPORT # define ZEXPORT #endif #ifndef ZEXPORTVA # define ZEXPORTVA #endif #ifndef FAR # define FAR #endif #if !defined(__MACTYPES__) typedef unsigned char Byte; /* 8 bits */ #endif typedef unsigned int uInt; /* 16 bits or more */ typedef unsigned long uLong; /* 32 bits or more */ #ifdef SMALL_MEDIUM /* Borland C/C++ and some old MSC versions ignore FAR inside typedef */ # define Bytef Byte FAR #else typedef Byte FAR Bytef; #endif typedef char FAR charf; typedef int FAR intf; typedef uInt FAR uIntf; typedef uLong FAR uLongf; #ifdef STDC typedef void const *voidpc; typedef void FAR *voidpf; typedef void *voidp; #else typedef Byte const *voidpc; typedef Byte FAR *voidpf; typedef Byte *voidp; #endif #if 0 /* HAVE_UNISTD_H -- this line is updated by ./configure */ # include /* for off_t */ # include /* for SEEK_* and off_t */ # ifdef VMS # include /* for off_t */ # endif # define z_off_t off_t #endif #ifndef SEEK_SET # define SEEK_SET 0 /* Seek from beginning of file. */ # define SEEK_CUR 1 /* Seek from current position. */ # define SEEK_END 2 /* Set file pointer to EOF plus "offset" */ #endif #ifndef z_off_t # define z_off_t long #endif #if defined(__OS400__) # define NO_vsnprintf #endif #if defined(__MVS__) # define NO_vsnprintf # ifdef FAR # undef FAR # endif #endif /* MVS linker does not support external names larger than 8 bytes */ #if defined(__MVS__) # pragma map(deflateInit_,"DEIN") # pragma map(deflateInit2_,"DEIN2") # pragma map(deflateEnd,"DEEND") # pragma map(deflateBound,"DEBND") # pragma map(inflateInit_,"ININ") # pragma map(inflateInit2_,"ININ2") # pragma map(inflateEnd,"INEND") # pragma map(inflateSync,"INSY") # pragma map(inflateSetDictionary,"INSEDI") # pragma map(compressBound,"CMBND") # pragma map(inflate_table,"INTABL") # pragma map(inflate_fast,"INFA") # pragma map(inflate_copyright,"INCOPY") #endif #endif /* ZCONF_H */ /********* End of inlined file: zconf.h *********/ #ifdef __cplusplus extern "C" { #endif #define ZLIB_VERSION "1.2.3" #define ZLIB_VERNUM 0x1230 /* The 'zlib' compression library provides in-memory compression and decompression functions, including integrity checks of the uncompressed data. This version of the library supports only one compression method (deflation) but other algorithms will be added later and will have the same stream interface. Compression can be done in a single step if the buffers are large enough (for example if an input file is mmap'ed), or can be done by repeated calls of the compression function. In the latter case, the application must provide more input and/or consume the output (providing more output space) before each call. The compressed data format used by default by the in-memory functions is the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped around a deflate stream, which is itself documented in RFC 1951. The library also supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. This library can optionally read and write gzip streams in memory as well. The zlib format was designed to be compact and fast for use in memory and on communications channels. The gzip format was designed for single- file compression on file systems, has a larger header than zlib to maintain directory information, and uses a different, slower check method than zlib. The library does not install any signal handler. The decoder checks the consistency of the compressed data, so the library should never crash even in case of corrupted input. */ typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size)); typedef void (*free_func) OF((voidpf opaque, voidpf address)); struct internal_state; typedef struct z_stream_s { Bytef *next_in; /* next input byte */ uInt avail_in; /* number of bytes available at next_in */ uLong total_in; /* total nb of input bytes read so far */ Bytef *next_out; /* next output byte should be put there */ uInt avail_out; /* remaining free space at next_out */ uLong total_out; /* total nb of bytes output so far */ char *msg; /* last error message, NULL if no error */ struct internal_state FAR *state; /* not visible by applications */ alloc_func zalloc; /* used to allocate the internal state */ free_func zfree; /* used to free the internal state */ voidpf opaque; /* private data object passed to zalloc and zfree */ int data_type; /* best guess about the data type: binary or text */ uLong adler; /* adler32 value of the uncompressed data */ uLong reserved; /* reserved for future use */ } z_stream; typedef z_stream FAR *z_streamp; /* gzip header information passed to and from zlib routines. See RFC 1952 for more details on the meanings of these fields. */ typedef struct gz_header_s { int text; /* true if compressed data believed to be text */ uLong time; /* modification time */ int xflags; /* extra flags (not used when writing a gzip file) */ int os; /* operating system */ Bytef *extra; /* pointer to extra field or Z_NULL if none */ uInt extra_len; /* extra field length (valid if extra != Z_NULL) */ uInt extra_max; /* space at extra (only when reading header) */ Bytef *name; /* pointer to zero-terminated file name or Z_NULL */ uInt name_max; /* space at name (only when reading header) */ Bytef *comment; /* pointer to zero-terminated comment or Z_NULL */ uInt comm_max; /* space at comment (only when reading header) */ int hcrc; /* true if there was or will be a header crc */ int done; /* true when done reading gzip header (not used when writing a gzip file) */ } gz_header; typedef gz_header FAR *gz_headerp; /* The application must update next_in and avail_in when avail_in has dropped to zero. It must update next_out and avail_out when avail_out has dropped to zero. The application must initialize zalloc, zfree and opaque before calling the init function. All other fields are set by the compression library and must not be updated by the application. The opaque value provided by the application will be passed as the first parameter for calls of zalloc and zfree. This can be useful for custom memory management. The compression library attaches no meaning to the opaque value. zalloc must return Z_NULL if there is not enough memory for the object. If zlib is used in a multi-threaded application, zalloc and zfree must be thread safe. On 16-bit systems, the functions zalloc and zfree must be able to allocate exactly 65536 bytes, but will not be required to allocate more than this if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers returned by zalloc for objects of exactly 65536 bytes *must* have their offset normalized to zero. The default allocation function provided by this library ensures this (see zutil.c). To reduce memory requirements and avoid any allocation of 64K objects, at the expense of compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h). The fields total_in and total_out can be used for statistics or progress reports. After compression, total_in holds the total size of the uncompressed data and may be saved for use in the decompressor (particularly if the decompressor wants to decompress everything in a single step). */ /* constants */ #define Z_NO_FLUSH 0 #define Z_PARTIAL_FLUSH 1 /* will be removed, use Z_SYNC_FLUSH instead */ #define Z_SYNC_FLUSH 2 #define Z_FULL_FLUSH 3 #define Z_FINISH 4 #define Z_BLOCK 5 /* Allowed flush values; see deflate() and inflate() below for details */ #define Z_OK 0 #define Z_STREAM_END 1 #define Z_NEED_DICT 2 #define Z_ERRNO (-1) #define Z_STREAM_ERROR (-2) #define Z_DATA_ERROR (-3) #define Z_MEM_ERROR (-4) #define Z_BUF_ERROR (-5) #define Z_VERSION_ERROR (-6) /* Return codes for the compression/decompression functions. Negative * values are errors, positive values are used for special but normal events. */ #define Z_NO_COMPRESSION 0 #define Z_BEST_SPEED 1 #define Z_BEST_COMPRESSION 9 #define Z_DEFAULT_COMPRESSION (-1) /* compression levels */ #define Z_FILTERED 1 #define Z_HUFFMAN_ONLY 2 #define Z_RLE 3 #define Z_FIXED 4 #define Z_DEFAULT_STRATEGY 0 /* compression strategy; see deflateInit2() below for details */ #define Z_BINARY 0 #define Z_TEXT 1 #define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */ #define Z_UNKNOWN 2 /* Possible values of the data_type field (though see inflate()) */ #define Z_DEFLATED 8 /* The deflate compression method (the only one supported in this version) */ #define Z_NULL 0 /* for initializing zalloc, zfree, opaque */ #define zlib_version zlibVersion() /* for compatibility with versions < 1.0.2 */ /* basic functions */ //ZEXTERN const char * ZEXPORT zlibVersion OF((void)); /* The application can compare zlibVersion and ZLIB_VERSION for consistency. If the first character differs, the library code actually used is not compatible with the zlib.h header file used by the application. This check is automatically made by deflateInit and inflateInit. */ /* ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level)); Initializes the internal stream state for compression. The fields zalloc, zfree and opaque must be initialized before by the caller. If zalloc and zfree are set to Z_NULL, deflateInit updates them to use default allocation functions. The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9: 1 gives best speed, 9 gives best compression, 0 gives no compression at all (the input data is simply copied a block at a time). Z_DEFAULT_COMPRESSION requests a default compromise between speed and compression (currently equivalent to level 6). deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if level is not a valid compression level, Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush)); /* deflate compresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. deflate performs one or both of the following actions: - Compress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in and avail_in are updated and processing will resume at this point for the next call of deflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. This action is forced if the parameter flush is non zero. Forcing flush frequently degrades the compression ratio, so this parameter should be set only when necessary (in interactive applications). Some output may be provided even if flush is not set. Before the call of deflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating avail_in or avail_out accordingly; avail_out should never be zero before the call. The application can consume the compressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to decide how much data to accumualte before producing output, in order to maximize compression. If the parameter flush is set to Z_SYNC_FLUSH, all pending output is flushed to the output buffer and the output is aligned on a byte boundary, so that the decompressor can get all input data available so far. (In particular avail_in is zero after the call if enough output space has been provided before the call.) Flushing may degrade compression for some compression algorithms and so it should be used only when necessary. If flush is set to Z_FULL_FLUSH, all output is flushed as with Z_SYNC_FLUSH, and the compression state is reset so that decompression can restart from this point if previous compressed data has been damaged or if random access is desired. Using Z_FULL_FLUSH too often can seriously degrade compression. If deflate returns with avail_out == 0, this function must be called again with the same value of the flush parameter and more output space (updated avail_out), until the flush is complete (deflate returns with non-zero avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that avail_out is greater than six to avoid repeated flush markers due to avail_out == 0 on return. If the parameter flush is set to Z_FINISH, pending input is processed, pending output is flushed and deflate returns with Z_STREAM_END if there was enough output space; if deflate returns with Z_OK, this function must be called again with Z_FINISH and more output space (updated avail_out) but no more input data, until it returns with Z_STREAM_END or an error. After deflate has returned Z_STREAM_END, the only possible operations on the stream are deflateReset or deflateEnd. Z_FINISH can be used immediately after deflateInit if all the compression is to be done in a single step. In this case, avail_out must be at least the value returned by deflateBound (see below). If deflate does not return Z_STREAM_END, then it must be called again as described above. deflate() sets strm->adler to the adler32 checksum of all input read so far (that is, total_in bytes). deflate() may update strm->data_type if it can make a good guess about the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered binary. This field is only for information purposes and does not affect the compression algorithm in any manner. deflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if all input has been consumed and all output has been produced (only when flush is set to Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example if next_in or next_out was NULL), Z_BUF_ERROR if no progress is possible (for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not fatal, and deflate() can be called again with more input and more output space to continue compressing. */ ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent, Z_DATA_ERROR if the stream was freed prematurely (some input or output was discarded). In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm)); Initializes the internal stream state for decompression. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. If next_in is not Z_NULL and avail_in is large enough (the exact value depends on the compression method), inflateInit determines the compression method from the zlib header and allocates all data structures accordingly; otherwise the allocation will be deferred to the first call of inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to use default allocation functions. inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller. msg is set to null if there is no error message. inflateInit does not perform any decompression apart from reading the zlib header if present: this will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unchanged.) */ ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush)); /* inflate decompresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. inflate performs one or both of the following actions: - Decompress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in is updated and processing will resume at this point for the next call of inflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. inflate() provides as much output as possible, until there is no more input data or no more space in the output buffer (see below about the flush parameter). Before the call of inflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating the next_* and avail_* values accordingly. The application can consume the uncompressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of inflate(). If inflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH, or Z_BLOCK. Z_SYNC_FLUSH requests that inflate() flush as much output as possible to the output buffer. Z_BLOCK requests that inflate() stop if and when it gets to the next deflate block boundary. When decoding the zlib or gzip format, this will cause inflate() to return immediately after the header and before the first block. When doing a raw inflate, inflate() will go ahead and process the first block, and will return when it gets to the end of that block, or when it runs out of data. The Z_BLOCK option assists in appending to or combining deflate streams. Also to assist in this, on return inflate() will set strm->data_type to the number of unused bits in the last byte taken from strm->next_in, plus 64 if inflate() is currently decoding the last block in the deflate stream, plus 128 if inflate() returned immediately after decoding an end-of-block code or decoding the complete header up to just before the first byte of the deflate stream. The end-of-block will not be indicated until all of the uncompressed data from that block has been written to strm->next_out. The number of unused bits may in general be greater than seven, except when bit 7 of data_type is set, in which case the number of unused bits will be less than eight. inflate() should normally be called until it returns Z_STREAM_END or an error. However if all decompression is to be performed in a single step (a single call of inflate), the parameter flush should be set to Z_FINISH. In this case all pending input is processed and all pending output is flushed; avail_out must be large enough to hold all the uncompressed data. (The size of the uncompressed data may have been saved by the compressor for this purpose.) The next operation on this stream must be inflateEnd to deallocate the decompression state. The use of Z_FINISH is never required, but can be used to inform inflate that a faster approach may be used for the single inflate() call. In this implementation, inflate() always flushes as much output as possible to the output buffer, and always uses the faster approach on the first call. So the only effect of the flush parameter in this implementation is on the return value of inflate(), as noted below, or when it returns early because Z_BLOCK is used. If a preset dictionary is needed after this call (see inflateSetDictionary below), inflate sets strm->adler to the adler32 checksum of the dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise it sets strm->adler to the adler32 checksum of all output produced so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described below. At the end of the stream, inflate() checks that its computed adler32 checksum is equal to that saved by the compressor and returns Z_STREAM_END only if the checksum is correct. inflate() will decompress and check either zlib-wrapped or gzip-wrapped deflate data. The header type is detected automatically. Any information contained in the gzip header is not retained, so applications that need that information should instead use raw inflate, see inflateInit2() below, or inflateBack() and perform their own processing of the gzip header and trailer. inflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if the end of the compressed data has been reached and all uncompressed output has been produced, Z_NEED_DICT if a preset dictionary is needed at this point, Z_DATA_ERROR if the input data was corrupted (input stream not conforming to the zlib format or incorrect check value), Z_STREAM_ERROR if the stream structure was inconsistent (for example if next_in or next_out was NULL), Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if no progress is possible or if there was not enough room in the output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and inflate() can be called again with more input and more output space to continue decompressing. If Z_DATA_ERROR is returned, the application may then call inflateSync() to look for a good compression block if a partial recovery of the data is desired. */ ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent. In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* Advanced functions */ /* The following functions are needed only in some special applications. */ /* ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy)); This is another version of deflateInit with more compression options. The fields next_in, zalloc, zfree and opaque must be initialized before by the caller. The method parameter is the compression method. It must be Z_DEFLATED in this version of the library. The windowBits parameter is the base two logarithm of the window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. Larger values of this parameter result in better compression at the expense of memory usage. The default value is 15 if deflateInit is used instead. windowBits can also be -8..-15 for raw deflate. In this case, -windowBits determines the window size. deflate() will then generate raw deflate data with no zlib header or trailer, and will not compute an adler32 check value. windowBits can also be greater than 15 for optional gzip encoding. Add 16 to windowBits to write a simple gzip header and trailer around the compressed data instead of a zlib wrapper. The gzip header will have no file name, no extra data, no comment, no modification time (set to zero), no header crc, and the operating system will be set to 255 (unknown). If a gzip stream is being written, strm->adler is a crc32 instead of an adler32. The memLevel parameter specifies how much memory should be allocated for the internal compression state. memLevel=1 uses minimum memory but is slow and reduces compression ratio; memLevel=9 uses maximum memory for optimal speed. The default value is 8. See zconf.h for total memory usage as a function of windowBits and memLevel. The strategy parameter is used to tune the compression algorithm. Use the value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no string match), or Z_RLE to limit match distances to one (run-length encoding). Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them better. The effect of Z_FILTERED is to force more Huffman coding and less string matching; it is somewhat intermediate between Z_DEFAULT and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data. The strategy parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set appropriately. Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications. deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if a parameter is invalid (such as an invalid method). msg is set to null if there is no error message. deflateInit2 does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the compression dictionary from the given byte sequence without producing any compressed output. This function must be called immediately after deflateInit, deflateInit2 or deflateReset, before any call of deflate. The compressor and decompressor must use exactly the same dictionary (see inflateSetDictionary). The dictionary should consist of strings (byte sequences) that are likely to be encountered later in the data to be compressed, with the most commonly used strings preferably put towards the end of the dictionary. Using a dictionary is most useful when the data to be compressed is short and can be predicted with good accuracy; the data can then be compressed better than with the default empty dictionary. Depending on the size of the compression data structures selected by deflateInit or deflateInit2, a part of the dictionary may in effect be discarded, for example if the dictionary is larger than the window size in deflate or deflate2. Thus the strings most likely to be useful should be put at the end of the dictionary, not at the front. In addition, the current implementation of deflate will use at most the window size minus 262 bytes of the provided dictionary. Upon return of this function, strm->adler is set to the adler32 value of the dictionary; the decompressor may later use this value to determine which dictionary has been used by the compressor. (The adler32 value applies to the whole dictionary even if only a subset of the dictionary is actually used by the compressor.) If a raw deflate was requested, then the adler32 value is not computed and strm->adler is not set. deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a parameter is invalid (such as NULL dictionary) or the stream state is inconsistent (for example if deflate has already been called for this stream or if the compression method is bsort). deflateSetDictionary does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when several compression strategies will be tried, for example when there are several ways of pre-processing the input data with a filter. The streams that will be discarded should then be freed by calling deflateEnd. Note that deflateCopy duplicates the internal compression state which can be quite large, so this strategy is slow and can consume lots of memory. deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm)); /* This function is equivalent to deflateEnd followed by deflateInit, but does not free and reallocate all the internal compression state. The stream will keep the same compression level and any other attributes that may have been set by deflateInit2. deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being NULL). */ ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm, int level, int strategy)); /* Dynamically update the compression level and compression strategy. The interpretation of level and strategy is as in deflateInit2. This can be used to switch between compression and straight copy of the input data, or to switch to a different kind of input data requiring a different strategy. If the compression level is changed, the input available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next call of deflate(). Before the call of deflateParams, the stream state must be set as for a call of deflate(), since the currently available input may have to be compressed and flushed. In particular, strm->avail_out must be non-zero. deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if strm->avail_out was zero. */ ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm, int good_length, int max_lazy, int nice_length, int max_chain)); /* Fine tune deflate's internal compression parameters. This should only be used by someone who understands the algorithm used by zlib's deflate for searching for the best matching string, and even then only by the most fanatic optimizer trying to squeeze out the last compressed bit for their specific input data. Read the deflate.c source code for the meaning of the max_lazy, good_length, nice_length, and max_chain parameters. deflateTune() can be called after deflateInit() or deflateInit2(), and returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream. */ ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm, uLong sourceLen)); /* deflateBound() returns an upper bound on the compressed size after deflation of sourceLen bytes. It must be called after deflateInit() or deflateInit2(). This would be used to allocate an output buffer for deflation in a single pass, and so would be called before deflate(). */ ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm, int bits, int value)); /* deflatePrime() inserts bits in the deflate output stream. The intent is that this function is used to start off the deflate output with the bits leftover from a previous deflate stream when appending to it. As such, this function can only be used for raw deflate, and must be used before the first deflate() call after a deflateInit2() or deflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the output. deflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm, gz_headerp head)); /* deflateSetHeader() provides gzip header information for when a gzip stream is requested by deflateInit2(). deflateSetHeader() may be called after deflateInit2() or deflateReset() and before the first call of deflate(). The text, time, os, extra field, name, and comment information in the provided gz_header structure are written to the gzip header (xflag is ignored -- the extra flags are set according to the compression level). The caller must assure that, if not Z_NULL, name and comment are terminated with a zero byte, and that if extra is not Z_NULL, that extra_len bytes are available there. If hcrc is true, a gzip header crc is included. Note that the current versions of the command-line version of gzip (up through version 1.3.x) do not support header crc's, and will report that it is a "multi-part gzip file" and give up. If deflateSetHeader is not used, the default gzip header has text false, the time set to zero, and os set to 255, with no extra, name, or comment fields. The gzip header is returned to the default state by deflateReset(). deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm, int windowBits)); This is another version of inflateInit with an extra parameter. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. The windowBits parameter is the base two logarithm of the maximum window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. The default value is 15 if inflateInit is used instead. windowBits must be greater than or equal to the windowBits value provided to deflateInit2() while compressing, or it must be equal to 15 if deflateInit2() was not used. If a compressed stream with a larger window size is given as input, inflate() will return with the error code Z_DATA_ERROR instead of trying to allocate a larger window. windowBits can also be -8..-15 for raw inflate. In this case, -windowBits determines the window size. inflate() will then process raw deflate data, not looking for a zlib or gzip header, not generating a check value, and not looking for any check values for comparison at the end of the stream. This is for use with other formats that use the deflate compressed data format such as zip. Those formats provide their own check values. If a custom format is developed using the raw deflate format for compressed data, it is recommended that a check value such as an adler32 or a crc32 be applied to the uncompressed data as is done in the zlib, gzip, and zip formats. For most applications, the zlib format should be used as is. Note that comments above on the use in deflateInit2() applies to the magnitude of windowBits. windowBits can also be greater than 15 for optional gzip decoding. Add 32 to windowBits to enable zlib and gzip decoding with automatic header detection, or add 16 to decode only the gzip format (the zlib format will return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is a crc32 instead of an adler32. inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if a parameter is invalid (such as a null strm). msg is set to null if there is no error message. inflateInit2 does not perform any decompression apart from reading the zlib header if present: this will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unchanged.) */ ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the decompression dictionary from the given uncompressed byte sequence. This function must be called immediately after a call of inflate, if that call returned Z_NEED_DICT. The dictionary chosen by the compressor can be determined from the adler32 value returned by that call of inflate. The compressor and decompressor must use exactly the same dictionary (see deflateSetDictionary). For raw inflate, this function can be called immediately after inflateInit2() or inflateReset() and before any call of inflate() to set the dictionary. The application must insure that the dictionary that was used for compression is provided. inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a parameter is invalid (such as NULL dictionary) or the stream state is inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the expected one (incorrect adler32 value). inflateSetDictionary does not perform any decompression: this will be done by subsequent calls of inflate(). */ ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm)); /* Skips invalid compressed data until a full flush point (see above the description of deflate with Z_FULL_FLUSH) can be found, or until all available input is skipped. No output is provided. inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point has been found, or Z_STREAM_ERROR if the stream structure was inconsistent. In the success case, the application may save the current current value of total_in which indicates where valid compressed data was found. In the error case, the application may repeatedly call inflateSync, providing more input each time, until success or end of the input data. */ ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when randomly accessing a large stream. The first pass through the stream can periodically record the inflate state, allowing restarting inflate at those points when randomly accessing the stream. inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm)); /* This function is equivalent to inflateEnd followed by inflateInit, but does not free and reallocate all the internal decompression state. The stream will keep attributes that may have been set by inflateInit2. inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being NULL). */ ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm, int bits, int value)); /* This function inserts bits in the inflate input stream. The intent is that this function is used to start inflating at a bit position in the middle of a byte. The provided bits will be used before any bytes are used from next_in. This function should only be used with raw inflate, and should be used before the first inflate() call after inflateInit2() or inflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the input. inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm, gz_headerp head)); /* inflateGetHeader() requests that gzip header information be stored in the provided gz_header structure. inflateGetHeader() may be called after inflateInit2() or inflateReset(), and before the first call of inflate(). As inflate() processes the gzip stream, head->done is zero until the header is completed, at which time head->done is set to one. If a zlib stream is being decoded, then head->done is set to -1 to indicate that there will be no gzip header information forthcoming. Note that Z_BLOCK can be used to force inflate() to return immediately after header processing is complete and before any actual data is decompressed. The text, time, xflags, and os fields are filled in with the gzip header contents. hcrc is set to true if there is a header CRC. (The header CRC was valid if done is set to one.) If extra is not Z_NULL, then extra_max contains the maximum number of bytes to write to extra. Once done is true, extra_len contains the actual extra field length, and extra contains the extra field, or that field truncated if extra_max is less than extra_len. If name is not Z_NULL, then up to name_max characters are written there, terminated with a zero unless the length is greater than name_max. If comment is not Z_NULL, then up to comm_max characters are written there, terminated with a zero unless the length is greater than comm_max. When any of extra, name, or comment are not Z_NULL and the respective field is not present in the header, then that field is set to Z_NULL to signal its absence. This allows the use of deflateSetHeader() with the returned structure to duplicate the header. However if those fields are set to allocated memory, then the application will need to save those pointers elsewhere so that they can be eventually freed. If inflateGetHeader is not used, then the header information is simply discarded. The header is always checked for validity, including the header CRC if present. inflateReset() will reset the process to discard the header information. The application would need to call inflateGetHeader() again to retrieve the header from the next gzip stream. inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits, unsigned char FAR *window)); Initialize the internal stream state for decompression using inflateBack() calls. The fields zalloc, zfree and opaque in strm must be initialized before the call. If zalloc and zfree are Z_NULL, then the default library- derived memory allocation routines are used. windowBits is the base two logarithm of the window size, in the range 8..15. window is a caller supplied buffer of that size. Except for special applications where it is assured that deflate was used with small window sizes, windowBits must be 15 and a 32K byte window must be supplied to be able to decompress general deflate streams. See inflateBack() for the usage of these routines. inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of the paramaters are invalid, Z_MEM_ERROR if the internal state could not be allocated, or Z_VERSION_ERROR if the version of the library does not match the version of the header file. */ typedef unsigned (*in_func) OF((void FAR *, unsigned char FAR * FAR *)); typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned)); ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm, in_func in, void FAR *in_desc, out_func out, void FAR *out_desc)); /* inflateBack() does a raw inflate with a single call using a call-back interface for input and output. This is more efficient than inflate() for file i/o applications in that it avoids copying between the output and the sliding window by simply making the window itself the output buffer. This function trusts the application to not change the output buffer passed by the output function, at least until inflateBack() returns. inflateBackInit() must be called first to allocate the internal state and to initialize the state with the user-provided window buffer. inflateBack() may then be used multiple times to inflate a complete, raw deflate stream with each call. inflateBackEnd() is then called to free the allocated state. A raw deflate stream is one with no zlib or gzip header or trailer. This routine would normally be used in a utility that reads zip or gzip files and writes out uncompressed files. The utility would decode the header and process the trailer on its own, hence this routine expects only the raw deflate stream to decompress. This is different from the normal behavior of inflate(), which expects either a zlib or gzip header and trailer around the deflate stream. inflateBack() uses two subroutines supplied by the caller that are then called by inflateBack() for input and output. inflateBack() calls those routines until it reads a complete deflate stream and writes out all of the uncompressed data, or until it encounters an error. The function's parameters and return types are defined above in the in_func and out_func typedefs. inflateBack() will call in(in_desc, &buf) which should return the number of bytes of provided input, and a pointer to that input in buf. If there is no input available, in() must return zero--buf is ignored in that case--and inflateBack() will return a buffer error. inflateBack() will call out(out_desc, buf, len) to write the uncompressed data buf[0..len-1]. out() should return zero on success, or non-zero on failure. If out() returns non-zero, inflateBack() will return with an error. Neither in() nor out() are permitted to change the contents of the window provided to inflateBackInit(), which is also the buffer that out() uses to write from. The length written by out() will be at most the window size. Any non-zero amount of input may be provided by in(). For convenience, inflateBack() can be provided input on the first call by setting strm->next_in and strm->avail_in. If that input is exhausted, then in() will be called. Therefore strm->next_in must be initialized before calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in must also be initialized, and then if strm->avail_in is not zero, input will initially be taken from strm->next_in[0 .. strm->avail_in - 1]. The in_desc and out_desc parameters of inflateBack() is passed as the first parameter of in() and out() respectively when they are called. These descriptors can be optionally used to pass any information that the caller- supplied in() and out() functions need to do their job. On return, inflateBack() will set strm->next_in and strm->avail_in to pass back any unused input that was provided by the last in() call. The return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR if in() or out() returned an error, Z_DATA_ERROR if there was a format error in the deflate stream (in which case strm->msg is set to indicate the nature of the error), or Z_STREAM_ERROR if the stream was not properly initialized. In the case of Z_BUF_ERROR, an input or output error can be distinguished using strm->next_in which will be Z_NULL only if in() returned an error. If strm->next is not Z_NULL, then the Z_BUF_ERROR was due to out() returning non-zero. (in() will always be called before out(), so strm->next_in is assured to be defined if out() returns non-zero.) Note that inflateBack() cannot return Z_OK. */ ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm)); /* All memory allocated by inflateBackInit() is freed. inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream state was inconsistent. */ //ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void)); /* Return flags indicating compile-time options. Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other: 1.0: size of uInt 3.2: size of uLong 5.4: size of voidpf (pointer) 7.6: size of z_off_t Compiler, assembler, and debug options: 8: DEBUG 9: ASMV or ASMINF -- use ASM code 10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention 11: 0 (reserved) One-time table building (smaller code, but not thread-safe if true): 12: BUILDFIXED -- build static block decoding tables when needed 13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed 14,15: 0 (reserved) Library content (indicates missing functionality): 16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking deflate code when not needed) 17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect and decode gzip streams (to avoid linking crc code) 18-19: 0 (reserved) Operation variations (changes in library functionality): 20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate 21: FASTEST -- deflate algorithm with only one, lowest compression level 22,23: 0 (reserved) The sprintf variant used by gzprintf (zero is best): 24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format 25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure! 26: 0 = returns value, 1 = void -- 1 means inferred string length returned Remainder: 27-31: 0 (reserved) */ /* utility functions */ /* The following utility functions are implemented on top of the basic stream-oriented functions. To simplify the interface, some default options are assumed (compression level and memory usage, standard memory allocation functions). The source code of these utility functions can easily be modified if you need special options. */ ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Compresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. This function can be used to compress a whole file at once if the input file is mmap'ed. compress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer. */ ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int level)); /* Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen)); /* compressBound() returns an upper bound on the compressed size after compress() or compress2() on sourceLen bytes. It would be used before a compress() or compress2() call to allocate the destination buffer. */ ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the compressed buffer. This function can be used to decompress a whole file at once if the input file is mmap'ed. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. */ typedef voidp gzFile; ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode)); /* Opens a gzip (.gz) file for reading or writing. The mode parameter is as in fopen ("rb" or "wb") but can also include a compression level ("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman only compression as in "wb1h", or 'R' for run-length encoding as in "wb1R". (See the description of deflateInit2 for more information about the strategy parameter.) gzopen can be used to read a file which is not in gzip format; in this case gzread will directly read from the file without decompression. gzopen returns NULL if the file could not be opened or if there was insufficient memory to allocate the (de)compression state; errno can be checked to distinguish the two cases (if errno is zero, the zlib error is Z_MEM_ERROR). */ ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode)); /* gzdopen() associates a gzFile with the file descriptor fd. File descriptors are obtained from calls like open, dup, creat, pipe or fileno (in the file has been previously opened with fopen). The mode parameter is as in gzopen. The next call of gzclose on the returned gzFile will also close the file descriptor fd, just like fclose(fdopen(fd), mode) closes the file descriptor fd. If you want to keep fd open, use gzdopen(dup(fd), mode). gzdopen returns NULL if there was insufficient memory to allocate the (de)compression state. */ ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy)); /* Dynamically update the compression level or strategy. See the description of deflateInit2 for the meaning of these parameters. gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not opened for writing. */ ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len)); /* Reads the given number of uncompressed bytes from the compressed file. If the input file was not in gzip format, gzread copies the given number of bytes into the buffer. gzread returns the number of uncompressed bytes actually read (0 for end of file, -1 for error). */ ZEXTERN int ZEXPORT gzwrite OF((gzFile file, voidpc buf, unsigned len)); /* Writes the given number of uncompressed bytes into the compressed file. gzwrite returns the number of uncompressed bytes actually written (0 in case of error). */ ZEXTERN int ZEXPORTVA gzprintf OF((gzFile file, const char *format, ...)); /* Converts, formats, and writes the args to the compressed file under control of the format string, as in fprintf. gzprintf returns the number of uncompressed bytes actually written (0 in case of error). The number of uncompressed bytes written is limited to 4095. The caller should assure that this limit is not exceeded. If it is exceeded, then gzprintf() will return return an error (0) with nothing written. In this case, there may also be a buffer overflow with unpredictable consequences, which is possible only if zlib was compiled with the insecure functions sprintf() or vsprintf() because the secure snprintf() or vsnprintf() functions were not available. */ ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s)); /* Writes the given null-terminated string to the compressed file, excluding the terminating null character. gzputs returns the number of characters written, or -1 in case of error. */ ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len)); /* Reads bytes from the compressed file until len-1 characters are read, or a newline character is read and transferred to buf, or an end-of-file condition is encountered. The string is then terminated with a null character. gzgets returns buf, or Z_NULL in case of error. */ ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c)); /* Writes c, converted to an unsigned char, into the compressed file. gzputc returns the value that was written, or -1 in case of error. */ ZEXTERN int ZEXPORT gzgetc OF((gzFile file)); /* Reads one byte from the compressed file. gzgetc returns this byte or -1 in case of end of file or error. */ ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file)); /* Push one character back onto the stream to be read again later. Only one character of push-back is allowed. gzungetc() returns the character pushed, or -1 on failure. gzungetc() will fail if a character has been pushed but not read yet, or if c is -1. The pushed character will be discarded if the stream is repositioned with gzseek() or gzrewind(). */ ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush)); /* Flushes all pending output into the compressed file. The parameter flush is as in the deflate() function. The return value is the zlib error number (see function gzerror below). gzflush returns Z_OK if the flush parameter is Z_FINISH and all output could be flushed. gzflush should be called only when strictly necessary because it can degrade compression. */ ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file, z_off_t offset, int whence)); /* Sets the starting position for the next gzread or gzwrite on the given compressed file. The offset represents a number of bytes in the uncompressed data stream. The whence parameter is defined as in lseek(2); the value SEEK_END is not supported. If the file is opened for reading, this function is emulated but can be extremely slow. If the file is opened for writing, only forward seeks are supported; gzseek then compresses a sequence of zeroes up to the new starting position. gzseek returns the resulting offset location as measured in bytes from the beginning of the uncompressed stream, or -1 in case of error, in particular if the file is opened for writing and the new starting position would be before the current position. */ ZEXTERN int ZEXPORT gzrewind OF((gzFile file)); /* Rewinds the given file. This function is supported only for reading. gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET) */ ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file)); /* Returns the starting position for the next gzread or gzwrite on the given compressed file. This position represents a number of bytes in the uncompressed data stream. gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR) */ ZEXTERN int ZEXPORT gzeof OF((gzFile file)); /* Returns 1 when EOF has previously been detected reading the given input stream, otherwise zero. */ ZEXTERN int ZEXPORT gzdirect OF((gzFile file)); /* Returns 1 if file is being read directly without decompression, otherwise zero. */ ZEXTERN int ZEXPORT gzclose OF((gzFile file)); /* Flushes all pending output if necessary, closes the compressed file and deallocates all the (de)compression state. The return value is the zlib error number (see function gzerror below). */ ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum)); /* Returns the error message for the last error which occurred on the given compressed file. errnum is set to zlib error number. If an error occurred in the file system and not in the compression library, errnum is set to Z_ERRNO and the application may consult errno to get the exact error code. */ ZEXTERN void ZEXPORT gzclearerr OF((gzFile file)); /* Clears the error and end-of-file flags for file. This is analogous to the clearerr() function in stdio. This is useful for continuing to read a gzip file that is being written concurrently. */ /* checksum functions */ /* These functions are not related to compression but are exported anyway because they might be useful in applications using the compression library. */ ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len)); /* Update a running Adler-32 checksum with the bytes buf[0..len-1] and return the updated checksum. If buf is NULL, this function returns the required initial value for the checksum. An Adler-32 checksum is almost as reliable as a CRC32 but can be computed much faster. Usage example: uLong adler = adler32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { adler = adler32(adler, buffer, length); } if (adler != original_adler) error(); */ ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2, z_off_t len2)); /* Combine two Adler-32 checksums into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. */ ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len)); /* Update a running CRC-32 with the bytes buf[0..len-1] and return the updated CRC-32. If buf is NULL, this function returns the required initial value for the for the crc. Pre- and post-conditioning (one's complement) is performed within this function so it shouldn't be done by the application. Usage example: uLong crc = crc32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { crc = crc32(crc, buffer, length); } if (crc != original_crc) error(); */ ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2)); /* Combine two CRC-32 check values into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, CRC-32 check values were calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32 check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and len2. */ /* various hacks, don't look :) */ /* deflateInit and inflateInit are macros to allow checking the zlib version * and the compiler's view of z_stream: */ ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm, const char *version, int stream_size)); ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits, unsigned char FAR *window, const char *version, int stream_size)); #define deflateInit(strm, level) \ deflateInit_((strm), (level), ZLIB_VERSION, sizeof(z_stream)) #define inflateInit(strm) \ inflateInit_((strm), ZLIB_VERSION, sizeof(z_stream)) #define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \ deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\ (strategy), ZLIB_VERSION, sizeof(z_stream)) #define inflateInit2(strm, windowBits) \ inflateInit2_((strm), (windowBits), ZLIB_VERSION, sizeof(z_stream)) #define inflateBackInit(strm, windowBits, window) \ inflateBackInit_((strm), (windowBits), (window), \ ZLIB_VERSION, sizeof(z_stream)) #if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL) struct internal_state {int dummy;}; /* hack for buggy compilers */ #endif ZEXTERN const char * ZEXPORT zError OF((int)); ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp z)); ZEXTERN const uLongf * ZEXPORT get_crc_table OF((void)); #ifdef __cplusplus } #endif #endif /* ZLIB_H */ /********* End of inlined file: zlib.h *********/ #undef OS_CODE #else #include #endif } BEGIN_JUCE_NAMESPACE using namespace zlibNamespace; // internal helper object that holds the zlib structures so they don't have to be // included publicly. class GZIPCompressorHelper { private: z_stream* stream; uint8* data; int dataSize, compLevel, strategy; bool setParams; public: bool finished, shouldFinish; GZIPCompressorHelper (const int compressionLevel, const bool nowrap) : data (0), dataSize (0), compLevel (compressionLevel), strategy (0), setParams (true), finished (false), shouldFinish (false) { stream = (z_stream*) juce_calloc (sizeof (z_stream)); if (deflateInit2 (stream, compLevel, Z_DEFLATED, nowrap ? -MAX_WBITS : MAX_WBITS, 8, strategy) != Z_OK) { juce_free (stream); stream = 0; } } ~GZIPCompressorHelper() { if (stream != 0) { deflateEnd (stream); juce_free (stream); } } bool needsInput() const throw() { return dataSize <= 0; } void setInput (uint8* const newData, const int size) throw() { data = newData; dataSize = size; } int doNextBlock (uint8* const dest, const int destSize) throw() { if (stream != 0) { stream->next_in = data; stream->next_out = dest; stream->avail_in = dataSize; stream->avail_out = destSize; const int result = setParams ? deflateParams (stream, compLevel, strategy) : deflate (stream, shouldFinish ? Z_FINISH : Z_NO_FLUSH); setParams = false; switch (result) { case Z_STREAM_END: finished = true; case Z_OK: data += dataSize - stream->avail_in; dataSize = stream->avail_in; return destSize - stream->avail_out; default: break; } } return 0; } }; const int gzipCompBufferSize = 32768; GZIPCompressorOutputStream::GZIPCompressorOutputStream (OutputStream* const destStream_, int compressionLevel, const bool deleteDestStream_, const bool noWrap) : destStream (destStream_), deleteDestStream (deleteDestStream_) { if (compressionLevel < 1 || compressionLevel > 9) compressionLevel = -1; helper = new GZIPCompressorHelper (compressionLevel, noWrap); buffer = (uint8*) juce_malloc (gzipCompBufferSize); } GZIPCompressorOutputStream::~GZIPCompressorOutputStream() { flush(); GZIPCompressorHelper* const h = (GZIPCompressorHelper*) helper; delete h; juce_free (buffer); if (deleteDestStream) delete destStream; } void GZIPCompressorOutputStream::flush() { GZIPCompressorHelper* const h = (GZIPCompressorHelper*) helper; if (! h->finished) { h->shouldFinish = true; while (! h->finished) doNextBlock(); } destStream->flush(); } bool GZIPCompressorOutputStream::write (const void* destBuffer, int howMany) { GZIPCompressorHelper* const h = (GZIPCompressorHelper*) helper; if (! h->finished) { h->setInput ((uint8*) destBuffer, howMany); while (! h->needsInput()) { if (! doNextBlock()) return false; } } return true; } bool GZIPCompressorOutputStream::doNextBlock() { GZIPCompressorHelper* const h = (GZIPCompressorHelper*) helper; const int len = h->doNextBlock (buffer, gzipCompBufferSize); if (len > 0) return destStream->write (buffer, len); else return true; } int64 GZIPCompressorOutputStream::getPosition() { return destStream->getPosition(); } bool GZIPCompressorOutputStream::setPosition (int64 /*newPosition*/) { jassertfalse // can't do it! return false; } END_JUCE_NAMESPACE /********* End of inlined file: juce_GZIPCompressorOutputStream.cpp *********/ /********* Start of inlined file: juce_GZIPDecompressorInputStream.cpp *********/ #if JUCE_MSVC #pragma warning (push) #pragma warning (disable: 4309 4305) #endif namespace zlibNamespace { #if JUCE_INCLUDE_ZLIB_CODE extern "C" { #undef OS_CODE #undef fdopen #define ZLIB_INTERNAL #define NO_DUMMY_DECL /********* Start of inlined file: adler32.c *********/ /* @(#) $Id: adler32.c,v 1.1 2007/06/07 17:54:37 jules_rms Exp $ */ #define ZLIB_INTERNAL #define BASE 65521UL /* largest prime smaller than 65536 */ #define NMAX 5552 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); #define DO16(buf) DO8(buf,0); DO8(buf,8); /* use NO_DIVIDE if your processor does not do division in hardware */ #ifdef NO_DIVIDE # define MOD(a) \ do { \ if (a >= (BASE << 16)) a -= (BASE << 16); \ if (a >= (BASE << 15)) a -= (BASE << 15); \ if (a >= (BASE << 14)) a -= (BASE << 14); \ if (a >= (BASE << 13)) a -= (BASE << 13); \ if (a >= (BASE << 12)) a -= (BASE << 12); \ if (a >= (BASE << 11)) a -= (BASE << 11); \ if (a >= (BASE << 10)) a -= (BASE << 10); \ if (a >= (BASE << 9)) a -= (BASE << 9); \ if (a >= (BASE << 8)) a -= (BASE << 8); \ if (a >= (BASE << 7)) a -= (BASE << 7); \ if (a >= (BASE << 6)) a -= (BASE << 6); \ if (a >= (BASE << 5)) a -= (BASE << 5); \ if (a >= (BASE << 4)) a -= (BASE << 4); \ if (a >= (BASE << 3)) a -= (BASE << 3); \ if (a >= (BASE << 2)) a -= (BASE << 2); \ if (a >= (BASE << 1)) a -= (BASE << 1); \ if (a >= BASE) a -= BASE; \ } while (0) # define MOD4(a) \ do { \ if (a >= (BASE << 4)) a -= (BASE << 4); \ if (a >= (BASE << 3)) a -= (BASE << 3); \ if (a >= (BASE << 2)) a -= (BASE << 2); \ if (a >= (BASE << 1)) a -= (BASE << 1); \ if (a >= BASE) a -= BASE; \ } while (0) #else # define MOD(a) a %= BASE # define MOD4(a) a %= BASE #endif /* ========================================================================= */ uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) { unsigned long sum2; unsigned n; /* split Adler-32 into component sums */ sum2 = (adler >> 16) & 0xffff; adler &= 0xffff; /* in case user likes doing a byte at a time, keep it fast */ if (len == 1) { adler += buf[0]; if (adler >= BASE) adler -= BASE; sum2 += adler; if (sum2 >= BASE) sum2 -= BASE; return adler | (sum2 << 16); } /* initial Adler-32 value (deferred check for len == 1 speed) */ if (buf == Z_NULL) return 1L; /* in case short lengths are provided, keep it somewhat fast */ if (len < 16) { while (len--) { adler += *buf++; sum2 += adler; } if (adler >= BASE) adler -= BASE; MOD4(sum2); /* only added so many BASE's */ return adler | (sum2 << 16); } /* do length NMAX blocks -- requires just one modulo operation */ while (len >= NMAX) { len -= NMAX; n = NMAX / 16; /* NMAX is divisible by 16 */ do { DO16(buf); /* 16 sums unrolled */ buf += 16; } while (--n); MOD(adler); MOD(sum2); } /* do remaining bytes (less than NMAX, still just one modulo) */ if (len) { /* avoid modulos if none remaining */ while (len >= 16) { len -= 16; DO16(buf); buf += 16; } while (len--) { adler += *buf++; sum2 += adler; } MOD(adler); MOD(sum2); } /* return recombined sums */ return adler | (sum2 << 16); } /* ========================================================================= */ uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2) { unsigned long sum1; unsigned long sum2; unsigned rem; /* the derivation of this formula is left as an exercise for the reader */ rem = (unsigned)(len2 % BASE); sum1 = adler1 & 0xffff; sum2 = rem * sum1; MOD(sum2); sum1 += (adler2 & 0xffff) + BASE - 1; sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; if (sum1 > BASE) sum1 -= BASE; if (sum1 > BASE) sum1 -= BASE; if (sum2 > (BASE << 1)) sum2 -= (BASE << 1); if (sum2 > BASE) sum2 -= BASE; return sum1 | (sum2 << 16); } /********* End of inlined file: adler32.c *********/ /********* Start of inlined file: compress.c *********/ /* @(#) $Id: compress.c,v 1.1 2007/06/07 17:54:37 jules_rms Exp $ */ #define ZLIB_INTERNAL /* =========================================================================== Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least 0.1% larger than sourceLen plus 12 bytes. Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ int ZEXPORT compress2 (Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int level) { z_stream stream; int err; stream.next_in = (Bytef*)source; stream.avail_in = (uInt)sourceLen; #ifdef MAXSEG_64K /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; #endif stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; stream.opaque = (voidpf)0; err = deflateInit(&stream, level); if (err != Z_OK) return err; err = deflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { deflateEnd(&stream); return err == Z_OK ? Z_BUF_ERROR : err; } *destLen = stream.total_out; err = deflateEnd(&stream); return err; } /* =========================================================================== */ int ZEXPORT compress (Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen) { return compress2(dest, destLen, source, sourceLen, Z_DEFAULT_COMPRESSION); } /* =========================================================================== If the default memLevel or windowBits for deflateInit() is changed, then this function needs to be updated. */ uLong ZEXPORT compressBound (uLong sourceLen) { return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + 11; } /********* End of inlined file: compress.c *********/ #undef DO1 #undef DO8 /********* Start of inlined file: crc32.c *********/ /* @(#) $Id: crc32.c,v 1.1 2007/06/07 17:54:37 jules_rms Exp $ */ /* Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore protection on the static variables used to control the first-use generation of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should first call get_crc_table() to initialize the tables before allowing more than one thread to use crc32(). */ #ifdef MAKECRCH # include # ifndef DYNAMIC_CRC_TABLE # define DYNAMIC_CRC_TABLE # endif /* !DYNAMIC_CRC_TABLE */ #endif /* MAKECRCH */ /********* Start of inlined file: zutil.h *********/ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id: zutil.h,v 1.1 2007/06/07 17:54:37 jules_rms Exp $ */ #ifndef ZUTIL_H #define ZUTIL_H #define ZLIB_INTERNAL #ifdef STDC # ifndef _WIN32_WCE # include # endif # include # include #endif #ifdef NO_ERRNO_H # ifdef _WIN32_WCE /* The Microsoft C Run-Time Library for Windows CE doesn't have * errno. We define it as a global variable to simplify porting. * Its value is always 0 and should not be used. We rename it to * avoid conflict with other libraries that use the same workaround. */ # define errno z_errno # endif extern int errno; #else # ifndef _WIN32_WCE # include # endif #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ typedef unsigned char uch; typedef uch FAR uchf; typedef unsigned short ush; typedef ush FAR ushf; typedef unsigned long ulg; extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */ /* (size given to avoid silly warnings with Visual C++) */ #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] #define ERR_RETURN(strm,err) \ return (strm->msg = (char*)ERR_MSG(err), (err)) /* To be used only when the state is known to be valid */ /* common constants */ #ifndef DEF_WBITS # define DEF_WBITS MAX_WBITS #endif /* default windowBits for decompression. MAX_WBITS is for compression only */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default memLevel */ #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 /* The three kinds of block type */ #define MIN_MATCH 3 #define MAX_MATCH 258 /* The minimum and maximum match lengths */ #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */ /* target dependencies */ #if defined(MSDOS) || (defined(WINDOWS) && !defined(WIN32)) # define OS_CODE 0x00 # if defined(__TURBOC__) || defined(__BORLANDC__) # if(__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__)) /* Allow compilation with ANSI keywords only enabled */ void _Cdecl farfree( void *block ); void *_Cdecl farmalloc( unsigned long nbytes ); # else # include # endif # else /* MSC or DJGPP */ # include # endif #endif #ifdef AMIGA # define OS_CODE 0x01 #endif #if defined(VAXC) || defined(VMS) # define OS_CODE 0x02 # define F_OPEN(name, mode) \ fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512") #endif #if defined(ATARI) || defined(atarist) # define OS_CODE 0x05 #endif #ifdef OS2 # define OS_CODE 0x06 # ifdef M_I86 #include # endif #endif #if defined(MACOS) || TARGET_OS_MAC # define OS_CODE 0x07 # if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os # include /* for fdopen */ # else # ifndef fdopen # define fdopen(fd,mode) NULL /* No fdopen() */ # endif # endif #endif #ifdef TOPS20 # define OS_CODE 0x0a #endif #ifdef WIN32 # ifndef __CYGWIN__ /* Cygwin is Unix, not Win32 */ # define OS_CODE 0x0b # endif #endif #ifdef __50SERIES /* Prime/PRIMOS */ # define OS_CODE 0x0f #endif #if defined(_BEOS_) || defined(RISCOS) # define fdopen(fd,mode) NULL /* No fdopen() */ #endif #if (defined(_MSC_VER) && (_MSC_VER > 600)) # if defined(_WIN32_WCE) # define fdopen(fd,mode) NULL /* No fdopen() */ # ifndef _PTRDIFF_T_DEFINED typedef int ptrdiff_t; # define _PTRDIFF_T_DEFINED # endif # else # define fdopen(fd,type) _fdopen(fd,type) # endif #endif /* common defaults */ #ifndef OS_CODE # define OS_CODE 0x03 /* assume Unix */ #endif #ifndef F_OPEN # define F_OPEN(name, mode) fopen((name), (mode)) #endif /* functions */ #if defined(STDC99) || (defined(__TURBOC__) && __TURBOC__ >= 0x550) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #if defined(__CYGWIN__) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #ifndef HAVE_VSNPRINTF # ifdef MSDOS /* vsnprintf may exist on some MS-DOS compilers (DJGPP?), but for now we just assume it doesn't. */ # define NO_vsnprintf # endif # ifdef __TURBOC__ # define NO_vsnprintf # endif # ifdef WIN32 /* In Win32, vsnprintf is available as the "non-ANSI" _vsnprintf. */ # if !defined(vsnprintf) && !defined(NO_vsnprintf) # define vsnprintf _vsnprintf # endif # endif # ifdef __SASC # define NO_vsnprintf # endif #endif #ifdef VMS # define NO_vsnprintf #endif #if defined(pyr) # define NO_MEMCPY #endif #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__) /* Use our own functions for small and medium model with MSC <= 5.0. * You may have to use the same strategy for Borland C (untested). * The __SC__ check is for Symantec. */ # define NO_MEMCPY #endif #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY) # define HAVE_MEMCPY #endif #ifdef HAVE_MEMCPY # ifdef SMALL_MEDIUM /* MSDOS small or medium model */ # define zmemcpy _fmemcpy # define zmemcmp _fmemcmp # define zmemzero(dest, len) _fmemset(dest, 0, len) # else # define zmemcpy memcpy # define zmemcmp memcmp # define zmemzero(dest, len) memset(dest, 0, len) # endif #else extern void zmemcpy OF((Bytef* dest, const Bytef* source, uInt len)); extern int zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len)); extern void zmemzero OF((Bytef* dest, uInt len)); #endif /* Diagnostic functions */ #ifdef DEBUG # include extern int z_verbose; extern void z_error OF((const char *m)); # define Assert(cond,msg) {if(!(cond)) z_error(msg);} # define Trace(x) {if (z_verbose>=0) fprintf x ;} # define Tracev(x) {if (z_verbose>0) fprintf x ;} # define Tracevv(x) {if (z_verbose>1) fprintf x ;} # define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;} # define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;} #else # define Assert(cond,msg) # define Trace(x) # define Tracev(x) # define Tracevv(x) # define Tracec(c,x) # define Tracecv(c,x) #endif voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); void zcfree OF((voidpf opaque, voidpf ptr)); #define ZALLOC(strm, items, size) \ (*((strm)->zalloc))((strm)->opaque, (items), (size)) #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} #endif /* ZUTIL_H */ /********* End of inlined file: zutil.h *********/ /* for STDC and FAR definitions */ #define local static /* Find a four-byte integer type for crc32_little() and crc32_big(). */ #ifndef NOBYFOUR # ifdef STDC /* need ANSI C limits.h to determine sizes */ # include # define BYFOUR # if (UINT_MAX == 0xffffffffUL) typedef unsigned int u4; # else # if (ULONG_MAX == 0xffffffffUL) typedef unsigned long u4; # else # if (USHRT_MAX == 0xffffffffUL) typedef unsigned short u4; # else # undef BYFOUR /* can't find a four-byte integer type! */ # endif # endif # endif # endif /* STDC */ #endif /* !NOBYFOUR */ /* Definitions for doing the crc four data bytes at a time. */ #ifdef BYFOUR # define REV(w) (((w)>>24)+(((w)>>8)&0xff00)+ \ (((w)&0xff00)<<8)+(((w)&0xff)<<24)) local unsigned long crc32_little OF((unsigned long, const unsigned char FAR *, unsigned)); local unsigned long crc32_big OF((unsigned long, const unsigned char FAR *, unsigned)); # define TBLS 8 #else # define TBLS 1 #endif /* BYFOUR */ /* Local functions for crc concatenation */ local unsigned long gf2_matrix_times OF((unsigned long *mat, unsigned long vec)); local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); #ifdef DYNAMIC_CRC_TABLE local volatile int crc_table_empty = 1; local unsigned long FAR crc_table[TBLS][256]; local void make_crc_table OF((void)); #ifdef MAKECRCH local void write_table OF((FILE *, const unsigned long FAR *)); #endif /* MAKECRCH */ /* Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. Polynomials over GF(2) are represented in binary, one bit per coefficient, with the lowest powers in the most significant bit. Then adding polynomials is just exclusive-or, and multiplying a polynomial by x is a right shift by one. If we call the above polynomial p, and represent a byte as the polynomial q, also with the lowest power in the most significant bit (so the byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, where a mod b means the remainder after dividing a by b. This calculation is done using the shift-register method of multiplying and taking the remainder. The register is initialized to zero, and for each incoming bit, x^32 is added mod p to the register if the bit is a one (where x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x (which is shifting right by one and adding x^32 mod p if the bit shifted out is a one). We start with the highest power (least significant bit) of q and repeat for all eight bits of q. The first table is simply the CRC of all possible eight bit values. This is all the information needed to generate CRCs on data a byte at a time for all combinations of CRC register values and incoming bytes. The remaining tables allow for word-at-a-time CRC calculation for both big-endian and little- endian machines, where a word is four bytes. */ local void make_crc_table() { unsigned long c; int n, k; unsigned long poly; /* polynomial exclusive-or pattern */ /* terms of polynomial defining this crc (except x^32): */ static volatile int first = 1; /* flag to limit concurrent making */ static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; /* See if another task is already doing this (not thread-safe, but better than nothing -- significantly reduces duration of vulnerability in case the advice about DYNAMIC_CRC_TABLE is ignored) */ if (first) { first = 0; /* make exclusive-or pattern from polynomial (0xedb88320UL) */ poly = 0UL; for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++) poly |= 1UL << (31 - p[n]); /* generate a crc for every 8-bit value */ for (n = 0; n < 256; n++) { c = (unsigned long)n; for (k = 0; k < 8; k++) c = c & 1 ? poly ^ (c >> 1) : c >> 1; crc_table[0][n] = c; } #ifdef BYFOUR /* generate crc for each value followed by one, two, and three zeros, and then the byte reversal of those as well as the first table */ for (n = 0; n < 256; n++) { c = crc_table[0][n]; crc_table[4][n] = REV(c); for (k = 1; k < 4; k++) { c = crc_table[0][c & 0xff] ^ (c >> 8); crc_table[k][n] = c; crc_table[k + 4][n] = REV(c); } } #endif /* BYFOUR */ crc_table_empty = 0; } else { /* not first */ /* wait for the other guy to finish (not efficient, but rare) */ while (crc_table_empty) ; } #ifdef MAKECRCH /* write out CRC tables to crc32.h */ { FILE *out; out = fopen("crc32.h", "w"); if (out == NULL) return; fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); fprintf(out, "local const unsigned long FAR "); fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); write_table(out, crc_table[0]); # ifdef BYFOUR fprintf(out, "#ifdef BYFOUR\n"); for (k = 1; k < 8; k++) { fprintf(out, " },\n {\n"); write_table(out, crc_table[k]); } fprintf(out, "#endif\n"); # endif /* BYFOUR */ fprintf(out, " }\n};\n"); fclose(out); } #endif /* MAKECRCH */ } #ifdef MAKECRCH local void write_table(out, table) FILE *out; const unsigned long FAR *table; { int n; for (n = 0; n < 256; n++) fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", table[n], n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); } #endif /* MAKECRCH */ #else /* !DYNAMIC_CRC_TABLE */ /* ======================================================================== * Tables of CRC-32s of all single-byte values, made by make_crc_table(). */ /********* Start of inlined file: crc32.h *********/ local const unsigned long FAR crc_table[TBLS][256] = { { 0x00000000UL, 0x77073096UL, 0xee0e612cUL, 0x990951baUL, 0x076dc419UL, 0x706af48fUL, 0xe963a535UL, 0x9e6495a3UL, 0x0edb8832UL, 0x79dcb8a4UL, 0xe0d5e91eUL, 0x97d2d988UL, 0x09b64c2bUL, 0x7eb17cbdUL, 0xe7b82d07UL, 0x90bf1d91UL, 0x1db71064UL, 0x6ab020f2UL, 0xf3b97148UL, 0x84be41deUL, 0x1adad47dUL, 0x6ddde4ebUL, 0xf4d4b551UL, 0x83d385c7UL, 0x136c9856UL, 0x646ba8c0UL, 0xfd62f97aUL, 0x8a65c9ecUL, 0x14015c4fUL, 0x63066cd9UL, 0xfa0f3d63UL, 0x8d080df5UL, 0x3b6e20c8UL, 0x4c69105eUL, 0xd56041e4UL, 0xa2677172UL, 0x3c03e4d1UL, 0x4b04d447UL, 0xd20d85fdUL, 0xa50ab56bUL, 0x35b5a8faUL, 0x42b2986cUL, 0xdbbbc9d6UL, 0xacbcf940UL, 0x32d86ce3UL, 0x45df5c75UL, 0xdcd60dcfUL, 0xabd13d59UL, 0x26d930acUL, 0x51de003aUL, 0xc8d75180UL, 0xbfd06116UL, 0x21b4f4b5UL, 0x56b3c423UL, 0xcfba9599UL, 0xb8bda50fUL, 0x2802b89eUL, 0x5f058808UL, 0xc60cd9b2UL, 0xb10be924UL, 0x2f6f7c87UL, 0x58684c11UL, 0xc1611dabUL, 0xb6662d3dUL, 0x76dc4190UL, 0x01db7106UL, 0x98d220bcUL, 0xefd5102aUL, 0x71b18589UL, 0x06b6b51fUL, 0x9fbfe4a5UL, 0xe8b8d433UL, 0x7807c9a2UL, 0x0f00f934UL, 0x9609a88eUL, 0xe10e9818UL, 0x7f6a0dbbUL, 0x086d3d2dUL, 0x91646c97UL, 0xe6635c01UL, 0x6b6b51f4UL, 0x1c6c6162UL, 0x856530d8UL, 0xf262004eUL, 0x6c0695edUL, 0x1b01a57bUL, 0x8208f4c1UL, 0xf50fc457UL, 0x65b0d9c6UL, 0x12b7e950UL, 0x8bbeb8eaUL, 0xfcb9887cUL, 0x62dd1ddfUL, 0x15da2d49UL, 0x8cd37cf3UL, 0xfbd44c65UL, 0x4db26158UL, 0x3ab551ceUL, 0xa3bc0074UL, 0xd4bb30e2UL, 0x4adfa541UL, 0x3dd895d7UL, 0xa4d1c46dUL, 0xd3d6f4fbUL, 0x4369e96aUL, 0x346ed9fcUL, 0xad678846UL, 0xda60b8d0UL, 0x44042d73UL, 0x33031de5UL, 0xaa0a4c5fUL, 0xdd0d7cc9UL, 0x5005713cUL, 0x270241aaUL, 0xbe0b1010UL, 0xc90c2086UL, 0x5768b525UL, 0x206f85b3UL, 0xb966d409UL, 0xce61e49fUL, 0x5edef90eUL, 0x29d9c998UL, 0xb0d09822UL, 0xc7d7a8b4UL, 0x59b33d17UL, 0x2eb40d81UL, 0xb7bd5c3bUL, 0xc0ba6cadUL, 0xedb88320UL, 0x9abfb3b6UL, 0x03b6e20cUL, 0x74b1d29aUL, 0xead54739UL, 0x9dd277afUL, 0x04db2615UL, 0x73dc1683UL, 0xe3630b12UL, 0x94643b84UL, 0x0d6d6a3eUL, 0x7a6a5aa8UL, 0xe40ecf0bUL, 0x9309ff9dUL, 0x0a00ae27UL, 0x7d079eb1UL, 0xf00f9344UL, 0x8708a3d2UL, 0x1e01f268UL, 0x6906c2feUL, 0xf762575dUL, 0x806567cbUL, 0x196c3671UL, 0x6e6b06e7UL, 0xfed41b76UL, 0x89d32be0UL, 0x10da7a5aUL, 0x67dd4accUL, 0xf9b9df6fUL, 0x8ebeeff9UL, 0x17b7be43UL, 0x60b08ed5UL, 0xd6d6a3e8UL, 0xa1d1937eUL, 0x38d8c2c4UL, 0x4fdff252UL, 0xd1bb67f1UL, 0xa6bc5767UL, 0x3fb506ddUL, 0x48b2364bUL, 0xd80d2bdaUL, 0xaf0a1b4cUL, 0x36034af6UL, 0x41047a60UL, 0xdf60efc3UL, 0xa867df55UL, 0x316e8eefUL, 0x4669be79UL, 0xcb61b38cUL, 0xbc66831aUL, 0x256fd2a0UL, 0x5268e236UL, 0xcc0c7795UL, 0xbb0b4703UL, 0x220216b9UL, 0x5505262fUL, 0xc5ba3bbeUL, 0xb2bd0b28UL, 0x2bb45a92UL, 0x5cb36a04UL, 0xc2d7ffa7UL, 0xb5d0cf31UL, 0x2cd99e8bUL, 0x5bdeae1dUL, 0x9b64c2b0UL, 0xec63f226UL, 0x756aa39cUL, 0x026d930aUL, 0x9c0906a9UL, 0xeb0e363fUL, 0x72076785UL, 0x05005713UL, 0x95bf4a82UL, 0xe2b87a14UL, 0x7bb12baeUL, 0x0cb61b38UL, 0x92d28e9bUL, 0xe5d5be0dUL, 0x7cdcefb7UL, 0x0bdbdf21UL, 0x86d3d2d4UL, 0xf1d4e242UL, 0x68ddb3f8UL, 0x1fda836eUL, 0x81be16cdUL, 0xf6b9265bUL, 0x6fb077e1UL, 0x18b74777UL, 0x88085ae6UL, 0xff0f6a70UL, 0x66063bcaUL, 0x11010b5cUL, 0x8f659effUL, 0xf862ae69UL, 0x616bffd3UL, 0x166ccf45UL, 0xa00ae278UL, 0xd70dd2eeUL, 0x4e048354UL, 0x3903b3c2UL, 0xa7672661UL, 0xd06016f7UL, 0x4969474dUL, 0x3e6e77dbUL, 0xaed16a4aUL, 0xd9d65adcUL, 0x40df0b66UL, 0x37d83bf0UL, 0xa9bcae53UL, 0xdebb9ec5UL, 0x47b2cf7fUL, 0x30b5ffe9UL, 0xbdbdf21cUL, 0xcabac28aUL, 0x53b39330UL, 0x24b4a3a6UL, 0xbad03605UL, 0xcdd70693UL, 0x54de5729UL, 0x23d967bfUL, 0xb3667a2eUL, 0xc4614ab8UL, 0x5d681b02UL, 0x2a6f2b94UL, 0xb40bbe37UL, 0xc30c8ea1UL, 0x5a05df1bUL, 0x2d02ef8dUL #ifdef BYFOUR }, { 0x00000000UL, 0x191b3141UL, 0x32366282UL, 0x2b2d53c3UL, 0x646cc504UL, 0x7d77f445UL, 0x565aa786UL, 0x4f4196c7UL, 0xc8d98a08UL, 0xd1c2bb49UL, 0xfaefe88aUL, 0xe3f4d9cbUL, 0xacb54f0cUL, 0xb5ae7e4dUL, 0x9e832d8eUL, 0x87981ccfUL, 0x4ac21251UL, 0x53d92310UL, 0x78f470d3UL, 0x61ef4192UL, 0x2eaed755UL, 0x37b5e614UL, 0x1c98b5d7UL, 0x05838496UL, 0x821b9859UL, 0x9b00a918UL, 0xb02dfadbUL, 0xa936cb9aUL, 0xe6775d5dUL, 0xff6c6c1cUL, 0xd4413fdfUL, 0xcd5a0e9eUL, 0x958424a2UL, 0x8c9f15e3UL, 0xa7b24620UL, 0xbea97761UL, 0xf1e8e1a6UL, 0xe8f3d0e7UL, 0xc3de8324UL, 0xdac5b265UL, 0x5d5daeaaUL, 0x44469febUL, 0x6f6bcc28UL, 0x7670fd69UL, 0x39316baeUL, 0x202a5aefUL, 0x0b07092cUL, 0x121c386dUL, 0xdf4636f3UL, 0xc65d07b2UL, 0xed705471UL, 0xf46b6530UL, 0xbb2af3f7UL, 0xa231c2b6UL, 0x891c9175UL, 0x9007a034UL, 0x179fbcfbUL, 0x0e848dbaUL, 0x25a9de79UL, 0x3cb2ef38UL, 0x73f379ffUL, 0x6ae848beUL, 0x41c51b7dUL, 0x58de2a3cUL, 0xf0794f05UL, 0xe9627e44UL, 0xc24f2d87UL, 0xdb541cc6UL, 0x94158a01UL, 0x8d0ebb40UL, 0xa623e883UL, 0xbf38d9c2UL, 0x38a0c50dUL, 0x21bbf44cUL, 0x0a96a78fUL, 0x138d96ceUL, 0x5ccc0009UL, 0x45d73148UL, 0x6efa628bUL, 0x77e153caUL, 0xbabb5d54UL, 0xa3a06c15UL, 0x888d3fd6UL, 0x91960e97UL, 0xded79850UL, 0xc7cca911UL, 0xece1fad2UL, 0xf5facb93UL, 0x7262d75cUL, 0x6b79e61dUL, 0x4054b5deUL, 0x594f849fUL, 0x160e1258UL, 0x0f152319UL, 0x243870daUL, 0x3d23419bUL, 0x65fd6ba7UL, 0x7ce65ae6UL, 0x57cb0925UL, 0x4ed03864UL, 0x0191aea3UL, 0x188a9fe2UL, 0x33a7cc21UL, 0x2abcfd60UL, 0xad24e1afUL, 0xb43fd0eeUL, 0x9f12832dUL, 0x8609b26cUL, 0xc94824abUL, 0xd05315eaUL, 0xfb7e4629UL, 0xe2657768UL, 0x2f3f79f6UL, 0x362448b7UL, 0x1d091b74UL, 0x04122a35UL, 0x4b53bcf2UL, 0x52488db3UL, 0x7965de70UL, 0x607eef31UL, 0xe7e6f3feUL, 0xfefdc2bfUL, 0xd5d0917cUL, 0xcccba03dUL, 0x838a36faUL, 0x9a9107bbUL, 0xb1bc5478UL, 0xa8a76539UL, 0x3b83984bUL, 0x2298a90aUL, 0x09b5fac9UL, 0x10aecb88UL, 0x5fef5d4fUL, 0x46f46c0eUL, 0x6dd93fcdUL, 0x74c20e8cUL, 0xf35a1243UL, 0xea412302UL, 0xc16c70c1UL, 0xd8774180UL, 0x9736d747UL, 0x8e2de606UL, 0xa500b5c5UL, 0xbc1b8484UL, 0x71418a1aUL, 0x685abb5bUL, 0x4377e898UL, 0x5a6cd9d9UL, 0x152d4f1eUL, 0x0c367e5fUL, 0x271b2d9cUL, 0x3e001cddUL, 0xb9980012UL, 0xa0833153UL, 0x8bae6290UL, 0x92b553d1UL, 0xddf4c516UL, 0xc4eff457UL, 0xefc2a794UL, 0xf6d996d5UL, 0xae07bce9UL, 0xb71c8da8UL, 0x9c31de6bUL, 0x852aef2aUL, 0xca6b79edUL, 0xd37048acUL, 0xf85d1b6fUL, 0xe1462a2eUL, 0x66de36e1UL, 0x7fc507a0UL, 0x54e85463UL, 0x4df36522UL, 0x02b2f3e5UL, 0x1ba9c2a4UL, 0x30849167UL, 0x299fa026UL, 0xe4c5aeb8UL, 0xfdde9ff9UL, 0xd6f3cc3aUL, 0xcfe8fd7bUL, 0x80a96bbcUL, 0x99b25afdUL, 0xb29f093eUL, 0xab84387fUL, 0x2c1c24b0UL, 0x350715f1UL, 0x1e2a4632UL, 0x07317773UL, 0x4870e1b4UL, 0x516bd0f5UL, 0x7a468336UL, 0x635db277UL, 0xcbfad74eUL, 0xd2e1e60fUL, 0xf9ccb5ccUL, 0xe0d7848dUL, 0xaf96124aUL, 0xb68d230bUL, 0x9da070c8UL, 0x84bb4189UL, 0x03235d46UL, 0x1a386c07UL, 0x31153fc4UL, 0x280e0e85UL, 0x674f9842UL, 0x7e54a903UL, 0x5579fac0UL, 0x4c62cb81UL, 0x8138c51fUL, 0x9823f45eUL, 0xb30ea79dUL, 0xaa1596dcUL, 0xe554001bUL, 0xfc4f315aUL, 0xd7626299UL, 0xce7953d8UL, 0x49e14f17UL, 0x50fa7e56UL, 0x7bd72d95UL, 0x62cc1cd4UL, 0x2d8d8a13UL, 0x3496bb52UL, 0x1fbbe891UL, 0x06a0d9d0UL, 0x5e7ef3ecUL, 0x4765c2adUL, 0x6c48916eUL, 0x7553a02fUL, 0x3a1236e8UL, 0x230907a9UL, 0x0824546aUL, 0x113f652bUL, 0x96a779e4UL, 0x8fbc48a5UL, 0xa4911b66UL, 0xbd8a2a27UL, 0xf2cbbce0UL, 0xebd08da1UL, 0xc0fdde62UL, 0xd9e6ef23UL, 0x14bce1bdUL, 0x0da7d0fcUL, 0x268a833fUL, 0x3f91b27eUL, 0x70d024b9UL, 0x69cb15f8UL, 0x42e6463bUL, 0x5bfd777aUL, 0xdc656bb5UL, 0xc57e5af4UL, 0xee530937UL, 0xf7483876UL, 0xb809aeb1UL, 0xa1129ff0UL, 0x8a3fcc33UL, 0x9324fd72UL }, { 0x00000000UL, 0x01c26a37UL, 0x0384d46eUL, 0x0246be59UL, 0x0709a8dcUL, 0x06cbc2ebUL, 0x048d7cb2UL, 0x054f1685UL, 0x0e1351b8UL, 0x0fd13b8fUL, 0x0d9785d6UL, 0x0c55efe1UL, 0x091af964UL, 0x08d89353UL, 0x0a9e2d0aUL, 0x0b5c473dUL, 0x1c26a370UL, 0x1de4c947UL, 0x1fa2771eUL, 0x1e601d29UL, 0x1b2f0bacUL, 0x1aed619bUL, 0x18abdfc2UL, 0x1969b5f5UL, 0x1235f2c8UL, 0x13f798ffUL, 0x11b126a6UL, 0x10734c91UL, 0x153c5a14UL, 0x14fe3023UL, 0x16b88e7aUL, 0x177ae44dUL, 0x384d46e0UL, 0x398f2cd7UL, 0x3bc9928eUL, 0x3a0bf8b9UL, 0x3f44ee3cUL, 0x3e86840bUL, 0x3cc03a52UL, 0x3d025065UL, 0x365e1758UL, 0x379c7d6fUL, 0x35dac336UL, 0x3418a901UL, 0x3157bf84UL, 0x3095d5b3UL, 0x32d36beaUL, 0x331101ddUL, 0x246be590UL, 0x25a98fa7UL, 0x27ef31feUL, 0x262d5bc9UL, 0x23624d4cUL, 0x22a0277bUL, 0x20e69922UL, 0x2124f315UL, 0x2a78b428UL, 0x2bbade1fUL, 0x29fc6046UL, 0x283e0a71UL, 0x2d711cf4UL, 0x2cb376c3UL, 0x2ef5c89aUL, 0x2f37a2adUL, 0x709a8dc0UL, 0x7158e7f7UL, 0x731e59aeUL, 0x72dc3399UL, 0x7793251cUL, 0x76514f2bUL, 0x7417f172UL, 0x75d59b45UL, 0x7e89dc78UL, 0x7f4bb64fUL, 0x7d0d0816UL, 0x7ccf6221UL, 0x798074a4UL, 0x78421e93UL, 0x7a04a0caUL, 0x7bc6cafdUL, 0x6cbc2eb0UL, 0x6d7e4487UL, 0x6f38fadeUL, 0x6efa90e9UL, 0x6bb5866cUL, 0x6a77ec5bUL, 0x68315202UL, 0x69f33835UL, 0x62af7f08UL, 0x636d153fUL, 0x612bab66UL, 0x60e9c151UL, 0x65a6d7d4UL, 0x6464bde3UL, 0x662203baUL, 0x67e0698dUL, 0x48d7cb20UL, 0x4915a117UL, 0x4b531f4eUL, 0x4a917579UL, 0x4fde63fcUL, 0x4e1c09cbUL, 0x4c5ab792UL, 0x4d98dda5UL, 0x46c49a98UL, 0x4706f0afUL, 0x45404ef6UL, 0x448224c1UL, 0x41cd3244UL, 0x400f5873UL, 0x4249e62aUL, 0x438b8c1dUL, 0x54f16850UL, 0x55330267UL, 0x5775bc3eUL, 0x56b7d609UL, 0x53f8c08cUL, 0x523aaabbUL, 0x507c14e2UL, 0x51be7ed5UL, 0x5ae239e8UL, 0x5b2053dfUL, 0x5966ed86UL, 0x58a487b1UL, 0x5deb9134UL, 0x5c29fb03UL, 0x5e6f455aUL, 0x5fad2f6dUL, 0xe1351b80UL, 0xe0f771b7UL, 0xe2b1cfeeUL, 0xe373a5d9UL, 0xe63cb35cUL, 0xe7fed96bUL, 0xe5b86732UL, 0xe47a0d05UL, 0xef264a38UL, 0xeee4200fUL, 0xeca29e56UL, 0xed60f461UL, 0xe82fe2e4UL, 0xe9ed88d3UL, 0xebab368aUL, 0xea695cbdUL, 0xfd13b8f0UL, 0xfcd1d2c7UL, 0xfe976c9eUL, 0xff5506a9UL, 0xfa1a102cUL, 0xfbd87a1bUL, 0xf99ec442UL, 0xf85cae75UL, 0xf300e948UL, 0xf2c2837fUL, 0xf0843d26UL, 0xf1465711UL, 0xf4094194UL, 0xf5cb2ba3UL, 0xf78d95faUL, 0xf64fffcdUL, 0xd9785d60UL, 0xd8ba3757UL, 0xdafc890eUL, 0xdb3ee339UL, 0xde71f5bcUL, 0xdfb39f8bUL, 0xddf521d2UL, 0xdc374be5UL, 0xd76b0cd8UL, 0xd6a966efUL, 0xd4efd8b6UL, 0xd52db281UL, 0xd062a404UL, 0xd1a0ce33UL, 0xd3e6706aUL, 0xd2241a5dUL, 0xc55efe10UL, 0xc49c9427UL, 0xc6da2a7eUL, 0xc7184049UL, 0xc25756ccUL, 0xc3953cfbUL, 0xc1d382a2UL, 0xc011e895UL, 0xcb4dafa8UL, 0xca8fc59fUL, 0xc8c97bc6UL, 0xc90b11f1UL, 0xcc440774UL, 0xcd866d43UL, 0xcfc0d31aUL, 0xce02b92dUL, 0x91af9640UL, 0x906dfc77UL, 0x922b422eUL, 0x93e92819UL, 0x96a63e9cUL, 0x976454abUL, 0x9522eaf2UL, 0x94e080c5UL, 0x9fbcc7f8UL, 0x9e7eadcfUL, 0x9c381396UL, 0x9dfa79a1UL, 0x98b56f24UL, 0x99770513UL, 0x9b31bb4aUL, 0x9af3d17dUL, 0x8d893530UL, 0x8c4b5f07UL, 0x8e0de15eUL, 0x8fcf8b69UL, 0x8a809decUL, 0x8b42f7dbUL, 0x89044982UL, 0x88c623b5UL, 0x839a6488UL, 0x82580ebfUL, 0x801eb0e6UL, 0x81dcdad1UL, 0x8493cc54UL, 0x8551a663UL, 0x8717183aUL, 0x86d5720dUL, 0xa9e2d0a0UL, 0xa820ba97UL, 0xaa6604ceUL, 0xaba46ef9UL, 0xaeeb787cUL, 0xaf29124bUL, 0xad6fac12UL, 0xacadc625UL, 0xa7f18118UL, 0xa633eb2fUL, 0xa4755576UL, 0xa5b73f41UL, 0xa0f829c4UL, 0xa13a43f3UL, 0xa37cfdaaUL, 0xa2be979dUL, 0xb5c473d0UL, 0xb40619e7UL, 0xb640a7beUL, 0xb782cd89UL, 0xb2cddb0cUL, 0xb30fb13bUL, 0xb1490f62UL, 0xb08b6555UL, 0xbbd72268UL, 0xba15485fUL, 0xb853f606UL, 0xb9919c31UL, 0xbcde8ab4UL, 0xbd1ce083UL, 0xbf5a5edaUL, 0xbe9834edUL }, { 0x00000000UL, 0xb8bc6765UL, 0xaa09c88bUL, 0x12b5afeeUL, 0x8f629757UL, 0x37def032UL, 0x256b5fdcUL, 0x9dd738b9UL, 0xc5b428efUL, 0x7d084f8aUL, 0x6fbde064UL, 0xd7018701UL, 0x4ad6bfb8UL, 0xf26ad8ddUL, 0xe0df7733UL, 0x58631056UL, 0x5019579fUL, 0xe8a530faUL, 0xfa109f14UL, 0x42acf871UL, 0xdf7bc0c8UL, 0x67c7a7adUL, 0x75720843UL, 0xcdce6f26UL, 0x95ad7f70UL, 0x2d111815UL, 0x3fa4b7fbUL, 0x8718d09eUL, 0x1acfe827UL, 0xa2738f42UL, 0xb0c620acUL, 0x087a47c9UL, 0xa032af3eUL, 0x188ec85bUL, 0x0a3b67b5UL, 0xb28700d0UL, 0x2f503869UL, 0x97ec5f0cUL, 0x8559f0e2UL, 0x3de59787UL, 0x658687d1UL, 0xdd3ae0b4UL, 0xcf8f4f5aUL, 0x7733283fUL, 0xeae41086UL, 0x525877e3UL, 0x40edd80dUL, 0xf851bf68UL, 0xf02bf8a1UL, 0x48979fc4UL, 0x5a22302aUL, 0xe29e574fUL, 0x7f496ff6UL, 0xc7f50893UL, 0xd540a77dUL, 0x6dfcc018UL, 0x359fd04eUL, 0x8d23b72bUL, 0x9f9618c5UL, 0x272a7fa0UL, 0xbafd4719UL, 0x0241207cUL, 0x10f48f92UL, 0xa848e8f7UL, 0x9b14583dUL, 0x23a83f58UL, 0x311d90b6UL, 0x89a1f7d3UL, 0x1476cf6aUL, 0xaccaa80fUL, 0xbe7f07e1UL, 0x06c36084UL, 0x5ea070d2UL, 0xe61c17b7UL, 0xf4a9b859UL, 0x4c15df3cUL, 0xd1c2e785UL, 0x697e80e0UL, 0x7bcb2f0eUL, 0xc377486bUL, 0xcb0d0fa2UL, 0x73b168c7UL, 0x6104c729UL, 0xd9b8a04cUL, 0x446f98f5UL, 0xfcd3ff90UL, 0xee66507eUL, 0x56da371bUL, 0x0eb9274dUL, 0xb6054028UL, 0xa4b0efc6UL, 0x1c0c88a3UL, 0x81dbb01aUL, 0x3967d77fUL, 0x2bd27891UL, 0x936e1ff4UL, 0x3b26f703UL, 0x839a9066UL, 0x912f3f88UL, 0x299358edUL, 0xb4446054UL, 0x0cf80731UL, 0x1e4da8dfUL, 0xa6f1cfbaUL, 0xfe92dfecUL, 0x462eb889UL, 0x549b1767UL, 0xec277002UL, 0x71f048bbUL, 0xc94c2fdeUL, 0xdbf98030UL, 0x6345e755UL, 0x6b3fa09cUL, 0xd383c7f9UL, 0xc1366817UL, 0x798a0f72UL, 0xe45d37cbUL, 0x5ce150aeUL, 0x4e54ff40UL, 0xf6e89825UL, 0xae8b8873UL, 0x1637ef16UL, 0x048240f8UL, 0xbc3e279dUL, 0x21e91f24UL, 0x99557841UL, 0x8be0d7afUL, 0x335cb0caUL, 0xed59b63bUL, 0x55e5d15eUL, 0x47507eb0UL, 0xffec19d5UL, 0x623b216cUL, 0xda874609UL, 0xc832e9e7UL, 0x708e8e82UL, 0x28ed9ed4UL, 0x9051f9b1UL, 0x82e4565fUL, 0x3a58313aUL, 0xa78f0983UL, 0x1f336ee6UL, 0x0d86c108UL, 0xb53aa66dUL, 0xbd40e1a4UL, 0x05fc86c1UL, 0x1749292fUL, 0xaff54e4aUL, 0x322276f3UL, 0x8a9e1196UL, 0x982bbe78UL, 0x2097d91dUL, 0x78f4c94bUL, 0xc048ae2eUL, 0xd2fd01c0UL, 0x6a4166a5UL, 0xf7965e1cUL, 0x4f2a3979UL, 0x5d9f9697UL, 0xe523f1f2UL, 0x4d6b1905UL, 0xf5d77e60UL, 0xe762d18eUL, 0x5fdeb6ebUL, 0xc2098e52UL, 0x7ab5e937UL, 0x680046d9UL, 0xd0bc21bcUL, 0x88df31eaUL, 0x3063568fUL, 0x22d6f961UL, 0x9a6a9e04UL, 0x07bda6bdUL, 0xbf01c1d8UL, 0xadb46e36UL, 0x15080953UL, 0x1d724e9aUL, 0xa5ce29ffUL, 0xb77b8611UL, 0x0fc7e174UL, 0x9210d9cdUL, 0x2aacbea8UL, 0x38191146UL, 0x80a57623UL, 0xd8c66675UL, 0x607a0110UL, 0x72cfaefeUL, 0xca73c99bUL, 0x57a4f122UL, 0xef189647UL, 0xfdad39a9UL, 0x45115eccUL, 0x764dee06UL, 0xcef18963UL, 0xdc44268dUL, 0x64f841e8UL, 0xf92f7951UL, 0x41931e34UL, 0x5326b1daUL, 0xeb9ad6bfUL, 0xb3f9c6e9UL, 0x0b45a18cUL, 0x19f00e62UL, 0xa14c6907UL, 0x3c9b51beUL, 0x842736dbUL, 0x96929935UL, 0x2e2efe50UL, 0x2654b999UL, 0x9ee8defcUL, 0x8c5d7112UL, 0x34e11677UL, 0xa9362eceUL, 0x118a49abUL, 0x033fe645UL, 0xbb838120UL, 0xe3e09176UL, 0x5b5cf613UL, 0x49e959fdUL, 0xf1553e98UL, 0x6c820621UL, 0xd43e6144UL, 0xc68bceaaUL, 0x7e37a9cfUL, 0xd67f4138UL, 0x6ec3265dUL, 0x7c7689b3UL, 0xc4caeed6UL, 0x591dd66fUL, 0xe1a1b10aUL, 0xf3141ee4UL, 0x4ba87981UL, 0x13cb69d7UL, 0xab770eb2UL, 0xb9c2a15cUL, 0x017ec639UL, 0x9ca9fe80UL, 0x241599e5UL, 0x36a0360bUL, 0x8e1c516eUL, 0x866616a7UL, 0x3eda71c2UL, 0x2c6fde2cUL, 0x94d3b949UL, 0x090481f0UL, 0xb1b8e695UL, 0xa30d497bUL, 0x1bb12e1eUL, 0x43d23e48UL, 0xfb6e592dUL, 0xe9dbf6c3UL, 0x516791a6UL, 0xccb0a91fUL, 0x740cce7aUL, 0x66b96194UL, 0xde0506f1UL }, { 0x00000000UL, 0x96300777UL, 0x2c610eeeUL, 0xba510999UL, 0x19c46d07UL, 0x8ff46a70UL, 0x35a563e9UL, 0xa395649eUL, 0x3288db0eUL, 0xa4b8dc79UL, 0x1ee9d5e0UL, 0x88d9d297UL, 0x2b4cb609UL, 0xbd7cb17eUL, 0x072db8e7UL, 0x911dbf90UL, 0x6410b71dUL, 0xf220b06aUL, 0x4871b9f3UL, 0xde41be84UL, 0x7dd4da1aUL, 0xebe4dd6dUL, 0x51b5d4f4UL, 0xc785d383UL, 0x56986c13UL, 0xc0a86b64UL, 0x7af962fdUL, 0xecc9658aUL, 0x4f5c0114UL, 0xd96c0663UL, 0x633d0ffaUL, 0xf50d088dUL, 0xc8206e3bUL, 0x5e10694cUL, 0xe44160d5UL, 0x727167a2UL, 0xd1e4033cUL, 0x47d4044bUL, 0xfd850dd2UL, 0x6bb50aa5UL, 0xfaa8b535UL, 0x6c98b242UL, 0xd6c9bbdbUL, 0x40f9bcacUL, 0xe36cd832UL, 0x755cdf45UL, 0xcf0dd6dcUL, 0x593dd1abUL, 0xac30d926UL, 0x3a00de51UL, 0x8051d7c8UL, 0x1661d0bfUL, 0xb5f4b421UL, 0x23c4b356UL, 0x9995bacfUL, 0x0fa5bdb8UL, 0x9eb80228UL, 0x0888055fUL, 0xb2d90cc6UL, 0x24e90bb1UL, 0x877c6f2fUL, 0x114c6858UL, 0xab1d61c1UL, 0x3d2d66b6UL, 0x9041dc76UL, 0x0671db01UL, 0xbc20d298UL, 0x2a10d5efUL, 0x8985b171UL, 0x1fb5b606UL, 0xa5e4bf9fUL, 0x33d4b8e8UL, 0xa2c90778UL, 0x34f9000fUL, 0x8ea80996UL, 0x18980ee1UL, 0xbb0d6a7fUL, 0x2d3d6d08UL, 0x976c6491UL, 0x015c63e6UL, 0xf4516b6bUL, 0x62616c1cUL, 0xd8306585UL, 0x4e0062f2UL, 0xed95066cUL, 0x7ba5011bUL, 0xc1f40882UL, 0x57c40ff5UL, 0xc6d9b065UL, 0x50e9b712UL, 0xeab8be8bUL, 0x7c88b9fcUL, 0xdf1ddd62UL, 0x492dda15UL, 0xf37cd38cUL, 0x654cd4fbUL, 0x5861b24dUL, 0xce51b53aUL, 0x7400bca3UL, 0xe230bbd4UL, 0x41a5df4aUL, 0xd795d83dUL, 0x6dc4d1a4UL, 0xfbf4d6d3UL, 0x6ae96943UL, 0xfcd96e34UL, 0x468867adUL, 0xd0b860daUL, 0x732d0444UL, 0xe51d0333UL, 0x5f4c0aaaUL, 0xc97c0dddUL, 0x3c710550UL, 0xaa410227UL, 0x10100bbeUL, 0x86200cc9UL, 0x25b56857UL, 0xb3856f20UL, 0x09d466b9UL, 0x9fe461ceUL, 0x0ef9de5eUL, 0x98c9d929UL, 0x2298d0b0UL, 0xb4a8d7c7UL, 0x173db359UL, 0x810db42eUL, 0x3b5cbdb7UL, 0xad6cbac0UL, 0x2083b8edUL, 0xb6b3bf9aUL, 0x0ce2b603UL, 0x9ad2b174UL, 0x3947d5eaUL, 0xaf77d29dUL, 0x1526db04UL, 0x8316dc73UL, 0x120b63e3UL, 0x843b6494UL, 0x3e6a6d0dUL, 0xa85a6a7aUL, 0x0bcf0ee4UL, 0x9dff0993UL, 0x27ae000aUL, 0xb19e077dUL, 0x44930ff0UL, 0xd2a30887UL, 0x68f2011eUL, 0xfec20669UL, 0x5d5762f7UL, 0xcb676580UL, 0x71366c19UL, 0xe7066b6eUL, 0x761bd4feUL, 0xe02bd389UL, 0x5a7ada10UL, 0xcc4add67UL, 0x6fdfb9f9UL, 0xf9efbe8eUL, 0x43beb717UL, 0xd58eb060UL, 0xe8a3d6d6UL, 0x7e93d1a1UL, 0xc4c2d838UL, 0x52f2df4fUL, 0xf167bbd1UL, 0x6757bca6UL, 0xdd06b53fUL, 0x4b36b248UL, 0xda2b0dd8UL, 0x4c1b0aafUL, 0xf64a0336UL, 0x607a0441UL, 0xc3ef60dfUL, 0x55df67a8UL, 0xef8e6e31UL, 0x79be6946UL, 0x8cb361cbUL, 0x1a8366bcUL, 0xa0d26f25UL, 0x36e26852UL, 0x95770cccUL, 0x03470bbbUL, 0xb9160222UL, 0x2f260555UL, 0xbe3bbac5UL, 0x280bbdb2UL, 0x925ab42bUL, 0x046ab35cUL, 0xa7ffd7c2UL, 0x31cfd0b5UL, 0x8b9ed92cUL, 0x1daede5bUL, 0xb0c2649bUL, 0x26f263ecUL, 0x9ca36a75UL, 0x0a936d02UL, 0xa906099cUL, 0x3f360eebUL, 0x85670772UL, 0x13570005UL, 0x824abf95UL, 0x147ab8e2UL, 0xae2bb17bUL, 0x381bb60cUL, 0x9b8ed292UL, 0x0dbed5e5UL, 0xb7efdc7cUL, 0x21dfdb0bUL, 0xd4d2d386UL, 0x42e2d4f1UL, 0xf8b3dd68UL, 0x6e83da1fUL, 0xcd16be81UL, 0x5b26b9f6UL, 0xe177b06fUL, 0x7747b718UL, 0xe65a0888UL, 0x706a0fffUL, 0xca3b0666UL, 0x5c0b0111UL, 0xff9e658fUL, 0x69ae62f8UL, 0xd3ff6b61UL, 0x45cf6c16UL, 0x78e20aa0UL, 0xeed20dd7UL, 0x5483044eUL, 0xc2b30339UL, 0x612667a7UL, 0xf71660d0UL, 0x4d476949UL, 0xdb776e3eUL, 0x4a6ad1aeUL, 0xdc5ad6d9UL, 0x660bdf40UL, 0xf03bd837UL, 0x53aebca9UL, 0xc59ebbdeUL, 0x7fcfb247UL, 0xe9ffb530UL, 0x1cf2bdbdUL, 0x8ac2bacaUL, 0x3093b353UL, 0xa6a3b424UL, 0x0536d0baUL, 0x9306d7cdUL, 0x2957de54UL, 0xbf67d923UL, 0x2e7a66b3UL, 0xb84a61c4UL, 0x021b685dUL, 0x942b6f2aUL, 0x37be0bb4UL, 0xa18e0cc3UL, 0x1bdf055aUL, 0x8def022dUL }, { 0x00000000UL, 0x41311b19UL, 0x82623632UL, 0xc3532d2bUL, 0x04c56c64UL, 0x45f4777dUL, 0x86a75a56UL, 0xc796414fUL, 0x088ad9c8UL, 0x49bbc2d1UL, 0x8ae8effaUL, 0xcbd9f4e3UL, 0x0c4fb5acUL, 0x4d7eaeb5UL, 0x8e2d839eUL, 0xcf1c9887UL, 0x5112c24aUL, 0x1023d953UL, 0xd370f478UL, 0x9241ef61UL, 0x55d7ae2eUL, 0x14e6b537UL, 0xd7b5981cUL, 0x96848305UL, 0x59981b82UL, 0x18a9009bUL, 0xdbfa2db0UL, 0x9acb36a9UL, 0x5d5d77e6UL, 0x1c6c6cffUL, 0xdf3f41d4UL, 0x9e0e5acdUL, 0xa2248495UL, 0xe3159f8cUL, 0x2046b2a7UL, 0x6177a9beUL, 0xa6e1e8f1UL, 0xe7d0f3e8UL, 0x2483dec3UL, 0x65b2c5daUL, 0xaaae5d5dUL, 0xeb9f4644UL, 0x28cc6b6fUL, 0x69fd7076UL, 0xae6b3139UL, 0xef5a2a20UL, 0x2c09070bUL, 0x6d381c12UL, 0xf33646dfUL, 0xb2075dc6UL, 0x715470edUL, 0x30656bf4UL, 0xf7f32abbUL, 0xb6c231a2UL, 0x75911c89UL, 0x34a00790UL, 0xfbbc9f17UL, 0xba8d840eUL, 0x79dea925UL, 0x38efb23cUL, 0xff79f373UL, 0xbe48e86aUL, 0x7d1bc541UL, 0x3c2ade58UL, 0x054f79f0UL, 0x447e62e9UL, 0x872d4fc2UL, 0xc61c54dbUL, 0x018a1594UL, 0x40bb0e8dUL, 0x83e823a6UL, 0xc2d938bfUL, 0x0dc5a038UL, 0x4cf4bb21UL, 0x8fa7960aUL, 0xce968d13UL, 0x0900cc5cUL, 0x4831d745UL, 0x8b62fa6eUL, 0xca53e177UL, 0x545dbbbaUL, 0x156ca0a3UL, 0xd63f8d88UL, 0x970e9691UL, 0x5098d7deUL, 0x11a9ccc7UL, 0xd2fae1ecUL, 0x93cbfaf5UL, 0x5cd76272UL, 0x1de6796bUL, 0xdeb55440UL, 0x9f844f59UL, 0x58120e16UL, 0x1923150fUL, 0xda703824UL, 0x9b41233dUL, 0xa76bfd65UL, 0xe65ae67cUL, 0x2509cb57UL, 0x6438d04eUL, 0xa3ae9101UL, 0xe29f8a18UL, 0x21cca733UL, 0x60fdbc2aUL, 0xafe124adUL, 0xeed03fb4UL, 0x2d83129fUL, 0x6cb20986UL, 0xab2448c9UL, 0xea1553d0UL, 0x29467efbUL, 0x687765e2UL, 0xf6793f2fUL, 0xb7482436UL, 0x741b091dUL, 0x352a1204UL, 0xf2bc534bUL, 0xb38d4852UL, 0x70de6579UL, 0x31ef7e60UL, 0xfef3e6e7UL, 0xbfc2fdfeUL, 0x7c91d0d5UL, 0x3da0cbccUL, 0xfa368a83UL, 0xbb07919aUL, 0x7854bcb1UL, 0x3965a7a8UL, 0x4b98833bUL, 0x0aa99822UL, 0xc9fab509UL, 0x88cbae10UL, 0x4f5def5fUL, 0x0e6cf446UL, 0xcd3fd96dUL, 0x8c0ec274UL, 0x43125af3UL, 0x022341eaUL, 0xc1706cc1UL, 0x804177d8UL, 0x47d73697UL, 0x06e62d8eUL, 0xc5b500a5UL, 0x84841bbcUL, 0x1a8a4171UL, 0x5bbb5a68UL, 0x98e87743UL, 0xd9d96c5aUL, 0x1e4f2d15UL, 0x5f7e360cUL, 0x9c2d1b27UL, 0xdd1c003eUL, 0x120098b9UL, 0x533183a0UL, 0x9062ae8bUL, 0xd153b592UL, 0x16c5f4ddUL, 0x57f4efc4UL, 0x94a7c2efUL, 0xd596d9f6UL, 0xe9bc07aeUL, 0xa88d1cb7UL, 0x6bde319cUL, 0x2aef2a85UL, 0xed796bcaUL, 0xac4870d3UL, 0x6f1b5df8UL, 0x2e2a46e1UL, 0xe136de66UL, 0xa007c57fUL, 0x6354e854UL, 0x2265f34dUL, 0xe5f3b202UL, 0xa4c2a91bUL, 0x67918430UL, 0x26a09f29UL, 0xb8aec5e4UL, 0xf99fdefdUL, 0x3accf3d6UL, 0x7bfde8cfUL, 0xbc6ba980UL, 0xfd5ab299UL, 0x3e099fb2UL, 0x7f3884abUL, 0xb0241c2cUL, 0xf1150735UL, 0x32462a1eUL, 0x73773107UL, 0xb4e17048UL, 0xf5d06b51UL, 0x3683467aUL, 0x77b25d63UL, 0x4ed7facbUL, 0x0fe6e1d2UL, 0xccb5ccf9UL, 0x8d84d7e0UL, 0x4a1296afUL, 0x0b238db6UL, 0xc870a09dUL, 0x8941bb84UL, 0x465d2303UL, 0x076c381aUL, 0xc43f1531UL, 0x850e0e28UL, 0x42984f67UL, 0x03a9547eUL, 0xc0fa7955UL, 0x81cb624cUL, 0x1fc53881UL, 0x5ef42398UL, 0x9da70eb3UL, 0xdc9615aaUL, 0x1b0054e5UL, 0x5a314ffcUL, 0x996262d7UL, 0xd85379ceUL, 0x174fe149UL, 0x567efa50UL, 0x952dd77bUL, 0xd41ccc62UL, 0x138a8d2dUL, 0x52bb9634UL, 0x91e8bb1fUL, 0xd0d9a006UL, 0xecf37e5eUL, 0xadc26547UL, 0x6e91486cUL, 0x2fa05375UL, 0xe836123aUL, 0xa9070923UL, 0x6a542408UL, 0x2b653f11UL, 0xe479a796UL, 0xa548bc8fUL, 0x661b91a4UL, 0x272a8abdUL, 0xe0bccbf2UL, 0xa18dd0ebUL, 0x62defdc0UL, 0x23efe6d9UL, 0xbde1bc14UL, 0xfcd0a70dUL, 0x3f838a26UL, 0x7eb2913fUL, 0xb924d070UL, 0xf815cb69UL, 0x3b46e642UL, 0x7a77fd5bUL, 0xb56b65dcUL, 0xf45a7ec5UL, 0x370953eeUL, 0x763848f7UL, 0xb1ae09b8UL, 0xf09f12a1UL, 0x33cc3f8aUL, 0x72fd2493UL }, { 0x00000000UL, 0x376ac201UL, 0x6ed48403UL, 0x59be4602UL, 0xdca80907UL, 0xebc2cb06UL, 0xb27c8d04UL, 0x85164f05UL, 0xb851130eUL, 0x8f3bd10fUL, 0xd685970dUL, 0xe1ef550cUL, 0x64f91a09UL, 0x5393d808UL, 0x0a2d9e0aUL, 0x3d475c0bUL, 0x70a3261cUL, 0x47c9e41dUL, 0x1e77a21fUL, 0x291d601eUL, 0xac0b2f1bUL, 0x9b61ed1aUL, 0xc2dfab18UL, 0xf5b56919UL, 0xc8f23512UL, 0xff98f713UL, 0xa626b111UL, 0x914c7310UL, 0x145a3c15UL, 0x2330fe14UL, 0x7a8eb816UL, 0x4de47a17UL, 0xe0464d38UL, 0xd72c8f39UL, 0x8e92c93bUL, 0xb9f80b3aUL, 0x3cee443fUL, 0x0b84863eUL, 0x523ac03cUL, 0x6550023dUL, 0x58175e36UL, 0x6f7d9c37UL, 0x36c3da35UL, 0x01a91834UL, 0x84bf5731UL, 0xb3d59530UL, 0xea6bd332UL, 0xdd011133UL, 0x90e56b24UL, 0xa78fa925UL, 0xfe31ef27UL, 0xc95b2d26UL, 0x4c4d6223UL, 0x7b27a022UL, 0x2299e620UL, 0x15f32421UL, 0x28b4782aUL, 0x1fdeba2bUL, 0x4660fc29UL, 0x710a3e28UL, 0xf41c712dUL, 0xc376b32cUL, 0x9ac8f52eUL, 0xada2372fUL, 0xc08d9a70UL, 0xf7e75871UL, 0xae591e73UL, 0x9933dc72UL, 0x1c259377UL, 0x2b4f5176UL, 0x72f11774UL, 0x459bd575UL, 0x78dc897eUL, 0x4fb64b7fUL, 0x16080d7dUL, 0x2162cf7cUL, 0xa4748079UL, 0x931e4278UL, 0xcaa0047aUL, 0xfdcac67bUL, 0xb02ebc6cUL, 0x87447e6dUL, 0xdefa386fUL, 0xe990fa6eUL, 0x6c86b56bUL, 0x5bec776aUL, 0x02523168UL, 0x3538f369UL, 0x087faf62UL, 0x3f156d63UL, 0x66ab2b61UL, 0x51c1e960UL, 0xd4d7a665UL, 0xe3bd6464UL, 0xba032266UL, 0x8d69e067UL, 0x20cbd748UL, 0x17a11549UL, 0x4e1f534bUL, 0x7975914aUL, 0xfc63de4fUL, 0xcb091c4eUL, 0x92b75a4cUL, 0xa5dd984dUL, 0x989ac446UL, 0xaff00647UL, 0xf64e4045UL, 0xc1248244UL, 0x4432cd41UL, 0x73580f40UL, 0x2ae64942UL, 0x1d8c8b43UL, 0x5068f154UL, 0x67023355UL, 0x3ebc7557UL, 0x09d6b756UL, 0x8cc0f853UL, 0xbbaa3a52UL, 0xe2147c50UL, 0xd57ebe51UL, 0xe839e25aUL, 0xdf53205bUL, 0x86ed6659UL, 0xb187a458UL, 0x3491eb5dUL, 0x03fb295cUL, 0x5a456f5eUL, 0x6d2fad5fUL, 0x801b35e1UL, 0xb771f7e0UL, 0xeecfb1e2UL, 0xd9a573e3UL, 0x5cb33ce6UL, 0x6bd9fee7UL, 0x3267b8e5UL, 0x050d7ae4UL, 0x384a26efUL, 0x0f20e4eeUL, 0x569ea2ecUL, 0x61f460edUL, 0xe4e22fe8UL, 0xd388ede9UL, 0x8a36abebUL, 0xbd5c69eaUL, 0xf0b813fdUL, 0xc7d2d1fcUL, 0x9e6c97feUL, 0xa90655ffUL, 0x2c101afaUL, 0x1b7ad8fbUL, 0x42c49ef9UL, 0x75ae5cf8UL, 0x48e900f3UL, 0x7f83c2f2UL, 0x263d84f0UL, 0x115746f1UL, 0x944109f4UL, 0xa32bcbf5UL, 0xfa958df7UL, 0xcdff4ff6UL, 0x605d78d9UL, 0x5737bad8UL, 0x0e89fcdaUL, 0x39e33edbUL, 0xbcf571deUL, 0x8b9fb3dfUL, 0xd221f5ddUL, 0xe54b37dcUL, 0xd80c6bd7UL, 0xef66a9d6UL, 0xb6d8efd4UL, 0x81b22dd5UL, 0x04a462d0UL, 0x33cea0d1UL, 0x6a70e6d3UL, 0x5d1a24d2UL, 0x10fe5ec5UL, 0x27949cc4UL, 0x7e2adac6UL, 0x494018c7UL, 0xcc5657c2UL, 0xfb3c95c3UL, 0xa282d3c1UL, 0x95e811c0UL, 0xa8af4dcbUL, 0x9fc58fcaUL, 0xc67bc9c8UL, 0xf1110bc9UL, 0x740744ccUL, 0x436d86cdUL, 0x1ad3c0cfUL, 0x2db902ceUL, 0x4096af91UL, 0x77fc6d90UL, 0x2e422b92UL, 0x1928e993UL, 0x9c3ea696UL, 0xab546497UL, 0xf2ea2295UL, 0xc580e094UL, 0xf8c7bc9fUL, 0xcfad7e9eUL, 0x9613389cUL, 0xa179fa9dUL, 0x246fb598UL, 0x13057799UL, 0x4abb319bUL, 0x7dd1f39aUL, 0x3035898dUL, 0x075f4b8cUL, 0x5ee10d8eUL, 0x698bcf8fUL, 0xec9d808aUL, 0xdbf7428bUL, 0x82490489UL, 0xb523c688UL, 0x88649a83UL, 0xbf0e5882UL, 0xe6b01e80UL, 0xd1dadc81UL, 0x54cc9384UL, 0x63a65185UL, 0x3a181787UL, 0x0d72d586UL, 0xa0d0e2a9UL, 0x97ba20a8UL, 0xce0466aaUL, 0xf96ea4abUL, 0x7c78ebaeUL, 0x4b1229afUL, 0x12ac6fadUL, 0x25c6adacUL, 0x1881f1a7UL, 0x2feb33a6UL, 0x765575a4UL, 0x413fb7a5UL, 0xc429f8a0UL, 0xf3433aa1UL, 0xaafd7ca3UL, 0x9d97bea2UL, 0xd073c4b5UL, 0xe71906b4UL, 0xbea740b6UL, 0x89cd82b7UL, 0x0cdbcdb2UL, 0x3bb10fb3UL, 0x620f49b1UL, 0x55658bb0UL, 0x6822d7bbUL, 0x5f4815baUL, 0x06f653b8UL, 0x319c91b9UL, 0xb48adebcUL, 0x83e01cbdUL, 0xda5e5abfUL, 0xed3498beUL }, { 0x00000000UL, 0x6567bcb8UL, 0x8bc809aaUL, 0xeeafb512UL, 0x5797628fUL, 0x32f0de37UL, 0xdc5f6b25UL, 0xb938d79dUL, 0xef28b4c5UL, 0x8a4f087dUL, 0x64e0bd6fUL, 0x018701d7UL, 0xb8bfd64aUL, 0xddd86af2UL, 0x3377dfe0UL, 0x56106358UL, 0x9f571950UL, 0xfa30a5e8UL, 0x149f10faUL, 0x71f8ac42UL, 0xc8c07bdfUL, 0xada7c767UL, 0x43087275UL, 0x266fcecdUL, 0x707fad95UL, 0x1518112dUL, 0xfbb7a43fUL, 0x9ed01887UL, 0x27e8cf1aUL, 0x428f73a2UL, 0xac20c6b0UL, 0xc9477a08UL, 0x3eaf32a0UL, 0x5bc88e18UL, 0xb5673b0aUL, 0xd00087b2UL, 0x6938502fUL, 0x0c5fec97UL, 0xe2f05985UL, 0x8797e53dUL, 0xd1878665UL, 0xb4e03addUL, 0x5a4f8fcfUL, 0x3f283377UL, 0x8610e4eaUL, 0xe3775852UL, 0x0dd8ed40UL, 0x68bf51f8UL, 0xa1f82bf0UL, 0xc49f9748UL, 0x2a30225aUL, 0x4f579ee2UL, 0xf66f497fUL, 0x9308f5c7UL, 0x7da740d5UL, 0x18c0fc6dUL, 0x4ed09f35UL, 0x2bb7238dUL, 0xc518969fUL, 0xa07f2a27UL, 0x1947fdbaUL, 0x7c204102UL, 0x928ff410UL, 0xf7e848a8UL, 0x3d58149bUL, 0x583fa823UL, 0xb6901d31UL, 0xd3f7a189UL, 0x6acf7614UL, 0x0fa8caacUL, 0xe1077fbeUL, 0x8460c306UL, 0xd270a05eUL, 0xb7171ce6UL, 0x59b8a9f4UL, 0x3cdf154cUL, 0x85e7c2d1UL, 0xe0807e69UL, 0x0e2fcb7bUL, 0x6b4877c3UL, 0xa20f0dcbUL, 0xc768b173UL, 0x29c70461UL, 0x4ca0b8d9UL, 0xf5986f44UL, 0x90ffd3fcUL, 0x7e5066eeUL, 0x1b37da56UL, 0x4d27b90eUL, 0x284005b6UL, 0xc6efb0a4UL, 0xa3880c1cUL, 0x1ab0db81UL, 0x7fd76739UL, 0x9178d22bUL, 0xf41f6e93UL, 0x03f7263bUL, 0x66909a83UL, 0x883f2f91UL, 0xed589329UL, 0x546044b4UL, 0x3107f80cUL, 0xdfa84d1eUL, 0xbacff1a6UL, 0xecdf92feUL, 0x89b82e46UL, 0x67179b54UL, 0x027027ecUL, 0xbb48f071UL, 0xde2f4cc9UL, 0x3080f9dbUL, 0x55e74563UL, 0x9ca03f6bUL, 0xf9c783d3UL, 0x176836c1UL, 0x720f8a79UL, 0xcb375de4UL, 0xae50e15cUL, 0x40ff544eUL, 0x2598e8f6UL, 0x73888baeUL, 0x16ef3716UL, 0xf8408204UL, 0x9d273ebcUL, 0x241fe921UL, 0x41785599UL, 0xafd7e08bUL, 0xcab05c33UL, 0x3bb659edUL, 0x5ed1e555UL, 0xb07e5047UL, 0xd519ecffUL, 0x6c213b62UL, 0x094687daUL, 0xe7e932c8UL, 0x828e8e70UL, 0xd49eed28UL, 0xb1f95190UL, 0x5f56e482UL, 0x3a31583aUL, 0x83098fa7UL, 0xe66e331fUL, 0x08c1860dUL, 0x6da63ab5UL, 0xa4e140bdUL, 0xc186fc05UL, 0x2f294917UL, 0x4a4ef5afUL, 0xf3762232UL, 0x96119e8aUL, 0x78be2b98UL, 0x1dd99720UL, 0x4bc9f478UL, 0x2eae48c0UL, 0xc001fdd2UL, 0xa566416aUL, 0x1c5e96f7UL, 0x79392a4fUL, 0x97969f5dUL, 0xf2f123e5UL, 0x05196b4dUL, 0x607ed7f5UL, 0x8ed162e7UL, 0xebb6de5fUL, 0x528e09c2UL, 0x37e9b57aUL, 0xd9460068UL, 0xbc21bcd0UL, 0xea31df88UL, 0x8f566330UL, 0x61f9d622UL, 0x049e6a9aUL, 0xbda6bd07UL, 0xd8c101bfUL, 0x366eb4adUL, 0x53090815UL, 0x9a4e721dUL, 0xff29cea5UL, 0x11867bb7UL, 0x74e1c70fUL, 0xcdd91092UL, 0xa8beac2aUL, 0x46111938UL, 0x2376a580UL, 0x7566c6d8UL, 0x10017a60UL, 0xfeaecf72UL, 0x9bc973caUL, 0x22f1a457UL, 0x479618efUL, 0xa939adfdUL, 0xcc5e1145UL, 0x06ee4d76UL, 0x6389f1ceUL, 0x8d2644dcUL, 0xe841f864UL, 0x51792ff9UL, 0x341e9341UL, 0xdab12653UL, 0xbfd69aebUL, 0xe9c6f9b3UL, 0x8ca1450bUL, 0x620ef019UL, 0x07694ca1UL, 0xbe519b3cUL, 0xdb362784UL, 0x35999296UL, 0x50fe2e2eUL, 0x99b95426UL, 0xfcdee89eUL, 0x12715d8cUL, 0x7716e134UL, 0xce2e36a9UL, 0xab498a11UL, 0x45e63f03UL, 0x208183bbUL, 0x7691e0e3UL, 0x13f65c5bUL, 0xfd59e949UL, 0x983e55f1UL, 0x2106826cUL, 0x44613ed4UL, 0xaace8bc6UL, 0xcfa9377eUL, 0x38417fd6UL, 0x5d26c36eUL, 0xb389767cUL, 0xd6eecac4UL, 0x6fd61d59UL, 0x0ab1a1e1UL, 0xe41e14f3UL, 0x8179a84bUL, 0xd769cb13UL, 0xb20e77abUL, 0x5ca1c2b9UL, 0x39c67e01UL, 0x80fea99cUL, 0xe5991524UL, 0x0b36a036UL, 0x6e511c8eUL, 0xa7166686UL, 0xc271da3eUL, 0x2cde6f2cUL, 0x49b9d394UL, 0xf0810409UL, 0x95e6b8b1UL, 0x7b490da3UL, 0x1e2eb11bUL, 0x483ed243UL, 0x2d596efbUL, 0xc3f6dbe9UL, 0xa6916751UL, 0x1fa9b0ccUL, 0x7ace0c74UL, 0x9461b966UL, 0xf10605deUL #endif } }; /********* End of inlined file: crc32.h *********/ #endif /* DYNAMIC_CRC_TABLE */ /* ========================================================================= * This function can be used by asm versions of crc32() */ const unsigned long FAR * ZEXPORT get_crc_table() { #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ return (const unsigned long FAR *)crc_table; } /* ========================================================================= */ #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 /* ========================================================================= */ unsigned long ZEXPORT crc32 (unsigned long crc, const unsigned char FAR *buf, unsigned len) { if (buf == Z_NULL) return 0UL; #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ #ifdef BYFOUR if (sizeof(void *) == sizeof(ptrdiff_t)) { u4 endian; endian = 1; if (*((unsigned char *)(&endian))) return crc32_little(crc, buf, len); else return crc32_big(crc, buf, len); } #endif /* BYFOUR */ crc = crc ^ 0xffffffffUL; while (len >= 8) { DO8; len -= 8; } if (len) do { DO1; } while (--len); return crc ^ 0xffffffffUL; } #ifdef BYFOUR /* ========================================================================= */ #define DOLIT4 c ^= *buf4++; \ c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 /* ========================================================================= */ local unsigned long crc32_little(unsigned long crc, const unsigned char FAR *buf, unsigned len) { register u4 c; register const u4 FAR *buf4; c = (u4)crc; c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); len--; } buf4 = (const u4 FAR *)(const void FAR *)buf; while (len >= 32) { DOLIT32; len -= 32; } while (len >= 4) { DOLIT4; len -= 4; } buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); } while (--len); c = ~c; return (unsigned long)c; } /* ========================================================================= */ #define DOBIG4 c ^= *++buf4; \ c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 /* ========================================================================= */ local unsigned long crc32_big (unsigned long crc, const unsigned char FAR *buf, unsigned len) { register u4 c; register const u4 FAR *buf4; c = REV((u4)crc); c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); len--; } buf4 = (const u4 FAR *)(const void FAR *)buf; buf4--; while (len >= 32) { DOBIG32; len -= 32; } while (len >= 4) { DOBIG4; len -= 4; } buf4++; buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); } while (--len); c = ~c; return (unsigned long)(REV(c)); } #endif /* BYFOUR */ #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ /* ========================================================================= */ local unsigned long gf2_matrix_times (unsigned long *mat, unsigned long vec) { unsigned long sum; sum = 0; while (vec) { if (vec & 1) sum ^= *mat; vec >>= 1; mat++; } return sum; } /* ========================================================================= */ local void gf2_matrix_square (unsigned long *square, unsigned long *mat) { int n; for (n = 0; n < GF2_DIM; n++) square[n] = gf2_matrix_times(mat, mat[n]); } /* ========================================================================= */ uLong ZEXPORT crc32_combine (uLong crc1, uLong crc2, z_off_t len2) { int n; unsigned long row; unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ /* degenerate case */ if (len2 == 0) return crc1; /* put operator for one zero bit in odd */ odd[0] = 0xedb88320L; /* CRC-32 polynomial */ row = 1; for (n = 1; n < GF2_DIM; n++) { odd[n] = row; row <<= 1; } /* put operator for two zero bits in even */ gf2_matrix_square(even, odd); /* put operator for four zero bits in odd */ gf2_matrix_square(odd, even); /* apply len2 zeros to crc1 (first square will put the operator for one zero byte, eight zero bits, in even) */ do { /* apply zeros operator for this bit of len2 */ gf2_matrix_square(even, odd); if (len2 & 1) crc1 = gf2_matrix_times(even, crc1); len2 >>= 1; /* if no more bits set, then done */ if (len2 == 0) break; /* another iteration of the loop with odd and even swapped */ gf2_matrix_square(odd, even); if (len2 & 1) crc1 = gf2_matrix_times(odd, crc1); len2 >>= 1; /* if no more bits set, then done */ } while (len2 != 0); /* return combined crc */ crc1 ^= crc2; return crc1; } /********* End of inlined file: crc32.c *********/ /********* Start of inlined file: deflate.c *********/ /* * ALGORITHM * * The "deflation" process depends on being able to identify portions * of the input text which are identical to earlier input (within a * sliding window trailing behind the input currently being processed). * * The most straightforward technique turns out to be the fastest for * most input files: try all possible matches and select the longest. * The key feature of this algorithm is that insertions into the string * dictionary are very simple and thus fast, and deletions are avoided * completely. Insertions are performed at each input character, whereas * string matches are performed only when the previous match ends. So it * is preferable to spend more time in matches to allow very fast string * insertions and avoid deletions. The matching algorithm for small * strings is inspired from that of Rabin & Karp. A brute force approach * is used to find longer strings when a small match has been found. * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze * (by Leonid Broukhis). * A previous version of this file used a more sophisticated algorithm * (by Fiala and Greene) which is guaranteed to run in linear amortized * time, but has a larger average cost, uses more memory and is patented. * However the F&G algorithm may be faster for some highly redundant * files if the parameter max_chain_length (described below) is too large. * * ACKNOWLEDGEMENTS * * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and * I found it in 'freeze' written by Leonid Broukhis. * Thanks to many people for bug reports and testing. * * REFERENCES * * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". * Available in http://www.ietf.org/rfc/rfc1951.txt * * A description of the Rabin and Karp algorithm is given in the book * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. * * Fiala,E.R., and Greene,D.H. * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 * */ /* @(#) $Id: deflate.c,v 1.1 2007/06/07 17:54:37 jules_rms Exp $ */ /********* Start of inlined file: deflate.h *********/ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id: deflate.h,v 1.1 2007/06/07 17:54:37 jules_rms Exp $ */ #ifndef DEFLATE_H #define DEFLATE_H /* define NO_GZIP when compiling if you want to disable gzip header and trailer creation by deflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip encoding should be left enabled. */ #ifndef NO_GZIP # define GZIP #endif #define NO_DUMMY_DECL /* =========================================================================== * Internal compression state. */ #define LENGTH_CODES 29 /* number of length codes, not counting the special END_BLOCK code */ #define LITERALS 256 /* number of literal bytes 0..255 */ #define L_CODES (LITERALS+1+LENGTH_CODES) /* number of Literal or Length codes, including the END_BLOCK code */ #define D_CODES 30 /* number of distance codes */ #define BL_CODES 19 /* number of codes used to transfer the bit lengths */ #define HEAP_SIZE (2*L_CODES+1) /* maximum heap size */ #define MAX_BITS 15 /* All codes must not exceed MAX_BITS bits */ #define INIT_STATE 42 #define EXTRA_STATE 69 #define NAME_STATE 73 #define COMMENT_STATE 91 #define HCRC_STATE 103 #define BUSY_STATE 113 #define FINISH_STATE 666 /* Stream status */ /* Data structure describing a single value and its code string. */ typedef struct ct_data_s { union { ush freq; /* frequency count */ ush code; /* bit string */ } fc; union { ush dad; /* father node in Huffman tree */ ush len; /* length of bit string */ } dl; } FAR ct_data; #define Freq fc.freq #define Code fc.code #define Dad dl.dad #define Len dl.len typedef struct static_tree_desc_s static_tree_desc; typedef struct tree_desc_s { ct_data *dyn_tree; /* the dynamic tree */ int max_code; /* largest code with non zero frequency */ static_tree_desc *stat_desc; /* the corresponding static tree */ } FAR tree_desc; typedef ush Pos; typedef Pos FAR Posf; typedef unsigned IPos; /* A Pos is an index in the character window. We use short instead of int to * save space in the various tables. IPos is used only for parameter passing. */ typedef struct internal_state { z_streamp strm; /* pointer back to this zlib stream */ int status; /* as the name implies */ Bytef *pending_buf; /* output still pending */ ulg pending_buf_size; /* size of pending_buf */ Bytef *pending_out; /* next pending byte to output to the stream */ uInt pending; /* nb of bytes in the pending buffer */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ gz_headerp gzhead; /* gzip header information to write */ uInt gzindex; /* where in extra, name, or comment */ Byte method; /* STORED (for zip only) or DEFLATED */ int last_flush; /* value of flush param for previous deflate call */ /* used by deflate.c: */ uInt w_size; /* LZ77 window size (32K by default) */ uInt w_bits; /* log2(w_size) (8..16) */ uInt w_mask; /* w_size - 1 */ Bytef *window; /* Sliding window. Input bytes are read into the second half of the window, * and move to the first half later to keep a dictionary of at least wSize * bytes. With this organization, matches are limited to a distance of * wSize-MAX_MATCH bytes, but this ensures that IO is always * performed with a length multiple of the block size. Also, it limits * the window size to 64K, which is quite useful on MSDOS. * To do: use the user input buffer as sliding window. */ ulg window_size; /* Actual size of window: 2*wSize, except when the user input buffer * is directly used as sliding window. */ Posf *prev; /* Link to older string with same hash index. To limit the size of this * array to 64K, this link is maintained only for the last 32K strings. * An index in this array is thus a window index modulo 32K. */ Posf *head; /* Heads of the hash chains or NIL. */ uInt ins_h; /* hash index of string to be inserted */ uInt hash_size; /* number of elements in hash table */ uInt hash_bits; /* log2(hash_size) */ uInt hash_mask; /* hash_size-1 */ uInt hash_shift; /* Number of bits by which ins_h must be shifted at each input * step. It must be such that after MIN_MATCH steps, the oldest * byte no longer takes part in the hash key, that is: * hash_shift * MIN_MATCH >= hash_bits */ long block_start; /* Window position at the beginning of the current output block. Gets * negative when the window is moved backwards. */ uInt match_length; /* length of best match */ IPos prev_match; /* previous match */ int match_available; /* set if previous match exists */ uInt strstart; /* start of string to insert */ uInt match_start; /* start of matching string */ uInt lookahead; /* number of valid bytes ahead in window */ uInt prev_length; /* Length of the best match at previous step. Matches not greater than this * are discarded. This is used in the lazy match evaluation. */ uInt max_chain_length; /* To speed up deflation, hash chains are never searched beyond this * length. A higher limit improves compression ratio but degrades the * speed. */ uInt max_lazy_match; /* Attempt to find a better match only when the current match is strictly * smaller than this value. This mechanism is used only for compression * levels >= 4. */ # define max_insert_length max_lazy_match /* Insert new strings in the hash table only if the match length is not * greater than this length. This saves time but degrades compression. * max_insert_length is used only for compression levels <= 3. */ int level; /* compression level (1..9) */ int strategy; /* favor or force Huffman coding*/ uInt good_match; /* Use a faster search when the previous match is longer than this */ int nice_match; /* Stop searching when current match exceeds this */ /* used by trees.c: */ /* Didn't use ct_data typedef below to supress compiler warning */ struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ struct tree_desc_s l_desc; /* desc. for literal tree */ struct tree_desc_s d_desc; /* desc. for distance tree */ struct tree_desc_s bl_desc; /* desc. for bit length tree */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ int heap_len; /* number of elements in the heap */ int heap_max; /* element of largest frequency */ /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. * The same heap array is used to build all trees. */ uch depth[2*L_CODES+1]; /* Depth of each subtree used as tie breaker for trees of equal frequency */ uchf *l_buf; /* buffer for literals or lengths */ uInt lit_bufsize; /* Size of match buffer for literals/lengths. There are 4 reasons for * limiting lit_bufsize to 64K: * - frequencies can be kept in 16 bit counters * - if compression is not successful for the first block, all input * data is still in the window so we can still emit a stored block even * when input comes from standard input. (This can also be done for * all blocks if lit_bufsize is not greater than 32K.) * - if compression is not successful for a file smaller than 64K, we can * even emit a stored file instead of a stored block (saving 5 bytes). * This is applicable only for zip (not gzip or zlib). * - creating new Huffman trees less frequently may not provide fast * adaptation to changes in the input data statistics. (Take for * example a binary file with poorly compressible code followed by * a highly compressible string table.) Smaller buffer sizes give * fast adaptation but have of course the overhead of transmitting * trees more frequently. * - I can't count above 4 */ uInt last_lit; /* running index in l_buf */ ushf *d_buf; /* Buffer for distances. To simplify the code, d_buf and l_buf have * the same number of elements. To use different lengths, an extra flag * array would be necessary. */ ulg opt_len; /* bit length of current block with optimal trees */ ulg static_len; /* bit length of current block with static trees */ uInt matches; /* number of string matches in current block */ int last_eob_len; /* bit length of EOB code for last block */ #ifdef DEBUG ulg compressed_len; /* total bit length of compressed file mod 2^32 */ ulg bits_sent; /* bit length of compressed data sent mod 2^32 */ #endif ush bi_buf; /* Output buffer. bits are inserted starting at the bottom (least * significant bits). */ int bi_valid; /* Number of valid bits in bi_buf. All bits above the last valid bit * are always zero. */ } FAR deflate_state; /* Output a byte on the stream. * IN assertion: there is enough room in pending_buf. */ #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) /* Minimum amount of lookahead, except at the end of the input file. * See deflate.c for comments about the MIN_MATCH+1. */ #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) /* In order to simplify the code, particularly on 16 bit machines, match * distances are limited to MAX_DIST instead of WSIZE. */ /* in trees.c */ void _tr_init OF((deflate_state *s)); int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc)); void _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len, int eof)); void _tr_align OF((deflate_state *s)); void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len, int eof)); #define d_code(dist) \ ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)]) /* Mapping from a distance to a distance code. dist is the distance - 1 and * must not have side effects. _dist_code[256] and _dist_code[257] are never * used. */ #ifndef DEBUG /* Inline versions of _tr_tally for speed: */ #if defined(GEN_TREES_H) || !defined(STDC) extern uch _length_code[]; extern uch _dist_code[]; #else extern const uch _length_code[]; extern const uch _dist_code[]; #endif # define _tr_tally_lit(s, c, flush) \ { uch cc = (c); \ s->d_buf[s->last_lit] = 0; \ s->l_buf[s->last_lit++] = cc; \ s->dyn_ltree[cc].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } # define _tr_tally_dist(s, distance, length, flush) \ { uch len = (length); \ ush dist = (distance); \ s->d_buf[s->last_lit] = dist; \ s->l_buf[s->last_lit++] = len; \ dist--; \ s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \ s->dyn_dtree[d_code(dist)].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } #else # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c) # define _tr_tally_dist(s, distance, length, flush) \ flush = _tr_tally(s, distance, length) #endif #endif /* DEFLATE_H */ /********* End of inlined file: deflate.h *********/ const char deflate_copyright[] = " deflate 1.2.3 Copyright 1995-2005 Jean-loup Gailly "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* =========================================================================== * Function prototypes. */ typedef enum { need_more, /* block not completed, need more input or more output */ block_done, /* block flush performed */ finish_started, /* finish started, need only more output at next deflate */ finish_done /* finish done, accept no more input or output */ } block_state; typedef block_state (*compress_func) OF((deflate_state *s, int flush)); /* Compression function. Returns the block state after the call. */ local void fill_window OF((deflate_state *s)); local block_state deflate_stored OF((deflate_state *s, int flush)); local block_state deflate_fast OF((deflate_state *s, int flush)); #ifndef FASTEST local block_state deflate_slow OF((deflate_state *s, int flush)); #endif local void lm_init OF((deflate_state *s)); local void putShortMSB OF((deflate_state *s, uInt b)); local void flush_pending OF((z_streamp strm)); local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); #ifndef FASTEST #ifdef ASMV void match_init OF((void)); /* asm code initialization */ uInt longest_match OF((deflate_state *s, IPos cur_match)); #else local uInt longest_match OF((deflate_state *s, IPos cur_match)); #endif #endif local uInt longest_match_fast OF((deflate_state *s, IPos cur_match)); #ifdef DEBUG local void check_match OF((deflate_state *s, IPos start, IPos match, int length)); #endif /* =========================================================================== * Local data */ #define NIL 0 /* Tail of hash chains */ #ifndef TOO_FAR # define TOO_FAR 4096 #endif /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) /* Minimum amount of lookahead, except at the end of the input file. * See deflate.c for comments about the MIN_MATCH+1. */ /* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */ typedef struct config_s { ush good_length; /* reduce lazy search above this match length */ ush max_lazy; /* do not perform lazy search above this match length */ ush nice_length; /* quit search above this match length */ ush max_chain; compress_func func; } config; #ifdef FASTEST local const config configuration_table[2] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ #else local const config configuration_table[10] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ /* 2 */ {4, 5, 16, 8, deflate_fast}, /* 3 */ {4, 6, 32, 32, deflate_fast}, /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ /* 5 */ {8, 16, 32, 32, deflate_slow}, /* 6 */ {8, 16, 128, 128, deflate_slow}, /* 7 */ {8, 32, 128, 256, deflate_slow}, /* 8 */ {32, 128, 258, 1024, deflate_slow}, /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ #endif /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different * meaning. */ #define EQUAL 0 /* result of memcmp for equal strings */ #ifndef NO_DUMMY_DECL struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ #endif /* =========================================================================== * Update a hash value with the given input byte * IN assertion: all calls to to UPDATE_HASH are made with consecutive * input characters, so that a running hash key can be computed from the * previous key instead of complete recalculation each time. */ #define UPDATE_HASH(s,h,c) (h = (((h)<hash_shift) ^ (c)) & s->hash_mask) /* =========================================================================== * Insert string str in the dictionary and set match_head to the previous head * of the hash chain (the most recent string with same hash key). Return * the previous length of the hash chain. * If this file is compiled with -DFASTEST, the compression level is forced * to 1, and no hash chains are maintained. * IN assertion: all calls to to INSERT_STRING are made with consecutive * input characters and the first MIN_MATCH bytes of str are valid * (except for the last MIN_MATCH-1 bytes of the input file). */ #ifdef FASTEST #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #else #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #endif /* =========================================================================== * Initialize the hash table (avoiding 64K overflow for 16 bit systems). * prev[] will be initialized on the fly. */ #define CLEAR_HASH(s) \ s->head[s->hash_size-1] = NIL; \ zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); /* ========================================================================= */ int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version, int stream_size) { return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, version, stream_size); /* To do: ignore strm->next_in if we use it as window */ } /* ========================================================================= */ int ZEXPORT deflateInit2_ (z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy, const char *version, int stream_size) { deflate_state *s; int wrap = 1; static const char my_version[] = ZLIB_VERSION; ushf *overlay; /* We overlay pending_buf and d_buf+l_buf. This works since the average * output size for (length,distance) codes is <= 24 bits. */ if (version == Z_NULL || version[0] != my_version[0] || stream_size != sizeof(z_stream)) { return Z_VERSION_ERROR; } if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; if (strm->zalloc == (alloc_func)0) { strm->zalloc = zcalloc; strm->opaque = (voidpf)0; } if (strm->zfree == (free_func)0) strm->zfree = zcfree; #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (windowBits < 0) { /* suppress zlib wrapper */ wrap = 0; windowBits = -windowBits; } #ifdef GZIP else if (windowBits > 15) { wrap = 2; /* write gzip wrapper instead */ windowBits -= 16; } #endif if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); if (s == Z_NULL) return Z_MEM_ERROR; strm->state = (struct internal_state FAR *)s; s->strm = strm; s->wrap = wrap; s->gzhead = Z_NULL; s->w_bits = windowBits; s->w_size = 1 << s->w_bits; s->w_mask = s->w_size - 1; s->hash_bits = memLevel + 7; s->hash_size = 1 << s->hash_bits; s->hash_mask = s->hash_size - 1; s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); s->pending_buf = (uchf *) overlay; s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || s->pending_buf == Z_NULL) { s->status = FINISH_STATE; strm->msg = (char*)ERR_MSG(Z_MEM_ERROR); deflateEnd (strm); return Z_MEM_ERROR; } s->d_buf = overlay + s->lit_bufsize/sizeof(ush); s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; s->level = level; s->strategy = strategy; s->method = (Byte)method; return deflateReset(strm); } /* ========================================================================= */ int ZEXPORT deflateSetDictionary (z_streamp strm, const Bytef *dictionary, uInt dictLength) { deflate_state *s; uInt length = dictLength; uInt n; IPos hash_head = 0; if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL || strm->state->wrap == 2 || (strm->state->wrap == 1 && strm->state->status != INIT_STATE)) return Z_STREAM_ERROR; s = strm->state; if (s->wrap) strm->adler = adler32(strm->adler, dictionary, dictLength); if (length < MIN_MATCH) return Z_OK; if (length > MAX_DIST(s)) { length = MAX_DIST(s); dictionary += dictLength - length; /* use the tail of the dictionary */ } zmemcpy(s->window, dictionary, length); s->strstart = length; s->block_start = (long)length; /* Insert all strings in the hash table (except for the last two bytes). * s->lookahead stays null, so s->ins_h will be recomputed at the next * call of fill_window. */ s->ins_h = s->window[0]; UPDATE_HASH(s, s->ins_h, s->window[1]); for (n = 0; n <= length - MIN_MATCH; n++) { INSERT_STRING(s, n, hash_head); } if (hash_head) hash_head = 0; /* to make compiler happy */ return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateReset (z_streamp strm) { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { return Z_STREAM_ERROR; } strm->total_in = strm->total_out = 0; strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ strm->data_type = Z_UNKNOWN; s = (deflate_state *)strm->state; s->pending = 0; s->pending_out = s->pending_buf; if (s->wrap < 0) { s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ } s->status = s->wrap ? INIT_STATE : BUSY_STATE; strm->adler = #ifdef GZIP s->wrap == 2 ? crc32(0L, Z_NULL, 0) : #endif adler32(0L, Z_NULL, 0); s->last_flush = Z_NO_FLUSH; _tr_init(s); lm_init(s); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateSetHeader (z_streamp strm, gz_headerp head) { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (strm->state->wrap != 2) return Z_STREAM_ERROR; strm->state->gzhead = head; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePrime (z_streamp strm, int bits, int value) { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; strm->state->bi_valid = bits; strm->state->bi_buf = (ush)(value & ((1 << bits) - 1)); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateParams (z_streamp strm, int level, int strategy) { deflate_state *s; compress_func func; int err = Z_OK; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } func = configuration_table[s->level].func; if (func != configuration_table[level].func && strm->total_in != 0) { /* Flush the last buffer: */ err = deflate(strm, Z_PARTIAL_FLUSH); } if (s->level != level) { s->level = level; s->max_lazy_match = configuration_table[level].max_lazy; s->good_match = configuration_table[level].good_length; s->nice_match = configuration_table[level].nice_length; s->max_chain_length = configuration_table[level].max_chain; } s->strategy = strategy; return err; } /* ========================================================================= */ int ZEXPORT deflateTune (z_streamp strm, int good_length, int max_lazy, int nice_length, int max_chain) { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; s->good_match = good_length; s->max_lazy_match = max_lazy; s->nice_match = nice_length; s->max_chain_length = max_chain; return Z_OK; } /* ========================================================================= * For the default windowBits of 15 and memLevel of 8, this function returns * a close to exact, as well as small, upper bound on the compressed size. * They are coded as constants here for a reason--if the #define's are * changed, then this function needs to be changed as well. The return * value for 15 and 8 only works for those exact settings. * * For any setting other than those defaults for windowBits and memLevel, * the value returned is a conservative worst case for the maximum expansion * resulting from using fixed blocks instead of stored blocks, which deflate * can emit on compressed data for some combinations of the parameters. * * This function could be more sophisticated to provide closer upper bounds * for every combination of windowBits and memLevel, as well as wrap. * But even the conservative upper bound of about 14% expansion does not * seem onerous for output buffer allocation. */ uLong ZEXPORT deflateBound (z_streamp strm, uLong sourceLen) { deflate_state *s; uLong destLen; /* conservative upper bound */ destLen = sourceLen + ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 11; /* if can't get parameters, return conservative bound */ if (strm == Z_NULL || strm->state == Z_NULL) return destLen; /* if not default parameters, return conservative bound */ s = strm->state; if (s->w_bits != 15 || s->hash_bits != 8 + 7) return destLen; /* default settings: return tight bound for that case */ return compressBound(sourceLen); } /* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */ local void putShortMSB (deflate_state *s, uInt b) { put_byte(s, (Byte)(b >> 8)); put_byte(s, (Byte)(b & 0xff)); } /* ========================================================================= * Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->next_out buffer and copying into it. * (See also read_buf()). */ local void flush_pending (z_streamp strm) { unsigned len = strm->state->pending; if (len > strm->avail_out) len = strm->avail_out; if (len == 0) return; zmemcpy(strm->next_out, strm->state->pending_out, len); strm->next_out += len; strm->state->pending_out += len; strm->total_out += len; strm->avail_out -= len; strm->state->pending -= len; if (strm->state->pending == 0) { strm->state->pending_out = strm->state->pending_buf; } } /* ========================================================================= */ int ZEXPORT deflate (z_streamp strm, int flush) { int old_flush; /* value of flush param for previous deflate call */ deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || flush > Z_FINISH || flush < 0) { return Z_STREAM_ERROR; } s = strm->state; if (strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0) || (s->status == FINISH_STATE && flush != Z_FINISH)) { ERR_RETURN(strm, Z_STREAM_ERROR); } if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); s->strm = strm; /* just in case */ old_flush = s->last_flush; s->last_flush = flush; /* Write the header */ if (s->status == INIT_STATE) { #ifdef GZIP if (s->wrap == 2) { strm->adler = crc32(0L, Z_NULL, 0); put_byte(s, 31); put_byte(s, 139); put_byte(s, 8); if (s->gzhead == NULL) { put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, OS_CODE); s->status = BUSY_STATE; } else { put_byte(s, (s->gzhead->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->gzhead->extra == Z_NULL ? 0 : 4) + (s->gzhead->name == Z_NULL ? 0 : 8) + (s->gzhead->comment == Z_NULL ? 0 : 16) ); put_byte(s, (Byte)(s->gzhead->time & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, s->gzhead->os & 0xff); if (s->gzhead->extra != NULL) { put_byte(s, s->gzhead->extra_len & 0xff); put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); } if (s->gzhead->hcrc) strm->adler = crc32(strm->adler, s->pending_buf, s->pending); s->gzindex = 0; s->status = EXTRA_STATE; } } else #endif { uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; uInt level_flags; if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) level_flags = 0; else if (s->level < 6) level_flags = 1; else if (s->level == 6) level_flags = 2; else level_flags = 3; header |= (level_flags << 6); if (s->strstart != 0) header |= PRESET_DICT; header += 31 - (header % 31); s->status = BUSY_STATE; putShortMSB(s, header); /* Save the adler32 of the preset dictionary: */ if (s->strstart != 0) { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } strm->adler = adler32(0L, Z_NULL, 0); } } #ifdef GZIP if (s->status == EXTRA_STATE) { if (s->gzhead->extra != NULL) { uInt beg = s->pending; /* start of bytes to update crc */ while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) break; } put_byte(s, s->gzhead->extra[s->gzindex]); s->gzindex++; } if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (s->gzindex == s->gzhead->extra_len) { s->gzindex = 0; s->status = NAME_STATE; } } else s->status = NAME_STATE; } if (s->status == NAME_STATE) { if (s->gzhead->name != NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->name[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) { s->gzindex = 0; s->status = COMMENT_STATE; } } else s->status = COMMENT_STATE; } if (s->status == COMMENT_STATE) { if (s->gzhead->comment != NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->comment[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) s->status = HCRC_STATE; } else s->status = HCRC_STATE; } if (s->status == HCRC_STATE) { if (s->gzhead->hcrc) { if (s->pending + 2 > s->pending_buf_size) flush_pending(strm); if (s->pending + 2 <= s->pending_buf_size) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); strm->adler = crc32(0L, Z_NULL, 0); s->status = BUSY_STATE; } } else s->status = BUSY_STATE; } #endif /* Flush as much pending output as possible */ if (s->pending != 0) { flush_pending(strm); if (strm->avail_out == 0) { /* Since avail_out is 0, deflate will be called again with * more output space, but possibly with both pending and * avail_in equal to zero. There won't be anything to do, * but this is not an error situation so make sure we * return OK instead of BUF_ERROR at next call of deflate: */ s->last_flush = -1; return Z_OK; } /* Make sure there is something to do and avoid duplicate consecutive * flushes. For repeated and useless calls with Z_FINISH, we keep * returning Z_STREAM_END instead of Z_BUF_ERROR. */ } else if (strm->avail_in == 0 && flush <= old_flush && flush != Z_FINISH) { ERR_RETURN(strm, Z_BUF_ERROR); } /* User must not provide more input after the first FINISH: */ if (s->status == FINISH_STATE && strm->avail_in != 0) { ERR_RETURN(strm, Z_BUF_ERROR); } /* Start a new block or continue the current one. */ if (strm->avail_in != 0 || s->lookahead != 0 || (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { block_state bstate; bstate = (*(configuration_table[s->level].func))(s, flush); if (bstate == finish_started || bstate == finish_done) { s->status = FINISH_STATE; } if (bstate == need_more || bstate == finish_started) { if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ } return Z_OK; /* If flush != Z_NO_FLUSH && avail_out == 0, the next call * of deflate should use the same flush parameter to make sure * that the flush is complete. So we don't have to output an * empty block here, this will be done at next call. This also * ensures that for a very small output buffer, we emit at most * one empty block. */ } if (bstate == block_done) { if (flush == Z_PARTIAL_FLUSH) { _tr_align(s); } else { /* FULL_FLUSH or SYNC_FLUSH */ _tr_stored_block(s, (char*)0, 0L, 0); /* For a full flush, this empty block will be recognized * as a special marker by inflate_sync(). */ if (flush == Z_FULL_FLUSH) { CLEAR_HASH(s); /* forget history */ } } flush_pending(strm); if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ return Z_OK; } } } Assert(strm->avail_out > 0, "bug2"); if (flush != Z_FINISH) return Z_OK; if (s->wrap <= 0) return Z_STREAM_END; /* Write the trailer */ #ifdef GZIP if (s->wrap == 2) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); put_byte(s, (Byte)(strm->total_in & 0xff)); put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); } else #endif { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } flush_pending(strm); /* If avail_out is zero, the application will call deflate again * to flush the rest. */ if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ return s->pending != 0 ? Z_OK : Z_STREAM_END; } /* ========================================================================= */ int ZEXPORT deflateEnd (z_streamp strm) { int status; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; status = strm->state->status; if (status != INIT_STATE && status != EXTRA_STATE && status != NAME_STATE && status != COMMENT_STATE && status != HCRC_STATE && status != BUSY_STATE && status != FINISH_STATE) { return Z_STREAM_ERROR; } /* Deallocate in reverse order of allocations: */ TRY_FREE(strm, strm->state->pending_buf); TRY_FREE(strm, strm->state->head); TRY_FREE(strm, strm->state->prev); TRY_FREE(strm, strm->state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; } /* ========================================================================= * Copy the source state to the destination state. * To simplify the source, this is not supported for 16-bit MSDOS (which * doesn't have enough memory anyway to duplicate compression states). */ int ZEXPORT deflateCopy (z_streamp dest, z_streamp source) { #ifdef MAXSEG_64K return Z_STREAM_ERROR; #else deflate_state *ds; deflate_state *ss; ushf *overlay; if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { return Z_STREAM_ERROR; } ss = source->state; zmemcpy(dest, source, sizeof(z_stream)); ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); if (ds == Z_NULL) return Z_MEM_ERROR; dest->state = (struct internal_state FAR *) ds; zmemcpy(ds, ss, sizeof(deflate_state)); ds->strm = dest; ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); ds->pending_buf = (uchf *) overlay; if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || ds->pending_buf == Z_NULL) { deflateEnd (dest); return Z_MEM_ERROR; } /* following zmemcpy do not work for 16-bit MSDOS */ zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos)); zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos)); zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; ds->l_desc.dyn_tree = ds->dyn_ltree; ds->d_desc.dyn_tree = ds->dyn_dtree; ds->bl_desc.dyn_tree = ds->bl_tree; return Z_OK; #endif /* MAXSEG_64K */ } /* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read. All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->next_in buffer and copying from it. * (See also flush_pending()). */ local int read_buf (z_streamp strm, Bytef *buf, unsigned size) { unsigned len = strm->avail_in; if (len > size) len = size; if (len == 0) return 0; strm->avail_in -= len; if (strm->state->wrap == 1) { strm->adler = adler32(strm->adler, strm->next_in, len); } #ifdef GZIP else if (strm->state->wrap == 2) { strm->adler = crc32(strm->adler, strm->next_in, len); } #endif zmemcpy(buf, strm->next_in, len); strm->next_in += len; strm->total_in += len; return (int)len; } /* =========================================================================== * Initialize the "longest match" routines for a new zlib stream */ local void lm_init (deflate_state *s) { s->window_size = (ulg)2L*s->w_size; CLEAR_HASH(s); /* Set the default configuration parameters: */ s->max_lazy_match = configuration_table[s->level].max_lazy; s->good_match = configuration_table[s->level].good_length; s->nice_match = configuration_table[s->level].nice_length; s->max_chain_length = configuration_table[s->level].max_chain; s->strstart = 0; s->block_start = 0L; s->lookahead = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; s->ins_h = 0; #ifndef FASTEST #ifdef ASMV match_init(); /* initialize the asm code */ #endif #endif } #ifndef FASTEST /* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */ #ifndef ASMV /* For 80x86 and 680x0, an optimized version will be provided in match.asm or * match.S. The code will be functionally equivalent. */ local uInt longest_match(deflate_state *s, IPos cur_match) { unsigned chain_length = s->max_chain_length;/* max hash chain length */ register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ int best_len = s->prev_length; /* best match length so far */ int nice_match = s->nice_match; /* stop if match long enough */ IPos limit = s->strstart > (IPos)MAX_DIST(s) ? s->strstart - (IPos)MAX_DIST(s) : NIL; /* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ Posf *prev = s->prev; uInt wmask = s->w_mask; #ifdef UNALIGNED_OK /* Compare two bytes at a time. Note: this is not always beneficial. * Try with and without -DUNALIGNED_OK to check. */ register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; register ush scan_start = *(ushf*)scan; register ush scan_end = *(ushf*)(scan+best_len-1); #else register Bytef *strend = s->window + s->strstart + MAX_MATCH; register Byte scan_end1 = scan[best_len-1]; register Byte scan_end = scan[best_len]; #endif /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); /* Do not waste too much time if we already have a good match: */ if (s->prev_length >= s->good_match) { chain_length >>= 2; } /* Do not look for matches beyond the end of the input. This is necessary * to make deflate deterministic. */ if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); do { Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Skip to next match if the match length cannot increase * or if the match length is less than 2. Note that the checks below * for insufficient lookahead only occur occasionally for performance * reasons. Therefore uninitialized memory will be accessed, and * conditional jumps will be made that depend on those values. * However the length of the match is limited to the lookahead, so * the output of deflate is not affected by the uninitialized values. */ #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) /* This code assumes sizeof(unsigned short) == 2. Do not use * UNALIGNED_OK if your compiler uses a different size. */ if (*(ushf*)(match+best_len-1) != scan_end || *(ushf*)match != scan_start) continue; /* It is not necessary to compare scan[2] and match[2] since they are * always equal when the other bytes match, given that the hash keys * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at * strstart+3, +5, ... up to strstart+257. We check for insufficient * lookahead only every 4th comparison; the 128th check will be made * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is * necessary to put more guard bytes at the end of the window, or * to check more often for insufficient lookahead. */ Assert(scan[2] == match[2], "scan[2]?"); scan++, match++; do { } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && scan < strend); /* The funny "do {}" generates better code on most compilers */ /* Here, scan <= window+strstart+257 */ Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); if (*scan == *match) scan++; len = (MAX_MATCH - 1) - (int)(strend-scan); scan = strend - (MAX_MATCH-1); #else /* UNALIGNED_OK */ if (match[best_len] != scan_end || match[best_len-1] != scan_end1 || *match != *scan || *++match != scan[1]) continue; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match++; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); scan = strend - MAX_MATCH; #endif /* UNALIGNED_OK */ if (len > best_len) { s->match_start = cur_match; best_len = len; if (len >= nice_match) break; #ifdef UNALIGNED_OK scan_end = *(ushf*)(scan+best_len-1); #else scan_end1 = scan[best_len-1]; scan_end = scan[best_len]; #endif } } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length != 0); if ((uInt)best_len <= s->lookahead) return (uInt)best_len; return s->lookahead; } #endif /* ASMV */ #endif /* FASTEST */ /* --------------------------------------------------------------------------- * Optimized version for level == 1 or strategy == Z_RLE only */ local uInt longest_match_fast (deflate_state *s, IPos cur_match) { register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ register Bytef *strend = s->window + s->strstart + MAX_MATCH; /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Return failure if the match length is less than 2: */ if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match += 2; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); if (len < MIN_MATCH) return MIN_MATCH - 1; s->match_start = cur_match; return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; } #ifdef DEBUG /* =========================================================================== * Check that the match at match_start is indeed a match. */ local void check_match(deflate_state *s, IPos start, IPos match, int length) { /* check that the match is indeed a match */ if (zmemcmp(s->window + match, s->window + start, length) != EQUAL) { fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); do { fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); } while (--length != 0); z_error("invalid match"); } if (z_verbose > 1) { fprintf(stderr,"\\[%d,%d]", start-match, length); do { putc(s->window[start++], stderr); } while (--length != 0); } } #else # define check_match(s, start, match, length) #endif /* DEBUG */ /* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or avail_in == 0; reads are * performed for at least two bytes (required for the zip translate_eol * option -- not supported here). */ local void fill_window (deflate_state *s) { register unsigned n, m; register Posf *p; unsigned more; /* Amount of free space at the end of the window. */ uInt wsize = s->w_size; do { more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); /* Deal with !@#$% 64K limit: */ if (sizeof(int) <= 2) { if (more == 0 && s->strstart == 0 && s->lookahead == 0) { more = wsize; } else if (more == (unsigned)(-1)) { /* Very unlikely, but possible on 16 bit machine if * strstart == 0 && lookahead == 1 (input done a byte at time) */ more--; } } /* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ if (s->strstart >= wsize+MAX_DIST(s)) { zmemcpy(s->window, s->window+wsize, (unsigned)wsize); s->match_start -= wsize; s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ s->block_start -= (long) wsize; /* Slide the hash table (could be avoided with 32 bit values at the expense of memory usage). We slide even when level == 0 to keep the hash table consistent if we switch back to level > 0 later. (Using level 0 permanently is not an optimal usage of zlib, so we don't care about this pathological case.) */ /* %%% avoid this when Z_RLE */ n = s->hash_size; p = &s->head[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); } while (--n); n = wsize; #ifndef FASTEST p = &s->prev[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ } while (--n); #endif more += wsize; } if (s->strm->avail_in == 0) return; /* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ Assert(more >= 2, "more < 2"); n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); s->lookahead += n; /* Initialize the hash value now that we have some input: */ if (s->lookahead >= MIN_MATCH) { s->ins_h = s->window[s->strstart]; UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif } /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, * but this is not important since only literal bytes will be emitted. */ } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); } /* =========================================================================== * Flush the current block, with given end-of-file flag. * IN assertion: strstart is set to the end of the current match. */ #define FLUSH_BLOCK_ONLY(s, eof) { \ _tr_flush_block(s, (s->block_start >= 0L ? \ (charf *)&s->window[(unsigned)s->block_start] : \ (charf *)Z_NULL), \ (ulg)((long)s->strstart - s->block_start), \ (eof)); \ s->block_start = s->strstart; \ flush_pending(s->strm); \ Tracev((stderr,"[FLUSH]")); \ } /* Same but force premature exit if necessary. */ #define FLUSH_BLOCK(s, eof) { \ FLUSH_BLOCK_ONLY(s, eof); \ if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \ } /* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying from * window to pending_buf. */ local block_state deflate_stored(deflate_state *s, int flush) { /* Stored blocks are limited to 0xffff bytes, pending_buf is limited * to pending_buf_size, and each stored block has a 5 byte header: */ ulg max_block_size = 0xffff; ulg max_start; if (max_block_size > s->pending_buf_size - 5) { max_block_size = s->pending_buf_size - 5; } /* Copy as much as possible from input to output: */ for (;;) { /* Fill the window as much as possible: */ if (s->lookahead <= 1) { Assert(s->strstart < s->w_size+MAX_DIST(s) || s->block_start >= (long)s->w_size, "slide too late"); fill_window(s); if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; if (s->lookahead == 0) break; /* flush the current block */ } Assert(s->block_start >= 0L, "block gone"); s->strstart += s->lookahead; s->lookahead = 0; /* Emit a stored block if pending_buf will be full: */ max_start = s->block_start + max_block_size; if (s->strstart == 0 || (ulg)s->strstart >= max_start) { /* strstart == 0 is possible when wraparound on 16-bit machine */ s->lookahead = (uInt)(s->strstart - max_start); s->strstart = (uInt)max_start; FLUSH_BLOCK(s, 0); } /* Flush if we may have to slide, otherwise block_start may become * negative and the data will be gone: */ if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { FLUSH_BLOCK(s, 0); } } FLUSH_BLOCK(s, flush == Z_FINISH); return flush == Z_FINISH ? finish_done : block_done; } /* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ local block_state deflate_fast(deflate_state *s, int flush) { IPos hash_head = NIL; /* head of the hash chain */ int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ #ifdef FASTEST if ((s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) || (s->strategy == Z_RLE && s->strstart - hash_head == 1)) { s->match_length = longest_match_fast (s, hash_head); } #else if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) { s->match_length = longest_match (s, hash_head); } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) { s->match_length = longest_match_fast (s, hash_head); } #endif /* longest_match() or longest_match_fast() sets match_start */ } if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->match_start, s->match_length); _tr_tally_dist(s, s->strstart - s->match_start, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; /* Insert new strings in the hash table only if the match length * is not too large. This saves time but degrades compression. */ #ifndef FASTEST if (s->match_length <= s->max_insert_length && s->lookahead >= MIN_MATCH) { s->match_length--; /* string at strstart already in table */ do { s->strstart++; INSERT_STRING(s, s->strstart, hash_head); /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. */ } while (--s->match_length != 0); s->strstart++; } else #endif { s->strstart += s->match_length; s->match_length = 0; s->ins_h = s->window[s->strstart]; UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not * matter since it will be recomputed at next deflate call. */ } } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } FLUSH_BLOCK(s, flush == Z_FINISH); return flush == Z_FINISH ? finish_done : block_done; } #ifndef FASTEST /* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ local block_state deflate_slow(deflate_state *s, int flush) { IPos hash_head = NIL; /* head of hash chain */ int bflush; /* set if current block must be flushed */ /* Process the input block. */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. */ s->prev_length = s->match_length, s->prev_match = s->match_start; s->match_length = MIN_MATCH-1; if (hash_head != NIL && s->prev_length < s->max_lazy_match && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) { s->match_length = longest_match (s, hash_head); } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) { s->match_length = longest_match_fast (s, hash_head); } /* longest_match() or longest_match_fast() sets match_start */ if (s->match_length <= 5 && (s->strategy == Z_FILTERED #if TOO_FAR <= 32767 || (s->match_length == MIN_MATCH && s->strstart - s->match_start > TOO_FAR) #endif )) { /* If prev_match is also MIN_MATCH, match_start is garbage * but we will ignore the current match anyway. */ s->match_length = MIN_MATCH-1; } } /* If there was a match at the previous step and the current * match is not better, output the previous match: */ if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; /* Do not insert strings in hash table beyond this. */ check_match(s, s->strstart-1, s->prev_match, s->prev_length); _tr_tally_dist(s, s->strstart -1 - s->prev_match, s->prev_length - MIN_MATCH, bflush); /* Insert in hash table all strings up to the end of the match. * strstart-1 and strstart are already inserted. If there is not * enough lookahead, the last two strings are not inserted in * the hash table. */ s->lookahead -= s->prev_length-1; s->prev_length -= 2; do { if (++s->strstart <= max_insert) { INSERT_STRING(s, s->strstart, hash_head); } } while (--s->prev_length != 0); s->match_available = 0; s->match_length = MIN_MATCH-1; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } else if (s->match_available) { /* If there was no match at the previous position, output a * single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); if (bflush) { FLUSH_BLOCK_ONLY(s, 0); } s->strstart++; s->lookahead--; if (s->strm->avail_out == 0) return need_more; } else { /* There is no previous match to compare with, wait for * the next step to decide. */ s->match_available = 1; s->strstart++; s->lookahead--; } } Assert (flush != Z_NO_FLUSH, "no flush?"); if (s->match_available) { Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); s->match_available = 0; } FLUSH_BLOCK(s, flush == Z_FINISH); return flush == Z_FINISH ? finish_done : block_done; } #endif /* FASTEST */ #if 0 /* =========================================================================== * For Z_RLE, simply look for runs of bytes, generate matches only of distance * one. Do not maintain a hash table. (It will be regenerated if this run of * deflate switches away from Z_RLE.) */ local block_state deflate_rle(s, flush) deflate_state *s; int flush; { int bflush; /* set if current block must be flushed */ uInt run; /* length of run */ uInt max; /* maximum length of run */ uInt prev; /* byte at distance one to match */ Bytef *scan; /* scan for end of run */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the longest encodable run. */ if (s->lookahead < MAX_MATCH) { fill_window(s); if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* See how many times the previous byte repeats */ run = 0; if (s->strstart > 0) { /* if there is a previous byte, that is */ max = s->lookahead < MAX_MATCH ? s->lookahead : MAX_MATCH; scan = s->window + s->strstart - 1; prev = *scan++; do { if (*scan++ != prev) break; } while (++run < max); } /* Emit match if have run of MIN_MATCH or longer, else emit literal */ if (run >= MIN_MATCH) { check_match(s, s->strstart, s->strstart - 1, run); _tr_tally_dist(s, 1, run - MIN_MATCH, bflush); s->lookahead -= run; s->strstart += run; } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } FLUSH_BLOCK(s, flush == Z_FINISH); return flush == Z_FINISH ? finish_done : block_done; } #endif /********* End of inlined file: deflate.c *********/ /********* Start of inlined file: inffast.c *********/ /********* Start of inlined file: inftrees.h *********/ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ #ifndef _INFTREES_H_ #define _INFTREES_H_ /* Structure for decoding tables. Each entry provides either the information needed to do the operation requested by the code that indexed that table entry, or it provides a pointer to another table that indexes more bits of the code. op indicates whether the entry is a pointer to another table, a literal, a length or distance, an end-of-block, or an invalid code. For a table pointer, the low four bits of op is the number of index bits of that table. For a length or distance, the low four bits of op is the number of extra bits to get after the code. bits is the number of bits in this code or part of the code to drop off of the bit buffer. val is the actual byte to output in the case of a literal, the base length or distance, or the offset from the current table to the next table. Each entry is four bytes. */ typedef struct { unsigned char op; /* operation, extra bits, table bits */ unsigned char bits; /* bits in this part of the code */ unsigned short val; /* offset in table or code value */ } code; /* op values as set by inflate_table(): 00000000 - literal 0000tttt - table link, tttt != 0 is the number of table index bits 0001eeee - length or distance, eeee is the number of extra bits 01100000 - end of block 01000000 - invalid code */ /* Maximum size of dynamic tree. The maximum found in a long but non- exhaustive search was 1444 code structures (852 for length/literals and 592 for distances, the latter actually the result of an exhaustive search). The true maximum is not known, but the value below is more than safe. */ #define ENOUGH 2048 #define MAXD 592 /* Type of code to build for inftable() */ typedef enum { CODES, LENS, DISTS } codetype; extern int inflate_table OF((codetype type, unsigned short FAR *lens, unsigned codes, code FAR * FAR *table, unsigned FAR *bits, unsigned short FAR *work)); #endif /********* End of inlined file: inftrees.h *********/ /********* Start of inlined file: inflate.h *********/ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ #ifndef _INFLATE_H_ #define _INFLATE_H_ /* define NO_GZIP when compiling if you want to disable gzip header and trailer decoding by inflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip decoding should be left enabled. */ #ifndef NO_GZIP # define GUNZIP #endif /* Possible inflate modes between inflate() calls */ typedef enum { HEAD, /* i: waiting for magic header */ FLAGS, /* i: waiting for method and flags (gzip) */ TIME, /* i: waiting for modification time (gzip) */ OS, /* i: waiting for extra flags and operating system (gzip) */ EXLEN, /* i: waiting for extra length (gzip) */ EXTRA, /* i: waiting for extra bytes (gzip) */ NAME, /* i: waiting for end of file name (gzip) */ COMMENT, /* i: waiting for end of comment (gzip) */ HCRC, /* i: waiting for header crc (gzip) */ DICTID, /* i: waiting for dictionary check value */ DICT, /* waiting for inflateSetDictionary() call */ TYPE, /* i: waiting for type bits, including last-flag bit */ TYPEDO, /* i: same, but skip check to exit inflate on new block */ STORED, /* i: waiting for stored size (length and complement) */ COPY, /* i/o: waiting for input or output to copy stored block */ TABLE, /* i: waiting for dynamic block table lengths */ LENLENS, /* i: waiting for code length code lengths */ CODELENS, /* i: waiting for length/lit and distance code lengths */ LEN, /* i: waiting for length/lit code */ LENEXT, /* i: waiting for length extra bits */ DIST, /* i: waiting for distance code */ DISTEXT, /* i: waiting for distance extra bits */ MATCH, /* o: waiting for output space to copy string */ LIT, /* o: waiting for output space to write literal */ CHECK, /* i: waiting for 32-bit check value */ LENGTH, /* i: waiting for 32-bit length (gzip) */ DONE, /* finished check, done -- remain here until reset */ BAD, /* got a data error -- remain here until reset */ MEM, /* got an inflate() memory error -- remain here until reset */ SYNC /* looking for synchronization bytes to restart inflate() */ } inflate_mode; /* State transitions between above modes - (most modes can go to the BAD or MEM mode -- not shown for clarity) Process header: HEAD -> (gzip) or (zlib) (gzip) -> FLAGS -> TIME -> OS -> EXLEN -> EXTRA -> NAME NAME -> COMMENT -> HCRC -> TYPE (zlib) -> DICTID or TYPE DICTID -> DICT -> TYPE Read deflate blocks: TYPE -> STORED or TABLE or LEN or CHECK STORED -> COPY -> TYPE TABLE -> LENLENS -> CODELENS -> LEN Read deflate codes: LEN -> LENEXT or LIT or TYPE LENEXT -> DIST -> DISTEXT -> MATCH -> LEN LIT -> LEN Process trailer: CHECK -> LENGTH -> DONE */ /* state maintained between inflate() calls. Approximately 7K bytes. */ struct inflate_state { inflate_mode mode; /* current inflate mode */ int last; /* true if processing last block */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ int havedict; /* true if dictionary provided */ int flags; /* gzip header method and flags (0 if zlib) */ unsigned dmax; /* zlib header max distance (INFLATE_STRICT) */ unsigned long check; /* protected copy of check value */ unsigned long total; /* protected copy of output count */ gz_headerp head; /* where to save gzip header information */ /* sliding window */ unsigned wbits; /* log base 2 of requested window size */ unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned write; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if needed */ /* bit accumulator */ unsigned long hold; /* input bit accumulator */ unsigned bits; /* number of bits in "in" */ /* for string and stored block copying */ unsigned length; /* literal or length of data to copy */ unsigned offset; /* distance back to copy string from */ /* for table and code decoding */ unsigned extra; /* extra bits needed */ /* fixed and dynamic code tables */ code const FAR *lencode; /* starting table for length/literal codes */ code const FAR *distcode; /* starting table for distance codes */ unsigned lenbits; /* index bits for lencode */ unsigned distbits; /* index bits for distcode */ /* dynamic table building */ unsigned ncode; /* number of code length code lengths */ unsigned nlen; /* number of length code lengths */ unsigned ndist; /* number of distance code lengths */ unsigned have; /* number of code lengths in lens[] */ code FAR *next; /* next available space in codes[] */ unsigned short lens[320]; /* temporary storage for code lengths */ unsigned short work[288]; /* work area for code table building */ code codes[ENOUGH]; /* space for code tables */ }; #endif /********* End of inlined file: inflate.h *********/ /********* Start of inlined file: inffast.h *********/ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ void inflate_fast OF((z_streamp strm, unsigned start)); /********* End of inlined file: inffast.h *********/ #ifndef ASMINF /* Allow machine dependent optimization for post-increment or pre-increment. Based on testing to date, Pre-increment preferred for: - PowerPC G3 (Adler) - MIPS R5000 (Randers-Pehrson) Post-increment preferred for: - none No measurable difference: - Pentium III (Anderson) - M68060 (Nikl) */ #ifdef POSTINC # define OFF 0 # define PUP(a) *(a)++ #else # define OFF 1 # define PUP(a) *++(a) #endif /* Decode literal, length, and distance codes and write out the resulting literal and match bytes until either not enough input or output is available, an end-of-block is encountered, or a data error is encountered. When large enough input and output buffers are supplied to inflate(), for example, a 16K input buffer and a 64K output buffer, more than 95% of the inflate execution time is spent in this routine. Entry assumptions: state->mode == LEN strm->avail_in >= 6 strm->avail_out >= 258 start >= strm->avail_out state->bits < 8 On return, state->mode is one of: LEN -- ran out of enough output space or enough available input TYPE -- reached end of block code, inflate() to interpret next block BAD -- error in block data Notes: - The maximum input bits used by a length/distance pair is 15 bits for the length code, 5 bits for the length extra, 15 bits for the distance code, and 13 bits for the distance extra. This totals 48 bits, or six bytes. Therefore if strm->avail_in >= 6, then there is enough input to avoid checking for available input while decoding. - The maximum bytes that a single length/distance pair can output is 258 bytes, which is the maximum length that can be coded. inflate_fast() requires strm->avail_out >= 258 for each loop to avoid checking for output space. */ void inflate_fast (z_streamp strm, unsigned start) { struct inflate_state FAR *state; unsigned char FAR *in; /* local strm->next_in */ unsigned char FAR *last; /* while in < last, enough input available */ unsigned char FAR *out; /* local strm->next_out */ unsigned char FAR *beg; /* inflate()'s initial strm->next_out */ unsigned char FAR *end; /* while out < end, enough space available */ #ifdef INFLATE_STRICT unsigned dmax; /* maximum distance from zlib header */ #endif unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned write; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if wsize != 0 */ unsigned long hold; /* local strm->hold */ unsigned bits; /* local strm->bits */ code const FAR *lcode; /* local strm->lencode */ code const FAR *dcode; /* local strm->distcode */ unsigned lmask; /* mask for first level of length codes */ unsigned dmask; /* mask for first level of distance codes */ code thisx; /* retrieved table entry */ unsigned op; /* code bits, operation, extra bits, or */ /* window position, window bytes to copy */ unsigned len; /* match length, unused bytes */ unsigned dist; /* match distance */ unsigned char FAR *from; /* where to copy match from */ /* copy state to local variables */ state = (struct inflate_state FAR *)strm->state; in = strm->next_in - OFF; last = in + (strm->avail_in - 5); out = strm->next_out - OFF; beg = out - (start - strm->avail_out); end = out + (strm->avail_out - 257); #ifdef INFLATE_STRICT dmax = state->dmax; #endif wsize = state->wsize; whave = state->whave; write = state->write; window = state->window; hold = state->hold; bits = state->bits; lcode = state->lencode; dcode = state->distcode; lmask = (1U << state->lenbits) - 1; dmask = (1U << state->distbits) - 1; /* decode literals and length/distances until end-of-block or not enough input data or output space */ do { if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } thisx = lcode[hold & lmask]; dolen: op = (unsigned)(thisx.bits); hold >>= op; bits -= op; op = (unsigned)(thisx.op); if (op == 0) { /* literal */ Tracevv((stderr, thisx.val >= 0x20 && thisx.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", thisx.val)); PUP(out) = (unsigned char)(thisx.val); } else if (op & 16) { /* length base */ len = (unsigned)(thisx.val); op &= 15; /* number of extra bits */ if (op) { if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } len += (unsigned)hold & ((1U << op) - 1); hold >>= op; bits -= op; } Tracevv((stderr, "inflate: length %u\n", len)); if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } thisx = dcode[hold & dmask]; dodist: op = (unsigned)(thisx.bits); hold >>= op; bits -= op; op = (unsigned)(thisx.op); if (op & 16) { /* distance base */ dist = (unsigned)(thisx.val); op &= 15; /* number of extra bits */ if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } } dist += (unsigned)hold & ((1U << op) - 1); #ifdef INFLATE_STRICT if (dist > dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif hold >>= op; bits -= op; Tracevv((stderr, "inflate: distance %u\n", dist)); op = (unsigned)(out - beg); /* max distance in output */ if (dist > op) { /* see if copy from window */ op = dist - op; /* distance back in window */ if (op > whave) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } from = window - OFF; if (write == 0) { /* very common case */ from += wsize - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } else if (write < op) { /* wrap around window */ from += wsize + write - op; op -= write; if (op < len) { /* some from end of window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = window - OFF; if (write < len) { /* some from start of window */ op = write; len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } } else { /* contiguous in window */ from += write - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } while (len > 2) { PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } else { from = out - dist; /* copy direct from output */ do { /* minimum length is three */ PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } while (len > 2); if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } } else if ((op & 64) == 0) { /* 2nd level distance code */ thisx = dcode[thisx.val + (hold & ((1U << op) - 1))]; goto dodist; } else { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } } else if ((op & 64) == 0) { /* 2nd level length code */ thisx = lcode[thisx.val + (hold & ((1U << op) - 1))]; goto dolen; } else if (op & 32) { /* end-of-block */ Tracevv((stderr, "inflate: end of block\n")); state->mode = TYPE; break; } else { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } } while (in < last && out < end); /* return unused bytes (on entry, bits < 8, so in won't go too far back) */ len = bits >> 3; in -= len; bits -= len << 3; hold &= (1U << bits) - 1; /* update state and return */ strm->next_in = in + OFF; strm->next_out = out + OFF; strm->avail_in = (unsigned)(in < last ? 5 + (last - in) : 5 - (in - last)); strm->avail_out = (unsigned)(out < end ? 257 + (end - out) : 257 - (out - end)); state->hold = hold; state->bits = bits; return; } /* inflate_fast() speedups that turned out slower (on a PowerPC G3 750CXe): - Using bit fields for code structure - Different op definition to avoid & for extra bits (do & for table bits) - Three separate decoding do-loops for direct, window, and write == 0 - Special case for distance > 1 copies to do overlapped load and store copy - Explicit branch predictions (based on measured branch probabilities) - Deferring match copy and interspersed it with decoding subsequent codes - Swapping literal/length else - Swapping window/direct else - Larger unrolled copy loops (three is about right) - Moving len -= 3 statement into middle of loop */ #endif /* !ASMINF */ /********* End of inlined file: inffast.c *********/ #undef PULLBYTE #undef LOAD #undef RESTORE #undef INITBITS #undef NEEDBITS #undef DROPBITS #undef BYTEBITS /********* Start of inlined file: inflate.c *********/ /* * Change history: * * 1.2.beta0 24 Nov 2002 * - First version -- complete rewrite of inflate to simplify code, avoid * creation of window when not needed, minimize use of window when it is * needed, make inffast.c even faster, implement gzip decoding, and to * improve code readability and style over the previous zlib inflate code * * 1.2.beta1 25 Nov 2002 * - Use pointers for available input and output checking in inffast.c * - Remove input and output counters in inffast.c * - Change inffast.c entry and loop from avail_in >= 7 to >= 6 * - Remove unnecessary second byte pull from length extra in inffast.c * - Unroll direct copy to three copies per loop in inffast.c * * 1.2.beta2 4 Dec 2002 * - Change external routine names to reduce potential conflicts * - Correct filename to inffixed.h for fixed tables in inflate.c * - Make hbuf[] unsigned char to match parameter type in inflate.c * - Change strm->next_out[-state->offset] to *(strm->next_out - state->offset) * to avoid negation problem on Alphas (64 bit) in inflate.c * * 1.2.beta3 22 Dec 2002 * - Add comments on state->bits assertion in inffast.c * - Add comments on op field in inftrees.h * - Fix bug in reuse of allocated window after inflateReset() * - Remove bit fields--back to byte structure for speed * - Remove distance extra == 0 check in inflate_fast()--only helps for lengths * - Change post-increments to pre-increments in inflate_fast(), PPC biased? * - Add compile time option, POSTINC, to use post-increments instead (Intel?) * - Make MATCH copy in inflate() much faster for when inflate_fast() not used * - Use local copies of stream next and avail values, as well as local bit * buffer and bit count in inflate()--for speed when inflate_fast() not used * * 1.2.beta4 1 Jan 2003 * - Split ptr - 257 statements in inflate_table() to avoid compiler warnings * - Move a comment on output buffer sizes from inffast.c to inflate.c * - Add comments in inffast.c to introduce the inflate_fast() routine * - Rearrange window copies in inflate_fast() for speed and simplification * - Unroll last copy for window match in inflate_fast() * - Use local copies of window variables in inflate_fast() for speed * - Pull out common write == 0 case for speed in inflate_fast() * - Make op and len in inflate_fast() unsigned for consistency * - Add FAR to lcode and dcode declarations in inflate_fast() * - Simplified bad distance check in inflate_fast() * - Added inflateBackInit(), inflateBack(), and inflateBackEnd() in new * source file infback.c to provide a call-back interface to inflate for * programs like gzip and unzip -- uses window as output buffer to avoid * window copying * * 1.2.beta5 1 Jan 2003 * - Improved inflateBack() interface to allow the caller to provide initial * input in strm. * - Fixed stored blocks bug in inflateBack() * * 1.2.beta6 4 Jan 2003 * - Added comments in inffast.c on effectiveness of POSTINC * - Typecasting all around to reduce compiler warnings * - Changed loops from while (1) or do {} while (1) to for (;;), again to * make compilers happy * - Changed type of window in inflateBackInit() to unsigned char * * * 1.2.beta7 27 Jan 2003 * - Changed many types to unsigned or unsigned short to avoid warnings * - Added inflateCopy() function * * 1.2.0 9 Mar 2003 * - Changed inflateBack() interface to provide separate opaque descriptors * for the in() and out() functions * - Changed inflateBack() argument and in_func typedef to swap the length * and buffer address return values for the input function * - Check next_in and next_out for Z_NULL on entry to inflate() * * The history for versions after 1.2.0 are in ChangeLog in zlib distribution. */ /********* Start of inlined file: inffast.h *********/ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ void inflate_fast OF((z_streamp strm, unsigned start)); /********* End of inlined file: inffast.h *********/ #ifdef MAKEFIXED # ifndef BUILDFIXED # define BUILDFIXED # endif #endif /* function prototypes */ local void fixedtables OF((struct inflate_state FAR *state)); local int updatewindow OF((z_streamp strm, unsigned out)); #ifdef BUILDFIXED void makefixed OF((void)); #endif local unsigned syncsearch OF((unsigned FAR *have, unsigned char FAR *buf, unsigned len)); int ZEXPORT inflateReset (z_streamp strm) { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; strm->total_in = strm->total_out = state->total = 0; strm->msg = Z_NULL; strm->adler = 1; /* to support ill-conceived Java test suite */ state->mode = HEAD; state->last = 0; state->havedict = 0; state->dmax = 32768U; state->head = Z_NULL; state->wsize = 0; state->whave = 0; state->write = 0; state->hold = 0; state->bits = 0; state->lencode = state->distcode = state->next = state->codes; Tracev((stderr, "inflate: reset\n")); return Z_OK; } int ZEXPORT inflatePrime (z_streamp strm, int bits, int value) { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR; value &= (1L << bits) - 1; state->hold += value << state->bits; state->bits += bits; return Z_OK; } int ZEXPORT inflateInit2_(z_streamp strm, int windowBits, const char *version, int stream_size) { struct inflate_state FAR *state; if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != (int)(sizeof(z_stream))) return Z_VERSION_ERROR; if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; /* in case we return an error */ if (strm->zalloc == (alloc_func)0) { strm->zalloc = zcalloc; strm->opaque = (voidpf)0; } if (strm->zfree == (free_func)0) strm->zfree = zcfree; state = (struct inflate_state FAR *) ZALLOC(strm, 1, sizeof(struct inflate_state)); if (state == Z_NULL) return Z_MEM_ERROR; Tracev((stderr, "inflate: allocated\n")); strm->state = (struct internal_state FAR *)state; if (windowBits < 0) { state->wrap = 0; windowBits = -windowBits; } else { state->wrap = (windowBits >> 4) + 1; #ifdef GUNZIP if (windowBits < 48) windowBits &= 15; #endif } if (windowBits < 8 || windowBits > 15) { ZFREE(strm, state); strm->state = Z_NULL; return Z_STREAM_ERROR; } state->wbits = (unsigned)windowBits; state->window = Z_NULL; return inflateReset(strm); } int ZEXPORT inflateInit_ (z_streamp strm, const char *version, int stream_size) { return inflateInit2_(strm, DEF_WBITS, version, stream_size); } /* Return state with length and distance decoding tables and index sizes set to fixed code decoding. Normally this returns fixed tables from inffixed.h. If BUILDFIXED is defined, then instead this routine builds the tables the first time it's called, and returns those tables the first time and thereafter. This reduces the size of the code by about 2K bytes, in exchange for a little execution time. However, BUILDFIXED should not be used for threaded applications, since the rewriting of the tables and virgin may not be thread-safe. */ local void fixedtables (struct inflate_state FAR *state) { #ifdef BUILDFIXED static int virgin = 1; static code *lenfix, *distfix; static code fixed[544]; /* build fixed huffman tables if first call (may not be thread safe) */ if (virgin) { unsigned sym, bits; static code *next; /* literal/length table */ sym = 0; while (sym < 144) state->lens[sym++] = 8; while (sym < 256) state->lens[sym++] = 9; while (sym < 280) state->lens[sym++] = 7; while (sym < 288) state->lens[sym++] = 8; next = fixed; lenfix = next; bits = 9; inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work); /* distance table */ sym = 0; while (sym < 32) state->lens[sym++] = 5; distfix = next; bits = 5; inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work); /* do this just once */ virgin = 0; } #else /* !BUILDFIXED */ /********* Start of inlined file: inffixed.h *********/ /* inffixed.h -- table for decoding fixed codes * Generated automatically by makefixed(). */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ static const code lenfix[512] = { {96,7,0},{0,8,80},{0,8,16},{20,8,115},{18,7,31},{0,8,112},{0,8,48}, {0,9,192},{16,7,10},{0,8,96},{0,8,32},{0,9,160},{0,8,0},{0,8,128}, {0,8,64},{0,9,224},{16,7,6},{0,8,88},{0,8,24},{0,9,144},{19,7,59}, {0,8,120},{0,8,56},{0,9,208},{17,7,17},{0,8,104},{0,8,40},{0,9,176}, {0,8,8},{0,8,136},{0,8,72},{0,9,240},{16,7,4},{0,8,84},{0,8,20}, {21,8,227},{19,7,43},{0,8,116},{0,8,52},{0,9,200},{17,7,13},{0,8,100}, {0,8,36},{0,9,168},{0,8,4},{0,8,132},{0,8,68},{0,9,232},{16,7,8}, {0,8,92},{0,8,28},{0,9,152},{20,7,83},{0,8,124},{0,8,60},{0,9,216}, {18,7,23},{0,8,108},{0,8,44},{0,9,184},{0,8,12},{0,8,140},{0,8,76}, {0,9,248},{16,7,3},{0,8,82},{0,8,18},{21,8,163},{19,7,35},{0,8,114}, {0,8,50},{0,9,196},{17,7,11},{0,8,98},{0,8,34},{0,9,164},{0,8,2}, {0,8,130},{0,8,66},{0,9,228},{16,7,7},{0,8,90},{0,8,26},{0,9,148}, {20,7,67},{0,8,122},{0,8,58},{0,9,212},{18,7,19},{0,8,106},{0,8,42}, {0,9,180},{0,8,10},{0,8,138},{0,8,74},{0,9,244},{16,7,5},{0,8,86}, {0,8,22},{64,8,0},{19,7,51},{0,8,118},{0,8,54},{0,9,204},{17,7,15}, {0,8,102},{0,8,38},{0,9,172},{0,8,6},{0,8,134},{0,8,70},{0,9,236}, {16,7,9},{0,8,94},{0,8,30},{0,9,156},{20,7,99},{0,8,126},{0,8,62}, {0,9,220},{18,7,27},{0,8,110},{0,8,46},{0,9,188},{0,8,14},{0,8,142}, {0,8,78},{0,9,252},{96,7,0},{0,8,81},{0,8,17},{21,8,131},{18,7,31}, {0,8,113},{0,8,49},{0,9,194},{16,7,10},{0,8,97},{0,8,33},{0,9,162}, {0,8,1},{0,8,129},{0,8,65},{0,9,226},{16,7,6},{0,8,89},{0,8,25}, {0,9,146},{19,7,59},{0,8,121},{0,8,57},{0,9,210},{17,7,17},{0,8,105}, {0,8,41},{0,9,178},{0,8,9},{0,8,137},{0,8,73},{0,9,242},{16,7,4}, {0,8,85},{0,8,21},{16,8,258},{19,7,43},{0,8,117},{0,8,53},{0,9,202}, {17,7,13},{0,8,101},{0,8,37},{0,9,170},{0,8,5},{0,8,133},{0,8,69}, {0,9,234},{16,7,8},{0,8,93},{0,8,29},{0,9,154},{20,7,83},{0,8,125}, {0,8,61},{0,9,218},{18,7,23},{0,8,109},{0,8,45},{0,9,186},{0,8,13}, {0,8,141},{0,8,77},{0,9,250},{16,7,3},{0,8,83},{0,8,19},{21,8,195}, {19,7,35},{0,8,115},{0,8,51},{0,9,198},{17,7,11},{0,8,99},{0,8,35}, {0,9,166},{0,8,3},{0,8,131},{0,8,67},{0,9,230},{16,7,7},{0,8,91}, {0,8,27},{0,9,150},{20,7,67},{0,8,123},{0,8,59},{0,9,214},{18,7,19}, {0,8,107},{0,8,43},{0,9,182},{0,8,11},{0,8,139},{0,8,75},{0,9,246}, {16,7,5},{0,8,87},{0,8,23},{64,8,0},{19,7,51},{0,8,119},{0,8,55}, {0,9,206},{17,7,15},{0,8,103},{0,8,39},{0,9,174},{0,8,7},{0,8,135}, {0,8,71},{0,9,238},{16,7,9},{0,8,95},{0,8,31},{0,9,158},{20,7,99}, {0,8,127},{0,8,63},{0,9,222},{18,7,27},{0,8,111},{0,8,47},{0,9,190}, {0,8,15},{0,8,143},{0,8,79},{0,9,254},{96,7,0},{0,8,80},{0,8,16}, {20,8,115},{18,7,31},{0,8,112},{0,8,48},{0,9,193},{16,7,10},{0,8,96}, {0,8,32},{0,9,161},{0,8,0},{0,8,128},{0,8,64},{0,9,225},{16,7,6}, {0,8,88},{0,8,24},{0,9,145},{19,7,59},{0,8,120},{0,8,56},{0,9,209}, {17,7,17},{0,8,104},{0,8,40},{0,9,177},{0,8,8},{0,8,136},{0,8,72}, {0,9,241},{16,7,4},{0,8,84},{0,8,20},{21,8,227},{19,7,43},{0,8,116}, {0,8,52},{0,9,201},{17,7,13},{0,8,100},{0,8,36},{0,9,169},{0,8,4}, {0,8,132},{0,8,68},{0,9,233},{16,7,8},{0,8,92},{0,8,28},{0,9,153}, {20,7,83},{0,8,124},{0,8,60},{0,9,217},{18,7,23},{0,8,108},{0,8,44}, {0,9,185},{0,8,12},{0,8,140},{0,8,76},{0,9,249},{16,7,3},{0,8,82}, {0,8,18},{21,8,163},{19,7,35},{0,8,114},{0,8,50},{0,9,197},{17,7,11}, {0,8,98},{0,8,34},{0,9,165},{0,8,2},{0,8,130},{0,8,66},{0,9,229}, {16,7,7},{0,8,90},{0,8,26},{0,9,149},{20,7,67},{0,8,122},{0,8,58}, {0,9,213},{18,7,19},{0,8,106},{0,8,42},{0,9,181},{0,8,10},{0,8,138}, {0,8,74},{0,9,245},{16,7,5},{0,8,86},{0,8,22},{64,8,0},{19,7,51}, {0,8,118},{0,8,54},{0,9,205},{17,7,15},{0,8,102},{0,8,38},{0,9,173}, {0,8,6},{0,8,134},{0,8,70},{0,9,237},{16,7,9},{0,8,94},{0,8,30}, {0,9,157},{20,7,99},{0,8,126},{0,8,62},{0,9,221},{18,7,27},{0,8,110}, {0,8,46},{0,9,189},{0,8,14},{0,8,142},{0,8,78},{0,9,253},{96,7,0}, {0,8,81},{0,8,17},{21,8,131},{18,7,31},{0,8,113},{0,8,49},{0,9,195}, {16,7,10},{0,8,97},{0,8,33},{0,9,163},{0,8,1},{0,8,129},{0,8,65}, {0,9,227},{16,7,6},{0,8,89},{0,8,25},{0,9,147},{19,7,59},{0,8,121}, {0,8,57},{0,9,211},{17,7,17},{0,8,105},{0,8,41},{0,9,179},{0,8,9}, {0,8,137},{0,8,73},{0,9,243},{16,7,4},{0,8,85},{0,8,21},{16,8,258}, {19,7,43},{0,8,117},{0,8,53},{0,9,203},{17,7,13},{0,8,101},{0,8,37}, {0,9,171},{0,8,5},{0,8,133},{0,8,69},{0,9,235},{16,7,8},{0,8,93}, {0,8,29},{0,9,155},{20,7,83},{0,8,125},{0,8,61},{0,9,219},{18,7,23}, {0,8,109},{0,8,45},{0,9,187},{0,8,13},{0,8,141},{0,8,77},{0,9,251}, {16,7,3},{0,8,83},{0,8,19},{21,8,195},{19,7,35},{0,8,115},{0,8,51}, {0,9,199},{17,7,11},{0,8,99},{0,8,35},{0,9,167},{0,8,3},{0,8,131}, {0,8,67},{0,9,231},{16,7,7},{0,8,91},{0,8,27},{0,9,151},{20,7,67}, {0,8,123},{0,8,59},{0,9,215},{18,7,19},{0,8,107},{0,8,43},{0,9,183}, {0,8,11},{0,8,139},{0,8,75},{0,9,247},{16,7,5},{0,8,87},{0,8,23}, {64,8,0},{19,7,51},{0,8,119},{0,8,55},{0,9,207},{17,7,15},{0,8,103}, {0,8,39},{0,9,175},{0,8,7},{0,8,135},{0,8,71},{0,9,239},{16,7,9}, {0,8,95},{0,8,31},{0,9,159},{20,7,99},{0,8,127},{0,8,63},{0,9,223}, {18,7,27},{0,8,111},{0,8,47},{0,9,191},{0,8,15},{0,8,143},{0,8,79}, {0,9,255} }; static const code distfix[32] = { {16,5,1},{23,5,257},{19,5,17},{27,5,4097},{17,5,5},{25,5,1025}, {21,5,65},{29,5,16385},{16,5,3},{24,5,513},{20,5,33},{28,5,8193}, {18,5,9},{26,5,2049},{22,5,129},{64,5,0},{16,5,2},{23,5,385}, {19,5,25},{27,5,6145},{17,5,7},{25,5,1537},{21,5,97},{29,5,24577}, {16,5,4},{24,5,769},{20,5,49},{28,5,12289},{18,5,13},{26,5,3073}, {22,5,193},{64,5,0} }; /********* End of inlined file: inffixed.h *********/ #endif /* BUILDFIXED */ state->lencode = lenfix; state->lenbits = 9; state->distcode = distfix; state->distbits = 5; } #ifdef MAKEFIXED #include /* Write out the inffixed.h that is #include'd above. Defining MAKEFIXED also defines BUILDFIXED, so the tables are built on the fly. makefixed() writes those tables to stdout, which would be piped to inffixed.h. A small program can simply call makefixed to do this: void makefixed(void); int main(void) { makefixed(); return 0; } Then that can be linked with zlib built with MAKEFIXED defined and run: a.out > inffixed.h */ void makefixed() { unsigned low, size; struct inflate_state state; fixedtables(&state); puts(" /* inffixed.h -- table for decoding fixed codes"); puts(" * Generated automatically by makefixed()."); puts(" */"); puts(""); puts(" /* WARNING: this file should *not* be used by applications."); puts(" It is part of the implementation of this library and is"); puts(" subject to change. Applications should only use zlib.h."); puts(" */"); puts(""); size = 1U << 9; printf(" static const code lenfix[%u] = {", size); low = 0; for (;;) { if ((low % 7) == 0) printf("\n "); printf("{%u,%u,%d}", state.lencode[low].op, state.lencode[low].bits, state.lencode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); size = 1U << 5; printf("\n static const code distfix[%u] = {", size); low = 0; for (;;) { if ((low % 6) == 0) printf("\n "); printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits, state.distcode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); } #endif /* MAKEFIXED */ /* Update the window with the last wsize (normally 32K) bytes written before returning. If window does not exist yet, create it. This is only called when a window is already in use, or when output has been written during this inflate call, but the end of the deflate stream has not been reached yet. It is also called to create a window for dictionary data when a dictionary is loaded. Providing output buffers larger than 32K to inflate() should provide a speed advantage, since only the last 32K of output is copied to the sliding window upon return from inflate(), and since all distances after the first 32K of output will fall in the output data, making match copies simpler and faster. The advantage may be dependent on the size of the processor's data caches. */ local int updatewindow (z_streamp strm, unsigned out) { struct inflate_state FAR *state; unsigned copy, dist; state = (struct inflate_state FAR *)strm->state; /* if it hasn't been done already, allocate space for the window */ if (state->window == Z_NULL) { state->window = (unsigned char FAR *) ZALLOC(strm, 1U << state->wbits, sizeof(unsigned char)); if (state->window == Z_NULL) return 1; } /* if window not in use yet, initialize */ if (state->wsize == 0) { state->wsize = 1U << state->wbits; state->write = 0; state->whave = 0; } /* copy state->wsize or less output bytes into the circular window */ copy = out - strm->avail_out; if (copy >= state->wsize) { zmemcpy(state->window, strm->next_out - state->wsize, state->wsize); state->write = 0; state->whave = state->wsize; } else { dist = state->wsize - state->write; if (dist > copy) dist = copy; zmemcpy(state->window + state->write, strm->next_out - copy, dist); copy -= dist; if (copy) { zmemcpy(state->window, strm->next_out - copy, copy); state->write = copy; state->whave = state->wsize; } else { state->write += dist; if (state->write == state->wsize) state->write = 0; if (state->whave < state->wsize) state->whave += dist; } } return 0; } /* Macros for inflate(): */ /* check function to use adler32() for zlib or crc32() for gzip */ #ifdef GUNZIP # define UPDATE(check, buf, len) \ (state->flags ? crc32(check, buf, len) : adler32(check, buf, len)) #else # define UPDATE(check, buf, len) adler32(check, buf, len) #endif /* check macros for header crc */ #ifdef GUNZIP # define CRC2(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ check = crc32(check, hbuf, 2); \ } while (0) # define CRC4(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ hbuf[2] = (unsigned char)((word) >> 16); \ hbuf[3] = (unsigned char)((word) >> 24); \ check = crc32(check, hbuf, 4); \ } while (0) #endif /* Load registers with state in inflate() for speed */ #define LOAD() \ do { \ put = strm->next_out; \ left = strm->avail_out; \ next = strm->next_in; \ have = strm->avail_in; \ hold = state->hold; \ bits = state->bits; \ } while (0) /* Restore state from registers in inflate() */ #define RESTORE() \ do { \ strm->next_out = put; \ strm->avail_out = left; \ strm->next_in = next; \ strm->avail_in = have; \ state->hold = hold; \ state->bits = bits; \ } while (0) /* Clear the input bit accumulator */ #define INITBITS() \ do { \ hold = 0; \ bits = 0; \ } while (0) /* Get a byte of input into the bit accumulator, or return from inflate() if there is no input available. */ #define PULLBYTE() \ do { \ if (have == 0) goto inf_leave; \ have--; \ hold += (unsigned long)(*next++) << bits; \ bits += 8; \ } while (0) /* Assure that there are at least n bits in the bit accumulator. If there is not enough available input to do that, then return from inflate(). */ #define NEEDBITS(n) \ do { \ while (bits < (unsigned)(n)) \ PULLBYTE(); \ } while (0) /* Return the low n bits of the bit accumulator (n < 16) */ #define BITS(n) \ ((unsigned)hold & ((1U << (n)) - 1)) /* Remove n bits from the bit accumulator */ #define DROPBITS(n) \ do { \ hold >>= (n); \ bits -= (unsigned)(n); \ } while (0) /* Remove zero to seven bits as needed to go to a byte boundary */ #define BYTEBITS() \ do { \ hold >>= bits & 7; \ bits -= bits & 7; \ } while (0) /* Reverse the bytes in a 32-bit value */ #define REVERSE(q) \ ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \ (((q) & 0xff00) << 8) + (((q) & 0xff) << 24)) /* inflate() uses a state machine to process as much input data and generate as much output data as possible before returning. The state machine is structured roughly as follows: for (;;) switch (state) { ... case STATEn: if (not enough input data or output space to make progress) return; ... make progress ... state = STATEm; break; ... } so when inflate() is called again, the same case is attempted again, and if the appropriate resources are provided, the machine proceeds to the next state. The NEEDBITS() macro is usually the way the state evaluates whether it can proceed or should return. NEEDBITS() does the return if the requested bits are not available. The typical use of the BITS macros is: NEEDBITS(n); ... do something with BITS(n) ... DROPBITS(n); where NEEDBITS(n) either returns from inflate() if there isn't enough input left to load n bits into the accumulator, or it continues. BITS(n) gives the low n bits in the accumulator. When done, DROPBITS(n) drops the low n bits off the accumulator. INITBITS() clears the accumulator and sets the number of available bits to zero. BYTEBITS() discards just enough bits to put the accumulator on a byte boundary. After BYTEBITS() and a NEEDBITS(8), then BITS(8) would return the next byte in the stream. NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return if there is no input available. The decoding of variable length codes uses PULLBYTE() directly in order to pull just enough bytes to decode the next code, and no more. Some states loop until they get enough input, making sure that enough state information is maintained to continue the loop where it left off if NEEDBITS() returns in the loop. For example, want, need, and keep would all have to actually be part of the saved state in case NEEDBITS() returns: case STATEw: while (want < need) { NEEDBITS(n); keep[want++] = BITS(n); DROPBITS(n); } state = STATEx; case STATEx: As shown above, if the next state is also the next case, then the break is omitted. A state may also return if there is not enough output space available to complete that state. Those states are copying stored data, writing a literal byte, and copying a matching string. When returning, a "goto inf_leave" is used to update the total counters, update the check value, and determine whether any progress has been made during that inflate() call in order to return the proper return code. Progress is defined as a change in either strm->avail_in or strm->avail_out. When there is a window, goto inf_leave will update the window with the last output written. If a goto inf_leave occurs in the middle of decompression and there is no window currently, goto inf_leave will create one and copy output to the window for the next call of inflate(). In this implementation, the flush parameter of inflate() only affects the return code (per zlib.h). inflate() always writes as much as possible to strm->next_out, given the space available and the provided input--the effect documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers the allocation of and copying into a sliding window until necessary, which provides the effect documented in zlib.h for Z_FINISH when the entire input stream available. So the only thing the flush parameter actually does is: when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it will return Z_BUF_ERROR if it has not reached the end of the stream. */ int ZEXPORT inflate (z_streamp strm, int flush) { struct inflate_state FAR *state; unsigned char FAR *next; /* next input */ unsigned char FAR *put; /* next output */ unsigned have, left; /* available input and output */ unsigned long hold; /* bit buffer */ unsigned bits; /* bits in bit buffer */ unsigned in, out; /* save starting available input and output */ unsigned copy; /* number of stored or match bytes to copy */ unsigned char FAR *from; /* where to copy match bytes from */ code thisx; /* current decoding table entry */ code last; /* parent table entry */ unsigned len; /* length to copy for repeats, bits to drop */ int ret; /* return code */ #ifdef GUNZIP unsigned char hbuf[4]; /* buffer for gzip header crc calculation */ #endif static const unsigned short order[19] = /* permutation of code lengths */ {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; if (strm == Z_NULL || strm->state == Z_NULL || strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */ LOAD(); in = have; out = left; ret = Z_OK; for (;;) switch (state->mode) { case HEAD: if (state->wrap == 0) { state->mode = TYPEDO; break; } NEEDBITS(16); #ifdef GUNZIP if ((state->wrap & 2) && hold == 0x8b1f) { /* gzip header */ state->check = crc32(0L, Z_NULL, 0); CRC2(state->check, hold); INITBITS(); state->mode = FLAGS; break; } state->flags = 0; /* expect zlib header */ if (state->head != Z_NULL) state->head->done = -1; if (!(state->wrap & 1) || /* check if zlib header allowed */ #else if ( #endif ((BITS(8) << 8) + (hold >> 8)) % 31) { strm->msg = (char *)"incorrect header check"; state->mode = BAD; break; } if (BITS(4) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } DROPBITS(4); len = BITS(4) + 8; if (len > state->wbits) { strm->msg = (char *)"invalid window size"; state->mode = BAD; break; } state->dmax = 1U << len; Tracev((stderr, "inflate: zlib header ok\n")); strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = hold & 0x200 ? DICTID : TYPE; INITBITS(); break; #ifdef GUNZIP case FLAGS: NEEDBITS(16); state->flags = (int)(hold); if ((state->flags & 0xff) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } if (state->flags & 0xe000) { strm->msg = (char *)"unknown header flags set"; state->mode = BAD; break; } if (state->head != Z_NULL) state->head->text = (int)((hold >> 8) & 1); if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = TIME; case TIME: NEEDBITS(32); if (state->head != Z_NULL) state->head->time = hold; if (state->flags & 0x0200) CRC4(state->check, hold); INITBITS(); state->mode = OS; case OS: NEEDBITS(16); if (state->head != Z_NULL) { state->head->xflags = (int)(hold & 0xff); state->head->os = (int)(hold >> 8); } if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = EXLEN; case EXLEN: if (state->flags & 0x0400) { NEEDBITS(16); state->length = (unsigned)(hold); if (state->head != Z_NULL) state->head->extra_len = (unsigned)hold; if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); } else if (state->head != Z_NULL) state->head->extra = Z_NULL; state->mode = EXTRA; case EXTRA: if (state->flags & 0x0400) { copy = state->length; if (copy > have) copy = have; if (copy) { if (state->head != Z_NULL && state->head->extra != Z_NULL) { len = state->head->extra_len - state->length; zmemcpy(state->head->extra + len, next, len + copy > state->head->extra_max ? state->head->extra_max - len : copy); } if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; state->length -= copy; } if (state->length) goto inf_leave; } state->length = 0; state->mode = NAME; case NAME: if (state->flags & 0x0800) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->name != Z_NULL && state->length < state->head->name_max) state->head->name[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->name = Z_NULL; state->length = 0; state->mode = COMMENT; case COMMENT: if (state->flags & 0x1000) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->comment != Z_NULL && state->length < state->head->comm_max) state->head->comment[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->comment = Z_NULL; state->mode = HCRC; case HCRC: if (state->flags & 0x0200) { NEEDBITS(16); if (hold != (state->check & 0xffff)) { strm->msg = (char *)"header crc mismatch"; state->mode = BAD; break; } INITBITS(); } if (state->head != Z_NULL) { state->head->hcrc = (int)((state->flags >> 9) & 1); state->head->done = 1; } strm->adler = state->check = crc32(0L, Z_NULL, 0); state->mode = TYPE; break; #endif case DICTID: NEEDBITS(32); strm->adler = state->check = REVERSE(hold); INITBITS(); state->mode = DICT; case DICT: if (state->havedict == 0) { RESTORE(); return Z_NEED_DICT; } strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = TYPE; case TYPE: if (flush == Z_BLOCK) goto inf_leave; case TYPEDO: if (state->last) { BYTEBITS(); state->mode = CHECK; break; } NEEDBITS(3); state->last = BITS(1); DROPBITS(1); switch (BITS(2)) { case 0: /* stored block */ Tracev((stderr, "inflate: stored block%s\n", state->last ? " (last)" : "")); state->mode = STORED; break; case 1: /* fixed block */ fixedtables(state); Tracev((stderr, "inflate: fixed codes block%s\n", state->last ? " (last)" : "")); state->mode = LEN; /* decode codes */ break; case 2: /* dynamic block */ Tracev((stderr, "inflate: dynamic codes block%s\n", state->last ? " (last)" : "")); state->mode = TABLE; break; case 3: strm->msg = (char *)"invalid block type"; state->mode = BAD; } DROPBITS(2); break; case STORED: BYTEBITS(); /* go to byte boundary */ NEEDBITS(32); if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { strm->msg = (char *)"invalid stored block lengths"; state->mode = BAD; break; } state->length = (unsigned)hold & 0xffff; Tracev((stderr, "inflate: stored length %u\n", state->length)); INITBITS(); state->mode = COPY; case COPY: copy = state->length; if (copy) { if (copy > have) copy = have; if (copy > left) copy = left; if (copy == 0) goto inf_leave; zmemcpy(put, next, copy); have -= copy; next += copy; left -= copy; put += copy; state->length -= copy; break; } Tracev((stderr, "inflate: stored end\n")); state->mode = TYPE; break; case TABLE: NEEDBITS(14); state->nlen = BITS(5) + 257; DROPBITS(5); state->ndist = BITS(5) + 1; DROPBITS(5); state->ncode = BITS(4) + 4; DROPBITS(4); #ifndef PKZIP_BUG_WORKAROUND if (state->nlen > 286 || state->ndist > 30) { strm->msg = (char *)"too many length or distance symbols"; state->mode = BAD; break; } #endif Tracev((stderr, "inflate: table sizes ok\n")); state->have = 0; state->mode = LENLENS; case LENLENS: while (state->have < state->ncode) { NEEDBITS(3); state->lens[order[state->have++]] = (unsigned short)BITS(3); DROPBITS(3); } while (state->have < 19) state->lens[order[state->have++]] = 0; state->next = state->codes; state->lencode = (code const FAR *)(state->next); state->lenbits = 7; ret = inflate_table(CODES, state->lens, 19, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid code lengths set"; state->mode = BAD; break; } Tracev((stderr, "inflate: code lengths ok\n")); state->have = 0; state->mode = CODELENS; case CODELENS: while (state->have < state->nlen + state->ndist) { for (;;) { thisx = state->lencode[BITS(state->lenbits)]; if ((unsigned)(thisx.bits) <= bits) break; PULLBYTE(); } if (thisx.val < 16) { NEEDBITS(thisx.bits); DROPBITS(thisx.bits); state->lens[state->have++] = thisx.val; } else { if (thisx.val == 16) { NEEDBITS(thisx.bits + 2); DROPBITS(thisx.bits); if (state->have == 0) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } len = state->lens[state->have - 1]; copy = 3 + BITS(2); DROPBITS(2); } else if (thisx.val == 17) { NEEDBITS(thisx.bits + 3); DROPBITS(thisx.bits); len = 0; copy = 3 + BITS(3); DROPBITS(3); } else { NEEDBITS(thisx.bits + 7); DROPBITS(thisx.bits); len = 0; copy = 11 + BITS(7); DROPBITS(7); } if (state->have + copy > state->nlen + state->ndist) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } while (copy--) state->lens[state->have++] = (unsigned short)len; } } /* handle error breaks in while */ if (state->mode == BAD) break; /* build code tables */ state->next = state->codes; state->lencode = (code const FAR *)(state->next); state->lenbits = 9; ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid literal/lengths set"; state->mode = BAD; break; } state->distcode = (code const FAR *)(state->next); state->distbits = 6; ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist, &(state->next), &(state->distbits), state->work); if (ret) { strm->msg = (char *)"invalid distances set"; state->mode = BAD; break; } Tracev((stderr, "inflate: codes ok\n")); state->mode = LEN; case LEN: if (have >= 6 && left >= 258) { RESTORE(); inflate_fast(strm, out); LOAD(); break; } for (;;) { thisx = state->lencode[BITS(state->lenbits)]; if ((unsigned)(thisx.bits) <= bits) break; PULLBYTE(); } if (thisx.op && (thisx.op & 0xf0) == 0) { last = thisx; for (;;) { thisx = state->lencode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + thisx.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); } DROPBITS(thisx.bits); state->length = (unsigned)thisx.val; if ((int)(thisx.op) == 0) { Tracevv((stderr, thisx.val >= 0x20 && thisx.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", thisx.val)); state->mode = LIT; break; } if (thisx.op & 32) { Tracevv((stderr, "inflate: end of block\n")); state->mode = TYPE; break; } if (thisx.op & 64) { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } state->extra = (unsigned)(thisx.op) & 15; state->mode = LENEXT; case LENEXT: if (state->extra) { NEEDBITS(state->extra); state->length += BITS(state->extra); DROPBITS(state->extra); } Tracevv((stderr, "inflate: length %u\n", state->length)); state->mode = DIST; case DIST: for (;;) { thisx = state->distcode[BITS(state->distbits)]; if ((unsigned)(thisx.bits) <= bits) break; PULLBYTE(); } if ((thisx.op & 0xf0) == 0) { last = thisx; for (;;) { thisx = state->distcode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + thisx.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); } DROPBITS(thisx.bits); if (thisx.op & 64) { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } state->offset = (unsigned)thisx.val; state->extra = (unsigned)(thisx.op) & 15; state->mode = DISTEXT; case DISTEXT: if (state->extra) { NEEDBITS(state->extra); state->offset += BITS(state->extra); DROPBITS(state->extra); } #ifdef INFLATE_STRICT if (state->offset > state->dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif if (state->offset > state->whave + out - left) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } Tracevv((stderr, "inflate: distance %u\n", state->offset)); state->mode = MATCH; case MATCH: if (left == 0) goto inf_leave; copy = out - left; if (state->offset > copy) { /* copy from window */ copy = state->offset - copy; if (copy > state->write) { copy -= state->write; from = state->window + (state->wsize - copy); } else from = state->window + (state->write - copy); if (copy > state->length) copy = state->length; } else { /* copy from output */ from = put - state->offset; copy = state->length; } if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = *from++; } while (--copy); if (state->length == 0) state->mode = LEN; break; case LIT: if (left == 0) goto inf_leave; *put++ = (unsigned char)(state->length); left--; state->mode = LEN; break; case CHECK: if (state->wrap) { NEEDBITS(32); out -= left; strm->total_out += out; state->total += out; if (out) strm->adler = state->check = UPDATE(state->check, put - out, out); out = left; if (( #ifdef GUNZIP state->flags ? hold : #endif REVERSE(hold)) != state->check) { strm->msg = (char *)"incorrect data check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: check matches trailer\n")); } #ifdef GUNZIP state->mode = LENGTH; case LENGTH: if (state->wrap && state->flags) { NEEDBITS(32); if (hold != (state->total & 0xffffffffUL)) { strm->msg = (char *)"incorrect length check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: length matches trailer\n")); } #endif state->mode = DONE; case DONE: ret = Z_STREAM_END; goto inf_leave; case BAD: ret = Z_DATA_ERROR; goto inf_leave; case MEM: return Z_MEM_ERROR; case SYNC: default: return Z_STREAM_ERROR; } /* Return from inflate(), updating the total counts and the check value. If there was no progress during the inflate() call, return a buffer error. Call updatewindow() to create and/or update the window state. Note: a memory error from inflate() is non-recoverable. */ inf_leave: RESTORE(); if (state->wsize || (state->mode < CHECK && out != strm->avail_out)) if (updatewindow(strm, out)) { state->mode = MEM; return Z_MEM_ERROR; } in -= strm->avail_in; out -= strm->avail_out; strm->total_in += in; strm->total_out += out; state->total += out; if (state->wrap && out) strm->adler = state->check = UPDATE(state->check, strm->next_out - out, out); strm->data_type = state->bits + (state->last ? 64 : 0) + (state->mode == TYPE ? 128 : 0); if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK) ret = Z_BUF_ERROR; return ret; } int ZEXPORT inflateEnd (z_streamp strm) { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->window != Z_NULL) ZFREE(strm, state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; Tracev((stderr, "inflate: end\n")); return Z_OK; } int ZEXPORT inflateSetDictionary (z_streamp strm, const Bytef *dictionary, uInt dictLength) { struct inflate_state FAR *state; unsigned long id_; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->wrap != 0 && state->mode != DICT) return Z_STREAM_ERROR; /* check for correct dictionary id */ if (state->mode == DICT) { id_ = adler32(0L, Z_NULL, 0); id_ = adler32(id_, dictionary, dictLength); if (id_ != state->check) return Z_DATA_ERROR; } /* copy dictionary to window */ if (updatewindow(strm, strm->avail_out)) { state->mode = MEM; return Z_MEM_ERROR; } if (dictLength > state->wsize) { zmemcpy(state->window, dictionary + dictLength - state->wsize, state->wsize); state->whave = state->wsize; } else { zmemcpy(state->window + state->wsize - dictLength, dictionary, dictLength); state->whave = dictLength; } state->havedict = 1; Tracev((stderr, "inflate: dictionary set\n")); return Z_OK; } int ZEXPORT inflateGetHeader (z_streamp strm, gz_headerp head) { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if ((state->wrap & 2) == 0) return Z_STREAM_ERROR; /* save header structure */ state->head = head; head->done = 0; return Z_OK; } /* Search buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff. Return when found or when out of input. When called, *have is the number of pattern bytes found in order so far, in 0..3. On return *have is updated to the new state. If on return *have equals four, then the pattern was found and the return value is how many bytes were read including the last byte of the pattern. If *have is less than four, then the pattern has not been found yet and the return value is len. In the latter case, syncsearch() can be called again with more data and the *have state. *have is initialized to zero for the first call. */ local unsigned syncsearch (unsigned FAR *have, unsigned char FAR *buf, unsigned len) { unsigned got; unsigned next; got = *have; next = 0; while (next < len && got < 4) { if ((int)(buf[next]) == (got < 2 ? 0 : 0xff)) got++; else if (buf[next]) got = 0; else got = 4 - got; next++; } *have = got; return next; } int ZEXPORT inflateSync (z_streamp strm) { unsigned len; /* number of bytes to look at or looked at */ unsigned long in, out; /* temporary to save total_in and total_out */ unsigned char buf[4]; /* to restore bit buffer to byte string */ struct inflate_state FAR *state; /* check parameters */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR; /* if first time, start search in bit buffer */ if (state->mode != SYNC) { state->mode = SYNC; state->hold <<= state->bits & 7; state->bits -= state->bits & 7; len = 0; while (state->bits >= 8) { buf[len++] = (unsigned char)(state->hold); state->hold >>= 8; state->bits -= 8; } state->have = 0; syncsearch(&(state->have), buf, len); } /* search available input */ len = syncsearch(&(state->have), strm->next_in, strm->avail_in); strm->avail_in -= len; strm->next_in += len; strm->total_in += len; /* return no joy or set up to restart inflate() on a new block */ if (state->have != 4) return Z_DATA_ERROR; in = strm->total_in; out = strm->total_out; inflateReset(strm); strm->total_in = in; strm->total_out = out; state->mode = TYPE; return Z_OK; } /* Returns true if inflate is currently at the end of a block generated by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored block. When decompressing, PPP checks that at the end of input packet, inflate is waiting for these length bytes. */ int ZEXPORT inflateSyncPoint (z_streamp strm) { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; return state->mode == STORED && state->bits == 0; } int ZEXPORT inflateCopy(z_streamp dest, z_streamp source) { struct inflate_state FAR *state; struct inflate_state FAR *copy; unsigned char FAR *window; unsigned wsize; /* check input */ if (dest == Z_NULL || source == Z_NULL || source->state == Z_NULL || source->zalloc == (alloc_func)0 || source->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)source->state; /* allocate space */ copy = (struct inflate_state FAR *) ZALLOC(source, 1, sizeof(struct inflate_state)); if (copy == Z_NULL) return Z_MEM_ERROR; window = Z_NULL; if (state->window != Z_NULL) { window = (unsigned char FAR *) ZALLOC(source, 1U << state->wbits, sizeof(unsigned char)); if (window == Z_NULL) { ZFREE(source, copy); return Z_MEM_ERROR; } } /* copy state */ zmemcpy(dest, source, sizeof(z_stream)); zmemcpy(copy, state, sizeof(struct inflate_state)); if (state->lencode >= state->codes && state->lencode <= state->codes + ENOUGH - 1) { copy->lencode = copy->codes + (state->lencode - state->codes); copy->distcode = copy->codes + (state->distcode - state->codes); } copy->next = copy->codes + (state->next - state->codes); if (window != Z_NULL) { wsize = 1U << state->wbits; zmemcpy(window, state->window, wsize); } copy->window = window; dest->state = (struct internal_state FAR *)copy; return Z_OK; } /********* End of inlined file: inflate.c *********/ /********* Start of inlined file: inftrees.c *********/ #define MAXBITS 15 const char inflate_copyright[] = " inflate 1.2.3 Copyright 1995-2005 Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* Build a set of tables to decode the provided canonical Huffman code. The code lengths are lens[0..codes-1]. The result starts at *table, whose indices are 0..2^bits-1. work is a writable array of at least lens shorts, which is used as a work area. type is the type of code to be generated, CODES, LENS, or DISTS. On return, zero is success, -1 is an invalid code, and +1 means that ENOUGH isn't enough. table on return points to the next available entry's address. bits is the requested root table index bits, and on return it is the actual root table index bits. It will differ if the request is greater than the longest code or if it is less than the shortest code. */ int inflate_table (codetype type, unsigned short FAR *lens, unsigned codes, code FAR * FAR *table, unsigned FAR *bits, unsigned short FAR *work) { unsigned len; /* a code's length in bits */ unsigned sym; /* index of code symbols */ unsigned min, max; /* minimum and maximum code lengths */ unsigned root; /* number of index bits for root table */ unsigned curr; /* number of index bits for current table */ unsigned drop; /* code bits to drop for sub-table */ int left; /* number of prefix codes available */ unsigned used; /* code entries in table used */ unsigned huff; /* Huffman code */ unsigned incr; /* for incrementing code, index */ unsigned fill; /* index for replicating entries */ unsigned low; /* low bits for current root entry */ unsigned mask; /* mask for low root bits */ code thisx; /* table entry for duplication */ code FAR *next; /* next available space in table */ const unsigned short FAR *base; /* base value table to use */ const unsigned short FAR *extra; /* extra bits table to use */ int end; /* use base and extra for symbol > end */ unsigned short count[MAXBITS+1]; /* number of codes of each length */ unsigned short offs[MAXBITS+1]; /* offsets in table for each length */ static const unsigned short lbase[31] = { /* Length codes 257..285 base */ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; static const unsigned short lext[31] = { /* Length codes 257..285 extra */ 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 201, 196}; static const unsigned short dbase[32] = { /* Distance codes 0..29 base */ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0}; static const unsigned short dext[32] = { /* Distance codes 0..29 extra */ 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 64, 64}; /* Process a set of code lengths to create a canonical Huffman code. The code lengths are lens[0..codes-1]. Each length corresponds to the symbols 0..codes-1. The Huffman code is generated by first sorting the symbols by length from short to long, and retaining the symbol order for codes with equal lengths. Then the code starts with all zero bits for the first code of the shortest length, and the codes are integer increments for the same length, and zeros are appended as the length increases. For the deflate format, these bits are stored backwards from their more natural integer increment ordering, and so when the decoding tables are built in the large loop below, the integer codes are incremented backwards. This routine assumes, but does not check, that all of the entries in lens[] are in the range 0..MAXBITS. The caller must assure this. 1..MAXBITS is interpreted as that code length. zero means that that symbol does not occur in this code. The codes are sorted by computing a count of codes for each length, creating from that a table of starting indices for each length in the sorted table, and then entering the symbols in order in the sorted table. The sorted table is work[], with that space being provided by the caller. The length counts are used for other purposes as well, i.e. finding the minimum and maximum length codes, determining if there are any codes at all, checking for a valid set of lengths, and looking ahead at length counts to determine sub-table sizes when building the decoding tables. */ /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ for (len = 0; len <= MAXBITS; len++) count[len] = 0; for (sym = 0; sym < codes; sym++) count[lens[sym]]++; /* bound code lengths, force root to be within code lengths */ root = *bits; for (max = MAXBITS; max >= 1; max--) if (count[max] != 0) break; if (root > max) root = max; if (max == 0) { /* no symbols to code at all */ thisx.op = (unsigned char)64; /* invalid code marker */ thisx.bits = (unsigned char)1; thisx.val = (unsigned short)0; *(*table)++ = thisx; /* make a table to force an error */ *(*table)++ = thisx; *bits = 1; return 0; /* no symbols, but wait for decoding to report error */ } for (min = 1; min <= MAXBITS; min++) if (count[min] != 0) break; if (root < min) root = min; /* check for an over-subscribed or incomplete set of lengths */ left = 1; for (len = 1; len <= MAXBITS; len++) { left <<= 1; left -= count[len]; if (left < 0) return -1; /* over-subscribed */ } if (left > 0 && (type == CODES || max != 1)) return -1; /* incomplete set */ /* generate offsets into symbol table for each length for sorting */ offs[1] = 0; for (len = 1; len < MAXBITS; len++) offs[len + 1] = offs[len] + count[len]; /* sort symbols by length, by symbol order within each length */ for (sym = 0; sym < codes; sym++) if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym; /* Create and fill in decoding tables. In this loop, the table being filled is at next and has curr index bits. The code being used is huff with length len. That code is converted to an index by dropping drop bits off of the bottom. For codes where len is less than drop + curr, those top drop + curr - len bits are incremented through all values to fill the table with replicated entries. root is the number of index bits for the root table. When len exceeds root, sub-tables are created pointed to by the root entry with an index of the low root bits of huff. This is saved in low to check for when a new sub-table should be started. drop is zero when the root table is being filled, and drop is root when sub-tables are being filled. When a new sub-table is needed, it is necessary to look ahead in the code lengths to determine what size sub-table is needed. The length counts are used for this, and so count[] is decremented as codes are entered in the tables. used keeps track of how many table entries have been allocated from the provided *table space. It is checked when a LENS table is being made against the space in *table, ENOUGH, minus the maximum space needed by the worst case distance code, MAXD. This should never happen, but the sufficiency of ENOUGH has not been proven exhaustively, hence the check. This assumes that when type == LENS, bits == 9. sym increments through all symbols, and the loop terminates when all codes of length max, i.e. all codes, have been processed. This routine permits incomplete codes, so another loop after this one fills in the rest of the decoding tables with invalid code markers. */ /* set up for code type */ switch (type) { case CODES: base = extra = work; /* dummy value--not used */ end = 19; break; case LENS: base = lbase; base -= 257; extra = lext; extra -= 257; end = 256; break; default: /* DISTS */ base = dbase; extra = dext; end = -1; } /* initialize state for loop */ huff = 0; /* starting code */ sym = 0; /* starting code symbol */ len = min; /* starting code length */ next = *table; /* current table to fill in */ curr = root; /* current table index bits */ drop = 0; /* current bits to drop from code for index */ low = (unsigned)(-1); /* trigger new sub-table when len > root */ used = 1U << root; /* use root table entries */ mask = used - 1; /* mask for comparing low */ /* check available table space */ if (type == LENS && used >= ENOUGH - MAXD) return 1; /* process all codes and make table entries */ for (;;) { /* create table entry */ thisx.bits = (unsigned char)(len - drop); if ((int)(work[sym]) < end) { thisx.op = (unsigned char)0; thisx.val = work[sym]; } else if ((int)(work[sym]) > end) { thisx.op = (unsigned char)(extra[work[sym]]); thisx.val = base[work[sym]]; } else { thisx.op = (unsigned char)(32 + 64); /* end of block */ thisx.val = 0; } /* replicate for those indices with low len bits equal to huff */ incr = 1U << (len - drop); fill = 1U << curr; min = fill; /* save offset to next table */ do { fill -= incr; next[(huff >> drop) + fill] = thisx; } while (fill != 0); /* backwards increment the len-bit code huff */ incr = 1U << (len - 1); while (huff & incr) incr >>= 1; if (incr != 0) { huff &= incr - 1; huff += incr; } else huff = 0; /* go to next symbol, update count, len */ sym++; if (--(count[len]) == 0) { if (len == max) break; len = lens[work[sym]]; } /* create new sub-table if needed */ if (len > root && (huff & mask) != low) { /* if first time, transition to sub-tables */ if (drop == 0) drop = root; /* increment past last table */ next += min; /* here min is 1 << curr */ /* determine length of next table */ curr = len - drop; left = (int)(1 << curr); while (curr + drop < max) { left -= count[curr + drop]; if (left <= 0) break; curr++; left <<= 1; } /* check for enough space */ used += 1U << curr; if (type == LENS && used >= ENOUGH - MAXD) return 1; /* point entry in root table to sub-table */ low = huff & mask; (*table)[low].op = (unsigned char)curr; (*table)[low].bits = (unsigned char)root; (*table)[low].val = (unsigned short)(next - *table); } } /* Fill in rest of table for incomplete codes. This loop is similar to the loop above in incrementing huff for table indices. It is assumed that len is equal to curr + drop, so there is no loop needed to increment through high index bits. When the current sub-table is filled, the loop drops back to the root table to fill in any remaining entries there. */ thisx.op = (unsigned char)64; /* invalid code marker */ thisx.bits = (unsigned char)(len - drop); thisx.val = (unsigned short)0; while (huff != 0) { /* when done with sub-table, drop back to root table */ if (drop != 0 && (huff & mask) != low) { drop = 0; len = root; next = *table; thisx.bits = (unsigned char)len; } /* put invalid code marker in table */ next[huff >> drop] = thisx; /* backwards increment the len-bit code huff */ incr = 1U << (len - 1); while (huff & incr) incr >>= 1; if (incr != 0) { huff &= incr - 1; huff += incr; } else huff = 0; } /* set return parameters */ *table += used; *bits = root; return 0; } /********* End of inlined file: inftrees.c *********/ /********* Start of inlined file: trees.c *********/ /* * ALGORITHM * * The "deflation" process uses several Huffman trees. The more * common source values are represented by shorter bit sequences. * * Each code tree is stored in a compressed form which is itself * a Huffman encoding of the lengths of all the code strings (in * ascending order by source values). The actual code strings are * reconstructed from the lengths in the inflate process, as described * in the deflate specification. * * REFERENCES * * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc * * Storer, James A. * Data Compression: Methods and Theory, pp. 49-50. * Computer Science Press, 1988. ISBN 0-7167-8156-5. * * Sedgewick, R. * Algorithms, p290. * Addison-Wesley, 1983. ISBN 0-201-06672-6. */ /* @(#) $Id: trees.c,v 1.1 2007/06/07 17:54:37 jules_rms Exp $ */ /* #define GEN_TREES_H */ #ifdef DEBUG # include #endif /* =========================================================================== * Constants */ #define MAX_BL_BITS 7 /* Bit length codes must not exceed MAX_BL_BITS bits */ #define END_BLOCK 256 /* end of block literal code */ #define REP_3_6 16 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ #define REPZ_3_10 17 /* repeat a zero length 3-10 times (3 bits of repeat count) */ #define REPZ_11_138 18 /* repeat a zero length 11-138 times (7 bits of repeat count) */ local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; local const int extra_dbits[D_CODES] /* extra bits for each distance code */ = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; local const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ #define Buf_size (8 * 2*sizeof(char)) /* Number of bits used within bi_buf. (bi_buf might be implemented on * more than 16 bits on some systems.) */ /* =========================================================================== * Local data. These are initialized only once. */ #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ #if defined(GEN_TREES_H) || !defined(STDC) /* non ANSI compilers may not accept trees.h */ local ct_data static_ltree[L_CODES+2]; /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */ local ct_data static_dtree[D_CODES]; /* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */ uch _dist_code[DIST_CODE_LEN]; /* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */ uch _length_code[MAX_MATCH-MIN_MATCH+1]; /* length code for each normalized match length (0 == MIN_MATCH) */ local int base_length[LENGTH_CODES]; /* First normalized length for each code (0 = MIN_MATCH) */ local int base_dist[D_CODES]; /* First normalized distance for each code (0 = distance of 1) */ #else /********* Start of inlined file: trees.h *********/ local const ct_data static_ltree[L_CODES+2] = { {{ 12},{ 8}}, {{140},{ 8}}, {{ 76},{ 8}}, {{204},{ 8}}, {{ 44},{ 8}}, {{172},{ 8}}, {{108},{ 8}}, {{236},{ 8}}, {{ 28},{ 8}}, {{156},{ 8}}, {{ 92},{ 8}}, {{220},{ 8}}, {{ 60},{ 8}}, {{188},{ 8}}, {{124},{ 8}}, {{252},{ 8}}, {{ 2},{ 8}}, {{130},{ 8}}, {{ 66},{ 8}}, {{194},{ 8}}, {{ 34},{ 8}}, {{162},{ 8}}, {{ 98},{ 8}}, {{226},{ 8}}, {{ 18},{ 8}}, {{146},{ 8}}, {{ 82},{ 8}}, {{210},{ 8}}, {{ 50},{ 8}}, {{178},{ 8}}, {{114},{ 8}}, {{242},{ 8}}, {{ 10},{ 8}}, {{138},{ 8}}, {{ 74},{ 8}}, {{202},{ 8}}, {{ 42},{ 8}}, {{170},{ 8}}, {{106},{ 8}}, {{234},{ 8}}, {{ 26},{ 8}}, {{154},{ 8}}, {{ 90},{ 8}}, {{218},{ 8}}, {{ 58},{ 8}}, {{186},{ 8}}, {{122},{ 8}}, {{250},{ 8}}, {{ 6},{ 8}}, {{134},{ 8}}, {{ 70},{ 8}}, {{198},{ 8}}, {{ 38},{ 8}}, {{166},{ 8}}, {{102},{ 8}}, {{230},{ 8}}, {{ 22},{ 8}}, {{150},{ 8}}, {{ 86},{ 8}}, {{214},{ 8}}, {{ 54},{ 8}}, {{182},{ 8}}, {{118},{ 8}}, {{246},{ 8}}, {{ 14},{ 8}}, {{142},{ 8}}, {{ 78},{ 8}}, {{206},{ 8}}, {{ 46},{ 8}}, {{174},{ 8}}, {{110},{ 8}}, {{238},{ 8}}, {{ 30},{ 8}}, {{158},{ 8}}, {{ 94},{ 8}}, {{222},{ 8}}, {{ 62},{ 8}}, {{190},{ 8}}, {{126},{ 8}}, {{254},{ 8}}, {{ 1},{ 8}}, {{129},{ 8}}, {{ 65},{ 8}}, {{193},{ 8}}, {{ 33},{ 8}}, {{161},{ 8}}, {{ 97},{ 8}}, {{225},{ 8}}, {{ 17},{ 8}}, {{145},{ 8}}, {{ 81},{ 8}}, {{209},{ 8}}, {{ 49},{ 8}}, {{177},{ 8}}, {{113},{ 8}}, {{241},{ 8}}, {{ 9},{ 8}}, {{137},{ 8}}, {{ 73},{ 8}}, {{201},{ 8}}, {{ 41},{ 8}}, {{169},{ 8}}, {{105},{ 8}}, {{233},{ 8}}, {{ 25},{ 8}}, {{153},{ 8}}, {{ 89},{ 8}}, {{217},{ 8}}, {{ 57},{ 8}}, {{185},{ 8}}, {{121},{ 8}}, {{249},{ 8}}, {{ 5},{ 8}}, {{133},{ 8}}, {{ 69},{ 8}}, {{197},{ 8}}, {{ 37},{ 8}}, {{165},{ 8}}, {{101},{ 8}}, {{229},{ 8}}, {{ 21},{ 8}}, {{149},{ 8}}, {{ 85},{ 8}}, {{213},{ 8}}, {{ 53},{ 8}}, {{181},{ 8}}, {{117},{ 8}}, {{245},{ 8}}, {{ 13},{ 8}}, {{141},{ 8}}, {{ 77},{ 8}}, {{205},{ 8}}, {{ 45},{ 8}}, {{173},{ 8}}, {{109},{ 8}}, {{237},{ 8}}, {{ 29},{ 8}}, {{157},{ 8}}, {{ 93},{ 8}}, {{221},{ 8}}, {{ 61},{ 8}}, {{189},{ 8}}, {{125},{ 8}}, {{253},{ 8}}, {{ 19},{ 9}}, {{275},{ 9}}, {{147},{ 9}}, {{403},{ 9}}, {{ 83},{ 9}}, {{339},{ 9}}, {{211},{ 9}}, {{467},{ 9}}, {{ 51},{ 9}}, {{307},{ 9}}, {{179},{ 9}}, {{435},{ 9}}, {{115},{ 9}}, {{371},{ 9}}, {{243},{ 9}}, {{499},{ 9}}, {{ 11},{ 9}}, {{267},{ 9}}, {{139},{ 9}}, {{395},{ 9}}, {{ 75},{ 9}}, {{331},{ 9}}, {{203},{ 9}}, {{459},{ 9}}, {{ 43},{ 9}}, {{299},{ 9}}, {{171},{ 9}}, {{427},{ 9}}, {{107},{ 9}}, {{363},{ 9}}, {{235},{ 9}}, {{491},{ 9}}, {{ 27},{ 9}}, {{283},{ 9}}, {{155},{ 9}}, {{411},{ 9}}, {{ 91},{ 9}}, {{347},{ 9}}, {{219},{ 9}}, {{475},{ 9}}, {{ 59},{ 9}}, {{315},{ 9}}, {{187},{ 9}}, {{443},{ 9}}, {{123},{ 9}}, {{379},{ 9}}, {{251},{ 9}}, {{507},{ 9}}, {{ 7},{ 9}}, {{263},{ 9}}, {{135},{ 9}}, {{391},{ 9}}, {{ 71},{ 9}}, {{327},{ 9}}, {{199},{ 9}}, {{455},{ 9}}, {{ 39},{ 9}}, {{295},{ 9}}, {{167},{ 9}}, {{423},{ 9}}, {{103},{ 9}}, {{359},{ 9}}, {{231},{ 9}}, {{487},{ 9}}, {{ 23},{ 9}}, {{279},{ 9}}, {{151},{ 9}}, {{407},{ 9}}, {{ 87},{ 9}}, {{343},{ 9}}, {{215},{ 9}}, {{471},{ 9}}, {{ 55},{ 9}}, {{311},{ 9}}, {{183},{ 9}}, {{439},{ 9}}, {{119},{ 9}}, {{375},{ 9}}, {{247},{ 9}}, {{503},{ 9}}, {{ 15},{ 9}}, {{271},{ 9}}, {{143},{ 9}}, {{399},{ 9}}, {{ 79},{ 9}}, {{335},{ 9}}, {{207},{ 9}}, {{463},{ 9}}, {{ 47},{ 9}}, {{303},{ 9}}, {{175},{ 9}}, {{431},{ 9}}, {{111},{ 9}}, {{367},{ 9}}, {{239},{ 9}}, {{495},{ 9}}, {{ 31},{ 9}}, {{287},{ 9}}, {{159},{ 9}}, {{415},{ 9}}, {{ 95},{ 9}}, {{351},{ 9}}, {{223},{ 9}}, {{479},{ 9}}, {{ 63},{ 9}}, {{319},{ 9}}, {{191},{ 9}}, {{447},{ 9}}, {{127},{ 9}}, {{383},{ 9}}, {{255},{ 9}}, {{511},{ 9}}, {{ 0},{ 7}}, {{ 64},{ 7}}, {{ 32},{ 7}}, {{ 96},{ 7}}, {{ 16},{ 7}}, {{ 80},{ 7}}, {{ 48},{ 7}}, {{112},{ 7}}, {{ 8},{ 7}}, {{ 72},{ 7}}, {{ 40},{ 7}}, {{104},{ 7}}, {{ 24},{ 7}}, {{ 88},{ 7}}, {{ 56},{ 7}}, {{120},{ 7}}, {{ 4},{ 7}}, {{ 68},{ 7}}, {{ 36},{ 7}}, {{100},{ 7}}, {{ 20},{ 7}}, {{ 84},{ 7}}, {{ 52},{ 7}}, {{116},{ 7}}, {{ 3},{ 8}}, {{131},{ 8}}, {{ 67},{ 8}}, {{195},{ 8}}, {{ 35},{ 8}}, {{163},{ 8}}, {{ 99},{ 8}}, {{227},{ 8}} }; local const ct_data static_dtree[D_CODES] = { {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}}, {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}}, {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}}, {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}}, {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}}, {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}} }; const uch _dist_code[DIST_CODE_LEN] = { 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 }; const uch _length_code[MAX_MATCH-MIN_MATCH+1]= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28 }; local const int base_length[LENGTH_CODES] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 0 }; local const int base_dist[D_CODES] = { 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576 }; /********* End of inlined file: trees.h *********/ #endif /* GEN_TREES_H */ struct static_tree_desc_s { const ct_data *static_tree; /* static tree or NULL */ const intf *extra_bits; /* extra bits for each code or NULL */ int extra_base; /* base index for extra_bits */ int elems; /* max number of elements in the tree */ int max_length; /* max bit length for the codes */ }; local static_tree_desc static_l_desc = {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; local static_tree_desc static_d_desc = {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; local static_tree_desc static_bl_desc = {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; /* =========================================================================== * Local (static) routines in this file. */ local void tr_static_init OF((void)); local void init_block OF((deflate_state *s)); local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); local void build_tree OF((deflate_state *s, tree_desc *desc)); local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); local int build_bl_tree OF((deflate_state *s)); local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, int blcodes)); local void compress_block OF((deflate_state *s, ct_data *ltree, ct_data *dtree)); local void set_data_type OF((deflate_state *s)); local unsigned bi_reverse OF((unsigned value, int length)); local void bi_windup OF((deflate_state *s)); local void bi_flush OF((deflate_state *s)); local void copy_block OF((deflate_state *s, charf *buf, unsigned len, int header)); #ifdef GEN_TREES_H local void gen_trees_header OF((void)); #endif #ifndef DEBUG # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) /* Send a code of the given tree. c and tree must not have side effects */ #else /* DEBUG */ # define send_code(s, c, tree) \ { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ send_bits(s, tree[c].Code, tree[c].Len); } #endif /* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */ #define put_short(s, w) { \ put_byte(s, (uch)((w) & 0xff)); \ put_byte(s, (uch)((ush)(w) >> 8)); \ } /* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ #ifdef DEBUG local void send_bits OF((deflate_state *s, int value, int length)); local void send_bits (deflate_state *s, int value, int length) { Tracevv((stderr," l %2d v %4x ", length, value)); Assert(length > 0 && length <= 15, "invalid length"); s->bits_sent += (ulg)length; /* If not enough room in bi_buf, use (valid) bits from bi_buf and * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) * unused bits in value. */ if (s->bi_valid > (int)Buf_size - length) { s->bi_buf |= (value << s->bi_valid); put_short(s, s->bi_buf); s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); s->bi_valid += length - Buf_size; } else { s->bi_buf |= value << s->bi_valid; s->bi_valid += length; } } #else /* !DEBUG */ #define send_bits(s, value, length) \ { int len = length;\ if (s->bi_valid > (int)Buf_size - len) {\ int val = value;\ s->bi_buf |= (val << s->bi_valid);\ put_short(s, s->bi_buf);\ s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ s->bi_valid += len - Buf_size;\ } else {\ s->bi_buf |= (value) << s->bi_valid;\ s->bi_valid += len;\ }\ } #endif /* DEBUG */ /* the arguments must not have side effects */ /* =========================================================================== * Initialize the various 'constant' tables. */ local void tr_static_init() { #if defined(GEN_TREES_H) || !defined(STDC) static int static_init_done = 0; int n; /* iterates over tree elements */ int bits; /* bit counter */ int length; /* length value */ int code; /* code value */ int dist; /* distance index */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ if (static_init_done) return; /* For some embedded targets, global variables are not initialized: */ static_l_desc.static_tree = static_ltree; static_l_desc.extra_bits = extra_lbits; static_d_desc.static_tree = static_dtree; static_d_desc.extra_bits = extra_dbits; static_bl_desc.extra_bits = extra_blbits; /* Initialize the mapping length (0..255) -> length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES-1; code++) { base_length[code] = length; for (n = 0; n < (1< dist code (0..29) */ dist = 0; for (code = 0 ; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1<>= 7; /* from now on, all distances are divided by 128 */ for ( ; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { _dist_code[256 + dist++] = (uch)code; } } Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; n = 0; while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n].Len = 5; static_dtree[n].Code = bi_reverse((unsigned)n, 5); } static_init_done = 1; # ifdef GEN_TREES_H gen_trees_header(); # endif #endif /* defined(GEN_TREES_H) || !defined(STDC) */ } /* =========================================================================== * Genererate the file trees.h describing the static trees. */ #ifdef GEN_TREES_H # ifndef DEBUG # include # endif # define SEPARATOR(i, last, width) \ ((i) == (last)? "\n};\n\n" : \ ((i) % (width) == (width)-1 ? ",\n" : ", ")) void gen_trees_header() { FILE *header = fopen("trees.h", "w"); int i; Assert (header != NULL, "Can't open trees.h"); fprintf(header, "/* header created automatically with -DGEN_TREES_H */\n\n"); fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); for (i = 0; i < L_CODES+2; i++) { fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); } fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); } fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n"); for (i = 0; i < DIST_CODE_LEN; i++) { fprintf(header, "%2u%s", _dist_code[i], SEPARATOR(i, DIST_CODE_LEN-1, 20)); } fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { fprintf(header, "%2u%s", _length_code[i], SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); } fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); for (i = 0; i < LENGTH_CODES; i++) { fprintf(header, "%1u%s", base_length[i], SEPARATOR(i, LENGTH_CODES-1, 20)); } fprintf(header, "local const int base_dist[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "%5u%s", base_dist[i], SEPARATOR(i, D_CODES-1, 10)); } fclose(header); } #endif /* GEN_TREES_H */ /* =========================================================================== * Initialize the tree data structures for a new zlib stream. */ void _tr_init(deflate_state *s) { tr_static_init(); s->l_desc.dyn_tree = s->dyn_ltree; s->l_desc.stat_desc = &static_l_desc; s->d_desc.dyn_tree = s->dyn_dtree; s->d_desc.stat_desc = &static_d_desc; s->bl_desc.dyn_tree = s->bl_tree; s->bl_desc.stat_desc = &static_bl_desc; s->bi_buf = 0; s->bi_valid = 0; s->last_eob_len = 8; /* enough lookahead for inflate */ #ifdef DEBUG s->compressed_len = 0L; s->bits_sent = 0L; #endif /* Initialize the first block of the first file: */ init_block(s); } /* =========================================================================== * Initialize a new block. */ local void init_block (deflate_state *s) { int n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; s->dyn_ltree[END_BLOCK].Freq = 1; s->opt_len = s->static_len = 0L; s->last_lit = s->matches = 0; } #define SMALLEST 1 /* Index within the heap array of least frequent node in the Huffman tree */ /* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */ #define pqremove(s, tree, top) \ {\ top = s->heap[SMALLEST]; \ s->heap[SMALLEST] = s->heap[s->heap_len--]; \ pqdownheap(s, tree, SMALLEST); \ } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ #define smaller(tree, n, m, depth) \ (tree[n].Freq < tree[m].Freq || \ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ local void pqdownheap (deflate_state *s, ct_data *tree, /* the tree to restore */ int k) /* node to move down */ { int v = s->heap[k]; int j = k << 1; /* left son of k */ while (j <= s->heap_len) { /* Set j to the smallest of the two sons: */ if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s->heap[j], s->depth)) break; /* Exchange v with the smallest son */ s->heap[k] = s->heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s->heap[k] = v; } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ local void gen_bitlen (deflate_state *s, tree_desc *desc) { ct_data *tree = desc->dyn_tree; int max_code = desc->max_code; const ct_data *stree = desc->stat_desc->static_tree; const intf *extra = desc->stat_desc->extra_bits; int base = desc->stat_desc->extra_base; int max_length = desc->stat_desc->max_length; int h; /* heap index */ int n, m; /* iterate over the tree elements */ int bits; /* bit length */ int xbits; /* extra bits */ ush f; /* frequency */ int overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ for (h = s->heap_max+1; h < HEAP_SIZE; h++) { n = s->heap[h]; bits = tree[tree[n].Dad].Len + 1; if (bits > max_length) bits = max_length, overflow++; tree[n].Len = (ush)bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ s->bl_count[bits]++; xbits = 0; if (n >= base) xbits = extra[n-base]; f = tree[n].Freq; s->opt_len += (ulg)f * (bits + xbits); if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); } if (overflow == 0) return; Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length-1; while (s->bl_count[bits] == 0) bits--; s->bl_count[bits]--; /* move one leaf down the tree */ s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ s->bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits != 0; bits--) { n = s->bl_count[bits]; while (n != 0) { m = s->heap[--h]; if (m > max_code) continue; if ((unsigned) tree[m].Len != (unsigned) bits) { Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s->opt_len += ((long)bits - (long)tree[m].Len) *(long)tree[m].Freq; tree[m].Len = (ush)bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ local void gen_codes (ct_data *tree, /* the tree to decorate */ int max_code, /* largest code with non zero frequency */ ushf *bl_count) /* number of codes at each bit length */ { ush next_code[MAX_BITS+1]; /* next code value for each bit length */ ush code = 0; /* running code value */ int bits; /* bit index */ int n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = (code + bl_count[bits-1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ Assert (code + bl_count[MAX_BITS]-1 == (1<dyn_tree; const ct_data *stree = desc->stat_desc->static_tree; int elems = desc->stat_desc->elems; int n, m; /* iterate over heap elements */ int max_code = -1; /* largest code with non zero frequency */ int node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s->heap_len = 0, s->heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n].Freq != 0) { s->heap[++(s->heap_len)] = max_code = n; s->depth[n] = 0; } else { tree[n].Len = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s->heap_len < 2) { node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); tree[node].Freq = 1; s->depth[node] = 0; s->opt_len--; if (stree) s->static_len -= stree[node].Len; /* node is 0 or 1 so it does not have extra bits */ } desc->max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { pqremove(s, tree, n); /* n = node of least frequency */ m = s->heap[SMALLEST]; /* m = node of next least frequency */ s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ s->heap[--(s->heap_max)] = m; /* Create a new node father of n and m */ tree[node].Freq = tree[n].Freq + tree[m].Freq; s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? s->depth[n] : s->depth[m]) + 1); tree[n].Dad = tree[m].Dad = (ush)node; #ifdef DUMP_BL_TREE if (tree == s->bl_tree) { fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); } #endif /* and insert the new node in the heap */ s->heap[SMALLEST] = node++; pqdownheap(s, tree, SMALLEST); } while (s->heap_len >= 2); s->heap[--(s->heap_max)] = s->heap[SMALLEST]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, (tree_desc *)desc); /* The field len is now set, we can generate the bit codes */ gen_codes ((ct_data *)tree, max_code, s->bl_count); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */ local void scan_tree (deflate_state *s, ct_data *tree, /* the tree to be scanned */ int max_code) /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ if (nextlen == 0) max_count = 138, min_count = 3; tree[max_code+1].Len = (ush)0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { s->bl_tree[curlen].Freq += count; } else if (curlen != 0) { if (curlen != prevlen) s->bl_tree[curlen].Freq++; s->bl_tree[REP_3_6].Freq++; } else if (count <= 10) { s->bl_tree[REPZ_3_10].Freq++; } else { s->bl_tree[REPZ_11_138].Freq++; } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ local void send_tree (deflate_state *s, ct_data *tree, /* the tree to be scanned */ int max_code) /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen == 0) max_count = 138, min_count = 3; for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s->bl_tree); } while (--count != 0); } else if (curlen != 0) { if (curlen != prevlen) { send_code(s, curlen, s->bl_tree); count--; } Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); } else { send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ local int build_bl_tree (deflate_state *s) { int max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); /* Build the bit length tree: */ build_tree(s, (tree_desc *)(&(s->bl_desc))); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; } /* Update opt_len to include the bit length tree and counts */ s->opt_len += 3*(max_blindex+1) + 5+5+4; Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s->opt_len, s->static_len)); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ local void send_all_trees (deflate_state *s, int lcodes, int dcodes, int blcodes) /* number of codes for each tree */ { int rank; /* index in bl_order */ Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes"); Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes-1, 5); send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); } Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /* =========================================================================== * Send a stored block */ void _tr_stored_block (deflate_state *s, charf *buf, ulg stored_len, int eof) { send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ #ifdef DEBUG s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; s->compressed_len += (stored_len + 4) << 3; #endif copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ } /* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. * The current inflate code requires 9 bits of lookahead. If the * last two codes for the previous block (real code plus EOB) were coded * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode * the last real code. In this case we send two empty static blocks instead * of one. (There are no problems if the previous block is stored or fixed.) * To simplify the code, we assume the worst case of last real code encoded * on one bit only. */ void _tr_align (deflate_state *s) { send_bits(s, STATIC_TREES<<1, 3); send_code(s, END_BLOCK, static_ltree); #ifdef DEBUG s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ #endif bi_flush(s); /* Of the 10 bits for the empty block, we have already sent * (10 - bi_valid) bits. The lookahead for the last real code (before * the EOB of the previous block) was thus at least one plus the length * of the EOB plus what we have just sent of the empty static block. */ if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { send_bits(s, STATIC_TREES<<1, 3); send_code(s, END_BLOCK, static_ltree); #ifdef DEBUG s->compressed_len += 10L; #endif bi_flush(s); } s->last_eob_len = 7; } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */ void _tr_flush_block (deflate_state *s, charf *buf, /* input block, or NULL if too old */ ulg stored_len, /* length of input block */ int eof) /* true if this is the last block for a file */ { ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ int max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s->level > 0) { /* Check if the file is binary or text */ if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN) set_data_type(s); /* Construct the literal and distance trees */ build_tree(s, (tree_desc *)(&(s->l_desc))); Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, s->static_len)); build_tree(s, (tree_desc *)(&(s->d_desc))); Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute the block lengths in bytes. */ opt_lenb = (s->opt_len+3+7)>>3; static_lenb = (s->static_len+3+7)>>3; Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, s->last_lit)); if (static_lenb <= opt_lenb) opt_lenb = static_lenb; } else { Assert(buf != (char*)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } #ifdef FORCE_STORED if (buf != (char*)0) { /* force stored block */ #else if (stored_len+4 <= opt_lenb && buf != (char*)0) { /* 4: two words for the lengths */ #endif /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block(s, buf, stored_len, eof); #ifdef FORCE_STATIC } else if (static_lenb >= 0) { /* force static trees */ #else } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { #endif send_bits(s, (STATIC_TREES<<1)+eof, 3); compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); #ifdef DEBUG s->compressed_len += 3 + s->static_len; #endif } else { send_bits(s, (DYN_TREES<<1)+eof, 3); send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, max_blindex+1); compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); #ifdef DEBUG s->compressed_len += 3 + s->opt_len; #endif } Assert (s->compressed_len == s->bits_sent, "bad compressed size"); /* The above check is made mod 2^32, for files larger than 512 MB * and uLong implemented on 32 bits. */ init_block(s); if (eof) { bi_windup(s); #ifdef DEBUG s->compressed_len += 7; /* align on byte boundary */ #endif } Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, s->compressed_len-7*eof)); } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ int _tr_tally (deflate_state *s, unsigned dist, /* distance of matched string */ unsigned lc) /* match length-MIN_MATCH or unmatched char (if dist==0) */ { s->d_buf[s->last_lit] = (ush)dist; s->l_buf[s->last_lit++] = (uch)lc; if (dist == 0) { /* lc is the unmatched char */ s->dyn_ltree[lc].Freq++; } else { s->matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ Assert((ush)dist < (ush)MAX_DIST(s) && (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; s->dyn_dtree[d_code(dist)].Freq++; } #ifdef TRUNCATE_BLOCK /* Try to guess if it is profitable to stop the current block here */ if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { /* Compute an upper bound for the compressed length */ ulg out_length = (ulg)s->last_lit*8L; ulg in_length = (ulg)((long)s->strstart - s->block_start); int dcode; for (dcode = 0; dcode < D_CODES; dcode++) { out_length += (ulg)s->dyn_dtree[dcode].Freq * (5L+extra_dbits[dcode]); } out_length >>= 3; Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", s->last_lit, in_length, out_length, 100L - out_length*100L/in_length)); if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; } #endif return (s->last_lit == s->lit_bufsize-1); /* We avoid equality with lit_bufsize because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } /* =========================================================================== * Send the block data compressed using the given Huffman trees */ local void compress_block (deflate_state *s, ct_data *ltree, /* literal tree */ ct_data *dtree) /* distance tree */ { unsigned dist; /* distance of matched string */ int lc; /* match length or unmatched char (if dist == 0) */ unsigned lx = 0; /* running index in l_buf */ unsigned code; /* the code to send */ int extra; /* number of extra bits to send */ if (s->last_lit != 0) do { dist = s->d_buf[lx]; lc = s->l_buf[lx++]; if (dist == 0) { send_code(s, lc, ltree); /* send a literal byte */ Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = _length_code[lc]; send_code(s, code+LITERALS+1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra != 0) { lc -= base_length[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); Assert (code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra != 0) { dist -= base_dist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, "pendingBuf overflow"); } while (lx < s->last_lit); send_code(s, END_BLOCK, ltree); s->last_eob_len = ltree[END_BLOCK].Len; } /* =========================================================================== * Set the data type to BINARY or TEXT, using a crude approximation: * set it to Z_TEXT if all symbols are either printable characters (33 to 255) * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise. * IN assertion: the fields Freq of dyn_ltree are set. */ local void set_data_type (deflate_state *s) { int n; for (n = 0; n < 9; n++) if (s->dyn_ltree[n].Freq != 0) break; if (n == 9) for (n = 14; n < 32; n++) if (s->dyn_ltree[n].Freq != 0) break; s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY; } /* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ local unsigned bi_reverse (unsigned code, int len) { register unsigned res = 0; do { res |= code & 1; code >>= 1, res <<= 1; } while (--len > 0); return res >> 1; } /* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */ local void bi_flush (deflate_state *s) { if (s->bi_valid == 16) { put_short(s, s->bi_buf); s->bi_buf = 0; s->bi_valid = 0; } else if (s->bi_valid >= 8) { put_byte(s, (Byte)s->bi_buf); s->bi_buf >>= 8; s->bi_valid -= 8; } } /* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */ local void bi_windup (deflate_state *s) { if (s->bi_valid > 8) { put_short(s, s->bi_buf); } else if (s->bi_valid > 0) { put_byte(s, (Byte)s->bi_buf); } s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->bits_sent = (s->bits_sent+7) & ~7; #endif } /* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */ local void copy_block(deflate_state *s, charf *buf, /* the input data */ unsigned len, /* its length */ int header) /* true if block header must be written */ { bi_windup(s); /* align on byte boundary */ s->last_eob_len = 8; /* enough lookahead for inflate */ if (header) { put_short(s, (ush)len); put_short(s, (ush)~len); #ifdef DEBUG s->bits_sent += 2*16; #endif } #ifdef DEBUG s->bits_sent += (ulg)len<<3; #endif while (len--) { put_byte(s, *buf++); } } /********* End of inlined file: trees.c *********/ /********* Start of inlined file: zutil.c *********/ /* @(#) $Id: zutil.c,v 1.1 2007/06/07 17:54:37 jules_rms Exp $ */ #ifndef NO_DUMMY_DECL struct internal_state {int dummy;}; /* for buggy compilers */ #endif const char * const z_errmsg[10] = { "need dictionary", /* Z_NEED_DICT 2 */ "stream end", /* Z_STREAM_END 1 */ "", /* Z_OK 0 */ "file error", /* Z_ERRNO (-1) */ "stream error", /* Z_STREAM_ERROR (-2) */ "data error", /* Z_DATA_ERROR (-3) */ "insufficient memory", /* Z_MEM_ERROR (-4) */ "buffer error", /* Z_BUF_ERROR (-5) */ "incompatible version",/* Z_VERSION_ERROR (-6) */ ""}; /*const char * ZEXPORT zlibVersion() { return ZLIB_VERSION; } uLong ZEXPORT zlibCompileFlags() { uLong flags; flags = 0; switch (sizeof(uInt)) { case 2: break; case 4: flags += 1; break; case 8: flags += 2; break; default: flags += 3; } switch (sizeof(uLong)) { case 2: break; case 4: flags += 1 << 2; break; case 8: flags += 2 << 2; break; default: flags += 3 << 2; } switch (sizeof(voidpf)) { case 2: break; case 4: flags += 1 << 4; break; case 8: flags += 2 << 4; break; default: flags += 3 << 4; } switch (sizeof(z_off_t)) { case 2: break; case 4: flags += 1 << 6; break; case 8: flags += 2 << 6; break; default: flags += 3 << 6; } #ifdef DEBUG flags += 1 << 8; #endif #if defined(ASMV) || defined(ASMINF) flags += 1 << 9; #endif #ifdef ZLIB_WINAPI flags += 1 << 10; #endif #ifdef BUILDFIXED flags += 1 << 12; #endif #ifdef DYNAMIC_CRC_TABLE flags += 1 << 13; #endif #ifdef NO_GZCOMPRESS flags += 1L << 16; #endif #ifdef NO_GZIP flags += 1L << 17; #endif #ifdef PKZIP_BUG_WORKAROUND flags += 1L << 20; #endif #ifdef FASTEST flags += 1L << 21; #endif #ifdef STDC # ifdef NO_vsnprintf flags += 1L << 25; # ifdef HAS_vsprintf_void flags += 1L << 26; # endif # else # ifdef HAS_vsnprintf_void flags += 1L << 26; # endif # endif #else flags += 1L << 24; # ifdef NO_snprintf flags += 1L << 25; # ifdef HAS_sprintf_void flags += 1L << 26; # endif # else # ifdef HAS_snprintf_void flags += 1L << 26; # endif # endif #endif return flags; }*/ #ifdef DEBUG # ifndef verbose # define verbose 0 # endif int z_verbose = verbose; void z_error (const char *m) { fprintf(stderr, "%s\n", m); exit(1); } #endif /* exported to allow conversion of error code to string for compress() and * uncompress() */ const char * ZEXPORT zError(int err) { return ERR_MSG(err); } #if defined(_WIN32_WCE) /* The Microsoft C Run-Time Library for Windows CE doesn't have * errno. We define it as a global variable to simplify porting. * Its value is always 0 and should not be used. */ int errno = 0; #endif #ifndef HAVE_MEMCPY void zmemcpy(dest, source, len) Bytef* dest; const Bytef* source; uInt len; { if (len == 0) return; do { *dest++ = *source++; /* ??? to be unrolled */ } while (--len != 0); } int zmemcmp(s1, s2, len) const Bytef* s1; const Bytef* s2; uInt len; { uInt j; for (j = 0; j < len; j++) { if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1; } return 0; } void zmemzero(dest, len) Bytef* dest; uInt len; { if (len == 0) return; do { *dest++ = 0; /* ??? to be unrolled */ } while (--len != 0); } #endif #ifdef SYS16BIT #ifdef __TURBOC__ /* Turbo C in 16-bit mode */ # define MY_ZCALLOC /* Turbo C malloc() does not allow dynamic allocation of 64K bytes * and farmalloc(64K) returns a pointer with an offset of 8, so we * must fix the pointer. Warning: the pointer must be put back to its * original form in order to free it, use zcfree(). */ #define MAX_PTR 10 /* 10*64K = 640K */ local int next_ptr = 0; typedef struct ptr_table_s { voidpf org_ptr; voidpf new_ptr; } ptr_table; local ptr_table table[MAX_PTR]; /* This table is used to remember the original form of pointers * to large buffers (64K). Such pointers are normalized with a zero offset. * Since MSDOS is not a preemptive multitasking OS, this table is not * protected from concurrent access. This hack doesn't work anyway on * a protected system like OS/2. Use Microsoft C instead. */ voidpf zcalloc (voidpf opaque, unsigned items, unsigned size) { voidpf buf = opaque; /* just to make some compilers happy */ ulg bsize = (ulg)items*size; /* If we allocate less than 65520 bytes, we assume that farmalloc * will return a usable pointer which doesn't have to be normalized. */ if (bsize < 65520L) { buf = farmalloc(bsize); if (*(ush*)&buf != 0) return buf; } else { buf = farmalloc(bsize + 16L); } if (buf == NULL || next_ptr >= MAX_PTR) return NULL; table[next_ptr].org_ptr = buf; /* Normalize the pointer to seg:0 */ *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4; *(ush*)&buf = 0; table[next_ptr++].new_ptr = buf; return buf; } void zcfree (voidpf opaque, voidpf ptr) { int n; if (*(ush*)&ptr != 0) { /* object < 64K */ farfree(ptr); return; } /* Find the original pointer */ for (n = 0; n < next_ptr; n++) { if (ptr != table[n].new_ptr) continue; farfree(table[n].org_ptr); while (++n < next_ptr) { table[n-1] = table[n]; } next_ptr--; return; } ptr = opaque; /* just to make some compilers happy */ Assert(0, "zcfree: ptr not found"); } #endif /* __TURBOC__ */ #ifdef M_I86 /* Microsoft C in 16-bit mode */ # define MY_ZCALLOC #if (!defined(_MSC_VER) || (_MSC_VER <= 600)) # define _halloc halloc # define _hfree hfree #endif voidpf zcalloc (voidpf opaque, unsigned items, unsigned size) { if (opaque) opaque = 0; /* to make compiler happy */ return _halloc((long)items, size); } void zcfree (voidpf opaque, voidpf ptr) { if (opaque) opaque = 0; /* to make compiler happy */ _hfree(ptr); } #endif /* M_I86 */ #endif /* SYS16BIT */ #ifndef MY_ZCALLOC /* Any system without a special alloc function */ #ifndef STDC extern voidp malloc OF((uInt size)); extern voidp calloc OF((uInt items, uInt size)); extern void free OF((voidpf ptr)); #endif voidpf zcalloc (voidpf opaque, unsigned items, unsigned size) { if (opaque) items += size - size; /* make compiler happy */ return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) : (voidpf)calloc(items, size); } void zcfree (voidpf opaque, voidpf ptr) { free(ptr); if (opaque) return; /* make compiler happy */ } #endif /* MY_ZCALLOC */ /********* End of inlined file: zutil.c *********/ #undef Byte } #else #include #endif } #if JUCE_MSVC #pragma warning (pop) #endif BEGIN_JUCE_NAMESPACE using namespace zlibNamespace; // internal helper object that holds the zlib structures so they don't have to be // included publicly. class GZIPDecompressHelper { private: z_stream* stream; uint8* data; int dataSize; public: bool finished, needsDictionary, error; GZIPDecompressHelper (const bool noWrap) throw() : data (0), dataSize (0), finished (false), needsDictionary (false), error (false) { stream = (z_stream*) juce_calloc (sizeof (z_stream)); if (inflateInit2 (stream, (noWrap) ? -MAX_WBITS : MAX_WBITS) != Z_OK) { juce_free (stream); stream = 0; error = true; finished = true; } } ~GZIPDecompressHelper() throw() { if (stream != 0) { inflateEnd (stream); juce_free (stream); } } bool needsInput() const throw() { return dataSize <= 0; } void setInput (uint8* const data_, const int size) throw() { data = data_; dataSize = size; } int doNextBlock (uint8* const dest, const int destSize) throw() { if (stream != 0 && data != 0 && ! finished) { stream->next_in = data; stream->next_out = dest; stream->avail_in = dataSize; stream->avail_out = destSize; switch (inflate (stream, Z_PARTIAL_FLUSH)) { case Z_STREAM_END: finished = true; // deliberate fall-through case Z_OK: data += dataSize - stream->avail_in; dataSize = stream->avail_in; return destSize - stream->avail_out; case Z_NEED_DICT: needsDictionary = true; data += dataSize - stream->avail_in; dataSize = stream->avail_in; break; case Z_DATA_ERROR: case Z_MEM_ERROR: error = true; default: break; } } return 0; } }; const int gzipDecompBufferSize = 32768; GZIPDecompressorInputStream::GZIPDecompressorInputStream (InputStream* const sourceStream_, const bool deleteSourceWhenDestroyed_, const bool noWrap_, const int64 uncompressedStreamLength_) : sourceStream (sourceStream_), uncompressedStreamLength (uncompressedStreamLength_), deleteSourceWhenDestroyed (deleteSourceWhenDestroyed_), noWrap (noWrap_), isEof (false), activeBufferSize (0), originalSourcePos (sourceStream_->getPosition()), currentPos (0) { buffer = (uint8*) juce_malloc (gzipDecompBufferSize); helper = new GZIPDecompressHelper (noWrap_); } GZIPDecompressorInputStream::~GZIPDecompressorInputStream() { juce_free (buffer); if (deleteSourceWhenDestroyed) delete sourceStream; GZIPDecompressHelper* const h = (GZIPDecompressHelper*) helper; delete h; } int64 GZIPDecompressorInputStream::getTotalLength() { return uncompressedStreamLength; } int GZIPDecompressorInputStream::read (void* destBuffer, int howMany) { GZIPDecompressHelper* const h = (GZIPDecompressHelper*) helper; if ((howMany > 0) && ! isEof) { jassert (destBuffer != 0); if (destBuffer != 0) { int numRead = 0; uint8* d = (uint8*) destBuffer; while (! h->error) { const int n = h->doNextBlock (d, howMany); currentPos += n; if (n == 0) { if (h->finished || h->needsDictionary) { isEof = true; return numRead; } if (h->needsInput()) { activeBufferSize = sourceStream->read (buffer, gzipDecompBufferSize); if (activeBufferSize > 0) { h->setInput ((uint8*) buffer, activeBufferSize); } else { isEof = true; return numRead; } } } else { numRead += n; howMany -= n; d += n; if (howMany <= 0) return numRead; } } } } return 0; } bool GZIPDecompressorInputStream::isExhausted() { const GZIPDecompressHelper* const h = (GZIPDecompressHelper*) helper; return h->error || isEof; } int64 GZIPDecompressorInputStream::getPosition() { return currentPos; } bool GZIPDecompressorInputStream::setPosition (int64 newPos) { if (newPos != currentPos) { if (newPos > currentPos) { skipNextBytes (newPos - currentPos); } else { // reset the stream and start again.. GZIPDecompressHelper* const h = (GZIPDecompressHelper*) helper; delete h; isEof = false; activeBufferSize = 0; currentPos = 0; helper = new GZIPDecompressHelper (noWrap); sourceStream->setPosition (originalSourcePos); skipNextBytes (newPos); } } return true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_GZIPDecompressorInputStream.cpp *********/ #if ! JUCE_ONLY_BUILD_CORE_LIBRARY /********* Start of inlined file: juce_FlacAudioFormat.cpp *********/ #if JUCE_USE_FLAC #if JUCE_WINDOWS #include #endif #ifdef _MSC_VER #pragma warning (disable : 4505) #pragma warning (push) #endif namespace FlacNamespace { #if JUCE_INCLUDE_FLAC_CODE #define FLAC__NO_DLL 1 #if ! defined (SIZE_MAX) #define SIZE_MAX 0xffffffff #endif #define __STDC_LIMIT_MACROS 1 /********* Start of inlined file: all.h *********/ #ifndef FLAC__ALL_H #define FLAC__ALL_H /********* Start of inlined file: export.h *********/ #ifndef FLAC__EXPORT_H #define FLAC__EXPORT_H /** \file include/FLAC/export.h * * \brief * This module contains #defines and symbols for exporting function * calls, and providing version information and compiled-in features. * * See the \link flac_export export \endlink module. */ /** \defgroup flac_export FLAC/export.h: export symbols * \ingroup flac * * \brief * This module contains #defines and symbols for exporting function * calls, and providing version information and compiled-in features. * * If you are compiling with MSVC and will link to the static library * (libFLAC.lib) you should define FLAC__NO_DLL in your project to * make sure the symbols are exported properly. * * \{ */ #if defined(FLAC__NO_DLL) || !defined(_MSC_VER) #define FLAC_API #else #ifdef FLAC_API_EXPORTS #define FLAC_API _declspec(dllexport) #else #define FLAC_API _declspec(dllimport) #endif #endif /** These #defines will mirror the libtool-based library version number, see * http://www.gnu.org/software/libtool/manual.html#Libtool-versioning */ #define FLAC_API_VERSION_CURRENT 10 #define FLAC_API_VERSION_REVISION 0 /**< see above */ #define FLAC_API_VERSION_AGE 2 /**< see above */ #ifdef __cplusplus extern "C" { #endif /** \c 1 if the library has been compiled with support for Ogg FLAC, else \c 0. */ extern FLAC_API int FLAC_API_SUPPORTS_OGG_FLAC; #ifdef __cplusplus } #endif /* \} */ #endif /********* End of inlined file: export.h *********/ /********* Start of inlined file: assert.h *********/ #ifndef FLAC__ASSERT_H #define FLAC__ASSERT_H /* we need this since some compilers (like MSVC) leave assert()s on release code (and we don't want to use their ASSERT) */ #ifdef DEBUG #include #define FLAC__ASSERT(x) assert(x) #define FLAC__ASSERT_DECLARATION(x) x #else #define FLAC__ASSERT(x) #define FLAC__ASSERT_DECLARATION(x) #endif #endif /********* End of inlined file: assert.h *********/ /********* Start of inlined file: callback.h *********/ #ifndef FLAC__CALLBACK_H #define FLAC__CALLBACK_H /********* Start of inlined file: ordinals.h *********/ #ifndef FLAC__ORDINALS_H #define FLAC__ORDINALS_H #if !(defined(_MSC_VER) || defined(__BORLANDC__) || defined(__EMX__)) #include #endif typedef signed char FLAC__int8; typedef unsigned char FLAC__uint8; #if defined(_MSC_VER) || defined(__BORLANDC__) typedef __int16 FLAC__int16; typedef __int32 FLAC__int32; typedef __int64 FLAC__int64; typedef unsigned __int16 FLAC__uint16; typedef unsigned __int32 FLAC__uint32; typedef unsigned __int64 FLAC__uint64; #elif defined(__EMX__) typedef short FLAC__int16; typedef long FLAC__int32; typedef long long FLAC__int64; typedef unsigned short FLAC__uint16; typedef unsigned long FLAC__uint32; typedef unsigned long long FLAC__uint64; #else typedef int16_t FLAC__int16; typedef int32_t FLAC__int32; typedef int64_t FLAC__int64; typedef uint16_t FLAC__uint16; typedef uint32_t FLAC__uint32; typedef uint64_t FLAC__uint64; #endif typedef int FLAC__bool; typedef FLAC__uint8 FLAC__byte; #ifdef true #undef true #endif #ifdef false #undef false #endif #ifndef __cplusplus #define true 1 #define false 0 #endif #endif /********* End of inlined file: ordinals.h *********/ #include /* for size_t */ /** \file include/FLAC/callback.h * * \brief * This module defines the structures for describing I/O callbacks * to the other FLAC interfaces. * * See the detailed documentation for callbacks in the * \link flac_callbacks callbacks \endlink module. */ /** \defgroup flac_callbacks FLAC/callback.h: I/O callback structures * \ingroup flac * * \brief * This module defines the structures for describing I/O callbacks * to the other FLAC interfaces. * * The purpose of the I/O callback functions is to create a common way * for the metadata interfaces to handle I/O. * * Originally the metadata interfaces required filenames as the way of * specifying FLAC files to operate on. This is problematic in some * environments so there is an additional option to specify a set of * callbacks for doing I/O on the FLAC file, instead of the filename. * * In addition to the callbacks, a FLAC__IOHandle type is defined as an * opaque structure for a data source. * * The callback function prototypes are similar (but not identical) to the * stdio functions fread, fwrite, fseek, ftell, feof, and fclose. If you use * stdio streams to implement the callbacks, you can pass fread, fwrite, and * fclose anywhere a FLAC__IOCallback_Read, FLAC__IOCallback_Write, or * FLAC__IOCallback_Close is required, and a FILE* anywhere a FLAC__IOHandle * is required. \warning You generally CANNOT directly use fseek or ftell * for FLAC__IOCallback_Seek or FLAC__IOCallback_Tell since on most systems * these use 32-bit offsets and FLAC requires 64-bit offsets to deal with * large files. You will have to find an equivalent function (e.g. ftello), * or write a wrapper. The same is true for feof() since this is usually * implemented as a macro, not as a function whose address can be taken. * * \{ */ #ifdef __cplusplus extern "C" { #endif /** This is the opaque handle type used by the callbacks. Typically * this is a \c FILE* or address of a file descriptor. */ typedef void* FLAC__IOHandle; /** Signature for the read callback. * The signature and semantics match POSIX fread() implementations * and can generally be used interchangeably. * * \param ptr The address of the read buffer. * \param size The size of the records to be read. * \param nmemb The number of records to be read. * \param handle The handle to the data source. * \retval size_t * The number of records read. */ typedef size_t (*FLAC__IOCallback_Read) (void *ptr, size_t size, size_t nmemb, FLAC__IOHandle handle); /** Signature for the write callback. * The signature and semantics match POSIX fwrite() implementations * and can generally be used interchangeably. * * \param ptr The address of the write buffer. * \param size The size of the records to be written. * \param nmemb The number of records to be written. * \param handle The handle to the data source. * \retval size_t * The number of records written. */ typedef size_t (*FLAC__IOCallback_Write) (const void *ptr, size_t size, size_t nmemb, FLAC__IOHandle handle); /** Signature for the seek callback. * The signature and semantics mostly match POSIX fseek() WITH ONE IMPORTANT * EXCEPTION: the offset is a 64-bit type whereas fseek() is generally 'long' * and 32-bits wide. * * \param handle The handle to the data source. * \param offset The new position, relative to \a whence * \param whence \c SEEK_SET, \c SEEK_CUR, or \c SEEK_END * \retval int * \c 0 on success, \c -1 on error. */ typedef int (*FLAC__IOCallback_Seek) (FLAC__IOHandle handle, FLAC__int64 offset, int whence); /** Signature for the tell callback. * The signature and semantics mostly match POSIX ftell() WITH ONE IMPORTANT * EXCEPTION: the offset is a 64-bit type whereas ftell() is generally 'long' * and 32-bits wide. * * \param handle The handle to the data source. * \retval FLAC__int64 * The current position on success, \c -1 on error. */ typedef FLAC__int64 (*FLAC__IOCallback_Tell) (FLAC__IOHandle handle); /** Signature for the EOF callback. * The signature and semantics mostly match POSIX feof() but WATCHOUT: * on many systems, feof() is a macro, so in this case a wrapper function * must be provided instead. * * \param handle The handle to the data source. * \retval int * \c 0 if not at end of file, nonzero if at end of file. */ typedef int (*FLAC__IOCallback_Eof) (FLAC__IOHandle handle); /** Signature for the close callback. * The signature and semantics match POSIX fclose() implementations * and can generally be used interchangeably. * * \param handle The handle to the data source. * \retval int * \c 0 on success, \c EOF on error. */ typedef int (*FLAC__IOCallback_Close) (FLAC__IOHandle handle); /** A structure for holding a set of callbacks. * Each FLAC interface that requires a FLAC__IOCallbacks structure will * describe which of the callbacks are required. The ones that are not * required may be set to NULL. * * If the seek requirement for an interface is optional, you can signify that * a data sorce is not seekable by setting the \a seek field to \c NULL. */ typedef struct { FLAC__IOCallback_Read read; FLAC__IOCallback_Write write; FLAC__IOCallback_Seek seek; FLAC__IOCallback_Tell tell; FLAC__IOCallback_Eof eof; FLAC__IOCallback_Close close; } FLAC__IOCallbacks; /* \} */ #ifdef __cplusplus } #endif #endif /********* End of inlined file: callback.h *********/ /********* Start of inlined file: format.h *********/ #ifndef FLAC__FORMAT_H #define FLAC__FORMAT_H #ifdef __cplusplus extern "C" { #endif /** \file include/FLAC/format.h * * \brief * This module contains structure definitions for the representation * of FLAC format components in memory. These are the basic * structures used by the rest of the interfaces. * * See the detailed documentation in the * \link flac_format format \endlink module. */ /** \defgroup flac_format FLAC/format.h: format components * \ingroup flac * * \brief * This module contains structure definitions for the representation * of FLAC format components in memory. These are the basic * structures used by the rest of the interfaces. * * First, you should be familiar with the * FLAC format. Many of the values here * follow directly from the specification. As a user of libFLAC, the * interesting parts really are the structures that describe the frame * header and metadata blocks. * * The format structures here are very primitive, designed to store * information in an efficient way. Reading information from the * structures is easy but creating or modifying them directly is * more complex. For the most part, as a user of a library, editing * is not necessary; however, for metadata blocks it is, so there are * convenience functions provided in the \link flac_metadata metadata * module \endlink to simplify the manipulation of metadata blocks. * * \note * It's not the best convention, but symbols ending in _LEN are in bits * and _LENGTH are in bytes. _LENGTH symbols are \#defines instead of * global variables because they are usually used when declaring byte * arrays and some compilers require compile-time knowledge of array * sizes when declared on the stack. * * \{ */ /* Most of the values described in this file are defined by the FLAC format specification. There is nothing to tune here. */ /** The largest legal metadata type code. */ #define FLAC__MAX_METADATA_TYPE_CODE (126u) /** The minimum block size, in samples, permitted by the format. */ #define FLAC__MIN_BLOCK_SIZE (16u) /** The maximum block size, in samples, permitted by the format. */ #define FLAC__MAX_BLOCK_SIZE (65535u) /** The maximum block size, in samples, permitted by the FLAC subset for * sample rates up to 48kHz. */ #define FLAC__SUBSET_MAX_BLOCK_SIZE_48000HZ (4608u) /** The maximum number of channels permitted by the format. */ #define FLAC__MAX_CHANNELS (8u) /** The minimum sample resolution permitted by the format. */ #define FLAC__MIN_BITS_PER_SAMPLE (4u) /** The maximum sample resolution permitted by the format. */ #define FLAC__MAX_BITS_PER_SAMPLE (32u) /** The maximum sample resolution permitted by libFLAC. * * \warning * FLAC__MAX_BITS_PER_SAMPLE is the limit of the FLAC format. However, * the reference encoder/decoder is currently limited to 24 bits because * of prevalent 32-bit math, so make sure and use this value when * appropriate. */ #define FLAC__REFERENCE_CODEC_MAX_BITS_PER_SAMPLE (24u) /** The maximum sample rate permitted by the format. The value is * ((2 ^ 16) - 1) * 10; see FLAC format * as to why. */ #define FLAC__MAX_SAMPLE_RATE (655350u) /** The maximum LPC order permitted by the format. */ #define FLAC__MAX_LPC_ORDER (32u) /** The maximum LPC order permitted by the FLAC subset for sample rates * up to 48kHz. */ #define FLAC__SUBSET_MAX_LPC_ORDER_48000HZ (12u) /** The minimum quantized linear predictor coefficient precision * permitted by the format. */ #define FLAC__MIN_QLP_COEFF_PRECISION (5u) /** The maximum quantized linear predictor coefficient precision * permitted by the format. */ #define FLAC__MAX_QLP_COEFF_PRECISION (15u) /** The maximum order of the fixed predictors permitted by the format. */ #define FLAC__MAX_FIXED_ORDER (4u) /** The maximum Rice partition order permitted by the format. */ #define FLAC__MAX_RICE_PARTITION_ORDER (15u) /** The maximum Rice partition order permitted by the FLAC Subset. */ #define FLAC__SUBSET_MAX_RICE_PARTITION_ORDER (8u) /** The version string of the release, stamped onto the libraries and binaries. * * \note * This does not correspond to the shared library version number, which * is used to determine binary compatibility. */ extern FLAC_API const char *FLAC__VERSION_STRING; /** The vendor string inserted by the encoder into the VORBIS_COMMENT block. * This is a NUL-terminated ASCII string; when inserted into the * VORBIS_COMMENT the trailing null is stripped. */ extern FLAC_API const char *FLAC__VENDOR_STRING; /** The byte string representation of the beginning of a FLAC stream. */ extern FLAC_API const FLAC__byte FLAC__STREAM_SYNC_STRING[4]; /* = "fLaC" */ /** The 32-bit integer big-endian representation of the beginning of * a FLAC stream. */ extern FLAC_API const unsigned FLAC__STREAM_SYNC; /* = 0x664C6143 */ /** The length of the FLAC signature in bits. */ extern FLAC_API const unsigned FLAC__STREAM_SYNC_LEN; /* = 32 bits */ /** The length of the FLAC signature in bytes. */ #define FLAC__STREAM_SYNC_LENGTH (4u) /***************************************************************************** * * Subframe structures * *****************************************************************************/ /*****************************************************************************/ /** An enumeration of the available entropy coding methods. */ typedef enum { FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE = 0, /**< Residual is coded by partitioning into contexts, each with it's own * 4-bit Rice parameter. */ FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2 = 1 /**< Residual is coded by partitioning into contexts, each with it's own * 5-bit Rice parameter. */ } FLAC__EntropyCodingMethodType; /** Maps a FLAC__EntropyCodingMethodType to a C string. * * Using a FLAC__EntropyCodingMethodType as the index to this array will * give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__EntropyCodingMethodTypeString[]; /** Contents of a Rice partitioned residual */ typedef struct { unsigned *parameters; /**< The Rice parameters for each context. */ unsigned *raw_bits; /**< Widths for escape-coded partitions. Will be non-zero for escaped * partitions and zero for unescaped partitions. */ unsigned capacity_by_order; /**< The capacity of the \a parameters and \a raw_bits arrays * specified as an order, i.e. the number of array elements * allocated is 2 ^ \a capacity_by_order. */ } FLAC__EntropyCodingMethod_PartitionedRiceContents; /** Header for a Rice partitioned residual. (c.f. format specification) */ typedef struct { unsigned order; /**< The partition order, i.e. # of contexts = 2 ^ \a order. */ const FLAC__EntropyCodingMethod_PartitionedRiceContents *contents; /**< The context's Rice parameters and/or raw bits. */ } FLAC__EntropyCodingMethod_PartitionedRice; extern FLAC_API const unsigned FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN; /**< == 4 (bits) */ extern FLAC_API const unsigned FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; /**< == 4 (bits) */ extern FLAC_API const unsigned FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN; /**< == 5 (bits) */ extern FLAC_API const unsigned FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN; /**< == 5 (bits) */ extern FLAC_API const unsigned FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER; /**< == (1<format specification) */ typedef struct { FLAC__EntropyCodingMethodType type; union { FLAC__EntropyCodingMethod_PartitionedRice partitioned_rice; } data; } FLAC__EntropyCodingMethod; extern FLAC_API const unsigned FLAC__ENTROPY_CODING_METHOD_TYPE_LEN; /**< == 2 (bits) */ /*****************************************************************************/ /** An enumeration of the available subframe types. */ typedef enum { FLAC__SUBFRAME_TYPE_CONSTANT = 0, /**< constant signal */ FLAC__SUBFRAME_TYPE_VERBATIM = 1, /**< uncompressed signal */ FLAC__SUBFRAME_TYPE_FIXED = 2, /**< fixed polynomial prediction */ FLAC__SUBFRAME_TYPE_LPC = 3 /**< linear prediction */ } FLAC__SubframeType; /** Maps a FLAC__SubframeType to a C string. * * Using a FLAC__SubframeType as the index to this array will * give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__SubframeTypeString[]; /** CONSTANT subframe. (c.f. format specification) */ typedef struct { FLAC__int32 value; /**< The constant signal value. */ } FLAC__Subframe_Constant; /** VERBATIM subframe. (c.f. format specification) */ typedef struct { const FLAC__int32 *data; /**< A pointer to verbatim signal. */ } FLAC__Subframe_Verbatim; /** FIXED subframe. (c.f. format specification) */ typedef struct { FLAC__EntropyCodingMethod entropy_coding_method; /**< The residual coding method. */ unsigned order; /**< The polynomial order. */ FLAC__int32 warmup[FLAC__MAX_FIXED_ORDER]; /**< Warmup samples to prime the predictor, length == order. */ const FLAC__int32 *residual; /**< The residual signal, length == (blocksize minus order) samples. */ } FLAC__Subframe_Fixed; /** LPC subframe. (c.f. format specification) */ typedef struct { FLAC__EntropyCodingMethod entropy_coding_method; /**< The residual coding method. */ unsigned order; /**< The FIR order. */ unsigned qlp_coeff_precision; /**< Quantized FIR filter coefficient precision in bits. */ int quantization_level; /**< The qlp coeff shift needed. */ FLAC__int32 qlp_coeff[FLAC__MAX_LPC_ORDER]; /**< FIR filter coefficients. */ FLAC__int32 warmup[FLAC__MAX_LPC_ORDER]; /**< Warmup samples to prime the predictor, length == order. */ const FLAC__int32 *residual; /**< The residual signal, length == (blocksize minus order) samples. */ } FLAC__Subframe_LPC; extern FLAC_API const unsigned FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN; /**< == 4 (bits) */ extern FLAC_API const unsigned FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN; /**< == 5 (bits) */ /** FLAC subframe structure. (c.f. format specification) */ typedef struct { FLAC__SubframeType type; union { FLAC__Subframe_Constant constant; FLAC__Subframe_Fixed fixed; FLAC__Subframe_LPC lpc; FLAC__Subframe_Verbatim verbatim; } data; unsigned wasted_bits; } FLAC__Subframe; /** == 1 (bit) * * This used to be a zero-padding bit (hence the name * FLAC__SUBFRAME_ZERO_PAD_LEN) but is now a reserved bit. It still has a * mandatory value of \c 0 but in the future may take on the value \c 0 or \c 1 * to mean something else. */ extern FLAC_API const unsigned FLAC__SUBFRAME_ZERO_PAD_LEN; extern FLAC_API const unsigned FLAC__SUBFRAME_TYPE_LEN; /**< == 6 (bits) */ extern FLAC_API const unsigned FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN; /**< == 1 (bit) */ extern FLAC_API const unsigned FLAC__SUBFRAME_TYPE_CONSTANT_BYTE_ALIGNED_MASK; /**< = 0x00 */ extern FLAC_API const unsigned FLAC__SUBFRAME_TYPE_VERBATIM_BYTE_ALIGNED_MASK; /**< = 0x02 */ extern FLAC_API const unsigned FLAC__SUBFRAME_TYPE_FIXED_BYTE_ALIGNED_MASK; /**< = 0x10 */ extern FLAC_API const unsigned FLAC__SUBFRAME_TYPE_LPC_BYTE_ALIGNED_MASK; /**< = 0x40 */ /*****************************************************************************/ /***************************************************************************** * * Frame structures * *****************************************************************************/ /** An enumeration of the available channel assignments. */ typedef enum { FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT = 0, /**< independent channels */ FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE = 1, /**< left+side stereo */ FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE = 2, /**< right+side stereo */ FLAC__CHANNEL_ASSIGNMENT_MID_SIDE = 3 /**< mid+side stereo */ } FLAC__ChannelAssignment; /** Maps a FLAC__ChannelAssignment to a C string. * * Using a FLAC__ChannelAssignment as the index to this array will * give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__ChannelAssignmentString[]; /** An enumeration of the possible frame numbering methods. */ typedef enum { FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER, /**< number contains the frame number */ FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER /**< number contains the sample number of first sample in frame */ } FLAC__FrameNumberType; /** Maps a FLAC__FrameNumberType to a C string. * * Using a FLAC__FrameNumberType as the index to this array will * give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__FrameNumberTypeString[]; /** FLAC frame header structure. (c.f. format specification) */ typedef struct { unsigned blocksize; /**< The number of samples per subframe. */ unsigned sample_rate; /**< The sample rate in Hz. */ unsigned channels; /**< The number of channels (== number of subframes). */ FLAC__ChannelAssignment channel_assignment; /**< The channel assignment for the frame. */ unsigned bits_per_sample; /**< The sample resolution. */ FLAC__FrameNumberType number_type; /**< The numbering scheme used for the frame. As a convenience, the * decoder will always convert a frame number to a sample number because * the rules are complex. */ union { FLAC__uint32 frame_number; FLAC__uint64 sample_number; } number; /**< The frame number or sample number of first sample in frame; * use the \a number_type value to determine which to use. */ FLAC__uint8 crc; /**< CRC-8 (polynomial = x^8 + x^2 + x^1 + x^0, initialized with 0) * of the raw frame header bytes, meaning everything before the CRC byte * including the sync code. */ } FLAC__FrameHeader; extern FLAC_API const unsigned FLAC__FRAME_HEADER_SYNC; /**< == 0x3ffe; the frame header sync code */ extern FLAC_API const unsigned FLAC__FRAME_HEADER_SYNC_LEN; /**< == 14 (bits) */ extern FLAC_API const unsigned FLAC__FRAME_HEADER_RESERVED_LEN; /**< == 1 (bits) */ extern FLAC_API const unsigned FLAC__FRAME_HEADER_BLOCKING_STRATEGY_LEN; /**< == 1 (bits) */ extern FLAC_API const unsigned FLAC__FRAME_HEADER_BLOCK_SIZE_LEN; /**< == 4 (bits) */ extern FLAC_API const unsigned FLAC__FRAME_HEADER_SAMPLE_RATE_LEN; /**< == 4 (bits) */ extern FLAC_API const unsigned FLAC__FRAME_HEADER_CHANNEL_ASSIGNMENT_LEN; /**< == 4 (bits) */ extern FLAC_API const unsigned FLAC__FRAME_HEADER_BITS_PER_SAMPLE_LEN; /**< == 3 (bits) */ extern FLAC_API const unsigned FLAC__FRAME_HEADER_ZERO_PAD_LEN; /**< == 1 (bit) */ extern FLAC_API const unsigned FLAC__FRAME_HEADER_CRC_LEN; /**< == 8 (bits) */ /** FLAC frame footer structure. (c.f. format specification) */ typedef struct { FLAC__uint16 crc; /**< CRC-16 (polynomial = x^16 + x^15 + x^2 + x^0, initialized with * 0) of the bytes before the crc, back to and including the frame header * sync code. */ } FLAC__FrameFooter; extern FLAC_API const unsigned FLAC__FRAME_FOOTER_CRC_LEN; /**< == 16 (bits) */ /** FLAC frame structure. (c.f. format specification) */ typedef struct { FLAC__FrameHeader header; FLAC__Subframe subframes[FLAC__MAX_CHANNELS]; FLAC__FrameFooter footer; } FLAC__Frame; /*****************************************************************************/ /***************************************************************************** * * Meta-data structures * *****************************************************************************/ /** An enumeration of the available metadata block types. */ typedef enum { FLAC__METADATA_TYPE_STREAMINFO = 0, /**< STREAMINFO block */ FLAC__METADATA_TYPE_PADDING = 1, /**< PADDING block */ FLAC__METADATA_TYPE_APPLICATION = 2, /**< APPLICATION block */ FLAC__METADATA_TYPE_SEEKTABLE = 3, /**< SEEKTABLE block */ FLAC__METADATA_TYPE_VORBIS_COMMENT = 4, /**< VORBISCOMMENT block (a.k.a. FLAC tags) */ FLAC__METADATA_TYPE_CUESHEET = 5, /**< CUESHEET block */ FLAC__METADATA_TYPE_PICTURE = 6, /**< PICTURE block */ FLAC__METADATA_TYPE_UNDEFINED = 7 /**< marker to denote beginning of undefined type range; this number will increase as new metadata types are added */ } FLAC__MetadataType; /** Maps a FLAC__MetadataType to a C string. * * Using a FLAC__MetadataType as the index to this array will * give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__MetadataTypeString[]; /** FLAC STREAMINFO structure. (c.f. format specification) */ typedef struct { unsigned min_blocksize, max_blocksize; unsigned min_framesize, max_framesize; unsigned sample_rate; unsigned channels; unsigned bits_per_sample; FLAC__uint64 total_samples; FLAC__byte md5sum[16]; } FLAC__StreamMetadata_StreamInfo; extern FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN; /**< == 16 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN; /**< == 16 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN; /**< == 24 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN; /**< == 24 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN; /**< == 20 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN; /**< == 3 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN; /**< == 5 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN; /**< == 36 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_MD5SUM_LEN; /**< == 128 (bits) */ /** The total stream length of the STREAMINFO block in bytes. */ #define FLAC__STREAM_METADATA_STREAMINFO_LENGTH (34u) /** FLAC PADDING structure. (c.f. format specification) */ typedef struct { int dummy; /**< Conceptually this is an empty struct since we don't store the * padding bytes. Empty structs are not allowed by some C compilers, * hence the dummy. */ } FLAC__StreamMetadata_Padding; /** FLAC APPLICATION structure. (c.f. format specification) */ typedef struct { FLAC__byte id[4]; FLAC__byte *data; } FLAC__StreamMetadata_Application; extern FLAC_API const unsigned FLAC__STREAM_METADATA_APPLICATION_ID_LEN; /**< == 32 (bits) */ /** SeekPoint structure used in SEEKTABLE blocks. (c.f. format specification) */ typedef struct { FLAC__uint64 sample_number; /**< The sample number of the target frame. */ FLAC__uint64 stream_offset; /**< The offset, in bytes, of the target frame with respect to * beginning of the first frame. */ unsigned frame_samples; /**< The number of samples in the target frame. */ } FLAC__StreamMetadata_SeekPoint; extern FLAC_API const unsigned FLAC__STREAM_METADATA_SEEKPOINT_SAMPLE_NUMBER_LEN; /**< == 64 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_SEEKPOINT_STREAM_OFFSET_LEN; /**< == 64 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_SEEKPOINT_FRAME_SAMPLES_LEN; /**< == 16 (bits) */ /** The total stream length of a seek point in bytes. */ #define FLAC__STREAM_METADATA_SEEKPOINT_LENGTH (18u) /** The value used in the \a sample_number field of * FLAC__StreamMetadataSeekPoint used to indicate a placeholder * point (== 0xffffffffffffffff). */ extern FLAC_API const FLAC__uint64 FLAC__STREAM_METADATA_SEEKPOINT_PLACEHOLDER; /** FLAC SEEKTABLE structure. (c.f. format specification) * * \note From the format specification: * - The seek points must be sorted by ascending sample number. * - Each seek point's sample number must be the first sample of the * target frame. * - Each seek point's sample number must be unique within the table. * - Existence of a SEEKTABLE block implies a correct setting of * total_samples in the stream_info block. * - Behavior is undefined when more than one SEEKTABLE block is * present in a stream. */ typedef struct { unsigned num_points; FLAC__StreamMetadata_SeekPoint *points; } FLAC__StreamMetadata_SeekTable; /** Vorbis comment entry structure used in VORBIS_COMMENT blocks. (c.f. format specification) * * For convenience, the APIs maintain a trailing NUL character at the end of * \a entry which is not counted toward \a length, i.e. * \code strlen(entry) == length \endcode */ typedef struct { FLAC__uint32 length; FLAC__byte *entry; } FLAC__StreamMetadata_VorbisComment_Entry; extern FLAC_API const unsigned FLAC__STREAM_METADATA_VORBIS_COMMENT_ENTRY_LENGTH_LEN; /**< == 32 (bits) */ /** FLAC VORBIS_COMMENT structure. (c.f. format specification) */ typedef struct { FLAC__StreamMetadata_VorbisComment_Entry vendor_string; FLAC__uint32 num_comments; FLAC__StreamMetadata_VorbisComment_Entry *comments; } FLAC__StreamMetadata_VorbisComment; extern FLAC_API const unsigned FLAC__STREAM_METADATA_VORBIS_COMMENT_NUM_COMMENTS_LEN; /**< == 32 (bits) */ /** FLAC CUESHEET track index structure. (See the * format specification for * the full description of each field.) */ typedef struct { FLAC__uint64 offset; /**< Offset in samples, relative to the track offset, of the index * point. */ FLAC__byte number; /**< The index point number. */ } FLAC__StreamMetadata_CueSheet_Index; extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_INDEX_OFFSET_LEN; /**< == 64 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_INDEX_NUMBER_LEN; /**< == 8 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_INDEX_RESERVED_LEN; /**< == 3*8 (bits) */ /** FLAC CUESHEET track structure. (See the * format specification for * the full description of each field.) */ typedef struct { FLAC__uint64 offset; /**< Track offset in samples, relative to the beginning of the FLAC audio stream. */ FLAC__byte number; /**< The track number. */ char isrc[13]; /**< Track ISRC. This is a 12-digit alphanumeric code plus a trailing \c NUL byte */ unsigned type:1; /**< The track type: 0 for audio, 1 for non-audio. */ unsigned pre_emphasis:1; /**< The pre-emphasis flag: 0 for no pre-emphasis, 1 for pre-emphasis. */ FLAC__byte num_indices; /**< The number of track index points. */ FLAC__StreamMetadata_CueSheet_Index *indices; /**< NULL if num_indices == 0, else pointer to array of index points. */ } FLAC__StreamMetadata_CueSheet_Track; extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_OFFSET_LEN; /**< == 64 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_NUMBER_LEN; /**< == 8 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_ISRC_LEN; /**< == 12*8 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_TYPE_LEN; /**< == 1 (bit) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_PRE_EMPHASIS_LEN; /**< == 1 (bit) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_RESERVED_LEN; /**< == 6+13*8 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_NUM_INDICES_LEN; /**< == 8 (bits) */ /** FLAC CUESHEET structure. (See the * format specification * for the full description of each field.) */ typedef struct { char media_catalog_number[129]; /**< Media catalog number, in ASCII printable characters 0x20-0x7e. In * general, the media catalog number may be 0 to 128 bytes long; any * unused characters should be right-padded with NUL characters. */ FLAC__uint64 lead_in; /**< The number of lead-in samples. */ FLAC__bool is_cd; /**< \c true if CUESHEET corresponds to a Compact Disc, else \c false. */ unsigned num_tracks; /**< The number of tracks. */ FLAC__StreamMetadata_CueSheet_Track *tracks; /**< NULL if num_tracks == 0, else pointer to array of tracks. */ } FLAC__StreamMetadata_CueSheet; extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_MEDIA_CATALOG_NUMBER_LEN; /**< == 128*8 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_LEAD_IN_LEN; /**< == 64 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_IS_CD_LEN; /**< == 1 (bit) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_RESERVED_LEN; /**< == 7+258*8 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_NUM_TRACKS_LEN; /**< == 8 (bits) */ /** An enumeration of the PICTURE types (see FLAC__StreamMetadataPicture and id3 v2.4 APIC tag). */ typedef enum { FLAC__STREAM_METADATA_PICTURE_TYPE_OTHER = 0, /**< Other */ FLAC__STREAM_METADATA_PICTURE_TYPE_FILE_ICON_STANDARD = 1, /**< 32x32 pixels 'file icon' (PNG only) */ FLAC__STREAM_METADATA_PICTURE_TYPE_FILE_ICON = 2, /**< Other file icon */ FLAC__STREAM_METADATA_PICTURE_TYPE_FRONT_COVER = 3, /**< Cover (front) */ FLAC__STREAM_METADATA_PICTURE_TYPE_BACK_COVER = 4, /**< Cover (back) */ FLAC__STREAM_METADATA_PICTURE_TYPE_LEAFLET_PAGE = 5, /**< Leaflet page */ FLAC__STREAM_METADATA_PICTURE_TYPE_MEDIA = 6, /**< Media (e.g. label side of CD) */ FLAC__STREAM_METADATA_PICTURE_TYPE_LEAD_ARTIST = 7, /**< Lead artist/lead performer/soloist */ FLAC__STREAM_METADATA_PICTURE_TYPE_ARTIST = 8, /**< Artist/performer */ FLAC__STREAM_METADATA_PICTURE_TYPE_CONDUCTOR = 9, /**< Conductor */ FLAC__STREAM_METADATA_PICTURE_TYPE_BAND = 10, /**< Band/Orchestra */ FLAC__STREAM_METADATA_PICTURE_TYPE_COMPOSER = 11, /**< Composer */ FLAC__STREAM_METADATA_PICTURE_TYPE_LYRICIST = 12, /**< Lyricist/text writer */ FLAC__STREAM_METADATA_PICTURE_TYPE_RECORDING_LOCATION = 13, /**< Recording Location */ FLAC__STREAM_METADATA_PICTURE_TYPE_DURING_RECORDING = 14, /**< During recording */ FLAC__STREAM_METADATA_PICTURE_TYPE_DURING_PERFORMANCE = 15, /**< During performance */ FLAC__STREAM_METADATA_PICTURE_TYPE_VIDEO_SCREEN_CAPTURE = 16, /**< Movie/video screen capture */ FLAC__STREAM_METADATA_PICTURE_TYPE_FISH = 17, /**< A bright coloured fish */ FLAC__STREAM_METADATA_PICTURE_TYPE_ILLUSTRATION = 18, /**< Illustration */ FLAC__STREAM_METADATA_PICTURE_TYPE_BAND_LOGOTYPE = 19, /**< Band/artist logotype */ FLAC__STREAM_METADATA_PICTURE_TYPE_PUBLISHER_LOGOTYPE = 20, /**< Publisher/Studio logotype */ FLAC__STREAM_METADATA_PICTURE_TYPE_UNDEFINED } FLAC__StreamMetadata_Picture_Type; /** Maps a FLAC__StreamMetadata_Picture_Type to a C string. * * Using a FLAC__StreamMetadata_Picture_Type as the index to this array * will give the string equivalent. The contents should not be * modified. */ extern FLAC_API const char * const FLAC__StreamMetadata_Picture_TypeString[]; /** FLAC PICTURE structure. (See the * format specification * for the full description of each field.) */ typedef struct { FLAC__StreamMetadata_Picture_Type type; /**< The kind of picture stored. */ char *mime_type; /**< Picture data's MIME type, in ASCII printable characters * 0x20-0x7e, NUL terminated. For best compatibility with players, * use picture data of MIME type \c image/jpeg or \c image/png. A * MIME type of '-->' is also allowed, in which case the picture * data should be a complete URL. In file storage, the MIME type is * stored as a 32-bit length followed by the ASCII string with no NUL * terminator, but is converted to a plain C string in this structure * for convenience. */ FLAC__byte *description; /**< Picture's description in UTF-8, NUL terminated. In file storage, * the description is stored as a 32-bit length followed by the UTF-8 * string with no NUL terminator, but is converted to a plain C string * in this structure for convenience. */ FLAC__uint32 width; /**< Picture's width in pixels. */ FLAC__uint32 height; /**< Picture's height in pixels. */ FLAC__uint32 depth; /**< Picture's color depth in bits-per-pixel. */ FLAC__uint32 colors; /**< For indexed palettes (like GIF), picture's number of colors (the * number of palette entries), or \c 0 for non-indexed (i.e. 2^depth). */ FLAC__uint32 data_length; /**< Length of binary picture data in bytes. */ FLAC__byte *data; /**< Binary picture data. */ } FLAC__StreamMetadata_Picture; extern FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_TYPE_LEN; /**< == 32 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_MIME_TYPE_LENGTH_LEN; /**< == 32 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_DESCRIPTION_LENGTH_LEN; /**< == 32 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_WIDTH_LEN; /**< == 32 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_HEIGHT_LEN; /**< == 32 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_DEPTH_LEN; /**< == 32 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_COLORS_LEN; /**< == 32 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_DATA_LENGTH_LEN; /**< == 32 (bits) */ /** Structure that is used when a metadata block of unknown type is loaded. * The contents are opaque. The structure is used only internally to * correctly handle unknown metadata. */ typedef struct { FLAC__byte *data; } FLAC__StreamMetadata_Unknown; /** FLAC metadata block structure. (c.f. format specification) */ typedef struct { FLAC__MetadataType type; /**< The type of the metadata block; used determine which member of the * \a data union to dereference. If type >= FLAC__METADATA_TYPE_UNDEFINED * then \a data.unknown must be used. */ FLAC__bool is_last; /**< \c true if this metadata block is the last, else \a false */ unsigned length; /**< Length, in bytes, of the block data as it appears in the stream. */ union { FLAC__StreamMetadata_StreamInfo stream_info; FLAC__StreamMetadata_Padding padding; FLAC__StreamMetadata_Application application; FLAC__StreamMetadata_SeekTable seek_table; FLAC__StreamMetadata_VorbisComment vorbis_comment; FLAC__StreamMetadata_CueSheet cue_sheet; FLAC__StreamMetadata_Picture picture; FLAC__StreamMetadata_Unknown unknown; } data; /**< Polymorphic block data; use the \a type value to determine which * to use. */ } FLAC__StreamMetadata; extern FLAC_API const unsigned FLAC__STREAM_METADATA_IS_LAST_LEN; /**< == 1 (bit) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_TYPE_LEN; /**< == 7 (bits) */ extern FLAC_API const unsigned FLAC__STREAM_METADATA_LENGTH_LEN; /**< == 24 (bits) */ /** The total stream length of a metadata block header in bytes. */ #define FLAC__STREAM_METADATA_HEADER_LENGTH (4u) /*****************************************************************************/ /***************************************************************************** * * Utility functions * *****************************************************************************/ /** Tests that a sample rate is valid for FLAC. * * \param sample_rate The sample rate to test for compliance. * \retval FLAC__bool * \c true if the given sample rate conforms to the specification, else * \c false. */ FLAC_API FLAC__bool FLAC__format_sample_rate_is_valid(unsigned sample_rate); /** Tests that a sample rate is valid for the FLAC subset. The subset rules * for valid sample rates are slightly more complex since the rate has to * be expressible completely in the frame header. * * \param sample_rate The sample rate to test for compliance. * \retval FLAC__bool * \c true if the given sample rate conforms to the specification for the * subset, else \c false. */ FLAC_API FLAC__bool FLAC__format_sample_rate_is_subset(unsigned sample_rate); /** Check a Vorbis comment entry name to see if it conforms to the Vorbis * comment specification. * * Vorbis comment names must be composed only of characters from * [0x20-0x3C,0x3E-0x7D]. * * \param name A NUL-terminated string to be checked. * \assert * \code name != NULL \endcode * \retval FLAC__bool * \c false if entry name is illegal, else \c true. */ FLAC_API FLAC__bool FLAC__format_vorbiscomment_entry_name_is_legal(const char *name); /** Check a Vorbis comment entry value to see if it conforms to the Vorbis * comment specification. * * Vorbis comment values must be valid UTF-8 sequences. * * \param value A string to be checked. * \param length A the length of \a value in bytes. May be * \c (unsigned)(-1) to indicate that \a value is a plain * UTF-8 NUL-terminated string. * \assert * \code value != NULL \endcode * \retval FLAC__bool * \c false if entry name is illegal, else \c true. */ FLAC_API FLAC__bool FLAC__format_vorbiscomment_entry_value_is_legal(const FLAC__byte *value, unsigned length); /** Check a Vorbis comment entry to see if it conforms to the Vorbis * comment specification. * * Vorbis comment entries must be of the form 'name=value', and 'name' and * 'value' must be legal according to * FLAC__format_vorbiscomment_entry_name_is_legal() and * FLAC__format_vorbiscomment_entry_value_is_legal() respectively. * * \param entry An entry to be checked. * \param length The length of \a entry in bytes. * \assert * \code value != NULL \endcode * \retval FLAC__bool * \c false if entry name is illegal, else \c true. */ FLAC_API FLAC__bool FLAC__format_vorbiscomment_entry_is_legal(const FLAC__byte *entry, unsigned length); /** Check a seek table to see if it conforms to the FLAC specification. * See the format specification for limits on the contents of the * seek table. * * \param seek_table A pointer to a seek table to be checked. * \assert * \code seek_table != NULL \endcode * \retval FLAC__bool * \c false if seek table is illegal, else \c true. */ FLAC_API FLAC__bool FLAC__format_seektable_is_legal(const FLAC__StreamMetadata_SeekTable *seek_table); /** Sort a seek table's seek points according to the format specification. * This includes a "unique-ification" step to remove duplicates, i.e. * seek points with identical \a sample_number values. Duplicate seek * points are converted into placeholder points and sorted to the end of * the table. * * \param seek_table A pointer to a seek table to be sorted. * \assert * \code seek_table != NULL \endcode * \retval unsigned * The number of duplicate seek points converted into placeholders. */ FLAC_API unsigned FLAC__format_seektable_sort(FLAC__StreamMetadata_SeekTable *seek_table); /** Check a cue sheet to see if it conforms to the FLAC specification. * See the format specification for limits on the contents of the * cue sheet. * * \param cue_sheet A pointer to an existing cue sheet to be checked. * \param check_cd_da_subset If \c true, check CUESHEET against more * stringent requirements for a CD-DA (audio) disc. * \param violation Address of a pointer to a string. If there is a * violation, a pointer to a string explanation of the * violation will be returned here. \a violation may be * \c NULL if you don't need the returned string. Do not * free the returned string; it will always point to static * data. * \assert * \code cue_sheet != NULL \endcode * \retval FLAC__bool * \c false if cue sheet is illegal, else \c true. */ FLAC_API FLAC__bool FLAC__format_cuesheet_is_legal(const FLAC__StreamMetadata_CueSheet *cue_sheet, FLAC__bool check_cd_da_subset, const char **violation); /** Check picture data to see if it conforms to the FLAC specification. * See the format specification for limits on the contents of the * PICTURE block. * * \param picture A pointer to existing picture data to be checked. * \param violation Address of a pointer to a string. If there is a * violation, a pointer to a string explanation of the * violation will be returned here. \a violation may be * \c NULL if you don't need the returned string. Do not * free the returned string; it will always point to static * data. * \assert * \code picture != NULL \endcode * \retval FLAC__bool * \c false if picture data is illegal, else \c true. */ FLAC_API FLAC__bool FLAC__format_picture_is_legal(const FLAC__StreamMetadata_Picture *picture, const char **violation); /* \} */ #ifdef __cplusplus } #endif #endif /********* End of inlined file: format.h *********/ /********* Start of inlined file: metadata.h *********/ #ifndef FLAC__METADATA_H #define FLAC__METADATA_H #include /* for off_t */ /* -------------------------------------------------------------------- (For an example of how all these routines are used, see the source code for the unit tests in src/test_libFLAC/metadata_*.c, or metaflac in src/metaflac/) ------------------------------------------------------------------*/ /** \file include/FLAC/metadata.h * * \brief * This module provides functions for creating and manipulating FLAC * metadata blocks in memory, and three progressively more powerful * interfaces for traversing and editing metadata in FLAC files. * * See the detailed documentation for each interface in the * \link flac_metadata metadata \endlink module. */ /** \defgroup flac_metadata FLAC/metadata.h: metadata interfaces * \ingroup flac * * \brief * This module provides functions for creating and manipulating FLAC * metadata blocks in memory, and three progressively more powerful * interfaces for traversing and editing metadata in native FLAC files. * Note that currently only the Chain interface (level 2) supports Ogg * FLAC files, and it is read-only i.e. no writing back changed * metadata to file. * * There are three metadata interfaces of increasing complexity: * * Level 0: * Read-only access to the STREAMINFO, VORBIS_COMMENT, CUESHEET, and * PICTURE blocks. * * Level 1: * Read-write access to all metadata blocks. This level is write- * efficient in most cases (more on this below), and uses less memory * than level 2. * * Level 2: * Read-write access to all metadata blocks. This level is write- * efficient in all cases, but uses more memory since all metadata for * the whole file is read into memory and manipulated before writing * out again. * * What do we mean by efficient? Since FLAC metadata appears at the * beginning of the file, when writing metadata back to a FLAC file * it is possible to grow or shrink the metadata such that the entire * file must be rewritten. However, if the size remains the same during * changes or PADDING blocks are utilized, only the metadata needs to be * overwritten, which is much faster. * * Efficient means the whole file is rewritten at most one time, and only * when necessary. Level 1 is not efficient only in the case that you * cause more than one metadata block to grow or shrink beyond what can * be accomodated by padding. In this case you should probably use level * 2, which allows you to edit all the metadata for a file in memory and * write it out all at once. * * All levels know how to skip over and not disturb an ID3v2 tag at the * front of the file. * * All levels access files via their filenames. In addition, level 2 * has additional alternative read and write functions that take an I/O * handle and callbacks, for situations where access by filename is not * possible. * * In addition to the three interfaces, this module defines functions for * creating and manipulating various metadata objects in memory. As we see * from the Format module, FLAC metadata blocks in memory are very primitive * structures for storing information in an efficient way. Reading * information from the structures is easy but creating or modifying them * directly is more complex. The metadata object routines here facilitate * this by taking care of the consistency and memory management drudgery. * * Unless you will be using the level 1 or 2 interfaces to modify existing * metadata however, you will not probably not need these. * * From a dependency standpoint, none of the encoders or decoders require * the metadata module. This is so that embedded users can strip out the * metadata module from libFLAC to reduce the size and complexity. */ #ifdef __cplusplus extern "C" { #endif /** \defgroup flac_metadata_level0 FLAC/metadata.h: metadata level 0 interface * \ingroup flac_metadata * * \brief * The level 0 interface consists of individual routines to read the * STREAMINFO, VORBIS_COMMENT, CUESHEET, and PICTURE blocks, requiring * only a filename. * * They try to skip any ID3v2 tag at the head of the file. * * \{ */ /** Read the STREAMINFO metadata block of the given FLAC file. This function * will try to skip any ID3v2 tag at the head of the file. * * \param filename The path to the FLAC file to read. * \param streaminfo A pointer to space for the STREAMINFO block. Since * FLAC__StreamMetadata is a simple structure with no * memory allocation involved, you pass the address of * an existing structure. It need not be initialized. * \assert * \code filename != NULL \endcode * \code streaminfo != NULL \endcode * \retval FLAC__bool * \c true if a valid STREAMINFO block was read from \a filename. Returns * \c false if there was a memory allocation error, a file decoder error, * or the file contained no STREAMINFO block. (A memory allocation error * is possible because this function must set up a file decoder.) */ FLAC_API FLAC__bool FLAC__metadata_get_streaminfo(const char *filename, FLAC__StreamMetadata *streaminfo); /** Read the VORBIS_COMMENT metadata block of the given FLAC file. This * function will try to skip any ID3v2 tag at the head of the file. * * \param filename The path to the FLAC file to read. * \param tags The address where the returned pointer will be * stored. The \a tags object must be deleted by * the caller using FLAC__metadata_object_delete(). * \assert * \code filename != NULL \endcode * \code tags != NULL \endcode * \retval FLAC__bool * \c true if a valid VORBIS_COMMENT block was read from \a filename, * and \a *tags will be set to the address of the metadata structure. * Returns \c false if there was a memory allocation error, a file * decoder error, or the file contained no VORBIS_COMMENT block, and * \a *tags will be set to \c NULL. */ FLAC_API FLAC__bool FLAC__metadata_get_tags(const char *filename, FLAC__StreamMetadata **tags); /** Read the CUESHEET metadata block of the given FLAC file. This * function will try to skip any ID3v2 tag at the head of the file. * * \param filename The path to the FLAC file to read. * \param cuesheet The address where the returned pointer will be * stored. The \a cuesheet object must be deleted by * the caller using FLAC__metadata_object_delete(). * \assert * \code filename != NULL \endcode * \code cuesheet != NULL \endcode * \retval FLAC__bool * \c true if a valid CUESHEET block was read from \a filename, * and \a *cuesheet will be set to the address of the metadata * structure. Returns \c false if there was a memory allocation * error, a file decoder error, or the file contained no CUESHEET * block, and \a *cuesheet will be set to \c NULL. */ FLAC_API FLAC__bool FLAC__metadata_get_cuesheet(const char *filename, FLAC__StreamMetadata **cuesheet); /** Read a PICTURE metadata block of the given FLAC file. This * function will try to skip any ID3v2 tag at the head of the file. * Since there can be more than one PICTURE block in a file, this * function takes a number of parameters that act as constraints to * the search. The PICTURE block with the largest area matching all * the constraints will be returned, or \a *picture will be set to * \c NULL if there was no such block. * * \param filename The path to the FLAC file to read. * \param picture The address where the returned pointer will be * stored. The \a picture object must be deleted by * the caller using FLAC__metadata_object_delete(). * \param type The desired picture type. Use \c -1 to mean * "any type". * \param mime_type The desired MIME type, e.g. "image/jpeg". The * string will be matched exactly. Use \c NULL to * mean "any MIME type". * \param description The desired description. The string will be * matched exactly. Use \c NULL to mean "any * description". * \param max_width The maximum width in pixels desired. Use * \c (unsigned)(-1) to mean "any width". * \param max_height The maximum height in pixels desired. Use * \c (unsigned)(-1) to mean "any height". * \param max_depth The maximum color depth in bits-per-pixel desired. * Use \c (unsigned)(-1) to mean "any depth". * \param max_colors The maximum number of colors desired. Use * \c (unsigned)(-1) to mean "any number of colors". * \assert * \code filename != NULL \endcode * \code picture != NULL \endcode * \retval FLAC__bool * \c true if a valid PICTURE block was read from \a filename, * and \a *picture will be set to the address of the metadata * structure. Returns \c false if there was a memory allocation * error, a file decoder error, or the file contained no PICTURE * block, and \a *picture will be set to \c NULL. */ FLAC_API FLAC__bool FLAC__metadata_get_picture(const char *filename, FLAC__StreamMetadata **picture, FLAC__StreamMetadata_Picture_Type type, const char *mime_type, const FLAC__byte *description, unsigned max_width, unsigned max_height, unsigned max_depth, unsigned max_colors); /* \} */ /** \defgroup flac_metadata_level1 FLAC/metadata.h: metadata level 1 interface * \ingroup flac_metadata * * \brief * The level 1 interface provides read-write access to FLAC file metadata and * operates directly on the FLAC file. * * The general usage of this interface is: * * - Create an iterator using FLAC__metadata_simple_iterator_new() * - Attach it to a file using FLAC__metadata_simple_iterator_init() and check * the exit code. Call FLAC__metadata_simple_iterator_is_writable() to * see if the file is writable, or only read access is allowed. * - Use FLAC__metadata_simple_iterator_next() and * FLAC__metadata_simple_iterator_prev() to traverse the blocks. * This is does not read the actual blocks themselves. * FLAC__metadata_simple_iterator_next() is relatively fast. * FLAC__metadata_simple_iterator_prev() is slower since it needs to search * forward from the front of the file. * - Use FLAC__metadata_simple_iterator_get_block_type() or * FLAC__metadata_simple_iterator_get_block() to access the actual data at * the current iterator position. The returned object is yours to modify * and free. * - Use FLAC__metadata_simple_iterator_set_block() to write a modified block * back. You must have write permission to the original file. Make sure to * read the whole comment to FLAC__metadata_simple_iterator_set_block() * below. * - Use FLAC__metadata_simple_iterator_insert_block_after() to add new blocks. * Use the object creation functions from * \link flac_metadata_object here \endlink to generate new objects. * - Use FLAC__metadata_simple_iterator_delete_block() to remove the block * currently referred to by the iterator, or replace it with padding. * - Destroy the iterator with FLAC__metadata_simple_iterator_delete() when * finished. * * \note * The FLAC file remains open the whole time between * FLAC__metadata_simple_iterator_init() and * FLAC__metadata_simple_iterator_delete(), so make sure you are not altering * the file during this time. * * \note * Do not modify the \a is_last, \a length, or \a type fields of returned * FLAC__StreamMetadata objects. These are managed automatically. * * \note * If any of the modification functions * (FLAC__metadata_simple_iterator_set_block(), * FLAC__metadata_simple_iterator_delete_block(), * FLAC__metadata_simple_iterator_insert_block_after(), etc.) return \c false, * you should delete the iterator as it may no longer be valid. * * \{ */ struct FLAC__Metadata_SimpleIterator; /** The opaque structure definition for the level 1 iterator type. * See the * \link flac_metadata_level1 metadata level 1 module \endlink * for a detailed description. */ typedef struct FLAC__Metadata_SimpleIterator FLAC__Metadata_SimpleIterator; /** Status type for FLAC__Metadata_SimpleIterator. * * The iterator's current status can be obtained by calling FLAC__metadata_simple_iterator_status(). */ typedef enum { FLAC__METADATA_SIMPLE_ITERATOR_STATUS_OK = 0, /**< The iterator is in the normal OK state */ FLAC__METADATA_SIMPLE_ITERATOR_STATUS_ILLEGAL_INPUT, /**< The data passed into a function violated the function's usage criteria */ FLAC__METADATA_SIMPLE_ITERATOR_STATUS_ERROR_OPENING_FILE, /**< The iterator could not open the target file */ FLAC__METADATA_SIMPLE_ITERATOR_STATUS_NOT_A_FLAC_FILE, /**< The iterator could not find the FLAC signature at the start of the file */ FLAC__METADATA_SIMPLE_ITERATOR_STATUS_NOT_WRITABLE, /**< The iterator tried to write to a file that was not writable */ FLAC__METADATA_SIMPLE_ITERATOR_STATUS_BAD_METADATA, /**< The iterator encountered input that does not conform to the FLAC metadata specification */ FLAC__METADATA_SIMPLE_ITERATOR_STATUS_READ_ERROR, /**< The iterator encountered an error while reading the FLAC file */ FLAC__METADATA_SIMPLE_ITERATOR_STATUS_SEEK_ERROR, /**< The iterator encountered an error while seeking in the FLAC file */ FLAC__METADATA_SIMPLE_ITERATOR_STATUS_WRITE_ERROR, /**< The iterator encountered an error while writing the FLAC file */ FLAC__METADATA_SIMPLE_ITERATOR_STATUS_RENAME_ERROR, /**< The iterator encountered an error renaming the FLAC file */ FLAC__METADATA_SIMPLE_ITERATOR_STATUS_UNLINK_ERROR, /**< The iterator encountered an error removing the temporary file */ FLAC__METADATA_SIMPLE_ITERATOR_STATUS_MEMORY_ALLOCATION_ERROR, /**< Memory allocation failed */ FLAC__METADATA_SIMPLE_ITERATOR_STATUS_INTERNAL_ERROR /**< The caller violated an assertion or an unexpected error occurred */ } FLAC__Metadata_SimpleIteratorStatus; /** Maps a FLAC__Metadata_SimpleIteratorStatus to a C string. * * Using a FLAC__Metadata_SimpleIteratorStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__Metadata_SimpleIteratorStatusString[]; /** Create a new iterator instance. * * \retval FLAC__Metadata_SimpleIterator* * \c NULL if there was an error allocating memory, else the new instance. */ FLAC_API FLAC__Metadata_SimpleIterator *FLAC__metadata_simple_iterator_new(void); /** Free an iterator instance. Deletes the object pointed to by \a iterator. * * \param iterator A pointer to an existing iterator. * \assert * \code iterator != NULL \endcode */ FLAC_API void FLAC__metadata_simple_iterator_delete(FLAC__Metadata_SimpleIterator *iterator); /** Get the current status of the iterator. Call this after a function * returns \c false to get the reason for the error. Also resets the status * to FLAC__METADATA_SIMPLE_ITERATOR_STATUS_OK. * * \param iterator A pointer to an existing iterator. * \assert * \code iterator != NULL \endcode * \retval FLAC__Metadata_SimpleIteratorStatus * The current status of the iterator. */ FLAC_API FLAC__Metadata_SimpleIteratorStatus FLAC__metadata_simple_iterator_status(FLAC__Metadata_SimpleIterator *iterator); /** Initialize the iterator to point to the first metadata block in the * given FLAC file. * * \param iterator A pointer to an existing iterator. * \param filename The path to the FLAC file. * \param read_only If \c true, the FLAC file will be opened * in read-only mode; if \c false, the FLAC * file will be opened for edit even if no * edits are performed. * \param preserve_file_stats If \c true, the owner and modification * time will be preserved even if the FLAC * file is written to. * \assert * \code iterator != NULL \endcode * \code filename != NULL \endcode * \retval FLAC__bool * \c false if a memory allocation error occurs, the file can't be * opened, or another error occurs, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_simple_iterator_init(FLAC__Metadata_SimpleIterator *iterator, const char *filename, FLAC__bool read_only, FLAC__bool preserve_file_stats); /** Returns \c true if the FLAC file is writable. If \c false, calls to * FLAC__metadata_simple_iterator_set_block() and * FLAC__metadata_simple_iterator_insert_block_after() will fail. * * \param iterator A pointer to an existing iterator. * \assert * \code iterator != NULL \endcode * \retval FLAC__bool * See above. */ FLAC_API FLAC__bool FLAC__metadata_simple_iterator_is_writable(const FLAC__Metadata_SimpleIterator *iterator); /** Moves the iterator forward one metadata block, returning \c false if * already at the end. * * \param iterator A pointer to an existing initialized iterator. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_simple_iterator_init() * \retval FLAC__bool * \c false if already at the last metadata block of the chain, else * \c true. */ FLAC_API FLAC__bool FLAC__metadata_simple_iterator_next(FLAC__Metadata_SimpleIterator *iterator); /** Moves the iterator backward one metadata block, returning \c false if * already at the beginning. * * \param iterator A pointer to an existing initialized iterator. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_simple_iterator_init() * \retval FLAC__bool * \c false if already at the first metadata block of the chain, else * \c true. */ FLAC_API FLAC__bool FLAC__metadata_simple_iterator_prev(FLAC__Metadata_SimpleIterator *iterator); /** Returns a flag telling if the current metadata block is the last. * * \param iterator A pointer to an existing initialized iterator. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_simple_iterator_init() * \retval FLAC__bool * \c true if the current metadata block is the last in the file, * else \c false. */ FLAC_API FLAC__bool FLAC__metadata_simple_iterator_is_last(const FLAC__Metadata_SimpleIterator *iterator); /** Get the offset of the metadata block at the current position. This * avoids reading the actual block data which can save time for large * blocks. * * \param iterator A pointer to an existing initialized iterator. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_simple_iterator_init() * \retval off_t * The offset of the metadata block at the current iterator position. * This is the byte offset relative to the beginning of the file of * the current metadata block's header. */ FLAC_API off_t FLAC__metadata_simple_iterator_get_block_offset(const FLAC__Metadata_SimpleIterator *iterator); /** Get the type of the metadata block at the current position. This * avoids reading the actual block data which can save time for large * blocks. * * \param iterator A pointer to an existing initialized iterator. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_simple_iterator_init() * \retval FLAC__MetadataType * The type of the metadata block at the current iterator position. */ FLAC_API FLAC__MetadataType FLAC__metadata_simple_iterator_get_block_type(const FLAC__Metadata_SimpleIterator *iterator); /** Get the length of the metadata block at the current position. This * avoids reading the actual block data which can save time for large * blocks. * * \param iterator A pointer to an existing initialized iterator. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_simple_iterator_init() * \retval unsigned * The length of the metadata block at the current iterator position. * The is same length as that in the * metadata block header, * i.e. the length of the metadata body that follows the header. */ FLAC_API unsigned FLAC__metadata_simple_iterator_get_block_length(const FLAC__Metadata_SimpleIterator *iterator); /** Get the application ID of the \c APPLICATION block at the current * position. This avoids reading the actual block data which can save * time for large blocks. * * \param iterator A pointer to an existing initialized iterator. * \param id A pointer to a buffer of at least \c 4 bytes where * the ID will be stored. * \assert * \code iterator != NULL \endcode * \code id != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_simple_iterator_init() * \retval FLAC__bool * \c true if the ID was successfully read, else \c false, in which * case you should check FLAC__metadata_simple_iterator_status() to * find out why. If the status is * \c FLAC__METADATA_SIMPLE_ITERATOR_STATUS_ILLEGAL_INPUT, then the * current metadata block is not an \c APPLICATION block. Otherwise * if the status is * \c FLAC__METADATA_SIMPLE_ITERATOR_STATUS_READ_ERROR or * \c FLAC__METADATA_SIMPLE_ITERATOR_STATUS_SEEK_ERROR, an I/O error * occurred and the iterator can no longer be used. */ FLAC_API FLAC__bool FLAC__metadata_simple_iterator_get_application_id(FLAC__Metadata_SimpleIterator *iterator, FLAC__byte *id); /** Get the metadata block at the current position. You can modify the * block but must use FLAC__metadata_simple_iterator_set_block() to * write it back to the FLAC file. * * You must call FLAC__metadata_object_delete() on the returned object * when you are finished with it. * * \param iterator A pointer to an existing initialized iterator. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_simple_iterator_init() * \retval FLAC__StreamMetadata* * The current metadata block, or \c NULL if there was a memory * allocation error. */ FLAC_API FLAC__StreamMetadata *FLAC__metadata_simple_iterator_get_block(FLAC__Metadata_SimpleIterator *iterator); /** Write a block back to the FLAC file. This function tries to be * as efficient as possible; how the block is actually written is * shown by the following: * * Existing block is a STREAMINFO block and the new block is a * STREAMINFO block: the new block is written in place. Make sure * you know what you're doing when changing the values of a * STREAMINFO block. * * Existing block is a STREAMINFO block and the new block is a * not a STREAMINFO block: this is an error since the first block * must be a STREAMINFO block. Returns \c false without altering the * file. * * Existing block is not a STREAMINFO block and the new block is a * STREAMINFO block: this is an error since there may be only one * STREAMINFO block. Returns \c false without altering the file. * * Existing block and new block are the same length: the existing * block will be replaced by the new block, written in place. * * Existing block is longer than new block: if use_padding is \c true, * the existing block will be overwritten in place with the new * block followed by a PADDING block, if possible, to make the total * size the same as the existing block. Remember that a padding * block requires at least four bytes so if the difference in size * between the new block and existing block is less than that, the * entire file will have to be rewritten, using the new block's * exact size. If use_padding is \c false, the entire file will be * rewritten, replacing the existing block by the new block. * * Existing block is shorter than new block: if use_padding is \c true, * the function will try and expand the new block into the following * PADDING block, if it exists and doing so won't shrink the PADDING * block to less than 4 bytes. If there is no following PADDING * block, or it will shrink to less than 4 bytes, or use_padding is * \c false, the entire file is rewritten, replacing the existing block * with the new block. Note that in this case any following PADDING * block is preserved as is. * * After writing the block, the iterator will remain in the same * place, i.e. pointing to the new block. * * \param iterator A pointer to an existing initialized iterator. * \param block The block to set. * \param use_padding See above. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_simple_iterator_init() * \code block != NULL \endcode * \retval FLAC__bool * \c true if successful, else \c false. */ FLAC_API FLAC__bool FLAC__metadata_simple_iterator_set_block(FLAC__Metadata_SimpleIterator *iterator, FLAC__StreamMetadata *block, FLAC__bool use_padding); /** This is similar to FLAC__metadata_simple_iterator_set_block() * except that instead of writing over an existing block, it appends * a block after the existing block. \a use_padding is again used to * tell the function to try an expand into following padding in an * attempt to avoid rewriting the entire file. * * This function will fail and return \c false if given a STREAMINFO * block. * * After writing the block, the iterator will be pointing to the * new block. * * \param iterator A pointer to an existing initialized iterator. * \param block The block to set. * \param use_padding See above. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_simple_iterator_init() * \code block != NULL \endcode * \retval FLAC__bool * \c true if successful, else \c false. */ FLAC_API FLAC__bool FLAC__metadata_simple_iterator_insert_block_after(FLAC__Metadata_SimpleIterator *iterator, FLAC__StreamMetadata *block, FLAC__bool use_padding); /** Deletes the block at the current position. This will cause the * entire FLAC file to be rewritten, unless \a use_padding is \c true, * in which case the block will be replaced by an equal-sized PADDING * block. The iterator will be left pointing to the block before the * one just deleted. * * You may not delete the STREAMINFO block. * * \param iterator A pointer to an existing initialized iterator. * \param use_padding See above. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_simple_iterator_init() * \retval FLAC__bool * \c true if successful, else \c false. */ FLAC_API FLAC__bool FLAC__metadata_simple_iterator_delete_block(FLAC__Metadata_SimpleIterator *iterator, FLAC__bool use_padding); /* \} */ /** \defgroup flac_metadata_level2 FLAC/metadata.h: metadata level 2 interface * \ingroup flac_metadata * * \brief * The level 2 interface provides read-write access to FLAC file metadata; * all metadata is read into memory, operated on in memory, and then written * to file, which is more efficient than level 1 when editing multiple blocks. * * Currently Ogg FLAC is supported for read only, via * FLAC__metadata_chain_read_ogg() but a subsequent * FLAC__metadata_chain_write() will fail. * * The general usage of this interface is: * * - Create a new chain using FLAC__metadata_chain_new(). A chain is a * linked list of FLAC metadata blocks. * - Read all metadata into the the chain from a FLAC file using * FLAC__metadata_chain_read() or FLAC__metadata_chain_read_ogg() and * check the status. * - Optionally, consolidate the padding using * FLAC__metadata_chain_merge_padding() or * FLAC__metadata_chain_sort_padding(). * - Create a new iterator using FLAC__metadata_iterator_new() * - Initialize the iterator to point to the first element in the chain * using FLAC__metadata_iterator_init() * - Traverse the chain using FLAC__metadata_iterator_next and * FLAC__metadata_iterator_prev(). * - Get a block for reading or modification using * FLAC__metadata_iterator_get_block(). The pointer to the object * inside the chain is returned, so the block is yours to modify. * Changes will be reflected in the FLAC file when you write the * chain. You can also add and delete blocks (see functions below). * - When done, write out the chain using FLAC__metadata_chain_write(). * Make sure to read the whole comment to the function below. * - Delete the chain using FLAC__metadata_chain_delete(). * * \note * Even though the FLAC file is not open while the chain is being * manipulated, you must not alter the file externally during * this time. The chain assumes the FLAC file will not change * between the time of FLAC__metadata_chain_read()/FLAC__metadata_chain_read_ogg() * and FLAC__metadata_chain_write(). * * \note * Do not modify the is_last, length, or type fields of returned * FLAC__StreamMetadata objects. These are managed automatically. * * \note * The metadata objects returned by FLAC__metadata_iterator_get_block() * are owned by the chain; do not FLAC__metadata_object_delete() them. * In the same way, blocks passed to FLAC__metadata_iterator_set_block() * become owned by the chain and they will be deleted when the chain is * deleted. * * \{ */ struct FLAC__Metadata_Chain; /** The opaque structure definition for the level 2 chain type. */ typedef struct FLAC__Metadata_Chain FLAC__Metadata_Chain; struct FLAC__Metadata_Iterator; /** The opaque structure definition for the level 2 iterator type. */ typedef struct FLAC__Metadata_Iterator FLAC__Metadata_Iterator; typedef enum { FLAC__METADATA_CHAIN_STATUS_OK = 0, /**< The chain is in the normal OK state */ FLAC__METADATA_CHAIN_STATUS_ILLEGAL_INPUT, /**< The data passed into a function violated the function's usage criteria */ FLAC__METADATA_CHAIN_STATUS_ERROR_OPENING_FILE, /**< The chain could not open the target file */ FLAC__METADATA_CHAIN_STATUS_NOT_A_FLAC_FILE, /**< The chain could not find the FLAC signature at the start of the file */ FLAC__METADATA_CHAIN_STATUS_NOT_WRITABLE, /**< The chain tried to write to a file that was not writable */ FLAC__METADATA_CHAIN_STATUS_BAD_METADATA, /**< The chain encountered input that does not conform to the FLAC metadata specification */ FLAC__METADATA_CHAIN_STATUS_READ_ERROR, /**< The chain encountered an error while reading the FLAC file */ FLAC__METADATA_CHAIN_STATUS_SEEK_ERROR, /**< The chain encountered an error while seeking in the FLAC file */ FLAC__METADATA_CHAIN_STATUS_WRITE_ERROR, /**< The chain encountered an error while writing the FLAC file */ FLAC__METADATA_CHAIN_STATUS_RENAME_ERROR, /**< The chain encountered an error renaming the FLAC file */ FLAC__METADATA_CHAIN_STATUS_UNLINK_ERROR, /**< The chain encountered an error removing the temporary file */ FLAC__METADATA_CHAIN_STATUS_MEMORY_ALLOCATION_ERROR, /**< Memory allocation failed */ FLAC__METADATA_CHAIN_STATUS_INTERNAL_ERROR, /**< The caller violated an assertion or an unexpected error occurred */ FLAC__METADATA_CHAIN_STATUS_INVALID_CALLBACKS, /**< One or more of the required callbacks was NULL */ FLAC__METADATA_CHAIN_STATUS_READ_WRITE_MISMATCH, /**< FLAC__metadata_chain_write() was called on a chain read by * FLAC__metadata_chain_read_with_callbacks()/FLAC__metadata_chain_read_ogg_with_callbacks(), * or * FLAC__metadata_chain_write_with_callbacks()/FLAC__metadata_chain_write_with_callbacks_and_tempfile() * was called on a chain read by * FLAC__metadata_chain_read()/FLAC__metadata_chain_read_ogg(). * Matching read/write methods must always be used. */ FLAC__METADATA_CHAIN_STATUS_WRONG_WRITE_CALL /**< FLAC__metadata_chain_write_with_callbacks() was called when the * chain write requires a tempfile; use * FLAC__metadata_chain_write_with_callbacks_and_tempfile() instead. * Or, FLAC__metadata_chain_write_with_callbacks_and_tempfile() was * called when the chain write does not require a tempfile; use * FLAC__metadata_chain_write_with_callbacks() instead. * Always check FLAC__metadata_chain_check_if_tempfile_needed() * before writing via callbacks. */ } FLAC__Metadata_ChainStatus; /** Maps a FLAC__Metadata_ChainStatus to a C string. * * Using a FLAC__Metadata_ChainStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__Metadata_ChainStatusString[]; /*********** FLAC__Metadata_Chain ***********/ /** Create a new chain instance. * * \retval FLAC__Metadata_Chain* * \c NULL if there was an error allocating memory, else the new instance. */ FLAC_API FLAC__Metadata_Chain *FLAC__metadata_chain_new(void); /** Free a chain instance. Deletes the object pointed to by \a chain. * * \param chain A pointer to an existing chain. * \assert * \code chain != NULL \endcode */ FLAC_API void FLAC__metadata_chain_delete(FLAC__Metadata_Chain *chain); /** Get the current status of the chain. Call this after a function * returns \c false to get the reason for the error. Also resets the * status to FLAC__METADATA_CHAIN_STATUS_OK. * * \param chain A pointer to an existing chain. * \assert * \code chain != NULL \endcode * \retval FLAC__Metadata_ChainStatus * The current status of the chain. */ FLAC_API FLAC__Metadata_ChainStatus FLAC__metadata_chain_status(FLAC__Metadata_Chain *chain); /** Read all metadata from a FLAC file into the chain. * * \param chain A pointer to an existing chain. * \param filename The path to the FLAC file to read. * \assert * \code chain != NULL \endcode * \code filename != NULL \endcode * \retval FLAC__bool * \c true if a valid list of metadata blocks was read from * \a filename, else \c false. On failure, check the status with * FLAC__metadata_chain_status(). */ FLAC_API FLAC__bool FLAC__metadata_chain_read(FLAC__Metadata_Chain *chain, const char *filename); /** Read all metadata from an Ogg FLAC file into the chain. * * \note Ogg FLAC metadata data writing is not supported yet and * FLAC__metadata_chain_write() will fail. * * \param chain A pointer to an existing chain. * \param filename The path to the Ogg FLAC file to read. * \assert * \code chain != NULL \endcode * \code filename != NULL \endcode * \retval FLAC__bool * \c true if a valid list of metadata blocks was read from * \a filename, else \c false. On failure, check the status with * FLAC__metadata_chain_status(). */ FLAC_API FLAC__bool FLAC__metadata_chain_read_ogg(FLAC__Metadata_Chain *chain, const char *filename); /** Read all metadata from a FLAC stream into the chain via I/O callbacks. * * The \a handle need only be open for reading, but must be seekable. * The equivalent minimum stdio fopen() file mode is \c "r" (or \c "rb" * for Windows). * * \param chain A pointer to an existing chain. * \param handle The I/O handle of the FLAC stream to read. The * handle will NOT be closed after the metadata is read; * that is the duty of the caller. * \param callbacks * A set of callbacks to use for I/O. The mandatory * callbacks are \a read, \a seek, and \a tell. * \assert * \code chain != NULL \endcode * \retval FLAC__bool * \c true if a valid list of metadata blocks was read from * \a handle, else \c false. On failure, check the status with * FLAC__metadata_chain_status(). */ FLAC_API FLAC__bool FLAC__metadata_chain_read_with_callbacks(FLAC__Metadata_Chain *chain, FLAC__IOHandle handle, FLAC__IOCallbacks callbacks); /** Read all metadata from an Ogg FLAC stream into the chain via I/O callbacks. * * The \a handle need only be open for reading, but must be seekable. * The equivalent minimum stdio fopen() file mode is \c "r" (or \c "rb" * for Windows). * * \note Ogg FLAC metadata data writing is not supported yet and * FLAC__metadata_chain_write() will fail. * * \param chain A pointer to an existing chain. * \param handle The I/O handle of the Ogg FLAC stream to read. The * handle will NOT be closed after the metadata is read; * that is the duty of the caller. * \param callbacks * A set of callbacks to use for I/O. The mandatory * callbacks are \a read, \a seek, and \a tell. * \assert * \code chain != NULL \endcode * \retval FLAC__bool * \c true if a valid list of metadata blocks was read from * \a handle, else \c false. On failure, check the status with * FLAC__metadata_chain_status(). */ FLAC_API FLAC__bool FLAC__metadata_chain_read_ogg_with_callbacks(FLAC__Metadata_Chain *chain, FLAC__IOHandle handle, FLAC__IOCallbacks callbacks); /** Checks if writing the given chain would require the use of a * temporary file, or if it could be written in place. * * Under certain conditions, padding can be utilized so that writing * edited metadata back to the FLAC file does not require rewriting the * entire file. If rewriting is required, then a temporary workfile is * required. When writing metadata using callbacks, you must check * this function to know whether to call * FLAC__metadata_chain_write_with_callbacks() or * FLAC__metadata_chain_write_with_callbacks_and_tempfile(). When * writing with FLAC__metadata_chain_write(), the temporary file is * handled internally. * * \param chain A pointer to an existing chain. * \param use_padding * Whether or not padding will be allowed to be used * during the write. The value of \a use_padding given * here must match the value later passed to * FLAC__metadata_chain_write_with_callbacks() or * FLAC__metadata_chain_write_with_callbacks_with_tempfile(). * \assert * \code chain != NULL \endcode * \retval FLAC__bool * \c true if writing the current chain would require a tempfile, or * \c false if metadata can be written in place. */ FLAC_API FLAC__bool FLAC__metadata_chain_check_if_tempfile_needed(FLAC__Metadata_Chain *chain, FLAC__bool use_padding); /** Write all metadata out to the FLAC file. This function tries to be as * efficient as possible; how the metadata is actually written is shown by * the following: * * If the current chain is the same size as the existing metadata, the new * data is written in place. * * If the current chain is longer than the existing metadata, and * \a use_padding is \c true, and the last block is a PADDING block of * sufficient length, the function will truncate the final padding block * so that the overall size of the metadata is the same as the existing * metadata, and then just rewrite the metadata. Otherwise, if not all of * the above conditions are met, the entire FLAC file must be rewritten. * If you want to use padding this way it is a good idea to call * FLAC__metadata_chain_sort_padding() first so that you have the maximum * amount of padding to work with, unless you need to preserve ordering * of the PADDING blocks for some reason. * * If the current chain is shorter than the existing metadata, and * \a use_padding is \c true, and the final block is a PADDING block, the padding * is extended to make the overall size the same as the existing data. If * \a use_padding is \c true and the last block is not a PADDING block, a new * PADDING block is added to the end of the new data to make it the same * size as the existing data (if possible, see the note to * FLAC__metadata_simple_iterator_set_block() about the four byte limit) * and the new data is written in place. If none of the above apply or * \a use_padding is \c false, the entire FLAC file is rewritten. * * If \a preserve_file_stats is \c true, the owner and modification time will * be preserved even if the FLAC file is written. * * For this write function to be used, the chain must have been read with * FLAC__metadata_chain_read()/FLAC__metadata_chain_read_ogg(), not * FLAC__metadata_chain_read_with_callbacks()/FLAC__metadata_chain_read_ogg_with_callbacks(). * * \param chain A pointer to an existing chain. * \param use_padding See above. * \param preserve_file_stats See above. * \assert * \code chain != NULL \endcode * \retval FLAC__bool * \c true if the write succeeded, else \c false. On failure, * check the status with FLAC__metadata_chain_status(). */ FLAC_API FLAC__bool FLAC__metadata_chain_write(FLAC__Metadata_Chain *chain, FLAC__bool use_padding, FLAC__bool preserve_file_stats); /** Write all metadata out to a FLAC stream via callbacks. * * (See FLAC__metadata_chain_write() for the details on how padding is * used to write metadata in place if possible.) * * The \a handle must be open for updating and be seekable. The * equivalent minimum stdio fopen() file mode is \c "r+" (or \c "r+b" * for Windows). * * For this write function to be used, the chain must have been read with * FLAC__metadata_chain_read_with_callbacks()/FLAC__metadata_chain_read_ogg_with_callbacks(), * not FLAC__metadata_chain_read()/FLAC__metadata_chain_read_ogg(). * Also, FLAC__metadata_chain_check_if_tempfile_needed() must have returned * \c false. * * \param chain A pointer to an existing chain. * \param use_padding See FLAC__metadata_chain_write() * \param handle The I/O handle of the FLAC stream to write. The * handle will NOT be closed after the metadata is * written; that is the duty of the caller. * \param callbacks A set of callbacks to use for I/O. The mandatory * callbacks are \a write and \a seek. * \assert * \code chain != NULL \endcode * \retval FLAC__bool * \c true if the write succeeded, else \c false. On failure, * check the status with FLAC__metadata_chain_status(). */ FLAC_API FLAC__bool FLAC__metadata_chain_write_with_callbacks(FLAC__Metadata_Chain *chain, FLAC__bool use_padding, FLAC__IOHandle handle, FLAC__IOCallbacks callbacks); /** Write all metadata out to a FLAC stream via callbacks. * * (See FLAC__metadata_chain_write() for the details on how padding is * used to write metadata in place if possible.) * * This version of the write-with-callbacks function must be used when * FLAC__metadata_chain_check_if_tempfile_needed() returns true. In * this function, you must supply an I/O handle corresponding to the * FLAC file to edit, and a temporary handle to which the new FLAC * file will be written. It is the caller's job to move this temporary * FLAC file on top of the original FLAC file to complete the metadata * edit. * * The \a handle must be open for reading and be seekable. The * equivalent minimum stdio fopen() file mode is \c "r" (or \c "rb" * for Windows). * * The \a temp_handle must be open for writing. The * equivalent minimum stdio fopen() file mode is \c "w" (or \c "wb" * for Windows). It should be an empty stream, or at least positioned * at the start-of-file (in which case it is the caller's duty to * truncate it on return). * * For this write function to be used, the chain must have been read with * FLAC__metadata_chain_read_with_callbacks()/FLAC__metadata_chain_read_ogg_with_callbacks(), * not FLAC__metadata_chain_read()/FLAC__metadata_chain_read_ogg(). * Also, FLAC__metadata_chain_check_if_tempfile_needed() must have returned * \c true. * * \param chain A pointer to an existing chain. * \param use_padding See FLAC__metadata_chain_write() * \param handle The I/O handle of the original FLAC stream to read. * The handle will NOT be closed after the metadata is * written; that is the duty of the caller. * \param callbacks A set of callbacks to use for I/O on \a handle. * The mandatory callbacks are \a read, \a seek, and * \a eof. * \param temp_handle The I/O handle of the FLAC stream to write. The * handle will NOT be closed after the metadata is * written; that is the duty of the caller. * \param temp_callbacks * A set of callbacks to use for I/O on temp_handle. * The only mandatory callback is \a write. * \assert * \code chain != NULL \endcode * \retval FLAC__bool * \c true if the write succeeded, else \c false. On failure, * check the status with FLAC__metadata_chain_status(). */ FLAC_API FLAC__bool FLAC__metadata_chain_write_with_callbacks_and_tempfile(FLAC__Metadata_Chain *chain, FLAC__bool use_padding, FLAC__IOHandle handle, FLAC__IOCallbacks callbacks, FLAC__IOHandle temp_handle, FLAC__IOCallbacks temp_callbacks); /** Merge adjacent PADDING blocks into a single block. * * \note This function does not write to the FLAC file, it only * modifies the chain. * * \warning Any iterator on the current chain will become invalid after this * call. You should delete the iterator and get a new one. * * \param chain A pointer to an existing chain. * \assert * \code chain != NULL \endcode */ FLAC_API void FLAC__metadata_chain_merge_padding(FLAC__Metadata_Chain *chain); /** This function will move all PADDING blocks to the end on the metadata, * then merge them into a single block. * * \note This function does not write to the FLAC file, it only * modifies the chain. * * \warning Any iterator on the current chain will become invalid after this * call. You should delete the iterator and get a new one. * * \param chain A pointer to an existing chain. * \assert * \code chain != NULL \endcode */ FLAC_API void FLAC__metadata_chain_sort_padding(FLAC__Metadata_Chain *chain); /*********** FLAC__Metadata_Iterator ***********/ /** Create a new iterator instance. * * \retval FLAC__Metadata_Iterator* * \c NULL if there was an error allocating memory, else the new instance. */ FLAC_API FLAC__Metadata_Iterator *FLAC__metadata_iterator_new(void); /** Free an iterator instance. Deletes the object pointed to by \a iterator. * * \param iterator A pointer to an existing iterator. * \assert * \code iterator != NULL \endcode */ FLAC_API void FLAC__metadata_iterator_delete(FLAC__Metadata_Iterator *iterator); /** Initialize the iterator to point to the first metadata block in the * given chain. * * \param iterator A pointer to an existing iterator. * \param chain A pointer to an existing and initialized (read) chain. * \assert * \code iterator != NULL \endcode * \code chain != NULL \endcode */ FLAC_API void FLAC__metadata_iterator_init(FLAC__Metadata_Iterator *iterator, FLAC__Metadata_Chain *chain); /** Moves the iterator forward one metadata block, returning \c false if * already at the end. * * \param iterator A pointer to an existing initialized iterator. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_iterator_init() * \retval FLAC__bool * \c false if already at the last metadata block of the chain, else * \c true. */ FLAC_API FLAC__bool FLAC__metadata_iterator_next(FLAC__Metadata_Iterator *iterator); /** Moves the iterator backward one metadata block, returning \c false if * already at the beginning. * * \param iterator A pointer to an existing initialized iterator. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_iterator_init() * \retval FLAC__bool * \c false if already at the first metadata block of the chain, else * \c true. */ FLAC_API FLAC__bool FLAC__metadata_iterator_prev(FLAC__Metadata_Iterator *iterator); /** Get the type of the metadata block at the current position. * * \param iterator A pointer to an existing initialized iterator. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_iterator_init() * \retval FLAC__MetadataType * The type of the metadata block at the current iterator position. */ FLAC_API FLAC__MetadataType FLAC__metadata_iterator_get_block_type(const FLAC__Metadata_Iterator *iterator); /** Get the metadata block at the current position. You can modify * the block in place but must write the chain before the changes * are reflected to the FLAC file. You do not need to call * FLAC__metadata_iterator_set_block() to reflect the changes; * the pointer returned by FLAC__metadata_iterator_get_block() * points directly into the chain. * * \warning * Do not call FLAC__metadata_object_delete() on the returned object; * to delete a block use FLAC__metadata_iterator_delete_block(). * * \param iterator A pointer to an existing initialized iterator. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_iterator_init() * \retval FLAC__StreamMetadata* * The current metadata block. */ FLAC_API FLAC__StreamMetadata *FLAC__metadata_iterator_get_block(FLAC__Metadata_Iterator *iterator); /** Set the metadata block at the current position, replacing the existing * block. The new block passed in becomes owned by the chain and it will be * deleted when the chain is deleted. * * \param iterator A pointer to an existing initialized iterator. * \param block A pointer to a metadata block. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_iterator_init() * \code block != NULL \endcode * \retval FLAC__bool * \c false if the conditions in the above description are not met, or * a memory allocation error occurs, otherwise \c true. */ FLAC_API FLAC__bool FLAC__metadata_iterator_set_block(FLAC__Metadata_Iterator *iterator, FLAC__StreamMetadata *block); /** Removes the current block from the chain. If \a replace_with_padding is * \c true, the block will instead be replaced with a padding block of equal * size. You can not delete the STREAMINFO block. The iterator will be * left pointing to the block before the one just "deleted", even if * \a replace_with_padding is \c true. * * \param iterator A pointer to an existing initialized iterator. * \param replace_with_padding See above. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_iterator_init() * \retval FLAC__bool * \c false if the conditions in the above description are not met, * otherwise \c true. */ FLAC_API FLAC__bool FLAC__metadata_iterator_delete_block(FLAC__Metadata_Iterator *iterator, FLAC__bool replace_with_padding); /** Insert a new block before the current block. You cannot insert a block * before the first STREAMINFO block. You cannot insert a STREAMINFO block * as there can be only one, the one that already exists at the head when you * read in a chain. The chain takes ownership of the new block and it will be * deleted when the chain is deleted. The iterator will be left pointing to * the new block. * * \param iterator A pointer to an existing initialized iterator. * \param block A pointer to a metadata block to insert. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_iterator_init() * \retval FLAC__bool * \c false if the conditions in the above description are not met, or * a memory allocation error occurs, otherwise \c true. */ FLAC_API FLAC__bool FLAC__metadata_iterator_insert_block_before(FLAC__Metadata_Iterator *iterator, FLAC__StreamMetadata *block); /** Insert a new block after the current block. You cannot insert a STREAMINFO * block as there can be only one, the one that already exists at the head when * you read in a chain. The chain takes ownership of the new block and it will * be deleted when the chain is deleted. The iterator will be left pointing to * the new block. * * \param iterator A pointer to an existing initialized iterator. * \param block A pointer to a metadata block to insert. * \assert * \code iterator != NULL \endcode * \a iterator has been successfully initialized with * FLAC__metadata_iterator_init() * \retval FLAC__bool * \c false if the conditions in the above description are not met, or * a memory allocation error occurs, otherwise \c true. */ FLAC_API FLAC__bool FLAC__metadata_iterator_insert_block_after(FLAC__Metadata_Iterator *iterator, FLAC__StreamMetadata *block); /* \} */ /** \defgroup flac_metadata_object FLAC/metadata.h: metadata object methods * \ingroup flac_metadata * * \brief * This module contains methods for manipulating FLAC metadata objects. * * Since many are variable length we have to be careful about the memory * management. We decree that all pointers to data in the object are * owned by the object and memory-managed by the object. * * Use the FLAC__metadata_object_new() and FLAC__metadata_object_delete() * functions to create all instances. When using the * FLAC__metadata_object_set_*() functions to set pointers to data, set * \a copy to \c true to have the function make it's own copy of the data, or * to \c false to give the object ownership of your data. In the latter case * your pointer must be freeable by free() and will be free()d when the object * is FLAC__metadata_object_delete()d. It is legal to pass a null pointer as * the data pointer to a FLAC__metadata_object_set_*() function as long as * the length argument is 0 and the \a copy argument is \c false. * * The FLAC__metadata_object_new() and FLAC__metadata_object_clone() function * will return \c NULL in the case of a memory allocation error, otherwise a new * object. The FLAC__metadata_object_set_*() functions return \c false in the * case of a memory allocation error. * * We don't have the convenience of C++ here, so note that the library relies * on you to keep the types straight. In other words, if you pass, for * example, a FLAC__StreamMetadata* that represents a STREAMINFO block to * FLAC__metadata_object_application_set_data(), you will get an assertion * failure. * * For convenience the FLAC__metadata_object_vorbiscomment_*() functions * maintain a trailing NUL on each Vorbis comment entry. This is not counted * toward the length or stored in the stream, but it can make working with plain * comments (those that don't contain embedded-NULs in the value) easier. * Entries passed into these functions have trailing NULs added if missing, and * returned entries are guaranteed to have a trailing NUL. * * The FLAC__metadata_object_vorbiscomment_*() functions that take a Vorbis * comment entry/name/value will first validate that it complies with the Vorbis * comment specification and return false if it does not. * * There is no need to recalculate the length field on metadata blocks you * have modified. They will be calculated automatically before they are * written back to a file. * * \{ */ /** Create a new metadata object instance of the given type. * * The object will be "empty"; i.e. values and data pointers will be \c 0, * with the exception of FLAC__METADATA_TYPE_VORBIS_COMMENT, which will have * the vendor string set (but zero comments). * * Do not pass in a value greater than or equal to * \a FLAC__METADATA_TYPE_UNDEFINED unless you really know what you're * doing. * * \param type Type of object to create * \retval FLAC__StreamMetadata* * \c NULL if there was an error allocating memory or the type code is * greater than FLAC__MAX_METADATA_TYPE_CODE, else the new instance. */ FLAC_API FLAC__StreamMetadata *FLAC__metadata_object_new(FLAC__MetadataType type); /** Create a copy of an existing metadata object. * * The copy is a "deep" copy, i.e. dynamically allocated data within the * object is also copied. The caller takes ownership of the new block and * is responsible for freeing it with FLAC__metadata_object_delete(). * * \param object Pointer to object to copy. * \assert * \code object != NULL \endcode * \retval FLAC__StreamMetadata* * \c NULL if there was an error allocating memory, else the new instance. */ FLAC_API FLAC__StreamMetadata *FLAC__metadata_object_clone(const FLAC__StreamMetadata *object); /** Free a metadata object. Deletes the object pointed to by \a object. * * The delete is a "deep" delete, i.e. dynamically allocated data within the * object is also deleted. * * \param object A pointer to an existing object. * \assert * \code object != NULL \endcode */ FLAC_API void FLAC__metadata_object_delete(FLAC__StreamMetadata *object); /** Compares two metadata objects. * * The compare is "deep", i.e. dynamically allocated data within the * object is also compared. * * \param block1 A pointer to an existing object. * \param block2 A pointer to an existing object. * \assert * \code block1 != NULL \endcode * \code block2 != NULL \endcode * \retval FLAC__bool * \c true if objects are identical, else \c false. */ FLAC_API FLAC__bool FLAC__metadata_object_is_equal(const FLAC__StreamMetadata *block1, const FLAC__StreamMetadata *block2); /** Sets the application data of an APPLICATION block. * * If \a copy is \c true, a copy of the data is stored; otherwise, the object * takes ownership of the pointer. The existing data will be freed if this * function is successful, otherwise the original data will remain if \a copy * is \c true and malloc() fails. * * \note It is safe to pass a const pointer to \a data if \a copy is \c true. * * \param object A pointer to an existing APPLICATION object. * \param data A pointer to the data to set. * \param length The length of \a data in bytes. * \param copy See above. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_APPLICATION \endcode * \code (data != NULL && length > 0) || * (data == NULL && length == 0 && copy == false) \endcode * \retval FLAC__bool * \c false if \a copy is \c true and malloc() fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_application_set_data(FLAC__StreamMetadata *object, FLAC__byte *data, unsigned length, FLAC__bool copy); /** Resize the seekpoint array. * * If the size shrinks, elements will truncated; if it grows, new placeholder * points will be added to the end. * * \param object A pointer to an existing SEEKTABLE object. * \param new_num_points The desired length of the array; may be \c 0. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_SEEKTABLE \endcode * \code (object->data.seek_table.points == NULL && object->data.seek_table.num_points == 0) || * (object->data.seek_table.points != NULL && object->data.seek_table.num_points > 0) \endcode * \retval FLAC__bool * \c false if memory allocation error, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_seektable_resize_points(FLAC__StreamMetadata *object, unsigned new_num_points); /** Set a seekpoint in a seektable. * * \param object A pointer to an existing SEEKTABLE object. * \param point_num Index into seekpoint array to set. * \param point The point to set. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_SEEKTABLE \endcode * \code object->data.seek_table.num_points > point_num \endcode */ FLAC_API void FLAC__metadata_object_seektable_set_point(FLAC__StreamMetadata *object, unsigned point_num, FLAC__StreamMetadata_SeekPoint point); /** Insert a seekpoint into a seektable. * * \param object A pointer to an existing SEEKTABLE object. * \param point_num Index into seekpoint array to set. * \param point The point to set. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_SEEKTABLE \endcode * \code object->data.seek_table.num_points >= point_num \endcode * \retval FLAC__bool * \c false if memory allocation error, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_seektable_insert_point(FLAC__StreamMetadata *object, unsigned point_num, FLAC__StreamMetadata_SeekPoint point); /** Delete a seekpoint from a seektable. * * \param object A pointer to an existing SEEKTABLE object. * \param point_num Index into seekpoint array to set. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_SEEKTABLE \endcode * \code object->data.seek_table.num_points > point_num \endcode * \retval FLAC__bool * \c false if memory allocation error, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_seektable_delete_point(FLAC__StreamMetadata *object, unsigned point_num); /** Check a seektable to see if it conforms to the FLAC specification. * See the format specification for limits on the contents of the * seektable. * * \param object A pointer to an existing SEEKTABLE object. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_SEEKTABLE \endcode * \retval FLAC__bool * \c false if seek table is illegal, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_seektable_is_legal(const FLAC__StreamMetadata *object); /** Append a number of placeholder points to the end of a seek table. * * \note * As with the other ..._seektable_template_... functions, you should * call FLAC__metadata_object_seektable_template_sort() when finished * to make the seek table legal. * * \param object A pointer to an existing SEEKTABLE object. * \param num The number of placeholder points to append. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_SEEKTABLE \endcode * \retval FLAC__bool * \c false if memory allocation fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_seektable_template_append_placeholders(FLAC__StreamMetadata *object, unsigned num); /** Append a specific seek point template to the end of a seek table. * * \note * As with the other ..._seektable_template_... functions, you should * call FLAC__metadata_object_seektable_template_sort() when finished * to make the seek table legal. * * \param object A pointer to an existing SEEKTABLE object. * \param sample_number The sample number of the seek point template. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_SEEKTABLE \endcode * \retval FLAC__bool * \c false if memory allocation fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_seektable_template_append_point(FLAC__StreamMetadata *object, FLAC__uint64 sample_number); /** Append specific seek point templates to the end of a seek table. * * \note * As with the other ..._seektable_template_... functions, you should * call FLAC__metadata_object_seektable_template_sort() when finished * to make the seek table legal. * * \param object A pointer to an existing SEEKTABLE object. * \param sample_numbers An array of sample numbers for the seek points. * \param num The number of seek point templates to append. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_SEEKTABLE \endcode * \retval FLAC__bool * \c false if memory allocation fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_seektable_template_append_points(FLAC__StreamMetadata *object, FLAC__uint64 sample_numbers[], unsigned num); /** Append a set of evenly-spaced seek point templates to the end of a * seek table. * * \note * As with the other ..._seektable_template_... functions, you should * call FLAC__metadata_object_seektable_template_sort() when finished * to make the seek table legal. * * \param object A pointer to an existing SEEKTABLE object. * \param num The number of placeholder points to append. * \param total_samples The total number of samples to be encoded; * the seekpoints will be spaced approximately * \a total_samples / \a num samples apart. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_SEEKTABLE \endcode * \code total_samples > 0 \endcode * \retval FLAC__bool * \c false if memory allocation fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_seektable_template_append_spaced_points(FLAC__StreamMetadata *object, unsigned num, FLAC__uint64 total_samples); /** Append a set of evenly-spaced seek point templates to the end of a * seek table. * * \note * As with the other ..._seektable_template_... functions, you should * call FLAC__metadata_object_seektable_template_sort() when finished * to make the seek table legal. * * \param object A pointer to an existing SEEKTABLE object. * \param samples The number of samples apart to space the placeholder * points. The first point will be at sample \c 0, the * second at sample \a samples, then 2*\a samples, and * so on. As long as \a samples and \a total_samples * are greater than \c 0, there will always be at least * one seekpoint at sample \c 0. * \param total_samples The total number of samples to be encoded; * the seekpoints will be spaced * \a samples samples apart. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_SEEKTABLE \endcode * \code samples > 0 \endcode * \code total_samples > 0 \endcode * \retval FLAC__bool * \c false if memory allocation fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_seektable_template_append_spaced_points_by_samples(FLAC__StreamMetadata *object, unsigned samples, FLAC__uint64 total_samples); /** Sort a seek table's seek points according to the format specification, * removing duplicates. * * \param object A pointer to a seek table to be sorted. * \param compact If \c false, behaves like FLAC__format_seektable_sort(). * If \c true, duplicates are deleted and the seek table is * shrunk appropriately; the number of placeholder points * present in the seek table will be the same after the call * as before. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_SEEKTABLE \endcode * \retval FLAC__bool * \c false if realloc() fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_seektable_template_sort(FLAC__StreamMetadata *object, FLAC__bool compact); /** Sets the vendor string in a VORBIS_COMMENT block. * * For convenience, a trailing NUL is added to the entry if it doesn't have * one already. * * If \a copy is \c true, a copy of the entry is stored; otherwise, the object * takes ownership of the \c entry.entry pointer. * * \note If this function returns \c false, the caller still owns the * pointer. * * \param object A pointer to an existing VORBIS_COMMENT object. * \param entry The entry to set the vendor string to. * \param copy See above. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_VORBIS_COMMENT \endcode * \code (entry.entry != NULL && entry.length > 0) || * (entry.entry == NULL && entry.length == 0) \endcode * \retval FLAC__bool * \c false if memory allocation fails or \a entry does not comply with the * Vorbis comment specification, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_vorbiscomment_set_vendor_string(FLAC__StreamMetadata *object, FLAC__StreamMetadata_VorbisComment_Entry entry, FLAC__bool copy); /** Resize the comment array. * * If the size shrinks, elements will truncated; if it grows, new empty * fields will be added to the end. * * \param object A pointer to an existing VORBIS_COMMENT object. * \param new_num_comments The desired length of the array; may be \c 0. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_VORBIS_COMMENT \endcode * \code (object->data.vorbis_comment.comments == NULL && object->data.vorbis_comment.num_comments == 0) || * (object->data.vorbis_comment.comments != NULL && object->data.vorbis_comment.num_comments > 0) \endcode * \retval FLAC__bool * \c false if memory allocation fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_vorbiscomment_resize_comments(FLAC__StreamMetadata *object, unsigned new_num_comments); /** Sets a comment in a VORBIS_COMMENT block. * * For convenience, a trailing NUL is added to the entry if it doesn't have * one already. * * If \a copy is \c true, a copy of the entry is stored; otherwise, the object * takes ownership of the \c entry.entry pointer. * * \note If this function returns \c false, the caller still owns the * pointer. * * \param object A pointer to an existing VORBIS_COMMENT object. * \param comment_num Index into comment array to set. * \param entry The entry to set the comment to. * \param copy See above. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_VORBIS_COMMENT \endcode * \code comment_num < object->data.vorbis_comment.num_comments \endcode * \code (entry.entry != NULL && entry.length > 0) || * (entry.entry == NULL && entry.length == 0) \endcode * \retval FLAC__bool * \c false if memory allocation fails or \a entry does not comply with the * Vorbis comment specification, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_vorbiscomment_set_comment(FLAC__StreamMetadata *object, unsigned comment_num, FLAC__StreamMetadata_VorbisComment_Entry entry, FLAC__bool copy); /** Insert a comment in a VORBIS_COMMENT block at the given index. * * For convenience, a trailing NUL is added to the entry if it doesn't have * one already. * * If \a copy is \c true, a copy of the entry is stored; otherwise, the object * takes ownership of the \c entry.entry pointer. * * \note If this function returns \c false, the caller still owns the * pointer. * * \param object A pointer to an existing VORBIS_COMMENT object. * \param comment_num The index at which to insert the comment. The comments * at and after \a comment_num move right one position. * To append a comment to the end, set \a comment_num to * \c object->data.vorbis_comment.num_comments . * \param entry The comment to insert. * \param copy See above. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_VORBIS_COMMENT \endcode * \code object->data.vorbis_comment.num_comments >= comment_num \endcode * \code (entry.entry != NULL && entry.length > 0) || * (entry.entry == NULL && entry.length == 0 && copy == false) \endcode * \retval FLAC__bool * \c false if memory allocation fails or \a entry does not comply with the * Vorbis comment specification, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_vorbiscomment_insert_comment(FLAC__StreamMetadata *object, unsigned comment_num, FLAC__StreamMetadata_VorbisComment_Entry entry, FLAC__bool copy); /** Appends a comment to a VORBIS_COMMENT block. * * For convenience, a trailing NUL is added to the entry if it doesn't have * one already. * * If \a copy is \c true, a copy of the entry is stored; otherwise, the object * takes ownership of the \c entry.entry pointer. * * \note If this function returns \c false, the caller still owns the * pointer. * * \param object A pointer to an existing VORBIS_COMMENT object. * \param entry The comment to insert. * \param copy See above. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_VORBIS_COMMENT \endcode * \code (entry.entry != NULL && entry.length > 0) || * (entry.entry == NULL && entry.length == 0 && copy == false) \endcode * \retval FLAC__bool * \c false if memory allocation fails or \a entry does not comply with the * Vorbis comment specification, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_vorbiscomment_append_comment(FLAC__StreamMetadata *object, FLAC__StreamMetadata_VorbisComment_Entry entry, FLAC__bool copy); /** Replaces comments in a VORBIS_COMMENT block with a new one. * * For convenience, a trailing NUL is added to the entry if it doesn't have * one already. * * Depending on the the value of \a all, either all or just the first comment * whose field name(s) match the given entry's name will be replaced by the * given entry. If no comments match, \a entry will simply be appended. * * If \a copy is \c true, a copy of the entry is stored; otherwise, the object * takes ownership of the \c entry.entry pointer. * * \note If this function returns \c false, the caller still owns the * pointer. * * \param object A pointer to an existing VORBIS_COMMENT object. * \param entry The comment to insert. * \param all If \c true, all comments whose field name matches * \a entry's field name will be removed, and \a entry will * be inserted at the position of the first matching * comment. If \c false, only the first comment whose * field name matches \a entry's field name will be * replaced with \a entry. * \param copy See above. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_VORBIS_COMMENT \endcode * \code (entry.entry != NULL && entry.length > 0) || * (entry.entry == NULL && entry.length == 0 && copy == false) \endcode * \retval FLAC__bool * \c false if memory allocation fails or \a entry does not comply with the * Vorbis comment specification, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_vorbiscomment_replace_comment(FLAC__StreamMetadata *object, FLAC__StreamMetadata_VorbisComment_Entry entry, FLAC__bool all, FLAC__bool copy); /** Delete a comment in a VORBIS_COMMENT block at the given index. * * \param object A pointer to an existing VORBIS_COMMENT object. * \param comment_num The index of the comment to delete. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_VORBIS_COMMENT \endcode * \code object->data.vorbis_comment.num_comments > comment_num \endcode * \retval FLAC__bool * \c false if realloc() fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_vorbiscomment_delete_comment(FLAC__StreamMetadata *object, unsigned comment_num); /** Creates a Vorbis comment entry from NUL-terminated name and value strings. * * On return, the filled-in \a entry->entry pointer will point to malloc()ed * memory and shall be owned by the caller. For convenience the entry will * have a terminating NUL. * * \param entry A pointer to a Vorbis comment entry. The entry's * \c entry pointer should not point to allocated * memory as it will be overwritten. * \param field_name The field name in ASCII, \c NUL terminated. * \param field_value The field value in UTF-8, \c NUL terminated. * \assert * \code entry != NULL \endcode * \code field_name != NULL \endcode * \code field_value != NULL \endcode * \retval FLAC__bool * \c false if malloc() fails, or if \a field_name or \a field_value does * not comply with the Vorbis comment specification, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_vorbiscomment_entry_from_name_value_pair(FLAC__StreamMetadata_VorbisComment_Entry *entry, const char *field_name, const char *field_value); /** Splits a Vorbis comment entry into NUL-terminated name and value strings. * * The returned pointers to name and value will be allocated by malloc() * and shall be owned by the caller. * * \param entry An existing Vorbis comment entry. * \param field_name The address of where the returned pointer to the * field name will be stored. * \param field_value The address of where the returned pointer to the * field value will be stored. * \assert * \code (entry.entry != NULL && entry.length > 0) \endcode * \code memchr(entry.entry, '=', entry.length) != NULL \endcode * \code field_name != NULL \endcode * \code field_value != NULL \endcode * \retval FLAC__bool * \c false if memory allocation fails or \a entry does not comply with the * Vorbis comment specification, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_vorbiscomment_entry_to_name_value_pair(const FLAC__StreamMetadata_VorbisComment_Entry entry, char **field_name, char **field_value); /** Check if the given Vorbis comment entry's field name matches the given * field name. * * \param entry An existing Vorbis comment entry. * \param field_name The field name to check. * \param field_name_length The length of \a field_name, not including the * terminating \c NUL. * \assert * \code (entry.entry != NULL && entry.length > 0) \endcode * \retval FLAC__bool * \c true if the field names match, else \c false */ FLAC_API FLAC__bool FLAC__metadata_object_vorbiscomment_entry_matches(const FLAC__StreamMetadata_VorbisComment_Entry entry, const char *field_name, unsigned field_name_length); /** Find a Vorbis comment with the given field name. * * The search begins at entry number \a offset; use an offset of 0 to * search from the beginning of the comment array. * * \param object A pointer to an existing VORBIS_COMMENT object. * \param offset The offset into the comment array from where to start * the search. * \param field_name The field name of the comment to find. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_VORBIS_COMMENT \endcode * \code field_name != NULL \endcode * \retval int * The offset in the comment array of the first comment whose field * name matches \a field_name, or \c -1 if no match was found. */ FLAC_API int FLAC__metadata_object_vorbiscomment_find_entry_from(const FLAC__StreamMetadata *object, unsigned offset, const char *field_name); /** Remove first Vorbis comment matching the given field name. * * \param object A pointer to an existing VORBIS_COMMENT object. * \param field_name The field name of comment to delete. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_VORBIS_COMMENT \endcode * \retval int * \c -1 for memory allocation error, \c 0 for no matching entries, * \c 1 for one matching entry deleted. */ FLAC_API int FLAC__metadata_object_vorbiscomment_remove_entry_matching(FLAC__StreamMetadata *object, const char *field_name); /** Remove all Vorbis comments matching the given field name. * * \param object A pointer to an existing VORBIS_COMMENT object. * \param field_name The field name of comments to delete. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_VORBIS_COMMENT \endcode * \retval int * \c -1 for memory allocation error, \c 0 for no matching entries, * else the number of matching entries deleted. */ FLAC_API int FLAC__metadata_object_vorbiscomment_remove_entries_matching(FLAC__StreamMetadata *object, const char *field_name); /** Create a new CUESHEET track instance. * * The object will be "empty"; i.e. values and data pointers will be \c 0. * * \retval FLAC__StreamMetadata_CueSheet_Track* * \c NULL if there was an error allocating memory, else the new instance. */ FLAC_API FLAC__StreamMetadata_CueSheet_Track *FLAC__metadata_object_cuesheet_track_new(void); /** Create a copy of an existing CUESHEET track object. * * The copy is a "deep" copy, i.e. dynamically allocated data within the * object is also copied. The caller takes ownership of the new object and * is responsible for freeing it with * FLAC__metadata_object_cuesheet_track_delete(). * * \param object Pointer to object to copy. * \assert * \code object != NULL \endcode * \retval FLAC__StreamMetadata_CueSheet_Track* * \c NULL if there was an error allocating memory, else the new instance. */ FLAC_API FLAC__StreamMetadata_CueSheet_Track *FLAC__metadata_object_cuesheet_track_clone(const FLAC__StreamMetadata_CueSheet_Track *object); /** Delete a CUESHEET track object * * \param object A pointer to an existing CUESHEET track object. * \assert * \code object != NULL \endcode */ FLAC_API void FLAC__metadata_object_cuesheet_track_delete(FLAC__StreamMetadata_CueSheet_Track *object); /** Resize a track's index point array. * * If the size shrinks, elements will truncated; if it grows, new blank * indices will be added to the end. * * \param object A pointer to an existing CUESHEET object. * \param track_num The index of the track to modify. NOTE: this is not * necessarily the same as the track's \a number field. * \param new_num_indices The desired length of the array; may be \c 0. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_CUESHEET \endcode * \code object->data.cue_sheet.num_tracks > track_num \endcode * \code (object->data.cue_sheet.tracks[track_num].indices == NULL && object->data.cue_sheet.tracks[track_num].num_indices == 0) || * (object->data.cue_sheet.tracks[track_num].indices != NULL && object->data.cue_sheet.tracks[track_num].num_indices > 0) \endcode * \retval FLAC__bool * \c false if memory allocation error, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_cuesheet_track_resize_indices(FLAC__StreamMetadata *object, unsigned track_num, unsigned new_num_indices); /** Insert an index point in a CUESHEET track at the given index. * * \param object A pointer to an existing CUESHEET object. * \param track_num The index of the track to modify. NOTE: this is not * necessarily the same as the track's \a number field. * \param index_num The index into the track's index array at which to * insert the index point. NOTE: this is not necessarily * the same as the index point's \a number field. The * indices at and after \a index_num move right one * position. To append an index point to the end, set * \a index_num to * \c object->data.cue_sheet.tracks[track_num].num_indices . * \param index The index point to insert. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_CUESHEET \endcode * \code object->data.cue_sheet.num_tracks > track_num \endcode * \code object->data.cue_sheet.tracks[track_num].num_indices >= index_num \endcode * \retval FLAC__bool * \c false if realloc() fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_cuesheet_track_insert_index(FLAC__StreamMetadata *object, unsigned track_num, unsigned index_num, FLAC__StreamMetadata_CueSheet_Index index); /** Insert a blank index point in a CUESHEET track at the given index. * * A blank index point is one in which all field values are zero. * * \param object A pointer to an existing CUESHEET object. * \param track_num The index of the track to modify. NOTE: this is not * necessarily the same as the track's \a number field. * \param index_num The index into the track's index array at which to * insert the index point. NOTE: this is not necessarily * the same as the index point's \a number field. The * indices at and after \a index_num move right one * position. To append an index point to the end, set * \a index_num to * \c object->data.cue_sheet.tracks[track_num].num_indices . * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_CUESHEET \endcode * \code object->data.cue_sheet.num_tracks > track_num \endcode * \code object->data.cue_sheet.tracks[track_num].num_indices >= index_num \endcode * \retval FLAC__bool * \c false if realloc() fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_cuesheet_track_insert_blank_index(FLAC__StreamMetadata *object, unsigned track_num, unsigned index_num); /** Delete an index point in a CUESHEET track at the given index. * * \param object A pointer to an existing CUESHEET object. * \param track_num The index into the track array of the track to * modify. NOTE: this is not necessarily the same * as the track's \a number field. * \param index_num The index into the track's index array of the index * to delete. NOTE: this is not necessarily the same * as the index's \a number field. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_CUESHEET \endcode * \code object->data.cue_sheet.num_tracks > track_num \endcode * \code object->data.cue_sheet.tracks[track_num].num_indices > index_num \endcode * \retval FLAC__bool * \c false if realloc() fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_cuesheet_track_delete_index(FLAC__StreamMetadata *object, unsigned track_num, unsigned index_num); /** Resize the track array. * * If the size shrinks, elements will truncated; if it grows, new blank * tracks will be added to the end. * * \param object A pointer to an existing CUESHEET object. * \param new_num_tracks The desired length of the array; may be \c 0. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_CUESHEET \endcode * \code (object->data.cue_sheet.tracks == NULL && object->data.cue_sheet.num_tracks == 0) || * (object->data.cue_sheet.tracks != NULL && object->data.cue_sheet.num_tracks > 0) \endcode * \retval FLAC__bool * \c false if memory allocation error, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_cuesheet_resize_tracks(FLAC__StreamMetadata *object, unsigned new_num_tracks); /** Sets a track in a CUESHEET block. * * If \a copy is \c true, a copy of the track is stored; otherwise, the object * takes ownership of the \a track pointer. * * \param object A pointer to an existing CUESHEET object. * \param track_num Index into track array to set. NOTE: this is not * necessarily the same as the track's \a number field. * \param track The track to set the track to. You may safely pass in * a const pointer if \a copy is \c true. * \param copy See above. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_CUESHEET \endcode * \code track_num < object->data.cue_sheet.num_tracks \endcode * \code (track->indices != NULL && track->num_indices > 0) || * (track->indices == NULL && track->num_indices == 0) * \retval FLAC__bool * \c false if \a copy is \c true and malloc() fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_cuesheet_set_track(FLAC__StreamMetadata *object, unsigned track_num, FLAC__StreamMetadata_CueSheet_Track *track, FLAC__bool copy); /** Insert a track in a CUESHEET block at the given index. * * If \a copy is \c true, a copy of the track is stored; otherwise, the object * takes ownership of the \a track pointer. * * \param object A pointer to an existing CUESHEET object. * \param track_num The index at which to insert the track. NOTE: this * is not necessarily the same as the track's \a number * field. The tracks at and after \a track_num move right * one position. To append a track to the end, set * \a track_num to \c object->data.cue_sheet.num_tracks . * \param track The track to insert. You may safely pass in a const * pointer if \a copy is \c true. * \param copy See above. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_CUESHEET \endcode * \code object->data.cue_sheet.num_tracks >= track_num \endcode * \retval FLAC__bool * \c false if \a copy is \c true and malloc() fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_cuesheet_insert_track(FLAC__StreamMetadata *object, unsigned track_num, FLAC__StreamMetadata_CueSheet_Track *track, FLAC__bool copy); /** Insert a blank track in a CUESHEET block at the given index. * * A blank track is one in which all field values are zero. * * \param object A pointer to an existing CUESHEET object. * \param track_num The index at which to insert the track. NOTE: this * is not necessarily the same as the track's \a number * field. The tracks at and after \a track_num move right * one position. To append a track to the end, set * \a track_num to \c object->data.cue_sheet.num_tracks . * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_CUESHEET \endcode * \code object->data.cue_sheet.num_tracks >= track_num \endcode * \retval FLAC__bool * \c false if \a copy is \c true and malloc() fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_cuesheet_insert_blank_track(FLAC__StreamMetadata *object, unsigned track_num); /** Delete a track in a CUESHEET block at the given index. * * \param object A pointer to an existing CUESHEET object. * \param track_num The index into the track array of the track to * delete. NOTE: this is not necessarily the same * as the track's \a number field. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_CUESHEET \endcode * \code object->data.cue_sheet.num_tracks > track_num \endcode * \retval FLAC__bool * \c false if realloc() fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_cuesheet_delete_track(FLAC__StreamMetadata *object, unsigned track_num); /** Check a cue sheet to see if it conforms to the FLAC specification. * See the format specification for limits on the contents of the * cue sheet. * * \param object A pointer to an existing CUESHEET object. * \param check_cd_da_subset If \c true, check CUESHEET against more * stringent requirements for a CD-DA (audio) disc. * \param violation Address of a pointer to a string. If there is a * violation, a pointer to a string explanation of the * violation will be returned here. \a violation may be * \c NULL if you don't need the returned string. Do not * free the returned string; it will always point to static * data. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_CUESHEET \endcode * \retval FLAC__bool * \c false if cue sheet is illegal, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_cuesheet_is_legal(const FLAC__StreamMetadata *object, FLAC__bool check_cd_da_subset, const char **violation); /** Calculate and return the CDDB/freedb ID for a cue sheet. The function * assumes the cue sheet corresponds to a CD; the result is undefined * if the cuesheet's is_cd bit is not set. * * \param object A pointer to an existing CUESHEET object. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_CUESHEET \endcode * \retval FLAC__uint32 * The unsigned integer representation of the CDDB/freedb ID */ FLAC_API FLAC__uint32 FLAC__metadata_object_cuesheet_calculate_cddb_id(const FLAC__StreamMetadata *object); /** Sets the MIME type of a PICTURE block. * * If \a copy is \c true, a copy of the string is stored; otherwise, the object * takes ownership of the pointer. The existing string will be freed if this * function is successful, otherwise the original string will remain if \a copy * is \c true and malloc() fails. * * \note It is safe to pass a const pointer to \a mime_type if \a copy is \c true. * * \param object A pointer to an existing PICTURE object. * \param mime_type A pointer to the MIME type string. The string must be * ASCII characters 0x20-0x7e, NUL-terminated. No validation * is done. * \param copy See above. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_PICTURE \endcode * \code (mime_type != NULL) \endcode * \retval FLAC__bool * \c false if \a copy is \c true and malloc() fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_picture_set_mime_type(FLAC__StreamMetadata *object, char *mime_type, FLAC__bool copy); /** Sets the description of a PICTURE block. * * If \a copy is \c true, a copy of the string is stored; otherwise, the object * takes ownership of the pointer. The existing string will be freed if this * function is successful, otherwise the original string will remain if \a copy * is \c true and malloc() fails. * * \note It is safe to pass a const pointer to \a description if \a copy is \c true. * * \param object A pointer to an existing PICTURE object. * \param description A pointer to the description string. The string must be * valid UTF-8, NUL-terminated. No validation is done. * \param copy See above. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_PICTURE \endcode * \code (description != NULL) \endcode * \retval FLAC__bool * \c false if \a copy is \c true and malloc() fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_picture_set_description(FLAC__StreamMetadata *object, FLAC__byte *description, FLAC__bool copy); /** Sets the picture data of a PICTURE block. * * If \a copy is \c true, a copy of the data is stored; otherwise, the object * takes ownership of the pointer. Also sets the \a data_length field of the * metadata object to what is passed in as the \a length parameter. The * existing data will be freed if this function is successful, otherwise the * original data and data_length will remain if \a copy is \c true and * malloc() fails. * * \note It is safe to pass a const pointer to \a data if \a copy is \c true. * * \param object A pointer to an existing PICTURE object. * \param data A pointer to the data to set. * \param length The length of \a data in bytes. * \param copy See above. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_PICTURE \endcode * \code (data != NULL && length > 0) || * (data == NULL && length == 0 && copy == false) \endcode * \retval FLAC__bool * \c false if \a copy is \c true and malloc() fails, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_picture_set_data(FLAC__StreamMetadata *object, FLAC__byte *data, FLAC__uint32 length, FLAC__bool copy); /** Check a PICTURE block to see if it conforms to the FLAC specification. * See the format specification for limits on the contents of the * PICTURE block. * * \param object A pointer to existing PICTURE block to be checked. * \param violation Address of a pointer to a string. If there is a * violation, a pointer to a string explanation of the * violation will be returned here. \a violation may be * \c NULL if you don't need the returned string. Do not * free the returned string; it will always point to static * data. * \assert * \code object != NULL \endcode * \code object->type == FLAC__METADATA_TYPE_PICTURE \endcode * \retval FLAC__bool * \c false if PICTURE block is illegal, else \c true. */ FLAC_API FLAC__bool FLAC__metadata_object_picture_is_legal(const FLAC__StreamMetadata *object, const char **violation); /* \} */ #ifdef __cplusplus } #endif #endif /********* End of inlined file: metadata.h *********/ /********* Start of inlined file: stream_decoder.h *********/ #ifndef FLAC__STREAM_DECODER_H #define FLAC__STREAM_DECODER_H #include /* for FILE */ #ifdef __cplusplus extern "C" { #endif /** \file include/FLAC/stream_decoder.h * * \brief * This module contains the functions which implement the stream * decoder. * * See the detailed documentation in the * \link flac_stream_decoder stream decoder \endlink module. */ /** \defgroup flac_decoder FLAC/ \*_decoder.h: decoder interfaces * \ingroup flac * * \brief * This module describes the decoder layers provided by libFLAC. * * The stream decoder can be used to decode complete streams either from * the client via callbacks, or directly from a file, depending on how * it is initialized. When decoding via callbacks, the client provides * callbacks for reading FLAC data and writing decoded samples, and * handling metadata and errors. If the client also supplies seek-related * callback, the decoder function for sample-accurate seeking within the * FLAC input is also available. When decoding from a file, the client * needs only supply a filename or open \c FILE* and write/metadata/error * callbacks; the rest of the callbacks are supplied internally. For more * info see the \link flac_stream_decoder stream decoder \endlink module. */ /** \defgroup flac_stream_decoder FLAC/stream_decoder.h: stream decoder interface * \ingroup flac_decoder * * \brief * This module contains the functions which implement the stream * decoder. * * The stream decoder can decode native FLAC, and optionally Ogg FLAC * (check FLAC_API_SUPPORTS_OGG_FLAC) streams and files. * * The basic usage of this decoder is as follows: * - The program creates an instance of a decoder using * FLAC__stream_decoder_new(). * - The program overrides the default settings using * FLAC__stream_decoder_set_*() functions. * - The program initializes the instance to validate the settings and * prepare for decoding using * - FLAC__stream_decoder_init_stream() or FLAC__stream_decoder_init_FILE() * or FLAC__stream_decoder_init_file() for native FLAC, * - FLAC__stream_decoder_init_ogg_stream() or FLAC__stream_decoder_init_ogg_FILE() * or FLAC__stream_decoder_init_ogg_file() for Ogg FLAC * - The program calls the FLAC__stream_decoder_process_*() functions * to decode data, which subsequently calls the callbacks. * - The program finishes the decoding with FLAC__stream_decoder_finish(), * which flushes the input and output and resets the decoder to the * uninitialized state. * - The instance may be used again or deleted with * FLAC__stream_decoder_delete(). * * In more detail, the program will create a new instance by calling * FLAC__stream_decoder_new(), then call FLAC__stream_decoder_set_*() * functions to override the default decoder options, and call * one of the FLAC__stream_decoder_init_*() functions. * * There are three initialization functions for native FLAC, one for * setting up the decoder to decode FLAC data from the client via * callbacks, and two for decoding directly from a FLAC file. * * For decoding via callbacks, use FLAC__stream_decoder_init_stream(). * You must also supply several callbacks for handling I/O. Some (like * seeking) are optional, depending on the capabilities of the input. * * For decoding directly from a file, use FLAC__stream_decoder_init_FILE() * or FLAC__stream_decoder_init_file(). Then you must only supply an open * \c FILE* or filename and fewer callbacks; the decoder will handle * the other callbacks internally. * * There are three similarly-named init functions for decoding from Ogg * FLAC streams. Check \c FLAC_API_SUPPORTS_OGG_FLAC to find out if the * library has been built with Ogg support. * * Once the decoder is initialized, your program will call one of several * functions to start the decoding process: * * - FLAC__stream_decoder_process_single() - Tells the decoder to process at * most one metadata block or audio frame and return, calling either the * metadata callback or write callback, respectively, once. If the decoder * loses sync it will return with only the error callback being called. * - FLAC__stream_decoder_process_until_end_of_metadata() - Tells the decoder * to process the stream from the current location and stop upon reaching * the first audio frame. The client will get one metadata, write, or error * callback per metadata block, audio frame, or sync error, respectively. * - FLAC__stream_decoder_process_until_end_of_stream() - Tells the decoder * to process the stream from the current location until the read callback * returns FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM or * FLAC__STREAM_DECODER_READ_STATUS_ABORT. The client will get one metadata, * write, or error callback per metadata block, audio frame, or sync error, * respectively. * * When the decoder has finished decoding (normally or through an abort), * the instance is finished by calling FLAC__stream_decoder_finish(), which * ensures the decoder is in the correct state and frees memory. Then the * instance may be deleted with FLAC__stream_decoder_delete() or initialized * again to decode another stream. * * Seeking is exposed through the FLAC__stream_decoder_seek_absolute() method. * At any point after the stream decoder has been initialized, the client can * call this function to seek to an exact sample within the stream. * Subsequently, the first time the write callback is called it will be * passed a (possibly partial) block starting at that sample. * * If the client cannot seek via the callback interface provided, but still * has another way of seeking, it can flush the decoder using * FLAC__stream_decoder_flush() and start feeding data from the new position * through the read callback. * * The stream decoder also provides MD5 signature checking. If this is * turned on before initialization, FLAC__stream_decoder_finish() will * report when the decoded MD5 signature does not match the one stored * in the STREAMINFO block. MD5 checking is automatically turned off * (until the next FLAC__stream_decoder_reset()) if there is no signature * in the STREAMINFO block or when a seek is attempted. * * The FLAC__stream_decoder_set_metadata_*() functions deserve special * attention. By default, the decoder only calls the metadata_callback for * the STREAMINFO block. These functions allow you to tell the decoder * explicitly which blocks to parse and return via the metadata_callback * and/or which to skip. Use a FLAC__stream_decoder_set_metadata_respond_all(), * FLAC__stream_decoder_set_metadata_ignore() ... or FLAC__stream_decoder_set_metadata_ignore_all(), * FLAC__stream_decoder_set_metadata_respond() ... sequence to exactly specify * which blocks to return. Remember that metadata blocks can potentially * be big (for example, cover art) so filtering out the ones you don't * use can reduce the memory requirements of the decoder. Also note the * special forms FLAC__stream_decoder_set_metadata_respond_application(id) * and FLAC__stream_decoder_set_metadata_ignore_application(id) for * filtering APPLICATION blocks based on the application ID. * * STREAMINFO and SEEKTABLE blocks are always parsed and used internally, but * they still can legally be filtered from the metadata_callback. * * \note * The "set" functions may only be called when the decoder is in the * state FLAC__STREAM_DECODER_UNINITIALIZED, i.e. after * FLAC__stream_decoder_new() or FLAC__stream_decoder_finish(), but * before FLAC__stream_decoder_init_*(). If this is the case they will * return \c true, otherwise \c false. * * \note * FLAC__stream_decoder_finish() resets all settings to the constructor * defaults, including the callbacks. * * \{ */ /** State values for a FLAC__StreamDecoder * * The decoder's state can be obtained by calling FLAC__stream_decoder_get_state(). */ typedef enum { FLAC__STREAM_DECODER_SEARCH_FOR_METADATA = 0, /**< The decoder is ready to search for metadata. */ FLAC__STREAM_DECODER_READ_METADATA, /**< The decoder is ready to or is in the process of reading metadata. */ FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC, /**< The decoder is ready to or is in the process of searching for the * frame sync code. */ FLAC__STREAM_DECODER_READ_FRAME, /**< The decoder is ready to or is in the process of reading a frame. */ FLAC__STREAM_DECODER_END_OF_STREAM, /**< The decoder has reached the end of the stream. */ FLAC__STREAM_DECODER_OGG_ERROR, /**< An error occurred in the underlying Ogg layer. */ FLAC__STREAM_DECODER_SEEK_ERROR, /**< An error occurred while seeking. The decoder must be flushed * with FLAC__stream_decoder_flush() or reset with * FLAC__stream_decoder_reset() before decoding can continue. */ FLAC__STREAM_DECODER_ABORTED, /**< The decoder was aborted by the read callback. */ FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR, /**< An error occurred allocating memory. The decoder is in an invalid * state and can no longer be used. */ FLAC__STREAM_DECODER_UNINITIALIZED /**< The decoder is in the uninitialized state; one of the * FLAC__stream_decoder_init_*() functions must be called before samples * can be processed. */ } FLAC__StreamDecoderState; /** Maps a FLAC__StreamDecoderState to a C string. * * Using a FLAC__StreamDecoderState as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamDecoderStateString[]; /** Possible return values for the FLAC__stream_decoder_init_*() functions. */ typedef enum { FLAC__STREAM_DECODER_INIT_STATUS_OK = 0, /**< Initialization was successful. */ FLAC__STREAM_DECODER_INIT_STATUS_UNSUPPORTED_CONTAINER, /**< The library was not compiled with support for the given container * format. */ FLAC__STREAM_DECODER_INIT_STATUS_INVALID_CALLBACKS, /**< A required callback was not supplied. */ FLAC__STREAM_DECODER_INIT_STATUS_MEMORY_ALLOCATION_ERROR, /**< An error occurred allocating memory. */ FLAC__STREAM_DECODER_INIT_STATUS_ERROR_OPENING_FILE, /**< fopen() failed in FLAC__stream_decoder_init_file() or * FLAC__stream_decoder_init_ogg_file(). */ FLAC__STREAM_DECODER_INIT_STATUS_ALREADY_INITIALIZED /**< FLAC__stream_decoder_init_*() was called when the decoder was * already initialized, usually because * FLAC__stream_decoder_finish() was not called. */ } FLAC__StreamDecoderInitStatus; /** Maps a FLAC__StreamDecoderInitStatus to a C string. * * Using a FLAC__StreamDecoderInitStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamDecoderInitStatusString[]; /** Return values for the FLAC__StreamDecoder read callback. */ typedef enum { FLAC__STREAM_DECODER_READ_STATUS_CONTINUE, /**< The read was OK and decoding can continue. */ FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM, /**< The read was attempted while at the end of the stream. Note that * the client must only return this value when the read callback was * called when already at the end of the stream. Otherwise, if the read * itself moves to the end of the stream, the client should still return * the data and \c FLAC__STREAM_DECODER_READ_STATUS_CONTINUE, and then on * the next read callback it should return * \c FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM with a byte count * of \c 0. */ FLAC__STREAM_DECODER_READ_STATUS_ABORT /**< An unrecoverable error occurred. The decoder will return from the process call. */ } FLAC__StreamDecoderReadStatus; /** Maps a FLAC__StreamDecoderReadStatus to a C string. * * Using a FLAC__StreamDecoderReadStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamDecoderReadStatusString[]; /** Return values for the FLAC__StreamDecoder seek callback. */ typedef enum { FLAC__STREAM_DECODER_SEEK_STATUS_OK, /**< The seek was OK and decoding can continue. */ FLAC__STREAM_DECODER_SEEK_STATUS_ERROR, /**< An unrecoverable error occurred. The decoder will return from the process call. */ FLAC__STREAM_DECODER_SEEK_STATUS_UNSUPPORTED /**< Client does not support seeking. */ } FLAC__StreamDecoderSeekStatus; /** Maps a FLAC__StreamDecoderSeekStatus to a C string. * * Using a FLAC__StreamDecoderSeekStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamDecoderSeekStatusString[]; /** Return values for the FLAC__StreamDecoder tell callback. */ typedef enum { FLAC__STREAM_DECODER_TELL_STATUS_OK, /**< The tell was OK and decoding can continue. */ FLAC__STREAM_DECODER_TELL_STATUS_ERROR, /**< An unrecoverable error occurred. The decoder will return from the process call. */ FLAC__STREAM_DECODER_TELL_STATUS_UNSUPPORTED /**< Client does not support telling the position. */ } FLAC__StreamDecoderTellStatus; /** Maps a FLAC__StreamDecoderTellStatus to a C string. * * Using a FLAC__StreamDecoderTellStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamDecoderTellStatusString[]; /** Return values for the FLAC__StreamDecoder length callback. */ typedef enum { FLAC__STREAM_DECODER_LENGTH_STATUS_OK, /**< The length call was OK and decoding can continue. */ FLAC__STREAM_DECODER_LENGTH_STATUS_ERROR, /**< An unrecoverable error occurred. The decoder will return from the process call. */ FLAC__STREAM_DECODER_LENGTH_STATUS_UNSUPPORTED /**< Client does not support reporting the length. */ } FLAC__StreamDecoderLengthStatus; /** Maps a FLAC__StreamDecoderLengthStatus to a C string. * * Using a FLAC__StreamDecoderLengthStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamDecoderLengthStatusString[]; /** Return values for the FLAC__StreamDecoder write callback. */ typedef enum { FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE, /**< The write was OK and decoding can continue. */ FLAC__STREAM_DECODER_WRITE_STATUS_ABORT /**< An unrecoverable error occurred. The decoder will return from the process call. */ } FLAC__StreamDecoderWriteStatus; /** Maps a FLAC__StreamDecoderWriteStatus to a C string. * * Using a FLAC__StreamDecoderWriteStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamDecoderWriteStatusString[]; /** Possible values passed back to the FLAC__StreamDecoder error callback. * \c FLAC__STREAM_DECODER_ERROR_STATUS_LOST_SYNC is the generic catch- * all. The rest could be caused by bad sync (false synchronization on * data that is not the start of a frame) or corrupted data. The error * itself is the decoder's best guess at what happened assuming a correct * sync. For example \c FLAC__STREAM_DECODER_ERROR_STATUS_BAD_HEADER * could be caused by a correct sync on the start of a frame, but some * data in the frame header was corrupted. Or it could be the result of * syncing on a point the stream that looked like the starting of a frame * but was not. \c FLAC__STREAM_DECODER_ERROR_STATUS_UNPARSEABLE_STREAM * could be because the decoder encountered a valid frame made by a future * version of the encoder which it cannot parse, or because of a false * sync making it appear as though an encountered frame was generated by * a future encoder. */ typedef enum { FLAC__STREAM_DECODER_ERROR_STATUS_LOST_SYNC, /**< An error in the stream caused the decoder to lose synchronization. */ FLAC__STREAM_DECODER_ERROR_STATUS_BAD_HEADER, /**< The decoder encountered a corrupted frame header. */ FLAC__STREAM_DECODER_ERROR_STATUS_FRAME_CRC_MISMATCH, /**< The frame's data did not match the CRC in the footer. */ FLAC__STREAM_DECODER_ERROR_STATUS_UNPARSEABLE_STREAM /**< The decoder encountered reserved fields in use in the stream. */ } FLAC__StreamDecoderErrorStatus; /** Maps a FLAC__StreamDecoderErrorStatus to a C string. * * Using a FLAC__StreamDecoderErrorStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamDecoderErrorStatusString[]; /*********************************************************************** * * class FLAC__StreamDecoder * ***********************************************************************/ struct FLAC__StreamDecoderProtected; struct FLAC__StreamDecoderPrivate; /** The opaque structure definition for the stream decoder type. * See the \link flac_stream_decoder stream decoder module \endlink * for a detailed description. */ typedef struct { struct FLAC__StreamDecoderProtected *protected_; /* avoid the C++ keyword 'protected' */ struct FLAC__StreamDecoderPrivate *private_; /* avoid the C++ keyword 'private' */ } FLAC__StreamDecoder; /** Signature for the read callback. * * A function pointer matching this signature must be passed to * FLAC__stream_decoder_init*_stream(). The supplied function will be * called when the decoder needs more input data. The address of the * buffer to be filled is supplied, along with the number of bytes the * buffer can hold. The callback may choose to supply less data and * modify the byte count but must be careful not to overflow the buffer. * The callback then returns a status code chosen from * FLAC__StreamDecoderReadStatus. * * Here is an example of a read callback for stdio streams: * \code * FLAC__StreamDecoderReadStatus read_cb(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes, void *client_data) * { * FILE *file = ((MyClientData*)client_data)->file; * if(*bytes > 0) { * *bytes = fread(buffer, sizeof(FLAC__byte), *bytes, file); * if(ferror(file)) * return FLAC__STREAM_DECODER_READ_STATUS_ABORT; * else if(*bytes == 0) * return FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM; * else * return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE; * } * else * return FLAC__STREAM_DECODER_READ_STATUS_ABORT; * } * \endcode * * \note In general, FLAC__StreamDecoder functions which change the * state should not be called on the \a decoder while in the callback. * * \param decoder The decoder instance calling the callback. * \param buffer A pointer to a location for the callee to store * data to be decoded. * \param bytes A pointer to the size of the buffer. On entry * to the callback, it contains the maximum number * of bytes that may be stored in \a buffer. The * callee must set it to the actual number of bytes * stored (0 in case of error or end-of-stream) before * returning. * \param client_data The callee's client data set through * FLAC__stream_decoder_init_*(). * \retval FLAC__StreamDecoderReadStatus * The callee's return status. Note that the callback should return * \c FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM if and only if * zero bytes were read and there is no more data to be read. */ typedef FLAC__StreamDecoderReadStatus (*FLAC__StreamDecoderReadCallback)(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes, void *client_data); /** Signature for the seek callback. * * A function pointer matching this signature may be passed to * FLAC__stream_decoder_init*_stream(). The supplied function will be * called when the decoder needs to seek the input stream. The decoder * will pass the absolute byte offset to seek to, 0 meaning the * beginning of the stream. * * Here is an example of a seek callback for stdio streams: * \code * FLAC__StreamDecoderSeekStatus seek_cb(const FLAC__StreamDecoder *decoder, FLAC__uint64 absolute_byte_offset, void *client_data) * { * FILE *file = ((MyClientData*)client_data)->file; * if(file == stdin) * return FLAC__STREAM_DECODER_SEEK_STATUS_UNSUPPORTED; * else if(fseeko(file, (off_t)absolute_byte_offset, SEEK_SET) < 0) * return FLAC__STREAM_DECODER_SEEK_STATUS_ERROR; * else * return FLAC__STREAM_DECODER_SEEK_STATUS_OK; * } * \endcode * * \note In general, FLAC__StreamDecoder functions which change the * state should not be called on the \a decoder while in the callback. * * \param decoder The decoder instance calling the callback. * \param absolute_byte_offset The offset from the beginning of the stream * to seek to. * \param client_data The callee's client data set through * FLAC__stream_decoder_init_*(). * \retval FLAC__StreamDecoderSeekStatus * The callee's return status. */ typedef FLAC__StreamDecoderSeekStatus (*FLAC__StreamDecoderSeekCallback)(const FLAC__StreamDecoder *decoder, FLAC__uint64 absolute_byte_offset, void *client_data); /** Signature for the tell callback. * * A function pointer matching this signature may be passed to * FLAC__stream_decoder_init*_stream(). The supplied function will be * called when the decoder wants to know the current position of the * stream. The callback should return the byte offset from the * beginning of the stream. * * Here is an example of a tell callback for stdio streams: * \code * FLAC__StreamDecoderTellStatus tell_cb(const FLAC__StreamDecoder *decoder, FLAC__uint64 *absolute_byte_offset, void *client_data) * { * FILE *file = ((MyClientData*)client_data)->file; * off_t pos; * if(file == stdin) * return FLAC__STREAM_DECODER_TELL_STATUS_UNSUPPORTED; * else if((pos = ftello(file)) < 0) * return FLAC__STREAM_DECODER_TELL_STATUS_ERROR; * else { * *absolute_byte_offset = (FLAC__uint64)pos; * return FLAC__STREAM_DECODER_TELL_STATUS_OK; * } * } * \endcode * * \note In general, FLAC__StreamDecoder functions which change the * state should not be called on the \a decoder while in the callback. * * \param decoder The decoder instance calling the callback. * \param absolute_byte_offset A pointer to storage for the current offset * from the beginning of the stream. * \param client_data The callee's client data set through * FLAC__stream_decoder_init_*(). * \retval FLAC__StreamDecoderTellStatus * The callee's return status. */ typedef FLAC__StreamDecoderTellStatus (*FLAC__StreamDecoderTellCallback)(const FLAC__StreamDecoder *decoder, FLAC__uint64 *absolute_byte_offset, void *client_data); /** Signature for the length callback. * * A function pointer matching this signature may be passed to * FLAC__stream_decoder_init*_stream(). The supplied function will be * called when the decoder wants to know the total length of the stream * in bytes. * * Here is an example of a length callback for stdio streams: * \code * FLAC__StreamDecoderLengthStatus length_cb(const FLAC__StreamDecoder *decoder, FLAC__uint64 *stream_length, void *client_data) * { * FILE *file = ((MyClientData*)client_data)->file; * struct stat filestats; * * if(file == stdin) * return FLAC__STREAM_DECODER_LENGTH_STATUS_UNSUPPORTED; * else if(fstat(fileno(file), &filestats) != 0) * return FLAC__STREAM_DECODER_LENGTH_STATUS_ERROR; * else { * *stream_length = (FLAC__uint64)filestats.st_size; * return FLAC__STREAM_DECODER_LENGTH_STATUS_OK; * } * } * \endcode * * \note In general, FLAC__StreamDecoder functions which change the * state should not be called on the \a decoder while in the callback. * * \param decoder The decoder instance calling the callback. * \param stream_length A pointer to storage for the length of the stream * in bytes. * \param client_data The callee's client data set through * FLAC__stream_decoder_init_*(). * \retval FLAC__StreamDecoderLengthStatus * The callee's return status. */ typedef FLAC__StreamDecoderLengthStatus (*FLAC__StreamDecoderLengthCallback)(const FLAC__StreamDecoder *decoder, FLAC__uint64 *stream_length, void *client_data); /** Signature for the EOF callback. * * A function pointer matching this signature may be passed to * FLAC__stream_decoder_init*_stream(). The supplied function will be * called when the decoder needs to know if the end of the stream has * been reached. * * Here is an example of a EOF callback for stdio streams: * FLAC__bool eof_cb(const FLAC__StreamDecoder *decoder, void *client_data) * \code * { * FILE *file = ((MyClientData*)client_data)->file; * return feof(file)? true : false; * } * \endcode * * \note In general, FLAC__StreamDecoder functions which change the * state should not be called on the \a decoder while in the callback. * * \param decoder The decoder instance calling the callback. * \param client_data The callee's client data set through * FLAC__stream_decoder_init_*(). * \retval FLAC__bool * \c true if the currently at the end of the stream, else \c false. */ typedef FLAC__bool (*FLAC__StreamDecoderEofCallback)(const FLAC__StreamDecoder *decoder, void *client_data); /** Signature for the write callback. * * A function pointer matching this signature must be passed to one of * the FLAC__stream_decoder_init_*() functions. * The supplied function will be called when the decoder has decoded a * single audio frame. The decoder will pass the frame metadata as well * as an array of pointers (one for each channel) pointing to the * decoded audio. * * \note In general, FLAC__StreamDecoder functions which change the * state should not be called on the \a decoder while in the callback. * * \param decoder The decoder instance calling the callback. * \param frame The description of the decoded frame. See * FLAC__Frame. * \param buffer An array of pointers to decoded channels of data. * Each pointer will point to an array of signed * samples of length \a frame->header.blocksize. * Channels will be ordered according to the FLAC * specification; see the documentation for the * frame header. * \param client_data The callee's client data set through * FLAC__stream_decoder_init_*(). * \retval FLAC__StreamDecoderWriteStatus * The callee's return status. */ typedef FLAC__StreamDecoderWriteStatus (*FLAC__StreamDecoderWriteCallback)(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *client_data); /** Signature for the metadata callback. * * A function pointer matching this signature must be passed to one of * the FLAC__stream_decoder_init_*() functions. * The supplied function will be called when the decoder has decoded a * metadata block. In a valid FLAC file there will always be one * \c STREAMINFO block, followed by zero or more other metadata blocks. * These will be supplied by the decoder in the same order as they * appear in the stream and always before the first audio frame (i.e. * write callback). The metadata block that is passed in must not be * modified, and it doesn't live beyond the callback, so you should make * a copy of it with FLAC__metadata_object_clone() if you will need it * elsewhere. Since metadata blocks can potentially be large, by * default the decoder only calls the metadata callback for the * \c STREAMINFO block; you can instruct the decoder to pass or filter * other blocks with FLAC__stream_decoder_set_metadata_*() calls. * * \note In general, FLAC__StreamDecoder functions which change the * state should not be called on the \a decoder while in the callback. * * \param decoder The decoder instance calling the callback. * \param metadata The decoded metadata block. * \param client_data The callee's client data set through * FLAC__stream_decoder_init_*(). */ typedef void (*FLAC__StreamDecoderMetadataCallback)(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetadata *metadata, void *client_data); /** Signature for the error callback. * * A function pointer matching this signature must be passed to one of * the FLAC__stream_decoder_init_*() functions. * The supplied function will be called whenever an error occurs during * decoding. * * \note In general, FLAC__StreamDecoder functions which change the * state should not be called on the \a decoder while in the callback. * * \param decoder The decoder instance calling the callback. * \param status The error encountered by the decoder. * \param client_data The callee's client data set through * FLAC__stream_decoder_init_*(). */ typedef void (*FLAC__StreamDecoderErrorCallback)(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data); /*********************************************************************** * * Class constructor/destructor * ***********************************************************************/ /** Create a new stream decoder instance. The instance is created with * default settings; see the individual FLAC__stream_decoder_set_*() * functions for each setting's default. * * \retval FLAC__StreamDecoder* * \c NULL if there was an error allocating memory, else the new instance. */ FLAC_API FLAC__StreamDecoder *FLAC__stream_decoder_new(void); /** Free a decoder instance. Deletes the object pointed to by \a decoder. * * \param decoder A pointer to an existing decoder. * \assert * \code decoder != NULL \endcode */ FLAC_API void FLAC__stream_decoder_delete(FLAC__StreamDecoder *decoder); /*********************************************************************** * * Public class method prototypes * ***********************************************************************/ /** Set the serial number for the FLAC stream within the Ogg container. * The default behavior is to use the serial number of the first Ogg * page. Setting a serial number here will explicitly specify which * stream is to be decoded. * * \note * This does not need to be set for native FLAC decoding. * * \default \c use serial number of first page * \param decoder A decoder instance to set. * \param serial_number See above. * \assert * \code decoder != NULL \endcode * \retval FLAC__bool * \c false if the decoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_decoder_set_ogg_serial_number(FLAC__StreamDecoder *decoder, long serial_number); /** Set the "MD5 signature checking" flag. If \c true, the decoder will * compute the MD5 signature of the unencoded audio data while decoding * and compare it to the signature from the STREAMINFO block, if it * exists, during FLAC__stream_decoder_finish(). * * MD5 signature checking will be turned off (until the next * FLAC__stream_decoder_reset()) if there is no signature in the * STREAMINFO block or when a seek is attempted. * * Clients that do not use the MD5 check should leave this off to speed * up decoding. * * \default \c false * \param decoder A decoder instance to set. * \param value Flag value (see above). * \assert * \code decoder != NULL \endcode * \retval FLAC__bool * \c false if the decoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_decoder_set_md5_checking(FLAC__StreamDecoder *decoder, FLAC__bool value); /** Direct the decoder to pass on all metadata blocks of type \a type. * * \default By default, only the \c STREAMINFO block is returned via the * metadata callback. * \param decoder A decoder instance to set. * \param type See above. * \assert * \code decoder != NULL \endcode * \a type is valid * \retval FLAC__bool * \c false if the decoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_decoder_set_metadata_respond(FLAC__StreamDecoder *decoder, FLAC__MetadataType type); /** Direct the decoder to pass on all APPLICATION metadata blocks of the * given \a id. * * \default By default, only the \c STREAMINFO block is returned via the * metadata callback. * \param decoder A decoder instance to set. * \param id See above. * \assert * \code decoder != NULL \endcode * \code id != NULL \endcode * \retval FLAC__bool * \c false if the decoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_decoder_set_metadata_respond_application(FLAC__StreamDecoder *decoder, const FLAC__byte id[4]); /** Direct the decoder to pass on all metadata blocks of any type. * * \default By default, only the \c STREAMINFO block is returned via the * metadata callback. * \param decoder A decoder instance to set. * \assert * \code decoder != NULL \endcode * \retval FLAC__bool * \c false if the decoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_decoder_set_metadata_respond_all(FLAC__StreamDecoder *decoder); /** Direct the decoder to filter out all metadata blocks of type \a type. * * \default By default, only the \c STREAMINFO block is returned via the * metadata callback. * \param decoder A decoder instance to set. * \param type See above. * \assert * \code decoder != NULL \endcode * \a type is valid * \retval FLAC__bool * \c false if the decoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_decoder_set_metadata_ignore(FLAC__StreamDecoder *decoder, FLAC__MetadataType type); /** Direct the decoder to filter out all APPLICATION metadata blocks of * the given \a id. * * \default By default, only the \c STREAMINFO block is returned via the * metadata callback. * \param decoder A decoder instance to set. * \param id See above. * \assert * \code decoder != NULL \endcode * \code id != NULL \endcode * \retval FLAC__bool * \c false if the decoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_decoder_set_metadata_ignore_application(FLAC__StreamDecoder *decoder, const FLAC__byte id[4]); /** Direct the decoder to filter out all metadata blocks of any type. * * \default By default, only the \c STREAMINFO block is returned via the * metadata callback. * \param decoder A decoder instance to set. * \assert * \code decoder != NULL \endcode * \retval FLAC__bool * \c false if the decoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_decoder_set_metadata_ignore_all(FLAC__StreamDecoder *decoder); /** Get the current decoder state. * * \param decoder A decoder instance to query. * \assert * \code decoder != NULL \endcode * \retval FLAC__StreamDecoderState * The current decoder state. */ FLAC_API FLAC__StreamDecoderState FLAC__stream_decoder_get_state(const FLAC__StreamDecoder *decoder); /** Get the current decoder state as a C string. * * \param decoder A decoder instance to query. * \assert * \code decoder != NULL \endcode * \retval const char * * The decoder state as a C string. Do not modify the contents. */ FLAC_API const char *FLAC__stream_decoder_get_resolved_state_string(const FLAC__StreamDecoder *decoder); /** Get the "MD5 signature checking" flag. * This is the value of the setting, not whether or not the decoder is * currently checking the MD5 (remember, it can be turned off automatically * by a seek). When the decoder is reset the flag will be restored to the * value returned by this function. * * \param decoder A decoder instance to query. * \assert * \code decoder != NULL \endcode * \retval FLAC__bool * See above. */ FLAC_API FLAC__bool FLAC__stream_decoder_get_md5_checking(const FLAC__StreamDecoder *decoder); /** Get the total number of samples in the stream being decoded. * Will only be valid after decoding has started and will contain the * value from the \c STREAMINFO block. A value of \c 0 means "unknown". * * \param decoder A decoder instance to query. * \assert * \code decoder != NULL \endcode * \retval unsigned * See above. */ FLAC_API FLAC__uint64 FLAC__stream_decoder_get_total_samples(const FLAC__StreamDecoder *decoder); /** Get the current number of channels in the stream being decoded. * Will only be valid after decoding has started and will contain the * value from the most recently decoded frame header. * * \param decoder A decoder instance to query. * \assert * \code decoder != NULL \endcode * \retval unsigned * See above. */ FLAC_API unsigned FLAC__stream_decoder_get_channels(const FLAC__StreamDecoder *decoder); /** Get the current channel assignment in the stream being decoded. * Will only be valid after decoding has started and will contain the * value from the most recently decoded frame header. * * \param decoder A decoder instance to query. * \assert * \code decoder != NULL \endcode * \retval FLAC__ChannelAssignment * See above. */ FLAC_API FLAC__ChannelAssignment FLAC__stream_decoder_get_channel_assignment(const FLAC__StreamDecoder *decoder); /** Get the current sample resolution in the stream being decoded. * Will only be valid after decoding has started and will contain the * value from the most recently decoded frame header. * * \param decoder A decoder instance to query. * \assert * \code decoder != NULL \endcode * \retval unsigned * See above. */ FLAC_API unsigned FLAC__stream_decoder_get_bits_per_sample(const FLAC__StreamDecoder *decoder); /** Get the current sample rate in Hz of the stream being decoded. * Will only be valid after decoding has started and will contain the * value from the most recently decoded frame header. * * \param decoder A decoder instance to query. * \assert * \code decoder != NULL \endcode * \retval unsigned * See above. */ FLAC_API unsigned FLAC__stream_decoder_get_sample_rate(const FLAC__StreamDecoder *decoder); /** Get the current blocksize of the stream being decoded. * Will only be valid after decoding has started and will contain the * value from the most recently decoded frame header. * * \param decoder A decoder instance to query. * \assert * \code decoder != NULL \endcode * \retval unsigned * See above. */ FLAC_API unsigned FLAC__stream_decoder_get_blocksize(const FLAC__StreamDecoder *decoder); /** Returns the decoder's current read position within the stream. * The position is the byte offset from the start of the stream. * Bytes before this position have been fully decoded. Note that * there may still be undecoded bytes in the decoder's read FIFO. * The returned position is correct even after a seek. * * \warning This function currently only works for native FLAC, * not Ogg FLAC streams. * * \param decoder A decoder instance to query. * \param position Address at which to return the desired position. * \assert * \code decoder != NULL \endcode * \code position != NULL \endcode * \retval FLAC__bool * \c true if successful, \c false if the stream is not native FLAC, * or there was an error from the 'tell' callback or it returned * \c FLAC__STREAM_DECODER_TELL_STATUS_UNSUPPORTED. */ FLAC_API FLAC__bool FLAC__stream_decoder_get_decode_position(const FLAC__StreamDecoder *decoder, FLAC__uint64 *position); /** Initialize the decoder instance to decode native FLAC streams. * * This flavor of initialization sets up the decoder to decode from a * native FLAC stream. I/O is performed via callbacks to the client. * For decoding from a plain file via filename or open FILE*, * FLAC__stream_decoder_init_file() and FLAC__stream_decoder_init_FILE() * provide a simpler interface. * * This function should be called after FLAC__stream_decoder_new() and * FLAC__stream_decoder_set_*() but before any of the * FLAC__stream_decoder_process_*() functions. Will set and return the * decoder state, which will be FLAC__STREAM_DECODER_SEARCH_FOR_METADATA * if initialization succeeded. * * \param decoder An uninitialized decoder instance. * \param read_callback See FLAC__StreamDecoderReadCallback. This * pointer must not be \c NULL. * \param seek_callback See FLAC__StreamDecoderSeekCallback. This * pointer may be \c NULL if seeking is not * supported. If \a seek_callback is not \c NULL then a * \a tell_callback, \a length_callback, and \a eof_callback must also be supplied. * Alternatively, a dummy seek callback that just * returns \c FLAC__STREAM_DECODER_SEEK_STATUS_UNSUPPORTED * may also be supplied, all though this is slightly * less efficient for the decoder. * \param tell_callback See FLAC__StreamDecoderTellCallback. This * pointer may be \c NULL if not supported by the client. If * \a seek_callback is not \c NULL then a * \a tell_callback must also be supplied. * Alternatively, a dummy tell callback that just * returns \c FLAC__STREAM_DECODER_TELL_STATUS_UNSUPPORTED * may also be supplied, all though this is slightly * less efficient for the decoder. * \param length_callback See FLAC__StreamDecoderLengthCallback. This * pointer may be \c NULL if not supported by the client. If * \a seek_callback is not \c NULL then a * \a length_callback must also be supplied. * Alternatively, a dummy length callback that just * returns \c FLAC__STREAM_DECODER_LENGTH_STATUS_UNSUPPORTED * may also be supplied, all though this is slightly * less efficient for the decoder. * \param eof_callback See FLAC__StreamDecoderEofCallback. This * pointer may be \c NULL if not supported by the client. If * \a seek_callback is not \c NULL then a * \a eof_callback must also be supplied. * Alternatively, a dummy length callback that just * returns \c false * may also be supplied, all though this is slightly * less efficient for the decoder. * \param write_callback See FLAC__StreamDecoderWriteCallback. This * pointer must not be \c NULL. * \param metadata_callback See FLAC__StreamDecoderMetadataCallback. This * pointer may be \c NULL if the callback is not * desired. * \param error_callback See FLAC__StreamDecoderErrorCallback. This * pointer must not be \c NULL. * \param client_data This value will be supplied to callbacks in their * \a client_data argument. * \assert * \code decoder != NULL \endcode * \retval FLAC__StreamDecoderInitStatus * \c FLAC__STREAM_DECODER_INIT_STATUS_OK if initialization was successful; * see FLAC__StreamDecoderInitStatus for the meanings of other return values. */ FLAC_API FLAC__StreamDecoderInitStatus FLAC__stream_decoder_init_stream( FLAC__StreamDecoder *decoder, FLAC__StreamDecoderReadCallback read_callback, FLAC__StreamDecoderSeekCallback seek_callback, FLAC__StreamDecoderTellCallback tell_callback, FLAC__StreamDecoderLengthCallback length_callback, FLAC__StreamDecoderEofCallback eof_callback, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data ); /** Initialize the decoder instance to decode Ogg FLAC streams. * * This flavor of initialization sets up the decoder to decode from a * FLAC stream in an Ogg container. I/O is performed via callbacks to the * client. For decoding from a plain file via filename or open FILE*, * FLAC__stream_decoder_init_ogg_file() and FLAC__stream_decoder_init_ogg_FILE() * provide a simpler interface. * * This function should be called after FLAC__stream_decoder_new() and * FLAC__stream_decoder_set_*() but before any of the * FLAC__stream_decoder_process_*() functions. Will set and return the * decoder state, which will be FLAC__STREAM_DECODER_SEARCH_FOR_METADATA * if initialization succeeded. * * \note Support for Ogg FLAC in the library is optional. If this * library has been built without support for Ogg FLAC, this function * will return \c FLAC__STREAM_DECODER_INIT_STATUS_UNSUPPORTED_CONTAINER. * * \param decoder An uninitialized decoder instance. * \param read_callback See FLAC__StreamDecoderReadCallback. This * pointer must not be \c NULL. * \param seek_callback See FLAC__StreamDecoderSeekCallback. This * pointer may be \c NULL if seeking is not * supported. If \a seek_callback is not \c NULL then a * \a tell_callback, \a length_callback, and \a eof_callback must also be supplied. * Alternatively, a dummy seek callback that just * returns \c FLAC__STREAM_DECODER_SEEK_STATUS_UNSUPPORTED * may also be supplied, all though this is slightly * less efficient for the decoder. * \param tell_callback See FLAC__StreamDecoderTellCallback. This * pointer may be \c NULL if not supported by the client. If * \a seek_callback is not \c NULL then a * \a tell_callback must also be supplied. * Alternatively, a dummy tell callback that just * returns \c FLAC__STREAM_DECODER_TELL_STATUS_UNSUPPORTED * may also be supplied, all though this is slightly * less efficient for the decoder. * \param length_callback See FLAC__StreamDecoderLengthCallback. This * pointer may be \c NULL if not supported by the client. If * \a seek_callback is not \c NULL then a * \a length_callback must also be supplied. * Alternatively, a dummy length callback that just * returns \c FLAC__STREAM_DECODER_LENGTH_STATUS_UNSUPPORTED * may also be supplied, all though this is slightly * less efficient for the decoder. * \param eof_callback See FLAC__StreamDecoderEofCallback. This * pointer may be \c NULL if not supported by the client. If * \a seek_callback is not \c NULL then a * \a eof_callback must also be supplied. * Alternatively, a dummy length callback that just * returns \c false * may also be supplied, all though this is slightly * less efficient for the decoder. * \param write_callback See FLAC__StreamDecoderWriteCallback. This * pointer must not be \c NULL. * \param metadata_callback See FLAC__StreamDecoderMetadataCallback. This * pointer may be \c NULL if the callback is not * desired. * \param error_callback See FLAC__StreamDecoderErrorCallback. This * pointer must not be \c NULL. * \param client_data This value will be supplied to callbacks in their * \a client_data argument. * \assert * \code decoder != NULL \endcode * \retval FLAC__StreamDecoderInitStatus * \c FLAC__STREAM_DECODER_INIT_STATUS_OK if initialization was successful; * see FLAC__StreamDecoderInitStatus for the meanings of other return values. */ FLAC_API FLAC__StreamDecoderInitStatus FLAC__stream_decoder_init_ogg_stream( FLAC__StreamDecoder *decoder, FLAC__StreamDecoderReadCallback read_callback, FLAC__StreamDecoderSeekCallback seek_callback, FLAC__StreamDecoderTellCallback tell_callback, FLAC__StreamDecoderLengthCallback length_callback, FLAC__StreamDecoderEofCallback eof_callback, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data ); /** Initialize the decoder instance to decode native FLAC files. * * This flavor of initialization sets up the decoder to decode from a * plain native FLAC file. For non-stdio streams, you must use * FLAC__stream_decoder_init_stream() and provide callbacks for the I/O. * * This function should be called after FLAC__stream_decoder_new() and * FLAC__stream_decoder_set_*() but before any of the * FLAC__stream_decoder_process_*() functions. Will set and return the * decoder state, which will be FLAC__STREAM_DECODER_SEARCH_FOR_METADATA * if initialization succeeded. * * \param decoder An uninitialized decoder instance. * \param file An open FLAC file. The file should have been * opened with mode \c "rb" and rewound. The file * becomes owned by the decoder and should not be * manipulated by the client while decoding. * Unless \a file is \c stdin, it will be closed * when FLAC__stream_decoder_finish() is called. * Note however that seeking will not work when * decoding from \c stdout since it is not seekable. * \param write_callback See FLAC__StreamDecoderWriteCallback. This * pointer must not be \c NULL. * \param metadata_callback See FLAC__StreamDecoderMetadataCallback. This * pointer may be \c NULL if the callback is not * desired. * \param error_callback See FLAC__StreamDecoderErrorCallback. This * pointer must not be \c NULL. * \param client_data This value will be supplied to callbacks in their * \a client_data argument. * \assert * \code decoder != NULL \endcode * \code file != NULL \endcode * \retval FLAC__StreamDecoderInitStatus * \c FLAC__STREAM_DECODER_INIT_STATUS_OK if initialization was successful; * see FLAC__StreamDecoderInitStatus for the meanings of other return values. */ FLAC_API FLAC__StreamDecoderInitStatus FLAC__stream_decoder_init_FILE( FLAC__StreamDecoder *decoder, FILE *file, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data ); /** Initialize the decoder instance to decode Ogg FLAC files. * * This flavor of initialization sets up the decoder to decode from a * plain Ogg FLAC file. For non-stdio streams, you must use * FLAC__stream_decoder_init_ogg_stream() and provide callbacks for the I/O. * * This function should be called after FLAC__stream_decoder_new() and * FLAC__stream_decoder_set_*() but before any of the * FLAC__stream_decoder_process_*() functions. Will set and return the * decoder state, which will be FLAC__STREAM_DECODER_SEARCH_FOR_METADATA * if initialization succeeded. * * \note Support for Ogg FLAC in the library is optional. If this * library has been built without support for Ogg FLAC, this function * will return \c FLAC__STREAM_DECODER_INIT_STATUS_UNSUPPORTED_CONTAINER. * * \param decoder An uninitialized decoder instance. * \param file An open FLAC file. The file should have been * opened with mode \c "rb" and rewound. The file * becomes owned by the decoder and should not be * manipulated by the client while decoding. * Unless \a file is \c stdin, it will be closed * when FLAC__stream_decoder_finish() is called. * Note however that seeking will not work when * decoding from \c stdout since it is not seekable. * \param write_callback See FLAC__StreamDecoderWriteCallback. This * pointer must not be \c NULL. * \param metadata_callback See FLAC__StreamDecoderMetadataCallback. This * pointer may be \c NULL if the callback is not * desired. * \param error_callback See FLAC__StreamDecoderErrorCallback. This * pointer must not be \c NULL. * \param client_data This value will be supplied to callbacks in their * \a client_data argument. * \assert * \code decoder != NULL \endcode * \code file != NULL \endcode * \retval FLAC__StreamDecoderInitStatus * \c FLAC__STREAM_DECODER_INIT_STATUS_OK if initialization was successful; * see FLAC__StreamDecoderInitStatus for the meanings of other return values. */ FLAC_API FLAC__StreamDecoderInitStatus FLAC__stream_decoder_init_ogg_FILE( FLAC__StreamDecoder *decoder, FILE *file, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data ); /** Initialize the decoder instance to decode native FLAC files. * * This flavor of initialization sets up the decoder to decode from a plain * native FLAC file. If POSIX fopen() semantics are not sufficient, (for * example, with Unicode filenames on Windows), you must use * FLAC__stream_decoder_init_FILE(), or FLAC__stream_decoder_init_stream() * and provide callbacks for the I/O. * * This function should be called after FLAC__stream_decoder_new() and * FLAC__stream_decoder_set_*() but before any of the * FLAC__stream_decoder_process_*() functions. Will set and return the * decoder state, which will be FLAC__STREAM_DECODER_SEARCH_FOR_METADATA * if initialization succeeded. * * \param decoder An uninitialized decoder instance. * \param filename The name of the file to decode from. The file will * be opened with fopen(). Use \c NULL to decode from * \c stdin. Note that \c stdin is not seekable. * \param write_callback See FLAC__StreamDecoderWriteCallback. This * pointer must not be \c NULL. * \param metadata_callback See FLAC__StreamDecoderMetadataCallback. This * pointer may be \c NULL if the callback is not * desired. * \param error_callback See FLAC__StreamDecoderErrorCallback. This * pointer must not be \c NULL. * \param client_data This value will be supplied to callbacks in their * \a client_data argument. * \assert * \code decoder != NULL \endcode * \retval FLAC__StreamDecoderInitStatus * \c FLAC__STREAM_DECODER_INIT_STATUS_OK if initialization was successful; * see FLAC__StreamDecoderInitStatus for the meanings of other return values. */ FLAC_API FLAC__StreamDecoderInitStatus FLAC__stream_decoder_init_file( FLAC__StreamDecoder *decoder, const char *filename, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data ); /** Initialize the decoder instance to decode Ogg FLAC files. * * This flavor of initialization sets up the decoder to decode from a plain * Ogg FLAC file. If POSIX fopen() semantics are not sufficient, (for * example, with Unicode filenames on Windows), you must use * FLAC__stream_decoder_init_ogg_FILE(), or FLAC__stream_decoder_init_ogg_stream() * and provide callbacks for the I/O. * * This function should be called after FLAC__stream_decoder_new() and * FLAC__stream_decoder_set_*() but before any of the * FLAC__stream_decoder_process_*() functions. Will set and return the * decoder state, which will be FLAC__STREAM_DECODER_SEARCH_FOR_METADATA * if initialization succeeded. * * \note Support for Ogg FLAC in the library is optional. If this * library has been built without support for Ogg FLAC, this function * will return \c FLAC__STREAM_DECODER_INIT_STATUS_UNSUPPORTED_CONTAINER. * * \param decoder An uninitialized decoder instance. * \param filename The name of the file to decode from. The file will * be opened with fopen(). Use \c NULL to decode from * \c stdin. Note that \c stdin is not seekable. * \param write_callback See FLAC__StreamDecoderWriteCallback. This * pointer must not be \c NULL. * \param metadata_callback See FLAC__StreamDecoderMetadataCallback. This * pointer may be \c NULL if the callback is not * desired. * \param error_callback See FLAC__StreamDecoderErrorCallback. This * pointer must not be \c NULL. * \param client_data This value will be supplied to callbacks in their * \a client_data argument. * \assert * \code decoder != NULL \endcode * \retval FLAC__StreamDecoderInitStatus * \c FLAC__STREAM_DECODER_INIT_STATUS_OK if initialization was successful; * see FLAC__StreamDecoderInitStatus for the meanings of other return values. */ FLAC_API FLAC__StreamDecoderInitStatus FLAC__stream_decoder_init_ogg_file( FLAC__StreamDecoder *decoder, const char *filename, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data ); /** Finish the decoding process. * Flushes the decoding buffer, releases resources, resets the decoder * settings to their defaults, and returns the decoder state to * FLAC__STREAM_DECODER_UNINITIALIZED. * * In the event of a prematurely-terminated decode, it is not strictly * necessary to call this immediately before FLAC__stream_decoder_delete() * but it is good practice to match every FLAC__stream_decoder_init_*() * with a FLAC__stream_decoder_finish(). * * \param decoder An uninitialized decoder instance. * \assert * \code decoder != NULL \endcode * \retval FLAC__bool * \c false if MD5 checking is on AND a STREAMINFO block was available * AND the MD5 signature in the STREAMINFO block was non-zero AND the * signature does not match the one computed by the decoder; else * \c true. */ FLAC_API FLAC__bool FLAC__stream_decoder_finish(FLAC__StreamDecoder *decoder); /** Flush the stream input. * The decoder's input buffer will be cleared and the state set to * \c FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC. This will also turn * off MD5 checking. * * \param decoder A decoder instance. * \assert * \code decoder != NULL \endcode * \retval FLAC__bool * \c true if successful, else \c false if a memory allocation * error occurs (in which case the state will be set to * \c FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR). */ FLAC_API FLAC__bool FLAC__stream_decoder_flush(FLAC__StreamDecoder *decoder); /** Reset the decoding process. * The decoder's input buffer will be cleared and the state set to * \c FLAC__STREAM_DECODER_SEARCH_FOR_METADATA. This is similar to * FLAC__stream_decoder_finish() except that the settings are * preserved; there is no need to call FLAC__stream_decoder_init_*() * before decoding again. MD5 checking will be restored to its original * setting. * * If the decoder is seekable, or was initialized with * FLAC__stream_decoder_init*_FILE() or FLAC__stream_decoder_init*_file(), * the decoder will also attempt to seek to the beginning of the file. * If this rewind fails, this function will return \c false. It follows * that FLAC__stream_decoder_reset() cannot be used when decoding from * \c stdin. * * If the decoder was initialized with FLAC__stream_encoder_init*_stream() * and is not seekable (i.e. no seek callback was provided or the seek * callback returns \c FLAC__STREAM_DECODER_SEEK_STATUS_UNSUPPORTED), it * is the duty of the client to start feeding data from the beginning of * the stream on the next FLAC__stream_decoder_process() or * FLAC__stream_decoder_process_interleaved() call. * * \param decoder A decoder instance. * \assert * \code decoder != NULL \endcode * \retval FLAC__bool * \c true if successful, else \c false if a memory allocation occurs * (in which case the state will be set to * \c FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR) or a seek error * occurs (the state will be unchanged). */ FLAC_API FLAC__bool FLAC__stream_decoder_reset(FLAC__StreamDecoder *decoder); /** Decode one metadata block or audio frame. * This version instructs the decoder to decode a either a single metadata * block or a single frame and stop, unless the callbacks return a fatal * error or the read callback returns * \c FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM. * * As the decoder needs more input it will call the read callback. * Depending on what was decoded, the metadata or write callback will be * called with the decoded metadata block or audio frame. * * Unless there is a fatal read error or end of stream, this function * will return once one whole frame is decoded. In other words, if the * stream is not synchronized or points to a corrupt frame header, the * decoder will continue to try and resync until it gets to a valid * frame, then decode one frame, then return. If the decoder points to * a frame whose frame CRC in the frame footer does not match the * computed frame CRC, this function will issue a * FLAC__STREAM_DECODER_ERROR_STATUS_FRAME_CRC_MISMATCH error to the * error callback, and return, having decoded one complete, although * corrupt, frame. (Such corrupted frames are sent as silence of the * correct length to the write callback.) * * \param decoder An initialized decoder instance. * \assert * \code decoder != NULL \endcode * \retval FLAC__bool * \c false if any fatal read, write, or memory allocation error * occurred (meaning decoding must stop), else \c true; for more * information about the decoder, check the decoder state with * FLAC__stream_decoder_get_state(). */ FLAC_API FLAC__bool FLAC__stream_decoder_process_single(FLAC__StreamDecoder *decoder); /** Decode until the end of the metadata. * This version instructs the decoder to decode from the current position * and continue until all the metadata has been read, or until the * callbacks return a fatal error or the read callback returns * \c FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM. * * As the decoder needs more input it will call the read callback. * As each metadata block is decoded, the metadata callback will be called * with the decoded metadata. * * \param decoder An initialized decoder instance. * \assert * \code decoder != NULL \endcode * \retval FLAC__bool * \c false if any fatal read, write, or memory allocation error * occurred (meaning decoding must stop), else \c true; for more * information about the decoder, check the decoder state with * FLAC__stream_decoder_get_state(). */ FLAC_API FLAC__bool FLAC__stream_decoder_process_until_end_of_metadata(FLAC__StreamDecoder *decoder); /** Decode until the end of the stream. * This version instructs the decoder to decode from the current position * and continue until the end of stream (the read callback returns * \c FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM), or until the * callbacks return a fatal error. * * As the decoder needs more input it will call the read callback. * As each metadata block and frame is decoded, the metadata or write * callback will be called with the decoded metadata or frame. * * \param decoder An initialized decoder instance. * \assert * \code decoder != NULL \endcode * \retval FLAC__bool * \c false if any fatal read, write, or memory allocation error * occurred (meaning decoding must stop), else \c true; for more * information about the decoder, check the decoder state with * FLAC__stream_decoder_get_state(). */ FLAC_API FLAC__bool FLAC__stream_decoder_process_until_end_of_stream(FLAC__StreamDecoder *decoder); /** Skip one audio frame. * This version instructs the decoder to 'skip' a single frame and stop, * unless the callbacks return a fatal error or the read callback returns * \c FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM. * * The decoding flow is the same as what occurs when * FLAC__stream_decoder_process_single() is called to process an audio * frame, except that this function does not decode the parsed data into * PCM or call the write callback. The integrity of the frame is still * checked the same way as in the other process functions. * * This function will return once one whole frame is skipped, in the * same way that FLAC__stream_decoder_process_single() will return once * one whole frame is decoded. * * This function can be used in more quickly determining FLAC frame * boundaries when decoding of the actual data is not needed, for * example when an application is separating a FLAC stream into frames * for editing or storing in a container. To do this, the application * can use FLAC__stream_decoder_skip_single_frame() to quickly advance * to the next frame, then use * FLAC__stream_decoder_get_decode_position() to find the new frame * boundary. * * This function should only be called when the stream has advanced * past all the metadata, otherwise it will return \c false. * * \param decoder An initialized decoder instance not in a metadata * state. * \assert * \code decoder != NULL \endcode * \retval FLAC__bool * \c false if any fatal read, write, or memory allocation error * occurred (meaning decoding must stop), or if the decoder * is in the FLAC__STREAM_DECODER_SEARCH_FOR_METADATA or * FLAC__STREAM_DECODER_READ_METADATA state, else \c true; for more * information about the decoder, check the decoder state with * FLAC__stream_decoder_get_state(). */ FLAC_API FLAC__bool FLAC__stream_decoder_skip_single_frame(FLAC__StreamDecoder *decoder); /** Flush the input and seek to an absolute sample. * Decoding will resume at the given sample. Note that because of * this, the next write callback may contain a partial block. The * client must support seeking the input or this function will fail * and return \c false. Furthermore, if the decoder state is * \c FLAC__STREAM_DECODER_SEEK_ERROR, then the decoder must be flushed * with FLAC__stream_decoder_flush() or reset with * FLAC__stream_decoder_reset() before decoding can continue. * * \param decoder A decoder instance. * \param sample The target sample number to seek to. * \assert * \code decoder != NULL \endcode * \retval FLAC__bool * \c true if successful, else \c false. */ FLAC_API FLAC__bool FLAC__stream_decoder_seek_absolute(FLAC__StreamDecoder *decoder, FLAC__uint64 sample); /* \} */ #ifdef __cplusplus } #endif #endif /********* End of inlined file: stream_decoder.h *********/ /********* Start of inlined file: stream_encoder.h *********/ #ifndef FLAC__STREAM_ENCODER_H #define FLAC__STREAM_ENCODER_H #include /* for FILE */ #ifdef __cplusplus extern "C" { #endif /** \file include/FLAC/stream_encoder.h * * \brief * This module contains the functions which implement the stream * encoder. * * See the detailed documentation in the * \link flac_stream_encoder stream encoder \endlink module. */ /** \defgroup flac_encoder FLAC/ \*_encoder.h: encoder interfaces * \ingroup flac * * \brief * This module describes the encoder layers provided by libFLAC. * * The stream encoder can be used to encode complete streams either to the * client via callbacks, or directly to a file, depending on how it is * initialized. When encoding via callbacks, the client provides a write * callback which will be called whenever FLAC data is ready to be written. * If the client also supplies a seek callback, the encoder will also * automatically handle the writing back of metadata discovered while * encoding, like stream info, seek points offsets, etc. When encoding to * a file, the client needs only supply a filename or open \c FILE* and an * optional progress callback for periodic notification of progress; the * write and seek callbacks are supplied internally. For more info see the * \link flac_stream_encoder stream encoder \endlink module. */ /** \defgroup flac_stream_encoder FLAC/stream_encoder.h: stream encoder interface * \ingroup flac_encoder * * \brief * This module contains the functions which implement the stream * encoder. * * The stream encoder can encode to native FLAC, and optionally Ogg FLAC * (check FLAC_API_SUPPORTS_OGG_FLAC) streams and files. * * The basic usage of this encoder is as follows: * - The program creates an instance of an encoder using * FLAC__stream_encoder_new(). * - The program overrides the default settings using * FLAC__stream_encoder_set_*() functions. At a minimum, the following * functions should be called: * - FLAC__stream_encoder_set_channels() * - FLAC__stream_encoder_set_bits_per_sample() * - FLAC__stream_encoder_set_sample_rate() * - FLAC__stream_encoder_set_ogg_serial_number() (if encoding to Ogg FLAC) * - FLAC__stream_encoder_set_total_samples_estimate() (if known) * - If the application wants to control the compression level or set its own * metadata, then the following should also be called: * - FLAC__stream_encoder_set_compression_level() * - FLAC__stream_encoder_set_verify() * - FLAC__stream_encoder_set_metadata() * - The rest of the set functions should only be called if the client needs * exact control over how the audio is compressed; thorough understanding * of the FLAC format is necessary to achieve good results. * - The program initializes the instance to validate the settings and * prepare for encoding using * - FLAC__stream_encoder_init_stream() or FLAC__stream_encoder_init_FILE() * or FLAC__stream_encoder_init_file() for native FLAC * - FLAC__stream_encoder_init_ogg_stream() or FLAC__stream_encoder_init_ogg_FILE() * or FLAC__stream_encoder_init_ogg_file() for Ogg FLAC * - The program calls FLAC__stream_encoder_process() or * FLAC__stream_encoder_process_interleaved() to encode data, which * subsequently calls the callbacks when there is encoder data ready * to be written. * - The program finishes the encoding with FLAC__stream_encoder_finish(), * which causes the encoder to encode any data still in its input pipe, * update the metadata with the final encoding statistics if output * seeking is possible, and finally reset the encoder to the * uninitialized state. * - The instance may be used again or deleted with * FLAC__stream_encoder_delete(). * * In more detail, the stream encoder functions similarly to the * \link flac_stream_decoder stream decoder \endlink, but has fewer * callbacks and more options. Typically the client will create a new * instance by calling FLAC__stream_encoder_new(), then set the necessary * parameters with FLAC__stream_encoder_set_*(), and initialize it by * calling one of the FLAC__stream_encoder_init_*() functions. * * Unlike the decoders, the stream encoder has many options that can * affect the speed and compression ratio. When setting these parameters * you should have some basic knowledge of the format (see the * user-level documentation * or the formal description). The * FLAC__stream_encoder_set_*() functions themselves do not validate the * values as many are interdependent. The FLAC__stream_encoder_init_*() * functions will do this, so make sure to pay attention to the state * returned by FLAC__stream_encoder_init_*() to make sure that it is * FLAC__STREAM_ENCODER_INIT_STATUS_OK. Any parameters that are not set * before FLAC__stream_encoder_init_*() will take on the defaults from * the constructor. * * There are three initialization functions for native FLAC, one for * setting up the encoder to encode FLAC data to the client via * callbacks, and two for encoding directly to a file. * * For encoding via callbacks, use FLAC__stream_encoder_init_stream(). * You must also supply a write callback which will be called anytime * there is raw encoded data to write. If the client can seek the output * it is best to also supply seek and tell callbacks, as this allows the * encoder to go back after encoding is finished to write back * information that was collected while encoding, like seek point offsets, * frame sizes, etc. * * For encoding directly to a file, use FLAC__stream_encoder_init_FILE() * or FLAC__stream_encoder_init_file(). Then you must only supply a * filename or open \c FILE*; the encoder will handle all the callbacks * internally. You may also supply a progress callback for periodic * notification of the encoding progress. * * There are three similarly-named init functions for encoding to Ogg * FLAC streams. Check \c FLAC_API_SUPPORTS_OGG_FLAC to find out if the * library has been built with Ogg support. * * The call to FLAC__stream_encoder_init_*() currently will also immediately * call the write callback several times, once with the \c fLaC signature, * and once for each encoded metadata block. Note that for Ogg FLAC * encoding you will usually get at least twice the number of callbacks than * with native FLAC, one for the Ogg page header and one for the page body. * * After initializing the instance, the client may feed audio data to the * encoder in one of two ways: * * - Channel separate, through FLAC__stream_encoder_process() - The client * will pass an array of pointers to buffers, one for each channel, to * the encoder, each of the same length. The samples need not be * block-aligned, but each channel should have the same number of samples. * - Channel interleaved, through * FLAC__stream_encoder_process_interleaved() - The client will pass a single * pointer to data that is channel-interleaved (i.e. channel0_sample0, * channel1_sample0, ... , channelN_sample0, channel0_sample1, ...). * Again, the samples need not be block-aligned but they must be * sample-aligned, i.e. the first value should be channel0_sample0 and * the last value channelN_sampleM. * * Note that for either process call, each sample in the buffers should be a * signed integer, right-justified to the resolution set by * FLAC__stream_encoder_set_bits_per_sample(). For example, if the resolution * is 16 bits per sample, the samples should all be in the range [-32768,32767]. * * When the client is finished encoding data, it calls * FLAC__stream_encoder_finish(), which causes the encoder to encode any * data still in its input pipe, and call the metadata callback with the * final encoding statistics. Then the instance may be deleted with * FLAC__stream_encoder_delete() or initialized again to encode another * stream. * * For programs that write their own metadata, but that do not know the * actual metadata until after encoding, it is advantageous to instruct * the encoder to write a PADDING block of the correct size, so that * instead of rewriting the whole stream after encoding, the program can * just overwrite the PADDING block. If only the maximum size of the * metadata is known, the program can write a slightly larger padding * block, then split it after encoding. * * Make sure you understand how lengths are calculated. All FLAC metadata * blocks have a 4 byte header which contains the type and length. This * length does not include the 4 bytes of the header. See the format page * for the specification of metadata blocks and their lengths. * * \note * If you are writing the FLAC data to a file via callbacks, make sure it * is open for update (e.g. mode "w+" for stdio streams). This is because * after the first encoding pass, the encoder will try to seek back to the * beginning of the stream, to the STREAMINFO block, to write some data * there. (If using FLAC__stream_encoder_init*_file() or * FLAC__stream_encoder_init*_FILE(), the file is managed internally.) * * \note * The "set" functions may only be called when the encoder is in the * state FLAC__STREAM_ENCODER_UNINITIALIZED, i.e. after * FLAC__stream_encoder_new() or FLAC__stream_encoder_finish(), but * before FLAC__stream_encoder_init_*(). If this is the case they will * return \c true, otherwise \c false. * * \note * FLAC__stream_encoder_finish() resets all settings to the constructor * defaults. * * \{ */ /** State values for a FLAC__StreamEncoder. * * The encoder's state can be obtained by calling FLAC__stream_encoder_get_state(). * * If the encoder gets into any other state besides \c FLAC__STREAM_ENCODER_OK * or \c FLAC__STREAM_ENCODER_UNINITIALIZED, it becomes invalid for encoding and * must be deleted with FLAC__stream_encoder_delete(). */ typedef enum { FLAC__STREAM_ENCODER_OK = 0, /**< The encoder is in the normal OK state and samples can be processed. */ FLAC__STREAM_ENCODER_UNINITIALIZED, /**< The encoder is in the uninitialized state; one of the * FLAC__stream_encoder_init_*() functions must be called before samples * can be processed. */ FLAC__STREAM_ENCODER_OGG_ERROR, /**< An error occurred in the underlying Ogg layer. */ FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR, /**< An error occurred in the underlying verify stream decoder; * check FLAC__stream_encoder_get_verify_decoder_state(). */ FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA, /**< The verify decoder detected a mismatch between the original * audio signal and the decoded audio signal. */ FLAC__STREAM_ENCODER_CLIENT_ERROR, /**< One of the callbacks returned a fatal error. */ FLAC__STREAM_ENCODER_IO_ERROR, /**< An I/O error occurred while opening/reading/writing a file. * Check \c errno. */ FLAC__STREAM_ENCODER_FRAMING_ERROR, /**< An error occurred while writing the stream; usually, the * write_callback returned an error. */ FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR /**< Memory allocation failed. */ } FLAC__StreamEncoderState; /** Maps a FLAC__StreamEncoderState to a C string. * * Using a FLAC__StreamEncoderState as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamEncoderStateString[]; /** Possible return values for the FLAC__stream_encoder_init_*() functions. */ typedef enum { FLAC__STREAM_ENCODER_INIT_STATUS_OK = 0, /**< Initialization was successful. */ FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR, /**< General failure to set up encoder; call FLAC__stream_encoder_get_state() for cause. */ FLAC__STREAM_ENCODER_INIT_STATUS_UNSUPPORTED_CONTAINER, /**< The library was not compiled with support for the given container * format. */ FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_CALLBACKS, /**< A required callback was not supplied. */ FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_NUMBER_OF_CHANNELS, /**< The encoder has an invalid setting for number of channels. */ FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BITS_PER_SAMPLE, /**< The encoder has an invalid setting for bits-per-sample. * FLAC supports 4-32 bps but the reference encoder currently supports * only up to 24 bps. */ FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_SAMPLE_RATE, /**< The encoder has an invalid setting for the input sample rate. */ FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BLOCK_SIZE, /**< The encoder has an invalid setting for the block size. */ FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_MAX_LPC_ORDER, /**< The encoder has an invalid setting for the maximum LPC order. */ FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_QLP_COEFF_PRECISION, /**< The encoder has an invalid setting for the precision of the quantized linear predictor coefficients. */ FLAC__STREAM_ENCODER_INIT_STATUS_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER, /**< The specified block size is less than the maximum LPC order. */ FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE, /**< The encoder is bound to the Subset but other settings violate it. */ FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA, /**< The metadata input to the encoder is invalid, in one of the following ways: * - FLAC__stream_encoder_set_metadata() was called with a null pointer but a block count > 0 * - One of the metadata blocks contains an undefined type * - It contains an illegal CUESHEET as checked by FLAC__format_cuesheet_is_legal() * - It contains an illegal SEEKTABLE as checked by FLAC__format_seektable_is_legal() * - It contains more than one SEEKTABLE block or more than one VORBIS_COMMENT block */ FLAC__STREAM_ENCODER_INIT_STATUS_ALREADY_INITIALIZED /**< FLAC__stream_encoder_init_*() was called when the encoder was * already initialized, usually because * FLAC__stream_encoder_finish() was not called. */ } FLAC__StreamEncoderInitStatus; /** Maps a FLAC__StreamEncoderInitStatus to a C string. * * Using a FLAC__StreamEncoderInitStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamEncoderInitStatusString[]; /** Return values for the FLAC__StreamEncoder read callback. */ typedef enum { FLAC__STREAM_ENCODER_READ_STATUS_CONTINUE, /**< The read was OK and decoding can continue. */ FLAC__STREAM_ENCODER_READ_STATUS_END_OF_STREAM, /**< The read was attempted at the end of the stream. */ FLAC__STREAM_ENCODER_READ_STATUS_ABORT, /**< An unrecoverable error occurred. */ FLAC__STREAM_ENCODER_READ_STATUS_UNSUPPORTED /**< Client does not support reading back from the output. */ } FLAC__StreamEncoderReadStatus; /** Maps a FLAC__StreamEncoderReadStatus to a C string. * * Using a FLAC__StreamEncoderReadStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamEncoderReadStatusString[]; /** Return values for the FLAC__StreamEncoder write callback. */ typedef enum { FLAC__STREAM_ENCODER_WRITE_STATUS_OK = 0, /**< The write was OK and encoding can continue. */ FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR /**< An unrecoverable error occurred. The encoder will return from the process call. */ } FLAC__StreamEncoderWriteStatus; /** Maps a FLAC__StreamEncoderWriteStatus to a C string. * * Using a FLAC__StreamEncoderWriteStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamEncoderWriteStatusString[]; /** Return values for the FLAC__StreamEncoder seek callback. */ typedef enum { FLAC__STREAM_ENCODER_SEEK_STATUS_OK, /**< The seek was OK and encoding can continue. */ FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR, /**< An unrecoverable error occurred. */ FLAC__STREAM_ENCODER_SEEK_STATUS_UNSUPPORTED /**< Client does not support seeking. */ } FLAC__StreamEncoderSeekStatus; /** Maps a FLAC__StreamEncoderSeekStatus to a C string. * * Using a FLAC__StreamEncoderSeekStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamEncoderSeekStatusString[]; /** Return values for the FLAC__StreamEncoder tell callback. */ typedef enum { FLAC__STREAM_ENCODER_TELL_STATUS_OK, /**< The tell was OK and encoding can continue. */ FLAC__STREAM_ENCODER_TELL_STATUS_ERROR, /**< An unrecoverable error occurred. */ FLAC__STREAM_ENCODER_TELL_STATUS_UNSUPPORTED /**< Client does not support seeking. */ } FLAC__StreamEncoderTellStatus; /** Maps a FLAC__StreamEncoderTellStatus to a C string. * * Using a FLAC__StreamEncoderTellStatus as the index to this array * will give the string equivalent. The contents should not be modified. */ extern FLAC_API const char * const FLAC__StreamEncoderTellStatusString[]; /*********************************************************************** * * class FLAC__StreamEncoder * ***********************************************************************/ struct FLAC__StreamEncoderProtected; struct FLAC__StreamEncoderPrivate; /** The opaque structure definition for the stream encoder type. * See the \link flac_stream_encoder stream encoder module \endlink * for a detailed description. */ typedef struct { struct FLAC__StreamEncoderProtected *protected_; /* avoid the C++ keyword 'protected' */ struct FLAC__StreamEncoderPrivate *private_; /* avoid the C++ keyword 'private' */ } FLAC__StreamEncoder; /** Signature for the read callback. * * A function pointer matching this signature must be passed to * FLAC__stream_encoder_init_ogg_stream() if seeking is supported. * The supplied function will be called when the encoder needs to read back * encoded data. This happens during the metadata callback, when the encoder * has to read, modify, and rewrite the metadata (e.g. seekpoints) gathered * while encoding. The address of the buffer to be filled is supplied, along * with the number of bytes the buffer can hold. The callback may choose to * supply less data and modify the byte count but must be careful not to * overflow the buffer. The callback then returns a status code chosen from * FLAC__StreamEncoderReadStatus. * * Here is an example of a read callback for stdio streams: * \code * FLAC__StreamEncoderReadStatus read_cb(const FLAC__StreamEncoder *encoder, FLAC__byte buffer[], size_t *bytes, void *client_data) * { * FILE *file = ((MyClientData*)client_data)->file; * if(*bytes > 0) { * *bytes = fread(buffer, sizeof(FLAC__byte), *bytes, file); * if(ferror(file)) * return FLAC__STREAM_ENCODER_READ_STATUS_ABORT; * else if(*bytes == 0) * return FLAC__STREAM_ENCODER_READ_STATUS_END_OF_STREAM; * else * return FLAC__STREAM_ENCODER_READ_STATUS_CONTINUE; * } * else * return FLAC__STREAM_ENCODER_READ_STATUS_ABORT; * } * \endcode * * \note In general, FLAC__StreamEncoder functions which change the * state should not be called on the \a encoder while in the callback. * * \param encoder The encoder instance calling the callback. * \param buffer A pointer to a location for the callee to store * data to be encoded. * \param bytes A pointer to the size of the buffer. On entry * to the callback, it contains the maximum number * of bytes that may be stored in \a buffer. The * callee must set it to the actual number of bytes * stored (0 in case of error or end-of-stream) before * returning. * \param client_data The callee's client data set through * FLAC__stream_encoder_set_client_data(). * \retval FLAC__StreamEncoderReadStatus * The callee's return status. */ typedef FLAC__StreamEncoderReadStatus (*FLAC__StreamEncoderReadCallback)(const FLAC__StreamEncoder *encoder, FLAC__byte buffer[], size_t *bytes, void *client_data); /** Signature for the write callback. * * A function pointer matching this signature must be passed to * FLAC__stream_encoder_init*_stream(). The supplied function will be called * by the encoder anytime there is raw encoded data ready to write. It may * include metadata mixed with encoded audio frames and the data is not * guaranteed to be aligned on frame or metadata block boundaries. * * The only duty of the callback is to write out the \a bytes worth of data * in \a buffer to the current position in the output stream. The arguments * \a samples and \a current_frame are purely informational. If \a samples * is greater than \c 0, then \a current_frame will hold the current frame * number that is being written; otherwise it indicates that the write * callback is being called to write metadata. * * \note * Unlike when writing to native FLAC, when writing to Ogg FLAC the * write callback will be called twice when writing each audio * frame; once for the page header, and once for the page body. * When writing the page header, the \a samples argument to the * write callback will be \c 0. * * \note In general, FLAC__StreamEncoder functions which change the * state should not be called on the \a encoder while in the callback. * * \param encoder The encoder instance calling the callback. * \param buffer An array of encoded data of length \a bytes. * \param bytes The byte length of \a buffer. * \param samples The number of samples encoded by \a buffer. * \c 0 has a special meaning; see above. * \param current_frame The number of the current frame being encoded. * \param client_data The callee's client data set through * FLAC__stream_encoder_init_*(). * \retval FLAC__StreamEncoderWriteStatus * The callee's return status. */ typedef FLAC__StreamEncoderWriteStatus (*FLAC__StreamEncoderWriteCallback)(const FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], size_t bytes, unsigned samples, unsigned current_frame, void *client_data); /** Signature for the seek callback. * * A function pointer matching this signature may be passed to * FLAC__stream_encoder_init*_stream(). The supplied function will be called * when the encoder needs to seek the output stream. The encoder will pass * the absolute byte offset to seek to, 0 meaning the beginning of the stream. * * Here is an example of a seek callback for stdio streams: * \code * FLAC__StreamEncoderSeekStatus seek_cb(const FLAC__StreamEncoder *encoder, FLAC__uint64 absolute_byte_offset, void *client_data) * { * FILE *file = ((MyClientData*)client_data)->file; * if(file == stdin) * return FLAC__STREAM_ENCODER_SEEK_STATUS_UNSUPPORTED; * else if(fseeko(file, (off_t)absolute_byte_offset, SEEK_SET) < 0) * return FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR; * else * return FLAC__STREAM_ENCODER_SEEK_STATUS_OK; * } * \endcode * * \note In general, FLAC__StreamEncoder functions which change the * state should not be called on the \a encoder while in the callback. * * \param encoder The encoder instance calling the callback. * \param absolute_byte_offset The offset from the beginning of the stream * to seek to. * \param client_data The callee's client data set through * FLAC__stream_encoder_init_*(). * \retval FLAC__StreamEncoderSeekStatus * The callee's return status. */ typedef FLAC__StreamEncoderSeekStatus (*FLAC__StreamEncoderSeekCallback)(const FLAC__StreamEncoder *encoder, FLAC__uint64 absolute_byte_offset, void *client_data); /** Signature for the tell callback. * * A function pointer matching this signature may be passed to * FLAC__stream_encoder_init*_stream(). The supplied function will be called * when the encoder needs to know the current position of the output stream. * * \warning * The callback must return the true current byte offset of the output to * which the encoder is writing. If you are buffering the output, make * sure and take this into account. If you are writing directly to a * FILE* from your write callback, ftell() is sufficient. If you are * writing directly to a file descriptor from your write callback, you * can use lseek(fd, SEEK_CUR, 0). The encoder may later seek back to * these points to rewrite metadata after encoding. * * Here is an example of a tell callback for stdio streams: * \code * FLAC__StreamEncoderTellStatus tell_cb(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_byte_offset, void *client_data) * { * FILE *file = ((MyClientData*)client_data)->file; * off_t pos; * if(file == stdin) * return FLAC__STREAM_ENCODER_TELL_STATUS_UNSUPPORTED; * else if((pos = ftello(file)) < 0) * return FLAC__STREAM_ENCODER_TELL_STATUS_ERROR; * else { * *absolute_byte_offset = (FLAC__uint64)pos; * return FLAC__STREAM_ENCODER_TELL_STATUS_OK; * } * } * \endcode * * \note In general, FLAC__StreamEncoder functions which change the * state should not be called on the \a encoder while in the callback. * * \param encoder The encoder instance calling the callback. * \param absolute_byte_offset The address at which to store the current * position of the output. * \param client_data The callee's client data set through * FLAC__stream_encoder_init_*(). * \retval FLAC__StreamEncoderTellStatus * The callee's return status. */ typedef FLAC__StreamEncoderTellStatus (*FLAC__StreamEncoderTellCallback)(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_byte_offset, void *client_data); /** Signature for the metadata callback. * * A function pointer matching this signature may be passed to * FLAC__stream_encoder_init*_stream(). The supplied function will be called * once at the end of encoding with the populated STREAMINFO structure. This * is so the client can seek back to the beginning of the file and write the * STREAMINFO block with the correct statistics after encoding (like * minimum/maximum frame size and total samples). * * \note In general, FLAC__StreamEncoder functions which change the * state should not be called on the \a encoder while in the callback. * * \param encoder The encoder instance calling the callback. * \param metadata The final populated STREAMINFO block. * \param client_data The callee's client data set through * FLAC__stream_encoder_init_*(). */ typedef void (*FLAC__StreamEncoderMetadataCallback)(const FLAC__StreamEncoder *encoder, const FLAC__StreamMetadata *metadata, void *client_data); /** Signature for the progress callback. * * A function pointer matching this signature may be passed to * FLAC__stream_encoder_init*_file() or FLAC__stream_encoder_init*_FILE(). * The supplied function will be called when the encoder has finished * writing a frame. The \c total_frames_estimate argument to the * callback will be based on the value from * FLAC__stream_encoder_set_total_samples_estimate(). * * \note In general, FLAC__StreamEncoder functions which change the * state should not be called on the \a encoder while in the callback. * * \param encoder The encoder instance calling the callback. * \param bytes_written Bytes written so far. * \param samples_written Samples written so far. * \param frames_written Frames written so far. * \param total_frames_estimate The estimate of the total number of * frames to be written. * \param client_data The callee's client data set through * FLAC__stream_encoder_init_*(). */ typedef void (*FLAC__StreamEncoderProgressCallback)(const FLAC__StreamEncoder *encoder, FLAC__uint64 bytes_written, FLAC__uint64 samples_written, unsigned frames_written, unsigned total_frames_estimate, void *client_data); /*********************************************************************** * * Class constructor/destructor * ***********************************************************************/ /** Create a new stream encoder instance. The instance is created with * default settings; see the individual FLAC__stream_encoder_set_*() * functions for each setting's default. * * \retval FLAC__StreamEncoder* * \c NULL if there was an error allocating memory, else the new instance. */ FLAC_API FLAC__StreamEncoder *FLAC__stream_encoder_new(void); /** Free an encoder instance. Deletes the object pointed to by \a encoder. * * \param encoder A pointer to an existing encoder. * \assert * \code encoder != NULL \endcode */ FLAC_API void FLAC__stream_encoder_delete(FLAC__StreamEncoder *encoder); /*********************************************************************** * * Public class method prototypes * ***********************************************************************/ /** Set the serial number for the FLAC stream to use in the Ogg container. * * \note * This does not need to be set for native FLAC encoding. * * \note * It is recommended to set a serial number explicitly as the default of '0' * may collide with other streams. * * \default \c 0 * \param encoder An encoder instance to set. * \param serial_number See above. * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_ogg_serial_number(FLAC__StreamEncoder *encoder, long serial_number); /** Set the "verify" flag. If \c true, the encoder will verify it's own * encoded output by feeding it through an internal decoder and comparing * the original signal against the decoded signal. If a mismatch occurs, * the process call will return \c false. Note that this will slow the * encoding process by the extra time required for decoding and comparison. * * \default \c false * \param encoder An encoder instance to set. * \param value Flag value (see above). * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_verify(FLAC__StreamEncoder *encoder, FLAC__bool value); /** Set the Subset flag. If \c true, * the encoder will comply with the Subset and will check the * settings during FLAC__stream_encoder_init_*() to see if all settings * comply. If \c false, the settings may take advantage of the full * range that the format allows. * * Make sure you know what it entails before setting this to \c false. * * \default \c true * \param encoder An encoder instance to set. * \param value Flag value (see above). * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_streamable_subset(FLAC__StreamEncoder *encoder, FLAC__bool value); /** Set the number of channels to be encoded. * * \default \c 2 * \param encoder An encoder instance to set. * \param value See above. * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_channels(FLAC__StreamEncoder *encoder, unsigned value); /** Set the sample resolution of the input to be encoded. * * \warning * Do not feed the encoder data that is wider than the value you * set here or you will generate an invalid stream. * * \default \c 16 * \param encoder An encoder instance to set. * \param value See above. * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_bits_per_sample(FLAC__StreamEncoder *encoder, unsigned value); /** Set the sample rate (in Hz) of the input to be encoded. * * \default \c 44100 * \param encoder An encoder instance to set. * \param value See above. * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_sample_rate(FLAC__StreamEncoder *encoder, unsigned value); /** Set the compression level * * The compression level is roughly proportional to the amount of effort * the encoder expends to compress the file. A higher level usually * means more computation but higher compression. The default level is * suitable for most applications. * * Currently the levels range from \c 0 (fastest, least compression) to * \c 8 (slowest, most compression). A value larger than \c 8 will be * treated as \c 8. * * This function automatically calls the following other \c _set_ * functions with appropriate values, so the client does not need to * unless it specifically wants to override them: * - FLAC__stream_encoder_set_do_mid_side_stereo() * - FLAC__stream_encoder_set_loose_mid_side_stereo() * - FLAC__stream_encoder_set_apodization() * - FLAC__stream_encoder_set_max_lpc_order() * - FLAC__stream_encoder_set_qlp_coeff_precision() * - FLAC__stream_encoder_set_do_qlp_coeff_prec_search() * - FLAC__stream_encoder_set_do_escape_coding() * - FLAC__stream_encoder_set_do_exhaustive_model_search() * - FLAC__stream_encoder_set_min_residual_partition_order() * - FLAC__stream_encoder_set_max_residual_partition_order() * - FLAC__stream_encoder_set_rice_parameter_search_dist() * * The actual values set for each level are: * * * * * * * * * * * * *
level * do mid-side stereo * loose mid-side stereo * apodization * max lpc order * qlp coeff precision * qlp coeff prec search * escape coding * exhaustive model search * min residual partition order * max residual partition order * rice parameter search dist *
0 false false tukey(0.5) 0 0 false false false 0 3 0
1 true true tukey(0.5) 0 0 false false false 0 3 0
2 true false tukey(0.5) 0 0 false false false 0 3 0
3 false false tukey(0.5) 6 0 false false false 0 4 0
4 true true tukey(0.5) 8 0 false false false 0 4 0
5 true false tukey(0.5) 8 0 false false false 0 5 0
6 true false tukey(0.5) 8 0 false false false 0 6 0
7 true false tukey(0.5) 8 0 false false true 0 6 0
8 true false tukey(0.5) 12 0 false false true 0 6 0
* * \default \c 5 * \param encoder An encoder instance to set. * \param value See above. * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_compression_level(FLAC__StreamEncoder *encoder, unsigned value); /** Set the blocksize to use while encoding. * * The number of samples to use per frame. Use \c 0 to let the encoder * estimate a blocksize; this is usually best. * * \default \c 0 * \param encoder An encoder instance to set. * \param value See above. * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_blocksize(FLAC__StreamEncoder *encoder, unsigned value); /** Set to \c true to enable mid-side encoding on stereo input. The * number of channels must be 2 for this to have any effect. Set to * \c false to use only independent channel coding. * * \default \c false * \param encoder An encoder instance to set. * \param value Flag value (see above). * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_do_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value); /** Set to \c true to enable adaptive switching between mid-side and * left-right encoding on stereo input. Set to \c false to use * exhaustive searching. Setting this to \c true requires * FLAC__stream_encoder_set_do_mid_side_stereo() to also be set to * \c true in order to have any effect. * * \default \c false * \param encoder An encoder instance to set. * \param value Flag value (see above). * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_loose_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value); /** Sets the apodization function(s) the encoder will use when windowing * audio data for LPC analysis. * * The \a specification is a plain ASCII string which specifies exactly * which functions to use. There may be more than one (up to 32), * separated by \c ';' characters. Some functions take one or more * comma-separated arguments in parentheses. * * The available functions are \c bartlett, \c bartlett_hann, * \c blackman, \c blackman_harris_4term_92db, \c connes, \c flattop, * \c gauss(STDDEV), \c hamming, \c hann, \c kaiser_bessel, \c nuttall, * \c rectangle, \c triangle, \c tukey(P), \c welch. * * For \c gauss(STDDEV), STDDEV specifies the standard deviation * (0blocksize / (2 ^ order). * * Set both min and max values to \c 0 to force a single context, * whose Rice parameter is based on the residual signal variance. * Otherwise, set a min and max order, and the encoder will search * all orders, using the mean of each context for its Rice parameter, * and use the best. * * \default \c 0 * \param encoder An encoder instance to set. * \param value See above. * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_min_residual_partition_order(FLAC__StreamEncoder *encoder, unsigned value); /** Set the maximum partition order to search when coding the residual. * This is used in tandem with * FLAC__stream_encoder_set_min_residual_partition_order(). * * The partition order determines the context size in the residual. * The context size will be approximately blocksize / (2 ^ order). * * Set both min and max values to \c 0 to force a single context, * whose Rice parameter is based on the residual signal variance. * Otherwise, set a min and max order, and the encoder will search * all orders, using the mean of each context for its Rice parameter, * and use the best. * * \default \c 0 * \param encoder An encoder instance to set. * \param value See above. * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_max_residual_partition_order(FLAC__StreamEncoder *encoder, unsigned value); /** Deprecated. Setting this value has no effect. * * \default \c 0 * \param encoder An encoder instance to set. * \param value See above. * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_rice_parameter_search_dist(FLAC__StreamEncoder *encoder, unsigned value); /** Set an estimate of the total samples that will be encoded. * This is merely an estimate and may be set to \c 0 if unknown. * This value will be written to the STREAMINFO block before encoding, * and can remove the need for the caller to rewrite the value later * if the value is known before encoding. * * \default \c 0 * \param encoder An encoder instance to set. * \param value See above. * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_total_samples_estimate(FLAC__StreamEncoder *encoder, FLAC__uint64 value); /** Set the metadata blocks to be emitted to the stream before encoding. * A value of \c NULL, \c 0 implies no metadata; otherwise, supply an * array of pointers to metadata blocks. The array is non-const since * the encoder may need to change the \a is_last flag inside them, and * in some cases update seek point offsets. Otherwise, the encoder will * not modify or free the blocks. It is up to the caller to free the * metadata blocks after encoding finishes. * * \note * The encoder stores only copies of the pointers in the \a metadata array; * the metadata blocks themselves must survive at least until after * FLAC__stream_encoder_finish() returns. Do not free the blocks until then. * * \note * The STREAMINFO block is always written and no STREAMINFO block may * occur in the supplied array. * * \note * By default the encoder does not create a SEEKTABLE. If one is supplied * in the \a metadata array, but the client has specified that it does not * support seeking, then the SEEKTABLE will be written verbatim. However * by itself this is not very useful as the client will not know the stream * offsets for the seekpoints ahead of time. In order to get a proper * seektable the client must support seeking. See next note. * * \note * SEEKTABLE blocks are handled specially. Since you will not know * the values for the seek point stream offsets, you should pass in * a SEEKTABLE 'template', that is, a SEEKTABLE object with the * required sample numbers (or placeholder points), with \c 0 for the * \a frame_samples and \a stream_offset fields for each point. If the * client has specified that it supports seeking by providing a seek * callback to FLAC__stream_encoder_init_stream() or both seek AND read * callback to FLAC__stream_encoder_init_ogg_stream() (or by using * FLAC__stream_encoder_init*_file() or FLAC__stream_encoder_init*_FILE()), * then while it is encoding the encoder will fill the stream offsets in * for you and when encoding is finished, it will seek back and write the * real values into the SEEKTABLE block in the stream. There are helper * routines for manipulating seektable template blocks; see metadata.h: * FLAC__metadata_object_seektable_template_*(). If the client does * not support seeking, the SEEKTABLE will have inaccurate offsets which * will slow down or remove the ability to seek in the FLAC stream. * * \note * The encoder instance \b will modify the first \c SEEKTABLE block * as it transforms the template to a valid seektable while encoding, * but it is still up to the caller to free all metadata blocks after * encoding. * * \note * A VORBIS_COMMENT block may be supplied. The vendor string in it * will be ignored. libFLAC will use it's own vendor string. libFLAC * will not modify the passed-in VORBIS_COMMENT's vendor string, it * will simply write it's own into the stream. If no VORBIS_COMMENT * block is present in the \a metadata array, libFLAC will write an * empty one, containing only the vendor string. * * \note The Ogg FLAC mapping requires that the VORBIS_COMMENT block be * the second metadata block of the stream. The encoder already supplies * the STREAMINFO block automatically. If \a metadata does not contain a * VORBIS_COMMENT block, the encoder will supply that too. Otherwise, if * \a metadata does contain a VORBIS_COMMENT block and it is not the * first, the init function will reorder \a metadata by moving the * VORBIS_COMMENT block to the front; the relative ordering of the other * blocks will remain as they were. * * \note The Ogg FLAC mapping limits the number of metadata blocks per * stream to \c 65535. If \a num_blocks exceeds this the function will * return \c false. * * \default \c NULL, 0 * \param encoder An encoder instance to set. * \param metadata See above. * \param num_blocks See above. * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * \c false if the encoder is already initialized, else \c true. * \c false if the encoder is already initialized, or if * \a num_blocks > 65535 if encoding to Ogg FLAC, else \c true. */ FLAC_API FLAC__bool FLAC__stream_encoder_set_metadata(FLAC__StreamEncoder *encoder, FLAC__StreamMetadata **metadata, unsigned num_blocks); /** Get the current encoder state. * * \param encoder An encoder instance to query. * \assert * \code encoder != NULL \endcode * \retval FLAC__StreamEncoderState * The current encoder state. */ FLAC_API FLAC__StreamEncoderState FLAC__stream_encoder_get_state(const FLAC__StreamEncoder *encoder); /** Get the state of the verify stream decoder. * Useful when the stream encoder state is * \c FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR. * * \param encoder An encoder instance to query. * \assert * \code encoder != NULL \endcode * \retval FLAC__StreamDecoderState * The verify stream decoder state. */ FLAC_API FLAC__StreamDecoderState FLAC__stream_encoder_get_verify_decoder_state(const FLAC__StreamEncoder *encoder); /** Get the current encoder state as a C string. * This version automatically resolves * \c FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR by getting the * verify decoder's state. * * \param encoder A encoder instance to query. * \assert * \code encoder != NULL \endcode * \retval const char * * The encoder state as a C string. Do not modify the contents. */ FLAC_API const char *FLAC__stream_encoder_get_resolved_state_string(const FLAC__StreamEncoder *encoder); /** Get relevant values about the nature of a verify decoder error. * Useful when the stream encoder state is * \c FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR. The arguments should * be addresses in which the stats will be returned, or NULL if value * is not desired. * * \param encoder An encoder instance to query. * \param absolute_sample The absolute sample number of the mismatch. * \param frame_number The number of the frame in which the mismatch occurred. * \param channel The channel in which the mismatch occurred. * \param sample The number of the sample (relative to the frame) in * which the mismatch occurred. * \param expected The expected value for the sample in question. * \param got The actual value returned by the decoder. * \assert * \code encoder != NULL \endcode */ FLAC_API void FLAC__stream_encoder_get_verify_decoder_error_stats(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_sample, unsigned *frame_number, unsigned *channel, unsigned *sample, FLAC__int32 *expected, FLAC__int32 *got); /** Get the "verify" flag. * * \param encoder An encoder instance to query. * \assert * \code encoder != NULL \endcode * \retval FLAC__bool * See FLAC__stream_encoder_set_verify(). */ FLAC_API FLAC__bool FLAC__stream_encoder_get_verify(const FLAC__StreamEncoder *encoder); /** Get the frame header. * * \param encoder An initialized encoder instance in the OK state. * \param buffer An array of pointers to each channel's signal. * \param samples The number of samples in one channel. * \assert * \code encoder != NULL \endcode * \code FLAC__stream_encoder_get_state(encoder) == FLAC__STREAM_ENCODER_OK \endcode * \retval FLAC__bool * \c true if successful, else \c false; in this case, check the * encoder state with FLAC__stream_encoder_get_state() to see what * went wrong. */ FLAC_API FLAC__bool FLAC__stream_encoder_process(FLAC__StreamEncoder *encoder, const FLAC__int32 * const buffer[], unsigned samples); /** Submit data for encoding. * This version allows you to supply the input data where the channels * are interleaved into a single array (i.e. channel0_sample0, * channel1_sample0, ... , channelN_sample0, channel0_sample1, ...). * The samples need not be block-aligned but they must be * sample-aligned, i.e. the first value should be channel0_sample0 * and the last value channelN_sampleM. Each sample should be a signed * integer, right-justified to the resolution set by * FLAC__stream_encoder_set_bits_per_sample(). For example, if the * resolution is 16 bits per sample, the samples should all be in the * range [-32768,32767]. * * For applications where channel order is important, channels must * follow the order as described in the * frame header. * * \param encoder An initialized encoder instance in the OK state. * \param buffer An array of channel-interleaved data (see above). * \param samples The number of samples in one channel, the same as for * FLAC__stream_encoder_process(). For example, if * encoding two channels, \c 1000 \a samples corresponds * to a \a buffer of 2000 values. * \assert * \code encoder != NULL \endcode * \code FLAC__stream_encoder_get_state(encoder) == FLAC__STREAM_ENCODER_OK \endcode * \retval FLAC__bool * \c true if successful, else \c false; in this case, check the * encoder state with FLAC__stream_encoder_get_state() to see what * went wrong. */ FLAC_API FLAC__bool FLAC__stream_encoder_process_interleaved(FLAC__StreamEncoder *encoder, const FLAC__int32 buffer[], unsigned samples); /* \} */ #ifdef __cplusplus } #endif #endif /********* End of inlined file: stream_encoder.h *********/ #ifdef _MSC_VER /* OPT: an MSVC built-in would be better */ static _inline FLAC__uint32 local_swap32_(FLAC__uint32 x) { x = ((x<<8)&0xFF00FF00) | ((x>>8)&0x00FF00FF); return (x>>16) | (x<<16); } #endif #if defined(_MSC_VER) && defined(_X86_) /* OPT: an MSVC built-in would be better */ static void local_swap32_block_(FLAC__uint32 *start, FLAC__uint32 len) { __asm { mov edx, start mov ecx, len test ecx, ecx loop1: jz done1 mov eax, [edx] bswap eax mov [edx], eax add edx, 4 dec ecx jmp short loop1 done1: } } #endif /** \mainpage * * \section intro Introduction * * This is the documentation for the FLAC C and C++ APIs. It is * highly interconnected; this introduction should give you a top * level idea of the structure and how to find the information you * need. As a prerequisite you should have at least a basic * knowledge of the FLAC format, documented * here. * * \section c_api FLAC C API * * The FLAC C API is the interface to libFLAC, a set of structures * describing the components of FLAC streams, and functions for * encoding and decoding streams, as well as manipulating FLAC * metadata in files. The public include files will be installed * in your include area (for example /usr/include/FLAC/...). * * By writing a little code and linking against libFLAC, it is * relatively easy to add FLAC support to another program. The * library is licensed under Xiph's BSD license. * Complete source code of libFLAC as well as the command-line * encoder and plugins is available and is a useful source of * examples. * * Aside from encoders and decoders, libFLAC provides a powerful * metadata interface for manipulating metadata in FLAC files. It * allows the user to add, delete, and modify FLAC metadata blocks * and it can automatically take advantage of PADDING blocks to avoid * rewriting the entire FLAC file when changing the size of the * metadata. * * libFLAC usually only requires the standard C library and C math * library. In particular, threading is not used so there is no * dependency on a thread library. However, libFLAC does not use * global variables and should be thread-safe. * * libFLAC also supports encoding to and decoding from Ogg FLAC. * However the metadata editing interfaces currently have limited * read-only support for Ogg FLAC files. * * \section cpp_api FLAC C++ API * * The FLAC C++ API is a set of classes that encapsulate the * structures and functions in libFLAC. They provide slightly more * functionality with respect to metadata but are otherwise * equivalent. For the most part, they share the same usage as * their counterparts in libFLAC, and the FLAC C API documentation * can be used as a supplement. The public include files * for the C++ API will be installed in your include area (for * example /usr/include/FLAC++/...). * * libFLAC++ is also licensed under * Xiph's BSD license. * * \section getting_started Getting Started * * A good starting point for learning the API is to browse through * the modules. Modules are logical * groupings of related functions or classes, which correspond roughly * to header files or sections of header files. Each module includes a * detailed description of the general usage of its functions or * classes. * * From there you can go on to look at the documentation of * individual functions. You can see different views of the individual * functions through the links in top bar across this page. * * If you prefer a more hands-on approach, you can jump right to some * example code. * * \section porting_guide Porting Guide * * Starting with FLAC 1.1.3 a \link porting Porting Guide \endlink * has been introduced which gives detailed instructions on how to * port your code to newer versions of FLAC. * * \section embedded_developers Embedded Developers * * libFLAC has grown larger over time as more functionality has been * included, but much of it may be unnecessary for a particular embedded * implementation. Unused parts may be pruned by some simple editing of * src/libFLAC/Makefile.am. In general, the decoders, encoders, and * metadata interface are all independent from each other. * * It is easiest to just describe the dependencies: * * - All modules depend on the \link flac_format Format \endlink module. * - The decoders and encoders depend on the bitbuffer. * - The decoder is independent of the encoder. The encoder uses the * decoder because of the verify feature, but this can be removed if * not needed. * - Parts of the metadata interface require the stream decoder (but not * the encoder). * - Ogg support is selectable through the compile time macro * \c FLAC__HAS_OGG. * * For example, if your application only requires the stream decoder, no * encoder, and no metadata interface, you can remove the stream encoder * and the metadata interface, which will greatly reduce the size of the * library. * * Also, there are several places in the libFLAC code with comments marked * with "OPT:" where a #define can be changed to enable code that might be * faster on a specific platform. Experimenting with these can yield faster * binaries. */ /** \defgroup porting Porting Guide for New Versions * * This module describes differences in the library interfaces from * version to version. It assists in the porting of code that uses * the libraries to newer versions of FLAC. * * One simple facility for making porting easier that has been added * in FLAC 1.1.3 is a set of \c #defines in \c export.h of each * library's includes (e.g. \c include/FLAC/export.h). The * \c #defines mirror the libraries' * libtool version numbers, * e.g. in libFLAC there are \c FLAC_API_VERSION_CURRENT, * \c FLAC_API_VERSION_REVISION, and \c FLAC_API_VERSION_AGE. * These can be used to support multiple versions of an API during the * transition phase, e.g. * * \code * #if !defined(FLAC_API_VERSION_CURRENT) || FLAC_API_VERSION_CURRENT <= 7 * legacy code * #else * new code * #endif * \endcode * * The the source will work for multiple versions and the legacy code can * easily be removed when the transition is complete. * * Another available symbol is FLAC_API_SUPPORTS_OGG_FLAC (defined in * include/FLAC/export.h), which can be used to determine whether or not * the library has been compiled with support for Ogg FLAC. This is * simpler than trying to call an Ogg init function and catching the * error. */ /** \defgroup porting_1_1_2_to_1_1_3 Porting from FLAC 1.1.2 to 1.1.3 * \ingroup porting * * \brief * This module describes porting from FLAC 1.1.2 to FLAC 1.1.3. * * The main change between the APIs in 1.1.2 and 1.1.3 is that they have * been simplified. First, libOggFLAC has been merged into libFLAC and * libOggFLAC++ has been merged into libFLAC++. Second, both the three * decoding layers and three encoding layers have been merged into a * single stream decoder and stream encoder. That is, the functionality * of FLAC__SeekableStreamDecoder and FLAC__FileDecoder has been merged * into FLAC__StreamDecoder, and FLAC__SeekableStreamEncoder and * FLAC__FileEncoder into FLAC__StreamEncoder. Only the * FLAC__StreamDecoder and FLAC__StreamEncoder remain. What this means * is there is now a single API that can be used to encode or decode * streams to/from native FLAC or Ogg FLAC and the single API can work * on both seekable and non-seekable streams. * * Instead of creating an encoder or decoder of a certain layer, now the * client will always create a FLAC__StreamEncoder or * FLAC__StreamDecoder. The old layers are now differentiated by the * initialization function. For example, for the decoder, * FLAC__stream_decoder_init() has been replaced by * FLAC__stream_decoder_init_stream(). This init function takes * callbacks for the I/O, and the seeking callbacks are optional. This * allows the client to use the same object for seekable and * non-seekable streams. For decoding a FLAC file directly, the client * can use FLAC__stream_decoder_init_file() and pass just a filename * and fewer callbacks; most of the other callbacks are supplied * internally. For situations where fopen()ing by filename is not * possible (e.g. Unicode filenames on Windows) the client can instead * open the file itself and supply the FILE* to * FLAC__stream_decoder_init_FILE(). The init functions now returns a * FLAC__StreamDecoderInitStatus instead of FLAC__StreamDecoderState. * Since the callbacks and client data are now passed to the init * function, the FLAC__stream_decoder_set_*_callback() functions and * FLAC__stream_decoder_set_client_data() are no longer needed. The * rest of the calls to the decoder are the same as before. * * There are counterpart init functions for Ogg FLAC, e.g. * FLAC__stream_decoder_init_ogg_stream(). All the rest of the calls * and callbacks are the same as for native FLAC. * * As an example, in FLAC 1.1.2 a seekable stream decoder would have * been set up like so: * * \code * FLAC__SeekableStreamDecoder *decoder = FLAC__seekable_stream_decoder_new(); * if(decoder == NULL) do_something; * FLAC__seekable_stream_decoder_set_md5_checking(decoder, true); * [... other settings ...] * FLAC__seekable_stream_decoder_set_read_callback(decoder, my_read_callback); * FLAC__seekable_stream_decoder_set_seek_callback(decoder, my_seek_callback); * FLAC__seekable_stream_decoder_set_tell_callback(decoder, my_tell_callback); * FLAC__seekable_stream_decoder_set_length_callback(decoder, my_length_callback); * FLAC__seekable_stream_decoder_set_eof_callback(decoder, my_eof_callback); * FLAC__seekable_stream_decoder_set_write_callback(decoder, my_write_callback); * FLAC__seekable_stream_decoder_set_metadata_callback(decoder, my_metadata_callback); * FLAC__seekable_stream_decoder_set_error_callback(decoder, my_error_callback); * FLAC__seekable_stream_decoder_set_client_data(decoder, my_client_data); * if(FLAC__seekable_stream_decoder_init(decoder) != FLAC__SEEKABLE_STREAM_DECODER_OK) do_something; * \endcode * * In FLAC 1.1.3 it is like this: * * \code * FLAC__StreamDecoder *decoder = FLAC__stream_decoder_new(); * if(decoder == NULL) do_something; * FLAC__stream_decoder_set_md5_checking(decoder, true); * [... other settings ...] * if(FLAC__stream_decoder_init_stream( * decoder, * my_read_callback, * my_seek_callback, // or NULL * my_tell_callback, // or NULL * my_length_callback, // or NULL * my_eof_callback, // or NULL * my_write_callback, * my_metadata_callback, // or NULL * my_error_callback, * my_client_data * ) != FLAC__STREAM_DECODER_INIT_STATUS_OK) do_something; * \endcode * * or you could do; * * \code * [...] * FILE *file = fopen("somefile.flac","rb"); * if(file == NULL) do_somthing; * if(FLAC__stream_decoder_init_FILE( * decoder, * file, * my_write_callback, * my_metadata_callback, // or NULL * my_error_callback, * my_client_data * ) != FLAC__STREAM_DECODER_INIT_STATUS_OK) do_something; * \endcode * * or just: * * \code * [...] * if(FLAC__stream_decoder_init_file( * decoder, * "somefile.flac", * my_write_callback, * my_metadata_callback, // or NULL * my_error_callback, * my_client_data * ) != FLAC__STREAM_DECODER_INIT_STATUS_OK) do_something; * \endcode * * Another small change to the decoder is in how it handles unparseable * streams. Before, when the decoder found an unparseable stream * (reserved for when the decoder encounters a stream from a future * encoder that it can't parse), it changed the state to * \c FLAC__STREAM_DECODER_UNPARSEABLE_STREAM. Now the decoder instead * drops sync and calls the error callback with a new error code * \c FLAC__STREAM_DECODER_ERROR_STATUS_UNPARSEABLE_STREAM. This is * more robust. If your error callback does not discriminate on the the * error state, your code does not need to be changed. * * The encoder now has a new setting: * FLAC__stream_encoder_set_apodization(). This is for setting the * method used to window the data before LPC analysis. You only need to * add a call to this function if the default is not suitable. There * are also two new convenience functions that may be useful: * FLAC__metadata_object_cuesheet_calculate_cddb_id() and * FLAC__metadata_get_cuesheet(). * * The \a bytes parameter to FLAC__StreamDecoderReadCallback, * FLAC__StreamEncoderReadCallback, and FLAC__StreamEncoderWriteCallback * is now \c size_t instead of \c unsigned. */ /** \defgroup porting_1_1_3_to_1_1_4 Porting from FLAC 1.1.3 to 1.1.4 * \ingroup porting * * \brief * This module describes porting from FLAC 1.1.3 to FLAC 1.1.4. * * There were no changes to any of the interfaces from 1.1.3 to 1.1.4. * There was a slight change in the implementation of * FLAC__stream_encoder_set_metadata(); the function now makes a copy * of the \a metadata array of pointers so the client no longer needs * to maintain it after the call. The objects themselves that are * pointed to by the array are still not copied though and must be * maintained until the call to FLAC__stream_encoder_finish(). */ /** \defgroup porting_1_1_4_to_1_2_0 Porting from FLAC 1.1.4 to 1.2.0 * \ingroup porting * * \brief * This module describes porting from FLAC 1.1.4 to FLAC 1.2.0. * * There were only very minor changes to the interfaces from 1.1.4 to 1.2.0. * In libFLAC, \c FLAC__format_sample_rate_is_subset() was added. * In libFLAC++, \c FLAC::Decoder::Stream::get_decode_position() was added. * * Finally, value of the constant \c FLAC__FRAME_HEADER_RESERVED_LEN * has changed to reflect the conversion of one of the reserved bits * into active use. It used to be \c 2 and now is \c 1. However the * FLAC frame header length has not changed, so to skip the proper * number of bits, use \c FLAC__FRAME_HEADER_RESERVED_LEN + * \c FLAC__FRAME_HEADER_BLOCKING_STRATEGY_LEN */ /** \defgroup flac FLAC C API * * The FLAC C API is the interface to libFLAC, a set of structures * describing the components of FLAC streams, and functions for * encoding and decoding streams, as well as manipulating FLAC * metadata in files. * * You should start with the format components as all other modules * are dependent on it. */ #endif /********* End of inlined file: all.h *********/ /********* Start of inlined file: bitmath.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif /********* Start of inlined file: bitmath.h *********/ #ifndef FLAC__PRIVATE__BITMATH_H #define FLAC__PRIVATE__BITMATH_H unsigned FLAC__bitmath_ilog2(FLAC__uint32 v); unsigned FLAC__bitmath_ilog2_wide(FLAC__uint64 v); unsigned FLAC__bitmath_silog2(int v); unsigned FLAC__bitmath_silog2_wide(FLAC__int64 v); #endif /********* End of inlined file: bitmath.h *********/ /* An example of what FLAC__bitmath_ilog2() computes: * * ilog2( 0) = assertion failure * ilog2( 1) = 0 * ilog2( 2) = 1 * ilog2( 3) = 1 * ilog2( 4) = 2 * ilog2( 5) = 2 * ilog2( 6) = 2 * ilog2( 7) = 2 * ilog2( 8) = 3 * ilog2( 9) = 3 * ilog2(10) = 3 * ilog2(11) = 3 * ilog2(12) = 3 * ilog2(13) = 3 * ilog2(14) = 3 * ilog2(15) = 3 * ilog2(16) = 4 * ilog2(17) = 4 * ilog2(18) = 4 */ unsigned FLAC__bitmath_ilog2(FLAC__uint32 v) { unsigned l = 0; FLAC__ASSERT(v > 0); while(v >>= 1) l++; return l; } unsigned FLAC__bitmath_ilog2_wide(FLAC__uint64 v) { unsigned l = 0; FLAC__ASSERT(v > 0); while(v >>= 1) l++; return l; } /* An example of what FLAC__bitmath_silog2() computes: * * silog2(-10) = 5 * silog2(- 9) = 5 * silog2(- 8) = 4 * silog2(- 7) = 4 * silog2(- 6) = 4 * silog2(- 5) = 4 * silog2(- 4) = 3 * silog2(- 3) = 3 * silog2(- 2) = 2 * silog2(- 1) = 2 * silog2( 0) = 0 * silog2( 1) = 2 * silog2( 2) = 3 * silog2( 3) = 3 * silog2( 4) = 4 * silog2( 5) = 4 * silog2( 6) = 4 * silog2( 7) = 4 * silog2( 8) = 5 * silog2( 9) = 5 * silog2( 10) = 5 */ unsigned FLAC__bitmath_silog2(int v) { while(1) { if(v == 0) { return 0; } else if(v > 0) { unsigned l = 0; while(v) { l++; v >>= 1; } return l+1; } else if(v == -1) { return 2; } else { v++; v = -v; } } } unsigned FLAC__bitmath_silog2_wide(FLAC__int64 v) { while(1) { if(v == 0) { return 0; } else if(v > 0) { unsigned l = 0; while(v) { l++; v >>= 1; } return l+1; } else if(v == -1) { return 2; } else { v++; v = -v; } } } #endif /********* End of inlined file: bitmath.c *********/ /********* Start of inlined file: bitreader.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif #include /* for malloc() */ #include /* for memcpy(), memset() */ #ifdef _MSC_VER #include /* for ntohl() */ #elif defined FLAC__SYS_DARWIN #include /* for ntohl() */ #elif defined __MINGW32__ #include /* for ntohl() */ #else #include /* for ntohl() */ #endif /********* Start of inlined file: bitreader.h *********/ #ifndef FLAC__PRIVATE__BITREADER_H #define FLAC__PRIVATE__BITREADER_H #include /* for FILE */ /********* Start of inlined file: cpu.h *********/ #ifndef FLAC__PRIVATE__CPU_H #define FLAC__PRIVATE__CPU_H #ifdef HAVE_CONFIG_H #include #endif typedef enum { FLAC__CPUINFO_TYPE_IA32, FLAC__CPUINFO_TYPE_PPC, FLAC__CPUINFO_TYPE_UNKNOWN } FLAC__CPUInfo_Type; typedef struct { FLAC__bool cpuid; FLAC__bool bswap; FLAC__bool cmov; FLAC__bool mmx; FLAC__bool fxsr; FLAC__bool sse; FLAC__bool sse2; FLAC__bool sse3; FLAC__bool ssse3; FLAC__bool _3dnow; FLAC__bool ext3dnow; FLAC__bool extmmx; } FLAC__CPUInfo_IA32; typedef struct { FLAC__bool altivec; FLAC__bool ppc64; } FLAC__CPUInfo_PPC; typedef struct { FLAC__bool use_asm; FLAC__CPUInfo_Type type; union { FLAC__CPUInfo_IA32 ia32; FLAC__CPUInfo_PPC ppc; } data; } FLAC__CPUInfo; void FLAC__cpu_info(FLAC__CPUInfo *info); #ifndef FLAC__NO_ASM #ifdef FLAC__CPU_IA32 #ifdef FLAC__HAS_NASM FLAC__uint32 FLAC__cpu_have_cpuid_asm_ia32(void); void FLAC__cpu_info_asm_ia32(FLAC__uint32 *flags_edx, FLAC__uint32 *flags_ecx); FLAC__uint32 FLAC__cpu_info_extended_amd_asm_ia32(void); #endif #endif #endif #endif /********* End of inlined file: cpu.h *********/ /* * opaque structure definition */ struct FLAC__BitReader; typedef struct FLAC__BitReader FLAC__BitReader; typedef FLAC__bool (*FLAC__BitReaderReadCallback)(FLAC__byte buffer[], size_t *bytes, void *client_data); /* * construction, deletion, initialization, etc functions */ FLAC__BitReader *FLAC__bitreader_new(void); void FLAC__bitreader_delete(FLAC__BitReader *br); FLAC__bool FLAC__bitreader_init(FLAC__BitReader *br, FLAC__CPUInfo cpu, FLAC__BitReaderReadCallback rcb, void *cd); void FLAC__bitreader_free(FLAC__BitReader *br); /* does not 'free(br)' */ FLAC__bool FLAC__bitreader_clear(FLAC__BitReader *br); void FLAC__bitreader_dump(const FLAC__BitReader *br, FILE *out); /* * CRC functions */ void FLAC__bitreader_reset_read_crc16(FLAC__BitReader *br, FLAC__uint16 seed); FLAC__uint16 FLAC__bitreader_get_read_crc16(FLAC__BitReader *br); /* * info functions */ FLAC__bool FLAC__bitreader_is_consumed_byte_aligned(const FLAC__BitReader *br); unsigned FLAC__bitreader_bits_left_for_byte_alignment(const FLAC__BitReader *br); unsigned FLAC__bitreader_get_input_bits_unconsumed(const FLAC__BitReader *br); /* * read functions */ FLAC__bool FLAC__bitreader_read_raw_uint32(FLAC__BitReader *br, FLAC__uint32 *val, unsigned bits); FLAC__bool FLAC__bitreader_read_raw_int32(FLAC__BitReader *br, FLAC__int32 *val, unsigned bits); FLAC__bool FLAC__bitreader_read_raw_uint64(FLAC__BitReader *br, FLAC__uint64 *val, unsigned bits); FLAC__bool FLAC__bitreader_read_uint32_little_endian(FLAC__BitReader *br, FLAC__uint32 *val); /*only for bits=32*/ FLAC__bool FLAC__bitreader_skip_bits_no_crc(FLAC__BitReader *br, unsigned bits); /* WATCHOUT: does not CRC the skipped data! */ /*@@@@ add to unit tests */ FLAC__bool FLAC__bitreader_skip_byte_block_aligned_no_crc(FLAC__BitReader *br, unsigned nvals); /* WATCHOUT: does not CRC the read data! */ FLAC__bool FLAC__bitreader_read_byte_block_aligned_no_crc(FLAC__BitReader *br, FLAC__byte *val, unsigned nvals); /* WATCHOUT: does not CRC the read data! */ FLAC__bool FLAC__bitreader_read_unary_unsigned(FLAC__BitReader *br, unsigned *val); FLAC__bool FLAC__bitreader_read_rice_signed(FLAC__BitReader *br, int *val, unsigned parameter); FLAC__bool FLAC__bitreader_read_rice_signed_block(FLAC__BitReader *br, int vals[], unsigned nvals, unsigned parameter); #ifndef FLAC__NO_ASM # ifdef FLAC__CPU_IA32 # ifdef FLAC__HAS_NASM FLAC__bool FLAC__bitreader_read_rice_signed_block_asm_ia32_bswap(FLAC__BitReader *br, int vals[], unsigned nvals, unsigned parameter); # endif # endif #endif #if 0 /* UNUSED */ FLAC__bool FLAC__bitreader_read_golomb_signed(FLAC__BitReader *br, int *val, unsigned parameter); FLAC__bool FLAC__bitreader_read_golomb_unsigned(FLAC__BitReader *br, unsigned *val, unsigned parameter); #endif FLAC__bool FLAC__bitreader_read_utf8_uint32(FLAC__BitReader *br, FLAC__uint32 *val, FLAC__byte *raw, unsigned *rawlen); FLAC__bool FLAC__bitreader_read_utf8_uint64(FLAC__BitReader *br, FLAC__uint64 *val, FLAC__byte *raw, unsigned *rawlen); FLAC__bool bitreader_read_from_client_(FLAC__BitReader *br); #endif /********* End of inlined file: bitreader.h *********/ /********* Start of inlined file: crc.h *********/ #ifndef FLAC__PRIVATE__CRC_H #define FLAC__PRIVATE__CRC_H /* 8 bit CRC generator, MSB shifted first ** polynomial = x^8 + x^2 + x^1 + x^0 ** init = 0 */ extern FLAC__byte const FLAC__crc8_table[256]; #define FLAC__CRC8_UPDATE(data, crc) (crc) = FLAC__crc8_table[(crc) ^ (data)]; void FLAC__crc8_update(const FLAC__byte data, FLAC__uint8 *crc); void FLAC__crc8_update_block(const FLAC__byte *data, unsigned len, FLAC__uint8 *crc); FLAC__uint8 FLAC__crc8(const FLAC__byte *data, unsigned len); /* 16 bit CRC generator, MSB shifted first ** polynomial = x^16 + x^15 + x^2 + x^0 ** init = 0 */ extern unsigned FLAC__crc16_table[256]; #define FLAC__CRC16_UPDATE(data, crc) (((((crc)<<8) & 0xffff) ^ FLAC__crc16_table[((crc)>>8) ^ (data)])) /* this alternate may be faster on some systems/compilers */ #if 0 #define FLAC__CRC16_UPDATE(data, crc) ((((crc)<<8) ^ FLAC__crc16_table[((crc)>>8) ^ (data)]) & 0xffff) #endif unsigned FLAC__crc16(const FLAC__byte *data, unsigned len); #endif /********* End of inlined file: crc.h *********/ /* Things should be fastest when this matches the machine word size */ /* WATCHOUT: if you change this you must also change the following #defines down to COUNT_ZERO_MSBS below to match */ /* WATCHOUT: there are a few places where the code will not work unless brword is >= 32 bits wide */ /* also, some sections currently only have fast versions for 4 or 8 bytes per word */ typedef FLAC__uint32 brword; #define FLAC__BYTES_PER_WORD 4 #define FLAC__BITS_PER_WORD 32 #define FLAC__WORD_ALL_ONES ((FLAC__uint32)0xffffffff) /* SWAP_BE_WORD_TO_HOST swaps bytes in a brword (which is always big-endian) if necessary to match host byte order */ #if WORDS_BIGENDIAN #define SWAP_BE_WORD_TO_HOST(x) (x) #else #if defined (_MSC_VER) && defined (_X86_) #define SWAP_BE_WORD_TO_HOST(x) local_swap32_(x) #else #define SWAP_BE_WORD_TO_HOST(x) ntohl(x) #endif #endif /* counts the # of zero MSBs in a word */ #define COUNT_ZERO_MSBS(word) ( \ (word) <= 0xffff ? \ ( (word) <= 0xff? byte_to_unary_table[word] + 24 : byte_to_unary_table[(word) >> 8] + 16 ) : \ ( (word) <= 0xffffff? byte_to_unary_table[word >> 16] + 8 : byte_to_unary_table[(word) >> 24] ) \ ) /* this alternate might be slightly faster on some systems/compilers: */ #define COUNT_ZERO_MSBS2(word) ( (word) <= 0xff ? byte_to_unary_table[word] + 24 : ((word) <= 0xffff ? byte_to_unary_table[(word) >> 8] + 16 : ((word) <= 0xffffff ? byte_to_unary_table[(word) >> 16] + 8 : byte_to_unary_table[(word) >> 24])) ) /* * This should be at least twice as large as the largest number of words * required to represent any 'number' (in any encoding) you are going to * read. With FLAC this is on the order of maybe a few hundred bits. * If the buffer is smaller than that, the decoder won't be able to read * in a whole number that is in a variable length encoding (e.g. Rice). * But to be practical it should be at least 1K bytes. * * Increase this number to decrease the number of read callbacks, at the * expense of using more memory. Or decrease for the reverse effect, * keeping in mind the limit from the first paragraph. The optimal size * also depends on the CPU cache size and other factors; some twiddling * may be necessary to squeeze out the best performance. */ static const unsigned FLAC__BITREADER_DEFAULT_CAPACITY = 65536u / FLAC__BITS_PER_WORD; /* in words */ static const unsigned char byte_to_unary_table[] = { 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; #ifdef min #undef min #endif #define min(x,y) ((x)<(y)?(x):(y)) #ifdef max #undef max #endif #define max(x,y) ((x)>(y)?(x):(y)) /* adjust for compilers that can't understand using LLU suffix for uint64_t literals */ #ifdef _MSC_VER #define FLAC__U64L(x) x #else #define FLAC__U64L(x) x##LLU #endif #ifndef FLaC__INLINE #define FLaC__INLINE #endif /* WATCHOUT: assembly routines rely on the order in which these fields are declared */ struct FLAC__BitReader { /* any partially-consumed word at the head will stay right-justified as bits are consumed from the left */ /* any incomplete word at the tail will be left-justified, and bytes from the read callback are added on the right */ brword *buffer; unsigned capacity; /* in words */ unsigned words; /* # of completed words in buffer */ unsigned bytes; /* # of bytes in incomplete word at buffer[words] */ unsigned consumed_words; /* #words ... */ unsigned consumed_bits; /* ... + (#bits of head word) already consumed from the front of buffer */ unsigned read_crc16; /* the running frame CRC */ unsigned crc16_align; /* the number of bits in the current consumed word that should not be CRC'd */ FLAC__BitReaderReadCallback read_callback; void *client_data; FLAC__CPUInfo cpu_info; }; static FLaC__INLINE void crc16_update_word_(FLAC__BitReader *br, brword word) { register unsigned crc = br->read_crc16; #if FLAC__BYTES_PER_WORD == 4 switch(br->crc16_align) { case 0: crc = FLAC__CRC16_UPDATE((unsigned)(word >> 24), crc); case 8: crc = FLAC__CRC16_UPDATE((unsigned)((word >> 16) & 0xff), crc); case 16: crc = FLAC__CRC16_UPDATE((unsigned)((word >> 8) & 0xff), crc); case 24: br->read_crc16 = FLAC__CRC16_UPDATE((unsigned)(word & 0xff), crc); } #elif FLAC__BYTES_PER_WORD == 8 switch(br->crc16_align) { case 0: crc = FLAC__CRC16_UPDATE((unsigned)(word >> 56), crc); case 8: crc = FLAC__CRC16_UPDATE((unsigned)((word >> 48) & 0xff), crc); case 16: crc = FLAC__CRC16_UPDATE((unsigned)((word >> 40) & 0xff), crc); case 24: crc = FLAC__CRC16_UPDATE((unsigned)((word >> 32) & 0xff), crc); case 32: crc = FLAC__CRC16_UPDATE((unsigned)((word >> 24) & 0xff), crc); case 40: crc = FLAC__CRC16_UPDATE((unsigned)((word >> 16) & 0xff), crc); case 48: crc = FLAC__CRC16_UPDATE((unsigned)((word >> 8) & 0xff), crc); case 56: br->read_crc16 = FLAC__CRC16_UPDATE((unsigned)(word & 0xff), crc); } #else for( ; br->crc16_align < FLAC__BITS_PER_WORD; br->crc16_align += 8) crc = FLAC__CRC16_UPDATE((unsigned)((word >> (FLAC__BITS_PER_WORD-8-br->crc16_align)) & 0xff), crc); br->read_crc16 = crc; #endif br->crc16_align = 0; } /* would be static except it needs to be called by asm routines */ FLAC__bool bitreader_read_from_client_(FLAC__BitReader *br) { unsigned start, end; size_t bytes; FLAC__byte *target; /* first shift the unconsumed buffer data toward the front as much as possible */ if(br->consumed_words > 0) { start = br->consumed_words; end = br->words + (br->bytes? 1:0); memmove(br->buffer, br->buffer+start, FLAC__BYTES_PER_WORD * (end - start)); br->words -= start; br->consumed_words = 0; } /* * set the target for reading, taking into account word alignment and endianness */ bytes = (br->capacity - br->words) * FLAC__BYTES_PER_WORD - br->bytes; if(bytes == 0) return false; /* no space left, buffer is too small; see note for FLAC__BITREADER_DEFAULT_CAPACITY */ target = ((FLAC__byte*)(br->buffer+br->words)) + br->bytes; /* before reading, if the existing reader looks like this (say brword is 32 bits wide) * bitstream : 11 22 33 44 55 br->words=1 br->bytes=1 (partial tail word is left-justified) * buffer[BE]: 11 22 33 44 55 ?? ?? ?? (shown layed out as bytes sequentially in memory) * buffer[LE]: 44 33 22 11 ?? ?? ?? 55 (?? being don't-care) * ^^-------target, bytes=3 * on LE machines, have to byteswap the odd tail word so nothing is * overwritten: */ #if WORDS_BIGENDIAN #else if(br->bytes) br->buffer[br->words] = SWAP_BE_WORD_TO_HOST(br->buffer[br->words]); #endif /* now it looks like: * bitstream : 11 22 33 44 55 br->words=1 br->bytes=1 * buffer[BE]: 11 22 33 44 55 ?? ?? ?? * buffer[LE]: 44 33 22 11 55 ?? ?? ?? * ^^-------target, bytes=3 */ /* read in the data; note that the callback may return a smaller number of bytes */ if(!br->read_callback(target, &bytes, br->client_data)) return false; /* after reading bytes 66 77 88 99 AA BB CC DD EE FF from the client: * bitstream : 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF * buffer[BE]: 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF ?? * buffer[LE]: 44 33 22 11 55 66 77 88 99 AA BB CC DD EE FF ?? * now have to byteswap on LE machines: */ #if WORDS_BIGENDIAN #else end = (br->words*FLAC__BYTES_PER_WORD + br->bytes + bytes + (FLAC__BYTES_PER_WORD-1)) / FLAC__BYTES_PER_WORD; # if defined(_MSC_VER) && defined (_X86_) && (FLAC__BYTES_PER_WORD == 4) if(br->cpu_info.type == FLAC__CPUINFO_TYPE_IA32 && br->cpu_info.data.ia32.bswap) { start = br->words; local_swap32_block_(br->buffer + start, end - start); } else # endif for(start = br->words; start < end; start++) br->buffer[start] = SWAP_BE_WORD_TO_HOST(br->buffer[start]); #endif /* now it looks like: * bitstream : 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF * buffer[BE]: 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF ?? * buffer[LE]: 44 33 22 11 88 77 66 55 CC BB AA 99 ?? FF EE DD * finally we'll update the reader values: */ end = br->words*FLAC__BYTES_PER_WORD + br->bytes + bytes; br->words = end / FLAC__BYTES_PER_WORD; br->bytes = end % FLAC__BYTES_PER_WORD; return true; } /*********************************************************************** * * Class constructor/destructor * ***********************************************************************/ FLAC__BitReader *FLAC__bitreader_new(void) { FLAC__BitReader *br = (FLAC__BitReader*)calloc(1, sizeof(FLAC__BitReader)); /* calloc() implies: memset(br, 0, sizeof(FLAC__BitReader)); br->buffer = 0; br->capacity = 0; br->words = br->bytes = 0; br->consumed_words = br->consumed_bits = 0; br->read_callback = 0; br->client_data = 0; */ return br; } void FLAC__bitreader_delete(FLAC__BitReader *br) { FLAC__ASSERT(0 != br); FLAC__bitreader_free(br); free(br); } /*********************************************************************** * * Public class methods * ***********************************************************************/ FLAC__bool FLAC__bitreader_init(FLAC__BitReader *br, FLAC__CPUInfo cpu, FLAC__BitReaderReadCallback rcb, void *cd) { FLAC__ASSERT(0 != br); br->words = br->bytes = 0; br->consumed_words = br->consumed_bits = 0; br->capacity = FLAC__BITREADER_DEFAULT_CAPACITY; br->buffer = (brword*)malloc(sizeof(brword) * br->capacity); if(br->buffer == 0) return false; br->read_callback = rcb; br->client_data = cd; br->cpu_info = cpu; return true; } void FLAC__bitreader_free(FLAC__BitReader *br) { FLAC__ASSERT(0 != br); if(0 != br->buffer) free(br->buffer); br->buffer = 0; br->capacity = 0; br->words = br->bytes = 0; br->consumed_words = br->consumed_bits = 0; br->read_callback = 0; br->client_data = 0; } FLAC__bool FLAC__bitreader_clear(FLAC__BitReader *br) { br->words = br->bytes = 0; br->consumed_words = br->consumed_bits = 0; return true; } void FLAC__bitreader_dump(const FLAC__BitReader *br, FILE *out) { unsigned i, j; if(br == 0) { fprintf(out, "bitreader is NULL\n"); } else { fprintf(out, "bitreader: capacity=%u words=%u bytes=%u consumed: words=%u, bits=%u\n", br->capacity, br->words, br->bytes, br->consumed_words, br->consumed_bits); for(i = 0; i < br->words; i++) { fprintf(out, "%08X: ", i); for(j = 0; j < FLAC__BITS_PER_WORD; j++) if(i < br->consumed_words || (i == br->consumed_words && j < br->consumed_bits)) fprintf(out, "."); else fprintf(out, "%01u", br->buffer[i] & (1 << (FLAC__BITS_PER_WORD-j-1)) ? 1:0); fprintf(out, "\n"); } if(br->bytes > 0) { fprintf(out, "%08X: ", i); for(j = 0; j < br->bytes*8; j++) if(i < br->consumed_words || (i == br->consumed_words && j < br->consumed_bits)) fprintf(out, "."); else fprintf(out, "%01u", br->buffer[i] & (1 << (br->bytes*8-j-1)) ? 1:0); fprintf(out, "\n"); } } } void FLAC__bitreader_reset_read_crc16(FLAC__BitReader *br, FLAC__uint16 seed) { FLAC__ASSERT(0 != br); FLAC__ASSERT(0 != br->buffer); FLAC__ASSERT((br->consumed_bits & 7) == 0); br->read_crc16 = (unsigned)seed; br->crc16_align = br->consumed_bits; } FLAC__uint16 FLAC__bitreader_get_read_crc16(FLAC__BitReader *br) { FLAC__ASSERT(0 != br); FLAC__ASSERT(0 != br->buffer); FLAC__ASSERT((br->consumed_bits & 7) == 0); FLAC__ASSERT(br->crc16_align <= br->consumed_bits); /* CRC any tail bytes in a partially-consumed word */ if(br->consumed_bits) { const brword tail = br->buffer[br->consumed_words]; for( ; br->crc16_align < br->consumed_bits; br->crc16_align += 8) br->read_crc16 = FLAC__CRC16_UPDATE((unsigned)((tail >> (FLAC__BITS_PER_WORD-8-br->crc16_align)) & 0xff), br->read_crc16); } return br->read_crc16; } FLaC__INLINE FLAC__bool FLAC__bitreader_is_consumed_byte_aligned(const FLAC__BitReader *br) { return ((br->consumed_bits & 7) == 0); } FLaC__INLINE unsigned FLAC__bitreader_bits_left_for_byte_alignment(const FLAC__BitReader *br) { return 8 - (br->consumed_bits & 7); } FLaC__INLINE unsigned FLAC__bitreader_get_input_bits_unconsumed(const FLAC__BitReader *br) { return (br->words-br->consumed_words)*FLAC__BITS_PER_WORD + br->bytes*8 - br->consumed_bits; } FLaC__INLINE FLAC__bool FLAC__bitreader_read_raw_uint32(FLAC__BitReader *br, FLAC__uint32 *val, unsigned bits) { FLAC__ASSERT(0 != br); FLAC__ASSERT(0 != br->buffer); FLAC__ASSERT(bits <= 32); FLAC__ASSERT((br->capacity*FLAC__BITS_PER_WORD) * 2 >= bits); FLAC__ASSERT(br->consumed_words <= br->words); /* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */ FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32); if(bits == 0) { /* OPT: investigate if this can ever happen, maybe change to assertion */ *val = 0; return true; } while((br->words-br->consumed_words)*FLAC__BITS_PER_WORD + br->bytes*8 - br->consumed_bits < bits) { if(!bitreader_read_from_client_(br)) return false; } if(br->consumed_words < br->words) { /* if we've not consumed up to a partial tail word... */ /* OPT: taking out the consumed_bits==0 "else" case below might make things faster if less code allows the compiler to inline this function */ if(br->consumed_bits) { /* this also works when consumed_bits==0, it's just a little slower than necessary for that case */ const unsigned n = FLAC__BITS_PER_WORD - br->consumed_bits; const brword word = br->buffer[br->consumed_words]; if(bits < n) { *val = (word & (FLAC__WORD_ALL_ONES >> br->consumed_bits)) >> (n-bits); br->consumed_bits += bits; return true; } *val = word & (FLAC__WORD_ALL_ONES >> br->consumed_bits); bits -= n; crc16_update_word_(br, word); br->consumed_words++; br->consumed_bits = 0; if(bits) { /* if there are still bits left to read, there have to be less than 32 so they will all be in the next word */ *val <<= bits; *val |= (br->buffer[br->consumed_words] >> (FLAC__BITS_PER_WORD-bits)); br->consumed_bits = bits; } return true; } else { const brword word = br->buffer[br->consumed_words]; if(bits < FLAC__BITS_PER_WORD) { *val = word >> (FLAC__BITS_PER_WORD-bits); br->consumed_bits = bits; return true; } /* at this point 'bits' must be == FLAC__BITS_PER_WORD; because of previous assertions, it can't be larger */ *val = word; crc16_update_word_(br, word); br->consumed_words++; return true; } } else { /* in this case we're starting our read at a partial tail word; * the reader has guaranteed that we have at least 'bits' bits * available to read, which makes this case simpler. */ /* OPT: taking out the consumed_bits==0 "else" case below might make things faster if less code allows the compiler to inline this function */ if(br->consumed_bits) { /* this also works when consumed_bits==0, it's just a little slower than necessary for that case */ FLAC__ASSERT(br->consumed_bits + bits <= br->bytes*8); *val = (br->buffer[br->consumed_words] & (FLAC__WORD_ALL_ONES >> br->consumed_bits)) >> (FLAC__BITS_PER_WORD-br->consumed_bits-bits); br->consumed_bits += bits; return true; } else { *val = br->buffer[br->consumed_words] >> (FLAC__BITS_PER_WORD-bits); br->consumed_bits += bits; return true; } } } FLAC__bool FLAC__bitreader_read_raw_int32(FLAC__BitReader *br, FLAC__int32 *val, unsigned bits) { /* OPT: inline raw uint32 code here, or make into a macro if possible in the .h file */ if(!FLAC__bitreader_read_raw_uint32(br, (FLAC__uint32*)val, bits)) return false; /* sign-extend: */ *val <<= (32-bits); *val >>= (32-bits); return true; } FLAC__bool FLAC__bitreader_read_raw_uint64(FLAC__BitReader *br, FLAC__uint64 *val, unsigned bits) { FLAC__uint32 hi, lo; if(bits > 32) { if(!FLAC__bitreader_read_raw_uint32(br, &hi, bits-32)) return false; if(!FLAC__bitreader_read_raw_uint32(br, &lo, 32)) return false; *val = hi; *val <<= 32; *val |= lo; } else { if(!FLAC__bitreader_read_raw_uint32(br, &lo, bits)) return false; *val = lo; } return true; } FLaC__INLINE FLAC__bool FLAC__bitreader_read_uint32_little_endian(FLAC__BitReader *br, FLAC__uint32 *val) { FLAC__uint32 x8, x32 = 0; /* this doesn't need to be that fast as currently it is only used for vorbis comments */ if(!FLAC__bitreader_read_raw_uint32(br, &x32, 8)) return false; if(!FLAC__bitreader_read_raw_uint32(br, &x8, 8)) return false; x32 |= (x8 << 8); if(!FLAC__bitreader_read_raw_uint32(br, &x8, 8)) return false; x32 |= (x8 << 16); if(!FLAC__bitreader_read_raw_uint32(br, &x8, 8)) return false; x32 |= (x8 << 24); *val = x32; return true; } FLAC__bool FLAC__bitreader_skip_bits_no_crc(FLAC__BitReader *br, unsigned bits) { /* * OPT: a faster implementation is possible but probably not that useful * since this is only called a couple of times in the metadata readers. */ FLAC__ASSERT(0 != br); FLAC__ASSERT(0 != br->buffer); if(bits > 0) { const unsigned n = br->consumed_bits & 7; unsigned m; FLAC__uint32 x; if(n != 0) { m = min(8-n, bits); if(!FLAC__bitreader_read_raw_uint32(br, &x, m)) return false; bits -= m; } m = bits / 8; if(m > 0) { if(!FLAC__bitreader_skip_byte_block_aligned_no_crc(br, m)) return false; bits %= 8; } if(bits > 0) { if(!FLAC__bitreader_read_raw_uint32(br, &x, bits)) return false; } } return true; } FLAC__bool FLAC__bitreader_skip_byte_block_aligned_no_crc(FLAC__BitReader *br, unsigned nvals) { FLAC__uint32 x; FLAC__ASSERT(0 != br); FLAC__ASSERT(0 != br->buffer); FLAC__ASSERT(FLAC__bitreader_is_consumed_byte_aligned(br)); /* step 1: skip over partial head word to get word aligned */ while(nvals && br->consumed_bits) { /* i.e. run until we read 'nvals' bytes or we hit the end of the head word */ if(!FLAC__bitreader_read_raw_uint32(br, &x, 8)) return false; nvals--; } if(0 == nvals) return true; /* step 2: skip whole words in chunks */ while(nvals >= FLAC__BYTES_PER_WORD) { if(br->consumed_words < br->words) { br->consumed_words++; nvals -= FLAC__BYTES_PER_WORD; } else if(!bitreader_read_from_client_(br)) return false; } /* step 3: skip any remainder from partial tail bytes */ while(nvals) { if(!FLAC__bitreader_read_raw_uint32(br, &x, 8)) return false; nvals--; } return true; } FLAC__bool FLAC__bitreader_read_byte_block_aligned_no_crc(FLAC__BitReader *br, FLAC__byte *val, unsigned nvals) { FLAC__uint32 x; FLAC__ASSERT(0 != br); FLAC__ASSERT(0 != br->buffer); FLAC__ASSERT(FLAC__bitreader_is_consumed_byte_aligned(br)); /* step 1: read from partial head word to get word aligned */ while(nvals && br->consumed_bits) { /* i.e. run until we read 'nvals' bytes or we hit the end of the head word */ if(!FLAC__bitreader_read_raw_uint32(br, &x, 8)) return false; *val++ = (FLAC__byte)x; nvals--; } if(0 == nvals) return true; /* step 2: read whole words in chunks */ while(nvals >= FLAC__BYTES_PER_WORD) { if(br->consumed_words < br->words) { const brword word = br->buffer[br->consumed_words++]; #if FLAC__BYTES_PER_WORD == 4 val[0] = (FLAC__byte)(word >> 24); val[1] = (FLAC__byte)(word >> 16); val[2] = (FLAC__byte)(word >> 8); val[3] = (FLAC__byte)word; #elif FLAC__BYTES_PER_WORD == 8 val[0] = (FLAC__byte)(word >> 56); val[1] = (FLAC__byte)(word >> 48); val[2] = (FLAC__byte)(word >> 40); val[3] = (FLAC__byte)(word >> 32); val[4] = (FLAC__byte)(word >> 24); val[5] = (FLAC__byte)(word >> 16); val[6] = (FLAC__byte)(word >> 8); val[7] = (FLAC__byte)word; #else for(x = 0; x < FLAC__BYTES_PER_WORD; x++) val[x] = (FLAC__byte)(word >> (8*(FLAC__BYTES_PER_WORD-x-1))); #endif val += FLAC__BYTES_PER_WORD; nvals -= FLAC__BYTES_PER_WORD; } else if(!bitreader_read_from_client_(br)) return false; } /* step 3: read any remainder from partial tail bytes */ while(nvals) { if(!FLAC__bitreader_read_raw_uint32(br, &x, 8)) return false; *val++ = (FLAC__byte)x; nvals--; } return true; } FLaC__INLINE FLAC__bool FLAC__bitreader_read_unary_unsigned(FLAC__BitReader *br, unsigned *val) #if 0 /* slow but readable version */ { unsigned bit; FLAC__ASSERT(0 != br); FLAC__ASSERT(0 != br->buffer); *val = 0; while(1) { if(!FLAC__bitreader_read_bit(br, &bit)) return false; if(bit) break; else *val++; } return true; } #else { unsigned i; FLAC__ASSERT(0 != br); FLAC__ASSERT(0 != br->buffer); *val = 0; while(1) { while(br->consumed_words < br->words) { /* if we've not consumed up to a partial tail word... */ brword b = br->buffer[br->consumed_words] << br->consumed_bits; if(b) { i = COUNT_ZERO_MSBS(b); *val += i; i++; br->consumed_bits += i; if(br->consumed_bits >= FLAC__BITS_PER_WORD) { /* faster way of testing if(br->consumed_bits == FLAC__BITS_PER_WORD) */ crc16_update_word_(br, br->buffer[br->consumed_words]); br->consumed_words++; br->consumed_bits = 0; } return true; } else { *val += FLAC__BITS_PER_WORD - br->consumed_bits; crc16_update_word_(br, br->buffer[br->consumed_words]); br->consumed_words++; br->consumed_bits = 0; /* didn't find stop bit yet, have to keep going... */ } } /* at this point we've eaten up all the whole words; have to try * reading through any tail bytes before calling the read callback. * this is a repeat of the above logic adjusted for the fact we * don't have a whole word. note though if the client is feeding * us data a byte at a time (unlikely), br->consumed_bits may not * be zero. */ if(br->bytes) { const unsigned end = br->bytes * 8; brword b = (br->buffer[br->consumed_words] & (FLAC__WORD_ALL_ONES << (FLAC__BITS_PER_WORD-end))) << br->consumed_bits; if(b) { i = COUNT_ZERO_MSBS(b); *val += i; i++; br->consumed_bits += i; FLAC__ASSERT(br->consumed_bits < FLAC__BITS_PER_WORD); return true; } else { *val += end - br->consumed_bits; br->consumed_bits += end; FLAC__ASSERT(br->consumed_bits < FLAC__BITS_PER_WORD); /* didn't find stop bit yet, have to keep going... */ } } if(!bitreader_read_from_client_(br)) return false; } } #endif FLAC__bool FLAC__bitreader_read_rice_signed(FLAC__BitReader *br, int *val, unsigned parameter) { FLAC__uint32 lsbs = 0, msbs = 0; unsigned uval; FLAC__ASSERT(0 != br); FLAC__ASSERT(0 != br->buffer); FLAC__ASSERT(parameter <= 31); /* read the unary MSBs and end bit */ if(!FLAC__bitreader_read_unary_unsigned(br, (unsigned int*) &msbs)) return false; /* read the binary LSBs */ if(!FLAC__bitreader_read_raw_uint32(br, &lsbs, parameter)) return false; /* compose the value */ uval = (msbs << parameter) | lsbs; if(uval & 1) *val = -((int)(uval >> 1)) - 1; else *val = (int)(uval >> 1); return true; } /* this is by far the most heavily used reader call. it ain't pretty but it's fast */ /* a lot of the logic is copied, then adapted, from FLAC__bitreader_read_unary_unsigned() and FLAC__bitreader_read_raw_uint32() */ FLAC__bool FLAC__bitreader_read_rice_signed_block(FLAC__BitReader *br, int vals[], unsigned nvals, unsigned parameter) /* OPT: possibly faster version for use with MSVC */ #ifdef _MSC_VER { unsigned i; unsigned uval = 0; unsigned bits; /* the # of binary LSBs left to read to finish a rice codeword */ /* try and get br->consumed_words and br->consumed_bits into register; * must remember to flush them back to *br before calling other * bitwriter functions that use them, and before returning */ register unsigned cwords; register unsigned cbits; FLAC__ASSERT(0 != br); FLAC__ASSERT(0 != br->buffer); /* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */ FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32); FLAC__ASSERT(parameter < 32); /* the above two asserts also guarantee that the binary part never straddles more that 2 words, so we don't have to loop to read it */ if(nvals == 0) return true; cbits = br->consumed_bits; cwords = br->consumed_words; while(1) { /* read unary part */ while(1) { while(cwords < br->words) { /* if we've not consumed up to a partial tail word... */ brword b = br->buffer[cwords] << cbits; if(b) { #if 0 /* slower, probably due to bad register allocation... */ && defined FLAC__CPU_IA32 && !defined FLAC__NO_ASM && FLAC__BITS_PER_WORD == 32 __asm { bsr eax, b not eax and eax, 31 mov i, eax } #else i = COUNT_ZERO_MSBS(b); #endif uval += i; bits = parameter; i++; cbits += i; if(cbits == FLAC__BITS_PER_WORD) { crc16_update_word_(br, br->buffer[cwords]); cwords++; cbits = 0; } goto break1; } else { uval += FLAC__BITS_PER_WORD - cbits; crc16_update_word_(br, br->buffer[cwords]); cwords++; cbits = 0; /* didn't find stop bit yet, have to keep going... */ } } /* at this point we've eaten up all the whole words; have to try * reading through any tail bytes before calling the read callback. * this is a repeat of the above logic adjusted for the fact we * don't have a whole word. note though if the client is feeding * us data a byte at a time (unlikely), br->consumed_bits may not * be zero. */ if(br->bytes) { const unsigned end = br->bytes * 8; brword b = (br->buffer[cwords] & (FLAC__WORD_ALL_ONES << (FLAC__BITS_PER_WORD-end))) << cbits; if(b) { i = COUNT_ZERO_MSBS(b); uval += i; bits = parameter; i++; cbits += i; FLAC__ASSERT(cbits < FLAC__BITS_PER_WORD); goto break1; } else { uval += end - cbits; cbits += end; FLAC__ASSERT(cbits < FLAC__BITS_PER_WORD); /* didn't find stop bit yet, have to keep going... */ } } /* flush registers and read; bitreader_read_from_client_() does * not touch br->consumed_bits at all but we still need to set * it in case it fails and we have to return false. */ br->consumed_bits = cbits; br->consumed_words = cwords; if(!bitreader_read_from_client_(br)) return false; cwords = br->consumed_words; } break1: /* read binary part */ FLAC__ASSERT(cwords <= br->words); if(bits) { while((br->words-cwords)*FLAC__BITS_PER_WORD + br->bytes*8 - cbits < bits) { /* flush registers and read; bitreader_read_from_client_() does * not touch br->consumed_bits at all but we still need to set * it in case it fails and we have to return false. */ br->consumed_bits = cbits; br->consumed_words = cwords; if(!bitreader_read_from_client_(br)) return false; cwords = br->consumed_words; } if(cwords < br->words) { /* if we've not consumed up to a partial tail word... */ if(cbits) { /* this also works when consumed_bits==0, it's just a little slower than necessary for that case */ const unsigned n = FLAC__BITS_PER_WORD - cbits; const brword word = br->buffer[cwords]; if(bits < n) { uval <<= bits; uval |= (word & (FLAC__WORD_ALL_ONES >> cbits)) >> (n-bits); cbits += bits; goto break2; } uval <<= n; uval |= word & (FLAC__WORD_ALL_ONES >> cbits); bits -= n; crc16_update_word_(br, word); cwords++; cbits = 0; if(bits) { /* if there are still bits left to read, there have to be less than 32 so they will all be in the next word */ uval <<= bits; uval |= (br->buffer[cwords] >> (FLAC__BITS_PER_WORD-bits)); cbits = bits; } goto break2; } else { FLAC__ASSERT(bits < FLAC__BITS_PER_WORD); uval <<= bits; uval |= br->buffer[cwords] >> (FLAC__BITS_PER_WORD-bits); cbits = bits; goto break2; } } else { /* in this case we're starting our read at a partial tail word; * the reader has guaranteed that we have at least 'bits' bits * available to read, which makes this case simpler. */ uval <<= bits; if(cbits) { /* this also works when consumed_bits==0, it's just a little slower than necessary for that case */ FLAC__ASSERT(cbits + bits <= br->bytes*8); uval |= (br->buffer[cwords] & (FLAC__WORD_ALL_ONES >> cbits)) >> (FLAC__BITS_PER_WORD-cbits-bits); cbits += bits; goto break2; } else { uval |= br->buffer[cwords] >> (FLAC__BITS_PER_WORD-bits); cbits += bits; goto break2; } } } break2: /* compose the value */ *vals = (int)(uval >> 1 ^ -(int)(uval & 1)); /* are we done? */ --nvals; if(nvals == 0) { br->consumed_bits = cbits; br->consumed_words = cwords; return true; } uval = 0; ++vals; } } #else { unsigned i; unsigned uval = 0; /* try and get br->consumed_words and br->consumed_bits into register; * must remember to flush them back to *br before calling other * bitwriter functions that use them, and before returning */ register unsigned cwords; register unsigned cbits; unsigned ucbits; /* keep track of the number of unconsumed bits in the buffer */ FLAC__ASSERT(0 != br); FLAC__ASSERT(0 != br->buffer); /* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */ FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32); FLAC__ASSERT(parameter < 32); /* the above two asserts also guarantee that the binary part never straddles more than 2 words, so we don't have to loop to read it */ if(nvals == 0) return true; cbits = br->consumed_bits; cwords = br->consumed_words; ucbits = (br->words-cwords)*FLAC__BITS_PER_WORD + br->bytes*8 - cbits; while(1) { /* read unary part */ while(1) { while(cwords < br->words) { /* if we've not consumed up to a partial tail word... */ brword b = br->buffer[cwords] << cbits; if(b) { #if 0 /* is not discernably faster... */ && defined FLAC__CPU_IA32 && !defined FLAC__NO_ASM && FLAC__BITS_PER_WORD == 32 && defined __GNUC__ asm volatile ( "bsrl %1, %0;" "notl %0;" "andl $31, %0;" : "=r"(i) : "r"(b) ); #else i = COUNT_ZERO_MSBS(b); #endif uval += i; cbits += i; cbits++; /* skip over stop bit */ if(cbits >= FLAC__BITS_PER_WORD) { /* faster way of testing if(cbits == FLAC__BITS_PER_WORD) */ crc16_update_word_(br, br->buffer[cwords]); cwords++; cbits = 0; } goto break1; } else { uval += FLAC__BITS_PER_WORD - cbits; crc16_update_word_(br, br->buffer[cwords]); cwords++; cbits = 0; /* didn't find stop bit yet, have to keep going... */ } } /* at this point we've eaten up all the whole words; have to try * reading through any tail bytes before calling the read callback. * this is a repeat of the above logic adjusted for the fact we * don't have a whole word. note though if the client is feeding * us data a byte at a time (unlikely), br->consumed_bits may not * be zero. */ if(br->bytes) { const unsigned end = br->bytes * 8; brword b = (br->buffer[cwords] & ~(FLAC__WORD_ALL_ONES >> end)) << cbits; if(b) { i = COUNT_ZERO_MSBS(b); uval += i; cbits += i; cbits++; /* skip over stop bit */ FLAC__ASSERT(cbits < FLAC__BITS_PER_WORD); goto break1; } else { uval += end - cbits; cbits += end; FLAC__ASSERT(cbits < FLAC__BITS_PER_WORD); /* didn't find stop bit yet, have to keep going... */ } } /* flush registers and read; bitreader_read_from_client_() does * not touch br->consumed_bits at all but we still need to set * it in case it fails and we have to return false. */ br->consumed_bits = cbits; br->consumed_words = cwords; if(!bitreader_read_from_client_(br)) return false; cwords = br->consumed_words; ucbits = (br->words-cwords)*FLAC__BITS_PER_WORD + br->bytes*8 - cbits + uval; /* + uval to offset our count by the # of unary bits already * consumed before the read, because we will add these back * in all at once at break1 */ } break1: ucbits -= uval; ucbits--; /* account for stop bit */ /* read binary part */ FLAC__ASSERT(cwords <= br->words); if(parameter) { while(ucbits < parameter) { /* flush registers and read; bitreader_read_from_client_() does * not touch br->consumed_bits at all but we still need to set * it in case it fails and we have to return false. */ br->consumed_bits = cbits; br->consumed_words = cwords; if(!bitreader_read_from_client_(br)) return false; cwords = br->consumed_words; ucbits = (br->words-cwords)*FLAC__BITS_PER_WORD + br->bytes*8 - cbits; } if(cwords < br->words) { /* if we've not consumed up to a partial tail word... */ if(cbits) { /* this also works when consumed_bits==0, it's just slower than necessary for that case */ const unsigned n = FLAC__BITS_PER_WORD - cbits; const brword word = br->buffer[cwords]; if(parameter < n) { uval <<= parameter; uval |= (word & (FLAC__WORD_ALL_ONES >> cbits)) >> (n-parameter); cbits += parameter; } else { uval <<= n; uval |= word & (FLAC__WORD_ALL_ONES >> cbits); crc16_update_word_(br, word); cwords++; cbits = parameter - n; if(cbits) { /* parameter > n, i.e. if there are still bits left to read, there have to be less than 32 so they will all be in the next word */ uval <<= cbits; uval |= (br->buffer[cwords] >> (FLAC__BITS_PER_WORD-cbits)); } } } else { cbits = parameter; uval <<= parameter; uval |= br->buffer[cwords] >> (FLAC__BITS_PER_WORD-cbits); } } else { /* in this case we're starting our read at a partial tail word; * the reader has guaranteed that we have at least 'parameter' * bits available to read, which makes this case simpler. */ uval <<= parameter; if(cbits) { /* this also works when consumed_bits==0, it's just a little slower than necessary for that case */ FLAC__ASSERT(cbits + parameter <= br->bytes*8); uval |= (br->buffer[cwords] & (FLAC__WORD_ALL_ONES >> cbits)) >> (FLAC__BITS_PER_WORD-cbits-parameter); cbits += parameter; } else { cbits = parameter; uval |= br->buffer[cwords] >> (FLAC__BITS_PER_WORD-cbits); } } } ucbits -= parameter; /* compose the value */ *vals = (int)(uval >> 1 ^ -(int)(uval & 1)); /* are we done? */ --nvals; if(nvals == 0) { br->consumed_bits = cbits; br->consumed_words = cwords; return true; } uval = 0; ++vals; } } #endif #if 0 /* UNUSED */ FLAC__bool FLAC__bitreader_read_golomb_signed(FLAC__BitReader *br, int *val, unsigned parameter) { FLAC__uint32 lsbs = 0, msbs = 0; unsigned bit, uval, k; FLAC__ASSERT(0 != br); FLAC__ASSERT(0 != br->buffer); k = FLAC__bitmath_ilog2(parameter); /* read the unary MSBs and end bit */ if(!FLAC__bitreader_read_unary_unsigned(br, &msbs)) return false; /* read the binary LSBs */ if(!FLAC__bitreader_read_raw_uint32(br, &lsbs, k)) return false; if(parameter == 1u<= d) { if(!FLAC__bitreader_read_bit(br, &bit)) return false; lsbs <<= 1; lsbs |= bit; lsbs -= d; } /* compose the value */ uval = msbs * parameter + lsbs; } /* unfold unsigned to signed */ if(uval & 1) *val = -((int)(uval >> 1)) - 1; else *val = (int)(uval >> 1); return true; } FLAC__bool FLAC__bitreader_read_golomb_unsigned(FLAC__BitReader *br, unsigned *val, unsigned parameter) { FLAC__uint32 lsbs, msbs = 0; unsigned bit, k; FLAC__ASSERT(0 != br); FLAC__ASSERT(0 != br->buffer); k = FLAC__bitmath_ilog2(parameter); /* read the unary MSBs and end bit */ if(!FLAC__bitreader_read_unary_unsigned(br, &msbs)) return false; /* read the binary LSBs */ if(!FLAC__bitreader_read_raw_uint32(br, &lsbs, k)) return false; if(parameter == 1u<= d) { if(!FLAC__bitreader_read_bit(br, &bit)) return false; lsbs <<= 1; lsbs |= bit; lsbs -= d; } /* compose the value */ *val = msbs * parameter + lsbs; } return true; } #endif /* UNUSED */ /* on return, if *val == 0xffffffff then the utf-8 sequence was invalid, but the return value will be true */ FLAC__bool FLAC__bitreader_read_utf8_uint32(FLAC__BitReader *br, FLAC__uint32 *val, FLAC__byte *raw, unsigned *rawlen) { FLAC__uint32 v = 0; FLAC__uint32 x; unsigned i; if(!FLAC__bitreader_read_raw_uint32(br, &x, 8)) return false; if(raw) raw[(*rawlen)++] = (FLAC__byte)x; if(!(x & 0x80)) { /* 0xxxxxxx */ v = x; i = 0; } else if(x & 0xC0 && !(x & 0x20)) { /* 110xxxxx */ v = x & 0x1F; i = 1; } else if(x & 0xE0 && !(x & 0x10)) { /* 1110xxxx */ v = x & 0x0F; i = 2; } else if(x & 0xF0 && !(x & 0x08)) { /* 11110xxx */ v = x & 0x07; i = 3; } else if(x & 0xF8 && !(x & 0x04)) { /* 111110xx */ v = x & 0x03; i = 4; } else if(x & 0xFC && !(x & 0x02)) { /* 1111110x */ v = x & 0x01; i = 5; } else { *val = 0xffffffff; return true; } for( ; i; i--) { if(!FLAC__bitreader_read_raw_uint32(br, &x, 8)) return false; if(raw) raw[(*rawlen)++] = (FLAC__byte)x; if(!(x & 0x80) || (x & 0x40)) { /* 10xxxxxx */ *val = 0xffffffff; return true; } v <<= 6; v |= (x & 0x3F); } *val = v; return true; } /* on return, if *val == 0xffffffffffffffff then the utf-8 sequence was invalid, but the return value will be true */ FLAC__bool FLAC__bitreader_read_utf8_uint64(FLAC__BitReader *br, FLAC__uint64 *val, FLAC__byte *raw, unsigned *rawlen) { FLAC__uint64 v = 0; FLAC__uint32 x; unsigned i; if(!FLAC__bitreader_read_raw_uint32(br, &x, 8)) return false; if(raw) raw[(*rawlen)++] = (FLAC__byte)x; if(!(x & 0x80)) { /* 0xxxxxxx */ v = x; i = 0; } else if(x & 0xC0 && !(x & 0x20)) { /* 110xxxxx */ v = x & 0x1F; i = 1; } else if(x & 0xE0 && !(x & 0x10)) { /* 1110xxxx */ v = x & 0x0F; i = 2; } else if(x & 0xF0 && !(x & 0x08)) { /* 11110xxx */ v = x & 0x07; i = 3; } else if(x & 0xF8 && !(x & 0x04)) { /* 111110xx */ v = x & 0x03; i = 4; } else if(x & 0xFC && !(x & 0x02)) { /* 1111110x */ v = x & 0x01; i = 5; } else if(x & 0xFE && !(x & 0x01)) { /* 11111110 */ v = 0; i = 6; } else { *val = FLAC__U64L(0xffffffffffffffff); return true; } for( ; i; i--) { if(!FLAC__bitreader_read_raw_uint32(br, &x, 8)) return false; if(raw) raw[(*rawlen)++] = (FLAC__byte)x; if(!(x & 0x80) || (x & 0x40)) { /* 10xxxxxx */ *val = FLAC__U64L(0xffffffffffffffff); return true; } v <<= 6; v |= (x & 0x3F); } *val = v; return true; } #endif /********* End of inlined file: bitreader.c *********/ /********* Start of inlined file: bitwriter.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif #include /* for malloc() */ #include /* for memcpy(), memset() */ #ifdef _MSC_VER #include /* for ntohl() */ #elif defined FLAC__SYS_DARWIN #include /* for ntohl() */ #elif defined __MINGW32__ #include /* for ntohl() */ #else #include /* for ntohl() */ #endif #if 0 /* UNUSED */ #endif /********* Start of inlined file: bitwriter.h *********/ #ifndef FLAC__PRIVATE__BITWRITER_H #define FLAC__PRIVATE__BITWRITER_H #include /* for FILE */ /* * opaque structure definition */ struct FLAC__BitWriter; typedef struct FLAC__BitWriter FLAC__BitWriter; /* * construction, deletion, initialization, etc functions */ FLAC__BitWriter *FLAC__bitwriter_new(void); void FLAC__bitwriter_delete(FLAC__BitWriter *bw); FLAC__bool FLAC__bitwriter_init(FLAC__BitWriter *bw); void FLAC__bitwriter_free(FLAC__BitWriter *bw); /* does not 'free(buffer)' */ void FLAC__bitwriter_clear(FLAC__BitWriter *bw); void FLAC__bitwriter_dump(const FLAC__BitWriter *bw, FILE *out); /* * CRC functions * * non-const *bw because they have to cal FLAC__bitwriter_get_buffer() */ FLAC__bool FLAC__bitwriter_get_write_crc16(FLAC__BitWriter *bw, FLAC__uint16 *crc); FLAC__bool FLAC__bitwriter_get_write_crc8(FLAC__BitWriter *bw, FLAC__byte *crc); /* * info functions */ FLAC__bool FLAC__bitwriter_is_byte_aligned(const FLAC__BitWriter *bw); unsigned FLAC__bitwriter_get_input_bits_unconsumed(const FLAC__BitWriter *bw); /* can be called anytime, returns total # of bits unconsumed */ /* * direct buffer access * * there may be no calls on the bitwriter between get and release. * the bitwriter continues to own the returned buffer. * before get, bitwriter MUST be byte aligned: check with FLAC__bitwriter_is_byte_aligned() */ FLAC__bool FLAC__bitwriter_get_buffer(FLAC__BitWriter *bw, const FLAC__byte **buffer, size_t *bytes); void FLAC__bitwriter_release_buffer(FLAC__BitWriter *bw); /* * write functions */ FLAC__bool FLAC__bitwriter_write_zeroes(FLAC__BitWriter *bw, unsigned bits); FLAC__bool FLAC__bitwriter_write_raw_uint32(FLAC__BitWriter *bw, FLAC__uint32 val, unsigned bits); FLAC__bool FLAC__bitwriter_write_raw_int32(FLAC__BitWriter *bw, FLAC__int32 val, unsigned bits); FLAC__bool FLAC__bitwriter_write_raw_uint64(FLAC__BitWriter *bw, FLAC__uint64 val, unsigned bits); FLAC__bool FLAC__bitwriter_write_raw_uint32_little_endian(FLAC__BitWriter *bw, FLAC__uint32 val); /*only for bits=32*/ FLAC__bool FLAC__bitwriter_write_byte_block(FLAC__BitWriter *bw, const FLAC__byte vals[], unsigned nvals); FLAC__bool FLAC__bitwriter_write_unary_unsigned(FLAC__BitWriter *bw, unsigned val); unsigned FLAC__bitwriter_rice_bits(FLAC__int32 val, unsigned parameter); #if 0 /* UNUSED */ unsigned FLAC__bitwriter_golomb_bits_signed(int val, unsigned parameter); unsigned FLAC__bitwriter_golomb_bits_unsigned(unsigned val, unsigned parameter); #endif FLAC__bool FLAC__bitwriter_write_rice_signed(FLAC__BitWriter *bw, FLAC__int32 val, unsigned parameter); FLAC__bool FLAC__bitwriter_write_rice_signed_block(FLAC__BitWriter *bw, const FLAC__int32 *vals, unsigned nvals, unsigned parameter); #if 0 /* UNUSED */ FLAC__bool FLAC__bitwriter_write_golomb_signed(FLAC__BitWriter *bw, int val, unsigned parameter); FLAC__bool FLAC__bitwriter_write_golomb_unsigned(FLAC__BitWriter *bw, unsigned val, unsigned parameter); #endif FLAC__bool FLAC__bitwriter_write_utf8_uint32(FLAC__BitWriter *bw, FLAC__uint32 val); FLAC__bool FLAC__bitwriter_write_utf8_uint64(FLAC__BitWriter *bw, FLAC__uint64 val); FLAC__bool FLAC__bitwriter_zero_pad_to_byte_boundary(FLAC__BitWriter *bw); #endif /********* End of inlined file: bitwriter.h *********/ /********* Start of inlined file: alloc.h *********/ #ifndef FLAC__SHARE__ALLOC_H #define FLAC__SHARE__ALLOC_H #if HAVE_CONFIG_H # include #endif /* WATCHOUT: for c++ you may have to #define __STDC_LIMIT_MACROS 1 real early * before #including this file, otherwise SIZE_MAX might not be defined */ #include /* for SIZE_MAX */ #if !defined _MSC_VER && !defined __MINGW32__ && !defined __EMX__ #include /* for SIZE_MAX in case limits.h didn't get it */ #endif #include /* for size_t, malloc(), etc */ #ifndef SIZE_MAX # ifndef SIZE_T_MAX # ifdef _MSC_VER # define SIZE_T_MAX UINT_MAX # else # error # endif # endif # define SIZE_MAX SIZE_T_MAX #endif #ifndef FLaC__INLINE #define FLaC__INLINE #endif /* avoid malloc()ing 0 bytes, see: * https://www.securecoding.cert.org/confluence/display/seccode/MEM04-A.+Do+not+make+assumptions+about+the+result+of+allocating+0+bytes?focusedCommentId=5407003 */ static FLaC__INLINE void *safe_malloc_(size_t size) { /* malloc(0) is undefined; FLAC src convention is to always allocate */ if(!size) size++; return malloc(size); } static FLaC__INLINE void *safe_calloc_(size_t nmemb, size_t size) { if(!nmemb || !size) return malloc(1); /* malloc(0) is undefined; FLAC src convention is to always allocate */ return calloc(nmemb, size); } /*@@@@ there's probably a better way to prevent overflows when allocating untrusted sums but this works for now */ static FLaC__INLINE void *safe_malloc_add_2op_(size_t size1, size_t size2) { size2 += size1; if(size2 < size1) return 0; return safe_malloc_(size2); } static FLaC__INLINE void *safe_malloc_add_3op_(size_t size1, size_t size2, size_t size3) { size2 += size1; if(size2 < size1) return 0; size3 += size2; if(size3 < size2) return 0; return safe_malloc_(size3); } static FLaC__INLINE void *safe_malloc_add_4op_(size_t size1, size_t size2, size_t size3, size_t size4) { size2 += size1; if(size2 < size1) return 0; size3 += size2; if(size3 < size2) return 0; size4 += size3; if(size4 < size3) return 0; return safe_malloc_(size4); } static FLaC__INLINE void *safe_malloc_mul_2op_(size_t size1, size_t size2) #if 0 needs support for cases where sizeof(size_t) != 4 { /* could be faster #ifdef'ing off SIZEOF_SIZE_T */ if(sizeof(size_t) == 4) { if ((double)size1 * (double)size2 < 4294967296.0) return malloc(size1*size2); } return 0; } #else /* better? */ { if(!size1 || !size2) return malloc(1); /* malloc(0) is undefined; FLAC src convention is to always allocate */ if(size1 > SIZE_MAX / size2) return 0; return malloc(size1*size2); } #endif static FLaC__INLINE void *safe_malloc_mul_3op_(size_t size1, size_t size2, size_t size3) { if(!size1 || !size2 || !size3) return malloc(1); /* malloc(0) is undefined; FLAC src convention is to always allocate */ if(size1 > SIZE_MAX / size2) return 0; size1 *= size2; if(size1 > SIZE_MAX / size3) return 0; return malloc(size1*size3); } /* size1*size2 + size3 */ static FLaC__INLINE void *safe_malloc_mul2add_(size_t size1, size_t size2, size_t size3) { if(!size1 || !size2) return safe_malloc_(size3); if(size1 > SIZE_MAX / size2) return 0; return safe_malloc_add_2op_(size1*size2, size3); } /* size1 * (size2 + size3) */ static FLaC__INLINE void *safe_malloc_muladd2_(size_t size1, size_t size2, size_t size3) { if(!size1 || (!size2 && !size3)) return malloc(1); /* malloc(0) is undefined; FLAC src convention is to always allocate */ size2 += size3; if(size2 < size3) return 0; return safe_malloc_mul_2op_(size1, size2); } static FLaC__INLINE void *safe_realloc_add_2op_(void *ptr, size_t size1, size_t size2) { size2 += size1; if(size2 < size1) return 0; return realloc(ptr, size2); } static FLaC__INLINE void *safe_realloc_add_3op_(void *ptr, size_t size1, size_t size2, size_t size3) { size2 += size1; if(size2 < size1) return 0; size3 += size2; if(size3 < size2) return 0; return realloc(ptr, size3); } static FLaC__INLINE void *safe_realloc_add_4op_(void *ptr, size_t size1, size_t size2, size_t size3, size_t size4) { size2 += size1; if(size2 < size1) return 0; size3 += size2; if(size3 < size2) return 0; size4 += size3; if(size4 < size3) return 0; return realloc(ptr, size4); } static FLaC__INLINE void *safe_realloc_mul_2op_(void *ptr, size_t size1, size_t size2) { if(!size1 || !size2) return realloc(ptr, 0); /* preserve POSIX realloc(ptr, 0) semantics */ if(size1 > SIZE_MAX / size2) return 0; return realloc(ptr, size1*size2); } /* size1 * (size2 + size3) */ static FLaC__INLINE void *safe_realloc_muladd2_(void *ptr, size_t size1, size_t size2, size_t size3) { if(!size1 || (!size2 && !size3)) return realloc(ptr, 0); /* preserve POSIX realloc(ptr, 0) semantics */ size2 += size3; if(size2 < size3) return 0; return safe_realloc_mul_2op_(ptr, size1, size2); } #endif /********* End of inlined file: alloc.h *********/ /* Things should be fastest when this matches the machine word size */ /* WATCHOUT: if you change this you must also change the following #defines down to SWAP_BE_WORD_TO_HOST below to match */ /* WATCHOUT: there are a few places where the code will not work unless bwword is >= 32 bits wide */ typedef FLAC__uint32 bwword; #define FLAC__BYTES_PER_WORD 4 #define FLAC__BITS_PER_WORD 32 #define FLAC__WORD_ALL_ONES ((FLAC__uint32)0xffffffff) /* SWAP_BE_WORD_TO_HOST swaps bytes in a bwword (which is always big-endian) if necessary to match host byte order */ #if WORDS_BIGENDIAN #define SWAP_BE_WORD_TO_HOST(x) (x) #else #ifdef _MSC_VER #define SWAP_BE_WORD_TO_HOST(x) local_swap32_(x) #else #define SWAP_BE_WORD_TO_HOST(x) ntohl(x) #endif #endif /* * The default capacity here doesn't matter too much. The buffer always grows * to hold whatever is written to it. Usually the encoder will stop adding at * a frame or metadata block, then write that out and clear the buffer for the * next one. */ static const unsigned FLAC__BITWRITER_DEFAULT_CAPACITY = 32768u / sizeof(bwword); /* size in words */ /* When growing, increment 4K at a time */ static const unsigned FLAC__BITWRITER_DEFAULT_INCREMENT = 4096u / sizeof(bwword); /* size in words */ #define FLAC__WORDS_TO_BITS(words) ((words) * FLAC__BITS_PER_WORD) #define FLAC__TOTAL_BITS(bw) (FLAC__WORDS_TO_BITS((bw)->words) + (bw)->bits) #ifdef min #undef min #endif #define min(x,y) ((x)<(y)?(x):(y)) /* adjust for compilers that can't understand using LLU suffix for uint64_t literals */ #ifdef _MSC_VER #define FLAC__U64L(x) x #else #define FLAC__U64L(x) x##LLU #endif #ifndef FLaC__INLINE #define FLaC__INLINE #endif struct FLAC__BitWriter { bwword *buffer; bwword accum; /* accumulator; bits are right-justified; when full, accum is appended to buffer */ unsigned capacity; /* capacity of buffer in words */ unsigned words; /* # of complete words in buffer */ unsigned bits; /* # of used bits in accum */ }; /* * WATCHOUT: The current implementation only grows the buffer. */ static FLAC__bool bitwriter_grow_(FLAC__BitWriter *bw, unsigned bits_to_add) { unsigned new_capacity; bwword *new_buffer; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); /* calculate total words needed to store 'bits_to_add' additional bits */ new_capacity = bw->words + ((bw->bits + bits_to_add + FLAC__BITS_PER_WORD - 1) / FLAC__BITS_PER_WORD); /* it's possible (due to pessimism in the growth estimation that * leads to this call) that we don't actually need to grow */ if(bw->capacity >= new_capacity) return true; /* round up capacity increase to the nearest FLAC__BITWRITER_DEFAULT_INCREMENT */ if((new_capacity - bw->capacity) % FLAC__BITWRITER_DEFAULT_INCREMENT) new_capacity += FLAC__BITWRITER_DEFAULT_INCREMENT - ((new_capacity - bw->capacity) % FLAC__BITWRITER_DEFAULT_INCREMENT); /* make sure we got everything right */ FLAC__ASSERT(0 == (new_capacity - bw->capacity) % FLAC__BITWRITER_DEFAULT_INCREMENT); FLAC__ASSERT(new_capacity > bw->capacity); FLAC__ASSERT(new_capacity >= bw->words + ((bw->bits + bits_to_add + FLAC__BITS_PER_WORD - 1) / FLAC__BITS_PER_WORD)); new_buffer = (bwword*)safe_realloc_mul_2op_(bw->buffer, sizeof(bwword), /*times*/new_capacity); if(new_buffer == 0) return false; bw->buffer = new_buffer; bw->capacity = new_capacity; return true; } /*********************************************************************** * * Class constructor/destructor * ***********************************************************************/ FLAC__BitWriter *FLAC__bitwriter_new(void) { FLAC__BitWriter *bw = (FLAC__BitWriter*)calloc(1, sizeof(FLAC__BitWriter)); /* note that calloc() sets all members to 0 for us */ return bw; } void FLAC__bitwriter_delete(FLAC__BitWriter *bw) { FLAC__ASSERT(0 != bw); FLAC__bitwriter_free(bw); free(bw); } /*********************************************************************** * * Public class methods * ***********************************************************************/ FLAC__bool FLAC__bitwriter_init(FLAC__BitWriter *bw) { FLAC__ASSERT(0 != bw); bw->words = bw->bits = 0; bw->capacity = FLAC__BITWRITER_DEFAULT_CAPACITY; bw->buffer = (bwword*)malloc(sizeof(bwword) * bw->capacity); if(bw->buffer == 0) return false; return true; } void FLAC__bitwriter_free(FLAC__BitWriter *bw) { FLAC__ASSERT(0 != bw); if(0 != bw->buffer) free(bw->buffer); bw->buffer = 0; bw->capacity = 0; bw->words = bw->bits = 0; } void FLAC__bitwriter_clear(FLAC__BitWriter *bw) { bw->words = bw->bits = 0; } void FLAC__bitwriter_dump(const FLAC__BitWriter *bw, FILE *out) { unsigned i, j; if(bw == 0) { fprintf(out, "bitwriter is NULL\n"); } else { fprintf(out, "bitwriter: capacity=%u words=%u bits=%u total_bits=%u\n", bw->capacity, bw->words, bw->bits, FLAC__TOTAL_BITS(bw)); for(i = 0; i < bw->words; i++) { fprintf(out, "%08X: ", i); for(j = 0; j < FLAC__BITS_PER_WORD; j++) fprintf(out, "%01u", bw->buffer[i] & (1 << (FLAC__BITS_PER_WORD-j-1)) ? 1:0); fprintf(out, "\n"); } if(bw->bits > 0) { fprintf(out, "%08X: ", i); for(j = 0; j < bw->bits; j++) fprintf(out, "%01u", bw->accum & (1 << (bw->bits-j-1)) ? 1:0); fprintf(out, "\n"); } } } FLAC__bool FLAC__bitwriter_get_write_crc16(FLAC__BitWriter *bw, FLAC__uint16 *crc) { const FLAC__byte *buffer; size_t bytes; FLAC__ASSERT((bw->bits & 7) == 0); /* assert that we're byte-aligned */ if(!FLAC__bitwriter_get_buffer(bw, &buffer, &bytes)) return false; *crc = (FLAC__uint16)FLAC__crc16(buffer, bytes); FLAC__bitwriter_release_buffer(bw); return true; } FLAC__bool FLAC__bitwriter_get_write_crc8(FLAC__BitWriter *bw, FLAC__byte *crc) { const FLAC__byte *buffer; size_t bytes; FLAC__ASSERT((bw->bits & 7) == 0); /* assert that we're byte-aligned */ if(!FLAC__bitwriter_get_buffer(bw, &buffer, &bytes)) return false; *crc = FLAC__crc8(buffer, bytes); FLAC__bitwriter_release_buffer(bw); return true; } FLAC__bool FLAC__bitwriter_is_byte_aligned(const FLAC__BitWriter *bw) { return ((bw->bits & 7) == 0); } unsigned FLAC__bitwriter_get_input_bits_unconsumed(const FLAC__BitWriter *bw) { return FLAC__TOTAL_BITS(bw); } FLAC__bool FLAC__bitwriter_get_buffer(FLAC__BitWriter *bw, const FLAC__byte **buffer, size_t *bytes) { FLAC__ASSERT((bw->bits & 7) == 0); /* double protection */ if(bw->bits & 7) return false; /* if we have bits in the accumulator we have to flush those to the buffer first */ if(bw->bits) { FLAC__ASSERT(bw->words <= bw->capacity); if(bw->words == bw->capacity && !bitwriter_grow_(bw, FLAC__BITS_PER_WORD)) return false; /* append bits as complete word to buffer, but don't change bw->accum or bw->bits */ bw->buffer[bw->words] = SWAP_BE_WORD_TO_HOST(bw->accum << (FLAC__BITS_PER_WORD-bw->bits)); } /* now we can just return what we have */ *buffer = (FLAC__byte*)bw->buffer; *bytes = (FLAC__BYTES_PER_WORD * bw->words) + (bw->bits >> 3); return true; } void FLAC__bitwriter_release_buffer(FLAC__BitWriter *bw) { /* nothing to do. in the future, strict checking of a 'writer-is-in- * get-mode' flag could be added everywhere and then cleared here */ (void)bw; } FLaC__INLINE FLAC__bool FLAC__bitwriter_write_zeroes(FLAC__BitWriter *bw, unsigned bits) { unsigned n; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); if(bits == 0) return true; /* slightly pessimistic size check but faster than "<= bw->words + (bw->bits+bits+FLAC__BITS_PER_WORD-1)/FLAC__BITS_PER_WORD" */ if(bw->capacity <= bw->words + bits && !bitwriter_grow_(bw, bits)) return false; /* first part gets to word alignment */ if(bw->bits) { n = min(FLAC__BITS_PER_WORD - bw->bits, bits); bw->accum <<= n; bits -= n; bw->bits += n; if(bw->bits == FLAC__BITS_PER_WORD) { bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); bw->bits = 0; } else return true; } /* do whole words */ while(bits >= FLAC__BITS_PER_WORD) { bw->buffer[bw->words++] = 0; bits -= FLAC__BITS_PER_WORD; } /* do any leftovers */ if(bits > 0) { bw->accum = 0; bw->bits = bits; } return true; } FLaC__INLINE FLAC__bool FLAC__bitwriter_write_raw_uint32(FLAC__BitWriter *bw, FLAC__uint32 val, unsigned bits) { register unsigned left; /* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */ FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32); FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); FLAC__ASSERT(bits <= 32); if(bits == 0) return true; /* slightly pessimistic size check but faster than "<= bw->words + (bw->bits+bits+FLAC__BITS_PER_WORD-1)/FLAC__BITS_PER_WORD" */ if(bw->capacity <= bw->words + bits && !bitwriter_grow_(bw, bits)) return false; left = FLAC__BITS_PER_WORD - bw->bits; if(bits < left) { bw->accum <<= bits; bw->accum |= val; bw->bits += bits; } else if(bw->bits) { /* WATCHOUT: if bw->bits == 0, left==FLAC__BITS_PER_WORD and bw->accum<<=left is a NOP instead of setting to 0 */ bw->accum <<= left; bw->accum |= val >> (bw->bits = bits - left); bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); bw->accum = val; } else { bw->accum = val; bw->bits = 0; bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(val); } return true; } FLaC__INLINE FLAC__bool FLAC__bitwriter_write_raw_int32(FLAC__BitWriter *bw, FLAC__int32 val, unsigned bits) { /* zero-out unused bits */ if(bits < 32) val &= (~(0xffffffff << bits)); return FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)val, bits); } FLaC__INLINE FLAC__bool FLAC__bitwriter_write_raw_uint64(FLAC__BitWriter *bw, FLAC__uint64 val, unsigned bits) { /* this could be a little faster but it's not used for much */ if(bits > 32) { return FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)(val>>32), bits-32) && FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)val, 32); } else return FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)val, bits); } FLaC__INLINE FLAC__bool FLAC__bitwriter_write_raw_uint32_little_endian(FLAC__BitWriter *bw, FLAC__uint32 val) { /* this doesn't need to be that fast as currently it is only used for vorbis comments */ if(!FLAC__bitwriter_write_raw_uint32(bw, val & 0xff, 8)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, (val>>8) & 0xff, 8)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, (val>>16) & 0xff, 8)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, val>>24, 8)) return false; return true; } FLaC__INLINE FLAC__bool FLAC__bitwriter_write_byte_block(FLAC__BitWriter *bw, const FLAC__byte vals[], unsigned nvals) { unsigned i; /* this could be faster but currently we don't need it to be since it's only used for writing metadata */ for(i = 0; i < nvals; i++) { if(!FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)(vals[i]), 8)) return false; } return true; } FLAC__bool FLAC__bitwriter_write_unary_unsigned(FLAC__BitWriter *bw, unsigned val) { if(val < 32) return FLAC__bitwriter_write_raw_uint32(bw, 1, ++val); else return FLAC__bitwriter_write_zeroes(bw, val) && FLAC__bitwriter_write_raw_uint32(bw, 1, 1); } unsigned FLAC__bitwriter_rice_bits(FLAC__int32 val, unsigned parameter) { FLAC__uint32 uval; FLAC__ASSERT(parameter < sizeof(unsigned)*8); /* fold signed to unsigned; actual formula is: negative(v)? -2v-1 : 2v */ uval = (val<<1) ^ (val>>31); return 1 + parameter + (uval >> parameter); } #if 0 /* UNUSED */ unsigned FLAC__bitwriter_golomb_bits_signed(int val, unsigned parameter) { unsigned bits, msbs, uval; unsigned k; FLAC__ASSERT(parameter > 0); /* fold signed to unsigned */ if(val < 0) uval = (unsigned)(((-(++val)) << 1) + 1); else uval = (unsigned)(val << 1); k = FLAC__bitmath_ilog2(parameter); if(parameter == 1u<> k; bits = 1 + k + msbs; } else { unsigned q, r, d; d = (1 << (k+1)) - parameter; q = uval / parameter; r = uval - (q * parameter); bits = 1 + q + k; if(r >= d) bits++; } return bits; } unsigned FLAC__bitwriter_golomb_bits_unsigned(unsigned uval, unsigned parameter) { unsigned bits, msbs; unsigned k; FLAC__ASSERT(parameter > 0); k = FLAC__bitmath_ilog2(parameter); if(parameter == 1u<> k; bits = 1 + k + msbs; } else { unsigned q, r, d; d = (1 << (k+1)) - parameter; q = uval / parameter; r = uval - (q * parameter); bits = 1 + q + k; if(r >= d) bits++; } return bits; } #endif /* UNUSED */ FLAC__bool FLAC__bitwriter_write_rice_signed(FLAC__BitWriter *bw, FLAC__int32 val, unsigned parameter) { unsigned total_bits, interesting_bits, msbs; FLAC__uint32 uval, pattern; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); FLAC__ASSERT(parameter < 8*sizeof(uval)); /* fold signed to unsigned; actual formula is: negative(v)? -2v-1 : 2v */ uval = (val<<1) ^ (val>>31); msbs = uval >> parameter; interesting_bits = 1 + parameter; total_bits = interesting_bits + msbs; pattern = 1 << parameter; /* the unary end bit */ pattern |= (uval & ((1<> (31-parameter); /* ...then mask off the bits above the stop bit with val&=mask2*/ FLAC__uint32 uval; unsigned left; const unsigned lsbits = 1 + parameter; unsigned msbits; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); FLAC__ASSERT(parameter < 8*sizeof(bwword)-1); /* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */ FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32); while(nvals) { /* fold signed to unsigned; actual formula is: negative(v)? -2v-1 : 2v */ uval = (*vals<<1) ^ (*vals>>31); msbits = uval >> parameter; #if 0 /* OPT: can remove this special case if it doesn't make up for the extra compare (doesn't make a statistically significant difference with msvc or gcc/x86) */ if(bw->bits && bw->bits + msbits + lsbits <= FLAC__BITS_PER_WORD) { /* i.e. if the whole thing fits in the current bwword */ /* ^^^ if bw->bits is 0 then we may have filled the buffer and have no free bwword to work in */ bw->bits = bw->bits + msbits + lsbits; uval |= mask1; /* set stop bit */ uval &= mask2; /* mask off unused top bits */ /* NOT: bw->accum <<= msbits + lsbits because msbits+lsbits could be 32, then the shift would be a NOP */ bw->accum <<= msbits; bw->accum <<= lsbits; bw->accum |= uval; if(bw->bits == FLAC__BITS_PER_WORD) { bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); bw->bits = 0; /* burying the capacity check down here means we have to grow the buffer a little if there are more vals to do */ if(bw->capacity <= bw->words && nvals > 1 && !bitwriter_grow_(bw, 1)) { FLAC__ASSERT(bw->capacity == bw->words); return false; } } } else { #elif 1 /*@@@@@@ OPT: try this version with MSVC6 to see if better, not much difference for gcc-4 */ if(bw->bits && bw->bits + msbits + lsbits < FLAC__BITS_PER_WORD) { /* i.e. if the whole thing fits in the current bwword */ /* ^^^ if bw->bits is 0 then we may have filled the buffer and have no free bwword to work in */ bw->bits = bw->bits + msbits + lsbits; uval |= mask1; /* set stop bit */ uval &= mask2; /* mask off unused top bits */ bw->accum <<= msbits + lsbits; bw->accum |= uval; } else { #endif /* slightly pessimistic size check but faster than "<= bw->words + (bw->bits+msbits+lsbits+FLAC__BITS_PER_WORD-1)/FLAC__BITS_PER_WORD" */ /* OPT: pessimism may cause flurry of false calls to grow_ which eat up all savings before it */ if(bw->capacity <= bw->words + bw->bits + msbits + 1/*lsbits always fit in 1 bwword*/ && !bitwriter_grow_(bw, msbits+lsbits)) return false; if(msbits) { /* first part gets to word alignment */ if(bw->bits) { left = FLAC__BITS_PER_WORD - bw->bits; if(msbits < left) { bw->accum <<= msbits; bw->bits += msbits; goto break1; } else { bw->accum <<= left; msbits -= left; bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); bw->bits = 0; } } /* do whole words */ while(msbits >= FLAC__BITS_PER_WORD) { bw->buffer[bw->words++] = 0; msbits -= FLAC__BITS_PER_WORD; } /* do any leftovers */ if(msbits > 0) { bw->accum = 0; bw->bits = msbits; } } break1: uval |= mask1; /* set stop bit */ uval &= mask2; /* mask off unused top bits */ left = FLAC__BITS_PER_WORD - bw->bits; if(lsbits < left) { bw->accum <<= lsbits; bw->accum |= uval; bw->bits += lsbits; } else { /* if bw->bits == 0, left==FLAC__BITS_PER_WORD which will always * be > lsbits (because of previous assertions) so it would have * triggered the (lsbitsbits); FLAC__ASSERT(left < FLAC__BITS_PER_WORD); bw->accum <<= left; bw->accum |= uval >> (bw->bits = lsbits - left); bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); bw->accum = uval; } #if 1 } #endif vals++; nvals--; } return true; } #if 0 /* UNUSED */ FLAC__bool FLAC__bitwriter_write_golomb_signed(FLAC__BitWriter *bw, int val, unsigned parameter) { unsigned total_bits, msbs, uval; unsigned k; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); FLAC__ASSERT(parameter > 0); /* fold signed to unsigned */ if(val < 0) uval = (unsigned)(((-(++val)) << 1) + 1); else uval = (unsigned)(val << 1); k = FLAC__bitmath_ilog2(parameter); if(parameter == 1u<> k; total_bits = 1 + k + msbs; pattern = 1 << k; /* the unary end bit */ pattern |= (uval & ((1u<= d) { if(!FLAC__bitwriter_write_raw_uint32(bw, r+d, k+1)) return false; } else { if(!FLAC__bitwriter_write_raw_uint32(bw, r, k)) return false; } } return true; } FLAC__bool FLAC__bitwriter_write_golomb_unsigned(FLAC__BitWriter *bw, unsigned uval, unsigned parameter) { unsigned total_bits, msbs; unsigned k; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); FLAC__ASSERT(parameter > 0); k = FLAC__bitmath_ilog2(parameter); if(parameter == 1u<> k; total_bits = 1 + k + msbs; pattern = 1 << k; /* the unary end bit */ pattern |= (uval & ((1u<= d) { if(!FLAC__bitwriter_write_raw_uint32(bw, r+d, k+1)) return false; } else { if(!FLAC__bitwriter_write_raw_uint32(bw, r, k)) return false; } } return true; } #endif /* UNUSED */ FLAC__bool FLAC__bitwriter_write_utf8_uint32(FLAC__BitWriter *bw, FLAC__uint32 val) { FLAC__bool ok = 1; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); FLAC__ASSERT(!(val & 0x80000000)); /* this version only handles 31 bits */ if(val < 0x80) { return FLAC__bitwriter_write_raw_uint32(bw, val, 8); } else if(val < 0x800) { ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xC0 | (val>>6), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8); } else if(val < 0x10000) { ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xE0 | (val>>12), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8); } else if(val < 0x200000) { ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xF0 | (val>>18), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8); } else if(val < 0x4000000) { ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xF8 | (val>>24), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>18)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8); } else { ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xFC | (val>>30), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>24)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>18)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8); } return ok; } FLAC__bool FLAC__bitwriter_write_utf8_uint64(FLAC__BitWriter *bw, FLAC__uint64 val) { FLAC__bool ok = 1; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); FLAC__ASSERT(!(val & FLAC__U64L(0xFFFFFFF000000000))); /* this version only handles 36 bits */ if(val < 0x80) { return FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)val, 8); } else if(val < 0x800) { ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xC0 | (FLAC__uint32)(val>>6), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else if(val < 0x10000) { ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xE0 | (FLAC__uint32)(val>>12), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else if(val < 0x200000) { ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xF0 | (FLAC__uint32)(val>>18), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else if(val < 0x4000000) { ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xF8 | (FLAC__uint32)(val>>24), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else if(val < 0x80000000) { ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xFC | (FLAC__uint32)(val>>30), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>24)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else { ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xFE, 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>30)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>24)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); } return ok; } FLAC__bool FLAC__bitwriter_zero_pad_to_byte_boundary(FLAC__BitWriter *bw) { /* 0-pad to byte boundary */ if(bw->bits & 7u) return FLAC__bitwriter_write_zeroes(bw, 8 - (bw->bits & 7u)); else return true; } #endif /********* End of inlined file: bitwriter.c *********/ /********* Start of inlined file: cpu.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif #include #include #if defined FLAC__CPU_IA32 # include #elif defined FLAC__CPU_PPC # if !defined FLAC__NO_ASM # if defined FLAC__SYS_DARWIN # include # include # include # include # include # ifndef CPU_SUBTYPE_POWERPC_970 # define CPU_SUBTYPE_POWERPC_970 ((cpu_subtype_t) 100) # endif # else /* FLAC__SYS_DARWIN */ # include # include static sigjmp_buf jmpbuf; static volatile sig_atomic_t canjump = 0; static void sigill_handler (int sig) { if (!canjump) { signal (sig, SIG_DFL); raise (sig); } canjump = 0; siglongjmp (jmpbuf, 1); } # endif /* FLAC__SYS_DARWIN */ # endif /* FLAC__NO_ASM */ #endif /* FLAC__CPU_PPC */ #if defined (__NetBSD__) || defined(__OpenBSD__) #include #include #include #endif #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) #include #include #endif #if defined(__APPLE__) /* how to get sysctlbyname()? */ #endif /* these are flags in EDX of CPUID AX=00000001 */ static const unsigned FLAC__CPUINFO_IA32_CPUID_CMOV = 0x00008000; static const unsigned FLAC__CPUINFO_IA32_CPUID_MMX = 0x00800000; static const unsigned FLAC__CPUINFO_IA32_CPUID_FXSR = 0x01000000; static const unsigned FLAC__CPUINFO_IA32_CPUID_SSE = 0x02000000; static const unsigned FLAC__CPUINFO_IA32_CPUID_SSE2 = 0x04000000; /* these are flags in ECX of CPUID AX=00000001 */ static const unsigned FLAC__CPUINFO_IA32_CPUID_SSE3 = 0x00000001; static const unsigned FLAC__CPUINFO_IA32_CPUID_SSSE3 = 0x00000200; /* these are flags in EDX of CPUID AX=80000001 */ static const unsigned FLAC__CPUINFO_IA32_CPUID_EXTENDED_AMD_3DNOW = 0x80000000; static const unsigned FLAC__CPUINFO_IA32_CPUID_EXTENDED_AMD_EXT3DNOW = 0x40000000; static const unsigned FLAC__CPUINFO_IA32_CPUID_EXTENDED_AMD_EXTMMX = 0x00400000; /* * Extra stuff needed for detection of OS support for SSE on IA-32 */ #if defined(FLAC__CPU_IA32) && !defined FLAC__NO_ASM && defined FLAC__HAS_NASM && !defined FLAC__NO_SSE_OS && !defined FLAC__SSE_OS # if defined(__linux__) /* * If the OS doesn't support SSE, we will get here with a SIGILL. We * modify the return address to jump over the offending SSE instruction * and also the operation following it that indicates the instruction * executed successfully. In this way we use no global variables and * stay thread-safe. * * 3 + 3 + 6: * 3 bytes for "xorps xmm0,xmm0" * 3 bytes for estimate of how long the follwing "inc var" instruction is * 6 bytes extra in case our estimate is wrong * 12 bytes puts us in the NOP "landing zone" */ # undef USE_OBSOLETE_SIGCONTEXT_FLAVOR /* #define this to use the older signal handler method */ # ifdef USE_OBSOLETE_SIGCONTEXT_FLAVOR static void sigill_handler_sse_os(int signal, struct sigcontext sc) { (void)signal; sc.eip += 3 + 3 + 6; } # else # include static void sigill_handler_sse_os(int signal, siginfo_t *si, void *uc) { (void)signal, (void)si; ((ucontext_t*)uc)->uc_mcontext.gregs[14/*REG_EIP*/] += 3 + 3 + 6; } # endif # elif defined(_MSC_VER) # include # undef USE_TRY_CATCH_FLAVOR /* #define this to use the try/catch method for catching illegal opcode exception */ # ifdef USE_TRY_CATCH_FLAVOR # else LONG CALLBACK sigill_handler_sse_os(EXCEPTION_POINTERS *ep) { if(ep->ExceptionRecord->ExceptionCode == EXCEPTION_ILLEGAL_INSTRUCTION) { ep->ContextRecord->Eip += 3 + 3 + 6; return EXCEPTION_CONTINUE_EXECUTION; } return EXCEPTION_CONTINUE_SEARCH; } # endif # endif #endif void FLAC__cpu_info(FLAC__CPUInfo *info) { /* * IA32-specific */ #ifdef FLAC__CPU_IA32 info->type = FLAC__CPUINFO_TYPE_IA32; #if !defined FLAC__NO_ASM && defined FLAC__HAS_NASM info->use_asm = true; /* we assume a minimum of 80386 with FLAC__CPU_IA32 */ info->data.ia32.cpuid = FLAC__cpu_have_cpuid_asm_ia32()? true : false; info->data.ia32.bswap = info->data.ia32.cpuid; /* CPUID => BSWAP since it came after */ info->data.ia32.cmov = false; info->data.ia32.mmx = false; info->data.ia32.fxsr = false; info->data.ia32.sse = false; info->data.ia32.sse2 = false; info->data.ia32.sse3 = false; info->data.ia32.ssse3 = false; info->data.ia32._3dnow = false; info->data.ia32.ext3dnow = false; info->data.ia32.extmmx = false; if(info->data.ia32.cpuid) { /* http://www.sandpile.org/ia32/cpuid.htm */ FLAC__uint32 flags_edx, flags_ecx; FLAC__cpu_info_asm_ia32(&flags_edx, &flags_ecx); info->data.ia32.cmov = (flags_edx & FLAC__CPUINFO_IA32_CPUID_CMOV )? true : false; info->data.ia32.mmx = (flags_edx & FLAC__CPUINFO_IA32_CPUID_MMX )? true : false; info->data.ia32.fxsr = (flags_edx & FLAC__CPUINFO_IA32_CPUID_FXSR )? true : false; info->data.ia32.sse = (flags_edx & FLAC__CPUINFO_IA32_CPUID_SSE )? true : false; info->data.ia32.sse2 = (flags_edx & FLAC__CPUINFO_IA32_CPUID_SSE2 )? true : false; info->data.ia32.sse3 = (flags_ecx & FLAC__CPUINFO_IA32_CPUID_SSE3 )? true : false; info->data.ia32.ssse3 = (flags_ecx & FLAC__CPUINFO_IA32_CPUID_SSSE3)? true : false; #ifdef FLAC__USE_3DNOW flags_edx = FLAC__cpu_info_extended_amd_asm_ia32(); info->data.ia32._3dnow = (flags_edx & FLAC__CPUINFO_IA32_CPUID_EXTENDED_AMD_3DNOW )? true : false; info->data.ia32.ext3dnow = (flags_edx & FLAC__CPUINFO_IA32_CPUID_EXTENDED_AMD_EXT3DNOW)? true : false; info->data.ia32.extmmx = (flags_edx & FLAC__CPUINFO_IA32_CPUID_EXTENDED_AMD_EXTMMX )? true : false; #else info->data.ia32._3dnow = info->data.ia32.ext3dnow = info->data.ia32.extmmx = false; #endif #ifdef DEBUG fprintf(stderr, "CPU info (IA-32):\n"); fprintf(stderr, " CPUID ...... %c\n", info->data.ia32.cpuid ? 'Y' : 'n'); fprintf(stderr, " BSWAP ...... %c\n", info->data.ia32.bswap ? 'Y' : 'n'); fprintf(stderr, " CMOV ....... %c\n", info->data.ia32.cmov ? 'Y' : 'n'); fprintf(stderr, " MMX ........ %c\n", info->data.ia32.mmx ? 'Y' : 'n'); fprintf(stderr, " FXSR ....... %c\n", info->data.ia32.fxsr ? 'Y' : 'n'); fprintf(stderr, " SSE ........ %c\n", info->data.ia32.sse ? 'Y' : 'n'); fprintf(stderr, " SSE2 ....... %c\n", info->data.ia32.sse2 ? 'Y' : 'n'); fprintf(stderr, " SSE3 ....... %c\n", info->data.ia32.sse3 ? 'Y' : 'n'); fprintf(stderr, " SSSE3 ...... %c\n", info->data.ia32.ssse3 ? 'Y' : 'n'); fprintf(stderr, " 3DNow! ..... %c\n", info->data.ia32._3dnow ? 'Y' : 'n'); fprintf(stderr, " 3DNow!-ext . %c\n", info->data.ia32.ext3dnow? 'Y' : 'n'); fprintf(stderr, " 3DNow!-MMX . %c\n", info->data.ia32.extmmx ? 'Y' : 'n'); #endif /* * now have to check for OS support of SSE/SSE2 */ if(info->data.ia32.fxsr || info->data.ia32.sse || info->data.ia32.sse2) { #if defined FLAC__NO_SSE_OS /* assume user knows better than us; turn it off */ info->data.ia32.fxsr = info->data.ia32.sse = info->data.ia32.sse2 = info->data.ia32.sse3 = info->data.ia32.ssse3 = false; #elif defined FLAC__SSE_OS /* assume user knows better than us; leave as detected above */ #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__APPLE__) int sse = 0; size_t len; /* at least one of these must work: */ len = sizeof(sse); sse = sse || (sysctlbyname("hw.instruction_sse", &sse, &len, NULL, 0) == 0 && sse); len = sizeof(sse); sse = sse || (sysctlbyname("hw.optional.sse" , &sse, &len, NULL, 0) == 0 && sse); /* __APPLE__ ? */ if(!sse) info->data.ia32.fxsr = info->data.ia32.sse = info->data.ia32.sse2 = info->data.ia32.sse3 = info->data.ia32.ssse3 = false; #elif defined(__NetBSD__) || defined (__OpenBSD__) # if __NetBSD_Version__ >= 105250000 || (defined __OpenBSD__) int val = 0, mib[2] = { CTL_MACHDEP, CPU_SSE }; size_t len = sizeof(val); if(sysctl(mib, 2, &val, &len, NULL, 0) < 0 || !val) info->data.ia32.fxsr = info->data.ia32.sse = info->data.ia32.sse2 = info->data.ia32.sse3 = info->data.ia32.ssse3 = false; else { /* double-check SSE2 */ mib[1] = CPU_SSE2; len = sizeof(val); if(sysctl(mib, 2, &val, &len, NULL, 0) < 0 || !val) info->data.ia32.sse2 = info->data.ia32.sse3 = info->data.ia32.ssse3 = false; } # else info->data.ia32.fxsr = info->data.ia32.sse = info->data.ia32.sse2 = info->data.ia32.sse3 = info->data.ia32.ssse3 = false; # endif #elif defined(__linux__) int sse = 0; struct sigaction sigill_save; #ifdef USE_OBSOLETE_SIGCONTEXT_FLAVOR if(0 == sigaction(SIGILL, NULL, &sigill_save) && signal(SIGILL, (void (*)(int))sigill_handler_sse_os) != SIG_ERR) #else struct sigaction sigill_sse; sigill_sse.sa_sigaction = sigill_handler_sse_os; __sigemptyset(&sigill_sse.sa_mask); sigill_sse.sa_flags = SA_SIGINFO | SA_RESETHAND; /* SA_RESETHAND just in case our SIGILL return jump breaks, so we don't get stuck in a loop */ if(0 == sigaction(SIGILL, &sigill_sse, &sigill_save)) #endif { /* http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html */ /* see sigill_handler_sse_os() for an explanation of the following: */ asm volatile ( "xorl %0,%0\n\t" /* for some reason, still need to do this to clear 'sse' var */ "xorps %%xmm0,%%xmm0\n\t" /* will cause SIGILL if unsupported by OS */ "incl %0\n\t" /* SIGILL handler will jump over this */ /* landing zone */ "nop\n\t" /* SIGILL jump lands here if "inc" is 9 bytes */ "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" /* SIGILL jump lands here if "inc" is 3 bytes (expected) */ "nop\n\t" "nop" /* SIGILL jump lands here if "inc" is 1 byte */ : "=r"(sse) : "r"(sse) ); sigaction(SIGILL, &sigill_save, NULL); } if(!sse) info->data.ia32.fxsr = info->data.ia32.sse = info->data.ia32.sse2 = info->data.ia32.sse3 = info->data.ia32.ssse3 = false; #elif defined(_MSC_VER) # ifdef USE_TRY_CATCH_FLAVOR _try { __asm { # if _MSC_VER <= 1200 /* VC6 assembler doesn't know SSE, have to emit bytecode instead */ _emit 0x0F _emit 0x57 _emit 0xC0 # else xorps xmm0,xmm0 # endif } } _except(EXCEPTION_EXECUTE_HANDLER) { if (_exception_code() == STATUS_ILLEGAL_INSTRUCTION) info->data.ia32.fxsr = info->data.ia32.sse = info->data.ia32.sse2 = info->data.ia32.sse3 = info->data.ia32.ssse3 = false; } # else int sse = 0; LPTOP_LEVEL_EXCEPTION_FILTER save = SetUnhandledExceptionFilter(sigill_handler_sse_os); /* see GCC version above for explanation */ /* http://msdn2.microsoft.com/en-us/library/4ks26t93.aspx */ /* http://www.codeproject.com/cpp/gccasm.asp */ /* http://www.hick.org/~mmiller/msvc_inline_asm.html */ __asm { # if _MSC_VER <= 1200 /* VC6 assembler doesn't know SSE, have to emit bytecode instead */ _emit 0x0F _emit 0x57 _emit 0xC0 # else xorps xmm0,xmm0 # endif inc sse nop nop nop nop nop nop nop nop nop } SetUnhandledExceptionFilter(save); if(!sse) info->data.ia32.fxsr = info->data.ia32.sse = info->data.ia32.sse2 = info->data.ia32.sse3 = info->data.ia32.ssse3 = false; # endif #else /* no way to test, disable to be safe */ info->data.ia32.fxsr = info->data.ia32.sse = info->data.ia32.sse2 = info->data.ia32.sse3 = info->data.ia32.ssse3 = false; #endif #ifdef DEBUG fprintf(stderr, " SSE OS sup . %c\n", info->data.ia32.sse ? 'Y' : 'n'); #endif } } #else info->use_asm = false; #endif /* * PPC-specific */ #elif defined FLAC__CPU_PPC info->type = FLAC__CPUINFO_TYPE_PPC; # if !defined FLAC__NO_ASM info->use_asm = true; # ifdef FLAC__USE_ALTIVEC # if defined FLAC__SYS_DARWIN { int val = 0, mib[2] = { CTL_HW, HW_VECTORUNIT }; size_t len = sizeof(val); info->data.ppc.altivec = !(sysctl(mib, 2, &val, &len, NULL, 0) || !val); } { host_basic_info_data_t hostInfo; mach_msg_type_number_t infoCount; infoCount = HOST_BASIC_INFO_COUNT; host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo, &infoCount); info->data.ppc.ppc64 = (hostInfo.cpu_type == CPU_TYPE_POWERPC) && (hostInfo.cpu_subtype == CPU_SUBTYPE_POWERPC_970); } # else /* FLAC__USE_ALTIVEC && !FLAC__SYS_DARWIN */ { /* no Darwin, do it the brute-force way */ /* @@@@@@ this is not thread-safe; replace with SSE OS method above or remove */ info->data.ppc.altivec = 0; info->data.ppc.ppc64 = 0; signal (SIGILL, sigill_handler); canjump = 0; if (!sigsetjmp (jmpbuf, 1)) { canjump = 1; asm volatile ( "mtspr 256, %0\n\t" "vand %%v0, %%v0, %%v0" : : "r" (-1) ); info->data.ppc.altivec = 1; } canjump = 0; if (!sigsetjmp (jmpbuf, 1)) { int x = 0; canjump = 1; /* PPC64 hardware implements the cntlzd instruction */ asm volatile ("cntlzd %0, %1" : "=r" (x) : "r" (x) ); info->data.ppc.ppc64 = 1; } signal (SIGILL, SIG_DFL); /*@@@@@@ should save and restore old signal */ } # endif # else /* !FLAC__USE_ALTIVEC */ info->data.ppc.altivec = 0; info->data.ppc.ppc64 = 0; # endif # else info->use_asm = false; # endif /* * unknown CPI */ #else info->type = FLAC__CPUINFO_TYPE_UNKNOWN; info->use_asm = false; #endif } #endif /********* End of inlined file: cpu.c *********/ /********* Start of inlined file: crc.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif /* CRC-8, poly = x^8 + x^2 + x^1 + x^0, init = 0 */ FLAC__byte const FLAC__crc8_table[256] = { 0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D, 0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D, 0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD, 0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD, 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA, 0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A, 0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A, 0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A, 0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4, 0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4, 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44, 0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34, 0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63, 0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13, 0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83, 0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3 }; /* CRC-16, poly = x^16 + x^15 + x^2 + x^0, init = 0 */ unsigned FLAC__crc16_table[256] = { 0x0000, 0x8005, 0x800f, 0x000a, 0x801b, 0x001e, 0x0014, 0x8011, 0x8033, 0x0036, 0x003c, 0x8039, 0x0028, 0x802d, 0x8027, 0x0022, 0x8063, 0x0066, 0x006c, 0x8069, 0x0078, 0x807d, 0x8077, 0x0072, 0x0050, 0x8055, 0x805f, 0x005a, 0x804b, 0x004e, 0x0044, 0x8041, 0x80c3, 0x00c6, 0x00cc, 0x80c9, 0x00d8, 0x80dd, 0x80d7, 0x00d2, 0x00f0, 0x80f5, 0x80ff, 0x00fa, 0x80eb, 0x00ee, 0x00e4, 0x80e1, 0x00a0, 0x80a5, 0x80af, 0x00aa, 0x80bb, 0x00be, 0x00b4, 0x80b1, 0x8093, 0x0096, 0x009c, 0x8099, 0x0088, 0x808d, 0x8087, 0x0082, 0x8183, 0x0186, 0x018c, 0x8189, 0x0198, 0x819d, 0x8197, 0x0192, 0x01b0, 0x81b5, 0x81bf, 0x01ba, 0x81ab, 0x01ae, 0x01a4, 0x81a1, 0x01e0, 0x81e5, 0x81ef, 0x01ea, 0x81fb, 0x01fe, 0x01f4, 0x81f1, 0x81d3, 0x01d6, 0x01dc, 0x81d9, 0x01c8, 0x81cd, 0x81c7, 0x01c2, 0x0140, 0x8145, 0x814f, 0x014a, 0x815b, 0x015e, 0x0154, 0x8151, 0x8173, 0x0176, 0x017c, 0x8179, 0x0168, 0x816d, 0x8167, 0x0162, 0x8123, 0x0126, 0x012c, 0x8129, 0x0138, 0x813d, 0x8137, 0x0132, 0x0110, 0x8115, 0x811f, 0x011a, 0x810b, 0x010e, 0x0104, 0x8101, 0x8303, 0x0306, 0x030c, 0x8309, 0x0318, 0x831d, 0x8317, 0x0312, 0x0330, 0x8335, 0x833f, 0x033a, 0x832b, 0x032e, 0x0324, 0x8321, 0x0360, 0x8365, 0x836f, 0x036a, 0x837b, 0x037e, 0x0374, 0x8371, 0x8353, 0x0356, 0x035c, 0x8359, 0x0348, 0x834d, 0x8347, 0x0342, 0x03c0, 0x83c5, 0x83cf, 0x03ca, 0x83db, 0x03de, 0x03d4, 0x83d1, 0x83f3, 0x03f6, 0x03fc, 0x83f9, 0x03e8, 0x83ed, 0x83e7, 0x03e2, 0x83a3, 0x03a6, 0x03ac, 0x83a9, 0x03b8, 0x83bd, 0x83b7, 0x03b2, 0x0390, 0x8395, 0x839f, 0x039a, 0x838b, 0x038e, 0x0384, 0x8381, 0x0280, 0x8285, 0x828f, 0x028a, 0x829b, 0x029e, 0x0294, 0x8291, 0x82b3, 0x02b6, 0x02bc, 0x82b9, 0x02a8, 0x82ad, 0x82a7, 0x02a2, 0x82e3, 0x02e6, 0x02ec, 0x82e9, 0x02f8, 0x82fd, 0x82f7, 0x02f2, 0x02d0, 0x82d5, 0x82df, 0x02da, 0x82cb, 0x02ce, 0x02c4, 0x82c1, 0x8243, 0x0246, 0x024c, 0x8249, 0x0258, 0x825d, 0x8257, 0x0252, 0x0270, 0x8275, 0x827f, 0x027a, 0x826b, 0x026e, 0x0264, 0x8261, 0x0220, 0x8225, 0x822f, 0x022a, 0x823b, 0x023e, 0x0234, 0x8231, 0x8213, 0x0216, 0x021c, 0x8219, 0x0208, 0x820d, 0x8207, 0x0202 }; void FLAC__crc8_update(const FLAC__byte data, FLAC__uint8 *crc) { *crc = FLAC__crc8_table[*crc ^ data]; } void FLAC__crc8_update_block(const FLAC__byte *data, unsigned len, FLAC__uint8 *crc) { while(len--) *crc = FLAC__crc8_table[*crc ^ *data++]; } FLAC__uint8 FLAC__crc8(const FLAC__byte *data, unsigned len) { FLAC__uint8 crc = 0; while(len--) crc = FLAC__crc8_table[crc ^ *data++]; return crc; } unsigned FLAC__crc16(const FLAC__byte *data, unsigned len) { unsigned crc = 0; while(len--) crc = ((crc<<8) ^ FLAC__crc16_table[(crc>>8) ^ *data++]) & 0xffff; return crc; } #endif /********* End of inlined file: crc.c *********/ /********* Start of inlined file: fixed.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif #include #include /********* Start of inlined file: fixed.h *********/ #ifndef FLAC__PRIVATE__FIXED_H #define FLAC__PRIVATE__FIXED_H #ifdef HAVE_CONFIG_H #include #endif /********* Start of inlined file: float.h *********/ #ifndef FLAC__PRIVATE__FLOAT_H #define FLAC__PRIVATE__FLOAT_H #ifdef HAVE_CONFIG_H #include #endif /* * These typedefs make it easier to ensure that integer versions of * the library really only contain integer operations. All the code * in libFLAC should use FLAC__float and FLAC__double in place of * float and double, and be protected by checks of the macro * FLAC__INTEGER_ONLY_LIBRARY. * * FLAC__real is the basic floating point type used in LPC analysis. */ #ifndef FLAC__INTEGER_ONLY_LIBRARY typedef double FLAC__double; typedef float FLAC__float; /* * WATCHOUT: changing FLAC__real will change the signatures of many * functions that have assembly language equivalents and break them. */ typedef float FLAC__real; #else /* * The convention for FLAC__fixedpoint is to use the upper 16 bits * for the integer part and lower 16 bits for the fractional part. */ typedef FLAC__int32 FLAC__fixedpoint; extern const FLAC__fixedpoint FLAC__FP_ZERO; extern const FLAC__fixedpoint FLAC__FP_ONE_HALF; extern const FLAC__fixedpoint FLAC__FP_ONE; extern const FLAC__fixedpoint FLAC__FP_LN2; extern const FLAC__fixedpoint FLAC__FP_E; #define FLAC__fixedpoint_trunc(x) ((x)>>16) #define FLAC__fixedpoint_mul(x, y) ( (FLAC__fixedpoint) ( ((FLAC__int64)(x)*(FLAC__int64)(y)) >> 16 ) ) #define FLAC__fixedpoint_div(x, y) ( (FLAC__fixedpoint) ( ( ((FLAC__int64)(x)<<32) / (FLAC__int64)(y) ) >> 16 ) ) /* * FLAC__fixedpoint_log2() * -------------------------------------------------------------------- * Returns the base-2 logarithm of the fixed-point number 'x' using an * algorithm by Knuth for x >= 1.0 * * 'fracbits' is the number of fractional bits of 'x'. 'fracbits' must * be < 32 and evenly divisible by 4 (0 is OK but not very precise). * * 'precision' roughly limits the number of iterations that are done; * use (unsigned)(-1) for maximum precision. * * If 'x' is less than one -- that is, x < (1< 30 * * IN data[0,data_len-1] * IN data_len * OUT residual_bits_per_sample[0,FLAC__MAX_FIXED_ORDER] */ #ifndef FLAC__INTEGER_ONLY_LIBRARY unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); # ifndef FLAC__NO_ASM # ifdef FLAC__CPU_IA32 # ifdef FLAC__HAS_NASM unsigned FLAC__fixed_compute_best_predictor_asm_ia32_mmx_cmov(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); # endif # endif # endif unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); #else unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); #endif /* * FLAC__fixed_compute_residual() * -------------------------------------------------------------------- * Compute the residual signal obtained from sutracting the predicted * signal from the original. * * IN data[-order,data_len-1] original signal (NOTE THE INDICES!) * IN data_len length of original signal * IN order <= FLAC__MAX_FIXED_ORDER fixed-predictor order * OUT residual[0,data_len-1] residual signal */ void FLAC__fixed_compute_residual(const FLAC__int32 data[], unsigned data_len, unsigned order, FLAC__int32 residual[]); /* * FLAC__fixed_restore_signal() * -------------------------------------------------------------------- * Restore the original signal by summing the residual and the * predictor. * * IN residual[0,data_len-1] residual signal * IN data_len length of original signal * IN order <= FLAC__MAX_FIXED_ORDER fixed-predictor order * *** IMPORTANT: the caller must pass in the historical samples: * IN data[-order,-1] previously-reconstructed historical samples * OUT data[0,data_len-1] original signal */ void FLAC__fixed_restore_signal(const FLAC__int32 residual[], unsigned data_len, unsigned order, FLAC__int32 data[]); #endif /********* End of inlined file: fixed.h *********/ #ifndef M_LN2 /* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */ #define M_LN2 0.69314718055994530942 #endif #ifdef min #undef min #endif #define min(x,y) ((x) < (y)? (x) : (y)) #ifdef local_abs #undef local_abs #endif #define local_abs(x) ((unsigned)((x)<0? -(x) : (x))) #ifdef FLAC__INTEGER_ONLY_LIBRARY /* rbps stands for residual bits per sample * * (ln(2) * err) * rbps = log (-----------) * 2 ( n ) */ static FLAC__fixedpoint local__compute_rbps_integerized(FLAC__uint32 err, FLAC__uint32 n) { FLAC__uint32 rbps; unsigned bits; /* the number of bits required to represent a number */ int fracbits; /* the number of bits of rbps that comprise the fractional part */ FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint)); FLAC__ASSERT(err > 0); FLAC__ASSERT(n > 0); FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE); if(err <= n) return 0; /* * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1. * These allow us later to know we won't lose too much precision in the * fixed-point division (err< 0); bits = FLAC__bitmath_ilog2(err)+1; if(bits > 16) { err >>= (bits-16); fracbits -= (bits-16); } rbps = (FLAC__uint32)err; /* Multiply by fixed-point version of ln(2), with 16 fractional bits */ rbps *= FLAC__FP_LN2; fracbits += 16; FLAC__ASSERT(fracbits >= 0); /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */ { const int f = fracbits & 3; if(f) { rbps >>= f; fracbits -= f; } } rbps = FLAC__fixedpoint_log2(rbps, fracbits, (unsigned)(-1)); if(rbps == 0) return 0; /* * The return value must have 16 fractional bits. Since the whole part * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits * must be >= -3, these assertion allows us to be able to shift rbps * left if necessary to get 16 fracbits without losing any bits of the * whole part of rbps. * * There is a slight chance due to accumulated error that the whole part * will require 6 bits, so we use 6 in the assertion. Really though as * long as it fits in 13 bits (32 - (16 - (-3))) we are fine. */ FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6); FLAC__ASSERT(fracbits >= -3); /* now shift the decimal point into place */ if(fracbits < 16) return rbps << (16-fracbits); else if(fracbits > 16) return rbps >> (fracbits-16); else return rbps; } static FLAC__fixedpoint local__compute_rbps_wide_integerized(FLAC__uint64 err, FLAC__uint32 n) { FLAC__uint32 rbps; unsigned bits; /* the number of bits required to represent a number */ int fracbits; /* the number of bits of rbps that comprise the fractional part */ FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint)); FLAC__ASSERT(err > 0); FLAC__ASSERT(n > 0); FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE); if(err <= n) return 0; /* * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1. * These allow us later to know we won't lose too much precision in the * fixed-point division (err< 0); bits = FLAC__bitmath_ilog2_wide(err)+1; if(bits > 16) { err >>= (bits-16); fracbits -= (bits-16); } rbps = (FLAC__uint32)err; /* Multiply by fixed-point version of ln(2), with 16 fractional bits */ rbps *= FLAC__FP_LN2; fracbits += 16; FLAC__ASSERT(fracbits >= 0); /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */ { const int f = fracbits & 3; if(f) { rbps >>= f; fracbits -= f; } } rbps = FLAC__fixedpoint_log2(rbps, fracbits, (unsigned)(-1)); if(rbps == 0) return 0; /* * The return value must have 16 fractional bits. Since the whole part * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits * must be >= -3, these assertion allows us to be able to shift rbps * left if necessary to get 16 fracbits without losing any bits of the * whole part of rbps. * * There is a slight chance due to accumulated error that the whole part * will require 6 bits, so we use 6 in the assertion. Really though as * long as it fits in 13 bits (32 - (16 - (-3))) we are fine. */ FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6); FLAC__ASSERT(fracbits >= -3); /* now shift the decimal point into place */ if(fracbits < 16) return rbps << (16-fracbits); else if(fracbits > 16) return rbps >> (fracbits-16); else return rbps; } #endif #ifndef FLAC__INTEGER_ONLY_LIBRARY unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) #else unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) #endif { FLAC__int32 last_error_0 = data[-1]; FLAC__int32 last_error_1 = data[-1] - data[-2]; FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]); FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]); FLAC__int32 error, save; FLAC__uint32 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0; unsigned i, order; for(i = 0; i < data_len; i++) { error = data[i] ; total_error_0 += local_abs(error); save = error; error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error; error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error; error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error; error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save; } if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4)) order = 0; else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4)) order = 1; else if(total_error_2 < min(total_error_3, total_error_4)) order = 2; else if(total_error_3 < total_error_4) order = 3; else order = 4; /* Estimate the expected number of bits per residual signal sample. */ /* 'total_error*' is linearly related to the variance of the residual */ /* signal, so we use it directly to compute E(|x|) */ FLAC__ASSERT(data_len > 0 || total_error_0 == 0); FLAC__ASSERT(data_len > 0 || total_error_1 == 0); FLAC__ASSERT(data_len > 0 || total_error_2 == 0); FLAC__ASSERT(data_len > 0 || total_error_3 == 0); FLAC__ASSERT(data_len > 0 || total_error_4 == 0); #ifndef FLAC__INTEGER_ONLY_LIBRARY residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0); #else residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_integerized(total_error_0, data_len) : 0; residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_integerized(total_error_1, data_len) : 0; residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_integerized(total_error_2, data_len) : 0; residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_integerized(total_error_3, data_len) : 0; residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_integerized(total_error_4, data_len) : 0; #endif return order; } #ifndef FLAC__INTEGER_ONLY_LIBRARY unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) #else unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) #endif { FLAC__int32 last_error_0 = data[-1]; FLAC__int32 last_error_1 = data[-1] - data[-2]; FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]); FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]); FLAC__int32 error, save; /* total_error_* are 64-bits to avoid overflow when encoding * erratic signals when the bits-per-sample and blocksize are * large. */ FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0; unsigned i, order; for(i = 0; i < data_len; i++) { error = data[i] ; total_error_0 += local_abs(error); save = error; error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error; error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error; error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error; error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save; } if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4)) order = 0; else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4)) order = 1; else if(total_error_2 < min(total_error_3, total_error_4)) order = 2; else if(total_error_3 < total_error_4) order = 3; else order = 4; /* Estimate the expected number of bits per residual signal sample. */ /* 'total_error*' is linearly related to the variance of the residual */ /* signal, so we use it directly to compute E(|x|) */ FLAC__ASSERT(data_len > 0 || total_error_0 == 0); FLAC__ASSERT(data_len > 0 || total_error_1 == 0); FLAC__ASSERT(data_len > 0 || total_error_2 == 0); FLAC__ASSERT(data_len > 0 || total_error_3 == 0); FLAC__ASSERT(data_len > 0 || total_error_4 == 0); #ifndef FLAC__INTEGER_ONLY_LIBRARY #if defined _MSC_VER || defined __MINGW32__ /* with MSVC you have to spoon feed it the casting */ residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0); #else residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0); #endif #else residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_wide_integerized(total_error_0, data_len) : 0; residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_wide_integerized(total_error_1, data_len) : 0; residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_wide_integerized(total_error_2, data_len) : 0; residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_wide_integerized(total_error_3, data_len) : 0; residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_wide_integerized(total_error_4, data_len) : 0; #endif return order; } void FLAC__fixed_compute_residual(const FLAC__int32 data[], unsigned data_len, unsigned order, FLAC__int32 residual[]) { const int idata_len = (int)data_len; int i; switch(order) { case 0: FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0])); memcpy(residual, data, sizeof(residual[0])*data_len); break; case 1: for(i = 0; i < idata_len; i++) residual[i] = data[i] - data[i-1]; break; case 2: for(i = 0; i < idata_len; i++) #if 1 /* OPT: may be faster with some compilers on some systems */ residual[i] = data[i] - (data[i-1] << 1) + data[i-2]; #else residual[i] = data[i] - 2*data[i-1] + data[i-2]; #endif break; case 3: for(i = 0; i < idata_len; i++) #if 1 /* OPT: may be faster with some compilers on some systems */ residual[i] = data[i] - (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) - data[i-3]; #else residual[i] = data[i] - 3*data[i-1] + 3*data[i-2] - data[i-3]; #endif break; case 4: for(i = 0; i < idata_len; i++) #if 1 /* OPT: may be faster with some compilers on some systems */ residual[i] = data[i] - ((data[i-1]+data[i-3])<<2) + ((data[i-2]<<2) + (data[i-2]<<1)) + data[i-4]; #else residual[i] = data[i] - 4*data[i-1] + 6*data[i-2] - 4*data[i-3] + data[i-4]; #endif break; default: FLAC__ASSERT(0); } } void FLAC__fixed_restore_signal(const FLAC__int32 residual[], unsigned data_len, unsigned order, FLAC__int32 data[]) { int i, idata_len = (int)data_len; switch(order) { case 0: FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0])); memcpy(data, residual, sizeof(residual[0])*data_len); break; case 1: for(i = 0; i < idata_len; i++) data[i] = residual[i] + data[i-1]; break; case 2: for(i = 0; i < idata_len; i++) #if 1 /* OPT: may be faster with some compilers on some systems */ data[i] = residual[i] + (data[i-1]<<1) - data[i-2]; #else data[i] = residual[i] + 2*data[i-1] - data[i-2]; #endif break; case 3: for(i = 0; i < idata_len; i++) #if 1 /* OPT: may be faster with some compilers on some systems */ data[i] = residual[i] + (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) + data[i-3]; #else data[i] = residual[i] + 3*data[i-1] - 3*data[i-2] + data[i-3]; #endif break; case 4: for(i = 0; i < idata_len; i++) #if 1 /* OPT: may be faster with some compilers on some systems */ data[i] = residual[i] + ((data[i-1]+data[i-3])<<2) - ((data[i-2]<<2) + (data[i-2]<<1)) - data[i-4]; #else data[i] = residual[i] + 4*data[i-1] - 6*data[i-2] + 4*data[i-3] - data[i-4]; #endif break; default: FLAC__ASSERT(0); } } #endif /********* End of inlined file: fixed.c *********/ /********* Start of inlined file: float.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif #ifdef FLAC__INTEGER_ONLY_LIBRARY /* adjust for compilers that can't understand using LLU suffix for uint64_t literals */ #ifdef _MSC_VER #define FLAC__U64L(x) x #else #define FLAC__U64L(x) x##LLU #endif const FLAC__fixedpoint FLAC__FP_ZERO = 0; const FLAC__fixedpoint FLAC__FP_ONE_HALF = 0x00008000; const FLAC__fixedpoint FLAC__FP_ONE = 0x00010000; const FLAC__fixedpoint FLAC__FP_LN2 = 45426; const FLAC__fixedpoint FLAC__FP_E = 178145; /* Lookup tables for Knuth's logarithm algorithm */ #define LOG2_LOOKUP_PRECISION 16 static const FLAC__uint32 log2_lookup[][LOG2_LOOKUP_PRECISION] = { { /* * 0 fraction bits */ /* undefined */ 0x00000000, /* lg(2/1) = */ 0x00000001, /* lg(4/3) = */ 0x00000000, /* lg(8/7) = */ 0x00000000, /* lg(16/15) = */ 0x00000000, /* lg(32/31) = */ 0x00000000, /* lg(64/63) = */ 0x00000000, /* lg(128/127) = */ 0x00000000, /* lg(256/255) = */ 0x00000000, /* lg(512/511) = */ 0x00000000, /* lg(1024/1023) = */ 0x00000000, /* lg(2048/2047) = */ 0x00000000, /* lg(4096/4095) = */ 0x00000000, /* lg(8192/8191) = */ 0x00000000, /* lg(16384/16383) = */ 0x00000000, /* lg(32768/32767) = */ 0x00000000 }, { /* * 4 fraction bits */ /* undefined */ 0x00000000, /* lg(2/1) = */ 0x00000010, /* lg(4/3) = */ 0x00000007, /* lg(8/7) = */ 0x00000003, /* lg(16/15) = */ 0x00000001, /* lg(32/31) = */ 0x00000001, /* lg(64/63) = */ 0x00000000, /* lg(128/127) = */ 0x00000000, /* lg(256/255) = */ 0x00000000, /* lg(512/511) = */ 0x00000000, /* lg(1024/1023) = */ 0x00000000, /* lg(2048/2047) = */ 0x00000000, /* lg(4096/4095) = */ 0x00000000, /* lg(8192/8191) = */ 0x00000000, /* lg(16384/16383) = */ 0x00000000, /* lg(32768/32767) = */ 0x00000000 }, { /* * 8 fraction bits */ /* undefined */ 0x00000000, /* lg(2/1) = */ 0x00000100, /* lg(4/3) = */ 0x0000006a, /* lg(8/7) = */ 0x00000031, /* lg(16/15) = */ 0x00000018, /* lg(32/31) = */ 0x0000000c, /* lg(64/63) = */ 0x00000006, /* lg(128/127) = */ 0x00000003, /* lg(256/255) = */ 0x00000001, /* lg(512/511) = */ 0x00000001, /* lg(1024/1023) = */ 0x00000000, /* lg(2048/2047) = */ 0x00000000, /* lg(4096/4095) = */ 0x00000000, /* lg(8192/8191) = */ 0x00000000, /* lg(16384/16383) = */ 0x00000000, /* lg(32768/32767) = */ 0x00000000 }, { /* * 12 fraction bits */ /* undefined */ 0x00000000, /* lg(2/1) = */ 0x00001000, /* lg(4/3) = */ 0x000006a4, /* lg(8/7) = */ 0x00000315, /* lg(16/15) = */ 0x0000017d, /* lg(32/31) = */ 0x000000bc, /* lg(64/63) = */ 0x0000005d, /* lg(128/127) = */ 0x0000002e, /* lg(256/255) = */ 0x00000017, /* lg(512/511) = */ 0x0000000c, /* lg(1024/1023) = */ 0x00000006, /* lg(2048/2047) = */ 0x00000003, /* lg(4096/4095) = */ 0x00000001, /* lg(8192/8191) = */ 0x00000001, /* lg(16384/16383) = */ 0x00000000, /* lg(32768/32767) = */ 0x00000000 }, { /* * 16 fraction bits */ /* undefined */ 0x00000000, /* lg(2/1) = */ 0x00010000, /* lg(4/3) = */ 0x00006a40, /* lg(8/7) = */ 0x00003151, /* lg(16/15) = */ 0x000017d6, /* lg(32/31) = */ 0x00000bba, /* lg(64/63) = */ 0x000005d1, /* lg(128/127) = */ 0x000002e6, /* lg(256/255) = */ 0x00000172, /* lg(512/511) = */ 0x000000b9, /* lg(1024/1023) = */ 0x0000005c, /* lg(2048/2047) = */ 0x0000002e, /* lg(4096/4095) = */ 0x00000017, /* lg(8192/8191) = */ 0x0000000c, /* lg(16384/16383) = */ 0x00000006, /* lg(32768/32767) = */ 0x00000003 }, { /* * 20 fraction bits */ /* undefined */ 0x00000000, /* lg(2/1) = */ 0x00100000, /* lg(4/3) = */ 0x0006a3fe, /* lg(8/7) = */ 0x00031513, /* lg(16/15) = */ 0x00017d60, /* lg(32/31) = */ 0x0000bb9d, /* lg(64/63) = */ 0x00005d10, /* lg(128/127) = */ 0x00002e59, /* lg(256/255) = */ 0x00001721, /* lg(512/511) = */ 0x00000b8e, /* lg(1024/1023) = */ 0x000005c6, /* lg(2048/2047) = */ 0x000002e3, /* lg(4096/4095) = */ 0x00000171, /* lg(8192/8191) = */ 0x000000b9, /* lg(16384/16383) = */ 0x0000005c, /* lg(32768/32767) = */ 0x0000002e }, { /* * 24 fraction bits */ /* undefined */ 0x00000000, /* lg(2/1) = */ 0x01000000, /* lg(4/3) = */ 0x006a3fe6, /* lg(8/7) = */ 0x00315130, /* lg(16/15) = */ 0x0017d605, /* lg(32/31) = */ 0x000bb9ca, /* lg(64/63) = */ 0x0005d0fc, /* lg(128/127) = */ 0x0002e58f, /* lg(256/255) = */ 0x0001720e, /* lg(512/511) = */ 0x0000b8d8, /* lg(1024/1023) = */ 0x00005c61, /* lg(2048/2047) = */ 0x00002e2d, /* lg(4096/4095) = */ 0x00001716, /* lg(8192/8191) = */ 0x00000b8b, /* lg(16384/16383) = */ 0x000005c5, /* lg(32768/32767) = */ 0x000002e3 }, { /* * 28 fraction bits */ /* undefined */ 0x00000000, /* lg(2/1) = */ 0x10000000, /* lg(4/3) = */ 0x06a3fe5c, /* lg(8/7) = */ 0x03151301, /* lg(16/15) = */ 0x017d6049, /* lg(32/31) = */ 0x00bb9ca6, /* lg(64/63) = */ 0x005d0fba, /* lg(128/127) = */ 0x002e58f7, /* lg(256/255) = */ 0x001720da, /* lg(512/511) = */ 0x000b8d87, /* lg(1024/1023) = */ 0x0005c60b, /* lg(2048/2047) = */ 0x0002e2d7, /* lg(4096/4095) = */ 0x00017160, /* lg(8192/8191) = */ 0x0000b8ad, /* lg(16384/16383) = */ 0x00005c56, /* lg(32768/32767) = */ 0x00002e2b } }; #if 0 static const FLAC__uint64 log2_lookup_wide[] = { { /* * 32 fraction bits */ /* undefined */ 0x00000000, /* lg(2/1) = */ FLAC__U64L(0x100000000), /* lg(4/3) = */ FLAC__U64L(0x6a3fe5c6), /* lg(8/7) = */ FLAC__U64L(0x31513015), /* lg(16/15) = */ FLAC__U64L(0x17d60497), /* lg(32/31) = */ FLAC__U64L(0x0bb9ca65), /* lg(64/63) = */ FLAC__U64L(0x05d0fba2), /* lg(128/127) = */ FLAC__U64L(0x02e58f74), /* lg(256/255) = */ FLAC__U64L(0x01720d9c), /* lg(512/511) = */ FLAC__U64L(0x00b8d875), /* lg(1024/1023) = */ FLAC__U64L(0x005c60aa), /* lg(2048/2047) = */ FLAC__U64L(0x002e2d72), /* lg(4096/4095) = */ FLAC__U64L(0x00171600), /* lg(8192/8191) = */ FLAC__U64L(0x000b8ad2), /* lg(16384/16383) = */ FLAC__U64L(0x0005c55d), /* lg(32768/32767) = */ FLAC__U64L(0x0002e2ac) }, { /* * 48 fraction bits */ /* undefined */ 0x00000000, /* lg(2/1) = */ FLAC__U64L(0x1000000000000), /* lg(4/3) = */ FLAC__U64L(0x6a3fe5c60429), /* lg(8/7) = */ FLAC__U64L(0x315130157f7a), /* lg(16/15) = */ FLAC__U64L(0x17d60496cfbb), /* lg(32/31) = */ FLAC__U64L(0xbb9ca64ecac), /* lg(64/63) = */ FLAC__U64L(0x5d0fba187cd), /* lg(128/127) = */ FLAC__U64L(0x2e58f7441ee), /* lg(256/255) = */ FLAC__U64L(0x1720d9c06a8), /* lg(512/511) = */ FLAC__U64L(0xb8d8752173), /* lg(1024/1023) = */ FLAC__U64L(0x5c60aa252e), /* lg(2048/2047) = */ FLAC__U64L(0x2e2d71b0d8), /* lg(4096/4095) = */ FLAC__U64L(0x1716001719), /* lg(8192/8191) = */ FLAC__U64L(0xb8ad1de1b), /* lg(16384/16383) = */ FLAC__U64L(0x5c55d640d), /* lg(32768/32767) = */ FLAC__U64L(0x2e2abcf52) } }; #endif FLAC__uint32 FLAC__fixedpoint_log2(FLAC__uint32 x, unsigned fracbits, unsigned precision) { const FLAC__uint32 ONE = (1u << fracbits); const FLAC__uint32 *table = log2_lookup[fracbits >> 2]; FLAC__ASSERT(fracbits < 32); FLAC__ASSERT((fracbits & 0x3) == 0); if(x < ONE) return 0; if(precision > LOG2_LOOKUP_PRECISION) precision = LOG2_LOOKUP_PRECISION; /* Knuth's algorithm for computing logarithms, optimized for base-2 with lookup tables */ { FLAC__uint32 y = 0; FLAC__uint32 z = x >> 1, k = 1; while (x > ONE && k < precision) { if (x - z >= ONE) { x -= z; z = x >> k; y += table[k]; } else { z >>= 1; k++; } } return y; } } #endif /* defined FLAC__INTEGER_ONLY_LIBRARY */ #endif /********* End of inlined file: float.c *********/ /********* Start of inlined file: format.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif #include #include /* for qsort() */ #include /* for memset() */ #ifndef FLaC__INLINE #define FLaC__INLINE #endif #ifdef min #undef min #endif #define min(a,b) ((a)<(b)?(a):(b)) /* adjust for compilers that can't understand using LLU suffix for uint64_t literals */ #ifdef _MSC_VER #define FLAC__U64L(x) x #else #define FLAC__U64L(x) x##LLU #endif /* VERSION should come from configure */ FLAC_API const char *FLAC__VERSION_STRING = VERSION ; #if defined _MSC_VER || defined __BORLANDC__ || defined __MINW32__ /* yet one more hack because of MSVC6: */ FLAC_API const char *FLAC__VENDOR_STRING = "reference libFLAC 1.2.1 20070917"; #else FLAC_API const char *FLAC__VENDOR_STRING = "reference libFLAC " VERSION " 20070917"; #endif FLAC_API const FLAC__byte FLAC__STREAM_SYNC_STRING[4] = { 'f','L','a','C' }; FLAC_API const unsigned FLAC__STREAM_SYNC = 0x664C6143; FLAC_API const unsigned FLAC__STREAM_SYNC_LEN = 32; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN = 16; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN = 16; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN = 24; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN = 24; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN = 20; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN = 3; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN = 5; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN = 36; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_STREAMINFO_MD5SUM_LEN = 128; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_APPLICATION_ID_LEN = 32; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_SEEKPOINT_SAMPLE_NUMBER_LEN = 64; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_SEEKPOINT_STREAM_OFFSET_LEN = 64; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_SEEKPOINT_FRAME_SAMPLES_LEN = 16; /* bits */ FLAC_API const FLAC__uint64 FLAC__STREAM_METADATA_SEEKPOINT_PLACEHOLDER = FLAC__U64L(0xffffffffffffffff); FLAC_API const unsigned FLAC__STREAM_METADATA_VORBIS_COMMENT_ENTRY_LENGTH_LEN = 32; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_VORBIS_COMMENT_NUM_COMMENTS_LEN = 32; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_INDEX_OFFSET_LEN = 64; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_INDEX_NUMBER_LEN = 8; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_INDEX_RESERVED_LEN = 3*8; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_OFFSET_LEN = 64; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_NUMBER_LEN = 8; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_ISRC_LEN = 12*8; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_TYPE_LEN = 1; /* bit */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_PRE_EMPHASIS_LEN = 1; /* bit */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_RESERVED_LEN = 6+13*8; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_TRACK_NUM_INDICES_LEN = 8; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_MEDIA_CATALOG_NUMBER_LEN = 128*8; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_LEAD_IN_LEN = 64; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_IS_CD_LEN = 1; /* bit */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_RESERVED_LEN = 7+258*8; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_CUESHEET_NUM_TRACKS_LEN = 8; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_TYPE_LEN = 32; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_MIME_TYPE_LENGTH_LEN = 32; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_DESCRIPTION_LENGTH_LEN = 32; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_WIDTH_LEN = 32; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_HEIGHT_LEN = 32; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_DEPTH_LEN = 32; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_COLORS_LEN = 32; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_PICTURE_DATA_LENGTH_LEN = 32; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_IS_LAST_LEN = 1; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_TYPE_LEN = 7; /* bits */ FLAC_API const unsigned FLAC__STREAM_METADATA_LENGTH_LEN = 24; /* bits */ FLAC_API const unsigned FLAC__FRAME_HEADER_SYNC = 0x3ffe; FLAC_API const unsigned FLAC__FRAME_HEADER_SYNC_LEN = 14; /* bits */ FLAC_API const unsigned FLAC__FRAME_HEADER_RESERVED_LEN = 1; /* bits */ FLAC_API const unsigned FLAC__FRAME_HEADER_BLOCKING_STRATEGY_LEN = 1; /* bits */ FLAC_API const unsigned FLAC__FRAME_HEADER_BLOCK_SIZE_LEN = 4; /* bits */ FLAC_API const unsigned FLAC__FRAME_HEADER_SAMPLE_RATE_LEN = 4; /* bits */ FLAC_API const unsigned FLAC__FRAME_HEADER_CHANNEL_ASSIGNMENT_LEN = 4; /* bits */ FLAC_API const unsigned FLAC__FRAME_HEADER_BITS_PER_SAMPLE_LEN = 3; /* bits */ FLAC_API const unsigned FLAC__FRAME_HEADER_ZERO_PAD_LEN = 1; /* bits */ FLAC_API const unsigned FLAC__FRAME_HEADER_CRC_LEN = 8; /* bits */ FLAC_API const unsigned FLAC__FRAME_FOOTER_CRC_LEN = 16; /* bits */ FLAC_API const unsigned FLAC__ENTROPY_CODING_METHOD_TYPE_LEN = 2; /* bits */ FLAC_API const unsigned FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN = 4; /* bits */ FLAC_API const unsigned FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN = 4; /* bits */ FLAC_API const unsigned FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN = 5; /* bits */ FLAC_API const unsigned FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN = 5; /* bits */ FLAC_API const unsigned FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER = 15; /* == (1< FLAC__MAX_SAMPLE_RATE) { return false; } else return true; } FLAC_API FLAC__bool FLAC__format_sample_rate_is_subset(unsigned sample_rate) { if( !FLAC__format_sample_rate_is_valid(sample_rate) || ( sample_rate >= (1u << 16) && !(sample_rate % 1000 == 0 || sample_rate % 10 == 0) ) ) { return false; } else return true; } /* @@@@ add to unit tests; it is already indirectly tested by the metadata_object tests */ FLAC_API FLAC__bool FLAC__format_seektable_is_legal(const FLAC__StreamMetadata_SeekTable *seek_table) { unsigned i; FLAC__uint64 prev_sample_number = 0; FLAC__bool got_prev = false; FLAC__ASSERT(0 != seek_table); for(i = 0; i < seek_table->num_points; i++) { if(got_prev) { if( seek_table->points[i].sample_number != FLAC__STREAM_METADATA_SEEKPOINT_PLACEHOLDER && seek_table->points[i].sample_number <= prev_sample_number ) return false; } prev_sample_number = seek_table->points[i].sample_number; got_prev = true; } return true; } /* used as the sort predicate for qsort() */ static int seekpoint_compare_(const FLAC__StreamMetadata_SeekPoint *l, const FLAC__StreamMetadata_SeekPoint *r) { /* we don't just 'return l->sample_number - r->sample_number' since the result (FLAC__int64) might overflow an 'int' */ if(l->sample_number == r->sample_number) return 0; else if(l->sample_number < r->sample_number) return -1; else return 1; } /* @@@@ add to unit tests; it is already indirectly tested by the metadata_object tests */ FLAC_API unsigned FLAC__format_seektable_sort(FLAC__StreamMetadata_SeekTable *seek_table) { unsigned i, j; FLAC__bool first; FLAC__ASSERT(0 != seek_table); /* sort the seekpoints */ qsort(seek_table->points, seek_table->num_points, sizeof(FLAC__StreamMetadata_SeekPoint), (int (*)(const void *, const void *))seekpoint_compare_); /* uniquify the seekpoints */ first = true; for(i = j = 0; i < seek_table->num_points; i++) { if(seek_table->points[i].sample_number != FLAC__STREAM_METADATA_SEEKPOINT_PLACEHOLDER) { if(!first) { if(seek_table->points[i].sample_number == seek_table->points[j-1].sample_number) continue; } } first = false; seek_table->points[j++] = seek_table->points[i]; } for(i = j; i < seek_table->num_points; i++) { seek_table->points[i].sample_number = FLAC__STREAM_METADATA_SEEKPOINT_PLACEHOLDER; seek_table->points[i].stream_offset = 0; seek_table->points[i].frame_samples = 0; } return j; } /* * also disallows non-shortest-form encodings, c.f. * http://www.unicode.org/versions/corrigendum1.html * and a more clear explanation at the end of this section: * http://www.cl.cam.ac.uk/~mgk25/unicode.html#utf-8 */ static FLaC__INLINE unsigned utf8len_(const FLAC__byte *utf8) { FLAC__ASSERT(0 != utf8); if ((utf8[0] & 0x80) == 0) { return 1; } else if ((utf8[0] & 0xE0) == 0xC0 && (utf8[1] & 0xC0) == 0x80) { if ((utf8[0] & 0xFE) == 0xC0) /* overlong sequence check */ return 0; return 2; } else if ((utf8[0] & 0xF0) == 0xE0 && (utf8[1] & 0xC0) == 0x80 && (utf8[2] & 0xC0) == 0x80) { if (utf8[0] == 0xE0 && (utf8[1] & 0xE0) == 0x80) /* overlong sequence check */ return 0; /* illegal surrogates check (U+D800...U+DFFF and U+FFFE...U+FFFF) */ if (utf8[0] == 0xED && (utf8[1] & 0xE0) == 0xA0) /* D800-DFFF */ return 0; if (utf8[0] == 0xEF && utf8[1] == 0xBF && (utf8[2] & 0xFE) == 0xBE) /* FFFE-FFFF */ return 0; return 3; } else if ((utf8[0] & 0xF8) == 0xF0 && (utf8[1] & 0xC0) == 0x80 && (utf8[2] & 0xC0) == 0x80 && (utf8[3] & 0xC0) == 0x80) { if (utf8[0] == 0xF0 && (utf8[1] & 0xF0) == 0x80) /* overlong sequence check */ return 0; return 4; } else if ((utf8[0] & 0xFC) == 0xF8 && (utf8[1] & 0xC0) == 0x80 && (utf8[2] & 0xC0) == 0x80 && (utf8[3] & 0xC0) == 0x80 && (utf8[4] & 0xC0) == 0x80) { if (utf8[0] == 0xF8 && (utf8[1] & 0xF8) == 0x80) /* overlong sequence check */ return 0; return 5; } else if ((utf8[0] & 0xFE) == 0xFC && (utf8[1] & 0xC0) == 0x80 && (utf8[2] & 0xC0) == 0x80 && (utf8[3] & 0xC0) == 0x80 && (utf8[4] & 0xC0) == 0x80 && (utf8[5] & 0xC0) == 0x80) { if (utf8[0] == 0xFC && (utf8[1] & 0xFC) == 0x80) /* overlong sequence check */ return 0; return 6; } else { return 0; } } FLAC_API FLAC__bool FLAC__format_vorbiscomment_entry_name_is_legal(const char *name) { char c; for(c = *name; c; c = *(++name)) if(c < 0x20 || c == 0x3d || c > 0x7d) return false; return true; } FLAC_API FLAC__bool FLAC__format_vorbiscomment_entry_value_is_legal(const FLAC__byte *value, unsigned length) { if(length == (unsigned)(-1)) { while(*value) { unsigned n = utf8len_(value); if(n == 0) return false; value += n; } } else { const FLAC__byte *end = value + length; while(value < end) { unsigned n = utf8len_(value); if(n == 0) return false; value += n; } if(value != end) return false; } return true; } FLAC_API FLAC__bool FLAC__format_vorbiscomment_entry_is_legal(const FLAC__byte *entry, unsigned length) { const FLAC__byte *s, *end; for(s = entry, end = s + length; s < end && *s != '='; s++) { if(*s < 0x20 || *s > 0x7D) return false; } if(s == end) return false; s++; /* skip '=' */ while(s < end) { unsigned n = utf8len_(s); if(n == 0) return false; s += n; } if(s != end) return false; return true; } /* @@@@ add to unit tests; it is already indirectly tested by the metadata_object tests */ FLAC_API FLAC__bool FLAC__format_cuesheet_is_legal(const FLAC__StreamMetadata_CueSheet *cue_sheet, FLAC__bool check_cd_da_subset, const char **violation) { unsigned i, j; if(check_cd_da_subset) { if(cue_sheet->lead_in < 2 * 44100) { if(violation) *violation = "CD-DA cue sheet must have a lead-in length of at least 2 seconds"; return false; } if(cue_sheet->lead_in % 588 != 0) { if(violation) *violation = "CD-DA cue sheet lead-in length must be evenly divisible by 588 samples"; return false; } } if(cue_sheet->num_tracks == 0) { if(violation) *violation = "cue sheet must have at least one track (the lead-out)"; return false; } if(check_cd_da_subset && cue_sheet->tracks[cue_sheet->num_tracks-1].number != 170) { if(violation) *violation = "CD-DA cue sheet must have a lead-out track number 170 (0xAA)"; return false; } for(i = 0; i < cue_sheet->num_tracks; i++) { if(cue_sheet->tracks[i].number == 0) { if(violation) *violation = "cue sheet may not have a track number 0"; return false; } if(check_cd_da_subset) { if(!((cue_sheet->tracks[i].number >= 1 && cue_sheet->tracks[i].number <= 99) || cue_sheet->tracks[i].number == 170)) { if(violation) *violation = "CD-DA cue sheet track number must be 1-99 or 170"; return false; } } if(check_cd_da_subset && cue_sheet->tracks[i].offset % 588 != 0) { if(violation) { if(i == cue_sheet->num_tracks-1) /* the lead-out track... */ *violation = "CD-DA cue sheet lead-out offset must be evenly divisible by 588 samples"; else *violation = "CD-DA cue sheet track offset must be evenly divisible by 588 samples"; } return false; } if(i < cue_sheet->num_tracks - 1) { if(cue_sheet->tracks[i].num_indices == 0) { if(violation) *violation = "cue sheet track must have at least one index point"; return false; } if(cue_sheet->tracks[i].indices[0].number > 1) { if(violation) *violation = "cue sheet track's first index number must be 0 or 1"; return false; } } for(j = 0; j < cue_sheet->tracks[i].num_indices; j++) { if(check_cd_da_subset && cue_sheet->tracks[i].indices[j].offset % 588 != 0) { if(violation) *violation = "CD-DA cue sheet track index offset must be evenly divisible by 588 samples"; return false; } if(j > 0) { if(cue_sheet->tracks[i].indices[j].number != cue_sheet->tracks[i].indices[j-1].number + 1) { if(violation) *violation = "cue sheet track index numbers must increase by 1"; return false; } } } } return true; } /* @@@@ add to unit tests; it is already indirectly tested by the metadata_object tests */ FLAC_API FLAC__bool FLAC__format_picture_is_legal(const FLAC__StreamMetadata_Picture *picture, const char **violation) { char *p; FLAC__byte *b; for(p = picture->mime_type; *p; p++) { if(*p < 0x20 || *p > 0x7e) { if(violation) *violation = "MIME type string must contain only printable ASCII characters (0x20-0x7e)"; return false; } } for(b = picture->description; *b; ) { unsigned n = utf8len_(b); if(n == 0) { if(violation) *violation = "description string must be valid UTF-8"; return false; } b += n; } return true; } /* * These routines are private to libFLAC */ unsigned FLAC__format_get_max_rice_partition_order(unsigned blocksize, unsigned predictor_order) { return FLAC__format_get_max_rice_partition_order_from_blocksize_limited_max_and_predictor_order( FLAC__format_get_max_rice_partition_order_from_blocksize(blocksize), blocksize, predictor_order ); } unsigned FLAC__format_get_max_rice_partition_order_from_blocksize(unsigned blocksize) { unsigned max_rice_partition_order = 0; while(!(blocksize & 1)) { max_rice_partition_order++; blocksize >>= 1; } return min(FLAC__MAX_RICE_PARTITION_ORDER, max_rice_partition_order); } unsigned FLAC__format_get_max_rice_partition_order_from_blocksize_limited_max_and_predictor_order(unsigned limit, unsigned blocksize, unsigned predictor_order) { unsigned max_rice_partition_order = limit; while(max_rice_partition_order > 0 && (blocksize >> max_rice_partition_order) <= predictor_order) max_rice_partition_order--; FLAC__ASSERT( (max_rice_partition_order == 0 && blocksize >= predictor_order) || (max_rice_partition_order > 0 && blocksize >> max_rice_partition_order > predictor_order) ); return max_rice_partition_order; } void FLAC__format_entropy_coding_method_partitioned_rice_contents_init(FLAC__EntropyCodingMethod_PartitionedRiceContents *object) { FLAC__ASSERT(0 != object); object->parameters = 0; object->raw_bits = 0; object->capacity_by_order = 0; } void FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(FLAC__EntropyCodingMethod_PartitionedRiceContents *object) { FLAC__ASSERT(0 != object); if(0 != object->parameters) free(object->parameters); if(0 != object->raw_bits) free(object->raw_bits); FLAC__format_entropy_coding_method_partitioned_rice_contents_init(object); } FLAC__bool FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(FLAC__EntropyCodingMethod_PartitionedRiceContents *object, unsigned max_partition_order) { FLAC__ASSERT(0 != object); FLAC__ASSERT(object->capacity_by_order > 0 || (0 == object->parameters && 0 == object->raw_bits)); if(object->capacity_by_order < max_partition_order) { if(0 == (object->parameters = (unsigned*)realloc(object->parameters, sizeof(unsigned)*(1 << max_partition_order)))) return false; if(0 == (object->raw_bits = (unsigned*)realloc(object->raw_bits, sizeof(unsigned)*(1 << max_partition_order)))) return false; memset(object->raw_bits, 0, sizeof(unsigned)*(1 << max_partition_order)); object->capacity_by_order = max_partition_order; } return true; } #endif /********* End of inlined file: format.c *********/ /********* Start of inlined file: lpc_flac.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif #include /********* Start of inlined file: lpc.h *********/ #ifndef FLAC__PRIVATE__LPC_H #define FLAC__PRIVATE__LPC_H #ifdef HAVE_CONFIG_H #include #endif #ifndef FLAC__INTEGER_ONLY_LIBRARY /* * FLAC__lpc_window_data() * -------------------------------------------------------------------- * Applies the given window to the data. * OPT: asm implementation * * IN in[0,data_len-1] * IN window[0,data_len-1] * OUT out[0,lag-1] * IN data_len */ void FLAC__lpc_window_data(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], unsigned data_len); /* * FLAC__lpc_compute_autocorrelation() * -------------------------------------------------------------------- * Compute the autocorrelation for lags between 0 and lag-1. * Assumes data[] outside of [0,data_len-1] == 0. * Asserts that lag > 0. * * IN data[0,data_len-1] * IN data_len * IN 0 < lag <= data_len * OUT autoc[0,lag-1] */ void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]); #ifndef FLAC__NO_ASM # ifdef FLAC__CPU_IA32 # ifdef FLAC__HAS_NASM void FLAC__lpc_compute_autocorrelation_asm_ia32(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]); void FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_4(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]); void FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_8(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]); void FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_12(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]); void FLAC__lpc_compute_autocorrelation_asm_ia32_3dnow(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]); # endif # endif #endif /* * FLAC__lpc_compute_lp_coefficients() * -------------------------------------------------------------------- * Computes LP coefficients for orders 1..max_order. * Do not call if autoc[0] == 0.0. This means the signal is zero * and there is no point in calculating a predictor. * * IN autoc[0,max_order] autocorrelation values * IN 0 < max_order <= FLAC__MAX_LPC_ORDER max LP order to compute * OUT lp_coeff[0,max_order-1][0,max_order-1] LP coefficients for each order * *** IMPORTANT: * *** lp_coeff[0,max_order-1][max_order,FLAC__MAX_LPC_ORDER-1] are untouched * OUT error[0,max_order-1] error for each order (more * specifically, the variance of * the error signal times # of * samples in the signal) * * Example: if max_order is 9, the LP coefficients for order 9 will be * in lp_coeff[8][0,8], the LP coefficients for order 8 will be * in lp_coeff[7][0,7], etc. */ void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned *max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], FLAC__double error[]); /* * FLAC__lpc_quantize_coefficients() * -------------------------------------------------------------------- * Quantizes the LP coefficients. NOTE: precision + bits_per_sample * must be less than 32 (sizeof(FLAC__int32)*8). * * IN lp_coeff[0,order-1] LP coefficients * IN order LP order * IN FLAC__MIN_QLP_COEFF_PRECISION < precision * desired precision (in bits, including sign * bit) of largest coefficient * OUT qlp_coeff[0,order-1] quantized coefficients * OUT shift # of bits to shift right to get approximated * LP coefficients. NOTE: could be negative. * RETURN 0 => quantization OK * 1 => coefficients require too much shifting for *shift to * fit in the LPC subframe header. 'shift' is unset. * 2 => coefficients are all zero, which is bad. 'shift' is * unset. */ int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], unsigned order, unsigned precision, FLAC__int32 qlp_coeff[], int *shift); /* * FLAC__lpc_compute_residual_from_qlp_coefficients() * -------------------------------------------------------------------- * Compute the residual signal obtained from sutracting the predicted * signal from the original. * * IN data[-order,data_len-1] original signal (NOTE THE INDICES!) * IN data_len length of original signal * IN qlp_coeff[0,order-1] quantized LP coefficients * IN order > 0 LP order * IN lp_quantization quantization of LP coefficients in bits * OUT residual[0,data_len-1] residual signal */ void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); #ifndef FLAC__NO_ASM # ifdef FLAC__CPU_IA32 # ifdef FLAC__HAS_NASM void FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); void FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); # endif # endif #endif #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ /* * FLAC__lpc_restore_signal() * -------------------------------------------------------------------- * Restore the original signal by summing the residual and the * predictor. * * IN residual[0,data_len-1] residual signal * IN data_len length of original signal * IN qlp_coeff[0,order-1] quantized LP coefficients * IN order > 0 LP order * IN lp_quantization quantization of LP coefficients in bits * *** IMPORTANT: the caller must pass in the historical samples: * IN data[-order,-1] previously-reconstructed historical samples * OUT data[0,data_len-1] original signal */ void FLAC__lpc_restore_signal(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]); void FLAC__lpc_restore_signal_wide(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]); #ifndef FLAC__NO_ASM # ifdef FLAC__CPU_IA32 # ifdef FLAC__HAS_NASM void FLAC__lpc_restore_signal_asm_ia32(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]); void FLAC__lpc_restore_signal_asm_ia32_mmx(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]); # endif /* FLAC__HAS_NASM */ # elif defined FLAC__CPU_PPC void FLAC__lpc_restore_signal_asm_ppc_altivec_16(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]); void FLAC__lpc_restore_signal_asm_ppc_altivec_16_order8(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]); # endif/* FLAC__CPU_IA32 || FLAC__CPU_PPC */ #endif /* FLAC__NO_ASM */ #ifndef FLAC__INTEGER_ONLY_LIBRARY /* * FLAC__lpc_compute_expected_bits_per_residual_sample() * -------------------------------------------------------------------- * Compute the expected number of bits per residual signal sample * based on the LP error (which is related to the residual variance). * * IN lpc_error >= 0.0 error returned from calculating LP coefficients * IN total_samples > 0 # of samples in residual signal * RETURN expected bits per sample */ FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample(FLAC__double lpc_error, unsigned total_samples); FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__double lpc_error, FLAC__double error_scale); /* * FLAC__lpc_compute_best_order() * -------------------------------------------------------------------- * Compute the best order from the array of signal errors returned * during coefficient computation. * * IN lpc_error[0,max_order-1] >= 0.0 error returned from calculating LP coefficients * IN max_order > 0 max LP order * IN total_samples > 0 # of samples in residual signal * IN overhead_bits_per_order # of bits overhead for each increased LP order * (includes warmup sample size and quantized LP coefficient) * RETURN [1,max_order] best order */ unsigned FLAC__lpc_compute_best_order(const FLAC__double lpc_error[], unsigned max_order, unsigned total_samples, unsigned overhead_bits_per_order); #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ #endif /********* End of inlined file: lpc.h *********/ #if defined DEBUG || defined FLAC__OVERFLOW_DETECT || defined FLAC__OVERFLOW_DETECT_VERBOSE #include #endif #ifndef FLAC__INTEGER_ONLY_LIBRARY #ifndef M_LN2 /* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */ #define M_LN2 0.69314718055994530942 #endif /* OPT: #undef'ing this may improve the speed on some architectures */ #define FLAC__LPC_UNROLLED_FILTER_LOOPS void FLAC__lpc_window_data(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], unsigned data_len) { unsigned i; for(i = 0; i < data_len; i++) out[i] = in[i] * window[i]; } void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]) { /* a readable, but slower, version */ #if 0 FLAC__real d; unsigned i; FLAC__ASSERT(lag > 0); FLAC__ASSERT(lag <= data_len); /* * Technically we should subtract the mean first like so: * for(i = 0; i < data_len; i++) * data[i] -= mean; * but it appears not to make enough of a difference to matter, and * most signals are already closely centered around zero */ while(lag--) { for(i = lag, d = 0.0; i < data_len; i++) d += data[i] * data[i - lag]; autoc[lag] = d; } #endif /* * this version tends to run faster because of better data locality * ('data_len' is usually much larger than 'lag') */ FLAC__real d; unsigned sample, coeff; const unsigned limit = data_len - lag; FLAC__ASSERT(lag > 0); FLAC__ASSERT(lag <= data_len); for(coeff = 0; coeff < lag; coeff++) autoc[coeff] = 0.0; for(sample = 0; sample <= limit; sample++) { d = data[sample]; for(coeff = 0; coeff < lag; coeff++) autoc[coeff] += d * data[sample+coeff]; } for(; sample < data_len; sample++) { d = data[sample]; for(coeff = 0; coeff < data_len - sample; coeff++) autoc[coeff] += d * data[sample+coeff]; } } void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned *max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], FLAC__double error[]) { unsigned i, j; FLAC__double r, err, ref[FLAC__MAX_LPC_ORDER], lpc[FLAC__MAX_LPC_ORDER]; FLAC__ASSERT(0 != max_order); FLAC__ASSERT(0 < *max_order); FLAC__ASSERT(*max_order <= FLAC__MAX_LPC_ORDER); FLAC__ASSERT(autoc[0] != 0.0); err = autoc[0]; for(i = 0; i < *max_order; i++) { /* Sum up this iteration's reflection coefficient. */ r = -autoc[i+1]; for(j = 0; j < i; j++) r -= lpc[j] * autoc[i-j]; ref[i] = (r/=err); /* Update LPC coefficients and total error. */ lpc[i]=r; for(j = 0; j < (i>>1); j++) { FLAC__double tmp = lpc[j]; lpc[j] += r * lpc[i-1-j]; lpc[i-1-j] += r * tmp; } if(i & 1) lpc[j] += lpc[j] * r; err *= (1.0 - r * r); /* save this order */ for(j = 0; j <= i; j++) lp_coeff[i][j] = (FLAC__real)(-lpc[j]); /* negate FIR filter coeff to get predictor coeff */ error[i] = err; /* see SF bug #1601812 http://sourceforge.net/tracker/index.php?func=detail&aid=1601812&group_id=13478&atid=113478 */ if(err == 0.0) { *max_order = i+1; return; } } } int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], unsigned order, unsigned precision, FLAC__int32 qlp_coeff[], int *shift) { unsigned i; FLAC__double cmax; FLAC__int32 qmax, qmin; FLAC__ASSERT(precision > 0); FLAC__ASSERT(precision >= FLAC__MIN_QLP_COEFF_PRECISION); /* drop one bit for the sign; from here on out we consider only |lp_coeff[i]| */ precision--; qmax = 1 << precision; qmin = -qmax; qmax--; /* calc cmax = max( |lp_coeff[i]| ) */ cmax = 0.0; for(i = 0; i < order; i++) { const FLAC__double d = fabs(lp_coeff[i]); if(d > cmax) cmax = d; } if(cmax <= 0.0) { /* => coefficients are all 0, which means our constant-detect didn't work */ return 2; } else { const int max_shiftlimit = (1 << (FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN-1)) - 1; const int min_shiftlimit = -max_shiftlimit - 1; int log2cmax; (void)frexp(cmax, &log2cmax); log2cmax--; *shift = (int)precision - log2cmax - 1; if(*shift > max_shiftlimit) *shift = max_shiftlimit; else if(*shift < min_shiftlimit) return 1; } if(*shift >= 0) { FLAC__double error = 0.0; FLAC__int32 q; for(i = 0; i < order; i++) { error += lp_coeff[i] * (1 << *shift); #if 1 /* unfortunately lround() is C99 */ if(error >= 0.0) q = (FLAC__int32)(error + 0.5); else q = (FLAC__int32)(error - 0.5); #else q = lround(error); #endif #ifdef FLAC__OVERFLOW_DETECT if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */ fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]); else if(q < qmin) fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q qmax) q = qmax; else if(q < qmin) q = qmin; error -= q; qlp_coeff[i] = q; } } /* negative shift is very rare but due to design flaw, negative shift is * a NOP in the decoder, so it must be handled specially by scaling down * coeffs */ else { const int nshift = -(*shift); FLAC__double error = 0.0; FLAC__int32 q; #ifdef DEBUG fprintf(stderr,"FLAC__lpc_quantize_coefficients: negative shift=%d order=%u cmax=%f\n", *shift, order, cmax); #endif for(i = 0; i < order; i++) { error += lp_coeff[i] / (1 << nshift); #if 1 /* unfortunately lround() is C99 */ if(error >= 0.0) q = (FLAC__int32)(error + 0.5); else q = (FLAC__int32)(error - 0.5); #else q = lround(error); #endif #ifdef FLAC__OVERFLOW_DETECT if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */ fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]); else if(q < qmin) fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q qmax) q = qmax; else if(q < qmin) q = qmin; error -= q; qlp_coeff[i] = q; } *shift = 0; } return 0; } void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]) #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS) { FLAC__int64 sumo; unsigned i, j; FLAC__int32 sum; const FLAC__int32 *history; #ifdef FLAC__OVERFLOW_DETECT_VERBOSE fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); for(i=0;i 0); for(i = 0; i < data_len; i++) { sumo = 0; sum = 0; history = data; for(j = 0; j < order; j++) { sum += qlp_coeff[j] * (*(--history)); sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history); #if defined _MSC_VER if(sumo > 2147483647I64 || sumo < -2147483648I64) fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%I64d\n",i,j,qlp_coeff[j],*history,sumo); #else if(sumo > 2147483647ll || sumo < -2147483648ll) fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,(long long)sumo); #endif } *(residual++) = *(data++) - (sum >> lp_quantization); } /* Here's a slower but clearer version: for(i = 0; i < data_len; i++) { sum = 0; for(j = 0; j < order; j++) sum += qlp_coeff[j] * data[i-j-1]; residual[i] = data[i] - (sum >> lp_quantization); } */ } #else /* fully unrolled version for normal use */ { int i; FLAC__int32 sum; FLAC__ASSERT(order > 0); FLAC__ASSERT(order <= 32); /* * We do unique versions up to 12th order since that's the subset limit. * Also they are roughly ordered to match frequency of occurrence to * minimize branching. */ if(order <= 12) { if(order > 8) { if(order > 10) { if(order == 12) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[11] * data[i-12]; sum += qlp_coeff[10] * data[i-11]; sum += qlp_coeff[9] * data[i-10]; sum += qlp_coeff[8] * data[i-9]; sum += qlp_coeff[7] * data[i-8]; sum += qlp_coeff[6] * data[i-7]; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; residual[i] = data[i] - (sum >> lp_quantization); } } else { /* order == 11 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[10] * data[i-11]; sum += qlp_coeff[9] * data[i-10]; sum += qlp_coeff[8] * data[i-9]; sum += qlp_coeff[7] * data[i-8]; sum += qlp_coeff[6] * data[i-7]; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; residual[i] = data[i] - (sum >> lp_quantization); } } } else { if(order == 10) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[9] * data[i-10]; sum += qlp_coeff[8] * data[i-9]; sum += qlp_coeff[7] * data[i-8]; sum += qlp_coeff[6] * data[i-7]; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; residual[i] = data[i] - (sum >> lp_quantization); } } else { /* order == 9 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[8] * data[i-9]; sum += qlp_coeff[7] * data[i-8]; sum += qlp_coeff[6] * data[i-7]; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; residual[i] = data[i] - (sum >> lp_quantization); } } } } else if(order > 4) { if(order > 6) { if(order == 8) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[7] * data[i-8]; sum += qlp_coeff[6] * data[i-7]; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; residual[i] = data[i] - (sum >> lp_quantization); } } else { /* order == 7 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[6] * data[i-7]; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; residual[i] = data[i] - (sum >> lp_quantization); } } } else { if(order == 6) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; residual[i] = data[i] - (sum >> lp_quantization); } } else { /* order == 5 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; residual[i] = data[i] - (sum >> lp_quantization); } } } } else { if(order > 2) { if(order == 4) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; residual[i] = data[i] - (sum >> lp_quantization); } } else { /* order == 3 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; residual[i] = data[i] - (sum >> lp_quantization); } } } else { if(order == 2) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; residual[i] = data[i] - (sum >> lp_quantization); } } else { /* order == 1 */ for(i = 0; i < (int)data_len; i++) residual[i] = data[i] - ((qlp_coeff[0] * data[i-1]) >> lp_quantization); } } } } else { /* order > 12 */ for(i = 0; i < (int)data_len; i++) { sum = 0; switch(order) { case 32: sum += qlp_coeff[31] * data[i-32]; case 31: sum += qlp_coeff[30] * data[i-31]; case 30: sum += qlp_coeff[29] * data[i-30]; case 29: sum += qlp_coeff[28] * data[i-29]; case 28: sum += qlp_coeff[27] * data[i-28]; case 27: sum += qlp_coeff[26] * data[i-27]; case 26: sum += qlp_coeff[25] * data[i-26]; case 25: sum += qlp_coeff[24] * data[i-25]; case 24: sum += qlp_coeff[23] * data[i-24]; case 23: sum += qlp_coeff[22] * data[i-23]; case 22: sum += qlp_coeff[21] * data[i-22]; case 21: sum += qlp_coeff[20] * data[i-21]; case 20: sum += qlp_coeff[19] * data[i-20]; case 19: sum += qlp_coeff[18] * data[i-19]; case 18: sum += qlp_coeff[17] * data[i-18]; case 17: sum += qlp_coeff[16] * data[i-17]; case 16: sum += qlp_coeff[15] * data[i-16]; case 15: sum += qlp_coeff[14] * data[i-15]; case 14: sum += qlp_coeff[13] * data[i-14]; case 13: sum += qlp_coeff[12] * data[i-13]; sum += qlp_coeff[11] * data[i-12]; sum += qlp_coeff[10] * data[i-11]; sum += qlp_coeff[ 9] * data[i-10]; sum += qlp_coeff[ 8] * data[i- 9]; sum += qlp_coeff[ 7] * data[i- 8]; sum += qlp_coeff[ 6] * data[i- 7]; sum += qlp_coeff[ 5] * data[i- 6]; sum += qlp_coeff[ 4] * data[i- 5]; sum += qlp_coeff[ 3] * data[i- 4]; sum += qlp_coeff[ 2] * data[i- 3]; sum += qlp_coeff[ 1] * data[i- 2]; sum += qlp_coeff[ 0] * data[i- 1]; } residual[i] = data[i] - (sum >> lp_quantization); } } } #endif void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]) #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS) { unsigned i, j; FLAC__int64 sum; const FLAC__int32 *history; #ifdef FLAC__OVERFLOW_DETECT_VERBOSE fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); for(i=0;i 0); for(i = 0; i < data_len; i++) { sum = 0; history = data; for(j = 0; j < order; j++) sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history)); if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) { #if defined _MSC_VER fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, sum=%I64d\n", i, sum >> lp_quantization); #else fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, sum=%lld\n", i, (long long)(sum >> lp_quantization)); #endif break; } if(FLAC__bitmath_silog2_wide((FLAC__int64)(*data) - (sum >> lp_quantization)) > 32) { #if defined _MSC_VER fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, data=%d, sum=%I64d, residual=%I64d\n", i, *data, sum >> lp_quantization, (FLAC__int64)(*data) - (sum >> lp_quantization)); #else fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, data=%d, sum=%lld, residual=%lld\n", i, *data, (long long)(sum >> lp_quantization), (long long)((FLAC__int64)(*data) - (sum >> lp_quantization))); #endif break; } *(residual++) = *(data++) - (FLAC__int32)(sum >> lp_quantization); } } #else /* fully unrolled version for normal use */ { int i; FLAC__int64 sum; FLAC__ASSERT(order > 0); FLAC__ASSERT(order <= 32); /* * We do unique versions up to 12th order since that's the subset limit. * Also they are roughly ordered to match frequency of occurrence to * minimize branching. */ if(order <= 12) { if(order > 8) { if(order > 10) { if(order == 12) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[11] * (FLAC__int64)data[i-12]; sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; sum += qlp_coeff[9] * (FLAC__int64)data[i-10]; sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); } } else { /* order == 11 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; sum += qlp_coeff[9] * (FLAC__int64)data[i-10]; sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); } } } else { if(order == 10) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[9] * (FLAC__int64)data[i-10]; sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); } } else { /* order == 9 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); } } } } else if(order > 4) { if(order > 6) { if(order == 8) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); } } else { /* order == 7 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); } } } else { if(order == 6) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); } } else { /* order == 5 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); } } } } else { if(order > 2) { if(order == 4) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); } } else { /* order == 3 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); } } } else { if(order == 2) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); } } else { /* order == 1 */ for(i = 0; i < (int)data_len; i++) residual[i] = data[i] - (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization); } } } } else { /* order > 12 */ for(i = 0; i < (int)data_len; i++) { sum = 0; switch(order) { case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32]; case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31]; case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30]; case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29]; case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28]; case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27]; case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26]; case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25]; case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24]; case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23]; case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22]; case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21]; case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20]; case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19]; case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18]; case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17]; case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16]; case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15]; case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14]; case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13]; sum += qlp_coeff[11] * (FLAC__int64)data[i-12]; sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10]; sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9]; sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8]; sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7]; sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6]; sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5]; sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4]; sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3]; sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2]; sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1]; } residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); } } } #endif #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ void FLAC__lpc_restore_signal(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]) #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS) { FLAC__int64 sumo; unsigned i, j; FLAC__int32 sum; const FLAC__int32 *r = residual, *history; #ifdef FLAC__OVERFLOW_DETECT_VERBOSE fprintf(stderr,"FLAC__lpc_restore_signal: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); for(i=0;i 0); for(i = 0; i < data_len; i++) { sumo = 0; sum = 0; history = data; for(j = 0; j < order; j++) { sum += qlp_coeff[j] * (*(--history)); sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history); #if defined _MSC_VER if(sumo > 2147483647I64 || sumo < -2147483648I64) fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%I64d\n",i,j,qlp_coeff[j],*history,sumo); #else if(sumo > 2147483647ll || sumo < -2147483648ll) fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,(long long)sumo); #endif } *(data++) = *(r++) + (sum >> lp_quantization); } /* Here's a slower but clearer version: for(i = 0; i < data_len; i++) { sum = 0; for(j = 0; j < order; j++) sum += qlp_coeff[j] * data[i-j-1]; data[i] = residual[i] + (sum >> lp_quantization); } */ } #else /* fully unrolled version for normal use */ { int i; FLAC__int32 sum; FLAC__ASSERT(order > 0); FLAC__ASSERT(order <= 32); /* * We do unique versions up to 12th order since that's the subset limit. * Also they are roughly ordered to match frequency of occurrence to * minimize branching. */ if(order <= 12) { if(order > 8) { if(order > 10) { if(order == 12) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[11] * data[i-12]; sum += qlp_coeff[10] * data[i-11]; sum += qlp_coeff[9] * data[i-10]; sum += qlp_coeff[8] * data[i-9]; sum += qlp_coeff[7] * data[i-8]; sum += qlp_coeff[6] * data[i-7]; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; data[i] = residual[i] + (sum >> lp_quantization); } } else { /* order == 11 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[10] * data[i-11]; sum += qlp_coeff[9] * data[i-10]; sum += qlp_coeff[8] * data[i-9]; sum += qlp_coeff[7] * data[i-8]; sum += qlp_coeff[6] * data[i-7]; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; data[i] = residual[i] + (sum >> lp_quantization); } } } else { if(order == 10) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[9] * data[i-10]; sum += qlp_coeff[8] * data[i-9]; sum += qlp_coeff[7] * data[i-8]; sum += qlp_coeff[6] * data[i-7]; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; data[i] = residual[i] + (sum >> lp_quantization); } } else { /* order == 9 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[8] * data[i-9]; sum += qlp_coeff[7] * data[i-8]; sum += qlp_coeff[6] * data[i-7]; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; data[i] = residual[i] + (sum >> lp_quantization); } } } } else if(order > 4) { if(order > 6) { if(order == 8) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[7] * data[i-8]; sum += qlp_coeff[6] * data[i-7]; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; data[i] = residual[i] + (sum >> lp_quantization); } } else { /* order == 7 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[6] * data[i-7]; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; data[i] = residual[i] + (sum >> lp_quantization); } } } else { if(order == 6) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[5] * data[i-6]; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; data[i] = residual[i] + (sum >> lp_quantization); } } else { /* order == 5 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[4] * data[i-5]; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; data[i] = residual[i] + (sum >> lp_quantization); } } } } else { if(order > 2) { if(order == 4) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[3] * data[i-4]; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; data[i] = residual[i] + (sum >> lp_quantization); } } else { /* order == 3 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[2] * data[i-3]; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; data[i] = residual[i] + (sum >> lp_quantization); } } } else { if(order == 2) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[1] * data[i-2]; sum += qlp_coeff[0] * data[i-1]; data[i] = residual[i] + (sum >> lp_quantization); } } else { /* order == 1 */ for(i = 0; i < (int)data_len; i++) data[i] = residual[i] + ((qlp_coeff[0] * data[i-1]) >> lp_quantization); } } } } else { /* order > 12 */ for(i = 0; i < (int)data_len; i++) { sum = 0; switch(order) { case 32: sum += qlp_coeff[31] * data[i-32]; case 31: sum += qlp_coeff[30] * data[i-31]; case 30: sum += qlp_coeff[29] * data[i-30]; case 29: sum += qlp_coeff[28] * data[i-29]; case 28: sum += qlp_coeff[27] * data[i-28]; case 27: sum += qlp_coeff[26] * data[i-27]; case 26: sum += qlp_coeff[25] * data[i-26]; case 25: sum += qlp_coeff[24] * data[i-25]; case 24: sum += qlp_coeff[23] * data[i-24]; case 23: sum += qlp_coeff[22] * data[i-23]; case 22: sum += qlp_coeff[21] * data[i-22]; case 21: sum += qlp_coeff[20] * data[i-21]; case 20: sum += qlp_coeff[19] * data[i-20]; case 19: sum += qlp_coeff[18] * data[i-19]; case 18: sum += qlp_coeff[17] * data[i-18]; case 17: sum += qlp_coeff[16] * data[i-17]; case 16: sum += qlp_coeff[15] * data[i-16]; case 15: sum += qlp_coeff[14] * data[i-15]; case 14: sum += qlp_coeff[13] * data[i-14]; case 13: sum += qlp_coeff[12] * data[i-13]; sum += qlp_coeff[11] * data[i-12]; sum += qlp_coeff[10] * data[i-11]; sum += qlp_coeff[ 9] * data[i-10]; sum += qlp_coeff[ 8] * data[i- 9]; sum += qlp_coeff[ 7] * data[i- 8]; sum += qlp_coeff[ 6] * data[i- 7]; sum += qlp_coeff[ 5] * data[i- 6]; sum += qlp_coeff[ 4] * data[i- 5]; sum += qlp_coeff[ 3] * data[i- 4]; sum += qlp_coeff[ 2] * data[i- 3]; sum += qlp_coeff[ 1] * data[i- 2]; sum += qlp_coeff[ 0] * data[i- 1]; } data[i] = residual[i] + (sum >> lp_quantization); } } } #endif void FLAC__lpc_restore_signal_wide(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]) #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS) { unsigned i, j; FLAC__int64 sum; const FLAC__int32 *r = residual, *history; #ifdef FLAC__OVERFLOW_DETECT_VERBOSE fprintf(stderr,"FLAC__lpc_restore_signal_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); for(i=0;i 0); for(i = 0; i < data_len; i++) { sum = 0; history = data; for(j = 0; j < order; j++) sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history)); if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) { #ifdef _MSC_VER fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, sum=%I64d\n", i, sum >> lp_quantization); #else fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, sum=%lld\n", i, (long long)(sum >> lp_quantization)); #endif break; } if(FLAC__bitmath_silog2_wide((FLAC__int64)(*r) + (sum >> lp_quantization)) > 32) { #ifdef _MSC_VER fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, residual=%d, sum=%I64d, data=%I64d\n", i, *r, sum >> lp_quantization, (FLAC__int64)(*r) + (sum >> lp_quantization)); #else fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, residual=%d, sum=%lld, data=%lld\n", i, *r, (long long)(sum >> lp_quantization), (long long)((FLAC__int64)(*r) + (sum >> lp_quantization))); #endif break; } *(data++) = *(r++) + (FLAC__int32)(sum >> lp_quantization); } } #else /* fully unrolled version for normal use */ { int i; FLAC__int64 sum; FLAC__ASSERT(order > 0); FLAC__ASSERT(order <= 32); /* * We do unique versions up to 12th order since that's the subset limit. * Also they are roughly ordered to match frequency of occurrence to * minimize branching. */ if(order <= 12) { if(order > 8) { if(order > 10) { if(order == 12) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[11] * (FLAC__int64)data[i-12]; sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; sum += qlp_coeff[9] * (FLAC__int64)data[i-10]; sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); } } else { /* order == 11 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; sum += qlp_coeff[9] * (FLAC__int64)data[i-10]; sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); } } } else { if(order == 10) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[9] * (FLAC__int64)data[i-10]; sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); } } else { /* order == 9 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); } } } } else if(order > 4) { if(order > 6) { if(order == 8) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); } } else { /* order == 7 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); } } } else { if(order == 6) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); } } else { /* order == 5 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); } } } } else { if(order > 2) { if(order == 4) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); } } else { /* order == 3 */ for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); } } } else { if(order == 2) { for(i = 0; i < (int)data_len; i++) { sum = 0; sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); } } else { /* order == 1 */ for(i = 0; i < (int)data_len; i++) data[i] = residual[i] + (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization); } } } } else { /* order > 12 */ for(i = 0; i < (int)data_len; i++) { sum = 0; switch(order) { case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32]; case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31]; case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30]; case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29]; case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28]; case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27]; case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26]; case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25]; case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24]; case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23]; case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22]; case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21]; case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20]; case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19]; case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18]; case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17]; case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16]; case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15]; case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14]; case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13]; sum += qlp_coeff[11] * (FLAC__int64)data[i-12]; sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10]; sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9]; sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8]; sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7]; sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6]; sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5]; sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4]; sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3]; sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2]; sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1]; } data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); } } } #endif #ifndef FLAC__INTEGER_ONLY_LIBRARY FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample(FLAC__double lpc_error, unsigned total_samples) { FLAC__double error_scale; FLAC__ASSERT(total_samples > 0); error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__double)total_samples; return FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error, error_scale); } FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__double lpc_error, FLAC__double error_scale) { if(lpc_error > 0.0) { FLAC__double bps = (FLAC__double)0.5 * log(error_scale * lpc_error) / M_LN2; if(bps >= 0.0) return bps; else return 0.0; } else if(lpc_error < 0.0) { /* error should not be negative but can happen due to inadequate floating-point resolution */ return 1e32; } else { return 0.0; } } unsigned FLAC__lpc_compute_best_order(const FLAC__double lpc_error[], unsigned max_order, unsigned total_samples, unsigned overhead_bits_per_order) { unsigned order, index, best_index; /* 'index' the index into lpc_error; index==order-1 since lpc_error[0] is for order==1, lpc_error[1] is for order==2, etc */ FLAC__double bits, best_bits, error_scale; FLAC__ASSERT(max_order > 0); FLAC__ASSERT(total_samples > 0); error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__double)total_samples; best_index = 0; best_bits = (unsigned)(-1); for(index = 0, order = 1; index < max_order; index++, order++) { bits = FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error[index], error_scale) * (FLAC__double)(total_samples - order) + (FLAC__double)(order * overhead_bits_per_order); if(bits < best_bits) { best_index = index; best_bits = bits; } } return best_index+1; /* +1 since index of lpc_error[] is order-1 */ } #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ #endif /********* End of inlined file: lpc_flac.c *********/ /********* Start of inlined file: md5.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif #include /* for malloc() */ #include /* for memcpy() */ /********* Start of inlined file: md5.h *********/ #ifndef FLAC__PRIVATE__MD5_H #define FLAC__PRIVATE__MD5_H /* * This is the header file for the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. * * Changed so as no longer to depend on Colin Plumb's `usual.h' * header definitions; now uses stuff from dpkg's config.h * - Ian Jackson . * Still in the public domain. * * Josh Coalson: made some changes to integrate with libFLAC. * Still in the public domain, with no warranty. */ typedef struct { FLAC__uint32 in[16]; FLAC__uint32 buf[4]; FLAC__uint32 bytes[2]; FLAC__byte *internal_buf; size_t capacity; } FLAC__MD5Context; void FLAC__MD5Init(FLAC__MD5Context *context); void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *context); FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample); #endif /********* End of inlined file: md5.h *********/ #ifndef FLaC__INLINE #define FLaC__INLINE #endif /* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. * * Changed so as no longer to depend on Colin Plumb's `usual.h' header * definitions; now uses stuff from dpkg's config.h. * - Ian Jackson . * Still in the public domain. * * Josh Coalson: made some changes to integrate with libFLAC. * Still in the public domain. */ /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f,w,x,y,z,in,s) \ (w += f(x,y,z) + in, w = (w<>(32-s)) + x) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16]) { register FLAC__uint32 a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } #if WORDS_BIGENDIAN //@@@@@@ OPT: use bswap/intrinsics static void byteSwap(FLAC__uint32 *buf, unsigned words) { register FLAC__uint32 x; do { x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); } while (--words); } static void byteSwapX16(FLAC__uint32 *buf) { register FLAC__uint32 x; x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf = (x >> 16) | (x << 16); } #else #define byteSwap(buf, words) #define byteSwapX16(buf) #endif /* * Update context to reflect the concatenation of another buffer full * of bytes. */ static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, unsigned len) { FLAC__uint32 t; /* Update byte count */ t = ctx->bytes[0]; if ((ctx->bytes[0] = t + len) < t) ctx->bytes[1]++; /* Carry from low to high */ t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */ if (t > len) { memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len); return; } /* First chunk is an odd size */ memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t); byteSwapX16(ctx->in); FLAC__MD5Transform(ctx->buf, ctx->in); buf += t; len -= t; /* Process data in 64-byte chunks */ while (len >= 64) { memcpy(ctx->in, buf, 64); byteSwapX16(ctx->in); FLAC__MD5Transform(ctx->buf, ctx->in); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); } /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ void FLAC__MD5Init(FLAC__MD5Context *ctx) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bytes[0] = 0; ctx->bytes[1] = 0; ctx->internal_buf = 0; ctx->capacity = 0; } /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx) { int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ FLAC__byte *p = (FLAC__byte *)ctx->in + count; /* Set the first char of padding to 0x80. There is always room. */ *p++ = 0x80; /* Bytes of padding needed to make 56 bytes (-8..55) */ count = 56 - 1 - count; if (count < 0) { /* Padding forces an extra block */ memset(p, 0, count + 8); byteSwapX16(ctx->in); FLAC__MD5Transform(ctx->buf, ctx->in); p = (FLAC__byte *)ctx->in; count = 56; } memset(p, 0, count); byteSwap(ctx->in, 14); /* Append length in bits and transform */ ctx->in[14] = ctx->bytes[0] << 3; ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; FLAC__MD5Transform(ctx->buf, ctx->in); byteSwap(ctx->buf, 4); memcpy(digest, ctx->buf, 16); memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */ if(0 != ctx->internal_buf) { free(ctx->internal_buf); ctx->internal_buf = 0; ctx->capacity = 0; } } /* * Convert the incoming audio signal to a byte stream */ static void format_input_(FLAC__byte *buf, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample) { unsigned channel, sample; register FLAC__int32 a_word; register FLAC__byte *buf_ = buf; #if WORDS_BIGENDIAN #else if(channels == 2 && bytes_per_sample == 2) { FLAC__int16 *buf1_ = ((FLAC__int16*)buf_) + 1; memcpy(buf_, signal[0], sizeof(FLAC__int32) * samples); for(sample = 0; sample < samples; sample++, buf1_+=2) *buf1_ = (FLAC__int16)signal[1][sample]; } else if(channels == 1 && bytes_per_sample == 2) { FLAC__int16 *buf1_ = (FLAC__int16*)buf_; for(sample = 0; sample < samples; sample++) *buf1_++ = (FLAC__int16)signal[0][sample]; } else #endif if(bytes_per_sample == 2) { if(channels == 2) { for(sample = 0; sample < samples; sample++) { a_word = signal[0][sample]; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; a_word = signal[1][sample]; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; } } else if(channels == 1) { for(sample = 0; sample < samples; sample++) { a_word = signal[0][sample]; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; } } else { for(sample = 0; sample < samples; sample++) { for(channel = 0; channel < channels; channel++) { a_word = signal[channel][sample]; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; } } } } else if(bytes_per_sample == 3) { if(channels == 2) { for(sample = 0; sample < samples; sample++) { a_word = signal[0][sample]; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; a_word = signal[1][sample]; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; } } else if(channels == 1) { for(sample = 0; sample < samples; sample++) { a_word = signal[0][sample]; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; } } else { for(sample = 0; sample < samples; sample++) { for(channel = 0; channel < channels; channel++) { a_word = signal[channel][sample]; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; } } } } else if(bytes_per_sample == 1) { if(channels == 2) { for(sample = 0; sample < samples; sample++) { a_word = signal[0][sample]; *buf_++ = (FLAC__byte)a_word; a_word = signal[1][sample]; *buf_++ = (FLAC__byte)a_word; } } else if(channels == 1) { for(sample = 0; sample < samples; sample++) { a_word = signal[0][sample]; *buf_++ = (FLAC__byte)a_word; } } else { for(sample = 0; sample < samples; sample++) { for(channel = 0; channel < channels; channel++) { a_word = signal[channel][sample]; *buf_++ = (FLAC__byte)a_word; } } } } else { /* bytes_per_sample == 4, maybe optimize more later */ for(sample = 0; sample < samples; sample++) { for(channel = 0; channel < channels; channel++) { a_word = signal[channel][sample]; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; a_word >>= 8; *buf_++ = (FLAC__byte)a_word; } } } } /* * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it. */ FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample) { const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample; /* overflow check */ if((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample) return false; if((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples) return false; if(ctx->capacity < bytes_needed) { FLAC__byte *tmp = (FLAC__byte*)realloc(ctx->internal_buf, bytes_needed); if(0 == tmp) { free(ctx->internal_buf); if(0 == (ctx->internal_buf = (FLAC__byte*)safe_malloc_(bytes_needed))) return false; } ctx->internal_buf = tmp; ctx->capacity = bytes_needed; } format_input_(ctx->internal_buf, signal, channels, samples, bytes_per_sample); FLAC__MD5Update(ctx, ctx->internal_buf, bytes_needed); return true; } #endif /********* End of inlined file: md5.c *********/ /********* Start of inlined file: memory.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif /********* Start of inlined file: memory.h *********/ #ifndef FLAC__PRIVATE__MEMORY_H #define FLAC__PRIVATE__MEMORY_H #ifdef HAVE_CONFIG_H #include #endif #include /* for size_t */ /* Returns the unaligned address returned by malloc. * Use free() on this address to deallocate. */ void *FLAC__memory_alloc_aligned(size_t bytes, void **aligned_address); FLAC__bool FLAC__memory_alloc_aligned_int32_array(unsigned elements, FLAC__int32 **unaligned_pointer, FLAC__int32 **aligned_pointer); FLAC__bool FLAC__memory_alloc_aligned_uint32_array(unsigned elements, FLAC__uint32 **unaligned_pointer, FLAC__uint32 **aligned_pointer); FLAC__bool FLAC__memory_alloc_aligned_uint64_array(unsigned elements, FLAC__uint64 **unaligned_pointer, FLAC__uint64 **aligned_pointer); FLAC__bool FLAC__memory_alloc_aligned_unsigned_array(unsigned elements, unsigned **unaligned_pointer, unsigned **aligned_pointer); #ifndef FLAC__INTEGER_ONLY_LIBRARY FLAC__bool FLAC__memory_alloc_aligned_real_array(unsigned elements, FLAC__real **unaligned_pointer, FLAC__real **aligned_pointer); #endif #endif /********* End of inlined file: memory.h *********/ void *FLAC__memory_alloc_aligned(size_t bytes, void **aligned_address) { void *x; FLAC__ASSERT(0 != aligned_address); #ifdef FLAC__ALIGN_MALLOC_DATA /* align on 32-byte (256-bit) boundary */ x = safe_malloc_add_2op_(bytes, /*+*/31); #ifdef SIZEOF_VOIDP #if SIZEOF_VOIDP == 4 /* could do *aligned_address = x + ((unsigned) (32 - (((unsigned)x) & 31))) & 31; */ *aligned_address = (void*)(((unsigned)x + 31) & -32); #elif SIZEOF_VOIDP == 8 *aligned_address = (void*)(((FLAC__uint64)x + 31) & (FLAC__uint64)(-((FLAC__int64)32))); #else # error Unsupported sizeof(void*) #endif #else /* there's got to be a better way to do this right for all archs */ if(sizeof(void*) == sizeof(unsigned)) *aligned_address = (void*)(((unsigned)x + 31) & -32); else if(sizeof(void*) == sizeof(FLAC__uint64)) *aligned_address = (void*)(((FLAC__uint64)x + 31) & (FLAC__uint64)(-((FLAC__int64)32))); else return 0; #endif #else x = safe_malloc_(bytes); *aligned_address = x; #endif return x; } FLAC__bool FLAC__memory_alloc_aligned_int32_array(unsigned elements, FLAC__int32 **unaligned_pointer, FLAC__int32 **aligned_pointer) { FLAC__int32 *pu; /* unaligned pointer */ union { /* union needed to comply with C99 pointer aliasing rules */ FLAC__int32 *pa; /* aligned pointer */ void *pv; /* aligned pointer alias */ } u; FLAC__ASSERT(elements > 0); FLAC__ASSERT(0 != unaligned_pointer); FLAC__ASSERT(0 != aligned_pointer); FLAC__ASSERT(unaligned_pointer != aligned_pointer); if((size_t)elements > SIZE_MAX / sizeof(*pu)) /* overflow check */ return false; pu = (FLAC__int32*)FLAC__memory_alloc_aligned(sizeof(*pu) * (size_t)elements, &u.pv); if(0 == pu) { return false; } else { if(*unaligned_pointer != 0) free(*unaligned_pointer); *unaligned_pointer = pu; *aligned_pointer = u.pa; return true; } } FLAC__bool FLAC__memory_alloc_aligned_uint32_array(unsigned elements, FLAC__uint32 **unaligned_pointer, FLAC__uint32 **aligned_pointer) { FLAC__uint32 *pu; /* unaligned pointer */ union { /* union needed to comply with C99 pointer aliasing rules */ FLAC__uint32 *pa; /* aligned pointer */ void *pv; /* aligned pointer alias */ } u; FLAC__ASSERT(elements > 0); FLAC__ASSERT(0 != unaligned_pointer); FLAC__ASSERT(0 != aligned_pointer); FLAC__ASSERT(unaligned_pointer != aligned_pointer); if((size_t)elements > SIZE_MAX / sizeof(*pu)) /* overflow check */ return false; pu = (FLAC__uint32*)FLAC__memory_alloc_aligned(sizeof(*pu) * elements, &u.pv); if(0 == pu) { return false; } else { if(*unaligned_pointer != 0) free(*unaligned_pointer); *unaligned_pointer = pu; *aligned_pointer = u.pa; return true; } } FLAC__bool FLAC__memory_alloc_aligned_uint64_array(unsigned elements, FLAC__uint64 **unaligned_pointer, FLAC__uint64 **aligned_pointer) { FLAC__uint64 *pu; /* unaligned pointer */ union { /* union needed to comply with C99 pointer aliasing rules */ FLAC__uint64 *pa; /* aligned pointer */ void *pv; /* aligned pointer alias */ } u; FLAC__ASSERT(elements > 0); FLAC__ASSERT(0 != unaligned_pointer); FLAC__ASSERT(0 != aligned_pointer); FLAC__ASSERT(unaligned_pointer != aligned_pointer); if((size_t)elements > SIZE_MAX / sizeof(*pu)) /* overflow check */ return false; pu = (FLAC__uint64*)FLAC__memory_alloc_aligned(sizeof(*pu) * elements, &u.pv); if(0 == pu) { return false; } else { if(*unaligned_pointer != 0) free(*unaligned_pointer); *unaligned_pointer = pu; *aligned_pointer = u.pa; return true; } } FLAC__bool FLAC__memory_alloc_aligned_unsigned_array(unsigned elements, unsigned **unaligned_pointer, unsigned **aligned_pointer) { unsigned *pu; /* unaligned pointer */ union { /* union needed to comply with C99 pointer aliasing rules */ unsigned *pa; /* aligned pointer */ void *pv; /* aligned pointer alias */ } u; FLAC__ASSERT(elements > 0); FLAC__ASSERT(0 != unaligned_pointer); FLAC__ASSERT(0 != aligned_pointer); FLAC__ASSERT(unaligned_pointer != aligned_pointer); if((size_t)elements > SIZE_MAX / sizeof(*pu)) /* overflow check */ return false; pu = (unsigned*)FLAC__memory_alloc_aligned(sizeof(*pu) * elements, &u.pv); if(0 == pu) { return false; } else { if(*unaligned_pointer != 0) free(*unaligned_pointer); *unaligned_pointer = pu; *aligned_pointer = u.pa; return true; } } #ifndef FLAC__INTEGER_ONLY_LIBRARY FLAC__bool FLAC__memory_alloc_aligned_real_array(unsigned elements, FLAC__real **unaligned_pointer, FLAC__real **aligned_pointer) { FLAC__real *pu; /* unaligned pointer */ union { /* union needed to comply with C99 pointer aliasing rules */ FLAC__real *pa; /* aligned pointer */ void *pv; /* aligned pointer alias */ } u; FLAC__ASSERT(elements > 0); FLAC__ASSERT(0 != unaligned_pointer); FLAC__ASSERT(0 != aligned_pointer); FLAC__ASSERT(unaligned_pointer != aligned_pointer); if((size_t)elements > SIZE_MAX / sizeof(*pu)) /* overflow check */ return false; pu = (FLAC__real*)FLAC__memory_alloc_aligned(sizeof(*pu) * elements, &u.pv); if(0 == pu) { return false; } else { if(*unaligned_pointer != 0) free(*unaligned_pointer); *unaligned_pointer = pu; *aligned_pointer = u.pa; return true; } } #endif #endif /********* End of inlined file: memory.c *********/ /********* Start of inlined file: stream_decoder.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif #if defined _MSC_VER || defined __MINGW32__ #include /* for _setmode() */ #include /* for _O_BINARY */ #endif #if defined __CYGWIN__ || defined __EMX__ #include /* for setmode(), O_BINARY */ #include /* for _O_BINARY */ #endif #include #include /* for malloc() */ #include /* for memset/memcpy() */ #include /* for stat() */ #include /* for off_t */ #if defined _MSC_VER || defined __BORLANDC__ || defined __MINGW32__ #if _MSC_VER <= 1600 || defined __BORLANDC__ /* @@@ [2G limit] */ #define fseeko fseek #define ftello ftell #endif #endif /********* Start of inlined file: stream_decoder.h *********/ #ifndef FLAC__PROTECTED__STREAM_DECODER_H #define FLAC__PROTECTED__STREAM_DECODER_H #if FLAC__HAS_OGG #include "include/private/ogg_decoder_aspect.h" #endif typedef struct FLAC__StreamDecoderProtected { FLAC__StreamDecoderState state; unsigned channels; FLAC__ChannelAssignment channel_assignment; unsigned bits_per_sample; unsigned sample_rate; /* in Hz */ unsigned blocksize; /* in samples (per channel) */ FLAC__bool md5_checking; /* if true, generate MD5 signature of decoded data and compare against signature in the STREAMINFO metadata block */ #if FLAC__HAS_OGG FLAC__OggDecoderAspect ogg_decoder_aspect; #endif } FLAC__StreamDecoderProtected; /* * return the number of input bytes consumed */ unsigned FLAC__stream_decoder_get_input_bytes_unconsumed(const FLAC__StreamDecoder *decoder); #endif /********* End of inlined file: stream_decoder.h *********/ #ifdef max #undef max #endif #define max(a,b) ((a)>(b)?(a):(b)) /* adjust for compilers that can't understand using LLU suffix for uint64_t literals */ #ifdef _MSC_VER #define FLAC__U64L(x) x #else #define FLAC__U64L(x) x##LLU #endif /* technically this should be in an "export.c" but this is convenient enough */ FLAC_API int FLAC_API_SUPPORTS_OGG_FLAC = #if FLAC__HAS_OGG 1 #else 0 #endif ; /*********************************************************************** * * Private static data * ***********************************************************************/ static FLAC__byte ID3V2_TAG_[3] = { 'I', 'D', '3' }; /*********************************************************************** * * Private class method prototypes * ***********************************************************************/ static void set_defaults_dec(FLAC__StreamDecoder *decoder); static FILE *get_binary_stdin_(void); static FLAC__bool allocate_output_(FLAC__StreamDecoder *decoder, unsigned size, unsigned channels); static FLAC__bool has_id_filtered_(FLAC__StreamDecoder *decoder, FLAC__byte *id); static FLAC__bool find_metadata_(FLAC__StreamDecoder *decoder); static FLAC__bool read_metadata_(FLAC__StreamDecoder *decoder); static FLAC__bool read_metadata_streaminfo_(FLAC__StreamDecoder *decoder, FLAC__bool is_last, unsigned length); static FLAC__bool read_metadata_seektable_(FLAC__StreamDecoder *decoder, FLAC__bool is_last, unsigned length); static FLAC__bool read_metadata_vorbiscomment_(FLAC__StreamDecoder *decoder, FLAC__StreamMetadata_VorbisComment *obj); static FLAC__bool read_metadata_cuesheet_(FLAC__StreamDecoder *decoder, FLAC__StreamMetadata_CueSheet *obj); static FLAC__bool read_metadata_picture_(FLAC__StreamDecoder *decoder, FLAC__StreamMetadata_Picture *obj); static FLAC__bool skip_id3v2_tag_(FLAC__StreamDecoder *decoder); static FLAC__bool frame_sync_(FLAC__StreamDecoder *decoder); static FLAC__bool read_frame_(FLAC__StreamDecoder *decoder, FLAC__bool *got_a_frame, FLAC__bool do_full_decode); static FLAC__bool read_frame_header_(FLAC__StreamDecoder *decoder); static FLAC__bool read_subframe_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, FLAC__bool do_full_decode); static FLAC__bool read_subframe_constant_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, FLAC__bool do_full_decode); static FLAC__bool read_subframe_fixed_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, const unsigned order, FLAC__bool do_full_decode); static FLAC__bool read_subframe_lpc_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, const unsigned order, FLAC__bool do_full_decode); static FLAC__bool read_subframe_verbatim_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, FLAC__bool do_full_decode); static FLAC__bool read_residual_partitioned_rice_(FLAC__StreamDecoder *decoder, unsigned predictor_order, unsigned partition_order, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, FLAC__int32 *residual, FLAC__bool is_extended); static FLAC__bool read_zero_padding_(FLAC__StreamDecoder *decoder); static FLAC__bool read_callback_(FLAC__byte buffer[], size_t *bytes, void *client_data); #if FLAC__HAS_OGG static FLAC__StreamDecoderReadStatus read_callback_ogg_aspect_(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes); static FLAC__OggDecoderAspectReadStatus read_callback_proxy_(const void *void_decoder, FLAC__byte buffer[], size_t *bytes, void *client_data); #endif static FLAC__StreamDecoderWriteStatus write_audio_frame_to_client_(FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 * const buffer[]); static void send_error_to_client_(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status); static FLAC__bool seek_to_absolute_sample_(FLAC__StreamDecoder *decoder, FLAC__uint64 stream_length, FLAC__uint64 target_sample); #if FLAC__HAS_OGG static FLAC__bool seek_to_absolute_sample_ogg_(FLAC__StreamDecoder *decoder, FLAC__uint64 stream_length, FLAC__uint64 target_sample); #endif static FLAC__StreamDecoderReadStatus file_read_callback_dec (const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes, void *client_data); static FLAC__StreamDecoderSeekStatus file_seek_callback_dec (const FLAC__StreamDecoder *decoder, FLAC__uint64 absolute_byte_offset, void *client_data); static FLAC__StreamDecoderTellStatus file_tell_callback_dec (const FLAC__StreamDecoder *decoder, FLAC__uint64 *absolute_byte_offset, void *client_data); static FLAC__StreamDecoderLengthStatus file_length_callback_(const FLAC__StreamDecoder *decoder, FLAC__uint64 *stream_length, void *client_data); static FLAC__bool file_eof_callback_(const FLAC__StreamDecoder *decoder, void *client_data); /*********************************************************************** * * Private class data * ***********************************************************************/ typedef struct FLAC__StreamDecoderPrivate { #if FLAC__HAS_OGG FLAC__bool is_ogg; #endif FLAC__StreamDecoderReadCallback read_callback; FLAC__StreamDecoderSeekCallback seek_callback; FLAC__StreamDecoderTellCallback tell_callback; FLAC__StreamDecoderLengthCallback length_callback; FLAC__StreamDecoderEofCallback eof_callback; FLAC__StreamDecoderWriteCallback write_callback; FLAC__StreamDecoderMetadataCallback metadata_callback; FLAC__StreamDecoderErrorCallback error_callback; /* generic 32-bit datapath: */ void (*local_lpc_restore_signal)(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]); /* generic 64-bit datapath: */ void (*local_lpc_restore_signal_64bit)(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]); /* for use when the signal is <= 16 bits-per-sample, or <= 15 bits-per-sample on a side channel (which requires 1 extra bit): */ void (*local_lpc_restore_signal_16bit)(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]); /* for use when the signal is <= 16 bits-per-sample, or <= 15 bits-per-sample on a side channel (which requires 1 extra bit), AND order <= 8: */ void (*local_lpc_restore_signal_16bit_order8)(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]); FLAC__bool (*local_bitreader_read_rice_signed_block)(FLAC__BitReader *br, int* vals, unsigned nvals, unsigned parameter); void *client_data; FILE *file; /* only used if FLAC__stream_decoder_init_file()/FLAC__stream_decoder_init_file() called, else NULL */ FLAC__BitReader *input; FLAC__int32 *output[FLAC__MAX_CHANNELS]; FLAC__int32 *residual[FLAC__MAX_CHANNELS]; /* WATCHOUT: these are the aligned pointers; the real pointers that should be free()'d are residual_unaligned[] below */ FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents[FLAC__MAX_CHANNELS]; unsigned output_capacity, output_channels; FLAC__uint32 fixed_block_size, next_fixed_block_size; FLAC__uint64 samples_decoded; FLAC__bool has_stream_info, has_seek_table; FLAC__StreamMetadata stream_info; FLAC__StreamMetadata seek_table; FLAC__bool metadata_filter[128]; /* MAGIC number 128 == total number of metadata block types == 1 << 7 */ FLAC__byte *metadata_filter_ids; size_t metadata_filter_ids_count, metadata_filter_ids_capacity; /* units for both are IDs, not bytes */ FLAC__Frame frame; FLAC__bool cached; /* true if there is a byte in lookahead */ FLAC__CPUInfo cpuinfo; FLAC__byte header_warmup[2]; /* contains the sync code and reserved bits */ FLAC__byte lookahead; /* temp storage when we need to look ahead one byte in the stream */ /* unaligned (original) pointers to allocated data */ FLAC__int32 *residual_unaligned[FLAC__MAX_CHANNELS]; FLAC__bool do_md5_checking; /* initially gets protected_->md5_checking but is turned off after a seek or if the metadata has a zero MD5 */ FLAC__bool internal_reset_hack; /* used only during init() so we can call reset to set up the decoder without rewinding the input */ FLAC__bool is_seeking; FLAC__MD5Context md5context; FLAC__byte computed_md5sum[16]; /* this is the sum we computed from the decoded data */ /* (the rest of these are only used for seeking) */ FLAC__Frame last_frame; /* holds the info of the last frame we seeked to */ FLAC__uint64 first_frame_offset; /* hint to the seek routine of where in the stream the first audio frame starts */ FLAC__uint64 target_sample; unsigned unparseable_frame_count; /* used to tell whether we're decoding a future version of FLAC or just got a bad sync */ #if FLAC__HAS_OGG FLAC__bool got_a_frame; /* hack needed in Ogg FLAC seek routine to check when process_single() actually writes a frame */ #endif } FLAC__StreamDecoderPrivate; /*********************************************************************** * * Public static class data * ***********************************************************************/ FLAC_API const char * const FLAC__StreamDecoderStateString[] = { "FLAC__STREAM_DECODER_SEARCH_FOR_METADATA", "FLAC__STREAM_DECODER_READ_METADATA", "FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC", "FLAC__STREAM_DECODER_READ_FRAME", "FLAC__STREAM_DECODER_END_OF_STREAM", "FLAC__STREAM_DECODER_OGG_ERROR", "FLAC__STREAM_DECODER_SEEK_ERROR", "FLAC__STREAM_DECODER_ABORTED", "FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR", "FLAC__STREAM_DECODER_UNINITIALIZED" }; FLAC_API const char * const FLAC__StreamDecoderInitStatusString[] = { "FLAC__STREAM_DECODER_INIT_STATUS_OK", "FLAC__STREAM_DECODER_INIT_STATUS_UNSUPPORTED_CONTAINER", "FLAC__STREAM_DECODER_INIT_STATUS_INVALID_CALLBACKS", "FLAC__STREAM_DECODER_INIT_STATUS_MEMORY_ALLOCATION_ERROR", "FLAC__STREAM_DECODER_INIT_STATUS_ERROR_OPENING_FILE", "FLAC__STREAM_DECODER_INIT_STATUS_ALREADY_INITIALIZED" }; FLAC_API const char * const FLAC__StreamDecoderReadStatusString[] = { "FLAC__STREAM_DECODER_READ_STATUS_CONTINUE", "FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM", "FLAC__STREAM_DECODER_READ_STATUS_ABORT" }; FLAC_API const char * const FLAC__StreamDecoderSeekStatusString[] = { "FLAC__STREAM_DECODER_SEEK_STATUS_OK", "FLAC__STREAM_DECODER_SEEK_STATUS_ERROR", "FLAC__STREAM_DECODER_SEEK_STATUS_UNSUPPORTED" }; FLAC_API const char * const FLAC__StreamDecoderTellStatusString[] = { "FLAC__STREAM_DECODER_TELL_STATUS_OK", "FLAC__STREAM_DECODER_TELL_STATUS_ERROR", "FLAC__STREAM_DECODER_TELL_STATUS_UNSUPPORTED" }; FLAC_API const char * const FLAC__StreamDecoderLengthStatusString[] = { "FLAC__STREAM_DECODER_LENGTH_STATUS_OK", "FLAC__STREAM_DECODER_LENGTH_STATUS_ERROR", "FLAC__STREAM_DECODER_LENGTH_STATUS_UNSUPPORTED" }; FLAC_API const char * const FLAC__StreamDecoderWriteStatusString[] = { "FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE", "FLAC__STREAM_DECODER_WRITE_STATUS_ABORT" }; FLAC_API const char * const FLAC__StreamDecoderErrorStatusString[] = { "FLAC__STREAM_DECODER_ERROR_STATUS_LOST_SYNC", "FLAC__STREAM_DECODER_ERROR_STATUS_BAD_HEADER", "FLAC__STREAM_DECODER_ERROR_STATUS_FRAME_CRC_MISMATCH", "FLAC__STREAM_DECODER_ERROR_STATUS_UNPARSEABLE_STREAM" }; /*********************************************************************** * * Class constructor/destructor * ***********************************************************************/ FLAC_API FLAC__StreamDecoder *FLAC__stream_decoder_new(void) { FLAC__StreamDecoder *decoder; unsigned i; FLAC__ASSERT(sizeof(int) >= 4); /* we want to die right away if this is not true */ decoder = (FLAC__StreamDecoder*)calloc(1, sizeof(FLAC__StreamDecoder)); if(decoder == 0) { return 0; } decoder->protected_ = (FLAC__StreamDecoderProtected*)calloc(1, sizeof(FLAC__StreamDecoderProtected)); if(decoder->protected_ == 0) { free(decoder); return 0; } decoder->private_ = (FLAC__StreamDecoderPrivate*)calloc(1, sizeof(FLAC__StreamDecoderPrivate)); if(decoder->private_ == 0) { free(decoder->protected_); free(decoder); return 0; } decoder->private_->input = FLAC__bitreader_new(); if(decoder->private_->input == 0) { free(decoder->private_); free(decoder->protected_); free(decoder); return 0; } decoder->private_->metadata_filter_ids_capacity = 16; if(0 == (decoder->private_->metadata_filter_ids = (FLAC__byte*)malloc((FLAC__STREAM_METADATA_APPLICATION_ID_LEN/8) * decoder->private_->metadata_filter_ids_capacity))) { FLAC__bitreader_delete(decoder->private_->input); free(decoder->private_); free(decoder->protected_); free(decoder); return 0; } for(i = 0; i < FLAC__MAX_CHANNELS; i++) { decoder->private_->output[i] = 0; decoder->private_->residual_unaligned[i] = decoder->private_->residual[i] = 0; } decoder->private_->output_capacity = 0; decoder->private_->output_channels = 0; decoder->private_->has_seek_table = false; for(i = 0; i < FLAC__MAX_CHANNELS; i++) FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&decoder->private_->partitioned_rice_contents[i]); decoder->private_->file = 0; set_defaults_dec(decoder); decoder->protected_->state = FLAC__STREAM_DECODER_UNINITIALIZED; return decoder; } FLAC_API void FLAC__stream_decoder_delete(FLAC__StreamDecoder *decoder) { unsigned i; FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); FLAC__ASSERT(0 != decoder->private_); FLAC__ASSERT(0 != decoder->private_->input); (void)FLAC__stream_decoder_finish(decoder); if(0 != decoder->private_->metadata_filter_ids) free(decoder->private_->metadata_filter_ids); FLAC__bitreader_delete(decoder->private_->input); for(i = 0; i < FLAC__MAX_CHANNELS; i++) FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&decoder->private_->partitioned_rice_contents[i]); free(decoder->private_); free(decoder->protected_); free(decoder); } /*********************************************************************** * * Public class methods * ***********************************************************************/ static FLAC__StreamDecoderInitStatus init_stream_internal_dec( FLAC__StreamDecoder *decoder, FLAC__StreamDecoderReadCallback read_callback, FLAC__StreamDecoderSeekCallback seek_callback, FLAC__StreamDecoderTellCallback tell_callback, FLAC__StreamDecoderLengthCallback length_callback, FLAC__StreamDecoderEofCallback eof_callback, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data, FLAC__bool is_ogg ) { FLAC__ASSERT(0 != decoder); if(decoder->protected_->state != FLAC__STREAM_DECODER_UNINITIALIZED) return FLAC__STREAM_DECODER_INIT_STATUS_ALREADY_INITIALIZED; #if !FLAC__HAS_OGG if(is_ogg) return FLAC__STREAM_DECODER_INIT_STATUS_UNSUPPORTED_CONTAINER; #endif if( 0 == read_callback || 0 == write_callback || 0 == error_callback || (seek_callback && (0 == tell_callback || 0 == length_callback || 0 == eof_callback)) ) return FLAC__STREAM_DECODER_INIT_STATUS_INVALID_CALLBACKS; #if FLAC__HAS_OGG decoder->private_->is_ogg = is_ogg; if(is_ogg && !FLAC__ogg_decoder_aspect_init(&decoder->protected_->ogg_decoder_aspect)) return decoder->protected_->state = FLAC__STREAM_DECODER_OGG_ERROR; #endif /* * get the CPU info and set the function pointers */ FLAC__cpu_info(&decoder->private_->cpuinfo); /* first default to the non-asm routines */ decoder->private_->local_lpc_restore_signal = FLAC__lpc_restore_signal; decoder->private_->local_lpc_restore_signal_64bit = FLAC__lpc_restore_signal_wide; decoder->private_->local_lpc_restore_signal_16bit = FLAC__lpc_restore_signal; decoder->private_->local_lpc_restore_signal_16bit_order8 = FLAC__lpc_restore_signal; decoder->private_->local_bitreader_read_rice_signed_block = FLAC__bitreader_read_rice_signed_block; /* now override with asm where appropriate */ #ifndef FLAC__NO_ASM if(decoder->private_->cpuinfo.use_asm) { #ifdef FLAC__CPU_IA32 FLAC__ASSERT(decoder->private_->cpuinfo.type == FLAC__CPUINFO_TYPE_IA32); #ifdef FLAC__HAS_NASM #if 1 /*@@@@@@ OPT: not clearly faster, needs more testing */ if(decoder->private_->cpuinfo.data.ia32.bswap) decoder->private_->local_bitreader_read_rice_signed_block = FLAC__bitreader_read_rice_signed_block_asm_ia32_bswap; #endif if(decoder->private_->cpuinfo.data.ia32.mmx) { decoder->private_->local_lpc_restore_signal = FLAC__lpc_restore_signal_asm_ia32; decoder->private_->local_lpc_restore_signal_16bit = FLAC__lpc_restore_signal_asm_ia32_mmx; decoder->private_->local_lpc_restore_signal_16bit_order8 = FLAC__lpc_restore_signal_asm_ia32_mmx; } else { decoder->private_->local_lpc_restore_signal = FLAC__lpc_restore_signal_asm_ia32; decoder->private_->local_lpc_restore_signal_16bit = FLAC__lpc_restore_signal_asm_ia32; decoder->private_->local_lpc_restore_signal_16bit_order8 = FLAC__lpc_restore_signal_asm_ia32; } #endif #elif defined FLAC__CPU_PPC FLAC__ASSERT(decoder->private_->cpuinfo.type == FLAC__CPUINFO_TYPE_PPC); if(decoder->private_->cpuinfo.data.ppc.altivec) { decoder->private_->local_lpc_restore_signal_16bit = FLAC__lpc_restore_signal_asm_ppc_altivec_16; decoder->private_->local_lpc_restore_signal_16bit_order8 = FLAC__lpc_restore_signal_asm_ppc_altivec_16_order8; } #endif } #endif /* from here on, errors are fatal */ if(!FLAC__bitreader_init(decoder->private_->input, decoder->private_->cpuinfo, read_callback_, decoder)) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return FLAC__STREAM_DECODER_INIT_STATUS_MEMORY_ALLOCATION_ERROR; } decoder->private_->read_callback = read_callback; decoder->private_->seek_callback = seek_callback; decoder->private_->tell_callback = tell_callback; decoder->private_->length_callback = length_callback; decoder->private_->eof_callback = eof_callback; decoder->private_->write_callback = write_callback; decoder->private_->metadata_callback = metadata_callback; decoder->private_->error_callback = error_callback; decoder->private_->client_data = client_data; decoder->private_->fixed_block_size = decoder->private_->next_fixed_block_size = 0; decoder->private_->samples_decoded = 0; decoder->private_->has_stream_info = false; decoder->private_->cached = false; decoder->private_->do_md5_checking = decoder->protected_->md5_checking; decoder->private_->is_seeking = false; decoder->private_->internal_reset_hack = true; /* so the following reset does not try to rewind the input */ if(!FLAC__stream_decoder_reset(decoder)) { /* above call sets the state for us */ return FLAC__STREAM_DECODER_INIT_STATUS_MEMORY_ALLOCATION_ERROR; } return FLAC__STREAM_DECODER_INIT_STATUS_OK; } FLAC_API FLAC__StreamDecoderInitStatus FLAC__stream_decoder_init_stream( FLAC__StreamDecoder *decoder, FLAC__StreamDecoderReadCallback read_callback, FLAC__StreamDecoderSeekCallback seek_callback, FLAC__StreamDecoderTellCallback tell_callback, FLAC__StreamDecoderLengthCallback length_callback, FLAC__StreamDecoderEofCallback eof_callback, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data ) { return init_stream_internal_dec( decoder, read_callback, seek_callback, tell_callback, length_callback, eof_callback, write_callback, metadata_callback, error_callback, client_data, /*is_ogg=*/false ); } FLAC_API FLAC__StreamDecoderInitStatus FLAC__stream_decoder_init_ogg_stream( FLAC__StreamDecoder *decoder, FLAC__StreamDecoderReadCallback read_callback, FLAC__StreamDecoderSeekCallback seek_callback, FLAC__StreamDecoderTellCallback tell_callback, FLAC__StreamDecoderLengthCallback length_callback, FLAC__StreamDecoderEofCallback eof_callback, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data ) { return init_stream_internal_dec( decoder, read_callback, seek_callback, tell_callback, length_callback, eof_callback, write_callback, metadata_callback, error_callback, client_data, /*is_ogg=*/true ); } static FLAC__StreamDecoderInitStatus init_FILE_internal_( FLAC__StreamDecoder *decoder, FILE *file, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data, FLAC__bool is_ogg ) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != file); if(decoder->protected_->state != FLAC__STREAM_DECODER_UNINITIALIZED) return (FLAC__StreamDecoderInitStatus) (decoder->protected_->state = (FLAC__StreamDecoderState) FLAC__STREAM_DECODER_INIT_STATUS_ALREADY_INITIALIZED); if(0 == write_callback || 0 == error_callback) return (FLAC__StreamDecoderInitStatus) (decoder->protected_->state = (FLAC__StreamDecoderState) FLAC__STREAM_DECODER_INIT_STATUS_INVALID_CALLBACKS); /* * To make sure that our file does not go unclosed after an error, we * must assign the FILE pointer before any further error can occur in * this routine. */ if(file == stdin) file = get_binary_stdin_(); /* just to be safe */ decoder->private_->file = file; return init_stream_internal_dec( decoder, file_read_callback_dec, decoder->private_->file == stdin? 0: file_seek_callback_dec, decoder->private_->file == stdin? 0: file_tell_callback_dec, decoder->private_->file == stdin? 0: file_length_callback_, file_eof_callback_, write_callback, metadata_callback, error_callback, client_data, is_ogg ); } FLAC_API FLAC__StreamDecoderInitStatus FLAC__stream_decoder_init_FILE( FLAC__StreamDecoder *decoder, FILE *file, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data ) { return init_FILE_internal_(decoder, file, write_callback, metadata_callback, error_callback, client_data, /*is_ogg=*/false); } FLAC_API FLAC__StreamDecoderInitStatus FLAC__stream_decoder_init_ogg_FILE( FLAC__StreamDecoder *decoder, FILE *file, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data ) { return init_FILE_internal_(decoder, file, write_callback, metadata_callback, error_callback, client_data, /*is_ogg=*/true); } static FLAC__StreamDecoderInitStatus init_file_internal_( FLAC__StreamDecoder *decoder, const char *filename, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data, FLAC__bool is_ogg ) { FILE *file; FLAC__ASSERT(0 != decoder); /* * To make sure that our file does not go unclosed after an error, we * have to do the same entrance checks here that are later performed * in FLAC__stream_decoder_init_FILE() before the FILE* is assigned. */ if(decoder->protected_->state != FLAC__STREAM_DECODER_UNINITIALIZED) return (FLAC__StreamDecoderInitStatus) (decoder->protected_->state = (FLAC__StreamDecoderState) FLAC__STREAM_DECODER_INIT_STATUS_ALREADY_INITIALIZED); if(0 == write_callback || 0 == error_callback) return (FLAC__StreamDecoderInitStatus) (decoder->protected_->state = (FLAC__StreamDecoderState) FLAC__STREAM_DECODER_INIT_STATUS_INVALID_CALLBACKS); file = filename? fopen(filename, "rb") : stdin; if(0 == file) return FLAC__STREAM_DECODER_INIT_STATUS_ERROR_OPENING_FILE; return init_FILE_internal_(decoder, file, write_callback, metadata_callback, error_callback, client_data, is_ogg); } FLAC_API FLAC__StreamDecoderInitStatus FLAC__stream_decoder_init_file( FLAC__StreamDecoder *decoder, const char *filename, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data ) { return init_file_internal_(decoder, filename, write_callback, metadata_callback, error_callback, client_data, /*is_ogg=*/false); } FLAC_API FLAC__StreamDecoderInitStatus FLAC__stream_decoder_init_ogg_file( FLAC__StreamDecoder *decoder, const char *filename, FLAC__StreamDecoderWriteCallback write_callback, FLAC__StreamDecoderMetadataCallback metadata_callback, FLAC__StreamDecoderErrorCallback error_callback, void *client_data ) { return init_file_internal_(decoder, filename, write_callback, metadata_callback, error_callback, client_data, /*is_ogg=*/true); } FLAC_API FLAC__bool FLAC__stream_decoder_finish(FLAC__StreamDecoder *decoder) { FLAC__bool md5_failed = false; unsigned i; FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->private_); FLAC__ASSERT(0 != decoder->protected_); if(decoder->protected_->state == FLAC__STREAM_DECODER_UNINITIALIZED) return true; /* see the comment in FLAC__seekable_stream_decoder_reset() as to why we * always call FLAC__MD5Final() */ FLAC__MD5Final(decoder->private_->computed_md5sum, &decoder->private_->md5context); if(decoder->private_->has_seek_table && 0 != decoder->private_->seek_table.data.seek_table.points) { free(decoder->private_->seek_table.data.seek_table.points); decoder->private_->seek_table.data.seek_table.points = 0; decoder->private_->has_seek_table = false; } FLAC__bitreader_free(decoder->private_->input); for(i = 0; i < FLAC__MAX_CHANNELS; i++) { /* WATCHOUT: * FLAC__lpc_restore_signal_asm_ia32_mmx() requires that the * output arrays have a buffer of up to 3 zeroes in front * (at negative indices) for alignment purposes; we use 4 * to keep the data well-aligned. */ if(0 != decoder->private_->output[i]) { free(decoder->private_->output[i]-4); decoder->private_->output[i] = 0; } if(0 != decoder->private_->residual_unaligned[i]) { free(decoder->private_->residual_unaligned[i]); decoder->private_->residual_unaligned[i] = decoder->private_->residual[i] = 0; } } decoder->private_->output_capacity = 0; decoder->private_->output_channels = 0; #if FLAC__HAS_OGG if(decoder->private_->is_ogg) FLAC__ogg_decoder_aspect_finish(&decoder->protected_->ogg_decoder_aspect); #endif if(0 != decoder->private_->file) { if(decoder->private_->file != stdin) fclose(decoder->private_->file); decoder->private_->file = 0; } if(decoder->private_->do_md5_checking) { if(memcmp(decoder->private_->stream_info.data.stream_info.md5sum, decoder->private_->computed_md5sum, 16)) md5_failed = true; } decoder->private_->is_seeking = false; set_defaults_dec(decoder); decoder->protected_->state = FLAC__STREAM_DECODER_UNINITIALIZED; return !md5_failed; } FLAC_API FLAC__bool FLAC__stream_decoder_set_ogg_serial_number(FLAC__StreamDecoder *decoder, long value) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->private_); FLAC__ASSERT(0 != decoder->protected_); if(decoder->protected_->state != FLAC__STREAM_DECODER_UNINITIALIZED) return false; #if FLAC__HAS_OGG /* can't check decoder->private_->is_ogg since that's not set until init time */ FLAC__ogg_decoder_aspect_set_serial_number(&decoder->protected_->ogg_decoder_aspect, value); return true; #else (void)value; return false; #endif } FLAC_API FLAC__bool FLAC__stream_decoder_set_md5_checking(FLAC__StreamDecoder *decoder, FLAC__bool value) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); if(decoder->protected_->state != FLAC__STREAM_DECODER_UNINITIALIZED) return false; decoder->protected_->md5_checking = value; return true; } FLAC_API FLAC__bool FLAC__stream_decoder_set_metadata_respond(FLAC__StreamDecoder *decoder, FLAC__MetadataType type) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->private_); FLAC__ASSERT(0 != decoder->protected_); FLAC__ASSERT((unsigned)type <= FLAC__MAX_METADATA_TYPE_CODE); /* double protection */ if((unsigned)type > FLAC__MAX_METADATA_TYPE_CODE) return false; if(decoder->protected_->state != FLAC__STREAM_DECODER_UNINITIALIZED) return false; decoder->private_->metadata_filter[type] = true; if(type == FLAC__METADATA_TYPE_APPLICATION) decoder->private_->metadata_filter_ids_count = 0; return true; } FLAC_API FLAC__bool FLAC__stream_decoder_set_metadata_respond_application(FLAC__StreamDecoder *decoder, const FLAC__byte id[4]) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->private_); FLAC__ASSERT(0 != decoder->protected_); FLAC__ASSERT(0 != id); if(decoder->protected_->state != FLAC__STREAM_DECODER_UNINITIALIZED) return false; if(decoder->private_->metadata_filter[FLAC__METADATA_TYPE_APPLICATION]) return true; FLAC__ASSERT(0 != decoder->private_->metadata_filter_ids); if(decoder->private_->metadata_filter_ids_count == decoder->private_->metadata_filter_ids_capacity) { if(0 == (decoder->private_->metadata_filter_ids = (FLAC__byte*)safe_realloc_mul_2op_(decoder->private_->metadata_filter_ids, decoder->private_->metadata_filter_ids_capacity, /*times*/2))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } decoder->private_->metadata_filter_ids_capacity *= 2; } memcpy(decoder->private_->metadata_filter_ids + decoder->private_->metadata_filter_ids_count * (FLAC__STREAM_METADATA_APPLICATION_ID_LEN/8), id, (FLAC__STREAM_METADATA_APPLICATION_ID_LEN/8)); decoder->private_->metadata_filter_ids_count++; return true; } FLAC_API FLAC__bool FLAC__stream_decoder_set_metadata_respond_all(FLAC__StreamDecoder *decoder) { unsigned i; FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->private_); FLAC__ASSERT(0 != decoder->protected_); if(decoder->protected_->state != FLAC__STREAM_DECODER_UNINITIALIZED) return false; for(i = 0; i < sizeof(decoder->private_->metadata_filter) / sizeof(decoder->private_->metadata_filter[0]); i++) decoder->private_->metadata_filter[i] = true; decoder->private_->metadata_filter_ids_count = 0; return true; } FLAC_API FLAC__bool FLAC__stream_decoder_set_metadata_ignore(FLAC__StreamDecoder *decoder, FLAC__MetadataType type) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->private_); FLAC__ASSERT(0 != decoder->protected_); FLAC__ASSERT((unsigned)type <= FLAC__MAX_METADATA_TYPE_CODE); /* double protection */ if((unsigned)type > FLAC__MAX_METADATA_TYPE_CODE) return false; if(decoder->protected_->state != FLAC__STREAM_DECODER_UNINITIALIZED) return false; decoder->private_->metadata_filter[type] = false; if(type == FLAC__METADATA_TYPE_APPLICATION) decoder->private_->metadata_filter_ids_count = 0; return true; } FLAC_API FLAC__bool FLAC__stream_decoder_set_metadata_ignore_application(FLAC__StreamDecoder *decoder, const FLAC__byte id[4]) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->private_); FLAC__ASSERT(0 != decoder->protected_); FLAC__ASSERT(0 != id); if(decoder->protected_->state != FLAC__STREAM_DECODER_UNINITIALIZED) return false; if(!decoder->private_->metadata_filter[FLAC__METADATA_TYPE_APPLICATION]) return true; FLAC__ASSERT(0 != decoder->private_->metadata_filter_ids); if(decoder->private_->metadata_filter_ids_count == decoder->private_->metadata_filter_ids_capacity) { if(0 == (decoder->private_->metadata_filter_ids = (FLAC__byte*)safe_realloc_mul_2op_(decoder->private_->metadata_filter_ids, decoder->private_->metadata_filter_ids_capacity, /*times*/2))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } decoder->private_->metadata_filter_ids_capacity *= 2; } memcpy(decoder->private_->metadata_filter_ids + decoder->private_->metadata_filter_ids_count * (FLAC__STREAM_METADATA_APPLICATION_ID_LEN/8), id, (FLAC__STREAM_METADATA_APPLICATION_ID_LEN/8)); decoder->private_->metadata_filter_ids_count++; return true; } FLAC_API FLAC__bool FLAC__stream_decoder_set_metadata_ignore_all(FLAC__StreamDecoder *decoder) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->private_); FLAC__ASSERT(0 != decoder->protected_); if(decoder->protected_->state != FLAC__STREAM_DECODER_UNINITIALIZED) return false; memset(decoder->private_->metadata_filter, 0, sizeof(decoder->private_->metadata_filter)); decoder->private_->metadata_filter_ids_count = 0; return true; } FLAC_API FLAC__StreamDecoderState FLAC__stream_decoder_get_state(const FLAC__StreamDecoder *decoder) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); return decoder->protected_->state; } FLAC_API const char *FLAC__stream_decoder_get_resolved_state_string(const FLAC__StreamDecoder *decoder) { return FLAC__StreamDecoderStateString[decoder->protected_->state]; } FLAC_API FLAC__bool FLAC__stream_decoder_get_md5_checking(const FLAC__StreamDecoder *decoder) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); return decoder->protected_->md5_checking; } FLAC_API FLAC__uint64 FLAC__stream_decoder_get_total_samples(const FLAC__StreamDecoder *decoder) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); return decoder->private_->has_stream_info? decoder->private_->stream_info.data.stream_info.total_samples : 0; } FLAC_API unsigned FLAC__stream_decoder_get_channels(const FLAC__StreamDecoder *decoder) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); return decoder->protected_->channels; } FLAC_API FLAC__ChannelAssignment FLAC__stream_decoder_get_channel_assignment(const FLAC__StreamDecoder *decoder) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); return decoder->protected_->channel_assignment; } FLAC_API unsigned FLAC__stream_decoder_get_bits_per_sample(const FLAC__StreamDecoder *decoder) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); return decoder->protected_->bits_per_sample; } FLAC_API unsigned FLAC__stream_decoder_get_sample_rate(const FLAC__StreamDecoder *decoder) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); return decoder->protected_->sample_rate; } FLAC_API unsigned FLAC__stream_decoder_get_blocksize(const FLAC__StreamDecoder *decoder) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); return decoder->protected_->blocksize; } FLAC_API FLAC__bool FLAC__stream_decoder_get_decode_position(const FLAC__StreamDecoder *decoder, FLAC__uint64 *position) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->private_); FLAC__ASSERT(0 != position); #if FLAC__HAS_OGG if(decoder->private_->is_ogg) return false; #endif if(0 == decoder->private_->tell_callback) return false; if(decoder->private_->tell_callback(decoder, position, decoder->private_->client_data) != FLAC__STREAM_DECODER_TELL_STATUS_OK) return false; /* should never happen since all FLAC frames and metadata blocks are byte aligned, but check just in case */ if(!FLAC__bitreader_is_consumed_byte_aligned(decoder->private_->input)) return false; FLAC__ASSERT(*position >= FLAC__stream_decoder_get_input_bytes_unconsumed(decoder)); *position -= FLAC__stream_decoder_get_input_bytes_unconsumed(decoder); return true; } FLAC_API FLAC__bool FLAC__stream_decoder_flush(FLAC__StreamDecoder *decoder) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->private_); FLAC__ASSERT(0 != decoder->protected_); decoder->private_->samples_decoded = 0; decoder->private_->do_md5_checking = false; #if FLAC__HAS_OGG if(decoder->private_->is_ogg) FLAC__ogg_decoder_aspect_flush(&decoder->protected_->ogg_decoder_aspect); #endif if(!FLAC__bitreader_clear(decoder->private_->input)) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } FLAC_API FLAC__bool FLAC__stream_decoder_reset(FLAC__StreamDecoder *decoder) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->private_); FLAC__ASSERT(0 != decoder->protected_); if(!FLAC__stream_decoder_flush(decoder)) { /* above call sets the state for us */ return false; } #if FLAC__HAS_OGG /*@@@ could go in !internal_reset_hack block below */ if(decoder->private_->is_ogg) FLAC__ogg_decoder_aspect_reset(&decoder->protected_->ogg_decoder_aspect); #endif /* Rewind if necessary. If FLAC__stream_decoder_init() is calling us, * (internal_reset_hack) don't try to rewind since we are already at * the beginning of the stream and don't want to fail if the input is * not seekable. */ if(!decoder->private_->internal_reset_hack) { if(decoder->private_->file == stdin) return false; /* can't rewind stdin, reset fails */ if(decoder->private_->seek_callback && decoder->private_->seek_callback(decoder, 0, decoder->private_->client_data) == FLAC__STREAM_DECODER_SEEK_STATUS_ERROR) return false; /* seekable and seek fails, reset fails */ } else decoder->private_->internal_reset_hack = false; decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_METADATA; decoder->private_->has_stream_info = false; if(decoder->private_->has_seek_table && 0 != decoder->private_->seek_table.data.seek_table.points) { free(decoder->private_->seek_table.data.seek_table.points); decoder->private_->seek_table.data.seek_table.points = 0; decoder->private_->has_seek_table = false; } decoder->private_->do_md5_checking = decoder->protected_->md5_checking; /* * This goes in reset() and not flush() because according to the spec, a * fixed-blocksize stream must stay that way through the whole stream. */ decoder->private_->fixed_block_size = decoder->private_->next_fixed_block_size = 0; /* We initialize the FLAC__MD5Context even though we may never use it. This * is because md5 checking may be turned on to start and then turned off if * a seek occurs. So we init the context here and finalize it in * FLAC__stream_decoder_finish() to make sure things are always cleaned up * properly. */ FLAC__MD5Init(&decoder->private_->md5context); decoder->private_->first_frame_offset = 0; decoder->private_->unparseable_frame_count = 0; return true; } FLAC_API FLAC__bool FLAC__stream_decoder_process_single(FLAC__StreamDecoder *decoder) { FLAC__bool got_a_frame; FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); while(1) { switch(decoder->protected_->state) { case FLAC__STREAM_DECODER_SEARCH_FOR_METADATA: if(!find_metadata_(decoder)) return false; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_READ_METADATA: if(!read_metadata_(decoder)) return false; /* above function sets the status for us */ else return true; case FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC: if(!frame_sync_(decoder)) return true; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_READ_FRAME: if(!read_frame_(decoder, &got_a_frame, /*do_full_decode=*/true)) return false; /* above function sets the status for us */ if(got_a_frame) return true; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_END_OF_STREAM: case FLAC__STREAM_DECODER_ABORTED: return true; default: FLAC__ASSERT(0); return false; } } } FLAC_API FLAC__bool FLAC__stream_decoder_process_until_end_of_metadata(FLAC__StreamDecoder *decoder) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); while(1) { switch(decoder->protected_->state) { case FLAC__STREAM_DECODER_SEARCH_FOR_METADATA: if(!find_metadata_(decoder)) return false; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_READ_METADATA: if(!read_metadata_(decoder)) return false; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC: case FLAC__STREAM_DECODER_READ_FRAME: case FLAC__STREAM_DECODER_END_OF_STREAM: case FLAC__STREAM_DECODER_ABORTED: return true; default: FLAC__ASSERT(0); return false; } } } FLAC_API FLAC__bool FLAC__stream_decoder_process_until_end_of_stream(FLAC__StreamDecoder *decoder) { FLAC__bool dummy; FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); while(1) { switch(decoder->protected_->state) { case FLAC__STREAM_DECODER_SEARCH_FOR_METADATA: if(!find_metadata_(decoder)) return false; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_READ_METADATA: if(!read_metadata_(decoder)) return false; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC: if(!frame_sync_(decoder)) return true; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_READ_FRAME: if(!read_frame_(decoder, &dummy, /*do_full_decode=*/true)) return false; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_END_OF_STREAM: case FLAC__STREAM_DECODER_ABORTED: return true; default: FLAC__ASSERT(0); return false; } } } FLAC_API FLAC__bool FLAC__stream_decoder_skip_single_frame(FLAC__StreamDecoder *decoder) { FLAC__bool got_a_frame; FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->protected_); while(1) { switch(decoder->protected_->state) { case FLAC__STREAM_DECODER_SEARCH_FOR_METADATA: case FLAC__STREAM_DECODER_READ_METADATA: return false; /* above function sets the status for us */ case FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC: if(!frame_sync_(decoder)) return true; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_READ_FRAME: if(!read_frame_(decoder, &got_a_frame, /*do_full_decode=*/false)) return false; /* above function sets the status for us */ if(got_a_frame) return true; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_END_OF_STREAM: case FLAC__STREAM_DECODER_ABORTED: return true; default: FLAC__ASSERT(0); return false; } } } FLAC_API FLAC__bool FLAC__stream_decoder_seek_absolute(FLAC__StreamDecoder *decoder, FLAC__uint64 sample) { FLAC__uint64 length; FLAC__ASSERT(0 != decoder); if( decoder->protected_->state != FLAC__STREAM_DECODER_SEARCH_FOR_METADATA && decoder->protected_->state != FLAC__STREAM_DECODER_READ_METADATA && decoder->protected_->state != FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC && decoder->protected_->state != FLAC__STREAM_DECODER_READ_FRAME && decoder->protected_->state != FLAC__STREAM_DECODER_END_OF_STREAM ) return false; if(0 == decoder->private_->seek_callback) return false; FLAC__ASSERT(decoder->private_->seek_callback); FLAC__ASSERT(decoder->private_->tell_callback); FLAC__ASSERT(decoder->private_->length_callback); FLAC__ASSERT(decoder->private_->eof_callback); if(FLAC__stream_decoder_get_total_samples(decoder) > 0 && sample >= FLAC__stream_decoder_get_total_samples(decoder)) return false; decoder->private_->is_seeking = true; /* turn off md5 checking if a seek is attempted */ decoder->private_->do_md5_checking = false; /* get the file length (currently our algorithm needs to know the length so it's also an error to get FLAC__STREAM_DECODER_LENGTH_STATUS_UNSUPPORTED) */ if(decoder->private_->length_callback(decoder, &length, decoder->private_->client_data) != FLAC__STREAM_DECODER_LENGTH_STATUS_OK) { decoder->private_->is_seeking = false; return false; } /* if we haven't finished processing the metadata yet, do that so we have the STREAMINFO, SEEK_TABLE, and first_frame_offset */ if( decoder->protected_->state == FLAC__STREAM_DECODER_SEARCH_FOR_METADATA || decoder->protected_->state == FLAC__STREAM_DECODER_READ_METADATA ) { if(!FLAC__stream_decoder_process_until_end_of_metadata(decoder)) { /* above call sets the state for us */ decoder->private_->is_seeking = false; return false; } /* check this again in case we didn't know total_samples the first time */ if(FLAC__stream_decoder_get_total_samples(decoder) > 0 && sample >= FLAC__stream_decoder_get_total_samples(decoder)) { decoder->private_->is_seeking = false; return false; } } { const FLAC__bool ok = #if FLAC__HAS_OGG decoder->private_->is_ogg? seek_to_absolute_sample_ogg_(decoder, length, sample) : #endif seek_to_absolute_sample_(decoder, length, sample) ; decoder->private_->is_seeking = false; return ok; } } /*********************************************************************** * * Protected class methods * ***********************************************************************/ unsigned FLAC__stream_decoder_get_input_bytes_unconsumed(const FLAC__StreamDecoder *decoder) { FLAC__ASSERT(0 != decoder); FLAC__ASSERT(FLAC__bitreader_is_consumed_byte_aligned(decoder->private_->input)); FLAC__ASSERT(!(FLAC__bitreader_get_input_bits_unconsumed(decoder->private_->input) & 7)); return FLAC__bitreader_get_input_bits_unconsumed(decoder->private_->input) / 8; } /*********************************************************************** * * Private class methods * ***********************************************************************/ void set_defaults_dec(FLAC__StreamDecoder *decoder) { #if FLAC__HAS_OGG decoder->private_->is_ogg = false; #endif decoder->private_->read_callback = 0; decoder->private_->seek_callback = 0; decoder->private_->tell_callback = 0; decoder->private_->length_callback = 0; decoder->private_->eof_callback = 0; decoder->private_->write_callback = 0; decoder->private_->metadata_callback = 0; decoder->private_->error_callback = 0; decoder->private_->client_data = 0; memset(decoder->private_->metadata_filter, 0, sizeof(decoder->private_->metadata_filter)); decoder->private_->metadata_filter[FLAC__METADATA_TYPE_STREAMINFO] = true; decoder->private_->metadata_filter_ids_count = 0; decoder->protected_->md5_checking = false; #if FLAC__HAS_OGG FLAC__ogg_decoder_aspect_set_defaults(&decoder->protected_->ogg_decoder_aspect); #endif } /* * This will forcibly set stdin to binary mode (for OSes that require it) */ FILE *get_binary_stdin_(void) { /* if something breaks here it is probably due to the presence or * absence of an underscore before the identifiers 'setmode', * 'fileno', and/or 'O_BINARY'; check your system header files. */ #if defined _MSC_VER || defined __MINGW32__ _setmode(_fileno(stdin), _O_BINARY); #elif defined __CYGWIN__ /* almost certainly not needed for any modern Cygwin, but let's be safe... */ setmode(_fileno(stdin), _O_BINARY); #elif defined __EMX__ setmode(fileno(stdin), O_BINARY); #endif return stdin; } FLAC__bool allocate_output_(FLAC__StreamDecoder *decoder, unsigned size, unsigned channels) { unsigned i; FLAC__int32 *tmp; if(size <= decoder->private_->output_capacity && channels <= decoder->private_->output_channels) return true; /* simply using realloc() is not practical because the number of channels may change mid-stream */ for(i = 0; i < FLAC__MAX_CHANNELS; i++) { if(0 != decoder->private_->output[i]) { free(decoder->private_->output[i]-4); decoder->private_->output[i] = 0; } if(0 != decoder->private_->residual_unaligned[i]) { free(decoder->private_->residual_unaligned[i]); decoder->private_->residual_unaligned[i] = decoder->private_->residual[i] = 0; } } for(i = 0; i < channels; i++) { /* WATCHOUT: * FLAC__lpc_restore_signal_asm_ia32_mmx() requires that the * output arrays have a buffer of up to 3 zeroes in front * (at negative indices) for alignment purposes; we use 4 * to keep the data well-aligned. */ tmp = (FLAC__int32*)safe_malloc_muladd2_(sizeof(FLAC__int32), /*times (*/size, /*+*/4/*)*/); if(tmp == 0) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } memset(tmp, 0, sizeof(FLAC__int32)*4); decoder->private_->output[i] = tmp + 4; /* WATCHOUT: * minimum of quadword alignment for PPC vector optimizations is REQUIRED: */ if(!FLAC__memory_alloc_aligned_int32_array(size, &decoder->private_->residual_unaligned[i], &decoder->private_->residual[i])) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } } decoder->private_->output_capacity = size; decoder->private_->output_channels = channels; return true; } FLAC__bool has_id_filtered_(FLAC__StreamDecoder *decoder, FLAC__byte *id) { size_t i; FLAC__ASSERT(0 != decoder); FLAC__ASSERT(0 != decoder->private_); for(i = 0; i < decoder->private_->metadata_filter_ids_count; i++) if(0 == memcmp(decoder->private_->metadata_filter_ids + i * (FLAC__STREAM_METADATA_APPLICATION_ID_LEN/8), id, (FLAC__STREAM_METADATA_APPLICATION_ID_LEN/8))) return true; return false; } FLAC__bool find_metadata_(FLAC__StreamDecoder *decoder) { FLAC__uint32 x; unsigned i, id_; FLAC__bool first = true; FLAC__ASSERT(FLAC__bitreader_is_consumed_byte_aligned(decoder->private_->input)); for(i = id_ = 0; i < 4; ) { if(decoder->private_->cached) { x = (FLAC__uint32)decoder->private_->lookahead; decoder->private_->cached = false; } else { if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, 8)) return false; /* read_callback_ sets the state for us */ } if(x == FLAC__STREAM_SYNC_STRING[i]) { first = true; i++; id_ = 0; continue; } if(x == ID3V2_TAG_[id_]) { id_++; i = 0; if(id_ == 3) { if(!skip_id3v2_tag_(decoder)) return false; /* skip_id3v2_tag_ sets the state for us */ } continue; } id_ = 0; if(x == 0xff) { /* MAGIC NUMBER for the first 8 frame sync bits */ decoder->private_->header_warmup[0] = (FLAC__byte)x; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, 8)) return false; /* read_callback_ sets the state for us */ /* we have to check if we just read two 0xff's in a row; the second may actually be the beginning of the sync code */ /* else we have to check if the second byte is the end of a sync code */ if(x == 0xff) { /* MAGIC NUMBER for the first 8 frame sync bits */ decoder->private_->lookahead = (FLAC__byte)x; decoder->private_->cached = true; } else if(x >> 2 == 0x3e) { /* MAGIC NUMBER for the last 6 sync bits */ decoder->private_->header_warmup[1] = (FLAC__byte)x; decoder->protected_->state = FLAC__STREAM_DECODER_READ_FRAME; return true; } } i = 0; if(first) { send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_LOST_SYNC); first = false; } } decoder->protected_->state = FLAC__STREAM_DECODER_READ_METADATA; return true; } FLAC__bool read_metadata_(FLAC__StreamDecoder *decoder) { FLAC__bool is_last; FLAC__uint32 i, x, type, length; FLAC__ASSERT(FLAC__bitreader_is_consumed_byte_aligned(decoder->private_->input)); if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_IS_LAST_LEN)) return false; /* read_callback_ sets the state for us */ is_last = x? true : false; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &type, FLAC__STREAM_METADATA_TYPE_LEN)) return false; /* read_callback_ sets the state for us */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &length, FLAC__STREAM_METADATA_LENGTH_LEN)) return false; /* read_callback_ sets the state for us */ if(type == FLAC__METADATA_TYPE_STREAMINFO) { if(!read_metadata_streaminfo_(decoder, is_last, length)) return false; decoder->private_->has_stream_info = true; if(0 == memcmp(decoder->private_->stream_info.data.stream_info.md5sum, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 16)) decoder->private_->do_md5_checking = false; if(!decoder->private_->is_seeking && decoder->private_->metadata_filter[FLAC__METADATA_TYPE_STREAMINFO] && decoder->private_->metadata_callback) decoder->private_->metadata_callback(decoder, &decoder->private_->stream_info, decoder->private_->client_data); } else if(type == FLAC__METADATA_TYPE_SEEKTABLE) { if(!read_metadata_seektable_(decoder, is_last, length)) return false; decoder->private_->has_seek_table = true; if(!decoder->private_->is_seeking && decoder->private_->metadata_filter[FLAC__METADATA_TYPE_SEEKTABLE] && decoder->private_->metadata_callback) decoder->private_->metadata_callback(decoder, &decoder->private_->seek_table, decoder->private_->client_data); } else { FLAC__bool skip_it = !decoder->private_->metadata_filter[type]; unsigned real_length = length; FLAC__StreamMetadata block; block.is_last = is_last; block.type = (FLAC__MetadataType)type; block.length = length; if(type == FLAC__METADATA_TYPE_APPLICATION) { if(!FLAC__bitreader_read_byte_block_aligned_no_crc(decoder->private_->input, block.data.application.id, FLAC__STREAM_METADATA_APPLICATION_ID_LEN/8)) return false; /* read_callback_ sets the state for us */ if(real_length < FLAC__STREAM_METADATA_APPLICATION_ID_LEN/8) { /* underflow check */ decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR;/*@@@@@@ maybe wrong error? need to resync?*/ return false; } real_length -= FLAC__STREAM_METADATA_APPLICATION_ID_LEN/8; if(decoder->private_->metadata_filter_ids_count > 0 && has_id_filtered_(decoder, block.data.application.id)) skip_it = !skip_it; } if(skip_it) { if(!FLAC__bitreader_skip_byte_block_aligned_no_crc(decoder->private_->input, real_length)) return false; /* read_callback_ sets the state for us */ } else { switch(type) { case FLAC__METADATA_TYPE_PADDING: /* skip the padding bytes */ if(!FLAC__bitreader_skip_byte_block_aligned_no_crc(decoder->private_->input, real_length)) return false; /* read_callback_ sets the state for us */ break; case FLAC__METADATA_TYPE_APPLICATION: /* remember, we read the ID already */ if(real_length > 0) { if(0 == (block.data.application.data = (FLAC__byte*)malloc(real_length))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } if(!FLAC__bitreader_read_byte_block_aligned_no_crc(decoder->private_->input, block.data.application.data, real_length)) return false; /* read_callback_ sets the state for us */ } else block.data.application.data = 0; break; case FLAC__METADATA_TYPE_VORBIS_COMMENT: if(!read_metadata_vorbiscomment_(decoder, &block.data.vorbis_comment)) return false; break; case FLAC__METADATA_TYPE_CUESHEET: if(!read_metadata_cuesheet_(decoder, &block.data.cue_sheet)) return false; break; case FLAC__METADATA_TYPE_PICTURE: if(!read_metadata_picture_(decoder, &block.data.picture)) return false; break; case FLAC__METADATA_TYPE_STREAMINFO: case FLAC__METADATA_TYPE_SEEKTABLE: FLAC__ASSERT(0); break; default: if(real_length > 0) { if(0 == (block.data.unknown.data = (FLAC__byte*)malloc(real_length))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } if(!FLAC__bitreader_read_byte_block_aligned_no_crc(decoder->private_->input, block.data.unknown.data, real_length)) return false; /* read_callback_ sets the state for us */ } else block.data.unknown.data = 0; break; } if(!decoder->private_->is_seeking && decoder->private_->metadata_callback) decoder->private_->metadata_callback(decoder, &block, decoder->private_->client_data); /* now we have to free any malloc()ed data in the block */ switch(type) { case FLAC__METADATA_TYPE_PADDING: break; case FLAC__METADATA_TYPE_APPLICATION: if(0 != block.data.application.data) free(block.data.application.data); break; case FLAC__METADATA_TYPE_VORBIS_COMMENT: if(0 != block.data.vorbis_comment.vendor_string.entry) free(block.data.vorbis_comment.vendor_string.entry); if(block.data.vorbis_comment.num_comments > 0) for(i = 0; i < block.data.vorbis_comment.num_comments; i++) if(0 != block.data.vorbis_comment.comments[i].entry) free(block.data.vorbis_comment.comments[i].entry); if(0 != block.data.vorbis_comment.comments) free(block.data.vorbis_comment.comments); break; case FLAC__METADATA_TYPE_CUESHEET: if(block.data.cue_sheet.num_tracks > 0) for(i = 0; i < block.data.cue_sheet.num_tracks; i++) if(0 != block.data.cue_sheet.tracks[i].indices) free(block.data.cue_sheet.tracks[i].indices); if(0 != block.data.cue_sheet.tracks) free(block.data.cue_sheet.tracks); break; case FLAC__METADATA_TYPE_PICTURE: if(0 != block.data.picture.mime_type) free(block.data.picture.mime_type); if(0 != block.data.picture.description) free(block.data.picture.description); if(0 != block.data.picture.data) free(block.data.picture.data); break; case FLAC__METADATA_TYPE_STREAMINFO: case FLAC__METADATA_TYPE_SEEKTABLE: FLAC__ASSERT(0); default: if(0 != block.data.unknown.data) free(block.data.unknown.data); break; } } } if(is_last) { /* if this fails, it's OK, it's just a hint for the seek routine */ if(!FLAC__stream_decoder_get_decode_position(decoder, &decoder->private_->first_frame_offset)) decoder->private_->first_frame_offset = 0; decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; } return true; } FLAC__bool read_metadata_streaminfo_(FLAC__StreamDecoder *decoder, FLAC__bool is_last, unsigned length) { FLAC__uint32 x; unsigned bits, used_bits = 0; FLAC__ASSERT(FLAC__bitreader_is_consumed_byte_aligned(decoder->private_->input)); decoder->private_->stream_info.type = FLAC__METADATA_TYPE_STREAMINFO; decoder->private_->stream_info.is_last = is_last; decoder->private_->stream_info.length = length; bits = FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, bits)) return false; /* read_callback_ sets the state for us */ decoder->private_->stream_info.data.stream_info.min_blocksize = x; used_bits += bits; bits = FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN)) return false; /* read_callback_ sets the state for us */ decoder->private_->stream_info.data.stream_info.max_blocksize = x; used_bits += bits; bits = FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN)) return false; /* read_callback_ sets the state for us */ decoder->private_->stream_info.data.stream_info.min_framesize = x; used_bits += bits; bits = FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN)) return false; /* read_callback_ sets the state for us */ decoder->private_->stream_info.data.stream_info.max_framesize = x; used_bits += bits; bits = FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN)) return false; /* read_callback_ sets the state for us */ decoder->private_->stream_info.data.stream_info.sample_rate = x; used_bits += bits; bits = FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN)) return false; /* read_callback_ sets the state for us */ decoder->private_->stream_info.data.stream_info.channels = x+1; used_bits += bits; bits = FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN)) return false; /* read_callback_ sets the state for us */ decoder->private_->stream_info.data.stream_info.bits_per_sample = x+1; used_bits += bits; bits = FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN; if(!FLAC__bitreader_read_raw_uint64(decoder->private_->input, &decoder->private_->stream_info.data.stream_info.total_samples, FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN)) return false; /* read_callback_ sets the state for us */ used_bits += bits; if(!FLAC__bitreader_read_byte_block_aligned_no_crc(decoder->private_->input, decoder->private_->stream_info.data.stream_info.md5sum, 16)) return false; /* read_callback_ sets the state for us */ used_bits += 16*8; /* skip the rest of the block */ FLAC__ASSERT(used_bits % 8 == 0); length -= (used_bits / 8); if(!FLAC__bitreader_skip_byte_block_aligned_no_crc(decoder->private_->input, length)) return false; /* read_callback_ sets the state for us */ return true; } FLAC__bool read_metadata_seektable_(FLAC__StreamDecoder *decoder, FLAC__bool is_last, unsigned length) { FLAC__uint32 i, x; FLAC__uint64 xx; FLAC__ASSERT(FLAC__bitreader_is_consumed_byte_aligned(decoder->private_->input)); decoder->private_->seek_table.type = FLAC__METADATA_TYPE_SEEKTABLE; decoder->private_->seek_table.is_last = is_last; decoder->private_->seek_table.length = length; decoder->private_->seek_table.data.seek_table.num_points = length / FLAC__STREAM_METADATA_SEEKPOINT_LENGTH; /* use realloc since we may pass through here several times (e.g. after seeking) */ if(0 == (decoder->private_->seek_table.data.seek_table.points = (FLAC__StreamMetadata_SeekPoint*)safe_realloc_mul_2op_(decoder->private_->seek_table.data.seek_table.points, decoder->private_->seek_table.data.seek_table.num_points, /*times*/sizeof(FLAC__StreamMetadata_SeekPoint)))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } for(i = 0; i < decoder->private_->seek_table.data.seek_table.num_points; i++) { if(!FLAC__bitreader_read_raw_uint64(decoder->private_->input, &xx, FLAC__STREAM_METADATA_SEEKPOINT_SAMPLE_NUMBER_LEN)) return false; /* read_callback_ sets the state for us */ decoder->private_->seek_table.data.seek_table.points[i].sample_number = xx; if(!FLAC__bitreader_read_raw_uint64(decoder->private_->input, &xx, FLAC__STREAM_METADATA_SEEKPOINT_STREAM_OFFSET_LEN)) return false; /* read_callback_ sets the state for us */ decoder->private_->seek_table.data.seek_table.points[i].stream_offset = xx; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_SEEKPOINT_FRAME_SAMPLES_LEN)) return false; /* read_callback_ sets the state for us */ decoder->private_->seek_table.data.seek_table.points[i].frame_samples = x; } length -= (decoder->private_->seek_table.data.seek_table.num_points * FLAC__STREAM_METADATA_SEEKPOINT_LENGTH); /* if there is a partial point left, skip over it */ if(length > 0) { /*@@@ do a send_error_to_client_() here? there's an argument for either way */ if(!FLAC__bitreader_skip_byte_block_aligned_no_crc(decoder->private_->input, length)) return false; /* read_callback_ sets the state for us */ } return true; } FLAC__bool read_metadata_vorbiscomment_(FLAC__StreamDecoder *decoder, FLAC__StreamMetadata_VorbisComment *obj) { FLAC__uint32 i; FLAC__ASSERT(FLAC__bitreader_is_consumed_byte_aligned(decoder->private_->input)); /* read vendor string */ FLAC__ASSERT(FLAC__STREAM_METADATA_VORBIS_COMMENT_ENTRY_LENGTH_LEN == 32); if(!FLAC__bitreader_read_uint32_little_endian(decoder->private_->input, &obj->vendor_string.length)) return false; /* read_callback_ sets the state for us */ if(obj->vendor_string.length > 0) { if(0 == (obj->vendor_string.entry = (FLAC__byte*)safe_malloc_add_2op_(obj->vendor_string.length, /*+*/1))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } if(!FLAC__bitreader_read_byte_block_aligned_no_crc(decoder->private_->input, obj->vendor_string.entry, obj->vendor_string.length)) return false; /* read_callback_ sets the state for us */ obj->vendor_string.entry[obj->vendor_string.length] = '\0'; } else obj->vendor_string.entry = 0; /* read num comments */ FLAC__ASSERT(FLAC__STREAM_METADATA_VORBIS_COMMENT_NUM_COMMENTS_LEN == 32); if(!FLAC__bitreader_read_uint32_little_endian(decoder->private_->input, &obj->num_comments)) return false; /* read_callback_ sets the state for us */ /* read comments */ if(obj->num_comments > 0) { if(0 == (obj->comments = (FLAC__StreamMetadata_VorbisComment_Entry*)safe_malloc_mul_2op_(obj->num_comments, /*times*/sizeof(FLAC__StreamMetadata_VorbisComment_Entry)))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } for(i = 0; i < obj->num_comments; i++) { FLAC__ASSERT(FLAC__STREAM_METADATA_VORBIS_COMMENT_ENTRY_LENGTH_LEN == 32); if(!FLAC__bitreader_read_uint32_little_endian(decoder->private_->input, &obj->comments[i].length)) return false; /* read_callback_ sets the state for us */ if(obj->comments[i].length > 0) { if(0 == (obj->comments[i].entry = (FLAC__byte*)safe_malloc_add_2op_(obj->comments[i].length, /*+*/1))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } if(!FLAC__bitreader_read_byte_block_aligned_no_crc(decoder->private_->input, obj->comments[i].entry, obj->comments[i].length)) return false; /* read_callback_ sets the state for us */ obj->comments[i].entry[obj->comments[i].length] = '\0'; } else obj->comments[i].entry = 0; } } else { obj->comments = 0; } return true; } FLAC__bool read_metadata_cuesheet_(FLAC__StreamDecoder *decoder, FLAC__StreamMetadata_CueSheet *obj) { FLAC__uint32 i, j, x; FLAC__ASSERT(FLAC__bitreader_is_consumed_byte_aligned(decoder->private_->input)); memset(obj, 0, sizeof(FLAC__StreamMetadata_CueSheet)); FLAC__ASSERT(FLAC__STREAM_METADATA_CUESHEET_MEDIA_CATALOG_NUMBER_LEN % 8 == 0); if(!FLAC__bitreader_read_byte_block_aligned_no_crc(decoder->private_->input, (FLAC__byte*)obj->media_catalog_number, FLAC__STREAM_METADATA_CUESHEET_MEDIA_CATALOG_NUMBER_LEN/8)) return false; /* read_callback_ sets the state for us */ if(!FLAC__bitreader_read_raw_uint64(decoder->private_->input, &obj->lead_in, FLAC__STREAM_METADATA_CUESHEET_LEAD_IN_LEN)) return false; /* read_callback_ sets the state for us */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_CUESHEET_IS_CD_LEN)) return false; /* read_callback_ sets the state for us */ obj->is_cd = x? true : false; if(!FLAC__bitreader_skip_bits_no_crc(decoder->private_->input, FLAC__STREAM_METADATA_CUESHEET_RESERVED_LEN)) return false; /* read_callback_ sets the state for us */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_CUESHEET_NUM_TRACKS_LEN)) return false; /* read_callback_ sets the state for us */ obj->num_tracks = x; if(obj->num_tracks > 0) { if(0 == (obj->tracks = (FLAC__StreamMetadata_CueSheet_Track*)safe_calloc_(obj->num_tracks, sizeof(FLAC__StreamMetadata_CueSheet_Track)))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } for(i = 0; i < obj->num_tracks; i++) { FLAC__StreamMetadata_CueSheet_Track *track = &obj->tracks[i]; if(!FLAC__bitreader_read_raw_uint64(decoder->private_->input, &track->offset, FLAC__STREAM_METADATA_CUESHEET_TRACK_OFFSET_LEN)) return false; /* read_callback_ sets the state for us */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_CUESHEET_TRACK_NUMBER_LEN)) return false; /* read_callback_ sets the state for us */ track->number = (FLAC__byte)x; FLAC__ASSERT(FLAC__STREAM_METADATA_CUESHEET_TRACK_ISRC_LEN % 8 == 0); if(!FLAC__bitreader_read_byte_block_aligned_no_crc(decoder->private_->input, (FLAC__byte*)track->isrc, FLAC__STREAM_METADATA_CUESHEET_TRACK_ISRC_LEN/8)) return false; /* read_callback_ sets the state for us */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_CUESHEET_TRACK_TYPE_LEN)) return false; /* read_callback_ sets the state for us */ track->type = x; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_CUESHEET_TRACK_PRE_EMPHASIS_LEN)) return false; /* read_callback_ sets the state for us */ track->pre_emphasis = x; if(!FLAC__bitreader_skip_bits_no_crc(decoder->private_->input, FLAC__STREAM_METADATA_CUESHEET_TRACK_RESERVED_LEN)) return false; /* read_callback_ sets the state for us */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_CUESHEET_TRACK_NUM_INDICES_LEN)) return false; /* read_callback_ sets the state for us */ track->num_indices = (FLAC__byte)x; if(track->num_indices > 0) { if(0 == (track->indices = (FLAC__StreamMetadata_CueSheet_Index*)safe_calloc_(track->num_indices, sizeof(FLAC__StreamMetadata_CueSheet_Index)))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } for(j = 0; j < track->num_indices; j++) { FLAC__StreamMetadata_CueSheet_Index *index = &track->indices[j]; if(!FLAC__bitreader_read_raw_uint64(decoder->private_->input, &index->offset, FLAC__STREAM_METADATA_CUESHEET_INDEX_OFFSET_LEN)) return false; /* read_callback_ sets the state for us */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_CUESHEET_INDEX_NUMBER_LEN)) return false; /* read_callback_ sets the state for us */ index->number = (FLAC__byte)x; if(!FLAC__bitreader_skip_bits_no_crc(decoder->private_->input, FLAC__STREAM_METADATA_CUESHEET_INDEX_RESERVED_LEN)) return false; /* read_callback_ sets the state for us */ } } } } return true; } FLAC__bool read_metadata_picture_(FLAC__StreamDecoder *decoder, FLAC__StreamMetadata_Picture *obj) { FLAC__uint32 x; FLAC__ASSERT(FLAC__bitreader_is_consumed_byte_aligned(decoder->private_->input)); /* read type */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_PICTURE_TYPE_LEN)) return false; /* read_callback_ sets the state for us */ obj->type = (FLAC__StreamMetadata_Picture_Type) x; /* read MIME type */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_PICTURE_MIME_TYPE_LENGTH_LEN)) return false; /* read_callback_ sets the state for us */ if(0 == (obj->mime_type = (char*)safe_malloc_add_2op_(x, /*+*/1))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } if(x > 0) { if(!FLAC__bitreader_read_byte_block_aligned_no_crc(decoder->private_->input, (FLAC__byte*)obj->mime_type, x)) return false; /* read_callback_ sets the state for us */ } obj->mime_type[x] = '\0'; /* read description */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__STREAM_METADATA_PICTURE_DESCRIPTION_LENGTH_LEN)) return false; /* read_callback_ sets the state for us */ if(0 == (obj->description = (FLAC__byte*)safe_malloc_add_2op_(x, /*+*/1))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } if(x > 0) { if(!FLAC__bitreader_read_byte_block_aligned_no_crc(decoder->private_->input, obj->description, x)) return false; /* read_callback_ sets the state for us */ } obj->description[x] = '\0'; /* read width */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &obj->width, FLAC__STREAM_METADATA_PICTURE_WIDTH_LEN)) return false; /* read_callback_ sets the state for us */ /* read height */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &obj->height, FLAC__STREAM_METADATA_PICTURE_HEIGHT_LEN)) return false; /* read_callback_ sets the state for us */ /* read depth */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &obj->depth, FLAC__STREAM_METADATA_PICTURE_DEPTH_LEN)) return false; /* read_callback_ sets the state for us */ /* read colors */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &obj->colors, FLAC__STREAM_METADATA_PICTURE_COLORS_LEN)) return false; /* read_callback_ sets the state for us */ /* read data */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &(obj->data_length), FLAC__STREAM_METADATA_PICTURE_DATA_LENGTH_LEN)) return false; /* read_callback_ sets the state for us */ if(0 == (obj->data = (FLAC__byte*)safe_malloc_(obj->data_length))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } if(obj->data_length > 0) { if(!FLAC__bitreader_read_byte_block_aligned_no_crc(decoder->private_->input, obj->data, obj->data_length)) return false; /* read_callback_ sets the state for us */ } return true; } FLAC__bool skip_id3v2_tag_(FLAC__StreamDecoder *decoder) { FLAC__uint32 x; unsigned i, skip; /* skip the version and flags bytes */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, 24)) return false; /* read_callback_ sets the state for us */ /* get the size (in bytes) to skip */ skip = 0; for(i = 0; i < 4; i++) { if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, 8)) return false; /* read_callback_ sets the state for us */ skip <<= 7; skip |= (x & 0x7f); } /* skip the rest of the tag */ if(!FLAC__bitreader_skip_byte_block_aligned_no_crc(decoder->private_->input, skip)) return false; /* read_callback_ sets the state for us */ return true; } FLAC__bool frame_sync_(FLAC__StreamDecoder *decoder) { FLAC__uint32 x; FLAC__bool first = true; /* If we know the total number of samples in the stream, stop if we've read that many. */ /* This will stop us, for example, from wasting time trying to sync on an ID3V1 tag. */ if(FLAC__stream_decoder_get_total_samples(decoder) > 0) { if(decoder->private_->samples_decoded >= FLAC__stream_decoder_get_total_samples(decoder)) { decoder->protected_->state = FLAC__STREAM_DECODER_END_OF_STREAM; return true; } } /* make sure we're byte aligned */ if(!FLAC__bitreader_is_consumed_byte_aligned(decoder->private_->input)) { if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__bitreader_bits_left_for_byte_alignment(decoder->private_->input))) return false; /* read_callback_ sets the state for us */ } while(1) { if(decoder->private_->cached) { x = (FLAC__uint32)decoder->private_->lookahead; decoder->private_->cached = false; } else { if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, 8)) return false; /* read_callback_ sets the state for us */ } if(x == 0xff) { /* MAGIC NUMBER for the first 8 frame sync bits */ decoder->private_->header_warmup[0] = (FLAC__byte)x; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, 8)) return false; /* read_callback_ sets the state for us */ /* we have to check if we just read two 0xff's in a row; the second may actually be the beginning of the sync code */ /* else we have to check if the second byte is the end of a sync code */ if(x == 0xff) { /* MAGIC NUMBER for the first 8 frame sync bits */ decoder->private_->lookahead = (FLAC__byte)x; decoder->private_->cached = true; } else if(x >> 2 == 0x3e) { /* MAGIC NUMBER for the last 6 sync bits */ decoder->private_->header_warmup[1] = (FLAC__byte)x; decoder->protected_->state = FLAC__STREAM_DECODER_READ_FRAME; return true; } } if(first) { send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_LOST_SYNC); first = false; } } return true; } FLAC__bool read_frame_(FLAC__StreamDecoder *decoder, FLAC__bool *got_a_frame, FLAC__bool do_full_decode) { unsigned channel; unsigned i; FLAC__int32 mid, side; unsigned frame_crc; /* the one we calculate from the input stream */ FLAC__uint32 x; *got_a_frame = false; /* init the CRC */ frame_crc = 0; frame_crc = FLAC__CRC16_UPDATE(decoder->private_->header_warmup[0], frame_crc); frame_crc = FLAC__CRC16_UPDATE(decoder->private_->header_warmup[1], frame_crc); FLAC__bitreader_reset_read_crc16(decoder->private_->input, (FLAC__uint16)frame_crc); if(!read_frame_header_(decoder)) return false; if(decoder->protected_->state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC) /* means we didn't sync on a valid header */ return true; if(!allocate_output_(decoder, decoder->private_->frame.header.blocksize, decoder->private_->frame.header.channels)) return false; for(channel = 0; channel < decoder->private_->frame.header.channels; channel++) { /* * first figure the correct bits-per-sample of the subframe */ unsigned bps = decoder->private_->frame.header.bits_per_sample; switch(decoder->private_->frame.header.channel_assignment) { case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: /* no adjustment needed */ break; case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: FLAC__ASSERT(decoder->private_->frame.header.channels == 2); if(channel == 1) bps++; break; case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: FLAC__ASSERT(decoder->private_->frame.header.channels == 2); if(channel == 0) bps++; break; case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: FLAC__ASSERT(decoder->private_->frame.header.channels == 2); if(channel == 1) bps++; break; default: FLAC__ASSERT(0); } /* * now read it */ if(!read_subframe_(decoder, channel, bps, do_full_decode)) return false; if(decoder->protected_->state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC) /* means bad sync or got corruption */ return true; } if(!read_zero_padding_(decoder)) return false; if(decoder->protected_->state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC) /* means bad sync or got corruption (i.e. "zero bits" were not all zeroes) */ return true; /* * Read the frame CRC-16 from the footer and check */ frame_crc = FLAC__bitreader_get_read_crc16(decoder->private_->input); if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, FLAC__FRAME_FOOTER_CRC_LEN)) return false; /* read_callback_ sets the state for us */ if(frame_crc == x) { if(do_full_decode) { /* Undo any special channel coding */ switch(decoder->private_->frame.header.channel_assignment) { case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: /* do nothing */ break; case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: FLAC__ASSERT(decoder->private_->frame.header.channels == 2); for(i = 0; i < decoder->private_->frame.header.blocksize; i++) decoder->private_->output[1][i] = decoder->private_->output[0][i] - decoder->private_->output[1][i]; break; case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: FLAC__ASSERT(decoder->private_->frame.header.channels == 2); for(i = 0; i < decoder->private_->frame.header.blocksize; i++) decoder->private_->output[0][i] += decoder->private_->output[1][i]; break; case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: FLAC__ASSERT(decoder->private_->frame.header.channels == 2); for(i = 0; i < decoder->private_->frame.header.blocksize; i++) { #if 1 mid = decoder->private_->output[0][i]; side = decoder->private_->output[1][i]; mid <<= 1; mid |= (side & 1); /* i.e. if 'side' is odd... */ decoder->private_->output[0][i] = (mid + side) >> 1; decoder->private_->output[1][i] = (mid - side) >> 1; #else /* OPT: without 'side' temp variable */ mid = (decoder->private_->output[0][i] << 1) | (decoder->private_->output[1][i] & 1); /* i.e. if 'side' is odd... */ decoder->private_->output[0][i] = (mid + decoder->private_->output[1][i]) >> 1; decoder->private_->output[1][i] = (mid - decoder->private_->output[1][i]) >> 1; #endif } break; default: FLAC__ASSERT(0); break; } } } else { /* Bad frame, emit error and zero the output signal */ send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_FRAME_CRC_MISMATCH); if(do_full_decode) { for(channel = 0; channel < decoder->private_->frame.header.channels; channel++) { memset(decoder->private_->output[channel], 0, sizeof(FLAC__int32) * decoder->private_->frame.header.blocksize); } } } *got_a_frame = true; /* we wait to update fixed_block_size until here, when we're sure we've got a proper frame and hence a correct blocksize */ if(decoder->private_->next_fixed_block_size) decoder->private_->fixed_block_size = decoder->private_->next_fixed_block_size; /* put the latest values into the public section of the decoder instance */ decoder->protected_->channels = decoder->private_->frame.header.channels; decoder->protected_->channel_assignment = decoder->private_->frame.header.channel_assignment; decoder->protected_->bits_per_sample = decoder->private_->frame.header.bits_per_sample; decoder->protected_->sample_rate = decoder->private_->frame.header.sample_rate; decoder->protected_->blocksize = decoder->private_->frame.header.blocksize; FLAC__ASSERT(decoder->private_->frame.header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER); decoder->private_->samples_decoded = decoder->private_->frame.header.number.sample_number + decoder->private_->frame.header.blocksize; /* write it */ if(do_full_decode) { if(write_audio_frame_to_client_(decoder, &decoder->private_->frame, (const FLAC__int32 * const *)decoder->private_->output) != FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE) return false; } decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } FLAC__bool read_frame_header_(FLAC__StreamDecoder *decoder) { FLAC__uint32 x; FLAC__uint64 xx; unsigned i, blocksize_hint = 0, sample_rate_hint = 0; FLAC__byte crc8, raw_header[16]; /* MAGIC NUMBER based on the maximum frame header size, including CRC */ unsigned raw_header_len; FLAC__bool is_unparseable = false; FLAC__ASSERT(FLAC__bitreader_is_consumed_byte_aligned(decoder->private_->input)); /* init the raw header with the saved bits from synchronization */ raw_header[0] = decoder->private_->header_warmup[0]; raw_header[1] = decoder->private_->header_warmup[1]; raw_header_len = 2; /* check to make sure that reserved bit is 0 */ if(raw_header[1] & 0x02) /* MAGIC NUMBER */ is_unparseable = true; /* * Note that along the way as we read the header, we look for a sync * code inside. If we find one it would indicate that our original * sync was bad since there cannot be a sync code in a valid header. * * Three kinds of things can go wrong when reading the frame header: * 1) We may have sync'ed incorrectly and not landed on a frame header. * If we don't find a sync code, it can end up looking like we read * a valid but unparseable header, until getting to the frame header * CRC. Even then we could get a false positive on the CRC. * 2) We may have sync'ed correctly but on an unparseable frame (from a * future encoder). * 3) We may be on a damaged frame which appears valid but unparseable. * * For all these reasons, we try and read a complete frame header as * long as it seems valid, even if unparseable, up until the frame * header CRC. */ /* * read in the raw header as bytes so we can CRC it, and parse it on the way */ for(i = 0; i < 2; i++) { if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, 8)) return false; /* read_callback_ sets the state for us */ if(x == 0xff) { /* MAGIC NUMBER for the first 8 frame sync bits */ /* if we get here it means our original sync was erroneous since the sync code cannot appear in the header */ decoder->private_->lookahead = (FLAC__byte)x; decoder->private_->cached = true; send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_BAD_HEADER); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } raw_header[raw_header_len++] = (FLAC__byte)x; } switch(x = raw_header[2] >> 4) { case 0: is_unparseable = true; break; case 1: decoder->private_->frame.header.blocksize = 192; break; case 2: case 3: case 4: case 5: decoder->private_->frame.header.blocksize = 576 << (x-2); break; case 6: case 7: blocksize_hint = x; break; case 8: case 9: case 10: case 11: case 12: case 13: case 14: case 15: decoder->private_->frame.header.blocksize = 256 << (x-8); break; default: FLAC__ASSERT(0); break; } switch(x = raw_header[2] & 0x0f) { case 0: if(decoder->private_->has_stream_info) decoder->private_->frame.header.sample_rate = decoder->private_->stream_info.data.stream_info.sample_rate; else is_unparseable = true; break; case 1: decoder->private_->frame.header.sample_rate = 88200; break; case 2: decoder->private_->frame.header.sample_rate = 176400; break; case 3: decoder->private_->frame.header.sample_rate = 192000; break; case 4: decoder->private_->frame.header.sample_rate = 8000; break; case 5: decoder->private_->frame.header.sample_rate = 16000; break; case 6: decoder->private_->frame.header.sample_rate = 22050; break; case 7: decoder->private_->frame.header.sample_rate = 24000; break; case 8: decoder->private_->frame.header.sample_rate = 32000; break; case 9: decoder->private_->frame.header.sample_rate = 44100; break; case 10: decoder->private_->frame.header.sample_rate = 48000; break; case 11: decoder->private_->frame.header.sample_rate = 96000; break; case 12: case 13: case 14: sample_rate_hint = x; break; case 15: send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_BAD_HEADER); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; default: FLAC__ASSERT(0); } x = (unsigned)(raw_header[3] >> 4); if(x & 8) { decoder->private_->frame.header.channels = 2; switch(x & 7) { case 0: decoder->private_->frame.header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE; break; case 1: decoder->private_->frame.header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE; break; case 2: decoder->private_->frame.header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_MID_SIDE; break; default: is_unparseable = true; break; } } else { decoder->private_->frame.header.channels = (unsigned)x + 1; decoder->private_->frame.header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; } switch(x = (unsigned)(raw_header[3] & 0x0e) >> 1) { case 0: if(decoder->private_->has_stream_info) decoder->private_->frame.header.bits_per_sample = decoder->private_->stream_info.data.stream_info.bits_per_sample; else is_unparseable = true; break; case 1: decoder->private_->frame.header.bits_per_sample = 8; break; case 2: decoder->private_->frame.header.bits_per_sample = 12; break; case 4: decoder->private_->frame.header.bits_per_sample = 16; break; case 5: decoder->private_->frame.header.bits_per_sample = 20; break; case 6: decoder->private_->frame.header.bits_per_sample = 24; break; case 3: case 7: is_unparseable = true; break; default: FLAC__ASSERT(0); break; } /* check to make sure that reserved bit is 0 */ if(raw_header[3] & 0x01) /* MAGIC NUMBER */ is_unparseable = true; /* read the frame's starting sample number (or frame number as the case may be) */ if( raw_header[1] & 0x01 || /*@@@ this clause is a concession to the old way of doing variable blocksize; the only known implementation is flake and can probably be removed without inconveniencing anyone */ (decoder->private_->has_stream_info && decoder->private_->stream_info.data.stream_info.min_blocksize != decoder->private_->stream_info.data.stream_info.max_blocksize) ) { /* variable blocksize */ if(!FLAC__bitreader_read_utf8_uint64(decoder->private_->input, &xx, raw_header, &raw_header_len)) return false; /* read_callback_ sets the state for us */ if(xx == FLAC__U64L(0xffffffffffffffff)) { /* i.e. non-UTF8 code... */ decoder->private_->lookahead = raw_header[raw_header_len-1]; /* back up as much as we can */ decoder->private_->cached = true; send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_BAD_HEADER); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } decoder->private_->frame.header.number_type = FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER; decoder->private_->frame.header.number.sample_number = xx; } else { /* fixed blocksize */ if(!FLAC__bitreader_read_utf8_uint32(decoder->private_->input, &x, raw_header, &raw_header_len)) return false; /* read_callback_ sets the state for us */ if(x == 0xffffffff) { /* i.e. non-UTF8 code... */ decoder->private_->lookahead = raw_header[raw_header_len-1]; /* back up as much as we can */ decoder->private_->cached = true; send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_BAD_HEADER); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } decoder->private_->frame.header.number_type = FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER; decoder->private_->frame.header.number.frame_number = x; } if(blocksize_hint) { if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, 8)) return false; /* read_callback_ sets the state for us */ raw_header[raw_header_len++] = (FLAC__byte)x; if(blocksize_hint == 7) { FLAC__uint32 _x; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &_x, 8)) return false; /* read_callback_ sets the state for us */ raw_header[raw_header_len++] = (FLAC__byte)_x; x = (x << 8) | _x; } decoder->private_->frame.header.blocksize = x+1; } if(sample_rate_hint) { if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, 8)) return false; /* read_callback_ sets the state for us */ raw_header[raw_header_len++] = (FLAC__byte)x; if(sample_rate_hint != 12) { FLAC__uint32 _x; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &_x, 8)) return false; /* read_callback_ sets the state for us */ raw_header[raw_header_len++] = (FLAC__byte)_x; x = (x << 8) | _x; } if(sample_rate_hint == 12) decoder->private_->frame.header.sample_rate = x*1000; else if(sample_rate_hint == 13) decoder->private_->frame.header.sample_rate = x; else decoder->private_->frame.header.sample_rate = x*10; } /* read the CRC-8 byte */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, 8)) return false; /* read_callback_ sets the state for us */ crc8 = (FLAC__byte)x; if(FLAC__crc8(raw_header, raw_header_len) != crc8) { send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_BAD_HEADER); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } /* calculate the sample number from the frame number if needed */ decoder->private_->next_fixed_block_size = 0; if(decoder->private_->frame.header.number_type == FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER) { x = decoder->private_->frame.header.number.frame_number; decoder->private_->frame.header.number_type = FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER; if(decoder->private_->fixed_block_size) decoder->private_->frame.header.number.sample_number = (FLAC__uint64)decoder->private_->fixed_block_size * (FLAC__uint64)x; else if(decoder->private_->has_stream_info) { if(decoder->private_->stream_info.data.stream_info.min_blocksize == decoder->private_->stream_info.data.stream_info.max_blocksize) { decoder->private_->frame.header.number.sample_number = (FLAC__uint64)decoder->private_->stream_info.data.stream_info.min_blocksize * (FLAC__uint64)x; decoder->private_->next_fixed_block_size = decoder->private_->stream_info.data.stream_info.max_blocksize; } else is_unparseable = true; } else if(x == 0) { decoder->private_->frame.header.number.sample_number = 0; decoder->private_->next_fixed_block_size = decoder->private_->frame.header.blocksize; } else { /* can only get here if the stream has invalid frame numbering and no STREAMINFO, so assume it's not the last (possibly short) frame */ decoder->private_->frame.header.number.sample_number = (FLAC__uint64)decoder->private_->frame.header.blocksize * (FLAC__uint64)x; } } if(is_unparseable) { send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_UNPARSEABLE_STREAM); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } return true; } FLAC__bool read_subframe_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, FLAC__bool do_full_decode) { FLAC__uint32 x; FLAC__bool wasted_bits; unsigned i; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &x, 8)) /* MAGIC NUMBER */ return false; /* read_callback_ sets the state for us */ wasted_bits = (x & 1); x &= 0xfe; if(wasted_bits) { unsigned u; if(!FLAC__bitreader_read_unary_unsigned(decoder->private_->input, &u)) return false; /* read_callback_ sets the state for us */ decoder->private_->frame.subframes[channel].wasted_bits = u+1; bps -= decoder->private_->frame.subframes[channel].wasted_bits; } else decoder->private_->frame.subframes[channel].wasted_bits = 0; /* * Lots of magic numbers here */ if(x & 0x80) { send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_LOST_SYNC); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } else if(x == 0) { if(!read_subframe_constant_(decoder, channel, bps, do_full_decode)) return false; } else if(x == 2) { if(!read_subframe_verbatim_(decoder, channel, bps, do_full_decode)) return false; } else if(x < 16) { send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_UNPARSEABLE_STREAM); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } else if(x <= 24) { if(!read_subframe_fixed_(decoder, channel, bps, (x>>1)&7, do_full_decode)) return false; if(decoder->protected_->state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC) /* means bad sync or got corruption */ return true; } else if(x < 64) { send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_UNPARSEABLE_STREAM); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } else { if(!read_subframe_lpc_(decoder, channel, bps, ((x>>1)&31)+1, do_full_decode)) return false; if(decoder->protected_->state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC) /* means bad sync or got corruption */ return true; } if(wasted_bits && do_full_decode) { x = decoder->private_->frame.subframes[channel].wasted_bits; for(i = 0; i < decoder->private_->frame.header.blocksize; i++) decoder->private_->output[channel][i] <<= x; } return true; } FLAC__bool read_subframe_constant_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, FLAC__bool do_full_decode) { FLAC__Subframe_Constant *subframe = &decoder->private_->frame.subframes[channel].data.constant; FLAC__int32 x; unsigned i; FLAC__int32 *output = decoder->private_->output[channel]; decoder->private_->frame.subframes[channel].type = FLAC__SUBFRAME_TYPE_CONSTANT; if(!FLAC__bitreader_read_raw_int32(decoder->private_->input, &x, bps)) return false; /* read_callback_ sets the state for us */ subframe->value = x; /* decode the subframe */ if(do_full_decode) { for(i = 0; i < decoder->private_->frame.header.blocksize; i++) output[i] = x; } return true; } FLAC__bool read_subframe_fixed_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, const unsigned order, FLAC__bool do_full_decode) { FLAC__Subframe_Fixed *subframe = &decoder->private_->frame.subframes[channel].data.fixed; FLAC__int32 i32; FLAC__uint32 u32; unsigned u; decoder->private_->frame.subframes[channel].type = FLAC__SUBFRAME_TYPE_FIXED; subframe->residual = decoder->private_->residual[channel]; subframe->order = order; /* read warm-up samples */ for(u = 0; u < order; u++) { if(!FLAC__bitreader_read_raw_int32(decoder->private_->input, &i32, bps)) return false; /* read_callback_ sets the state for us */ subframe->warmup[u] = i32; } /* read entropy coding method info */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &u32, FLAC__ENTROPY_CODING_METHOD_TYPE_LEN)) return false; /* read_callback_ sets the state for us */ subframe->entropy_coding_method.type = (FLAC__EntropyCodingMethodType)u32; switch(subframe->entropy_coding_method.type) { case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE: case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2: if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &u32, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN)) return false; /* read_callback_ sets the state for us */ subframe->entropy_coding_method.data.partitioned_rice.order = u32; subframe->entropy_coding_method.data.partitioned_rice.contents = &decoder->private_->partitioned_rice_contents[channel]; break; default: send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_UNPARSEABLE_STREAM); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } /* read residual */ switch(subframe->entropy_coding_method.type) { case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE: case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2: if(!read_residual_partitioned_rice_(decoder, order, subframe->entropy_coding_method.data.partitioned_rice.order, &decoder->private_->partitioned_rice_contents[channel], decoder->private_->residual[channel], /*is_extended=*/subframe->entropy_coding_method.type == FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2)) return false; break; default: FLAC__ASSERT(0); } /* decode the subframe */ if(do_full_decode) { memcpy(decoder->private_->output[channel], subframe->warmup, sizeof(FLAC__int32) * order); FLAC__fixed_restore_signal(decoder->private_->residual[channel], decoder->private_->frame.header.blocksize-order, order, decoder->private_->output[channel]+order); } return true; } FLAC__bool read_subframe_lpc_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, const unsigned order, FLAC__bool do_full_decode) { FLAC__Subframe_LPC *subframe = &decoder->private_->frame.subframes[channel].data.lpc; FLAC__int32 i32; FLAC__uint32 u32; unsigned u; decoder->private_->frame.subframes[channel].type = FLAC__SUBFRAME_TYPE_LPC; subframe->residual = decoder->private_->residual[channel]; subframe->order = order; /* read warm-up samples */ for(u = 0; u < order; u++) { if(!FLAC__bitreader_read_raw_int32(decoder->private_->input, &i32, bps)) return false; /* read_callback_ sets the state for us */ subframe->warmup[u] = i32; } /* read qlp coeff precision */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &u32, FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN)) return false; /* read_callback_ sets the state for us */ if(u32 == (1u << FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN) - 1) { send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_LOST_SYNC); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } subframe->qlp_coeff_precision = u32+1; /* read qlp shift */ if(!FLAC__bitreader_read_raw_int32(decoder->private_->input, &i32, FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN)) return false; /* read_callback_ sets the state for us */ subframe->quantization_level = i32; /* read quantized lp coefficiencts */ for(u = 0; u < order; u++) { if(!FLAC__bitreader_read_raw_int32(decoder->private_->input, &i32, subframe->qlp_coeff_precision)) return false; /* read_callback_ sets the state for us */ subframe->qlp_coeff[u] = i32; } /* read entropy coding method info */ if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &u32, FLAC__ENTROPY_CODING_METHOD_TYPE_LEN)) return false; /* read_callback_ sets the state for us */ subframe->entropy_coding_method.type = (FLAC__EntropyCodingMethodType)u32; switch(subframe->entropy_coding_method.type) { case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE: case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2: if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &u32, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN)) return false; /* read_callback_ sets the state for us */ subframe->entropy_coding_method.data.partitioned_rice.order = u32; subframe->entropy_coding_method.data.partitioned_rice.contents = &decoder->private_->partitioned_rice_contents[channel]; break; default: send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_UNPARSEABLE_STREAM); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } /* read residual */ switch(subframe->entropy_coding_method.type) { case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE: case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2: if(!read_residual_partitioned_rice_(decoder, order, subframe->entropy_coding_method.data.partitioned_rice.order, &decoder->private_->partitioned_rice_contents[channel], decoder->private_->residual[channel], /*is_extended=*/subframe->entropy_coding_method.type == FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2)) return false; break; default: FLAC__ASSERT(0); } /* decode the subframe */ if(do_full_decode) { memcpy(decoder->private_->output[channel], subframe->warmup, sizeof(FLAC__int32) * order); /*@@@@@@ technically not pessimistic enough, should be more like if( (FLAC__uint64)order * ((((FLAC__uint64)1)<qlp_coeff_precision)-1) < (((FLAC__uint64)-1) << 32) ) */ if(bps + subframe->qlp_coeff_precision + FLAC__bitmath_ilog2(order) <= 32) if(bps <= 16 && subframe->qlp_coeff_precision <= 16) { if(order <= 8) decoder->private_->local_lpc_restore_signal_16bit_order8(decoder->private_->residual[channel], decoder->private_->frame.header.blocksize-order, subframe->qlp_coeff, order, subframe->quantization_level, decoder->private_->output[channel]+order); else decoder->private_->local_lpc_restore_signal_16bit(decoder->private_->residual[channel], decoder->private_->frame.header.blocksize-order, subframe->qlp_coeff, order, subframe->quantization_level, decoder->private_->output[channel]+order); } else decoder->private_->local_lpc_restore_signal(decoder->private_->residual[channel], decoder->private_->frame.header.blocksize-order, subframe->qlp_coeff, order, subframe->quantization_level, decoder->private_->output[channel]+order); else decoder->private_->local_lpc_restore_signal_64bit(decoder->private_->residual[channel], decoder->private_->frame.header.blocksize-order, subframe->qlp_coeff, order, subframe->quantization_level, decoder->private_->output[channel]+order); } return true; } FLAC__bool read_subframe_verbatim_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, FLAC__bool do_full_decode) { FLAC__Subframe_Verbatim *subframe = &decoder->private_->frame.subframes[channel].data.verbatim; FLAC__int32 x, *residual = decoder->private_->residual[channel]; unsigned i; decoder->private_->frame.subframes[channel].type = FLAC__SUBFRAME_TYPE_VERBATIM; subframe->data = residual; for(i = 0; i < decoder->private_->frame.header.blocksize; i++) { if(!FLAC__bitreader_read_raw_int32(decoder->private_->input, &x, bps)) return false; /* read_callback_ sets the state for us */ residual[i] = x; } /* decode the subframe */ if(do_full_decode) memcpy(decoder->private_->output[channel], subframe->data, sizeof(FLAC__int32) * decoder->private_->frame.header.blocksize); return true; } FLAC__bool read_residual_partitioned_rice_(FLAC__StreamDecoder *decoder, unsigned predictor_order, unsigned partition_order, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, FLAC__int32 *residual, FLAC__bool is_extended) { FLAC__uint32 rice_parameter; int i; unsigned partition, sample, u; const unsigned partitions = 1u << partition_order; const unsigned partition_samples = partition_order > 0? decoder->private_->frame.header.blocksize >> partition_order : decoder->private_->frame.header.blocksize - predictor_order; const unsigned plen = is_extended? FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN : FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; const unsigned pesc = is_extended? FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_ESCAPE_PARAMETER : FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER; /* sanity checks */ if(partition_order == 0) { if(decoder->private_->frame.header.blocksize < predictor_order) { send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_LOST_SYNC); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } } else { if(partition_samples < predictor_order) { send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_LOST_SYNC); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } } if(!FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(partitioned_rice_contents, max(6, partition_order))) { decoder->protected_->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } sample = 0; for(partition = 0; partition < partitions; partition++) { if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &rice_parameter, plen)) return false; /* read_callback_ sets the state for us */ partitioned_rice_contents->parameters[partition] = rice_parameter; if(rice_parameter < pesc) { partitioned_rice_contents->raw_bits[partition] = 0; u = (partition_order == 0 || partition > 0)? partition_samples : partition_samples - predictor_order; if(!decoder->private_->local_bitreader_read_rice_signed_block(decoder->private_->input, (int*) residual + sample, u, rice_parameter)) return false; /* read_callback_ sets the state for us */ sample += u; } else { if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN)) return false; /* read_callback_ sets the state for us */ partitioned_rice_contents->raw_bits[partition] = rice_parameter; for(u = (partition_order == 0 || partition > 0)? 0 : predictor_order; u < partition_samples; u++, sample++) { if(!FLAC__bitreader_read_raw_int32(decoder->private_->input, (FLAC__int32*) &i, rice_parameter)) return false; /* read_callback_ sets the state for us */ residual[sample] = i; } } } return true; } FLAC__bool read_zero_padding_(FLAC__StreamDecoder *decoder) { if(!FLAC__bitreader_is_consumed_byte_aligned(decoder->private_->input)) { FLAC__uint32 zero = 0; if(!FLAC__bitreader_read_raw_uint32(decoder->private_->input, &zero, FLAC__bitreader_bits_left_for_byte_alignment(decoder->private_->input))) return false; /* read_callback_ sets the state for us */ if(zero != 0) { send_error_to_client_(decoder, FLAC__STREAM_DECODER_ERROR_STATUS_LOST_SYNC); decoder->protected_->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; } } return true; } FLAC__bool read_callback_(FLAC__byte buffer[], size_t *bytes, void *client_data) { FLAC__StreamDecoder *decoder = (FLAC__StreamDecoder *)client_data; if( #if FLAC__HAS_OGG /* see [1] HACK NOTE below for why we don't call the eof_callback when decoding Ogg FLAC */ !decoder->private_->is_ogg && #endif decoder->private_->eof_callback && decoder->private_->eof_callback(decoder, decoder->private_->client_data) ) { *bytes = 0; decoder->protected_->state = FLAC__STREAM_DECODER_END_OF_STREAM; return false; } else if(*bytes > 0) { /* While seeking, it is possible for our seek to land in the * middle of audio data that looks exactly like a frame header * from a future version of an encoder. When that happens, our * error callback will get an * FLAC__STREAM_DECODER_UNPARSEABLE_STREAM and increment its * unparseable_frame_count. But there is a remote possibility * that it is properly synced at such a "future-codec frame", * so to make sure, we wait to see many "unparseable" errors in * a row before bailing out. */ if(decoder->private_->is_seeking && decoder->private_->unparseable_frame_count > 20) { decoder->protected_->state = FLAC__STREAM_DECODER_ABORTED; return false; } else { const FLAC__StreamDecoderReadStatus status = #if FLAC__HAS_OGG decoder->private_->is_ogg? read_callback_ogg_aspect_(decoder, buffer, bytes) : #endif decoder->private_->read_callback(decoder, buffer, bytes, decoder->private_->client_data) ; if(status == FLAC__STREAM_DECODER_READ_STATUS_ABORT) { decoder->protected_->state = FLAC__STREAM_DECODER_ABORTED; return false; } else if(*bytes == 0) { if( status == FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM || ( #if FLAC__HAS_OGG /* see [1] HACK NOTE below for why we don't call the eof_callback when decoding Ogg FLAC */ !decoder->private_->is_ogg && #endif decoder->private_->eof_callback && decoder->private_->eof_callback(decoder, decoder->private_->client_data) ) ) { decoder->protected_->state = FLAC__STREAM_DECODER_END_OF_STREAM; return false; } else return true; } else return true; } } else { /* abort to avoid a deadlock */ decoder->protected_->state = FLAC__STREAM_DECODER_ABORTED; return false; } /* [1] @@@ HACK NOTE: The end-of-stream checking has to be hacked around * for Ogg FLAC. This is because the ogg decoder aspect can lose sync * and at the same time hit the end of the stream (for example, seeking * to a point that is after the beginning of the last Ogg page). There * is no way to report an Ogg sync loss through the callbacks (see note * in read_callback_ogg_aspect_()) so it returns CONTINUE with *bytes==0. * So to keep the decoder from stopping at this point we gate the call * to the eof_callback and let the Ogg decoder aspect set the * end-of-stream state when it is needed. */ } #if FLAC__HAS_OGG FLAC__StreamDecoderReadStatus read_callback_ogg_aspect_(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes) { switch(FLAC__ogg_decoder_aspect_read_callback_wrapper(&decoder->protected_->ogg_decoder_aspect, buffer, bytes, read_callback_proxy_, decoder, decoder->private_->client_data)) { case FLAC__OGG_DECODER_ASPECT_READ_STATUS_OK: return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE; /* we don't really have a way to handle lost sync via read * callback so we'll let it pass and let the underlying * FLAC decoder catch the error */ case FLAC__OGG_DECODER_ASPECT_READ_STATUS_LOST_SYNC: return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE; case FLAC__OGG_DECODER_ASPECT_READ_STATUS_END_OF_STREAM: return FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM; case FLAC__OGG_DECODER_ASPECT_READ_STATUS_NOT_FLAC: case FLAC__OGG_DECODER_ASPECT_READ_STATUS_UNSUPPORTED_MAPPING_VERSION: case FLAC__OGG_DECODER_ASPECT_READ_STATUS_ABORT: case FLAC__OGG_DECODER_ASPECT_READ_STATUS_ERROR: case FLAC__OGG_DECODER_ASPECT_READ_STATUS_MEMORY_ALLOCATION_ERROR: return FLAC__STREAM_DECODER_READ_STATUS_ABORT; default: FLAC__ASSERT(0); /* double protection */ return FLAC__STREAM_DECODER_READ_STATUS_ABORT; } } FLAC__OggDecoderAspectReadStatus read_callback_proxy_(const void *void_decoder, FLAC__byte buffer[], size_t *bytes, void *client_data) { FLAC__StreamDecoder *decoder = (FLAC__StreamDecoder*)void_decoder; switch(decoder->private_->read_callback(decoder, buffer, bytes, client_data)) { case FLAC__STREAM_DECODER_READ_STATUS_CONTINUE: return FLAC__OGG_DECODER_ASPECT_READ_STATUS_OK; case FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM: return FLAC__OGG_DECODER_ASPECT_READ_STATUS_END_OF_STREAM; case FLAC__STREAM_DECODER_READ_STATUS_ABORT: return FLAC__OGG_DECODER_ASPECT_READ_STATUS_ABORT; default: /* double protection: */ FLAC__ASSERT(0); return FLAC__OGG_DECODER_ASPECT_READ_STATUS_ABORT; } } #endif FLAC__StreamDecoderWriteStatus write_audio_frame_to_client_(FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 * const buffer[]) { if(decoder->private_->is_seeking) { FLAC__uint64 this_frame_sample = frame->header.number.sample_number; FLAC__uint64 next_frame_sample = this_frame_sample + (FLAC__uint64)frame->header.blocksize; FLAC__uint64 target_sample = decoder->private_->target_sample; FLAC__ASSERT(frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER); #if FLAC__HAS_OGG decoder->private_->got_a_frame = true; #endif decoder->private_->last_frame = *frame; /* save the frame */ if(this_frame_sample <= target_sample && target_sample < next_frame_sample) { /* we hit our target frame */ unsigned delta = (unsigned)(target_sample - this_frame_sample); /* kick out of seek mode */ decoder->private_->is_seeking = false; /* shift out the samples before target_sample */ if(delta > 0) { unsigned channel; const FLAC__int32 *newbuffer[FLAC__MAX_CHANNELS]; for(channel = 0; channel < frame->header.channels; channel++) newbuffer[channel] = buffer[channel] + delta; decoder->private_->last_frame.header.blocksize -= delta; decoder->private_->last_frame.header.number.sample_number += (FLAC__uint64)delta; /* write the relevant samples */ return decoder->private_->write_callback(decoder, &decoder->private_->last_frame, newbuffer, decoder->private_->client_data); } else { /* write the relevant samples */ return decoder->private_->write_callback(decoder, frame, buffer, decoder->private_->client_data); } } return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE; } /* * If we never got STREAMINFO, turn off MD5 checking to save * cycles since we don't have a sum to compare to anyway */ if(!decoder->private_->has_stream_info) decoder->private_->do_md5_checking = false; if(decoder->private_->do_md5_checking) { if(!FLAC__MD5Accumulate(&decoder->private_->md5context, buffer, frame->header.channels, frame->header.blocksize, (frame->header.bits_per_sample+7) / 8)) return FLAC__STREAM_DECODER_WRITE_STATUS_ABORT; } return decoder->private_->write_callback(decoder, frame, buffer, decoder->private_->client_data); } void send_error_to_client_(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status) { if(!decoder->private_->is_seeking) decoder->private_->error_callback(decoder, status, decoder->private_->client_data); else if(status == FLAC__STREAM_DECODER_ERROR_STATUS_UNPARSEABLE_STREAM) decoder->private_->unparseable_frame_count++; } FLAC__bool seek_to_absolute_sample_(FLAC__StreamDecoder *decoder, FLAC__uint64 stream_length, FLAC__uint64 target_sample) { FLAC__uint64 first_frame_offset = decoder->private_->first_frame_offset, lower_bound, upper_bound, lower_bound_sample, upper_bound_sample, this_frame_sample; FLAC__int64 pos = -1; int i; unsigned approx_bytes_per_frame; FLAC__bool first_seek = true; const FLAC__uint64 total_samples = FLAC__stream_decoder_get_total_samples(decoder); const unsigned min_blocksize = decoder->private_->stream_info.data.stream_info.min_blocksize; const unsigned max_blocksize = decoder->private_->stream_info.data.stream_info.max_blocksize; const unsigned max_framesize = decoder->private_->stream_info.data.stream_info.max_framesize; const unsigned min_framesize = decoder->private_->stream_info.data.stream_info.min_framesize; /* take these from the current frame in case they've changed mid-stream */ unsigned channels = FLAC__stream_decoder_get_channels(decoder); unsigned bps = FLAC__stream_decoder_get_bits_per_sample(decoder); const FLAC__StreamMetadata_SeekTable *seek_table = decoder->private_->has_seek_table? &decoder->private_->seek_table.data.seek_table : 0; /* use values from stream info if we didn't decode a frame */ if(channels == 0) channels = decoder->private_->stream_info.data.stream_info.channels; if(bps == 0) bps = decoder->private_->stream_info.data.stream_info.bits_per_sample; /* we are just guessing here */ if(max_framesize > 0) approx_bytes_per_frame = (max_framesize + min_framesize) / 2 + 1; /* * Check if it's a known fixed-blocksize stream. Note that though * the spec doesn't allow zeroes in the STREAMINFO block, we may * never get a STREAMINFO block when decoding so the value of * min_blocksize might be zero. */ else if(min_blocksize == max_blocksize && min_blocksize > 0) { /* note there are no () around 'bps/8' to keep precision up since it's an integer calulation */ approx_bytes_per_frame = min_blocksize * channels * bps/8 + 64; } else approx_bytes_per_frame = 4096 * channels * bps/8 + 64; /* * First, we set an upper and lower bound on where in the * stream we will search. For now we assume the worst case * scenario, which is our best guess at the beginning of * the first frame and end of the stream. */ lower_bound = first_frame_offset; lower_bound_sample = 0; upper_bound = stream_length; upper_bound_sample = total_samples > 0 ? total_samples : target_sample /*estimate it*/; /* * Now we refine the bounds if we have a seektable with * suitable points. Note that according to the spec they * must be ordered by ascending sample number. * * Note: to protect against invalid seek tables we will ignore points * that have frame_samples==0 or sample_number>=total_samples */ if(seek_table) { FLAC__uint64 new_lower_bound = lower_bound; FLAC__uint64 new_upper_bound = upper_bound; FLAC__uint64 new_lower_bound_sample = lower_bound_sample; FLAC__uint64 new_upper_bound_sample = upper_bound_sample; /* find the closest seek point <= target_sample, if it exists */ for(i = (int)seek_table->num_points - 1; i >= 0; i--) { if( seek_table->points[i].sample_number != FLAC__STREAM_METADATA_SEEKPOINT_PLACEHOLDER && seek_table->points[i].frame_samples > 0 && /* defense against bad seekpoints */ (total_samples <= 0 || seek_table->points[i].sample_number < total_samples) && /* defense against bad seekpoints */ seek_table->points[i].sample_number <= target_sample ) break; } if(i >= 0) { /* i.e. we found a suitable seek point... */ new_lower_bound = first_frame_offset + seek_table->points[i].stream_offset; new_lower_bound_sample = seek_table->points[i].sample_number; } /* find the closest seek point > target_sample, if it exists */ for(i = 0; i < (int)seek_table->num_points; i++) { if( seek_table->points[i].sample_number != FLAC__STREAM_METADATA_SEEKPOINT_PLACEHOLDER && seek_table->points[i].frame_samples > 0 && /* defense against bad seekpoints */ (total_samples <= 0 || seek_table->points[i].sample_number < total_samples) && /* defense against bad seekpoints */ seek_table->points[i].sample_number > target_sample ) break; } if(i < (int)seek_table->num_points) { /* i.e. we found a suitable seek point... */ new_upper_bound = first_frame_offset + seek_table->points[i].stream_offset; new_upper_bound_sample = seek_table->points[i].sample_number; } /* final protection against unsorted seek tables; keep original values if bogus */ if(new_upper_bound >= new_lower_bound) { lower_bound = new_lower_bound; upper_bound = new_upper_bound; lower_bound_sample = new_lower_bound_sample; upper_bound_sample = new_upper_bound_sample; } } FLAC__ASSERT(upper_bound_sample >= lower_bound_sample); /* there are 2 insidious ways that the following equality occurs, which * we need to fix: * 1) total_samples is 0 (unknown) and target_sample is 0 * 2) total_samples is 0 (unknown) and target_sample happens to be * exactly equal to the last seek point in the seek table; this * means there is no seek point above it, and upper_bound_samples * remains equal to the estimate (of target_samples) we made above * in either case it does not hurt to move upper_bound_sample up by 1 */ if(upper_bound_sample == lower_bound_sample) upper_bound_sample++; decoder->private_->target_sample = target_sample; while(1) { /* check if the bounds are still ok */ if (lower_bound_sample >= upper_bound_sample || lower_bound > upper_bound) { decoder->protected_->state = FLAC__STREAM_DECODER_SEEK_ERROR; return false; } #ifndef FLAC__INTEGER_ONLY_LIBRARY #if defined _MSC_VER || defined __MINGW32__ /* with VC++ you have to spoon feed it the casting */ pos = (FLAC__int64)lower_bound + (FLAC__int64)((FLAC__double)(FLAC__int64)(target_sample - lower_bound_sample) / (FLAC__double)(FLAC__int64)(upper_bound_sample - lower_bound_sample) * (FLAC__double)(FLAC__int64)(upper_bound - lower_bound)) - approx_bytes_per_frame; #else pos = (FLAC__int64)lower_bound + (FLAC__int64)((FLAC__double)(target_sample - lower_bound_sample) / (FLAC__double)(upper_bound_sample - lower_bound_sample) * (FLAC__double)(upper_bound - lower_bound)) - approx_bytes_per_frame; #endif #else /* a little less accurate: */ if(upper_bound - lower_bound < 0xffffffff) pos = (FLAC__int64)lower_bound + (FLAC__int64)(((target_sample - lower_bound_sample) * (upper_bound - lower_bound)) / (upper_bound_sample - lower_bound_sample)) - approx_bytes_per_frame; else /* @@@ WATCHOUT, ~2TB limit */ pos = (FLAC__int64)lower_bound + (FLAC__int64)((((target_sample - lower_bound_sample)>>8) * ((upper_bound - lower_bound)>>8)) / ((upper_bound_sample - lower_bound_sample)>>16)) - approx_bytes_per_frame; #endif if(pos >= (FLAC__int64)upper_bound) pos = (FLAC__int64)upper_bound - 1; if(pos < (FLAC__int64)lower_bound) pos = (FLAC__int64)lower_bound; if(decoder->private_->seek_callback(decoder, (FLAC__uint64)pos, decoder->private_->client_data) != FLAC__STREAM_DECODER_SEEK_STATUS_OK) { decoder->protected_->state = FLAC__STREAM_DECODER_SEEK_ERROR; return false; } if(!FLAC__stream_decoder_flush(decoder)) { /* above call sets the state for us */ return false; } /* Now we need to get a frame. First we need to reset our * unparseable_frame_count; if we get too many unparseable * frames in a row, the read callback will return * FLAC__STREAM_DECODER_READ_STATUS_ABORT, causing * FLAC__stream_decoder_process_single() to return false. */ decoder->private_->unparseable_frame_count = 0; if(!FLAC__stream_decoder_process_single(decoder)) { decoder->protected_->state = FLAC__STREAM_DECODER_SEEK_ERROR; return false; } /* our write callback will change the state when it gets to the target frame */ /* actually, we could have got_a_frame if our decoder is at FLAC__STREAM_DECODER_END_OF_STREAM so we need to check for that also */ #if 0 /*@@@@@@ used to be the following; not clear if the check for end of stream is needed anymore */ if(decoder->protected_->state != FLAC__SEEKABLE_STREAM_DECODER_SEEKING && decoder->protected_->state != FLAC__STREAM_DECODER_END_OF_STREAM) break; #endif if(!decoder->private_->is_seeking) break; FLAC__ASSERT(decoder->private_->last_frame.header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER); this_frame_sample = decoder->private_->last_frame.header.number.sample_number; if (0 == decoder->private_->samples_decoded || (this_frame_sample + decoder->private_->last_frame.header.blocksize >= upper_bound_sample && !first_seek)) { if (pos == (FLAC__int64)lower_bound) { /* can't move back any more than the first frame, something is fatally wrong */ decoder->protected_->state = FLAC__STREAM_DECODER_SEEK_ERROR; return false; } /* our last move backwards wasn't big enough, try again */ approx_bytes_per_frame = approx_bytes_per_frame? approx_bytes_per_frame * 2 : 16; continue; } /* allow one seek over upper bound, so we can get a correct upper_bound_sample for streams with unknown total_samples */ first_seek = false; /* make sure we are not seeking in corrupted stream */ if (this_frame_sample < lower_bound_sample) { decoder->protected_->state = FLAC__STREAM_DECODER_SEEK_ERROR; return false; } /* we need to narrow the search */ if(target_sample < this_frame_sample) { upper_bound_sample = this_frame_sample + decoder->private_->last_frame.header.blocksize; /*@@@@@@ what will decode position be if at end of stream? */ if(!FLAC__stream_decoder_get_decode_position(decoder, &upper_bound)) { decoder->protected_->state = FLAC__STREAM_DECODER_SEEK_ERROR; return false; } approx_bytes_per_frame = (unsigned)(2 * (upper_bound - pos) / 3 + 16); } else { /* target_sample >= this_frame_sample + this frame's blocksize */ lower_bound_sample = this_frame_sample + decoder->private_->last_frame.header.blocksize; if(!FLAC__stream_decoder_get_decode_position(decoder, &lower_bound)) { decoder->protected_->state = FLAC__STREAM_DECODER_SEEK_ERROR; return false; } approx_bytes_per_frame = (unsigned)(2 * (lower_bound - pos) / 3 + 16); } } return true; } #if FLAC__HAS_OGG FLAC__bool seek_to_absolute_sample_ogg_(FLAC__StreamDecoder *decoder, FLAC__uint64 stream_length, FLAC__uint64 target_sample) { FLAC__uint64 left_pos = 0, right_pos = stream_length; FLAC__uint64 left_sample = 0, right_sample = FLAC__stream_decoder_get_total_samples(decoder); FLAC__uint64 this_frame_sample = (FLAC__uint64)0 - 1; FLAC__uint64 pos = 0; /* only initialized to avoid compiler warning */ FLAC__bool did_a_seek; unsigned iteration = 0; /* In the first iterations, we will calculate the target byte position * by the distance from the target sample to left_sample and * right_sample (let's call it "proportional search"). After that, we * will switch to binary search. */ unsigned BINARY_SEARCH_AFTER_ITERATION = 2; /* We will switch to a linear search once our current sample is less * than this number of samples ahead of the target sample */ static const FLAC__uint64 LINEAR_SEARCH_WITHIN_SAMPLES = FLAC__MAX_BLOCK_SIZE * 2; /* If the total number of samples is unknown, use a large value, and * force binary search immediately. */ if(right_sample == 0) { right_sample = (FLAC__uint64)(-1); BINARY_SEARCH_AFTER_ITERATION = 0; } decoder->private_->target_sample = target_sample; for( ; ; iteration++) { if (iteration == 0 || this_frame_sample > target_sample || target_sample - this_frame_sample > LINEAR_SEARCH_WITHIN_SAMPLES) { if (iteration >= BINARY_SEARCH_AFTER_ITERATION) { pos = (right_pos + left_pos) / 2; } else { #ifndef FLAC__INTEGER_ONLY_LIBRARY #if defined _MSC_VER || defined __MINGW32__ /* with MSVC you have to spoon feed it the casting */ pos = (FLAC__uint64)((FLAC__double)(FLAC__int64)(target_sample - left_sample) / (FLAC__double)(FLAC__int64)(right_sample - left_sample) * (FLAC__double)(FLAC__int64)(right_pos - left_pos)); #else pos = (FLAC__uint64)((FLAC__double)(target_sample - left_sample) / (FLAC__double)(right_sample - left_sample) * (FLAC__double)(right_pos - left_pos)); #endif #else /* a little less accurate: */ if ((target_sample-left_sample <= 0xffffffff) && (right_pos-left_pos <= 0xffffffff)) pos = (FLAC__int64)(((target_sample-left_sample) * (right_pos-left_pos)) / (right_sample-left_sample)); else /* @@@ WATCHOUT, ~2TB limit */ pos = (FLAC__int64)((((target_sample-left_sample)>>8) * ((right_pos-left_pos)>>8)) / ((right_sample-left_sample)>>16)); #endif /* @@@ TODO: might want to limit pos to some distance * before EOF, to make sure we land before the last frame, * thereby getting a this_frame_sample and so having a better * estimate. */ } /* physical seek */ if(decoder->private_->seek_callback((FLAC__StreamDecoder*)decoder, (FLAC__uint64)pos, decoder->private_->client_data) != FLAC__STREAM_DECODER_SEEK_STATUS_OK) { decoder->protected_->state = FLAC__STREAM_DECODER_SEEK_ERROR; return false; } if(!FLAC__stream_decoder_flush(decoder)) { /* above call sets the state for us */ return false; } did_a_seek = true; } else did_a_seek = false; decoder->private_->got_a_frame = false; if(!FLAC__stream_decoder_process_single(decoder)) { decoder->protected_->state = FLAC__STREAM_DECODER_SEEK_ERROR; return false; } if(!decoder->private_->got_a_frame) { if(did_a_seek) { /* this can happen if we seek to a point after the last frame; we drop * to binary search right away in this case to avoid any wasted * iterations of proportional search. */ right_pos = pos; BINARY_SEARCH_AFTER_ITERATION = 0; } else { /* this can probably only happen if total_samples is unknown and the * target_sample is past the end of the stream */ decoder->protected_->state = FLAC__STREAM_DECODER_SEEK_ERROR; return false; } } /* our write callback will change the state when it gets to the target frame */ else if(!decoder->private_->is_seeking) { break; } else { this_frame_sample = decoder->private_->last_frame.header.number.sample_number; FLAC__ASSERT(decoder->private_->last_frame.header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER); if (did_a_seek) { if (this_frame_sample <= target_sample) { /* The 'equal' case should not happen, since * FLAC__stream_decoder_process_single() * should recognize that it has hit the * target sample and we would exit through * the 'break' above. */ FLAC__ASSERT(this_frame_sample != target_sample); left_sample = this_frame_sample; /* sanity check to avoid infinite loop */ if (left_pos == pos) { decoder->protected_->state = FLAC__STREAM_DECODER_SEEK_ERROR; return false; } left_pos = pos; } else if(this_frame_sample > target_sample) { right_sample = this_frame_sample; /* sanity check to avoid infinite loop */ if (right_pos == pos) { decoder->protected_->state = FLAC__STREAM_DECODER_SEEK_ERROR; return false; } right_pos = pos; } } } } return true; } #endif FLAC__StreamDecoderReadStatus file_read_callback_dec(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes, void *client_data) { (void)client_data; if(*bytes > 0) { *bytes = fread(buffer, sizeof(FLAC__byte), *bytes, decoder->private_->file); if(ferror(decoder->private_->file)) return FLAC__STREAM_DECODER_READ_STATUS_ABORT; else if(*bytes == 0) return FLAC__STREAM_DECODER_READ_STATUS_END_OF_STREAM; else return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE; } else return FLAC__STREAM_DECODER_READ_STATUS_ABORT; /* abort to avoid a deadlock */ } FLAC__StreamDecoderSeekStatus file_seek_callback_dec(const FLAC__StreamDecoder *decoder, FLAC__uint64 absolute_byte_offset, void *client_data) { (void)client_data; if(decoder->private_->file == stdin) return FLAC__STREAM_DECODER_SEEK_STATUS_UNSUPPORTED; else if(fseeko(decoder->private_->file, (off_t)absolute_byte_offset, SEEK_SET) < 0) return FLAC__STREAM_DECODER_SEEK_STATUS_ERROR; else return FLAC__STREAM_DECODER_SEEK_STATUS_OK; } FLAC__StreamDecoderTellStatus file_tell_callback_dec(const FLAC__StreamDecoder *decoder, FLAC__uint64 *absolute_byte_offset, void *client_data) { off_t pos; (void)client_data; if(decoder->private_->file == stdin) return FLAC__STREAM_DECODER_TELL_STATUS_UNSUPPORTED; else if((pos = ftello(decoder->private_->file)) < 0) return FLAC__STREAM_DECODER_TELL_STATUS_ERROR; else { *absolute_byte_offset = (FLAC__uint64)pos; return FLAC__STREAM_DECODER_TELL_STATUS_OK; } } FLAC__StreamDecoderLengthStatus file_length_callback_(const FLAC__StreamDecoder *decoder, FLAC__uint64 *stream_length, void *client_data) { struct stat filestats; (void)client_data; if(decoder->private_->file == stdin) return FLAC__STREAM_DECODER_LENGTH_STATUS_UNSUPPORTED; else if(fstat(fileno(decoder->private_->file), &filestats) != 0) return FLAC__STREAM_DECODER_LENGTH_STATUS_ERROR; else { *stream_length = (FLAC__uint64)filestats.st_size; return FLAC__STREAM_DECODER_LENGTH_STATUS_OK; } } FLAC__bool file_eof_callback_(const FLAC__StreamDecoder *decoder, void *client_data) { (void)client_data; return feof(decoder->private_->file)? true : false; } #endif /********* End of inlined file: stream_decoder.c *********/ /********* Start of inlined file: stream_encoder.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif #if defined _MSC_VER || defined __MINGW32__ #include /* for _setmode() */ #include /* for _O_BINARY */ #endif #if defined __CYGWIN__ || defined __EMX__ #include /* for setmode(), O_BINARY */ #include /* for _O_BINARY */ #endif #include #include #include /* for malloc() */ #include /* for memcpy() */ #include /* for off_t */ #if defined _MSC_VER || defined __BORLANDC__ || defined __MINGW32__ #if _MSC_VER <= 1600 || defined __BORLANDC__ /* @@@ [2G limit] */ #define fseeko fseek #define ftello ftell #endif #endif /********* Start of inlined file: stream_encoder.h *********/ #ifndef FLAC__PROTECTED__STREAM_ENCODER_H #define FLAC__PROTECTED__STREAM_ENCODER_H #if FLAC__HAS_OGG #include "private/ogg_encoder_aspect.h" #endif #ifndef FLAC__INTEGER_ONLY_LIBRARY #define FLAC__MAX_APODIZATION_FUNCTIONS 32 typedef enum { FLAC__APODIZATION_BARTLETT, FLAC__APODIZATION_BARTLETT_HANN, FLAC__APODIZATION_BLACKMAN, FLAC__APODIZATION_BLACKMAN_HARRIS_4TERM_92DB_SIDELOBE, FLAC__APODIZATION_CONNES, FLAC__APODIZATION_FLATTOP, FLAC__APODIZATION_GAUSS, FLAC__APODIZATION_HAMMING, FLAC__APODIZATION_HANN, FLAC__APODIZATION_KAISER_BESSEL, FLAC__APODIZATION_NUTTALL, FLAC__APODIZATION_RECTANGLE, FLAC__APODIZATION_TRIANGLE, FLAC__APODIZATION_TUKEY, FLAC__APODIZATION_WELCH } FLAC__ApodizationFunction; typedef struct { FLAC__ApodizationFunction type; union { struct { FLAC__real stddev; } gauss; struct { FLAC__real p; } tukey; } parameters; } FLAC__ApodizationSpecification; #endif // #ifndef FLAC__INTEGER_ONLY_LIBRARY typedef struct FLAC__StreamEncoderProtected { FLAC__StreamEncoderState state; FLAC__bool verify; FLAC__bool streamable_subset; FLAC__bool do_md5; FLAC__bool do_mid_side_stereo; FLAC__bool loose_mid_side_stereo; unsigned channels; unsigned bits_per_sample; unsigned sample_rate; unsigned blocksize; #ifndef FLAC__INTEGER_ONLY_LIBRARY unsigned num_apodizations; FLAC__ApodizationSpecification apodizations[FLAC__MAX_APODIZATION_FUNCTIONS]; #endif unsigned max_lpc_order; unsigned qlp_coeff_precision; FLAC__bool do_qlp_coeff_prec_search; FLAC__bool do_exhaustive_model_search; FLAC__bool do_escape_coding; unsigned min_residual_partition_order; unsigned max_residual_partition_order; unsigned rice_parameter_search_dist; FLAC__uint64 total_samples_estimate; FLAC__StreamMetadata **metadata; unsigned num_metadata_blocks; FLAC__uint64 streaminfo_offset, seektable_offset, audio_offset; #if FLAC__HAS_OGG FLAC__OggEncoderAspect ogg_encoder_aspect; #endif } FLAC__StreamEncoderProtected; #endif /********* End of inlined file: stream_encoder.h *********/ #if FLAC__HAS_OGG #include "include/private/ogg_helper.h" #include "include/private/ogg_mapping.h" #endif /********* Start of inlined file: stream_encoder_framing.h *********/ #ifndef FLAC__PRIVATE__STREAM_ENCODER_FRAMING_H #define FLAC__PRIVATE__STREAM_ENCODER_FRAMING_H FLAC__bool FLAC__add_metadata_block(const FLAC__StreamMetadata *metadata, FLAC__BitWriter *bw); FLAC__bool FLAC__frame_add_header(const FLAC__FrameHeader *header, FLAC__BitWriter *bw); FLAC__bool FLAC__subframe_add_constant(const FLAC__Subframe_Constant *subframe, unsigned subframe_bps, unsigned wasted_bits, FLAC__BitWriter *bw); FLAC__bool FLAC__subframe_add_fixed(const FLAC__Subframe_Fixed *subframe, unsigned residual_samples, unsigned subframe_bps, unsigned wasted_bits, FLAC__BitWriter *bw); FLAC__bool FLAC__subframe_add_lpc(const FLAC__Subframe_LPC *subframe, unsigned residual_samples, unsigned subframe_bps, unsigned wasted_bits, FLAC__BitWriter *bw); FLAC__bool FLAC__subframe_add_verbatim(const FLAC__Subframe_Verbatim *subframe, unsigned samples, unsigned subframe_bps, unsigned wasted_bits, FLAC__BitWriter *bw); #endif /********* End of inlined file: stream_encoder_framing.h *********/ /********* Start of inlined file: window.h *********/ #ifndef FLAC__PRIVATE__WINDOW_H #define FLAC__PRIVATE__WINDOW_H #ifdef HAVE_CONFIG_H #include #endif #ifndef FLAC__INTEGER_ONLY_LIBRARY /* * FLAC__window_*() * -------------------------------------------------------------------- * Calculates window coefficients according to different apodization * functions. * * OUT window[0,L-1] * IN L (number of points in window) */ void FLAC__window_bartlett(FLAC__real *window, const FLAC__int32 L); void FLAC__window_bartlett_hann(FLAC__real *window, const FLAC__int32 L); void FLAC__window_blackman(FLAC__real *window, const FLAC__int32 L); void FLAC__window_blackman_harris_4term_92db_sidelobe(FLAC__real *window, const FLAC__int32 L); void FLAC__window_connes(FLAC__real *window, const FLAC__int32 L); void FLAC__window_flattop(FLAC__real *window, const FLAC__int32 L); void FLAC__window_gauss(FLAC__real *window, const FLAC__int32 L, const FLAC__real stddev); /* 0.0 < stddev <= 0.5 */ void FLAC__window_hamming(FLAC__real *window, const FLAC__int32 L); void FLAC__window_hann(FLAC__real *window, const FLAC__int32 L); void FLAC__window_kaiser_bessel(FLAC__real *window, const FLAC__int32 L); void FLAC__window_nuttall(FLAC__real *window, const FLAC__int32 L); void FLAC__window_rectangle(FLAC__real *window, const FLAC__int32 L); void FLAC__window_triangle(FLAC__real *window, const FLAC__int32 L); void FLAC__window_tukey(FLAC__real *window, const FLAC__int32 L, const FLAC__real p); void FLAC__window_welch(FLAC__real *window, const FLAC__int32 L); #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ #endif /********* End of inlined file: window.h *********/ #ifndef FLaC__INLINE #define FLaC__INLINE #endif #ifdef min #undef min #endif #define min(x,y) ((x)<(y)?(x):(y)) #ifdef max #undef max #endif #define max(x,y) ((x)>(y)?(x):(y)) /* Exact Rice codeword length calculation is off by default. The simple * (and fast) estimation (of how many bits a residual value will be * encoded with) in this encoder is very good, almost always yielding * compression within 0.1% of exact calculation. */ #undef EXACT_RICE_BITS_CALCULATION /* Rice parameter searching is off by default. The simple (and fast) * parameter estimation in this encoder is very good, almost always * yielding compression within 0.1% of the optimal parameters. */ #undef ENABLE_RICE_PARAMETER_SEARCH typedef struct { FLAC__int32 *data[FLAC__MAX_CHANNELS]; unsigned size; /* of each data[] in samples */ unsigned tail; } verify_input_fifo; typedef struct { const FLAC__byte *data; unsigned capacity; unsigned bytes; } verify_output; typedef enum { ENCODER_IN_MAGIC = 0, ENCODER_IN_METADATA = 1, ENCODER_IN_AUDIO = 2 } EncoderStateHint; static struct CompressionLevels { FLAC__bool do_mid_side_stereo; FLAC__bool loose_mid_side_stereo; unsigned max_lpc_order; unsigned qlp_coeff_precision; FLAC__bool do_qlp_coeff_prec_search; FLAC__bool do_escape_coding; FLAC__bool do_exhaustive_model_search; unsigned min_residual_partition_order; unsigned max_residual_partition_order; unsigned rice_parameter_search_dist; } compression_levels_[] = { { false, false, 0, 0, false, false, false, 0, 3, 0 }, { true , true , 0, 0, false, false, false, 0, 3, 0 }, { true , false, 0, 0, false, false, false, 0, 3, 0 }, { false, false, 6, 0, false, false, false, 0, 4, 0 }, { true , true , 8, 0, false, false, false, 0, 4, 0 }, { true , false, 8, 0, false, false, false, 0, 5, 0 }, { true , false, 8, 0, false, false, false, 0, 6, 0 }, { true , false, 8, 0, false, false, true , 0, 6, 0 }, { true , false, 12, 0, false, false, true , 0, 6, 0 } }; /*********************************************************************** * * Private class method prototypes * ***********************************************************************/ static void set_defaults_enc(FLAC__StreamEncoder *encoder); static void free_(FLAC__StreamEncoder *encoder); static FLAC__bool resize_buffers_(FLAC__StreamEncoder *encoder, unsigned new_blocksize); static FLAC__bool write_bitbuffer_(FLAC__StreamEncoder *encoder, unsigned samples, FLAC__bool is_last_block); static FLAC__StreamEncoderWriteStatus write_frame_(FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], size_t bytes, unsigned samples, FLAC__bool is_last_block); static void update_metadata_(const FLAC__StreamEncoder *encoder); #if FLAC__HAS_OGG static void update_ogg_metadata_(FLAC__StreamEncoder *encoder); #endif static FLAC__bool process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_fractional_block, FLAC__bool is_last_block); static FLAC__bool process_subframes_(FLAC__StreamEncoder *encoder, FLAC__bool is_fractional_block); static FLAC__bool process_subframe_( FLAC__StreamEncoder *encoder, unsigned min_partition_order, unsigned max_partition_order, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const FLAC__int32 integer_signal[], FLAC__Subframe *subframe[2], FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents[2], FLAC__int32 *residual[2], unsigned *best_subframe, unsigned *best_bits ); static FLAC__bool add_subframe_( FLAC__StreamEncoder *encoder, unsigned blocksize, unsigned subframe_bps, const FLAC__Subframe *subframe, FLAC__BitWriter *frame ); static unsigned evaluate_constant_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int32 signal, unsigned blocksize, unsigned subframe_bps, FLAC__Subframe *subframe ); static unsigned evaluate_fixed_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned rice_parameter, unsigned rice_parameter_limit, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__Subframe *subframe, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents ); #ifndef FLAC__INTEGER_ONLY_LIBRARY static unsigned evaluate_lpc_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], const FLAC__real lp_coeff[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned rice_parameter_limit, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__Subframe *subframe, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents ); #endif static unsigned evaluate_verbatim_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], unsigned blocksize, unsigned subframe_bps, FLAC__Subframe *subframe ); static unsigned find_best_partition_order_( struct FLAC__StreamEncoderPrivate *private_, const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned rice_parameter_limit, unsigned min_partition_order, unsigned max_partition_order, unsigned bps, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__EntropyCodingMethod *best_ecm ); static void precompute_partition_info_sums_( const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order, unsigned bps ); static void precompute_partition_info_escapes_( const FLAC__int32 residual[], unsigned raw_bits_per_partition[], unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order ); static FLAC__bool set_partitioned_rice_( #ifdef EXACT_RICE_BITS_CALCULATION const FLAC__int32 residual[], #endif const FLAC__uint64 abs_residual_partition_sums[], const unsigned raw_bits_per_partition[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_limit, const unsigned rice_parameter_search_dist, const unsigned partition_order, const FLAC__bool search_for_escapes, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, unsigned *bits ); static unsigned get_wasted_bits_(FLAC__int32 signal[], unsigned samples); /* verify-related routines: */ static void append_to_verify_fifo_( verify_input_fifo *fifo, const FLAC__int32 * const input[], unsigned input_offset, unsigned channels, unsigned wide_samples ); static void append_to_verify_fifo_interleaved_( verify_input_fifo *fifo, const FLAC__int32 input[], unsigned input_offset, unsigned channels, unsigned wide_samples ); static FLAC__StreamDecoderReadStatus verify_read_callback_(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes, void *client_data); static FLAC__StreamDecoderWriteStatus verify_write_callback_(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *client_data); static void verify_metadata_callback_(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetadata *metadata, void *client_data); static void verify_error_callback_(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data); static FLAC__StreamEncoderReadStatus file_read_callback_enc(const FLAC__StreamEncoder *encoder, FLAC__byte buffer[], size_t *bytes, void *client_data); static FLAC__StreamEncoderSeekStatus file_seek_callback_enc(const FLAC__StreamEncoder *encoder, FLAC__uint64 absolute_byte_offset, void *client_data); static FLAC__StreamEncoderTellStatus file_tell_callback_enc(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_byte_offset, void *client_data); static FLAC__StreamEncoderWriteStatus file_write_callback_(const FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], size_t bytes, unsigned samples, unsigned current_frame, void *client_data); static FILE *get_binary_stdout_(void); /*********************************************************************** * * Private class data * ***********************************************************************/ typedef struct FLAC__StreamEncoderPrivate { unsigned input_capacity; /* current size (in samples) of the signal and residual buffers */ FLAC__int32 *integer_signal[FLAC__MAX_CHANNELS]; /* the integer version of the input signal */ FLAC__int32 *integer_signal_mid_side[2]; /* the integer version of the mid-side input signal (stereo only) */ #ifndef FLAC__INTEGER_ONLY_LIBRARY FLAC__real *real_signal[FLAC__MAX_CHANNELS]; /* (@@@ currently unused) the floating-point version of the input signal */ FLAC__real *real_signal_mid_side[2]; /* (@@@ currently unused) the floating-point version of the mid-side input signal (stereo only) */ FLAC__real *window[FLAC__MAX_APODIZATION_FUNCTIONS]; /* the pre-computed floating-point window for each apodization function */ FLAC__real *windowed_signal; /* the integer_signal[] * current window[] */ #endif unsigned subframe_bps[FLAC__MAX_CHANNELS]; /* the effective bits per sample of the input signal (stream bps - wasted bits) */ unsigned subframe_bps_mid_side[2]; /* the effective bits per sample of the mid-side input signal (stream bps - wasted bits + 0/1) */ FLAC__int32 *residual_workspace[FLAC__MAX_CHANNELS][2]; /* each channel has a candidate and best workspace where the subframe residual signals will be stored */ FLAC__int32 *residual_workspace_mid_side[2][2]; FLAC__Subframe subframe_workspace[FLAC__MAX_CHANNELS][2]; FLAC__Subframe subframe_workspace_mid_side[2][2]; FLAC__Subframe *subframe_workspace_ptr[FLAC__MAX_CHANNELS][2]; FLAC__Subframe *subframe_workspace_ptr_mid_side[2][2]; FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_workspace[FLAC__MAX_CHANNELS][2]; FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_workspace_mid_side[FLAC__MAX_CHANNELS][2]; FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents_workspace_ptr[FLAC__MAX_CHANNELS][2]; FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents_workspace_ptr_mid_side[FLAC__MAX_CHANNELS][2]; unsigned best_subframe[FLAC__MAX_CHANNELS]; /* index (0 or 1) into 2nd dimension of the above workspaces */ unsigned best_subframe_mid_side[2]; unsigned best_subframe_bits[FLAC__MAX_CHANNELS]; /* size in bits of the best subframe for each channel */ unsigned best_subframe_bits_mid_side[2]; FLAC__uint64 *abs_residual_partition_sums; /* workspace where the sum of abs(candidate residual) for each partition is stored */ unsigned *raw_bits_per_partition; /* workspace where the sum of silog2(candidate residual) for each partition is stored */ FLAC__BitWriter *frame; /* the current frame being worked on */ unsigned loose_mid_side_stereo_frames; /* rounded number of frames the encoder will use before trying both independent and mid/side frames again */ unsigned loose_mid_side_stereo_frame_count; /* number of frames using the current channel assignment */ FLAC__ChannelAssignment last_channel_assignment; FLAC__StreamMetadata streaminfo; /* scratchpad for STREAMINFO as it is built */ FLAC__StreamMetadata_SeekTable *seek_table; /* pointer into encoder->protected_->metadata_ where the seek table is */ unsigned current_sample_number; unsigned current_frame_number; FLAC__MD5Context md5context; FLAC__CPUInfo cpuinfo; #ifndef FLAC__INTEGER_ONLY_LIBRARY unsigned (*local_fixed_compute_best_predictor)(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); #else unsigned (*local_fixed_compute_best_predictor)(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); #endif #ifndef FLAC__INTEGER_ONLY_LIBRARY void (*local_lpc_compute_autocorrelation)(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]); void (*local_lpc_compute_residual_from_qlp_coefficients)(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); void (*local_lpc_compute_residual_from_qlp_coefficients_64bit)(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); void (*local_lpc_compute_residual_from_qlp_coefficients_16bit)(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); #endif FLAC__bool use_wide_by_block; /* use slow 64-bit versions of some functions because of the block size */ FLAC__bool use_wide_by_partition; /* use slow 64-bit versions of some functions because of the min partition order and blocksize */ FLAC__bool use_wide_by_order; /* use slow 64-bit versions of some functions because of the lpc order */ FLAC__bool disable_constant_subframes; FLAC__bool disable_fixed_subframes; FLAC__bool disable_verbatim_subframes; #if FLAC__HAS_OGG FLAC__bool is_ogg; #endif FLAC__StreamEncoderReadCallback read_callback; /* currently only needed for Ogg FLAC */ FLAC__StreamEncoderSeekCallback seek_callback; FLAC__StreamEncoderTellCallback tell_callback; FLAC__StreamEncoderWriteCallback write_callback; FLAC__StreamEncoderMetadataCallback metadata_callback; FLAC__StreamEncoderProgressCallback progress_callback; void *client_data; unsigned first_seekpoint_to_check; FILE *file; /* only used when encoding to a file */ FLAC__uint64 bytes_written; FLAC__uint64 samples_written; unsigned frames_written; unsigned total_frames_estimate; /* unaligned (original) pointers to allocated data */ FLAC__int32 *integer_signal_unaligned[FLAC__MAX_CHANNELS]; FLAC__int32 *integer_signal_mid_side_unaligned[2]; #ifndef FLAC__INTEGER_ONLY_LIBRARY FLAC__real *real_signal_unaligned[FLAC__MAX_CHANNELS]; /* (@@@ currently unused) */ FLAC__real *real_signal_mid_side_unaligned[2]; /* (@@@ currently unused) */ FLAC__real *window_unaligned[FLAC__MAX_APODIZATION_FUNCTIONS]; FLAC__real *windowed_signal_unaligned; #endif FLAC__int32 *residual_workspace_unaligned[FLAC__MAX_CHANNELS][2]; FLAC__int32 *residual_workspace_mid_side_unaligned[2][2]; FLAC__uint64 *abs_residual_partition_sums_unaligned; unsigned *raw_bits_per_partition_unaligned; /* * These fields have been moved here from private function local * declarations merely to save stack space during encoding. */ #ifndef FLAC__INTEGER_ONLY_LIBRARY FLAC__real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER]; /* from process_subframe_() */ #endif FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_extra[2]; /* from find_best_partition_order_() */ /* * The data for the verify section */ struct { FLAC__StreamDecoder *decoder; EncoderStateHint state_hint; FLAC__bool needs_magic_hack; verify_input_fifo input_fifo; verify_output output; struct { FLAC__uint64 absolute_sample; unsigned frame_number; unsigned channel; unsigned sample; FLAC__int32 expected; FLAC__int32 got; } error_stats; } verify; FLAC__bool is_being_deleted; /* if true, call to ..._finish() from ..._delete() will not call the callbacks */ } FLAC__StreamEncoderPrivate; /*********************************************************************** * * Public static class data * ***********************************************************************/ FLAC_API const char * const FLAC__StreamEncoderStateString[] = { "FLAC__STREAM_ENCODER_OK", "FLAC__STREAM_ENCODER_UNINITIALIZED", "FLAC__STREAM_ENCODER_OGG_ERROR", "FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR", "FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA", "FLAC__STREAM_ENCODER_CLIENT_ERROR", "FLAC__STREAM_ENCODER_IO_ERROR", "FLAC__STREAM_ENCODER_FRAMING_ERROR", "FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR" }; FLAC_API const char * const FLAC__StreamEncoderInitStatusString[] = { "FLAC__STREAM_ENCODER_INIT_STATUS_OK", "FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR", "FLAC__STREAM_ENCODER_INIT_STATUS_UNSUPPORTED_CONTAINER", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_CALLBACKS", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_NUMBER_OF_CHANNELS", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BITS_PER_SAMPLE", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_SAMPLE_RATE", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BLOCK_SIZE", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_MAX_LPC_ORDER", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_QLP_COEFF_PRECISION", "FLAC__STREAM_ENCODER_INIT_STATUS_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER", "FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA", "FLAC__STREAM_ENCODER_INIT_STATUS_ALREADY_INITIALIZED" }; FLAC_API const char * const FLAC__treamEncoderReadStatusString[] = { "FLAC__STREAM_ENCODER_READ_STATUS_CONTINUE", "FLAC__STREAM_ENCODER_READ_STATUS_END_OF_STREAM", "FLAC__STREAM_ENCODER_READ_STATUS_ABORT", "FLAC__STREAM_ENCODER_READ_STATUS_UNSUPPORTED" }; FLAC_API const char * const FLAC__StreamEncoderWriteStatusString[] = { "FLAC__STREAM_ENCODER_WRITE_STATUS_OK", "FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR" }; FLAC_API const char * const FLAC__StreamEncoderSeekStatusString[] = { "FLAC__STREAM_ENCODER_SEEK_STATUS_OK", "FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR", "FLAC__STREAM_ENCODER_SEEK_STATUS_UNSUPPORTED" }; FLAC_API const char * const FLAC__StreamEncoderTellStatusString[] = { "FLAC__STREAM_ENCODER_TELL_STATUS_OK", "FLAC__STREAM_ENCODER_TELL_STATUS_ERROR", "FLAC__STREAM_ENCODER_TELL_STATUS_UNSUPPORTED" }; /* Number of samples that will be overread to watch for end of stream. By * 'overread', we mean that the FLAC__stream_encoder_process*() calls will * always try to read blocksize+1 samples before encoding a block, so that * even if the stream has a total sample count that is an integral multiple * of the blocksize, we will still notice when we are encoding the last * block. This is needed, for example, to correctly set the end-of-stream * marker in Ogg FLAC. * * WATCHOUT: some parts of the code assert that OVERREAD_ == 1 and there's * not really any reason to change it. */ static const unsigned OVERREAD_ = 1; /*********************************************************************** * * Class constructor/destructor * */ FLAC_API FLAC__StreamEncoder *FLAC__stream_encoder_new(void) { FLAC__StreamEncoder *encoder; unsigned i; FLAC__ASSERT(sizeof(int) >= 4); /* we want to die right away if this is not true */ encoder = (FLAC__StreamEncoder*)calloc(1, sizeof(FLAC__StreamEncoder)); if(encoder == 0) { return 0; } encoder->protected_ = (FLAC__StreamEncoderProtected*)calloc(1, sizeof(FLAC__StreamEncoderProtected)); if(encoder->protected_ == 0) { free(encoder); return 0; } encoder->private_ = (FLAC__StreamEncoderPrivate*)calloc(1, sizeof(FLAC__StreamEncoderPrivate)); if(encoder->private_ == 0) { free(encoder->protected_); free(encoder); return 0; } encoder->private_->frame = FLAC__bitwriter_new(); if(encoder->private_->frame == 0) { free(encoder->private_); free(encoder->protected_); free(encoder); return 0; } encoder->private_->file = 0; set_defaults_enc(encoder); encoder->private_->is_being_deleted = false; for(i = 0; i < FLAC__MAX_CHANNELS; i++) { encoder->private_->subframe_workspace_ptr[i][0] = &encoder->private_->subframe_workspace[i][0]; encoder->private_->subframe_workspace_ptr[i][1] = &encoder->private_->subframe_workspace[i][1]; } for(i = 0; i < 2; i++) { encoder->private_->subframe_workspace_ptr_mid_side[i][0] = &encoder->private_->subframe_workspace_mid_side[i][0]; encoder->private_->subframe_workspace_ptr_mid_side[i][1] = &encoder->private_->subframe_workspace_mid_side[i][1]; } for(i = 0; i < FLAC__MAX_CHANNELS; i++) { encoder->private_->partitioned_rice_contents_workspace_ptr[i][0] = &encoder->private_->partitioned_rice_contents_workspace[i][0]; encoder->private_->partitioned_rice_contents_workspace_ptr[i][1] = &encoder->private_->partitioned_rice_contents_workspace[i][1]; } for(i = 0; i < 2; i++) { encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][0] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]; encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][1] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]; } for(i = 0; i < FLAC__MAX_CHANNELS; i++) { FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][0]); FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][1]); } for(i = 0; i < 2; i++) { FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]); FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]); } for(i = 0; i < 2; i++) FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_extra[i]); encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED; return encoder; } FLAC_API void FLAC__stream_encoder_delete(FLAC__StreamEncoder *encoder) { unsigned i; FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->protected_); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->private_->frame); encoder->private_->is_being_deleted = true; (void)FLAC__stream_encoder_finish(encoder); if(0 != encoder->private_->verify.decoder) FLAC__stream_decoder_delete(encoder->private_->verify.decoder); for(i = 0; i < FLAC__MAX_CHANNELS; i++) { FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][0]); FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][1]); } for(i = 0; i < 2; i++) { FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]); FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]); } for(i = 0; i < 2; i++) FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_extra[i]); FLAC__bitwriter_delete(encoder->private_->frame); free(encoder->private_); free(encoder->protected_); free(encoder); } /*********************************************************************** * * Public class methods * ***********************************************************************/ static FLAC__StreamEncoderInitStatus init_stream_internal_enc( FLAC__StreamEncoder *encoder, FLAC__StreamEncoderReadCallback read_callback, FLAC__StreamEncoderWriteCallback write_callback, FLAC__StreamEncoderSeekCallback seek_callback, FLAC__StreamEncoderTellCallback tell_callback, FLAC__StreamEncoderMetadataCallback metadata_callback, void *client_data, FLAC__bool is_ogg ) { unsigned i; FLAC__bool metadata_has_seektable, metadata_has_vorbis_comment, metadata_picture_has_type1, metadata_picture_has_type2; FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return FLAC__STREAM_ENCODER_INIT_STATUS_ALREADY_INITIALIZED; #if !FLAC__HAS_OGG if(is_ogg) return FLAC__STREAM_ENCODER_INIT_STATUS_UNSUPPORTED_CONTAINER; #endif if(0 == write_callback || (seek_callback && 0 == tell_callback)) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_CALLBACKS; if(encoder->protected_->channels == 0 || encoder->protected_->channels > FLAC__MAX_CHANNELS) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_NUMBER_OF_CHANNELS; if(encoder->protected_->channels != 2) { encoder->protected_->do_mid_side_stereo = false; encoder->protected_->loose_mid_side_stereo = false; } else if(!encoder->protected_->do_mid_side_stereo) encoder->protected_->loose_mid_side_stereo = false; if(encoder->protected_->bits_per_sample >= 32) encoder->protected_->do_mid_side_stereo = false; /* since we currenty do 32-bit math, the side channel would have 33 bps and overflow */ if(encoder->protected_->bits_per_sample < FLAC__MIN_BITS_PER_SAMPLE || encoder->protected_->bits_per_sample > FLAC__REFERENCE_CODEC_MAX_BITS_PER_SAMPLE) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BITS_PER_SAMPLE; if(!FLAC__format_sample_rate_is_valid(encoder->protected_->sample_rate)) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_SAMPLE_RATE; if(encoder->protected_->blocksize == 0) { if(encoder->protected_->max_lpc_order == 0) encoder->protected_->blocksize = 1152; else encoder->protected_->blocksize = 4096; } if(encoder->protected_->blocksize < FLAC__MIN_BLOCK_SIZE || encoder->protected_->blocksize > FLAC__MAX_BLOCK_SIZE) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BLOCK_SIZE; if(encoder->protected_->max_lpc_order > FLAC__MAX_LPC_ORDER) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_MAX_LPC_ORDER; if(encoder->protected_->blocksize < encoder->protected_->max_lpc_order) return FLAC__STREAM_ENCODER_INIT_STATUS_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER; if(encoder->protected_->qlp_coeff_precision == 0) { if(encoder->protected_->bits_per_sample < 16) { /* @@@ need some data about how to set this here w.r.t. blocksize and sample rate */ /* @@@ until then we'll make a guess */ encoder->protected_->qlp_coeff_precision = max(FLAC__MIN_QLP_COEFF_PRECISION, 2 + encoder->protected_->bits_per_sample / 2); } else if(encoder->protected_->bits_per_sample == 16) { if(encoder->protected_->blocksize <= 192) encoder->protected_->qlp_coeff_precision = 7; else if(encoder->protected_->blocksize <= 384) encoder->protected_->qlp_coeff_precision = 8; else if(encoder->protected_->blocksize <= 576) encoder->protected_->qlp_coeff_precision = 9; else if(encoder->protected_->blocksize <= 1152) encoder->protected_->qlp_coeff_precision = 10; else if(encoder->protected_->blocksize <= 2304) encoder->protected_->qlp_coeff_precision = 11; else if(encoder->protected_->blocksize <= 4608) encoder->protected_->qlp_coeff_precision = 12; else encoder->protected_->qlp_coeff_precision = 13; } else { if(encoder->protected_->blocksize <= 384) encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION-2; else if(encoder->protected_->blocksize <= 1152) encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION-1; else encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION; } FLAC__ASSERT(encoder->protected_->qlp_coeff_precision <= FLAC__MAX_QLP_COEFF_PRECISION); } else if(encoder->protected_->qlp_coeff_precision < FLAC__MIN_QLP_COEFF_PRECISION || encoder->protected_->qlp_coeff_precision > FLAC__MAX_QLP_COEFF_PRECISION) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_QLP_COEFF_PRECISION; if(encoder->protected_->streamable_subset) { if( encoder->protected_->blocksize != 192 && encoder->protected_->blocksize != 576 && encoder->protected_->blocksize != 1152 && encoder->protected_->blocksize != 2304 && encoder->protected_->blocksize != 4608 && encoder->protected_->blocksize != 256 && encoder->protected_->blocksize != 512 && encoder->protected_->blocksize != 1024 && encoder->protected_->blocksize != 2048 && encoder->protected_->blocksize != 4096 && encoder->protected_->blocksize != 8192 && encoder->protected_->blocksize != 16384 ) return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE; if(!FLAC__format_sample_rate_is_subset(encoder->protected_->sample_rate)) return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE; if( encoder->protected_->bits_per_sample != 8 && encoder->protected_->bits_per_sample != 12 && encoder->protected_->bits_per_sample != 16 && encoder->protected_->bits_per_sample != 20 && encoder->protected_->bits_per_sample != 24 ) return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE; if(encoder->protected_->max_residual_partition_order > FLAC__SUBSET_MAX_RICE_PARTITION_ORDER) return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE; if( encoder->protected_->sample_rate <= 48000 && ( encoder->protected_->blocksize > FLAC__SUBSET_MAX_BLOCK_SIZE_48000HZ || encoder->protected_->max_lpc_order > FLAC__SUBSET_MAX_LPC_ORDER_48000HZ ) ) { return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE; } } if(encoder->protected_->max_residual_partition_order >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN)) encoder->protected_->max_residual_partition_order = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1; if(encoder->protected_->min_residual_partition_order >= encoder->protected_->max_residual_partition_order) encoder->protected_->min_residual_partition_order = encoder->protected_->max_residual_partition_order; #if FLAC__HAS_OGG /* reorder metadata if necessary to ensure that any VORBIS_COMMENT is the first, according to the mapping spec */ if(is_ogg && 0 != encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 1) { unsigned i; for(i = 1; i < encoder->protected_->num_metadata_blocks; i++) { if(0 != encoder->protected_->metadata[i] && encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_VORBIS_COMMENT) { FLAC__StreamMetadata *vc = encoder->protected_->metadata[i]; for( ; i > 0; i--) encoder->protected_->metadata[i] = encoder->protected_->metadata[i-1]; encoder->protected_->metadata[0] = vc; break; } } } #endif /* keep track of any SEEKTABLE block */ if(0 != encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 0) { unsigned i; for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) { if(0 != encoder->protected_->metadata[i] && encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_SEEKTABLE) { encoder->private_->seek_table = &encoder->protected_->metadata[i]->data.seek_table; break; /* take only the first one */ } } } /* validate metadata */ if(0 == encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 0) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; metadata_has_seektable = false; metadata_has_vorbis_comment = false; metadata_picture_has_type1 = false; metadata_picture_has_type2 = false; for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) { const FLAC__StreamMetadata *m = encoder->protected_->metadata[i]; if(m->type == FLAC__METADATA_TYPE_STREAMINFO) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; else if(m->type == FLAC__METADATA_TYPE_SEEKTABLE) { if(metadata_has_seektable) /* only one is allowed */ return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; metadata_has_seektable = true; if(!FLAC__format_seektable_is_legal(&m->data.seek_table)) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; } else if(m->type == FLAC__METADATA_TYPE_VORBIS_COMMENT) { if(metadata_has_vorbis_comment) /* only one is allowed */ return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; metadata_has_vorbis_comment = true; } else if(m->type == FLAC__METADATA_TYPE_CUESHEET) { if(!FLAC__format_cuesheet_is_legal(&m->data.cue_sheet, m->data.cue_sheet.is_cd, /*violation=*/0)) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; } else if(m->type == FLAC__METADATA_TYPE_PICTURE) { if(!FLAC__format_picture_is_legal(&m->data.picture, /*violation=*/0)) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; if(m->data.picture.type == FLAC__STREAM_METADATA_PICTURE_TYPE_FILE_ICON_STANDARD) { if(metadata_picture_has_type1) /* there should only be 1 per stream */ return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; metadata_picture_has_type1 = true; /* standard icon must be 32x32 pixel PNG */ if( m->data.picture.type == FLAC__STREAM_METADATA_PICTURE_TYPE_FILE_ICON_STANDARD && ( (strcmp(m->data.picture.mime_type, "image/png") && strcmp(m->data.picture.mime_type, "-->")) || m->data.picture.width != 32 || m->data.picture.height != 32 ) ) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; } else if(m->data.picture.type == FLAC__STREAM_METADATA_PICTURE_TYPE_FILE_ICON) { if(metadata_picture_has_type2) /* there should only be 1 per stream */ return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; metadata_picture_has_type2 = true; } } } encoder->private_->input_capacity = 0; for(i = 0; i < encoder->protected_->channels; i++) { encoder->private_->integer_signal_unaligned[i] = encoder->private_->integer_signal[i] = 0; #ifndef FLAC__INTEGER_ONLY_LIBRARY encoder->private_->real_signal_unaligned[i] = encoder->private_->real_signal[i] = 0; #endif } for(i = 0; i < 2; i++) { encoder->private_->integer_signal_mid_side_unaligned[i] = encoder->private_->integer_signal_mid_side[i] = 0; #ifndef FLAC__INTEGER_ONLY_LIBRARY encoder->private_->real_signal_mid_side_unaligned[i] = encoder->private_->real_signal_mid_side[i] = 0; #endif } #ifndef FLAC__INTEGER_ONLY_LIBRARY for(i = 0; i < encoder->protected_->num_apodizations; i++) encoder->private_->window_unaligned[i] = encoder->private_->window[i] = 0; encoder->private_->windowed_signal_unaligned = encoder->private_->windowed_signal = 0; #endif for(i = 0; i < encoder->protected_->channels; i++) { encoder->private_->residual_workspace_unaligned[i][0] = encoder->private_->residual_workspace[i][0] = 0; encoder->private_->residual_workspace_unaligned[i][1] = encoder->private_->residual_workspace[i][1] = 0; encoder->private_->best_subframe[i] = 0; } for(i = 0; i < 2; i++) { encoder->private_->residual_workspace_mid_side_unaligned[i][0] = encoder->private_->residual_workspace_mid_side[i][0] = 0; encoder->private_->residual_workspace_mid_side_unaligned[i][1] = encoder->private_->residual_workspace_mid_side[i][1] = 0; encoder->private_->best_subframe_mid_side[i] = 0; } encoder->private_->abs_residual_partition_sums_unaligned = encoder->private_->abs_residual_partition_sums = 0; encoder->private_->raw_bits_per_partition_unaligned = encoder->private_->raw_bits_per_partition = 0; #ifndef FLAC__INTEGER_ONLY_LIBRARY encoder->private_->loose_mid_side_stereo_frames = (unsigned)((FLAC__double)encoder->protected_->sample_rate * 0.4 / (FLAC__double)encoder->protected_->blocksize + 0.5); #else /* 26214 is the approximate fixed-point equivalent to 0.4 (0.4 * 2^16) */ /* sample rate can be up to 655350 Hz, and thus use 20 bits, so we do the multiply÷ by hand */ FLAC__ASSERT(FLAC__MAX_SAMPLE_RATE <= 655350); FLAC__ASSERT(FLAC__MAX_BLOCK_SIZE <= 65535); FLAC__ASSERT(encoder->protected_->sample_rate <= 655350); FLAC__ASSERT(encoder->protected_->blocksize <= 65535); encoder->private_->loose_mid_side_stereo_frames = (unsigned)FLAC__fixedpoint_trunc((((FLAC__uint64)(encoder->protected_->sample_rate) * (FLAC__uint64)(26214)) << 16) / (encoder->protected_->blocksize<<16) + FLAC__FP_ONE_HALF); #endif if(encoder->private_->loose_mid_side_stereo_frames == 0) encoder->private_->loose_mid_side_stereo_frames = 1; encoder->private_->loose_mid_side_stereo_frame_count = 0; encoder->private_->current_sample_number = 0; encoder->private_->current_frame_number = 0; encoder->private_->use_wide_by_block = (encoder->protected_->bits_per_sample + FLAC__bitmath_ilog2(encoder->protected_->blocksize)+1 > 30); encoder->private_->use_wide_by_order = (encoder->protected_->bits_per_sample + FLAC__bitmath_ilog2(max(encoder->protected_->max_lpc_order, FLAC__MAX_FIXED_ORDER))+1 > 30); /*@@@ need to use this? */ encoder->private_->use_wide_by_partition = (false); /*@@@ need to set this */ /* * get the CPU info and set the function pointers */ FLAC__cpu_info(&encoder->private_->cpuinfo); /* first default to the non-asm routines */ #ifndef FLAC__INTEGER_ONLY_LIBRARY encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation; #endif encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor; #ifndef FLAC__INTEGER_ONLY_LIBRARY encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients; #endif /* now override with asm where appropriate */ #ifndef FLAC__INTEGER_ONLY_LIBRARY # ifndef FLAC__NO_ASM if(encoder->private_->cpuinfo.use_asm) { # ifdef FLAC__CPU_IA32 FLAC__ASSERT(encoder->private_->cpuinfo.type == FLAC__CPUINFO_TYPE_IA32); # ifdef FLAC__HAS_NASM if(encoder->private_->cpuinfo.data.ia32.sse) { if(encoder->protected_->max_lpc_order < 4) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_4; else if(encoder->protected_->max_lpc_order < 8) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_8; else if(encoder->protected_->max_lpc_order < 12) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_12; else encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32; } else if(encoder->private_->cpuinfo.data.ia32._3dnow) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_3dnow; else encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32; if(encoder->private_->cpuinfo.data.ia32.mmx) { encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx; } else { encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; } if(encoder->private_->cpuinfo.data.ia32.mmx && encoder->private_->cpuinfo.data.ia32.cmov) encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_asm_ia32_mmx_cmov; # endif /* FLAC__HAS_NASM */ # endif /* FLAC__CPU_IA32 */ } # endif /* !FLAC__NO_ASM */ #endif /* !FLAC__INTEGER_ONLY_LIBRARY */ /* finally override based on wide-ness if necessary */ if(encoder->private_->use_wide_by_block) { encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_wide; } /* set state to OK; from here on, errors are fatal and we'll override the state then */ encoder->protected_->state = FLAC__STREAM_ENCODER_OK; #if FLAC__HAS_OGG encoder->private_->is_ogg = is_ogg; if(is_ogg && !FLAC__ogg_encoder_aspect_init(&encoder->protected_->ogg_encoder_aspect)) { encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } #endif encoder->private_->read_callback = read_callback; encoder->private_->write_callback = write_callback; encoder->private_->seek_callback = seek_callback; encoder->private_->tell_callback = tell_callback; encoder->private_->metadata_callback = metadata_callback; encoder->private_->client_data = client_data; if(!resize_buffers_(encoder, encoder->protected_->blocksize)) { /* the above function sets the state for us in case of an error */ return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } if(!FLAC__bitwriter_init(encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } /* * Set up the verify stuff if necessary */ if(encoder->protected_->verify) { /* * First, set up the fifo which will hold the * original signal to compare against */ encoder->private_->verify.input_fifo.size = encoder->protected_->blocksize+OVERREAD_; for(i = 0; i < encoder->protected_->channels; i++) { if(0 == (encoder->private_->verify.input_fifo.data[i] = (FLAC__int32*)safe_malloc_mul_2op_(sizeof(FLAC__int32), /*times*/encoder->private_->verify.input_fifo.size))) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } } encoder->private_->verify.input_fifo.tail = 0; /* * Now set up a stream decoder for verification */ encoder->private_->verify.decoder = FLAC__stream_decoder_new(); if(0 == encoder->private_->verify.decoder) { encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } if(FLAC__stream_decoder_init_stream(encoder->private_->verify.decoder, verify_read_callback_, /*seek_callback=*/0, /*tell_callback=*/0, /*length_callback=*/0, /*eof_callback=*/0, verify_write_callback_, verify_metadata_callback_, verify_error_callback_, /*client_data=*/encoder) != FLAC__STREAM_DECODER_INIT_STATUS_OK) { encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } } encoder->private_->verify.error_stats.absolute_sample = 0; encoder->private_->verify.error_stats.frame_number = 0; encoder->private_->verify.error_stats.channel = 0; encoder->private_->verify.error_stats.sample = 0; encoder->private_->verify.error_stats.expected = 0; encoder->private_->verify.error_stats.got = 0; /* * These must be done before we write any metadata, because that * calls the write_callback, which uses these values. */ encoder->private_->first_seekpoint_to_check = 0; encoder->private_->samples_written = 0; encoder->protected_->streaminfo_offset = 0; encoder->protected_->seektable_offset = 0; encoder->protected_->audio_offset = 0; /* * write the stream header */ if(encoder->protected_->verify) encoder->private_->verify.state_hint = ENCODER_IN_MAGIC; if(!FLAC__bitwriter_write_raw_uint32(encoder->private_->frame, FLAC__STREAM_SYNC, FLAC__STREAM_SYNC_LEN)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } if(!write_bitbuffer_(encoder, 0, /*is_last_block=*/false)) { /* the above function sets the state for us in case of an error */ return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } /* * write the STREAMINFO metadata block */ if(encoder->protected_->verify) encoder->private_->verify.state_hint = ENCODER_IN_METADATA; encoder->private_->streaminfo.type = FLAC__METADATA_TYPE_STREAMINFO; encoder->private_->streaminfo.is_last = false; /* we will have at a minimum a VORBIS_COMMENT afterwards */ encoder->private_->streaminfo.length = FLAC__STREAM_METADATA_STREAMINFO_LENGTH; encoder->private_->streaminfo.data.stream_info.min_blocksize = encoder->protected_->blocksize; /* this encoder uses the same blocksize for the whole stream */ encoder->private_->streaminfo.data.stream_info.max_blocksize = encoder->protected_->blocksize; encoder->private_->streaminfo.data.stream_info.min_framesize = 0; /* we don't know this yet; have to fill it in later */ encoder->private_->streaminfo.data.stream_info.max_framesize = 0; /* we don't know this yet; have to fill it in later */ encoder->private_->streaminfo.data.stream_info.sample_rate = encoder->protected_->sample_rate; encoder->private_->streaminfo.data.stream_info.channels = encoder->protected_->channels; encoder->private_->streaminfo.data.stream_info.bits_per_sample = encoder->protected_->bits_per_sample; encoder->private_->streaminfo.data.stream_info.total_samples = encoder->protected_->total_samples_estimate; /* we will replace this later with the real total */ memset(encoder->private_->streaminfo.data.stream_info.md5sum, 0, 16); /* we don't know this yet; have to fill it in later */ if(encoder->protected_->do_md5) FLAC__MD5Init(&encoder->private_->md5context); if(!FLAC__add_metadata_block(&encoder->private_->streaminfo, encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } if(!write_bitbuffer_(encoder, 0, /*is_last_block=*/false)) { /* the above function sets the state for us in case of an error */ return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } /* * Now that the STREAMINFO block is written, we can init this to an * absurdly-high value... */ encoder->private_->streaminfo.data.stream_info.min_framesize = (1u << FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN) - 1; /* ... and clear this to 0 */ encoder->private_->streaminfo.data.stream_info.total_samples = 0; /* * Check to see if the supplied metadata contains a VORBIS_COMMENT; * if not, we will write an empty one (FLAC__add_metadata_block() * automatically supplies the vendor string). * * WATCHOUT: the Ogg FLAC mapping requires us to write this block after * the STREAMINFO. (In the case that metadata_has_vorbis_comment is * true it will have already insured that the metadata list is properly * ordered.) */ if(!metadata_has_vorbis_comment) { FLAC__StreamMetadata vorbis_comment; vorbis_comment.type = FLAC__METADATA_TYPE_VORBIS_COMMENT; vorbis_comment.is_last = (encoder->protected_->num_metadata_blocks == 0); vorbis_comment.length = 4 + 4; /* MAGIC NUMBER */ vorbis_comment.data.vorbis_comment.vendor_string.length = 0; vorbis_comment.data.vorbis_comment.vendor_string.entry = 0; vorbis_comment.data.vorbis_comment.num_comments = 0; vorbis_comment.data.vorbis_comment.comments = 0; if(!FLAC__add_metadata_block(&vorbis_comment, encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } if(!write_bitbuffer_(encoder, 0, /*is_last_block=*/false)) { /* the above function sets the state for us in case of an error */ return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } } /* * write the user's metadata blocks */ for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) { encoder->protected_->metadata[i]->is_last = (i == encoder->protected_->num_metadata_blocks - 1); if(!FLAC__add_metadata_block(encoder->protected_->metadata[i], encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } if(!write_bitbuffer_(encoder, 0, /*is_last_block=*/false)) { /* the above function sets the state for us in case of an error */ return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } } /* now that all the metadata is written, we save the stream offset */ if(encoder->private_->tell_callback && encoder->private_->tell_callback(encoder, &encoder->protected_->audio_offset, encoder->private_->client_data) == FLAC__STREAM_ENCODER_TELL_STATUS_ERROR) { /* FLAC__STREAM_ENCODER_TELL_STATUS_UNSUPPORTED just means we didn't get the offset; no error */ encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } if(encoder->protected_->verify) encoder->private_->verify.state_hint = ENCODER_IN_AUDIO; return FLAC__STREAM_ENCODER_INIT_STATUS_OK; } FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_stream( FLAC__StreamEncoder *encoder, FLAC__StreamEncoderWriteCallback write_callback, FLAC__StreamEncoderSeekCallback seek_callback, FLAC__StreamEncoderTellCallback tell_callback, FLAC__StreamEncoderMetadataCallback metadata_callback, void *client_data ) { return init_stream_internal_enc( encoder, /*read_callback=*/0, write_callback, seek_callback, tell_callback, metadata_callback, client_data, /*is_ogg=*/false ); } FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_ogg_stream( FLAC__StreamEncoder *encoder, FLAC__StreamEncoderReadCallback read_callback, FLAC__StreamEncoderWriteCallback write_callback, FLAC__StreamEncoderSeekCallback seek_callback, FLAC__StreamEncoderTellCallback tell_callback, FLAC__StreamEncoderMetadataCallback metadata_callback, void *client_data ) { return init_stream_internal_enc( encoder, read_callback, write_callback, seek_callback, tell_callback, metadata_callback, client_data, /*is_ogg=*/true ); } static FLAC__StreamEncoderInitStatus init_FILE_internal_enc( FLAC__StreamEncoder *encoder, FILE *file, FLAC__StreamEncoderProgressCallback progress_callback, void *client_data, FLAC__bool is_ogg ) { FLAC__StreamEncoderInitStatus init_status; FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != file); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return FLAC__STREAM_ENCODER_INIT_STATUS_ALREADY_INITIALIZED; /* double protection */ if(file == 0) { encoder->protected_->state = FLAC__STREAM_ENCODER_IO_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } /* * To make sure that our file does not go unclosed after an error, we * must assign the FILE pointer before any further error can occur in * this routine. */ if(file == stdout) file = get_binary_stdout_(); /* just to be safe */ encoder->private_->file = file; encoder->private_->progress_callback = progress_callback; encoder->private_->bytes_written = 0; encoder->private_->samples_written = 0; encoder->private_->frames_written = 0; init_status = init_stream_internal_enc( encoder, encoder->private_->file == stdout? 0 : is_ogg? file_read_callback_enc : 0, file_write_callback_, encoder->private_->file == stdout? 0 : file_seek_callback_enc, encoder->private_->file == stdout? 0 : file_tell_callback_enc, /*metadata_callback=*/0, client_data, is_ogg ); if(init_status != FLAC__STREAM_ENCODER_INIT_STATUS_OK) { /* the above function sets the state for us in case of an error */ return init_status; } { unsigned blocksize = FLAC__stream_encoder_get_blocksize(encoder); FLAC__ASSERT(blocksize != 0); encoder->private_->total_frames_estimate = (unsigned)((FLAC__stream_encoder_get_total_samples_estimate(encoder) + blocksize - 1) / blocksize); } return init_status; } FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_FILE( FLAC__StreamEncoder *encoder, FILE *file, FLAC__StreamEncoderProgressCallback progress_callback, void *client_data ) { return init_FILE_internal_enc(encoder, file, progress_callback, client_data, /*is_ogg=*/false); } FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_ogg_FILE( FLAC__StreamEncoder *encoder, FILE *file, FLAC__StreamEncoderProgressCallback progress_callback, void *client_data ) { return init_FILE_internal_enc(encoder, file, progress_callback, client_data, /*is_ogg=*/true); } static FLAC__StreamEncoderInitStatus init_file_internal_enc( FLAC__StreamEncoder *encoder, const char *filename, FLAC__StreamEncoderProgressCallback progress_callback, void *client_data, FLAC__bool is_ogg ) { FILE *file; FLAC__ASSERT(0 != encoder); /* * To make sure that our file does not go unclosed after an error, we * have to do the same entrance checks here that are later performed * in FLAC__stream_encoder_init_FILE() before the FILE* is assigned. */ if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return FLAC__STREAM_ENCODER_INIT_STATUS_ALREADY_INITIALIZED; file = filename? fopen(filename, "w+b") : stdout; if(file == 0) { encoder->protected_->state = FLAC__STREAM_ENCODER_IO_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } return init_FILE_internal_enc(encoder, file, progress_callback, client_data, is_ogg); } FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_file( FLAC__StreamEncoder *encoder, const char *filename, FLAC__StreamEncoderProgressCallback progress_callback, void *client_data ) { return init_file_internal_enc(encoder, filename, progress_callback, client_data, /*is_ogg=*/false); } FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_ogg_file( FLAC__StreamEncoder *encoder, const char *filename, FLAC__StreamEncoderProgressCallback progress_callback, void *client_data ) { return init_file_internal_enc(encoder, filename, progress_callback, client_data, /*is_ogg=*/true); } FLAC_API FLAC__bool FLAC__stream_encoder_finish(FLAC__StreamEncoder *encoder) { FLAC__bool error = false; FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state == FLAC__STREAM_ENCODER_UNINITIALIZED) return true; if(encoder->protected_->state == FLAC__STREAM_ENCODER_OK && !encoder->private_->is_being_deleted) { if(encoder->private_->current_sample_number != 0) { const FLAC__bool is_fractional_block = encoder->protected_->blocksize != encoder->private_->current_sample_number; encoder->protected_->blocksize = encoder->private_->current_sample_number; if(!process_frame_(encoder, is_fractional_block, /*is_last_block=*/true)) error = true; } } if(encoder->protected_->do_md5) FLAC__MD5Final(encoder->private_->streaminfo.data.stream_info.md5sum, &encoder->private_->md5context); if(!encoder->private_->is_being_deleted) { if(encoder->protected_->state == FLAC__STREAM_ENCODER_OK) { if(encoder->private_->seek_callback) { #if FLAC__HAS_OGG if(encoder->private_->is_ogg) update_ogg_metadata_(encoder); else #endif update_metadata_(encoder); /* check if an error occurred while updating metadata */ if(encoder->protected_->state != FLAC__STREAM_ENCODER_OK) error = true; } if(encoder->private_->metadata_callback) encoder->private_->metadata_callback(encoder, &encoder->private_->streaminfo, encoder->private_->client_data); } if(encoder->protected_->verify && 0 != encoder->private_->verify.decoder && !FLAC__stream_decoder_finish(encoder->private_->verify.decoder)) { if(!error) encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA; error = true; } } if(0 != encoder->private_->file) { if(encoder->private_->file != stdout) fclose(encoder->private_->file); encoder->private_->file = 0; } #if FLAC__HAS_OGG if(encoder->private_->is_ogg) FLAC__ogg_encoder_aspect_finish(&encoder->protected_->ogg_encoder_aspect); #endif free_(encoder); set_defaults_enc(encoder); if(!error) encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED; return !error; } FLAC_API FLAC__bool FLAC__stream_encoder_set_ogg_serial_number(FLAC__StreamEncoder *encoder, long value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; #if FLAC__HAS_OGG /* can't check encoder->private_->is_ogg since that's not set until init time */ FLAC__ogg_encoder_aspect_set_serial_number(&encoder->protected_->ogg_encoder_aspect, value); return true; #else (void)value; return false; #endif } FLAC_API FLAC__bool FLAC__stream_encoder_set_verify(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; #ifndef FLAC__MANDATORY_VERIFY_WHILE_ENCODING encoder->protected_->verify = value; #endif return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_streamable_subset(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->streamable_subset = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_md5(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_md5 = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_channels(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->channels = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_bits_per_sample(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->bits_per_sample = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_sample_rate(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->sample_rate = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_compression_level(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__bool ok = true; FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; if(value >= sizeof(compression_levels_)/sizeof(compression_levels_[0])) value = sizeof(compression_levels_)/sizeof(compression_levels_[0]) - 1; ok &= FLAC__stream_encoder_set_do_mid_side_stereo (encoder, compression_levels_[value].do_mid_side_stereo); ok &= FLAC__stream_encoder_set_loose_mid_side_stereo (encoder, compression_levels_[value].loose_mid_side_stereo); #ifndef FLAC__INTEGER_ONLY_LIBRARY #if 0 /* was: */ ok &= FLAC__stream_encoder_set_apodization (encoder, compression_levels_[value].apodization); /* but it's too hard to specify the string in a locale-specific way */ #else encoder->protected_->num_apodizations = 1; encoder->protected_->apodizations[0].type = FLAC__APODIZATION_TUKEY; encoder->protected_->apodizations[0].parameters.tukey.p = 0.5; #endif #endif ok &= FLAC__stream_encoder_set_max_lpc_order (encoder, compression_levels_[value].max_lpc_order); ok &= FLAC__stream_encoder_set_qlp_coeff_precision (encoder, compression_levels_[value].qlp_coeff_precision); ok &= FLAC__stream_encoder_set_do_qlp_coeff_prec_search (encoder, compression_levels_[value].do_qlp_coeff_prec_search); ok &= FLAC__stream_encoder_set_do_escape_coding (encoder, compression_levels_[value].do_escape_coding); ok &= FLAC__stream_encoder_set_do_exhaustive_model_search (encoder, compression_levels_[value].do_exhaustive_model_search); ok &= FLAC__stream_encoder_set_min_residual_partition_order(encoder, compression_levels_[value].min_residual_partition_order); ok &= FLAC__stream_encoder_set_max_residual_partition_order(encoder, compression_levels_[value].max_residual_partition_order); ok &= FLAC__stream_encoder_set_rice_parameter_search_dist (encoder, compression_levels_[value].rice_parameter_search_dist); return ok; } FLAC_API FLAC__bool FLAC__stream_encoder_set_blocksize(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->blocksize = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_mid_side_stereo = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_loose_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->loose_mid_side_stereo = value; return true; } /*@@@@add to tests*/ FLAC_API FLAC__bool FLAC__stream_encoder_set_apodization(FLAC__StreamEncoder *encoder, const char *specification) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); FLAC__ASSERT(0 != specification); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; #ifdef FLAC__INTEGER_ONLY_LIBRARY (void)specification; /* silently ignore since we haven't integerized; will always use a rectangular window */ #else encoder->protected_->num_apodizations = 0; while(1) { const char *s = strchr(specification, ';'); const size_t n = s? (size_t)(s - specification) : strlen(specification); if (n==8 && 0 == strncmp("bartlett" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_BARTLETT; else if(n==13 && 0 == strncmp("bartlett_hann", specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_BARTLETT_HANN; else if(n==8 && 0 == strncmp("blackman" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_BLACKMAN; else if(n==26 && 0 == strncmp("blackman_harris_4term_92db", specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_BLACKMAN_HARRIS_4TERM_92DB_SIDELOBE; else if(n==6 && 0 == strncmp("connes" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_CONNES; else if(n==7 && 0 == strncmp("flattop" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_FLATTOP; else if(n>7 && 0 == strncmp("gauss(" , specification, 6)) { FLAC__real stddev = (FLAC__real)strtod(specification+6, 0); if (stddev > 0.0 && stddev <= 0.5) { encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.gauss.stddev = stddev; encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_GAUSS; } } else if(n==7 && 0 == strncmp("hamming" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_HAMMING; else if(n==4 && 0 == strncmp("hann" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_HANN; else if(n==13 && 0 == strncmp("kaiser_bessel", specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_KAISER_BESSEL; else if(n==7 && 0 == strncmp("nuttall" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_NUTTALL; else if(n==9 && 0 == strncmp("rectangle" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_RECTANGLE; else if(n==8 && 0 == strncmp("triangle" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_TRIANGLE; else if(n>7 && 0 == strncmp("tukey(" , specification, 6)) { FLAC__real p = (FLAC__real)strtod(specification+6, 0); if (p >= 0.0 && p <= 1.0) { encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.tukey.p = p; encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_TUKEY; } } else if(n==5 && 0 == strncmp("welch" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_WELCH; if (encoder->protected_->num_apodizations == 32) break; if (s) specification = s+1; else break; } if(encoder->protected_->num_apodizations == 0) { encoder->protected_->num_apodizations = 1; encoder->protected_->apodizations[0].type = FLAC__APODIZATION_TUKEY; encoder->protected_->apodizations[0].parameters.tukey.p = 0.5; } #endif return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_max_lpc_order(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->max_lpc_order = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_qlp_coeff_precision(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->qlp_coeff_precision = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_qlp_coeff_prec_search(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_qlp_coeff_prec_search = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_escape_coding(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; #if 0 /*@@@ deprecated: */ encoder->protected_->do_escape_coding = value; #else (void)value; #endif return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_exhaustive_model_search(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_exhaustive_model_search = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_min_residual_partition_order(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->min_residual_partition_order = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_max_residual_partition_order(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->max_residual_partition_order = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_rice_parameter_search_dist(FLAC__StreamEncoder *encoder, unsigned value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; #if 0 /*@@@ deprecated: */ encoder->protected_->rice_parameter_search_dist = value; #else (void)value; #endif return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_total_samples_estimate(FLAC__StreamEncoder *encoder, FLAC__uint64 value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->total_samples_estimate = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_metadata(FLAC__StreamEncoder *encoder, FLAC__StreamMetadata **metadata, unsigned num_blocks) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; if(0 == metadata) num_blocks = 0; if(0 == num_blocks) metadata = 0; /* realloc() does not do exactly what we want so... */ if(encoder->protected_->metadata) { free(encoder->protected_->metadata); encoder->protected_->metadata = 0; encoder->protected_->num_metadata_blocks = 0; } if(num_blocks) { FLAC__StreamMetadata **m; if(0 == (m = (FLAC__StreamMetadata**)safe_malloc_mul_2op_(sizeof(m[0]), /*times*/num_blocks))) return false; memcpy(m, metadata, sizeof(m[0]) * num_blocks); encoder->protected_->metadata = m; encoder->protected_->num_metadata_blocks = num_blocks; } #if FLAC__HAS_OGG if(!FLAC__ogg_encoder_aspect_set_num_metadata(&encoder->protected_->ogg_encoder_aspect, num_blocks)) return false; #endif return true; } /* * These three functions are not static, but not publically exposed in * include/FLAC/ either. They are used by the test suite. */ FLAC_API FLAC__bool FLAC__stream_encoder_disable_constant_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->disable_constant_subframes = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_disable_fixed_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->disable_fixed_subframes = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_disable_verbatim_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->disable_verbatim_subframes = value; return true; } FLAC_API FLAC__StreamEncoderState FLAC__stream_encoder_get_state(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->state; } FLAC_API FLAC__StreamDecoderState FLAC__stream_encoder_get_verify_decoder_state(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->verify) return FLAC__stream_decoder_get_state(encoder->private_->verify.decoder); else return FLAC__STREAM_DECODER_UNINITIALIZED; } FLAC_API const char *FLAC__stream_encoder_get_resolved_state_string(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR) return FLAC__StreamEncoderStateString[encoder->protected_->state]; else return FLAC__stream_decoder_get_resolved_state_string(encoder->private_->verify.decoder); } FLAC_API void FLAC__stream_encoder_get_verify_decoder_error_stats(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_sample, unsigned *frame_number, unsigned *channel, unsigned *sample, FLAC__int32 *expected, FLAC__int32 *got) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(0 != absolute_sample) *absolute_sample = encoder->private_->verify.error_stats.absolute_sample; if(0 != frame_number) *frame_number = encoder->private_->verify.error_stats.frame_number; if(0 != channel) *channel = encoder->private_->verify.error_stats.channel; if(0 != sample) *sample = encoder->private_->verify.error_stats.sample; if(0 != expected) *expected = encoder->private_->verify.error_stats.expected; if(0 != got) *got = encoder->private_->verify.error_stats.got; } FLAC_API FLAC__bool FLAC__stream_encoder_get_verify(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->verify; } FLAC_API FLAC__bool FLAC__stream_encoder_get_streamable_subset(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->streamable_subset; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_md5(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->do_md5; } FLAC_API unsigned FLAC__stream_encoder_get_channels(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->channels; } FLAC_API unsigned FLAC__stream_encoder_get_bits_per_sample(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->bits_per_sample; } FLAC_API unsigned FLAC__stream_encoder_get_sample_rate(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->sample_rate; } FLAC_API unsigned FLAC__stream_encoder_get_blocksize(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->blocksize; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_mid_side_stereo(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->do_mid_side_stereo; } FLAC_API FLAC__bool FLAC__stream_encoder_get_loose_mid_side_stereo(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->loose_mid_side_stereo; } FLAC_API unsigned FLAC__stream_encoder_get_max_lpc_order(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->max_lpc_order; } FLAC_API unsigned FLAC__stream_encoder_get_qlp_coeff_precision(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->qlp_coeff_precision; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_qlp_coeff_prec_search(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->do_qlp_coeff_prec_search; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_escape_coding(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->do_escape_coding; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_exhaustive_model_search(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->do_exhaustive_model_search; } FLAC_API unsigned FLAC__stream_encoder_get_min_residual_partition_order(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->min_residual_partition_order; } FLAC_API unsigned FLAC__stream_encoder_get_max_residual_partition_order(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->max_residual_partition_order; } FLAC_API unsigned FLAC__stream_encoder_get_rice_parameter_search_dist(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->rice_parameter_search_dist; } FLAC_API FLAC__uint64 FLAC__stream_encoder_get_total_samples_estimate(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->total_samples_estimate; } FLAC_API FLAC__bool FLAC__stream_encoder_process(FLAC__StreamEncoder *encoder, const FLAC__int32 * const buffer[], unsigned samples) { unsigned i, j = 0, channel; const unsigned channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize; FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); do { const unsigned n = min(blocksize+OVERREAD_-encoder->private_->current_sample_number, samples-j); if(encoder->protected_->verify) append_to_verify_fifo_(&encoder->private_->verify.input_fifo, buffer, j, channels, n); for(channel = 0; channel < channels; channel++) memcpy(&encoder->private_->integer_signal[channel][encoder->private_->current_sample_number], &buffer[channel][j], sizeof(buffer[channel][0]) * n); if(encoder->protected_->do_mid_side_stereo) { FLAC__ASSERT(channels == 2); /* "i <= blocksize" to overread 1 sample; see comment in OVERREAD_ decl */ for(i = encoder->private_->current_sample_number; i <= blocksize && j < samples; i++, j++) { encoder->private_->integer_signal_mid_side[1][i] = buffer[0][j] - buffer[1][j]; encoder->private_->integer_signal_mid_side[0][i] = (buffer[0][j] + buffer[1][j]) >> 1; /* NOTE: not the same as 'mid = (buffer[0][j] + buffer[1][j]) / 2' ! */ } } else j += n; encoder->private_->current_sample_number += n; /* we only process if we have a full block + 1 extra sample; final block is always handled by FLAC__stream_encoder_finish() */ if(encoder->private_->current_sample_number > blocksize) { FLAC__ASSERT(encoder->private_->current_sample_number == blocksize+OVERREAD_); FLAC__ASSERT(OVERREAD_ == 1); /* assert we only overread 1 sample which simplifies the rest of the code below */ if(!process_frame_(encoder, /*is_fractional_block=*/false, /*is_last_block=*/false)) return false; /* move unprocessed overread samples to beginnings of arrays */ for(channel = 0; channel < channels; channel++) encoder->private_->integer_signal[channel][0] = encoder->private_->integer_signal[channel][blocksize]; if(encoder->protected_->do_mid_side_stereo) { encoder->private_->integer_signal_mid_side[0][0] = encoder->private_->integer_signal_mid_side[0][blocksize]; encoder->private_->integer_signal_mid_side[1][0] = encoder->private_->integer_signal_mid_side[1][blocksize]; } encoder->private_->current_sample_number = 1; } } while(j < samples); return true; } FLAC_API FLAC__bool FLAC__stream_encoder_process_interleaved(FLAC__StreamEncoder *encoder, const FLAC__int32 buffer[], unsigned samples) { unsigned i, j, k, channel; FLAC__int32 x, mid, side; const unsigned channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize; FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); j = k = 0; /* * we have several flavors of the same basic loop, optimized for * different conditions: */ if(encoder->protected_->do_mid_side_stereo && channels == 2) { /* * stereo coding: unroll channel loop */ do { if(encoder->protected_->verify) append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize+OVERREAD_-encoder->private_->current_sample_number, samples-j)); /* "i <= blocksize" to overread 1 sample; see comment in OVERREAD_ decl */ for(i = encoder->private_->current_sample_number; i <= blocksize && j < samples; i++, j++) { encoder->private_->integer_signal[0][i] = mid = side = buffer[k++]; x = buffer[k++]; encoder->private_->integer_signal[1][i] = x; mid += x; side -= x; mid >>= 1; /* NOTE: not the same as 'mid = (left + right) / 2' ! */ encoder->private_->integer_signal_mid_side[1][i] = side; encoder->private_->integer_signal_mid_side[0][i] = mid; } encoder->private_->current_sample_number = i; /* we only process if we have a full block + 1 extra sample; final block is always handled by FLAC__stream_encoder_finish() */ if(i > blocksize) { if(!process_frame_(encoder, /*is_fractional_block=*/false, /*is_last_block=*/false)) return false; /* move unprocessed overread samples to beginnings of arrays */ FLAC__ASSERT(i == blocksize+OVERREAD_); FLAC__ASSERT(OVERREAD_ == 1); /* assert we only overread 1 sample which simplifies the rest of the code below */ encoder->private_->integer_signal[0][0] = encoder->private_->integer_signal[0][blocksize]; encoder->private_->integer_signal[1][0] = encoder->private_->integer_signal[1][blocksize]; encoder->private_->integer_signal_mid_side[0][0] = encoder->private_->integer_signal_mid_side[0][blocksize]; encoder->private_->integer_signal_mid_side[1][0] = encoder->private_->integer_signal_mid_side[1][blocksize]; encoder->private_->current_sample_number = 1; } } while(j < samples); } else { /* * independent channel coding: buffer each channel in inner loop */ do { if(encoder->protected_->verify) append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize+OVERREAD_-encoder->private_->current_sample_number, samples-j)); /* "i <= blocksize" to overread 1 sample; see comment in OVERREAD_ decl */ for(i = encoder->private_->current_sample_number; i <= blocksize && j < samples; i++, j++) { for(channel = 0; channel < channels; channel++) encoder->private_->integer_signal[channel][i] = buffer[k++]; } encoder->private_->current_sample_number = i; /* we only process if we have a full block + 1 extra sample; final block is always handled by FLAC__stream_encoder_finish() */ if(i > blocksize) { if(!process_frame_(encoder, /*is_fractional_block=*/false, /*is_last_block=*/false)) return false; /* move unprocessed overread samples to beginnings of arrays */ FLAC__ASSERT(i == blocksize+OVERREAD_); FLAC__ASSERT(OVERREAD_ == 1); /* assert we only overread 1 sample which simplifies the rest of the code below */ for(channel = 0; channel < channels; channel++) encoder->private_->integer_signal[channel][0] = encoder->private_->integer_signal[channel][blocksize]; encoder->private_->current_sample_number = 1; } } while(j < samples); } return true; } /*********************************************************************** * * Private class methods * ***********************************************************************/ void set_defaults_enc(FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); #ifdef FLAC__MANDATORY_VERIFY_WHILE_ENCODING encoder->protected_->verify = true; #else encoder->protected_->verify = false; #endif encoder->protected_->streamable_subset = true; encoder->protected_->do_md5 = true; encoder->protected_->do_mid_side_stereo = false; encoder->protected_->loose_mid_side_stereo = false; encoder->protected_->channels = 2; encoder->protected_->bits_per_sample = 16; encoder->protected_->sample_rate = 44100; encoder->protected_->blocksize = 0; #ifndef FLAC__INTEGER_ONLY_LIBRARY encoder->protected_->num_apodizations = 1; encoder->protected_->apodizations[0].type = FLAC__APODIZATION_TUKEY; encoder->protected_->apodizations[0].parameters.tukey.p = 0.5; #endif encoder->protected_->max_lpc_order = 0; encoder->protected_->qlp_coeff_precision = 0; encoder->protected_->do_qlp_coeff_prec_search = false; encoder->protected_->do_exhaustive_model_search = false; encoder->protected_->do_escape_coding = false; encoder->protected_->min_residual_partition_order = 0; encoder->protected_->max_residual_partition_order = 0; encoder->protected_->rice_parameter_search_dist = 0; encoder->protected_->total_samples_estimate = 0; encoder->protected_->metadata = 0; encoder->protected_->num_metadata_blocks = 0; encoder->private_->seek_table = 0; encoder->private_->disable_constant_subframes = false; encoder->private_->disable_fixed_subframes = false; encoder->private_->disable_verbatim_subframes = false; #if FLAC__HAS_OGG encoder->private_->is_ogg = false; #endif encoder->private_->read_callback = 0; encoder->private_->write_callback = 0; encoder->private_->seek_callback = 0; encoder->private_->tell_callback = 0; encoder->private_->metadata_callback = 0; encoder->private_->progress_callback = 0; encoder->private_->client_data = 0; #if FLAC__HAS_OGG FLAC__ogg_encoder_aspect_set_defaults(&encoder->protected_->ogg_encoder_aspect); #endif } void free_(FLAC__StreamEncoder *encoder) { unsigned i, channel; FLAC__ASSERT(0 != encoder); if(encoder->protected_->metadata) { free(encoder->protected_->metadata); encoder->protected_->metadata = 0; encoder->protected_->num_metadata_blocks = 0; } for(i = 0; i < encoder->protected_->channels; i++) { if(0 != encoder->private_->integer_signal_unaligned[i]) { free(encoder->private_->integer_signal_unaligned[i]); encoder->private_->integer_signal_unaligned[i] = 0; } #ifndef FLAC__INTEGER_ONLY_LIBRARY if(0 != encoder->private_->real_signal_unaligned[i]) { free(encoder->private_->real_signal_unaligned[i]); encoder->private_->real_signal_unaligned[i] = 0; } #endif } for(i = 0; i < 2; i++) { if(0 != encoder->private_->integer_signal_mid_side_unaligned[i]) { free(encoder->private_->integer_signal_mid_side_unaligned[i]); encoder->private_->integer_signal_mid_side_unaligned[i] = 0; } #ifndef FLAC__INTEGER_ONLY_LIBRARY if(0 != encoder->private_->real_signal_mid_side_unaligned[i]) { free(encoder->private_->real_signal_mid_side_unaligned[i]); encoder->private_->real_signal_mid_side_unaligned[i] = 0; } #endif } #ifndef FLAC__INTEGER_ONLY_LIBRARY for(i = 0; i < encoder->protected_->num_apodizations; i++) { if(0 != encoder->private_->window_unaligned[i]) { free(encoder->private_->window_unaligned[i]); encoder->private_->window_unaligned[i] = 0; } } if(0 != encoder->private_->windowed_signal_unaligned) { free(encoder->private_->windowed_signal_unaligned); encoder->private_->windowed_signal_unaligned = 0; } #endif for(channel = 0; channel < encoder->protected_->channels; channel++) { for(i = 0; i < 2; i++) { if(0 != encoder->private_->residual_workspace_unaligned[channel][i]) { free(encoder->private_->residual_workspace_unaligned[channel][i]); encoder->private_->residual_workspace_unaligned[channel][i] = 0; } } } for(channel = 0; channel < 2; channel++) { for(i = 0; i < 2; i++) { if(0 != encoder->private_->residual_workspace_mid_side_unaligned[channel][i]) { free(encoder->private_->residual_workspace_mid_side_unaligned[channel][i]); encoder->private_->residual_workspace_mid_side_unaligned[channel][i] = 0; } } } if(0 != encoder->private_->abs_residual_partition_sums_unaligned) { free(encoder->private_->abs_residual_partition_sums_unaligned); encoder->private_->abs_residual_partition_sums_unaligned = 0; } if(0 != encoder->private_->raw_bits_per_partition_unaligned) { free(encoder->private_->raw_bits_per_partition_unaligned); encoder->private_->raw_bits_per_partition_unaligned = 0; } if(encoder->protected_->verify) { for(i = 0; i < encoder->protected_->channels; i++) { if(0 != encoder->private_->verify.input_fifo.data[i]) { free(encoder->private_->verify.input_fifo.data[i]); encoder->private_->verify.input_fifo.data[i] = 0; } } } FLAC__bitwriter_free(encoder->private_->frame); } FLAC__bool resize_buffers_(FLAC__StreamEncoder *encoder, unsigned new_blocksize) { FLAC__bool ok; unsigned i, channel; FLAC__ASSERT(new_blocksize > 0); FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); FLAC__ASSERT(encoder->private_->current_sample_number == 0); /* To avoid excessive malloc'ing, we only grow the buffer; no shrinking. */ if(new_blocksize <= encoder->private_->input_capacity) return true; ok = true; /* WATCHOUT: FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx() * requires that the input arrays (in our case the integer signals) * have a buffer of up to 3 zeroes in front (at negative indices) for * alignment purposes; we use 4 in front to keep the data well-aligned. */ for(i = 0; ok && i < encoder->protected_->channels; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_blocksize+4+OVERREAD_, &encoder->private_->integer_signal_unaligned[i], &encoder->private_->integer_signal[i]); memset(encoder->private_->integer_signal[i], 0, sizeof(FLAC__int32)*4); encoder->private_->integer_signal[i] += 4; #ifndef FLAC__INTEGER_ONLY_LIBRARY #if 0 /* @@@ currently unused */ if(encoder->protected_->max_lpc_order > 0) ok = ok && FLAC__memory_alloc_aligned_real_array(new_blocksize+OVERREAD_, &encoder->private_->real_signal_unaligned[i], &encoder->private_->real_signal[i]); #endif #endif } for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_blocksize+4+OVERREAD_, &encoder->private_->integer_signal_mid_side_unaligned[i], &encoder->private_->integer_signal_mid_side[i]); memset(encoder->private_->integer_signal_mid_side[i], 0, sizeof(FLAC__int32)*4); encoder->private_->integer_signal_mid_side[i] += 4; #ifndef FLAC__INTEGER_ONLY_LIBRARY #if 0 /* @@@ currently unused */ if(encoder->protected_->max_lpc_order > 0) ok = ok && FLAC__memory_alloc_aligned_real_array(new_blocksize+OVERREAD_, &encoder->private_->real_signal_mid_side_unaligned[i], &encoder->private_->real_signal_mid_side[i]); #endif #endif } #ifndef FLAC__INTEGER_ONLY_LIBRARY if(ok && encoder->protected_->max_lpc_order > 0) { for(i = 0; ok && i < encoder->protected_->num_apodizations; i++) ok = ok && FLAC__memory_alloc_aligned_real_array(new_blocksize, &encoder->private_->window_unaligned[i], &encoder->private_->window[i]); ok = ok && FLAC__memory_alloc_aligned_real_array(new_blocksize, &encoder->private_->windowed_signal_unaligned, &encoder->private_->windowed_signal); } #endif for(channel = 0; ok && channel < encoder->protected_->channels; channel++) { for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_blocksize, &encoder->private_->residual_workspace_unaligned[channel][i], &encoder->private_->residual_workspace[channel][i]); } } for(channel = 0; ok && channel < 2; channel++) { for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_blocksize, &encoder->private_->residual_workspace_mid_side_unaligned[channel][i], &encoder->private_->residual_workspace_mid_side[channel][i]); } } /* the *2 is an approximation to the series 1 + 1/2 + 1/4 + ... that sums tree occupies in a flat array */ /*@@@ new_blocksize*2 is too pessimistic, but to fix, we need smarter logic because a smaller new_blocksize can actually increase the # of partitions; would require moving this out into a separate function, then checking its capacity against the need of the current blocksize&min/max_partition_order (and maybe predictor order) */ ok = ok && FLAC__memory_alloc_aligned_uint64_array(new_blocksize * 2, &encoder->private_->abs_residual_partition_sums_unaligned, &encoder->private_->abs_residual_partition_sums); if(encoder->protected_->do_escape_coding) ok = ok && FLAC__memory_alloc_aligned_unsigned_array(new_blocksize * 2, &encoder->private_->raw_bits_per_partition_unaligned, &encoder->private_->raw_bits_per_partition); /* now adjust the windows if the blocksize has changed */ #ifndef FLAC__INTEGER_ONLY_LIBRARY if(ok && new_blocksize != encoder->private_->input_capacity && encoder->protected_->max_lpc_order > 0) { for(i = 0; ok && i < encoder->protected_->num_apodizations; i++) { switch(encoder->protected_->apodizations[i].type) { case FLAC__APODIZATION_BARTLETT: FLAC__window_bartlett(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_BARTLETT_HANN: FLAC__window_bartlett_hann(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_BLACKMAN: FLAC__window_blackman(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_BLACKMAN_HARRIS_4TERM_92DB_SIDELOBE: FLAC__window_blackman_harris_4term_92db_sidelobe(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_CONNES: FLAC__window_connes(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_FLATTOP: FLAC__window_flattop(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_GAUSS: FLAC__window_gauss(encoder->private_->window[i], new_blocksize, encoder->protected_->apodizations[i].parameters.gauss.stddev); break; case FLAC__APODIZATION_HAMMING: FLAC__window_hamming(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_HANN: FLAC__window_hann(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_KAISER_BESSEL: FLAC__window_kaiser_bessel(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_NUTTALL: FLAC__window_nuttall(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_RECTANGLE: FLAC__window_rectangle(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_TRIANGLE: FLAC__window_triangle(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_TUKEY: FLAC__window_tukey(encoder->private_->window[i], new_blocksize, encoder->protected_->apodizations[i].parameters.tukey.p); break; case FLAC__APODIZATION_WELCH: FLAC__window_welch(encoder->private_->window[i], new_blocksize); break; default: FLAC__ASSERT(0); /* double protection */ FLAC__window_hann(encoder->private_->window[i], new_blocksize); break; } } } #endif if(ok) encoder->private_->input_capacity = new_blocksize; else encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return ok; } FLAC__bool write_bitbuffer_(FLAC__StreamEncoder *encoder, unsigned samples, FLAC__bool is_last_block) { const FLAC__byte *buffer; size_t bytes; FLAC__ASSERT(FLAC__bitwriter_is_byte_aligned(encoder->private_->frame)); if(!FLAC__bitwriter_get_buffer(encoder->private_->frame, &buffer, &bytes)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } if(encoder->protected_->verify) { encoder->private_->verify.output.data = buffer; encoder->private_->verify.output.bytes = bytes; if(encoder->private_->verify.state_hint == ENCODER_IN_MAGIC) { encoder->private_->verify.needs_magic_hack = true; } else { if(!FLAC__stream_decoder_process_single(encoder->private_->verify.decoder)) { FLAC__bitwriter_release_buffer(encoder->private_->frame); FLAC__bitwriter_clear(encoder->private_->frame); if(encoder->protected_->state != FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA) encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; return false; } } } if(write_frame_(encoder, buffer, bytes, samples, is_last_block) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { FLAC__bitwriter_release_buffer(encoder->private_->frame); FLAC__bitwriter_clear(encoder->private_->frame); encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return false; } FLAC__bitwriter_release_buffer(encoder->private_->frame); FLAC__bitwriter_clear(encoder->private_->frame); if(samples > 0) { encoder->private_->streaminfo.data.stream_info.min_framesize = min(bytes, encoder->private_->streaminfo.data.stream_info.min_framesize); encoder->private_->streaminfo.data.stream_info.max_framesize = max(bytes, encoder->private_->streaminfo.data.stream_info.max_framesize); } return true; } FLAC__StreamEncoderWriteStatus write_frame_(FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], size_t bytes, unsigned samples, FLAC__bool is_last_block) { FLAC__StreamEncoderWriteStatus status; FLAC__uint64 output_position = 0; /* FLAC__STREAM_ENCODER_TELL_STATUS_UNSUPPORTED just means we didn't get the offset; no error */ if(encoder->private_->tell_callback && encoder->private_->tell_callback(encoder, &output_position, encoder->private_->client_data) == FLAC__STREAM_ENCODER_TELL_STATUS_ERROR) { encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR; } /* * Watch for the STREAMINFO block and first SEEKTABLE block to go by and store their offsets. */ if(samples == 0) { FLAC__MetadataType type = (FLAC__MetadataType) (buffer[0] & 0x7f); if(type == FLAC__METADATA_TYPE_STREAMINFO) encoder->protected_->streaminfo_offset = output_position; else if(type == FLAC__METADATA_TYPE_SEEKTABLE && encoder->protected_->seektable_offset == 0) encoder->protected_->seektable_offset = output_position; } /* * Mark the current seek point if hit (if audio_offset == 0 that * means we're still writing metadata and haven't hit the first * frame yet) */ if(0 != encoder->private_->seek_table && encoder->protected_->audio_offset > 0 && encoder->private_->seek_table->num_points > 0) { const unsigned blocksize = FLAC__stream_encoder_get_blocksize(encoder); const FLAC__uint64 frame_first_sample = encoder->private_->samples_written; const FLAC__uint64 frame_last_sample = frame_first_sample + (FLAC__uint64)blocksize - 1; FLAC__uint64 test_sample; unsigned i; for(i = encoder->private_->first_seekpoint_to_check; i < encoder->private_->seek_table->num_points; i++) { test_sample = encoder->private_->seek_table->points[i].sample_number; if(test_sample > frame_last_sample) { break; } else if(test_sample >= frame_first_sample) { encoder->private_->seek_table->points[i].sample_number = frame_first_sample; encoder->private_->seek_table->points[i].stream_offset = output_position - encoder->protected_->audio_offset; encoder->private_->seek_table->points[i].frame_samples = blocksize; encoder->private_->first_seekpoint_to_check++; /* DO NOT: "break;" and here's why: * The seektable template may contain more than one target * sample for any given frame; we will keep looping, generating * duplicate seekpoints for them, and we'll clean it up later, * just before writing the seektable back to the metadata. */ } else { encoder->private_->first_seekpoint_to_check++; } } } #if FLAC__HAS_OGG if(encoder->private_->is_ogg) { status = FLAC__ogg_encoder_aspect_write_callback_wrapper( &encoder->protected_->ogg_encoder_aspect, buffer, bytes, samples, encoder->private_->current_frame_number, is_last_block, (FLAC__OggEncoderAspectWriteCallbackProxy)encoder->private_->write_callback, encoder, encoder->private_->client_data ); } else #endif status = encoder->private_->write_callback(encoder, buffer, bytes, samples, encoder->private_->current_frame_number, encoder->private_->client_data); if(status == FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { encoder->private_->bytes_written += bytes; encoder->private_->samples_written += samples; /* we keep a high watermark on the number of frames written because * when the encoder goes back to write metadata, 'current_frame' * will drop back to 0. */ encoder->private_->frames_written = max(encoder->private_->frames_written, encoder->private_->current_frame_number+1); } else encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return status; } /* Gets called when the encoding process has finished so that we can update the STREAMINFO and SEEKTABLE blocks. */ void update_metadata_(const FLAC__StreamEncoder *encoder) { FLAC__byte b[max(6, FLAC__STREAM_METADATA_SEEKPOINT_LENGTH)]; const FLAC__StreamMetadata *metadata = &encoder->private_->streaminfo; const FLAC__uint64 samples = metadata->data.stream_info.total_samples; const unsigned min_framesize = metadata->data.stream_info.min_framesize; const unsigned max_framesize = metadata->data.stream_info.max_framesize; const unsigned bps = metadata->data.stream_info.bits_per_sample; FLAC__StreamEncoderSeekStatus seek_status; FLAC__ASSERT(metadata->type == FLAC__METADATA_TYPE_STREAMINFO); /* All this is based on intimate knowledge of the stream header * layout, but a change to the header format that would break this * would also break all streams encoded in the previous format. */ /* * Write MD5 signature */ { const unsigned md5_offset = FLAC__STREAM_METADATA_HEADER_LENGTH + ( FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN + FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN + FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN + FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN ) / 8; if((seek_status = encoder->private_->seek_callback(encoder, encoder->protected_->streaminfo_offset + md5_offset, encoder->private_->client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) { if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR) encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } if(encoder->private_->write_callback(encoder, metadata->data.stream_info.md5sum, 16, 0, 0, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } } /* * Write total samples */ { const unsigned total_samples_byte_offset = FLAC__STREAM_METADATA_HEADER_LENGTH + ( FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN + FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN + FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN - 4 ) / 8; b[0] = ((FLAC__byte)(bps-1) << 4) | (FLAC__byte)((samples >> 32) & 0x0F); b[1] = (FLAC__byte)((samples >> 24) & 0xFF); b[2] = (FLAC__byte)((samples >> 16) & 0xFF); b[3] = (FLAC__byte)((samples >> 8) & 0xFF); b[4] = (FLAC__byte)(samples & 0xFF); if((seek_status = encoder->private_->seek_callback(encoder, encoder->protected_->streaminfo_offset + total_samples_byte_offset, encoder->private_->client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) { if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR) encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } if(encoder->private_->write_callback(encoder, b, 5, 0, 0, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } } /* * Write min/max framesize */ { const unsigned min_framesize_offset = FLAC__STREAM_METADATA_HEADER_LENGTH + ( FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN ) / 8; b[0] = (FLAC__byte)((min_framesize >> 16) & 0xFF); b[1] = (FLAC__byte)((min_framesize >> 8) & 0xFF); b[2] = (FLAC__byte)(min_framesize & 0xFF); b[3] = (FLAC__byte)((max_framesize >> 16) & 0xFF); b[4] = (FLAC__byte)((max_framesize >> 8) & 0xFF); b[5] = (FLAC__byte)(max_framesize & 0xFF); if((seek_status = encoder->private_->seek_callback(encoder, encoder->protected_->streaminfo_offset + min_framesize_offset, encoder->private_->client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) { if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR) encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } if(encoder->private_->write_callback(encoder, b, 6, 0, 0, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } } /* * Write seektable */ if(0 != encoder->private_->seek_table && encoder->private_->seek_table->num_points > 0 && encoder->protected_->seektable_offset > 0) { unsigned i; FLAC__format_seektable_sort(encoder->private_->seek_table); FLAC__ASSERT(FLAC__format_seektable_is_legal(encoder->private_->seek_table)); if((seek_status = encoder->private_->seek_callback(encoder, encoder->protected_->seektable_offset + FLAC__STREAM_METADATA_HEADER_LENGTH, encoder->private_->client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) { if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR) encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } for(i = 0; i < encoder->private_->seek_table->num_points; i++) { FLAC__uint64 xx; unsigned x; xx = encoder->private_->seek_table->points[i].sample_number; b[7] = (FLAC__byte)xx; xx >>= 8; b[6] = (FLAC__byte)xx; xx >>= 8; b[5] = (FLAC__byte)xx; xx >>= 8; b[4] = (FLAC__byte)xx; xx >>= 8; b[3] = (FLAC__byte)xx; xx >>= 8; b[2] = (FLAC__byte)xx; xx >>= 8; b[1] = (FLAC__byte)xx; xx >>= 8; b[0] = (FLAC__byte)xx; xx >>= 8; xx = encoder->private_->seek_table->points[i].stream_offset; b[15] = (FLAC__byte)xx; xx >>= 8; b[14] = (FLAC__byte)xx; xx >>= 8; b[13] = (FLAC__byte)xx; xx >>= 8; b[12] = (FLAC__byte)xx; xx >>= 8; b[11] = (FLAC__byte)xx; xx >>= 8; b[10] = (FLAC__byte)xx; xx >>= 8; b[9] = (FLAC__byte)xx; xx >>= 8; b[8] = (FLAC__byte)xx; xx >>= 8; x = encoder->private_->seek_table->points[i].frame_samples; b[17] = (FLAC__byte)x; x >>= 8; b[16] = (FLAC__byte)x; x >>= 8; if(encoder->private_->write_callback(encoder, b, 18, 0, 0, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } } } } #if FLAC__HAS_OGG /* Gets called when the encoding process has finished so that we can update the STREAMINFO and SEEKTABLE blocks. */ void update_ogg_metadata_(FLAC__StreamEncoder *encoder) { /* the # of bytes in the 1st packet that precede the STREAMINFO */ static const unsigned FIRST_OGG_PACKET_STREAMINFO_PREFIX_LENGTH = FLAC__OGG_MAPPING_PACKET_TYPE_LENGTH + FLAC__OGG_MAPPING_MAGIC_LENGTH + FLAC__OGG_MAPPING_VERSION_MAJOR_LENGTH + FLAC__OGG_MAPPING_VERSION_MINOR_LENGTH + FLAC__OGG_MAPPING_NUM_HEADERS_LENGTH + FLAC__STREAM_SYNC_LENGTH ; FLAC__byte b[max(6, FLAC__STREAM_METADATA_SEEKPOINT_LENGTH)]; const FLAC__StreamMetadata *metadata = &encoder->private_->streaminfo; const FLAC__uint64 samples = metadata->data.stream_info.total_samples; const unsigned min_framesize = metadata->data.stream_info.min_framesize; const unsigned max_framesize = metadata->data.stream_info.max_framesize; ogg_page page; FLAC__ASSERT(metadata->type == FLAC__METADATA_TYPE_STREAMINFO); FLAC__ASSERT(0 != encoder->private_->seek_callback); /* Pre-check that client supports seeking, since we don't want the * ogg_helper code to ever have to deal with this condition. */ if(encoder->private_->seek_callback(encoder, 0, encoder->private_->client_data) == FLAC__STREAM_ENCODER_SEEK_STATUS_UNSUPPORTED) return; /* All this is based on intimate knowledge of the stream header * layout, but a change to the header format that would break this * would also break all streams encoded in the previous format. */ /** ** Write STREAMINFO stats **/ simple_ogg_page__init(&page); if(!simple_ogg_page__get_at(encoder, encoder->protected_->streaminfo_offset, &page, encoder->private_->seek_callback, encoder->private_->read_callback, encoder->private_->client_data)) { simple_ogg_page__clear(&page); return; /* state already set */ } /* * Write MD5 signature */ { const unsigned md5_offset = FIRST_OGG_PACKET_STREAMINFO_PREFIX_LENGTH + FLAC__STREAM_METADATA_HEADER_LENGTH + ( FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN + FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN + FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN + FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN ) / 8; if(md5_offset + 16 > (unsigned)page.body_len) { encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR; simple_ogg_page__clear(&page); return; } memcpy(page.body + md5_offset, metadata->data.stream_info.md5sum, 16); } /* * Write total samples */ { const unsigned total_samples_byte_offset = FIRST_OGG_PACKET_STREAMINFO_PREFIX_LENGTH + FLAC__STREAM_METADATA_HEADER_LENGTH + ( FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN + FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN + FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN - 4 ) / 8; if(total_samples_byte_offset + 5 > (unsigned)page.body_len) { encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR; simple_ogg_page__clear(&page); return; } b[0] = (FLAC__byte)page.body[total_samples_byte_offset] & 0xF0; b[0] |= (FLAC__byte)((samples >> 32) & 0x0F); b[1] = (FLAC__byte)((samples >> 24) & 0xFF); b[2] = (FLAC__byte)((samples >> 16) & 0xFF); b[3] = (FLAC__byte)((samples >> 8) & 0xFF); b[4] = (FLAC__byte)(samples & 0xFF); memcpy(page.body + total_samples_byte_offset, b, 5); } /* * Write min/max framesize */ { const unsigned min_framesize_offset = FIRST_OGG_PACKET_STREAMINFO_PREFIX_LENGTH + FLAC__STREAM_METADATA_HEADER_LENGTH + ( FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN ) / 8; if(min_framesize_offset + 6 > (unsigned)page.body_len) { encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR; simple_ogg_page__clear(&page); return; } b[0] = (FLAC__byte)((min_framesize >> 16) & 0xFF); b[1] = (FLAC__byte)((min_framesize >> 8) & 0xFF); b[2] = (FLAC__byte)(min_framesize & 0xFF); b[3] = (FLAC__byte)((max_framesize >> 16) & 0xFF); b[4] = (FLAC__byte)((max_framesize >> 8) & 0xFF); b[5] = (FLAC__byte)(max_framesize & 0xFF); memcpy(page.body + min_framesize_offset, b, 6); } if(!simple_ogg_page__set_at(encoder, encoder->protected_->streaminfo_offset, &page, encoder->private_->seek_callback, encoder->private_->write_callback, encoder->private_->client_data)) { simple_ogg_page__clear(&page); return; /* state already set */ } simple_ogg_page__clear(&page); /* * Write seektable */ if(0 != encoder->private_->seek_table && encoder->private_->seek_table->num_points > 0 && encoder->protected_->seektable_offset > 0) { unsigned i; FLAC__byte *p; FLAC__format_seektable_sort(encoder->private_->seek_table); FLAC__ASSERT(FLAC__format_seektable_is_legal(encoder->private_->seek_table)); simple_ogg_page__init(&page); if(!simple_ogg_page__get_at(encoder, encoder->protected_->seektable_offset, &page, encoder->private_->seek_callback, encoder->private_->read_callback, encoder->private_->client_data)) { simple_ogg_page__clear(&page); return; /* state already set */ } if((FLAC__STREAM_METADATA_HEADER_LENGTH + 18*encoder->private_->seek_table->num_points) != (unsigned)page.body_len) { encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR; simple_ogg_page__clear(&page); return; } for(i = 0, p = page.body + FLAC__STREAM_METADATA_HEADER_LENGTH; i < encoder->private_->seek_table->num_points; i++, p += 18) { FLAC__uint64 xx; unsigned x; xx = encoder->private_->seek_table->points[i].sample_number; b[7] = (FLAC__byte)xx; xx >>= 8; b[6] = (FLAC__byte)xx; xx >>= 8; b[5] = (FLAC__byte)xx; xx >>= 8; b[4] = (FLAC__byte)xx; xx >>= 8; b[3] = (FLAC__byte)xx; xx >>= 8; b[2] = (FLAC__byte)xx; xx >>= 8; b[1] = (FLAC__byte)xx; xx >>= 8; b[0] = (FLAC__byte)xx; xx >>= 8; xx = encoder->private_->seek_table->points[i].stream_offset; b[15] = (FLAC__byte)xx; xx >>= 8; b[14] = (FLAC__byte)xx; xx >>= 8; b[13] = (FLAC__byte)xx; xx >>= 8; b[12] = (FLAC__byte)xx; xx >>= 8; b[11] = (FLAC__byte)xx; xx >>= 8; b[10] = (FLAC__byte)xx; xx >>= 8; b[9] = (FLAC__byte)xx; xx >>= 8; b[8] = (FLAC__byte)xx; xx >>= 8; x = encoder->private_->seek_table->points[i].frame_samples; b[17] = (FLAC__byte)x; x >>= 8; b[16] = (FLAC__byte)x; x >>= 8; memcpy(p, b, 18); } if(!simple_ogg_page__set_at(encoder, encoder->protected_->seektable_offset, &page, encoder->private_->seek_callback, encoder->private_->write_callback, encoder->private_->client_data)) { simple_ogg_page__clear(&page); return; /* state already set */ } simple_ogg_page__clear(&page); } } #endif FLAC__bool process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_fractional_block, FLAC__bool is_last_block) { FLAC__uint16 crc; FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); /* * Accumulate raw signal to the MD5 signature */ if(encoder->protected_->do_md5 && !FLAC__MD5Accumulate(&encoder->private_->md5context, (const FLAC__int32 * const *)encoder->private_->integer_signal, encoder->protected_->channels, encoder->protected_->blocksize, (encoder->protected_->bits_per_sample+7) / 8)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } /* * Process the frame header and subframes into the frame bitbuffer */ if(!process_subframes_(encoder, is_fractional_block)) { /* the above function sets the state for us in case of an error */ return false; } /* * Zero-pad the frame to a byte_boundary */ if(!FLAC__bitwriter_zero_pad_to_byte_boundary(encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } /* * CRC-16 the whole thing */ FLAC__ASSERT(FLAC__bitwriter_is_byte_aligned(encoder->private_->frame)); if( !FLAC__bitwriter_get_write_crc16(encoder->private_->frame, &crc) || !FLAC__bitwriter_write_raw_uint32(encoder->private_->frame, crc, FLAC__FRAME_FOOTER_CRC_LEN) ) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } /* * Write it */ if(!write_bitbuffer_(encoder, encoder->protected_->blocksize, is_last_block)) { /* the above function sets the state for us in case of an error */ return false; } /* * Get ready for the next frame */ encoder->private_->current_sample_number = 0; encoder->private_->current_frame_number++; encoder->private_->streaminfo.data.stream_info.total_samples += (FLAC__uint64)encoder->protected_->blocksize; return true; } FLAC__bool process_subframes_(FLAC__StreamEncoder *encoder, FLAC__bool is_fractional_block) { FLAC__FrameHeader frame_header; unsigned channel, min_partition_order = encoder->protected_->min_residual_partition_order, max_partition_order; FLAC__bool do_independent, do_mid_side; /* * Calculate the min,max Rice partition orders */ if(is_fractional_block) { max_partition_order = 0; } else { max_partition_order = FLAC__format_get_max_rice_partition_order_from_blocksize(encoder->protected_->blocksize); max_partition_order = min(max_partition_order, encoder->protected_->max_residual_partition_order); } min_partition_order = min(min_partition_order, max_partition_order); /* * Setup the frame */ frame_header.blocksize = encoder->protected_->blocksize; frame_header.sample_rate = encoder->protected_->sample_rate; frame_header.channels = encoder->protected_->channels; frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */ frame_header.bits_per_sample = encoder->protected_->bits_per_sample; frame_header.number_type = FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER; frame_header.number.frame_number = encoder->private_->current_frame_number; /* * Figure out what channel assignments to try */ if(encoder->protected_->do_mid_side_stereo) { if(encoder->protected_->loose_mid_side_stereo) { if(encoder->private_->loose_mid_side_stereo_frame_count == 0) { do_independent = true; do_mid_side = true; } else { do_independent = (encoder->private_->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT); do_mid_side = !do_independent; } } else { do_independent = true; do_mid_side = true; } } else { do_independent = true; do_mid_side = false; } FLAC__ASSERT(do_independent || do_mid_side); /* * Check for wasted bits; set effective bps for each subframe */ if(do_independent) { for(channel = 0; channel < encoder->protected_->channels; channel++) { const unsigned w = get_wasted_bits_(encoder->private_->integer_signal[channel], encoder->protected_->blocksize); encoder->private_->subframe_workspace[channel][0].wasted_bits = encoder->private_->subframe_workspace[channel][1].wasted_bits = w; encoder->private_->subframe_bps[channel] = encoder->protected_->bits_per_sample - w; } } if(do_mid_side) { FLAC__ASSERT(encoder->protected_->channels == 2); for(channel = 0; channel < 2; channel++) { const unsigned w = get_wasted_bits_(encoder->private_->integer_signal_mid_side[channel], encoder->protected_->blocksize); encoder->private_->subframe_workspace_mid_side[channel][0].wasted_bits = encoder->private_->subframe_workspace_mid_side[channel][1].wasted_bits = w; encoder->private_->subframe_bps_mid_side[channel] = encoder->protected_->bits_per_sample - w + (channel==0? 0:1); } } /* * First do a normal encoding pass of each independent channel */ if(do_independent) { for(channel = 0; channel < encoder->protected_->channels; channel++) { if(! process_subframe_( encoder, min_partition_order, max_partition_order, &frame_header, encoder->private_->subframe_bps[channel], encoder->private_->integer_signal[channel], encoder->private_->subframe_workspace_ptr[channel], encoder->private_->partitioned_rice_contents_workspace_ptr[channel], encoder->private_->residual_workspace[channel], encoder->private_->best_subframe+channel, encoder->private_->best_subframe_bits+channel ) ) return false; } } /* * Now do mid and side channels if requested */ if(do_mid_side) { FLAC__ASSERT(encoder->protected_->channels == 2); for(channel = 0; channel < 2; channel++) { if(! process_subframe_( encoder, min_partition_order, max_partition_order, &frame_header, encoder->private_->subframe_bps_mid_side[channel], encoder->private_->integer_signal_mid_side[channel], encoder->private_->subframe_workspace_ptr_mid_side[channel], encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[channel], encoder->private_->residual_workspace_mid_side[channel], encoder->private_->best_subframe_mid_side+channel, encoder->private_->best_subframe_bits_mid_side+channel ) ) return false; } } /* * Compose the frame bitbuffer */ if(do_mid_side) { unsigned left_bps = 0, right_bps = 0; /* initialized only to prevent superfluous compiler warning */ FLAC__Subframe *left_subframe = 0, *right_subframe = 0; /* initialized only to prevent superfluous compiler warning */ FLAC__ChannelAssignment channel_assignment; FLAC__ASSERT(encoder->protected_->channels == 2); if(encoder->protected_->loose_mid_side_stereo && encoder->private_->loose_mid_side_stereo_frame_count > 0) { channel_assignment = (encoder->private_->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT? FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT : FLAC__CHANNEL_ASSIGNMENT_MID_SIDE); } else { unsigned bits[4]; /* WATCHOUT - indexed by FLAC__ChannelAssignment */ unsigned min_bits; int ca; FLAC__ASSERT(FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT == 0); FLAC__ASSERT(FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE == 1); FLAC__ASSERT(FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE == 2); FLAC__ASSERT(FLAC__CHANNEL_ASSIGNMENT_MID_SIDE == 3); FLAC__ASSERT(do_independent && do_mid_side); /* We have to figure out which channel assignent results in the smallest frame */ bits[FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT] = encoder->private_->best_subframe_bits [0] + encoder->private_->best_subframe_bits [1]; bits[FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE ] = encoder->private_->best_subframe_bits [0] + encoder->private_->best_subframe_bits_mid_side[1]; bits[FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE ] = encoder->private_->best_subframe_bits [1] + encoder->private_->best_subframe_bits_mid_side[1]; bits[FLAC__CHANNEL_ASSIGNMENT_MID_SIDE ] = encoder->private_->best_subframe_bits_mid_side[0] + encoder->private_->best_subframe_bits_mid_side[1]; channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; min_bits = bits[channel_assignment]; for(ca = 1; ca <= 3; ca++) { if(bits[ca] < min_bits) { min_bits = bits[ca]; channel_assignment = (FLAC__ChannelAssignment)ca; } } } frame_header.channel_assignment = channel_assignment; if(!FLAC__frame_add_header(&frame_header, encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } switch(channel_assignment) { case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: left_subframe = &encoder->private_->subframe_workspace [0][encoder->private_->best_subframe [0]]; right_subframe = &encoder->private_->subframe_workspace [1][encoder->private_->best_subframe [1]]; break; case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: left_subframe = &encoder->private_->subframe_workspace [0][encoder->private_->best_subframe [0]]; right_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; break; case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: left_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; right_subframe = &encoder->private_->subframe_workspace [1][encoder->private_->best_subframe [1]]; break; case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: left_subframe = &encoder->private_->subframe_workspace_mid_side[0][encoder->private_->best_subframe_mid_side[0]]; right_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; break; default: FLAC__ASSERT(0); } switch(channel_assignment) { case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: left_bps = encoder->private_->subframe_bps [0]; right_bps = encoder->private_->subframe_bps [1]; break; case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: left_bps = encoder->private_->subframe_bps [0]; right_bps = encoder->private_->subframe_bps_mid_side[1]; break; case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: left_bps = encoder->private_->subframe_bps_mid_side[1]; right_bps = encoder->private_->subframe_bps [1]; break; case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: left_bps = encoder->private_->subframe_bps_mid_side[0]; right_bps = encoder->private_->subframe_bps_mid_side[1]; break; default: FLAC__ASSERT(0); } /* note that encoder_add_subframe_ sets the state for us in case of an error */ if(!add_subframe_(encoder, frame_header.blocksize, left_bps , left_subframe , encoder->private_->frame)) return false; if(!add_subframe_(encoder, frame_header.blocksize, right_bps, right_subframe, encoder->private_->frame)) return false; } else { if(!FLAC__frame_add_header(&frame_header, encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } for(channel = 0; channel < encoder->protected_->channels; channel++) { if(!add_subframe_(encoder, frame_header.blocksize, encoder->private_->subframe_bps[channel], &encoder->private_->subframe_workspace[channel][encoder->private_->best_subframe[channel]], encoder->private_->frame)) { /* the above function sets the state for us in case of an error */ return false; } } } if(encoder->protected_->loose_mid_side_stereo) { encoder->private_->loose_mid_side_stereo_frame_count++; if(encoder->private_->loose_mid_side_stereo_frame_count >= encoder->private_->loose_mid_side_stereo_frames) encoder->private_->loose_mid_side_stereo_frame_count = 0; } encoder->private_->last_channel_assignment = frame_header.channel_assignment; return true; } FLAC__bool process_subframe_( FLAC__StreamEncoder *encoder, unsigned min_partition_order, unsigned max_partition_order, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const FLAC__int32 integer_signal[], FLAC__Subframe *subframe[2], FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents[2], FLAC__int32 *residual[2], unsigned *best_subframe, unsigned *best_bits ) { #ifndef FLAC__INTEGER_ONLY_LIBRARY FLAC__float fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]; #else FLAC__fixedpoint fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]; #endif #ifndef FLAC__INTEGER_ONLY_LIBRARY FLAC__double lpc_residual_bits_per_sample; FLAC__real autoc[FLAC__MAX_LPC_ORDER+1]; /* WATCHOUT: the size is important even though encoder->protected_->max_lpc_order might be less; some asm routines need all the space */ FLAC__double lpc_error[FLAC__MAX_LPC_ORDER]; unsigned min_lpc_order, max_lpc_order, lpc_order; unsigned min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision; #endif unsigned min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order; unsigned rice_parameter; unsigned _candidate_bits, _best_bits; unsigned _best_subframe; /* only use RICE2 partitions if stream bps > 16 */ const unsigned rice_parameter_limit = FLAC__stream_encoder_get_bits_per_sample(encoder) > 16? FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_ESCAPE_PARAMETER : FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER; FLAC__ASSERT(frame_header->blocksize > 0); /* verbatim subframe is the baseline against which we measure other compressed subframes */ _best_subframe = 0; if(encoder->private_->disable_verbatim_subframes && frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) _best_bits = UINT_MAX; else _best_bits = evaluate_verbatim_subframe_(encoder, integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]); if(frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) { unsigned signal_is_constant = false; guess_fixed_order = encoder->private_->local_fixed_compute_best_predictor(integer_signal+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample); /* check for constant subframe */ if( !encoder->private_->disable_constant_subframes && #ifndef FLAC__INTEGER_ONLY_LIBRARY fixed_residual_bits_per_sample[1] == 0.0 #else fixed_residual_bits_per_sample[1] == FLAC__FP_ZERO #endif ) { /* the above means it's possible all samples are the same value; now double-check it: */ unsigned i; signal_is_constant = true; for(i = 1; i < frame_header->blocksize; i++) { if(integer_signal[0] != integer_signal[i]) { signal_is_constant = false; break; } } } if(signal_is_constant) { _candidate_bits = evaluate_constant_subframe_(encoder, integer_signal[0], frame_header->blocksize, subframe_bps, subframe[!_best_subframe]); if(_candidate_bits < _best_bits) { _best_subframe = !_best_subframe; _best_bits = _candidate_bits; } } else { if(!encoder->private_->disable_fixed_subframes || (encoder->protected_->max_lpc_order == 0 && _best_bits == UINT_MAX)) { /* encode fixed */ if(encoder->protected_->do_exhaustive_model_search) { min_fixed_order = 0; max_fixed_order = FLAC__MAX_FIXED_ORDER; } else { min_fixed_order = max_fixed_order = guess_fixed_order; } if(max_fixed_order >= frame_header->blocksize) max_fixed_order = frame_header->blocksize - 1; for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) { #ifndef FLAC__INTEGER_ONLY_LIBRARY if(fixed_residual_bits_per_sample[fixed_order] >= (FLAC__float)subframe_bps) continue; /* don't even try */ rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+0.5) : 0; /* 0.5 is for rounding */ #else if(FLAC__fixedpoint_trunc(fixed_residual_bits_per_sample[fixed_order]) >= (int)subframe_bps) continue; /* don't even try */ rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > FLAC__FP_ZERO)? (unsigned)FLAC__fixedpoint_trunc(fixed_residual_bits_per_sample[fixed_order]+FLAC__FP_ONE_HALF) : 0; /* 0.5 is for rounding */ #endif rice_parameter++; /* to account for the signed->unsigned conversion during rice coding */ if(rice_parameter >= rice_parameter_limit) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @0\n", rice_parameter, rice_parameter_limit - 1); #endif rice_parameter = rice_parameter_limit - 1; } _candidate_bits = evaluate_fixed_subframe_( encoder, integer_signal, residual[!_best_subframe], encoder->private_->abs_residual_partition_sums, encoder->private_->raw_bits_per_partition, frame_header->blocksize, subframe_bps, fixed_order, rice_parameter, rice_parameter_limit, min_partition_order, max_partition_order, encoder->protected_->do_escape_coding, encoder->protected_->rice_parameter_search_dist, subframe[!_best_subframe], partitioned_rice_contents[!_best_subframe] ); if(_candidate_bits < _best_bits) { _best_subframe = !_best_subframe; _best_bits = _candidate_bits; } } } #ifndef FLAC__INTEGER_ONLY_LIBRARY /* encode lpc */ if(encoder->protected_->max_lpc_order > 0) { if(encoder->protected_->max_lpc_order >= frame_header->blocksize) max_lpc_order = frame_header->blocksize-1; else max_lpc_order = encoder->protected_->max_lpc_order; if(max_lpc_order > 0) { unsigned a; for (a = 0; a < encoder->protected_->num_apodizations; a++) { FLAC__lpc_window_data(integer_signal, encoder->private_->window[a], encoder->private_->windowed_signal, frame_header->blocksize); encoder->private_->local_lpc_compute_autocorrelation(encoder->private_->windowed_signal, frame_header->blocksize, max_lpc_order+1, autoc); /* if autoc[0] == 0.0, the signal is constant and we usually won't get here, but it can happen */ if(autoc[0] != 0.0) { FLAC__lpc_compute_lp_coefficients(autoc, &max_lpc_order, encoder->private_->lp_coeff, lpc_error); if(encoder->protected_->do_exhaustive_model_search) { min_lpc_order = 1; } else { const unsigned guess_lpc_order = FLAC__lpc_compute_best_order( lpc_error, max_lpc_order, frame_header->blocksize, subframe_bps + ( encoder->protected_->do_qlp_coeff_prec_search? FLAC__MIN_QLP_COEFF_PRECISION : /* have to guess; use the min possible size to avoid accidentally favoring lower orders */ encoder->protected_->qlp_coeff_precision ) ); min_lpc_order = max_lpc_order = guess_lpc_order; } if(max_lpc_order >= frame_header->blocksize) max_lpc_order = frame_header->blocksize - 1; for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) { lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize-lpc_order); if(lpc_residual_bits_per_sample >= (FLAC__double)subframe_bps) continue; /* don't even try */ rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+0.5) : 0; /* 0.5 is for rounding */ rice_parameter++; /* to account for the signed->unsigned conversion during rice coding */ if(rice_parameter >= rice_parameter_limit) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @1\n", rice_parameter, rice_parameter_limit - 1); #endif rice_parameter = rice_parameter_limit - 1; } if(encoder->protected_->do_qlp_coeff_prec_search) { min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION; /* try to ensure a 32-bit datapath throughout for 16bps(+1bps for side channel) or less */ if(subframe_bps <= 17) { max_qlp_coeff_precision = min(32 - subframe_bps - lpc_order, FLAC__MAX_QLP_COEFF_PRECISION); max_qlp_coeff_precision = max(max_qlp_coeff_precision, min_qlp_coeff_precision); } else max_qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION; } else { min_qlp_coeff_precision = max_qlp_coeff_precision = encoder->protected_->qlp_coeff_precision; } for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) { _candidate_bits = evaluate_lpc_subframe_( encoder, integer_signal, residual[!_best_subframe], encoder->private_->abs_residual_partition_sums, encoder->private_->raw_bits_per_partition, encoder->private_->lp_coeff[lpc_order-1], frame_header->blocksize, subframe_bps, lpc_order, qlp_coeff_precision, rice_parameter, rice_parameter_limit, min_partition_order, max_partition_order, encoder->protected_->do_escape_coding, encoder->protected_->rice_parameter_search_dist, subframe[!_best_subframe], partitioned_rice_contents[!_best_subframe] ); if(_candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */ if(_candidate_bits < _best_bits) { _best_subframe = !_best_subframe; _best_bits = _candidate_bits; } } } } } } } } #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ } } /* under rare circumstances this can happen when all but lpc subframe types are disabled: */ if(_best_bits == UINT_MAX) { FLAC__ASSERT(_best_subframe == 0); _best_bits = evaluate_verbatim_subframe_(encoder, integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]); } *best_subframe = _best_subframe; *best_bits = _best_bits; return true; } FLAC__bool add_subframe_( FLAC__StreamEncoder *encoder, unsigned blocksize, unsigned subframe_bps, const FLAC__Subframe *subframe, FLAC__BitWriter *frame ) { switch(subframe->type) { case FLAC__SUBFRAME_TYPE_CONSTANT: if(!FLAC__subframe_add_constant(&(subframe->data.constant), subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } break; case FLAC__SUBFRAME_TYPE_FIXED: if(!FLAC__subframe_add_fixed(&(subframe->data.fixed), blocksize - subframe->data.fixed.order, subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } break; case FLAC__SUBFRAME_TYPE_LPC: if(!FLAC__subframe_add_lpc(&(subframe->data.lpc), blocksize - subframe->data.lpc.order, subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } break; case FLAC__SUBFRAME_TYPE_VERBATIM: if(!FLAC__subframe_add_verbatim(&(subframe->data.verbatim), blocksize, subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } break; default: FLAC__ASSERT(0); } return true; } #define SPOTCHECK_ESTIMATE 0 #if SPOTCHECK_ESTIMATE static void spotcheck_subframe_estimate_( FLAC__StreamEncoder *encoder, unsigned blocksize, unsigned subframe_bps, const FLAC__Subframe *subframe, unsigned estimate ) { FLAC__bool ret; FLAC__BitWriter *frame = FLAC__bitwriter_new(); if(frame == 0) { fprintf(stderr, "EST: can't allocate frame\n"); return; } if(!FLAC__bitwriter_init(frame)) { fprintf(stderr, "EST: can't init frame\n"); return; } ret = add_subframe_(encoder, blocksize, subframe_bps, subframe, frame); FLAC__ASSERT(ret); { const unsigned actual = FLAC__bitwriter_get_input_bits_unconsumed(frame); if(estimate != actual) fprintf(stderr, "EST: bad, frame#%u sub#%%d type=%8s est=%u, actual=%u, delta=%d\n", encoder->private_->current_frame_number, FLAC__SubframeTypeString[subframe->type], estimate, actual, (int)actual-(int)estimate); } FLAC__bitwriter_delete(frame); } #endif unsigned evaluate_constant_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int32 signal, unsigned blocksize, unsigned subframe_bps, FLAC__Subframe *subframe ) { unsigned estimate; subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT; subframe->data.constant.value = signal; estimate = FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe->wasted_bits + subframe_bps; #if SPOTCHECK_ESTIMATE spotcheck_subframe_estimate_(encoder, blocksize, subframe_bps, subframe, estimate); #else (void)encoder, (void)blocksize; #endif return estimate; } unsigned evaluate_fixed_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned rice_parameter, unsigned rice_parameter_limit, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__Subframe *subframe, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents ) { unsigned i, residual_bits, estimate; const unsigned residual_samples = blocksize - order; FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual); subframe->type = FLAC__SUBFRAME_TYPE_FIXED; subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; subframe->data.fixed.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents; subframe->data.fixed.residual = residual; residual_bits = find_best_partition_order_( encoder->private_, residual, abs_residual_partition_sums, raw_bits_per_partition, residual_samples, order, rice_parameter, rice_parameter_limit, min_partition_order, max_partition_order, subframe_bps, do_escape_coding, rice_parameter_search_dist, &subframe->data.fixed.entropy_coding_method ); subframe->data.fixed.order = order; for(i = 0; i < order; i++) subframe->data.fixed.warmup[i] = signal[i]; estimate = FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe->wasted_bits + (order * subframe_bps) + residual_bits; #if SPOTCHECK_ESTIMATE spotcheck_subframe_estimate_(encoder, blocksize, subframe_bps, subframe, estimate); #endif return estimate; } #ifndef FLAC__INTEGER_ONLY_LIBRARY unsigned evaluate_lpc_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], const FLAC__real lp_coeff[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned rice_parameter_limit, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__Subframe *subframe, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents ) { FLAC__int32 qlp_coeff[FLAC__MAX_LPC_ORDER]; unsigned i, residual_bits, estimate; int quantization, ret; const unsigned residual_samples = blocksize - order; /* try to keep qlp coeff precision such that only 32-bit math is required for decode of <=16bps streams */ if(subframe_bps <= 16) { FLAC__ASSERT(order > 0); FLAC__ASSERT(order <= FLAC__MAX_LPC_ORDER); qlp_coeff_precision = min(qlp_coeff_precision, 32 - subframe_bps - FLAC__bitmath_ilog2(order)); } ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, qlp_coeff, &quantization); if(ret != 0) return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */ if(subframe_bps + qlp_coeff_precision + FLAC__bitmath_ilog2(order) <= 32) if(subframe_bps <= 16 && qlp_coeff_precision <= 16) encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit(signal+order, residual_samples, qlp_coeff, order, quantization, residual); else encoder->private_->local_lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual); else encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit(signal+order, residual_samples, qlp_coeff, order, quantization, residual); subframe->type = FLAC__SUBFRAME_TYPE_LPC; subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; subframe->data.lpc.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents; subframe->data.lpc.residual = residual; residual_bits = find_best_partition_order_( encoder->private_, residual, abs_residual_partition_sums, raw_bits_per_partition, residual_samples, order, rice_parameter, rice_parameter_limit, min_partition_order, max_partition_order, subframe_bps, do_escape_coding, rice_parameter_search_dist, &subframe->data.lpc.entropy_coding_method ); subframe->data.lpc.order = order; subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision; subframe->data.lpc.quantization_level = quantization; memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(FLAC__int32)*FLAC__MAX_LPC_ORDER); for(i = 0; i < order; i++) subframe->data.lpc.warmup[i] = signal[i]; estimate = FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe->wasted_bits + FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + subframe_bps)) + residual_bits; #if SPOTCHECK_ESTIMATE spotcheck_subframe_estimate_(encoder, blocksize, subframe_bps, subframe, estimate); #endif return estimate; } #endif unsigned evaluate_verbatim_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], unsigned blocksize, unsigned subframe_bps, FLAC__Subframe *subframe ) { unsigned estimate; subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM; subframe->data.verbatim.data = signal; estimate = FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe->wasted_bits + (blocksize * subframe_bps); #if SPOTCHECK_ESTIMATE spotcheck_subframe_estimate_(encoder, blocksize, subframe_bps, subframe, estimate); #else (void)encoder; #endif return estimate; } unsigned find_best_partition_order_( FLAC__StreamEncoderPrivate *private_, const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned rice_parameter_limit, unsigned min_partition_order, unsigned max_partition_order, unsigned bps, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__EntropyCodingMethod *best_ecm ) { unsigned residual_bits, best_residual_bits = 0; unsigned best_parameters_index = 0; unsigned best_partition_order = 0; const unsigned blocksize = residual_samples + predictor_order; max_partition_order = FLAC__format_get_max_rice_partition_order_from_blocksize_limited_max_and_predictor_order(max_partition_order, blocksize, predictor_order); min_partition_order = min(min_partition_order, max_partition_order); precompute_partition_info_sums_(residual, abs_residual_partition_sums, residual_samples, predictor_order, min_partition_order, max_partition_order, bps); if(do_escape_coding) precompute_partition_info_escapes_(residual, raw_bits_per_partition, residual_samples, predictor_order, min_partition_order, max_partition_order); { int partition_order; unsigned sum; for(partition_order = (int)max_partition_order, sum = 0; partition_order >= (int)min_partition_order; partition_order--) { if(! set_partitioned_rice_( #ifdef EXACT_RICE_BITS_CALCULATION residual, #endif abs_residual_partition_sums+sum, raw_bits_per_partition+sum, residual_samples, predictor_order, rice_parameter, rice_parameter_limit, rice_parameter_search_dist, (unsigned)partition_order, do_escape_coding, &private_->partitioned_rice_contents_extra[!best_parameters_index], &residual_bits ) ) { FLAC__ASSERT(best_residual_bits != 0); break; } sum += 1u << partition_order; if(best_residual_bits == 0 || residual_bits < best_residual_bits) { best_residual_bits = residual_bits; best_parameters_index = !best_parameters_index; best_partition_order = partition_order; } } } best_ecm->data.partitioned_rice.order = best_partition_order; { /* * We are allowed to de-const the pointer based on our special * knowledge; it is const to the outside world. */ FLAC__EntropyCodingMethod_PartitionedRiceContents* prc = (FLAC__EntropyCodingMethod_PartitionedRiceContents*)best_ecm->data.partitioned_rice.contents; unsigned partition; /* save best parameters and raw_bits */ FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(prc, max(6, best_partition_order)); memcpy(prc->parameters, private_->partitioned_rice_contents_extra[best_parameters_index].parameters, sizeof(unsigned)*(1<<(best_partition_order))); if(do_escape_coding) memcpy(prc->raw_bits, private_->partitioned_rice_contents_extra[best_parameters_index].raw_bits, sizeof(unsigned)*(1<<(best_partition_order))); /* * Now need to check if the type should be changed to * FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2 based on the * size of the rice parameters. */ for(partition = 0; partition < (1u<parameters[partition] >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { best_ecm->type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2; break; } } } return best_residual_bits; } #if defined(FLAC__CPU_IA32) && !defined FLAC__NO_ASM && defined FLAC__HAS_NASM extern void precompute_partition_info_sums_32bit_asm_ia32_( const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned blocksize, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order ); #endif void precompute_partition_info_sums_( const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order, unsigned bps ) { const unsigned default_partition_samples = (residual_samples + predictor_order) >> max_partition_order; unsigned partitions = 1u << max_partition_order; FLAC__ASSERT(default_partition_samples > predictor_order); #if defined(FLAC__CPU_IA32) && !defined FLAC__NO_ASM && defined FLAC__HAS_NASM /* slightly pessimistic but still catches all common cases */ /* WATCHOUT: "+ bps" is an assumption that the average residual magnitude will not be more than "bps" bits */ if(FLAC__bitmath_ilog2(default_partition_samples) + bps < 32) { precompute_partition_info_sums_32bit_asm_ia32_(residual, abs_residual_partition_sums, residual_samples + predictor_order, predictor_order, min_partition_order, max_partition_order); return; } #endif /* first do max_partition_order */ { unsigned partition, residual_sample, end = (unsigned)(-(int)predictor_order); /* slightly pessimistic but still catches all common cases */ /* WATCHOUT: "+ bps" is an assumption that the average residual magnitude will not be more than "bps" bits */ if(FLAC__bitmath_ilog2(default_partition_samples) + bps < 32) { FLAC__uint32 abs_residual_partition_sum; for(partition = residual_sample = 0; partition < partitions; partition++) { end += default_partition_samples; abs_residual_partition_sum = 0; for( ; residual_sample < end; residual_sample++) abs_residual_partition_sum += abs(residual[residual_sample]); /* abs(INT_MIN) is undefined, but if the residual is INT_MIN we have bigger problems */ abs_residual_partition_sums[partition] = abs_residual_partition_sum; } } else { /* have to pessimistically use 64 bits for accumulator */ FLAC__uint64 abs_residual_partition_sum; for(partition = residual_sample = 0; partition < partitions; partition++) { end += default_partition_samples; abs_residual_partition_sum = 0; for( ; residual_sample < end; residual_sample++) abs_residual_partition_sum += abs(residual[residual_sample]); /* abs(INT_MIN) is undefined, but if the residual is INT_MIN we have bigger problems */ abs_residual_partition_sums[partition] = abs_residual_partition_sum; } } } /* now merge partitions for lower orders */ { unsigned from_partition = 0, to_partition = partitions; int partition_order; for(partition_order = (int)max_partition_order - 1; partition_order >= (int)min_partition_order; partition_order--) { unsigned i; partitions >>= 1; for(i = 0; i < partitions; i++) { abs_residual_partition_sums[to_partition++] = abs_residual_partition_sums[from_partition ] + abs_residual_partition_sums[from_partition+1]; from_partition += 2; } } } } void precompute_partition_info_escapes_( const FLAC__int32 residual[], unsigned raw_bits_per_partition[], unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order ) { int partition_order; unsigned from_partition, to_partition = 0; const unsigned blocksize = residual_samples + predictor_order; /* first do max_partition_order */ for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) { FLAC__int32 r; FLAC__uint32 rmax; unsigned partition, partition_sample, partition_samples, residual_sample; const unsigned partitions = 1u << partition_order; const unsigned default_partition_samples = blocksize >> partition_order; FLAC__ASSERT(default_partition_samples > predictor_order); for(partition = residual_sample = 0; partition < partitions; partition++) { partition_samples = default_partition_samples; if(partition == 0) partition_samples -= predictor_order; rmax = 0; for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) { r = residual[residual_sample++]; /* OPT: maybe faster: rmax |= r ^ (r>>31) */ if(r < 0) rmax |= ~r; else rmax |= r; } /* now we know all residual values are in the range [-rmax-1,rmax] */ raw_bits_per_partition[partition] = rmax? FLAC__bitmath_ilog2(rmax) + 2 : 1; } to_partition = partitions; break; /*@@@ yuck, should remove the 'for' loop instead */ } /* now merge partitions for lower orders */ for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) { unsigned m; unsigned i; const unsigned partitions = 1u << partition_order; for(i = 0; i < partitions; i++) { m = raw_bits_per_partition[from_partition]; from_partition++; raw_bits_per_partition[to_partition] = max(m, raw_bits_per_partition[from_partition]); from_partition++; to_partition++; } } } #ifdef EXACT_RICE_BITS_CALCULATION static FLaC__INLINE unsigned count_rice_bits_in_partition_( const unsigned rice_parameter, const unsigned partition_samples, const FLAC__int32 *residual ) { unsigned i, partition_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + /* actually could end up being FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN but err on side of 16bps */ (1+rice_parameter) * partition_samples /* 1 for unary stop bit + rice_parameter for the binary portion */ ; for(i = 0; i < partition_samples; i++) partition_bits += ( (FLAC__uint32)((residual[i]<<1)^(residual[i]>>31)) >> rice_parameter ); return partition_bits; } #else static FLaC__INLINE unsigned count_rice_bits_in_partition_( const unsigned rice_parameter, const unsigned partition_samples, const FLAC__uint64 abs_residual_partition_sum ) { return FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + /* actually could end up being FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN but err on side of 16bps */ (1+rice_parameter) * partition_samples + /* 1 for unary stop bit + rice_parameter for the binary portion */ ( rice_parameter? (unsigned)(abs_residual_partition_sum >> (rice_parameter-1)) /* rice_parameter-1 because the real coder sign-folds instead of using a sign bit */ : (unsigned)(abs_residual_partition_sum << 1) /* can't shift by negative number, so reverse */ ) - (partition_samples >> 1) /* -(partition_samples>>1) to subtract out extra contributions to the abs_residual_partition_sum. * The actual number of bits used is closer to the sum(for all i in the partition) of abs(residual[i])>>(rice_parameter-1) * By using the abs_residual_partition sum, we also add in bits in the LSBs that would normally be shifted out. * So the subtraction term tries to guess how many extra bits were contributed. * If the LSBs are randomly distributed, this should average to 0.5 extra bits per sample. */ ; } #endif FLAC__bool set_partitioned_rice_( #ifdef EXACT_RICE_BITS_CALCULATION const FLAC__int32 residual[], #endif const FLAC__uint64 abs_residual_partition_sums[], const unsigned raw_bits_per_partition[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_limit, const unsigned rice_parameter_search_dist, const unsigned partition_order, const FLAC__bool search_for_escapes, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, unsigned *bits ) { unsigned rice_parameter, partition_bits; unsigned best_partition_bits, best_rice_parameter = 0; unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN; unsigned *parameters, *raw_bits; #ifdef ENABLE_RICE_PARAMETER_SEARCH unsigned min_rice_parameter, max_rice_parameter; #else (void)rice_parameter_search_dist; #endif FLAC__ASSERT(suggested_rice_parameter < FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_ESCAPE_PARAMETER); FLAC__ASSERT(rice_parameter_limit <= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_ESCAPE_PARAMETER); FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(partitioned_rice_contents, max(6, partition_order)); parameters = partitioned_rice_contents->parameters; raw_bits = partitioned_rice_contents->raw_bits; if(partition_order == 0) { best_partition_bits = (unsigned)(-1); #ifdef ENABLE_RICE_PARAMETER_SEARCH if(rice_parameter_search_dist) { if(suggested_rice_parameter < rice_parameter_search_dist) min_rice_parameter = 0; else min_rice_parameter = suggested_rice_parameter - rice_parameter_search_dist; max_rice_parameter = suggested_rice_parameter + rice_parameter_search_dist; if(max_rice_parameter >= rice_parameter_limit) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @5\n", max_rice_parameter, rice_parameter_limit - 1); #endif max_rice_parameter = rice_parameter_limit - 1; } } else min_rice_parameter = max_rice_parameter = suggested_rice_parameter; for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { #else rice_parameter = suggested_rice_parameter; #endif #ifdef EXACT_RICE_BITS_CALCULATION partition_bits = count_rice_bits_in_partition_(rice_parameter, residual_samples, residual); #else partition_bits = count_rice_bits_in_partition_(rice_parameter, residual_samples, abs_residual_partition_sums[0]); #endif if(partition_bits < best_partition_bits) { best_rice_parameter = rice_parameter; best_partition_bits = partition_bits; } #ifdef ENABLE_RICE_PARAMETER_SEARCH } #endif if(search_for_escapes) { partition_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[0] * residual_samples; if(partition_bits <= best_partition_bits) { raw_bits[0] = raw_bits_per_partition[0]; best_rice_parameter = 0; /* will be converted to appropriate escape parameter later */ best_partition_bits = partition_bits; } else raw_bits[0] = 0; } parameters[0] = best_rice_parameter; bits_ += best_partition_bits; } else { unsigned partition, residual_sample; unsigned partition_samples; FLAC__uint64 mean, k; const unsigned partitions = 1u << partition_order; for(partition = residual_sample = 0; partition < partitions; partition++) { partition_samples = (residual_samples+predictor_order) >> partition_order; if(partition == 0) { if(partition_samples <= predictor_order) return false; else partition_samples -= predictor_order; } mean = abs_residual_partition_sums[partition]; /* we are basically calculating the size in bits of the * average residual magnitude in the partition: * rice_parameter = floor(log2(mean/partition_samples)) * 'mean' is not a good name for the variable, it is * actually the sum of magnitudes of all residual values * in the partition, so the actual mean is * mean/partition_samples */ for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1) ; if(rice_parameter >= rice_parameter_limit) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @6\n", rice_parameter, rice_parameter_limit - 1); #endif rice_parameter = rice_parameter_limit - 1; } best_partition_bits = (unsigned)(-1); #ifdef ENABLE_RICE_PARAMETER_SEARCH if(rice_parameter_search_dist) { if(rice_parameter < rice_parameter_search_dist) min_rice_parameter = 0; else min_rice_parameter = rice_parameter - rice_parameter_search_dist; max_rice_parameter = rice_parameter + rice_parameter_search_dist; if(max_rice_parameter >= rice_parameter_limit) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @7\n", max_rice_parameter, rice_parameter_limit - 1); #endif max_rice_parameter = rice_parameter_limit - 1; } } else min_rice_parameter = max_rice_parameter = rice_parameter; for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { #endif #ifdef EXACT_RICE_BITS_CALCULATION partition_bits = count_rice_bits_in_partition_(rice_parameter, partition_samples, residual+residual_sample); #else partition_bits = count_rice_bits_in_partition_(rice_parameter, partition_samples, abs_residual_partition_sums[partition]); #endif if(partition_bits < best_partition_bits) { best_rice_parameter = rice_parameter; best_partition_bits = partition_bits; } #ifdef ENABLE_RICE_PARAMETER_SEARCH } #endif if(search_for_escapes) { partition_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[partition] * partition_samples; if(partition_bits <= best_partition_bits) { raw_bits[partition] = raw_bits_per_partition[partition]; best_rice_parameter = 0; /* will be converted to appropriate escape parameter later */ best_partition_bits = partition_bits; } else raw_bits[partition] = 0; } parameters[partition] = best_rice_parameter; bits_ += best_partition_bits; residual_sample += partition_samples; } } *bits = bits_; return true; } unsigned get_wasted_bits_(FLAC__int32 signal[], unsigned samples) { unsigned i, shift; FLAC__int32 x = 0; for(i = 0; i < samples && !(x&1); i++) x |= signal[i]; if(x == 0) { shift = 0; } else { for(shift = 0; !(x&1); shift++) x >>= 1; } if(shift > 0) { for(i = 0; i < samples; i++) signal[i] >>= shift; } return shift; } void append_to_verify_fifo_(verify_input_fifo *fifo, const FLAC__int32 * const input[], unsigned input_offset, unsigned channels, unsigned wide_samples) { unsigned channel; for(channel = 0; channel < channels; channel++) memcpy(&fifo->data[channel][fifo->tail], &input[channel][input_offset], sizeof(FLAC__int32) * wide_samples); fifo->tail += wide_samples; FLAC__ASSERT(fifo->tail <= fifo->size); } void append_to_verify_fifo_interleaved_(verify_input_fifo *fifo, const FLAC__int32 input[], unsigned input_offset, unsigned channels, unsigned wide_samples) { unsigned channel; unsigned sample, wide_sample; unsigned tail = fifo->tail; sample = input_offset * channels; for(wide_sample = 0; wide_sample < wide_samples; wide_sample++) { for(channel = 0; channel < channels; channel++) fifo->data[channel][tail] = input[sample++]; tail++; } fifo->tail = tail; FLAC__ASSERT(fifo->tail <= fifo->size); } FLAC__StreamDecoderReadStatus verify_read_callback_(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes, void *client_data) { FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder*)client_data; const size_t encoded_bytes = encoder->private_->verify.output.bytes; (void)decoder; if(encoder->private_->verify.needs_magic_hack) { FLAC__ASSERT(*bytes >= FLAC__STREAM_SYNC_LENGTH); *bytes = FLAC__STREAM_SYNC_LENGTH; memcpy(buffer, FLAC__STREAM_SYNC_STRING, *bytes); encoder->private_->verify.needs_magic_hack = false; } else { if(encoded_bytes == 0) { /* * If we get here, a FIFO underflow has occurred, * which means there is a bug somewhere. */ FLAC__ASSERT(0); return FLAC__STREAM_DECODER_READ_STATUS_ABORT; } else if(encoded_bytes < *bytes) *bytes = encoded_bytes; memcpy(buffer, encoder->private_->verify.output.data, *bytes); encoder->private_->verify.output.data += *bytes; encoder->private_->verify.output.bytes -= *bytes; } return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE; } FLAC__StreamDecoderWriteStatus verify_write_callback_(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *client_data) { FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder *)client_data; unsigned channel; const unsigned channels = frame->header.channels; const unsigned blocksize = frame->header.blocksize; const unsigned bytes_per_block = sizeof(FLAC__int32) * blocksize; (void)decoder; for(channel = 0; channel < channels; channel++) { if(0 != memcmp(buffer[channel], encoder->private_->verify.input_fifo.data[channel], bytes_per_block)) { unsigned i, sample = 0; FLAC__int32 expect = 0, got = 0; for(i = 0; i < blocksize; i++) { if(buffer[channel][i] != encoder->private_->verify.input_fifo.data[channel][i]) { sample = i; expect = (FLAC__int32)encoder->private_->verify.input_fifo.data[channel][i]; got = (FLAC__int32)buffer[channel][i]; break; } } FLAC__ASSERT(i < blocksize); FLAC__ASSERT(frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER); encoder->private_->verify.error_stats.absolute_sample = frame->header.number.sample_number + sample; encoder->private_->verify.error_stats.frame_number = (unsigned)(frame->header.number.sample_number / blocksize); encoder->private_->verify.error_stats.channel = channel; encoder->private_->verify.error_stats.sample = sample; encoder->private_->verify.error_stats.expected = expect; encoder->private_->verify.error_stats.got = got; encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA; return FLAC__STREAM_DECODER_WRITE_STATUS_ABORT; } } /* dequeue the frame from the fifo */ encoder->private_->verify.input_fifo.tail -= blocksize; FLAC__ASSERT(encoder->private_->verify.input_fifo.tail <= OVERREAD_); for(channel = 0; channel < channels; channel++) memmove(&encoder->private_->verify.input_fifo.data[channel][0], &encoder->private_->verify.input_fifo.data[channel][blocksize], encoder->private_->verify.input_fifo.tail * sizeof(encoder->private_->verify.input_fifo.data[0][0])); return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE; } void verify_metadata_callback_(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetadata *metadata, void *client_data) { (void)decoder, (void)metadata, (void)client_data; } void verify_error_callback_(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data) { FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder*)client_data; (void)decoder, (void)status; encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; } FLAC__StreamEncoderReadStatus file_read_callback_enc(const FLAC__StreamEncoder *encoder, FLAC__byte buffer[], size_t *bytes, void *client_data) { (void)client_data; *bytes = fread(buffer, 1, *bytes, encoder->private_->file); if (*bytes == 0) { if (feof(encoder->private_->file)) return FLAC__STREAM_ENCODER_READ_STATUS_END_OF_STREAM; else if (ferror(encoder->private_->file)) return FLAC__STREAM_ENCODER_READ_STATUS_ABORT; } return FLAC__STREAM_ENCODER_READ_STATUS_CONTINUE; } FLAC__StreamEncoderSeekStatus file_seek_callback_enc(const FLAC__StreamEncoder *encoder, FLAC__uint64 absolute_byte_offset, void *client_data) { (void)client_data; if(fseeko(encoder->private_->file, (off_t)absolute_byte_offset, SEEK_SET) < 0) return FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR; else return FLAC__STREAM_ENCODER_SEEK_STATUS_OK; } FLAC__StreamEncoderTellStatus file_tell_callback_enc(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_byte_offset, void *client_data) { off_t offset; (void)client_data; offset = ftello(encoder->private_->file); if(offset < 0) { return FLAC__STREAM_ENCODER_TELL_STATUS_ERROR; } else { *absolute_byte_offset = (FLAC__uint64)offset; return FLAC__STREAM_ENCODER_TELL_STATUS_OK; } } #ifdef FLAC__VALGRIND_TESTING static size_t local__fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream) { size_t ret = fwrite(ptr, size, nmemb, stream); if(!ferror(stream)) fflush(stream); return ret; } #else #define local__fwrite fwrite #endif FLAC__StreamEncoderWriteStatus file_write_callback_(const FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], size_t bytes, unsigned samples, unsigned current_frame, void *client_data) { (void)client_data, (void)current_frame; if(local__fwrite(buffer, sizeof(FLAC__byte), bytes, encoder->private_->file) == bytes) { FLAC__bool call_it = 0 != encoder->private_->progress_callback && ( #if FLAC__HAS_OGG /* We would like to be able to use 'samples > 0' in the * clause here but currently because of the nature of our * Ogg writing implementation, 'samples' is always 0 (see * ogg_encoder_aspect.c). The downside is extra progress * callbacks. */ encoder->private_->is_ogg? true : #endif samples > 0 ); if(call_it) { /* NOTE: We have to add +bytes, +samples, and +1 to the stats * because at this point in the callback chain, the stats * have not been updated. Only after we return and control * gets back to write_frame_() are the stats updated */ encoder->private_->progress_callback(encoder, encoder->private_->bytes_written+bytes, encoder->private_->samples_written+samples, encoder->private_->frames_written+(samples?1:0), encoder->private_->total_frames_estimate, encoder->private_->client_data); } return FLAC__STREAM_ENCODER_WRITE_STATUS_OK; } else return FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR; } /* * This will forcibly set stdout to binary mode (for OSes that require it) */ FILE *get_binary_stdout_(void) { /* if something breaks here it is probably due to the presence or * absence of an underscore before the identifiers 'setmode', * 'fileno', and/or 'O_BINARY'; check your system header files. */ #if defined _MSC_VER || defined __MINGW32__ _setmode(_fileno(stdout), _O_BINARY); #elif defined __CYGWIN__ /* almost certainly not needed for any modern Cygwin, but let's be safe... */ setmode(_fileno(stdout), _O_BINARY); #elif defined __EMX__ setmode(fileno(stdout), O_BINARY); #endif return stdout; } #endif /********* End of inlined file: stream_encoder.c *********/ /********* Start of inlined file: stream_encoder_framing.c *********/ /********* Start of inlined file: juce_FlacHeader.h *********/ // This file is included at the start of each FLAC .c file, just to do a few housekeeping // tasks.. #define VERSION "1.2.1" #define FLAC__NO_DLL 1 #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4312) #endif #if JUCE_MAC #define FLAC__SYS_DARWIN 1 #endif /********* End of inlined file: juce_FlacHeader.h *********/ #if JUCE_USE_FLAC #if HAVE_CONFIG_H # include #endif #include #include /* for strlen() */ #ifdef max #undef max #endif #define max(x,y) ((x)>(y)?(x):(y)) static FLAC__bool add_entropy_coding_method_(FLAC__BitWriter *bw, const FLAC__EntropyCodingMethod *method); static FLAC__bool add_residual_partitioned_rice_(FLAC__BitWriter *bw, const FLAC__int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameters[], const unsigned raw_bits[], const unsigned partition_order, const FLAC__bool is_extended); FLAC__bool FLAC__add_metadata_block(const FLAC__StreamMetadata *metadata, FLAC__BitWriter *bw) { unsigned i, j; const unsigned vendor_string_length = (unsigned)strlen(FLAC__VENDOR_STRING); if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->is_last, FLAC__STREAM_METADATA_IS_LAST_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->type, FLAC__STREAM_METADATA_TYPE_LEN)) return false; /* * First, for VORBIS_COMMENTs, adjust the length to reflect our vendor string */ i = metadata->length; if(metadata->type == FLAC__METADATA_TYPE_VORBIS_COMMENT) { FLAC__ASSERT(metadata->data.vorbis_comment.vendor_string.length == 0 || 0 != metadata->data.vorbis_comment.vendor_string.entry); i -= metadata->data.vorbis_comment.vendor_string.length; i += vendor_string_length; } FLAC__ASSERT(i < (1u << FLAC__STREAM_METADATA_LENGTH_LEN)); if(!FLAC__bitwriter_write_raw_uint32(bw, i, FLAC__STREAM_METADATA_LENGTH_LEN)) return false; switch(metadata->type) { case FLAC__METADATA_TYPE_STREAMINFO: FLAC__ASSERT(metadata->data.stream_info.min_blocksize < (1u << FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN)); if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.min_blocksize, FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN)) return false; FLAC__ASSERT(metadata->data.stream_info.max_blocksize < (1u << FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN)); if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.max_blocksize, FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN)) return false; FLAC__ASSERT(metadata->data.stream_info.min_framesize < (1u << FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN)); if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.min_framesize, FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN)) return false; FLAC__ASSERT(metadata->data.stream_info.max_framesize < (1u << FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN)); if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.max_framesize, FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN)) return false; FLAC__ASSERT(FLAC__format_sample_rate_is_valid(metadata->data.stream_info.sample_rate)); if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.sample_rate, FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN)) return false; FLAC__ASSERT(metadata->data.stream_info.channels > 0); FLAC__ASSERT(metadata->data.stream_info.channels <= (1u << FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN)); if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.channels-1, FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN)) return false; FLAC__ASSERT(metadata->data.stream_info.bits_per_sample > 0); FLAC__ASSERT(metadata->data.stream_info.bits_per_sample <= (1u << FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN)); if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.bits_per_sample-1, FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint64(bw, metadata->data.stream_info.total_samples, FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN)) return false; if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.stream_info.md5sum, 16)) return false; break; case FLAC__METADATA_TYPE_PADDING: if(!FLAC__bitwriter_write_zeroes(bw, metadata->length * 8)) return false; break; case FLAC__METADATA_TYPE_APPLICATION: if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.application.id, FLAC__STREAM_METADATA_APPLICATION_ID_LEN / 8)) return false; if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.application.data, metadata->length - (FLAC__STREAM_METADATA_APPLICATION_ID_LEN / 8))) return false; break; case FLAC__METADATA_TYPE_SEEKTABLE: for(i = 0; i < metadata->data.seek_table.num_points; i++) { if(!FLAC__bitwriter_write_raw_uint64(bw, metadata->data.seek_table.points[i].sample_number, FLAC__STREAM_METADATA_SEEKPOINT_SAMPLE_NUMBER_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint64(bw, metadata->data.seek_table.points[i].stream_offset, FLAC__STREAM_METADATA_SEEKPOINT_STREAM_OFFSET_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.seek_table.points[i].frame_samples, FLAC__STREAM_METADATA_SEEKPOINT_FRAME_SAMPLES_LEN)) return false; } break; case FLAC__METADATA_TYPE_VORBIS_COMMENT: if(!FLAC__bitwriter_write_raw_uint32_little_endian(bw, vendor_string_length)) return false; if(!FLAC__bitwriter_write_byte_block(bw, (const FLAC__byte*)FLAC__VENDOR_STRING, vendor_string_length)) return false; if(!FLAC__bitwriter_write_raw_uint32_little_endian(bw, metadata->data.vorbis_comment.num_comments)) return false; for(i = 0; i < metadata->data.vorbis_comment.num_comments; i++) { if(!FLAC__bitwriter_write_raw_uint32_little_endian(bw, metadata->data.vorbis_comment.comments[i].length)) return false; if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.vorbis_comment.comments[i].entry, metadata->data.vorbis_comment.comments[i].length)) return false; } break; case FLAC__METADATA_TYPE_CUESHEET: FLAC__ASSERT(FLAC__STREAM_METADATA_CUESHEET_MEDIA_CATALOG_NUMBER_LEN % 8 == 0); if(!FLAC__bitwriter_write_byte_block(bw, (const FLAC__byte*)metadata->data.cue_sheet.media_catalog_number, FLAC__STREAM_METADATA_CUESHEET_MEDIA_CATALOG_NUMBER_LEN/8)) return false; if(!FLAC__bitwriter_write_raw_uint64(bw, metadata->data.cue_sheet.lead_in, FLAC__STREAM_METADATA_CUESHEET_LEAD_IN_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.cue_sheet.is_cd? 1 : 0, FLAC__STREAM_METADATA_CUESHEET_IS_CD_LEN)) return false; if(!FLAC__bitwriter_write_zeroes(bw, FLAC__STREAM_METADATA_CUESHEET_RESERVED_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.cue_sheet.num_tracks, FLAC__STREAM_METADATA_CUESHEET_NUM_TRACKS_LEN)) return false; for(i = 0; i < metadata->data.cue_sheet.num_tracks; i++) { const FLAC__StreamMetadata_CueSheet_Track *track = metadata->data.cue_sheet.tracks + i; if(!FLAC__bitwriter_write_raw_uint64(bw, track->offset, FLAC__STREAM_METADATA_CUESHEET_TRACK_OFFSET_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, track->number, FLAC__STREAM_METADATA_CUESHEET_TRACK_NUMBER_LEN)) return false; FLAC__ASSERT(FLAC__STREAM_METADATA_CUESHEET_TRACK_ISRC_LEN % 8 == 0); if(!FLAC__bitwriter_write_byte_block(bw, (const FLAC__byte*)track->isrc, FLAC__STREAM_METADATA_CUESHEET_TRACK_ISRC_LEN/8)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, track->type, FLAC__STREAM_METADATA_CUESHEET_TRACK_TYPE_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, track->pre_emphasis, FLAC__STREAM_METADATA_CUESHEET_TRACK_PRE_EMPHASIS_LEN)) return false; if(!FLAC__bitwriter_write_zeroes(bw, FLAC__STREAM_METADATA_CUESHEET_TRACK_RESERVED_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, track->num_indices, FLAC__STREAM_METADATA_CUESHEET_TRACK_NUM_INDICES_LEN)) return false; for(j = 0; j < track->num_indices; j++) { const FLAC__StreamMetadata_CueSheet_Index *index = track->indices + j; if(!FLAC__bitwriter_write_raw_uint64(bw, index->offset, FLAC__STREAM_METADATA_CUESHEET_INDEX_OFFSET_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, index->number, FLAC__STREAM_METADATA_CUESHEET_INDEX_NUMBER_LEN)) return false; if(!FLAC__bitwriter_write_zeroes(bw, FLAC__STREAM_METADATA_CUESHEET_INDEX_RESERVED_LEN)) return false; } } break; case FLAC__METADATA_TYPE_PICTURE: { size_t len; if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.picture.type, FLAC__STREAM_METADATA_PICTURE_TYPE_LEN)) return false; len = strlen(metadata->data.picture.mime_type); if(!FLAC__bitwriter_write_raw_uint32(bw, len, FLAC__STREAM_METADATA_PICTURE_MIME_TYPE_LENGTH_LEN)) return false; if(!FLAC__bitwriter_write_byte_block(bw, (const FLAC__byte*)metadata->data.picture.mime_type, len)) return false; len = strlen((const char *)metadata->data.picture.description); if(!FLAC__bitwriter_write_raw_uint32(bw, len, FLAC__STREAM_METADATA_PICTURE_DESCRIPTION_LENGTH_LEN)) return false; if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.picture.description, len)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.picture.width, FLAC__STREAM_METADATA_PICTURE_WIDTH_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.picture.height, FLAC__STREAM_METADATA_PICTURE_HEIGHT_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.picture.depth, FLAC__STREAM_METADATA_PICTURE_DEPTH_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.picture.colors, FLAC__STREAM_METADATA_PICTURE_COLORS_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.picture.data_length, FLAC__STREAM_METADATA_PICTURE_DATA_LENGTH_LEN)) return false; if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.picture.data, metadata->data.picture.data_length)) return false; } break; default: if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.unknown.data, metadata->length)) return false; break; } FLAC__ASSERT(FLAC__bitwriter_is_byte_aligned(bw)); return true; } FLAC__bool FLAC__frame_add_header(const FLAC__FrameHeader *header, FLAC__BitWriter *bw) { unsigned u, blocksize_hint, sample_rate_hint; FLAC__byte crc; FLAC__ASSERT(FLAC__bitwriter_is_byte_aligned(bw)); if(!FLAC__bitwriter_write_raw_uint32(bw, FLAC__FRAME_HEADER_SYNC, FLAC__FRAME_HEADER_SYNC_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, 0, FLAC__FRAME_HEADER_RESERVED_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, (header->number_type == FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER)? 0 : 1, FLAC__FRAME_HEADER_BLOCKING_STRATEGY_LEN)) return false; FLAC__ASSERT(header->blocksize > 0 && header->blocksize <= FLAC__MAX_BLOCK_SIZE); /* when this assertion holds true, any legal blocksize can be expressed in the frame header */ FLAC__ASSERT(FLAC__MAX_BLOCK_SIZE <= 65535u); blocksize_hint = 0; switch(header->blocksize) { case 192: u = 1; break; case 576: u = 2; break; case 1152: u = 3; break; case 2304: u = 4; break; case 4608: u = 5; break; case 256: u = 8; break; case 512: u = 9; break; case 1024: u = 10; break; case 2048: u = 11; break; case 4096: u = 12; break; case 8192: u = 13; break; case 16384: u = 14; break; case 32768: u = 15; break; default: if(header->blocksize <= 0x100) blocksize_hint = u = 6; else blocksize_hint = u = 7; break; } if(!FLAC__bitwriter_write_raw_uint32(bw, u, FLAC__FRAME_HEADER_BLOCK_SIZE_LEN)) return false; FLAC__ASSERT(FLAC__format_sample_rate_is_valid(header->sample_rate)); sample_rate_hint = 0; switch(header->sample_rate) { case 88200: u = 1; break; case 176400: u = 2; break; case 192000: u = 3; break; case 8000: u = 4; break; case 16000: u = 5; break; case 22050: u = 6; break; case 24000: u = 7; break; case 32000: u = 8; break; case 44100: u = 9; break; case 48000: u = 10; break; case 96000: u = 11; break; default: if(header->sample_rate <= 255000 && header->sample_rate % 1000 == 0) sample_rate_hint = u = 12; else if(header->sample_rate % 10 == 0) sample_rate_hint = u = 14; else if(header->sample_rate <= 0xffff) sample_rate_hint = u = 13; else u = 0; break; } if(!FLAC__bitwriter_write_raw_uint32(bw, u, FLAC__FRAME_HEADER_SAMPLE_RATE_LEN)) return false; FLAC__ASSERT(header->channels > 0 && header->channels <= (1u << FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN) && header->channels <= FLAC__MAX_CHANNELS); switch(header->channel_assignment) { case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: u = header->channels - 1; break; case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: FLAC__ASSERT(header->channels == 2); u = 8; break; case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: FLAC__ASSERT(header->channels == 2); u = 9; break; case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: FLAC__ASSERT(header->channels == 2); u = 10; break; default: FLAC__ASSERT(0); } if(!FLAC__bitwriter_write_raw_uint32(bw, u, FLAC__FRAME_HEADER_CHANNEL_ASSIGNMENT_LEN)) return false; FLAC__ASSERT(header->bits_per_sample > 0 && header->bits_per_sample <= (1u << FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN)); switch(header->bits_per_sample) { case 8 : u = 1; break; case 12: u = 2; break; case 16: u = 4; break; case 20: u = 5; break; case 24: u = 6; break; default: u = 0; break; } if(!FLAC__bitwriter_write_raw_uint32(bw, u, FLAC__FRAME_HEADER_BITS_PER_SAMPLE_LEN)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, 0, FLAC__FRAME_HEADER_ZERO_PAD_LEN)) return false; if(header->number_type == FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER) { if(!FLAC__bitwriter_write_utf8_uint32(bw, header->number.frame_number)) return false; } else { if(!FLAC__bitwriter_write_utf8_uint64(bw, header->number.sample_number)) return false; } if(blocksize_hint) if(!FLAC__bitwriter_write_raw_uint32(bw, header->blocksize-1, (blocksize_hint==6)? 8:16)) return false; switch(sample_rate_hint) { case 12: if(!FLAC__bitwriter_write_raw_uint32(bw, header->sample_rate / 1000, 8)) return false; break; case 13: if(!FLAC__bitwriter_write_raw_uint32(bw, header->sample_rate, 16)) return false; break; case 14: if(!FLAC__bitwriter_write_raw_uint32(bw, header->sample_rate / 10, 16)) return false; break; } /* write the CRC */ if(!FLAC__bitwriter_get_write_crc8(bw, &crc)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, crc, FLAC__FRAME_HEADER_CRC_LEN)) return false; return true; } FLAC__bool FLAC__subframe_add_constant(const FLAC__Subframe_Constant *subframe, unsigned subframe_bps, unsigned wasted_bits, FLAC__BitWriter *bw) { FLAC__bool ok; ok = FLAC__bitwriter_write_raw_uint32(bw, FLAC__SUBFRAME_TYPE_CONSTANT_BYTE_ALIGNED_MASK | (wasted_bits? 1:0), FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN) && (wasted_bits? FLAC__bitwriter_write_unary_unsigned(bw, wasted_bits-1) : true) && FLAC__bitwriter_write_raw_int32(bw, subframe->value, subframe_bps) ; return ok; } FLAC__bool FLAC__subframe_add_fixed(const FLAC__Subframe_Fixed *subframe, unsigned residual_samples, unsigned subframe_bps, unsigned wasted_bits, FLAC__BitWriter *bw) { unsigned i; if(!FLAC__bitwriter_write_raw_uint32(bw, FLAC__SUBFRAME_TYPE_FIXED_BYTE_ALIGNED_MASK | (subframe->order<<1) | (wasted_bits? 1:0), FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN)) return false; if(wasted_bits) if(!FLAC__bitwriter_write_unary_unsigned(bw, wasted_bits-1)) return false; for(i = 0; i < subframe->order; i++) if(!FLAC__bitwriter_write_raw_int32(bw, subframe->warmup[i], subframe_bps)) return false; if(!add_entropy_coding_method_(bw, &subframe->entropy_coding_method)) return false; switch(subframe->entropy_coding_method.type) { case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE: case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2: if(!add_residual_partitioned_rice_( bw, subframe->residual, residual_samples, subframe->order, subframe->entropy_coding_method.data.partitioned_rice.contents->parameters, subframe->entropy_coding_method.data.partitioned_rice.contents->raw_bits, subframe->entropy_coding_method.data.partitioned_rice.order, /*is_extended=*/subframe->entropy_coding_method.type == FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2 )) return false; break; default: FLAC__ASSERT(0); } return true; } FLAC__bool FLAC__subframe_add_lpc(const FLAC__Subframe_LPC *subframe, unsigned residual_samples, unsigned subframe_bps, unsigned wasted_bits, FLAC__BitWriter *bw) { unsigned i; if(!FLAC__bitwriter_write_raw_uint32(bw, FLAC__SUBFRAME_TYPE_LPC_BYTE_ALIGNED_MASK | ((subframe->order-1)<<1) | (wasted_bits? 1:0), FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN)) return false; if(wasted_bits) if(!FLAC__bitwriter_write_unary_unsigned(bw, wasted_bits-1)) return false; for(i = 0; i < subframe->order; i++) if(!FLAC__bitwriter_write_raw_int32(bw, subframe->warmup[i], subframe_bps)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, subframe->qlp_coeff_precision-1, FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN)) return false; if(!FLAC__bitwriter_write_raw_int32(bw, subframe->quantization_level, FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN)) return false; for(i = 0; i < subframe->order; i++) if(!FLAC__bitwriter_write_raw_int32(bw, subframe->qlp_coeff[i], subframe->qlp_coeff_precision)) return false; if(!add_entropy_coding_method_(bw, &subframe->entropy_coding_method)) return false; switch(subframe->entropy_coding_method.type) { case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE: case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2: if(!add_residual_partitioned_rice_( bw, subframe->residual, residual_samples, subframe->order, subframe->entropy_coding_method.data.partitioned_rice.contents->parameters, subframe->entropy_coding_method.data.partitioned_rice.contents->raw_bits, subframe->entropy_coding_method.data.partitioned_rice.order, /*is_extended=*/subframe->entropy_coding_method.type == FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2 )) return false; break; default: FLAC__ASSERT(0); } return true; } FLAC__bool FLAC__subframe_add_verbatim(const FLAC__Subframe_Verbatim *subframe, unsigned samples, unsigned subframe_bps, unsigned wasted_bits, FLAC__BitWriter *bw) { unsigned i; const FLAC__int32 *signal = subframe->data; if(!FLAC__bitwriter_write_raw_uint32(bw, FLAC__SUBFRAME_TYPE_VERBATIM_BYTE_ALIGNED_MASK | (wasted_bits? 1:0), FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN)) return false; if(wasted_bits) if(!FLAC__bitwriter_write_unary_unsigned(bw, wasted_bits-1)) return false; for(i = 0; i < samples; i++) if(!FLAC__bitwriter_write_raw_int32(bw, signal[i], subframe_bps)) return false; return true; } FLAC__bool add_entropy_coding_method_(FLAC__BitWriter *bw, const FLAC__EntropyCodingMethod *method) { if(!FLAC__bitwriter_write_raw_uint32(bw, method->type, FLAC__ENTROPY_CODING_METHOD_TYPE_LEN)) return false; switch(method->type) { case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE: case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2: if(!FLAC__bitwriter_write_raw_uint32(bw, method->data.partitioned_rice.order, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN)) return false; break; default: FLAC__ASSERT(0); } return true; } FLAC__bool add_residual_partitioned_rice_(FLAC__BitWriter *bw, const FLAC__int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameters[], const unsigned raw_bits[], const unsigned partition_order, const FLAC__bool is_extended) { const unsigned plen = is_extended? FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN : FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; const unsigned pesc = is_extended? FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_ESCAPE_PARAMETER : FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER; if(partition_order == 0) { unsigned i; if(raw_bits[0] == 0) { if(!FLAC__bitwriter_write_raw_uint32(bw, rice_parameters[0], plen)) return false; if(!FLAC__bitwriter_write_rice_signed_block(bw, residual, residual_samples, rice_parameters[0])) return false; } else { FLAC__ASSERT(rice_parameters[0] == 0); if(!FLAC__bitwriter_write_raw_uint32(bw, pesc, plen)) return false; if(!FLAC__bitwriter_write_raw_uint32(bw, raw_bits[0], FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN)) return false; for(i = 0; i < residual_samples; i++) { if(!FLAC__bitwriter_write_raw_int32(bw, residual[i], raw_bits[0])) return false; } } return true; } else { unsigned i, j, k = 0, k_last = 0; unsigned partition_samples; const unsigned default_partition_samples = (residual_samples+predictor_order) >> partition_order; for(i = 0; i < (1u< #endif #include #ifndef FLAC__INTEGER_ONLY_LIBRARY #ifndef M_PI /* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */ #define M_PI 3.14159265358979323846 #endif void FLAC__window_bartlett(FLAC__real *window, const FLAC__int32 L) { const FLAC__int32 N = L - 1; FLAC__int32 n; if (L & 1) { for (n = 0; n <= N/2; n++) window[n] = 2.0f * n / (float)N; for (; n <= N; n++) window[n] = 2.0f - 2.0f * n / (float)N; } else { for (n = 0; n <= L/2-1; n++) window[n] = 2.0f * n / (float)N; for (; n <= N; n++) window[n] = 2.0f - 2.0f * (N-n) / (float)N; } } void FLAC__window_bartlett_hann(FLAC__real *window, const FLAC__int32 L) { const FLAC__int32 N = L - 1; FLAC__int32 n; for (n = 0; n < L; n++) window[n] = (FLAC__real)(0.62f - 0.48f * fabs((float)n/(float)N+0.5f) + 0.38f * cos(2.0f * M_PI * ((float)n/(float)N+0.5f))); } void FLAC__window_blackman(FLAC__real *window, const FLAC__int32 L) { const FLAC__int32 N = L - 1; FLAC__int32 n; for (n = 0; n < L; n++) window[n] = (FLAC__real)(0.42f - 0.5f * cos(2.0f * M_PI * n / N) + 0.08f * cos(4.0f * M_PI * n / N)); } /* 4-term -92dB side-lobe */ void FLAC__window_blackman_harris_4term_92db_sidelobe(FLAC__real *window, const FLAC__int32 L) { const FLAC__int32 N = L - 1; FLAC__int32 n; for (n = 0; n <= N; n++) window[n] = (FLAC__real)(0.35875f - 0.48829f * cos(2.0f * M_PI * n / N) + 0.14128f * cos(4.0f * M_PI * n / N) - 0.01168f * cos(6.0f * M_PI * n / N)); } void FLAC__window_connes(FLAC__real *window, const FLAC__int32 L) { const FLAC__int32 N = L - 1; const double N2 = (double)N / 2.; FLAC__int32 n; for (n = 0; n <= N; n++) { double k = ((double)n - N2) / N2; k = 1.0f - k * k; window[n] = (FLAC__real)(k * k); } } void FLAC__window_flattop(FLAC__real *window, const FLAC__int32 L) { const FLAC__int32 N = L - 1; FLAC__int32 n; for (n = 0; n < L; n++) window[n] = (FLAC__real)(1.0f - 1.93f * cos(2.0f * M_PI * n / N) + 1.29f * cos(4.0f * M_PI * n / N) - 0.388f * cos(6.0f * M_PI * n / N) + 0.0322f * cos(8.0f * M_PI * n / N)); } void FLAC__window_gauss(FLAC__real *window, const FLAC__int32 L, const FLAC__real stddev) { const FLAC__int32 N = L - 1; const double N2 = (double)N / 2.; FLAC__int32 n; for (n = 0; n <= N; n++) { const double k = ((double)n - N2) / (stddev * N2); window[n] = (FLAC__real)exp(-0.5f * k * k); } } void FLAC__window_hamming(FLAC__real *window, const FLAC__int32 L) { const FLAC__int32 N = L - 1; FLAC__int32 n; for (n = 0; n < L; n++) window[n] = (FLAC__real)(0.54f - 0.46f * cos(2.0f * M_PI * n / N)); } void FLAC__window_hann(FLAC__real *window, const FLAC__int32 L) { const FLAC__int32 N = L - 1; FLAC__int32 n; for (n = 0; n < L; n++) window[n] = (FLAC__real)(0.5f - 0.5f * cos(2.0f * M_PI * n / N)); } void FLAC__window_kaiser_bessel(FLAC__real *window, const FLAC__int32 L) { const FLAC__int32 N = L - 1; FLAC__int32 n; for (n = 0; n < L; n++) window[n] = (FLAC__real)(0.402f - 0.498f * cos(2.0f * M_PI * n / N) + 0.098f * cos(4.0f * M_PI * n / N) - 0.001f * cos(6.0f * M_PI * n / N)); } void FLAC__window_nuttall(FLAC__real *window, const FLAC__int32 L) { const FLAC__int32 N = L - 1; FLAC__int32 n; for (n = 0; n < L; n++) window[n] = (FLAC__real)(0.3635819f - 0.4891775f*cos(2.0f*M_PI*n/N) + 0.1365995f*cos(4.0f*M_PI*n/N) - 0.0106411f*cos(6.0f*M_PI*n/N)); } void FLAC__window_rectangle(FLAC__real *window, const FLAC__int32 L) { FLAC__int32 n; for (n = 0; n < L; n++) window[n] = 1.0f; } void FLAC__window_triangle(FLAC__real *window, const FLAC__int32 L) { FLAC__int32 n; if (L & 1) { for (n = 1; n <= L+1/2; n++) window[n-1] = 2.0f * n / ((float)L + 1.0f); for (; n <= L; n++) window[n-1] = - (float)(2 * (L - n + 1)) / ((float)L + 1.0f); } else { for (n = 1; n <= L/2; n++) window[n-1] = 2.0f * n / (float)L; for (; n <= L; n++) window[n-1] = ((float)(2 * (L - n)) + 1.0f) / (float)L; } } void FLAC__window_tukey(FLAC__real *window, const FLAC__int32 L, const FLAC__real p) { if (p <= 0.0) FLAC__window_rectangle(window, L); else if (p >= 1.0) FLAC__window_hann(window, L); else { const FLAC__int32 Np = (FLAC__int32)(p / 2.0f * L) - 1; FLAC__int32 n; /* start with rectangle... */ FLAC__window_rectangle(window, L); /* ...replace ends with hann */ if (Np > 0) { for (n = 0; n <= Np; n++) { window[n] = (FLAC__real)(0.5f - 0.5f * cos(M_PI * n / Np)); window[L-Np-1+n] = (FLAC__real)(0.5f - 0.5f * cos(M_PI * (n+Np) / Np)); } } } } void FLAC__window_welch(FLAC__real *window, const FLAC__int32 L) { const FLAC__int32 N = L - 1; const double N2 = (double)N / 2.; FLAC__int32 n; for (n = 0; n <= N; n++) { const double k = ((double)n - N2) / N2; window[n] = (FLAC__real)(1.0f - k * k); } } #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ #endif /********* End of inlined file: window_flac.c *********/ #else #include #endif } #ifdef _MSC_VER #pragma warning (pop) #endif BEGIN_JUCE_NAMESPACE using namespace FlacNamespace; #define flacFormatName TRANS("FLAC file") static const tchar* const flacExtensions[] = { T(".flac"), 0 }; class FlacReader : public AudioFormatReader { FLAC__StreamDecoder* decoder; AudioSampleBuffer reservoir; int reservoirStart, samplesInReservoir; bool ok, scanningForLength; public: FlacReader (InputStream* const in) : AudioFormatReader (in, flacFormatName), reservoir (2, 0), reservoirStart (0), samplesInReservoir (0), scanningForLength (false) { using namespace FlacNamespace; lengthInSamples = 0; decoder = FLAC__stream_decoder_new(); ok = FLAC__stream_decoder_init_stream (decoder, readCallback_, seekCallback_, tellCallback_, lengthCallback_, eofCallback_, writeCallback_, metadataCallback_, errorCallback_, (void*) this) == FLAC__STREAM_DECODER_INIT_STATUS_OK; if (ok) { FLAC__stream_decoder_process_until_end_of_metadata (decoder); if (lengthInSamples == 0 && sampleRate > 0) { // the length hasn't been stored in the metadata, so we'll need to // work it out the length the hard way, by scanning the whole file.. scanningForLength = true; FLAC__stream_decoder_process_until_end_of_stream (decoder); scanningForLength = false; const int64 tempLength = lengthInSamples; FLAC__stream_decoder_reset (decoder); FLAC__stream_decoder_process_until_end_of_metadata (decoder); lengthInSamples = tempLength; } } } ~FlacReader() { FLAC__stream_decoder_delete (decoder); } void useMetadata (const FLAC__StreamMetadata_StreamInfo& info) { sampleRate = info.sample_rate; bitsPerSample = info.bits_per_sample; lengthInSamples = (unsigned int) info.total_samples; numChannels = info.channels; reservoir.setSize (numChannels, 2 * info.max_blocksize, false, false, true); } // returns the number of samples read bool readSamples (int** destSamples, int numDestChannels, int startOffsetInDestBuffer, int64 startSampleInFile, int numSamples) { using namespace FlacNamespace; if (! ok) return false; while (numSamples > 0) { if (startSampleInFile >= reservoirStart && startSampleInFile < reservoirStart + samplesInReservoir) { const int num = (int) jmin ((int64) numSamples, reservoirStart + samplesInReservoir - startSampleInFile); jassert (num > 0); for (int i = jmin (numDestChannels, reservoir.getNumChannels()); --i >= 0;) if (destSamples[i] != 0) memcpy (destSamples[i] + startOffsetInDestBuffer, reservoir.getSampleData (i, (int) (startSampleInFile - reservoirStart)), sizeof (int) * num); startOffsetInDestBuffer += num; startSampleInFile += num; numSamples -= num; } else { if (startSampleInFile >= (int) lengthInSamples) { samplesInReservoir = 0; } else if (startSampleInFile < reservoirStart || startSampleInFile > reservoirStart + jmax (samplesInReservoir, 511)) { // had some problems with flac crashing if the read pos is aligned more // accurately than this. Probably fixed in newer versions of the library, though. reservoirStart = (int) (startSampleInFile & ~511); samplesInReservoir = 0; FLAC__stream_decoder_seek_absolute (decoder, (FLAC__uint64) reservoirStart); } else { reservoirStart += samplesInReservoir; samplesInReservoir = 0; FLAC__stream_decoder_process_single (decoder); } if (samplesInReservoir == 0) break; } } if (numSamples > 0) { for (int i = numDestChannels; --i >= 0;) if (destSamples[i] != 0) zeromem (destSamples[i] + startOffsetInDestBuffer, sizeof (int) * numSamples); } return true; } void useSamples (const FLAC__int32* const buffer[], int numSamples) { if (scanningForLength) { lengthInSamples += numSamples; } else { if (numSamples > reservoir.getNumSamples()) reservoir.setSize (numChannels, numSamples, false, false, true); const int bitsToShift = 32 - bitsPerSample; for (int i = 0; i < (int) numChannels; ++i) { const FLAC__int32* src = buffer[i]; int n = i; while (src == 0 && n > 0) src = buffer [--n]; if (src != 0) { int* dest = (int*) reservoir.getSampleData(i); for (int j = 0; j < numSamples; ++j) dest[j] = src[j] << bitsToShift; } } samplesInReservoir = numSamples; } } static FLAC__StreamDecoderReadStatus readCallback_ (const FLAC__StreamDecoder*, FLAC__byte buffer[], size_t* bytes, void* client_data) { *bytes = (unsigned int) ((const FlacReader*) client_data)->input->read (buffer, (int) *bytes); return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE; } static FLAC__StreamDecoderSeekStatus seekCallback_ (const FLAC__StreamDecoder*, FLAC__uint64 absolute_byte_offset, void* client_data) { ((const FlacReader*) client_data)->input->setPosition ((int) absolute_byte_offset); return FLAC__STREAM_DECODER_SEEK_STATUS_OK; } static FLAC__StreamDecoderTellStatus tellCallback_ (const FLAC__StreamDecoder*, FLAC__uint64* absolute_byte_offset, void* client_data) { *absolute_byte_offset = ((const FlacReader*) client_data)->input->getPosition(); return FLAC__STREAM_DECODER_TELL_STATUS_OK; } static FLAC__StreamDecoderLengthStatus lengthCallback_ (const FLAC__StreamDecoder*, FLAC__uint64* stream_length, void* client_data) { *stream_length = ((const FlacReader*) client_data)->input->getTotalLength(); return FLAC__STREAM_DECODER_LENGTH_STATUS_OK; } static FLAC__bool eofCallback_ (const FLAC__StreamDecoder*, void* client_data) { return ((const FlacReader*) client_data)->input->isExhausted(); } static FLAC__StreamDecoderWriteStatus writeCallback_ (const FLAC__StreamDecoder*, const FLAC__Frame* frame, const FLAC__int32* const buffer[], void* client_data) { ((FlacReader*) client_data)->useSamples (buffer, frame->header.blocksize); return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE; } static void metadataCallback_ (const FLAC__StreamDecoder*, const FLAC__StreamMetadata* metadata, void* client_data) { ((FlacReader*) client_data)->useMetadata (metadata->data.stream_info); } static void errorCallback_ (const FLAC__StreamDecoder*, FLAC__StreamDecoderErrorStatus, void*) { } juce_UseDebuggingNewOperator }; class FlacWriter : public AudioFormatWriter { FLAC__StreamEncoder* encoder; MemoryBlock temp; public: bool ok; FlacWriter (OutputStream* const out, const double sampleRate, const int numChannels, const int bitsPerSample_) : AudioFormatWriter (out, flacFormatName, sampleRate, numChannels, bitsPerSample_) { using namespace FlacNamespace; encoder = FLAC__stream_encoder_new(); FLAC__stream_encoder_set_do_mid_side_stereo (encoder, numChannels == 2); FLAC__stream_encoder_set_loose_mid_side_stereo (encoder, numChannels == 2); FLAC__stream_encoder_set_channels (encoder, numChannels); FLAC__stream_encoder_set_bits_per_sample (encoder, jmin (24, bitsPerSample)); FLAC__stream_encoder_set_sample_rate (encoder, (unsigned int) sampleRate); FLAC__stream_encoder_set_blocksize (encoder, 2048); FLAC__stream_encoder_set_do_escape_coding (encoder, true); ok = FLAC__stream_encoder_init_stream (encoder, encodeWriteCallback, encodeSeekCallback, encodeTellCallback, encodeMetadataCallback, (void*) this) == FLAC__STREAM_ENCODER_INIT_STATUS_OK; } ~FlacWriter() { if (ok) { FLAC__stream_encoder_finish (encoder); output->flush(); } else { output = 0; // to stop the base class deleting this, as it needs to be returned // to the caller of createWriter() } FLAC__stream_encoder_delete (encoder); } bool write (const int** samplesToWrite, int numSamples) { if (! ok) return false; int* buf[3]; const int bitsToShift = 32 - bitsPerSample; if (bitsToShift > 0) { const int numChannels = (samplesToWrite[1] == 0) ? 1 : 2; temp.setSize (sizeof (int) * numSamples * numChannels); buf[0] = (int*) temp.getData(); buf[1] = buf[0] + numSamples; buf[2] = 0; for (int i = numChannels; --i >= 0;) { if (samplesToWrite[i] != 0) { for (int j = 0; j < numSamples; ++j) buf [i][j] = (samplesToWrite [i][j] >> bitsToShift); } } samplesToWrite = (const int**) buf; } return FLAC__stream_encoder_process (encoder, (const FLAC__int32**) samplesToWrite, numSamples) != 0; } bool writeData (const void* const data, const int size) const { return output->write (data, size); } static void packUint32 (FLAC__uint32 val, FLAC__byte* b, const int bytes) { b += bytes; for (int i = 0; i < bytes; ++i) { *(--b) = (FLAC__byte) (val & 0xff); val >>= 8; } } void writeMetaData (const FLAC__StreamMetadata* metadata) { using namespace FlacNamespace; const FLAC__StreamMetadata_StreamInfo& info = metadata->data.stream_info; unsigned char buffer [FLAC__STREAM_METADATA_STREAMINFO_LENGTH]; const unsigned int channelsMinus1 = info.channels - 1; const unsigned int bitsMinus1 = info.bits_per_sample - 1; packUint32 (info.min_blocksize, buffer, 2); packUint32 (info.max_blocksize, buffer + 2, 2); packUint32 (info.min_framesize, buffer + 4, 3); packUint32 (info.max_framesize, buffer + 7, 3); buffer[10] = (uint8) ((info.sample_rate >> 12) & 0xff); buffer[11] = (uint8) ((info.sample_rate >> 4) & 0xff); buffer[12] = (uint8) (((info.sample_rate & 0x0f) << 4) | (channelsMinus1 << 1) | (bitsMinus1 >> 4)); buffer[13] = (FLAC__byte) (((bitsMinus1 & 0x0f) << 4) | (unsigned int) ((info.total_samples >> 32) & 0x0f)); packUint32 ((FLAC__uint32) info.total_samples, buffer + 14, 4); memcpy (buffer + 18, info.md5sum, 16); const bool ok = output->setPosition (4); (void) ok; // if this fails, you've given it an output stream that can't seek! It needs // to be able to seek back to write the header jassert (ok); output->writeIntBigEndian (FLAC__STREAM_METADATA_STREAMINFO_LENGTH); output->write (buffer, FLAC__STREAM_METADATA_STREAMINFO_LENGTH); } static FLAC__StreamEncoderWriteStatus encodeWriteCallback (const FLAC__StreamEncoder*, const FLAC__byte buffer[], size_t bytes, unsigned int /*samples*/, unsigned int /*current_frame*/, void* client_data) { using namespace FlacNamespace; return ((FlacWriter*) client_data)->writeData (buffer, (int) bytes) ? FLAC__STREAM_ENCODER_WRITE_STATUS_OK : FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR; } static FLAC__StreamEncoderSeekStatus encodeSeekCallback (const FLAC__StreamEncoder*, FLAC__uint64, void*) { return FLAC__STREAM_ENCODER_SEEK_STATUS_UNSUPPORTED; } static FLAC__StreamEncoderTellStatus encodeTellCallback (const FLAC__StreamEncoder*, FLAC__uint64* absolute_byte_offset, void* client_data) { if (client_data == 0) return FLAC__STREAM_ENCODER_TELL_STATUS_UNSUPPORTED; *absolute_byte_offset = (FLAC__uint64) ((FlacWriter*) client_data)->output->getPosition(); return FLAC__STREAM_ENCODER_TELL_STATUS_OK; } static void encodeMetadataCallback (const FLAC__StreamEncoder*, const FLAC__StreamMetadata* metadata, void* client_data) { ((FlacWriter*) client_data)->writeMetaData (metadata); } juce_UseDebuggingNewOperator }; FlacAudioFormat::FlacAudioFormat() : AudioFormat (flacFormatName, (const tchar**) flacExtensions) { } FlacAudioFormat::~FlacAudioFormat() { } const Array FlacAudioFormat::getPossibleSampleRates() { const int rates[] = { 22050, 32000, 44100, 48000, 88200, 96000, 0 }; return Array (rates); } const Array FlacAudioFormat::getPossibleBitDepths() { const int depths[] = { 16, 24, 0 }; return Array (depths); } bool FlacAudioFormat::canDoStereo() { return true; } bool FlacAudioFormat::canDoMono() { return true; } bool FlacAudioFormat::isCompressed() { return true; } AudioFormatReader* FlacAudioFormat::createReaderFor (InputStream* in, const bool deleteStreamIfOpeningFails) { FlacReader* r = new FlacReader (in); if (r->sampleRate == 0) { if (! deleteStreamIfOpeningFails) r->input = 0; deleteAndZero (r); } return r; } AudioFormatWriter* FlacAudioFormat::createWriterFor (OutputStream* out, double sampleRate, unsigned int numberOfChannels, int bitsPerSample, const StringPairArray& /*metadataValues*/, int /*qualityOptionIndex*/) { if (getPossibleBitDepths().contains (bitsPerSample)) { FlacWriter* w = new FlacWriter (out, sampleRate, numberOfChannels, bitsPerSample); if (! w->ok) deleteAndZero (w); return w; } return 0; } END_JUCE_NAMESPACE #endif /********* End of inlined file: juce_FlacAudioFormat.cpp *********/ /********* Start of inlined file: juce_OggVorbisAudioFormat.cpp *********/ #if JUCE_USE_OGGVORBIS #if JUCE_MAC #define __MACOSX__ 1 #endif namespace OggVorbisNamespace { #if JUCE_INCLUDE_OGGVORBIS_CODE /********* Start of inlined file: vorbisenc.h *********/ #ifndef _OV_ENC_H_ #define _OV_ENC_H_ #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ /********* Start of inlined file: codec.h *********/ #ifndef _vorbis_codec_h_ #define _vorbis_codec_h_ #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ /********* Start of inlined file: ogg.h *********/ #ifndef _OGG_H #define _OGG_H #ifdef __cplusplus extern "C" { #endif /********* Start of inlined file: os_types.h *********/ #ifndef _OS_TYPES_H #define _OS_TYPES_H /* make it easy on the folks that want to compile the libs with a different malloc than stdlib */ #define _ogg_malloc malloc #define _ogg_calloc calloc #define _ogg_realloc realloc #define _ogg_free free #if defined(_WIN32) # if defined(__CYGWIN__) # include <_G_config.h> typedef _G_int64_t ogg_int64_t; typedef _G_int32_t ogg_int32_t; typedef _G_uint32_t ogg_uint32_t; typedef _G_int16_t ogg_int16_t; typedef _G_uint16_t ogg_uint16_t; # elif defined(__MINGW32__) typedef short ogg_int16_t; typedef unsigned short ogg_uint16_t; typedef int ogg_int32_t; typedef unsigned int ogg_uint32_t; typedef long long ogg_int64_t; typedef unsigned long long ogg_uint64_t; # elif defined(__MWERKS__) typedef long long ogg_int64_t; typedef int ogg_int32_t; typedef unsigned int ogg_uint32_t; typedef short ogg_int16_t; typedef unsigned short ogg_uint16_t; # else /* MSVC/Borland */ typedef __int64 ogg_int64_t; typedef __int32 ogg_int32_t; typedef unsigned __int32 ogg_uint32_t; typedef __int16 ogg_int16_t; typedef unsigned __int16 ogg_uint16_t; # endif #elif defined(__MACOS__) # include typedef SInt16 ogg_int16_t; typedef UInt16 ogg_uint16_t; typedef SInt32 ogg_int32_t; typedef UInt32 ogg_uint32_t; typedef SInt64 ogg_int64_t; #elif defined(__MACOSX__) /* MacOS X Framework build */ # include typedef int16_t ogg_int16_t; typedef u_int16_t ogg_uint16_t; typedef int32_t ogg_int32_t; typedef u_int32_t ogg_uint32_t; typedef int64_t ogg_int64_t; #elif defined(__BEOS__) /* Be */ # include typedef int16_t ogg_int16_t; typedef u_int16_t ogg_uint16_t; typedef int32_t ogg_int32_t; typedef u_int32_t ogg_uint32_t; typedef int64_t ogg_int64_t; #elif defined (__EMX__) /* OS/2 GCC */ typedef short ogg_int16_t; typedef unsigned short ogg_uint16_t; typedef int ogg_int32_t; typedef unsigned int ogg_uint32_t; typedef long long ogg_int64_t; #elif defined (DJGPP) /* DJGPP */ typedef short ogg_int16_t; typedef int ogg_int32_t; typedef unsigned int ogg_uint32_t; typedef long long ogg_int64_t; #elif defined(R5900) /* PS2 EE */ typedef long ogg_int64_t; typedef int ogg_int32_t; typedef unsigned ogg_uint32_t; typedef short ogg_int16_t; #elif defined(__SYMBIAN32__) /* Symbian GCC */ typedef signed short ogg_int16_t; typedef unsigned short ogg_uint16_t; typedef signed int ogg_int32_t; typedef unsigned int ogg_uint32_t; typedef long long int ogg_int64_t; #else # include /********* Start of inlined file: config_types.h *********/ #ifndef __CONFIG_TYPES_H__ #define __CONFIG_TYPES_H__ typedef int16_t ogg_int16_t; typedef unsigned short ogg_uint16_t; typedef int32_t ogg_int32_t; typedef unsigned int ogg_uint32_t; typedef int64_t ogg_int64_t; #endif /********* End of inlined file: config_types.h *********/ #endif #endif /* _OS_TYPES_H */ /********* End of inlined file: os_types.h *********/ typedef struct { long endbyte; int endbit; unsigned char *buffer; unsigned char *ptr; long storage; } oggpack_buffer; /* ogg_page is used to encapsulate the data in one Ogg bitstream page *****/ typedef struct { unsigned char *header; long header_len; unsigned char *body; long body_len; } ogg_page; ogg_uint32_t ogg_bitreverse(ogg_uint32_t x){ x= ((x>>16)&0x0000ffffUL) | ((x<<16)&0xffff0000UL); x= ((x>> 8)&0x00ff00ffUL) | ((x<< 8)&0xff00ff00UL); x= ((x>> 4)&0x0f0f0f0fUL) | ((x<< 4)&0xf0f0f0f0UL); x= ((x>> 2)&0x33333333UL) | ((x<< 2)&0xccccccccUL); return((x>> 1)&0x55555555UL) | ((x<< 1)&0xaaaaaaaaUL); } /* ogg_stream_state contains the current encode/decode state of a logical Ogg bitstream **********************************************************/ typedef struct { unsigned char *body_data; /* bytes from packet bodies */ long body_storage; /* storage elements allocated */ long body_fill; /* elements stored; fill mark */ long body_returned; /* elements of fill returned */ int *lacing_vals; /* The values that will go to the segment table */ ogg_int64_t *granule_vals; /* granulepos values for headers. Not compact this way, but it is simple coupled to the lacing fifo */ long lacing_storage; long lacing_fill; long lacing_packet; long lacing_returned; unsigned char header[282]; /* working space for header encode */ int header_fill; int e_o_s; /* set when we have buffered the last packet in the logical bitstream */ int b_o_s; /* set after we've written the initial page of a logical bitstream */ long serialno; long pageno; ogg_int64_t packetno; /* sequence number for decode; the framing knows where there's a hole in the data, but we need coupling so that the codec (which is in a seperate abstraction layer) also knows about the gap */ ogg_int64_t granulepos; } ogg_stream_state; /* ogg_packet is used to encapsulate the data and metadata belonging to a single raw Ogg/Vorbis packet *************************************/ typedef struct { unsigned char *packet; long bytes; long b_o_s; long e_o_s; ogg_int64_t granulepos; ogg_int64_t packetno; /* sequence number for decode; the framing knows where there's a hole in the data, but we need coupling so that the codec (which is in a seperate abstraction layer) also knows about the gap */ } ogg_packet; typedef struct { unsigned char *data; int storage; int fill; int returned; int unsynced; int headerbytes; int bodybytes; } ogg_sync_state; /* Ogg BITSTREAM PRIMITIVES: bitstream ************************/ extern void oggpack_writeinit(oggpack_buffer *b); extern void oggpack_writetrunc(oggpack_buffer *b,long bits); extern void oggpack_writealign(oggpack_buffer *b); extern void oggpack_writecopy(oggpack_buffer *b,void *source,long bits); extern void oggpack_reset(oggpack_buffer *b); extern void oggpack_writeclear(oggpack_buffer *b); extern void oggpack_readinit(oggpack_buffer *b,unsigned char *buf,int bytes); extern void oggpack_write(oggpack_buffer *b,unsigned long value,int bits); extern long oggpack_look(oggpack_buffer *b,int bits); extern long oggpack_look1(oggpack_buffer *b); extern void oggpack_adv(oggpack_buffer *b,int bits); extern void oggpack_adv1(oggpack_buffer *b); extern long oggpack_read(oggpack_buffer *b,int bits); extern long oggpack_read1(oggpack_buffer *b); extern long oggpack_bytes(oggpack_buffer *b); extern long oggpack_bits(oggpack_buffer *b); extern unsigned char *oggpack_get_buffer(oggpack_buffer *b); extern void oggpackB_writeinit(oggpack_buffer *b); extern void oggpackB_writetrunc(oggpack_buffer *b,long bits); extern void oggpackB_writealign(oggpack_buffer *b); extern void oggpackB_writecopy(oggpack_buffer *b,void *source,long bits); extern void oggpackB_reset(oggpack_buffer *b); extern void oggpackB_writeclear(oggpack_buffer *b); extern void oggpackB_readinit(oggpack_buffer *b,unsigned char *buf,int bytes); extern void oggpackB_write(oggpack_buffer *b,unsigned long value,int bits); extern long oggpackB_look(oggpack_buffer *b,int bits); extern long oggpackB_look1(oggpack_buffer *b); extern void oggpackB_adv(oggpack_buffer *b,int bits); extern void oggpackB_adv1(oggpack_buffer *b); extern long oggpackB_read(oggpack_buffer *b,int bits); extern long oggpackB_read1(oggpack_buffer *b); extern long oggpackB_bytes(oggpack_buffer *b); extern long oggpackB_bits(oggpack_buffer *b); extern unsigned char *oggpackB_get_buffer(oggpack_buffer *b); /* Ogg BITSTREAM PRIMITIVES: encoding **************************/ extern int ogg_stream_packetin(ogg_stream_state *os, ogg_packet *op); extern int ogg_stream_pageout(ogg_stream_state *os, ogg_page *og); extern int ogg_stream_flush(ogg_stream_state *os, ogg_page *og); /* Ogg BITSTREAM PRIMITIVES: decoding **************************/ extern int ogg_sync_init(ogg_sync_state *oy); extern int ogg_sync_clear(ogg_sync_state *oy); extern int ogg_sync_reset(ogg_sync_state *oy); extern int ogg_sync_destroy(ogg_sync_state *oy); extern char *ogg_sync_buffer(ogg_sync_state *oy, long size); extern int ogg_sync_wrote(ogg_sync_state *oy, long bytes); extern long ogg_sync_pageseek(ogg_sync_state *oy,ogg_page *og); extern int ogg_sync_pageout(ogg_sync_state *oy, ogg_page *og); extern int ogg_stream_pagein(ogg_stream_state *os, ogg_page *og); extern int ogg_stream_packetout(ogg_stream_state *os,ogg_packet *op); extern int ogg_stream_packetpeek(ogg_stream_state *os,ogg_packet *op); /* Ogg BITSTREAM PRIMITIVES: general ***************************/ extern int ogg_stream_init(ogg_stream_state *os,int serialno); extern int ogg_stream_clear(ogg_stream_state *os); extern int ogg_stream_reset(ogg_stream_state *os); extern int ogg_stream_reset_serialno(ogg_stream_state *os,int serialno); extern int ogg_stream_destroy(ogg_stream_state *os); extern int ogg_stream_eos(ogg_stream_state *os); extern void ogg_page_checksum_set(ogg_page *og); extern int ogg_page_version(ogg_page *og); extern int ogg_page_continued(ogg_page *og); extern int ogg_page_bos(ogg_page *og); extern int ogg_page_eos(ogg_page *og); extern ogg_int64_t ogg_page_granulepos(ogg_page *og); extern int ogg_page_serialno(ogg_page *og); extern long ogg_page_pageno(ogg_page *og); extern int ogg_page_packets(ogg_page *og); extern void ogg_packet_clear(ogg_packet *op); #ifdef __cplusplus } #endif #endif /* _OGG_H */ /********* End of inlined file: ogg.h *********/ typedef struct vorbis_info{ int version; int channels; long rate; /* The below bitrate declarations are *hints*. Combinations of the three values carry the following implications: all three set to the same value: implies a fixed rate bitstream only nominal set: implies a VBR stream that averages the nominal bitrate. No hard upper/lower limit upper and or lower set: implies a VBR bitstream that obeys the bitrate limits. nominal may also be set to give a nominal rate. none set: the coder does not care to speculate. */ long bitrate_upper; long bitrate_nominal; long bitrate_lower; long bitrate_window; void *codec_setup; } vorbis_info; /* vorbis_dsp_state buffers the current vorbis audio analysis/synthesis state. The DSP state belongs to a specific logical bitstream ****************************************************/ typedef struct vorbis_dsp_state{ int analysisp; vorbis_info *vi; float **pcm; float **pcmret; int pcm_storage; int pcm_current; int pcm_returned; int preextrapolate; int eofflag; long lW; long W; long nW; long centerW; ogg_int64_t granulepos; ogg_int64_t sequence; ogg_int64_t glue_bits; ogg_int64_t time_bits; ogg_int64_t floor_bits; ogg_int64_t res_bits; void *backend_state; } vorbis_dsp_state; typedef struct vorbis_block{ /* necessary stream state for linking to the framing abstraction */ float **pcm; /* this is a pointer into local storage */ oggpack_buffer opb; long lW; long W; long nW; int pcmend; int mode; int eofflag; ogg_int64_t granulepos; ogg_int64_t sequence; vorbis_dsp_state *vd; /* For read-only access of configuration */ /* local storage to avoid remallocing; it's up to the mapping to structure it */ void *localstore; long localtop; long localalloc; long totaluse; struct alloc_chain *reap; /* bitmetrics for the frame */ long glue_bits; long time_bits; long floor_bits; long res_bits; void *internal; } vorbis_block; /* vorbis_block is a single block of data to be processed as part of the analysis/synthesis stream; it belongs to a specific logical bitstream, but is independant from other vorbis_blocks belonging to that logical bitstream. *************************************************/ struct alloc_chain{ void *ptr; struct alloc_chain *next; }; /* vorbis_info contains all the setup information specific to the specific compression/decompression mode in progress (eg, psychoacoustic settings, channel setup, options, codebook etc). vorbis_info and substructures are in backends.h. *********************************************************************/ /* the comments are not part of vorbis_info so that vorbis_info can be static storage */ typedef struct vorbis_comment{ /* unlimited user comment fields. libvorbis writes 'libvorbis' whatever vendor is set to in encode */ char **user_comments; int *comment_lengths; int comments; char *vendor; } vorbis_comment; /* libvorbis encodes in two abstraction layers; first we perform DSP and produce a packet (see docs/analysis.txt). The packet is then coded into a framed OggSquish bitstream by the second layer (see docs/framing.txt). Decode is the reverse process; we sync/frame the bitstream and extract individual packets, then decode the packet back into PCM audio. The extra framing/packetizing is used in streaming formats, such as files. Over the net (such as with UDP), the framing and packetization aren't necessary as they're provided by the transport and the streaming layer is not used */ /* Vorbis PRIMITIVES: general ***************************************/ extern void vorbis_info_init(vorbis_info *vi); extern void vorbis_info_clear(vorbis_info *vi); extern int vorbis_info_blocksize(vorbis_info *vi,int zo); extern void vorbis_comment_init(vorbis_comment *vc); extern void vorbis_comment_add(vorbis_comment *vc, char *comment); extern void vorbis_comment_add_tag(vorbis_comment *vc, const char *tag, char *contents); extern char *vorbis_comment_query(vorbis_comment *vc, char *tag, int count); extern int vorbis_comment_query_count(vorbis_comment *vc, char *tag); extern void vorbis_comment_clear(vorbis_comment *vc); extern int vorbis_block_init(vorbis_dsp_state *v, vorbis_block *vb); extern int vorbis_block_clear(vorbis_block *vb); extern void vorbis_dsp_clear(vorbis_dsp_state *v); extern double vorbis_granule_time(vorbis_dsp_state *v, ogg_int64_t granulepos); /* Vorbis PRIMITIVES: analysis/DSP layer ****************************/ extern int vorbis_analysis_init(vorbis_dsp_state *v,vorbis_info *vi); extern int vorbis_commentheader_out(vorbis_comment *vc, ogg_packet *op); extern int vorbis_analysis_headerout(vorbis_dsp_state *v, vorbis_comment *vc, ogg_packet *op, ogg_packet *op_comm, ogg_packet *op_code); extern float **vorbis_analysis_buffer(vorbis_dsp_state *v,int vals); extern int vorbis_analysis_wrote(vorbis_dsp_state *v,int vals); extern int vorbis_analysis_blockout(vorbis_dsp_state *v,vorbis_block *vb); extern int vorbis_analysis(vorbis_block *vb,ogg_packet *op); extern int vorbis_bitrate_addblock(vorbis_block *vb); extern int vorbis_bitrate_flushpacket(vorbis_dsp_state *vd, ogg_packet *op); /* Vorbis PRIMITIVES: synthesis layer *******************************/ extern int vorbis_synthesis_headerin(vorbis_info *vi,vorbis_comment *vc, ogg_packet *op); extern int vorbis_synthesis_init(vorbis_dsp_state *v,vorbis_info *vi); extern int vorbis_synthesis_restart(vorbis_dsp_state *v); extern int vorbis_synthesis(vorbis_block *vb,ogg_packet *op); extern int vorbis_synthesis_trackonly(vorbis_block *vb,ogg_packet *op); extern int vorbis_synthesis_blockin(vorbis_dsp_state *v,vorbis_block *vb); extern int vorbis_synthesis_pcmout(vorbis_dsp_state *v,float ***pcm); extern int vorbis_synthesis_lapout(vorbis_dsp_state *v,float ***pcm); extern int vorbis_synthesis_read(vorbis_dsp_state *v,int samples); extern long vorbis_packet_blocksize(vorbis_info *vi,ogg_packet *op); extern int vorbis_synthesis_halfrate(vorbis_info *v,int flag); extern int vorbis_synthesis_halfrate_p(vorbis_info *v); /* Vorbis ERRORS and return codes ***********************************/ #define OV_FALSE -1 #define OV_EOF -2 #define OV_HOLE -3 #define OV_EREAD -128 #define OV_EFAULT -129 #define OV_EIMPL -130 #define OV_EINVAL -131 #define OV_ENOTVORBIS -132 #define OV_EBADHEADER -133 #define OV_EVERSION -134 #define OV_ENOTAUDIO -135 #define OV_EBADPACKET -136 #define OV_EBADLINK -137 #define OV_ENOSEEK -138 #ifdef __cplusplus } #endif /* __cplusplus */ #endif /********* End of inlined file: codec.h *********/ extern int vorbis_encode_init(vorbis_info *vi, long channels, long rate, long max_bitrate, long nominal_bitrate, long min_bitrate); extern int vorbis_encode_setup_managed(vorbis_info *vi, long channels, long rate, long max_bitrate, long nominal_bitrate, long min_bitrate); extern int vorbis_encode_setup_vbr(vorbis_info *vi, long channels, long rate, float quality /* quality level from 0. (lo) to 1. (hi) */ ); extern int vorbis_encode_init_vbr(vorbis_info *vi, long channels, long rate, float base_quality /* quality level from 0. (lo) to 1. (hi) */ ); extern int vorbis_encode_setup_init(vorbis_info *vi); extern int vorbis_encode_ctl(vorbis_info *vi,int number,void *arg); /* deprecated rate management supported only for compatability */ #define OV_ECTL_RATEMANAGE_GET 0x10 #define OV_ECTL_RATEMANAGE_SET 0x11 #define OV_ECTL_RATEMANAGE_AVG 0x12 #define OV_ECTL_RATEMANAGE_HARD 0x13 struct ovectl_ratemanage_arg { int management_active; long bitrate_hard_min; long bitrate_hard_max; double bitrate_hard_window; long bitrate_av_lo; long bitrate_av_hi; double bitrate_av_window; double bitrate_av_window_center; }; /* new rate setup */ #define OV_ECTL_RATEMANAGE2_GET 0x14 #define OV_ECTL_RATEMANAGE2_SET 0x15 struct ovectl_ratemanage2_arg { int management_active; long bitrate_limit_min_kbps; long bitrate_limit_max_kbps; long bitrate_limit_reservoir_bits; double bitrate_limit_reservoir_bias; long bitrate_average_kbps; double bitrate_average_damping; }; #define OV_ECTL_LOWPASS_GET 0x20 #define OV_ECTL_LOWPASS_SET 0x21 #define OV_ECTL_IBLOCK_GET 0x30 #define OV_ECTL_IBLOCK_SET 0x31 #ifdef __cplusplus } #endif /* __cplusplus */ #endif /********* End of inlined file: vorbisenc.h *********/ /********* Start of inlined file: vorbisfile.h *********/ #ifndef _OV_FILE_H_ #define _OV_FILE_H_ #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ #include /* The function prototypes for the callbacks are basically the same as for * the stdio functions fread, fseek, fclose, ftell. * The one difference is that the FILE * arguments have been replaced with * a void * - this is to be used as a pointer to whatever internal data these * functions might need. In the stdio case, it's just a FILE * cast to a void * * * If you use other functions, check the docs for these functions and return * the right values. For seek_func(), you *MUST* return -1 if the stream is * unseekable */ typedef struct { size_t (*read_func) (void *ptr, size_t size, size_t nmemb, void *datasource); int (*seek_func) (void *datasource, ogg_int64_t offset, int whence); int (*close_func) (void *datasource); long (*tell_func) (void *datasource); } ov_callbacks; #define NOTOPEN 0 #define PARTOPEN 1 #define OPENED 2 #define STREAMSET 3 #define INITSET 4 typedef struct OggVorbis_File { void *datasource; /* Pointer to a FILE *, etc. */ int seekable; ogg_int64_t offset; ogg_int64_t end; ogg_sync_state oy; /* If the FILE handle isn't seekable (eg, a pipe), only the current stream appears */ int links; ogg_int64_t *offsets; ogg_int64_t *dataoffsets; long *serialnos; ogg_int64_t *pcmlengths; /* overloaded to maintain binary compatability; x2 size, stores both beginning and end values */ vorbis_info *vi; vorbis_comment *vc; /* Decoding working state local storage */ ogg_int64_t pcm_offset; int ready_state; long current_serialno; int current_link; double bittrack; double samptrack; ogg_stream_state os; /* take physical pages, weld into a logical stream of packets */ vorbis_dsp_state vd; /* central working state for the packet->PCM decoder */ vorbis_block vb; /* local working space for packet->PCM decode */ ov_callbacks callbacks; } OggVorbis_File; extern int ov_clear(OggVorbis_File *vf); extern int ov_open(FILE *f,OggVorbis_File *vf,char *initial,long ibytes); extern int ov_open_callbacks(void *datasource, OggVorbis_File *vf, char *initial, long ibytes, ov_callbacks callbacks); extern int ov_test(FILE *f,OggVorbis_File *vf,char *initial,long ibytes); extern int ov_test_callbacks(void *datasource, OggVorbis_File *vf, char *initial, long ibytes, ov_callbacks callbacks); extern int ov_test_open(OggVorbis_File *vf); extern long ov_bitrate(OggVorbis_File *vf,int i); extern long ov_bitrate_instant(OggVorbis_File *vf); extern long ov_streams(OggVorbis_File *vf); extern long ov_seekable(OggVorbis_File *vf); extern long ov_serialnumber(OggVorbis_File *vf,int i); extern ogg_int64_t ov_raw_total(OggVorbis_File *vf,int i); extern ogg_int64_t ov_pcm_total(OggVorbis_File *vf,int i); extern double ov_time_total(OggVorbis_File *vf,int i); extern int ov_raw_seek(OggVorbis_File *vf,ogg_int64_t pos); extern int ov_pcm_seek(OggVorbis_File *vf,ogg_int64_t pos); extern int ov_pcm_seek_page(OggVorbis_File *vf,ogg_int64_t pos); extern int ov_time_seek(OggVorbis_File *vf,double pos); extern int ov_time_seek_page(OggVorbis_File *vf,double pos); extern int ov_raw_seek_lap(OggVorbis_File *vf,ogg_int64_t pos); extern int ov_pcm_seek_lap(OggVorbis_File *vf,ogg_int64_t pos); extern int ov_pcm_seek_page_lap(OggVorbis_File *vf,ogg_int64_t pos); extern int ov_time_seek_lap(OggVorbis_File *vf,double pos); extern int ov_time_seek_page_lap(OggVorbis_File *vf,double pos); extern ogg_int64_t ov_raw_tell(OggVorbis_File *vf); extern ogg_int64_t ov_pcm_tell(OggVorbis_File *vf); extern double ov_time_tell(OggVorbis_File *vf); extern vorbis_info *ov_info(OggVorbis_File *vf,int link); extern vorbis_comment *ov_comment(OggVorbis_File *vf,int link); extern long ov_read_float(OggVorbis_File *vf,float ***pcm_channels,int samples, int *bitstream); extern long ov_read(OggVorbis_File *vf,char *buffer,int length, int bigendianp,int word,int sgned,int *bitstream); extern int ov_crosslap(OggVorbis_File *vf1,OggVorbis_File *vf2); extern int ov_halfrate(OggVorbis_File *vf,int flag); extern int ov_halfrate_p(OggVorbis_File *vf); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /********* End of inlined file: vorbisfile.h *********/ /********* Start of inlined file: bitwise.c *********/ /* We're 'LSb' endian; if we write a word but read individual bits, then we'll read the lsb first */ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #define BUFFER_INCREMENT 256 static const unsigned long mask[]= {0x00000000,0x00000001,0x00000003,0x00000007,0x0000000f, 0x0000001f,0x0000003f,0x0000007f,0x000000ff,0x000001ff, 0x000003ff,0x000007ff,0x00000fff,0x00001fff,0x00003fff, 0x00007fff,0x0000ffff,0x0001ffff,0x0003ffff,0x0007ffff, 0x000fffff,0x001fffff,0x003fffff,0x007fffff,0x00ffffff, 0x01ffffff,0x03ffffff,0x07ffffff,0x0fffffff,0x1fffffff, 0x3fffffff,0x7fffffff,0xffffffff }; static const unsigned int mask8B[]= {0x00,0x80,0xc0,0xe0,0xf0,0xf8,0xfc,0xfe,0xff}; void oggpack_writeinit(oggpack_buffer *b){ memset(b,0,sizeof(*b)); b->ptr=b->buffer=(unsigned char*) _ogg_malloc(BUFFER_INCREMENT); b->buffer[0]='\0'; b->storage=BUFFER_INCREMENT; } void oggpackB_writeinit(oggpack_buffer *b){ oggpack_writeinit(b); } void oggpack_writetrunc(oggpack_buffer *b,long bits){ long bytes=bits>>3; bits-=bytes*8; b->ptr=b->buffer+bytes; b->endbit=bits; b->endbyte=bytes; *b->ptr&=mask[bits]; } void oggpackB_writetrunc(oggpack_buffer *b,long bits){ long bytes=bits>>3; bits-=bytes*8; b->ptr=b->buffer+bytes; b->endbit=bits; b->endbyte=bytes; *b->ptr&=mask8B[bits]; } /* Takes only up to 32 bits. */ void oggpack_write(oggpack_buffer *b,unsigned long value,int bits){ if(b->endbyte+4>=b->storage){ b->buffer=(unsigned char*) _ogg_realloc(b->buffer,b->storage+BUFFER_INCREMENT); b->storage+=BUFFER_INCREMENT; b->ptr=b->buffer+b->endbyte; } value&=mask[bits]; bits+=b->endbit; b->ptr[0]|=value<endbit; if(bits>=8){ b->ptr[1]=(unsigned char)(value>>(8-b->endbit)); if(bits>=16){ b->ptr[2]=(unsigned char)(value>>(16-b->endbit)); if(bits>=24){ b->ptr[3]=(unsigned char)(value>>(24-b->endbit)); if(bits>=32){ if(b->endbit) b->ptr[4]=(unsigned char)(value>>(32-b->endbit)); else b->ptr[4]=0; } } } } b->endbyte+=bits/8; b->ptr+=bits/8; b->endbit=bits&7; } /* Takes only up to 32 bits. */ void oggpackB_write(oggpack_buffer *b,unsigned long value,int bits){ if(b->endbyte+4>=b->storage){ b->buffer=(unsigned char*) _ogg_realloc(b->buffer,b->storage+BUFFER_INCREMENT); b->storage+=BUFFER_INCREMENT; b->ptr=b->buffer+b->endbyte; } value=(value&mask[bits])<<(32-bits); bits+=b->endbit; b->ptr[0]|=value>>(24+b->endbit); if(bits>=8){ b->ptr[1]=(unsigned char)(value>>(16+b->endbit)); if(bits>=16){ b->ptr[2]=(unsigned char)(value>>(8+b->endbit)); if(bits>=24){ b->ptr[3]=(unsigned char)(value>>(b->endbit)); if(bits>=32){ if(b->endbit) b->ptr[4]=(unsigned char)(value<<(8-b->endbit)); else b->ptr[4]=0; } } } } b->endbyte+=bits/8; b->ptr+=bits/8; b->endbit=bits&7; } void oggpack_writealign(oggpack_buffer *b){ int bits=8-b->endbit; if(bits<8) oggpack_write(b,0,bits); } void oggpackB_writealign(oggpack_buffer *b){ int bits=8-b->endbit; if(bits<8) oggpackB_write(b,0,bits); } static void oggpack_writecopy_helper(oggpack_buffer *b, void *source, long bits, void (*w)(oggpack_buffer *, unsigned long, int), int msb){ unsigned char *ptr=(unsigned char *)source; long bytes=bits/8; bits-=bytes*8; if(b->endbit){ int i; /* unaligned copy. Do it the hard way. */ for(i=0;iendbyte+bytes+1>=b->storage){ b->storage=b->endbyte+bytes+BUFFER_INCREMENT; b->buffer=(unsigned char*) _ogg_realloc(b->buffer,b->storage); b->ptr=b->buffer+b->endbyte; } memmove(b->ptr,source,bytes); b->ptr+=bytes; b->endbyte+=bytes; *b->ptr=0; } if(bits){ if(msb) w(b,(unsigned long)(ptr[bytes]>>(8-bits)),bits); else w(b,(unsigned long)(ptr[bytes]),bits); } } void oggpack_writecopy(oggpack_buffer *b,void *source,long bits){ oggpack_writecopy_helper(b,source,bits,oggpack_write,0); } void oggpackB_writecopy(oggpack_buffer *b,void *source,long bits){ oggpack_writecopy_helper(b,source,bits,oggpackB_write,1); } void oggpack_reset(oggpack_buffer *b){ b->ptr=b->buffer; b->buffer[0]=0; b->endbit=b->endbyte=0; } void oggpackB_reset(oggpack_buffer *b){ oggpack_reset(b); } void oggpack_writeclear(oggpack_buffer *b){ _ogg_free(b->buffer); memset(b,0,sizeof(*b)); } void oggpackB_writeclear(oggpack_buffer *b){ oggpack_writeclear(b); } void oggpack_readinit(oggpack_buffer *b,unsigned char *buf,int bytes){ memset(b,0,sizeof(*b)); b->buffer=b->ptr=buf; b->storage=bytes; } void oggpackB_readinit(oggpack_buffer *b,unsigned char *buf,int bytes){ oggpack_readinit(b,buf,bytes); } /* Read in bits without advancing the bitptr; bits <= 32 */ long oggpack_look(oggpack_buffer *b,int bits){ unsigned long ret; unsigned long m=mask[bits]; bits+=b->endbit; if(b->endbyte+4>=b->storage){ /* not the main path */ if(b->endbyte*8+bits>b->storage*8)return(-1); } ret=b->ptr[0]>>b->endbit; if(bits>8){ ret|=b->ptr[1]<<(8-b->endbit); if(bits>16){ ret|=b->ptr[2]<<(16-b->endbit); if(bits>24){ ret|=b->ptr[3]<<(24-b->endbit); if(bits>32 && b->endbit) ret|=b->ptr[4]<<(32-b->endbit); } } } return(m&ret); } /* Read in bits without advancing the bitptr; bits <= 32 */ long oggpackB_look(oggpack_buffer *b,int bits){ unsigned long ret; int m=32-bits; bits+=b->endbit; if(b->endbyte+4>=b->storage){ /* not the main path */ if(b->endbyte*8+bits>b->storage*8)return(-1); } ret=b->ptr[0]<<(24+b->endbit); if(bits>8){ ret|=b->ptr[1]<<(16+b->endbit); if(bits>16){ ret|=b->ptr[2]<<(8+b->endbit); if(bits>24){ ret|=b->ptr[3]<<(b->endbit); if(bits>32 && b->endbit) ret|=b->ptr[4]>>(8-b->endbit); } } } return ((ret&0xffffffff)>>(m>>1))>>((m+1)>>1); } long oggpack_look1(oggpack_buffer *b){ if(b->endbyte>=b->storage)return(-1); return((b->ptr[0]>>b->endbit)&1); } long oggpackB_look1(oggpack_buffer *b){ if(b->endbyte>=b->storage)return(-1); return((b->ptr[0]>>(7-b->endbit))&1); } void oggpack_adv(oggpack_buffer *b,int bits){ bits+=b->endbit; b->ptr+=bits/8; b->endbyte+=bits/8; b->endbit=bits&7; } void oggpackB_adv(oggpack_buffer *b,int bits){ oggpack_adv(b,bits); } void oggpack_adv1(oggpack_buffer *b){ if(++(b->endbit)>7){ b->endbit=0; b->ptr++; b->endbyte++; } } void oggpackB_adv1(oggpack_buffer *b){ oggpack_adv1(b); } /* bits <= 32 */ long oggpack_read(oggpack_buffer *b,int bits){ long ret; unsigned long m=mask[bits]; bits+=b->endbit; if(b->endbyte+4>=b->storage){ /* not the main path */ ret=-1L; if(b->endbyte*8+bits>b->storage*8)goto overflow; } ret=b->ptr[0]>>b->endbit; if(bits>8){ ret|=b->ptr[1]<<(8-b->endbit); if(bits>16){ ret|=b->ptr[2]<<(16-b->endbit); if(bits>24){ ret|=b->ptr[3]<<(24-b->endbit); if(bits>32 && b->endbit){ ret|=b->ptr[4]<<(32-b->endbit); } } } } ret&=m; overflow: b->ptr+=bits/8; b->endbyte+=bits/8; b->endbit=bits&7; return(ret); } /* bits <= 32 */ long oggpackB_read(oggpack_buffer *b,int bits){ long ret; long m=32-bits; bits+=b->endbit; if(b->endbyte+4>=b->storage){ /* not the main path */ ret=-1L; if(b->endbyte*8+bits>b->storage*8)goto overflow; } ret=b->ptr[0]<<(24+b->endbit); if(bits>8){ ret|=b->ptr[1]<<(16+b->endbit); if(bits>16){ ret|=b->ptr[2]<<(8+b->endbit); if(bits>24){ ret|=b->ptr[3]<<(b->endbit); if(bits>32 && b->endbit) ret|=b->ptr[4]>>(8-b->endbit); } } } ret=((ret&0xffffffffUL)>>(m>>1))>>((m+1)>>1); overflow: b->ptr+=bits/8; b->endbyte+=bits/8; b->endbit=bits&7; return(ret); } long oggpack_read1(oggpack_buffer *b){ long ret; if(b->endbyte>=b->storage){ /* not the main path */ ret=-1L; goto overflow; } ret=(b->ptr[0]>>b->endbit)&1; overflow: b->endbit++; if(b->endbit>7){ b->endbit=0; b->ptr++; b->endbyte++; } return(ret); } long oggpackB_read1(oggpack_buffer *b){ long ret; if(b->endbyte>=b->storage){ /* not the main path */ ret=-1L; goto overflow; } ret=(b->ptr[0]>>(7-b->endbit))&1; overflow: b->endbit++; if(b->endbit>7){ b->endbit=0; b->ptr++; b->endbyte++; } return(ret); } long oggpack_bytes(oggpack_buffer *b){ return(b->endbyte+(b->endbit+7)/8); } long oggpack_bits(oggpack_buffer *b){ return(b->endbyte*8+b->endbit); } long oggpackB_bytes(oggpack_buffer *b){ return oggpack_bytes(b); } long oggpackB_bits(oggpack_buffer *b){ return oggpack_bits(b); } unsigned char *oggpack_get_buffer(oggpack_buffer *b){ return(b->buffer); } unsigned char *oggpackB_get_buffer(oggpack_buffer *b){ return oggpack_get_buffer(b); } /* Self test of the bitwise routines; everything else is based on them, so they damned well better be solid. */ #ifdef _V_SELFTEST #include static int ilog(unsigned int v){ int ret=0; while(v){ ret++; v>>=1; } return(ret); } oggpack_buffer o; oggpack_buffer r; void report(char *in){ fprintf(stderr,"%s",in); exit(1); } void cliptest(unsigned long *b,int vals,int bits,int *comp,int compsize){ long bytes,i; unsigned char *buffer; oggpack_reset(&o); for(i=0;i #include /* A complete description of Ogg framing exists in docs/framing.html */ int ogg_page_version(ogg_page *og){ return((int)(og->header[4])); } int ogg_page_continued(ogg_page *og){ return((int)(og->header[5]&0x01)); } int ogg_page_bos(ogg_page *og){ return((int)(og->header[5]&0x02)); } int ogg_page_eos(ogg_page *og){ return((int)(og->header[5]&0x04)); } ogg_int64_t ogg_page_granulepos(ogg_page *og){ unsigned char *page=og->header; ogg_int64_t granulepos=page[13]&(0xff); granulepos= (granulepos<<8)|(page[12]&0xff); granulepos= (granulepos<<8)|(page[11]&0xff); granulepos= (granulepos<<8)|(page[10]&0xff); granulepos= (granulepos<<8)|(page[9]&0xff); granulepos= (granulepos<<8)|(page[8]&0xff); granulepos= (granulepos<<8)|(page[7]&0xff); granulepos= (granulepos<<8)|(page[6]&0xff); return(granulepos); } int ogg_page_serialno(ogg_page *og){ return(og->header[14] | (og->header[15]<<8) | (og->header[16]<<16) | (og->header[17]<<24)); } long ogg_page_pageno(ogg_page *og){ return(og->header[18] | (og->header[19]<<8) | (og->header[20]<<16) | (og->header[21]<<24)); } /* returns the number of packets that are completed on this page (if the leading packet is begun on a previous page, but ends on this page, it's counted */ /* NOTE: If a page consists of a packet begun on a previous page, and a new packet begun (but not completed) on this page, the return will be: ogg_page_packets(page) ==1, ogg_page_continued(page) !=0 If a page happens to be a single packet that was begun on a previous page, and spans to the next page (in the case of a three or more page packet), the return will be: ogg_page_packets(page) ==0, ogg_page_continued(page) !=0 */ int ogg_page_packets(ogg_page *og){ int i,n=og->header[26],count=0; for(i=0;iheader[27+i]<255)count++; return(count); } #if 0 /* helper to initialize lookup for direct-table CRC (illustrative; we use the static init below) */ static ogg_uint32_t _ogg_crc_entry(unsigned long index){ int i; unsigned long r; r = index << 24; for (i=0; i<8; i++) if (r & 0x80000000UL) r = (r << 1) ^ 0x04c11db7; /* The same as the ethernet generator polynomial, although we use an unreflected alg and an init/final of 0, not 0xffffffff */ else r<<=1; return (r & 0xffffffffUL); } #endif static const ogg_uint32_t crc_lookup[256]={ 0x00000000,0x04c11db7,0x09823b6e,0x0d4326d9, 0x130476dc,0x17c56b6b,0x1a864db2,0x1e475005, 0x2608edb8,0x22c9f00f,0x2f8ad6d6,0x2b4bcb61, 0x350c9b64,0x31cd86d3,0x3c8ea00a,0x384fbdbd, 0x4c11db70,0x48d0c6c7,0x4593e01e,0x4152fda9, 0x5f15adac,0x5bd4b01b,0x569796c2,0x52568b75, 0x6a1936c8,0x6ed82b7f,0x639b0da6,0x675a1011, 0x791d4014,0x7ddc5da3,0x709f7b7a,0x745e66cd, 0x9823b6e0,0x9ce2ab57,0x91a18d8e,0x95609039, 0x8b27c03c,0x8fe6dd8b,0x82a5fb52,0x8664e6e5, 0xbe2b5b58,0xbaea46ef,0xb7a96036,0xb3687d81, 0xad2f2d84,0xa9ee3033,0xa4ad16ea,0xa06c0b5d, 0xd4326d90,0xd0f37027,0xddb056fe,0xd9714b49, 0xc7361b4c,0xc3f706fb,0xceb42022,0xca753d95, 0xf23a8028,0xf6fb9d9f,0xfbb8bb46,0xff79a6f1, 0xe13ef6f4,0xe5ffeb43,0xe8bccd9a,0xec7dd02d, 0x34867077,0x30476dc0,0x3d044b19,0x39c556ae, 0x278206ab,0x23431b1c,0x2e003dc5,0x2ac12072, 0x128e9dcf,0x164f8078,0x1b0ca6a1,0x1fcdbb16, 0x018aeb13,0x054bf6a4,0x0808d07d,0x0cc9cdca, 0x7897ab07,0x7c56b6b0,0x71159069,0x75d48dde, 0x6b93dddb,0x6f52c06c,0x6211e6b5,0x66d0fb02, 0x5e9f46bf,0x5a5e5b08,0x571d7dd1,0x53dc6066, 0x4d9b3063,0x495a2dd4,0x44190b0d,0x40d816ba, 0xaca5c697,0xa864db20,0xa527fdf9,0xa1e6e04e, 0xbfa1b04b,0xbb60adfc,0xb6238b25,0xb2e29692, 0x8aad2b2f,0x8e6c3698,0x832f1041,0x87ee0df6, 0x99a95df3,0x9d684044,0x902b669d,0x94ea7b2a, 0xe0b41de7,0xe4750050,0xe9362689,0xedf73b3e, 0xf3b06b3b,0xf771768c,0xfa325055,0xfef34de2, 0xc6bcf05f,0xc27dede8,0xcf3ecb31,0xcbffd686, 0xd5b88683,0xd1799b34,0xdc3abded,0xd8fba05a, 0x690ce0ee,0x6dcdfd59,0x608edb80,0x644fc637, 0x7a089632,0x7ec98b85,0x738aad5c,0x774bb0eb, 0x4f040d56,0x4bc510e1,0x46863638,0x42472b8f, 0x5c007b8a,0x58c1663d,0x558240e4,0x51435d53, 0x251d3b9e,0x21dc2629,0x2c9f00f0,0x285e1d47, 0x36194d42,0x32d850f5,0x3f9b762c,0x3b5a6b9b, 0x0315d626,0x07d4cb91,0x0a97ed48,0x0e56f0ff, 0x1011a0fa,0x14d0bd4d,0x19939b94,0x1d528623, 0xf12f560e,0xf5ee4bb9,0xf8ad6d60,0xfc6c70d7, 0xe22b20d2,0xe6ea3d65,0xeba91bbc,0xef68060b, 0xd727bbb6,0xd3e6a601,0xdea580d8,0xda649d6f, 0xc423cd6a,0xc0e2d0dd,0xcda1f604,0xc960ebb3, 0xbd3e8d7e,0xb9ff90c9,0xb4bcb610,0xb07daba7, 0xae3afba2,0xaafbe615,0xa7b8c0cc,0xa379dd7b, 0x9b3660c6,0x9ff77d71,0x92b45ba8,0x9675461f, 0x8832161a,0x8cf30bad,0x81b02d74,0x857130c3, 0x5d8a9099,0x594b8d2e,0x5408abf7,0x50c9b640, 0x4e8ee645,0x4a4ffbf2,0x470cdd2b,0x43cdc09c, 0x7b827d21,0x7f436096,0x7200464f,0x76c15bf8, 0x68860bfd,0x6c47164a,0x61043093,0x65c52d24, 0x119b4be9,0x155a565e,0x18197087,0x1cd86d30, 0x029f3d35,0x065e2082,0x0b1d065b,0x0fdc1bec, 0x3793a651,0x3352bbe6,0x3e119d3f,0x3ad08088, 0x2497d08d,0x2056cd3a,0x2d15ebe3,0x29d4f654, 0xc5a92679,0xc1683bce,0xcc2b1d17,0xc8ea00a0, 0xd6ad50a5,0xd26c4d12,0xdf2f6bcb,0xdbee767c, 0xe3a1cbc1,0xe760d676,0xea23f0af,0xeee2ed18, 0xf0a5bd1d,0xf464a0aa,0xf9278673,0xfde69bc4, 0x89b8fd09,0x8d79e0be,0x803ac667,0x84fbdbd0, 0x9abc8bd5,0x9e7d9662,0x933eb0bb,0x97ffad0c, 0xafb010b1,0xab710d06,0xa6322bdf,0xa2f33668, 0xbcb4666d,0xb8757bda,0xb5365d03,0xb1f740b4}; /* init the encode/decode logical stream state */ int ogg_stream_init(ogg_stream_state *os,int serialno){ if(os){ memset(os,0,sizeof(*os)); os->body_storage=16*1024; os->body_data=(unsigned char*) _ogg_malloc(os->body_storage*sizeof(*os->body_data)); os->lacing_storage=1024; os->lacing_vals=(int*) _ogg_malloc(os->lacing_storage*sizeof(*os->lacing_vals)); os->granule_vals=(ogg_int64_t*) _ogg_malloc(os->lacing_storage*sizeof(*os->granule_vals)); os->serialno=serialno; return(0); } return(-1); } /* _clear does not free os, only the non-flat storage within */ int ogg_stream_clear(ogg_stream_state *os){ if(os){ if(os->body_data)_ogg_free(os->body_data); if(os->lacing_vals)_ogg_free(os->lacing_vals); if(os->granule_vals)_ogg_free(os->granule_vals); memset(os,0,sizeof(*os)); } return(0); } int ogg_stream_destroy(ogg_stream_state *os){ if(os){ ogg_stream_clear(os); _ogg_free(os); } return(0); } /* Helpers for ogg_stream_encode; this keeps the structure and what's happening fairly clear */ static void _os_body_expand(ogg_stream_state *os,int needed){ if(os->body_storage<=os->body_fill+needed){ os->body_storage+=(needed+1024); os->body_data=(unsigned char*) _ogg_realloc(os->body_data,os->body_storage*sizeof(*os->body_data)); } } static void _os_lacing_expand(ogg_stream_state *os,int needed){ if(os->lacing_storage<=os->lacing_fill+needed){ os->lacing_storage+=(needed+32); os->lacing_vals=(int*)_ogg_realloc(os->lacing_vals,os->lacing_storage*sizeof(*os->lacing_vals)); os->granule_vals=(ogg_int64_t*)_ogg_realloc(os->granule_vals,os->lacing_storage*sizeof(*os->granule_vals)); } } /* checksum the page */ /* Direct table CRC; note that this will be faster in the future if we perform the checksum silmultaneously with other copies */ void ogg_page_checksum_set(ogg_page *og){ if(og){ ogg_uint32_t crc_reg=0; int i; /* safety; needed for API behavior, but not framing code */ og->header[22]=0; og->header[23]=0; og->header[24]=0; og->header[25]=0; for(i=0;iheader_len;i++) crc_reg=(crc_reg<<8)^crc_lookup[((crc_reg >> 24)&0xff)^og->header[i]]; for(i=0;ibody_len;i++) crc_reg=(crc_reg<<8)^crc_lookup[((crc_reg >> 24)&0xff)^og->body[i]]; og->header[22]=(unsigned char)(crc_reg&0xff); og->header[23]=(unsigned char)((crc_reg>>8)&0xff); og->header[24]=(unsigned char)((crc_reg>>16)&0xff); og->header[25]=(unsigned char)((crc_reg>>24)&0xff); } } /* submit data to the internal buffer of the framing engine */ int ogg_stream_packetin(ogg_stream_state *os,ogg_packet *op){ int lacing_vals=op->bytes/255+1,i; if(os->body_returned){ /* advance packet data according to the body_returned pointer. We had to keep it around to return a pointer into the buffer last call */ os->body_fill-=os->body_returned; if(os->body_fill) memmove(os->body_data,os->body_data+os->body_returned, os->body_fill); os->body_returned=0; } /* make sure we have the buffer storage */ _os_body_expand(os,op->bytes); _os_lacing_expand(os,lacing_vals); /* Copy in the submitted packet. Yes, the copy is a waste; this is the liability of overly clean abstraction for the time being. It will actually be fairly easy to eliminate the extra copy in the future */ memcpy(os->body_data+os->body_fill,op->packet,op->bytes); os->body_fill+=op->bytes; /* Store lacing vals for this packet */ for(i=0;ilacing_vals[os->lacing_fill+i]=255; os->granule_vals[os->lacing_fill+i]=os->granulepos; } os->lacing_vals[os->lacing_fill+i]=(op->bytes)%255; os->granulepos=os->granule_vals[os->lacing_fill+i]=op->granulepos; /* flag the first segment as the beginning of the packet */ os->lacing_vals[os->lacing_fill]|= 0x100; os->lacing_fill+=lacing_vals; /* for the sake of completeness */ os->packetno++; if(op->e_o_s)os->e_o_s=1; return(0); } /* This will flush remaining packets into a page (returning nonzero), even if there is not enough data to trigger a flush normally (undersized page). If there are no packets or partial packets to flush, ogg_stream_flush returns 0. Note that ogg_stream_flush will try to flush a normal sized page like ogg_stream_pageout; a call to ogg_stream_flush does not guarantee that all packets have flushed. Only a return value of 0 from ogg_stream_flush indicates all packet data is flushed into pages. since ogg_stream_flush will flush the last page in a stream even if it's undersized, you almost certainly want to use ogg_stream_pageout (and *not* ogg_stream_flush) unless you specifically need to flush an page regardless of size in the middle of a stream. */ int ogg_stream_flush(ogg_stream_state *os,ogg_page *og){ int i; int vals=0; int maxvals=(os->lacing_fill>255?255:os->lacing_fill); int bytes=0; long acc=0; ogg_int64_t granule_pos=-1; if(maxvals==0)return(0); /* construct a page */ /* decide how many segments to include */ /* If this is the initial header case, the first page must only include the initial header packet */ if(os->b_o_s==0){ /* 'initial header page' case */ granule_pos=0; for(vals=0;valslacing_vals[vals]&0x0ff)<255){ vals++; break; } } }else{ for(vals=0;vals4096)break; acc+=os->lacing_vals[vals]&0x0ff; if((os->lacing_vals[vals]&0xff)<255) granule_pos=os->granule_vals[vals]; } } /* construct the header in temp storage */ memcpy(os->header,"OggS",4); /* stream structure version */ os->header[4]=0x00; /* continued packet flag? */ os->header[5]=0x00; if((os->lacing_vals[0]&0x100)==0)os->header[5]|=0x01; /* first page flag? */ if(os->b_o_s==0)os->header[5]|=0x02; /* last page flag? */ if(os->e_o_s && os->lacing_fill==vals)os->header[5]|=0x04; os->b_o_s=1; /* 64 bits of PCM position */ for(i=6;i<14;i++){ os->header[i]=(unsigned char)(granule_pos&0xff); granule_pos>>=8; } /* 32 bits of stream serial number */ { long serialno=os->serialno; for(i=14;i<18;i++){ os->header[i]=(unsigned char)(serialno&0xff); serialno>>=8; } } /* 32 bits of page counter (we have both counter and page header because this val can roll over) */ if(os->pageno==-1)os->pageno=0; /* because someone called stream_reset; this would be a strange thing to do in an encode stream, but it has plausible uses */ { long pageno=os->pageno++; for(i=18;i<22;i++){ os->header[i]=(unsigned char)(pageno&0xff); pageno>>=8; } } /* zero for computation; filled in later */ os->header[22]=0; os->header[23]=0; os->header[24]=0; os->header[25]=0; /* segment table */ os->header[26]=(unsigned char)(vals&0xff); for(i=0;iheader[i+27]=(unsigned char)(os->lacing_vals[i]&0xff); /* set pointers in the ogg_page struct */ og->header=os->header; og->header_len=os->header_fill=vals+27; og->body=os->body_data+os->body_returned; og->body_len=bytes; /* advance the lacing data and set the body_returned pointer */ os->lacing_fill-=vals; memmove(os->lacing_vals,os->lacing_vals+vals,os->lacing_fill*sizeof(*os->lacing_vals)); memmove(os->granule_vals,os->granule_vals+vals,os->lacing_fill*sizeof(*os->granule_vals)); os->body_returned+=bytes; /* calculate the checksum */ ogg_page_checksum_set(og); /* done */ return(1); } /* This constructs pages from buffered packet segments. The pointers returned are to static buffers; do not free. The returned buffers are good only until the next call (using the same ogg_stream_state) */ int ogg_stream_pageout(ogg_stream_state *os, ogg_page *og){ if((os->e_o_s&&os->lacing_fill) || /* 'were done, now flush' case */ os->body_fill-os->body_returned > 4096 ||/* 'page nominal size' case */ os->lacing_fill>=255 || /* 'segment table full' case */ (os->lacing_fill&&!os->b_o_s)){ /* 'initial header page' case */ return(ogg_stream_flush(os,og)); } /* not enough data to construct a page and not end of stream */ return(0); } int ogg_stream_eos(ogg_stream_state *os){ return os->e_o_s; } /* DECODING PRIMITIVES: packet streaming layer **********************/ /* This has two layers to place more of the multi-serialno and paging control in the application's hands. First, we expose a data buffer using ogg_sync_buffer(). The app either copies into the buffer, or passes it directly to read(), etc. We then call ogg_sync_wrote() to tell how many bytes we just added. Pages are returned (pointers into the buffer in ogg_sync_state) by ogg_sync_pageout(). The page is then submitted to ogg_stream_pagein() along with the appropriate ogg_stream_state* (ie, matching serialno). We then get raw packets out calling ogg_stream_packetout() with a ogg_stream_state. */ /* initialize the struct to a known state */ int ogg_sync_init(ogg_sync_state *oy){ if(oy){ memset(oy,0,sizeof(*oy)); } return(0); } /* clear non-flat storage within */ int ogg_sync_clear(ogg_sync_state *oy){ if(oy){ if(oy->data)_ogg_free(oy->data); ogg_sync_init(oy); } return(0); } int ogg_sync_destroy(ogg_sync_state *oy){ if(oy){ ogg_sync_clear(oy); _ogg_free(oy); } return(0); } char *ogg_sync_buffer(ogg_sync_state *oy, long size){ /* first, clear out any space that has been previously returned */ if(oy->returned){ oy->fill-=oy->returned; if(oy->fill>0) memmove(oy->data,oy->data+oy->returned,oy->fill); oy->returned=0; } if(size>oy->storage-oy->fill){ /* We need to extend the internal buffer */ long newsize=size+oy->fill+4096; /* an extra page to be nice */ if(oy->data) oy->data=(unsigned char*) _ogg_realloc(oy->data,newsize); else oy->data=(unsigned char*) _ogg_malloc(newsize); oy->storage=newsize; } /* expose a segment at least as large as requested at the fill mark */ return((char *)oy->data+oy->fill); } int ogg_sync_wrote(ogg_sync_state *oy, long bytes){ if(oy->fill+bytes>oy->storage)return(-1); oy->fill+=bytes; return(0); } /* sync the stream. This is meant to be useful for finding page boundaries. return values for this: -n) skipped n bytes 0) page not ready; more data (no bytes skipped) n) page synced at current location; page length n bytes */ long ogg_sync_pageseek(ogg_sync_state *oy,ogg_page *og){ unsigned char *page=oy->data+oy->returned; unsigned char *next; long bytes=oy->fill-oy->returned; if(oy->headerbytes==0){ int headerbytes,i; if(bytes<27)return(0); /* not enough for a header */ /* verify capture pattern */ if(memcmp(page,"OggS",4))goto sync_fail; headerbytes=page[26]+27; if(bytesbodybytes+=page[27+i]; oy->headerbytes=headerbytes; } if(oy->bodybytes+oy->headerbytes>bytes)return(0); /* The whole test page is buffered. Verify the checksum */ { /* Grab the checksum bytes, set the header field to zero */ char chksum[4]; ogg_page log; memcpy(chksum,page+22,4); memset(page+22,0,4); /* set up a temp page struct and recompute the checksum */ log.header=page; log.header_len=oy->headerbytes; log.body=page+oy->headerbytes; log.body_len=oy->bodybytes; ogg_page_checksum_set(&log); /* Compare */ if(memcmp(chksum,page+22,4)){ /* D'oh. Mismatch! Corrupt page (or miscapture and not a page at all) */ /* replace the computed checksum with the one actually read in */ memcpy(page+22,chksum,4); /* Bad checksum. Lose sync */ goto sync_fail; } } /* yes, have a whole page all ready to go */ { unsigned char *page=oy->data+oy->returned; long bytes; if(og){ og->header=page; og->header_len=oy->headerbytes; og->body=page+oy->headerbytes; og->body_len=oy->bodybytes; } oy->unsynced=0; oy->returned+=(bytes=oy->headerbytes+oy->bodybytes); oy->headerbytes=0; oy->bodybytes=0; return(bytes); } sync_fail: oy->headerbytes=0; oy->bodybytes=0; /* search for possible capture */ next=(unsigned char*)memchr(page+1,'O',bytes-1); if(!next) next=oy->data+oy->fill; oy->returned=next-oy->data; return(-(next-page)); } /* sync the stream and get a page. Keep trying until we find a page. Supress 'sync errors' after reporting the first. return values: -1) recapture (hole in data) 0) need more data 1) page returned Returns pointers into buffered data; invalidated by next call to _stream, _clear, _init, or _buffer */ int ogg_sync_pageout(ogg_sync_state *oy, ogg_page *og){ /* all we need to do is verify a page at the head of the stream buffer. If it doesn't verify, we look for the next potential frame */ for(;;){ long ret=ogg_sync_pageseek(oy,og); if(ret>0){ /* have a page */ return(1); } if(ret==0){ /* need more data */ return(0); } /* head did not start a synced page... skipped some bytes */ if(!oy->unsynced){ oy->unsynced=1; return(-1); } /* loop. keep looking */ } } /* add the incoming page to the stream state; we decompose the page into packet segments here as well. */ int ogg_stream_pagein(ogg_stream_state *os, ogg_page *og){ unsigned char *header=og->header; unsigned char *body=og->body; long bodysize=og->body_len; int segptr=0; int version=ogg_page_version(og); int continued=ogg_page_continued(og); int bos=ogg_page_bos(og); int eos=ogg_page_eos(og); ogg_int64_t granulepos=ogg_page_granulepos(og); int serialno=ogg_page_serialno(og); long pageno=ogg_page_pageno(og); int segments=header[26]; /* clean up 'returned data' */ { long lr=os->lacing_returned; long br=os->body_returned; /* body data */ if(br){ os->body_fill-=br; if(os->body_fill) memmove(os->body_data,os->body_data+br,os->body_fill); os->body_returned=0; } if(lr){ /* segment table */ if(os->lacing_fill-lr){ memmove(os->lacing_vals,os->lacing_vals+lr, (os->lacing_fill-lr)*sizeof(*os->lacing_vals)); memmove(os->granule_vals,os->granule_vals+lr, (os->lacing_fill-lr)*sizeof(*os->granule_vals)); } os->lacing_fill-=lr; os->lacing_packet-=lr; os->lacing_returned=0; } } /* check the serial number */ if(serialno!=os->serialno)return(-1); if(version>0)return(-1); _os_lacing_expand(os,segments+1); /* are we in sequence? */ if(pageno!=os->pageno){ int i; /* unroll previous partial packet (if any) */ for(i=os->lacing_packet;ilacing_fill;i++) os->body_fill-=os->lacing_vals[i]&0xff; os->lacing_fill=os->lacing_packet; /* make a note of dropped data in segment table */ if(os->pageno!=-1){ os->lacing_vals[os->lacing_fill++]=0x400; os->lacing_packet++; } } /* are we a 'continued packet' page? If so, we may need to skip some segments */ if(continued){ if(os->lacing_fill<1 || os->lacing_vals[os->lacing_fill-1]==0x400){ bos=0; for(;segptrbody_data+os->body_fill,body,bodysize); os->body_fill+=bodysize; } { int saved=-1; while(segptrlacing_vals[os->lacing_fill]=val; os->granule_vals[os->lacing_fill]=-1; if(bos){ os->lacing_vals[os->lacing_fill]|=0x100; bos=0; } if(val<255)saved=os->lacing_fill; os->lacing_fill++; segptr++; if(val<255)os->lacing_packet=os->lacing_fill; } /* set the granulepos on the last granuleval of the last full packet */ if(saved!=-1){ os->granule_vals[saved]=granulepos; } } if(eos){ os->e_o_s=1; if(os->lacing_fill>0) os->lacing_vals[os->lacing_fill-1]|=0x200; } os->pageno=pageno+1; return(0); } /* clear things to an initial state. Good to call, eg, before seeking */ int ogg_sync_reset(ogg_sync_state *oy){ oy->fill=0; oy->returned=0; oy->unsynced=0; oy->headerbytes=0; oy->bodybytes=0; return(0); } int ogg_stream_reset(ogg_stream_state *os){ os->body_fill=0; os->body_returned=0; os->lacing_fill=0; os->lacing_packet=0; os->lacing_returned=0; os->header_fill=0; os->e_o_s=0; os->b_o_s=0; os->pageno=-1; os->packetno=0; os->granulepos=0; return(0); } int ogg_stream_reset_serialno(ogg_stream_state *os,int serialno){ ogg_stream_reset(os); os->serialno=serialno; return(0); } static int _packetout(ogg_stream_state *os,ogg_packet *op,int adv){ /* The last part of decode. We have the stream broken into packet segments. Now we need to group them into packets (or return the out of sync markers) */ int ptr=os->lacing_returned; if(os->lacing_packet<=ptr)return(0); if(os->lacing_vals[ptr]&0x400){ /* we need to tell the codec there's a gap; it might need to handle previous packet dependencies. */ os->lacing_returned++; os->packetno++; return(-1); } if(!op && !adv)return(1); /* just using peek as an inexpensive way to ask if there's a whole packet waiting */ /* Gather the whole packet. We'll have no holes or a partial packet */ { int size=os->lacing_vals[ptr]&0xff; int bytes=size; int eos=os->lacing_vals[ptr]&0x200; /* last packet of the stream? */ int bos=os->lacing_vals[ptr]&0x100; /* first packet of the stream? */ while(size==255){ int val=os->lacing_vals[++ptr]; size=val&0xff; if(val&0x200)eos=0x200; bytes+=size; } if(op){ op->e_o_s=eos; op->b_o_s=bos; op->packet=os->body_data+os->body_returned; op->packetno=os->packetno; op->granulepos=os->granule_vals[ptr]; op->bytes=bytes; } if(adv){ os->body_returned+=bytes; os->lacing_returned=ptr+1; os->packetno++; } } return(1); } int ogg_stream_packetout(ogg_stream_state *os,ogg_packet *op){ return _packetout(os,op,1); } int ogg_stream_packetpeek(ogg_stream_state *os,ogg_packet *op){ return _packetout(os,op,0); } void ogg_packet_clear(ogg_packet *op) { _ogg_free(op->packet); memset(op, 0, sizeof(*op)); } #ifdef _V_SELFTEST #include ogg_stream_state os_en, os_de; ogg_sync_state oy; void checkpacket(ogg_packet *op,int len, int no, int pos){ long j; static int sequence=0; static int lastno=0; if(op->bytes!=len){ fprintf(stderr,"incorrect packet length!\n"); exit(1); } if(op->granulepos!=pos){ fprintf(stderr,"incorrect packet position!\n"); exit(1); } /* packet number just follows sequence/gap; adjust the input number for that */ if(no==0){ sequence=0; }else{ sequence++; if(no>lastno+1) sequence++; } lastno=no; if(op->packetno!=sequence){ fprintf(stderr,"incorrect packet sequence %ld != %d\n", (long)(op->packetno),sequence); exit(1); } /* Test data */ for(j=0;jbytes;j++) if(op->packet[j]!=((j+no)&0xff)){ fprintf(stderr,"body data mismatch (1) at pos %ld: %x!=%lx!\n\n", j,op->packet[j],(j+no)&0xff); exit(1); } } void check_page(unsigned char *data,const int *header,ogg_page *og){ long j; /* Test data */ for(j=0;jbody_len;j++) if(og->body[j]!=data[j]){ fprintf(stderr,"body data mismatch (2) at pos %ld: %x!=%x!\n\n", j,data[j],og->body[j]); exit(1); } /* Test header */ for(j=0;jheader_len;j++){ if(og->header[j]!=header[j]){ fprintf(stderr,"header content mismatch at pos %ld:\n",j); for(j=0;jheader[j]); fprintf(stderr,"\n"); exit(1); } } if(og->header_len!=header[26]+27){ fprintf(stderr,"header length incorrect! (%ld!=%d)\n", og->header_len,header[26]+27); exit(1); } } void print_header(ogg_page *og){ int j; fprintf(stderr,"\nHEADER:\n"); fprintf(stderr," capture: %c %c %c %c version: %d flags: %x\n", og->header[0],og->header[1],og->header[2],og->header[3], (int)og->header[4],(int)og->header[5]); fprintf(stderr," granulepos: %d serialno: %d pageno: %ld\n", (og->header[9]<<24)|(og->header[8]<<16)| (og->header[7]<<8)|og->header[6], (og->header[17]<<24)|(og->header[16]<<16)| (og->header[15]<<8)|og->header[14], ((long)(og->header[21])<<24)|(og->header[20]<<16)| (og->header[19]<<8)|og->header[18]); fprintf(stderr," checksum: %02x:%02x:%02x:%02x\n segments: %d (", (int)og->header[22],(int)og->header[23], (int)og->header[24],(int)og->header[25], (int)og->header[26]); for(j=27;jheader_len;j++) fprintf(stderr,"%d ",(int)og->header[j]); fprintf(stderr,")\n\n"); } void copy_page(ogg_page *og){ unsigned char *temp=_ogg_malloc(og->header_len); memcpy(temp,og->header,og->header_len); og->header=temp; temp=_ogg_malloc(og->body_len); memcpy(temp,og->body,og->body_len); og->body=temp; } void free_page(ogg_page *og){ _ogg_free (og->header); _ogg_free (og->body); } void error(void){ fprintf(stderr,"error!\n"); exit(1); } /* 17 only */ const int head1_0[] = {0x4f,0x67,0x67,0x53,0,0x06, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,0,0,0,0, 0x15,0xed,0xec,0x91, 1, 17}; /* 17, 254, 255, 256, 500, 510, 600 byte, pad */ const int head1_1[] = {0x4f,0x67,0x67,0x53,0,0x02, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,0,0,0,0, 0x59,0x10,0x6c,0x2c, 1, 17}; const int head2_1[] = {0x4f,0x67,0x67,0x53,0,0x04, 0x07,0x18,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,1,0,0,0, 0x89,0x33,0x85,0xce, 13, 254,255,0,255,1,255,245,255,255,0, 255,255,90}; /* nil packets; beginning,middle,end */ const int head1_2[] = {0x4f,0x67,0x67,0x53,0,0x02, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,0,0,0,0, 0xff,0x7b,0x23,0x17, 1, 0}; const int head2_2[] = {0x4f,0x67,0x67,0x53,0,0x04, 0x07,0x28,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,1,0,0,0, 0x5c,0x3f,0x66,0xcb, 17, 17,254,255,0,0,255,1,0,255,245,255,255,0, 255,255,90,0}; /* large initial packet */ const int head1_3[] = {0x4f,0x67,0x67,0x53,0,0x02, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,0,0,0,0, 0x01,0x27,0x31,0xaa, 18, 255,255,255,255,255,255,255,255, 255,255,255,255,255,255,255,255,255,10}; const int head2_3[] = {0x4f,0x67,0x67,0x53,0,0x04, 0x07,0x08,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,1,0,0,0, 0x7f,0x4e,0x8a,0xd2, 4, 255,4,255,0}; /* continuing packet test */ const int head1_4[] = {0x4f,0x67,0x67,0x53,0,0x02, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,0,0,0,0, 0xff,0x7b,0x23,0x17, 1, 0}; const int head2_4[] = {0x4f,0x67,0x67,0x53,0,0x00, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0x01,0x02,0x03,0x04,1,0,0,0, 0x54,0x05,0x51,0xc8, 17, 255,255,255,255,255,255,255,255, 255,255,255,255,255,255,255,255,255}; const int head3_4[] = {0x4f,0x67,0x67,0x53,0,0x05, 0x07,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,2,0,0,0, 0xc8,0xc3,0xcb,0xed, 5, 10,255,4,255,0}; /* page with the 255 segment limit */ const int head1_5[] = {0x4f,0x67,0x67,0x53,0,0x02, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,0,0,0,0, 0xff,0x7b,0x23,0x17, 1, 0}; const int head2_5[] = {0x4f,0x67,0x67,0x53,0,0x00, 0x07,0xfc,0x03,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,1,0,0,0, 0xed,0x2a,0x2e,0xa7, 255, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10}; const int head3_5[] = {0x4f,0x67,0x67,0x53,0,0x04, 0x07,0x00,0x04,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,2,0,0,0, 0x6c,0x3b,0x82,0x3d, 1, 50}; /* packet that overspans over an entire page */ const int head1_6[] = {0x4f,0x67,0x67,0x53,0,0x02, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,0,0,0,0, 0xff,0x7b,0x23,0x17, 1, 0}; const int head2_6[] = {0x4f,0x67,0x67,0x53,0,0x00, 0x07,0x04,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,1,0,0,0, 0x3c,0xd9,0x4d,0x3f, 17, 100,255,255,255,255,255,255,255,255, 255,255,255,255,255,255,255,255}; const int head3_6[] = {0x4f,0x67,0x67,0x53,0,0x01, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0x01,0x02,0x03,0x04,2,0,0,0, 0x01,0xd2,0xe5,0xe5, 17, 255,255,255,255,255,255,255,255, 255,255,255,255,255,255,255,255,255}; const int head4_6[] = {0x4f,0x67,0x67,0x53,0,0x05, 0x07,0x10,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,3,0,0,0, 0xef,0xdd,0x88,0xde, 7, 255,255,75,255,4,255,0}; /* packet that overspans over an entire page */ const int head1_7[] = {0x4f,0x67,0x67,0x53,0,0x02, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,0,0,0,0, 0xff,0x7b,0x23,0x17, 1, 0}; const int head2_7[] = {0x4f,0x67,0x67,0x53,0,0x00, 0x07,0x04,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,1,0,0,0, 0x3c,0xd9,0x4d,0x3f, 17, 100,255,255,255,255,255,255,255,255, 255,255,255,255,255,255,255,255}; const int head3_7[] = {0x4f,0x67,0x67,0x53,0,0x05, 0x07,0x08,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x02,0x03,0x04,2,0,0,0, 0xd4,0xe0,0x60,0xe5, 1,0}; void test_pack(const int *pl, const int **headers, int byteskip, int pageskip, int packetskip){ unsigned char *data=_ogg_malloc(1024*1024); /* for scripted test cases only */ long inptr=0; long outptr=0; long deptr=0; long depacket=0; long granule_pos=7,pageno=0; int i,j,packets,pageout=pageskip; int eosflag=0; int bosflag=0; int byteskipcount=0; ogg_stream_reset(&os_en); ogg_stream_reset(&os_de); ogg_sync_reset(&oy); for(packets=0;packetsbyteskip){ memcpy(next,og.header,byteskipcount-byteskip); next+=byteskipcount-byteskip; byteskipcount=byteskip; } byteskipcount+=og.body_len; if(byteskipcount>byteskip){ memcpy(next,og.body,byteskipcount-byteskip); next+=byteskipcount-byteskip; byteskipcount=byteskip; } ogg_sync_wrote(&oy,next-buf); while(1){ int ret=ogg_sync_pageout(&oy,&og_de); if(ret==0)break; if(ret<0)continue; /* got a page. Happy happy. Verify that it's good. */ fprintf(stderr,"(%ld), ",pageout); check_page(data+deptr,headers[pageout],&og_de); deptr+=og_de.body_len; pageout++; /* submit it to deconstitution */ ogg_stream_pagein(&os_de,&og_de); /* packets out? */ while(ogg_stream_packetpeek(&os_de,&op_de2)>0){ ogg_stream_packetpeek(&os_de,NULL); ogg_stream_packetout(&os_de,&op_de); /* just catching them all */ /* verify peek and out match */ if(memcmp(&op_de,&op_de2,sizeof(op_de))){ fprintf(stderr,"packetout != packetpeek! pos=%ld\n", depacket); exit(1); } /* verify the packet! */ /* check data */ if(memcmp(data+depacket,op_de.packet,op_de.bytes)){ fprintf(stderr,"packet data mismatch in decode! pos=%ld\n", depacket); exit(1); } /* check bos flag */ if(bosflag==0 && op_de.b_o_s==0){ fprintf(stderr,"b_o_s flag not set on packet!\n"); exit(1); } if(bosflag && op_de.b_o_s){ fprintf(stderr,"b_o_s flag incorrectly set on packet!\n"); exit(1); } bosflag=1; depacket+=op_de.bytes; /* check eos flag */ if(eosflag){ fprintf(stderr,"Multiple decoded packets with eos flag!\n"); exit(1); } if(op_de.e_o_s)eosflag=1; /* check granulepos flag */ if(op_de.granulepos!=-1){ fprintf(stderr," granule:%ld ",(long)op_de.granulepos); } } } } } } } _ogg_free(data); if(headers[pageno]!=NULL){ fprintf(stderr,"did not write last page!\n"); exit(1); } if(headers[pageout]!=NULL){ fprintf(stderr,"did not decode last page!\n"); exit(1); } if(inptr!=outptr){ fprintf(stderr,"encoded page data incomplete!\n"); exit(1); } if(inptr!=deptr){ fprintf(stderr,"decoded page data incomplete!\n"); exit(1); } if(inptr!=depacket){ fprintf(stderr,"decoded packet data incomplete!\n"); exit(1); } if(!eosflag){ fprintf(stderr,"Never got a packet with EOS set!\n"); exit(1); } fprintf(stderr,"ok.\n"); } int main(void){ ogg_stream_init(&os_en,0x04030201); ogg_stream_init(&os_de,0x04030201); ogg_sync_init(&oy); /* Exercise each code path in the framing code. Also verify that the checksums are working. */ { /* 17 only */ const int packets[]={17, -1}; const int *headret[]={head1_0,NULL}; fprintf(stderr,"testing single page encoding... "); test_pack(packets,headret,0,0,0); } { /* 17, 254, 255, 256, 500, 510, 600 byte, pad */ const int packets[]={17, 254, 255, 256, 500, 510, 600, -1}; const int *headret[]={head1_1,head2_1,NULL}; fprintf(stderr,"testing basic page encoding... "); test_pack(packets,headret,0,0,0); } { /* nil packets; beginning,middle,end */ const int packets[]={0,17, 254, 255, 0, 256, 0, 500, 510, 600, 0, -1}; const int *headret[]={head1_2,head2_2,NULL}; fprintf(stderr,"testing basic nil packets... "); test_pack(packets,headret,0,0,0); } { /* large initial packet */ const int packets[]={4345,259,255,-1}; const int *headret[]={head1_3,head2_3,NULL}; fprintf(stderr,"testing initial-packet lacing > 4k... "); test_pack(packets,headret,0,0,0); } { /* continuing packet test */ const int packets[]={0,4345,259,255,-1}; const int *headret[]={head1_4,head2_4,head3_4,NULL}; fprintf(stderr,"testing single packet page span... "); test_pack(packets,headret,0,0,0); } /* page with the 255 segment limit */ { const int packets[]={0,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,50,-1}; const int *headret[]={head1_5,head2_5,head3_5,NULL}; fprintf(stderr,"testing max packet segments... "); test_pack(packets,headret,0,0,0); } { /* packet that overspans over an entire page */ const int packets[]={0,100,9000,259,255,-1}; const int *headret[]={head1_6,head2_6,head3_6,head4_6,NULL}; fprintf(stderr,"testing very large packets... "); test_pack(packets,headret,0,0,0); } { /* test for the libogg 1.1.1 resync in large continuation bug found by Josh Coalson) */ const int packets[]={0,100,9000,259,255,-1}; const int *headret[]={head1_6,head2_6,head3_6,head4_6,NULL}; fprintf(stderr,"testing continuation resync in very large packets... "); test_pack(packets,headret,100,2,3); } { /* term only page. why not? */ const int packets[]={0,100,4080,-1}; const int *headret[]={head1_7,head2_7,head3_7,NULL}; fprintf(stderr,"testing zero data page (1 nil packet)... "); test_pack(packets,headret,0,0,0); } { /* build a bunch of pages for testing */ unsigned char *data=_ogg_malloc(1024*1024); int pl[]={0,100,4079,2956,2057,76,34,912,0,234,1000,1000,1000,300,-1}; int inptr=0,i,j; ogg_page og[5]; ogg_stream_reset(&os_en); for(i=0;pl[i]!=-1;i++){ ogg_packet op; int len=pl[i]; op.packet=data+inptr; op.bytes=len; op.e_o_s=(pl[i+1]<0?1:0); op.granulepos=(i+1)*1000; for(j=0;j0)error(); /* Test fractional page inputs: incomplete fixed header */ memcpy(ogg_sync_buffer(&oy,og[1].header_len),og[1].header+3, 20); ogg_sync_wrote(&oy,20); if(ogg_sync_pageout(&oy,&og_de)>0)error(); /* Test fractional page inputs: incomplete header */ memcpy(ogg_sync_buffer(&oy,og[1].header_len),og[1].header+23, 5); ogg_sync_wrote(&oy,5); if(ogg_sync_pageout(&oy,&og_de)>0)error(); /* Test fractional page inputs: incomplete body */ memcpy(ogg_sync_buffer(&oy,og[1].header_len),og[1].header+28, og[1].header_len-28); ogg_sync_wrote(&oy,og[1].header_len-28); if(ogg_sync_pageout(&oy,&og_de)>0)error(); memcpy(ogg_sync_buffer(&oy,og[1].body_len),og[1].body,1000); ogg_sync_wrote(&oy,1000); if(ogg_sync_pageout(&oy,&og_de)>0)error(); memcpy(ogg_sync_buffer(&oy,og[1].body_len),og[1].body+1000, og[1].body_len-1000); ogg_sync_wrote(&oy,og[1].body_len-1000); if(ogg_sync_pageout(&oy,&og_de)<=0)error(); fprintf(stderr,"ok.\n"); } /* Test fractional page inputs: page + incomplete capture */ { ogg_page og_de; fprintf(stderr,"Testing sync on 1+partial inputs... "); ogg_sync_reset(&oy); memcpy(ogg_sync_buffer(&oy,og[1].header_len),og[1].header, og[1].header_len); ogg_sync_wrote(&oy,og[1].header_len); memcpy(ogg_sync_buffer(&oy,og[1].body_len),og[1].body, og[1].body_len); ogg_sync_wrote(&oy,og[1].body_len); memcpy(ogg_sync_buffer(&oy,og[1].header_len),og[1].header, 20); ogg_sync_wrote(&oy,20); if(ogg_sync_pageout(&oy,&og_de)<=0)error(); if(ogg_sync_pageout(&oy,&og_de)>0)error(); memcpy(ogg_sync_buffer(&oy,og[1].header_len),og[1].header+20, og[1].header_len-20); ogg_sync_wrote(&oy,og[1].header_len-20); memcpy(ogg_sync_buffer(&oy,og[1].body_len),og[1].body, og[1].body_len); ogg_sync_wrote(&oy,og[1].body_len); if(ogg_sync_pageout(&oy,&og_de)<=0)error(); fprintf(stderr,"ok.\n"); } /* Test recapture: garbage + page */ { ogg_page og_de; fprintf(stderr,"Testing search for capture... "); ogg_sync_reset(&oy); /* 'garbage' */ memcpy(ogg_sync_buffer(&oy,og[1].body_len),og[1].body, og[1].body_len); ogg_sync_wrote(&oy,og[1].body_len); memcpy(ogg_sync_buffer(&oy,og[1].header_len),og[1].header, og[1].header_len); ogg_sync_wrote(&oy,og[1].header_len); memcpy(ogg_sync_buffer(&oy,og[1].body_len),og[1].body, og[1].body_len); ogg_sync_wrote(&oy,og[1].body_len); memcpy(ogg_sync_buffer(&oy,og[2].header_len),og[2].header, 20); ogg_sync_wrote(&oy,20); if(ogg_sync_pageout(&oy,&og_de)>0)error(); if(ogg_sync_pageout(&oy,&og_de)<=0)error(); if(ogg_sync_pageout(&oy,&og_de)>0)error(); memcpy(ogg_sync_buffer(&oy,og[2].header_len),og[2].header+20, og[2].header_len-20); ogg_sync_wrote(&oy,og[2].header_len-20); memcpy(ogg_sync_buffer(&oy,og[2].body_len),og[2].body, og[2].body_len); ogg_sync_wrote(&oy,og[2].body_len); if(ogg_sync_pageout(&oy,&og_de)<=0)error(); fprintf(stderr,"ok.\n"); } /* Test recapture: page + garbage + page */ { ogg_page og_de; fprintf(stderr,"Testing recapture... "); ogg_sync_reset(&oy); memcpy(ogg_sync_buffer(&oy,og[1].header_len),og[1].header, og[1].header_len); ogg_sync_wrote(&oy,og[1].header_len); memcpy(ogg_sync_buffer(&oy,og[1].body_len),og[1].body, og[1].body_len); ogg_sync_wrote(&oy,og[1].body_len); memcpy(ogg_sync_buffer(&oy,og[2].header_len),og[2].header, og[2].header_len); ogg_sync_wrote(&oy,og[2].header_len); memcpy(ogg_sync_buffer(&oy,og[2].header_len),og[2].header, og[2].header_len); ogg_sync_wrote(&oy,og[2].header_len); if(ogg_sync_pageout(&oy,&og_de)<=0)error(); memcpy(ogg_sync_buffer(&oy,og[2].body_len),og[2].body, og[2].body_len-5); ogg_sync_wrote(&oy,og[2].body_len-5); memcpy(ogg_sync_buffer(&oy,og[3].header_len),og[3].header, og[3].header_len); ogg_sync_wrote(&oy,og[3].header_len); memcpy(ogg_sync_buffer(&oy,og[3].body_len),og[3].body, og[3].body_len); ogg_sync_wrote(&oy,og[3].body_len); if(ogg_sync_pageout(&oy,&og_de)>0)error(); if(ogg_sync_pageout(&oy,&og_de)<=0)error(); fprintf(stderr,"ok.\n"); } /* Free page data that was previously copied */ { for(i=0;i<5;i++){ free_page(&og[i]); } } } return(0); } #endif #endif /********* End of inlined file: framing.c *********/ /********* Start of inlined file: analysis.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #include /********* Start of inlined file: codec_internal.h *********/ #ifndef _V_CODECI_H_ #define _V_CODECI_H_ /********* Start of inlined file: envelope.h *********/ #ifndef _V_ENVELOPE_ #define _V_ENVELOPE_ /********* Start of inlined file: mdct.h *********/ #ifndef _OGG_mdct_H_ #define _OGG_mdct_H_ /*#define MDCT_INTEGERIZED <- be warned there could be some hurt left here*/ #ifdef MDCT_INTEGERIZED #define DATA_TYPE int #define REG_TYPE register int #define TRIGBITS 14 #define cPI3_8 6270 #define cPI2_8 11585 #define cPI1_8 15137 #define FLOAT_CONV(x) ((int)((x)*(1<>TRIGBITS) #define HALVE(x) ((x)>>1) #else #define DATA_TYPE float #define REG_TYPE float #define cPI3_8 .38268343236508977175F #define cPI2_8 .70710678118654752441F #define cPI1_8 .92387953251128675613F #define FLOAT_CONV(x) (x) #define MULT_NORM(x) (x) #define HALVE(x) ((x)*.5f) #endif typedef struct { int n; int log2n; DATA_TYPE *trig; int *bitrev; DATA_TYPE scale; } mdct_lookup; extern void mdct_init(mdct_lookup *lookup,int n); extern void mdct_clear(mdct_lookup *l); extern void mdct_forward(mdct_lookup *init, DATA_TYPE *in, DATA_TYPE *out); extern void mdct_backward(mdct_lookup *init, DATA_TYPE *in, DATA_TYPE *out); #endif /********* End of inlined file: mdct.h *********/ #define VE_PRE 16 #define VE_WIN 4 #define VE_POST 2 #define VE_AMP (VE_PRE+VE_POST-1) #define VE_BANDS 7 #define VE_NEARDC 15 #define VE_MINSTRETCH 2 /* a bit less than short block */ #define VE_MAXSTRETCH 12 /* one-third full block */ typedef struct { float ampbuf[VE_AMP]; int ampptr; float nearDC[VE_NEARDC]; float nearDC_acc; float nearDC_partialacc; int nearptr; } envelope_filter_state; typedef struct { int begin; int end; float *window; float total; } envelope_band; typedef struct { int ch; int winlength; int searchstep; float minenergy; mdct_lookup mdct; float *mdct_win; envelope_band band[VE_BANDS]; envelope_filter_state *filter; int stretch; int *mark; long storage; long current; long curmark; long cursor; } envelope_lookup; extern void _ve_envelope_init(envelope_lookup *e,vorbis_info *vi); extern void _ve_envelope_clear(envelope_lookup *e); extern long _ve_envelope_search(vorbis_dsp_state *v); extern void _ve_envelope_shift(envelope_lookup *e,long shift); extern int _ve_envelope_mark(vorbis_dsp_state *v); #endif /********* End of inlined file: envelope.h *********/ /********* Start of inlined file: codebook.h *********/ #ifndef _V_CODEBOOK_H_ #define _V_CODEBOOK_H_ /* This structure encapsulates huffman and VQ style encoding books; it doesn't do anything specific to either. valuelist/quantlist are nonNULL (and q_* significant) only if there's entry->value mapping to be done. If encode-side mapping must be done (and thus the entry needs to be hunted), the auxiliary encode pointer will point to a decision tree. This is true of both VQ and huffman, but is mostly useful with VQ. */ typedef struct static_codebook{ long dim; /* codebook dimensions (elements per vector) */ long entries; /* codebook entries */ long *lengthlist; /* codeword lengths in bits */ /* mapping ***************************************************************/ int maptype; /* 0=none 1=implicitly populated values from map column 2=listed arbitrary values */ /* The below does a linear, single monotonic sequence mapping. */ long q_min; /* packed 32 bit float; quant value 0 maps to minval */ long q_delta; /* packed 32 bit float; val 1 - val 0 == delta */ int q_quant; /* bits: 0 < quant <= 16 */ int q_sequencep; /* bitflag */ long *quantlist; /* map == 1: (int)(entries^(1/dim)) element column map map == 2: list of dim*entries quantized entry vals */ /* encode helpers ********************************************************/ struct encode_aux_nearestmatch *nearest_tree; struct encode_aux_threshmatch *thresh_tree; struct encode_aux_pigeonhole *pigeon_tree; int allocedp; } static_codebook; /* this structures an arbitrary trained book to quickly find the nearest cell match */ typedef struct encode_aux_nearestmatch{ /* pre-calculated partitioning tree */ long *ptr0; long *ptr1; long *p; /* decision points (each is an entry) */ long *q; /* decision points (each is an entry) */ long aux; /* number of tree entries */ long alloc; } encode_aux_nearestmatch; /* assumes a maptype of 1; encode side only, so that's OK */ typedef struct encode_aux_threshmatch{ float *quantthresh; long *quantmap; int quantvals; int threshvals; } encode_aux_threshmatch; typedef struct encode_aux_pigeonhole{ float min; float del; int mapentries; int quantvals; long *pigeonmap; long fittotal; long *fitlist; long *fitmap; long *fitlength; } encode_aux_pigeonhole; typedef struct codebook{ long dim; /* codebook dimensions (elements per vector) */ long entries; /* codebook entries */ long used_entries; /* populated codebook entries */ const static_codebook *c; /* for encode, the below are entry-ordered, fully populated */ /* for decode, the below are ordered by bitreversed codeword and only used entries are populated */ float *valuelist; /* list of dim*entries actual entry values */ ogg_uint32_t *codelist; /* list of bitstream codewords for each entry */ int *dec_index; /* only used if sparseness collapsed */ char *dec_codelengths; ogg_uint32_t *dec_firsttable; int dec_firsttablen; int dec_maxlength; } codebook; extern void vorbis_staticbook_clear(static_codebook *b); extern void vorbis_staticbook_destroy(static_codebook *b); extern int vorbis_book_init_encode(codebook *dest,const static_codebook *source); extern int vorbis_book_init_decode(codebook *dest,const static_codebook *source); extern void vorbis_book_clear(codebook *b); extern float *_book_unquantize(const static_codebook *b,int n,int *map); extern float *_book_logdist(const static_codebook *b,float *vals); extern float _float32_unpack(long val); extern long _float32_pack(float val); extern int _best(codebook *book, float *a, int step); extern int _ilog(unsigned int v); extern long _book_maptype1_quantvals(const static_codebook *b); extern int vorbis_book_besterror(codebook *book,float *a,int step,int addmul); extern long vorbis_book_codeword(codebook *book,int entry); extern long vorbis_book_codelen(codebook *book,int entry); extern int vorbis_staticbook_pack(const static_codebook *c,oggpack_buffer *b); extern int vorbis_staticbook_unpack(oggpack_buffer *b,static_codebook *c); extern int vorbis_book_encode(codebook *book, int a, oggpack_buffer *b); extern int vorbis_book_errorv(codebook *book, float *a); extern int vorbis_book_encodev(codebook *book, int best,float *a, oggpack_buffer *b); extern long vorbis_book_decode(codebook *book, oggpack_buffer *b); extern long vorbis_book_decodevs_add(codebook *book, float *a, oggpack_buffer *b,int n); extern long vorbis_book_decodev_set(codebook *book, float *a, oggpack_buffer *b,int n); extern long vorbis_book_decodev_add(codebook *book, float *a, oggpack_buffer *b,int n); extern long vorbis_book_decodevv_add(codebook *book, float **a, long off,int ch, oggpack_buffer *b,int n); #endif /********* End of inlined file: codebook.h *********/ #define BLOCKTYPE_IMPULSE 0 #define BLOCKTYPE_PADDING 1 #define BLOCKTYPE_TRANSITION 0 #define BLOCKTYPE_LONG 1 #define PACKETBLOBS 15 typedef struct vorbis_block_internal{ float **pcmdelay; /* this is a pointer into local storage */ float ampmax; int blocktype; oggpack_buffer *packetblob[PACKETBLOBS]; /* initialized, must be freed; blob [PACKETBLOBS/2] points to the oggpack_buffer in the main vorbis_block */ } vorbis_block_internal; typedef void vorbis_look_floor; typedef void vorbis_look_residue; typedef void vorbis_look_transform; /* mode ************************************************************/ typedef struct { int blockflag; int windowtype; int transformtype; int mapping; } vorbis_info_mode; typedef void vorbis_info_floor; typedef void vorbis_info_residue; typedef void vorbis_info_mapping; /********* Start of inlined file: psy.h *********/ #ifndef _V_PSY_H_ #define _V_PSY_H_ /********* Start of inlined file: smallft.h *********/ #ifndef _V_SMFT_H_ #define _V_SMFT_H_ typedef struct { int n; float *trigcache; int *splitcache; } drft_lookup; extern void drft_forward(drft_lookup *l,float *data); extern void drft_backward(drft_lookup *l,float *data); extern void drft_init(drft_lookup *l,int n); extern void drft_clear(drft_lookup *l); #endif /********* End of inlined file: smallft.h *********/ /********* Start of inlined file: backends.h *********/ /* this is exposed up here because we need it for static modes. Lookups for each backend aren't exposed because there's no reason to do so */ #ifndef _vorbis_backend_h_ #define _vorbis_backend_h_ /* this would all be simpler/shorter with templates, but.... */ /* Floor backend generic *****************************************/ typedef struct{ void (*pack) (vorbis_info_floor *,oggpack_buffer *); vorbis_info_floor *(*unpack)(vorbis_info *,oggpack_buffer *); vorbis_look_floor *(*look) (vorbis_dsp_state *,vorbis_info_floor *); void (*free_info) (vorbis_info_floor *); void (*free_look) (vorbis_look_floor *); void *(*inverse1) (struct vorbis_block *,vorbis_look_floor *); int (*inverse2) (struct vorbis_block *,vorbis_look_floor *, void *buffer,float *); } vorbis_func_floor; typedef struct{ int order; long rate; long barkmap; int ampbits; int ampdB; int numbooks; /* <= 16 */ int books[16]; float lessthan; /* encode-only config setting hacks for libvorbis */ float greaterthan; /* encode-only config setting hacks for libvorbis */ } vorbis_info_floor0; #define VIF_POSIT 63 #define VIF_CLASS 16 #define VIF_PARTS 31 typedef struct{ int partitions; /* 0 to 31 */ int partitionclass[VIF_PARTS]; /* 0 to 15 */ int class_dim[VIF_CLASS]; /* 1 to 8 */ int class_subs[VIF_CLASS]; /* 0,1,2,3 (bits: 1< /********* Start of inlined file: misc.h *********/ #ifndef _V_RANDOM_H_ #define _V_RANDOM_H_ extern int analysis_noisy; extern void *_vorbis_block_alloc(vorbis_block *vb,long bytes); extern void _vorbis_block_ripcord(vorbis_block *vb); extern void _analysis_output(char *base,int i,float *v,int n,int bark,int dB, ogg_int64_t off); #ifdef DEBUG_MALLOC #define _VDBG_GRAPHFILE "malloc.m" extern void *_VDBG_malloc(void *ptr,long bytes,char *file,long line); extern void _VDBG_free(void *ptr,char *file,long line); #ifndef MISC_C #undef _ogg_malloc #undef _ogg_calloc #undef _ogg_realloc #undef _ogg_free #define _ogg_malloc(x) _VDBG_malloc(NULL,(x),__FILE__,__LINE__) #define _ogg_calloc(x,y) _VDBG_malloc(NULL,(x)*(y),__FILE__,__LINE__) #define _ogg_realloc(x,y) _VDBG_malloc((x),(y),__FILE__,__LINE__) #define _ogg_free(x) _VDBG_free((x),__FILE__,__LINE__) #endif #endif #endif /********* End of inlined file: misc.h *********/ #ifndef _V_IFDEFJAIL_H_ # define _V_IFDEFJAIL_H_ # ifdef __GNUC__ # define STIN static __inline__ # elif _WIN32 # define STIN static __inline # else # define STIN static # endif #ifdef DJGPP # define rint(x) (floor((x)+0.5f)) #endif #ifndef M_PI # define M_PI (3.1415926536f) #endif #if defined(_WIN32) && !defined(__SYMBIAN32__) # include # define rint(x) (floor((x)+0.5f)) # define NO_FLOAT_MATH_LIB # define FAST_HYPOT(a, b) sqrt((a)*(a) + (b)*(b)) #endif #if defined(__SYMBIAN32__) && defined(__WINS__) void *_alloca(size_t size); # define alloca _alloca #endif #ifndef FAST_HYPOT # define FAST_HYPOT hypot #endif #endif #ifdef HAVE_ALLOCA_H # include #endif #ifdef USE_MEMORY_H # include #endif #ifndef min # define min(x,y) ((x)>(y)?(y):(x)) #endif #ifndef max # define max(x,y) ((x)<(y)?(y):(x)) #endif #if defined(__i386__) && defined(__GNUC__) && !defined(__BEOS__) # define VORBIS_FPU_CONTROL /* both GCC and MSVC are kinda stupid about rounding/casting to int. Because of encapsulation constraints (GCC can't see inside the asm block and so we end up doing stupid things like a store/load that is collectively a noop), we do it this way */ /* we must set up the fpu before this works!! */ typedef ogg_int16_t vorbis_fpu_control; static inline void vorbis_fpu_setround(vorbis_fpu_control *fpu){ ogg_int16_t ret; ogg_int16_t temp; __asm__ __volatile__("fnstcw %0\n\t" "movw %0,%%dx\n\t" "orw $62463,%%dx\n\t" "movw %%dx,%1\n\t" "fldcw %1\n\t":"=m"(ret):"m"(temp): "dx"); *fpu=ret; } static inline void vorbis_fpu_restore(vorbis_fpu_control fpu){ __asm__ __volatile__("fldcw %0":: "m"(fpu)); } /* assumes the FPU is in round mode! */ static inline int vorbis_ftoi(double f){ /* yes, double! Otherwise, we get extra fst/fld to truncate precision */ int i; __asm__("fistl %0": "=m"(i) : "t"(f)); return(i); } #endif #if defined(_WIN32) && defined(_X86_) && !defined(__GNUC__) && !defined(__BORLANDC__) # define VORBIS_FPU_CONTROL typedef ogg_int16_t vorbis_fpu_control; static __inline int vorbis_ftoi(double f){ int i; __asm{ fld f fistp i } return i; } static __inline void vorbis_fpu_setround(vorbis_fpu_control *fpu){ } static __inline void vorbis_fpu_restore(vorbis_fpu_control fpu){ } #endif #ifndef VORBIS_FPU_CONTROL typedef int vorbis_fpu_control; static int vorbis_ftoi(double f){ return (int)(f+.5); } /* We don't have special code for this compiler/arch, so do it the slow way */ # define vorbis_fpu_setround(vorbis_fpu_control) {} # define vorbis_fpu_restore(vorbis_fpu_control) {} #endif #endif /* _OS_H */ /********* End of inlined file: os.h *********/ /* encode side bitrate tracking */ typedef struct bitrate_manager_state { int managed; long avg_reservoir; long minmax_reservoir; long avg_bitsper; long min_bitsper; long max_bitsper; long short_per_long; double avgfloat; vorbis_block *vb; int choice; } bitrate_manager_state; typedef struct bitrate_manager_info{ long avg_rate; long min_rate; long max_rate; long reservoir_bits; double reservoir_bias; double slew_damp; } bitrate_manager_info; extern void vorbis_bitrate_init(vorbis_info *vi,bitrate_manager_state *bs); extern void vorbis_bitrate_clear(bitrate_manager_state *bs); extern int vorbis_bitrate_managed(vorbis_block *vb); extern int vorbis_bitrate_addblock(vorbis_block *vb); extern int vorbis_bitrate_flushpacket(vorbis_dsp_state *vd, ogg_packet *op); #endif /********* End of inlined file: bitrate.h *********/ static int ilog(unsigned int v){ int ret=0; while(v){ ret++; v>>=1; } return(ret); } static int ilog2(unsigned int v){ int ret=0; if(v)--v; while(v){ ret++; v>>=1; } return(ret); } typedef struct private_state { /* local lookup storage */ envelope_lookup *ve; /* envelope lookup */ int window[2]; vorbis_look_transform **transform[2]; /* block, type */ drft_lookup fft_look[2]; int modebits; vorbis_look_floor **flr; vorbis_look_residue **residue; vorbis_look_psy *psy; vorbis_look_psy_global *psy_g_look; /* local storage, only used on the encoding side. This way the application does not need to worry about freeing some packets' memory and not others'; packet storage is always tracked. Cleared next call to a _dsp_ function */ unsigned char *header; unsigned char *header1; unsigned char *header2; bitrate_manager_state bms; ogg_int64_t sample_count; } private_state; /* codec_setup_info contains all the setup information specific to the specific compression/decompression mode in progress (eg, psychoacoustic settings, channel setup, options, codebook etc). *********************************************************************/ /********* Start of inlined file: highlevel.h *********/ typedef struct highlevel_byblocktype { double tone_mask_setting; double tone_peaklimit_setting; double noise_bias_setting; double noise_compand_setting; } highlevel_byblocktype; typedef struct highlevel_encode_setup { void *setup; int set_in_stone; double base_setting; double long_setting; double short_setting; double impulse_noisetune; int managed; long bitrate_min; long bitrate_av; double bitrate_av_damp; long bitrate_max; long bitrate_reservoir; double bitrate_reservoir_bias; int impulse_block_p; int noise_normalize_p; double stereo_point_setting; double lowpass_kHz; double ath_floating_dB; double ath_absolute_dB; double amplitude_track_dBpersec; double trigger_setting; highlevel_byblocktype block[4]; /* padding, impulse, transition, long */ } highlevel_encode_setup; /********* End of inlined file: highlevel.h *********/ typedef struct codec_setup_info { /* Vorbis supports only short and long blocks, but allows the encoder to choose the sizes */ long blocksizes[2]; /* modes are the primary means of supporting on-the-fly different blocksizes, different channel mappings (LR or M/A), different residue backends, etc. Each mode consists of a blocksize flag and a mapping (along with the mapping setup */ int modes; int maps; int floors; int residues; int books; int psys; /* encode only */ vorbis_info_mode *mode_param[64]; int map_type[64]; vorbis_info_mapping *map_param[64]; int floor_type[64]; vorbis_info_floor *floor_param[64]; int residue_type[64]; vorbis_info_residue *residue_param[64]; static_codebook *book_param[256]; codebook *fullbooks; vorbis_info_psy *psy_param[4]; /* encode only */ vorbis_info_psy_global psy_g_param; bitrate_manager_info bi; highlevel_encode_setup hi; /* used only by vorbisenc.c. It's a highly redundant structure, but improves clarity of program flow. */ int halfrate_flag; /* painless downsample for decode */ } codec_setup_info; extern vorbis_look_psy_global *_vp_global_look(vorbis_info *vi); extern void _vp_global_free(vorbis_look_psy_global *look); #endif /********* End of inlined file: codec_internal.h *********/ /********* Start of inlined file: registry.h *********/ #ifndef _V_REG_H_ #define _V_REG_H_ #define VI_TRANSFORMB 1 #define VI_WINDOWB 1 #define VI_TIMEB 1 #define VI_FLOORB 2 #define VI_RESB 3 #define VI_MAPB 1 extern vorbis_func_floor *_floor_P[]; extern vorbis_func_residue *_residue_P[]; extern vorbis_func_mapping *_mapping_P[]; #endif /********* End of inlined file: registry.h *********/ /********* Start of inlined file: scales.h *********/ #ifndef _V_SCALES_H_ #define _V_SCALES_H_ #include /* 20log10(x) */ #define VORBIS_IEEE_FLOAT32 1 #ifdef VORBIS_IEEE_FLOAT32 static float unitnorm(float x){ union { ogg_uint32_t i; float f; } ix; ix.f = x; ix.i = (ix.i & 0x80000000U) | (0x3f800000U); return ix.f; } /* Segher was off (too high) by ~ .3 decibel. Center the conversion correctly. */ static float todB(const float *x){ union { ogg_uint32_t i; float f; } ix; ix.f = *x; ix.i = ix.i&0x7fffffff; return (float)(ix.i * 7.17711438e-7f -764.6161886f); } #define todB_nn(x) todB(x) #else static float unitnorm(float x){ if(x<0)return(-1.f); return(1.f); } #define todB(x) (*(x)==0?-400.f:log(*(x)**(x))*4.34294480f) #define todB_nn(x) (*(x)==0.f?-400.f:log(*(x))*8.6858896f) #endif #define fromdB(x) (exp((x)*.11512925f)) /* The bark scale equations are approximations, since the original table was somewhat hand rolled. The below are chosen to have the best possible fit to the rolled tables, thus their somewhat odd appearance (these are more accurate and over a longer range than the oft-quoted bark equations found in the texts I have). The approximations are valid from 0 - 30kHz (nyquist) or so. all f in Hz, z in Bark */ #define toBARK(n) (13.1f*atan(.00074f*(n))+2.24f*atan((n)*(n)*1.85e-8f)+1e-4f*(n)) #define fromBARK(z) (102.f*(z)-2.f*pow(z,2.f)+.4f*pow(z,3.f)+pow(1.46f,z)-1.f) #define toMEL(n) (log(1.f+(n)*.001f)*1442.695f) #define fromMEL(m) (1000.f*exp((m)/1442.695f)-1000.f) /* Frequency to octave. We arbitrarily declare 63.5 Hz to be octave 0.0 */ #define toOC(n) (log(n)*1.442695f-5.965784f) #define fromOC(o) (exp(((o)+5.965784f)*.693147f)) #endif /********* End of inlined file: scales.h *********/ int analysis_noisy=1; /* decides between modes, dispatches to the appropriate mapping. */ int vorbis_analysis(vorbis_block *vb, ogg_packet *op){ int ret,i; vorbis_block_internal *vbi=(vorbis_block_internal *)vb->internal; vb->glue_bits=0; vb->time_bits=0; vb->floor_bits=0; vb->res_bits=0; /* first things first. Make sure encode is ready */ for(i=0;ipacketblob[i]); /* we only have one mapping type (0), and we let the mapping code itself figure out what soft mode to use. This allows easier bitrate management */ if((ret=_mapping_P[0]->forward(vb))) return(ret); if(op){ if(vorbis_bitrate_managed(vb)) /* The app is using a bitmanaged mode... but not using the bitrate management interface. */ return(OV_EINVAL); op->packet=oggpack_get_buffer(&vb->opb); op->bytes=oggpack_bytes(&vb->opb); op->b_o_s=0; op->e_o_s=vb->eofflag; op->granulepos=vb->granulepos; op->packetno=vb->sequence; /* for sake of completeness */ } return(0); } /* there was no great place to put this.... */ void _analysis_output_always(const char *base,int i,float *v,int n,int bark,int dB,ogg_int64_t off){ int j; FILE *of; char buffer[80]; /* if(i==5870){*/ sprintf(buffer,"%s_%d.m",base,i); of=fopen(buffer,"w"); if(!of)perror("failed to open data dump file"); for(j=0;j #include #include /* compute bitrate tracking setup */ void vorbis_bitrate_init(vorbis_info *vi,bitrate_manager_state *bm){ codec_setup_info *ci=(codec_setup_info *)vi->codec_setup; bitrate_manager_info *bi=&ci->bi; memset(bm,0,sizeof(*bm)); if(bi && (bi->reservoir_bits>0)){ long ratesamples=vi->rate; int halfsamples=ci->blocksizes[0]>>1; bm->short_per_long=ci->blocksizes[1]/ci->blocksizes[0]; bm->managed=1; bm->avg_bitsper= rint(1.*bi->avg_rate*halfsamples/ratesamples); bm->min_bitsper= rint(1.*bi->min_rate*halfsamples/ratesamples); bm->max_bitsper= rint(1.*bi->max_rate*halfsamples/ratesamples); bm->avgfloat=PACKETBLOBS/2; /* not a necessary fix, but one that leads to a more balanced typical initialization */ { long desired_fill=bi->reservoir_bits*bi->reservoir_bias; bm->minmax_reservoir=desired_fill; bm->avg_reservoir=desired_fill; } } } void vorbis_bitrate_clear(bitrate_manager_state *bm){ memset(bm,0,sizeof(*bm)); return; } int vorbis_bitrate_managed(vorbis_block *vb){ vorbis_dsp_state *vd=vb->vd; private_state *b=(private_state*)vd->backend_state; bitrate_manager_state *bm=&b->bms; if(bm && bm->managed)return(1); return(0); } /* finish taking in the block we just processed */ int vorbis_bitrate_addblock(vorbis_block *vb){ vorbis_block_internal *vbi=(vorbis_block_internal*)vb->internal; vorbis_dsp_state *vd=vb->vd; private_state *b=(private_state*)vd->backend_state; bitrate_manager_state *bm=&b->bms; vorbis_info *vi=vd->vi; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; bitrate_manager_info *bi=&ci->bi; int choice=rint(bm->avgfloat); long this_bits=oggpack_bytes(vbi->packetblob[choice])*8; long min_target_bits=(vb->W?bm->min_bitsper*bm->short_per_long:bm->min_bitsper); long max_target_bits=(vb->W?bm->max_bitsper*bm->short_per_long:bm->max_bitsper); int samples=ci->blocksizes[vb->W]>>1; long desired_fill=bi->reservoir_bits*bi->reservoir_bias; if(!bm->managed){ /* not a bitrate managed stream, but for API simplicity, we'll buffer the packet to keep the code path clean */ if(bm->vb)return(-1); /* one has been submitted without being claimed */ bm->vb=vb; return(0); } bm->vb=vb; /* look ahead for avg floater */ if(bm->avg_bitsper>0){ double slew=0.; long avg_target_bits=(vb->W?bm->avg_bitsper*bm->short_per_long:bm->avg_bitsper); double slewlimit= 15./bi->slew_damp; /* choosing a new floater: if we're over target, we slew down if we're under target, we slew up choose slew as follows: look through packetblobs of this frame and set slew as the first in the appropriate direction that gives us the slew we want. This may mean no slew if delta is already favorable. Then limit slew to slew max */ if(bm->avg_reservoir+(this_bits-avg_target_bits)>desired_fill){ while(choice>0 && this_bits>avg_target_bits && bm->avg_reservoir+(this_bits-avg_target_bits)>desired_fill){ choice--; this_bits=oggpack_bytes(vbi->packetblob[choice])*8; } }else if(bm->avg_reservoir+(this_bits-avg_target_bits)avg_reservoir+(this_bits-avg_target_bits)packetblob[choice])*8; } } slew=rint(choice-bm->avgfloat)/samples*vi->rate; if(slew<-slewlimit)slew=-slewlimit; if(slew>slewlimit)slew=slewlimit; choice=rint(bm->avgfloat+= slew/vi->rate*samples); this_bits=oggpack_bytes(vbi->packetblob[choice])*8; } /* enforce min(if used) on the current floater (if used) */ if(bm->min_bitsper>0){ /* do we need to force the bitrate up? */ if(this_bitsminmax_reservoir-(min_target_bits-this_bits)<0){ choice++; if(choice>=PACKETBLOBS)break; this_bits=oggpack_bytes(vbi->packetblob[choice])*8; } } } /* enforce max (if used) on the current floater (if used) */ if(bm->max_bitsper>0){ /* do we need to force the bitrate down? */ if(this_bits>max_target_bits){ while(bm->minmax_reservoir+(this_bits-max_target_bits)>bi->reservoir_bits){ choice--; if(choice<0)break; this_bits=oggpack_bytes(vbi->packetblob[choice])*8; } } } /* Choice of packetblobs now made based on floater, and min/max requirements. Now boundary check extreme choices */ if(choice<0){ /* choosing a smaller packetblob is insufficient to trim bitrate. frame will need to be truncated */ long maxsize=(max_target_bits+(bi->reservoir_bits-bm->minmax_reservoir))/8; bm->choice=choice=0; if(oggpack_bytes(vbi->packetblob[choice])>maxsize){ oggpack_writetrunc(vbi->packetblob[choice],maxsize*8); this_bits=oggpack_bytes(vbi->packetblob[choice])*8; } }else{ long minsize=(min_target_bits-bm->minmax_reservoir+7)/8; if(choice>=PACKETBLOBS) choice=PACKETBLOBS-1; bm->choice=choice; /* prop up bitrate according to demand. pad this frame out with zeroes */ minsize-=oggpack_bytes(vbi->packetblob[choice]); while(minsize-->0)oggpack_write(vbi->packetblob[choice],0,8); this_bits=oggpack_bytes(vbi->packetblob[choice])*8; } /* now we have the final packet and the final packet size. Update statistics */ /* min and max reservoir */ if(bm->min_bitsper>0 || bm->max_bitsper>0){ if(max_target_bits>0 && this_bits>max_target_bits){ bm->minmax_reservoir+=(this_bits-max_target_bits); }else if(min_target_bits>0 && this_bitsminmax_reservoir+=(this_bits-min_target_bits); }else{ /* inbetween; we want to take reservoir toward but not past desired_fill */ if(bm->minmax_reservoir>desired_fill){ if(max_target_bits>0){ /* logical bulletproofing against initialization state */ bm->minmax_reservoir+=(this_bits-max_target_bits); if(bm->minmax_reservoirminmax_reservoir=desired_fill; }else{ bm->minmax_reservoir=desired_fill; } }else{ if(min_target_bits>0){ /* logical bulletproofing against initialization state */ bm->minmax_reservoir+=(this_bits-min_target_bits); if(bm->minmax_reservoir>desired_fill)bm->minmax_reservoir=desired_fill; }else{ bm->minmax_reservoir=desired_fill; } } } } /* avg reservoir */ if(bm->avg_bitsper>0){ long avg_target_bits=(vb->W?bm->avg_bitsper*bm->short_per_long:bm->avg_bitsper); bm->avg_reservoir+=this_bits-avg_target_bits; } return(0); } int vorbis_bitrate_flushpacket(vorbis_dsp_state *vd,ogg_packet *op){ private_state *b=(private_state*)vd->backend_state; bitrate_manager_state *bm=&b->bms; vorbis_block *vb=bm->vb; int choice=PACKETBLOBS/2; if(!vb)return 0; if(op){ vorbis_block_internal *vbi=(vorbis_block_internal*)vb->internal; if(vorbis_bitrate_managed(vb)) choice=bm->choice; op->packet=oggpack_get_buffer(vbi->packetblob[choice]); op->bytes=oggpack_bytes(vbi->packetblob[choice]); op->b_o_s=0; op->e_o_s=vb->eofflag; op->granulepos=vb->granulepos; op->packetno=vb->sequence; /* for sake of completeness */ } bm->vb=0; return(1); } #endif /********* End of inlined file: bitrate.c *********/ /********* Start of inlined file: block.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #include /********* Start of inlined file: window.h *********/ #ifndef _V_WINDOW_ #define _V_WINDOW_ extern float *_vorbis_window_get(int n); extern void _vorbis_apply_window(float *d,int *winno,long *blocksizes, int lW,int W,int nW); #endif /********* End of inlined file: window.h *********/ /********* Start of inlined file: lpc.h *********/ #ifndef _V_LPC_H_ #define _V_LPC_H_ /* simple linear scale LPC code */ extern float vorbis_lpc_from_data(float *data,float *lpc,int n,int m); extern void vorbis_lpc_predict(float *coeff,float *prime,int m, float *data,long n); #endif /********* End of inlined file: lpc.h *********/ /* pcm accumulator examples (not exhaustive): <-------------- lW ----------------> <--------------- W ----------------> : .....|..... _______________ | : .''' | '''_--- | |\ | :.....''' |_____--- '''......| | \_______| :.................|__________________|_______|__|______| |<------ Sl ------>| > Sr < |endW |beginSl |endSl | |endSr |beginW |endlW |beginSr |< lW >| <--------------- W ----------------> | | .. ______________ | | | ' `/ | ---_ | |___.'___/`. | ---_____| |_______|__|_______|_________________| | >|Sl|< |<------ Sr ----->|endW | | |endSl |beginSr |endSr |beginW | |endlW mult[0] |beginSl mult[n] <-------------- lW -----------------> |<--W-->| : .............. ___ | | : .''' |`/ \ | | :.....''' |/`....\|...| :.........................|___|___|___| |Sl |Sr |endW | | |endSr | |beginSr | |endSl |beginSl |beginW */ /* block abstraction setup *********************************************/ #ifndef WORD_ALIGN #define WORD_ALIGN 8 #endif int vorbis_block_init(vorbis_dsp_state *v, vorbis_block *vb){ int i; memset(vb,0,sizeof(*vb)); vb->vd=v; vb->localalloc=0; vb->localstore=NULL; if(v->analysisp){ vorbis_block_internal *vbi=(vorbis_block_internal*) (vb->internal=(vorbis_block_internal*)_ogg_calloc(1,sizeof(vorbis_block_internal))); vbi->ampmax=-9999; for(i=0;ipacketblob[i]=&vb->opb; }else{ vbi->packetblob[i]= (oggpack_buffer*) _ogg_calloc(1,sizeof(oggpack_buffer)); } oggpack_writeinit(vbi->packetblob[i]); } } return(0); } void *_vorbis_block_alloc(vorbis_block *vb,long bytes){ bytes=(bytes+(WORD_ALIGN-1)) & ~(WORD_ALIGN-1); if(bytes+vb->localtop>vb->localalloc){ /* can't just _ogg_realloc... there are outstanding pointers */ if(vb->localstore){ struct alloc_chain *link=(struct alloc_chain*)_ogg_malloc(sizeof(*link)); vb->totaluse+=vb->localtop; link->next=vb->reap; link->ptr=vb->localstore; vb->reap=link; } /* highly conservative */ vb->localalloc=bytes; vb->localstore=_ogg_malloc(vb->localalloc); vb->localtop=0; } { void *ret=(void *)(((char *)vb->localstore)+vb->localtop); vb->localtop+=bytes; return ret; } } /* reap the chain, pull the ripcord */ void _vorbis_block_ripcord(vorbis_block *vb){ /* reap the chain */ struct alloc_chain *reap=vb->reap; while(reap){ struct alloc_chain *next=reap->next; _ogg_free(reap->ptr); memset(reap,0,sizeof(*reap)); _ogg_free(reap); reap=next; } /* consolidate storage */ if(vb->totaluse){ vb->localstore=_ogg_realloc(vb->localstore,vb->totaluse+vb->localalloc); vb->localalloc+=vb->totaluse; vb->totaluse=0; } /* pull the ripcord */ vb->localtop=0; vb->reap=NULL; } int vorbis_block_clear(vorbis_block *vb){ int i; vorbis_block_internal *vbi=(vorbis_block_internal*)vb->internal; _vorbis_block_ripcord(vb); if(vb->localstore)_ogg_free(vb->localstore); if(vbi){ for(i=0;ipacketblob[i]); if(i!=PACKETBLOBS/2)_ogg_free(vbi->packetblob[i]); } _ogg_free(vbi); } memset(vb,0,sizeof(*vb)); return(0); } /* Analysis side code, but directly related to blocking. Thus it's here and not in analysis.c (which is for analysis transforms only). The init is here because some of it is shared */ static int _vds_shared_init(vorbis_dsp_state *v,vorbis_info *vi,int encp){ int i; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; private_state *b=NULL; int hs; if(ci==NULL) return 1; hs=ci->halfrate_flag; memset(v,0,sizeof(*v)); b=(private_state*) (v->backend_state=(private_state*)_ogg_calloc(1,sizeof(*b))); v->vi=vi; b->modebits=ilog2(ci->modes); b->transform[0]=(vorbis_look_transform**)_ogg_calloc(VI_TRANSFORMB,sizeof(*b->transform[0])); b->transform[1]=(vorbis_look_transform**)_ogg_calloc(VI_TRANSFORMB,sizeof(*b->transform[1])); /* MDCT is tranform 0 */ b->transform[0][0]=_ogg_calloc(1,sizeof(mdct_lookup)); b->transform[1][0]=_ogg_calloc(1,sizeof(mdct_lookup)); mdct_init((mdct_lookup*)b->transform[0][0],ci->blocksizes[0]>>hs); mdct_init((mdct_lookup*)b->transform[1][0],ci->blocksizes[1]>>hs); /* Vorbis I uses only window type 0 */ b->window[0]=ilog2(ci->blocksizes[0])-6; b->window[1]=ilog2(ci->blocksizes[1])-6; if(encp){ /* encode/decode differ here */ /* analysis always needs an fft */ drft_init(&b->fft_look[0],ci->blocksizes[0]); drft_init(&b->fft_look[1],ci->blocksizes[1]); /* finish the codebooks */ if(!ci->fullbooks){ ci->fullbooks=(codebook*) _ogg_calloc(ci->books,sizeof(*ci->fullbooks)); for(i=0;ibooks;i++) vorbis_book_init_encode(ci->fullbooks+i,ci->book_param[i]); } b->psy=(vorbis_look_psy*)_ogg_calloc(ci->psys,sizeof(*b->psy)); for(i=0;ipsys;i++){ _vp_psy_init(b->psy+i, ci->psy_param[i], &ci->psy_g_param, ci->blocksizes[ci->psy_param[i]->blockflag]/2, vi->rate); } v->analysisp=1; }else{ /* finish the codebooks */ if(!ci->fullbooks){ ci->fullbooks=(codebook*) _ogg_calloc(ci->books,sizeof(*ci->fullbooks)); for(i=0;ibooks;i++){ vorbis_book_init_decode(ci->fullbooks+i,ci->book_param[i]); /* decode codebooks are now standalone after init */ vorbis_staticbook_destroy(ci->book_param[i]); ci->book_param[i]=NULL; } } } /* initialize the storage vectors. blocksize[1] is small for encode, but the correct size for decode */ v->pcm_storage=ci->blocksizes[1]; v->pcm=(float**)_ogg_malloc(vi->channels*sizeof(*v->pcm)); v->pcmret=(float**)_ogg_malloc(vi->channels*sizeof(*v->pcmret)); { int i; for(i=0;ichannels;i++) v->pcm[i]=(float*)_ogg_calloc(v->pcm_storage,sizeof(*v->pcm[i])); } /* all 1 (large block) or 0 (small block) */ /* explicitly set for the sake of clarity */ v->lW=0; /* previous window size */ v->W=0; /* current window size */ /* all vector indexes */ v->centerW=ci->blocksizes[1]/2; v->pcm_current=v->centerW; /* initialize all the backend lookups */ b->flr=(vorbis_look_floor**)_ogg_calloc(ci->floors,sizeof(*b->flr)); b->residue=(vorbis_look_residue**)_ogg_calloc(ci->residues,sizeof(*b->residue)); for(i=0;ifloors;i++) b->flr[i]=_floor_P[ci->floor_type[i]]-> look(v,ci->floor_param[i]); for(i=0;iresidues;i++) b->residue[i]=_residue_P[ci->residue_type[i]]-> look(v,ci->residue_param[i]); return 0; } /* arbitrary settings and spec-mandated numbers get filled in here */ int vorbis_analysis_init(vorbis_dsp_state *v,vorbis_info *vi){ private_state *b=NULL; if(_vds_shared_init(v,vi,1))return 1; b=(private_state*)v->backend_state; b->psy_g_look=_vp_global_look(vi); /* Initialize the envelope state storage */ b->ve=(envelope_lookup*)_ogg_calloc(1,sizeof(*b->ve)); _ve_envelope_init(b->ve,vi); vorbis_bitrate_init(vi,&b->bms); /* compressed audio packets start after the headers with sequence number 3 */ v->sequence=3; return(0); } void vorbis_dsp_clear(vorbis_dsp_state *v){ int i; if(v){ vorbis_info *vi=v->vi; codec_setup_info *ci=(codec_setup_info*)(vi?vi->codec_setup:NULL); private_state *b=(private_state*)v->backend_state; if(b){ if(b->ve){ _ve_envelope_clear(b->ve); _ogg_free(b->ve); } if(b->transform[0]){ mdct_clear((mdct_lookup*) b->transform[0][0]); _ogg_free(b->transform[0][0]); _ogg_free(b->transform[0]); } if(b->transform[1]){ mdct_clear((mdct_lookup*) b->transform[1][0]); _ogg_free(b->transform[1][0]); _ogg_free(b->transform[1]); } if(b->flr){ for(i=0;ifloors;i++) _floor_P[ci->floor_type[i]]-> free_look(b->flr[i]); _ogg_free(b->flr); } if(b->residue){ for(i=0;iresidues;i++) _residue_P[ci->residue_type[i]]-> free_look(b->residue[i]); _ogg_free(b->residue); } if(b->psy){ for(i=0;ipsys;i++) _vp_psy_clear(b->psy+i); _ogg_free(b->psy); } if(b->psy_g_look)_vp_global_free(b->psy_g_look); vorbis_bitrate_clear(&b->bms); drft_clear(&b->fft_look[0]); drft_clear(&b->fft_look[1]); } if(v->pcm){ for(i=0;ichannels;i++) if(v->pcm[i])_ogg_free(v->pcm[i]); _ogg_free(v->pcm); if(v->pcmret)_ogg_free(v->pcmret); } if(b){ /* free header, header1, header2 */ if(b->header)_ogg_free(b->header); if(b->header1)_ogg_free(b->header1); if(b->header2)_ogg_free(b->header2); _ogg_free(b); } memset(v,0,sizeof(*v)); } } float **vorbis_analysis_buffer(vorbis_dsp_state *v, int vals){ int i; vorbis_info *vi=v->vi; private_state *b=(private_state*)v->backend_state; /* free header, header1, header2 */ if(b->header)_ogg_free(b->header);b->header=NULL; if(b->header1)_ogg_free(b->header1);b->header1=NULL; if(b->header2)_ogg_free(b->header2);b->header2=NULL; /* Do we have enough storage space for the requested buffer? If not, expand the PCM (and envelope) storage */ if(v->pcm_current+vals>=v->pcm_storage){ v->pcm_storage=v->pcm_current+vals*2; for(i=0;ichannels;i++){ v->pcm[i]=(float*)_ogg_realloc(v->pcm[i],v->pcm_storage*sizeof(*v->pcm[i])); } } for(i=0;ichannels;i++) v->pcmret[i]=v->pcm[i]+v->pcm_current; return(v->pcmret); } static void _preextrapolate_helper(vorbis_dsp_state *v){ int i; int order=32; float *lpc=(float*)alloca(order*sizeof(*lpc)); float *work=(float*)alloca(v->pcm_current*sizeof(*work)); long j; v->preextrapolate=1; if(v->pcm_current-v->centerW>order*2){ /* safety */ for(i=0;ivi->channels;i++){ /* need to run the extrapolation in reverse! */ for(j=0;jpcm_current;j++) work[j]=v->pcm[i][v->pcm_current-j-1]; /* prime as above */ vorbis_lpc_from_data(work,lpc,v->pcm_current-v->centerW,order); /* run the predictor filter */ vorbis_lpc_predict(lpc,work+v->pcm_current-v->centerW-order, order, work+v->pcm_current-v->centerW, v->centerW); for(j=0;jpcm_current;j++) v->pcm[i][v->pcm_current-j-1]=work[j]; } } } /* call with val<=0 to set eof */ int vorbis_analysis_wrote(vorbis_dsp_state *v, int vals){ vorbis_info *vi=v->vi; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; if(vals<=0){ int order=32; int i; float *lpc=(float*) alloca(order*sizeof(*lpc)); /* if it wasn't done earlier (very short sample) */ if(!v->preextrapolate) _preextrapolate_helper(v); /* We're encoding the end of the stream. Just make sure we have [at least] a few full blocks of zeroes at the end. */ /* actually, we don't want zeroes; that could drop a large amplitude off a cliff, creating spread spectrum noise that will suck to encode. Extrapolate for the sake of cleanliness. */ vorbis_analysis_buffer(v,ci->blocksizes[1]*3); v->eofflag=v->pcm_current; v->pcm_current+=ci->blocksizes[1]*3; for(i=0;ichannels;i++){ if(v->eofflag>order*2){ /* extrapolate with LPC to fill in */ long n; /* make a predictor filter */ n=v->eofflag; if(n>ci->blocksizes[1])n=ci->blocksizes[1]; vorbis_lpc_from_data(v->pcm[i]+v->eofflag-n,lpc,n,order); /* run the predictor filter */ vorbis_lpc_predict(lpc,v->pcm[i]+v->eofflag-order,order, v->pcm[i]+v->eofflag,v->pcm_current-v->eofflag); }else{ /* not enough data to extrapolate (unlikely to happen due to guarding the overlap, but bulletproof in case that assumtion goes away). zeroes will do. */ memset(v->pcm[i]+v->eofflag,0, (v->pcm_current-v->eofflag)*sizeof(*v->pcm[i])); } } }else{ if(v->pcm_current+vals>v->pcm_storage) return(OV_EINVAL); v->pcm_current+=vals; /* we may want to reverse extrapolate the beginning of a stream too... in case we're beginning on a cliff! */ /* clumsy, but simple. It only runs once, so simple is good. */ if(!v->preextrapolate && v->pcm_current-v->centerW>ci->blocksizes[1]) _preextrapolate_helper(v); } return(0); } /* do the deltas, envelope shaping, pre-echo and determine the size of the next block on which to continue analysis */ int vorbis_analysis_blockout(vorbis_dsp_state *v,vorbis_block *vb){ int i; vorbis_info *vi=v->vi; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; private_state *b=(private_state*)v->backend_state; vorbis_look_psy_global *g=b->psy_g_look; long beginW=v->centerW-ci->blocksizes[v->W]/2,centerNext; vorbis_block_internal *vbi=(vorbis_block_internal *)vb->internal; /* check to see if we're started... */ if(!v->preextrapolate)return(0); /* check to see if we're done... */ if(v->eofflag==-1)return(0); /* By our invariant, we have lW, W and centerW set. Search for the next boundary so we can determine nW (the next window size) which lets us compute the shape of the current block's window */ /* we do an envelope search even on a single blocksize; we may still be throwing more bits at impulses, and envelope search handles marking impulses too. */ { long bp=_ve_envelope_search(v); if(bp==-1){ if(v->eofflag==0)return(0); /* not enough data currently to search for a full long block */ v->nW=0; }else{ if(ci->blocksizes[0]==ci->blocksizes[1]) v->nW=0; else v->nW=bp; } } centerNext=v->centerW+ci->blocksizes[v->W]/4+ci->blocksizes[v->nW]/4; { /* center of next block + next block maximum right side. */ long blockbound=centerNext+ci->blocksizes[v->nW]/2; if(v->pcm_currentlW=v->lW; vb->W=v->W; vb->nW=v->nW; if(v->W){ if(!v->lW || !v->nW){ vbi->blocktype=BLOCKTYPE_TRANSITION; /*fprintf(stderr,"-");*/ }else{ vbi->blocktype=BLOCKTYPE_LONG; /*fprintf(stderr,"_");*/ } }else{ if(_ve_envelope_mark(v)){ vbi->blocktype=BLOCKTYPE_IMPULSE; /*fprintf(stderr,"|");*/ }else{ vbi->blocktype=BLOCKTYPE_PADDING; /*fprintf(stderr,".");*/ } } vb->vd=v; vb->sequence=v->sequence++; vb->granulepos=v->granulepos; vb->pcmend=ci->blocksizes[v->W]; /* copy the vectors; this uses the local storage in vb */ /* this tracks 'strongest peak' for later psychoacoustics */ /* moved to the global psy state; clean this mess up */ if(vbi->ampmax>g->ampmax)g->ampmax=vbi->ampmax; g->ampmax=_vp_ampmax_decay(g->ampmax,v); vbi->ampmax=g->ampmax; vb->pcm=(float**)_vorbis_block_alloc(vb,sizeof(*vb->pcm)*vi->channels); vbi->pcmdelay=(float**)_vorbis_block_alloc(vb,sizeof(*vbi->pcmdelay)*vi->channels); for(i=0;ichannels;i++){ vbi->pcmdelay[i]= (float*) _vorbis_block_alloc(vb,(vb->pcmend+beginW)*sizeof(*vbi->pcmdelay[i])); memcpy(vbi->pcmdelay[i],v->pcm[i],(vb->pcmend+beginW)*sizeof(*vbi->pcmdelay[i])); vb->pcm[i]=vbi->pcmdelay[i]+beginW; /* before we added the delay vb->pcm[i]=_vorbis_block_alloc(vb,vb->pcmend*sizeof(*vb->pcm[i])); memcpy(vb->pcm[i],v->pcm[i]+beginW,ci->blocksizes[v->W]*sizeof(*vb->pcm[i])); */ } /* handle eof detection: eof==0 means that we've not yet received EOF eof>0 marks the last 'real' sample in pcm[] eof<0 'no more to do'; doesn't get here */ if(v->eofflag){ if(v->centerW>=v->eofflag){ v->eofflag=-1; vb->eofflag=1; return(1); } } /* advance storage vectors and clean up */ { int new_centerNext=ci->blocksizes[1]/2; int movementW=centerNext-new_centerNext; if(movementW>0){ _ve_envelope_shift(b->ve,movementW); v->pcm_current-=movementW; for(i=0;ichannels;i++) memmove(v->pcm[i],v->pcm[i]+movementW, v->pcm_current*sizeof(*v->pcm[i])); v->lW=v->W; v->W=v->nW; v->centerW=new_centerNext; if(v->eofflag){ v->eofflag-=movementW; if(v->eofflag<=0)v->eofflag=-1; /* do not add padding to end of stream! */ if(v->centerW>=v->eofflag){ v->granulepos+=movementW-(v->centerW-v->eofflag); }else{ v->granulepos+=movementW; } }else{ v->granulepos+=movementW; } } } /* done */ return(1); } int vorbis_synthesis_restart(vorbis_dsp_state *v){ vorbis_info *vi=v->vi; codec_setup_info *ci; int hs; if(!v->backend_state)return -1; if(!vi)return -1; ci=(codec_setup_info*) vi->codec_setup; if(!ci)return -1; hs=ci->halfrate_flag; v->centerW=ci->blocksizes[1]>>(hs+1); v->pcm_current=v->centerW>>hs; v->pcm_returned=-1; v->granulepos=-1; v->sequence=-1; v->eofflag=0; ((private_state *)(v->backend_state))->sample_count=-1; return(0); } int vorbis_synthesis_init(vorbis_dsp_state *v,vorbis_info *vi){ if(_vds_shared_init(v,vi,0)) return 1; vorbis_synthesis_restart(v); return 0; } /* Unlike in analysis, the window is only partially applied for each block. The time domain envelope is not yet handled at the point of calling (as it relies on the previous block). */ int vorbis_synthesis_blockin(vorbis_dsp_state *v,vorbis_block *vb){ vorbis_info *vi=v->vi; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; private_state *b=(private_state*)v->backend_state; int hs=ci->halfrate_flag; int i,j; if(!vb)return(OV_EINVAL); if(v->pcm_current>v->pcm_returned && v->pcm_returned!=-1)return(OV_EINVAL); v->lW=v->W; v->W=vb->W; v->nW=-1; if((v->sequence==-1)|| (v->sequence+1 != vb->sequence)){ v->granulepos=-1; /* out of sequence; lose count */ b->sample_count=-1; } v->sequence=vb->sequence; if(vb->pcm){ /* no pcm to process if vorbis_synthesis_trackonly was called on block */ int n=ci->blocksizes[v->W]>>(hs+1); int n0=ci->blocksizes[0]>>(hs+1); int n1=ci->blocksizes[1]>>(hs+1); int thisCenter; int prevCenter; v->glue_bits+=vb->glue_bits; v->time_bits+=vb->time_bits; v->floor_bits+=vb->floor_bits; v->res_bits+=vb->res_bits; if(v->centerW){ thisCenter=n1; prevCenter=0; }else{ thisCenter=0; prevCenter=n1; } /* v->pcm is now used like a two-stage double buffer. We don't want to have to constantly shift *or* adjust memory usage. Don't accept a new block until the old is shifted out */ for(j=0;jchannels;j++){ /* the overlap/add section */ if(v->lW){ if(v->W){ /* large/large */ float *w=_vorbis_window_get(b->window[1]-hs); float *pcm=v->pcm[j]+prevCenter; float *p=vb->pcm[j]; for(i=0;iwindow[0]-hs); float *pcm=v->pcm[j]+prevCenter+n1/2-n0/2; float *p=vb->pcm[j]; for(i=0;iW){ /* small/large */ float *w=_vorbis_window_get(b->window[0]-hs); float *pcm=v->pcm[j]+prevCenter; float *p=vb->pcm[j]+n1/2-n0/2; for(i=0;iwindow[0]-hs); float *pcm=v->pcm[j]+prevCenter; float *p=vb->pcm[j]; for(i=0;ipcm[j]+thisCenter; float *p=vb->pcm[j]+n; for(i=0;icenterW) v->centerW=0; else v->centerW=n1; /* deal with initial packet state; we do this using the explicit pcm_returned==-1 flag otherwise we're sensitive to first block being short or long */ if(v->pcm_returned==-1){ v->pcm_returned=thisCenter; v->pcm_current=thisCenter; }else{ v->pcm_returned=prevCenter; v->pcm_current=prevCenter+ ((ci->blocksizes[v->lW]/4+ ci->blocksizes[v->W]/4)>>hs); } } /* track the frame number... This is for convenience, but also making sure our last packet doesn't end with added padding. If the last packet is partial, the number of samples we'll have to return will be past the vb->granulepos. This is not foolproof! It will be confused if we begin decoding at the last page after a seek or hole. In that case, we don't have a starting point to judge where the last frame is. For this reason, vorbisfile will always try to make sure it reads the last two marked pages in proper sequence */ if(b->sample_count==-1){ b->sample_count=0; }else{ b->sample_count+=ci->blocksizes[v->lW]/4+ci->blocksizes[v->W]/4; } if(v->granulepos==-1){ if(vb->granulepos!=-1){ /* only set if we have a position to set to */ v->granulepos=vb->granulepos; /* is this a short page? */ if(b->sample_count>v->granulepos){ /* corner case; if this is both the first and last audio page, then spec says the end is cut, not beginning */ if(vb->eofflag){ /* trim the end */ /* no preceeding granulepos; assume we started at zero (we'd have to in a short single-page stream) */ /* granulepos could be -1 due to a seek, but that would result in a long count, not short count */ v->pcm_current-=(b->sample_count-v->granulepos)>>hs; }else{ /* trim the beginning */ v->pcm_returned+=(b->sample_count-v->granulepos)>>hs; if(v->pcm_returned>v->pcm_current) v->pcm_returned=v->pcm_current; } } } }else{ v->granulepos+=ci->blocksizes[v->lW]/4+ci->blocksizes[v->W]/4; if(vb->granulepos!=-1 && v->granulepos!=vb->granulepos){ if(v->granulepos>vb->granulepos){ long extra=v->granulepos-vb->granulepos; if(extra) if(vb->eofflag){ /* partial last frame. Strip the extra samples off */ v->pcm_current-=extra>>hs; } /* else {Shouldn't happen *unless* the bitstream is out of spec. Either way, believe the bitstream } */ } /* else {Shouldn't happen *unless* the bitstream is out of spec. Either way, believe the bitstream } */ v->granulepos=vb->granulepos; } } /* Update, cleanup */ if(vb->eofflag)v->eofflag=1; return(0); } /* pcm==NULL indicates we just want the pending samples, no more */ int vorbis_synthesis_pcmout(vorbis_dsp_state *v,float ***pcm){ vorbis_info *vi=v->vi; if(v->pcm_returned>-1 && v->pcm_returnedpcm_current){ if(pcm){ int i; for(i=0;ichannels;i++) v->pcmret[i]=v->pcm[i]+v->pcm_returned; *pcm=v->pcmret; } return(v->pcm_current-v->pcm_returned); } return(0); } int vorbis_synthesis_read(vorbis_dsp_state *v,int n){ if(n && v->pcm_returned+n>v->pcm_current)return(OV_EINVAL); v->pcm_returned+=n; return(0); } /* intended for use with a specific vorbisfile feature; we want access to the [usually synthetic/postextrapolated] buffer and lapping at the end of a decode cycle, specifically, a half-short-block worth. This funtion works like pcmout above, except it will also expose this implicit buffer data not normally decoded. */ int vorbis_synthesis_lapout(vorbis_dsp_state *v,float ***pcm){ vorbis_info *vi=v->vi; codec_setup_info *ci=(codec_setup_info *)vi->codec_setup; int hs=ci->halfrate_flag; int n=ci->blocksizes[v->W]>>(hs+1); int n0=ci->blocksizes[0]>>(hs+1); int n1=ci->blocksizes[1]>>(hs+1); int i,j; if(v->pcm_returned<0)return 0; /* our returned data ends at pcm_returned; because the synthesis pcm buffer is a two-fragment ring, that means our data block may be fragmented by buffering, wrapping or a short block not filling out a buffer. To simplify things, we unfragment if it's at all possibly needed. Otherwise, we'd need to call lapout more than once as well as hold additional dsp state. Opt for simplicity. */ /* centerW was advanced by blockin; it would be the center of the *next* block */ if(v->centerW==n1){ /* the data buffer wraps; swap the halves */ /* slow, sure, small */ for(j=0;jchannels;j++){ float *p=v->pcm[j]; for(i=0;ipcm_current-=n1; v->pcm_returned-=n1; v->centerW=0; } /* solidify buffer into contiguous space */ if((v->lW^v->W)==1){ /* long/short or short/long */ for(j=0;jchannels;j++){ float *s=v->pcm[j]; float *d=v->pcm[j]+(n1-n0)/2; for(i=(n1+n0)/2-1;i>=0;--i) d[i]=s[i]; } v->pcm_returned+=(n1-n0)/2; v->pcm_current+=(n1-n0)/2; }else{ if(v->lW==0){ /* short/short */ for(j=0;jchannels;j++){ float *s=v->pcm[j]; float *d=v->pcm[j]+n1-n0; for(i=n0-1;i>=0;--i) d[i]=s[i]; } v->pcm_returned+=n1-n0; v->pcm_current+=n1-n0; } } if(pcm){ int i; for(i=0;ichannels;i++) v->pcmret[i]=v->pcm[i]+v->pcm_returned; *pcm=v->pcmret; } return(n1+n-v->pcm_returned); } float *vorbis_window(vorbis_dsp_state *v,int W){ vorbis_info *vi=v->vi; codec_setup_info *ci=(codec_setup_info*) vi->codec_setup; int hs=ci->halfrate_flag; private_state *b=(private_state*)v->backend_state; if(b->window[W]-1<0)return NULL; return _vorbis_window_get(b->window[W]-hs); } #endif /********* End of inlined file: block.c *********/ /********* Start of inlined file: codebook.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #include /* packs the given codebook into the bitstream **************************/ int vorbis_staticbook_pack(const static_codebook *c,oggpack_buffer *opb){ long i,j; int ordered=0; /* first the basic parameters */ oggpack_write(opb,0x564342,24); oggpack_write(opb,c->dim,16); oggpack_write(opb,c->entries,24); /* pack the codewords. There are two packings; length ordered and length random. Decide between the two now. */ for(i=1;ientries;i++) if(c->lengthlist[i-1]==0 || c->lengthlist[i]lengthlist[i-1])break; if(i==c->entries)ordered=1; if(ordered){ /* length ordered. We only need to say how many codewords of each length. The actual codewords are generated deterministically */ long count=0; oggpack_write(opb,1,1); /* ordered */ oggpack_write(opb,c->lengthlist[0]-1,5); /* 1 to 32 */ for(i=1;ientries;i++){ long thisx=c->lengthlist[i]; long last=c->lengthlist[i-1]; if(thisx>last){ for(j=last;jentries-count)); count=i; } } } oggpack_write(opb,i-count,_ilog(c->entries-count)); }else{ /* length random. Again, we don't code the codeword itself, just the length. This time, though, we have to encode each length */ oggpack_write(opb,0,1); /* unordered */ /* algortihmic mapping has use for 'unused entries', which we tag here. The algorithmic mapping happens as usual, but the unused entry has no codeword. */ for(i=0;ientries;i++) if(c->lengthlist[i]==0)break; if(i==c->entries){ oggpack_write(opb,0,1); /* no unused entries */ for(i=0;ientries;i++) oggpack_write(opb,c->lengthlist[i]-1,5); }else{ oggpack_write(opb,1,1); /* we have unused entries; thus we tag */ for(i=0;ientries;i++){ if(c->lengthlist[i]==0){ oggpack_write(opb,0,1); }else{ oggpack_write(opb,1,1); oggpack_write(opb,c->lengthlist[i]-1,5); } } } } /* is the entry number the desired return value, or do we have a mapping? If we have a mapping, what type? */ oggpack_write(opb,c->maptype,4); switch(c->maptype){ case 0: /* no mapping */ break; case 1:case 2: /* implicitly populated value mapping */ /* explicitly populated value mapping */ if(!c->quantlist){ /* no quantlist? error */ return(-1); } /* values that define the dequantization */ oggpack_write(opb,c->q_min,32); oggpack_write(opb,c->q_delta,32); oggpack_write(opb,c->q_quant-1,4); oggpack_write(opb,c->q_sequencep,1); { int quantvals; switch(c->maptype){ case 1: /* a single column of (c->entries/c->dim) quantized values for building a full value list algorithmically (square lattice) */ quantvals=_book_maptype1_quantvals(c); break; case 2: /* every value (c->entries*c->dim total) specified explicitly */ quantvals=c->entries*c->dim; break; default: /* NOT_REACHABLE */ quantvals=-1; } /* quantized values */ for(i=0;iquantlist[i]),c->q_quant); } break; default: /* error case; we don't have any other map types now */ return(-1); } return(0); } /* unpacks a codebook from the packet buffer into the codebook struct, readies the codebook auxiliary structures for decode *************/ int vorbis_staticbook_unpack(oggpack_buffer *opb,static_codebook *s){ long i,j; memset(s,0,sizeof(*s)); s->allocedp=1; /* make sure alignment is correct */ if(oggpack_read(opb,24)!=0x564342)goto _eofout; /* first the basic parameters */ s->dim=oggpack_read(opb,16); s->entries=oggpack_read(opb,24); if(s->entries==-1)goto _eofout; /* codeword ordering.... length ordered or unordered? */ switch((int)oggpack_read(opb,1)){ case 0: /* unordered */ s->lengthlist=(long*)_ogg_malloc(sizeof(*s->lengthlist)*s->entries); /* allocated but unused entries? */ if(oggpack_read(opb,1)){ /* yes, unused entries */ for(i=0;ientries;i++){ if(oggpack_read(opb,1)){ long num=oggpack_read(opb,5); if(num==-1)goto _eofout; s->lengthlist[i]=num+1; }else s->lengthlist[i]=0; } }else{ /* all entries used; no tagging */ for(i=0;ientries;i++){ long num=oggpack_read(opb,5); if(num==-1)goto _eofout; s->lengthlist[i]=num+1; } } break; case 1: /* ordered */ { long length=oggpack_read(opb,5)+1; s->lengthlist=(long*)_ogg_malloc(sizeof(*s->lengthlist)*s->entries); for(i=0;ientries;){ long num=oggpack_read(opb,_ilog(s->entries-i)); if(num==-1)goto _eofout; for(j=0;jentries;j++,i++) s->lengthlist[i]=length; length++; } } break; default: /* EOF */ return(-1); } /* Do we have a mapping to unpack? */ switch((s->maptype=oggpack_read(opb,4))){ case 0: /* no mapping */ break; case 1: case 2: /* implicitly populated value mapping */ /* explicitly populated value mapping */ s->q_min=oggpack_read(opb,32); s->q_delta=oggpack_read(opb,32); s->q_quant=oggpack_read(opb,4)+1; s->q_sequencep=oggpack_read(opb,1); { int quantvals=0; switch(s->maptype){ case 1: quantvals=_book_maptype1_quantvals(s); break; case 2: quantvals=s->entries*s->dim; break; } /* quantized values */ s->quantlist=(long*)_ogg_malloc(sizeof(*s->quantlist)*quantvals); for(i=0;iquantlist[i]=oggpack_read(opb,s->q_quant); if(quantvals&&s->quantlist[quantvals-1]==-1)goto _eofout; } break; default: goto _errout; } /* all set */ return(0); _errout: _eofout: vorbis_staticbook_clear(s); return(-1); } /* returns the number of bits ************************************************/ int vorbis_book_encode(codebook *book, int a, oggpack_buffer *b){ oggpack_write(b,book->codelist[a],book->c->lengthlist[a]); return(book->c->lengthlist[a]); } /* One the encode side, our vector writers are each designed for a specific purpose, and the encoder is not flexible without modification: The LSP vector coder uses a single stage nearest-match with no interleave, so no step and no error return. This is specced by floor0 and doesn't change. Residue0 encoding interleaves, uses multiple stages, and each stage peels of a specific amount of resolution from a lattice (thus we want to match by threshold, not nearest match). Residue doesn't *have* to be encoded that way, but to change it, one will need to add more infrastructure on the encode side (decode side is specced and simpler) */ /* floor0 LSP (single stage, non interleaved, nearest match) */ /* returns entry number and *modifies a* to the quantization value *****/ int vorbis_book_errorv(codebook *book,float *a){ int dim=book->dim,k; int best=_best(book,a,1); for(k=0;kvaluelist+best*dim)[k]; return(best); } /* returns the number of bits and *modifies a* to the quantization value *****/ int vorbis_book_encodev(codebook *book,int best,float *a,oggpack_buffer *b){ int k,dim=book->dim; for(k=0;kvaluelist+best*dim)[k]; return(vorbis_book_encode(book,best,b)); } /* the 'eliminate the decode tree' optimization actually requires the codewords to be MSb first, not LSb. This is an annoying inelegancy (and one of the first places where carefully thought out design turned out to be wrong; Vorbis II and future Ogg codecs should go to an MSb bitpacker), but not actually the huge hit it appears to be. The first-stage decode table catches most words so that bitreverse is not in the main execution path. */ STIN long decode_packed_entry_number(codebook *book, oggpack_buffer *b){ int read=book->dec_maxlength; long lo,hi; long lok = oggpack_look(b,book->dec_firsttablen); if (lok >= 0) { long entry = book->dec_firsttable[lok]; if(entry&0x80000000UL){ lo=(entry>>15)&0x7fff; hi=book->used_entries-(entry&0x7fff); }else{ oggpack_adv(b, book->dec_codelengths[entry-1]); return(entry-1); } }else{ lo=0; hi=book->used_entries; } lok = oggpack_look(b, read); while(lok<0 && read>1) lok = oggpack_look(b, --read); if(lok<0)return -1; /* bisect search for the codeword in the ordered list */ { ogg_uint32_t testword=ogg_bitreverse((ogg_uint32_t)lok); while(hi-lo>1){ long p=(hi-lo)>>1; long test=book->codelist[lo+p]>testword; lo+=p&(test-1); hi-=p&(-test); } if(book->dec_codelengths[lo]<=read){ oggpack_adv(b, book->dec_codelengths[lo]); return(lo); } } oggpack_adv(b, read); return(-1); } /* Decode side is specced and easier, because we don't need to find matches using different criteria; we simply read and map. There are two things we need to do 'depending': We may need to support interleave. We don't really, but it's convenient to do it here rather than rebuild the vector later. Cascades may be additive or multiplicitive; this is not inherent in the codebook, but set in the code using the codebook. Like interleaving, it's easiest to do it here. addmul==0 -> declarative (set the value) addmul==1 -> additive addmul==2 -> multiplicitive */ /* returns the [original, not compacted] entry number or -1 on eof *********/ long vorbis_book_decode(codebook *book, oggpack_buffer *b){ long packed_entry=decode_packed_entry_number(book,b); if(packed_entry>=0) return(book->dec_index[packed_entry]); /* if there's no dec_index, the codebook unpacking isn't collapsed */ return(packed_entry); } /* returns 0 on OK or -1 on eof *************************************/ long vorbis_book_decodevs_add(codebook *book,float *a,oggpack_buffer *b,int n){ int step=n/book->dim; long *entry = (long*)alloca(sizeof(*entry)*step); float **t = (float**)alloca(sizeof(*t)*step); int i,j,o; for (i = 0; i < step; i++) { entry[i]=decode_packed_entry_number(book,b); if(entry[i]==-1)return(-1); t[i] = book->valuelist+entry[i]*book->dim; } for(i=0,o=0;idim;i++,o+=step) for (j=0;jdim>8){ for(i=0;ivaluelist+entry*book->dim; for (j=0;jdim;) a[i++]+=t[j++]; } }else{ for(i=0;ivaluelist+entry*book->dim; j=0; switch((int)book->dim){ case 8: a[i++]+=t[j++]; case 7: a[i++]+=t[j++]; case 6: a[i++]+=t[j++]; case 5: a[i++]+=t[j++]; case 4: a[i++]+=t[j++]; case 3: a[i++]+=t[j++]; case 2: a[i++]+=t[j++]; case 1: a[i++]+=t[j++]; case 0: break; } } } return(0); } long vorbis_book_decodev_set(codebook *book,float *a,oggpack_buffer *b,int n){ int i,j,entry; float *t; for(i=0;ivaluelist+entry*book->dim; for (j=0;jdim;) a[i++]=t[j++]; } return(0); } long vorbis_book_decodevv_add(codebook *book,float **a,long offset,int ch, oggpack_buffer *b,int n){ long i,j,entry; int chptr=0; for(i=offset/ch;i<(offset+n)/ch;){ entry = decode_packed_entry_number(book,b); if(entry==-1)return(-1); { const float *t = book->valuelist+entry*book->dim; for (j=0;jdim;j++){ a[chptr++][i]+=t[j]; if(chptr==ch){ chptr=0; i++; } } } } return(0); } #ifdef _V_SELFTEST /* Simple enough; pack a few candidate codebooks, unpack them. Code a number of vectors through (keeping track of the quantized values), and decode using the unpacked book. quantized version of in should exactly equal out */ #include #include "vorbis/book/lsp20_0.vqh" #include "vorbis/book/res0a_13.vqh" #define TESTSIZE 40 float test1[TESTSIZE]={ 0.105939f, 0.215373f, 0.429117f, 0.587974f, 0.181173f, 0.296583f, 0.515707f, 0.715261f, 0.162327f, 0.263834f, 0.342876f, 0.406025f, 0.103571f, 0.223561f, 0.368513f, 0.540313f, 0.136672f, 0.395882f, 0.587183f, 0.652476f, 0.114338f, 0.417300f, 0.525486f, 0.698679f, 0.147492f, 0.324481f, 0.643089f, 0.757582f, 0.139556f, 0.215795f, 0.324559f, 0.399387f, 0.120236f, 0.267420f, 0.446940f, 0.608760f, 0.115587f, 0.287234f, 0.571081f, 0.708603f, }; float test3[TESTSIZE]={ 0,1,-2,3,4,-5,6,7,8,9, 8,-2,7,-1,4,6,8,3,1,-9, 10,11,12,13,14,15,26,17,18,19, 30,-25,-30,-1,-5,-32,4,3,-2,0}; static_codebook *testlist[]={&_vq_book_lsp20_0, &_vq_book_res0a_13,NULL}; float *testvec[]={test1,test3}; int main(){ oggpack_buffer write; oggpack_buffer read; long ptr=0,i; oggpack_writeinit(&write); fprintf(stderr,"Testing codebook abstraction...:\n"); while(testlist[ptr]){ codebook c; static_codebook s; float *qv=alloca(sizeof(*qv)*TESTSIZE); float *iv=alloca(sizeof(*iv)*TESTSIZE); memcpy(qv,testvec[ptr],sizeof(*qv)*TESTSIZE); memset(iv,0,sizeof(*iv)*TESTSIZE); fprintf(stderr,"\tpacking/coding %ld... ",ptr); /* pack the codebook, write the testvector */ oggpack_reset(&write); vorbis_book_init_encode(&c,testlist[ptr]); /* get it into memory we can write */ vorbis_staticbook_pack(testlist[ptr],&write); fprintf(stderr,"Codebook size %ld bytes... ",oggpack_bytes(&write)); for(i=0;i.000001){ fprintf(stderr,"read (%g) != written (%g) at position (%ld)\n", iv[i],qv[i],i); exit(1); } fprintf(stderr,"OK\n"); ptr++; } /* The above is the trivial stuff; now try unquantizing a log scale codebook */ exit(0); } #endif #endif /********* End of inlined file: codebook.c *********/ /********* Start of inlined file: envelope.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #include #include void _ve_envelope_init(envelope_lookup *e,vorbis_info *vi){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; vorbis_info_psy_global *gi=&ci->psy_g_param; int ch=vi->channels; int i,j; int n=e->winlength=128; e->searchstep=64; /* not random */ e->minenergy=gi->preecho_minenergy; e->ch=ch; e->storage=128; e->cursor=ci->blocksizes[1]/2; e->mdct_win=(float*)_ogg_calloc(n,sizeof(*e->mdct_win)); mdct_init(&e->mdct,n); for(i=0;imdct_win[i]=sin(i/(n-1.)*M_PI); e->mdct_win[i]*=e->mdct_win[i]; } /* magic follows */ e->band[0].begin=2; e->band[0].end=4; e->band[1].begin=4; e->band[1].end=5; e->band[2].begin=6; e->band[2].end=6; e->band[3].begin=9; e->band[3].end=8; e->band[4].begin=13; e->band[4].end=8; e->band[5].begin=17; e->band[5].end=8; e->band[6].begin=22; e->band[6].end=8; for(j=0;jband[j].end; e->band[j].window=(float*)_ogg_malloc(n*sizeof(*e->band[0].window)); for(i=0;iband[j].window[i]=sin((i+.5)/n*M_PI); e->band[j].total+=e->band[j].window[i]; } e->band[j].total=1./e->band[j].total; } e->filter=(envelope_filter_state*)_ogg_calloc(VE_BANDS*ch,sizeof(*e->filter)); e->mark=(int*)_ogg_calloc(e->storage,sizeof(*e->mark)); } void _ve_envelope_clear(envelope_lookup *e){ int i; mdct_clear(&e->mdct); for(i=0;iband[i].window); _ogg_free(e->mdct_win); _ogg_free(e->filter); _ogg_free(e->mark); memset(e,0,sizeof(*e)); } /* fairly straight threshhold-by-band based until we find something that works better and isn't patented. */ static int _ve_amp(envelope_lookup *ve, vorbis_info_psy_global *gi, float *data, envelope_band *bands, envelope_filter_state *filters, long pos){ long n=ve->winlength; int ret=0; long i,j; float decay; /* we want to have a 'minimum bar' for energy, else we're just basing blocks on quantization noise that outweighs the signal itself (for low power signals) */ float minV=ve->minenergy; float *vec=(float*) alloca(n*sizeof(*vec)); /* stretch is used to gradually lengthen the number of windows considered prevoius-to-potential-trigger */ int stretch=max(VE_MINSTRETCH,ve->stretch/2); float penalty=gi->stretch_penalty-(ve->stretch/2-VE_MINSTRETCH); if(penalty<0.f)penalty=0.f; if(penalty>gi->stretch_penalty)penalty=gi->stretch_penalty; /*_analysis_output_always("lpcm",seq2,data,n,0,0, totalshift+pos*ve->searchstep);*/ /* window and transform */ for(i=0;imdct_win[i]; mdct_forward(&ve->mdct,vec,vec); /*_analysis_output_always("mdct",seq2,vec,n/2,0,1,0); */ /* near-DC spreading function; this has nothing to do with psychoacoustics, just sidelobe leakage and window size */ { float temp=vec[0]*vec[0]+.7*vec[1]*vec[1]+.2*vec[2]*vec[2]; int ptr=filters->nearptr; /* the accumulation is regularly refreshed from scratch to avoid floating point creep */ if(ptr==0){ decay=filters->nearDC_acc=filters->nearDC_partialacc+temp; filters->nearDC_partialacc=temp; }else{ decay=filters->nearDC_acc+=temp; filters->nearDC_partialacc+=temp; } filters->nearDC_acc-=filters->nearDC[ptr]; filters->nearDC[ptr]=temp; decay*=(1./(VE_NEARDC+1)); filters->nearptr++; if(filters->nearptr>=VE_NEARDC)filters->nearptr=0; decay=todB(&decay)*.5-15.f; } /* perform spreading and limiting, also smooth the spectrum. yes, the MDCT results in all real coefficients, but it still *behaves* like real/imaginary pairs */ for(i=0;i>1]=val; decay-=8.; } /*_analysis_output_always("spread",seq2++,vec,n/4,0,0,0);*/ /* perform preecho/postecho triggering by band */ for(j=0;j=VE_AMP)filters[j].ampptr=0; } /* look at min/max, decide trigger */ if(valmax>gi->preecho_thresh[j]+penalty){ ret|=1; ret|=4; } if(valminpostecho_thresh[j]-penalty)ret|=2; } return(ret); } #if 0 static int seq=0; static ogg_int64_t totalshift=-1024; #endif long _ve_envelope_search(vorbis_dsp_state *v){ vorbis_info *vi=v->vi; codec_setup_info *ci=(codec_setup_info *)vi->codec_setup; vorbis_info_psy_global *gi=&ci->psy_g_param; envelope_lookup *ve=((private_state *)(v->backend_state))->ve; long i,j; int first=ve->current/ve->searchstep; int last=v->pcm_current/ve->searchstep-VE_WIN; if(first<0)first=0; /* make sure we have enough storage to match the PCM */ if(last+VE_WIN+VE_POST>ve->storage){ ve->storage=last+VE_WIN+VE_POST; /* be sure */ ve->mark=(int*)_ogg_realloc(ve->mark,ve->storage*sizeof(*ve->mark)); } for(j=first;jstretch++; if(ve->stretch>VE_MAXSTRETCH*2) ve->stretch=VE_MAXSTRETCH*2; for(i=0;ich;i++){ float *pcm=v->pcm[i]+ve->searchstep*(j); ret|=_ve_amp(ve,gi,pcm,ve->band,ve->filter+i*VE_BANDS,j); } ve->mark[j+VE_POST]=0; if(ret&1){ ve->mark[j]=1; ve->mark[j+1]=1; } if(ret&2){ ve->mark[j]=1; if(j>0)ve->mark[j-1]=1; } if(ret&4)ve->stretch=-1; } ve->current=last*ve->searchstep; { long centerW=v->centerW; long testW= centerW+ ci->blocksizes[v->W]/4+ ci->blocksizes[1]/2+ ci->blocksizes[0]/4; j=ve->cursor; while(jcurrent-(ve->searchstep)){/* account for postecho working back one window */ if(j>=testW)return(1); ve->cursor=j; if(ve->mark[j/ve->searchstep]){ if(j>centerW){ #if 0 if(j>ve->curmark){ float *marker=alloca(v->pcm_current*sizeof(*marker)); int l,m; memset(marker,0,sizeof(*marker)*v->pcm_current); fprintf(stderr,"mark! seq=%d, cursor:%fs time:%fs\n", seq, (totalshift+ve->cursor)/44100., (totalshift+j)/44100.); _analysis_output_always("pcmL",seq,v->pcm[0],v->pcm_current,0,0,totalshift); _analysis_output_always("pcmR",seq,v->pcm[1],v->pcm_current,0,0,totalshift); _analysis_output_always("markL",seq,v->pcm[0],j,0,0,totalshift); _analysis_output_always("markR",seq,v->pcm[1],j,0,0,totalshift); for(m=0;msearchstep]=ve->filter[m].markers[l]*.1; _analysis_output_always(buf,seq,marker,v->pcm_current,0,0,totalshift); } for(m=0;msearchstep]=ve->filter[m+VE_BANDS].markers[l]*.1; _analysis_output_always(buf,seq,marker,v->pcm_current,0,0,totalshift); } for(l=0;lsearchstep]=ve->mark[l]*.4; _analysis_output_always("mark",seq,marker,v->pcm_current,0,0,totalshift); seq++; } #endif ve->curmark=j; if(j>=testW)return(1); return(0); } } j+=ve->searchstep; } } return(-1); } int _ve_envelope_mark(vorbis_dsp_state *v){ envelope_lookup *ve=((private_state *)(v->backend_state))->ve; vorbis_info *vi=v->vi; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; long centerW=v->centerW; long beginW=centerW-ci->blocksizes[v->W]/4; long endW=centerW+ci->blocksizes[v->W]/4; if(v->W){ beginW-=ci->blocksizes[v->lW]/4; endW+=ci->blocksizes[v->nW]/4; }else{ beginW-=ci->blocksizes[0]/4; endW+=ci->blocksizes[0]/4; } if(ve->curmark>=beginW && ve->curmarksearchstep; long last=endW/ve->searchstep; long i; for(i=first;imark[i])return(1); } return(0); } void _ve_envelope_shift(envelope_lookup *e,long shift){ int smallsize=e->current/e->searchstep+VE_POST; /* adjust for placing marks ahead of ve->current */ int smallshift=shift/e->searchstep; memmove(e->mark,e->mark+smallshift,(smallsize-smallshift)*sizeof(*e->mark)); #if 0 for(i=0;ich;i++) memmove(e->filter[i].markers, e->filter[i].markers+smallshift, (1024-smallshift)*sizeof(*(*e->filter).markers)); totalshift+=shift; #endif e->current-=shift; if(e->curmark>=0) e->curmark-=shift; e->cursor-=shift; } #endif /********* End of inlined file: envelope.c *********/ /********* Start of inlined file: floor0.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #include /********* Start of inlined file: lsp.h *********/ #ifndef _V_LSP_H_ #define _V_LSP_H_ extern int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m); extern void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln, float *lsp,int m, float amp,float ampoffset); #endif /********* End of inlined file: lsp.h *********/ #include typedef struct { int ln; int m; int **linearmap; int n[2]; vorbis_info_floor0 *vi; long bits; long frames; } vorbis_look_floor0; /***********************************************/ static void floor0_free_info(vorbis_info_floor *i){ vorbis_info_floor0 *info=(vorbis_info_floor0 *)i; if(info){ memset(info,0,sizeof(*info)); _ogg_free(info); } } static void floor0_free_look(vorbis_look_floor *i){ vorbis_look_floor0 *look=(vorbis_look_floor0 *)i; if(look){ if(look->linearmap){ if(look->linearmap[0])_ogg_free(look->linearmap[0]); if(look->linearmap[1])_ogg_free(look->linearmap[1]); _ogg_free(look->linearmap); } memset(look,0,sizeof(*look)); _ogg_free(look); } } static vorbis_info_floor *floor0_unpack (vorbis_info *vi,oggpack_buffer *opb){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; int j; vorbis_info_floor0 *info=(vorbis_info_floor0*)_ogg_malloc(sizeof(*info)); info->order=oggpack_read(opb,8); info->rate=oggpack_read(opb,16); info->barkmap=oggpack_read(opb,16); info->ampbits=oggpack_read(opb,6); info->ampdB=oggpack_read(opb,8); info->numbooks=oggpack_read(opb,4)+1; if(info->order<1)goto err_out; if(info->rate<1)goto err_out; if(info->barkmap<1)goto err_out; if(info->numbooks<1)goto err_out; for(j=0;jnumbooks;j++){ info->books[j]=oggpack_read(opb,8); if(info->books[j]<0 || info->books[j]>=ci->books)goto err_out; } return(info); err_out: floor0_free_info(info); return(NULL); } /* initialize Bark scale and normalization lookups. We could do this with static tables, but Vorbis allows a number of possible combinations, so it's best to do it computationally. The below is authoritative in terms of defining scale mapping. Note that the scale depends on the sampling rate as well as the linear block and mapping sizes */ static void floor0_map_lazy_init(vorbis_block *vb, vorbis_info_floor *infoX, vorbis_look_floor0 *look){ if(!look->linearmap[vb->W]){ vorbis_dsp_state *vd=vb->vd; vorbis_info *vi=vd->vi; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; vorbis_info_floor0 *info=(vorbis_info_floor0 *)infoX; int W=vb->W; int n=ci->blocksizes[W]/2,j; /* we choose a scaling constant so that: floor(bark(rate/2-1)*C)=mapped-1 floor(bark(rate/2)*C)=mapped */ float scale=look->ln/toBARK(info->rate/2.f); /* the mapping from a linear scale to a smaller bark scale is straightforward. We do *not* make sure that the linear mapping does not skip bark-scale bins; the decoder simply skips them and the encoder may do what it wishes in filling them. They're necessary in some mapping combinations to keep the scale spacing accurate */ look->linearmap[W]=(int*)_ogg_malloc((n+1)*sizeof(**look->linearmap)); for(j=0;jrate/2.f)/n*j) *scale); /* bark numbers represent band edges */ if(val>=look->ln)val=look->ln-1; /* guard against the approximation */ look->linearmap[W][j]=val; } look->linearmap[W][j]=-1; look->n[W]=n; } } static vorbis_look_floor *floor0_look(vorbis_dsp_state *vd, vorbis_info_floor *i){ vorbis_info_floor0 *info=(vorbis_info_floor0*)i; vorbis_look_floor0 *look=(vorbis_look_floor0*)_ogg_calloc(1,sizeof(*look)); look->m=info->order; look->ln=info->barkmap; look->vi=info; look->linearmap=(int**)_ogg_calloc(2,sizeof(*look->linearmap)); return look; } static void *floor0_inverse1(vorbis_block *vb,vorbis_look_floor *i){ vorbis_look_floor0 *look=(vorbis_look_floor0 *)i; vorbis_info_floor0 *info=look->vi; int j,k; int ampraw=oggpack_read(&vb->opb,info->ampbits); if(ampraw>0){ /* also handles the -1 out of data case */ long maxval=(1<ampbits)-1; float amp=(float)ampraw/maxval*info->ampdB; int booknum=oggpack_read(&vb->opb,_ilog(info->numbooks)); if(booknum!=-1 && booknumnumbooks){ /* be paranoid */ codec_setup_info *ci=(codec_setup_info *)vb->vd->vi->codec_setup; codebook *b=ci->fullbooks+info->books[booknum]; float last=0.f; /* the additional b->dim is a guard against any possible stack smash; b->dim is provably more than we can overflow the vector */ float *lsp=(float*)_vorbis_block_alloc(vb,sizeof(*lsp)*(look->m+b->dim+1)); for(j=0;jm;j+=b->dim) if(vorbis_book_decodev_set(b,lsp+j,&vb->opb,b->dim)==-1)goto eop; for(j=0;jm;){ for(k=0;kdim;k++,j++)lsp[j]+=last; last=lsp[j-1]; } lsp[look->m]=amp; return(lsp); } } eop: return(NULL); } static int floor0_inverse2(vorbis_block *vb,vorbis_look_floor *i, void *memo,float *out){ vorbis_look_floor0 *look=(vorbis_look_floor0 *)i; vorbis_info_floor0 *info=look->vi; floor0_map_lazy_init(vb,info,look); if(memo){ float *lsp=(float *)memo; float amp=lsp[look->m]; /* take the coefficients back to a spectral envelope curve */ vorbis_lsp_to_curve(out, look->linearmap[vb->W], look->n[vb->W], look->ln, lsp,look->m,amp,(float)info->ampdB); return(1); } memset(out,0,sizeof(*out)*look->n[vb->W]); return(0); } /* export hooks */ vorbis_func_floor floor0_exportbundle={ NULL,&floor0_unpack,&floor0_look,&floor0_free_info, &floor0_free_look,&floor0_inverse1,&floor0_inverse2 }; #endif /********* End of inlined file: floor0.c *********/ /********* Start of inlined file: floor1.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #include #include #define floor1_rangedB 140 /* floor 1 fixed at -140dB to 0dB range */ typedef struct { int sorted_index[VIF_POSIT+2]; int forward_index[VIF_POSIT+2]; int reverse_index[VIF_POSIT+2]; int hineighbor[VIF_POSIT]; int loneighbor[VIF_POSIT]; int posts; int n; int quant_q; vorbis_info_floor1 *vi; long phrasebits; long postbits; long frames; } vorbis_look_floor1; typedef struct lsfit_acc{ long x0; long x1; long xa; long ya; long x2a; long y2a; long xya; long an; } lsfit_acc; /***********************************************/ static void floor1_free_info(vorbis_info_floor *i){ vorbis_info_floor1 *info=(vorbis_info_floor1 *)i; if(info){ memset(info,0,sizeof(*info)); _ogg_free(info); } } static void floor1_free_look(vorbis_look_floor *i){ vorbis_look_floor1 *look=(vorbis_look_floor1 *)i; if(look){ /*fprintf(stderr,"floor 1 bit usage %f:%f (%f total)\n", (float)look->phrasebits/look->frames, (float)look->postbits/look->frames, (float)(look->postbits+look->phrasebits)/look->frames);*/ memset(look,0,sizeof(*look)); _ogg_free(look); } } static void floor1_pack (vorbis_info_floor *i,oggpack_buffer *opb){ vorbis_info_floor1 *info=(vorbis_info_floor1 *)i; int j,k; int count=0; int rangebits; int maxposit=info->postlist[1]; int maxclass=-1; /* save out partitions */ oggpack_write(opb,info->partitions,5); /* only 0 to 31 legal */ for(j=0;jpartitions;j++){ oggpack_write(opb,info->partitionclass[j],4); /* only 0 to 15 legal */ if(maxclasspartitionclass[j])maxclass=info->partitionclass[j]; } /* save out partition classes */ for(j=0;jclass_dim[j]-1,3); /* 1 to 8 */ oggpack_write(opb,info->class_subs[j],2); /* 0 to 3 */ if(info->class_subs[j])oggpack_write(opb,info->class_book[j],8); for(k=0;k<(1<class_subs[j]);k++) oggpack_write(opb,info->class_subbook[j][k]+1,8); } /* save out the post list */ oggpack_write(opb,info->mult-1,2); /* only 1,2,3,4 legal now */ oggpack_write(opb,ilog2(maxposit),4); rangebits=ilog2(maxposit); for(j=0,k=0;jpartitions;j++){ count+=info->class_dim[info->partitionclass[j]]; for(;kpostlist[k+2],rangebits); } } static vorbis_info_floor *floor1_unpack (vorbis_info *vi,oggpack_buffer *opb){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; int j,k,count=0,maxclass=-1,rangebits; vorbis_info_floor1 *info=(vorbis_info_floor1*)_ogg_calloc(1,sizeof(*info)); /* read partitions */ info->partitions=oggpack_read(opb,5); /* only 0 to 31 legal */ for(j=0;jpartitions;j++){ info->partitionclass[j]=oggpack_read(opb,4); /* only 0 to 15 legal */ if(maxclasspartitionclass[j])maxclass=info->partitionclass[j]; } /* read partition classes */ for(j=0;jclass_dim[j]=oggpack_read(opb,3)+1; /* 1 to 8 */ info->class_subs[j]=oggpack_read(opb,2); /* 0,1,2,3 bits */ if(info->class_subs[j]<0) goto err_out; if(info->class_subs[j])info->class_book[j]=oggpack_read(opb,8); if(info->class_book[j]<0 || info->class_book[j]>=ci->books) goto err_out; for(k=0;k<(1<class_subs[j]);k++){ info->class_subbook[j][k]=oggpack_read(opb,8)-1; if(info->class_subbook[j][k]<-1 || info->class_subbook[j][k]>=ci->books) goto err_out; } } /* read the post list */ info->mult=oggpack_read(opb,2)+1; /* only 1,2,3,4 legal now */ rangebits=oggpack_read(opb,4); for(j=0,k=0;jpartitions;j++){ count+=info->class_dim[info->partitionclass[j]]; for(;kpostlist[k+2]=oggpack_read(opb,rangebits); if(t<0 || t>=(1<postlist[0]=0; info->postlist[1]=1<vi=info; look->n=info->postlist[1]; /* we drop each position value in-between already decoded values, and use linear interpolation to predict each new value past the edges. The positions are read in the order of the position list... we precompute the bounding positions in the lookup. Of course, the neighbors can change (if a position is declined), but this is an initial mapping */ for(i=0;ipartitions;i++)n+=info->class_dim[info->partitionclass[i]]; n+=2; look->posts=n; /* also store a sorted position index */ for(i=0;ipostlist+i; qsort(sortpointer,n,sizeof(*sortpointer),icomp); /* points from sort order back to range number */ for(i=0;iforward_index[i]=sortpointer[i]-info->postlist; /* points from range order to sorted position */ for(i=0;ireverse_index[look->forward_index[i]]=i; /* we actually need the post values too */ for(i=0;isorted_index[i]=info->postlist[look->forward_index[i]]; /* quantize values to multiplier spec */ switch(info->mult){ case 1: /* 1024 -> 256 */ look->quant_q=256; break; case 2: /* 1024 -> 128 */ look->quant_q=128; break; case 3: /* 1024 -> 86 */ look->quant_q=86; break; case 4: /* 1024 -> 64 */ look->quant_q=64; break; } /* discover our neighbors for decode where we don't use fit flags (that would push the neighbors outward) */ for(i=0;in; int currentx=info->postlist[i+2]; for(j=0;jpostlist[j]; if(x>lx && xcurrentx){ hi=j; hx=x; } } look->loneighbor[i]=lo; look->hineighbor[i]=hi; } return(look); } static int render_point(int x0,int x1,int y0,int y1,int x){ y0&=0x7fff; /* mask off flag */ y1&=0x7fff; { int dy=y1-y0; int adx=x1-x0; int ady=abs(dy); int err=ady*(x-x0); int off=err/adx; if(dy<0)return(y0-off); return(y0+off); } } static int vorbis_dBquant(const float *x){ int i= *x*7.3142857f+1023.5f; if(i>1023)return(1023); if(i<0)return(0); return i; } static float FLOOR1_fromdB_LOOKUP[256]={ 1.0649863e-07F, 1.1341951e-07F, 1.2079015e-07F, 1.2863978e-07F, 1.3699951e-07F, 1.4590251e-07F, 1.5538408e-07F, 1.6548181e-07F, 1.7623575e-07F, 1.8768855e-07F, 1.9988561e-07F, 2.128753e-07F, 2.2670913e-07F, 2.4144197e-07F, 2.5713223e-07F, 2.7384213e-07F, 2.9163793e-07F, 3.1059021e-07F, 3.3077411e-07F, 3.5226968e-07F, 3.7516214e-07F, 3.9954229e-07F, 4.2550680e-07F, 4.5315863e-07F, 4.8260743e-07F, 5.1396998e-07F, 5.4737065e-07F, 5.8294187e-07F, 6.2082472e-07F, 6.6116941e-07F, 7.0413592e-07F, 7.4989464e-07F, 7.9862701e-07F, 8.5052630e-07F, 9.0579828e-07F, 9.6466216e-07F, 1.0273513e-06F, 1.0941144e-06F, 1.1652161e-06F, 1.2409384e-06F, 1.3215816e-06F, 1.4074654e-06F, 1.4989305e-06F, 1.5963394e-06F, 1.7000785e-06F, 1.8105592e-06F, 1.9282195e-06F, 2.0535261e-06F, 2.1869758e-06F, 2.3290978e-06F, 2.4804557e-06F, 2.6416497e-06F, 2.8133190e-06F, 2.9961443e-06F, 3.1908506e-06F, 3.3982101e-06F, 3.6190449e-06F, 3.8542308e-06F, 4.1047004e-06F, 4.3714470e-06F, 4.6555282e-06F, 4.9580707e-06F, 5.2802740e-06F, 5.6234160e-06F, 5.9888572e-06F, 6.3780469e-06F, 6.7925283e-06F, 7.2339451e-06F, 7.7040476e-06F, 8.2047000e-06F, 8.7378876e-06F, 9.3057248e-06F, 9.9104632e-06F, 1.0554501e-05F, 1.1240392e-05F, 1.1970856e-05F, 1.2748789e-05F, 1.3577278e-05F, 1.4459606e-05F, 1.5399272e-05F, 1.6400004e-05F, 1.7465768e-05F, 1.8600792e-05F, 1.9809576e-05F, 2.1096914e-05F, 2.2467911e-05F, 2.3928002e-05F, 2.5482978e-05F, 2.7139006e-05F, 2.8902651e-05F, 3.0780908e-05F, 3.2781225e-05F, 3.4911534e-05F, 3.7180282e-05F, 3.9596466e-05F, 4.2169667e-05F, 4.4910090e-05F, 4.7828601e-05F, 5.0936773e-05F, 5.4246931e-05F, 5.7772202e-05F, 6.1526565e-05F, 6.5524908e-05F, 6.9783085e-05F, 7.4317983e-05F, 7.9147585e-05F, 8.4291040e-05F, 8.9768747e-05F, 9.5602426e-05F, 0.00010181521F, 0.00010843174F, 0.00011547824F, 0.00012298267F, 0.00013097477F, 0.00013948625F, 0.00014855085F, 0.00015820453F, 0.00016848555F, 0.00017943469F, 0.00019109536F, 0.00020351382F, 0.00021673929F, 0.00023082423F, 0.00024582449F, 0.00026179955F, 0.00027881276F, 0.00029693158F, 0.00031622787F, 0.00033677814F, 0.00035866388F, 0.00038197188F, 0.00040679456F, 0.00043323036F, 0.00046138411F, 0.00049136745F, 0.00052329927F, 0.00055730621F, 0.00059352311F, 0.00063209358F, 0.00067317058F, 0.00071691700F, 0.00076350630F, 0.00081312324F, 0.00086596457F, 0.00092223983F, 0.00098217216F, 0.0010459992F, 0.0011139742F, 0.0011863665F, 0.0012634633F, 0.0013455702F, 0.0014330129F, 0.0015261382F, 0.0016253153F, 0.0017309374F, 0.0018434235F, 0.0019632195F, 0.0020908006F, 0.0022266726F, 0.0023713743F, 0.0025254795F, 0.0026895994F, 0.0028643847F, 0.0030505286F, 0.0032487691F, 0.0034598925F, 0.0036847358F, 0.0039241906F, 0.0041792066F, 0.0044507950F, 0.0047400328F, 0.0050480668F, 0.0053761186F, 0.0057254891F, 0.0060975636F, 0.0064938176F, 0.0069158225F, 0.0073652516F, 0.0078438871F, 0.0083536271F, 0.0088964928F, 0.009474637F, 0.010090352F, 0.010746080F, 0.011444421F, 0.012188144F, 0.012980198F, 0.013823725F, 0.014722068F, 0.015678791F, 0.016697687F, 0.017782797F, 0.018938423F, 0.020169149F, 0.021479854F, 0.022875735F, 0.024362330F, 0.025945531F, 0.027631618F, 0.029427276F, 0.031339626F, 0.033376252F, 0.035545228F, 0.037855157F, 0.040315199F, 0.042935108F, 0.045725273F, 0.048696758F, 0.051861348F, 0.055231591F, 0.058820850F, 0.062643361F, 0.066714279F, 0.071049749F, 0.075666962F, 0.080584227F, 0.085821044F, 0.091398179F, 0.097337747F, 0.10366330F, 0.11039993F, 0.11757434F, 0.12521498F, 0.13335215F, 0.14201813F, 0.15124727F, 0.16107617F, 0.17154380F, 0.18269168F, 0.19456402F, 0.20720788F, 0.22067342F, 0.23501402F, 0.25028656F, 0.26655159F, 0.28387361F, 0.30232132F, 0.32196786F, 0.34289114F, 0.36517414F, 0.38890521F, 0.41417847F, 0.44109412F, 0.46975890F, 0.50028648F, 0.53279791F, 0.56742212F, 0.60429640F, 0.64356699F, 0.68538959F, 0.72993007F, 0.77736504F, 0.82788260F, 0.88168307F, 0.9389798F, 1.F, }; static void render_line(int x0,int x1,int y0,int y1,float *d){ int dy=y1-y0; int adx=x1-x0; int ady=abs(dy); int base=dy/adx; int sy=(dy<0?base-1:base+1); int x=x0; int y=y0; int err=0; ady-=abs(base*adx); d[x]*=FLOOR1_fromdB_LOOKUP[y]; while(++x=adx){ err-=adx; y+=sy; }else{ y+=base; } d[x]*=FLOOR1_fromdB_LOOKUP[y]; } } static void render_line0(int x0,int x1,int y0,int y1,int *d){ int dy=y1-y0; int adx=x1-x0; int ady=abs(dy); int base=dy/adx; int sy=(dy<0?base-1:base+1); int x=x0; int y=y0; int err=0; ady-=abs(base*adx); d[x]=y; while(++x=adx){ err-=adx; y+=sy; }else{ y+=base; } d[x]=y; } } /* the floor has already been filtered to only include relevant sections */ static int accumulate_fit(const float *flr,const float *mdct, int x0, int x1,lsfit_acc *a, int n,vorbis_info_floor1 *info){ long i; long xa=0,ya=0,x2a=0,y2a=0,xya=0,na=0, xb=0,yb=0,x2b=0,y2b=0,xyb=0,nb=0; memset(a,0,sizeof(*a)); a->x0=x0; a->x1=x1; if(x1>=n)x1=n-1; for(i=x0;i<=x1;i++){ int quantized=vorbis_dBquant(flr+i); if(quantized){ if(mdct[i]+info->twofitatten>=flr[i]){ xa += i; ya += quantized; x2a += i*i; y2a += quantized*quantized; xya += i*quantized; na++; }else{ xb += i; yb += quantized; x2b += i*i; y2b += quantized*quantized; xyb += i*quantized; nb++; } } } xb+=xa; yb+=ya; x2b+=x2a; y2b+=y2a; xyb+=xya; nb+=na; /* weight toward the actually used frequencies if we meet the threshhold */ { int weight=nb*info->twofitweight/(na+1); a->xa=xa*weight+xb; a->ya=ya*weight+yb; a->x2a=x2a*weight+x2b; a->y2a=y2a*weight+y2b; a->xya=xya*weight+xyb; a->an=na*weight+nb; } return(na); } static void fit_line(lsfit_acc *a,int fits,int *y0,int *y1){ long x=0,y=0,x2=0,y2=0,xy=0,an=0,i; long x0=a[0].x0; long x1=a[fits-1].x1; for(i=0;i=0){ x+= x0; y+= *y0; x2+= x0 * x0; y2+= *y0 * *y0; xy+= *y0 * x0; an++; } if(*y1>=0){ x+= x1; y+= *y1; x2+= x1 * x1; y2+= *y1 * *y1; xy+= *y1 * x1; an++; } if(an){ /* need 64 bit multiplies, which C doesn't give portably as int */ double fx=x; double fy=y; double fx2=x2; double fxy=xy; double denom=1./(an*fx2-fx*fx); double a=(fy*fx2-fxy*fx)*denom; double b=(an*fxy-fx*fy)*denom; *y0=rint(a+b*x0); *y1=rint(a+b*x1); /* limit to our range! */ if(*y0>1023)*y0=1023; if(*y1>1023)*y1=1023; if(*y0<0)*y0=0; if(*y1<0)*y1=0; }else{ *y0=0; *y1=0; } } /*static void fit_line_point(lsfit_acc *a,int fits,int *y0,int *y1){ long y=0; int i; for(i=0;itwofitatten>=mask[x]){ if(y+info->maxovermaxunder>val)return(1); } while(++x=adx){ err-=adx; y+=sy; }else{ y+=base; } val=vorbis_dBquant(mask+x); mse+=((y-val)*(y-val)); n++; if(mdct[x]+info->twofitatten>=mask[x]){ if(val){ if(y+info->maxovermaxunder>val)return(1); } } } if(info->maxover*info->maxover/n>info->maxerr)return(0); if(info->maxunder*info->maxunder/n>info->maxerr)return(0); if(mse/n>info->maxerr)return(1); return(0); } static int post_Y(int *A,int *B,int pos){ if(A[pos]<0) return B[pos]; if(B[pos]<0) return A[pos]; return (A[pos]+B[pos])>>1; } int *floor1_fit(vorbis_block *vb,void *look_, const float *logmdct, /* in */ const float *logmask){ long i,j; vorbis_look_floor1 *look = (vorbis_look_floor1*) look_; vorbis_info_floor1 *info=look->vi; long n=look->n; long posts=look->posts; long nonzero=0; lsfit_acc fits[VIF_POSIT+1]; int fit_valueA[VIF_POSIT+2]; /* index by range list position */ int fit_valueB[VIF_POSIT+2]; /* index by range list position */ int loneighbor[VIF_POSIT+2]; /* sorted index of range list position (+2) */ int hineighbor[VIF_POSIT+2]; int *output=NULL; int memo[VIF_POSIT+2]; for(i=0;isorted_index[i], look->sorted_index[i+1],fits+i, n,info); } if(nonzero){ /* start by fitting the implicit base case.... */ int y0=-200; int y1=-200; fit_line(fits,posts-1,&y0,&y1); fit_valueA[0]=y0; fit_valueB[0]=y0; fit_valueB[1]=y1; fit_valueA[1]=y1; /* Non degenerate case */ /* start progressive splitting. This is a greedy, non-optimal algorithm, but simple and close enough to the best answer. */ for(i=2;ireverse_index[i]; int ln=loneighbor[sortpos]; int hn=hineighbor[sortpos]; /* eliminate repeat searches of a particular range with a memo */ if(memo[ln]!=hn){ /* haven't performed this error search yet */ int lsortpos=look->reverse_index[ln]; int hsortpos=look->reverse_index[hn]; memo[ln]=hn; { /* A note: we want to bound/minimize *local*, not global, error */ int lx=info->postlist[ln]; int hx=info->postlist[hn]; int ly=post_Y(fit_valueA,fit_valueB,ln); int hy=post_Y(fit_valueA,fit_valueB,hn); if(ly==-1 || hy==-1){ exit(1); } if(inspect_error(lx,hx,ly,hy,logmask,logmdct,info)){ /* outside error bounds/begin search area. Split it. */ int ly0=-200; int ly1=-200; int hy0=-200; int hy1=-200; fit_line(fits+lsortpos,sortpos-lsortpos,&ly0,&ly1); fit_line(fits+sortpos,hsortpos-sortpos,&hy0,&hy1); /* store new edge values */ fit_valueB[ln]=ly0; if(ln==0)fit_valueA[ln]=ly0; fit_valueA[i]=ly1; fit_valueB[i]=hy0; fit_valueA[hn]=hy1; if(hn==1)fit_valueB[hn]=hy1; if(ly1>=0 || hy0>=0){ /* store new neighbor values */ for(j=sortpos-1;j>=0;j--) if(hineighbor[j]==hn) hineighbor[j]=i; else break; for(j=sortpos+1;jloneighbor[i-2]; int hn=look->hineighbor[i-2]; int x0=info->postlist[ln]; int x1=info->postlist[hn]; int y0=output[ln]; int y1=output[hn]; int predicted=render_point(x0,x1,y0,y1,info->postlist[i]); int vx=post_Y(fit_valueA,fit_valueB,i); if(vx>=0 && predicted!=vx){ output[i]=vx; }else{ output[i]= predicted|0x8000; } } } return(output); } int *floor1_interpolate_fit(vorbis_block *vb,void *look_, int *A,int *B, int del){ long i; vorbis_look_floor1* look = (vorbis_look_floor1*) look_; long posts=look->posts; int *output=NULL; if(A && B){ output=(int*)_vorbis_block_alloc(vb,sizeof(*output)*posts); for(i=0;i>16; if(A[i]&0x8000 && B[i]&0x8000)output[i]|=0x8000; } } return(output); } int floor1_encode(oggpack_buffer *opb,vorbis_block *vb, void*look_, int *post,int *ilogmask){ long i,j; vorbis_look_floor1 *look = (vorbis_look_floor1 *) look_; vorbis_info_floor1 *info=look->vi; long posts=look->posts; codec_setup_info *ci=(codec_setup_info*)vb->vd->vi->codec_setup; int out[VIF_POSIT+2]; static_codebook **sbooks=ci->book_param; codebook *books=ci->fullbooks; static long seq=0; /* quantize values to multiplier spec */ if(post){ for(i=0;imult){ case 1: /* 1024 -> 256 */ val>>=2; break; case 2: /* 1024 -> 128 */ val>>=3; break; case 3: /* 1024 -> 86 */ val/=12; break; case 4: /* 1024 -> 64 */ val>>=4; break; } post[i]=val | (post[i]&0x8000); } out[0]=post[0]; out[1]=post[1]; /* find prediction values for each post and subtract them */ for(i=2;iloneighbor[i-2]; int hn=look->hineighbor[i-2]; int x0=info->postlist[ln]; int x1=info->postlist[hn]; int y0=post[ln]; int y1=post[hn]; int predicted=render_point(x0,x1,y0,y1,info->postlist[i]); if((post[i]&0x8000) || (predicted==post[i])){ post[i]=predicted|0x8000; /* in case there was roundoff jitter in interpolation */ out[i]=0; }else{ int headroom=(look->quant_q-predictedquant_q-predicted:predicted); int val=post[i]-predicted; /* at this point the 'deviation' value is in the range +/- max range, but the real, unique range can always be mapped to only [0-maxrange). So we want to wrap the deviation into this limited range, but do it in the way that least screws an essentially gaussian probability distribution. */ if(val<0) if(val<-headroom) val=headroom-val-1; else val=-1-(val<<1); else if(val>=headroom) val= val+headroom; else val<<=1; out[i]=val; post[ln]&=0x7fff; post[hn]&=0x7fff; } } /* we have everything we need. pack it out */ /* mark nontrivial floor */ oggpack_write(opb,1,1); /* beginning/end post */ look->frames++; look->postbits+=ilog(look->quant_q-1)*2; oggpack_write(opb,out[0],ilog(look->quant_q-1)); oggpack_write(opb,out[1],ilog(look->quant_q-1)); /* partition by partition */ for(i=0,j=2;ipartitions;i++){ int classx=info->partitionclass[i]; int cdim=info->class_dim[classx]; int csubbits=info->class_subs[classx]; int csub=1<class_subbook[classx][k]; if(booknum<0){ maxval[k]=1; }else{ maxval[k]=sbooks[info->class_subbook[classx][k]]->entries; } } for(k=0;kphrasebits+= vorbis_book_encode(books+info->class_book[classx],cval,opb); #ifdef TRAIN_FLOOR1 { FILE *of; char buffer[80]; sprintf(buffer,"line_%dx%ld_class%d.vqd", vb->pcmend/2,posts-2,class); of=fopen(buffer,"a"); fprintf(of,"%d\n",cval); fclose(of); } #endif } /* write post values */ for(k=0;kclass_subbook[classx][bookas[k]]; if(book>=0){ /* hack to allow training with 'bad' books */ if(out[j+k]<(books+book)->entries) look->postbits+=vorbis_book_encode(books+book, out[j+k],opb); /*else fprintf(stderr,"+!");*/ #ifdef TRAIN_FLOOR1 { FILE *of; char buffer[80]; sprintf(buffer,"line_%dx%ld_%dsub%d.vqd", vb->pcmend/2,posts-2,class,bookas[k]); of=fopen(buffer,"a"); fprintf(of,"%d\n",out[j+k]); fclose(of); } #endif } } j+=cdim; } { /* generate quantized floor equivalent to what we'd unpack in decode */ /* render the lines */ int hx=0; int lx=0; int ly=post[0]*info->mult; for(j=1;jposts;j++){ int current=look->forward_index[j]; int hy=post[current]&0x7fff; if(hy==post[current]){ hy*=info->mult; hx=info->postlist[current]; render_line0(lx,hx,ly,hy,ilogmask); lx=hx; ly=hy; } } for(j=hx;jpcmend/2;j++)ilogmask[j]=ly; /* be certain */ seq++; return(1); } }else{ oggpack_write(opb,0,1); memset(ilogmask,0,vb->pcmend/2*sizeof(*ilogmask)); seq++; return(0); } } static void *floor1_inverse1(vorbis_block *vb,vorbis_look_floor *in){ vorbis_look_floor1 *look=(vorbis_look_floor1 *)in; vorbis_info_floor1 *info=look->vi; codec_setup_info *ci=(codec_setup_info*)vb->vd->vi->codec_setup; int i,j,k; codebook *books=ci->fullbooks; /* unpack wrapped/predicted values from stream */ if(oggpack_read(&vb->opb,1)==1){ int *fit_value=(int*)_vorbis_block_alloc(vb,(look->posts)*sizeof(*fit_value)); fit_value[0]=oggpack_read(&vb->opb,ilog(look->quant_q-1)); fit_value[1]=oggpack_read(&vb->opb,ilog(look->quant_q-1)); /* partition by partition */ for(i=0,j=2;ipartitions;i++){ int classx=info->partitionclass[i]; int cdim=info->class_dim[classx]; int csubbits=info->class_subs[classx]; int csub=1<class_book[classx],&vb->opb); if(cval==-1)goto eop; } for(k=0;kclass_subbook[classx][cval&(csub-1)]; cval>>=csubbits; if(book>=0){ if((fit_value[j+k]=vorbis_book_decode(books+book,&vb->opb))==-1) goto eop; }else{ fit_value[j+k]=0; } } j+=cdim; } /* unwrap positive values and reconsitute via linear interpolation */ for(i=2;iposts;i++){ int predicted=render_point(info->postlist[look->loneighbor[i-2]], info->postlist[look->hineighbor[i-2]], fit_value[look->loneighbor[i-2]], fit_value[look->hineighbor[i-2]], info->postlist[i]); int hiroom=look->quant_q-predicted; int loroom=predicted; int room=(hiroom=room){ if(hiroom>loroom){ val = val-loroom; }else{ val = -1-(val-hiroom); } }else{ if(val&1){ val= -((val+1)>>1); }else{ val>>=1; } } fit_value[i]=val+predicted; fit_value[look->loneighbor[i-2]]&=0x7fff; fit_value[look->hineighbor[i-2]]&=0x7fff; }else{ fit_value[i]=predicted|0x8000; } } return(fit_value); } eop: return(NULL); } static int floor1_inverse2(vorbis_block *vb,vorbis_look_floor *in,void *memo, float *out){ vorbis_look_floor1 *look=(vorbis_look_floor1 *)in; vorbis_info_floor1 *info=look->vi; codec_setup_info *ci=(codec_setup_info*)vb->vd->vi->codec_setup; int n=ci->blocksizes[vb->W]/2; int j; if(memo){ /* render the lines */ int *fit_value=(int *)memo; int hx=0; int lx=0; int ly=fit_value[0]*info->mult; for(j=1;jposts;j++){ int current=look->forward_index[j]; int hy=fit_value[current]&0x7fff; if(hy==fit_value[current]){ hy*=info->mult; hx=info->postlist[current]; render_line(lx,hx,ly,hy,out); lx=hx; ly=hy; } } for(j=hx;j #include #include static void _v_writestring(oggpack_buffer *o, const char *s, int bytes){ while(bytes--){ oggpack_write(o,*s++,8); } } static void _v_readstring(oggpack_buffer *o,char *buf,int bytes){ while(bytes--){ *buf++=oggpack_read(o,8); } } void vorbis_comment_init(vorbis_comment *vc){ memset(vc,0,sizeof(*vc)); } void vorbis_comment_add(vorbis_comment *vc,char *comment){ vc->user_comments=(char**)_ogg_realloc(vc->user_comments, (vc->comments+2)*sizeof(*vc->user_comments)); vc->comment_lengths=(int*)_ogg_realloc(vc->comment_lengths, (vc->comments+2)*sizeof(*vc->comment_lengths)); vc->comment_lengths[vc->comments]=strlen(comment); vc->user_comments[vc->comments]=(char*)_ogg_malloc(vc->comment_lengths[vc->comments]+1); strcpy(vc->user_comments[vc->comments], comment); vc->comments++; vc->user_comments[vc->comments]=NULL; } void vorbis_comment_add_tag(vorbis_comment *vc, const char *tag, char *contents){ char *comment=(char*)alloca(strlen(tag)+strlen(contents)+2); /* +2 for = and \0 */ strcpy(comment, tag); strcat(comment, "="); strcat(comment, contents); vorbis_comment_add(vc, comment); } /* This is more or less the same as strncasecmp - but that doesn't exist * everywhere, and this is a fairly trivial function, so we include it */ static int tagcompare(const char *s1, const char *s2, int n){ int c=0; while(c < n){ if(toupper(s1[c]) != toupper(s2[c])) return !0; c++; } return 0; } char *vorbis_comment_query(vorbis_comment *vc, char *tag, int count){ long i; int found = 0; int taglen = strlen(tag)+1; /* +1 for the = we append */ char *fulltag = (char*)alloca(taglen+ 1); strcpy(fulltag, tag); strcat(fulltag, "="); for(i=0;icomments;i++){ if(!tagcompare(vc->user_comments[i], fulltag, taglen)){ if(count == found) /* We return a pointer to the data, not a copy */ return vc->user_comments[i] + taglen; else found++; } } return NULL; /* didn't find anything */ } int vorbis_comment_query_count(vorbis_comment *vc, char *tag){ int i,count=0; int taglen = strlen(tag)+1; /* +1 for the = we append */ char *fulltag = (char*)alloca(taglen+1); strcpy(fulltag,tag); strcat(fulltag, "="); for(i=0;icomments;i++){ if(!tagcompare(vc->user_comments[i], fulltag, taglen)) count++; } return count; } void vorbis_comment_clear(vorbis_comment *vc){ if(vc){ long i; for(i=0;icomments;i++) if(vc->user_comments[i])_ogg_free(vc->user_comments[i]); if(vc->user_comments)_ogg_free(vc->user_comments); if(vc->comment_lengths)_ogg_free(vc->comment_lengths); if(vc->vendor)_ogg_free(vc->vendor); } memset(vc,0,sizeof(*vc)); } /* blocksize 0 is guaranteed to be short, 1 is guarantted to be long. They may be equal, but short will never ge greater than long */ int vorbis_info_blocksize(vorbis_info *vi,int zo){ codec_setup_info *ci = (codec_setup_info*)vi->codec_setup; return ci ? ci->blocksizes[zo] : -1; } /* used by synthesis, which has a full, alloced vi */ void vorbis_info_init(vorbis_info *vi){ memset(vi,0,sizeof(*vi)); vi->codec_setup=_ogg_calloc(1,sizeof(codec_setup_info)); } void vorbis_info_clear(vorbis_info *vi){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; int i; if(ci){ for(i=0;imodes;i++) if(ci->mode_param[i])_ogg_free(ci->mode_param[i]); for(i=0;imaps;i++) /* unpack does the range checking */ _mapping_P[ci->map_type[i]]->free_info(ci->map_param[i]); for(i=0;ifloors;i++) /* unpack does the range checking */ _floor_P[ci->floor_type[i]]->free_info(ci->floor_param[i]); for(i=0;iresidues;i++) /* unpack does the range checking */ _residue_P[ci->residue_type[i]]->free_info(ci->residue_param[i]); for(i=0;ibooks;i++){ if(ci->book_param[i]){ /* knows if the book was not alloced */ vorbis_staticbook_destroy(ci->book_param[i]); } if(ci->fullbooks) vorbis_book_clear(ci->fullbooks+i); } if(ci->fullbooks) _ogg_free(ci->fullbooks); for(i=0;ipsys;i++) _vi_psy_free(ci->psy_param[i]); _ogg_free(ci); } memset(vi,0,sizeof(*vi)); } /* Header packing/unpacking ********************************************/ static int _vorbis_unpack_info(vorbis_info *vi,oggpack_buffer *opb){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; if(!ci)return(OV_EFAULT); vi->version=oggpack_read(opb,32); if(vi->version!=0)return(OV_EVERSION); vi->channels=oggpack_read(opb,8); vi->rate=oggpack_read(opb,32); vi->bitrate_upper=oggpack_read(opb,32); vi->bitrate_nominal=oggpack_read(opb,32); vi->bitrate_lower=oggpack_read(opb,32); ci->blocksizes[0]=1<blocksizes[1]=1<rate<1)goto err_out; if(vi->channels<1)goto err_out; if(ci->blocksizes[0]<8)goto err_out; if(ci->blocksizes[1]blocksizes[0])goto err_out; if(oggpack_read(opb,1)!=1)goto err_out; /* EOP check */ return(0); err_out: vorbis_info_clear(vi); return(OV_EBADHEADER); } static int _vorbis_unpack_comment(vorbis_comment *vc,oggpack_buffer *opb){ int i; int vendorlen=oggpack_read(opb,32); if(vendorlen<0)goto err_out; vc->vendor=(char*)_ogg_calloc(vendorlen+1,1); _v_readstring(opb,vc->vendor,vendorlen); vc->comments=oggpack_read(opb,32); if(vc->comments<0)goto err_out; vc->user_comments=(char**)_ogg_calloc(vc->comments+1,sizeof(*vc->user_comments)); vc->comment_lengths=(int*)_ogg_calloc(vc->comments+1, sizeof(*vc->comment_lengths)); for(i=0;icomments;i++){ int len=oggpack_read(opb,32); if(len<0)goto err_out; vc->comment_lengths[i]=len; vc->user_comments[i]=(char*)_ogg_calloc(len+1,1); _v_readstring(opb,vc->user_comments[i],len); } if(oggpack_read(opb,1)!=1)goto err_out; /* EOP check */ return(0); err_out: vorbis_comment_clear(vc); return(OV_EBADHEADER); } /* all of the real encoding details are here. The modes, books, everything */ static int _vorbis_unpack_books(vorbis_info *vi,oggpack_buffer *opb){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; int i; if(!ci)return(OV_EFAULT); /* codebooks */ ci->books=oggpack_read(opb,8)+1; /*ci->book_param=_ogg_calloc(ci->books,sizeof(*ci->book_param));*/ for(i=0;ibooks;i++){ ci->book_param[i]=(static_codebook*)_ogg_calloc(1,sizeof(*ci->book_param[i])); if(vorbis_staticbook_unpack(opb,ci->book_param[i]))goto err_out; } /* time backend settings; hooks are unused */ { int times=oggpack_read(opb,6)+1; for(i=0;i=VI_TIMEB)goto err_out; } } /* floor backend settings */ ci->floors=oggpack_read(opb,6)+1; /*ci->floor_type=_ogg_malloc(ci->floors*sizeof(*ci->floor_type));*/ /*ci->floor_param=_ogg_calloc(ci->floors,sizeof(void *));*/ for(i=0;ifloors;i++){ ci->floor_type[i]=oggpack_read(opb,16); if(ci->floor_type[i]<0 || ci->floor_type[i]>=VI_FLOORB)goto err_out; ci->floor_param[i]=_floor_P[ci->floor_type[i]]->unpack(vi,opb); if(!ci->floor_param[i])goto err_out; } /* residue backend settings */ ci->residues=oggpack_read(opb,6)+1; /*ci->residue_type=_ogg_malloc(ci->residues*sizeof(*ci->residue_type));*/ /*ci->residue_param=_ogg_calloc(ci->residues,sizeof(void *));*/ for(i=0;iresidues;i++){ ci->residue_type[i]=oggpack_read(opb,16); if(ci->residue_type[i]<0 || ci->residue_type[i]>=VI_RESB)goto err_out; ci->residue_param[i]=_residue_P[ci->residue_type[i]]->unpack(vi,opb); if(!ci->residue_param[i])goto err_out; } /* map backend settings */ ci->maps=oggpack_read(opb,6)+1; /*ci->map_type=_ogg_malloc(ci->maps*sizeof(*ci->map_type));*/ /*ci->map_param=_ogg_calloc(ci->maps,sizeof(void *));*/ for(i=0;imaps;i++){ ci->map_type[i]=oggpack_read(opb,16); if(ci->map_type[i]<0 || ci->map_type[i]>=VI_MAPB)goto err_out; ci->map_param[i]=_mapping_P[ci->map_type[i]]->unpack(vi,opb); if(!ci->map_param[i])goto err_out; } /* mode settings */ ci->modes=oggpack_read(opb,6)+1; /*vi->mode_param=_ogg_calloc(vi->modes,sizeof(void *));*/ for(i=0;imodes;i++){ ci->mode_param[i]=(vorbis_info_mode*)_ogg_calloc(1,sizeof(*ci->mode_param[i])); ci->mode_param[i]->blockflag=oggpack_read(opb,1); ci->mode_param[i]->windowtype=oggpack_read(opb,16); ci->mode_param[i]->transformtype=oggpack_read(opb,16); ci->mode_param[i]->mapping=oggpack_read(opb,8); if(ci->mode_param[i]->windowtype>=VI_WINDOWB)goto err_out; if(ci->mode_param[i]->transformtype>=VI_WINDOWB)goto err_out; if(ci->mode_param[i]->mapping>=ci->maps)goto err_out; } if(oggpack_read(opb,1)!=1)goto err_out; /* top level EOP check */ return(0); err_out: vorbis_info_clear(vi); return(OV_EBADHEADER); } /* The Vorbis header is in three packets; the initial small packet in the first page that identifies basic parameters, a second packet with bitstream comments and a third packet that holds the codebook. */ int vorbis_synthesis_headerin(vorbis_info *vi,vorbis_comment *vc,ogg_packet *op){ oggpack_buffer opb; if(op){ oggpack_readinit(&opb,op->packet,op->bytes); /* Which of the three types of header is this? */ /* Also verify header-ness, vorbis */ { char buffer[6]; int packtype=oggpack_read(&opb,8); memset(buffer,0,6); _v_readstring(&opb,buffer,6); if(memcmp(buffer,"vorbis",6)){ /* not a vorbis header */ return(OV_ENOTVORBIS); } switch(packtype){ case 0x01: /* least significant *bit* is read first */ if(!op->b_o_s){ /* Not the initial packet */ return(OV_EBADHEADER); } if(vi->rate!=0){ /* previously initialized info header */ return(OV_EBADHEADER); } return(_vorbis_unpack_info(vi,&opb)); case 0x03: /* least significant *bit* is read first */ if(vi->rate==0){ /* um... we didn't get the initial header */ return(OV_EBADHEADER); } return(_vorbis_unpack_comment(vc,&opb)); case 0x05: /* least significant *bit* is read first */ if(vi->rate==0 || vc->vendor==NULL){ /* um... we didn;t get the initial header or comments yet */ return(OV_EBADHEADER); } return(_vorbis_unpack_books(vi,&opb)); default: /* Not a valid vorbis header type */ return(OV_EBADHEADER); break; } } } return(OV_EBADHEADER); } /* pack side **********************************************************/ static int _vorbis_pack_info(oggpack_buffer *opb,vorbis_info *vi){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; if(!ci)return(OV_EFAULT); /* preamble */ oggpack_write(opb,0x01,8); _v_writestring(opb,"vorbis", 6); /* basic information about the stream */ oggpack_write(opb,0x00,32); oggpack_write(opb,vi->channels,8); oggpack_write(opb,vi->rate,32); oggpack_write(opb,vi->bitrate_upper,32); oggpack_write(opb,vi->bitrate_nominal,32); oggpack_write(opb,vi->bitrate_lower,32); oggpack_write(opb,ilog2(ci->blocksizes[0]),4); oggpack_write(opb,ilog2(ci->blocksizes[1]),4); oggpack_write(opb,1,1); return(0); } static int _vorbis_pack_comment(oggpack_buffer *opb,vorbis_comment *vc){ char temp[]="Xiph.Org libVorbis I 20050304"; int bytes = strlen(temp); /* preamble */ oggpack_write(opb,0x03,8); _v_writestring(opb,"vorbis", 6); /* vendor */ oggpack_write(opb,bytes,32); _v_writestring(opb,temp, bytes); /* comments */ oggpack_write(opb,vc->comments,32); if(vc->comments){ int i; for(i=0;icomments;i++){ if(vc->user_comments[i]){ oggpack_write(opb,vc->comment_lengths[i],32); _v_writestring(opb,vc->user_comments[i], vc->comment_lengths[i]); }else{ oggpack_write(opb,0,32); } } } oggpack_write(opb,1,1); return(0); } static int _vorbis_pack_books(oggpack_buffer *opb,vorbis_info *vi){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; int i; if(!ci)return(OV_EFAULT); oggpack_write(opb,0x05,8); _v_writestring(opb,"vorbis", 6); /* books */ oggpack_write(opb,ci->books-1,8); for(i=0;ibooks;i++) if(vorbis_staticbook_pack(ci->book_param[i],opb))goto err_out; /* times; hook placeholders */ oggpack_write(opb,0,6); oggpack_write(opb,0,16); /* floors */ oggpack_write(opb,ci->floors-1,6); for(i=0;ifloors;i++){ oggpack_write(opb,ci->floor_type[i],16); if(_floor_P[ci->floor_type[i]]->pack) _floor_P[ci->floor_type[i]]->pack(ci->floor_param[i],opb); else goto err_out; } /* residues */ oggpack_write(opb,ci->residues-1,6); for(i=0;iresidues;i++){ oggpack_write(opb,ci->residue_type[i],16); _residue_P[ci->residue_type[i]]->pack(ci->residue_param[i],opb); } /* maps */ oggpack_write(opb,ci->maps-1,6); for(i=0;imaps;i++){ oggpack_write(opb,ci->map_type[i],16); _mapping_P[ci->map_type[i]]->pack(vi,ci->map_param[i],opb); } /* modes */ oggpack_write(opb,ci->modes-1,6); for(i=0;imodes;i++){ oggpack_write(opb,ci->mode_param[i]->blockflag,1); oggpack_write(opb,ci->mode_param[i]->windowtype,16); oggpack_write(opb,ci->mode_param[i]->transformtype,16); oggpack_write(opb,ci->mode_param[i]->mapping,8); } oggpack_write(opb,1,1); return(0); err_out: return(-1); } int vorbis_commentheader_out(vorbis_comment *vc, ogg_packet *op){ oggpack_buffer opb; oggpack_writeinit(&opb); if(_vorbis_pack_comment(&opb,vc)) return OV_EIMPL; op->packet = (unsigned char*) _ogg_malloc(oggpack_bytes(&opb)); memcpy(op->packet, opb.buffer, oggpack_bytes(&opb)); op->bytes=oggpack_bytes(&opb); op->b_o_s=0; op->e_o_s=0; op->granulepos=0; op->packetno=1; return 0; } int vorbis_analysis_headerout(vorbis_dsp_state *v, vorbis_comment *vc, ogg_packet *op, ogg_packet *op_comm, ogg_packet *op_code){ int ret=OV_EIMPL; vorbis_info *vi=v->vi; oggpack_buffer opb; private_state *b=(private_state*)v->backend_state; if(!b){ ret=OV_EFAULT; goto err_out; } /* first header packet **********************************************/ oggpack_writeinit(&opb); if(_vorbis_pack_info(&opb,vi))goto err_out; /* build the packet */ if(b->header)_ogg_free(b->header); b->header=(unsigned char*) _ogg_malloc(oggpack_bytes(&opb)); memcpy(b->header,opb.buffer,oggpack_bytes(&opb)); op->packet=b->header; op->bytes=oggpack_bytes(&opb); op->b_o_s=1; op->e_o_s=0; op->granulepos=0; op->packetno=0; /* second header packet (comments) **********************************/ oggpack_reset(&opb); if(_vorbis_pack_comment(&opb,vc))goto err_out; if(b->header1)_ogg_free(b->header1); b->header1=(unsigned char*) _ogg_malloc(oggpack_bytes(&opb)); memcpy(b->header1,opb.buffer,oggpack_bytes(&opb)); op_comm->packet=b->header1; op_comm->bytes=oggpack_bytes(&opb); op_comm->b_o_s=0; op_comm->e_o_s=0; op_comm->granulepos=0; op_comm->packetno=1; /* third header packet (modes/codebooks) ****************************/ oggpack_reset(&opb); if(_vorbis_pack_books(&opb,vi))goto err_out; if(b->header2)_ogg_free(b->header2); b->header2=(unsigned char*) _ogg_malloc(oggpack_bytes(&opb)); memcpy(b->header2,opb.buffer,oggpack_bytes(&opb)); op_code->packet=b->header2; op_code->bytes=oggpack_bytes(&opb); op_code->b_o_s=0; op_code->e_o_s=0; op_code->granulepos=0; op_code->packetno=2; oggpack_writeclear(&opb); return(0); err_out: oggpack_writeclear(&opb); memset(op,0,sizeof(*op)); memset(op_comm,0,sizeof(*op_comm)); memset(op_code,0,sizeof(*op_code)); if(b->header)_ogg_free(b->header); if(b->header1)_ogg_free(b->header1); if(b->header2)_ogg_free(b->header2); b->header=NULL; b->header1=NULL; b->header2=NULL; return(ret); } double vorbis_granule_time(vorbis_dsp_state *v,ogg_int64_t granulepos){ if(granulepos>=0) return((double)granulepos/v->vi->rate); return(-1); } #endif /********* End of inlined file: info.c *********/ /********* Start of inlined file: lpc.c *********/ /* Some of these routines (autocorrelator, LPC coefficient estimator) are derived from code written by Jutta Degener and Carsten Bormann; thus we include their copyright below. The entirety of this file is freely redistributable on the condition that both of these copyright notices are preserved without modification. */ /* Preserved Copyright: *********************************************/ /* Copyright 1992, 1993, 1994 by Jutta Degener and Carsten Bormann, Technische Universita"t Berlin Any use of this software is permitted provided that this notice is not removed and that neither the authors nor the Technische Universita"t Berlin are deemed to have made any representations as to the suitability of this software for any purpose nor are held responsible for any defects of this software. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. As a matter of courtesy, the authors request to be informed about uses this software has found, about bugs in this software, and about any improvements that may be of general interest. Berlin, 28.11.1994 Jutta Degener Carsten Bormann *********************************************************************/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #include /* Autocorrelation LPC coeff generation algorithm invented by N. Levinson in 1947, modified by J. Durbin in 1959. */ /* Input : n elements of time doamin data Output: m lpc coefficients, excitation energy */ float vorbis_lpc_from_data(float *data,float *lpci,int n,int m){ double *aut=(double*)alloca(sizeof(*aut)*(m+1)); double *lpc=(double*)alloca(sizeof(*lpc)*(m)); double error; int i,j; /* autocorrelation, p+1 lag coefficients */ j=m+1; while(j--){ double d=0; /* double needed for accumulator depth */ for(i=j;i #include #include /********* Start of inlined file: lookup.h *********/ #ifndef _V_LOOKUP_H_ #ifdef FLOAT_LOOKUP extern float vorbis_coslook(float a); extern float vorbis_invsqlook(float a); extern float vorbis_invsq2explook(int a); extern float vorbis_fromdBlook(float a); #endif #ifdef INT_LOOKUP extern long vorbis_invsqlook_i(long a,long e); extern long vorbis_coslook_i(long a); extern float vorbis_fromdBlook_i(long a); #endif #endif /********* End of inlined file: lookup.h *********/ /* three possible LSP to f curve functions; the exact computation (float), a lookup based float implementation, and an integer implementation. The float lookup is likely the optimal choice on any machine with an FPU. The integer implementation is *not* fixed point (due to the need for a large dynamic range and thus a seperately tracked exponent) and thus much more complex than the relatively simple float implementations. It's mostly for future work on a fully fixed point implementation for processors like the ARM family. */ /* undefine both for the 'old' but more precise implementation */ #define FLOAT_LOOKUP #undef INT_LOOKUP #ifdef FLOAT_LOOKUP /********* Start of inlined file: lookup.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include /********* Start of inlined file: lookup.h *********/ #ifndef _V_LOOKUP_H_ #ifdef FLOAT_LOOKUP extern float vorbis_coslook(float a); extern float vorbis_invsqlook(float a); extern float vorbis_invsq2explook(int a); extern float vorbis_fromdBlook(float a); #endif #ifdef INT_LOOKUP extern long vorbis_invsqlook_i(long a,long e); extern long vorbis_coslook_i(long a); extern float vorbis_fromdBlook_i(long a); #endif #endif /********* End of inlined file: lookup.h *********/ /********* Start of inlined file: lookup_data.h *********/ #ifndef _V_LOOKUP_DATA_H_ #ifdef FLOAT_LOOKUP #define COS_LOOKUP_SZ 128 static float COS_LOOKUP[COS_LOOKUP_SZ+1]={ +1.0000000000000f,+0.9996988186962f,+0.9987954562052f,+0.9972904566787f, +0.9951847266722f,+0.9924795345987f,+0.9891765099648f,+0.9852776423889f, +0.9807852804032f,+0.9757021300385f,+0.9700312531945f,+0.9637760657954f, +0.9569403357322f,+0.9495281805930f,+0.9415440651830f,+0.9329927988347f, +0.9238795325113f,+0.9142097557035f,+0.9039892931234f,+0.8932243011955f, +0.8819212643484f,+0.8700869911087f,+0.8577286100003f,+0.8448535652497f, +0.8314696123025f,+0.8175848131516f,+0.8032075314806f,+0.7883464276266f, +0.7730104533627f,+0.7572088465065f,+0.7409511253550f,+0.7242470829515f, +0.7071067811865f,+0.6895405447371f,+0.6715589548470f,+0.6531728429538f, +0.6343932841636f,+0.6152315905806f,+0.5956993044924f,+0.5758081914178f, +0.5555702330196f,+0.5349976198871f,+0.5141027441932f,+0.4928981922298f, +0.4713967368260f,+0.4496113296546f,+0.4275550934303f,+0.4052413140050f, +0.3826834323651f,+0.3598950365350f,+0.3368898533922f,+0.3136817403989f, +0.2902846772545f,+0.2667127574749f,+0.2429801799033f,+0.2191012401569f, +0.1950903220161f,+0.1709618887603f,+0.1467304744554f,+0.1224106751992f, +0.0980171403296f,+0.0735645635997f,+0.0490676743274f,+0.0245412285229f, +0.0000000000000f,-0.0245412285229f,-0.0490676743274f,-0.0735645635997f, -0.0980171403296f,-0.1224106751992f,-0.1467304744554f,-0.1709618887603f, -0.1950903220161f,-0.2191012401569f,-0.2429801799033f,-0.2667127574749f, -0.2902846772545f,-0.3136817403989f,-0.3368898533922f,-0.3598950365350f, -0.3826834323651f,-0.4052413140050f,-0.4275550934303f,-0.4496113296546f, -0.4713967368260f,-0.4928981922298f,-0.5141027441932f,-0.5349976198871f, -0.5555702330196f,-0.5758081914178f,-0.5956993044924f,-0.6152315905806f, -0.6343932841636f,-0.6531728429538f,-0.6715589548470f,-0.6895405447371f, -0.7071067811865f,-0.7242470829515f,-0.7409511253550f,-0.7572088465065f, -0.7730104533627f,-0.7883464276266f,-0.8032075314806f,-0.8175848131516f, -0.8314696123025f,-0.8448535652497f,-0.8577286100003f,-0.8700869911087f, -0.8819212643484f,-0.8932243011955f,-0.9039892931234f,-0.9142097557035f, -0.9238795325113f,-0.9329927988347f,-0.9415440651830f,-0.9495281805930f, -0.9569403357322f,-0.9637760657954f,-0.9700312531945f,-0.9757021300385f, -0.9807852804032f,-0.9852776423889f,-0.9891765099648f,-0.9924795345987f, -0.9951847266722f,-0.9972904566787f,-0.9987954562052f,-0.9996988186962f, -1.0000000000000f, }; #define INVSQ_LOOKUP_SZ 32 static float INVSQ_LOOKUP[INVSQ_LOOKUP_SZ+1]={ 1.414213562373f,1.392621247646f,1.371988681140f,1.352246807566f, 1.333333333333f,1.315191898443f,1.297771369046f,1.281025230441f, 1.264911064067f,1.249390095109f,1.234426799697f,1.219988562661f, 1.206045378311f,1.192569588000f,1.179535649239f,1.166919931983f, 1.154700538379f,1.142857142857f,1.131370849898f,1.120224067222f, 1.109400392450f,1.098884511590f,1.088662107904f,1.078719779941f, 1.069044967650f,1.059625885652f,1.050451462878f,1.041511287847f, 1.032795558989f,1.024295039463f,1.016001016002f,1.007905261358f, 1.000000000000f, }; #define INVSQ2EXP_LOOKUP_MIN (-32) #define INVSQ2EXP_LOOKUP_MAX 32 static float INVSQ2EXP_LOOKUP[INVSQ2EXP_LOOKUP_MAX-\ INVSQ2EXP_LOOKUP_MIN+1]={ 65536.f, 46340.95001f, 32768.f, 23170.47501f, 16384.f, 11585.2375f, 8192.f, 5792.618751f, 4096.f, 2896.309376f, 2048.f, 1448.154688f, 1024.f, 724.0773439f, 512.f, 362.038672f, 256.f, 181.019336f, 128.f, 90.50966799f, 64.f, 45.254834f, 32.f, 22.627417f, 16.f, 11.3137085f, 8.f, 5.656854249f, 4.f, 2.828427125f, 2.f, 1.414213562f, 1.f, 0.7071067812f, 0.5f, 0.3535533906f, 0.25f, 0.1767766953f, 0.125f, 0.08838834765f, 0.0625f, 0.04419417382f, 0.03125f, 0.02209708691f, 0.015625f, 0.01104854346f, 0.0078125f, 0.005524271728f, 0.00390625f, 0.002762135864f, 0.001953125f, 0.001381067932f, 0.0009765625f, 0.000690533966f, 0.00048828125f, 0.000345266983f, 0.000244140625f,0.0001726334915f,0.0001220703125f,8.631674575e-05f, 6.103515625e-05f,4.315837288e-05f,3.051757812e-05f,2.157918644e-05f, 1.525878906e-05f, }; #endif #define FROMdB_LOOKUP_SZ 35 #define FROMdB2_LOOKUP_SZ 32 #define FROMdB_SHIFT 5 #define FROMdB2_SHIFT 3 #define FROMdB2_MASK 31 static float FROMdB_LOOKUP[FROMdB_LOOKUP_SZ]={ 1.f, 0.6309573445f, 0.3981071706f, 0.2511886432f, 0.1584893192f, 0.1f, 0.06309573445f, 0.03981071706f, 0.02511886432f, 0.01584893192f, 0.01f, 0.006309573445f, 0.003981071706f, 0.002511886432f, 0.001584893192f, 0.001f, 0.0006309573445f,0.0003981071706f,0.0002511886432f,0.0001584893192f, 0.0001f,6.309573445e-05f,3.981071706e-05f,2.511886432e-05f, 1.584893192e-05f, 1e-05f,6.309573445e-06f,3.981071706e-06f, 2.511886432e-06f,1.584893192e-06f, 1e-06f,6.309573445e-07f, 3.981071706e-07f,2.511886432e-07f,1.584893192e-07f, }; static float FROMdB2_LOOKUP[FROMdB2_LOOKUP_SZ]={ 0.9928302478f, 0.9786445908f, 0.9646616199f, 0.9508784391f, 0.9372921937f, 0.92390007f, 0.9106992942f, 0.8976871324f, 0.8848608897f, 0.8722179097f, 0.8597555737f, 0.8474713009f, 0.835362547f, 0.8234268041f, 0.8116616003f, 0.8000644989f, 0.7886330981f, 0.7773650302f, 0.7662579617f, 0.755309592f, 0.7445176537f, 0.7338799116f, 0.7233941627f, 0.7130582353f, 0.7028699885f, 0.6928273125f, 0.6829281272f, 0.6731703824f, 0.6635520573f, 0.6540711597f, 0.6447257262f, 0.6355138211f, }; #ifdef INT_LOOKUP #define INVSQ_LOOKUP_I_SHIFT 10 #define INVSQ_LOOKUP_I_MASK 1023 static long INVSQ_LOOKUP_I[64+1]={ 92682l, 91966l, 91267l, 90583l, 89915l, 89261l, 88621l, 87995l, 87381l, 86781l, 86192l, 85616l, 85051l, 84497l, 83953l, 83420l, 82897l, 82384l, 81880l, 81385l, 80899l, 80422l, 79953l, 79492l, 79039l, 78594l, 78156l, 77726l, 77302l, 76885l, 76475l, 76072l, 75674l, 75283l, 74898l, 74519l, 74146l, 73778l, 73415l, 73058l, 72706l, 72359l, 72016l, 71679l, 71347l, 71019l, 70695l, 70376l, 70061l, 69750l, 69444l, 69141l, 68842l, 68548l, 68256l, 67969l, 67685l, 67405l, 67128l, 66855l, 66585l, 66318l, 66054l, 65794l, 65536l, }; #define COS_LOOKUP_I_SHIFT 9 #define COS_LOOKUP_I_MASK 511 #define COS_LOOKUP_I_SZ 128 static long COS_LOOKUP_I[COS_LOOKUP_I_SZ+1]={ 16384l, 16379l, 16364l, 16340l, 16305l, 16261l, 16207l, 16143l, 16069l, 15986l, 15893l, 15791l, 15679l, 15557l, 15426l, 15286l, 15137l, 14978l, 14811l, 14635l, 14449l, 14256l, 14053l, 13842l, 13623l, 13395l, 13160l, 12916l, 12665l, 12406l, 12140l, 11866l, 11585l, 11297l, 11003l, 10702l, 10394l, 10080l, 9760l, 9434l, 9102l, 8765l, 8423l, 8076l, 7723l, 7366l, 7005l, 6639l, 6270l, 5897l, 5520l, 5139l, 4756l, 4370l, 3981l, 3590l, 3196l, 2801l, 2404l, 2006l, 1606l, 1205l, 804l, 402l, 0l, -401l, -803l, -1204l, -1605l, -2005l, -2403l, -2800l, -3195l, -3589l, -3980l, -4369l, -4755l, -5138l, -5519l, -5896l, -6269l, -6638l, -7004l, -7365l, -7722l, -8075l, -8422l, -8764l, -9101l, -9433l, -9759l, -10079l, -10393l, -10701l, -11002l, -11296l, -11584l, -11865l, -12139l, -12405l, -12664l, -12915l, -13159l, -13394l, -13622l, -13841l, -14052l, -14255l, -14448l, -14634l, -14810l, -14977l, -15136l, -15285l, -15425l, -15556l, -15678l, -15790l, -15892l, -15985l, -16068l, -16142l, -16206l, -16260l, -16304l, -16339l, -16363l, -16378l, -16383l, }; #endif #endif /********* End of inlined file: lookup_data.h *********/ #ifdef FLOAT_LOOKUP /* interpolated lookup based cos function, domain 0 to PI only */ float vorbis_coslook(float a){ double d=a*(.31830989*(float)COS_LOOKUP_SZ); int i=vorbis_ftoi(d-.5); return COS_LOOKUP[i]+ (d-i)*(COS_LOOKUP[i+1]-COS_LOOKUP[i]); } /* interpolated 1./sqrt(p) where .5 <= p < 1. */ float vorbis_invsqlook(float a){ double d=a*(2.f*(float)INVSQ_LOOKUP_SZ)-(float)INVSQ_LOOKUP_SZ; int i=vorbis_ftoi(d-.5f); return INVSQ_LOOKUP[i]+ (d-i)*(INVSQ_LOOKUP[i+1]-INVSQ_LOOKUP[i]); } /* interpolated 1./sqrt(p) where .5 <= p < 1. */ float vorbis_invsq2explook(int a){ return INVSQ2EXP_LOOKUP[a-INVSQ2EXP_LOOKUP_MIN]; } #include /* interpolated lookup based fromdB function, domain -140dB to 0dB only */ float vorbis_fromdBlook(float a){ int i=vorbis_ftoi(a*((float)(-(1<=(FROMdB_LOOKUP_SZ<>FROMdB_SHIFT]*FROMdB2_LOOKUP[i&FROMdB2_MASK]); } #endif #ifdef INT_LOOKUP /* interpolated 1./sqrt(p) where .5 <= a < 1. (.100000... to .111111...) in 16.16 format returns in m.8 format */ long vorbis_invsqlook_i(long a,long e){ long i=(a&0x7fff)>>(INVSQ_LOOKUP_I_SHIFT-1); long d=(a&INVSQ_LOOKUP_I_MASK)<<(16-INVSQ_LOOKUP_I_SHIFT); /* 0.16 */ long val=INVSQ_LOOKUP_I[i]- /* 1.16 */ (((INVSQ_LOOKUP_I[i]-INVSQ_LOOKUP_I[i+1])* /* 0.16 */ d)>>16); /* result 1.16 */ e+=32; if(e&1)val=(val*5792)>>13; /* multiply val by 1/sqrt(2) */ e=(e>>1)-8; return(val>>e); } /* interpolated lookup based fromdB function, domain -140dB to 0dB only */ /* a is in n.12 format */ float vorbis_fromdBlook_i(long a){ int i=(-a)>>(12-FROMdB2_SHIFT); return (i<0)?1.f: ((i>=(FROMdB_LOOKUP_SZ<>FROMdB_SHIFT]*FROMdB2_LOOKUP[i&FROMdB2_MASK]); } /* interpolated lookup based cos function, domain 0 to PI only */ /* a is in 0.16 format, where 0==0, 2^^16-1==PI, return 0.14 */ long vorbis_coslook_i(long a){ int i=a>>COS_LOOKUP_I_SHIFT; int d=a&COS_LOOKUP_I_MASK; return COS_LOOKUP_I[i]- ((d*(COS_LOOKUP_I[i]-COS_LOOKUP_I[i+1]))>> COS_LOOKUP_I_SHIFT); } #endif #endif /********* End of inlined file: lookup.c *********/ /* catch this in the build system; we #include for compilers (like gcc) that can't inline across modules */ /* side effect: changes *lsp to cosines of lsp */ void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, float amp,float ampoffset){ int i; float wdel=M_PI/ln; vorbis_fpu_control fpu; (void) fpu; // to avoid an unused variable warning vorbis_fpu_setround(&fpu); for(i=0;i>1; do{ q*=ftmp[0]-w; p*=ftmp[1]-w; ftmp+=2; }while(--c); if(m&1){ /* odd order filter; slightly assymetric */ /* the last coefficient */ q*=ftmp[0]-w; q*=q; p*=p*(1.f-w*w); }else{ /* even order filter; still symmetric */ q*=q*(1.f+w); p*=p*(1.f-w); } q=frexp(p+q,&qexp); q=vorbis_fromdBlook(amp* vorbis_invsqlook(q)* vorbis_invsq2explook(qexp+m)- ampoffset); do{ curve[i++]*=q; }while(map[i]==k); } vorbis_fpu_restore(fpu); } #else #ifdef INT_LOOKUP /********* Start of inlined file: lookup.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include /********* Start of inlined file: lookup.h *********/ #ifndef _V_LOOKUP_H_ #ifdef FLOAT_LOOKUP extern float vorbis_coslook(float a); extern float vorbis_invsqlook(float a); extern float vorbis_invsq2explook(int a); extern float vorbis_fromdBlook(float a); #endif #ifdef INT_LOOKUP extern long vorbis_invsqlook_i(long a,long e); extern long vorbis_coslook_i(long a); extern float vorbis_fromdBlook_i(long a); #endif #endif /********* End of inlined file: lookup.h *********/ /********* Start of inlined file: lookup_data.h *********/ #ifndef _V_LOOKUP_DATA_H_ #ifdef FLOAT_LOOKUP #define COS_LOOKUP_SZ 128 static float COS_LOOKUP[COS_LOOKUP_SZ+1]={ +1.0000000000000f,+0.9996988186962f,+0.9987954562052f,+0.9972904566787f, +0.9951847266722f,+0.9924795345987f,+0.9891765099648f,+0.9852776423889f, +0.9807852804032f,+0.9757021300385f,+0.9700312531945f,+0.9637760657954f, +0.9569403357322f,+0.9495281805930f,+0.9415440651830f,+0.9329927988347f, +0.9238795325113f,+0.9142097557035f,+0.9039892931234f,+0.8932243011955f, +0.8819212643484f,+0.8700869911087f,+0.8577286100003f,+0.8448535652497f, +0.8314696123025f,+0.8175848131516f,+0.8032075314806f,+0.7883464276266f, +0.7730104533627f,+0.7572088465065f,+0.7409511253550f,+0.7242470829515f, +0.7071067811865f,+0.6895405447371f,+0.6715589548470f,+0.6531728429538f, +0.6343932841636f,+0.6152315905806f,+0.5956993044924f,+0.5758081914178f, +0.5555702330196f,+0.5349976198871f,+0.5141027441932f,+0.4928981922298f, +0.4713967368260f,+0.4496113296546f,+0.4275550934303f,+0.4052413140050f, +0.3826834323651f,+0.3598950365350f,+0.3368898533922f,+0.3136817403989f, +0.2902846772545f,+0.2667127574749f,+0.2429801799033f,+0.2191012401569f, +0.1950903220161f,+0.1709618887603f,+0.1467304744554f,+0.1224106751992f, +0.0980171403296f,+0.0735645635997f,+0.0490676743274f,+0.0245412285229f, +0.0000000000000f,-0.0245412285229f,-0.0490676743274f,-0.0735645635997f, -0.0980171403296f,-0.1224106751992f,-0.1467304744554f,-0.1709618887603f, -0.1950903220161f,-0.2191012401569f,-0.2429801799033f,-0.2667127574749f, -0.2902846772545f,-0.3136817403989f,-0.3368898533922f,-0.3598950365350f, -0.3826834323651f,-0.4052413140050f,-0.4275550934303f,-0.4496113296546f, -0.4713967368260f,-0.4928981922298f,-0.5141027441932f,-0.5349976198871f, -0.5555702330196f,-0.5758081914178f,-0.5956993044924f,-0.6152315905806f, -0.6343932841636f,-0.6531728429538f,-0.6715589548470f,-0.6895405447371f, -0.7071067811865f,-0.7242470829515f,-0.7409511253550f,-0.7572088465065f, -0.7730104533627f,-0.7883464276266f,-0.8032075314806f,-0.8175848131516f, -0.8314696123025f,-0.8448535652497f,-0.8577286100003f,-0.8700869911087f, -0.8819212643484f,-0.8932243011955f,-0.9039892931234f,-0.9142097557035f, -0.9238795325113f,-0.9329927988347f,-0.9415440651830f,-0.9495281805930f, -0.9569403357322f,-0.9637760657954f,-0.9700312531945f,-0.9757021300385f, -0.9807852804032f,-0.9852776423889f,-0.9891765099648f,-0.9924795345987f, -0.9951847266722f,-0.9972904566787f,-0.9987954562052f,-0.9996988186962f, -1.0000000000000f, }; #define INVSQ_LOOKUP_SZ 32 static float INVSQ_LOOKUP[INVSQ_LOOKUP_SZ+1]={ 1.414213562373f,1.392621247646f,1.371988681140f,1.352246807566f, 1.333333333333f,1.315191898443f,1.297771369046f,1.281025230441f, 1.264911064067f,1.249390095109f,1.234426799697f,1.219988562661f, 1.206045378311f,1.192569588000f,1.179535649239f,1.166919931983f, 1.154700538379f,1.142857142857f,1.131370849898f,1.120224067222f, 1.109400392450f,1.098884511590f,1.088662107904f,1.078719779941f, 1.069044967650f,1.059625885652f,1.050451462878f,1.041511287847f, 1.032795558989f,1.024295039463f,1.016001016002f,1.007905261358f, 1.000000000000f, }; #define INVSQ2EXP_LOOKUP_MIN (-32) #define INVSQ2EXP_LOOKUP_MAX 32 static float INVSQ2EXP_LOOKUP[INVSQ2EXP_LOOKUP_MAX-\ INVSQ2EXP_LOOKUP_MIN+1]={ 65536.f, 46340.95001f, 32768.f, 23170.47501f, 16384.f, 11585.2375f, 8192.f, 5792.618751f, 4096.f, 2896.309376f, 2048.f, 1448.154688f, 1024.f, 724.0773439f, 512.f, 362.038672f, 256.f, 181.019336f, 128.f, 90.50966799f, 64.f, 45.254834f, 32.f, 22.627417f, 16.f, 11.3137085f, 8.f, 5.656854249f, 4.f, 2.828427125f, 2.f, 1.414213562f, 1.f, 0.7071067812f, 0.5f, 0.3535533906f, 0.25f, 0.1767766953f, 0.125f, 0.08838834765f, 0.0625f, 0.04419417382f, 0.03125f, 0.02209708691f, 0.015625f, 0.01104854346f, 0.0078125f, 0.005524271728f, 0.00390625f, 0.002762135864f, 0.001953125f, 0.001381067932f, 0.0009765625f, 0.000690533966f, 0.00048828125f, 0.000345266983f, 0.000244140625f,0.0001726334915f,0.0001220703125f,8.631674575e-05f, 6.103515625e-05f,4.315837288e-05f,3.051757812e-05f,2.157918644e-05f, 1.525878906e-05f, }; #endif #define FROMdB_LOOKUP_SZ 35 #define FROMdB2_LOOKUP_SZ 32 #define FROMdB_SHIFT 5 #define FROMdB2_SHIFT 3 #define FROMdB2_MASK 31 static float FROMdB_LOOKUP[FROMdB_LOOKUP_SZ]={ 1.f, 0.6309573445f, 0.3981071706f, 0.2511886432f, 0.1584893192f, 0.1f, 0.06309573445f, 0.03981071706f, 0.02511886432f, 0.01584893192f, 0.01f, 0.006309573445f, 0.003981071706f, 0.002511886432f, 0.001584893192f, 0.001f, 0.0006309573445f,0.0003981071706f,0.0002511886432f,0.0001584893192f, 0.0001f,6.309573445e-05f,3.981071706e-05f,2.511886432e-05f, 1.584893192e-05f, 1e-05f,6.309573445e-06f,3.981071706e-06f, 2.511886432e-06f,1.584893192e-06f, 1e-06f,6.309573445e-07f, 3.981071706e-07f,2.511886432e-07f,1.584893192e-07f, }; static float FROMdB2_LOOKUP[FROMdB2_LOOKUP_SZ]={ 0.9928302478f, 0.9786445908f, 0.9646616199f, 0.9508784391f, 0.9372921937f, 0.92390007f, 0.9106992942f, 0.8976871324f, 0.8848608897f, 0.8722179097f, 0.8597555737f, 0.8474713009f, 0.835362547f, 0.8234268041f, 0.8116616003f, 0.8000644989f, 0.7886330981f, 0.7773650302f, 0.7662579617f, 0.755309592f, 0.7445176537f, 0.7338799116f, 0.7233941627f, 0.7130582353f, 0.7028699885f, 0.6928273125f, 0.6829281272f, 0.6731703824f, 0.6635520573f, 0.6540711597f, 0.6447257262f, 0.6355138211f, }; #ifdef INT_LOOKUP #define INVSQ_LOOKUP_I_SHIFT 10 #define INVSQ_LOOKUP_I_MASK 1023 static long INVSQ_LOOKUP_I[64+1]={ 92682l, 91966l, 91267l, 90583l, 89915l, 89261l, 88621l, 87995l, 87381l, 86781l, 86192l, 85616l, 85051l, 84497l, 83953l, 83420l, 82897l, 82384l, 81880l, 81385l, 80899l, 80422l, 79953l, 79492l, 79039l, 78594l, 78156l, 77726l, 77302l, 76885l, 76475l, 76072l, 75674l, 75283l, 74898l, 74519l, 74146l, 73778l, 73415l, 73058l, 72706l, 72359l, 72016l, 71679l, 71347l, 71019l, 70695l, 70376l, 70061l, 69750l, 69444l, 69141l, 68842l, 68548l, 68256l, 67969l, 67685l, 67405l, 67128l, 66855l, 66585l, 66318l, 66054l, 65794l, 65536l, }; #define COS_LOOKUP_I_SHIFT 9 #define COS_LOOKUP_I_MASK 511 #define COS_LOOKUP_I_SZ 128 static long COS_LOOKUP_I[COS_LOOKUP_I_SZ+1]={ 16384l, 16379l, 16364l, 16340l, 16305l, 16261l, 16207l, 16143l, 16069l, 15986l, 15893l, 15791l, 15679l, 15557l, 15426l, 15286l, 15137l, 14978l, 14811l, 14635l, 14449l, 14256l, 14053l, 13842l, 13623l, 13395l, 13160l, 12916l, 12665l, 12406l, 12140l, 11866l, 11585l, 11297l, 11003l, 10702l, 10394l, 10080l, 9760l, 9434l, 9102l, 8765l, 8423l, 8076l, 7723l, 7366l, 7005l, 6639l, 6270l, 5897l, 5520l, 5139l, 4756l, 4370l, 3981l, 3590l, 3196l, 2801l, 2404l, 2006l, 1606l, 1205l, 804l, 402l, 0l, -401l, -803l, -1204l, -1605l, -2005l, -2403l, -2800l, -3195l, -3589l, -3980l, -4369l, -4755l, -5138l, -5519l, -5896l, -6269l, -6638l, -7004l, -7365l, -7722l, -8075l, -8422l, -8764l, -9101l, -9433l, -9759l, -10079l, -10393l, -10701l, -11002l, -11296l, -11584l, -11865l, -12139l, -12405l, -12664l, -12915l, -13159l, -13394l, -13622l, -13841l, -14052l, -14255l, -14448l, -14634l, -14810l, -14977l, -15136l, -15285l, -15425l, -15556l, -15678l, -15790l, -15892l, -15985l, -16068l, -16142l, -16206l, -16260l, -16304l, -16339l, -16363l, -16378l, -16383l, }; #endif #endif /********* End of inlined file: lookup_data.h *********/ #ifdef FLOAT_LOOKUP /* interpolated lookup based cos function, domain 0 to PI only */ float vorbis_coslook(float a){ double d=a*(.31830989*(float)COS_LOOKUP_SZ); int i=vorbis_ftoi(d-.5); return COS_LOOKUP[i]+ (d-i)*(COS_LOOKUP[i+1]-COS_LOOKUP[i]); } /* interpolated 1./sqrt(p) where .5 <= p < 1. */ float vorbis_invsqlook(float a){ double d=a*(2.f*(float)INVSQ_LOOKUP_SZ)-(float)INVSQ_LOOKUP_SZ; int i=vorbis_ftoi(d-.5f); return INVSQ_LOOKUP[i]+ (d-i)*(INVSQ_LOOKUP[i+1]-INVSQ_LOOKUP[i]); } /* interpolated 1./sqrt(p) where .5 <= p < 1. */ float vorbis_invsq2explook(int a){ return INVSQ2EXP_LOOKUP[a-INVSQ2EXP_LOOKUP_MIN]; } #include /* interpolated lookup based fromdB function, domain -140dB to 0dB only */ float vorbis_fromdBlook(float a){ int i=vorbis_ftoi(a*((float)(-(1<=(FROMdB_LOOKUP_SZ<>FROMdB_SHIFT]*FROMdB2_LOOKUP[i&FROMdB2_MASK]); } #endif #ifdef INT_LOOKUP /* interpolated 1./sqrt(p) where .5 <= a < 1. (.100000... to .111111...) in 16.16 format returns in m.8 format */ long vorbis_invsqlook_i(long a,long e){ long i=(a&0x7fff)>>(INVSQ_LOOKUP_I_SHIFT-1); long d=(a&INVSQ_LOOKUP_I_MASK)<<(16-INVSQ_LOOKUP_I_SHIFT); /* 0.16 */ long val=INVSQ_LOOKUP_I[i]- /* 1.16 */ (((INVSQ_LOOKUP_I[i]-INVSQ_LOOKUP_I[i+1])* /* 0.16 */ d)>>16); /* result 1.16 */ e+=32; if(e&1)val=(val*5792)>>13; /* multiply val by 1/sqrt(2) */ e=(e>>1)-8; return(val>>e); } /* interpolated lookup based fromdB function, domain -140dB to 0dB only */ /* a is in n.12 format */ float vorbis_fromdBlook_i(long a){ int i=(-a)>>(12-FROMdB2_SHIFT); return (i<0)?1.f: ((i>=(FROMdB_LOOKUP_SZ<>FROMdB_SHIFT]*FROMdB2_LOOKUP[i&FROMdB2_MASK]); } /* interpolated lookup based cos function, domain 0 to PI only */ /* a is in 0.16 format, where 0==0, 2^^16-1==PI, return 0.14 */ long vorbis_coslook_i(long a){ int i=a>>COS_LOOKUP_I_SHIFT; int d=a&COS_LOOKUP_I_MASK; return COS_LOOKUP_I[i]- ((d*(COS_LOOKUP_I[i]-COS_LOOKUP_I[i+1]))>> COS_LOOKUP_I_SHIFT); } #endif #endif /********* End of inlined file: lookup.c *********/ /* catch this in the build system; we #include for compilers (like gcc) that can't inline across modules */ static int MLOOP_1[64]={ 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13, 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14, 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, }; static int MLOOP_2[64]={ 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7, 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8, 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, }; static int MLOOP_3[8]={0,1,2,2,3,3,3,3}; /* side effect: changes *lsp to cosines of lsp */ void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, float amp,float ampoffset){ /* 0 <= m < 256 */ /* set up for using all int later */ int i; int ampoffseti=rint(ampoffset*4096.f); int ampi=rint(amp*16.f); long *ilsp=alloca(m*sizeof(*ilsp)); for(i=0;i>25])) if(!(shift=MLOOP_2[(pi|qi)>>19])) shift=MLOOP_3[(pi|qi)>>16]; qi=(qi>>shift)*labs(ilsp[j-1]-wi); pi=(pi>>shift)*labs(ilsp[j]-wi); qexp+=shift; } if(!(shift=MLOOP_1[(pi|qi)>>25])) if(!(shift=MLOOP_2[(pi|qi)>>19])) shift=MLOOP_3[(pi|qi)>>16]; /* pi,qi normalized collectively, both tracked using qexp */ if(m&1){ /* odd order filter; slightly assymetric */ /* the last coefficient */ qi=(qi>>shift)*labs(ilsp[j-1]-wi); pi=(pi>>shift)<<14; qexp+=shift; if(!(shift=MLOOP_1[(pi|qi)>>25])) if(!(shift=MLOOP_2[(pi|qi)>>19])) shift=MLOOP_3[(pi|qi)>>16]; pi>>=shift; qi>>=shift; qexp+=shift-14*((m+1)>>1); pi=((pi*pi)>>16); qi=((qi*qi)>>16); qexp=qexp*2+m; pi*=(1<<14)-((wi*wi)>>14); qi+=pi>>14; }else{ /* even order filter; still symmetric */ /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't worth tracking step by step */ pi>>=shift; qi>>=shift; qexp+=shift-7*m; pi=((pi*pi)>>16); qi=((qi*qi)>>16); qexp=qexp*2+m; pi*=(1<<14)-wi; qi*=(1<<14)+wi; qi=(qi+pi)>>14; } /* we've let the normalization drift because it wasn't important; however, for the lookup, things must be normalized again. We need at most one right shift or a number of left shifts */ if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */ qi>>=1; qexp++; }else while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/ qi<<=1; qexp--; } amp=vorbis_fromdBlook_i(ampi* /* n.4 */ vorbis_invsqlook_i(qi,qexp)- /* m.8, m+n<=8 */ ampoffseti); /* 8.12[0] */ curve[i]*=amp; while(map[++i]==k)curve[i]*=amp; } } #else /* old, nonoptimized but simple version for any poor sap who needs to figure out what the hell this code does, or wants the other fraction of a dB precision */ /* side effect: changes *lsp to cosines of lsp */ void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, float amp,float ampoffset){ int i; float wdel=M_PI/ln; for(i=0;i= i; j--) { g[j-2] -= g[j]; g[j] += g[j]; } } } static int comp(const void *a,const void *b){ return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b); } /* Newton-Raphson-Maehly actually functioned as a decent root finder, but there are root sets for which it gets into limit cycles (exacerbated by zero suppression) and fails. We can't afford to fail, even if the failure is 1 in 100,000,000, so we now use Laguerre and later polish with Newton-Raphson (which can then afford to fail) */ #define EPSILON 10e-7 static int Laguerre_With_Deflation(float *a,int ord,float *r){ int i,m; double lastdelta=0.f; double *defl=(double*)alloca(sizeof(*defl)*(ord+1)); for(i=0;i<=ord;i++)defl[i]=a[i]; for(m=ord;m>0;m--){ double newx=0.f,delta; /* iterate a root */ while(1){ double p=defl[m],pp=0.f,ppp=0.f,denom; /* eval the polynomial and its first two derivatives */ for(i=m;i>0;i--){ ppp = newx*ppp + pp; pp = newx*pp + p; p = newx*p + defl[i-1]; } /* Laguerre's method */ denom=(m-1) * ((m-1)*pp*pp - m*p*ppp); if(denom<0) return(-1); /* complex root! The LPC generator handed us a bad filter */ if(pp>0){ denom = pp + sqrt(denom); if(denom-(EPSILON))denom=-(EPSILON); } delta = m*p/denom; newx -= delta; if(delta<0.f)delta*=-1; if(fabs(delta/newx)<10e-12)break; lastdelta=delta; } r[m-1]=newx; /* forward deflation */ for(i=m;i>0;i--) defl[i-1]+=newx*defl[i]; defl++; } return(0); } /* for spit-and-polish only */ static int Newton_Raphson(float *a,int ord,float *r){ int i, k, count=0; double error=1.f; double *root=(double*)alloca(ord*sizeof(*root)); for(i=0; i1e-20){ error=0; for(i=0; i= 0; k--) { pp= pp* rooti + p; p = p * rooti + a[k]; } delta = p/pp; root[i] -= delta; error+= delta*delta; } if(count>40)return(-1); count++; } /* Replaced the original bubble sort with a real sort. With your help, we can eliminate the bubble sort in our lifetime. --Monty */ for(i=0; i>1; int g1_order,g2_order; float *g1=(float*)alloca(sizeof(*g1)*(order2+1)); float *g2=(float*)alloca(sizeof(*g2)*(order2+1)); float *g1r=(float*)alloca(sizeof(*g1r)*(order2+1)); float *g2r=(float*)alloca(sizeof(*g2r)*(order2+1)); int i; /* even and odd are slightly different base cases */ g1_order=(m+1)>>1; g2_order=(m) >>1; /* Compute the lengths of the x polynomials. */ /* Compute the first half of K & R F1 & F2 polynomials. */ /* Compute half of the symmetric and antisymmetric polynomials. */ /* Remove the roots at +1 and -1. */ g1[g1_order] = 1.f; for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i]; g2[g2_order] = 1.f; for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i]; if(g1_order>g2_order){ for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2]; }else{ for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1]; for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1]; } /* Convert into polynomials in cos(alpha) */ cheby(g1,g1_order); cheby(g2,g2_order); /* Find the roots of the 2 even polynomials.*/ if(Laguerre_With_Deflation(g1,g1_order,g1r) || Laguerre_With_Deflation(g2,g2_order,g2r)) return(-1); Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */ Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */ qsort(g1r,g1_order,sizeof(*g1r),comp); qsort(g2r,g2_order,sizeof(*g2r),comp); for(i=0;i #include #include #include /* simplistic, wasteful way of doing this (unique lookup for each mode/submapping); there should be a central repository for identical lookups. That will require minor work, so I'm putting it off as low priority. Why a lookup for each backend in a given mode? Because the blocksize is set by the mode, and low backend lookups may require parameters from other areas of the mode/mapping */ static void mapping0_free_info(vorbis_info_mapping *i){ vorbis_info_mapping0 *info=(vorbis_info_mapping0 *)i; if(info){ memset(info,0,sizeof(*info)); _ogg_free(info); } } static int ilog3(unsigned int v){ int ret=0; if(v)--v; while(v){ ret++; v>>=1; } return(ret); } static void mapping0_pack(vorbis_info *vi,vorbis_info_mapping *vm, oggpack_buffer *opb){ int i; vorbis_info_mapping0 *info=(vorbis_info_mapping0 *)vm; /* another 'we meant to do it this way' hack... up to beta 4, we packed 4 binary zeros here to signify one submapping in use. We now redefine that to mean four bitflags that indicate use of deeper features; bit0:submappings, bit1:coupling, bit2,3:reserved. This is backward compatable with all actual uses of the beta code. */ if(info->submaps>1){ oggpack_write(opb,1,1); oggpack_write(opb,info->submaps-1,4); }else oggpack_write(opb,0,1); if(info->coupling_steps>0){ oggpack_write(opb,1,1); oggpack_write(opb,info->coupling_steps-1,8); for(i=0;icoupling_steps;i++){ oggpack_write(opb,info->coupling_mag[i],ilog3(vi->channels)); oggpack_write(opb,info->coupling_ang[i],ilog3(vi->channels)); } }else oggpack_write(opb,0,1); oggpack_write(opb,0,2); /* 2,3:reserved */ /* we don't write the channel submappings if we only have one... */ if(info->submaps>1){ for(i=0;ichannels;i++) oggpack_write(opb,info->chmuxlist[i],4); } for(i=0;isubmaps;i++){ oggpack_write(opb,0,8); /* time submap unused */ oggpack_write(opb,info->floorsubmap[i],8); oggpack_write(opb,info->residuesubmap[i],8); } } /* also responsible for range checking */ static vorbis_info_mapping *mapping0_unpack(vorbis_info *vi,oggpack_buffer *opb){ int i; vorbis_info_mapping0 *info=(vorbis_info_mapping0*)_ogg_calloc(1,sizeof(*info)); codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; memset(info,0,sizeof(*info)); if(oggpack_read(opb,1)) info->submaps=oggpack_read(opb,4)+1; else info->submaps=1; if(oggpack_read(opb,1)){ info->coupling_steps=oggpack_read(opb,8)+1; for(i=0;icoupling_steps;i++){ int testM=info->coupling_mag[i]=oggpack_read(opb,ilog3(vi->channels)); int testA=info->coupling_ang[i]=oggpack_read(opb,ilog3(vi->channels)); if(testM<0 || testA<0 || testM==testA || testM>=vi->channels || testA>=vi->channels) goto err_out; } } if(oggpack_read(opb,2)>0)goto err_out; /* 2,3:reserved */ if(info->submaps>1){ for(i=0;ichannels;i++){ info->chmuxlist[i]=oggpack_read(opb,4); if(info->chmuxlist[i]>=info->submaps)goto err_out; } } for(i=0;isubmaps;i++){ oggpack_read(opb,8); /* time submap unused */ info->floorsubmap[i]=oggpack_read(opb,8); if(info->floorsubmap[i]>=ci->floors)goto err_out; info->residuesubmap[i]=oggpack_read(opb,8); if(info->residuesubmap[i]>=ci->residues)goto err_out; } return info; err_out: mapping0_free_info(info); return(NULL); } #if 0 static long seq=0; static ogg_int64_t total=0; static float FLOOR1_fromdB_LOOKUP[256]={ 1.0649863e-07F, 1.1341951e-07F, 1.2079015e-07F, 1.2863978e-07F, 1.3699951e-07F, 1.4590251e-07F, 1.5538408e-07F, 1.6548181e-07F, 1.7623575e-07F, 1.8768855e-07F, 1.9988561e-07F, 2.128753e-07F, 2.2670913e-07F, 2.4144197e-07F, 2.5713223e-07F, 2.7384213e-07F, 2.9163793e-07F, 3.1059021e-07F, 3.3077411e-07F, 3.5226968e-07F, 3.7516214e-07F, 3.9954229e-07F, 4.2550680e-07F, 4.5315863e-07F, 4.8260743e-07F, 5.1396998e-07F, 5.4737065e-07F, 5.8294187e-07F, 6.2082472e-07F, 6.6116941e-07F, 7.0413592e-07F, 7.4989464e-07F, 7.9862701e-07F, 8.5052630e-07F, 9.0579828e-07F, 9.6466216e-07F, 1.0273513e-06F, 1.0941144e-06F, 1.1652161e-06F, 1.2409384e-06F, 1.3215816e-06F, 1.4074654e-06F, 1.4989305e-06F, 1.5963394e-06F, 1.7000785e-06F, 1.8105592e-06F, 1.9282195e-06F, 2.0535261e-06F, 2.1869758e-06F, 2.3290978e-06F, 2.4804557e-06F, 2.6416497e-06F, 2.8133190e-06F, 2.9961443e-06F, 3.1908506e-06F, 3.3982101e-06F, 3.6190449e-06F, 3.8542308e-06F, 4.1047004e-06F, 4.3714470e-06F, 4.6555282e-06F, 4.9580707e-06F, 5.2802740e-06F, 5.6234160e-06F, 5.9888572e-06F, 6.3780469e-06F, 6.7925283e-06F, 7.2339451e-06F, 7.7040476e-06F, 8.2047000e-06F, 8.7378876e-06F, 9.3057248e-06F, 9.9104632e-06F, 1.0554501e-05F, 1.1240392e-05F, 1.1970856e-05F, 1.2748789e-05F, 1.3577278e-05F, 1.4459606e-05F, 1.5399272e-05F, 1.6400004e-05F, 1.7465768e-05F, 1.8600792e-05F, 1.9809576e-05F, 2.1096914e-05F, 2.2467911e-05F, 2.3928002e-05F, 2.5482978e-05F, 2.7139006e-05F, 2.8902651e-05F, 3.0780908e-05F, 3.2781225e-05F, 3.4911534e-05F, 3.7180282e-05F, 3.9596466e-05F, 4.2169667e-05F, 4.4910090e-05F, 4.7828601e-05F, 5.0936773e-05F, 5.4246931e-05F, 5.7772202e-05F, 6.1526565e-05F, 6.5524908e-05F, 6.9783085e-05F, 7.4317983e-05F, 7.9147585e-05F, 8.4291040e-05F, 8.9768747e-05F, 9.5602426e-05F, 0.00010181521F, 0.00010843174F, 0.00011547824F, 0.00012298267F, 0.00013097477F, 0.00013948625F, 0.00014855085F, 0.00015820453F, 0.00016848555F, 0.00017943469F, 0.00019109536F, 0.00020351382F, 0.00021673929F, 0.00023082423F, 0.00024582449F, 0.00026179955F, 0.00027881276F, 0.00029693158F, 0.00031622787F, 0.00033677814F, 0.00035866388F, 0.00038197188F, 0.00040679456F, 0.00043323036F, 0.00046138411F, 0.00049136745F, 0.00052329927F, 0.00055730621F, 0.00059352311F, 0.00063209358F, 0.00067317058F, 0.00071691700F, 0.00076350630F, 0.00081312324F, 0.00086596457F, 0.00092223983F, 0.00098217216F, 0.0010459992F, 0.0011139742F, 0.0011863665F, 0.0012634633F, 0.0013455702F, 0.0014330129F, 0.0015261382F, 0.0016253153F, 0.0017309374F, 0.0018434235F, 0.0019632195F, 0.0020908006F, 0.0022266726F, 0.0023713743F, 0.0025254795F, 0.0026895994F, 0.0028643847F, 0.0030505286F, 0.0032487691F, 0.0034598925F, 0.0036847358F, 0.0039241906F, 0.0041792066F, 0.0044507950F, 0.0047400328F, 0.0050480668F, 0.0053761186F, 0.0057254891F, 0.0060975636F, 0.0064938176F, 0.0069158225F, 0.0073652516F, 0.0078438871F, 0.0083536271F, 0.0088964928F, 0.009474637F, 0.010090352F, 0.010746080F, 0.011444421F, 0.012188144F, 0.012980198F, 0.013823725F, 0.014722068F, 0.015678791F, 0.016697687F, 0.017782797F, 0.018938423F, 0.020169149F, 0.021479854F, 0.022875735F, 0.024362330F, 0.025945531F, 0.027631618F, 0.029427276F, 0.031339626F, 0.033376252F, 0.035545228F, 0.037855157F, 0.040315199F, 0.042935108F, 0.045725273F, 0.048696758F, 0.051861348F, 0.055231591F, 0.058820850F, 0.062643361F, 0.066714279F, 0.071049749F, 0.075666962F, 0.080584227F, 0.085821044F, 0.091398179F, 0.097337747F, 0.10366330F, 0.11039993F, 0.11757434F, 0.12521498F, 0.13335215F, 0.14201813F, 0.15124727F, 0.16107617F, 0.17154380F, 0.18269168F, 0.19456402F, 0.20720788F, 0.22067342F, 0.23501402F, 0.25028656F, 0.26655159F, 0.28387361F, 0.30232132F, 0.32196786F, 0.34289114F, 0.36517414F, 0.38890521F, 0.41417847F, 0.44109412F, 0.46975890F, 0.50028648F, 0.53279791F, 0.56742212F, 0.60429640F, 0.64356699F, 0.68538959F, 0.72993007F, 0.77736504F, 0.82788260F, 0.88168307F, 0.9389798F, 1.F, }; #endif extern int *floor1_fit(vorbis_block *vb,void *look, const float *logmdct, /* in */ const float *logmask); extern int *floor1_interpolate_fit(vorbis_block *vb,void *look, int *A,int *B, int del); extern int floor1_encode(oggpack_buffer *opb,vorbis_block *vb, void*look, int *post,int *ilogmask); static int mapping0_forward(vorbis_block *vb){ vorbis_dsp_state *vd=vb->vd; vorbis_info *vi=vd->vi; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; private_state *b=(private_state*)vb->vd->backend_state; vorbis_block_internal *vbi=(vorbis_block_internal *)vb->internal; int n=vb->pcmend; int i,j,k; int *nonzero = (int*) alloca(sizeof(*nonzero)*vi->channels); float **gmdct = (float**) _vorbis_block_alloc(vb,vi->channels*sizeof(*gmdct)); int **ilogmaskch= (int**) _vorbis_block_alloc(vb,vi->channels*sizeof(*ilogmaskch)); int ***floor_posts = (int***) _vorbis_block_alloc(vb,vi->channels*sizeof(*floor_posts)); float global_ampmax=vbi->ampmax; float *local_ampmax=(float*)alloca(sizeof(*local_ampmax)*vi->channels); int blocktype=vbi->blocktype; int modenumber=vb->W; vorbis_info_mapping0 *info=(vorbis_info_mapping0*)ci->map_param[modenumber]; vorbis_look_psy *psy_look= b->psy+blocktype+(vb->W?2:0); vb->mode=modenumber; for(i=0;ichannels;i++){ float scale=4.f/n; float scale_dB; float *pcm =vb->pcm[i]; float *logfft =pcm; gmdct[i]=(float*)_vorbis_block_alloc(vb,n/2*sizeof(**gmdct)); scale_dB=todB(&scale) + .345; /* + .345 is a hack; the original todB estimation used on IEEE 754 compliant machines had a bug that returned dB values about a third of a decibel too high. The bug was harmless because tunings implicitly took that into account. However, fixing the bug in the estimator requires changing all the tunings as well. For now, it's easier to sync things back up here, and recalibrate the tunings in the next major model upgrade. */ #if 0 if(vi->channels==2) if(i==0) _analysis_output("pcmL",seq,pcm,n,0,0,total-n/2); else _analysis_output("pcmR",seq,pcm,n,0,0,total-n/2); #endif /* window the PCM data */ _vorbis_apply_window(pcm,b->window,ci->blocksizes,vb->lW,vb->W,vb->nW); #if 0 if(vi->channels==2) if(i==0) _analysis_output("windowedL",seq,pcm,n,0,0,total-n/2); else _analysis_output("windowedR",seq,pcm,n,0,0,total-n/2); #endif /* transform the PCM data */ /* only MDCT right now.... */ mdct_forward((mdct_lookup*) b->transform[vb->W][0],pcm,gmdct[i]); /* FFT yields more accurate tonal estimation (not phase sensitive) */ drft_forward(&b->fft_look[vb->W],pcm); logfft[0]=scale_dB+todB(pcm) + .345; /* + .345 is a hack; the original todB estimation used on IEEE 754 compliant machines had a bug that returned dB values about a third of a decibel too high. The bug was harmless because tunings implicitly took that into account. However, fixing the bug in the estimator requires changing all the tunings as well. For now, it's easier to sync things back up here, and recalibrate the tunings in the next major model upgrade. */ local_ampmax[i]=logfft[0]; for(j=1;j>1]=scale_dB+.5f*todB(&temp) + .345; /* + .345 is a hack; the original todB estimation used on IEEE 754 compliant machines had a bug that returned dB values about a third of a decibel too high. The bug was harmless because tunings implicitly took that into account. However, fixing the bug in the estimator requires changing all the tunings as well. For now, it's easier to sync things back up here, and recalibrate the tunings in the next major model upgrade. */ if(temp>local_ampmax[i])local_ampmax[i]=temp; } if(local_ampmax[i]>0.f)local_ampmax[i]=0.f; if(local_ampmax[i]>global_ampmax)global_ampmax=local_ampmax[i]; #if 0 if(vi->channels==2){ if(i==0){ _analysis_output("fftL",seq,logfft,n/2,1,0,0); }else{ _analysis_output("fftR",seq,logfft,n/2,1,0,0); } } #endif } { float *noise = (float*) _vorbis_block_alloc(vb,n/2*sizeof(*noise)); float *tone = (float*) _vorbis_block_alloc(vb,n/2*sizeof(*tone)); for(i=0;ichannels;i++){ /* the encoder setup assumes that all the modes used by any specific bitrate tweaking use the same floor */ int submap=info->chmuxlist[i]; /* the following makes things clearer to *me* anyway */ float *mdct =gmdct[i]; float *logfft =vb->pcm[i]; float *logmdct =logfft+n/2; float *logmask =logfft; vb->mode=modenumber; floor_posts[i]=(int**) _vorbis_block_alloc(vb,PACKETBLOBS*sizeof(**floor_posts)); memset(floor_posts[i],0,sizeof(**floor_posts)*PACKETBLOBS); for(j=0;jchannels==2){ if(i==0) _analysis_output("mdctL",seq,logmdct,n/2,1,0,0); else _analysis_output("mdctR",seq,logmdct,n/2,1,0,0); }else{ _analysis_output("mdct",seq,logmdct,n/2,1,0,0); } #endif /* first step; noise masking. Not only does 'noise masking' give us curves from which we can decide how much resolution to give noise parts of the spectrum, it also implicitly hands us a tonality estimate (the larger the value in the 'noise_depth' vector, the more tonal that area is) */ _vp_noisemask(psy_look, logmdct, noise); /* noise does not have by-frequency offset bias applied yet */ #if 0 if(vi->channels==2){ if(i==0) _analysis_output("noiseL",seq,noise,n/2,1,0,0); else _analysis_output("noiseR",seq,noise,n/2,1,0,0); } #endif /* second step: 'all the other crap'; all the stuff that isn't computed/fit for bitrate management goes in the second psy vector. This includes tone masking, peak limiting and ATH */ _vp_tonemask(psy_look, logfft, tone, global_ampmax, local_ampmax[i]); #if 0 if(vi->channels==2){ if(i==0) _analysis_output("toneL",seq,tone,n/2,1,0,0); else _analysis_output("toneR",seq,tone,n/2,1,0,0); } #endif /* third step; we offset the noise vectors, overlay tone masking. We then do a floor1-specific line fit. If we're performing bitrate management, the line fit is performed multiple times for up/down tweakage on demand. */ #if 0 { float aotuv[psy_look->n]; #endif _vp_offset_and_mix(psy_look, noise, tone, 1, logmask, mdct, logmdct); #if 0 if(vi->channels==2){ if(i==0) _analysis_output("aotuvM1_L",seq,aotuv,psy_look->n,1,1,0); else _analysis_output("aotuvM1_R",seq,aotuv,psy_look->n,1,1,0); } } #endif #if 0 if(vi->channels==2){ if(i==0) _analysis_output("mask1L",seq,logmask,n/2,1,0,0); else _analysis_output("mask1R",seq,logmask,n/2,1,0,0); } #endif /* this algorithm is hardwired to floor 1 for now; abort out if we're *not* floor1. This won't happen unless someone has broken the encode setup lib. Guard it anyway. */ if(ci->floor_type[info->floorsubmap[submap]]!=1)return(-1); floor_posts[i][PACKETBLOBS/2]= floor1_fit(vb,b->flr[info->floorsubmap[submap]], logmdct, logmask); /* are we managing bitrate? If so, perform two more fits for later rate tweaking (fits represent hi/lo) */ if(vorbis_bitrate_managed(vb) && floor_posts[i][PACKETBLOBS/2]){ /* higher rate by way of lower noise curve */ _vp_offset_and_mix(psy_look, noise, tone, 2, logmask, mdct, logmdct); #if 0 if(vi->channels==2){ if(i==0) _analysis_output("mask2L",seq,logmask,n/2,1,0,0); else _analysis_output("mask2R",seq,logmask,n/2,1,0,0); } #endif floor_posts[i][PACKETBLOBS-1]= floor1_fit(vb,b->flr[info->floorsubmap[submap]], logmdct, logmask); /* lower rate by way of higher noise curve */ _vp_offset_and_mix(psy_look, noise, tone, 0, logmask, mdct, logmdct); #if 0 if(vi->channels==2) if(i==0) _analysis_output("mask0L",seq,logmask,n/2,1,0,0); else _analysis_output("mask0R",seq,logmask,n/2,1,0,0); #endif floor_posts[i][0]= floor1_fit(vb,b->flr[info->floorsubmap[submap]], logmdct, logmask); /* we also interpolate a range of intermediate curves for intermediate rates */ for(k=1;kflr[info->floorsubmap[submap]], floor_posts[i][0], floor_posts[i][PACKETBLOBS/2], k*65536/(PACKETBLOBS/2)); for(k=PACKETBLOBS/2+1;kflr[info->floorsubmap[submap]], floor_posts[i][PACKETBLOBS/2], floor_posts[i][PACKETBLOBS-1], (k-PACKETBLOBS/2)*65536/(PACKETBLOBS/2)); } } } vbi->ampmax=global_ampmax; /* the next phases are performed once for vbr-only and PACKETBLOB times for bitrate managed modes. 1) encode actual mode being used 2) encode the floor for each channel, compute coded mask curve/res 3) normalize and couple. 4) encode residue 5) save packet bytes to the packetblob vector */ /* iterate over the many masking curve fits we've created */ { float **res_bundle=(float**) alloca(sizeof(*res_bundle)*vi->channels); float **couple_bundle=(float**) alloca(sizeof(*couple_bundle)*vi->channels); int *zerobundle=(int*) alloca(sizeof(*zerobundle)*vi->channels); int **sortindex=(int**) alloca(sizeof(*sortindex)*vi->channels); float **mag_memo; int **mag_sort; if(info->coupling_steps){ mag_memo=_vp_quantize_couple_memo(vb, &ci->psy_g_param, psy_look, info, gmdct); mag_sort=_vp_quantize_couple_sort(vb, psy_look, info, mag_memo); hf_reduction(&ci->psy_g_param, psy_look, info, mag_memo); } memset(sortindex,0,sizeof(*sortindex)*vi->channels); if(psy_look->vi->normal_channel_p){ for(i=0;ichannels;i++){ float *mdct =gmdct[i]; sortindex[i]=(int*) alloca(sizeof(**sortindex)*n/2); _vp_noise_normalize_sort(psy_look,mdct,sortindex[i]); } } for(k=(vorbis_bitrate_managed(vb)?0:PACKETBLOBS/2); k<=(vorbis_bitrate_managed(vb)?PACKETBLOBS-1:PACKETBLOBS/2); k++){ oggpack_buffer *opb=vbi->packetblob[k]; /* start out our new packet blob with packet type and mode */ /* Encode the packet type */ oggpack_write(opb,0,1); /* Encode the modenumber */ /* Encode frame mode, pre,post windowsize, then dispatch */ oggpack_write(opb,modenumber,b->modebits); if(vb->W){ oggpack_write(opb,vb->lW,1); oggpack_write(opb,vb->nW,1); } /* encode floor, compute masking curve, sep out residue */ for(i=0;ichannels;i++){ int submap=info->chmuxlist[i]; float *mdct =gmdct[i]; float *res =vb->pcm[i]; int *ilogmask=ilogmaskch[i]= (int*) _vorbis_block_alloc(vb,n/2*sizeof(**gmdct)); nonzero[i]=floor1_encode(opb,vb,b->flr[info->floorsubmap[submap]], floor_posts[i][k], ilogmask); #if 0 { char buf[80]; sprintf(buf,"maskI%c%d",i?'R':'L',k); float work[n/2]; for(j=0;jpsy_g_param.sliding_lowpass[vb->W][k]); _vp_noise_normalize(psy_look,res,res+n/2,sortindex[i]); #if 0 { char buf[80]; float work[n/2]; for(j=0;jcoupling_steps){ _vp_couple(k, &ci->psy_g_param, psy_look, info, vb->pcm, mag_memo, mag_sort, ilogmaskch, nonzero, ci->psy_g_param.sliding_lowpass[vb->W][k]); } /* classify and encode by submap */ for(i=0;isubmaps;i++){ int ch_in_bundle=0; long **classifications; int resnum=info->residuesubmap[i]; for(j=0;jchannels;j++){ if(info->chmuxlist[j]==i){ zerobundle[ch_in_bundle]=0; if(nonzero[j])zerobundle[ch_in_bundle]=1; res_bundle[ch_in_bundle]=vb->pcm[j]; couple_bundle[ch_in_bundle++]=vb->pcm[j]+n/2; } } classifications=_residue_P[ci->residue_type[resnum]]-> classx(vb,b->residue[resnum],couple_bundle,zerobundle,ch_in_bundle); _residue_P[ci->residue_type[resnum]]-> forward(opb,vb,b->residue[resnum], couple_bundle,NULL,zerobundle,ch_in_bundle,classifications); } /* ok, done encoding. Next protopacket. */ } } #if 0 seq++; total+=ci->blocksizes[vb->W]/4+ci->blocksizes[vb->nW]/4; #endif return(0); } static int mapping0_inverse(vorbis_block *vb,vorbis_info_mapping *l){ vorbis_dsp_state *vd=vb->vd; vorbis_info *vi=vd->vi; codec_setup_info *ci=(codec_setup_info*) vi->codec_setup; private_state *b=(private_state*)vd->backend_state; vorbis_info_mapping0 *info=(vorbis_info_mapping0 *)l; int i,j; long n=vb->pcmend=ci->blocksizes[vb->W]; float **pcmbundle=(float**) alloca(sizeof(*pcmbundle)*vi->channels); int *zerobundle=(int*) alloca(sizeof(*zerobundle)*vi->channels); int *nonzero =(int*) alloca(sizeof(*nonzero)*vi->channels); void **floormemo=(void**) alloca(sizeof(*floormemo)*vi->channels); /* recover the spectral envelope; store it in the PCM vector for now */ for(i=0;ichannels;i++){ int submap=info->chmuxlist[i]; floormemo[i]=_floor_P[ci->floor_type[info->floorsubmap[submap]]]-> inverse1(vb,b->flr[info->floorsubmap[submap]]); if(floormemo[i]) nonzero[i]=1; else nonzero[i]=0; memset(vb->pcm[i],0,sizeof(*vb->pcm[i])*n/2); } /* channel coupling can 'dirty' the nonzero listing */ for(i=0;icoupling_steps;i++){ if(nonzero[info->coupling_mag[i]] || nonzero[info->coupling_ang[i]]){ nonzero[info->coupling_mag[i]]=1; nonzero[info->coupling_ang[i]]=1; } } /* recover the residue into our working vectors */ for(i=0;isubmaps;i++){ int ch_in_bundle=0; for(j=0;jchannels;j++){ if(info->chmuxlist[j]==i){ if(nonzero[j]) zerobundle[ch_in_bundle]=1; else zerobundle[ch_in_bundle]=0; pcmbundle[ch_in_bundle++]=vb->pcm[j]; } } _residue_P[ci->residue_type[info->residuesubmap[i]]]-> inverse(vb,b->residue[info->residuesubmap[i]], pcmbundle,zerobundle,ch_in_bundle); } /* channel coupling */ for(i=info->coupling_steps-1;i>=0;i--){ float *pcmM=vb->pcm[info->coupling_mag[i]]; float *pcmA=vb->pcm[info->coupling_ang[i]]; for(j=0;j0) if(ang>0){ pcmM[j]=mag; pcmA[j]=mag-ang; }else{ pcmA[j]=mag; pcmM[j]=mag+ang; } else if(ang>0){ pcmM[j]=mag; pcmA[j]=mag+ang; }else{ pcmA[j]=mag; pcmM[j]=mag-ang; } } } /* compute and apply spectral envelope */ for(i=0;ichannels;i++){ float *pcm=vb->pcm[i]; int submap=info->chmuxlist[i]; _floor_P[ci->floor_type[info->floorsubmap[submap]]]-> inverse2(vb,b->flr[info->floorsubmap[submap]], floormemo[i],pcm); } /* transform the PCM data; takes PCM vector, vb; modifies PCM vector */ /* only MDCT right now.... */ for(i=0;ichannels;i++){ float *pcm=vb->pcm[i]; mdct_backward((mdct_lookup*) b->transform[vb->W][0],pcm,pcm); } /* all done! */ return(0); } /* export hooks */ vorbis_func_mapping mapping0_exportbundle={ &mapping0_pack, &mapping0_unpack, &mapping0_free_info, &mapping0_forward, &mapping0_inverse }; #endif /********* End of inlined file: mapping0.c *********/ /********* Start of inlined file: mdct.c *********/ /* this can also be run as an integer transform by uncommenting a define in mdct.h; the integerization is a first pass and although it's likely stable for Vorbis, the dynamic range is constrained and roundoff isn't done (so it's noisy). Consider it functional, but only a starting point. There's no point on a machine with an FPU */ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #include #include /* build lookups for trig functions; also pre-figure scaling and some window function algebra. */ void mdct_init(mdct_lookup *lookup,int n){ int *bitrev=(int*) _ogg_malloc(sizeof(*bitrev)*(n/4)); DATA_TYPE *T=(DATA_TYPE*) _ogg_malloc(sizeof(*T)*(n+n/4)); int i; int n2=n>>1; int log2n=lookup->log2n=rint(log((float)n)/log(2.f)); lookup->n=n; lookup->trig=T; lookup->bitrev=bitrev; /* trig lookups... */ for(i=0;i>j;j++) if((msb>>j)&i)acc|=1<scale=FLOAT_CONV(4.f/n); } /* 8 point butterfly (in place, 4 register) */ STIN void mdct_butterfly_8(DATA_TYPE *x){ REG_TYPE r0 = x[6] + x[2]; REG_TYPE r1 = x[6] - x[2]; REG_TYPE r2 = x[4] + x[0]; REG_TYPE r3 = x[4] - x[0]; x[6] = r0 + r2; x[4] = r0 - r2; r0 = x[5] - x[1]; r2 = x[7] - x[3]; x[0] = r1 + r0; x[2] = r1 - r0; r0 = x[5] + x[1]; r1 = x[7] + x[3]; x[3] = r2 + r3; x[1] = r2 - r3; x[7] = r1 + r0; x[5] = r1 - r0; } /* 16 point butterfly (in place, 4 register) */ STIN void mdct_butterfly_16(DATA_TYPE *x){ REG_TYPE r0 = x[1] - x[9]; REG_TYPE r1 = x[0] - x[8]; x[8] += x[0]; x[9] += x[1]; x[0] = MULT_NORM((r0 + r1) * cPI2_8); x[1] = MULT_NORM((r0 - r1) * cPI2_8); r0 = x[3] - x[11]; r1 = x[10] - x[2]; x[10] += x[2]; x[11] += x[3]; x[2] = r0; x[3] = r1; r0 = x[12] - x[4]; r1 = x[13] - x[5]; x[12] += x[4]; x[13] += x[5]; x[4] = MULT_NORM((r0 - r1) * cPI2_8); x[5] = MULT_NORM((r0 + r1) * cPI2_8); r0 = x[14] - x[6]; r1 = x[15] - x[7]; x[14] += x[6]; x[15] += x[7]; x[6] = r0; x[7] = r1; mdct_butterfly_8(x); mdct_butterfly_8(x+8); } /* 32 point butterfly (in place, 4 register) */ STIN void mdct_butterfly_32(DATA_TYPE *x){ REG_TYPE r0 = x[30] - x[14]; REG_TYPE r1 = x[31] - x[15]; x[30] += x[14]; x[31] += x[15]; x[14] = r0; x[15] = r1; r0 = x[28] - x[12]; r1 = x[29] - x[13]; x[28] += x[12]; x[29] += x[13]; x[12] = MULT_NORM( r0 * cPI1_8 - r1 * cPI3_8 ); x[13] = MULT_NORM( r0 * cPI3_8 + r1 * cPI1_8 ); r0 = x[26] - x[10]; r1 = x[27] - x[11]; x[26] += x[10]; x[27] += x[11]; x[10] = MULT_NORM(( r0 - r1 ) * cPI2_8); x[11] = MULT_NORM(( r0 + r1 ) * cPI2_8); r0 = x[24] - x[8]; r1 = x[25] - x[9]; x[24] += x[8]; x[25] += x[9]; x[8] = MULT_NORM( r0 * cPI3_8 - r1 * cPI1_8 ); x[9] = MULT_NORM( r1 * cPI3_8 + r0 * cPI1_8 ); r0 = x[22] - x[6]; r1 = x[7] - x[23]; x[22] += x[6]; x[23] += x[7]; x[6] = r1; x[7] = r0; r0 = x[4] - x[20]; r1 = x[5] - x[21]; x[20] += x[4]; x[21] += x[5]; x[4] = MULT_NORM( r1 * cPI1_8 + r0 * cPI3_8 ); x[5] = MULT_NORM( r1 * cPI3_8 - r0 * cPI1_8 ); r0 = x[2] - x[18]; r1 = x[3] - x[19]; x[18] += x[2]; x[19] += x[3]; x[2] = MULT_NORM(( r1 + r0 ) * cPI2_8); x[3] = MULT_NORM(( r1 - r0 ) * cPI2_8); r0 = x[0] - x[16]; r1 = x[1] - x[17]; x[16] += x[0]; x[17] += x[1]; x[0] = MULT_NORM( r1 * cPI3_8 + r0 * cPI1_8 ); x[1] = MULT_NORM( r1 * cPI1_8 - r0 * cPI3_8 ); mdct_butterfly_16(x); mdct_butterfly_16(x+16); } /* N point first stage butterfly (in place, 2 register) */ STIN void mdct_butterfly_first(DATA_TYPE *T, DATA_TYPE *x, int points){ DATA_TYPE *x1 = x + points - 8; DATA_TYPE *x2 = x + (points>>1) - 8; REG_TYPE r0; REG_TYPE r1; do{ r0 = x1[6] - x2[6]; r1 = x1[7] - x2[7]; x1[6] += x2[6]; x1[7] += x2[7]; x2[6] = MULT_NORM(r1 * T[1] + r0 * T[0]); x2[7] = MULT_NORM(r1 * T[0] - r0 * T[1]); r0 = x1[4] - x2[4]; r1 = x1[5] - x2[5]; x1[4] += x2[4]; x1[5] += x2[5]; x2[4] = MULT_NORM(r1 * T[5] + r0 * T[4]); x2[5] = MULT_NORM(r1 * T[4] - r0 * T[5]); r0 = x1[2] - x2[2]; r1 = x1[3] - x2[3]; x1[2] += x2[2]; x1[3] += x2[3]; x2[2] = MULT_NORM(r1 * T[9] + r0 * T[8]); x2[3] = MULT_NORM(r1 * T[8] - r0 * T[9]); r0 = x1[0] - x2[0]; r1 = x1[1] - x2[1]; x1[0] += x2[0]; x1[1] += x2[1]; x2[0] = MULT_NORM(r1 * T[13] + r0 * T[12]); x2[1] = MULT_NORM(r1 * T[12] - r0 * T[13]); x1-=8; x2-=8; T+=16; }while(x2>=x); } /* N/stage point generic N stage butterfly (in place, 2 register) */ STIN void mdct_butterfly_generic(DATA_TYPE *T, DATA_TYPE *x, int points, int trigint){ DATA_TYPE *x1 = x + points - 8; DATA_TYPE *x2 = x + (points>>1) - 8; REG_TYPE r0; REG_TYPE r1; do{ r0 = x1[6] - x2[6]; r1 = x1[7] - x2[7]; x1[6] += x2[6]; x1[7] += x2[7]; x2[6] = MULT_NORM(r1 * T[1] + r0 * T[0]); x2[7] = MULT_NORM(r1 * T[0] - r0 * T[1]); T+=trigint; r0 = x1[4] - x2[4]; r1 = x1[5] - x2[5]; x1[4] += x2[4]; x1[5] += x2[5]; x2[4] = MULT_NORM(r1 * T[1] + r0 * T[0]); x2[5] = MULT_NORM(r1 * T[0] - r0 * T[1]); T+=trigint; r0 = x1[2] - x2[2]; r1 = x1[3] - x2[3]; x1[2] += x2[2]; x1[3] += x2[3]; x2[2] = MULT_NORM(r1 * T[1] + r0 * T[0]); x2[3] = MULT_NORM(r1 * T[0] - r0 * T[1]); T+=trigint; r0 = x1[0] - x2[0]; r1 = x1[1] - x2[1]; x1[0] += x2[0]; x1[1] += x2[1]; x2[0] = MULT_NORM(r1 * T[1] + r0 * T[0]); x2[1] = MULT_NORM(r1 * T[0] - r0 * T[1]); T+=trigint; x1-=8; x2-=8; }while(x2>=x); } STIN void mdct_butterflies(mdct_lookup *init, DATA_TYPE *x, int points){ DATA_TYPE *T=init->trig; int stages=init->log2n-5; int i,j; if(--stages>0){ mdct_butterfly_first(T,x,points); } for(i=1;--stages>0;i++){ for(j=0;j<(1<>i)*j,points>>i,4<trig)_ogg_free(l->trig); if(l->bitrev)_ogg_free(l->bitrev); memset(l,0,sizeof(*l)); } } STIN void mdct_bitreverse(mdct_lookup *init, DATA_TYPE *x){ int n = init->n; int *bit = init->bitrev; DATA_TYPE *w0 = x; DATA_TYPE *w1 = x = w0+(n>>1); DATA_TYPE *T = init->trig+n; do{ DATA_TYPE *x0 = x+bit[0]; DATA_TYPE *x1 = x+bit[1]; REG_TYPE r0 = x0[1] - x1[1]; REG_TYPE r1 = x0[0] + x1[0]; REG_TYPE r2 = MULT_NORM(r1 * T[0] + r0 * T[1]); REG_TYPE r3 = MULT_NORM(r1 * T[1] - r0 * T[0]); w1 -= 4; r0 = HALVE(x0[1] + x1[1]); r1 = HALVE(x0[0] - x1[0]); w0[0] = r0 + r2; w1[2] = r0 - r2; w0[1] = r1 + r3; w1[3] = r3 - r1; x0 = x+bit[2]; x1 = x+bit[3]; r0 = x0[1] - x1[1]; r1 = x0[0] + x1[0]; r2 = MULT_NORM(r1 * T[2] + r0 * T[3]); r3 = MULT_NORM(r1 * T[3] - r0 * T[2]); r0 = HALVE(x0[1] + x1[1]); r1 = HALVE(x0[0] - x1[0]); w0[2] = r0 + r2; w1[0] = r0 - r2; w0[3] = r1 + r3; w1[1] = r3 - r1; T += 4; bit += 4; w0 += 4; }while(w0n; int n2=n>>1; int n4=n>>2; /* rotate */ DATA_TYPE *iX = in+n2-7; DATA_TYPE *oX = out+n2+n4; DATA_TYPE *T = init->trig+n4; do{ oX -= 4; oX[0] = MULT_NORM(-iX[2] * T[3] - iX[0] * T[2]); oX[1] = MULT_NORM (iX[0] * T[3] - iX[2] * T[2]); oX[2] = MULT_NORM(-iX[6] * T[1] - iX[4] * T[0]); oX[3] = MULT_NORM (iX[4] * T[1] - iX[6] * T[0]); iX -= 8; T += 4; }while(iX>=in); iX = in+n2-8; oX = out+n2+n4; T = init->trig+n4; do{ T -= 4; oX[0] = MULT_NORM (iX[4] * T[3] + iX[6] * T[2]); oX[1] = MULT_NORM (iX[4] * T[2] - iX[6] * T[3]); oX[2] = MULT_NORM (iX[0] * T[1] + iX[2] * T[0]); oX[3] = MULT_NORM (iX[0] * T[0] - iX[2] * T[1]); iX -= 8; oX += 4; }while(iX>=in); mdct_butterflies(init,out+n2,n2); mdct_bitreverse(init,out); /* roatate + window */ { DATA_TYPE *oX1=out+n2+n4; DATA_TYPE *oX2=out+n2+n4; DATA_TYPE *iX =out; T =init->trig+n2; do{ oX1-=4; oX1[3] = MULT_NORM (iX[0] * T[1] - iX[1] * T[0]); oX2[0] = -MULT_NORM (iX[0] * T[0] + iX[1] * T[1]); oX1[2] = MULT_NORM (iX[2] * T[3] - iX[3] * T[2]); oX2[1] = -MULT_NORM (iX[2] * T[2] + iX[3] * T[3]); oX1[1] = MULT_NORM (iX[4] * T[5] - iX[5] * T[4]); oX2[2] = -MULT_NORM (iX[4] * T[4] + iX[5] * T[5]); oX1[0] = MULT_NORM (iX[6] * T[7] - iX[7] * T[6]); oX2[3] = -MULT_NORM (iX[6] * T[6] + iX[7] * T[7]); oX2+=4; iX += 8; T += 8; }while(iXoX2); } } void mdct_forward(mdct_lookup *init, DATA_TYPE *in, DATA_TYPE *out){ int n=init->n; int n2=n>>1; int n4=n>>2; int n8=n>>3; DATA_TYPE *w=(DATA_TYPE*) alloca(n*sizeof(*w)); /* forward needs working space */ DATA_TYPE *w2=w+n2; /* rotate */ /* window + rotate + step 1 */ REG_TYPE r0; REG_TYPE r1; DATA_TYPE *x0=in+n2+n4; DATA_TYPE *x1=x0+1; DATA_TYPE *T=init->trig+n2; int i=0; for(i=0;itrig+n2; x0=out+n2; for(i=0;iscale); x0[0] =MULT_NORM((w[0]*T[1]-w[1]*T[0])*init->scale); w+=2; T+=2; } } #endif /********* End of inlined file: mdct.c *********/ /********* Start of inlined file: psy.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #include /********* Start of inlined file: masking.h *********/ #ifndef _V_MASKING_H_ #define _V_MASKING_H_ /* more detailed ATH; the bass if flat to save stressing the floor overly for only a bin or two of savings. */ #define MAX_ATH 88 static float ATH[]={ /*15*/ -51, -52, -53, -54, -55, -56, -57, -58, /*31*/ -59, -60, -61, -62, -63, -64, -65, -66, /*63*/ -67, -68, -69, -70, -71, -72, -73, -74, /*125*/ -75, -76, -77, -78, -80, -81, -82, -83, /*250*/ -84, -85, -86, -87, -88, -88, -89, -89, /*500*/ -90, -91, -91, -92, -93, -94, -95, -96, /*1k*/ -96, -97, -98, -98, -99, -99,-100,-100, /*2k*/ -101,-102,-103,-104,-106,-107,-107,-107, /*4k*/ -107,-105,-103,-102,-101, -99, -98, -96, /*8k*/ -95, -95, -96, -97, -96, -95, -93, -90, /*16k*/ -80, -70, -50, -40, -30, -30, -30, -30 }; /* The tone masking curves from Ehmer's and Fielder's papers have been replaced by an empirically collected data set. The previously published values were, far too often, simply on crack. */ #define EHMER_OFFSET 16 #define EHMER_MAX 56 /* masking tones from -50 to 0dB, 62.5 through 16kHz at half octaves test tones from -2 octaves to +5 octaves sampled at eighth octaves */ /* (Vorbis 0dB, the loudest possible tone, is assumed to be ~100dB SPL for collection of these curves) */ static float tonemasks[P_BANDS][6][EHMER_MAX]={ /* 62.5 Hz */ {{ -60, -60, -60, -60, -60, -60, -60, -60, -60, -60, -60, -60, -62, -62, -65, -73, -69, -68, -68, -67, -70, -70, -72, -74, -75, -79, -79, -80, -83, -88, -93, -100, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -48, -48, -48, -48, -48, -48, -48, -48, -48, -48, -48, -48, -48, -53, -61, -66, -66, -68, -67, -70, -76, -76, -72, -73, -75, -76, -78, -79, -83, -88, -93, -100, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -37, -37, -37, -37, -37, -37, -37, -37, -38, -40, -42, -46, -48, -53, -55, -62, -65, -58, -56, -56, -61, -60, -65, -67, -69, -71, -77, -77, -78, -80, -82, -84, -88, -93, -98, -106, -112, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -25, -25, -25, -25, -25, -25, -25, -25, -25, -26, -27, -29, -32, -38, -48, -52, -52, -50, -48, -48, -51, -52, -54, -60, -67, -67, -66, -68, -69, -73, -73, -76, -80, -81, -81, -85, -85, -86, -88, -93, -100, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -16, -16, -16, -16, -16, -16, -16, -16, -17, -19, -20, -22, -26, -28, -31, -40, -47, -39, -39, -40, -42, -43, -47, -51, -57, -52, -55, -55, -60, -58, -62, -63, -70, -67, -69, -72, -73, -77, -80, -82, -83, -87, -90, -94, -98, -104, -115, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -10, -11, -15, -19, -25, -30, -34, -31, -30, -31, -29, -32, -35, -42, -48, -42, -44, -46, -50, -50, -51, -52, -59, -54, -55, -55, -58, -62, -63, -66, -72, -73, -76, -75, -78, -80, -80, -81, -84, -88, -90, -94, -98, -101, -106, -110}}, /* 88Hz */ {{ -66, -66, -66, -66, -66, -66, -66, -66, -66, -66, -66, -66, -66, -67, -67, -67, -76, -72, -71, -74, -76, -76, -75, -78, -79, -79, -81, -83, -86, -89, -93, -97, -100, -105, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -47, -47, -47, -47, -47, -47, -47, -47, -47, -47, -47, -48, -51, -55, -59, -66, -66, -66, -67, -66, -68, -69, -70, -74, -79, -77, -77, -78, -80, -81, -82, -84, -86, -88, -91, -95, -100, -108, -116, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -36, -36, -36, -36, -36, -36, -36, -36, -36, -37, -37, -41, -44, -48, -51, -58, -62, -60, -57, -59, -59, -60, -63, -65, -72, -71, -70, -72, -74, -77, -76, -78, -81, -81, -80, -83, -86, -91, -96, -100, -105, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -28, -28, -28, -28, -28, -28, -28, -28, -28, -30, -32, -32, -33, -35, -41, -49, -50, -49, -47, -48, -48, -52, -51, -57, -65, -61, -59, -61, -64, -69, -70, -74, -77, -77, -78, -81, -84, -85, -87, -90, -92, -96, -100, -107, -112, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -19, -19, -19, -19, -19, -19, -19, -19, -20, -21, -23, -27, -30, -35, -36, -41, -46, -44, -42, -40, -41, -41, -43, -48, -55, -53, -52, -53, -56, -59, -58, -60, -67, -66, -69, -71, -72, -75, -79, -81, -84, -87, -90, -93, -97, -101, -107, -114, -999, -999, -999, -999, -999, -999, -999, -999}, { -9, -9, -9, -9, -9, -9, -9, -9, -11, -12, -12, -15, -16, -20, -23, -30, -37, -34, -33, -34, -31, -32, -32, -38, -47, -44, -41, -40, -47, -49, -46, -46, -58, -50, -50, -54, -58, -62, -64, -67, -67, -70, -72, -76, -79, -83, -87, -91, -96, -100, -104, -110, -999, -999, -999, -999}}, /* 125 Hz */ {{ -62, -62, -62, -62, -62, -62, -62, -62, -62, -62, -63, -64, -66, -67, -66, -68, -75, -72, -76, -75, -76, -78, -79, -82, -84, -85, -90, -94, -101, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -59, -59, -59, -59, -59, -59, -59, -59, -59, -59, -59, -60, -60, -61, -63, -66, -71, -68, -70, -70, -71, -72, -72, -75, -81, -78, -79, -82, -83, -86, -90, -97, -103, -113, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -53, -53, -53, -53, -53, -53, -53, -53, -53, -54, -55, -57, -56, -57, -55, -61, -65, -60, -60, -62, -63, -63, -66, -68, -74, -73, -75, -75, -78, -80, -80, -82, -85, -90, -96, -101, -108, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -46, -46, -46, -46, -46, -46, -46, -46, -46, -46, -47, -47, -47, -47, -48, -51, -57, -51, -49, -50, -51, -53, -54, -59, -66, -60, -62, -67, -67, -70, -72, -75, -76, -78, -81, -85, -88, -94, -97, -104, -112, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -36, -36, -36, -36, -36, -36, -36, -36, -39, -41, -42, -42, -39, -38, -41, -43, -52, -44, -40, -39, -37, -37, -40, -47, -54, -50, -48, -50, -55, -61, -59, -62, -66, -66, -66, -69, -69, -73, -74, -74, -75, -77, -79, -82, -87, -91, -95, -100, -108, -115, -999, -999, -999, -999, -999, -999}, { -28, -26, -24, -22, -20, -20, -23, -29, -30, -31, -28, -27, -28, -28, -28, -35, -40, -33, -32, -29, -30, -30, -30, -37, -45, -41, -37, -38, -45, -47, -47, -48, -53, -49, -48, -50, -49, -49, -51, -52, -58, -56, -57, -56, -60, -61, -62, -70, -72, -74, -78, -83, -88, -93, -100, -106}}, /* 177 Hz */ {{-999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -105, -100, -95, -91, -87, -83, -80, -78, -76, -78, -78, -81, -83, -85, -86, -85, -86, -87, -90, -97, -107, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -110, -105, -100, -95, -90, -85, -81, -77, -73, -70, -67, -67, -68, -75, -73, -70, -69, -70, -72, -75, -79, -84, -83, -84, -86, -88, -89, -89, -93, -98, -105, -112, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-105, -100, -95, -90, -85, -80, -76, -71, -68, -68, -65, -63, -63, -62, -62, -64, -65, -64, -61, -62, -63, -64, -66, -68, -73, -73, -74, -75, -76, -81, -83, -85, -88, -89, -92, -95, -100, -108, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -80, -75, -71, -68, -65, -63, -62, -61, -61, -61, -61, -59, -56, -57, -53, -50, -58, -52, -50, -50, -52, -53, -54, -58, -67, -63, -67, -68, -72, -75, -78, -80, -81, -81, -82, -85, -89, -90, -93, -97, -101, -107, -114, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, { -65, -61, -59, -57, -56, -55, -55, -56, -56, -57, -55, -53, -52, -47, -44, -44, -50, -44, -41, -39, -39, -42, -40, -46, -51, -49, -50, -53, -54, -63, -60, -61, -62, -66, -66, -66, -70, -73, -74, -75, -76, -75, -79, -85, -89, -91, -96, -102, -110, -999, -999, -999, -999, -999, -999, -999}, { -52, -50, -49, -49, -48, -48, -48, -49, -50, -50, -49, -46, -43, -39, -35, -33, -38, -36, -32, -29, -32, -32, -32, -35, -44, -39, -38, -38, -46, -50, -45, -46, -53, -50, -50, -50, -54, -54, -53, -53, -56, -57, -59, -66, -70, -72, -74, -79, -83, -85, -90, -97, -114, -999, -999, -999}}, /* 250 Hz */ {{-999, -999, -999, -999, -999, -999, -110, -105, -100, -95, -90, -86, -80, -75, -75, -79, -80, -79, -80, -81, -82, -88, -95, -103, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -108, -103, -98, -93, -88, -83, -79, -78, -75, -71, -67, -68, -73, -73, -72, -73, -75, -77, -80, -82, -88, -93, -100, -107, -114, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -110, -105, -101, -96, -90, -86, -81, -77, -73, -69, -66, -61, -62, -66, -64, -62, -65, -66, -70, -72, -76, -81, -80, -84, -90, -95, -102, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -107, -103, -97, -92, -88, -83, -79, -74, -70, -66, -59, -53, -58, -62, -55, -54, -54, -54, -58, -61, -62, -72, -70, -72, -75, -78, -80, -81, -80, -83, -83, -88, -93, -100, -107, -115, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -105, -100, -95, -90, -85, -80, -75, -70, -66, -62, -56, -48, -44, -48, -46, -46, -43, -46, -48, -48, -51, -58, -58, -59, -60, -62, -62, -61, -61, -65, -64, -65, -68, -70, -74, -75, -78, -81, -86, -95, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -105, -100, -95, -90, -85, -80, -75, -70, -65, -61, -55, -49, -39, -33, -40, -35, -32, -38, -40, -33, -35, -37, -46, -41, -45, -44, -46, -42, -45, -46, -52, -50, -50, -50, -54, -54, -55, -57, -62, -64, -66, -68, -70, -76, -81, -90, -100, -110, -999, -999, -999, -999, -999, -999}}, /* 354 hz */ {{-999, -999, -999, -999, -999, -999, -999, -999, -105, -98, -90, -85, -82, -83, -80, -78, -84, -79, -80, -83, -87, -89, -91, -93, -99, -106, -117, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -105, -98, -90, -85, -80, -75, -70, -68, -74, -72, -74, -77, -80, -82, -85, -87, -92, -89, -91, -95, -100, -106, -112, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -105, -98, -90, -83, -75, -71, -63, -64, -67, -62, -64, -67, -70, -73, -77, -81, -84, -83, -85, -89, -90, -93, -98, -104, -109, -114, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -103, -96, -88, -81, -75, -68, -58, -54, -56, -54, -56, -56, -58, -60, -63, -66, -74, -69, -72, -72, -75, -74, -77, -81, -81, -82, -84, -87, -93, -96, -99, -104, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -108, -102, -96, -91, -85, -80, -74, -68, -60, -51, -46, -48, -46, -43, -45, -47, -47, -49, -48, -56, -53, -55, -58, -57, -63, -58, -60, -66, -64, -67, -70, -70, -74, -77, -84, -86, -89, -91, -93, -94, -101, -109, -118, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -108, -103, -98, -93, -88, -83, -78, -73, -68, -60, -53, -44, -35, -38, -38, -34, -34, -36, -40, -41, -44, -51, -45, -46, -47, -46, -54, -50, -49, -50, -50, -50, -51, -54, -57, -58, -60, -66, -66, -66, -64, -65, -68, -77, -82, -87, -95, -110, -999, -999, -999, -999, -999}}, /* 500 Hz */ {{-999, -999, -999, -999, -999, -999, -999, -999, -107, -102, -97, -92, -87, -83, -78, -75, -82, -79, -83, -85, -89, -92, -95, -98, -101, -105, -109, -113, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -106, -100, -95, -90, -86, -81, -78, -74, -69, -74, -74, -76, -79, -83, -84, -86, -89, -92, -97, -93, -100, -103, -107, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -106, -100, -95, -90, -87, -83, -80, -75, -69, -60, -66, -66, -68, -70, -74, -78, -79, -81, -81, -83, -84, -87, -93, -96, -99, -103, -107, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -108, -103, -98, -93, -89, -85, -82, -78, -71, -62, -55, -58, -58, -54, -54, -55, -59, -61, -62, -70, -66, -66, -67, -70, -72, -75, -78, -84, -84, -84, -88, -91, -90, -95, -98, -102, -103, -106, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -108, -103, -98, -94, -90, -87, -82, -79, -73, -67, -58, -47, -50, -45, -41, -45, -48, -44, -44, -49, -54, -51, -48, -47, -49, -50, -51, -57, -58, -60, -63, -69, -70, -69, -71, -74, -78, -82, -90, -95, -101, -105, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -105, -101, -97, -93, -90, -85, -80, -77, -72, -65, -56, -48, -37, -40, -36, -34, -40, -50, -47, -38, -41, -47, -38, -35, -39, -38, -43, -40, -45, -50, -45, -44, -47, -50, -55, -48, -48, -52, -66, -70, -76, -82, -90, -97, -105, -110, -999, -999, -999, -999, -999, -999, -999}}, /* 707 Hz */ {{-999, -999, -999, -999, -999, -999, -999, -999, -999, -108, -103, -98, -93, -86, -79, -76, -83, -81, -85, -87, -89, -93, -98, -102, -107, -112, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -108, -103, -98, -93, -86, -79, -71, -77, -74, -77, -79, -81, -84, -85, -90, -92, -93, -92, -98, -101, -108, -112, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -108, -103, -98, -93, -87, -78, -68, -65, -66, -62, -65, -67, -70, -73, -75, -78, -82, -82, -83, -84, -91, -93, -98, -102, -106, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -105, -100, -95, -90, -82, -74, -62, -57, -58, -56, -51, -52, -52, -54, -54, -58, -66, -59, -60, -63, -66, -69, -73, -79, -83, -84, -80, -81, -81, -82, -88, -92, -98, -105, -113, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -107, -102, -97, -92, -84, -79, -69, -57, -47, -52, -47, -44, -45, -50, -52, -42, -42, -53, -43, -43, -48, -51, -56, -55, -52, -57, -59, -61, -62, -67, -71, -78, -83, -86, -94, -98, -103, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -105, -100, -95, -90, -84, -78, -70, -61, -51, -41, -40, -38, -40, -46, -52, -51, -41, -40, -46, -40, -38, -38, -41, -46, -41, -46, -47, -43, -43, -45, -41, -45, -56, -67, -68, -83, -87, -90, -95, -102, -107, -113, -999, -999, -999, -999, -999, -999, -999, -999}}, /* 1000 Hz */ {{-999, -999, -999, -999, -999, -999, -999, -999, -999, -109, -105, -101, -96, -91, -84, -77, -82, -82, -85, -89, -94, -100, -106, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -106, -103, -98, -92, -85, -80, -71, -75, -72, -76, -80, -84, -86, -89, -93, -100, -107, -113, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -107, -104, -101, -97, -92, -88, -84, -80, -64, -66, -63, -64, -66, -69, -73, -77, -83, -83, -86, -91, -98, -104, -111, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -107, -104, -101, -97, -92, -90, -84, -74, -57, -58, -52, -55, -54, -50, -52, -50, -52, -63, -62, -69, -76, -77, -78, -78, -79, -82, -88, -94, -100, -106, -111, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -106, -102, -98, -95, -90, -85, -83, -78, -70, -50, -50, -41, -44, -49, -47, -50, -50, -44, -55, -46, -47, -48, -48, -54, -49, -49, -58, -62, -71, -81, -87, -92, -97, -102, -108, -114, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -106, -102, -98, -95, -90, -85, -83, -78, -70, -45, -43, -41, -47, -50, -51, -50, -49, -45, -47, -41, -44, -41, -39, -43, -38, -37, -40, -41, -44, -50, -58, -65, -73, -79, -85, -92, -97, -101, -105, -109, -113, -999, -999, -999, -999, -999, -999, -999, -999, -999}}, /* 1414 Hz */ {{-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -107, -100, -95, -87, -81, -85, -83, -88, -93, -100, -107, -114, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -107, -101, -95, -88, -83, -76, -73, -72, -79, -84, -90, -95, -100, -105, -110, -115, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -104, -98, -92, -87, -81, -70, -65, -62, -67, -71, -74, -80, -85, -91, -95, -99, -103, -108, -111, -114, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -103, -97, -90, -85, -76, -60, -56, -54, -60, -62, -61, -56, -63, -65, -73, -74, -77, -75, -78, -81, -86, -87, -88, -91, -94, -98, -103, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -105, -100, -97, -92, -86, -81, -79, -70, -57, -51, -47, -51, -58, -60, -56, -53, -50, -58, -52, -50, -50, -53, -55, -64, -69, -71, -85, -82, -78, -81, -85, -95, -102, -112, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -105, -100, -97, -92, -85, -83, -79, -72, -49, -40, -43, -43, -54, -56, -51, -50, -40, -43, -38, -36, -35, -37, -38, -37, -44, -54, -60, -57, -60, -70, -75, -84, -92, -103, -112, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}}, /* 2000 Hz */ {{-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -102, -95, -89, -82, -83, -84, -90, -92, -99, -107, -113, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -107, -101, -95, -89, -83, -72, -74, -78, -85, -88, -88, -90, -92, -98, -105, -111, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -109, -103, -97, -93, -87, -81, -70, -70, -67, -75, -73, -76, -79, -81, -83, -88, -89, -97, -103, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -107, -100, -94, -88, -83, -75, -63, -59, -59, -63, -66, -60, -62, -67, -67, -77, -76, -81, -88, -86, -92, -96, -102, -109, -116, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -105, -98, -92, -86, -81, -73, -56, -52, -47, -55, -60, -58, -52, -51, -45, -49, -50, -53, -54, -61, -71, -70, -69, -78, -79, -87, -90, -96, -104, -112, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -103, -96, -90, -86, -78, -70, -51, -42, -47, -48, -55, -54, -54, -53, -42, -35, -28, -33, -38, -37, -44, -47, -49, -54, -63, -68, -78, -82, -89, -94, -99, -104, -109, -114, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}}, /* 2828 Hz */ {{-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -100, -90, -79, -85, -81, -82, -82, -89, -94, -99, -103, -109, -115, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -105, -97, -85, -72, -74, -70, -70, -70, -76, -85, -91, -93, -97, -103, -109, -115, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -112, -93, -81, -68, -62, -60, -60, -57, -63, -70, -77, -82, -90, -93, -98, -104, -109, -113, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -113, -100, -93, -84, -63, -58, -48, -53, -54, -52, -52, -57, -64, -66, -76, -83, -81, -85, -85, -90, -95, -98, -101, -103, -106, -108, -111, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -105, -95, -86, -74, -53, -50, -38, -43, -49, -43, -42, -39, -39, -46, -52, -57, -56, -72, -69, -74, -81, -87, -92, -94, -97, -99, -102, -105, -108, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -108, -99, -90, -76, -66, -45, -43, -41, -44, -47, -43, -47, -40, -30, -31, -31, -39, -33, -40, -41, -43, -53, -59, -70, -73, -77, -79, -82, -84, -87, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}}, /* 4000 Hz */ {{-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -91, -76, -75, -85, -93, -98, -104, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -91, -70, -70, -75, -86, -89, -94, -98, -101, -106, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -95, -80, -60, -65, -64, -74, -83, -88, -91, -95, -99, -103, -107, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -95, -80, -58, -55, -49, -66, -68, -71, -78, -78, -80, -88, -85, -89, -97, -100, -105, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -95, -80, -53, -52, -41, -59, -59, -49, -58, -56, -63, -86, -79, -90, -93, -98, -103, -107, -112, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -97, -91, -73, -45, -40, -33, -53, -61, -49, -54, -50, -50, -60, -52, -67, -74, -81, -92, -96, -100, -105, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}}, /* 5657 Hz */ {{-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -113, -106, -99, -92, -77, -80, -88, -97, -106, -115, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -116, -109, -102, -95, -89, -74, -72, -88, -87, -95, -102, -109, -116, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -116, -109, -102, -95, -89, -75, -66, -74, -77, -78, -86, -87, -90, -96, -105, -115, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -115, -108, -101, -94, -88, -66, -56, -61, -70, -65, -78, -72, -83, -84, -93, -98, -105, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -105, -95, -89, -82, -57, -52, -52, -59, -56, -59, -58, -69, -67, -88, -82, -82, -89, -94, -100, -108, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -101, -96, -90, -83, -77, -54, -43, -38, -50, -48, -52, -48, -42, -42, -51, -52, -53, -59, -65, -71, -78, -85, -95, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}}, /* 8000 Hz */ {{-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -120, -105, -86, -68, -78, -79, -90, -100, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -120, -105, -86, -66, -73, -77, -88, -96, -105, -115, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -120, -105, -92, -80, -61, -64, -68, -80, -87, -92, -100, -110, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -120, -104, -91, -79, -52, -60, -54, -64, -69, -77, -80, -82, -84, -85, -87, -88, -90, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -118, -100, -87, -77, -49, -50, -44, -58, -61, -61, -67, -65, -62, -62, -62, -65, -68, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -115, -98, -84, -62, -49, -44, -38, -46, -49, -49, -46, -39, -37, -39, -40, -42, -43, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}}, /* 11314 Hz */ {{-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -88, -74, -77, -82, -82, -85, -90, -94, -99, -104, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -88, -66, -70, -81, -80, -81, -84, -88, -91, -93, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -88, -61, -63, -70, -71, -74, -77, -80, -83, -85, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -86, -62, -63, -62, -62, -58, -52, -50, -50, -52, -54, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -118, -108, -84, -53, -50, -50, -50, -55, -47, -45, -40, -40, -40, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -118, -100, -73, -43, -37, -42, -43, -53, -38, -37, -35, -35, -38, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}}, /* 16000 Hz */ {{-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -100, -91, -84, -74, -80, -80, -80, -80, -80, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -100, -91, -84, -74, -68, -68, -68, -68, -68, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -100, -86, -78, -70, -60, -45, -30, -21, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -100, -87, -78, -67, -48, -38, -29, -21, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -100, -86, -69, -56, -45, -35, -33, -29, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}, {-999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -110, -100, -83, -71, -48, -27, -38, -37, -34, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999, -999}} }; #endif /********* End of inlined file: masking.h *********/ #define NEGINF -9999.f static double stereo_threshholds[]={0.0, .5, 1.0, 1.5, 2.5, 4.5, 8.5, 16.5, 9e10}; static double stereo_threshholds_limited[]={0.0, .5, 1.0, 1.5, 2.0, 2.5, 4.5, 8.5, 9e10}; vorbis_look_psy_global *_vp_global_look(vorbis_info *vi){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; vorbis_info_psy_global *gi=&ci->psy_g_param; vorbis_look_psy_global *look=(vorbis_look_psy_global*)_ogg_calloc(1,sizeof(*look)); look->channels=vi->channels; look->ampmax=-9999.; look->gi=gi; return(look); } void _vp_global_free(vorbis_look_psy_global *look){ if(look){ memset(look,0,sizeof(*look)); _ogg_free(look); } } void _vi_gpsy_free(vorbis_info_psy_global *i){ if(i){ memset(i,0,sizeof(*i)); _ogg_free(i); } } void _vi_psy_free(vorbis_info_psy *i){ if(i){ memset(i,0,sizeof(*i)); _ogg_free(i); } } static void min_curve(float *c, float *c2){ int i; for(i=0;ic[i])c[i]=c2[i]; } static void attenuate_curve(float *c,float att){ int i; for(i=0;iATH[j+k+ath_offset])min=ATH[j+k+ath_offset]; }else{ if(min>ATH[MAX_ATH-1])min=ATH[MAX_ATH-1]; } ath[j]=min; } /* copy curves into working space, replicate the 50dB curve to 30 and 40, replicate the 100dB curve to 110 */ for(j=0;j<6;j++) memcpy(workc[i][j+2],tonemasks[i][j],EHMER_MAX*sizeof(*tonemasks[i][j])); memcpy(workc[i][0],tonemasks[i][0],EHMER_MAX*sizeof(*tonemasks[i][0])); memcpy(workc[i][1],tonemasks[i][0],EHMER_MAX*sizeof(*tonemasks[i][0])); /* apply centered curve boost/decay */ for(j=0;j0)adj=0.; if(adj>0. && center_boost<0)adj=0.; workc[i][j][k]+=adj; } } /* normalize curves so the driving amplitude is 0dB */ /* make temp curves with the ATH overlayed */ for(j=0;j an eighth of an octave and that the eighth octave values may also be composited. */ /* which octave curves will we be compositing? */ bin=floor(fromOC(i*.5)/binHz); lo_curve= ceil(toOC(bin*binHz+1)*2); hi_curve= floor(toOC((bin+1)*binHz)*2); if(lo_curve>i)lo_curve=i; if(lo_curve<0)lo_curve=0; if(hi_curve>=P_BANDS)hi_curve=P_BANDS-1; for(m=0;mn)lo_bin=n; if(lo_binn)hi_bin=n; for(;lworkc[k][m][j]) brute_buffer[l]=workc[k][m][j]; } for(;lworkc[k][m][EHMER_MAX-1]) brute_buffer[l]=workc[k][m][EHMER_MAX-1]; } /* be equally paranoid about being valid up to next half ocatve */ if(i+1n)lo_bin=n; if(lo_binn)hi_bin=n; for(;lworkc[k][m][j]) brute_buffer[l]=workc[k][m][j]; } for(;lworkc[k][m][EHMER_MAX-1]) brute_buffer[l]=workc[k][m][EHMER_MAX-1]; } for(j=0;j=n){ ret[i][m][j+2]=-999.; }else{ ret[i][m][j+2]=brute_buffer[bin]; } } } /* add fenceposts */ for(j=0;j-200.f)break; ret[i][m][0]=j; for(j=EHMER_MAX-1;j>EHMER_OFFSET+1;j--) if(ret[i][m][j+2]>-200.f) break; ret[i][m][1]=j; } } return(ret); } void _vp_psy_init(vorbis_look_psy *p,vorbis_info_psy *vi, vorbis_info_psy_global *gi,int n,long rate){ long i,j,lo=-99,hi=1; long maxoc; memset(p,0,sizeof(*p)); p->eighth_octave_lines=gi->eighth_octave_lines; p->shiftoc=rint(log(gi->eighth_octave_lines*8.f)/log(2.f))-1; p->firstoc=toOC(.25f*rate*.5/n)*(1<<(p->shiftoc+1))-gi->eighth_octave_lines; maxoc=toOC((n+.25f)*rate*.5/n)*(1<<(p->shiftoc+1))+.5f; p->total_octave_lines=maxoc-p->firstoc+1; p->ath=(float*)_ogg_malloc(n*sizeof(*p->ath)); p->octave=(long*)_ogg_malloc(n*sizeof(*p->octave)); p->bark=(long*)_ogg_malloc(n*sizeof(*p->bark)); p->vi=vi; p->n=n; p->rate=rate; /* AoTuV HF weighting */ p->m_val = 1.; if(rate < 26000) p->m_val = 0; else if(rate < 38000) p->m_val = .94; /* 32kHz */ else if(rate > 46000) p->m_val = 1.275; /* 48kHz */ /* set up the lookups for a given blocksize and sample rate */ for(i=0,j=0;iath[j]=base+100.; base+=delta; } } } for(i=0;inoisewindowlominnoisewindowlo);lo++); for(;hi<=n && (hinoisewindowhimin || toBARK(rate/(2*n)*hi)<(bark+vi->noisewindowhi));hi++); p->bark[i]=((lo-1)<<16)+(hi-1); } for(i=0;ioctave[i]=toOC((i+.25f)*.5*rate/n)*(1<<(p->shiftoc+1))+.5f; p->tonecurves=setup_tone_curves(vi->toneatt,rate*.5/n,n, vi->tone_centerboost,vi->tone_decay); /* set up rolling noise median */ p->noiseoffset=(float**)_ogg_malloc(P_NOISECURVES*sizeof(*p->noiseoffset)); for(i=0;inoiseoffset[i]=(float*)_ogg_malloc(n*sizeof(**p->noiseoffset)); for(i=0;i=P_BANDS-1)halfoc=P_BANDS-1; inthalfoc=(int)halfoc; del=halfoc-inthalfoc; for(j=0;jnoiseoffset[j][i]= p->vi->noiseoff[j][inthalfoc]*(1.-del) + p->vi->noiseoff[j][inthalfoc+1]*del; } #if 0 { static int ls=0; _analysis_output_always("noiseoff0",ls,p->noiseoffset[0],n,1,0,0); _analysis_output_always("noiseoff1",ls,p->noiseoffset[1],n,1,0,0); _analysis_output_always("noiseoff2",ls++,p->noiseoffset[2],n,1,0,0); } #endif } void _vp_psy_clear(vorbis_look_psy *p){ int i,j; if(p){ if(p->ath)_ogg_free(p->ath); if(p->octave)_ogg_free(p->octave); if(p->bark)_ogg_free(p->bark); if(p->tonecurves){ for(i=0;itonecurves[i][j]); } _ogg_free(p->tonecurves[i]); } _ogg_free(p->tonecurves); } if(p->noiseoffset){ for(i=0;inoiseoffset[i]); } _ogg_free(p->noiseoffset); } memset(p,0,sizeof(*p)); } } /* octave/(8*eighth_octave_lines) x scale and dB y scale */ static void seed_curve(float *seed, const float **curves, float amp, int oc, int n, int linesper,float dBoffset){ int i,post1; int seedptr; const float *posts,*curve; int choice=(int)((amp+dBoffset-P_LEVEL_0)*.1f); choice=max(choice,0); choice=min(choice,P_LEVELS-1); posts=curves[choice]; curve=posts+2; post1=(int)posts[1]; seedptr=oc+(posts[0]-EHMER_OFFSET)*linesper-(linesper>>1); for(i=posts[0];i0){ float lin=amp+curve[i]; if(seed[seedptr]=n)break; } } static void seed_loop(vorbis_look_psy *p, const float ***curves, const float *f, const float *flr, float *seed, float specmax){ vorbis_info_psy *vi=p->vi; long n=p->n,i; float dBoffset=vi->max_curve_dB-specmax; /* prime the working vector with peak values */ for(i=0;ioctave[i]; while(i+1octave[i+1]==oc){ i++; if(f[i]>max)max=f[i]; } if(max+6.f>flr[i]){ oc=oc>>p->shiftoc; if(oc>=P_BANDS)oc=P_BANDS-1; if(oc<0)oc=0; seed_curve(seed, curves[oc], max, p->octave[i]-p->firstoc, p->total_octave_lines, p->eighth_octave_lines, dBoffset); } } } static void seed_chase(float *seeds, int linesper, long n){ long *posstack=(long*)alloca(n*sizeof(*posstack)); float *ampstack=(float*)alloca(n*sizeof(*ampstack)); long stack=0; long pos=0; long i; for(i=0;i1 && ampstack[stack-1]<=ampstack[stack-2] && iampstack[i]){ endpos=posstack[i+1]; }else{ endpos=posstack[i]+linesper+1; /* +1 is important, else bin 0 is discarded in short frames */ } if(endpos>n)endpos=n; for(;pos static void max_seeds(vorbis_look_psy *p, float *seed, float *flr){ long n=p->total_octave_lines; int linesper=p->eighth_octave_lines; long linpos=0; long pos; seed_chase(seed,linesper,n); /* for masking */ pos=p->octave[0]-p->firstoc-(linesper>>1); while(linpos+1n){ float minV=seed[pos]; long end=((p->octave[linpos]+p->octave[linpos+1])>>1)-p->firstoc; if(minV>p->vi->tone_abs_limit)minV=p->vi->tone_abs_limit; while(pos+1<=end){ pos++; if((seed[pos]>NEGINF && seed[pos]firstoc; for(;linposn && p->octave[linpos]<=end;linpos++) if(flr[linpos]total_octave_lines-1]; for(;linposn;linpos++) if(flr[linpos]> 16; if( lo>=0 ) break; hi = b[i] & 0xffff; tN = N[hi] + N[-lo]; tX = X[hi] - X[-lo]; tXX = XX[hi] + XX[-lo]; tY = Y[hi] + Y[-lo]; tXY = XY[hi] - XY[-lo]; A = tY * tXX - tX * tXY; B = tN * tXY - tX * tY; D = tN * tXX - tX * tX; R = (A + x * B) / D; if (R < 0.f) R = 0.f; noise[i] = R - offset; } for ( ;; i++, x += 1.f) { lo = b[i] >> 16; hi = b[i] & 0xffff; if(hi>=n)break; tN = N[hi] - N[lo]; tX = X[hi] - X[lo]; tXX = XX[hi] - XX[lo]; tY = Y[hi] - Y[lo]; tXY = XY[hi] - XY[lo]; A = tY * tXX - tX * tXY; B = tN * tXY - tX * tY; D = tN * tXX - tX * tX; R = (A + x * B) / D; if (R < 0.f) R = 0.f; noise[i] = R - offset; } for ( ; i < n; i++, x += 1.f) { R = (A + x * B) / D; if (R < 0.f) R = 0.f; noise[i] = R - offset; } if (fixed <= 0) return; for (i = 0, x = 0.f;; i++, x += 1.f) { hi = i + fixed / 2; lo = hi - fixed; if(lo>=0)break; tN = N[hi] + N[-lo]; tX = X[hi] - X[-lo]; tXX = XX[hi] + XX[-lo]; tY = Y[hi] + Y[-lo]; tXY = XY[hi] - XY[-lo]; A = tY * tXX - tX * tXY; B = tN * tXY - tX * tY; D = tN * tXX - tX * tX; R = (A + x * B) / D; if (R - offset < noise[i]) noise[i] = R - offset; } for ( ;; i++, x += 1.f) { hi = i + fixed / 2; lo = hi - fixed; if(hi>=n)break; tN = N[hi] - N[lo]; tX = X[hi] - X[lo]; tXX = XX[hi] - XX[lo]; tY = Y[hi] - Y[lo]; tXY = XY[hi] - XY[lo]; A = tY * tXX - tX * tXY; B = tN * tXY - tX * tY; D = tN * tXX - tX * tX; R = (A + x * B) / D; if (R - offset < noise[i]) noise[i] = R - offset; } for ( ; i < n; i++, x += 1.f) { R = (A + x * B) / D; if (R - offset < noise[i]) noise[i] = R - offset; } } static float FLOOR1_fromdB_INV_LOOKUP[256]={ 0.F, 8.81683e+06F, 8.27882e+06F, 7.77365e+06F, 7.29930e+06F, 6.85389e+06F, 6.43567e+06F, 6.04296e+06F, 5.67422e+06F, 5.32798e+06F, 5.00286e+06F, 4.69759e+06F, 4.41094e+06F, 4.14178e+06F, 3.88905e+06F, 3.65174e+06F, 3.42891e+06F, 3.21968e+06F, 3.02321e+06F, 2.83873e+06F, 2.66551e+06F, 2.50286e+06F, 2.35014e+06F, 2.20673e+06F, 2.07208e+06F, 1.94564e+06F, 1.82692e+06F, 1.71544e+06F, 1.61076e+06F, 1.51247e+06F, 1.42018e+06F, 1.33352e+06F, 1.25215e+06F, 1.17574e+06F, 1.10400e+06F, 1.03663e+06F, 973377.F, 913981.F, 858210.F, 805842.F, 756669.F, 710497.F, 667142.F, 626433.F, 588208.F, 552316.F, 518613.F, 486967.F, 457252.F, 429351.F, 403152.F, 378551.F, 355452.F, 333762.F, 313396.F, 294273.F, 276316.F, 259455.F, 243623.F, 228757.F, 214798.F, 201691.F, 189384.F, 177828.F, 166977.F, 156788.F, 147221.F, 138237.F, 129802.F, 121881.F, 114444.F, 107461.F, 100903.F, 94746.3F, 88964.9F, 83536.2F, 78438.8F, 73652.5F, 69158.2F, 64938.1F, 60975.6F, 57254.9F, 53761.2F, 50480.6F, 47400.3F, 44507.9F, 41792.0F, 39241.9F, 36847.3F, 34598.9F, 32487.7F, 30505.3F, 28643.8F, 26896.0F, 25254.8F, 23713.7F, 22266.7F, 20908.0F, 19632.2F, 18434.2F, 17309.4F, 16253.1F, 15261.4F, 14330.1F, 13455.7F, 12634.6F, 11863.7F, 11139.7F, 10460.0F, 9821.72F, 9222.39F, 8659.64F, 8131.23F, 7635.06F, 7169.17F, 6731.70F, 6320.93F, 5935.23F, 5573.06F, 5232.99F, 4913.67F, 4613.84F, 4332.30F, 4067.94F, 3819.72F, 3586.64F, 3367.78F, 3162.28F, 2969.31F, 2788.13F, 2617.99F, 2458.24F, 2308.24F, 2167.39F, 2035.14F, 1910.95F, 1794.35F, 1684.85F, 1582.04F, 1485.51F, 1394.86F, 1309.75F, 1229.83F, 1154.78F, 1084.32F, 1018.15F, 956.024F, 897.687F, 842.910F, 791.475F, 743.179F, 697.830F, 655.249F, 615.265F, 577.722F, 542.469F, 509.367F, 478.286F, 449.101F, 421.696F, 395.964F, 371.803F, 349.115F, 327.812F, 307.809F, 289.026F, 271.390F, 254.830F, 239.280F, 224.679F, 210.969F, 198.096F, 186.008F, 174.658F, 164.000F, 153.993F, 144.596F, 135.773F, 127.488F, 119.708F, 112.404F, 105.545F, 99.1046F, 93.0572F, 87.3788F, 82.0469F, 77.0404F, 72.3394F, 67.9252F, 63.7804F, 59.8885F, 56.2341F, 52.8027F, 49.5807F, 46.5553F, 43.7144F, 41.0470F, 38.5423F, 36.1904F, 33.9821F, 31.9085F, 29.9614F, 28.1332F, 26.4165F, 24.8045F, 23.2910F, 21.8697F, 20.5352F, 19.2822F, 18.1056F, 17.0008F, 15.9634F, 14.9893F, 14.0746F, 13.2158F, 12.4094F, 11.6522F, 10.9411F, 10.2735F, 9.64662F, 9.05798F, 8.50526F, 7.98626F, 7.49894F, 7.04135F, 6.61169F, 6.20824F, 5.82941F, 5.47370F, 5.13970F, 4.82607F, 4.53158F, 4.25507F, 3.99542F, 3.75162F, 3.52269F, 3.30774F, 3.10590F, 2.91638F, 2.73842F, 2.57132F, 2.41442F, 2.26709F, 2.12875F, 1.99885F, 1.87688F, 1.76236F, 1.65482F, 1.55384F, 1.45902F, 1.36999F, 1.28640F, 1.20790F, 1.13419F, 1.06499F, 1.F }; void _vp_remove_floor(vorbis_look_psy *p, float *mdct, int *codedflr, float *residue, int sliding_lowpass){ int i,n=p->n; if(sliding_lowpass>n)sliding_lowpass=n; for(i=0;in; float *work=(float*) alloca(n*sizeof(*work)); bark_noise_hybridmp(n,p->bark,logmdct,logmask, 140.,-1); for(i=0;ibark,work,logmask,0., p->vi->noisewindowfixed); for(i=0;i=NOISE_COMPAND_LEVELS)dB=NOISE_COMPAND_LEVELS-1; if(dB<0)dB=0; logmask[i]= work[i]+p->vi->noisecompand[dB]; } } void _vp_tonemask(vorbis_look_psy *p, float *logfft, float *logmask, float global_specmax, float local_specmax){ int i,n=p->n; float *seed=(float*) alloca(sizeof(*seed)*p->total_octave_lines); float att=local_specmax+p->vi->ath_adjatt; for(i=0;itotal_octave_lines;i++)seed[i]=NEGINF; /* set the ATH (floating below localmax, not global max by a specified att) */ if(attvi->ath_maxatt)att=p->vi->ath_maxatt; for(i=0;iath[i]+att; /* tone masking */ seed_loop(p,(const float ***)p->tonecurves,logfft,logmask,seed,global_specmax); max_seeds(p,seed,logmask); } void _vp_offset_and_mix(vorbis_look_psy *p, float *noise, float *tone, int offset_select, float *logmask, float *mdct, float *logmdct){ int i,n=p->n; float de, coeffi, cx;/* AoTuV */ float toneatt=p->vi->tone_masteratt[offset_select]; cx = p->m_val; for(i=0;inoiseoffset[offset_select][i]; if(val>p->vi->noisemaxsupp)val=p->vi->noisemaxsupp; logmask[i]=max(val,tone[i]+toneatt); /* AoTuV */ /** @ M1 ** The following codes improve a noise problem. A fundamental idea uses the value of masking and carries out the relative compensation of the MDCT. However, this code is not perfect and all noise problems cannot be solved. by Aoyumi @ 2004/04/18 */ if(offset_select == 1) { coeffi = -17.2; /* coeffi is a -17.2dB threshold */ val = val - logmdct[i]; /* val == mdct line value relative to floor in dB */ if(val > coeffi){ /* mdct value is > -17.2 dB below floor */ de = 1.0-((val-coeffi)*0.005*cx); /* pro-rated attenuation: -0.00 dB boost if mdct value is -17.2dB (relative to floor) -0.77 dB boost if mdct value is 0dB (relative to floor) -1.64 dB boost if mdct value is +17.2dB (relative to floor) etc... */ if(de < 0) de = 0.0001; }else /* mdct value is <= -17.2 dB below floor */ de = 1.0-((val-coeffi)*0.0003*cx); /* pro-rated attenuation: +0.00 dB atten if mdct value is -17.2dB (relative to floor) +0.45 dB atten if mdct value is -34.4dB (relative to floor) etc... */ mdct[i] *= de; } } } float _vp_ampmax_decay(float amp,vorbis_dsp_state *vd){ vorbis_info *vi=vd->vi; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; vorbis_info_psy_global *gi=&ci->psy_g_param; int n=ci->blocksizes[vd->W]/2; float secs=(float)n/vi->rate; amp+=secs*gi->ampmax_att_per_sec; if(amp<-9999)amp=-9999; return(amp); } static void couple_lossless(float A, float B, float *qA, float *qB){ int test1=fabs(*qA)>fabs(*qB); test1-= fabs(*qA)fabs(B))<<1)-1; if(test1==1){ *qB=(*qA>0.f?*qA-*qB:*qB-*qA); }else{ float temp=*qB; *qB=(*qB>0.f?*qA-*qB:*qB-*qA); *qA=temp; } if(*qB>fabs(*qA)*1.9999f){ *qB= -fabs(*qA)*2.f; *qA= -*qA; } } static float hypot_lookup[32]={ -0.009935, -0.011245, -0.012726, -0.014397, -0.016282, -0.018407, -0.020800, -0.023494, -0.026522, -0.029923, -0.033737, -0.038010, -0.042787, -0.048121, -0.054064, -0.060671, -0.068000, -0.076109, -0.085054, -0.094892, -0.105675, -0.117451, -0.130260, -0.144134, -0.159093, -0.175146, -0.192286, -0.210490, -0.229718, -0.249913, -0.271001, -0.292893}; static void precomputed_couple_point(float premag, int floorA,int floorB, float *mag, float *ang){ int test=(floorA>floorB)-1; int offset=31-abs(floorA-floorB); float floormag=hypot_lookup[((offset<0)-1)&offset]+1.f; floormag*=FLOOR1_fromdB_INV_LOOKUP[(floorB&test)|(floorA&(~test))]; *mag=premag*floormag; *ang=0.f; } /* just like below, this is currently set up to only do single-step-depth coupling. Otherwise, we'd have to do more copying (which will be inevitable later) */ /* doing the real circular magnitude calculation is audibly superior to (A+B)/sqrt(2) */ static float dipole_hypot(float a, float b){ if(a>0.){ if(b>0.)return sqrt(a*a+b*b); if(a>-b)return sqrt(a*a-b*b); return -sqrt(b*b-a*a); } if(b<0.)return -sqrt(a*a+b*b); if(-a>b)return -sqrt(a*a-b*b); return sqrt(b*b-a*a); } static float round_hypot(float a, float b){ if(a>0.){ if(b>0.)return sqrt(a*a+b*b); if(a>-b)return sqrt(a*a+b*b); return -sqrt(b*b+a*a); } if(b<0.)return -sqrt(a*a+b*b); if(-a>b)return -sqrt(a*a+b*b); return sqrt(b*b+a*a); } /* revert to round hypot for now */ float **_vp_quantize_couple_memo(vorbis_block *vb, vorbis_info_psy_global *g, vorbis_look_psy *p, vorbis_info_mapping0 *vi, float **mdct){ int i,j,n=p->n; float **ret=(float**) _vorbis_block_alloc(vb,vi->coupling_steps*sizeof(*ret)); int limit=g->coupling_pointlimit[p->vi->blockflag][PACKETBLOBS/2]; for(i=0;icoupling_steps;i++){ float *mdctM=mdct[vi->coupling_mag[i]]; float *mdctA=mdct[vi->coupling_ang[i]]; ret[i]=(float*) _vorbis_block_alloc(vb,n*sizeof(**ret)); for(j=0;jf2); } int **_vp_quantize_couple_sort(vorbis_block *vb, vorbis_look_psy *p, vorbis_info_mapping0 *vi, float **mags){ if(p->vi->normal_point_p){ int i,j,k,n=p->n; int **ret=(int**) _vorbis_block_alloc(vb,vi->coupling_steps*sizeof(*ret)); int partition=p->vi->normal_partition; float **work=(float**) alloca(sizeof(*work)*partition); for(i=0;icoupling_steps;i++){ ret[i]=(int*) _vorbis_block_alloc(vb,n*sizeof(**ret)); for(j=0;jn; vorbis_info_psy *vi=p->vi; int partition=vi->normal_partition; float **work=(float**) alloca(sizeof(*work)*partition); int start=vi->normal_start; for(j=start;jn)partition=n-j; for(i=0;in; vorbis_info_psy *vi=p->vi; int partition=vi->normal_partition; int start=vi->normal_start; if(start>n)start=n; if(vi->normal_channel_p){ for(;j=.25f){ out[k]=rint(in[k]); acc-=in[k]*in[k]; flag=1; }else{ if(accnormal_thresh)break; out[k]=unitnorm(in[k]); acc-=1.; } } for(;in; /* perform any requested channel coupling */ /* point stereo can only be used in a first stage (in this encoder) because of the dependency on floor lookups */ for(i=0;icoupling_steps;i++){ /* once we're doing multistage coupling in which a channel goes through more than one coupling step, the floor vector magnitudes will also have to be recalculated an propogated along with PCM. Right now, we're not (that will wait until 5.1 most likely), so the code isn't here yet. The memory management here is all assuming single depth couplings anyway. */ /* make sure coupling a zero and a nonzero channel results in two nonzero channels. */ if(nonzero[vi->coupling_mag[i]] || nonzero[vi->coupling_ang[i]]){ float *rM=res[vi->coupling_mag[i]]; float *rA=res[vi->coupling_ang[i]]; float *qM=rM+n; float *qA=rA+n; int *floorM=ifloor[vi->coupling_mag[i]]; int *floorA=ifloor[vi->coupling_ang[i]]; float prepoint=stereo_threshholds[g->coupling_prepointamp[blobno]]; float postpoint=stereo_threshholds[g->coupling_postpointamp[blobno]]; int partition=(p->vi->normal_point_p?p->vi->normal_partition:p->n); int limit=g->coupling_pointlimit[p->vi->blockflag][blobno]; int pointlimit=limit; nonzero[vi->coupling_mag[i]]=1; nonzero[vi->coupling_ang[i]]=1; /* The threshold of a stereo is changed with the size of n */ if(n > 1000) postpoint=stereo_threshholds_limited[g->coupling_postpointamp[blobno]]; for(j=0;jn;j+=partition){ float acc=0.f; for(k=0;k=limit && fabs(rM[l])vi->normal_point_p){ for(k=0;k=p->vi->normal_thresh;k++){ int l=mag_sort[i][j+k]; if(l=pointlimit && rint(qM[l])==0.f){ qM[l]=unitnorm(qM[l]); acc-=1.f; } } } } } } } /* AoTuV */ /** @ M2 ** The boost problem by the combination of noise normalization and point stereo is eased. However, this is a temporary patch. by Aoyumi @ 2004/04/18 */ void hf_reduction(vorbis_info_psy_global *g, vorbis_look_psy *p, vorbis_info_mapping0 *vi, float **mdct){ int i,j,n=p->n, de=0.3*p->m_val; int limit=g->coupling_pointlimit[p->vi->blockflag][PACKETBLOBS/2]; for(i=0; icoupling_steps; i++){ /* for(j=start; j #include #include #if defined(TRAIN_RES) || defined (TRAIN_RESAUX) #include #endif typedef struct { vorbis_info_residue0 *info; int parts; int stages; codebook *fullbooks; codebook *phrasebook; codebook ***partbooks; int partvals; int **decodemap; long postbits; long phrasebits; long frames; #if defined(TRAIN_RES) || defined(TRAIN_RESAUX) int train_seq; long *training_data[8][64]; float training_max[8][64]; float training_min[8][64]; float tmin; float tmax; #endif } vorbis_look_residue0; void res0_free_info(vorbis_info_residue *i){ vorbis_info_residue0 *info=(vorbis_info_residue0 *)i; if(info){ memset(info,0,sizeof(*info)); _ogg_free(info); } } void res0_free_look(vorbis_look_residue *i){ int j; if(i){ vorbis_look_residue0 *look=(vorbis_look_residue0 *)i; #ifdef TRAIN_RES { int j,k,l; for(j=0;jparts;j++){ /*fprintf(stderr,"partition %d: ",j);*/ for(k=0;k<8;k++) if(look->training_data[k][j]){ char buffer[80]; FILE *of; codebook *statebook=look->partbooks[j][k]; /* long and short into the same bucket by current convention */ sprintf(buffer,"res_part%d_pass%d.vqd",j,k); of=fopen(buffer,"a"); for(l=0;lentries;l++) fprintf(of,"%d:%ld\n",l,look->training_data[k][j][l]); fclose(of); /*fprintf(stderr,"%d(%.2f|%.2f) ",k, look->training_min[k][j],look->training_max[k][j]);*/ _ogg_free(look->training_data[k][j]); look->training_data[k][j]=NULL; } /*fprintf(stderr,"\n");*/ } } fprintf(stderr,"min/max residue: %g::%g\n",look->tmin,look->tmax); /*fprintf(stderr,"residue bit usage %f:%f (%f total)\n", (float)look->phrasebits/look->frames, (float)look->postbits/look->frames, (float)(look->postbits+look->phrasebits)/look->frames);*/ #endif /*vorbis_info_residue0 *info=look->info; fprintf(stderr, "%ld frames encoded in %ld phrasebits and %ld residue bits " "(%g/frame) \n",look->frames,look->phrasebits, look->resbitsflat, (look->phrasebits+look->resbitsflat)/(float)look->frames); for(j=0;jparts;j++){ long acc=0; fprintf(stderr,"\t[%d] == ",j); for(k=0;kstages;k++) if((info->secondstages[j]>>k)&1){ fprintf(stderr,"%ld,",look->resbits[j][k]); acc+=look->resbits[j][k]; } fprintf(stderr,":: (%ld vals) %1.2fbits/sample\n",look->resvals[j], acc?(float)acc/(look->resvals[j]*info->grouping):0); } fprintf(stderr,"\n");*/ for(j=0;jparts;j++) if(look->partbooks[j])_ogg_free(look->partbooks[j]); _ogg_free(look->partbooks); for(j=0;jpartvals;j++) _ogg_free(look->decodemap[j]); _ogg_free(look->decodemap); memset(look,0,sizeof(*look)); _ogg_free(look); } } static int icount(unsigned int v){ int ret=0; while(v){ ret+=v&1; v>>=1; } return(ret); } void res0_pack(vorbis_info_residue *vr,oggpack_buffer *opb){ vorbis_info_residue0 *info=(vorbis_info_residue0 *)vr; int j,acc=0; oggpack_write(opb,info->begin,24); oggpack_write(opb,info->end,24); oggpack_write(opb,info->grouping-1,24); /* residue vectors to group and code with a partitioned book */ oggpack_write(opb,info->partitions-1,6); /* possible partition choices */ oggpack_write(opb,info->groupbook,8); /* group huffman book */ /* secondstages is a bitmask; as encoding progresses pass by pass, a bitmask of one indicates this partition class has bits to write this pass */ for(j=0;jpartitions;j++){ if(ilog(info->secondstages[j])>3){ /* yes, this is a minor hack due to not thinking ahead */ oggpack_write(opb,info->secondstages[j],3); oggpack_write(opb,1,1); oggpack_write(opb,info->secondstages[j]>>3,5); }else oggpack_write(opb,info->secondstages[j],4); /* trailing zero */ acc+=icount(info->secondstages[j]); } for(j=0;jbooklist[j],8); } /* vorbis_info is for range checking */ vorbis_info_residue *res0_unpack(vorbis_info *vi,oggpack_buffer *opb){ int j,acc=0; vorbis_info_residue0 *info=(vorbis_info_residue0*) _ogg_calloc(1,sizeof(*info)); codec_setup_info *ci=(codec_setup_info*) vi->codec_setup; info->begin=oggpack_read(opb,24); info->end=oggpack_read(opb,24); info->grouping=oggpack_read(opb,24)+1; info->partitions=oggpack_read(opb,6)+1; info->groupbook=oggpack_read(opb,8); for(j=0;jpartitions;j++){ int cascade=oggpack_read(opb,3); if(oggpack_read(opb,1)) cascade|=(oggpack_read(opb,5)<<3); info->secondstages[j]=cascade; acc+=icount(cascade); } for(j=0;jbooklist[j]=oggpack_read(opb,8); if(info->groupbook>=ci->books)goto errout; for(j=0;jbooklist[j]>=ci->books)goto errout; return(info); errout: res0_free_info(info); return(NULL); } vorbis_look_residue *res0_look(vorbis_dsp_state *vd, vorbis_info_residue *vr){ vorbis_info_residue0 *info=(vorbis_info_residue0 *)vr; vorbis_look_residue0 *look=(vorbis_look_residue0 *)_ogg_calloc(1,sizeof(*look)); codec_setup_info *ci=(codec_setup_info*)vd->vi->codec_setup; int j,k,acc=0; int dim; int maxstage=0; look->info=info; look->parts=info->partitions; look->fullbooks=ci->fullbooks; look->phrasebook=ci->fullbooks+info->groupbook; dim=look->phrasebook->dim; look->partbooks=(codebook***)_ogg_calloc(look->parts,sizeof(*look->partbooks)); for(j=0;jparts;j++){ int stages=ilog(info->secondstages[j]); if(stages){ if(stages>maxstage)maxstage=stages; look->partbooks[j]=(codebook**) _ogg_calloc(stages,sizeof(*look->partbooks[j])); for(k=0;ksecondstages[j]&(1<partbooks[j][k]=ci->fullbooks+info->booklist[acc++]; #ifdef TRAIN_RES look->training_data[k][j]=_ogg_calloc(look->partbooks[j][k]->entries, sizeof(***look->training_data)); #endif } } } look->partvals=rint(pow((float)look->parts,(float)dim)); look->stages=maxstage; look->decodemap=(int**)_ogg_malloc(look->partvals*sizeof(*look->decodemap)); for(j=0;jpartvals;j++){ long val=j; long mult=look->partvals/look->parts; look->decodemap[j]=(int*)_ogg_malloc(dim*sizeof(*look->decodemap[j])); for(k=0;kparts; look->decodemap[j][k]=deco; } } #if defined(TRAIN_RES) || defined (TRAIN_RESAUX) { static int train_seq=0; look->train_seq=train_seq++; } #endif return(look); } /* break an abstraction and copy some code for performance purposes */ static int local_book_besterror(codebook *book,float *a){ int dim=book->dim,i,k,o; int best=0; encode_aux_threshmatch *tt=book->c->thresh_tree; /* find the quant val of each scalar */ for(k=0,o=dim;kthreshvals>>1; if(valquantthresh[i]){ if(valquantthresh[i-1]){ for(--i;i>0;--i) if(val>=tt->quantthresh[i-1]) break; } }else{ for(++i;ithreshvals-1;++i) if(valquantthresh[i])break; } best=(best*tt->quantvals)+tt->quantmap[i]; } /* regular lattices are easy :-) */ if(book->c->lengthlist[best]<=0){ const static_codebook *c=book->c; int i,j; float bestf=0.f; float *e=book->valuelist; best=-1; for(i=0;ientries;i++){ if(c->lengthlist[i]>0){ float thisx=0.f; for(j=0;jvaluelist+best*dim; for(i=0;idim; int step=n/dim; for(i=0;iinfo; /* move all this setup out later */ int samples_per_partition=info->grouping; int possible_partitions=info->partitions; int n=info->end-info->begin; int partvals=n/samples_per_partition; long **partword=(long**)_vorbis_block_alloc(vb,ch*sizeof(*partword)); float scale=100./samples_per_partition; /* we find the partition type for each partition of each channel. We'll go back and do the interleaved encoding in a bit. For now, clarity */ for(i=0;ibegin; for(j=0;jmax)max=fabs(in[j][offset+k]); ent+=fabs(rint(in[j][offset+k])); } ent*=scale; for(k=0;kclassmetric1[k] && (info->classmetric2[k]<0 || (int)entclassmetric2[k])) break; partword[j][i]=k; } } #ifdef TRAIN_RESAUX { FILE *of; char buffer[80]; for(i=0;itrain_seq); of=fopen(buffer,"a"); for(j=0;jframes++; return(partword); } /* designed for stereo or other modes where the partition size is an integer multiple of the number of channels encoded in the current submap */ static long **_2class(vorbis_block *vb,vorbis_look_residue *vl,float **in, int ch){ long i,j,k,l; vorbis_look_residue0 *look=(vorbis_look_residue0 *)vl; vorbis_info_residue0 *info=look->info; /* move all this setup out later */ int samples_per_partition=info->grouping; int possible_partitions=info->partitions; int n=info->end-info->begin; int partvals=n/samples_per_partition; long **partword=(long**)_vorbis_block_alloc(vb,sizeof(*partword)); #if defined(TRAIN_RES) || defined (TRAIN_RESAUX) FILE *of; char buffer[80]; #endif partword[0]=(long*)_vorbis_block_alloc(vb,n*ch/samples_per_partition*sizeof(*partword[0])); memset(partword[0],0,n*ch/samples_per_partition*sizeof(*partword[0])); for(i=0,l=info->begin/ch;imagmax)magmax=fabs(in[0][l]); for(k=1;kangmax)angmax=fabs(in[k][l]); l++; } for(j=0;jclassmetric1[j] && angmax<=info->classmetric2[j]) break; partword[0][i]=j; } #ifdef TRAIN_RESAUX sprintf(buffer,"resaux_%d.vqd",look->train_seq); of=fopen(buffer,"a"); for(i=0;iframes++; return(partword); } static int _01forward(oggpack_buffer *opb, vorbis_block *vb,vorbis_look_residue *vl, float **in,int ch, long **partword, int (*encode)(oggpack_buffer *,float *,int, codebook *,long *)){ long i,j,k,s; vorbis_look_residue0 *look=(vorbis_look_residue0 *)vl; vorbis_info_residue0 *info=look->info; /* move all this setup out later */ int samples_per_partition=info->grouping; int possible_partitions=info->partitions; int partitions_per_word=look->phrasebook->dim; int n=info->end-info->begin; int partvals=n/samples_per_partition; long resbits[128]; long resvals[128]; #ifdef TRAIN_RES for(i=0;ibegin;jend;j++){ if(in[i][j]>look->tmax)look->tmax=in[i][j]; if(in[i][j]tmin)look->tmin=in[i][j]; } #endif memset(resbits,0,sizeof(resbits)); memset(resvals,0,sizeof(resvals)); /* we code the partition words for each channel, then the residual words for a partition per channel until we've written all the residual words for that partition word. Then write the next partition channel words... */ for(s=0;sstages;s++){ for(i=0;iphrasebook->entries) look->phrasebits+=vorbis_book_encode(look->phrasebook,val,opb); #if 0 /*def TRAIN_RES*/ else fprintf(stderr,"!"); #endif } } /* now we encode interleaved residual values for the partitions */ for(k=0;kbegin; for(j=0;jsecondstages[partword[j][i]]&(1<partbooks[partword[j][i]][s]; if(statebook){ int ret; long *accumulator=NULL; #ifdef TRAIN_RES accumulator=look->training_data[s][partword[j][i]]; { int l; float *samples=in[j]+offset; for(l=0;ltraining_min[s][partword[j][i]]) look->training_min[s][partword[j][i]]=samples[l]; if(samples[l]>look->training_max[s][partword[j][i]]) look->training_max[s][partword[j][i]]=samples[l]; } } #endif ret=encode(opb,in[j]+offset,samples_per_partition, statebook,accumulator); look->postbits+=ret; resbits[partword[j][i]]+=ret; } } } } } } /*{ long total=0; long totalbits=0; fprintf(stderr,"%d :: ",vb->mode); for(k=0;kinfo; /* move all this setup out later */ int samples_per_partition=info->grouping; int partitions_per_word=look->phrasebook->dim; int n=info->end-info->begin; int partvals=n/samples_per_partition; int partwords=(partvals+partitions_per_word-1)/partitions_per_word; int ***partword=(int***)alloca(ch*sizeof(*partword)); for(j=0;jstages;s++){ /* each loop decodes on partition codeword containing partitions_pre_word partitions */ for(i=0,l=0;iphrasebook,&vb->opb); if(temp==-1)goto eopbreak; partword[j][l]=look->decodemap[temp]; if(partword[j][l]==NULL)goto errout; } } /* now we decode residual values for the partitions */ for(k=0;kbegin+i*samples_per_partition; if(info->secondstages[partword[j][l][k]]&(1<partbooks[partword[j][l][k]][s]; if(stagebook){ if(decodepart(stagebook,in[j]+offset,&vb->opb, samples_per_partition)==-1)goto eopbreak; } } } } } errout: eopbreak: return(0); } #if 0 /* residue 0 and 1 are just slight variants of one another. 0 is interleaved, 1 is not */ long **res0_class(vorbis_block *vb,vorbis_look_residue *vl, float **in,int *nonzero,int ch){ /* we encode only the nonzero parts of a bundle */ int i,used=0; for(i=0;ipcmend/2; for(i=0;ipcmend/2; for(i=0;ipcmend/2,used=0; /* don't duplicate the code; use a working vector hack for now and reshape ourselves into a single channel res1 */ /* ugly; reallocs for each coupling pass :-( */ float *work=(float*)_vorbis_block_alloc(vb,ch*n*sizeof(*work)); for(i=0;iinfo; /* move all this setup out later */ int samples_per_partition=info->grouping; int partitions_per_word=look->phrasebook->dim; int n=info->end-info->begin; int partvals=n/samples_per_partition; int partwords=(partvals+partitions_per_word-1)/partitions_per_word; int **partword=(int**)_vorbis_block_alloc(vb,partwords*sizeof(*partword)); for(i=0;istages;s++){ for(i=0,l=0;iphrasebook,&vb->opb); if(temp==-1)goto eopbreak; partword[l]=look->decodemap[temp]; if(partword[l]==NULL)goto errout; } /* now we decode residual values for the partitions */ for(k=0;ksecondstages[partword[l][k]]&(1<partbooks[partword[l][k]][s]; if(stagebook){ if(vorbis_book_decodevv_add(stagebook,in, i*samples_per_partition+info->begin,ch, &vb->opb,samples_per_partition)==-1) goto eopbreak; } } } } errout: eopbreak: return(0); } vorbis_func_residue residue0_exportbundle={ NULL, &res0_unpack, &res0_look, &res0_free_info, &res0_free_look, NULL, NULL, &res0_inverse }; vorbis_func_residue residue1_exportbundle={ &res0_pack, &res0_unpack, &res0_look, &res0_free_info, &res0_free_look, &res1_class, &res1_forward, &res1_inverse }; vorbis_func_residue residue2_exportbundle={ &res0_pack, &res0_unpack, &res0_look, &res0_free_info, &res0_free_look, &res2_class, &res2_forward, &res2_inverse }; #endif /********* End of inlined file: res0.c *********/ /********* Start of inlined file: sharedbook.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #include /**** pack/unpack helpers ******************************************/ int _ilog(unsigned int v){ int ret=0; while(v){ ret++; v>>=1; } return(ret); } /* 32 bit float (not IEEE; nonnormalized mantissa + biased exponent) : neeeeeee eeemmmmm mmmmmmmm mmmmmmmm Why not IEEE? It's just not that important here. */ #define VQ_FEXP 10 #define VQ_FMAN 21 #define VQ_FEXP_BIAS 768 /* bias toward values smaller than 1. */ /* doesn't currently guard under/overflow */ long _float32_pack(float val){ int sign=0; long exp; long mant; if(val<0){ sign=0x80000000; val= -val; } exp= floor(log(val)/log(2.f)); mant=rint(ldexp(val,(VQ_FMAN-1)-exp)); exp=(exp+VQ_FEXP_BIAS)<>VQ_FMAN; if(sign)mant= -mant; return(ldexp(mant,exp-(VQ_FMAN-1)-VQ_FEXP_BIAS)); } /* given a list of word lengths, generate a list of codewords. Works for length ordered or unordered, always assigns the lowest valued codewords first. Extended to handle unused entries (length 0) */ ogg_uint32_t *_make_words(long *l,long n,long sparsecount){ long i,j,count=0; ogg_uint32_t marker[33]; ogg_uint32_t *r=(ogg_uint32_t*)_ogg_malloc((sparsecount?sparsecount:n)*sizeof(*r)); memset(marker,0,sizeof(marker)); for(i=0;i0){ ogg_uint32_t entry=marker[length]; /* when we claim a node for an entry, we also claim the nodes below it (pruning off the imagined tree that may have dangled from it) as well as blocking the use of any nodes directly above for leaves */ /* update ourself */ if(length<32 && (entry>>length)){ /* error condition; the lengths must specify an overpopulated tree */ _ogg_free(r); return(NULL); } r[count++]=entry; /* Look to see if the next shorter marker points to the node above. if so, update it and repeat. */ { for(j=length;j>0;j--){ if(marker[j]&1){ /* have to jump branches */ if(j==1) marker[1]++; else marker[j]=marker[j-1]<<1; break; /* invariant says next upper marker would already have been moved if it was on the same path */ } marker[j]++; } } /* prune the tree; the implicit invariant says all the longer markers were dangling from our just-taken node. Dangle them from our *new* node. */ for(j=length+1;j<33;j++) if((marker[j]>>1) == entry){ entry=marker[j]; marker[j]=marker[j-1]<<1; }else break; }else if(sparsecount==0)count++; } /* bitreverse the words because our bitwise packer/unpacker is LSb endian */ for(i=0,count=0;i>j)&1; } if(sparsecount){ if(l[i]) r[count++]=temp; }else r[count++]=temp; } return(r); } /* there might be a straightforward one-line way to do the below that's portable and totally safe against roundoff, but I haven't thought of it. Therefore, we opt on the side of caution */ long _book_maptype1_quantvals(const static_codebook *b){ long vals=floor(pow((float)b->entries,1.f/b->dim)); /* the above *should* be reliable, but we'll not assume that FP is ever reliable when bitstream sync is at stake; verify via integer means that vals really is the greatest value of dim for which vals^b->bim <= b->entries */ /* treat the above as an initial guess */ while(1){ long acc=1; long acc1=1; int i; for(i=0;idim;i++){ acc*=vals; acc1*=vals+1; } if(acc<=b->entries && acc1>b->entries){ return(vals); }else{ if(acc>b->entries){ vals--; }else{ vals++; } } } } /* unpack the quantized list of values for encode/decode ***********/ /* we need to deal with two map types: in map type 1, the values are generated algorithmically (each column of the vector counts through the values in the quant vector). in map type 2, all the values came in in an explicit list. Both value lists must be unpacked */ float *_book_unquantize(const static_codebook *b,int n,int *sparsemap){ long j,k,count=0; if(b->maptype==1 || b->maptype==2){ int quantvals; float mindel=_float32_unpack(b->q_min); float delta=_float32_unpack(b->q_delta); float *r=(float*)_ogg_calloc(n*b->dim,sizeof(*r)); /* maptype 1 and 2 both use a quantized value vector, but different sizes */ switch(b->maptype){ case 1: /* most of the time, entries%dimensions == 0, but we need to be well defined. We define that the possible vales at each scalar is values == entries/dim. If entries%dim != 0, we'll have 'too few' values (values*dimentries;j++){ if((sparsemap && b->lengthlist[j]) || !sparsemap){ float last=0.f; int indexdiv=1; for(k=0;kdim;k++){ int index= (j/indexdiv)%quantvals; float val=b->quantlist[index]; val=fabs(val)*delta+mindel+last; if(b->q_sequencep)last=val; if(sparsemap) r[sparsemap[count]*b->dim+k]=val; else r[count*b->dim+k]=val; indexdiv*=quantvals; } count++; } } break; case 2: for(j=0;jentries;j++){ if((sparsemap && b->lengthlist[j]) || !sparsemap){ float last=0.f; for(k=0;kdim;k++){ float val=b->quantlist[j*b->dim+k]; val=fabs(val)*delta+mindel+last; if(b->q_sequencep)last=val; if(sparsemap) r[sparsemap[count]*b->dim+k]=val; else r[count*b->dim+k]=val; } count++; } } break; } return(r); } return(NULL); } void vorbis_staticbook_clear(static_codebook *b){ if(b->allocedp){ if(b->quantlist)_ogg_free(b->quantlist); if(b->lengthlist)_ogg_free(b->lengthlist); if(b->nearest_tree){ _ogg_free(b->nearest_tree->ptr0); _ogg_free(b->nearest_tree->ptr1); _ogg_free(b->nearest_tree->p); _ogg_free(b->nearest_tree->q); memset(b->nearest_tree,0,sizeof(*b->nearest_tree)); _ogg_free(b->nearest_tree); } if(b->thresh_tree){ _ogg_free(b->thresh_tree->quantthresh); _ogg_free(b->thresh_tree->quantmap); memset(b->thresh_tree,0,sizeof(*b->thresh_tree)); _ogg_free(b->thresh_tree); } memset(b,0,sizeof(*b)); } } void vorbis_staticbook_destroy(static_codebook *b){ if(b->allocedp){ vorbis_staticbook_clear(b); _ogg_free(b); } } void vorbis_book_clear(codebook *b){ /* static book is not cleared; we're likely called on the lookup and the static codebook belongs to the info struct */ if(b->valuelist)_ogg_free(b->valuelist); if(b->codelist)_ogg_free(b->codelist); if(b->dec_index)_ogg_free(b->dec_index); if(b->dec_codelengths)_ogg_free(b->dec_codelengths); if(b->dec_firsttable)_ogg_free(b->dec_firsttable); memset(b,0,sizeof(*b)); } int vorbis_book_init_encode(codebook *c,const static_codebook *s){ memset(c,0,sizeof(*c)); c->c=s; c->entries=s->entries; c->used_entries=s->entries; c->dim=s->dim; c->codelist=_make_words(s->lengthlist,s->entries,0); c->valuelist=_book_unquantize(s,s->entries,NULL); return(0); } static int sort32a(const void *a,const void *b){ return ( **(ogg_uint32_t **)a>**(ogg_uint32_t **)b)- ( **(ogg_uint32_t **)a<**(ogg_uint32_t **)b); } /* decode codebook arrangement is more heavily optimized than encode */ int vorbis_book_init_decode(codebook *c,const static_codebook *s){ int i,j,n=0,tabn; int *sortindex; memset(c,0,sizeof(*c)); /* count actually used entries */ for(i=0;ientries;i++) if(s->lengthlist[i]>0) n++; c->entries=s->entries; c->used_entries=n; c->dim=s->dim; /* two different remappings go on here. First, we collapse the likely sparse codebook down only to actually represented values/words. This collapsing needs to be indexed as map-valueless books are used to encode original entry positions as integers. Second, we reorder all vectors, including the entry index above, by sorted bitreversed codeword to allow treeless decode. */ { /* perform sort */ ogg_uint32_t *codes=_make_words(s->lengthlist,s->entries,c->used_entries); ogg_uint32_t **codep=(ogg_uint32_t**)alloca(sizeof(*codep)*n); if(codes==NULL)goto err_out; for(i=0;icodelist=(ogg_uint32_t*)_ogg_malloc(n*sizeof(*c->codelist)); /* the index is a reverse index */ for(i=0;icodelist[sortindex[i]]=codes[i]; _ogg_free(codes); } c->valuelist=_book_unquantize(s,n,sortindex); c->dec_index=(int*)_ogg_malloc(n*sizeof(*c->dec_index)); for(n=0,i=0;ientries;i++) if(s->lengthlist[i]>0) c->dec_index[sortindex[n++]]=i; c->dec_codelengths=(char*)_ogg_malloc(n*sizeof(*c->dec_codelengths)); for(n=0,i=0;ientries;i++) if(s->lengthlist[i]>0) c->dec_codelengths[sortindex[n++]]=s->lengthlist[i]; c->dec_firsttablen=_ilog(c->used_entries)-4; /* this is magic */ if(c->dec_firsttablen<5)c->dec_firsttablen=5; if(c->dec_firsttablen>8)c->dec_firsttablen=8; tabn=1<dec_firsttablen; c->dec_firsttable=(ogg_uint32_t*)_ogg_calloc(tabn,sizeof(*c->dec_firsttable)); c->dec_maxlength=0; for(i=0;idec_maxlengthdec_codelengths[i]) c->dec_maxlength=c->dec_codelengths[i]; if(c->dec_codelengths[i]<=c->dec_firsttablen){ ogg_uint32_t orig=ogg_bitreverse(c->codelist[i]); for(j=0;j<(1<<(c->dec_firsttablen-c->dec_codelengths[i]));j++) c->dec_firsttable[orig|(j<dec_codelengths[i])]=i+1; } } /* now fill in 'unused' entries in the firsttable with hi/lo search hints for the non-direct-hits */ { ogg_uint32_t mask=0xfffffffeUL<<(31-c->dec_firsttablen); long lo=0,hi=0; for(i=0;idec_firsttablen); if(c->dec_firsttable[ogg_bitreverse(word)]==0){ while((lo+1)codelist[lo+1]<=word)lo++; while( hi=(c->codelist[hi]&mask))hi++; /* we only actually have 15 bits per hint to play with here. In order to overflow gracefully (nothing breaks, efficiency just drops), encode as the difference from the extremes. */ { unsigned long loval=lo; unsigned long hival=n-hi; if(loval>0x7fff)loval=0x7fff; if(hival>0x7fff)hival=0x7fff; c->dec_firsttable[ogg_bitreverse(word)]= 0x80000000UL | (loval<<15) | hival; } } } } return(0); err_out: vorbis_book_clear(c); return(-1); } static float _dist(int el,float *ref, float *b,int step){ int i; float acc=0.f; for(i=0;ic->thresh_tree; #if 0 encode_aux_nearestmatch *nt=book->c->nearest_tree; encode_aux_pigeonhole *pt=book->c->pigeon_tree; #endif int dim=book->dim; int k,o; /*int savebest=-1; float saverr;*/ /* do we have a threshhold encode hint? */ if(tt){ int index=0,i; /* find the quant val of each scalar */ for(k=0,o=step*(dim-1);kthreshvals>>1; if(a[o]quantthresh[i]){ for(;i>0;i--) if(a[o]>=tt->quantthresh[i-1]) break; }else{ for(i++;ithreshvals-1;i++) if(a[o]quantthresh[i])break; } index=(index*tt->quantvals)+tt->quantmap[i]; } /* regular lattices are easy :-) */ if(book->c->lengthlist[index]>0) /* is this unused? If so, we'll use a decision tree after all and fall through*/ return(index); } #if 0 /* do we have a pigeonhole encode hint? */ if(pt){ const static_codebook *c=book->c; int i,besti=-1; float best=0.f; int entry=0; /* dealing with sequentialness is a pain in the ass */ if(c->q_sequencep){ int pv; long mul=1; float qlast=0; for(k=0,o=0;kmin)/pt->del); if(pv<0 || pv>=pt->mapentries)break; entry+=pt->pigeonmap[pv]*mul; mul*=pt->quantvals; qlast+=pv*pt->del+pt->min; } }else{ for(k=0,o=step*(dim-1);kmin)/pt->del); if(pv<0 || pv>=pt->mapentries)break; entry=entry*pt->quantvals+pt->pigeonmap[pv]; } } /* must be within the pigeonholable range; if we quant outside (or in an entry that we define no list for), brute force it */ if(k==dim && pt->fitlength[entry]){ /* search the abbreviated list */ long *list=pt->fitlist+pt->fitmap[entry]; for(i=0;ifitlength[entry];i++){ float this=_dist(dim,book->valuelist+list[i]*dim,a,step); if(besti==-1 || thisvaluelist+nt->p[ptr]; float *q=book->valuelist+nt->q[ptr]; for(k=0,o=0;k0.f) /* in A */ ptr= -nt->ptr0[ptr]; else /* in B */ ptr= -nt->ptr1[ptr]; if(ptr<=0)break; } return(-ptr); } #endif /* brute force it! */ { const static_codebook *c=book->c; int i,besti=-1; float best=0.f; float *e=book->valuelist; for(i=0;ientries;i++){ if(c->lengthlist[i]>0){ float thisx=_dist(dim,e,a,step); if(besti==-1 || thisxvaluelist+savebest*dim)[i]); fprintf(stderr,"\n" "bruteforce (entry %d, err %g):",besti,best); for(i=0;ivaluelist+besti*dim)[i]); fprintf(stderr,"\n"); }*/ return(besti); } } long vorbis_book_codeword(codebook *book,int entry){ if(book->c) /* only use with encode; decode optimizations are allowed to break this */ return book->codelist[entry]; return -1; } long vorbis_book_codelen(codebook *book,int entry){ if(book->c) /* only use with encode; decode optimizations are allowed to break this */ return book->c->lengthlist[entry]; return -1; } #ifdef _V_SELFTEST /* Unit tests of the dequantizer; this stuff will be OK cross-platform, I simply want to be sure that special mapping cases actually work properly; a bug could go unnoticed for a while */ #include /* cases: no mapping full, explicit mapping algorithmic mapping nonsequential sequential */ static long full_quantlist1[]={0,1,2,3, 4,5,6,7, 8,3,6,1}; static long partial_quantlist1[]={0,7,2}; /* no mapping */ static_codebook test1={ 4,16, NULL, 0, 0,0,0,0, NULL, NULL,NULL }; static float *test1_result=NULL; /* linear, full mapping, nonsequential */ static_codebook test2={ 4,3, NULL, 2, -533200896,1611661312,4,0, full_quantlist1, NULL,NULL }; static float test2_result[]={-3,-2,-1,0, 1,2,3,4, 5,0,3,-2}; /* linear, full mapping, sequential */ static_codebook test3={ 4,3, NULL, 2, -533200896,1611661312,4,1, full_quantlist1, NULL,NULL }; static float test3_result[]={-3,-5,-6,-6, 1,3,6,10, 5,5,8,6}; /* linear, algorithmic mapping, nonsequential */ static_codebook test4={ 3,27, NULL, 1, -533200896,1611661312,4,0, partial_quantlist1, NULL,NULL }; static float test4_result[]={-3,-3,-3, 4,-3,-3, -1,-3,-3, -3, 4,-3, 4, 4,-3, -1, 4,-3, -3,-1,-3, 4,-1,-3, -1,-1,-3, -3,-3, 4, 4,-3, 4, -1,-3, 4, -3, 4, 4, 4, 4, 4, -1, 4, 4, -3,-1, 4, 4,-1, 4, -1,-1, 4, -3,-3,-1, 4,-3,-1, -1,-3,-1, -3, 4,-1, 4, 4,-1, -1, 4,-1, -3,-1,-1, 4,-1,-1, -1,-1,-1}; /* linear, algorithmic mapping, sequential */ static_codebook test5={ 3,27, NULL, 1, -533200896,1611661312,4,1, partial_quantlist1, NULL,NULL }; static float test5_result[]={-3,-6,-9, 4, 1,-2, -1,-4,-7, -3, 1,-2, 4, 8, 5, -1, 3, 0, -3,-4,-7, 4, 3, 0, -1,-2,-5, -3,-6,-2, 4, 1, 5, -1,-4, 0, -3, 1, 5, 4, 8,12, -1, 3, 7, -3,-4, 0, 4, 3, 7, -1,-2, 2, -3,-6,-7, 4, 1, 0, -1,-4,-5, -3, 1, 0, 4, 8, 7, -1, 3, 2, -3,-4,-5, 4, 3, 2, -1,-2,-3}; void run_test(static_codebook *b,float *comp){ float *out=_book_unquantize(b,b->entries,NULL); int i; if(comp){ if(!out){ fprintf(stderr,"_book_unquantize incorrectly returned NULL\n"); exit(1); } for(i=0;ientries*b->dim;i++) if(fabs(out[i]-comp[i])>.0001){ fprintf(stderr,"disagreement in unquantized and reference data:\n" "position %d, %g != %g\n",i,out[i],comp[i]); exit(1); } }else{ if(out){ fprintf(stderr,"_book_unquantize returned a value array: \n" " correct result should have been NULL\n"); exit(1); } } } int main(){ /* run the nine dequant tests, and compare to the hand-rolled results */ fprintf(stderr,"Dequant test 1... "); run_test(&test1,test1_result); fprintf(stderr,"OK\nDequant test 2... "); run_test(&test2,test2_result); fprintf(stderr,"OK\nDequant test 3... "); run_test(&test3,test3_result); fprintf(stderr,"OK\nDequant test 4... "); run_test(&test4,test4_result); fprintf(stderr,"OK\nDequant test 5... "); run_test(&test5,test5_result); fprintf(stderr,"OK\n\n"); return(0); } #endif #endif /********* End of inlined file: sharedbook.c *********/ /********* Start of inlined file: smallft.c *********/ /* FFT implementation from OggSquish, minus cosine transforms, * minus all but radix 2/4 case. In Vorbis we only need this * cut-down version. * * To do more than just power-of-two sized vectors, see the full * version I wrote for NetLib. * * Note that the packing is a little strange; rather than the FFT r/i * packing following R_0, I_n, R_1, I_1, R_2, I_2 ... R_n-1, I_n-1, * it follows R_0, R_1, I_1, R_2, I_2 ... R_n-1, I_n-1, I_n like the * FORTRAN version */ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #include static void drfti1(int n, float *wa, int *ifac){ static int ntryh[4] = { 4,2,3,5 }; static float tpi = 6.28318530717958648f; float arg,argh,argld,fi; int ntry=0,i,j=-1; int k1, l1, l2, ib; int ld, ii, ip, is, nq, nr; int ido, ipm, nfm1; int nl=n; int nf=0; L101: j++; if (j < 4) ntry=ntryh[j]; else ntry+=2; L104: nq=nl/ntry; nr=nl-ntry*nq; if (nr!=0) goto L101; nf++; ifac[nf+1]=ntry; nl=nq; if(ntry!=2)goto L107; if(nf==1)goto L107; for (i=1;i>1; ipp2=ip; idp2=ido; nbd=(ido-1)>>1; t0=l1*ido; t10=ip*ido; if(ido==1)goto L119; for(ik=0;ikl1){ for(j=1;j>1; ipp2=ip; ipph=(ip+1)>>1; if(idol1)goto L139; is= -ido-1; t1=0; for(j=1;jn==1)return; drftf1(l->n,data,l->trigcache,l->trigcache+l->n,l->splitcache); } void drft_backward(drft_lookup *l,float *data){ if (l->n==1)return; drftb1(l->n,data,l->trigcache,l->trigcache+l->n,l->splitcache); } void drft_init(drft_lookup *l,int n){ l->n=n; l->trigcache=(float*)_ogg_calloc(3*n,sizeof(*l->trigcache)); l->splitcache=(int*)_ogg_calloc(32,sizeof(*l->splitcache)); fdrffti(n, l->trigcache, l->splitcache); } void drft_clear(drft_lookup *l){ if(l){ if(l->trigcache)_ogg_free(l->trigcache); if(l->splitcache)_ogg_free(l->splitcache); memset(l,0,sizeof(*l)); } } #endif /********* End of inlined file: smallft.c *********/ /********* Start of inlined file: synthesis.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include int vorbis_synthesis(vorbis_block *vb,ogg_packet *op){ vorbis_dsp_state *vd=vb->vd; private_state *b=(private_state*)vd->backend_state; vorbis_info *vi=vd->vi; codec_setup_info *ci=(codec_setup_info*) vi->codec_setup; oggpack_buffer *opb=&vb->opb; int type,mode,i; /* first things first. Make sure decode is ready */ _vorbis_block_ripcord(vb); oggpack_readinit(opb,op->packet,op->bytes); /* Check the packet type */ if(oggpack_read(opb,1)!=0){ /* Oops. This is not an audio data packet */ return(OV_ENOTAUDIO); } /* read our mode and pre/post windowsize */ mode=oggpack_read(opb,b->modebits); if(mode==-1)return(OV_EBADPACKET); vb->mode=mode; vb->W=ci->mode_param[mode]->blockflag; if(vb->W){ /* this doesn;t get mapped through mode selection as it's used only for window selection */ vb->lW=oggpack_read(opb,1); vb->nW=oggpack_read(opb,1); if(vb->nW==-1) return(OV_EBADPACKET); }else{ vb->lW=0; vb->nW=0; } /* more setup */ vb->granulepos=op->granulepos; vb->sequence=op->packetno; vb->eofflag=op->e_o_s; /* alloc pcm passback storage */ vb->pcmend=ci->blocksizes[vb->W]; vb->pcm=(float**)_vorbis_block_alloc(vb,sizeof(*vb->pcm)*vi->channels); for(i=0;ichannels;i++) vb->pcm[i]=(float*)_vorbis_block_alloc(vb,vb->pcmend*sizeof(*vb->pcm[i])); /* unpack_header enforces range checking */ type=ci->map_type[ci->mode_param[mode]->mapping]; return(_mapping_P[type]->inverse(vb,ci->map_param[ci->mode_param[mode]-> mapping])); } /* used to track pcm position without actually performing decode. Useful for sequential 'fast forward' */ int vorbis_synthesis_trackonly(vorbis_block *vb,ogg_packet *op){ vorbis_dsp_state *vd=vb->vd; private_state *b=(private_state*)vd->backend_state; vorbis_info *vi=vd->vi; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; oggpack_buffer *opb=&vb->opb; int mode; /* first things first. Make sure decode is ready */ _vorbis_block_ripcord(vb); oggpack_readinit(opb,op->packet,op->bytes); /* Check the packet type */ if(oggpack_read(opb,1)!=0){ /* Oops. This is not an audio data packet */ return(OV_ENOTAUDIO); } /* read our mode and pre/post windowsize */ mode=oggpack_read(opb,b->modebits); if(mode==-1)return(OV_EBADPACKET); vb->mode=mode; vb->W=ci->mode_param[mode]->blockflag; if(vb->W){ vb->lW=oggpack_read(opb,1); vb->nW=oggpack_read(opb,1); if(vb->nW==-1) return(OV_EBADPACKET); }else{ vb->lW=0; vb->nW=0; } /* more setup */ vb->granulepos=op->granulepos; vb->sequence=op->packetno; vb->eofflag=op->e_o_s; /* no pcm */ vb->pcmend=0; vb->pcm=NULL; return(0); } long vorbis_packet_blocksize(vorbis_info *vi,ogg_packet *op){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; oggpack_buffer opb; int mode; oggpack_readinit(&opb,op->packet,op->bytes); /* Check the packet type */ if(oggpack_read(&opb,1)!=0){ /* Oops. This is not an audio data packet */ return(OV_ENOTAUDIO); } { int modebits=0; int v=ci->modes; while(v>1){ modebits++; v>>=1; } /* read our mode and pre/post windowsize */ mode=oggpack_read(&opb,modebits); } if(mode==-1)return(OV_EBADPACKET); return(ci->blocksizes[ci->mode_param[mode]->blockflag]); } int vorbis_synthesis_halfrate(vorbis_info *vi,int flag){ /* set / clear half-sample-rate mode */ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; /* right now, our MDCT can't handle < 64 sample windows. */ if(ci->blocksizes[0]<=64 && flag)return -1; ci->halfrate_flag=(flag?1:0); return 0; } int vorbis_synthesis_halfrate_p(vorbis_info *vi){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; return ci->halfrate_flag; } #endif /********* End of inlined file: synthesis.c *********/ /********* Start of inlined file: vorbisenc.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #include /* careful with this; it's using static array sizing to make managing all the modes a little less annoying. If we use a residue backend with > 12 partition types, or a different division of iteration, this needs to be updated. */ typedef struct { static_codebook *books[12][3]; } static_bookblock; typedef struct { int res_type; int limit_type; /* 0 lowpass limited, 1 point stereo limited */ vorbis_info_residue0 *res; static_codebook *book_aux; static_codebook *book_aux_managed; static_bookblock *books_base; static_bookblock *books_base_managed; } vorbis_residue_template; typedef struct { vorbis_info_mapping0 *map; vorbis_residue_template *res; } vorbis_mapping_template; typedef struct vp_adjblock{ int block[P_BANDS]; } vp_adjblock; typedef struct { int data[NOISE_COMPAND_LEVELS]; } compandblock; /* high level configuration information for setting things up step-by-step with the detailed vorbis_encode_ctl interface. There's a fair amount of redundancy such that interactive setup does not directly deal with any vorbis_info or codec_setup_info initialization; it's all stored (until full init) in this highlevel setup, then flushed out to the real codec setup structs later. */ typedef struct { int att[P_NOISECURVES]; float boost; float decay; } att3; typedef struct { int data[P_NOISECURVES]; } adj3; typedef struct { int pre[PACKETBLOBS]; int post[PACKETBLOBS]; float kHz[PACKETBLOBS]; float lowpasskHz[PACKETBLOBS]; } adj_stereo; typedef struct { int lo; int hi; int fixed; } noiseguard; typedef struct { int data[P_NOISECURVES][17]; } noise3; typedef struct { int mappings; double *rate_mapping; double *quality_mapping; int coupling_restriction; long samplerate_min_restriction; long samplerate_max_restriction; int *blocksize_short; int *blocksize_long; att3 *psy_tone_masteratt; int *psy_tone_0dB; int *psy_tone_dBsuppress; vp_adjblock *psy_tone_adj_impulse; vp_adjblock *psy_tone_adj_long; vp_adjblock *psy_tone_adj_other; noiseguard *psy_noiseguards; noise3 *psy_noise_bias_impulse; noise3 *psy_noise_bias_padding; noise3 *psy_noise_bias_trans; noise3 *psy_noise_bias_long; int *psy_noise_dBsuppress; compandblock *psy_noise_compand; double *psy_noise_compand_short_mapping; double *psy_noise_compand_long_mapping; int *psy_noise_normal_start[2]; int *psy_noise_normal_partition[2]; double *psy_noise_normal_thresh; int *psy_ath_float; int *psy_ath_abs; double *psy_lowpass; vorbis_info_psy_global *global_params; double *global_mapping; adj_stereo *stereo_modes; static_codebook ***floor_books; vorbis_info_floor1 *floor_params; int *floor_short_mapping; int *floor_long_mapping; vorbis_mapping_template *maps; } ve_setup_data_template; /* a few static coder conventions */ static vorbis_info_mode _mode_template[2]={ {0,0,0,0}, {1,0,0,1} }; static vorbis_info_mapping0 _map_nominal[2]={ {1, {0,0}, {0}, {0}, 1,{0},{1}}, {1, {0,0}, {1}, {1}, 1,{0},{1}} }; /********* Start of inlined file: setup_44.h *********/ /********* Start of inlined file: floor_all.h *********/ /********* Start of inlined file: floor_books.h *********/ static long _huff_lengthlist_line_256x7_0sub1[] = { 0, 2, 3, 3, 3, 3, 4, 3, 4, }; static static_codebook _huff_book_line_256x7_0sub1 = { 1, 9, _huff_lengthlist_line_256x7_0sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x7_0sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 3, 4, 3, 5, 3, 6, 3, 6, 4, 6, 4, 7, 5, 7, }; static static_codebook _huff_book_line_256x7_0sub2 = { 1, 25, _huff_lengthlist_line_256x7_0sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x7_0sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 2, 5, 3, 5, 3, 6, 3, 6, 4, 7, 6, 7, 8, 7, 9, 8, 9, 9, 9,10, 9, 11,13,11,13,10,10,13,13,13,13,13,13,12,12,12,12, }; static static_codebook _huff_book_line_256x7_0sub3 = { 1, 64, _huff_lengthlist_line_256x7_0sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x7_1sub1[] = { 0, 3, 3, 3, 3, 2, 4, 3, 4, }; static static_codebook _huff_book_line_256x7_1sub1 = { 1, 9, _huff_lengthlist_line_256x7_1sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x7_1sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 6, 7, 6, 8, 8, }; static static_codebook _huff_book_line_256x7_1sub2 = { 1, 25, _huff_lengthlist_line_256x7_1sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x7_1sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 4, 3, 6, 3, 7, 3, 8, 5, 8, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, }; static static_codebook _huff_book_line_256x7_1sub3 = { 1, 64, _huff_lengthlist_line_256x7_1sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x7_class0[] = { 7, 5, 5, 9, 9, 6, 6, 9,12, 8, 7, 8,11, 8, 9,15, 6, 3, 3, 7, 7, 4, 3, 6, 9, 6, 5, 6, 8, 6, 8,15, 8, 5, 5, 9, 8, 5, 4, 6,10, 7, 5, 5,11, 8, 7,15, 14,15,13,13,13,13, 8,11,15,10, 7, 6,11, 9,10,15, }; static static_codebook _huff_book_line_256x7_class0 = { 1, 64, _huff_lengthlist_line_256x7_class0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x7_class1[] = { 5, 6, 8,15, 6, 9,10,15,10,11,12,15,15,15,15,15, 4, 6, 7,15, 6, 7, 8,15, 9, 8, 9,15,15,15,15,15, 6, 8, 9,15, 7, 7, 8,15,10, 9,10,15,15,15,15,15, 15,13,15,15,15,10,11,15,15,13,13,15,15,15,15,15, 4, 6, 7,15, 6, 8, 9,15,10,10,12,15,15,15,15,15, 2, 5, 6,15, 5, 6, 7,15, 8, 6, 7,15,15,15,15,15, 5, 6, 8,15, 5, 6, 7,15, 9, 6, 7,15,15,15,15,15, 14,12,13,15,12,10,11,15,15,15,15,15,15,15,15,15, 7, 8, 9,15, 9,10,10,15,15,14,14,15,15,15,15,15, 5, 6, 7,15, 7, 8, 9,15,12, 9,10,15,15,15,15,15, 7, 7, 9,15, 7, 7, 8,15,12, 8, 9,15,15,15,15,15, 13,13,14,15,12,11,12,15,15,15,15,15,15,15,15,15, 15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15, 13,13,13,15,15,15,15,15,15,15,15,15,15,15,15,15, 15,12,13,15,15,12,13,15,15,14,15,15,15,15,15,15, 15,15,15,15,15,15,13,15,15,15,15,15,15,15,15,15, }; static static_codebook _huff_book_line_256x7_class1 = { 1, 256, _huff_lengthlist_line_256x7_class1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_512x17_0sub0[] = { 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 5, 6, 6, 7, 6, 7, 6, 7, 6, 7, 6, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 9, 7, 9, 7, 9, 7, 9, 8, 9, 8,10, 8,10, 8,10, 7,10, 6,10, 8, 10, 8,11, 7,10, 7,11, 8,11,11,12,12,11,11,12,11, 13,11,13,11,13,12,15,12,13,13,14,14,14,14,14,15, 15,15,16,14,17,19,19,18,18,18,18,18,18,18,18,18, 18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18, }; static static_codebook _huff_book_line_512x17_0sub0 = { 1, 128, _huff_lengthlist_line_512x17_0sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_512x17_1sub0[] = { 2, 4, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 6, 7, 6, 7, 6, 8, 7, 8, 7, 8, 7, 8, 7, }; static static_codebook _huff_book_line_512x17_1sub0 = { 1, 32, _huff_lengthlist_line_512x17_1sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_512x17_1sub1[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 5, 3, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 5, 7, 5, 8, 6, 8, 6, 8, 6, 8, 6, 8, 7, 9, 7, 9, 7,11, 9,11,11,12,11,14,12,14,16,14,16,13,16, 14,16,12,15,13,16,14,16,13,14,12,15,13,15,13,13, 13,15,12,14,14,15,13,15,12,15,15,15,15,15,15,15, 15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15, }; static static_codebook _huff_book_line_512x17_1sub1 = { 1, 128, _huff_lengthlist_line_512x17_1sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_512x17_2sub1[] = { 0, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 5, 4, 5, 3, 5, 3, }; static static_codebook _huff_book_line_512x17_2sub1 = { 1, 18, _huff_lengthlist_line_512x17_2sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_512x17_2sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 4, 3, 4, 4, 5, 4, 5, 4, 6, 4, 6, 5, 6, 5, 7, 5, 7, 6, 8, 6, 8, 6, 8, 7, 8, 7, 9, 7, 9, 8, }; static static_codebook _huff_book_line_512x17_2sub2 = { 1, 50, _huff_lengthlist_line_512x17_2sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_512x17_2sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 4, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8,11, 8, 9, 9, 9,10,11,11,11, 9,10,10,11, 11,11,11,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, }; static static_codebook _huff_book_line_512x17_2sub3 = { 1, 128, _huff_lengthlist_line_512x17_2sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_512x17_3sub1[] = { 0, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, }; static static_codebook _huff_book_line_512x17_3sub1 = { 1, 18, _huff_lengthlist_line_512x17_3sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_512x17_3sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 4, 3, 5, 4, 6, 4, 6, 5, 7, 6, 7, 6, 8, 6, 8, 7, 9, 8,10, 8,12, 9,13,10,15,10,15, 11,14, }; static static_codebook _huff_book_line_512x17_3sub2 = { 1, 50, _huff_lengthlist_line_512x17_3sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_512x17_3sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 4, 8, 4, 8, 4, 8, 5, 8, 5, 8, 6, 8, 4, 8, 4, 8, 5, 8, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, }; static static_codebook _huff_book_line_512x17_3sub3 = { 1, 128, _huff_lengthlist_line_512x17_3sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_512x17_class1[] = { 1, 2, 3, 6, 5, 4, 7, 7, }; static static_codebook _huff_book_line_512x17_class1 = { 1, 8, _huff_lengthlist_line_512x17_class1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_512x17_class2[] = { 3, 3, 3,14, 5, 4, 4,11, 8, 6, 6,10,17,12,11,17, 6, 5, 5,15, 5, 3, 4,11, 8, 5, 5, 8,16, 9,10,14, 10, 8, 9,17, 8, 6, 6,13,10, 7, 7,10,16,11,13,14, 17,17,17,17,17,16,16,16,16,15,16,16,16,16,16,16, }; static static_codebook _huff_book_line_512x17_class2 = { 1, 64, _huff_lengthlist_line_512x17_class2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_512x17_class3[] = { 2, 4, 6,17, 4, 5, 7,17, 8, 7,10,17,17,17,17,17, 3, 4, 6,15, 3, 3, 6,15, 7, 6, 9,17,17,17,17,17, 6, 8,10,17, 6, 6, 8,16, 9, 8,10,17,17,15,16,17, 17,17,17,17,12,15,15,16,12,15,15,16,16,16,16,16, }; static static_codebook _huff_book_line_512x17_class3 = { 1, 64, _huff_lengthlist_line_512x17_class3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x4_class0[] = { 7, 7, 7,11, 6, 6, 7,11, 7, 6, 6,10,12,10,10,13, 7, 7, 8,11, 7, 7, 7,11, 7, 6, 7,10,11,10,10,13, 10,10, 9,12, 9, 9, 9,11, 8, 8, 8,11,13,11,10,14, 15,15,14,15,15,14,13,14,15,12,12,17,17,17,17,17, 7, 7, 6, 9, 6, 6, 6, 9, 7, 6, 6, 8,11,11,10,12, 7, 7, 7, 9, 7, 6, 6, 9, 7, 6, 6, 9,13,10,10,11, 10, 9, 8,10, 9, 8, 8,10, 8, 8, 7, 9,13,12,10,11, 17,14,14,13,15,14,12,13,17,13,12,15,17,17,14,17, 7, 6, 6, 7, 6, 6, 5, 7, 6, 6, 6, 6,11, 9, 9, 9, 7, 7, 6, 7, 7, 6, 6, 7, 6, 6, 6, 6,10, 9, 8, 9, 10, 9, 8, 8, 9, 8, 7, 8, 8, 7, 6, 8,11,10, 9,10, 17,17,12,15,15,15,12,14,14,14,10,12,15,13,12,13, 11,10, 8,10,11,10, 8, 8,10, 9, 7, 7,10, 9, 9,11, 11,11, 9,10,11,10, 8, 9,10, 8, 6, 8,10, 9, 9,11, 14,13,10,12,12,11,10,10, 8, 7, 8,10,10,11,11,12, 17,17,15,17,17,17,17,17,17,13,12,17,17,17,14,17, }; static static_codebook _huff_book_line_128x4_class0 = { 1, 256, _huff_lengthlist_line_128x4_class0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x4_0sub0[] = { 2, 2, 2, 2, }; static static_codebook _huff_book_line_128x4_0sub0 = { 1, 4, _huff_lengthlist_line_128x4_0sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x4_0sub1[] = { 0, 0, 0, 0, 3, 2, 3, 2, 3, 3, }; static static_codebook _huff_book_line_128x4_0sub1 = { 1, 10, _huff_lengthlist_line_128x4_0sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x4_0sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 4, 3, 4, 3, 4, 4, 5, 4, 5, 4, 6, 5, 6, }; static static_codebook _huff_book_line_128x4_0sub2 = { 1, 25, _huff_lengthlist_line_128x4_0sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x4_0sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 3, 5, 3, 5, 3, 5, 4, 6, 5, 6, 5, 7, 6, 6, 7, 7, 9, 9,11,11,16, 11,14,10,11,11,13,16,15,15,15,15,15,15,15,15,15, }; static static_codebook _huff_book_line_128x4_0sub3 = { 1, 64, _huff_lengthlist_line_128x4_0sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x4_class0[] = { 6, 7, 7,12, 6, 6, 7,12, 7, 6, 6,10,15,12,11,13, 7, 7, 8,13, 7, 7, 8,12, 7, 7, 7,11,12,12,11,13, 10, 9, 9,11, 9, 9, 9,10,10, 8, 8,12,14,12,12,14, 11,11,12,14,11,12,11,15,15,12,13,15,15,15,15,15, 6, 6, 7,10, 6, 6, 6,11, 7, 6, 6, 9,14,12,11,13, 7, 7, 7,10, 6, 6, 7, 9, 7, 7, 6,10,13,12,10,12, 9, 9, 9,11, 9, 9, 8, 9, 9, 8, 8,10,13,12,10,12, 12,12,11,13,12,12,11,12,15,13,12,15,15,15,14,14, 6, 6, 6, 8, 6, 6, 5, 6, 7, 7, 6, 5,11,10, 9, 8, 7, 6, 6, 7, 6, 6, 5, 6, 7, 7, 6, 6,11,10, 9, 8, 8, 8, 8, 9, 8, 8, 7, 8, 8, 8, 6, 7,11,10, 9, 9, 14,11,10,14,14,11,10,15,13,11, 9,11,15,12,12,11, 11, 9, 8, 8,10, 9, 8, 9,11,10, 9, 8,12,11,12,11, 13,10, 8, 9,11,10, 8, 9,10, 9, 8, 9,10, 8,12,12, 15,11,10,10,13,11,10,10, 8, 8, 7,12,10, 9,11,12, 15,12,11,15,13,11,11,15,12,14,11,13,15,15,13,13, }; static static_codebook _huff_book_line_256x4_class0 = { 1, 256, _huff_lengthlist_line_256x4_class0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x4_0sub0[] = { 2, 2, 2, 2, }; static static_codebook _huff_book_line_256x4_0sub0 = { 1, 4, _huff_lengthlist_line_256x4_0sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x4_0sub1[] = { 0, 0, 0, 0, 2, 2, 3, 3, 3, 3, }; static static_codebook _huff_book_line_256x4_0sub1 = { 1, 10, _huff_lengthlist_line_256x4_0sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x4_0sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 4, 3, 4, 3, 5, 3, 5, 4, 5, 4, 6, 4, 6, }; static static_codebook _huff_book_line_256x4_0sub2 = { 1, 25, _huff_lengthlist_line_256x4_0sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x4_0sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 3, 5, 3, 5, 3, 6, 4, 7, 4, 7, 5, 7, 6, 7, 6, 7, 8,10,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,12,12,12,12,12, }; static static_codebook _huff_book_line_256x4_0sub3 = { 1, 64, _huff_lengthlist_line_256x4_0sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x7_class0[] = { 10, 7, 8,13, 9, 6, 7,11,10, 8, 8,12,17,17,17,17, 7, 5, 5, 9, 6, 4, 4, 8, 8, 5, 5, 8,16,14,13,16, 7, 5, 5, 7, 6, 3, 3, 5, 8, 5, 4, 7,14,12,12,15, 10, 7, 8, 9, 7, 5, 5, 6, 9, 6, 5, 5,15,12, 9,10, }; static static_codebook _huff_book_line_128x7_class0 = { 1, 64, _huff_lengthlist_line_128x7_class0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x7_class1[] = { 8,13,17,17, 8,11,17,17,11,13,17,17,17,17,17,17, 6,10,16,17, 6,10,15,17, 8,10,16,17,17,17,17,17, 9,13,15,17, 8,11,17,17,10,12,17,17,17,17,17,17, 17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17, 6,11,15,17, 7,10,15,17, 8,10,17,17,17,15,17,17, 4, 8,13,17, 4, 7,13,17, 6, 8,15,17,16,15,17,17, 6,11,15,17, 6, 9,13,17, 8,10,17,17,15,17,17,17, 16,17,17,17,12,14,15,17,13,14,15,17,17,17,17,17, 5,10,14,17, 5, 9,14,17, 7, 9,15,17,15,15,17,17, 3, 7,12,17, 3, 6,11,17, 5, 7,13,17,12,12,17,17, 5, 9,14,17, 3, 7,11,17, 5, 8,13,17,13,11,16,17, 12,17,17,17, 9,14,15,17,10,11,14,17,16,14,17,17, 8,12,17,17, 8,12,17,17,10,12,17,17,17,17,17,17, 5,10,17,17, 5, 9,15,17, 7, 9,17,17,13,13,17,17, 7,11,17,17, 6,10,15,17, 7, 9,15,17,12,11,17,17, 12,15,17,17,11,14,17,17,11,10,15,17,17,16,17,17, }; static static_codebook _huff_book_line_128x7_class1 = { 1, 256, _huff_lengthlist_line_128x7_class1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x7_0sub1[] = { 0, 3, 3, 3, 3, 3, 3, 3, 3, }; static static_codebook _huff_book_line_128x7_0sub1 = { 1, 9, _huff_lengthlist_line_128x7_0sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x7_0sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 4, 4, 4, 4, 5, 4, 5, 4, 5, 4, 6, 4, 6, }; static static_codebook _huff_book_line_128x7_0sub2 = { 1, 25, _huff_lengthlist_line_128x7_0sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x7_0sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 3, 5, 3, 5, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 7, 8, 9,11,13,13,13,13,13,13,13,13,13,13,13,13, }; static static_codebook _huff_book_line_128x7_0sub3 = { 1, 64, _huff_lengthlist_line_128x7_0sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x7_1sub1[] = { 0, 3, 3, 2, 3, 3, 4, 3, 4, }; static static_codebook _huff_book_line_128x7_1sub1 = { 1, 9, _huff_lengthlist_line_128x7_1sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x7_1sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 3, 6, 3, 6, 3, 6, 3, 7, 3, 8, 4, 9, 4, 9, }; static static_codebook _huff_book_line_128x7_1sub2 = { 1, 25, _huff_lengthlist_line_128x7_1sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x7_1sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 7, 2, 7, 3, 8, 4, 9, 5, 9, 8,10,11,11,12,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,13,13,13,13, }; static static_codebook _huff_book_line_128x7_1sub3 = { 1, 64, _huff_lengthlist_line_128x7_1sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x11_class1[] = { 1, 6, 3, 7, 2, 4, 5, 7, }; static static_codebook _huff_book_line_128x11_class1 = { 1, 8, _huff_lengthlist_line_128x11_class1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x11_class2[] = { 1, 6,12,16, 4,12,15,16, 9,15,16,16,16,16,16,16, 2, 5,11,16, 5,11,13,16, 9,13,16,16,16,16,16,16, 4, 8,12,16, 5, 9,12,16, 9,13,15,16,16,16,16,16, 15,16,16,16,11,14,13,16,12,15,16,16,16,16,16,15, }; static static_codebook _huff_book_line_128x11_class2 = { 1, 64, _huff_lengthlist_line_128x11_class2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x11_class3[] = { 7, 6, 9,17, 7, 6, 8,17,12, 9,11,16,16,16,16,16, 5, 4, 7,16, 5, 3, 6,14, 9, 6, 8,15,16,16,16,16, 5, 4, 6,13, 3, 2, 4,11, 7, 4, 6,13,16,11,10,14, 12,12,12,16, 9, 7,10,15,12, 9,11,16,16,15,15,16, }; static static_codebook _huff_book_line_128x11_class3 = { 1, 64, _huff_lengthlist_line_128x11_class3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x11_0sub0[] = { 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 8, 6, 8, 6, 8, 7, 8, 7, 8, 7, 8, 7, 9, 7, 9, 8, 9, 8, 9, 8,10, 8, 10, 9,10, 9,10, 9,11, 9,11, 9,10,10,11,10,11,10, 11,11,11,11,11,11,12,13,14,14,14,15,15,16,16,16, 17,15,16,15,16,16,17,17,16,17,17,17,17,17,17,17, 17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17, }; static static_codebook _huff_book_line_128x11_0sub0 = { 1, 128, _huff_lengthlist_line_128x11_0sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x11_1sub0[] = { 2, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 7, 6, 7, 6, 7, 6, 8, 6, 8, 6, }; static static_codebook _huff_book_line_128x11_1sub0 = { 1, 32, _huff_lengthlist_line_128x11_1sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x11_1sub1[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 3, 5, 3, 6, 4, 6, 4, 7, 4, 7, 4, 7, 4, 8, 4, 8, 4, 9, 5, 9, 5, 9, 5, 9, 6,10, 6,10, 6,11, 7, 10, 7,10, 8,11, 9,11, 9,11,10,11,11,12,11,11,12, 15,15,12,14,11,14,12,14,11,14,13,14,12,14,11,14, 11,14,12,14,11,14,11,14,13,13,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, }; static static_codebook _huff_book_line_128x11_1sub1 = { 1, 128, _huff_lengthlist_line_128x11_1sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x11_2sub1[] = { 0, 4, 5, 4, 5, 4, 5, 3, 5, 3, 5, 3, 5, 4, 4, 4, 5, 5, }; static static_codebook _huff_book_line_128x11_2sub1 = { 1, 18, _huff_lengthlist_line_128x11_2sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x11_2sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 4, 4, 4, 4, 5, 4, 5, 4, 6, 5, 7, 5, 7, 6, 8, 6, 8, 6, 9, 7, 9, 7,10, 7, 9, 8,11, 8,11, }; static static_codebook _huff_book_line_128x11_2sub2 = { 1, 50, _huff_lengthlist_line_128x11_2sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x11_2sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 3, 8, 4, 8, 4, 8, 6, 8, 5, 8, 4, 8, 4, 8, 6, 8, 7, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, }; static static_codebook _huff_book_line_128x11_2sub3 = { 1, 128, _huff_lengthlist_line_128x11_2sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x11_3sub1[] = { 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, }; static static_codebook _huff_book_line_128x11_3sub1 = { 1, 18, _huff_lengthlist_line_128x11_3sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x11_3sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 3, 5, 4, 6, 4, 6, 4, 7, 4, 7, 4, 8, 4, 8, 4, 9, 4, 9, 4,10, 4,10, 5,10, 5,11, 5,12, 6, 12, 6, }; static static_codebook _huff_book_line_128x11_3sub2 = { 1, 50, _huff_lengthlist_line_128x11_3sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x11_3sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 1, 6, 3, 7, 3, 8, 4, 8, 5, 8, 8, 8, 9, 7, 8, 8, 7, 7, 7, 8, 9,10, 9, 9,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, }; static static_codebook _huff_book_line_128x11_3sub3 = { 1, 128, _huff_lengthlist_line_128x11_3sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x17_class1[] = { 1, 3, 4, 7, 2, 5, 6, 7, }; static static_codebook _huff_book_line_128x17_class1 = { 1, 8, _huff_lengthlist_line_128x17_class1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x17_class2[] = { 1, 4,10,19, 3, 8,13,19, 7,12,19,19,19,19,19,19, 2, 6,11,19, 8,13,19,19, 9,11,19,19,19,19,19,19, 6, 7,13,19, 9,13,19,19,10,13,18,18,18,18,18,18, 18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18, }; static static_codebook _huff_book_line_128x17_class2 = { 1, 64, _huff_lengthlist_line_128x17_class2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x17_class3[] = { 3, 6,10,17, 4, 8,11,20, 8,10,11,20,20,20,20,20, 2, 4, 8,18, 4, 6, 8,17, 7, 8,10,20,20,17,20,20, 3, 5, 8,17, 3, 4, 6,17, 8, 8,10,17,17,12,16,20, 13,13,15,20,10,10,12,20,15,14,15,20,20,20,19,19, }; static static_codebook _huff_book_line_128x17_class3 = { 1, 64, _huff_lengthlist_line_128x17_class3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x17_0sub0[] = { 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 6, 8, 6, 8, 6, 9, 6, 9, 6, 9, 6, 9, 6, 9, 7, 9, 7, 9, 7, 9, 7,10, 7,10, 8,10, 8, 10, 8,10, 8,10, 8,11, 8,11, 8,11, 8,11, 8,11, 9, 12, 9,12, 9,12, 9,12, 9,12,10,12,10,13,11,13,11, 14,12,14,13,15,14,16,14,17,15,18,16,20,20,20,20, 20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20, }; static static_codebook _huff_book_line_128x17_0sub0 = { 1, 128, _huff_lengthlist_line_128x17_0sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x17_1sub0[] = { 2, 5, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 7, 6, 7, 6, 7, 6, 8, 6, 9, 7, 9, 7, }; static static_codebook _huff_book_line_128x17_1sub0 = { 1, 32, _huff_lengthlist_line_128x17_1sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x17_1sub1[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 5, 3, 5, 3, 6, 3, 6, 4, 6, 4, 7, 4, 7, 5, 8, 5, 8, 6, 9, 7, 9, 7, 9, 8,10, 9,10, 9,11,10, 11,11,11,11,11,11,12,12,12,13,12,13,12,14,12,15, 12,14,12,16,13,17,13,17,14,17,14,16,13,17,14,17, 14,17,15,17,15,15,16,17,17,17,17,17,17,17,17,17, 17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16, }; static static_codebook _huff_book_line_128x17_1sub1 = { 1, 128, _huff_lengthlist_line_128x17_1sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x17_2sub1[] = { 0, 4, 5, 4, 6, 4, 8, 3, 9, 3, 9, 2, 9, 3, 8, 4, 9, 4, }; static static_codebook _huff_book_line_128x17_2sub1 = { 1, 18, _huff_lengthlist_line_128x17_2sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x17_2sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 1, 5, 3, 5, 3, 5, 4, 7, 5,10, 7,10, 7, 12,10,14,10,14, 9,14,11,14,14,14,13,13,13,13,13, 13,13, }; static static_codebook _huff_book_line_128x17_2sub2 = { 1, 50, _huff_lengthlist_line_128x17_2sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x17_2sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, }; static static_codebook _huff_book_line_128x17_2sub3 = { 1, 128, _huff_lengthlist_line_128x17_2sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x17_3sub1[] = { 0, 4, 4, 4, 4, 4, 4, 4, 5, 3, 5, 3, 5, 4, 6, 4, 6, 4, }; static static_codebook _huff_book_line_128x17_3sub1 = { 1, 18, _huff_lengthlist_line_128x17_3sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x17_3sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 3, 6, 3, 6, 4, 7, 4, 7, 4, 7, 4, 8, 4, 8, 4, 8, 4, 8, 4, 9, 4, 9, 5,10, 5,10, 7,10, 8, 10, 8, }; static static_codebook _huff_book_line_128x17_3sub2 = { 1, 50, _huff_lengthlist_line_128x17_3sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_128x17_3sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 4, 3, 4, 4, 4, 5, 4, 7, 5, 8, 5,11, 6,10, 6,12, 7,12, 7,12, 8,12, 8,12,10,12,12,12, 12,12,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, }; static static_codebook _huff_book_line_128x17_3sub3 = { 1, 128, _huff_lengthlist_line_128x17_3sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_class1[] = { 2,10, 8,14, 7,12,11,14, 1, 5, 3, 7, 4, 9, 7,13, }; static static_codebook _huff_book_line_1024x27_class1 = { 1, 16, _huff_lengthlist_line_1024x27_class1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_class2[] = { 1, 4, 2, 6, 3, 7, 5, 7, }; static static_codebook _huff_book_line_1024x27_class2 = { 1, 8, _huff_lengthlist_line_1024x27_class2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_class3[] = { 1, 5, 7,21, 5, 8, 9,21,10, 9,12,20,20,16,20,20, 4, 8, 9,20, 6, 8, 9,20,11,11,13,20,20,15,17,20, 9,11,14,20, 8,10,15,20,11,13,15,20,20,20,20,20, 20,20,20,20,13,20,20,20,18,18,20,20,20,20,20,20, 3, 6, 8,20, 6, 7, 9,20,10, 9,12,20,20,20,20,20, 5, 7, 9,20, 6, 6, 9,20,10, 9,12,20,20,20,20,20, 8,10,13,20, 8, 9,12,20,11,10,12,20,20,20,20,20, 18,20,20,20,15,17,18,20,18,17,18,20,20,20,20,20, 7,10,12,20, 8, 9,11,20,14,13,14,20,20,20,20,20, 6, 9,12,20, 7, 8,11,20,12,11,13,20,20,20,20,20, 9,11,15,20, 8,10,14,20,12,11,14,20,20,20,20,20, 20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20, 11,16,18,20,15,15,17,20,20,17,20,20,20,20,20,20, 9,14,16,20,12,12,15,20,17,15,18,20,20,20,20,20, 16,19,18,20,15,16,20,20,17,17,20,20,20,20,20,20, 20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20, }; static static_codebook _huff_book_line_1024x27_class3 = { 1, 256, _huff_lengthlist_line_1024x27_class3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_class4[] = { 2, 3, 7,13, 4, 4, 7,15, 8, 6, 9,17,21,16,15,21, 2, 5, 7,11, 5, 5, 7,14, 9, 7,10,16,17,15,16,21, 4, 7,10,17, 7, 7, 9,15,11, 9,11,16,21,18,15,21, 18,21,21,21,15,17,17,19,21,19,18,20,21,21,21,20, }; static static_codebook _huff_book_line_1024x27_class4 = { 1, 64, _huff_lengthlist_line_1024x27_class4, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_0sub0[] = { 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 7, 5, 7, 5, 7, 5, 7, 5, 8, 6, 8, 6, 8, 6, 9, 6, 9, 6,10, 6,10, 6,11, 6, 11, 7,11, 7,12, 7,12, 7,12, 7,12, 7,12, 7,12, 7, 12, 7,12, 8,13, 8,12, 8,12, 8,13, 8,13, 9,13, 9, 13, 9,13, 9,12,10,12,10,13,10,14,11,14,12,14,13, 14,13,14,14,15,16,15,15,15,14,15,17,21,22,22,21, 22,22,22,22,22,22,21,21,21,21,21,21,21,21,21,21, }; static static_codebook _huff_book_line_1024x27_0sub0 = { 1, 128, _huff_lengthlist_line_1024x27_0sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_1sub0[] = { 2, 5, 5, 4, 5, 4, 5, 4, 5, 4, 6, 5, 6, 5, 6, 5, 6, 5, 7, 5, 7, 6, 8, 6, 8, 6, 8, 6, 9, 6, 9, 6, }; static static_codebook _huff_book_line_1024x27_1sub0 = { 1, 32, _huff_lengthlist_line_1024x27_1sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_1sub1[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 5, 8, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 8, 4, 8, 4, 9, 5, 9, 5, 9, 5, 9, 5, 9, 6,10, 6,10, 7,10, 8,11, 9,11,11,12,13, 12,14,13,15,13,15,14,16,14,17,15,17,15,15,16,16, 15,16,16,16,15,18,16,15,17,17,19,19,19,19,19,19, 19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19, }; static static_codebook _huff_book_line_1024x27_1sub1 = { 1, 128, _huff_lengthlist_line_1024x27_1sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_2sub0[] = { 1, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 6, 7, 7, 7, 7, 8, 7, 8, 8, 9, 8,10, 9,10, 9, }; static static_codebook _huff_book_line_1024x27_2sub0 = { 1, 32, _huff_lengthlist_line_1024x27_2sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_2sub1[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 4, 3, 4, 4, 5, 4, 5, 4, 5, 5, 6, 5, 6, 5, 7, 5, 7, 6, 7, 6, 8, 7, 8, 7, 8, 7, 9, 8, 9, 9, 9, 9,10,10,10,11, 9,12, 9,12, 9,15,10,14, 9,13, 10,13,10,12,10,12,10,13,10,12,11,13,11,14,12,13, 13,14,14,13,14,15,14,16,13,13,14,16,16,16,16,16, 16,16,16,16,16,16,16,16,16,16,16,16,16,16,15,15, }; static static_codebook _huff_book_line_1024x27_2sub1 = { 1, 128, _huff_lengthlist_line_1024x27_2sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_3sub1[] = { 0, 4, 5, 4, 5, 3, 5, 3, 5, 3, 5, 4, 4, 4, 4, 5, 5, 5, }; static static_codebook _huff_book_line_1024x27_3sub1 = { 1, 18, _huff_lengthlist_line_1024x27_3sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_3sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 4, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 5, 7, 5, 8, 6, 8, 6, 9, 7,10, 7,10, 8,10, 8,11, 9,11, }; static static_codebook _huff_book_line_1024x27_3sub2 = { 1, 50, _huff_lengthlist_line_1024x27_3sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_3sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 7, 3, 8, 3,10, 3, 8, 3, 9, 3, 8, 4, 9, 4, 9, 5, 9, 6,10, 6, 9, 7,11, 7,12, 9,13,10,13, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, }; static static_codebook _huff_book_line_1024x27_3sub3 = { 1, 128, _huff_lengthlist_line_1024x27_3sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_4sub1[] = { 0, 4, 5, 4, 5, 4, 5, 4, 5, 3, 5, 3, 5, 3, 5, 4, 5, 4, }; static static_codebook _huff_book_line_1024x27_4sub1 = { 1, 18, _huff_lengthlist_line_1024x27_4sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_4sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 4, 2, 5, 3, 5, 4, 6, 6, 6, 7, 7, 8, 7, 8, 7, 8, 7, 9, 8, 9, 8, 9, 8,10, 8,11, 9,12, 9,12, }; static static_codebook _huff_book_line_1024x27_4sub2 = { 1, 50, _huff_lengthlist_line_1024x27_4sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_1024x27_4sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 2, 6, 3, 6, 4, 7, 4, 7, 5, 9, 5,11, 6,11, 6,11, 7,11, 6,11, 6,11, 9,11, 8,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,10,10,10,10,10,10, }; static static_codebook _huff_book_line_1024x27_4sub3 = { 1, 128, _huff_lengthlist_line_1024x27_4sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_class1[] = { 2, 6, 8, 9, 7,11,13,13, 1, 3, 5, 5, 6, 6,12,10, }; static static_codebook _huff_book_line_2048x27_class1 = { 1, 16, _huff_lengthlist_line_2048x27_class1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_class2[] = { 1, 2, 3, 6, 4, 7, 5, 7, }; static static_codebook _huff_book_line_2048x27_class2 = { 1, 8, _huff_lengthlist_line_2048x27_class2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_class3[] = { 3, 3, 6,16, 5, 5, 7,16, 9, 8,11,16,16,16,16,16, 5, 5, 8,16, 5, 5, 7,16, 8, 7, 9,16,16,16,16,16, 9, 9,12,16, 6, 8,11,16, 9,10,11,16,16,16,16,16, 16,16,16,16,13,16,16,16,15,16,16,16,16,16,16,16, 5, 4, 7,16, 6, 5, 8,16, 9, 8,10,16,16,16,16,16, 5, 5, 7,15, 5, 4, 6,15, 7, 6, 8,16,16,16,16,16, 9, 9,11,15, 7, 7, 9,16, 8, 8, 9,16,16,16,16,16, 16,16,16,16,15,15,15,16,15,15,14,16,16,16,16,16, 8, 8,11,16, 8, 9,10,16,11,10,14,16,16,16,16,16, 6, 8,10,16, 6, 7,10,16, 8, 8,11,16,14,16,16,16, 10,11,14,16, 9, 9,11,16,10,10,11,16,16,16,16,16, 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, 16,16,16,16,15,16,16,16,16,16,16,16,16,16,16,16, 12,16,15,16,12,14,16,16,16,16,16,16,16,16,16,16, 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, }; static static_codebook _huff_book_line_2048x27_class3 = { 1, 256, _huff_lengthlist_line_2048x27_class3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_class4[] = { 2, 4, 7,13, 4, 5, 7,15, 8, 7,10,16,16,14,16,16, 2, 4, 7,16, 3, 4, 7,14, 8, 8,10,16,16,16,15,16, 6, 8,11,16, 7, 7, 9,16,11, 9,13,16,16,16,15,16, 16,16,16,16,14,16,16,16,16,16,16,16,16,16,16,16, }; static static_codebook _huff_book_line_2048x27_class4 = { 1, 64, _huff_lengthlist_line_2048x27_class4, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_0sub0[] = { 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 7, 5, 7, 5, 7, 5, 8, 5, 8, 5, 8, 5, 9, 5, 9, 6,10, 6,10, 6,11, 6,11, 6,11, 6,11, 6,11, 6, 11, 6,11, 6,12, 7,11, 7,11, 7,11, 7,11, 7,10, 7, 11, 7,11, 7,12, 7,11, 8,11, 8,11, 8,11, 8,13, 8, 12, 9,11, 9,11, 9,11,10,12,10,12, 9,12,10,12,11, 14,12,16,12,12,11,14,16,17,17,17,17,17,17,17,17, 17,17,17,17,17,17,17,17,17,17,17,17,16,16,16,16, }; static static_codebook _huff_book_line_2048x27_0sub0 = { 1, 128, _huff_lengthlist_line_2048x27_0sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_1sub0[] = { 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 6, 7, 6, 7, 6, 7, 6, }; static static_codebook _huff_book_line_2048x27_1sub0 = { 1, 32, _huff_lengthlist_line_2048x27_1sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_1sub1[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 5, 7, 5, 7, 4, 7, 4, 8, 4, 8, 4, 8, 4, 8, 3, 8, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 5, 9, 5, 9, 6, 9, 7, 9, 8, 9, 9, 9,10, 9,11, 9,14, 9,15,10,15, 10,15,10,15,10,15,11,15,10,14,12,14,11,14,13,14, 13,15,15,15,12,15,15,15,13,15,13,15,13,15,15,15, 15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,14, }; static static_codebook _huff_book_line_2048x27_1sub1 = { 1, 128, _huff_lengthlist_line_2048x27_1sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_2sub0[] = { 2, 4, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, }; static static_codebook _huff_book_line_2048x27_2sub0 = { 1, 32, _huff_lengthlist_line_2048x27_2sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_2sub1[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 3, 4, 3, 4, 4, 5, 4, 5, 5, 5, 6, 6, 6, 7, 6, 8, 6, 8, 6, 9, 7,10, 7,10, 7,10, 7,12, 7,12, 7,12, 9,12,11,12,10,12,10,12,11,12,12,12,10,12, 10,12,10,12, 9,12,11,12,12,12,12,12,11,12,11,12, 12,12,12,12,12,12,12,12,10,10,12,12,12,12,12,10, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, }; static static_codebook _huff_book_line_2048x27_2sub1 = { 1, 128, _huff_lengthlist_line_2048x27_2sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_3sub1[] = { 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, }; static static_codebook _huff_book_line_2048x27_3sub1 = { 1, 18, _huff_lengthlist_line_2048x27_3sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_3sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 6, 7, 6, 8, 6, 9, 7, 9, 7, 9, 9,11, 9,12, 10,12, }; static static_codebook _huff_book_line_2048x27_3sub2 = { 1, 50, _huff_lengthlist_line_2048x27_3sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_3sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 3, 7, 3, 7, 5, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, }; static static_codebook _huff_book_line_2048x27_3sub3 = { 1, 128, _huff_lengthlist_line_2048x27_3sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_4sub1[] = { 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 5, 4, 4, 5, }; static static_codebook _huff_book_line_2048x27_4sub1 = { 1, 18, _huff_lengthlist_line_2048x27_4sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_4sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 4, 3, 4, 4, 4, 5, 5, 6, 5, 6, 5, 7, 6, 6, 6, 7, 7, 7, 8, 9, 9, 9,12,10,11,10,10,12, 10,10, }; static static_codebook _huff_book_line_2048x27_4sub2 = { 1, 50, _huff_lengthlist_line_2048x27_4sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_2048x27_4sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 5, 7, 5, 7, 7, 7, 7, 7, 5, 7, 5, 7, 5, 7, 5, 7, 7, 7, 7, 7, 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, }; static static_codebook _huff_book_line_2048x27_4sub3 = { 1, 128, _huff_lengthlist_line_2048x27_4sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x4low_class0[] = { 4, 5, 6,11, 5, 5, 6,10, 7, 7, 6, 6,14,13, 9, 9, 6, 6, 6,10, 6, 6, 6, 9, 8, 7, 7, 9,14,12, 8,11, 8, 7, 7,11, 8, 8, 7,11, 9, 9, 7, 9,13,11, 9,13, 19,19,18,19,15,16,16,19,11,11,10,13,10,10, 9,15, 5, 5, 6,13, 6, 6, 6,11, 8, 7, 6, 7,14,11,10,11, 6, 6, 6,12, 7, 6, 6,11, 8, 7, 7,11,13,11, 9,11, 9, 7, 6,12, 8, 7, 6,12, 9, 8, 8,11,13,10, 7,13, 19,19,17,19,17,14,14,19,12,10, 8,12,13,10, 9,16, 7, 8, 7,12, 7, 7, 7,11, 8, 7, 7, 8,12,12,11,11, 8, 8, 7,12, 8, 7, 6,11, 8, 7, 7,10,10,11,10,11, 9, 8, 8,13, 9, 8, 7,12,10, 9, 7,11, 9, 8, 7,11, 18,18,15,18,18,16,17,18,15,11,10,18,11, 9, 9,18, 16,16,13,16,12,11,10,16,12,11, 9, 6,15,12,11,13, 16,16,14,14,13,11,12,16,12, 9, 9,13,13,10,10,12, 17,18,17,17,14,15,14,16,14,12,14,15,12,10,11,12, 18,18,18,18,18,18,18,18,18,12,13,18,16,11, 9,18, }; static static_codebook _huff_book_line_256x4low_class0 = { 1, 256, _huff_lengthlist_line_256x4low_class0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x4low_0sub0[] = { 1, 3, 2, 3, }; static static_codebook _huff_book_line_256x4low_0sub0 = { 1, 4, _huff_lengthlist_line_256x4low_0sub0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x4low_0sub1[] = { 0, 0, 0, 0, 2, 3, 2, 3, 3, 3, }; static static_codebook _huff_book_line_256x4low_0sub1 = { 1, 10, _huff_lengthlist_line_256x4low_0sub1, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x4low_0sub2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, }; static static_codebook _huff_book_line_256x4low_0sub2 = { 1, 25, _huff_lengthlist_line_256x4low_0sub2, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist_line_256x4low_0sub3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 2, 4, 3, 5, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8, 6, 9, 7,12,11,16,13,16,12,15,13,15,12,14,12,15,15,15, }; static static_codebook _huff_book_line_256x4low_0sub3 = { 1, 64, _huff_lengthlist_line_256x4low_0sub3, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; /********* End of inlined file: floor_books.h *********/ static static_codebook *_floor_128x4_books[]={ &_huff_book_line_128x4_class0, &_huff_book_line_128x4_0sub0, &_huff_book_line_128x4_0sub1, &_huff_book_line_128x4_0sub2, &_huff_book_line_128x4_0sub3, }; static static_codebook *_floor_256x4_books[]={ &_huff_book_line_256x4_class0, &_huff_book_line_256x4_0sub0, &_huff_book_line_256x4_0sub1, &_huff_book_line_256x4_0sub2, &_huff_book_line_256x4_0sub3, }; static static_codebook *_floor_128x7_books[]={ &_huff_book_line_128x7_class0, &_huff_book_line_128x7_class1, &_huff_book_line_128x7_0sub1, &_huff_book_line_128x7_0sub2, &_huff_book_line_128x7_0sub3, &_huff_book_line_128x7_1sub1, &_huff_book_line_128x7_1sub2, &_huff_book_line_128x7_1sub3, }; static static_codebook *_floor_256x7_books[]={ &_huff_book_line_256x7_class0, &_huff_book_line_256x7_class1, &_huff_book_line_256x7_0sub1, &_huff_book_line_256x7_0sub2, &_huff_book_line_256x7_0sub3, &_huff_book_line_256x7_1sub1, &_huff_book_line_256x7_1sub2, &_huff_book_line_256x7_1sub3, }; static static_codebook *_floor_128x11_books[]={ &_huff_book_line_128x11_class1, &_huff_book_line_128x11_class2, &_huff_book_line_128x11_class3, &_huff_book_line_128x11_0sub0, &_huff_book_line_128x11_1sub0, &_huff_book_line_128x11_1sub1, &_huff_book_line_128x11_2sub1, &_huff_book_line_128x11_2sub2, &_huff_book_line_128x11_2sub3, &_huff_book_line_128x11_3sub1, &_huff_book_line_128x11_3sub2, &_huff_book_line_128x11_3sub3, }; static static_codebook *_floor_128x17_books[]={ &_huff_book_line_128x17_class1, &_huff_book_line_128x17_class2, &_huff_book_line_128x17_class3, &_huff_book_line_128x17_0sub0, &_huff_book_line_128x17_1sub0, &_huff_book_line_128x17_1sub1, &_huff_book_line_128x17_2sub1, &_huff_book_line_128x17_2sub2, &_huff_book_line_128x17_2sub3, &_huff_book_line_128x17_3sub1, &_huff_book_line_128x17_3sub2, &_huff_book_line_128x17_3sub3, }; static static_codebook *_floor_256x4low_books[]={ &_huff_book_line_256x4low_class0, &_huff_book_line_256x4low_0sub0, &_huff_book_line_256x4low_0sub1, &_huff_book_line_256x4low_0sub2, &_huff_book_line_256x4low_0sub3, }; static static_codebook *_floor_1024x27_books[]={ &_huff_book_line_1024x27_class1, &_huff_book_line_1024x27_class2, &_huff_book_line_1024x27_class3, &_huff_book_line_1024x27_class4, &_huff_book_line_1024x27_0sub0, &_huff_book_line_1024x27_1sub0, &_huff_book_line_1024x27_1sub1, &_huff_book_line_1024x27_2sub0, &_huff_book_line_1024x27_2sub1, &_huff_book_line_1024x27_3sub1, &_huff_book_line_1024x27_3sub2, &_huff_book_line_1024x27_3sub3, &_huff_book_line_1024x27_4sub1, &_huff_book_line_1024x27_4sub2, &_huff_book_line_1024x27_4sub3, }; static static_codebook *_floor_2048x27_books[]={ &_huff_book_line_2048x27_class1, &_huff_book_line_2048x27_class2, &_huff_book_line_2048x27_class3, &_huff_book_line_2048x27_class4, &_huff_book_line_2048x27_0sub0, &_huff_book_line_2048x27_1sub0, &_huff_book_line_2048x27_1sub1, &_huff_book_line_2048x27_2sub0, &_huff_book_line_2048x27_2sub1, &_huff_book_line_2048x27_3sub1, &_huff_book_line_2048x27_3sub2, &_huff_book_line_2048x27_3sub3, &_huff_book_line_2048x27_4sub1, &_huff_book_line_2048x27_4sub2, &_huff_book_line_2048x27_4sub3, }; static static_codebook *_floor_512x17_books[]={ &_huff_book_line_512x17_class1, &_huff_book_line_512x17_class2, &_huff_book_line_512x17_class3, &_huff_book_line_512x17_0sub0, &_huff_book_line_512x17_1sub0, &_huff_book_line_512x17_1sub1, &_huff_book_line_512x17_2sub1, &_huff_book_line_512x17_2sub2, &_huff_book_line_512x17_2sub3, &_huff_book_line_512x17_3sub1, &_huff_book_line_512x17_3sub2, &_huff_book_line_512x17_3sub3, }; static static_codebook **_floor_books[10]={ _floor_128x4_books, _floor_256x4_books, _floor_128x7_books, _floor_256x7_books, _floor_128x11_books, _floor_128x17_books, _floor_256x4low_books, _floor_1024x27_books, _floor_2048x27_books, _floor_512x17_books, }; static vorbis_info_floor1 _floor[10]={ /* 128 x 4 */ { 1,{0},{4},{2},{0}, {{1,2,3,4}}, 4,{0,128, 33,8,16,70}, 60,30,500, 1.,18., -1 }, /* 256 x 4 */ { 1,{0},{4},{2},{0}, {{1,2,3,4}}, 4,{0,256, 66,16,32,140}, 60,30,500, 1.,18., -1 }, /* 128 x 7 */ { 2,{0,1},{3,4},{2,2},{0,1}, {{-1,2,3,4},{-1,5,6,7}}, 4,{0,128, 14,4,58, 2,8,28,90}, 60,30,500, 1.,18., -1 }, /* 256 x 7 */ { 2,{0,1},{3,4},{2,2},{0,1}, {{-1,2,3,4},{-1,5,6,7}}, 4,{0,256, 28,8,116, 4,16,56,180}, 60,30,500, 1.,18., -1 }, /* 128 x 11 */ { 4,{0,1,2,3},{2,3,3,3},{0,1,2,2},{-1,0,1,2}, {{3},{4,5},{-1,6,7,8},{-1,9,10,11}}, 2,{0,128, 8,33, 4,16,70, 2,6,12, 23,46,90}, 60,30,500, 1,18., -1 }, /* 128 x 17 */ { 6,{0,1,1,2,3,3},{2,3,3,3},{0,1,2,2},{-1,0,1,2}, {{3},{4,5},{-1,6,7,8},{-1,9,10,11}}, 2,{0,128, 12,46, 4,8,16, 23,33,70, 2,6,10, 14,19,28, 39,58,90}, 60,30,500, 1,18., -1 }, /* 256 x 4 (low bitrate version) */ { 1,{0},{4},{2},{0}, {{1,2,3,4}}, 4,{0,256, 66,16,32,140}, 60,30,500, 1.,18., -1 }, /* 1024 x 27 */ { 8,{0,1,2,2,3,3,4,4},{3,4,3,4,3},{0,1,1,2,2},{-1,0,1,2,3}, {{4},{5,6},{7,8},{-1,9,10,11},{-1,12,13,14}}, 2,{0,1024, 93,23,372, 6,46,186,750, 14,33,65, 130,260,556, 3,10,18,28, 39,55,79,111, 158,220,312, 464,650,850}, 60,30,500, 3,18., -1 /* lowpass */ }, /* 2048 x 27 */ { 8,{0,1,2,2,3,3,4,4},{3,4,3,4,3},{0,1,1,2,2},{-1,0,1,2,3}, {{4},{5,6},{7,8},{-1,9,10,11},{-1,12,13,14}}, 2,{0,2048, 186,46,744, 12,92,372,1500, 28,66,130, 260,520,1112, 6,20,36,56, 78,110,158,222, 316,440,624, 928,1300,1700}, 60,30,500, 3,18., -1 /* lowpass */ }, /* 512 x 17 */ { 6,{0,1,1,2,3,3},{2,3,3,3},{0,1,2,2},{-1,0,1,2}, {{3},{4,5},{-1,6,7,8},{-1,9,10,11}}, 2,{0,512, 46,186, 16,33,65, 93,130,278, 7,23,39, 55,79,110, 156,232,360}, 60,30,500, 1,18., -1 /* lowpass! */ }, }; /********* End of inlined file: floor_all.h *********/ /********* Start of inlined file: residue_44.h *********/ /********* Start of inlined file: res_books_stereo.h *********/ static long _vq_quantlist__16c0_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16c0_s_p1_0[] = { 1, 4, 4, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9,10, 0, 0, 0, 0, 0, 0, 7, 9,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 8,10,10, 0, 0, 0, 0, 0, 0, 8,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10,10, 0, 0, 0, 0, 0, 0, 9, 9,12, 0, 0, 0, 0, 0, 0,10,12,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10,10, 0, 0, 0, 0, 0, 0, 9,12,10, 0, 0, 0, 0, 0, 0,10,11,12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 8,10,10, 0, 0, 0, 0, 0, 0, 8,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10,10, 0, 0, 0, 0, 0, 0,10,12,11, 0, 0, 0, 0, 0, 0, 9,10,12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10,10, 0, 0, 0, 0, 0, 0,10,11,12, 0, 0, 0, 0, 0, 0, 9,12, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__16c0_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__16c0_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16c0_s_p1_0 = { _vq_quantthresh__16c0_s_p1_0, _vq_quantmap__16c0_s_p1_0, 3, 3 }; static static_codebook _16c0_s_p1_0 = { 8, 6561, _vq_lengthlist__16c0_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__16c0_s_p1_0, NULL, &_vq_auxt__16c0_s_p1_0, NULL, 0 }; static long _vq_quantlist__16c0_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16c0_s_p2_0[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__16c0_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16c0_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16c0_s_p2_0 = { _vq_quantthresh__16c0_s_p2_0, _vq_quantmap__16c0_s_p2_0, 5, 5 }; static static_codebook _16c0_s_p2_0 = { 4, 625, _vq_lengthlist__16c0_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16c0_s_p2_0, NULL, &_vq_auxt__16c0_s_p2_0, NULL, 0 }; static long _vq_quantlist__16c0_s_p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16c0_s_p3_0[] = { 1, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 6, 6, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__16c0_s_p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16c0_s_p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16c0_s_p3_0 = { _vq_quantthresh__16c0_s_p3_0, _vq_quantmap__16c0_s_p3_0, 5, 5 }; static static_codebook _16c0_s_p3_0 = { 4, 625, _vq_lengthlist__16c0_s_p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16c0_s_p3_0, NULL, &_vq_auxt__16c0_s_p3_0, NULL, 0 }; static long _vq_quantlist__16c0_s_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__16c0_s_p4_0[] = { 1, 3, 2, 7, 8, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__16c0_s_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__16c0_s_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__16c0_s_p4_0 = { _vq_quantthresh__16c0_s_p4_0, _vq_quantmap__16c0_s_p4_0, 9, 9 }; static static_codebook _16c0_s_p4_0 = { 2, 81, _vq_lengthlist__16c0_s_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__16c0_s_p4_0, NULL, &_vq_auxt__16c0_s_p4_0, NULL, 0 }; static long _vq_quantlist__16c0_s_p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__16c0_s_p5_0[] = { 1, 3, 3, 6, 6, 6, 6, 8, 8, 0, 0, 0, 7, 7, 7, 7, 8, 8, 0, 0, 0, 7, 7, 7, 7, 8, 8, 0, 0, 0, 7, 7, 8, 8, 9, 9, 0, 0, 0, 7, 7, 8, 8, 9, 9, 0, 0, 0, 8, 9, 8, 8,10,10, 0, 0, 0, 8, 8, 8, 8,10,10, 0, 0, 0,10,10, 9, 9,10,10, 0, 0, 0, 0, 0, 9, 9,10, 10, }; static float _vq_quantthresh__16c0_s_p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__16c0_s_p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__16c0_s_p5_0 = { _vq_quantthresh__16c0_s_p5_0, _vq_quantmap__16c0_s_p5_0, 9, 9 }; static static_codebook _16c0_s_p5_0 = { 2, 81, _vq_lengthlist__16c0_s_p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__16c0_s_p5_0, NULL, &_vq_auxt__16c0_s_p5_0, NULL, 0 }; static long _vq_quantlist__16c0_s_p6_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__16c0_s_p6_0[] = { 1, 3, 4, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9,10,10,11, 11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10,10,11, 11,11, 0, 0, 0, 6, 6, 8, 8, 9, 9, 9, 9,10,10,11, 11,11,11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10, 11,11,12,12, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10, 10,11,11,12,12, 0, 0, 0, 8, 8, 9, 9,10,10,10,10, 11,11,12,12,12,12, 0, 0, 0, 8, 8, 9, 9,10,10,10, 10,11,11,12,12,12,13, 0, 0, 0, 9, 9, 9, 9,10,10, 10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0,10,10,10, 10,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9, 10,10,11,11,12,12,13,13,13,13, 0, 0, 0, 0, 0, 9, 9,10,10,11,11,12,12,13,13,13,14, 0, 0, 0, 0, 0, 10,10,10,11,11,11,12,12,13,13,13,14, 0, 0, 0, 0, 0, 0, 0,10,10,11,11,12,12,13,13,14,14, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,13,13,13,13,14,14, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,12,13,13,14,15,14, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,13,13,13,14,14,15, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,13,13,14,13,14, 14, }; static float _vq_quantthresh__16c0_s_p6_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__16c0_s_p6_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__16c0_s_p6_0 = { _vq_quantthresh__16c0_s_p6_0, _vq_quantmap__16c0_s_p6_0, 17, 17 }; static static_codebook _16c0_s_p6_0 = { 2, 289, _vq_lengthlist__16c0_s_p6_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__16c0_s_p6_0, NULL, &_vq_auxt__16c0_s_p6_0, NULL, 0 }; static long _vq_quantlist__16c0_s_p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16c0_s_p7_0[] = { 1, 4, 4, 6, 6, 6, 7, 6, 6, 4, 7, 7,11,10,10,11, 11,10, 4, 7, 7,10,10,10,11,10,10, 6,10,10,11,11, 11,11,11,10, 6, 9, 9,11,12,12,11, 9, 9, 6, 9,10, 11,12,12,11, 9,10, 7,11,11,11,11,11,12,13,12, 6, 9,10,11,10,10,12,13,13, 6,10, 9,11,10,10,11,12, 13, }; static float _vq_quantthresh__16c0_s_p7_0[] = { -5.5, 5.5, }; static long _vq_quantmap__16c0_s_p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16c0_s_p7_0 = { _vq_quantthresh__16c0_s_p7_0, _vq_quantmap__16c0_s_p7_0, 3, 3 }; static static_codebook _16c0_s_p7_0 = { 4, 81, _vq_lengthlist__16c0_s_p7_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__16c0_s_p7_0, NULL, &_vq_auxt__16c0_s_p7_0, NULL, 0 }; static long _vq_quantlist__16c0_s_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__16c0_s_p7_1[] = { 1, 3, 4, 6, 6, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 9, 9, 9,10,10,10, 6, 7, 8, 8, 8, 8, 9, 8,10,10,10, 7, 7, 8, 8, 9, 9, 9, 9,10,10,10, 7, 7, 8, 8, 9, 9, 8, 9,10,10,10, 8, 8, 9, 9, 9, 9, 9, 9,11,11,11, 8, 8, 9, 9, 9, 9, 9,10,10,11,11, 9, 9, 9, 9, 9, 9, 9,10,11,11,11,10,11, 9, 9, 9, 9,10, 9,11,11,11,10,11,10,10, 9, 9,10,10,11,11, 11,11,11, 9, 9, 9, 9,10,10, }; static float _vq_quantthresh__16c0_s_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__16c0_s_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__16c0_s_p7_1 = { _vq_quantthresh__16c0_s_p7_1, _vq_quantmap__16c0_s_p7_1, 11, 11 }; static static_codebook _16c0_s_p7_1 = { 2, 121, _vq_lengthlist__16c0_s_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__16c0_s_p7_1, NULL, &_vq_auxt__16c0_s_p7_1, NULL, 0 }; static long _vq_quantlist__16c0_s_p8_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__16c0_s_p8_0[] = { 1, 4, 4, 7, 7, 7, 7, 7, 6, 8, 8,10,10, 6, 5, 6, 8, 8, 8, 8, 8, 8, 8, 9,10,10, 7, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8,10,10, 0, 8, 8, 8, 8, 9, 8, 9, 9, 9,10,10,10, 0, 9, 8, 8, 8, 9, 9, 8, 8, 9, 9,10, 10, 0,12,11, 8, 8, 9, 9, 9, 9,10,10,11,10, 0,12, 13, 8, 8, 9,10, 9, 9,11,11,11,12, 0, 0, 0, 8, 8, 8, 8,10, 9,12,13,12,14, 0, 0, 0, 8, 8, 8, 9,10, 10,12,12,13,14, 0, 0, 0,13,13, 9, 9,11,11, 0, 0, 14, 0, 0, 0, 0,14,14,10,10,12,11,12,14,14,14, 0, 0, 0, 0, 0,11,11,13,13,14,13,14,14, 0, 0, 0, 0, 0,12,13,13,12,13,14,14,14, }; static float _vq_quantthresh__16c0_s_p8_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__16c0_s_p8_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__16c0_s_p8_0 = { _vq_quantthresh__16c0_s_p8_0, _vq_quantmap__16c0_s_p8_0, 13, 13 }; static static_codebook _16c0_s_p8_0 = { 2, 169, _vq_lengthlist__16c0_s_p8_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__16c0_s_p8_0, NULL, &_vq_auxt__16c0_s_p8_0, NULL, 0 }; static long _vq_quantlist__16c0_s_p8_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16c0_s_p8_1[] = { 1, 4, 3, 5, 5, 7, 7, 7, 6, 6, 7, 7, 7, 5, 5, 7, 7, 7, 6, 6, 7, 7, 7, 6, 6, }; static float _vq_quantthresh__16c0_s_p8_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16c0_s_p8_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16c0_s_p8_1 = { _vq_quantthresh__16c0_s_p8_1, _vq_quantmap__16c0_s_p8_1, 5, 5 }; static static_codebook _16c0_s_p8_1 = { 2, 25, _vq_lengthlist__16c0_s_p8_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16c0_s_p8_1, NULL, &_vq_auxt__16c0_s_p8_1, NULL, 0 }; static long _vq_quantlist__16c0_s_p9_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16c0_s_p9_0[] = { 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__16c0_s_p9_0[] = { -157.5, 157.5, }; static long _vq_quantmap__16c0_s_p9_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16c0_s_p9_0 = { _vq_quantthresh__16c0_s_p9_0, _vq_quantmap__16c0_s_p9_0, 3, 3 }; static static_codebook _16c0_s_p9_0 = { 4, 81, _vq_lengthlist__16c0_s_p9_0, 1, -518803456, 1628680192, 2, 0, _vq_quantlist__16c0_s_p9_0, NULL, &_vq_auxt__16c0_s_p9_0, NULL, 0 }; static long _vq_quantlist__16c0_s_p9_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__16c0_s_p9_1[] = { 1, 5, 5, 5, 5, 9,11,11,10,10,10,10,10,10,10, 7, 6, 6, 6, 6,10,10,10,10,10,10,10,10,10,10, 7, 6, 6, 6, 6,10, 9,10,10,10,10,10,10,10,10,10, 7, 7, 8, 9,10,10,10,10,10,10,10,10,10,10,10, 8, 7,10, 10,10, 9,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10, }; static float _vq_quantthresh__16c0_s_p9_1[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__16c0_s_p9_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__16c0_s_p9_1 = { _vq_quantthresh__16c0_s_p9_1, _vq_quantmap__16c0_s_p9_1, 15, 15 }; static static_codebook _16c0_s_p9_1 = { 2, 225, _vq_lengthlist__16c0_s_p9_1, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__16c0_s_p9_1, NULL, &_vq_auxt__16c0_s_p9_1, NULL, 0 }; static long _vq_quantlist__16c0_s_p9_2[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__16c0_s_p9_2[] = { 1, 5, 5, 7, 8, 8, 7, 9, 9, 9,12,12,11,12,12,10, 10,11,12,12,12,11,12,12, 8, 9, 8, 7, 9,10,10,11, 11,10,11,12,10,12,10,12,12,12,11,12,11, 9, 8, 8, 9,10, 9, 8, 9,10,12,12,11,11,12,11,10,11,12,11, 12,12, 8, 9, 9, 9,10,11,12,11,12,11,11,11,11,12, 12,11,11,12,12,11,11, 9, 9, 8, 9, 9,11, 9, 9,10, 9,11,11,11,11,12,11,11,10,12,12,12, 9,12,11,10, 11,11,11,11,12,12,12,11,11,11,12,10,12,12,12,10, 10, 9,10, 9,10,10, 9, 9, 9,10,10,12,10,11,11, 9, 11,11,10,11,11,11,10,10,10, 9, 9,10,10, 9, 9,10, 11,11,10,11,10,11,10,11,11,10,11,11,11,10, 9,10, 10, 9,10, 9, 9,11, 9, 9,11,10,10,11,11,10,10,11, 10,11, 8, 9,11,11,10, 9,10,11,11,10,11,11,10,10, 10,11,10, 9,10,10,11, 9,10,10, 9,11,10,10,10,10, 11,10,11,11, 9,11,10,11,10,10,11,11,10,10,10, 9, 10,10,11,11,11, 9,10,10,10,10,10,11,10,10,10, 9, 10,10,11,10,10,10,10,10, 9,10,11,10,10,10,10,11, 11,11,10,10,10,10,10,11,10,11,10,11,10,10,10, 9, 11,11,10,10,10,11,11,10,10,10,10,10,10,10,10,11, 11, 9,10,10,10,11,10,11,10,10,10,11, 9,10,11,10, 11,10,10, 9,10,10,10,11,10,11,10,10,10,10,10,11, 11,10,11,11,10,10,11,11,10, 9, 9,10,10,10,10,10, 9,11, 9,10,10,10,11,11,10,10,10,10,11,11,11,10, 9, 9,10,10,11,10,10,10,10,10,11,11,11,10,10,10, 11,11,11, 9,10,10,10,10, 9,10, 9,10,11,10,11,10, 10,11,11,10,11,11,11,11,11,10,11,10,10,10, 9,11, 11,10,11,11,11,11,11,11,11,11,11,10,11,10,10,10, 10,11,10,10,11, 9,10,10,10, }; static float _vq_quantthresh__16c0_s_p9_2[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__16c0_s_p9_2[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__16c0_s_p9_2 = { _vq_quantthresh__16c0_s_p9_2, _vq_quantmap__16c0_s_p9_2, 21, 21 }; static static_codebook _16c0_s_p9_2 = { 2, 441, _vq_lengthlist__16c0_s_p9_2, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__16c0_s_p9_2, NULL, &_vq_auxt__16c0_s_p9_2, NULL, 0 }; static long _huff_lengthlist__16c0_s_single[] = { 3, 4,19, 7, 9, 7, 8,11, 9,12, 4, 1,19, 6, 7, 7, 8,10,11,13,18,18,18,18,18,18,18,18,18,18, 8, 6, 18, 8, 9, 9,11,12,14,18, 9, 6,18, 9, 7, 8, 9,11, 12,18, 7, 6,18, 8, 7, 7, 7, 9,11,17, 8, 8,18, 9, 7, 6, 6, 8,11,17,10,10,18,12, 9, 8, 7, 9,12,18, 13,15,18,15,13,11,10,11,15,18,14,18,18,18,18,18, 16,16,18,18, }; static static_codebook _huff_book__16c0_s_single = { 2, 100, _huff_lengthlist__16c0_s_single, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__16c1_s_long[] = { 2, 5,20, 7,10, 7, 8,10,11,11, 4, 2,20, 5, 8, 6, 7, 9,10,10,20,20,20,20,19,19,19,19,19,19, 7, 5, 19, 6,10, 7, 9,11,13,17,11, 8,19,10, 7, 7, 8,10, 11,15, 7, 5,19, 7, 7, 5, 6, 9,11,16, 7, 6,19, 8, 7, 6, 6, 7, 9,13, 9, 9,19,11, 9, 8, 6, 7, 8,13, 12,14,19,16,13,10, 9, 8, 9,13,14,17,19,18,18,17, 12,11,11,13, }; static static_codebook _huff_book__16c1_s_long = { 2, 100, _huff_lengthlist__16c1_s_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__16c1_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16c1_s_p1_0[] = { 1, 5, 5, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 8, 0, 0, 0, 0, 0, 0, 7, 9, 8, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9, 9,11, 0, 0, 0, 0, 0, 0, 9,11,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 8,11, 9, 0, 0, 0, 0, 0, 0, 9,10,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 8, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,11,10, 0, 0, 0, 0, 0, 0, 8, 9,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,10,11, 0, 0, 0, 0, 0, 0, 9,11, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__16c1_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__16c1_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16c1_s_p1_0 = { _vq_quantthresh__16c1_s_p1_0, _vq_quantmap__16c1_s_p1_0, 3, 3 }; static static_codebook _16c1_s_p1_0 = { 8, 6561, _vq_lengthlist__16c1_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__16c1_s_p1_0, NULL, &_vq_auxt__16c1_s_p1_0, NULL, 0 }; static long _vq_quantlist__16c1_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16c1_s_p2_0[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__16c1_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16c1_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16c1_s_p2_0 = { _vq_quantthresh__16c1_s_p2_0, _vq_quantmap__16c1_s_p2_0, 5, 5 }; static static_codebook _16c1_s_p2_0 = { 4, 625, _vq_lengthlist__16c1_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16c1_s_p2_0, NULL, &_vq_auxt__16c1_s_p2_0, NULL, 0 }; static long _vq_quantlist__16c1_s_p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16c1_s_p3_0[] = { 1, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__16c1_s_p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16c1_s_p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16c1_s_p3_0 = { _vq_quantthresh__16c1_s_p3_0, _vq_quantmap__16c1_s_p3_0, 5, 5 }; static static_codebook _16c1_s_p3_0 = { 4, 625, _vq_lengthlist__16c1_s_p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16c1_s_p3_0, NULL, &_vq_auxt__16c1_s_p3_0, NULL, 0 }; static long _vq_quantlist__16c1_s_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__16c1_s_p4_0[] = { 1, 2, 3, 7, 7, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 8, 9, 0, 0, 0, 0, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__16c1_s_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__16c1_s_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__16c1_s_p4_0 = { _vq_quantthresh__16c1_s_p4_0, _vq_quantmap__16c1_s_p4_0, 9, 9 }; static static_codebook _16c1_s_p4_0 = { 2, 81, _vq_lengthlist__16c1_s_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__16c1_s_p4_0, NULL, &_vq_auxt__16c1_s_p4_0, NULL, 0 }; static long _vq_quantlist__16c1_s_p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__16c1_s_p5_0[] = { 1, 3, 3, 5, 5, 6, 6, 8, 8, 0, 0, 0, 7, 7, 7, 7, 9, 9, 0, 0, 0, 7, 7, 7, 7, 9, 9, 0, 0, 0, 8, 8, 8, 8, 9, 9, 0, 0, 0, 8, 8, 8, 8,10,10, 0, 0, 0, 9, 9, 8, 8,10,10, 0, 0, 0, 9, 9, 8, 8,10,10, 0, 0, 0,10,10, 9, 9,10,10, 0, 0, 0, 0, 0, 9, 9,10, 10, }; static float _vq_quantthresh__16c1_s_p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__16c1_s_p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__16c1_s_p5_0 = { _vq_quantthresh__16c1_s_p5_0, _vq_quantmap__16c1_s_p5_0, 9, 9 }; static static_codebook _16c1_s_p5_0 = { 2, 81, _vq_lengthlist__16c1_s_p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__16c1_s_p5_0, NULL, &_vq_auxt__16c1_s_p5_0, NULL, 0 }; static long _vq_quantlist__16c1_s_p6_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__16c1_s_p6_0[] = { 1, 3, 3, 6, 6, 8, 8, 9, 9, 9, 9,10,10,11,11,12, 12, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10,11,11, 12,12, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10,11, 11,12,12, 0, 0, 0, 8, 8, 8, 9,10, 9,10,10,10,10, 11,11,12,12, 0, 0, 0, 8, 8, 9, 9,10,10,10,10,11, 11,11,12,12,12, 0, 0, 0, 8, 8, 9, 9,10,10,10,10, 11,11,12,12,12,12, 0, 0, 0, 8, 8, 9, 9,10,10,10, 10,11,11,12,12,13,13, 0, 0, 0, 9, 9, 9, 9,10,10, 10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9,10, 10,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9, 10,10,11,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 9, 9,10,10,11,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 10,10,11,10,11,11,12,12,13,13,13,13, 0, 0, 0, 0, 0, 0, 0,10,10,11,11,12,12,13,13,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,12,12,13,13,14,14, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,12,12,13,13,14,14, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,13,13,13,13,14,14, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,13,13,13,13,14, 14, }; static float _vq_quantthresh__16c1_s_p6_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__16c1_s_p6_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__16c1_s_p6_0 = { _vq_quantthresh__16c1_s_p6_0, _vq_quantmap__16c1_s_p6_0, 17, 17 }; static static_codebook _16c1_s_p6_0 = { 2, 289, _vq_lengthlist__16c1_s_p6_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__16c1_s_p6_0, NULL, &_vq_auxt__16c1_s_p6_0, NULL, 0 }; static long _vq_quantlist__16c1_s_p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16c1_s_p7_0[] = { 1, 4, 4, 6, 6, 6, 7, 6, 6, 4, 7, 7,10, 9,10,10, 10, 9, 4, 7, 7,10,10,10,11,10,10, 6,10,10,11,11, 11,11,10,10, 6,10, 9,11,11,11,11,10,10, 6,10,10, 11,11,11,11,10,10, 7,11,11,11,11,11,12,12,11, 6, 10,10,11,10,10,11,11,11, 6,10,10,10,11,10,11,11, 11, }; static float _vq_quantthresh__16c1_s_p7_0[] = { -5.5, 5.5, }; static long _vq_quantmap__16c1_s_p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16c1_s_p7_0 = { _vq_quantthresh__16c1_s_p7_0, _vq_quantmap__16c1_s_p7_0, 3, 3 }; static static_codebook _16c1_s_p7_0 = { 4, 81, _vq_lengthlist__16c1_s_p7_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__16c1_s_p7_0, NULL, &_vq_auxt__16c1_s_p7_0, NULL, 0 }; static long _vq_quantlist__16c1_s_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__16c1_s_p7_1[] = { 2, 3, 3, 5, 6, 7, 7, 7, 7, 8, 8,10,10,10, 6, 6, 7, 7, 8, 8, 8, 8,10,10,10, 6, 6, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 9, 9,10,10,10,10,10, 8, 8, 8, 8, 9, 9,10,10,10,10,10, 9, 9, 8, 8, 9, 9,10,10, 10,10,10, 8, 8, 8, 8, 9, 9, }; static float _vq_quantthresh__16c1_s_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__16c1_s_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__16c1_s_p7_1 = { _vq_quantthresh__16c1_s_p7_1, _vq_quantmap__16c1_s_p7_1, 11, 11 }; static static_codebook _16c1_s_p7_1 = { 2, 121, _vq_lengthlist__16c1_s_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__16c1_s_p7_1, NULL, &_vq_auxt__16c1_s_p7_1, NULL, 0 }; static long _vq_quantlist__16c1_s_p8_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__16c1_s_p8_0[] = { 1, 4, 4, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 6, 5, 5, 7, 8, 8, 9, 8, 8, 9, 9,10,11, 6, 5, 5, 8, 8, 9, 9, 8, 8, 9,10,10,11, 0, 8, 8, 8, 9, 9, 9, 9, 9, 10,10,11,11, 0, 9, 9, 9, 8, 9, 9, 9, 9,10,10,11, 11, 0,13,13, 9, 9,10,10,10,10,11,11,12,12, 0,14, 13, 9, 9,10,10,10,10,11,11,12,12, 0, 0, 0,10,10, 9, 9,11,11,12,12,13,12, 0, 0, 0,10,10, 9, 9,10, 10,12,12,13,13, 0, 0, 0,13,14,11,10,11,11,12,12, 13,14, 0, 0, 0,14,14,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0,12,12,12,12,13,13,14,15, 0, 0, 0, 0, 0,12,12,12,12,13,13,14,15, }; static float _vq_quantthresh__16c1_s_p8_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__16c1_s_p8_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__16c1_s_p8_0 = { _vq_quantthresh__16c1_s_p8_0, _vq_quantmap__16c1_s_p8_0, 13, 13 }; static static_codebook _16c1_s_p8_0 = { 2, 169, _vq_lengthlist__16c1_s_p8_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__16c1_s_p8_0, NULL, &_vq_auxt__16c1_s_p8_0, NULL, 0 }; static long _vq_quantlist__16c1_s_p8_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16c1_s_p8_1[] = { 2, 3, 3, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__16c1_s_p8_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16c1_s_p8_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16c1_s_p8_1 = { _vq_quantthresh__16c1_s_p8_1, _vq_quantmap__16c1_s_p8_1, 5, 5 }; static static_codebook _16c1_s_p8_1 = { 2, 25, _vq_lengthlist__16c1_s_p8_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16c1_s_p8_1, NULL, &_vq_auxt__16c1_s_p8_1, NULL, 0 }; static long _vq_quantlist__16c1_s_p9_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__16c1_s_p9_0[] = { 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__16c1_s_p9_0[] = { -1732.5, -1417.5, -1102.5, -787.5, -472.5, -157.5, 157.5, 472.5, 787.5, 1102.5, 1417.5, 1732.5, }; static long _vq_quantmap__16c1_s_p9_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__16c1_s_p9_0 = { _vq_quantthresh__16c1_s_p9_0, _vq_quantmap__16c1_s_p9_0, 13, 13 }; static static_codebook _16c1_s_p9_0 = { 2, 169, _vq_lengthlist__16c1_s_p9_0, 1, -513964032, 1628680192, 4, 0, _vq_quantlist__16c1_s_p9_0, NULL, &_vq_auxt__16c1_s_p9_0, NULL, 0 }; static long _vq_quantlist__16c1_s_p9_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__16c1_s_p9_1[] = { 1, 4, 4, 4, 4, 8, 8,12,13,14,14,14,14,14,14, 6, 6, 6, 6, 6,10, 9,14,14,14,14,14,14,14,14, 7, 6, 5, 6, 6,10, 9,12,13,13,13,13,13,13,13,13, 7, 7, 9, 9,11,11,12,13,13,13,13,13,13,13,13, 7, 7, 8, 8,11,12,13,13,13,13,13,13,13,13,13,12,12,10,10, 13,12,13,13,13,13,13,13,13,13,13,12,12,10,10,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,12,13,12, 13,13,13,13,13,13,13,13,13,13,13,13,12,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,12,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,12,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13, }; static float _vq_quantthresh__16c1_s_p9_1[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__16c1_s_p9_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__16c1_s_p9_1 = { _vq_quantthresh__16c1_s_p9_1, _vq_quantmap__16c1_s_p9_1, 15, 15 }; static static_codebook _16c1_s_p9_1 = { 2, 225, _vq_lengthlist__16c1_s_p9_1, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__16c1_s_p9_1, NULL, &_vq_auxt__16c1_s_p9_1, NULL, 0 }; static long _vq_quantlist__16c1_s_p9_2[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__16c1_s_p9_2[] = { 1, 4, 4, 6, 6, 7, 7, 8, 7, 8, 8, 9, 9, 9, 9,10, 10,10, 9,10,10,11,12,12, 8, 8, 8, 8, 9, 9, 9, 9, 10,10,10,10,10,11,11,10,12,11,11,13,11, 7, 7, 8, 8, 8, 8, 9, 9, 9,10,10,10,10, 9,10,10,11,11,12, 11,11, 8, 8, 8, 8, 9, 9,10,10,10,10,11,11,11,11, 11,11,11,12,11,12,12, 8, 8, 9, 9, 9, 9, 9,10,10, 10,10,10,10,11,11,11,11,11,11,12,11, 9, 9, 9, 9, 10,10,10,10,11,10,11,11,11,11,11,11,12,12,12,12, 11, 9, 9, 9, 9,10,10,10,10,11,11,11,11,11,11,11, 11,11,12,12,12,13, 9,10,10, 9,11,10,10,10,10,11, 11,11,11,11,10,11,12,11,12,12,11,12,11,10, 9,10, 10,11,10,11,11,11,11,11,11,11,11,11,12,12,11,12, 12,12,10,10,10,11,10,11,11,11,11,11,11,11,11,11, 11,11,12,13,12,12,11, 9,10,10,11,11,10,11,11,11, 12,11,11,11,11,11,12,12,13,13,12,13,10,10,12,10, 11,11,11,11,11,11,11,11,11,12,12,11,13,12,12,12, 12,13,12,11,11,11,11,11,11,12,11,12,11,11,11,11, 12,12,13,12,11,12,12,11,11,11,11,11,12,11,11,11, 11,12,11,11,12,11,12,13,13,12,12,12,12,11,11,11, 11,11,12,11,11,12,11,12,11,11,11,11,13,12,12,12, 12,13,11,11,11,12,12,11,11,11,12,11,12,12,12,11, 12,13,12,11,11,12,12,11,12,11,11,11,12,12,11,12, 11,11,11,12,12,12,12,13,12,13,12,12,12,12,11,11, 12,11,11,11,11,11,11,12,12,12,13,12,11,13,13,12, 12,11,12,10,11,11,11,11,12,11,12,12,11,12,12,13, 12,12,13,12,12,12,12,12,11,12,12,12,11,12,11,11, 11,12,13,12,13,13,13,13,13,12,13,13,12,12,13,11, 11,11,11,11,12,11,11,12,11, }; static float _vq_quantthresh__16c1_s_p9_2[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__16c1_s_p9_2[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__16c1_s_p9_2 = { _vq_quantthresh__16c1_s_p9_2, _vq_quantmap__16c1_s_p9_2, 21, 21 }; static static_codebook _16c1_s_p9_2 = { 2, 441, _vq_lengthlist__16c1_s_p9_2, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__16c1_s_p9_2, NULL, &_vq_auxt__16c1_s_p9_2, NULL, 0 }; static long _huff_lengthlist__16c1_s_short[] = { 5, 6,17, 8,12, 9,10,10,12,13, 5, 2,17, 4, 9, 5, 7, 8,11,13,16,16,16,16,16,16,16,16,16,16, 6, 4, 16, 5,10, 5, 7,10,14,16,13, 9,16,11, 8, 7, 8, 9, 13,16, 7, 4,16, 5, 7, 4, 6, 8,11,13, 8, 6,16, 7, 8, 5, 5, 7, 9,13, 9, 8,16, 9, 8, 6, 6, 7, 9,13, 11,11,16,10,10, 7, 7, 7, 9,13,13,13,16,13,13, 9, 9, 9,10,13, }; static static_codebook _huff_book__16c1_s_short = { 2, 100, _huff_lengthlist__16c1_s_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__16c2_s_long[] = { 4, 7, 9, 9, 9, 8, 9,10,15,19, 5, 4, 5, 6, 7, 7, 8, 9,14,16, 6, 5, 4, 5, 6, 7, 8,10,12,19, 7, 6, 5, 4, 5, 6, 7, 9,11,18, 8, 7, 6, 5, 5, 5, 7, 9, 10,17, 8, 7, 7, 5, 5, 5, 6, 7,12,18, 8, 8, 8, 7, 7, 5, 5, 7,12,18, 8, 9,10, 9, 9, 7, 6, 7,12,17, 14,18,16,16,15,12,11,10,12,18,15,17,18,18,18,15, 14,14,16,18, }; static static_codebook _huff_book__16c2_s_long = { 2, 100, _huff_lengthlist__16c2_s_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__16c2_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16c2_s_p1_0[] = { 1, 3, 3, 0, 0, 0, 0, 0, 0, 4, 5, 5, 0, 0, 0, 0, 0, 0, 4, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__16c2_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__16c2_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p1_0 = { _vq_quantthresh__16c2_s_p1_0, _vq_quantmap__16c2_s_p1_0, 3, 3 }; static static_codebook _16c2_s_p1_0 = { 4, 81, _vq_lengthlist__16c2_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__16c2_s_p1_0, NULL, &_vq_auxt__16c2_s_p1_0, NULL, 0 }; static long _vq_quantlist__16c2_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16c2_s_p2_0[] = { 2, 4, 3, 7, 7, 0, 0, 0, 7, 8, 0, 0, 0, 8, 8, 0, 0, 0, 8, 8, 0, 0, 0, 8, 8, 4, 5, 4, 8, 8, 0, 0, 0, 8, 8, 0, 0, 0, 8, 8, 0, 0, 0, 9, 9, 0, 0, 0, 9, 9, 4, 4, 5, 8, 8, 0, 0, 0, 8, 8, 0, 0, 0, 8, 8, 0, 0, 0, 9, 9, 0, 0, 0, 9, 9, 7, 8, 8,10,10, 0, 0, 0,12,11, 0, 0, 0,11,11, 0, 0, 0,14,13, 0, 0, 0,14,13, 7, 8, 8, 9,10, 0, 0, 0,11,12, 0, 0, 0,11,11, 0, 0, 0,14,14, 0, 0, 0,13,14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8,11,11, 0, 0, 0, 11,11, 0, 0, 0,12,11, 0, 0, 0,12,12, 0, 0, 0,13, 13, 8, 8, 8,11,11, 0, 0, 0,11,11, 0, 0, 0,11,12, 0, 0, 0,12,13, 0, 0, 0,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8,12,11, 0, 0, 0,12,11, 0, 0, 0,11,11, 0, 0, 0,13,13, 0, 0, 0,13,12, 8, 8, 8,11,12, 0, 0, 0,11,12, 0, 0, 0,11,11, 0, 0, 0, 13,13, 0, 0, 0,12,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 9, 9,14,13, 0, 0, 0,13,12, 0, 0, 0,13, 13, 0, 0, 0,13,12, 0, 0, 0,13,13, 8, 9, 9,13,14, 0, 0, 0,12,13, 0, 0, 0,13,13, 0, 0, 0,12,13, 0, 0, 0,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 9, 9,14,13, 0, 0, 0,13,13, 0, 0, 0,13,12, 0, 0, 0,13,13, 0, 0, 0,13,12, 8, 9, 9,14,14, 0, 0, 0, 13,13, 0, 0, 0,12,13, 0, 0, 0,13,13, 0, 0, 0,12, 13, }; static float _vq_quantthresh__16c2_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16c2_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p2_0 = { _vq_quantthresh__16c2_s_p2_0, _vq_quantmap__16c2_s_p2_0, 5, 5 }; static static_codebook _16c2_s_p2_0 = { 4, 625, _vq_lengthlist__16c2_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16c2_s_p2_0, NULL, &_vq_auxt__16c2_s_p2_0, NULL, 0 }; static long _vq_quantlist__16c2_s_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__16c2_s_p3_0[] = { 1, 3, 3, 6, 6, 7, 7, 8, 8, 0, 0, 0, 6, 6, 7, 7, 9, 9, 0, 0, 0, 6, 6, 7, 7, 9, 9, 0, 0, 0, 7, 7, 8, 8,10,10, 0, 0, 0, 7, 7, 8, 8,10,10, 0, 0, 0, 7, 7, 9, 9,10,10, 0, 0, 0, 7, 7, 9, 9,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__16c2_s_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__16c2_s_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p3_0 = { _vq_quantthresh__16c2_s_p3_0, _vq_quantmap__16c2_s_p3_0, 9, 9 }; static static_codebook _16c2_s_p3_0 = { 2, 81, _vq_lengthlist__16c2_s_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__16c2_s_p3_0, NULL, &_vq_auxt__16c2_s_p3_0, NULL, 0 }; static long _vq_quantlist__16c2_s_p4_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__16c2_s_p4_0[] = { 2, 3, 3, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9,10, 10, 0, 0, 0, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 11,11, 0, 0, 0, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9,10, 10,10,11, 0, 0, 0, 6, 6, 8, 8, 8, 8, 9, 9,10,10, 10,11,11,11, 0, 0, 0, 6, 6, 8, 8, 9, 9, 9, 9,10, 10,11,11,11,11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9, 10,10,11,11,12,12, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10,11,11,12,12, 0, 0, 0, 7, 7, 8, 8, 9, 9, 10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 8, 8, 9, 9,10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__16c2_s_p4_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__16c2_s_p4_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p4_0 = { _vq_quantthresh__16c2_s_p4_0, _vq_quantmap__16c2_s_p4_0, 17, 17 }; static static_codebook _16c2_s_p4_0 = { 2, 289, _vq_lengthlist__16c2_s_p4_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__16c2_s_p4_0, NULL, &_vq_auxt__16c2_s_p4_0, NULL, 0 }; static long _vq_quantlist__16c2_s_p5_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16c2_s_p5_0[] = { 1, 4, 4, 5, 7, 7, 6, 7, 7, 4, 6, 6,10,10,10,10, 10,10, 4, 7, 6,10,10,10,10,10,10, 5, 9, 9, 9,12, 11,10,11,12, 7,10,10,12,12,12,12,12,12, 7,10,10, 11,12,12,12,12,13, 6,10,10,10,12,12,10,12,12, 7, 10,10,11,13,12,12,12,12, 7,10,10,11,12,12,12,12, 12, }; static float _vq_quantthresh__16c2_s_p5_0[] = { -5.5, 5.5, }; static long _vq_quantmap__16c2_s_p5_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p5_0 = { _vq_quantthresh__16c2_s_p5_0, _vq_quantmap__16c2_s_p5_0, 3, 3 }; static static_codebook _16c2_s_p5_0 = { 4, 81, _vq_lengthlist__16c2_s_p5_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__16c2_s_p5_0, NULL, &_vq_auxt__16c2_s_p5_0, NULL, 0 }; static long _vq_quantlist__16c2_s_p5_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__16c2_s_p5_1[] = { 2, 3, 3, 6, 6, 7, 7, 7, 7, 8, 8,11,11,11, 6, 6, 7, 7, 8, 8, 8, 8,11,11,11, 6, 6, 7, 7, 8, 8, 8, 8,11,11,11, 6, 6, 8, 8, 8, 8, 9, 9,11,11,11, 6, 6, 8, 8, 8, 8, 9, 9,11,11,11, 7, 7, 8, 8, 8, 8, 8, 8,11,11,11, 7, 7, 8, 8, 8, 8, 8, 9,11,11,11, 8, 8, 8, 8, 8, 8, 8, 8,11,11,11,11,11, 8, 8, 8, 8, 8, 8,11,11,11,11,11, 8, 8, 8, 8, 8, 8,11,11, 11,11,11, 7, 7, 8, 8, 8, 8, }; static float _vq_quantthresh__16c2_s_p5_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__16c2_s_p5_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p5_1 = { _vq_quantthresh__16c2_s_p5_1, _vq_quantmap__16c2_s_p5_1, 11, 11 }; static static_codebook _16c2_s_p5_1 = { 2, 121, _vq_lengthlist__16c2_s_p5_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__16c2_s_p5_1, NULL, &_vq_auxt__16c2_s_p5_1, NULL, 0 }; static long _vq_quantlist__16c2_s_p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__16c2_s_p6_0[] = { 1, 4, 4, 7, 6, 8, 8, 9, 9,10,10,11,11, 5, 5, 5, 7, 7, 9, 9, 9, 9,11,11,12,12, 6, 5, 5, 7, 7, 9, 9,10,10,11,11,12,12, 0, 6, 6, 7, 7, 9, 9,10,10, 11,11,12,12, 0, 7, 7, 7, 7, 9, 9,10,10,11,12,12, 12, 0,11,11, 8, 8,10,10,11,11,12,12,13,13, 0,11, 12, 8, 8,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__16c2_s_p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__16c2_s_p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p6_0 = { _vq_quantthresh__16c2_s_p6_0, _vq_quantmap__16c2_s_p6_0, 13, 13 }; static static_codebook _16c2_s_p6_0 = { 2, 169, _vq_lengthlist__16c2_s_p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__16c2_s_p6_0, NULL, &_vq_auxt__16c2_s_p6_0, NULL, 0 }; static long _vq_quantlist__16c2_s_p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16c2_s_p6_1[] = { 2, 3, 3, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__16c2_s_p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16c2_s_p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p6_1 = { _vq_quantthresh__16c2_s_p6_1, _vq_quantmap__16c2_s_p6_1, 5, 5 }; static static_codebook _16c2_s_p6_1 = { 2, 25, _vq_lengthlist__16c2_s_p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16c2_s_p6_1, NULL, &_vq_auxt__16c2_s_p6_1, NULL, 0 }; static long _vq_quantlist__16c2_s_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__16c2_s_p7_0[] = { 1, 4, 4, 7, 7, 8, 8, 9, 9,10,10,11,11, 5, 5, 5, 8, 8, 9, 9,10,10,11,11,12,12, 6, 5, 5, 8, 8, 9, 9,10,10,11,11,12,13,18, 6, 6, 7, 7, 9, 9,10,10, 12,12,13,13,18, 6, 6, 7, 7, 9, 9,10,10,12,12,13, 13,18,11,10, 8, 8,10,10,11,11,12,12,13,13,18,11, 11, 8, 8,10,10,11,11,12,13,13,13,18,18,18,10,11, 11,11,12,12,13,13,14,14,18,18,18,11,11,11,11,12, 12,13,13,14,14,18,18,18,14,14,12,12,12,12,14,14, 15,14,18,18,18,15,15,11,12,12,12,13,13,15,15,18, 18,18,18,18,13,13,13,13,13,14,17,16,18,18,18,18, 18,13,14,13,13,14,13,15,14, }; static float _vq_quantthresh__16c2_s_p7_0[] = { -60.5, -49.5, -38.5, -27.5, -16.5, -5.5, 5.5, 16.5, 27.5, 38.5, 49.5, 60.5, }; static long _vq_quantmap__16c2_s_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p7_0 = { _vq_quantthresh__16c2_s_p7_0, _vq_quantmap__16c2_s_p7_0, 13, 13 }; static static_codebook _16c2_s_p7_0 = { 2, 169, _vq_lengthlist__16c2_s_p7_0, 1, -523206656, 1618345984, 4, 0, _vq_quantlist__16c2_s_p7_0, NULL, &_vq_auxt__16c2_s_p7_0, NULL, 0 }; static long _vq_quantlist__16c2_s_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__16c2_s_p7_1[] = { 2, 4, 4, 6, 6, 7, 7, 7, 7, 7, 7, 9, 9, 9, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 7, 7, 8, 8, 7, 7, 8, 8, 9, 9, 9, 9, 9, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 8, 8, 7, 7, 8, 8, 9, 9, 9, 9, 9, 7, 7, 7, 7, 8, 8, }; static float _vq_quantthresh__16c2_s_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__16c2_s_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p7_1 = { _vq_quantthresh__16c2_s_p7_1, _vq_quantmap__16c2_s_p7_1, 11, 11 }; static static_codebook _16c2_s_p7_1 = { 2, 121, _vq_lengthlist__16c2_s_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__16c2_s_p7_1, NULL, &_vq_auxt__16c2_s_p7_1, NULL, 0 }; static long _vq_quantlist__16c2_s_p8_0[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__16c2_s_p8_0[] = { 1, 4, 4, 7, 6, 7, 7, 6, 6, 8, 8, 9, 9,10,10, 6, 6, 6, 8, 8, 9, 8, 8, 8, 9, 9,11,10,11,11, 7, 6, 6, 8, 8, 9, 8, 7, 7, 9, 9,10,10,12,11,14, 8, 8, 8, 9, 9, 9, 9, 9,10, 9,10,10,11,13,14, 8, 8, 8, 8, 9, 9, 8, 8, 9, 9,10,10,11,12,14,13,11, 9, 9, 9, 9, 9, 9, 9,10,11,10,13,12,14,11,13, 8, 9, 9, 9, 9, 9,10,10,11,10,13,12,14,14,14, 8, 9, 9, 9, 11,11,11,11,11,12,13,13,14,14,14, 9, 8, 9, 9,10, 10,12,10,11,12,12,14,14,14,14,11,12,10,10,12,12, 12,12,13,14,12,12,14,14,14,12,12, 9,10,11,11,12, 14,12,14,14,14,14,14,14,14,14,11,11,12,11,12,14, 14,14,14,14,14,14,14,14,14,12,11,11,11,11,14,14, 14,14,14,14,14,14,14,14,14,14,13,12,14,14,14,14, 14,14,14,14,14,14,14,14,14,12,12,12,13,14,14,13, 13, }; static float _vq_quantthresh__16c2_s_p8_0[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__16c2_s_p8_0[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p8_0 = { _vq_quantthresh__16c2_s_p8_0, _vq_quantmap__16c2_s_p8_0, 15, 15 }; static static_codebook _16c2_s_p8_0 = { 2, 225, _vq_lengthlist__16c2_s_p8_0, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__16c2_s_p8_0, NULL, &_vq_auxt__16c2_s_p8_0, NULL, 0 }; static long _vq_quantlist__16c2_s_p8_1[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__16c2_s_p8_1[] = { 2, 4, 4, 6, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,11,12,11, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9, 9,11,11,10, 7, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11, 11,11, 8, 7, 8, 8, 9, 9, 9, 9, 9, 9,10,10, 9,10, 10, 9,10,10,11,11,12, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,10,11,11,11, 8, 8, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,11,11, 11, 8, 8, 9, 8, 9, 9, 9, 9,10, 9, 9, 9,10,10,10, 10, 9,10,11,11,11, 9, 9, 9, 9,10, 9, 9, 9,10,10, 9,10, 9,10,10,10,10,10,11,12,11,11,11, 9, 9, 9, 9, 9,10,10, 9,10,10,10,10,10,10,10,10,12,11,13, 13,11, 9, 9, 9, 9,10,10, 9,10,10,10,10,11,10,10, 10,10,11,12,11,12,11, 9, 9, 9,10,10, 9,10,10,10, 10,10,10,10,10,10,10,11,11,11,12,11, 9,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,11,12,12,12, 11,11,11,10, 9,10,10,10,10,10,10,10,10,11,10,10, 10,11,11,11,11,11,11,11,10,10,10,11,10,10,10,10, 10,10,10,10,10,10,11,11,11,11,12,12,11,10,10,10, 10,10,10,10,10,11,10,10,10,11,10,12,11,11,12,11, 11,11,10,10,10,10,10,11,10,10,10,10,10,11,10,10, 11,11,11,12,11,12,11,11,12,10,10,10,10,10,10,10, 11,10,10,11,10,12,11,11,11,12,11,11,11,11,10,10, 10,10,10,10,10,11,11,11,10,11,12,11,11,11,12,11, 12,11,12,10,11,10,10,10,10,11,10,10,10,10,10,10, 12,11,11,11,11,11,12,12,10,10,10,10,10,11,10,10, 11,10,11,11,11,11,11,11,11,11,11,11,11,11,12,11, 10,11,10,10,10,10,10,10,10, }; static float _vq_quantthresh__16c2_s_p8_1[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__16c2_s_p8_1[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p8_1 = { _vq_quantthresh__16c2_s_p8_1, _vq_quantmap__16c2_s_p8_1, 21, 21 }; static static_codebook _16c2_s_p8_1 = { 2, 441, _vq_lengthlist__16c2_s_p8_1, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__16c2_s_p8_1, NULL, &_vq_auxt__16c2_s_p8_1, NULL, 0 }; static long _vq_quantlist__16c2_s_p9_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__16c2_s_p9_0[] = { 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__16c2_s_p9_0[] = { -5120.5, -4189.5, -3258.5, -2327.5, -1396.5, -465.5, 465.5, 1396.5, 2327.5, 3258.5, 4189.5, 5120.5, }; static long _vq_quantmap__16c2_s_p9_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p9_0 = { _vq_quantthresh__16c2_s_p9_0, _vq_quantmap__16c2_s_p9_0, 13, 13 }; static static_codebook _16c2_s_p9_0 = { 2, 169, _vq_lengthlist__16c2_s_p9_0, 1, -510275072, 1631393792, 4, 0, _vq_quantlist__16c2_s_p9_0, NULL, &_vq_auxt__16c2_s_p9_0, NULL, 0 }; static long _vq_quantlist__16c2_s_p9_1[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__16c2_s_p9_1[] = { 1, 5, 5, 9, 8, 7, 7, 7, 6,10,11,11,11,11,11,11, 11, 8, 7, 6, 8, 8,10, 9,10,10,10, 9,11,10,10,10, 10,10, 8, 6, 6, 8, 8, 9, 8, 9, 8, 9,10,10,10,10, 10,10,10,10, 8,10, 9, 9, 9, 9,10,10,10,10,10,10, 10,10,10,10,10, 8, 9, 9, 9,10,10, 9,10,10,10,10, 10,10,10,10,10,10,10,10, 9, 8, 9, 9,10,10,10,10, 10,10,10,10,10,10,10,10, 9, 8, 8, 9, 9,10,10,10, 10,10,10,10,10,10,10,10,10,10, 9,10, 9, 9,10,10, 10,10,10,10,10,10,10,10,10,10,10, 9, 8, 9, 9,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 9, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 8,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10, 9,10, 9,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10, 9,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10, }; static float _vq_quantthresh__16c2_s_p9_1[] = { -367.5, -318.5, -269.5, -220.5, -171.5, -122.5, -73.5, -24.5, 24.5, 73.5, 122.5, 171.5, 220.5, 269.5, 318.5, 367.5, }; static long _vq_quantmap__16c2_s_p9_1[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p9_1 = { _vq_quantthresh__16c2_s_p9_1, _vq_quantmap__16c2_s_p9_1, 17, 17 }; static static_codebook _16c2_s_p9_1 = { 2, 289, _vq_lengthlist__16c2_s_p9_1, 1, -518488064, 1622704128, 5, 0, _vq_quantlist__16c2_s_p9_1, NULL, &_vq_auxt__16c2_s_p9_1, NULL, 0 }; static long _vq_quantlist__16c2_s_p9_2[] = { 13, 12, 14, 11, 15, 10, 16, 9, 17, 8, 18, 7, 19, 6, 20, 5, 21, 4, 22, 3, 23, 2, 24, 1, 25, 0, 26, }; static long _vq_lengthlist__16c2_s_p9_2[] = { 1, 4, 4, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 8, 7, 7, 4, 4, }; static float _vq_quantthresh__16c2_s_p9_2[] = { -12.5, -11.5, -10.5, -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, }; static long _vq_quantmap__16c2_s_p9_2[] = { 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, }; static encode_aux_threshmatch _vq_auxt__16c2_s_p9_2 = { _vq_quantthresh__16c2_s_p9_2, _vq_quantmap__16c2_s_p9_2, 27, 27 }; static static_codebook _16c2_s_p9_2 = { 1, 27, _vq_lengthlist__16c2_s_p9_2, 1, -528875520, 1611661312, 5, 0, _vq_quantlist__16c2_s_p9_2, NULL, &_vq_auxt__16c2_s_p9_2, NULL, 0 }; static long _huff_lengthlist__16c2_s_short[] = { 7,10,11,11,11,14,15,15,17,14, 8, 6, 7, 7, 8, 9, 11,11,14,17, 9, 6, 6, 6, 7, 7,10,11,15,16, 9, 6, 6, 4, 4, 5, 8, 9,12,16,10, 6, 6, 4, 4, 4, 6, 9, 13,16,10, 7, 6, 5, 4, 3, 5, 7,13,16,11, 9, 8, 7, 6, 5, 5, 6,12,15,10,10,10, 9, 7, 6, 6, 7,11,15, 13,13,13,13,11,10,10, 9,12,16,16,16,16,14,16,15, 15,12,14,14, }; static static_codebook _huff_book__16c2_s_short = { 2, 100, _huff_lengthlist__16c2_s_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__8c0_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__8c0_s_p1_0[] = { 1, 5, 4, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 7, 8, 9, 0, 0, 0, 0, 0, 0, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 7, 9, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 8,10,10, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10, 9, 0, 0, 0, 0, 0, 0, 8, 9,11, 0, 0, 0, 0, 0, 0, 9,11,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9,10, 0, 0, 0, 0, 0, 0, 9,11,10, 0, 0, 0, 0, 0, 0, 9,11,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,11,11, 0, 0, 0, 0, 0, 0, 9,10,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9,10, 0, 0, 0, 0, 0, 0, 9,11,11, 0, 0, 0, 0, 0, 0, 8,11, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__8c0_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__8c0_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__8c0_s_p1_0 = { _vq_quantthresh__8c0_s_p1_0, _vq_quantmap__8c0_s_p1_0, 3, 3 }; static static_codebook _8c0_s_p1_0 = { 8, 6561, _vq_lengthlist__8c0_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__8c0_s_p1_0, NULL, &_vq_auxt__8c0_s_p1_0, NULL, 0 }; static long _vq_quantlist__8c0_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__8c0_s_p2_0[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__8c0_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__8c0_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__8c0_s_p2_0 = { _vq_quantthresh__8c0_s_p2_0, _vq_quantmap__8c0_s_p2_0, 5, 5 }; static static_codebook _8c0_s_p2_0 = { 4, 625, _vq_lengthlist__8c0_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__8c0_s_p2_0, NULL, &_vq_auxt__8c0_s_p2_0, NULL, 0 }; static long _vq_quantlist__8c0_s_p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__8c0_s_p3_0[] = { 1, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 6, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__8c0_s_p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__8c0_s_p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__8c0_s_p3_0 = { _vq_quantthresh__8c0_s_p3_0, _vq_quantmap__8c0_s_p3_0, 5, 5 }; static static_codebook _8c0_s_p3_0 = { 4, 625, _vq_lengthlist__8c0_s_p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__8c0_s_p3_0, NULL, &_vq_auxt__8c0_s_p3_0, NULL, 0 }; static long _vq_quantlist__8c0_s_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__8c0_s_p4_0[] = { 1, 2, 3, 7, 7, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 9, 8, 0, 0, 0, 0, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__8c0_s_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__8c0_s_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__8c0_s_p4_0 = { _vq_quantthresh__8c0_s_p4_0, _vq_quantmap__8c0_s_p4_0, 9, 9 }; static static_codebook _8c0_s_p4_0 = { 2, 81, _vq_lengthlist__8c0_s_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__8c0_s_p4_0, NULL, &_vq_auxt__8c0_s_p4_0, NULL, 0 }; static long _vq_quantlist__8c0_s_p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__8c0_s_p5_0[] = { 1, 3, 3, 5, 5, 7, 6, 8, 8, 0, 0, 0, 7, 7, 7, 7, 8, 8, 0, 0, 0, 7, 7, 7, 7, 8, 9, 0, 0, 0, 8, 8, 8, 8, 9, 9, 0, 0, 0, 8, 8, 8, 8, 9, 9, 0, 0, 0, 9, 9, 8, 8,10,10, 0, 0, 0, 9, 9, 8, 8,10,10, 0, 0, 0,10,10, 9, 9,10,10, 0, 0, 0, 0, 0, 9, 9,10, 10, }; static float _vq_quantthresh__8c0_s_p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__8c0_s_p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__8c0_s_p5_0 = { _vq_quantthresh__8c0_s_p5_0, _vq_quantmap__8c0_s_p5_0, 9, 9 }; static static_codebook _8c0_s_p5_0 = { 2, 81, _vq_lengthlist__8c0_s_p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__8c0_s_p5_0, NULL, &_vq_auxt__8c0_s_p5_0, NULL, 0 }; static long _vq_quantlist__8c0_s_p6_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__8c0_s_p6_0[] = { 1, 3, 3, 6, 6, 8, 8, 9, 9, 8, 8,10, 9,10,10,11, 11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10,11,11, 11,12, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10,11, 11,12,11, 0, 0, 0, 8, 8, 9, 9,10,10, 9, 9,10,10, 11,11,12,12, 0, 0, 0, 8, 8, 9, 9,10,10, 9, 9,11, 10,11,11,12,12, 0, 0, 0, 9, 9, 9, 9,10,10,10,10, 11,11,11,12,12,12, 0, 0, 0, 9, 9, 9, 9,10,10,10, 10,11,11,12,12,13,13, 0, 0, 0,10,10,10,10,11,11, 10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0,10, 9,10, 11,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9, 10, 9,10,11,12,12,13,13,14,13, 0, 0, 0, 0, 0, 9, 9, 9,10,10,10,11,11,13,12,13,13, 0, 0, 0, 0, 0, 10,10,10,10,11,11,12,12,13,13,14,14, 0, 0, 0, 0, 0, 0, 0,10,10,11,11,12,12,13,13,13,14, 0, 0, 0, 0, 0, 0, 0,11,11,11,11,12,12,13,14,14,14, 0, 0, 0, 0, 0, 0, 0,11,11,11,11,12,12,13,13,14,13, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,13,13,14,14,14,14, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,13,13,14, 14, }; static float _vq_quantthresh__8c0_s_p6_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__8c0_s_p6_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__8c0_s_p6_0 = { _vq_quantthresh__8c0_s_p6_0, _vq_quantmap__8c0_s_p6_0, 17, 17 }; static static_codebook _8c0_s_p6_0 = { 2, 289, _vq_lengthlist__8c0_s_p6_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__8c0_s_p6_0, NULL, &_vq_auxt__8c0_s_p6_0, NULL, 0 }; static long _vq_quantlist__8c0_s_p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__8c0_s_p7_0[] = { 1, 4, 4, 7, 6, 6, 7, 6, 6, 4, 7, 7,11, 9,10,12, 9,10, 4, 7, 7,10,10,10,11, 9, 9, 6,11,10,11,11, 12,11,11,11, 6,10,10,11,11,12,11,10,10, 6, 9,10, 11,11,11,11,10,10, 7,10,11,12,11,11,12,11,12, 6, 9, 9,10, 9, 9,11,10,10, 6, 9, 9,10,10,10,11,10, 10, }; static float _vq_quantthresh__8c0_s_p7_0[] = { -5.5, 5.5, }; static long _vq_quantmap__8c0_s_p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__8c0_s_p7_0 = { _vq_quantthresh__8c0_s_p7_0, _vq_quantmap__8c0_s_p7_0, 3, 3 }; static static_codebook _8c0_s_p7_0 = { 4, 81, _vq_lengthlist__8c0_s_p7_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__8c0_s_p7_0, NULL, &_vq_auxt__8c0_s_p7_0, NULL, 0 }; static long _vq_quantlist__8c0_s_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__8c0_s_p7_1[] = { 1, 3, 3, 6, 6, 8, 8, 9, 9, 9, 9,10,10,10, 7, 7, 8, 8, 9, 9, 9, 9,10,10, 9, 7, 7, 8, 8, 9, 9, 9, 9,10,10,10, 8, 8, 9, 9, 9, 9, 9, 9,10,10,10, 8, 8, 9, 9, 9, 9, 8, 9,10,10,10, 8, 8, 9, 9, 9,10, 10,10,10,10,10, 9, 9, 9, 9, 9, 9,10,10,11,10,11, 9, 9, 9, 9,10,10,10,10,11,11,11,10,10, 9, 9,10, 10,10, 9,11,10,10,10,10,10,10, 9, 9,10,10,11,11, 10,10,10, 9, 9, 9,10,10,10, }; static float _vq_quantthresh__8c0_s_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__8c0_s_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__8c0_s_p7_1 = { _vq_quantthresh__8c0_s_p7_1, _vq_quantmap__8c0_s_p7_1, 11, 11 }; static static_codebook _8c0_s_p7_1 = { 2, 121, _vq_lengthlist__8c0_s_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__8c0_s_p7_1, NULL, &_vq_auxt__8c0_s_p7_1, NULL, 0 }; static long _vq_quantlist__8c0_s_p8_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__8c0_s_p8_0[] = { 1, 4, 4, 7, 6, 7, 7, 7, 7, 8, 8, 9, 9, 7, 6, 6, 7, 7, 8, 8, 7, 7, 8, 9,10,10, 7, 6, 6, 7, 7, 8, 7, 7, 7, 9, 9,10,12, 0, 8, 8, 8, 8, 8, 9, 8, 8, 9, 9,10,10, 0, 8, 8, 8, 8, 8, 9, 8, 9, 9, 9,11, 10, 0, 0,13, 9, 8, 9, 9, 9, 9,10,10,11,11, 0,13, 0, 9, 9, 9, 9, 9, 9,11,10,11,11, 0, 0, 0, 8, 9, 10, 9,10,10,13,11,12,12, 0, 0, 0, 8, 9, 9, 9,10, 10,13,12,12,13, 0, 0, 0,12, 0,10,10,12,11,10,11, 12,12, 0, 0, 0,13,13,10,10,10,11,12, 0,13, 0, 0, 0, 0, 0, 0,13,11, 0,12,12,12,13,12, 0, 0, 0, 0, 0, 0,13,13,11,13,13,11,12, }; static float _vq_quantthresh__8c0_s_p8_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__8c0_s_p8_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__8c0_s_p8_0 = { _vq_quantthresh__8c0_s_p8_0, _vq_quantmap__8c0_s_p8_0, 13, 13 }; static static_codebook _8c0_s_p8_0 = { 2, 169, _vq_lengthlist__8c0_s_p8_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__8c0_s_p8_0, NULL, &_vq_auxt__8c0_s_p8_0, NULL, 0 }; static long _vq_quantlist__8c0_s_p8_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__8c0_s_p8_1[] = { 1, 3, 4, 5, 5, 7, 6, 6, 6, 5, 7, 7, 7, 6, 6, 7, 7, 7, 6, 6, 7, 7, 7, 6, 6, }; static float _vq_quantthresh__8c0_s_p8_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__8c0_s_p8_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__8c0_s_p8_1 = { _vq_quantthresh__8c0_s_p8_1, _vq_quantmap__8c0_s_p8_1, 5, 5 }; static static_codebook _8c0_s_p8_1 = { 2, 25, _vq_lengthlist__8c0_s_p8_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__8c0_s_p8_1, NULL, &_vq_auxt__8c0_s_p8_1, NULL, 0 }; static long _vq_quantlist__8c0_s_p9_0[] = { 1, 0, 2, }; static long _vq_lengthlist__8c0_s_p9_0[] = { 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__8c0_s_p9_0[] = { -157.5, 157.5, }; static long _vq_quantmap__8c0_s_p9_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__8c0_s_p9_0 = { _vq_quantthresh__8c0_s_p9_0, _vq_quantmap__8c0_s_p9_0, 3, 3 }; static static_codebook _8c0_s_p9_0 = { 4, 81, _vq_lengthlist__8c0_s_p9_0, 1, -518803456, 1628680192, 2, 0, _vq_quantlist__8c0_s_p9_0, NULL, &_vq_auxt__8c0_s_p9_0, NULL, 0 }; static long _vq_quantlist__8c0_s_p9_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__8c0_s_p9_1[] = { 1, 4, 4, 5, 5,10, 8,11,11,11,11,11,11,11,11, 6, 6, 6, 7, 6,11,10,11,11,11,11,11,11,11,11, 7, 5, 6, 6, 6, 8, 7,11,11,11,11,11,11,11,11,11, 7, 8, 8, 8, 9, 9,11,11,11,11,11,11,11,11,11, 9, 8, 7, 8, 9,11,11,11,11,11,11,11,11,11,11,11,10,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,10,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11, }; static float _vq_quantthresh__8c0_s_p9_1[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__8c0_s_p9_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__8c0_s_p9_1 = { _vq_quantthresh__8c0_s_p9_1, _vq_quantmap__8c0_s_p9_1, 15, 15 }; static static_codebook _8c0_s_p9_1 = { 2, 225, _vq_lengthlist__8c0_s_p9_1, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__8c0_s_p9_1, NULL, &_vq_auxt__8c0_s_p9_1, NULL, 0 }; static long _vq_quantlist__8c0_s_p9_2[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__8c0_s_p9_2[] = { 1, 5, 5, 7, 7, 8, 7, 8, 8,10,10, 9, 9,10,10,10, 11,11,10,12,11,12,12,12, 9, 8, 8, 8, 8, 8, 9,10, 10,10,10,11,11,11,10,11,11,12,12,11,12, 8, 8, 7, 7, 8, 9,10,10,10, 9,10,10, 9,10,10,11,11,11,11, 11,11, 9, 9, 9, 9, 8, 9,10,10,11,10,10,11,11,12, 10,10,12,12,11,11,10, 9, 9,10, 8, 9,10,10,10, 9, 10,10,11,11,10,11,10,10,10,12,12,12, 9,10, 9,10, 9, 9,10,10,11,11,11,11,10,10,10,11,12,11,12,11, 12,10,11,10,11, 9,10, 9,10, 9,10,10, 9,10,10,11, 10,11,11,11,11,12,11, 9,10,10,10,10,11,11,11,11, 11,10,11,11,11,11,10,12,10,12,12,11,12,10,10,11, 10, 9,11,10,11, 9,10,11,10,10,10,11,11,11,11,12, 12,10, 9, 9,11,10, 9,12,11,10,12,12,11,11,11,11, 10,11,11,12,11,10,12, 9,11,10,11,10,10,11,10,11, 9,10,10,10,11,12,11,11,12,11,10,10,11,11, 9,10, 10,12,10,11,10,10,10, 9,10,10,10,10, 9,10,10,11, 11,11,11,12,11,10,10,10,10,11,11,10,11,11, 9,11, 10,12,10,12,11,10,11,10,10,10,11,10,10,11,11,10, 11,10,10,10,10,11,11,12,10,10,10,11,10,11,12,11, 10,11,10,10,11,11,10,12,10, 9,10,10,11,11,11,10, 12,10,10,11,11,11,10,10,11,10,10,10,11,10,11,10, 12,11,11,10,10,10,12,10,10,11, 9,10,11,11,11,10, 10,11,10,10, 9,11,11,12,12,11,12,11,11,11,11,11, 11, 9,10,11,10,12,10,10,10,10,11,10,10,11,10,10, 12,10,10,10,10,10, 9,12,10,10,10,10,12, 9,11,10, 10,11,10,12,12,10,12,12,12,10,10,10,10, 9,10,11, 10,10,12,10,10,12,11,10,11,10,10,12,11,10,12,10, 10,11, 9,11,10, 9,10, 9,10, }; static float _vq_quantthresh__8c0_s_p9_2[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__8c0_s_p9_2[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__8c0_s_p9_2 = { _vq_quantthresh__8c0_s_p9_2, _vq_quantmap__8c0_s_p9_2, 21, 21 }; static static_codebook _8c0_s_p9_2 = { 2, 441, _vq_lengthlist__8c0_s_p9_2, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__8c0_s_p9_2, NULL, &_vq_auxt__8c0_s_p9_2, NULL, 0 }; static long _huff_lengthlist__8c0_s_single[] = { 4, 5,18, 7,10, 6, 7, 8, 9,10, 5, 2,18, 5, 7, 5, 6, 7, 8,11,17,17,17,17,17,17,17,17,17,17, 7, 4, 17, 6, 9, 6, 8,10,12,15,11, 7,17, 9, 6, 6, 7, 9, 11,15, 6, 4,17, 6, 6, 4, 5, 8,11,16, 6, 6,17, 8, 6, 5, 6, 9,13,16, 8, 9,17,11, 9, 8, 8,11,13,17, 9,12,17,15,14,13,12,13,14,17,12,15,17,17,17,17, 17,16,17,17, }; static static_codebook _huff_book__8c0_s_single = { 2, 100, _huff_lengthlist__8c0_s_single, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__8c1_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__8c1_s_p1_0[] = { 1, 5, 5, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7, 0, 0, 0, 0, 0, 0, 7, 8, 9, 0, 0, 0, 0, 0, 0, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 8, 0, 0, 0, 0, 0, 0, 7, 9, 8, 0, 0, 0, 0, 0, 0, 7, 9, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 8, 8,10, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 8,10, 9, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 8, 9,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 8,10, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__8c1_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__8c1_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__8c1_s_p1_0 = { _vq_quantthresh__8c1_s_p1_0, _vq_quantmap__8c1_s_p1_0, 3, 3 }; static static_codebook _8c1_s_p1_0 = { 8, 6561, _vq_lengthlist__8c1_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__8c1_s_p1_0, NULL, &_vq_auxt__8c1_s_p1_0, NULL, 0 }; static long _vq_quantlist__8c1_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__8c1_s_p2_0[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__8c1_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__8c1_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__8c1_s_p2_0 = { _vq_quantthresh__8c1_s_p2_0, _vq_quantmap__8c1_s_p2_0, 5, 5 }; static static_codebook _8c1_s_p2_0 = { 4, 625, _vq_lengthlist__8c1_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__8c1_s_p2_0, NULL, &_vq_auxt__8c1_s_p2_0, NULL, 0 }; static long _vq_quantlist__8c1_s_p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__8c1_s_p3_0[] = { 2, 4, 4, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__8c1_s_p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__8c1_s_p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__8c1_s_p3_0 = { _vq_quantthresh__8c1_s_p3_0, _vq_quantmap__8c1_s_p3_0, 5, 5 }; static static_codebook _8c1_s_p3_0 = { 4, 625, _vq_lengthlist__8c1_s_p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__8c1_s_p3_0, NULL, &_vq_auxt__8c1_s_p3_0, NULL, 0 }; static long _vq_quantlist__8c1_s_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__8c1_s_p4_0[] = { 1, 2, 3, 7, 7, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 9, 8, 0, 0, 0, 0, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__8c1_s_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__8c1_s_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__8c1_s_p4_0 = { _vq_quantthresh__8c1_s_p4_0, _vq_quantmap__8c1_s_p4_0, 9, 9 }; static static_codebook _8c1_s_p4_0 = { 2, 81, _vq_lengthlist__8c1_s_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__8c1_s_p4_0, NULL, &_vq_auxt__8c1_s_p4_0, NULL, 0 }; static long _vq_quantlist__8c1_s_p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__8c1_s_p5_0[] = { 1, 3, 3, 4, 5, 6, 6, 8, 8, 0, 0, 0, 8, 8, 7, 7, 9, 9, 0, 0, 0, 8, 8, 7, 7, 9, 9, 0, 0, 0, 9,10, 8, 8, 9, 9, 0, 0, 0,10,10, 8, 8, 9, 9, 0, 0, 0, 11,10, 8, 8,10,10, 0, 0, 0,11,11, 8, 8,10,10, 0, 0, 0,12,12, 9, 9,10,10, 0, 0, 0, 0, 0, 9, 9,10, 10, }; static float _vq_quantthresh__8c1_s_p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__8c1_s_p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__8c1_s_p5_0 = { _vq_quantthresh__8c1_s_p5_0, _vq_quantmap__8c1_s_p5_0, 9, 9 }; static static_codebook _8c1_s_p5_0 = { 2, 81, _vq_lengthlist__8c1_s_p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__8c1_s_p5_0, NULL, &_vq_auxt__8c1_s_p5_0, NULL, 0 }; static long _vq_quantlist__8c1_s_p6_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__8c1_s_p6_0[] = { 1, 3, 3, 5, 5, 8, 8, 8, 8, 9, 9,10,10,11,11,11, 11, 0, 0, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11,11, 12,12, 0, 0, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11, 11,12,12, 0, 0, 0, 9, 9, 8, 8,10,10,10,10,11,11, 12,12,12,12, 0, 0, 0, 9, 9, 8, 8,10,10,10,10,11, 11,12,12,12,12, 0, 0, 0,10,10, 9, 9,10,10,10,10, 11,11,12,12,13,13, 0, 0, 0,10,10, 9, 9,10,10,10, 10,11,11,12,12,13,13, 0, 0, 0,11,11, 9, 9,10,10, 10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9,10, 10,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9, 10,10,11,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 9, 9,10,10,11,11,12,11,12,12,13,13, 0, 0, 0, 0, 0, 10,10,11,11,11,11,12,12,13,12,13,13, 0, 0, 0, 0, 0, 0, 0,11,10,11,11,12,12,13,13,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,12,12,13,13,13,14, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,12,12,13,13,14,13, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,13,13,13,13,14,14, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,13,13,13,13,14, 14, }; static float _vq_quantthresh__8c1_s_p6_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__8c1_s_p6_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__8c1_s_p6_0 = { _vq_quantthresh__8c1_s_p6_0, _vq_quantmap__8c1_s_p6_0, 17, 17 }; static static_codebook _8c1_s_p6_0 = { 2, 289, _vq_lengthlist__8c1_s_p6_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__8c1_s_p6_0, NULL, &_vq_auxt__8c1_s_p6_0, NULL, 0 }; static long _vq_quantlist__8c1_s_p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__8c1_s_p7_0[] = { 1, 4, 4, 6, 6, 6, 7, 6, 6, 4, 7, 7,10, 9, 9,10, 9, 9, 5, 7, 7,10, 9, 9,10, 9, 9, 6,10,10,10,10, 10,11,10,10, 6, 9, 9,10, 9,10,11,10,10, 6, 9, 9, 10, 9, 9,11, 9,10, 7,10,10,11,11,11,11,10,10, 6, 9, 9,10,10,10,11, 9, 9, 6, 9, 9,10,10,10,10, 9, 9, }; static float _vq_quantthresh__8c1_s_p7_0[] = { -5.5, 5.5, }; static long _vq_quantmap__8c1_s_p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__8c1_s_p7_0 = { _vq_quantthresh__8c1_s_p7_0, _vq_quantmap__8c1_s_p7_0, 3, 3 }; static static_codebook _8c1_s_p7_0 = { 4, 81, _vq_lengthlist__8c1_s_p7_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__8c1_s_p7_0, NULL, &_vq_auxt__8c1_s_p7_0, NULL, 0 }; static long _vq_quantlist__8c1_s_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__8c1_s_p7_1[] = { 2, 3, 3, 5, 5, 7, 7, 7, 7, 7, 7,10,10, 9, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 8, 8, 8, 8, 8, 8,10,10, 10,10,10, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__8c1_s_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__8c1_s_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__8c1_s_p7_1 = { _vq_quantthresh__8c1_s_p7_1, _vq_quantmap__8c1_s_p7_1, 11, 11 }; static static_codebook _8c1_s_p7_1 = { 2, 121, _vq_lengthlist__8c1_s_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__8c1_s_p7_1, NULL, &_vq_auxt__8c1_s_p7_1, NULL, 0 }; static long _vq_quantlist__8c1_s_p8_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__8c1_s_p8_0[] = { 1, 4, 4, 6, 6, 8, 8, 8, 8, 9, 9,10,10, 7, 5, 5, 7, 7, 8, 8, 8, 8, 9,10,11,11, 7, 5, 5, 7, 7, 8, 8, 9, 9,10,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9, 9,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11, 11, 0,12,12, 9, 9, 9, 9,10, 9,10,11,11,11, 0,13, 12, 9, 8, 9, 9,10,10,11,11,12,11, 0, 0, 0, 9, 9, 9, 9,10,10,11,11,12,12, 0, 0, 0,10,10, 9, 9,10, 10,11,11,12,12, 0, 0, 0,13,13,10,10,11,11,12,11, 13,12, 0, 0, 0,14,14,10,10,11,10,11,11,12,12, 0, 0, 0, 0, 0,12,12,11,11,12,12,13,13, 0, 0, 0, 0, 0,12,12,11,10,12,11,13,12, }; static float _vq_quantthresh__8c1_s_p8_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__8c1_s_p8_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__8c1_s_p8_0 = { _vq_quantthresh__8c1_s_p8_0, _vq_quantmap__8c1_s_p8_0, 13, 13 }; static static_codebook _8c1_s_p8_0 = { 2, 169, _vq_lengthlist__8c1_s_p8_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__8c1_s_p8_0, NULL, &_vq_auxt__8c1_s_p8_0, NULL, 0 }; static long _vq_quantlist__8c1_s_p8_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__8c1_s_p8_1[] = { 2, 3, 3, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__8c1_s_p8_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__8c1_s_p8_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__8c1_s_p8_1 = { _vq_quantthresh__8c1_s_p8_1, _vq_quantmap__8c1_s_p8_1, 5, 5 }; static static_codebook _8c1_s_p8_1 = { 2, 25, _vq_lengthlist__8c1_s_p8_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__8c1_s_p8_1, NULL, &_vq_auxt__8c1_s_p8_1, NULL, 0 }; static long _vq_quantlist__8c1_s_p9_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__8c1_s_p9_0[] = { 1, 3, 3,10,10,10,10,10,10,10,10,10,10, 5, 6, 6, 10,10,10,10,10,10,10,10,10,10, 6, 7, 8,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10, 9, 9, 9, 9, }; static float _vq_quantthresh__8c1_s_p9_0[] = { -1732.5, -1417.5, -1102.5, -787.5, -472.5, -157.5, 157.5, 472.5, 787.5, 1102.5, 1417.5, 1732.5, }; static long _vq_quantmap__8c1_s_p9_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__8c1_s_p9_0 = { _vq_quantthresh__8c1_s_p9_0, _vq_quantmap__8c1_s_p9_0, 13, 13 }; static static_codebook _8c1_s_p9_0 = { 2, 169, _vq_lengthlist__8c1_s_p9_0, 1, -513964032, 1628680192, 4, 0, _vq_quantlist__8c1_s_p9_0, NULL, &_vq_auxt__8c1_s_p9_0, NULL, 0 }; static long _vq_quantlist__8c1_s_p9_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__8c1_s_p9_1[] = { 1, 4, 4, 5, 5, 7, 7, 9, 9,11,11,12,12,13,13, 6, 5, 5, 6, 6, 9, 9,10,10,12,12,12,13,15,14, 6, 5, 5, 7, 7, 9, 9,10,10,12,12,12,13,14,13,17, 7, 7, 8, 8,10,10,11,11,12,13,13,13,13,13,17, 7, 7, 8, 8,10,10,11,11,13,13,13,13,14,14,17,11,11, 9, 9, 11,11,12,12,12,13,13,14,15,13,17,12,12, 9, 9,11, 11,12,12,13,13,13,13,14,16,17,17,17,11,12,12,12, 13,13,13,14,15,14,15,15,17,17,17,12,12,11,11,13, 13,14,14,15,14,15,15,17,17,17,15,15,13,13,14,14, 15,14,15,15,16,15,17,17,17,15,15,13,13,13,14,14, 15,15,15,15,16,17,17,17,17,16,14,15,14,14,15,14, 14,15,15,15,17,17,17,17,17,14,14,16,14,15,15,15, 15,15,15,17,17,17,17,17,17,16,16,15,17,15,15,14, 17,15,17,16,17,17,17,17,16,15,14,15,15,15,15,15, 15, }; static float _vq_quantthresh__8c1_s_p9_1[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__8c1_s_p9_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__8c1_s_p9_1 = { _vq_quantthresh__8c1_s_p9_1, _vq_quantmap__8c1_s_p9_1, 15, 15 }; static static_codebook _8c1_s_p9_1 = { 2, 225, _vq_lengthlist__8c1_s_p9_1, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__8c1_s_p9_1, NULL, &_vq_auxt__8c1_s_p9_1, NULL, 0 }; static long _vq_quantlist__8c1_s_p9_2[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__8c1_s_p9_2[] = { 2, 4, 4, 6, 6, 7, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9,11,11,12, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9,10,10,10,10,10,10,10,10,11,11,11, 7, 7, 7, 7, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9,10,10,10,10,11, 11,12, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9,10,10,10,10, 10,10,10,10,11,11,11, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9,10,10,10,10,10,10,10,10,11,11,11, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,11,11, 11, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10,10,10,10,10, 10,10,10,11,12,11, 9, 9, 8, 9, 9, 9, 9, 9,10,10, 10,10,10,10,10,10,10,10,11,11,11,11,11, 8, 8, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,11,12,11, 12,11, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10, 10,10,11,11,11,11,11, 9, 9, 9, 9,10,10,10,10,10, 10,10,10,10,10,10,10,12,11,12,11,11, 9, 9, 9,10, 10,10,10,10,10,10,10,10,10,10,10,10,12,11,11,11, 11,11,11,10,10,10,10,10,10,10,10,10,10,10,10,10, 11,11,11,12,11,11,12,11,10,10,10,10,10,10,10,10, 10,10,10,10,11,10,11,11,11,11,11,11,11,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,11,11,12,11,12, 11,11,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 11,11,12,11,12,11,11,11,11,10,10,10,10,10,10,10, 10,10,10,10,10,11,11,12,11,11,12,11,11,12,10,10, 11,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11, 11,11,11,10,10,10,10,10,10,10,10,10,10,10,10,12, 12,11,12,11,11,12,12,12,11,11,10,10,10,10,10,10, 10,10,10,11,12,12,11,12,12,11,12,11,11,11,11,10, 10,10,10,10,10,10,10,10,10, }; static float _vq_quantthresh__8c1_s_p9_2[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__8c1_s_p9_2[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__8c1_s_p9_2 = { _vq_quantthresh__8c1_s_p9_2, _vq_quantmap__8c1_s_p9_2, 21, 21 }; static static_codebook _8c1_s_p9_2 = { 2, 441, _vq_lengthlist__8c1_s_p9_2, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__8c1_s_p9_2, NULL, &_vq_auxt__8c1_s_p9_2, NULL, 0 }; static long _huff_lengthlist__8c1_s_single[] = { 4, 6,18, 8,11, 8, 8, 9, 9,10, 4, 4,18, 5, 9, 5, 6, 7, 8,10,18,18,18,18,17,17,17,17,17,17, 7, 5, 17, 6,11, 6, 7, 8, 9,12,12, 9,17,12, 8, 8, 9,10, 10,13, 7, 5,17, 6, 8, 4, 5, 6, 8,10, 6, 5,17, 6, 8, 5, 4, 5, 7, 9, 7, 7,17, 8, 9, 6, 5, 5, 6, 8, 8, 8,17, 9,11, 8, 6, 6, 6, 7, 9,10,17,12,12,10, 9, 7, 7, 8, }; static static_codebook _huff_book__8c1_s_single = { 2, 100, _huff_lengthlist__8c1_s_single, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44c2_s_long[] = { 6, 6,12,10,10,10, 9,10,12,12, 6, 1,10, 5, 6, 6, 7, 9,11,14,12, 9, 8,11, 7, 8, 9,11,13,15,10, 5, 12, 7, 8, 7, 9,12,14,15,10, 6, 7, 8, 5, 6, 7, 9, 12,14, 9, 6, 8, 7, 6, 6, 7, 9,12,12, 9, 7, 9, 9, 7, 6, 6, 7,10,10,10, 9,10,11, 8, 7, 6, 6, 8,10, 12,11,13,13,11,10, 8, 8, 8,10,11,13,15,15,14,13, 10, 8, 8, 9, }; static static_codebook _huff_book__44c2_s_long = { 2, 100, _huff_lengthlist__44c2_s_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44c2_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c2_s_p1_0[] = { 2, 4, 4, 0, 0, 0, 0, 0, 0, 5, 6, 6, 0, 0, 0, 0, 0, 0, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 6, 8, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c2_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44c2_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c2_s_p1_0 = { _vq_quantthresh__44c2_s_p1_0, _vq_quantmap__44c2_s_p1_0, 3, 3 }; static static_codebook _44c2_s_p1_0 = { 8, 6561, _vq_lengthlist__44c2_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44c2_s_p1_0, NULL, &_vq_auxt__44c2_s_p1_0, NULL, 0 }; static long _vq_quantlist__44c2_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c2_s_p2_0[] = { 1, 4, 4, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 4, 6, 6, 0, 0, 0, 8, 8, 0, 0, 0, 8, 8, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 4, 6, 6, 0, 0, 0, 8, 8, 0, 0, 0, 8, 8, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0,11,11, 0, 0, 0,11,11, 0, 0, 0,12,11, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0,10,11, 0, 0, 0,11,11, 0, 0, 0,11, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0,11,11, 0, 0, 0,11,11, 0, 0, 0,12,12, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0,10,11, 0, 0, 0,10,11, 0, 0, 0,11,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0,11,12, 0, 0, 0,11,12, 0, 0, 0, 12,11, 0, 0, 0, 0, 0, 0, 0, 8,10, 9, 0, 0, 0,12, 11, 0, 0, 0,12,11, 0, 0, 0,11,12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c2_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c2_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c2_s_p2_0 = { _vq_quantthresh__44c2_s_p2_0, _vq_quantmap__44c2_s_p2_0, 5, 5 }; static static_codebook _44c2_s_p2_0 = { 4, 625, _vq_lengthlist__44c2_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c2_s_p2_0, NULL, &_vq_auxt__44c2_s_p2_0, NULL, 0 }; static long _vq_quantlist__44c2_s_p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c2_s_p3_0[] = { 2, 4, 3, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c2_s_p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c2_s_p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c2_s_p3_0 = { _vq_quantthresh__44c2_s_p3_0, _vq_quantmap__44c2_s_p3_0, 5, 5 }; static static_codebook _44c2_s_p3_0 = { 4, 625, _vq_lengthlist__44c2_s_p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c2_s_p3_0, NULL, &_vq_auxt__44c2_s_p3_0, NULL, 0 }; static long _vq_quantlist__44c2_s_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c2_s_p4_0[] = { 1, 3, 3, 6, 6, 0, 0, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0, 0, 0, 7, 7, 6, 6, 0, 0, 0, 0, 0, 0, 0, 6, 7, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c2_s_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c2_s_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c2_s_p4_0 = { _vq_quantthresh__44c2_s_p4_0, _vq_quantmap__44c2_s_p4_0, 9, 9 }; static static_codebook _44c2_s_p4_0 = { 2, 81, _vq_lengthlist__44c2_s_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c2_s_p4_0, NULL, &_vq_auxt__44c2_s_p4_0, NULL, 0 }; static long _vq_quantlist__44c2_s_p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c2_s_p5_0[] = { 1, 3, 3, 6, 6, 7, 7, 9, 9, 0, 7, 7, 7, 7, 7, 7, 9, 9, 0, 7, 7, 7, 7, 7, 7, 9, 9, 0, 8, 8, 7, 7, 8, 8,10,10, 0, 0, 0, 7, 7, 8, 8,10,10, 0, 0, 0, 9, 9, 8, 8,10,10, 0, 0, 0, 9, 9, 8, 8,10,10, 0, 0, 0,10,10, 9, 9,11,11, 0, 0, 0, 0, 0, 9, 9,11, 11, }; static float _vq_quantthresh__44c2_s_p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c2_s_p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c2_s_p5_0 = { _vq_quantthresh__44c2_s_p5_0, _vq_quantmap__44c2_s_p5_0, 9, 9 }; static static_codebook _44c2_s_p5_0 = { 2, 81, _vq_lengthlist__44c2_s_p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c2_s_p5_0, NULL, &_vq_auxt__44c2_s_p5_0, NULL, 0 }; static long _vq_quantlist__44c2_s_p6_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c2_s_p6_0[] = { 1, 4, 3, 6, 6, 8, 8, 9, 9, 9, 9, 9, 9,10,10,11, 11, 0, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9,10,10,11,11, 12,11, 0, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9,10,10,11, 11,11,12, 0, 8, 8, 7, 7, 9, 9,10,10, 9, 9,10,10, 11,11,12,12, 0, 0, 0, 7, 7, 9, 9,10,10,10, 9,10, 10,11,11,12,12, 0, 0, 0, 8, 8, 9, 9,10,10,10,10, 11,11,11,11,12,12, 0, 0, 0, 8, 8, 9, 9,10,10,10, 10,11,11,12,12,12,12, 0, 0, 0, 9, 9, 9, 9,10,10, 10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 9, 9,10, 10,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9, 10,10,11,11,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9,10,10,11,11,11,11,12,12,13,13, 0, 0, 0, 0, 0, 10,10,10,10,11,11,12,12,13,12,13,13, 0, 0, 0, 0, 0, 0, 0,10,10,11,11,12,12,13,13,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,12,12,13,13,13,14, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,12,12,13,13,13,14, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,13,13,13,13,14,14, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,13,13,13,13,14, 14, }; static float _vq_quantthresh__44c2_s_p6_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c2_s_p6_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c2_s_p6_0 = { _vq_quantthresh__44c2_s_p6_0, _vq_quantmap__44c2_s_p6_0, 17, 17 }; static static_codebook _44c2_s_p6_0 = { 2, 289, _vq_lengthlist__44c2_s_p6_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c2_s_p6_0, NULL, &_vq_auxt__44c2_s_p6_0, NULL, 0 }; static long _vq_quantlist__44c2_s_p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c2_s_p7_0[] = { 1, 4, 4, 7, 6, 6, 7, 6, 6, 4, 7, 7,10, 9, 9,11, 9, 9, 4, 7, 7,10, 9, 9,10, 9, 9, 7,10,10,11,10, 11,11,10,11, 6, 9, 9,11,10,10,11,10,10, 6, 9, 9, 11,10,11,11,10,10, 7,11,10,11,11,11,12,11,11, 6, 9, 9,11,10,10,11,11,10, 6, 9, 9,11,10,10,12,10, 11, }; static float _vq_quantthresh__44c2_s_p7_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44c2_s_p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c2_s_p7_0 = { _vq_quantthresh__44c2_s_p7_0, _vq_quantmap__44c2_s_p7_0, 3, 3 }; static static_codebook _44c2_s_p7_0 = { 4, 81, _vq_lengthlist__44c2_s_p7_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44c2_s_p7_0, NULL, &_vq_auxt__44c2_s_p7_0, NULL, 0 }; static long _vq_quantlist__44c2_s_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c2_s_p7_1[] = { 2, 3, 4, 6, 6, 7, 7, 7, 7, 7, 7, 9, 7, 7, 6, 6, 7, 7, 8, 8, 8, 8, 9, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8,10, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 8, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 9, 9, 8, 8, 8, 8,10,10, 10,10,10, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__44c2_s_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c2_s_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c2_s_p7_1 = { _vq_quantthresh__44c2_s_p7_1, _vq_quantmap__44c2_s_p7_1, 11, 11 }; static static_codebook _44c2_s_p7_1 = { 2, 121, _vq_lengthlist__44c2_s_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c2_s_p7_1, NULL, &_vq_auxt__44c2_s_p7_1, NULL, 0 }; static long _vq_quantlist__44c2_s_p8_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c2_s_p8_0[] = { 1, 4, 4, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 6, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 7, 6, 5, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11, 11, 0,12,12, 9, 9,10,10,10,10,11,11,11,11, 0,13, 13, 9, 9,10,10,10,10,11,11,12,12, 0, 0, 0,10,10, 10,10,11,11,12,12,12,13, 0, 0, 0,10,10,10,10,11, 11,12,12,12,12, 0, 0, 0,14,14,10,11,11,11,12,12, 13,13, 0, 0, 0,14,14,11,10,11,11,13,12,13,13, 0, 0, 0, 0, 0,12,12,11,12,13,12,14,14, 0, 0, 0, 0, 0,12,12,12,12,13,12,14,14, }; static float _vq_quantthresh__44c2_s_p8_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44c2_s_p8_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c2_s_p8_0 = { _vq_quantthresh__44c2_s_p8_0, _vq_quantmap__44c2_s_p8_0, 13, 13 }; static static_codebook _44c2_s_p8_0 = { 2, 169, _vq_lengthlist__44c2_s_p8_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44c2_s_p8_0, NULL, &_vq_auxt__44c2_s_p8_0, NULL, 0 }; static long _vq_quantlist__44c2_s_p8_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c2_s_p8_1[] = { 2, 4, 4, 5, 4, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__44c2_s_p8_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c2_s_p8_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c2_s_p8_1 = { _vq_quantthresh__44c2_s_p8_1, _vq_quantmap__44c2_s_p8_1, 5, 5 }; static static_codebook _44c2_s_p8_1 = { 2, 25, _vq_lengthlist__44c2_s_p8_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c2_s_p8_1, NULL, &_vq_auxt__44c2_s_p8_1, NULL, 0 }; static long _vq_quantlist__44c2_s_p9_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c2_s_p9_0[] = { 1, 5, 4,12,12,12,12,12,12,12,12,12,12, 4, 9, 8, 11,11,11,11,11,11,11,11,11,11, 2, 8, 7,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,10,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11, }; static float _vq_quantthresh__44c2_s_p9_0[] = { -1215.5, -994.5, -773.5, -552.5, -331.5, -110.5, 110.5, 331.5, 552.5, 773.5, 994.5, 1215.5, }; static long _vq_quantmap__44c2_s_p9_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c2_s_p9_0 = { _vq_quantthresh__44c2_s_p9_0, _vq_quantmap__44c2_s_p9_0, 13, 13 }; static static_codebook _44c2_s_p9_0 = { 2, 169, _vq_lengthlist__44c2_s_p9_0, 1, -514541568, 1627103232, 4, 0, _vq_quantlist__44c2_s_p9_0, NULL, &_vq_auxt__44c2_s_p9_0, NULL, 0 }; static long _vq_quantlist__44c2_s_p9_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c2_s_p9_1[] = { 1, 4, 4, 6, 6, 7, 6, 8, 8,10, 9,10,10, 6, 5, 5, 7, 7, 8, 7,10, 9,11,11,12,13, 6, 5, 5, 7, 7, 8, 8,10,10,11,11,13,13,18, 8, 8, 8, 8, 9, 9,10,10, 12,12,12,13,18, 8, 8, 8, 8, 9, 9,10,10,12,12,13, 13,18,11,11, 8, 8,10,10,11,11,12,11,13,12,18,11, 11, 9, 7,10,10,11,11,11,12,12,13,17,17,17,10,10, 11,11,12,12,12,10,12,12,17,17,17,11,10,11,10,13, 12,11,12,12,12,17,17,17,15,14,11,11,12,11,13,10, 13,12,17,17,17,14,14,12,10,11,11,13,13,13,13,17, 17,16,17,16,13,13,12,10,13,10,14,13,17,16,17,16, 17,13,12,12,10,13,11,14,14, }; static float _vq_quantthresh__44c2_s_p9_1[] = { -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, }; static long _vq_quantmap__44c2_s_p9_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c2_s_p9_1 = { _vq_quantthresh__44c2_s_p9_1, _vq_quantmap__44c2_s_p9_1, 13, 13 }; static static_codebook _44c2_s_p9_1 = { 2, 169, _vq_lengthlist__44c2_s_p9_1, 1, -522616832, 1620115456, 4, 0, _vq_quantlist__44c2_s_p9_1, NULL, &_vq_auxt__44c2_s_p9_1, NULL, 0 }; static long _vq_quantlist__44c2_s_p9_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c2_s_p9_2[] = { 2, 4, 4, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8,10, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 8, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,11,11, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10, 9, 9, 9,10,11,10, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,11,10, 8, 8, 9, 9, 9, 9, 9, 9,10, 9, 9,10, 9,10,11,10,11,11,11, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,11,11,11,11,11, 9, 9, 9, 9, 9, 9,10, 9, 9, 9,10,10,11,11,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10,11,11,11,11,11, 9, 9, 9, 9,10,10, 9, 9, 9,10,10,10,11,11,11,11, 11,11,11, 9, 9, 9,10, 9, 9,10,10,10,10,11,11,10, 11,11,11,11,10, 9,10,10, 9, 9, 9, 9,10,10,11,10, 11,11,11,11,11, 9, 9, 9, 9,10, 9,10,10,10,10,11, 10,11,11,11,11,11,10,10, 9, 9,10, 9,10,10,10,10, 10,10,10,11,11,11,11,11,11, 9, 9,10, 9,10, 9,10, 10, }; static float _vq_quantthresh__44c2_s_p9_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c2_s_p9_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c2_s_p9_2 = { _vq_quantthresh__44c2_s_p9_2, _vq_quantmap__44c2_s_p9_2, 17, 17 }; static static_codebook _44c2_s_p9_2 = { 2, 289, _vq_lengthlist__44c2_s_p9_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c2_s_p9_2, NULL, &_vq_auxt__44c2_s_p9_2, NULL, 0 }; static long _huff_lengthlist__44c2_s_short[] = { 11, 9,13,12,12,11,12,12,13,15, 8, 2,11, 4, 8, 5, 7,10,12,15,13, 7,10, 9, 8, 8,10,13,17,17,11, 4, 12, 5, 9, 5, 8,11,14,16,12, 6, 8, 7, 6, 6, 8,11, 13,16,11, 4, 9, 5, 6, 4, 6,10,13,16,11, 6,11, 7, 7, 6, 7,10,13,15,13, 9,12, 9, 8, 6, 8,10,12,14, 14,10,10, 8, 6, 5, 6, 9,11,13,15,11,11, 9, 6, 5, 6, 8, 9,12, }; static static_codebook _huff_book__44c2_s_short = { 2, 100, _huff_lengthlist__44c2_s_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44c3_s_long[] = { 5, 6,11,11,11,11,10,10,12,11, 5, 2,11, 5, 6, 6, 7, 9,11,13,13,10, 7,11, 6, 7, 8, 9,10,12,11, 5, 11, 6, 8, 7, 9,11,14,15,11, 6, 6, 8, 4, 5, 7, 8, 10,13,10, 5, 7, 7, 5, 5, 6, 8,10,11,10, 7, 7, 8, 6, 5, 5, 7, 9, 9,11, 8, 8,11, 8, 7, 6, 6, 7, 9, 12,11,10,13, 9, 9, 7, 7, 7, 9,11,13,12,15,12,11, 9, 8, 8, 8, }; static static_codebook _huff_book__44c3_s_long = { 2, 100, _huff_lengthlist__44c3_s_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44c3_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c3_s_p1_0[] = { 2, 4, 4, 0, 0, 0, 0, 0, 0, 5, 6, 6, 0, 0, 0, 0, 0, 0, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 6, 8, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 8, 8, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 7, 9, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c3_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44c3_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c3_s_p1_0 = { _vq_quantthresh__44c3_s_p1_0, _vq_quantmap__44c3_s_p1_0, 3, 3 }; static static_codebook _44c3_s_p1_0 = { 8, 6561, _vq_lengthlist__44c3_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44c3_s_p1_0, NULL, &_vq_auxt__44c3_s_p1_0, NULL, 0 }; static long _vq_quantlist__44c3_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c3_s_p2_0[] = { 2, 5, 5, 0, 0, 0, 5, 5, 0, 0, 0, 5, 5, 0, 0, 0, 7, 8, 0, 0, 0, 0, 0, 0, 0, 5, 6, 6, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 5, 6, 6, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8,10,10, 0, 0, 0, 9, 9, 0, 0, 0, 9, 9, 0, 0, 0, 10,10, 0, 0, 0, 0, 0, 0, 0, 8,10,10, 0, 0, 0, 9, 9, 0, 0, 0, 9, 9, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c3_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c3_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c3_s_p2_0 = { _vq_quantthresh__44c3_s_p2_0, _vq_quantmap__44c3_s_p2_0, 5, 5 }; static static_codebook _44c3_s_p2_0 = { 4, 625, _vq_lengthlist__44c3_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c3_s_p2_0, NULL, &_vq_auxt__44c3_s_p2_0, NULL, 0 }; static long _vq_quantlist__44c3_s_p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c3_s_p3_0[] = { 2, 4, 3, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c3_s_p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c3_s_p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c3_s_p3_0 = { _vq_quantthresh__44c3_s_p3_0, _vq_quantmap__44c3_s_p3_0, 5, 5 }; static static_codebook _44c3_s_p3_0 = { 4, 625, _vq_lengthlist__44c3_s_p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c3_s_p3_0, NULL, &_vq_auxt__44c3_s_p3_0, NULL, 0 }; static long _vq_quantlist__44c3_s_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c3_s_p4_0[] = { 2, 3, 3, 6, 6, 0, 0, 0, 0, 0, 4, 4, 6, 6, 0, 0, 0, 0, 0, 4, 4, 6, 6, 0, 0, 0, 0, 0, 5, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c3_s_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c3_s_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c3_s_p4_0 = { _vq_quantthresh__44c3_s_p4_0, _vq_quantmap__44c3_s_p4_0, 9, 9 }; static static_codebook _44c3_s_p4_0 = { 2, 81, _vq_lengthlist__44c3_s_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c3_s_p4_0, NULL, &_vq_auxt__44c3_s_p4_0, NULL, 0 }; static long _vq_quantlist__44c3_s_p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c3_s_p5_0[] = { 1, 3, 4, 6, 6, 7, 7, 9, 9, 0, 5, 5, 7, 7, 7, 8, 9, 9, 0, 5, 5, 7, 7, 8, 8, 9, 9, 0, 7, 7, 8, 8, 8, 8,10,10, 0, 0, 0, 8, 8, 8, 8,10,10, 0, 0, 0, 9, 9, 9, 9,10,10, 0, 0, 0, 9, 9, 9, 9,10,10, 0, 0, 0,10,10,10,10,11,11, 0, 0, 0, 0, 0,10,10,11, 11, }; static float _vq_quantthresh__44c3_s_p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c3_s_p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c3_s_p5_0 = { _vq_quantthresh__44c3_s_p5_0, _vq_quantmap__44c3_s_p5_0, 9, 9 }; static static_codebook _44c3_s_p5_0 = { 2, 81, _vq_lengthlist__44c3_s_p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c3_s_p5_0, NULL, &_vq_auxt__44c3_s_p5_0, NULL, 0 }; static long _vq_quantlist__44c3_s_p6_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c3_s_p6_0[] = { 2, 3, 3, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9,10,10,11, 10, 0, 5, 5, 7, 7, 8, 8, 9, 9, 9, 9,10,10,10,10, 11,11, 0, 5, 5, 7, 7, 8, 8, 9, 9, 9, 9,10,10,10, 10,11,11, 0, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9,10,10, 11,11,11,11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10, 10,11,11,11,12, 0, 0, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10,10,11,11,12,12, 0, 0, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11,11,12,12, 0, 0, 0, 9, 9, 9, 9,10,10, 10,10,11,10,11,11,12,12, 0, 0, 0, 0, 0, 9, 9,10, 10,10,10,11,11,11,11,12,12, 0, 0, 0, 0, 0, 9, 8, 9, 9,10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 8, 8, 9, 9,10,10,11,11,12,11,12,12, 0, 0, 0, 0, 0, 9,10,10,10,11,11,11,11,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,10,10,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,11,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,11,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,12,12,13,13,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,13,13,13, 13, }; static float _vq_quantthresh__44c3_s_p6_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c3_s_p6_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c3_s_p6_0 = { _vq_quantthresh__44c3_s_p6_0, _vq_quantmap__44c3_s_p6_0, 17, 17 }; static static_codebook _44c3_s_p6_0 = { 2, 289, _vq_lengthlist__44c3_s_p6_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c3_s_p6_0, NULL, &_vq_auxt__44c3_s_p6_0, NULL, 0 }; static long _vq_quantlist__44c3_s_p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c3_s_p7_0[] = { 1, 4, 4, 7, 6, 6, 7, 6, 6, 4, 7, 7,10, 9, 9,11, 9, 9, 4, 7, 7,10, 9, 9,11, 9, 9, 7,10,10,11,11, 10,12,11,11, 6, 9, 9,11,10,10,11,10,10, 6, 9, 9, 11,10,10,11,10,10, 7,11,11,11,11,11,12,11,11, 6, 9, 9,11,10,10,11,10,10, 6, 9, 9,11,10,10,11,10, 10, }; static float _vq_quantthresh__44c3_s_p7_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44c3_s_p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c3_s_p7_0 = { _vq_quantthresh__44c3_s_p7_0, _vq_quantmap__44c3_s_p7_0, 3, 3 }; static static_codebook _44c3_s_p7_0 = { 4, 81, _vq_lengthlist__44c3_s_p7_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44c3_s_p7_0, NULL, &_vq_auxt__44c3_s_p7_0, NULL, 0 }; static long _vq_quantlist__44c3_s_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c3_s_p7_1[] = { 2, 4, 4, 6, 6, 7, 7, 7, 7, 8, 8,10, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,10, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,10, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 8, 7, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10, 7, 8, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 9, 9, 8, 8, 9, 8,10,10, 10,10,10, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__44c3_s_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c3_s_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c3_s_p7_1 = { _vq_quantthresh__44c3_s_p7_1, _vq_quantmap__44c3_s_p7_1, 11, 11 }; static static_codebook _44c3_s_p7_1 = { 2, 121, _vq_lengthlist__44c3_s_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c3_s_p7_1, NULL, &_vq_auxt__44c3_s_p7_1, NULL, 0 }; static long _vq_quantlist__44c3_s_p8_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c3_s_p8_0[] = { 1, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9,10,10, 6, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 7, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9,11,10, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11, 11, 0,12,12, 9, 9,10,10,10,10,11,11,11,12, 0,13, 13, 9, 9,10,10,10,10,11,11,12,12, 0, 0, 0,10,10, 10,10,11,11,12,12,12,12, 0, 0, 0,10,10,10,10,11, 11,12,12,12,12, 0, 0, 0,14,14,11,11,11,11,12,12, 13,13, 0, 0, 0,14,14,11,11,11,11,12,12,13,13, 0, 0, 0, 0, 0,12,12,12,12,13,13,14,13, 0, 0, 0, 0, 0,13,13,12,12,13,12,14,13, }; static float _vq_quantthresh__44c3_s_p8_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44c3_s_p8_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c3_s_p8_0 = { _vq_quantthresh__44c3_s_p8_0, _vq_quantmap__44c3_s_p8_0, 13, 13 }; static static_codebook _44c3_s_p8_0 = { 2, 169, _vq_lengthlist__44c3_s_p8_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44c3_s_p8_0, NULL, &_vq_auxt__44c3_s_p8_0, NULL, 0 }; static long _vq_quantlist__44c3_s_p8_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c3_s_p8_1[] = { 2, 4, 4, 5, 5, 6, 5, 5, 5, 5, 6, 4, 5, 5, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__44c3_s_p8_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c3_s_p8_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c3_s_p8_1 = { _vq_quantthresh__44c3_s_p8_1, _vq_quantmap__44c3_s_p8_1, 5, 5 }; static static_codebook _44c3_s_p8_1 = { 2, 25, _vq_lengthlist__44c3_s_p8_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c3_s_p8_1, NULL, &_vq_auxt__44c3_s_p8_1, NULL, 0 }; static long _vq_quantlist__44c3_s_p9_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c3_s_p9_0[] = { 1, 4, 4,12,12,12,12,12,12,12,12,12,12, 4, 9, 8, 12,12,12,12,12,12,12,12,12,12, 2, 9, 7,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,11,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11, }; static float _vq_quantthresh__44c3_s_p9_0[] = { -1402.5, -1147.5, -892.5, -637.5, -382.5, -127.5, 127.5, 382.5, 637.5, 892.5, 1147.5, 1402.5, }; static long _vq_quantmap__44c3_s_p9_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c3_s_p9_0 = { _vq_quantthresh__44c3_s_p9_0, _vq_quantmap__44c3_s_p9_0, 13, 13 }; static static_codebook _44c3_s_p9_0 = { 2, 169, _vq_lengthlist__44c3_s_p9_0, 1, -514332672, 1627381760, 4, 0, _vq_quantlist__44c3_s_p9_0, NULL, &_vq_auxt__44c3_s_p9_0, NULL, 0 }; static long _vq_quantlist__44c3_s_p9_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44c3_s_p9_1[] = { 1, 4, 4, 6, 6, 7, 7, 8, 7, 9, 9,10,10,10,10, 6, 5, 5, 7, 7, 8, 8,10, 8,11,10,12,12,13,13, 6, 5, 5, 7, 7, 8, 8,10, 9,11,11,12,12,13,12,18, 8, 8, 8, 8, 9, 9,10, 9,11,10,12,12,13,13,18, 8, 8, 8, 8, 9, 9,10,10,11,11,13,12,14,13,18,11,11, 9, 9, 10,10,11,11,11,12,13,12,13,14,18,11,11, 9, 8,11, 10,11,11,11,11,12,12,14,13,18,18,18,10,11,10,11, 12,12,12,12,13,12,14,13,18,18,18,10,11,11, 9,12, 11,12,12,12,13,13,13,18,18,17,14,14,11,11,12,12, 13,12,14,12,14,13,18,18,18,14,14,11,10,12, 9,12, 13,13,13,13,13,18,18,17,16,18,13,13,12,12,13,11, 14,12,14,14,17,18,18,17,18,13,12,13,10,12,11,14, 14,14,14,17,18,18,18,18,15,16,12,12,13,10,14,12, 14,15,18,18,18,16,17,16,14,12,11,13,10,13,13,14, 15, }; static float _vq_quantthresh__44c3_s_p9_1[] = { -110.5, -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, 110.5, }; static long _vq_quantmap__44c3_s_p9_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44c3_s_p9_1 = { _vq_quantthresh__44c3_s_p9_1, _vq_quantmap__44c3_s_p9_1, 15, 15 }; static static_codebook _44c3_s_p9_1 = { 2, 225, _vq_lengthlist__44c3_s_p9_1, 1, -522338304, 1620115456, 4, 0, _vq_quantlist__44c3_s_p9_1, NULL, &_vq_auxt__44c3_s_p9_1, NULL, 0 }; static long _vq_quantlist__44c3_s_p9_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c3_s_p9_2[] = { 2, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8,10, 6, 6, 7, 7, 8, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9,10, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,11,11,11, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11,10,11,11,11, 9, 9, 9, 9, 9, 9,10,10, 9, 9,10, 9,11,10,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 9,11,11,11,11,11, 9, 9, 9, 9,10,10, 9, 9, 9, 9,10, 9,11,11,11,11, 11,11,11, 9, 9, 9, 9, 9, 9,10,10,10,10,11,11,11, 11,11,11,11,10, 9,10,10, 9,10, 9, 9,10, 9,11,10, 10,11,11,11,11, 9,10, 9, 9, 9, 9,10,10,10,10,11, 11,11,11,11,11,10,10,10, 9, 9,10, 9,10, 9,10,10, 10,10,11,11,11,11,11,11,11, 9, 9, 9, 9, 9,10,10, 10, }; static float _vq_quantthresh__44c3_s_p9_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c3_s_p9_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c3_s_p9_2 = { _vq_quantthresh__44c3_s_p9_2, _vq_quantmap__44c3_s_p9_2, 17, 17 }; static static_codebook _44c3_s_p9_2 = { 2, 289, _vq_lengthlist__44c3_s_p9_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c3_s_p9_2, NULL, &_vq_auxt__44c3_s_p9_2, NULL, 0 }; static long _huff_lengthlist__44c3_s_short[] = { 10, 9,13,11,14,10,12,13,13,14, 7, 2,12, 5,10, 5, 7,10,12,14,12, 6, 9, 8, 7, 7, 9,11,13,16,10, 4, 12, 5,10, 6, 8,12,14,16,12, 6, 8, 7, 6, 5, 7,11, 12,16,10, 4, 8, 5, 6, 4, 6, 9,13,16,10, 6,10, 7, 7, 6, 7, 9,13,15,12, 9,11, 9, 8, 6, 7,10,12,14, 14,11,10, 9, 6, 5, 6, 9,11,13,15,13,11,10, 6, 5, 6, 8, 9,11, }; static static_codebook _huff_book__44c3_s_short = { 2, 100, _huff_lengthlist__44c3_s_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44c4_s_long[] = { 4, 7,11,11,11,11,10,11,12,11, 5, 2,11, 5, 6, 6, 7, 9,11,12,11, 9, 6,10, 6, 7, 8, 9,10,11,11, 5, 11, 7, 8, 8, 9,11,13,14,11, 6, 5, 8, 4, 5, 7, 8, 10,11,10, 6, 7, 7, 5, 5, 6, 8, 9,11,10, 7, 8, 9, 6, 6, 6, 7, 8, 9,11, 9, 9,11, 7, 7, 6, 6, 7, 9, 12,12,10,13, 9, 8, 7, 7, 7, 8,11,13,11,14,11,10, 9, 8, 7, 7, }; static static_codebook _huff_book__44c4_s_long = { 2, 100, _huff_lengthlist__44c4_s_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44c4_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c4_s_p1_0[] = { 2, 4, 4, 0, 0, 0, 0, 0, 0, 5, 6, 6, 0, 0, 0, 0, 0, 0, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 6, 8, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c4_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44c4_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c4_s_p1_0 = { _vq_quantthresh__44c4_s_p1_0, _vq_quantmap__44c4_s_p1_0, 3, 3 }; static static_codebook _44c4_s_p1_0 = { 8, 6561, _vq_lengthlist__44c4_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44c4_s_p1_0, NULL, &_vq_auxt__44c4_s_p1_0, NULL, 0 }; static long _vq_quantlist__44c4_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c4_s_p2_0[] = { 2, 5, 5, 0, 0, 0, 5, 5, 0, 0, 0, 5, 5, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 5, 6, 6, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 5, 6, 6, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 5, 7, 8, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10,10, 0, 0, 0, 9, 9, 0, 0, 0, 9, 9, 0, 0, 0, 10,10, 0, 0, 0, 0, 0, 0, 0, 8,10,10, 0, 0, 0, 9, 9, 0, 0, 0, 9, 9, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c4_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c4_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c4_s_p2_0 = { _vq_quantthresh__44c4_s_p2_0, _vq_quantmap__44c4_s_p2_0, 5, 5 }; static static_codebook _44c4_s_p2_0 = { 4, 625, _vq_lengthlist__44c4_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c4_s_p2_0, NULL, &_vq_auxt__44c4_s_p2_0, NULL, 0 }; static long _vq_quantlist__44c4_s_p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c4_s_p3_0[] = { 2, 3, 3, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c4_s_p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c4_s_p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c4_s_p3_0 = { _vq_quantthresh__44c4_s_p3_0, _vq_quantmap__44c4_s_p3_0, 5, 5 }; static static_codebook _44c4_s_p3_0 = { 4, 625, _vq_lengthlist__44c4_s_p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c4_s_p3_0, NULL, &_vq_auxt__44c4_s_p3_0, NULL, 0 }; static long _vq_quantlist__44c4_s_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c4_s_p4_0[] = { 2, 3, 3, 6, 6, 0, 0, 0, 0, 0, 4, 4, 6, 6, 0, 0, 0, 0, 0, 4, 4, 6, 6, 0, 0, 0, 0, 0, 5, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c4_s_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c4_s_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c4_s_p4_0 = { _vq_quantthresh__44c4_s_p4_0, _vq_quantmap__44c4_s_p4_0, 9, 9 }; static static_codebook _44c4_s_p4_0 = { 2, 81, _vq_lengthlist__44c4_s_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c4_s_p4_0, NULL, &_vq_auxt__44c4_s_p4_0, NULL, 0 }; static long _vq_quantlist__44c4_s_p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c4_s_p5_0[] = { 2, 3, 3, 6, 6, 7, 7, 9, 9, 0, 4, 4, 6, 6, 7, 7, 9, 9, 0, 4, 5, 6, 6, 7, 7, 9, 9, 0, 6, 6, 7, 7, 8, 8,10,10, 0, 0, 0, 7, 7, 8, 8,10, 9, 0, 0, 0, 9, 8, 8, 8,10,10, 0, 0, 0, 8, 8, 8, 8,10,10, 0, 0, 0,10,10, 9, 9,11,11, 0, 0, 0, 0, 0, 9, 9,10, 10, }; static float _vq_quantthresh__44c4_s_p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c4_s_p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c4_s_p5_0 = { _vq_quantthresh__44c4_s_p5_0, _vq_quantmap__44c4_s_p5_0, 9, 9 }; static static_codebook _44c4_s_p5_0 = { 2, 81, _vq_lengthlist__44c4_s_p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c4_s_p5_0, NULL, &_vq_auxt__44c4_s_p5_0, NULL, 0 }; static long _vq_quantlist__44c4_s_p6_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c4_s_p6_0[] = { 2, 4, 4, 6, 6, 8, 8, 9, 9, 8, 8, 9, 9,10,10,11, 11, 0, 4, 4, 6, 6, 8, 8, 9, 9, 9, 9,10,10,11,11, 11,11, 0, 4, 4, 7, 6, 8, 8, 9, 9, 9, 9,10,10,11, 11,11,11, 0, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9,10,10, 11,11,11,12, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10, 10,11,11,12,12, 0, 0, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10,10,11,11,12,12, 0, 0, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11,11,12,12, 0, 0, 0, 9, 9, 9, 9,10,10, 10,10,11,11,11,11,12,12, 0, 0, 0, 0, 0, 9, 9,10, 10,10,10,11,11,11,11,12,12, 0, 0, 0, 0, 0, 9, 9, 9,10,10,10,11,11,11,11,12,12, 0, 0, 0, 0, 0, 9, 9, 9, 9,10,10,11,11,11,12,12,12, 0, 0, 0, 0, 0, 10,10,10,10,11,11,11,11,12,12,13,12, 0, 0, 0, 0, 0, 0, 0,10,10,11,11,11,11,12,12,12,12, 0, 0, 0, 0, 0, 0, 0,11,11,11,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,11,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,12,12,13,13,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,12,13,13, 13, }; static float _vq_quantthresh__44c4_s_p6_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c4_s_p6_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c4_s_p6_0 = { _vq_quantthresh__44c4_s_p6_0, _vq_quantmap__44c4_s_p6_0, 17, 17 }; static static_codebook _44c4_s_p6_0 = { 2, 289, _vq_lengthlist__44c4_s_p6_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c4_s_p6_0, NULL, &_vq_auxt__44c4_s_p6_0, NULL, 0 }; static long _vq_quantlist__44c4_s_p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c4_s_p7_0[] = { 1, 4, 4, 7, 6, 6, 7, 6, 6, 4, 7, 7,10, 9, 9,11, 9, 9, 4, 7, 7,10, 9, 9,11, 9, 9, 7,10,10,11,11, 10,11,11,11, 6, 9, 9,11,10,10,11,10,10, 6, 9, 9, 11,10,10,11,10,10, 7,11,11,12,11,11,12,11,11, 6, 9, 9,11,10,10,11,10,10, 6, 9, 9,11,10,10,11,10, 10, }; static float _vq_quantthresh__44c4_s_p7_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44c4_s_p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c4_s_p7_0 = { _vq_quantthresh__44c4_s_p7_0, _vq_quantmap__44c4_s_p7_0, 3, 3 }; static static_codebook _44c4_s_p7_0 = { 4, 81, _vq_lengthlist__44c4_s_p7_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44c4_s_p7_0, NULL, &_vq_auxt__44c4_s_p7_0, NULL, 0 }; static long _vq_quantlist__44c4_s_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c4_s_p7_1[] = { 2, 4, 4, 6, 6, 7, 7, 7, 7, 8, 8,10, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,10, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,10, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 8, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 9, 9, 8, 8, 9, 8,10,10, 10,10,10, 8, 8, 8, 8, 9, 9, }; static float _vq_quantthresh__44c4_s_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c4_s_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c4_s_p7_1 = { _vq_quantthresh__44c4_s_p7_1, _vq_quantmap__44c4_s_p7_1, 11, 11 }; static static_codebook _44c4_s_p7_1 = { 2, 121, _vq_lengthlist__44c4_s_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c4_s_p7_1, NULL, &_vq_auxt__44c4_s_p7_1, NULL, 0 }; static long _vq_quantlist__44c4_s_p8_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c4_s_p8_0[] = { 1, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9,10,10, 6, 5, 5, 7, 7, 8, 8, 8, 8, 9,10,11,11, 7, 5, 5, 7, 7, 8, 8, 9, 9,10,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11, 11, 0,12,12, 9, 9, 9, 9,10,10,10,10,11,11, 0,13, 13, 9, 9,10, 9,10,10,11,11,11,12, 0, 0, 0,10,10, 10,10,10,10,11,11,12,12, 0, 0, 0,10,10,10,10,10, 10,11,11,12,12, 0, 0, 0,14,14,11,11,11,11,12,12, 12,12, 0, 0, 0,14,14,11,11,11,11,12,12,12,13, 0, 0, 0, 0, 0,12,12,12,12,12,12,13,13, 0, 0, 0, 0, 0,13,12,12,12,12,12,13,13, }; static float _vq_quantthresh__44c4_s_p8_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44c4_s_p8_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c4_s_p8_0 = { _vq_quantthresh__44c4_s_p8_0, _vq_quantmap__44c4_s_p8_0, 13, 13 }; static static_codebook _44c4_s_p8_0 = { 2, 169, _vq_lengthlist__44c4_s_p8_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44c4_s_p8_0, NULL, &_vq_auxt__44c4_s_p8_0, NULL, 0 }; static long _vq_quantlist__44c4_s_p8_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c4_s_p8_1[] = { 2, 4, 4, 5, 5, 6, 5, 5, 5, 5, 6, 5, 4, 5, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__44c4_s_p8_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c4_s_p8_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c4_s_p8_1 = { _vq_quantthresh__44c4_s_p8_1, _vq_quantmap__44c4_s_p8_1, 5, 5 }; static static_codebook _44c4_s_p8_1 = { 2, 25, _vq_lengthlist__44c4_s_p8_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c4_s_p8_1, NULL, &_vq_auxt__44c4_s_p8_1, NULL, 0 }; static long _vq_quantlist__44c4_s_p9_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c4_s_p9_0[] = { 1, 3, 3,12,12,12,12,12,12,12,12,12,12, 4, 7, 7, 12,12,12,12,12,12,12,12,12,12, 3, 8, 8,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12, }; static float _vq_quantthresh__44c4_s_p9_0[] = { -1732.5, -1417.5, -1102.5, -787.5, -472.5, -157.5, 157.5, 472.5, 787.5, 1102.5, 1417.5, 1732.5, }; static long _vq_quantmap__44c4_s_p9_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c4_s_p9_0 = { _vq_quantthresh__44c4_s_p9_0, _vq_quantmap__44c4_s_p9_0, 13, 13 }; static static_codebook _44c4_s_p9_0 = { 2, 169, _vq_lengthlist__44c4_s_p9_0, 1, -513964032, 1628680192, 4, 0, _vq_quantlist__44c4_s_p9_0, NULL, &_vq_auxt__44c4_s_p9_0, NULL, 0 }; static long _vq_quantlist__44c4_s_p9_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44c4_s_p9_1[] = { 1, 4, 4, 5, 5, 7, 7, 9, 8,10, 9,10,10,10,10, 6, 5, 5, 7, 7, 9, 8,10, 9,11,10,12,12,13,13, 6, 5, 5, 7, 7, 9, 9,10,10,11,11,12,12,12,13,19, 8, 8, 8, 8, 9, 9,10,10,12,11,12,12,13,13,19, 8, 8, 8, 8, 9, 9,11,11,12,12,13,13,13,13,19,12,12, 9, 9, 11,11,11,11,12,11,13,12,13,13,18,12,12, 9, 9,11, 10,11,11,12,12,12,13,13,14,19,18,18,11,11,11,11, 12,12,13,12,13,13,14,14,16,18,18,11,11,11,10,12, 11,13,13,13,13,13,14,17,18,18,14,15,11,12,12,13, 13,13,13,14,14,14,18,18,18,15,15,12,10,13,10,13, 13,13,13,13,14,18,17,18,17,18,12,13,12,13,13,13, 14,14,16,14,18,17,18,18,17,13,12,13,10,12,12,14, 14,14,14,17,18,18,18,18,14,15,12,12,13,12,14,14, 15,15,18,18,18,17,18,15,14,12,11,12,12,14,14,14, 15, }; static float _vq_quantthresh__44c4_s_p9_1[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__44c4_s_p9_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44c4_s_p9_1 = { _vq_quantthresh__44c4_s_p9_1, _vq_quantmap__44c4_s_p9_1, 15, 15 }; static static_codebook _44c4_s_p9_1 = { 2, 225, _vq_lengthlist__44c4_s_p9_1, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__44c4_s_p9_1, NULL, &_vq_auxt__44c4_s_p9_1, NULL, 0 }; static long _vq_quantlist__44c4_s_p9_2[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__44c4_s_p9_2[] = { 2, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9,11, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,11, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,10,11, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9,10,10,10, 10,10,10,10,12,11,11, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,12,11,12, 8, 8, 8, 8, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,11,11, 11, 8, 8, 8, 8, 9, 9, 9, 9,10,10,10,10,10,10,10, 10,10,10,11,11,12, 9, 9, 9, 9, 9, 9,10, 9,10,10, 10,10,10,10,10,10,10,10,11,11,11,11,11, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10,10,11,12,11, 11,11, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10, 10,10,11,11,11,11,11, 9, 9, 9, 9,10,10,10,10,10, 10,10,10,10,10,10,10,11,11,11,12,12,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,11,12,11,12, 11,11,11, 9,10,10,10,10,10,10,10,10,10,10,10,10, 10,11,12,11,11,11,11,11,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,11,11,11,12,11,11,11,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,12,11,11,12,11, 11,11,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,11,10,10,10,10,10,10,10, 10,10,10,10,10,11,11,11,11,12,12,11,11,11,11,11, 11,11,10,10,10,10,10,10,10,10,12,12,12,11,11,11, 12,11,11,11,10,10,10,10,10,10,10,10,10,10,10,12, 11,12,12,12,12,12,11,12,11,11,10,10,10,10,10,10, 10,10,10,10,12,12,12,12,11,11,11,11,11,11,11,10, 10,10,10,10,10,10,10,10,10, }; static float _vq_quantthresh__44c4_s_p9_2[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__44c4_s_p9_2[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__44c4_s_p9_2 = { _vq_quantthresh__44c4_s_p9_2, _vq_quantmap__44c4_s_p9_2, 21, 21 }; static static_codebook _44c4_s_p9_2 = { 2, 441, _vq_lengthlist__44c4_s_p9_2, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__44c4_s_p9_2, NULL, &_vq_auxt__44c4_s_p9_2, NULL, 0 }; static long _huff_lengthlist__44c4_s_short[] = { 4, 7,14,10,15,10,12,15,16,15, 4, 2,11, 5,10, 6, 8,11,14,14,14,10, 7,11, 6, 8,10,11,13,15, 9, 4, 11, 5, 9, 6, 9,12,14,15,14, 9, 6, 9, 4, 5, 7,10, 12,13, 9, 5, 7, 6, 5, 5, 7,10,13,13,10, 8, 9, 8, 7, 6, 8,10,14,14,13,11,10,10, 7, 7, 8,11,14,15, 13,12, 9, 9, 6, 5, 7,10,14,17,15,13,11,10, 6, 6, 7, 9,12,17, }; static static_codebook _huff_book__44c4_s_short = { 2, 100, _huff_lengthlist__44c4_s_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44c5_s_long[] = { 3, 8, 9,13,10,12,12,12,12,12, 6, 4, 6, 8, 6, 8, 10,10,11,12, 8, 5, 4,10, 4, 7, 8, 9,10,11,13, 8, 10, 8, 9, 9,11,12,13,14,10, 6, 4, 9, 3, 5, 6, 8, 10,11,11, 8, 6, 9, 5, 5, 6, 7, 9,11,12, 9, 7,11, 6, 6, 6, 7, 8,10,12,11, 9,12, 7, 7, 6, 6, 7, 9, 13,12,10,13, 9, 8, 7, 7, 7, 8,11,15,11,15,11,10, 9, 8, 7, 7, }; static static_codebook _huff_book__44c5_s_long = { 2, 100, _huff_lengthlist__44c5_s_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44c5_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c5_s_p1_0[] = { 2, 4, 4, 0, 0, 0, 0, 0, 0, 4, 7, 7, 0, 0, 0, 0, 0, 0, 4, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 7, 7, 0, 0, 0, 0, 0, 0, 7, 9, 8, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 7, 7, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,10,11, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 8,10, 9, 0, 0, 0, 0, 0, 0, 9,10,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 7, 7, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,11,10, 0, 0, 0, 0, 0, 0, 8, 9,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 9,11,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c5_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44c5_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c5_s_p1_0 = { _vq_quantthresh__44c5_s_p1_0, _vq_quantmap__44c5_s_p1_0, 3, 3 }; static static_codebook _44c5_s_p1_0 = { 8, 6561, _vq_lengthlist__44c5_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44c5_s_p1_0, NULL, &_vq_auxt__44c5_s_p1_0, NULL, 0 }; static long _vq_quantlist__44c5_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c5_s_p2_0[] = { 2, 4, 4, 0, 0, 0, 5, 5, 0, 0, 0, 5, 5, 0, 0, 0, 8, 7, 0, 0, 0, 0, 0, 0, 0, 4, 6, 6, 0, 0, 0, 8, 8, 0, 0, 0, 8, 7, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 4, 6, 6, 0, 0, 0, 8, 8, 0, 0, 0, 7, 8, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7, 0, 0, 0, 8, 8, 0, 0, 0, 8, 8, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 5, 7, 8, 0, 0, 0, 8, 8, 0, 0, 0, 8, 8, 0, 0, 0,10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 8, 8, 0, 0, 0, 8, 8, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 8, 8, 0, 0, 0, 8, 8, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8,10,10, 0, 0, 0,10,10, 0, 0, 0, 9,10, 0, 0, 0, 11,10, 0, 0, 0, 0, 0, 0, 0, 8,10,10, 0, 0, 0,10, 10, 0, 0, 0,10,10, 0, 0, 0,10,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c5_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c5_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c5_s_p2_0 = { _vq_quantthresh__44c5_s_p2_0, _vq_quantmap__44c5_s_p2_0, 5, 5 }; static static_codebook _44c5_s_p2_0 = { 4, 625, _vq_lengthlist__44c5_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c5_s_p2_0, NULL, &_vq_auxt__44c5_s_p2_0, NULL, 0 }; static long _vq_quantlist__44c5_s_p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c5_s_p3_0[] = { 2, 4, 3, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 6, 6, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c5_s_p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c5_s_p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c5_s_p3_0 = { _vq_quantthresh__44c5_s_p3_0, _vq_quantmap__44c5_s_p3_0, 5, 5 }; static static_codebook _44c5_s_p3_0 = { 4, 625, _vq_lengthlist__44c5_s_p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c5_s_p3_0, NULL, &_vq_auxt__44c5_s_p3_0, NULL, 0 }; static long _vq_quantlist__44c5_s_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c5_s_p4_0[] = { 2, 3, 3, 6, 6, 0, 0, 0, 0, 0, 4, 4, 6, 6, 0, 0, 0, 0, 0, 4, 4, 6, 6, 0, 0, 0, 0, 0, 5, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 8, 7, 0, 0, 0, 0, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c5_s_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c5_s_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c5_s_p4_0 = { _vq_quantthresh__44c5_s_p4_0, _vq_quantmap__44c5_s_p4_0, 9, 9 }; static static_codebook _44c5_s_p4_0 = { 2, 81, _vq_lengthlist__44c5_s_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c5_s_p4_0, NULL, &_vq_auxt__44c5_s_p4_0, NULL, 0 }; static long _vq_quantlist__44c5_s_p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c5_s_p5_0[] = { 2, 4, 3, 6, 6, 7, 7, 9, 9, 0, 4, 4, 6, 6, 7, 7, 9, 9, 0, 4, 4, 6, 6, 7, 7, 9, 9, 0, 6, 6, 7, 7, 7, 7, 9, 9, 0, 0, 0, 7, 6, 7, 7, 9, 9, 0, 0, 0, 8, 8, 8, 8,10,10, 0, 0, 0, 8, 8, 8, 8,10,10, 0, 0, 0, 9, 9, 9, 9,10,10, 0, 0, 0, 0, 0, 9, 9,10, 10, }; static float _vq_quantthresh__44c5_s_p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c5_s_p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c5_s_p5_0 = { _vq_quantthresh__44c5_s_p5_0, _vq_quantmap__44c5_s_p5_0, 9, 9 }; static static_codebook _44c5_s_p5_0 = { 2, 81, _vq_lengthlist__44c5_s_p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c5_s_p5_0, NULL, &_vq_auxt__44c5_s_p5_0, NULL, 0 }; static long _vq_quantlist__44c5_s_p6_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c5_s_p6_0[] = { 2, 4, 4, 6, 6, 8, 8, 9, 9, 9, 9,10,10,10,10,11, 11, 0, 4, 4, 6, 6, 8, 8, 9, 9, 9, 9,10,10,11,11, 12,12, 0, 4, 4, 6, 6, 8, 8, 9, 9, 9, 9,10,10,11, 11,12,12, 0, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9,10,10, 11,11,12,12, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10, 10,11,11,12,12, 0, 0, 0, 7, 7, 9, 9,10,10,10,10, 11,11,11,11,12,12, 0, 0, 0, 7, 7, 8, 9,10,10,10, 10,11,11,11,11,12,12, 0, 0, 0, 8, 8, 9, 9,10,10, 10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 9, 9,10, 10,10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 9, 9, 10,10,10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 9, 9, 9,10,10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 10,10,10,10,11,11,11,12,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,10,10,11,11,11,11,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,11,11,12,12,12,13,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,11,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,13,12,13,13,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,13,13,13, 13, }; static float _vq_quantthresh__44c5_s_p6_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c5_s_p6_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c5_s_p6_0 = { _vq_quantthresh__44c5_s_p6_0, _vq_quantmap__44c5_s_p6_0, 17, 17 }; static static_codebook _44c5_s_p6_0 = { 2, 289, _vq_lengthlist__44c5_s_p6_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c5_s_p6_0, NULL, &_vq_auxt__44c5_s_p6_0, NULL, 0 }; static long _vq_quantlist__44c5_s_p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c5_s_p7_0[] = { 1, 4, 4, 7, 6, 6, 7, 6, 6, 4, 7, 7,10, 9, 9,11, 9, 9, 4, 7, 7,10, 9, 9,11, 9, 9, 7,10,10,11,11, 10,11,11,11, 6, 9, 9,11,10,10,11,10,10, 6, 9, 9, 11,10,10,11,10,10, 7,11,11,12,11,11,12,11,11, 6, 9, 9,11,10,10,11,10,10, 6, 9, 9,11,10,10,11,10, 10, }; static float _vq_quantthresh__44c5_s_p7_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44c5_s_p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c5_s_p7_0 = { _vq_quantthresh__44c5_s_p7_0, _vq_quantmap__44c5_s_p7_0, 3, 3 }; static static_codebook _44c5_s_p7_0 = { 4, 81, _vq_lengthlist__44c5_s_p7_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44c5_s_p7_0, NULL, &_vq_auxt__44c5_s_p7_0, NULL, 0 }; static long _vq_quantlist__44c5_s_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c5_s_p7_1[] = { 2, 4, 4, 6, 6, 7, 7, 8, 8, 8, 8,10, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,10, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,10, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 9,10,10,10,10,10, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 9, 9, 8, 8, 8, 8,10,10, 10,10,10, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__44c5_s_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c5_s_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c5_s_p7_1 = { _vq_quantthresh__44c5_s_p7_1, _vq_quantmap__44c5_s_p7_1, 11, 11 }; static static_codebook _44c5_s_p7_1 = { 2, 121, _vq_lengthlist__44c5_s_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c5_s_p7_1, NULL, &_vq_auxt__44c5_s_p7_1, NULL, 0 }; static long _vq_quantlist__44c5_s_p8_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c5_s_p8_0[] = { 1, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9,10,10, 6, 5, 5, 7, 7, 8, 8, 8, 9,10,10,10,10, 7, 5, 5, 7, 7, 8, 8, 9, 9,10,10,10,10, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11, 11, 0,12,12, 9, 9, 9,10,10,10,10,10,11,11, 0,13, 13, 9, 9, 9, 9,10,10,11,11,11,11, 0, 0, 0,10,10, 10,10,10,10,11,11,11,11, 0, 0, 0,10,10,10,10,10, 10,11,11,12,12, 0, 0, 0,14,14,11,11,11,11,12,12, 12,12, 0, 0, 0,14,14,11,11,11,11,12,12,12,12, 0, 0, 0, 0, 0,12,12,12,12,12,12,13,13, 0, 0, 0, 0, 0,12,12,12,12,12,12,13,13, }; static float _vq_quantthresh__44c5_s_p8_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44c5_s_p8_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c5_s_p8_0 = { _vq_quantthresh__44c5_s_p8_0, _vq_quantmap__44c5_s_p8_0, 13, 13 }; static static_codebook _44c5_s_p8_0 = { 2, 169, _vq_lengthlist__44c5_s_p8_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44c5_s_p8_0, NULL, &_vq_auxt__44c5_s_p8_0, NULL, 0 }; static long _vq_quantlist__44c5_s_p8_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c5_s_p8_1[] = { 2, 4, 4, 5, 5, 6, 5, 5, 5, 5, 6, 4, 5, 5, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__44c5_s_p8_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c5_s_p8_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c5_s_p8_1 = { _vq_quantthresh__44c5_s_p8_1, _vq_quantmap__44c5_s_p8_1, 5, 5 }; static static_codebook _44c5_s_p8_1 = { 2, 25, _vq_lengthlist__44c5_s_p8_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c5_s_p8_1, NULL, &_vq_auxt__44c5_s_p8_1, NULL, 0 }; static long _vq_quantlist__44c5_s_p9_0[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44c5_s_p9_0[] = { 1, 3, 3,13,13,13,13,13,13,13,13,13,13,13,13, 4, 7, 7,13,13,13,13,13,13,13,13,13,13,13,13, 3, 8, 6,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,12,12,12,12,12,12,12, 12, }; static float _vq_quantthresh__44c5_s_p9_0[] = { -2320.5, -1963.5, -1606.5, -1249.5, -892.5, -535.5, -178.5, 178.5, 535.5, 892.5, 1249.5, 1606.5, 1963.5, 2320.5, }; static long _vq_quantmap__44c5_s_p9_0[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44c5_s_p9_0 = { _vq_quantthresh__44c5_s_p9_0, _vq_quantmap__44c5_s_p9_0, 15, 15 }; static static_codebook _44c5_s_p9_0 = { 2, 225, _vq_lengthlist__44c5_s_p9_0, 1, -512522752, 1628852224, 4, 0, _vq_quantlist__44c5_s_p9_0, NULL, &_vq_auxt__44c5_s_p9_0, NULL, 0 }; static long _vq_quantlist__44c5_s_p9_1[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c5_s_p9_1[] = { 1, 4, 4, 5, 5, 7, 7, 9, 8,10, 9,10,10,11,10,11, 11, 6, 5, 5, 7, 7, 8, 9,10,10,11,10,12,11,12,11, 13,12, 6, 5, 5, 7, 7, 9, 9,10,10,11,11,12,12,13, 12,13,13,18, 8, 8, 8, 8, 9, 9,10,11,11,11,12,11, 13,11,13,12,18, 8, 8, 8, 8,10,10,11,11,12,12,13, 13,13,13,13,14,18,12,12, 9, 9,11,11,11,11,12,12, 13,12,13,12,13,13,20,13,12, 9, 9,11,11,11,11,12, 12,13,13,13,14,14,13,20,18,19,11,12,11,11,12,12, 13,13,13,13,13,13,14,13,18,19,19,12,11,11,11,12, 12,13,12,13,13,13,14,14,13,18,17,19,14,15,12,12, 12,13,13,13,14,14,14,14,14,14,19,19,19,16,15,12, 11,13,12,14,14,14,13,13,14,14,14,19,18,19,18,19, 13,13,13,13,14,14,14,13,14,14,14,14,18,17,19,19, 19,13,13,13,11,13,11,13,14,14,14,14,14,19,17,17, 18,18,16,16,13,13,13,13,14,13,15,15,14,14,19,19, 17,17,18,16,16,13,11,14,10,13,12,14,14,14,14,19, 19,19,19,19,18,17,13,14,13,11,14,13,14,14,15,15, 19,19,19,17,19,18,18,14,13,12,11,14,11,15,15,15, 15, }; static float _vq_quantthresh__44c5_s_p9_1[] = { -157.5, -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, 157.5, }; static long _vq_quantmap__44c5_s_p9_1[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c5_s_p9_1 = { _vq_quantthresh__44c5_s_p9_1, _vq_quantmap__44c5_s_p9_1, 17, 17 }; static static_codebook _44c5_s_p9_1 = { 2, 289, _vq_lengthlist__44c5_s_p9_1, 1, -520814592, 1620377600, 5, 0, _vq_quantlist__44c5_s_p9_1, NULL, &_vq_auxt__44c5_s_p9_1, NULL, 0 }; static long _vq_quantlist__44c5_s_p9_2[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__44c5_s_p9_2[] = { 3, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9,11, 5, 6, 7, 7, 8, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11, 5, 5, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10,11,11,11, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,11,11,11, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,11,11, 11, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10,10,10,10,10, 10,10,10,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10,10,10,10,10,10,10,10,11,11,11,11,11, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,10,10,10,10,10,11,11,11, 11,11, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10, 10,10,11,11,11,11,11, 9, 9, 9, 9, 9, 9,10,10,10, 10,10,10,10,10,10,10,11,11,11,11,11, 9, 9,10, 9, 10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11, 11,11,11, 9, 9,10,10,10,10,10,10,10,10,10,10,10, 10,11,11,11,11,11,11,11,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,11,11,11,11,11,11,11,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11, 11,11,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,11,10,10,10,10,10,10,10, 10,10,10,10,10,11,11,11,11,11,11,11,11,11,10,10, 10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11, 11,11,11,10,10,10,10,10,10,10,10,10,10,10,10,11, 11,11,11,11,11,11,11,11,10,10,10,10,10,10,10,10, 10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,10, 10,10,10,10,10,10,10,10,10, }; static float _vq_quantthresh__44c5_s_p9_2[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__44c5_s_p9_2[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__44c5_s_p9_2 = { _vq_quantthresh__44c5_s_p9_2, _vq_quantmap__44c5_s_p9_2, 21, 21 }; static static_codebook _44c5_s_p9_2 = { 2, 441, _vq_lengthlist__44c5_s_p9_2, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__44c5_s_p9_2, NULL, &_vq_auxt__44c5_s_p9_2, NULL, 0 }; static long _huff_lengthlist__44c5_s_short[] = { 5, 8,10,14,11,11,12,16,15,17, 5, 5, 7, 9, 7, 8, 10,13,17,17, 7, 5, 5,10, 5, 7, 8,11,13,15,10, 8, 10, 8, 8, 8,11,15,18,18, 8, 5, 5, 8, 3, 4, 6,10, 14,16, 9, 7, 6, 7, 4, 3, 5, 9,14,18,10, 9, 8,10, 6, 5, 6, 9,14,18,12,12,11,12, 8, 7, 8,11,14,18, 14,13,12,10, 7, 5, 6, 9,14,18,14,14,13,10, 6, 5, 6, 8,11,16, }; static static_codebook _huff_book__44c5_s_short = { 2, 100, _huff_lengthlist__44c5_s_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44c6_s_long[] = { 3, 8,11,13,14,14,13,13,16,14, 6, 3, 4, 7, 9, 9, 10,11,14,13,10, 4, 3, 5, 7, 7, 9,10,13,15,12, 7, 4, 4, 6, 6, 8,10,13,15,12, 8, 6, 6, 6, 6, 8,10, 13,14,11, 9, 7, 6, 6, 6, 7, 8,12,11,13,10, 9, 8, 7, 6, 6, 7,11,11,13,11,10, 9, 9, 7, 7, 6,10,11, 13,13,13,13,13,11, 9, 8,10,12,12,15,15,16,15,12, 11,10,10,12, }; static static_codebook _huff_book__44c6_s_long = { 2, 100, _huff_lengthlist__44c6_s_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44c6_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c6_s_p1_0[] = { 1, 5, 5, 0, 5, 5, 0, 5, 5, 5, 8, 7, 0, 9, 9, 0, 9, 8, 5, 7, 8, 0, 9, 9, 0, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 9, 8, 0, 8, 8, 0, 8, 8, 5, 8, 9, 0, 8, 8, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 9, 9, 0, 8, 8, 0, 8, 8, 5, 9, 9, 0, 8, 8, 0, 8, 8, }; static float _vq_quantthresh__44c6_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44c6_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p1_0 = { _vq_quantthresh__44c6_s_p1_0, _vq_quantmap__44c6_s_p1_0, 3, 3 }; static static_codebook _44c6_s_p1_0 = { 4, 81, _vq_lengthlist__44c6_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44c6_s_p1_0, NULL, &_vq_auxt__44c6_s_p1_0, NULL, 0 }; static long _vq_quantlist__44c6_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c6_s_p2_0[] = { 3, 5, 5, 8, 8, 0, 5, 5, 8, 8, 0, 5, 5, 8, 8, 0, 7, 7, 9, 9, 0, 0, 0, 9, 9, 5, 7, 7, 9, 9, 0, 8, 8,10,10, 0, 8, 7,10, 9, 0,10,10,11,11, 0, 0, 0, 11,11, 5, 7, 7, 9, 9, 0, 8, 8,10,10, 0, 7, 8, 9, 10, 0,10,10,11,11, 0, 0, 0,11,11, 8, 9, 9,11,11, 0,11,11,12,12, 0,11,10,12,12, 0,13,14,14,14, 0, 0, 0,14,13, 8, 9, 9,11,11, 0,11,11,12,12, 0,10, 11,12,12, 0,14,13,14,14, 0, 0, 0,13,14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7,11,10, 0, 7, 7,10,10, 0, 7, 7,10,10, 0, 9, 9,11,10, 0, 0, 0,11,11, 5, 7, 8,10,11, 0, 7, 7,10,10, 0, 7, 7,10,10, 0, 9, 9,10,11, 0, 0, 0,11,11, 8,10, 9,12,12, 0,10,10, 12,12, 0,10,10,12,12, 0,12,12,13,13, 0, 0, 0,13, 13, 8, 9,10,12,12, 0,10,10,11,12, 0,10,10,12,12, 0,12,12,13,13, 0, 0, 0,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8,11,11, 0, 7, 7,10,10, 0, 7, 7, 10,10, 0, 9, 9,10,11, 0, 0, 0,11,10, 5, 8, 8,11, 11, 0, 7, 7,10,10, 0, 7, 7,10,10, 0, 9, 9,11,11, 0, 0, 0,10,11, 8,10,10,12,12, 0,10,10,12,12, 0, 10,10,12,12, 0,12,13,13,13, 0, 0, 0,14,13, 8,10, 10,12,12, 0,10,10,12,12, 0,10,10,12,12, 0,13,12, 13,13, 0, 0, 0,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10,10,14,13, 0, 9, 9,13,12, 0, 9, 9,12,12, 0, 10,10,12,12, 0, 0, 0,12,12, 7,10,10,13,14, 0, 9, 9,12,13, 0, 9, 9,12,12, 0,10,10,12,12, 0, 0, 0, 12,12, 9,11,11,14,13, 0,11,10,14,13, 0,11,11,13, 13, 0,12,12,13,13, 0, 0, 0,13,13, 9,11,11,13,14, 0,10,11,13,14, 0,11,11,13,13, 0,12,12,13,13, 0, 0, 0,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 11,11,14,14, 0,11,11,13,13, 0,11,10,13,13, 0,12, 12,13,13, 0, 0, 0,13,13, 9,11,11,14,14, 0,11,11, 13,13, 0,10,11,13,13, 0,12,12,14,13, 0, 0, 0,13, 13, }; static float _vq_quantthresh__44c6_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c6_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p2_0 = { _vq_quantthresh__44c6_s_p2_0, _vq_quantmap__44c6_s_p2_0, 5, 5 }; static static_codebook _44c6_s_p2_0 = { 4, 625, _vq_lengthlist__44c6_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c6_s_p2_0, NULL, &_vq_auxt__44c6_s_p2_0, NULL, 0 }; static long _vq_quantlist__44c6_s_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c6_s_p3_0[] = { 2, 3, 4, 6, 6, 7, 7, 9, 9, 0, 4, 4, 6, 6, 7, 7, 9,10, 0, 4, 4, 6, 6, 7, 7,10, 9, 0, 5, 5, 7, 7, 8, 8,10,10, 0, 0, 0, 7, 6, 8, 8,10,10, 0, 0, 0, 7, 7, 9, 9,11,11, 0, 0, 0, 7, 7, 9, 9,11,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c6_s_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c6_s_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p3_0 = { _vq_quantthresh__44c6_s_p3_0, _vq_quantmap__44c6_s_p3_0, 9, 9 }; static static_codebook _44c6_s_p3_0 = { 2, 81, _vq_lengthlist__44c6_s_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c6_s_p3_0, NULL, &_vq_auxt__44c6_s_p3_0, NULL, 0 }; static long _vq_quantlist__44c6_s_p4_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c6_s_p4_0[] = { 2, 4, 4, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9,10,10, 10, 0, 4, 4, 6, 6, 8, 8, 9, 9, 9, 9,10,10,10,10, 11,11, 0, 4, 4, 6, 6, 8, 8, 9, 9, 9, 9,10,10,10, 10,11,11, 0, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9,10,10, 11,11,11,11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10, 10,11,11,11,11, 0, 0, 0, 7, 7, 9, 9,10,10,10,10, 11,11,11,11,12,12, 0, 0, 0, 7, 7, 9, 9,10,10,10, 10,11,11,11,11,12,12, 0, 0, 0, 7, 7, 8, 8, 9, 9, 10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 8, 8, 9, 9,10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c6_s_p4_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c6_s_p4_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p4_0 = { _vq_quantthresh__44c6_s_p4_0, _vq_quantmap__44c6_s_p4_0, 17, 17 }; static static_codebook _44c6_s_p4_0 = { 2, 289, _vq_lengthlist__44c6_s_p4_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c6_s_p4_0, NULL, &_vq_auxt__44c6_s_p4_0, NULL, 0 }; static long _vq_quantlist__44c6_s_p5_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c6_s_p5_0[] = { 1, 4, 4, 5, 7, 7, 6, 7, 7, 4, 6, 6, 9, 9,10,10, 10, 9, 4, 6, 6, 9,10, 9,10, 9,10, 6, 9, 9,10,12, 11,10,11,11, 7,10, 9,11,12,12,12,12,12, 7,10,10, 11,12,12,12,12,12, 6,10,10,10,12,12,11,12,12, 7, 9,10,11,12,12,12,12,12, 7,10, 9,12,12,12,12,12, 12, }; static float _vq_quantthresh__44c6_s_p5_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44c6_s_p5_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p5_0 = { _vq_quantthresh__44c6_s_p5_0, _vq_quantmap__44c6_s_p5_0, 3, 3 }; static static_codebook _44c6_s_p5_0 = { 4, 81, _vq_lengthlist__44c6_s_p5_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44c6_s_p5_0, NULL, &_vq_auxt__44c6_s_p5_0, NULL, 0 }; static long _vq_quantlist__44c6_s_p5_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c6_s_p5_1[] = { 3, 5, 4, 6, 6, 7, 7, 8, 8, 8, 8,11, 4, 4, 6, 6, 7, 7, 8, 8, 8, 8,11, 4, 4, 6, 6, 7, 7, 8, 8, 8, 8,11, 6, 6, 6, 6, 8, 8, 8, 8, 9, 9,11,11,11, 6, 6, 7, 8, 8, 8, 8, 9,11,11,11, 7, 7, 8, 8, 8, 8, 8, 8,11,11,11, 7, 7, 8, 8, 8, 8, 8, 8,11,11,11, 8, 8, 8, 8, 8, 8, 8, 8,11,11,11,10,10, 8, 8, 8, 8, 8, 8,11,11,11,10,10, 8, 8, 8, 8, 8, 8,11,11, 11,10,10, 7, 7, 8, 8, 8, 8, }; static float _vq_quantthresh__44c6_s_p5_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c6_s_p5_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p5_1 = { _vq_quantthresh__44c6_s_p5_1, _vq_quantmap__44c6_s_p5_1, 11, 11 }; static static_codebook _44c6_s_p5_1 = { 2, 121, _vq_lengthlist__44c6_s_p5_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c6_s_p5_1, NULL, &_vq_auxt__44c6_s_p5_1, NULL, 0 }; static long _vq_quantlist__44c6_s_p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c6_s_p6_0[] = { 1, 4, 4, 6, 6, 8, 8, 8, 8,10, 9,10,10, 6, 5, 5, 7, 7, 9, 9, 9, 9,10,10,11,11, 6, 5, 5, 7, 7, 9, 9,10, 9,11,10,11,11, 0, 6, 6, 7, 7, 9, 9,10,10, 11,11,12,12, 0, 7, 7, 7, 7, 9, 9,10,10,11,11,12, 12, 0,11,11, 8, 8,10,10,11,11,12,12,12,12, 0,11, 12, 9, 8,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c6_s_p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44c6_s_p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p6_0 = { _vq_quantthresh__44c6_s_p6_0, _vq_quantmap__44c6_s_p6_0, 13, 13 }; static static_codebook _44c6_s_p6_0 = { 2, 169, _vq_lengthlist__44c6_s_p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44c6_s_p6_0, NULL, &_vq_auxt__44c6_s_p6_0, NULL, 0 }; static long _vq_quantlist__44c6_s_p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c6_s_p6_1[] = { 3, 4, 4, 5, 5, 5, 4, 4, 5, 5, 5, 4, 4, 5, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__44c6_s_p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c6_s_p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p6_1 = { _vq_quantthresh__44c6_s_p6_1, _vq_quantmap__44c6_s_p6_1, 5, 5 }; static static_codebook _44c6_s_p6_1 = { 2, 25, _vq_lengthlist__44c6_s_p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c6_s_p6_1, NULL, &_vq_auxt__44c6_s_p6_1, NULL, 0 }; static long _vq_quantlist__44c6_s_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c6_s_p7_0[] = { 1, 4, 4, 6, 6, 8, 8, 8, 8,10,10,11,10, 6, 5, 5, 7, 7, 8, 8, 9, 9,10,10,12,11, 6, 5, 5, 7, 7, 8, 8, 9, 9,10,10,12,11,21, 7, 7, 7, 7, 9, 9,10,10, 11,11,12,12,21, 7, 7, 7, 7, 9, 9,10,10,11,11,12, 12,21,12,12, 9, 9,10,10,11,11,11,11,12,12,21,12, 12, 9, 9,10,10,11,11,12,12,12,12,21,21,21,11,11, 10,10,11,12,12,12,13,13,21,21,21,11,11,10,10,12, 12,12,12,13,13,21,21,21,15,15,11,11,12,12,13,13, 13,13,21,21,21,15,16,11,11,12,12,13,13,14,14,21, 21,21,21,20,13,13,13,13,13,13,14,14,20,20,20,20, 20,13,13,13,13,13,13,14,14, }; static float _vq_quantthresh__44c6_s_p7_0[] = { -60.5, -49.5, -38.5, -27.5, -16.5, -5.5, 5.5, 16.5, 27.5, 38.5, 49.5, 60.5, }; static long _vq_quantmap__44c6_s_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p7_0 = { _vq_quantthresh__44c6_s_p7_0, _vq_quantmap__44c6_s_p7_0, 13, 13 }; static static_codebook _44c6_s_p7_0 = { 2, 169, _vq_lengthlist__44c6_s_p7_0, 1, -523206656, 1618345984, 4, 0, _vq_quantlist__44c6_s_p7_0, NULL, &_vq_auxt__44c6_s_p7_0, NULL, 0 }; static long _vq_quantlist__44c6_s_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c6_s_p7_1[] = { 3, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 9, 5, 5, 6, 6, 7, 7, 7, 7, 8, 7, 8, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 9, 6, 6, 7, 7, 7, 7, 8, 7, 7, 8, 9, 9, 9, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 8, 8, 8, 8, 7, 7, 8, 8, 9, 9, 9, 9, 8, 8, 8, 7, 7, 8, 8, 9, 9, 9, 8, 8, 8, 8, 7, 7, 8, 8, 9, 9, 9, 8, 8, 7, 7, 7, 7, 8, 8, }; static float _vq_quantthresh__44c6_s_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c6_s_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p7_1 = { _vq_quantthresh__44c6_s_p7_1, _vq_quantmap__44c6_s_p7_1, 11, 11 }; static static_codebook _44c6_s_p7_1 = { 2, 121, _vq_lengthlist__44c6_s_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c6_s_p7_1, NULL, &_vq_auxt__44c6_s_p7_1, NULL, 0 }; static long _vq_quantlist__44c6_s_p8_0[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44c6_s_p8_0[] = { 1, 4, 4, 7, 7, 8, 8, 7, 7, 8, 7, 9, 8,10, 9, 6, 5, 5, 8, 8, 9, 9, 8, 8, 9, 9,11,10,11,10, 6, 5, 5, 8, 8, 9, 9, 8, 8, 9, 9,10,10,11,11,18, 8, 8, 9, 8,10,10, 9, 9,10,10,10,10,11,10,18, 8, 8, 9, 9,10,10, 9, 9,10,10,11,11,12,12,18,12,13, 9,10, 10,10, 9,10,10,10,11,11,12,11,18,13,13, 9, 9,10, 10,10,10,10,10,11,11,12,12,18,18,18,10,10, 9, 9, 11,11,11,11,11,12,12,12,18,18,18,10, 9,10, 9,11, 10,11,11,11,11,13,12,18,18,18,14,13,10,10,11,11, 12,12,12,12,12,12,18,18,18,14,13,10,10,11,10,12, 12,12,12,12,12,18,18,18,18,18,12,12,11,11,12,12, 13,13,13,14,18,18,18,18,18,12,12,11,11,12,11,13, 13,14,13,18,18,18,18,18,16,16,11,12,12,13,13,13, 14,13,18,18,18,18,18,16,15,12,11,12,11,13,11,15, 14, }; static float _vq_quantthresh__44c6_s_p8_0[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__44c6_s_p8_0[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p8_0 = { _vq_quantthresh__44c6_s_p8_0, _vq_quantmap__44c6_s_p8_0, 15, 15 }; static static_codebook _44c6_s_p8_0 = { 2, 225, _vq_lengthlist__44c6_s_p8_0, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__44c6_s_p8_0, NULL, &_vq_auxt__44c6_s_p8_0, NULL, 0 }; static long _vq_quantlist__44c6_s_p8_1[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__44c6_s_p8_1[] = { 3, 5, 5, 6, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,10, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9,10, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,11,11, 8, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11,11,11, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11,11, 11, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11,11,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 9,11,11,11, 11,11, 9, 9, 9, 9, 9, 9,10, 9, 9,10, 9,10, 9, 9, 10, 9,11,11,11,11,11, 9, 9, 9, 9, 9, 9, 9,10,10, 10,10, 9,10,10, 9,10,11,11,11,11,11, 9, 9, 9, 9, 10,10,10, 9,10,10,10,10, 9,10,10, 9,11,11,11,11, 11,11,11, 9, 9, 9, 9,10,10,10,10, 9,10,10,10,10, 10,11,11,11,11,11,11,11,10, 9,10,10,10,10,10,10, 10, 9,10, 9,10,10,11,11,11,11,11,11,11,10, 9,10, 9,10,10, 9,10,10,10,10,10,10,10,11,11,11,11,11, 11,11,10,10,10,10,10,10,10, 9,10,10,10,10,10, 9, 11,11,11,11,11,11,11,11,11,10,10,10,10,10,10,10, 10,10,10,10,10,11,11,11,11,11,11,11,11,11,10,10, 10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11, 11,11,11,10,10,10,10,10,10,10,10,10, 9,10,10,11, 11,11,11,11,11,11,11,11,10,10,10, 9,10,10,10,10, 10,10,10,10,10,11,11,11,11,11,11,11,11,10,11, 9, 10,10,10,10,10,10,10,10,10, }; static float _vq_quantthresh__44c6_s_p8_1[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__44c6_s_p8_1[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p8_1 = { _vq_quantthresh__44c6_s_p8_1, _vq_quantmap__44c6_s_p8_1, 21, 21 }; static static_codebook _44c6_s_p8_1 = { 2, 441, _vq_lengthlist__44c6_s_p8_1, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__44c6_s_p8_1, NULL, &_vq_auxt__44c6_s_p8_1, NULL, 0 }; static long _vq_quantlist__44c6_s_p9_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c6_s_p9_0[] = { 1, 3, 3,11,11,11,11,11,11,11,11,11,11, 4, 7, 7, 11,11,11,11,11,11,11,11,11,11, 5, 8, 9,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10, }; static float _vq_quantthresh__44c6_s_p9_0[] = { -3503.5, -2866.5, -2229.5, -1592.5, -955.5, -318.5, 318.5, 955.5, 1592.5, 2229.5, 2866.5, 3503.5, }; static long _vq_quantmap__44c6_s_p9_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p9_0 = { _vq_quantthresh__44c6_s_p9_0, _vq_quantmap__44c6_s_p9_0, 13, 13 }; static static_codebook _44c6_s_p9_0 = { 2, 169, _vq_lengthlist__44c6_s_p9_0, 1, -511845376, 1630791680, 4, 0, _vq_quantlist__44c6_s_p9_0, NULL, &_vq_auxt__44c6_s_p9_0, NULL, 0 }; static long _vq_quantlist__44c6_s_p9_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c6_s_p9_1[] = { 1, 4, 4, 7, 7, 7, 7, 7, 6, 8, 8, 8, 8, 6, 6, 6, 8, 8, 8, 8, 8, 7, 9, 8,10,10, 5, 6, 6, 8, 8, 9, 9, 8, 8,10,10,10,10,16, 9, 9, 9, 9, 9, 9, 9, 8, 10, 9,11,11,16, 8, 9, 9, 9, 9, 9, 9, 9,10,10,11, 11,16,13,13, 9, 9,10, 9, 9,10,11,11,11,12,16,13, 14, 9, 8,10, 8, 9, 9,10,10,12,11,16,14,16, 9, 9, 9, 9,11,11,12,11,12,11,16,16,16, 9, 7, 9, 6,11, 11,11,10,11,11,16,16,16,11,12, 9,10,11,11,12,11, 13,13,16,16,16,12,11,10, 7,12,10,12,12,12,12,16, 16,15,16,16,10,11,10,11,13,13,14,12,16,16,16,15, 15,12,10,11,11,13,11,12,13, }; static float _vq_quantthresh__44c6_s_p9_1[] = { -269.5, -220.5, -171.5, -122.5, -73.5, -24.5, 24.5, 73.5, 122.5, 171.5, 220.5, 269.5, }; static long _vq_quantmap__44c6_s_p9_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p9_1 = { _vq_quantthresh__44c6_s_p9_1, _vq_quantmap__44c6_s_p9_1, 13, 13 }; static static_codebook _44c6_s_p9_1 = { 2, 169, _vq_lengthlist__44c6_s_p9_1, 1, -518889472, 1622704128, 4, 0, _vq_quantlist__44c6_s_p9_1, NULL, &_vq_auxt__44c6_s_p9_1, NULL, 0 }; static long _vq_quantlist__44c6_s_p9_2[] = { 24, 23, 25, 22, 26, 21, 27, 20, 28, 19, 29, 18, 30, 17, 31, 16, 32, 15, 33, 14, 34, 13, 35, 12, 36, 11, 37, 10, 38, 9, 39, 8, 40, 7, 41, 6, 42, 5, 43, 4, 44, 3, 45, 2, 46, 1, 47, 0, 48, }; static long _vq_lengthlist__44c6_s_p9_2[] = { 2, 4, 3, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__44c6_s_p9_2[] = { -23.5, -22.5, -21.5, -20.5, -19.5, -18.5, -17.5, -16.5, -15.5, -14.5, -13.5, -12.5, -11.5, -10.5, -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, }; static long _vq_quantmap__44c6_s_p9_2[] = { 47, 45, 43, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, }; static encode_aux_threshmatch _vq_auxt__44c6_s_p9_2 = { _vq_quantthresh__44c6_s_p9_2, _vq_quantmap__44c6_s_p9_2, 49, 49 }; static static_codebook _44c6_s_p9_2 = { 1, 49, _vq_lengthlist__44c6_s_p9_2, 1, -526909440, 1611661312, 6, 0, _vq_quantlist__44c6_s_p9_2, NULL, &_vq_auxt__44c6_s_p9_2, NULL, 0 }; static long _huff_lengthlist__44c6_s_short[] = { 3, 9,11,11,13,14,19,17,17,19, 5, 4, 5, 8,10,10, 13,16,18,19, 7, 4, 4, 5, 8, 9,12,14,17,19, 8, 6, 5, 5, 7, 7,10,13,16,18,10, 8, 7, 6, 5, 5, 8,11, 17,19,11, 9, 7, 7, 5, 4, 5, 8,17,19,13,11, 8, 7, 7, 5, 5, 7,16,18,14,13, 8, 6, 6, 5, 5, 7,16,18, 18,16,10, 8, 8, 7, 7, 9,16,18,18,18,12,10,10, 9, 9,10,17,18, }; static static_codebook _huff_book__44c6_s_short = { 2, 100, _huff_lengthlist__44c6_s_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44c7_s_long[] = { 3, 8,11,13,15,14,14,13,15,14, 6, 4, 5, 7, 9,10, 11,11,14,13,10, 4, 3, 5, 7, 8, 9,10,13,13,12, 7, 4, 4, 5, 6, 8, 9,12,14,13, 9, 6, 5, 5, 6, 8, 9, 12,14,12, 9, 7, 6, 5, 5, 6, 8,11,11,12,11, 9, 8, 7, 6, 6, 7,10,11,13,11,10, 9, 8, 7, 6, 6, 9,11, 13,13,12,12,12,10, 9, 8, 9,11,12,14,15,15,14,12, 11,10,10,12, }; static static_codebook _huff_book__44c7_s_long = { 2, 100, _huff_lengthlist__44c7_s_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44c7_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c7_s_p1_0[] = { 1, 5, 5, 0, 5, 5, 0, 5, 5, 5, 8, 7, 0, 9, 9, 0, 9, 8, 5, 7, 8, 0, 9, 9, 0, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 9, 9, 0, 8, 8, 0, 8, 8, 5, 8, 9, 0, 8, 8, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 9, 9, 0, 8, 8, 0, 8, 8, 5, 8, 9, 0, 8, 8, 0, 8, 8, }; static float _vq_quantthresh__44c7_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44c7_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p1_0 = { _vq_quantthresh__44c7_s_p1_0, _vq_quantmap__44c7_s_p1_0, 3, 3 }; static static_codebook _44c7_s_p1_0 = { 4, 81, _vq_lengthlist__44c7_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44c7_s_p1_0, NULL, &_vq_auxt__44c7_s_p1_0, NULL, 0 }; static long _vq_quantlist__44c7_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c7_s_p2_0[] = { 3, 5, 5, 8, 8, 0, 5, 5, 8, 8, 0, 5, 5, 8, 8, 0, 7, 7, 9, 9, 0, 0, 0, 9, 9, 5, 7, 7, 9, 9, 0, 8, 8,10,10, 0, 8, 7,10, 9, 0,10,10,11,11, 0, 0, 0, 11,11, 5, 7, 7, 9, 9, 0, 8, 8,10,10, 0, 7, 8, 9, 10, 0,10,10,11,11, 0, 0, 0,11,11, 8, 9, 9,11,10, 0,11,11,12,12, 0,11,10,12,12, 0,13,14,14,14, 0, 0, 0,14,13, 8, 9, 9,10,11, 0,11,11,12,12, 0,10, 11,12,12, 0,13,13,14,14, 0, 0, 0,13,14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7,11,10, 0, 7, 7,10,10, 0, 7, 7,10,10, 0, 9, 9,11,10, 0, 0, 0,11,11, 5, 7, 8,10,11, 0, 7, 7,10,10, 0, 7, 7,10,10, 0, 9, 9,10,11, 0, 0, 0,11,11, 8,10, 9,12,12, 0,10,10, 12,12, 0,10,10,12,12, 0,12,12,13,13, 0, 0, 0,13, 13, 8, 9,10,12,12, 0,10,10,12,12, 0,10,10,11,12, 0,12,12,13,13, 0, 0, 0,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8,11,11, 0, 7, 7,10,10, 0, 7, 7, 10,10, 0, 9, 9,10,11, 0, 0, 0,11,10, 5, 8, 8,10, 11, 0, 7, 7,10,10, 0, 7, 7,10,10, 0, 9, 9,11,10, 0, 0, 0,10,11, 9,10,10,12,12, 0,10,10,12,12, 0, 10,10,12,12, 0,12,13,13,13, 0, 0, 0,13,12, 9,10, 10,12,12, 0,10,10,12,12, 0,10,10,12,12, 0,13,12, 13,13, 0, 0, 0,12,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10,10,14,13, 0, 9, 9,12,12, 0, 9, 9,12,12, 0, 10,10,12,12, 0, 0, 0,12,12, 7,10,10,13,14, 0, 9, 9,12,13, 0, 9, 9,12,12, 0,10,10,12,12, 0, 0, 0, 12,12, 9,11,11,14,13, 0,11,10,13,12, 0,11,11,13, 13, 0,12,12,13,13, 0, 0, 0,13,13, 9,11,11,13,14, 0,10,11,12,13, 0,11,11,13,13, 0,12,12,13,13, 0, 0, 0,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 11,11,14,14, 0,10,11,13,13, 0,11,10,13,13, 0,12, 12,13,13, 0, 0, 0,13,12, 9,11,11,14,14, 0,11,10, 13,13, 0,10,11,13,13, 0,12,12,14,13, 0, 0, 0,13, 13, }; static float _vq_quantthresh__44c7_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c7_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p2_0 = { _vq_quantthresh__44c7_s_p2_0, _vq_quantmap__44c7_s_p2_0, 5, 5 }; static static_codebook _44c7_s_p2_0 = { 4, 625, _vq_lengthlist__44c7_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c7_s_p2_0, NULL, &_vq_auxt__44c7_s_p2_0, NULL, 0 }; static long _vq_quantlist__44c7_s_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c7_s_p3_0[] = { 2, 4, 4, 5, 5, 7, 7, 9, 9, 0, 4, 4, 6, 6, 7, 7, 9, 9, 0, 4, 4, 6, 6, 7, 7, 9, 9, 0, 5, 5, 6, 6, 8, 8,10,10, 0, 0, 0, 6, 6, 8, 8,10,10, 0, 0, 0, 7, 7, 9, 9,10,10, 0, 0, 0, 7, 7, 8, 8,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c7_s_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c7_s_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p3_0 = { _vq_quantthresh__44c7_s_p3_0, _vq_quantmap__44c7_s_p3_0, 9, 9 }; static static_codebook _44c7_s_p3_0 = { 2, 81, _vq_lengthlist__44c7_s_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c7_s_p3_0, NULL, &_vq_auxt__44c7_s_p3_0, NULL, 0 }; static long _vq_quantlist__44c7_s_p4_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c7_s_p4_0[] = { 3, 4, 4, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9,10,10,11, 11, 0, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9,10,10,11,11, 12,12, 0, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9,10,10,11, 11,12,12, 0, 5, 5, 6, 6, 8, 8, 9, 9, 9, 9,10,10, 11,12,12,12, 0, 0, 0, 6, 6, 8, 7, 9, 9, 9, 9,10, 10,11,11,12,12, 0, 0, 0, 7, 7, 8, 8, 9, 9,10,10, 11,11,12,12,13,12, 0, 0, 0, 7, 7, 8, 8, 9, 9,10, 10,11,11,12,12,12,13, 0, 0, 0, 7, 7, 8, 8, 9, 9, 10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 8, 8, 9, 9,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c7_s_p4_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c7_s_p4_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p4_0 = { _vq_quantthresh__44c7_s_p4_0, _vq_quantmap__44c7_s_p4_0, 17, 17 }; static static_codebook _44c7_s_p4_0 = { 2, 289, _vq_lengthlist__44c7_s_p4_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c7_s_p4_0, NULL, &_vq_auxt__44c7_s_p4_0, NULL, 0 }; static long _vq_quantlist__44c7_s_p5_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c7_s_p5_0[] = { 1, 4, 4, 5, 7, 7, 6, 7, 7, 4, 6, 7,10,10,10,10, 10, 9, 4, 6, 6,10,10,10,10, 9,10, 5,10,10, 9,11, 12,10,11,12, 7,10,10,11,12,12,12,12,12, 7,10,10, 11,12,12,12,12,12, 6,10,10,10,12,12,11,12,12, 7, 10,10,12,12,12,12,11,12, 7,10,10,11,12,12,12,12, 12, }; static float _vq_quantthresh__44c7_s_p5_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44c7_s_p5_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p5_0 = { _vq_quantthresh__44c7_s_p5_0, _vq_quantmap__44c7_s_p5_0, 3, 3 }; static static_codebook _44c7_s_p5_0 = { 4, 81, _vq_lengthlist__44c7_s_p5_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44c7_s_p5_0, NULL, &_vq_auxt__44c7_s_p5_0, NULL, 0 }; static long _vq_quantlist__44c7_s_p5_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c7_s_p5_1[] = { 3, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,11, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9,11, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9,12, 5, 5, 6, 6, 7, 7, 9, 9, 9, 9,12,12,12, 6, 6, 7, 7, 9, 9, 9, 9,11,11,11, 7, 7, 7, 7, 8, 8, 9, 9,11,11,11, 7, 7, 7, 7, 8, 8, 9, 9,11,11,11, 7, 7, 8, 8, 8, 8, 9, 9,11,11,11,11,11, 8, 8, 8, 8, 8, 9,11,11,11,11,11, 8, 8, 8, 8, 8, 8,11,11, 11,11,11, 7, 7, 8, 8, 8, 8, }; static float _vq_quantthresh__44c7_s_p5_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c7_s_p5_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p5_1 = { _vq_quantthresh__44c7_s_p5_1, _vq_quantmap__44c7_s_p5_1, 11, 11 }; static static_codebook _44c7_s_p5_1 = { 2, 121, _vq_lengthlist__44c7_s_p5_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c7_s_p5_1, NULL, &_vq_auxt__44c7_s_p5_1, NULL, 0 }; static long _vq_quantlist__44c7_s_p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c7_s_p6_0[] = { 1, 4, 4, 6, 6, 7, 7, 8, 7, 9, 8,10,10, 6, 5, 5, 7, 7, 8, 8, 9, 9, 9,10,11,11, 7, 5, 5, 7, 7, 8, 8, 9, 9,10,10,11,11, 0, 7, 7, 7, 7, 9, 8, 9, 9, 10,10,11,11, 0, 8, 8, 7, 7, 8, 9, 9, 9,10,10,11, 11, 0,11,11, 9, 9,10,10,11,10,11,11,12,12, 0,12, 12, 9, 9,10,10,11,11,11,11,12,12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c7_s_p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44c7_s_p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p6_0 = { _vq_quantthresh__44c7_s_p6_0, _vq_quantmap__44c7_s_p6_0, 13, 13 }; static static_codebook _44c7_s_p6_0 = { 2, 169, _vq_lengthlist__44c7_s_p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44c7_s_p6_0, NULL, &_vq_auxt__44c7_s_p6_0, NULL, 0 }; static long _vq_quantlist__44c7_s_p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c7_s_p6_1[] = { 3, 4, 4, 5, 5, 5, 4, 4, 5, 5, 5, 4, 4, 5, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__44c7_s_p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c7_s_p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p6_1 = { _vq_quantthresh__44c7_s_p6_1, _vq_quantmap__44c7_s_p6_1, 5, 5 }; static static_codebook _44c7_s_p6_1 = { 2, 25, _vq_lengthlist__44c7_s_p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c7_s_p6_1, NULL, &_vq_auxt__44c7_s_p6_1, NULL, 0 }; static long _vq_quantlist__44c7_s_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c7_s_p7_0[] = { 1, 4, 4, 6, 6, 7, 8, 9, 9,10,10,12,11, 6, 5, 5, 7, 7, 8, 8, 9,10,11,11,12,12, 7, 5, 5, 7, 7, 8, 8,10,10,11,11,12,12,20, 7, 7, 7, 7, 8, 9,10,10, 11,11,12,13,20, 7, 7, 7, 7, 9, 9,10,10,11,12,13, 13,20,11,11, 8, 8, 9, 9,11,11,12,12,13,13,20,11, 11, 8, 8, 9, 9,11,11,12,12,13,13,20,20,20,10,10, 10,10,12,12,13,13,13,13,20,20,20,10,10,10,10,12, 12,13,13,13,14,20,20,20,14,14,11,11,12,12,13,13, 14,14,20,20,20,14,14,11,11,12,12,13,13,14,14,20, 20,20,20,19,13,13,13,13,14,14,15,14,19,19,19,19, 19,13,13,13,13,14,14,15,15, }; static float _vq_quantthresh__44c7_s_p7_0[] = { -60.5, -49.5, -38.5, -27.5, -16.5, -5.5, 5.5, 16.5, 27.5, 38.5, 49.5, 60.5, }; static long _vq_quantmap__44c7_s_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p7_0 = { _vq_quantthresh__44c7_s_p7_0, _vq_quantmap__44c7_s_p7_0, 13, 13 }; static static_codebook _44c7_s_p7_0 = { 2, 169, _vq_lengthlist__44c7_s_p7_0, 1, -523206656, 1618345984, 4, 0, _vq_quantlist__44c7_s_p7_0, NULL, &_vq_auxt__44c7_s_p7_0, NULL, 0 }; static long _vq_quantlist__44c7_s_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c7_s_p7_1[] = { 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__44c7_s_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c7_s_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p7_1 = { _vq_quantthresh__44c7_s_p7_1, _vq_quantmap__44c7_s_p7_1, 11, 11 }; static static_codebook _44c7_s_p7_1 = { 2, 121, _vq_lengthlist__44c7_s_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c7_s_p7_1, NULL, &_vq_auxt__44c7_s_p7_1, NULL, 0 }; static long _vq_quantlist__44c7_s_p8_0[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44c7_s_p8_0[] = { 1, 4, 4, 7, 7, 8, 8, 8, 7, 9, 8, 9, 9,10,10, 6, 5, 5, 7, 7, 9, 9, 8, 8,10, 9,11,10,12,11, 6, 5, 5, 8, 7, 9, 9, 8, 8,10,10,11,11,12,11,19, 8, 8, 8, 8,10,10, 9, 9,10,10,11,11,12,11,19, 8, 8, 8, 8,10,10, 9, 9,10,10,11,11,12,12,19,12,12, 9, 9, 10,10, 9,10,10,10,11,11,12,12,19,12,12, 9, 9,10, 10,10,10,10,10,12,12,12,12,19,19,19, 9, 9, 9, 9, 11,10,11,11,12,11,13,13,19,19,19, 9, 9, 9, 9,11, 10,11,11,11,12,13,13,19,19,19,13,13,10,10,11,11, 12,12,12,12,13,12,19,19,19,14,13,10,10,11,11,12, 12,12,13,13,13,19,19,19,19,19,12,12,12,11,12,13, 14,13,13,13,19,19,19,19,19,12,12,12,11,12,12,13, 14,13,14,19,19,19,19,19,16,16,12,13,12,13,13,14, 15,14,19,18,18,18,18,16,15,12,11,12,11,14,12,14, 14, }; static float _vq_quantthresh__44c7_s_p8_0[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__44c7_s_p8_0[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p8_0 = { _vq_quantthresh__44c7_s_p8_0, _vq_quantmap__44c7_s_p8_0, 15, 15 }; static static_codebook _44c7_s_p8_0 = { 2, 225, _vq_lengthlist__44c7_s_p8_0, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__44c7_s_p8_0, NULL, &_vq_auxt__44c7_s_p8_0, NULL, 0 }; static long _vq_quantlist__44c7_s_p8_1[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__44c7_s_p8_1[] = { 3, 5, 5, 7, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,10, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 10, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,11,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9, 9,10, 9, 9,10,11,10, 11,10, 9, 9, 9, 9, 9, 9, 9,10,10,10, 9,10, 9, 9, 9, 9,11,10,11,10,10, 9, 9, 9, 9, 9, 9,10, 9, 9, 10, 9, 9,10, 9, 9,10,11,10,10,11,10, 9, 9, 9, 9, 9,10,10, 9,10,10,10,10, 9,10,10,10,10,10,10,11, 11,11,10, 9, 9, 9,10,10,10,10,10,10,10,10,10,10, 10,10,10,11,11,10,10,10,10,10,10,10,10,10,10,10, 10, 9,10,10, 9,10,11,11,10,11,10,11,10, 9,10,10, 9,10,10,10,10,10,10,10,10,10,10,11,11,11,11,10, 11,11,10,10,10,10,10,10, 9,10, 9,10,10, 9,10, 9, 10,10,10,11,10,11,10,11,11,10,10,10,10,10,10, 9, 10,10,10,10,10,10,10,11,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,11,10,11, 11,10,10,10,10, 9, 9,10,10, 9, 9,10, 9,10,10,10, 10,11,11,10,10,10,10,10,10,10, 9, 9,10,10,10, 9, 9,10,10,10,10,10,11,10,11,10,10,10,10,10,10, 9, 10,10,10,10,10,10,10,10,10, }; static float _vq_quantthresh__44c7_s_p8_1[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__44c7_s_p8_1[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p8_1 = { _vq_quantthresh__44c7_s_p8_1, _vq_quantmap__44c7_s_p8_1, 21, 21 }; static static_codebook _44c7_s_p8_1 = { 2, 441, _vq_lengthlist__44c7_s_p8_1, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__44c7_s_p8_1, NULL, &_vq_auxt__44c7_s_p8_1, NULL, 0 }; static long _vq_quantlist__44c7_s_p9_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c7_s_p9_0[] = { 1, 3, 3,11,11,11,11,11,11,11,11,11,11, 4, 6, 6, 11,11,11,11,11,11,11,11,11,11, 4, 7, 7,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11, }; static float _vq_quantthresh__44c7_s_p9_0[] = { -3503.5, -2866.5, -2229.5, -1592.5, -955.5, -318.5, 318.5, 955.5, 1592.5, 2229.5, 2866.5, 3503.5, }; static long _vq_quantmap__44c7_s_p9_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p9_0 = { _vq_quantthresh__44c7_s_p9_0, _vq_quantmap__44c7_s_p9_0, 13, 13 }; static static_codebook _44c7_s_p9_0 = { 2, 169, _vq_lengthlist__44c7_s_p9_0, 1, -511845376, 1630791680, 4, 0, _vq_quantlist__44c7_s_p9_0, NULL, &_vq_auxt__44c7_s_p9_0, NULL, 0 }; static long _vq_quantlist__44c7_s_p9_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c7_s_p9_1[] = { 1, 4, 4, 7, 7, 7, 7, 7, 6, 8, 8, 8, 8, 6, 6, 6, 8, 8, 9, 8, 8, 7, 9, 8,11,10, 5, 6, 6, 8, 8, 9, 8, 8, 8,10, 9,11,11,16, 8, 8, 9, 8, 9, 9, 9, 8, 10, 9,11,10,16, 8, 8, 9, 9,10,10, 9, 9,10,10,11, 11,16,13,13, 9, 9,10,10, 9,10,11,11,12,11,16,13, 13, 9, 8,10, 9,10,10,10,10,11,11,16,14,16, 8, 9, 9, 9,11,10,11,11,12,11,16,16,16, 9, 7,10, 7,11, 10,11,11,12,11,16,16,16,12,12, 9,10,11,11,12,11, 12,12,16,16,16,12,10,10, 7,11, 8,12,11,12,12,16, 16,15,16,16,11,12,10,10,12,11,12,12,16,16,16,15, 15,11,11,10,10,12,12,12,12, }; static float _vq_quantthresh__44c7_s_p9_1[] = { -269.5, -220.5, -171.5, -122.5, -73.5, -24.5, 24.5, 73.5, 122.5, 171.5, 220.5, 269.5, }; static long _vq_quantmap__44c7_s_p9_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p9_1 = { _vq_quantthresh__44c7_s_p9_1, _vq_quantmap__44c7_s_p9_1, 13, 13 }; static static_codebook _44c7_s_p9_1 = { 2, 169, _vq_lengthlist__44c7_s_p9_1, 1, -518889472, 1622704128, 4, 0, _vq_quantlist__44c7_s_p9_1, NULL, &_vq_auxt__44c7_s_p9_1, NULL, 0 }; static long _vq_quantlist__44c7_s_p9_2[] = { 24, 23, 25, 22, 26, 21, 27, 20, 28, 19, 29, 18, 30, 17, 31, 16, 32, 15, 33, 14, 34, 13, 35, 12, 36, 11, 37, 10, 38, 9, 39, 8, 40, 7, 41, 6, 42, 5, 43, 4, 44, 3, 45, 2, 46, 1, 47, 0, 48, }; static long _vq_lengthlist__44c7_s_p9_2[] = { 2, 4, 3, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__44c7_s_p9_2[] = { -23.5, -22.5, -21.5, -20.5, -19.5, -18.5, -17.5, -16.5, -15.5, -14.5, -13.5, -12.5, -11.5, -10.5, -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, }; static long _vq_quantmap__44c7_s_p9_2[] = { 47, 45, 43, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, }; static encode_aux_threshmatch _vq_auxt__44c7_s_p9_2 = { _vq_quantthresh__44c7_s_p9_2, _vq_quantmap__44c7_s_p9_2, 49, 49 }; static static_codebook _44c7_s_p9_2 = { 1, 49, _vq_lengthlist__44c7_s_p9_2, 1, -526909440, 1611661312, 6, 0, _vq_quantlist__44c7_s_p9_2, NULL, &_vq_auxt__44c7_s_p9_2, NULL, 0 }; static long _huff_lengthlist__44c7_s_short[] = { 4,11,12,14,15,15,17,17,18,18, 5, 6, 6, 8, 9,10, 13,17,18,19, 7, 5, 4, 6, 8, 9,11,15,19,19, 8, 6, 5, 5, 6, 7,11,14,16,17, 9, 7, 7, 6, 7, 7,10,13, 15,19,10, 8, 7, 6, 7, 6, 7, 9,14,16,12,10, 9, 7, 7, 6, 4, 5,10,15,14,13,11, 7, 6, 6, 4, 2, 7,13, 16,16,15, 9, 8, 8, 8, 6, 9,13,19,19,17,12,11,10, 10, 9,11,14, }; static static_codebook _huff_book__44c7_s_short = { 2, 100, _huff_lengthlist__44c7_s_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44c8_s_long[] = { 3, 8,12,13,14,14,14,13,14,14, 6, 4, 5, 8,10,10, 11,11,14,13, 9, 5, 4, 5, 7, 8, 9,10,13,13,12, 7, 5, 4, 5, 6, 8, 9,12,13,13, 9, 6, 5, 5, 5, 7, 9, 11,14,12,10, 7, 6, 5, 4, 6, 7,10,11,12,11, 9, 8, 7, 5, 5, 6,10,10,13,12,10, 9, 8, 6, 6, 5, 8,10, 14,13,12,12,11,10, 9, 7, 8,10,12,13,14,14,13,12, 11, 9, 9,10, }; static static_codebook _huff_book__44c8_s_long = { 2, 100, _huff_lengthlist__44c8_s_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44c8_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c8_s_p1_0[] = { 1, 5, 5, 0, 5, 5, 0, 5, 5, 5, 7, 7, 0, 9, 8, 0, 9, 8, 6, 7, 7, 0, 8, 9, 0, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 9, 8, 0, 8, 8, 0, 8, 8, 5, 8, 9, 0, 8, 8, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 9, 8, 0, 8, 8, 0, 8, 8, 5, 8, 9, 0, 8, 8, 0, 8, 8, }; static float _vq_quantthresh__44c8_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44c8_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p1_0 = { _vq_quantthresh__44c8_s_p1_0, _vq_quantmap__44c8_s_p1_0, 3, 3 }; static static_codebook _44c8_s_p1_0 = { 4, 81, _vq_lengthlist__44c8_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44c8_s_p1_0, NULL, &_vq_auxt__44c8_s_p1_0, NULL, 0 }; static long _vq_quantlist__44c8_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c8_s_p2_0[] = { 3, 5, 5, 8, 8, 0, 5, 5, 8, 8, 0, 5, 5, 8, 8, 0, 7, 7, 9, 9, 0, 0, 0, 9, 9, 5, 7, 7, 9, 9, 0, 8, 7,10, 9, 0, 8, 7,10, 9, 0,10,10,11,11, 0, 0, 0, 11,11, 5, 7, 7, 9, 9, 0, 7, 8, 9,10, 0, 7, 8, 9, 10, 0,10,10,11,11, 0, 0, 0,11,11, 8, 9, 9,11,10, 0,11,10,12,11, 0,11,10,12,12, 0,13,13,14,14, 0, 0, 0,14,13, 8, 9, 9,10,11, 0,10,11,12,12, 0,10, 11,12,12, 0,13,13,14,14, 0, 0, 0,13,14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7,11,10, 0, 7, 7,10,10, 0, 7, 7,10,10, 0, 9, 9,10,10, 0, 0, 0,11,10, 5, 7, 8,10,11, 0, 7, 7,10,10, 0, 7, 7,10,10, 0, 9, 9,10,10, 0, 0, 0,10,10, 8,10, 9,12,12, 0,10,10, 12,11, 0,10,10,12,12, 0,12,12,13,12, 0, 0, 0,13, 12, 8, 9,10,12,12, 0,10,10,11,12, 0,10,10,11,12, 0,12,12,13,13, 0, 0, 0,12,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 7,11,10, 0, 7, 7,10,10, 0, 7, 7, 10,10, 0, 9, 9,10,11, 0, 0, 0,10,10, 6, 7, 8,10, 11, 0, 7, 7,10,10, 0, 7, 7,10,10, 0, 9, 9,10,10, 0, 0, 0,10,10, 9,10, 9,12,12, 0,10,10,12,12, 0, 10,10,12,11, 0,12,12,13,13, 0, 0, 0,13,12, 8, 9, 10,12,12, 0,10,10,12,12, 0,10,10,11,12, 0,12,12, 13,13, 0, 0, 0,12,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10,10,13,13, 0, 9, 9,12,12, 0, 9, 9,12,12, 0, 10,10,12,12, 0, 0, 0,12,12, 7,10,10,13,13, 0, 9, 9,12,12, 0, 9, 9,12,12, 0,10,10,12,12, 0, 0, 0, 12,12, 9,11,11,14,13, 0,10,10,13,12, 0,11,10,13, 12, 0,12,12,13,12, 0, 0, 0,13,13, 9,11,11,13,14, 0,10,11,12,13, 0,10,11,13,13, 0,12,12,12,13, 0, 0, 0,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 11,11,14,14, 0,10,11,13,13, 0,11,10,13,13, 0,11, 12,13,13, 0, 0, 0,13,12, 9,11,11,14,14, 0,11,10, 13,13, 0,10,11,13,13, 0,12,12,13,13, 0, 0, 0,12, 13, }; static float _vq_quantthresh__44c8_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c8_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p2_0 = { _vq_quantthresh__44c8_s_p2_0, _vq_quantmap__44c8_s_p2_0, 5, 5 }; static static_codebook _44c8_s_p2_0 = { 4, 625, _vq_lengthlist__44c8_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c8_s_p2_0, NULL, &_vq_auxt__44c8_s_p2_0, NULL, 0 }; static long _vq_quantlist__44c8_s_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c8_s_p3_0[] = { 2, 4, 4, 5, 5, 7, 7, 9, 9, 0, 4, 4, 6, 6, 7, 7, 9, 9, 0, 4, 4, 6, 6, 7, 7, 9, 9, 0, 5, 5, 6, 6, 8, 8,10,10, 0, 0, 0, 6, 6, 8, 8,10,10, 0, 0, 0, 7, 7, 9, 9,10,10, 0, 0, 0, 7, 7, 8, 8,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c8_s_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c8_s_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p3_0 = { _vq_quantthresh__44c8_s_p3_0, _vq_quantmap__44c8_s_p3_0, 9, 9 }; static static_codebook _44c8_s_p3_0 = { 2, 81, _vq_lengthlist__44c8_s_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c8_s_p3_0, NULL, &_vq_auxt__44c8_s_p3_0, NULL, 0 }; static long _vq_quantlist__44c8_s_p4_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c8_s_p4_0[] = { 3, 4, 4, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9,10,10,11, 11, 0, 4, 4, 6, 6, 7, 7, 8, 8, 9, 8,10,10,11,11, 11,11, 0, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9,10,10,11, 11,11,11, 0, 6, 5, 6, 6, 7, 7, 9, 9, 9, 9,10,10, 11,11,12,12, 0, 0, 0, 6, 6, 7, 7, 9, 9, 9, 9,10, 10,11,11,12,12, 0, 0, 0, 7, 7, 8, 8, 9, 9,10,10, 11,11,11,12,12,12, 0, 0, 0, 7, 7, 8, 8, 9, 9,10, 10,11,11,11,12,12,12, 0, 0, 0, 7, 7, 8, 8, 9, 9, 10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 8, 8, 9, 9,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c8_s_p4_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c8_s_p4_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p4_0 = { _vq_quantthresh__44c8_s_p4_0, _vq_quantmap__44c8_s_p4_0, 17, 17 }; static static_codebook _44c8_s_p4_0 = { 2, 289, _vq_lengthlist__44c8_s_p4_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c8_s_p4_0, NULL, &_vq_auxt__44c8_s_p4_0, NULL, 0 }; static long _vq_quantlist__44c8_s_p5_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c8_s_p5_0[] = { 1, 4, 4, 5, 7, 7, 6, 7, 7, 4, 7, 6,10,10,10,10, 10,10, 4, 6, 6,10,10,10,10, 9,10, 5,10,10, 9,11, 11,10,11,11, 7,10,10,11,12,12,12,12,12, 7,10,10, 11,12,12,12,12,12, 6,10,10,10,12,12,10,12,12, 7, 10,10,11,12,12,12,12,12, 7,10,10,11,12,12,12,12, 12, }; static float _vq_quantthresh__44c8_s_p5_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44c8_s_p5_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p5_0 = { _vq_quantthresh__44c8_s_p5_0, _vq_quantmap__44c8_s_p5_0, 3, 3 }; static static_codebook _44c8_s_p5_0 = { 4, 81, _vq_lengthlist__44c8_s_p5_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44c8_s_p5_0, NULL, &_vq_auxt__44c8_s_p5_0, NULL, 0 }; static long _vq_quantlist__44c8_s_p5_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c8_s_p5_1[] = { 3, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,11, 4, 5, 6, 6, 7, 7, 8, 8, 8, 8,11, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9,12, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,12,12,12, 6, 6, 7, 7, 8, 8, 9, 9,11,11,11, 6, 6, 7, 7, 8, 8, 8, 8,11,11,11, 6, 6, 7, 7, 8, 8, 8, 8,11,11,11, 7, 7, 7, 8, 8, 8, 8, 8,11,11,11,11,11, 7, 7, 8, 8, 8, 8,11,11,11,11,11, 7, 7, 7, 7, 8, 8,11,11, 11,11,11, 7, 7, 7, 7, 8, 8, }; static float _vq_quantthresh__44c8_s_p5_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c8_s_p5_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p5_1 = { _vq_quantthresh__44c8_s_p5_1, _vq_quantmap__44c8_s_p5_1, 11, 11 }; static static_codebook _44c8_s_p5_1 = { 2, 121, _vq_lengthlist__44c8_s_p5_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c8_s_p5_1, NULL, &_vq_auxt__44c8_s_p5_1, NULL, 0 }; static long _vq_quantlist__44c8_s_p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c8_s_p6_0[] = { 1, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9,10,10, 6, 5, 5, 7, 7, 8, 8, 9, 9,10,10,11,11, 6, 5, 5, 7, 7, 8, 8, 9, 9,10,10,11,11, 0, 7, 7, 7, 7, 9, 9,10,10, 10,10,11,11, 0, 7, 7, 7, 7, 9, 9,10,10,10,10,11, 11, 0,11,11, 9, 9,10,10,11,11,11,11,12,12, 0,12, 12, 9, 9,10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c8_s_p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44c8_s_p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p6_0 = { _vq_quantthresh__44c8_s_p6_0, _vq_quantmap__44c8_s_p6_0, 13, 13 }; static static_codebook _44c8_s_p6_0 = { 2, 169, _vq_lengthlist__44c8_s_p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44c8_s_p6_0, NULL, &_vq_auxt__44c8_s_p6_0, NULL, 0 }; static long _vq_quantlist__44c8_s_p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c8_s_p6_1[] = { 3, 4, 4, 5, 5, 5, 4, 4, 5, 5, 5, 4, 4, 5, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__44c8_s_p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c8_s_p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p6_1 = { _vq_quantthresh__44c8_s_p6_1, _vq_quantmap__44c8_s_p6_1, 5, 5 }; static static_codebook _44c8_s_p6_1 = { 2, 25, _vq_lengthlist__44c8_s_p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c8_s_p6_1, NULL, &_vq_auxt__44c8_s_p6_1, NULL, 0 }; static long _vq_quantlist__44c8_s_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c8_s_p7_0[] = { 1, 4, 4, 6, 6, 8, 7, 9, 9,10,10,12,12, 6, 5, 5, 7, 7, 8, 8,10,10,11,11,12,12, 7, 5, 5, 7, 7, 8, 8,10,10,11,11,12,12,21, 7, 7, 7, 7, 8, 9,10,10, 11,11,12,12,21, 7, 7, 7, 7, 9, 9,10,10,12,12,13, 13,21,11,11, 8, 8, 9, 9,11,11,12,12,13,13,21,11, 11, 8, 8, 9, 9,11,11,12,12,13,13,21,21,21,10,10, 10,10,11,11,12,13,13,13,21,21,21,10,10,10,10,11, 11,13,13,14,13,21,21,21,13,13,11,11,12,12,13,13, 14,14,21,21,21,14,14,11,11,12,12,13,13,14,14,21, 21,21,21,20,13,13,13,12,14,14,16,15,20,20,20,20, 20,13,13,13,13,14,13,15,15, }; static float _vq_quantthresh__44c8_s_p7_0[] = { -60.5, -49.5, -38.5, -27.5, -16.5, -5.5, 5.5, 16.5, 27.5, 38.5, 49.5, 60.5, }; static long _vq_quantmap__44c8_s_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p7_0 = { _vq_quantthresh__44c8_s_p7_0, _vq_quantmap__44c8_s_p7_0, 13, 13 }; static static_codebook _44c8_s_p7_0 = { 2, 169, _vq_lengthlist__44c8_s_p7_0, 1, -523206656, 1618345984, 4, 0, _vq_quantlist__44c8_s_p7_0, NULL, &_vq_auxt__44c8_s_p7_0, NULL, 0 }; static long _vq_quantlist__44c8_s_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c8_s_p7_1[] = { 4, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__44c8_s_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c8_s_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p7_1 = { _vq_quantthresh__44c8_s_p7_1, _vq_quantmap__44c8_s_p7_1, 11, 11 }; static static_codebook _44c8_s_p7_1 = { 2, 121, _vq_lengthlist__44c8_s_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c8_s_p7_1, NULL, &_vq_auxt__44c8_s_p7_1, NULL, 0 }; static long _vq_quantlist__44c8_s_p8_0[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44c8_s_p8_0[] = { 1, 4, 4, 7, 6, 8, 8, 8, 7, 9, 8,10,10,11,10, 6, 5, 5, 7, 7, 9, 9, 8, 8,10,10,11,11,12,11, 6, 5, 5, 7, 7, 9, 9, 9, 9,10,10,11,11,12,12,20, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11,11,12,12,20, 8, 8, 8, 8,10, 9, 9, 9,10,10,11,11,12,12,20,12,12, 9, 9, 10,10,10,10,10,11,12,12,12,12,20,12,12, 9, 9,10, 10,10,10,11,11,12,12,13,13,20,20,20, 9, 9, 9, 9, 11,10,11,11,12,12,12,13,20,19,19, 9, 9, 9, 9,11, 11,11,12,12,12,13,13,19,19,19,13,13,10,10,11,11, 12,12,13,13,13,13,19,19,19,14,13,11,10,11,11,12, 12,12,13,13,13,19,19,19,19,19,12,12,12,12,13,13, 13,13,14,13,19,19,19,19,19,12,12,12,11,12,12,13, 14,14,14,19,19,19,19,19,16,15,13,12,13,13,13,14, 14,14,19,19,19,19,19,17,17,13,12,13,11,14,13,15, 15, }; static float _vq_quantthresh__44c8_s_p8_0[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__44c8_s_p8_0[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p8_0 = { _vq_quantthresh__44c8_s_p8_0, _vq_quantmap__44c8_s_p8_0, 15, 15 }; static static_codebook _44c8_s_p8_0 = { 2, 225, _vq_lengthlist__44c8_s_p8_0, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__44c8_s_p8_0, NULL, &_vq_auxt__44c8_s_p8_0, NULL, 0 }; static long _vq_quantlist__44c8_s_p8_1[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__44c8_s_p8_1[] = { 4, 5, 5, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,10, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 10, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 10,10, 9, 9, 9, 9, 9, 9, 9, 9,10, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 9, 9, 9, 9, 9,10,10,10,10, 10,10,10, 9, 9, 9, 9, 9,10,10,10, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10, 9,10,10, 9,10,10,10,10, 9,10, 9,10,10, 9,10,10,10,10,10,10,10, 9,10,10, 10,10,10,10, 9, 9,10,10, 9,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 9, 9, 9,10, 9, 9, 9, 9, 10,10,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 10, 9,10, 9,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10, 9, 9,10, 9, 9, 9,10,10,10,10,10,10, 10,10,10,10,10, 9, 9, 9, 9, 9, 9,10, 9, 9,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10, 9,10, 9, 9,10, 9, 9,10,10,10,10,10,10,10,10,10,10,10,10, 10, 9, 9,10,10, 9,10, 9, 9, }; static float _vq_quantthresh__44c8_s_p8_1[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__44c8_s_p8_1[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p8_1 = { _vq_quantthresh__44c8_s_p8_1, _vq_quantmap__44c8_s_p8_1, 21, 21 }; static static_codebook _44c8_s_p8_1 = { 2, 441, _vq_lengthlist__44c8_s_p8_1, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__44c8_s_p8_1, NULL, &_vq_auxt__44c8_s_p8_1, NULL, 0 }; static long _vq_quantlist__44c8_s_p9_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c8_s_p9_0[] = { 1, 4, 3,11,11,11,11,11,11,11,11,11,11,11,11,11, 11, 4, 7, 7,11,11,11,11,11,11,11,11,11,11,11,11, 11,11, 4, 8,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10, }; static float _vq_quantthresh__44c8_s_p9_0[] = { -6982.5, -6051.5, -5120.5, -4189.5, -3258.5, -2327.5, -1396.5, -465.5, 465.5, 1396.5, 2327.5, 3258.5, 4189.5, 5120.5, 6051.5, 6982.5, }; static long _vq_quantmap__44c8_s_p9_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p9_0 = { _vq_quantthresh__44c8_s_p9_0, _vq_quantmap__44c8_s_p9_0, 17, 17 }; static static_codebook _44c8_s_p9_0 = { 2, 289, _vq_lengthlist__44c8_s_p9_0, 1, -509798400, 1631393792, 5, 0, _vq_quantlist__44c8_s_p9_0, NULL, &_vq_auxt__44c8_s_p9_0, NULL, 0 }; static long _vq_quantlist__44c8_s_p9_1[] = { 9, 8, 10, 7, 11, 6, 12, 5, 13, 4, 14, 3, 15, 2, 16, 1, 17, 0, 18, }; static long _vq_lengthlist__44c8_s_p9_1[] = { 1, 4, 4, 7, 6, 7, 7, 7, 7, 8, 8, 9, 9,10,10,10, 10,11,11, 6, 6, 6, 8, 8, 9, 8, 8, 7,10, 8,11,10, 12,11,12,12,13,13, 5, 5, 6, 8, 8, 9, 9, 8, 8,10, 9,11,11,12,12,13,13,13,13,17, 8, 8, 9, 9, 9, 9, 9, 9,10, 9,12,10,12,12,13,12,13,13,17, 9, 8, 9, 9, 9, 9, 9, 9,10,10,12,12,12,12,13,13,13,13,17, 13,13, 9, 9,10,10,10,10,11,11,12,11,13,12,13,13, 14,15,17,13,13, 9, 8,10, 9,10,10,11,11,12,12,14, 13,15,13,14,15,17,17,17, 9,10, 9,10,11,11,12,12, 12,12,13,13,14,14,15,15,17,17,17, 9, 8, 9, 8,11, 11,12,12,12,12,14,13,14,14,14,15,17,17,17,12,14, 9,10,11,11,12,12,14,13,13,14,15,13,15,15,17,17, 17,13,11,10, 8,11, 9,13,12,13,13,13,13,13,14,14, 14,17,17,17,17,17,11,12,11,11,13,13,14,13,15,14, 13,15,16,15,17,17,17,17,17,11,11,12, 8,13,12,14, 13,17,14,15,14,15,14,17,17,17,17,17,15,15,12,12, 12,12,13,14,14,14,15,14,17,14,17,17,17,17,17,16, 17,12,12,13,12,13,13,14,14,14,14,14,14,17,17,17, 17,17,17,17,14,14,13,12,13,13,15,15,14,13,15,17, 17,17,17,17,17,17,17,13,14,13,13,13,13,14,15,15, 15,14,15,17,17,17,17,17,17,17,16,15,13,14,13,13, 14,14,15,14,14,16,17,17,17,17,17,17,17,16,16,13, 14,13,13,14,14,15,14,15,14, }; static float _vq_quantthresh__44c8_s_p9_1[] = { -416.5, -367.5, -318.5, -269.5, -220.5, -171.5, -122.5, -73.5, -24.5, 24.5, 73.5, 122.5, 171.5, 220.5, 269.5, 318.5, 367.5, 416.5, }; static long _vq_quantmap__44c8_s_p9_1[] = { 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p9_1 = { _vq_quantthresh__44c8_s_p9_1, _vq_quantmap__44c8_s_p9_1, 19, 19 }; static static_codebook _44c8_s_p9_1 = { 2, 361, _vq_lengthlist__44c8_s_p9_1, 1, -518287360, 1622704128, 5, 0, _vq_quantlist__44c8_s_p9_1, NULL, &_vq_auxt__44c8_s_p9_1, NULL, 0 }; static long _vq_quantlist__44c8_s_p9_2[] = { 24, 23, 25, 22, 26, 21, 27, 20, 28, 19, 29, 18, 30, 17, 31, 16, 32, 15, 33, 14, 34, 13, 35, 12, 36, 11, 37, 10, 38, 9, 39, 8, 40, 7, 41, 6, 42, 5, 43, 4, 44, 3, 45, 2, 46, 1, 47, 0, 48, }; static long _vq_lengthlist__44c8_s_p9_2[] = { 2, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__44c8_s_p9_2[] = { -23.5, -22.5, -21.5, -20.5, -19.5, -18.5, -17.5, -16.5, -15.5, -14.5, -13.5, -12.5, -11.5, -10.5, -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, }; static long _vq_quantmap__44c8_s_p9_2[] = { 47, 45, 43, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, }; static encode_aux_threshmatch _vq_auxt__44c8_s_p9_2 = { _vq_quantthresh__44c8_s_p9_2, _vq_quantmap__44c8_s_p9_2, 49, 49 }; static static_codebook _44c8_s_p9_2 = { 1, 49, _vq_lengthlist__44c8_s_p9_2, 1, -526909440, 1611661312, 6, 0, _vq_quantlist__44c8_s_p9_2, NULL, &_vq_auxt__44c8_s_p9_2, NULL, 0 }; static long _huff_lengthlist__44c8_s_short[] = { 4,11,13,14,15,15,18,17,19,17, 5, 6, 8, 9,10,10, 12,15,19,19, 6, 6, 6, 6, 8, 8,11,14,18,19, 8, 6, 5, 4, 6, 7,10,13,16,17, 9, 7, 6, 5, 6, 7, 9,12, 15,19,10, 8, 7, 6, 6, 6, 7, 9,13,15,12,10, 9, 8, 7, 6, 4, 5,10,15,13,13,11, 8, 6, 6, 4, 2, 7,12, 17,15,16,10, 8, 8, 7, 6, 9,12,19,18,17,13,11,10, 10, 9,11,14, }; static static_codebook _huff_book__44c8_s_short = { 2, 100, _huff_lengthlist__44c8_s_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44c9_s_long[] = { 3, 8,12,14,15,15,15,13,15,15, 6, 5, 8,10,12,12, 13,12,14,13,10, 6, 5, 6, 8, 9,11,11,13,13,13, 8, 5, 4, 5, 6, 8,10,11,13,14,10, 7, 5, 4, 5, 7, 9, 11,12,13,11, 8, 6, 5, 4, 5, 7, 9,11,12,11,10, 8, 7, 5, 4, 5, 9,10,13,13,11,10, 8, 6, 5, 4, 7, 9, 15,14,13,12,10, 9, 8, 7, 8, 9,12,12,14,13,12,11, 10, 9, 8, 9, }; static static_codebook _huff_book__44c9_s_long = { 2, 100, _huff_lengthlist__44c9_s_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44c9_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c9_s_p1_0[] = { 1, 5, 5, 0, 5, 5, 0, 5, 5, 6, 8, 8, 0, 9, 8, 0, 9, 8, 6, 8, 8, 0, 8, 9, 0, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 7, 7, 0, 8, 8, 5, 8, 8, 0, 7, 8, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 9, 8, 0, 8, 8, 0, 7, 7, 5, 8, 9, 0, 8, 8, 0, 7, 7, }; static float _vq_quantthresh__44c9_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44c9_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p1_0 = { _vq_quantthresh__44c9_s_p1_0, _vq_quantmap__44c9_s_p1_0, 3, 3 }; static static_codebook _44c9_s_p1_0 = { 4, 81, _vq_lengthlist__44c9_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44c9_s_p1_0, NULL, &_vq_auxt__44c9_s_p1_0, NULL, 0 }; static long _vq_quantlist__44c9_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c9_s_p2_0[] = { 3, 5, 5, 8, 8, 0, 5, 5, 8, 8, 0, 5, 5, 8, 8, 0, 7, 7, 9, 9, 0, 0, 0, 9, 9, 6, 7, 7, 9, 8, 0, 8, 8, 9, 9, 0, 8, 7, 9, 9, 0, 9,10,10,10, 0, 0, 0, 11,10, 6, 7, 7, 8, 9, 0, 8, 8, 9, 9, 0, 7, 8, 9, 9, 0,10, 9,11,10, 0, 0, 0,10,10, 8, 9, 8,10,10, 0,10,10,12,11, 0,10,10,11,11, 0,12,13,13,13, 0, 0, 0,13,12, 8, 8, 9,10,10, 0,10,10,11,12, 0,10, 10,11,11, 0,13,12,13,13, 0, 0, 0,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 7,10,10, 0, 7, 7,10, 9, 0, 7, 7,10,10, 0, 9, 9,10,10, 0, 0, 0,10,10, 6, 7, 8,10,10, 0, 7, 7, 9,10, 0, 7, 7,10,10, 0, 9, 9,10,10, 0, 0, 0,10,10, 8, 9, 9,11,11, 0,10,10, 11,11, 0,10,10,11,11, 0,12,12,12,12, 0, 0, 0,12, 12, 8, 9,10,11,11, 0, 9,10,11,11, 0,10,10,11,11, 0,12,12,12,12, 0, 0, 0,12,12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7,10,10, 0, 7, 7,10,10, 0, 7, 7, 10, 9, 0, 9, 9,10,10, 0, 0, 0,10,10, 6, 7, 8,10, 10, 0, 7, 7,10,10, 0, 7, 7, 9,10, 0, 9, 9,10,10, 0, 0, 0,10,10, 8,10, 9,12,11, 0,10,10,12,11, 0, 10, 9,11,11, 0,11,12,12,12, 0, 0, 0,12,12, 8, 9, 10,11,12, 0,10,10,11,11, 0, 9,10,11,11, 0,12,11, 12,12, 0, 0, 0,12,12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10, 9,12,12, 0, 9, 9,12,11, 0, 9, 9,11,11, 0, 10,10,12,11, 0, 0, 0,11,12, 7, 9,10,12,12, 0, 9, 9,11,12, 0, 9, 9,11,11, 0,10,10,11,12, 0, 0, 0, 11,11, 9,11,10,13,12, 0,10,10,12,12, 0,10,10,12, 12, 0,11,11,12,12, 0, 0, 0,13,12, 9,10,11,12,13, 0,10,10,12,12, 0,10,10,12,12, 0,11,12,12,12, 0, 0, 0,12,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 11,10,13,13, 0,10,10,12,12, 0,10,10,12,12, 0,11, 12,12,12, 0, 0, 0,12,12, 9,10,11,13,13, 0,10,10, 12,12, 0,10,10,12,12, 0,12,11,13,12, 0, 0, 0,12, 12, }; static float _vq_quantthresh__44c9_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c9_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p2_0 = { _vq_quantthresh__44c9_s_p2_0, _vq_quantmap__44c9_s_p2_0, 5, 5 }; static static_codebook _44c9_s_p2_0 = { 4, 625, _vq_lengthlist__44c9_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c9_s_p2_0, NULL, &_vq_auxt__44c9_s_p2_0, NULL, 0 }; static long _vq_quantlist__44c9_s_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c9_s_p3_0[] = { 3, 4, 4, 5, 5, 6, 6, 8, 8, 0, 4, 4, 5, 5, 6, 7, 8, 8, 0, 4, 4, 5, 5, 7, 7, 8, 8, 0, 5, 5, 6, 6, 7, 7, 9, 9, 0, 0, 0, 6, 6, 7, 7, 9, 9, 0, 0, 0, 7, 7, 8, 8, 9, 9, 0, 0, 0, 7, 7, 8, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c9_s_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c9_s_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p3_0 = { _vq_quantthresh__44c9_s_p3_0, _vq_quantmap__44c9_s_p3_0, 9, 9 }; static static_codebook _44c9_s_p3_0 = { 2, 81, _vq_lengthlist__44c9_s_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c9_s_p3_0, NULL, &_vq_auxt__44c9_s_p3_0, NULL, 0 }; static long _vq_quantlist__44c9_s_p4_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c9_s_p4_0[] = { 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,10,10,10, 10, 0, 5, 4, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 11,11, 0, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9,10, 10,11,11, 0, 6, 5, 6, 6, 7, 7, 8, 8, 9, 9,10,10, 11,11,11,12, 0, 0, 0, 6, 6, 7, 7, 8, 8, 9, 9,10, 10,11,11,12,12, 0, 0, 0, 7, 7, 7, 7, 9, 9, 9, 9, 10,10,11,11,12,12, 0, 0, 0, 7, 7, 7, 8, 9, 9, 9, 9,10,10,11,11,12,12, 0, 0, 0, 7, 7, 8, 8, 9, 9, 10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 8, 8, 9, 9,10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c9_s_p4_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c9_s_p4_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p4_0 = { _vq_quantthresh__44c9_s_p4_0, _vq_quantmap__44c9_s_p4_0, 17, 17 }; static static_codebook _44c9_s_p4_0 = { 2, 289, _vq_lengthlist__44c9_s_p4_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c9_s_p4_0, NULL, &_vq_auxt__44c9_s_p4_0, NULL, 0 }; static long _vq_quantlist__44c9_s_p5_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c9_s_p5_0[] = { 1, 4, 4, 5, 7, 7, 6, 7, 7, 4, 7, 6, 9,10,10,10, 10, 9, 4, 6, 7, 9,10,10,10, 9,10, 5, 9, 9, 9,11, 11,10,11,11, 7,10, 9,11,12,11,12,12,12, 7, 9,10, 11,11,12,12,12,12, 6,10,10,10,12,12,10,12,11, 7, 10,10,11,12,12,11,12,12, 7,10,10,11,12,12,12,12, 12, }; static float _vq_quantthresh__44c9_s_p5_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44c9_s_p5_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p5_0 = { _vq_quantthresh__44c9_s_p5_0, _vq_quantmap__44c9_s_p5_0, 3, 3 }; static static_codebook _44c9_s_p5_0 = { 4, 81, _vq_lengthlist__44c9_s_p5_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44c9_s_p5_0, NULL, &_vq_auxt__44c9_s_p5_0, NULL, 0 }; static long _vq_quantlist__44c9_s_p5_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c9_s_p5_1[] = { 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7,11, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8,11, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8,11, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,11,11,11, 6, 6, 7, 7, 7, 8, 8, 8,11,11,11, 6, 6, 7, 7, 7, 8, 8, 8,11,11,11, 6, 6, 7, 7, 7, 7, 8, 8,11,11,11, 7, 7, 7, 7, 7, 7, 8, 8,11,11,11,10,10, 7, 7, 7, 7, 8, 8,11,11,11,11,11, 7, 7, 7, 7, 7, 7,11,11, 11,11,11, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__44c9_s_p5_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c9_s_p5_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p5_1 = { _vq_quantthresh__44c9_s_p5_1, _vq_quantmap__44c9_s_p5_1, 11, 11 }; static static_codebook _44c9_s_p5_1 = { 2, 121, _vq_lengthlist__44c9_s_p5_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c9_s_p5_1, NULL, &_vq_auxt__44c9_s_p5_1, NULL, 0 }; static long _vq_quantlist__44c9_s_p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c9_s_p6_0[] = { 2, 4, 4, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 5, 4, 4, 6, 6, 8, 8, 9, 9, 9, 9,10,10, 6, 4, 4, 6, 6, 8, 8, 9, 9, 9, 9,10,10, 0, 6, 6, 7, 7, 8, 8, 9, 9, 10,10,11,11, 0, 6, 6, 7, 7, 8, 8, 9, 9,10,10,11, 11, 0,10,10, 8, 8, 9, 9,10,10,11,11,12,12, 0,11, 11, 8, 8, 9, 9,10,10,11,11,12,12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c9_s_p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44c9_s_p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p6_0 = { _vq_quantthresh__44c9_s_p6_0, _vq_quantmap__44c9_s_p6_0, 13, 13 }; static static_codebook _44c9_s_p6_0 = { 2, 169, _vq_lengthlist__44c9_s_p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44c9_s_p6_0, NULL, &_vq_auxt__44c9_s_p6_0, NULL, 0 }; static long _vq_quantlist__44c9_s_p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c9_s_p6_1[] = { 4, 4, 4, 5, 5, 5, 4, 4, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, }; static float _vq_quantthresh__44c9_s_p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c9_s_p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p6_1 = { _vq_quantthresh__44c9_s_p6_1, _vq_quantmap__44c9_s_p6_1, 5, 5 }; static static_codebook _44c9_s_p6_1 = { 2, 25, _vq_lengthlist__44c9_s_p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c9_s_p6_1, NULL, &_vq_auxt__44c9_s_p6_1, NULL, 0 }; static long _vq_quantlist__44c9_s_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c9_s_p7_0[] = { 2, 4, 4, 6, 6, 7, 7, 8, 8,10,10,11,11, 6, 4, 4, 6, 6, 8, 8, 9, 9,10,10,12,12, 6, 4, 5, 6, 6, 8, 8, 9, 9,10,10,12,12,20, 6, 6, 6, 6, 8, 8, 9,10, 11,11,12,12,20, 6, 6, 6, 6, 8, 8,10,10,11,11,12, 12,20,10,10, 7, 7, 9, 9,10,10,11,11,12,12,20,11, 11, 7, 7, 9, 9,10,10,11,11,12,12,20,20,20, 9, 9, 9, 9,11,11,12,12,13,13,20,20,20, 9, 9, 9, 9,11, 11,12,12,13,13,20,20,20,13,13,10,10,11,11,12,13, 13,13,20,20,20,13,13,10,10,11,11,12,13,13,13,20, 20,20,20,19,12,12,12,12,13,13,14,15,19,19,19,19, 19,12,12,12,12,13,13,14,14, }; static float _vq_quantthresh__44c9_s_p7_0[] = { -60.5, -49.5, -38.5, -27.5, -16.5, -5.5, 5.5, 16.5, 27.5, 38.5, 49.5, 60.5, }; static long _vq_quantmap__44c9_s_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p7_0 = { _vq_quantthresh__44c9_s_p7_0, _vq_quantmap__44c9_s_p7_0, 13, 13 }; static static_codebook _44c9_s_p7_0 = { 2, 169, _vq_lengthlist__44c9_s_p7_0, 1, -523206656, 1618345984, 4, 0, _vq_quantlist__44c9_s_p7_0, NULL, &_vq_auxt__44c9_s_p7_0, NULL, 0 }; static long _vq_quantlist__44c9_s_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c9_s_p7_1[] = { 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__44c9_s_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c9_s_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p7_1 = { _vq_quantthresh__44c9_s_p7_1, _vq_quantmap__44c9_s_p7_1, 11, 11 }; static static_codebook _44c9_s_p7_1 = { 2, 121, _vq_lengthlist__44c9_s_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c9_s_p7_1, NULL, &_vq_auxt__44c9_s_p7_1, NULL, 0 }; static long _vq_quantlist__44c9_s_p8_0[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44c9_s_p8_0[] = { 1, 4, 4, 7, 6, 8, 8, 8, 8, 9, 9,10,10,11,10, 6, 5, 5, 7, 7, 9, 9, 8, 9,10,10,11,11,12,12, 6, 5, 5, 7, 7, 9, 9, 9, 9,10,10,11,11,12,12,21, 7, 8, 8, 8, 9, 9, 9, 9,10,10,11,11,12,12,21, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11,11,12,12,21,11,12, 9, 9, 10,10,10,10,10,11,11,12,12,12,21,12,12, 9, 8,10, 10,10,10,11,11,12,12,13,13,21,21,21, 9, 9, 9, 9, 11,11,11,11,12,12,12,13,21,20,20, 9, 9, 9, 9,10, 11,11,11,12,12,13,13,20,20,20,13,13,10,10,11,11, 12,12,13,13,13,13,20,20,20,13,13,10,10,11,11,12, 12,13,13,13,13,20,20,20,20,20,12,12,12,12,12,12, 13,13,14,14,20,20,20,20,20,12,12,12,11,13,12,13, 13,14,14,20,20,20,20,20,15,16,13,12,13,13,14,13, 14,14,20,20,20,20,20,16,15,12,12,13,12,14,13,14, 14, }; static float _vq_quantthresh__44c9_s_p8_0[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__44c9_s_p8_0[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p8_0 = { _vq_quantthresh__44c9_s_p8_0, _vq_quantmap__44c9_s_p8_0, 15, 15 }; static static_codebook _44c9_s_p8_0 = { 2, 225, _vq_lengthlist__44c9_s_p8_0, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__44c9_s_p8_0, NULL, &_vq_auxt__44c9_s_p8_0, NULL, 0 }; static long _vq_quantlist__44c9_s_p8_1[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__44c9_s_p8_1[] = { 4, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,10, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 10, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9, 9, 9,10,10,10,10, 10,10,10, 9, 9, 9, 9, 9, 9,10, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10, 9, 9, 9,10,10,10,10,10, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10, 9, 9,10, 9,10, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10, 10,10,10,10, 9, 9,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 10,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10, 10,10, 9, 9,10, 9, 9, 9, 9, 9,10,10,10,10,10,10, 10,10,10,10,10, 9, 9,10,10, 9, 9,10, 9, 9, 9,10, 10,10,10,10,10,10,10,10,10,10, 9, 9,10, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9,10, 9, 9, 9, 9, 9, }; static float _vq_quantthresh__44c9_s_p8_1[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__44c9_s_p8_1[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p8_1 = { _vq_quantthresh__44c9_s_p8_1, _vq_quantmap__44c9_s_p8_1, 21, 21 }; static static_codebook _44c9_s_p8_1 = { 2, 441, _vq_lengthlist__44c9_s_p8_1, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__44c9_s_p8_1, NULL, &_vq_auxt__44c9_s_p8_1, NULL, 0 }; static long _vq_quantlist__44c9_s_p9_0[] = { 9, 8, 10, 7, 11, 6, 12, 5, 13, 4, 14, 3, 15, 2, 16, 1, 17, 0, 18, }; static long _vq_lengthlist__44c9_s_p9_0[] = { 1, 4, 3,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12, 4, 5, 6,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12, 4, 6, 6,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,11,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11, }; static float _vq_quantthresh__44c9_s_p9_0[] = { -7913.5, -6982.5, -6051.5, -5120.5, -4189.5, -3258.5, -2327.5, -1396.5, -465.5, 465.5, 1396.5, 2327.5, 3258.5, 4189.5, 5120.5, 6051.5, 6982.5, 7913.5, }; static long _vq_quantmap__44c9_s_p9_0[] = { 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p9_0 = { _vq_quantthresh__44c9_s_p9_0, _vq_quantmap__44c9_s_p9_0, 19, 19 }; static static_codebook _44c9_s_p9_0 = { 2, 361, _vq_lengthlist__44c9_s_p9_0, 1, -508535424, 1631393792, 5, 0, _vq_quantlist__44c9_s_p9_0, NULL, &_vq_auxt__44c9_s_p9_0, NULL, 0 }; static long _vq_quantlist__44c9_s_p9_1[] = { 9, 8, 10, 7, 11, 6, 12, 5, 13, 4, 14, 3, 15, 2, 16, 1, 17, 0, 18, }; static long _vq_lengthlist__44c9_s_p9_1[] = { 1, 4, 4, 7, 7, 7, 7, 8, 7, 9, 8, 9, 9,10,10,11, 11,11,11, 6, 5, 5, 8, 8, 9, 9, 9, 8,10, 9,11,10, 12,12,13,12,13,13, 5, 5, 5, 8, 8, 9, 9, 9, 9,10, 10,11,11,12,12,13,12,13,13,17, 8, 8, 9, 9, 9, 9, 9, 9,10,10,12,11,13,12,13,13,13,13,18, 8, 8, 9, 9, 9, 9, 9, 9,11,11,12,12,13,13,13,13,13,13,17, 13,12, 9, 9,10,10,10,10,11,11,12,12,12,13,13,13, 14,14,18,13,12, 9, 9,10,10,10,10,11,11,12,12,13, 13,13,14,14,14,17,18,18,10,10,10,10,11,11,11,12, 12,12,14,13,14,13,13,14,18,18,18,10, 9,10, 9,11, 11,12,12,12,12,13,13,15,14,14,14,18,18,16,13,14, 10,11,11,11,12,13,13,13,13,14,13,13,14,14,18,18, 18,14,12,11, 9,11,10,13,12,13,13,13,14,14,14,13, 14,18,18,17,18,18,11,12,12,12,13,13,14,13,14,14, 13,14,14,14,18,18,18,18,17,12,10,12, 9,13,11,13, 14,14,14,14,14,15,14,18,18,17,17,18,14,15,12,13, 13,13,14,13,14,14,15,14,15,14,18,17,18,18,18,15, 15,12,10,14,10,14,14,13,13,14,14,14,14,18,16,18, 18,18,18,17,14,14,13,14,14,13,13,14,14,14,15,15, 18,18,18,18,17,17,17,14,14,14,12,14,13,14,14,15, 14,15,14,18,18,18,18,18,18,18,17,16,13,13,13,14, 14,14,14,15,16,15,18,18,18,18,18,18,18,17,17,13, 13,13,13,14,13,14,15,15,15, }; static float _vq_quantthresh__44c9_s_p9_1[] = { -416.5, -367.5, -318.5, -269.5, -220.5, -171.5, -122.5, -73.5, -24.5, 24.5, 73.5, 122.5, 171.5, 220.5, 269.5, 318.5, 367.5, 416.5, }; static long _vq_quantmap__44c9_s_p9_1[] = { 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p9_1 = { _vq_quantthresh__44c9_s_p9_1, _vq_quantmap__44c9_s_p9_1, 19, 19 }; static static_codebook _44c9_s_p9_1 = { 2, 361, _vq_lengthlist__44c9_s_p9_1, 1, -518287360, 1622704128, 5, 0, _vq_quantlist__44c9_s_p9_1, NULL, &_vq_auxt__44c9_s_p9_1, NULL, 0 }; static long _vq_quantlist__44c9_s_p9_2[] = { 24, 23, 25, 22, 26, 21, 27, 20, 28, 19, 29, 18, 30, 17, 31, 16, 32, 15, 33, 14, 34, 13, 35, 12, 36, 11, 37, 10, 38, 9, 39, 8, 40, 7, 41, 6, 42, 5, 43, 4, 44, 3, 45, 2, 46, 1, 47, 0, 48, }; static long _vq_lengthlist__44c9_s_p9_2[] = { 2, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__44c9_s_p9_2[] = { -23.5, -22.5, -21.5, -20.5, -19.5, -18.5, -17.5, -16.5, -15.5, -14.5, -13.5, -12.5, -11.5, -10.5, -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, }; static long _vq_quantmap__44c9_s_p9_2[] = { 47, 45, 43, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, }; static encode_aux_threshmatch _vq_auxt__44c9_s_p9_2 = { _vq_quantthresh__44c9_s_p9_2, _vq_quantmap__44c9_s_p9_2, 49, 49 }; static static_codebook _44c9_s_p9_2 = { 1, 49, _vq_lengthlist__44c9_s_p9_2, 1, -526909440, 1611661312, 6, 0, _vq_quantlist__44c9_s_p9_2, NULL, &_vq_auxt__44c9_s_p9_2, NULL, 0 }; static long _huff_lengthlist__44c9_s_short[] = { 5,13,18,16,17,17,19,18,19,19, 5, 7,10,11,12,12, 13,16,17,18, 6, 6, 7, 7, 9, 9,10,14,17,19, 8, 7, 6, 5, 6, 7, 9,12,19,17, 8, 7, 7, 6, 5, 6, 8,11, 15,19, 9, 8, 7, 6, 5, 5, 6, 8,13,15,11,10, 8, 8, 7, 5, 4, 4,10,14,12,13,11, 9, 7, 6, 4, 2, 6,12, 18,16,16,13, 8, 7, 7, 5, 8,13,16,17,18,15,11, 9, 9, 8,10,13, }; static static_codebook _huff_book__44c9_s_short = { 2, 100, _huff_lengthlist__44c9_s_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44c0_s_long[] = { 5, 4, 8, 9, 8, 9,10,12,15, 4, 1, 5, 5, 6, 8,11, 12,12, 8, 5, 8, 9, 9,11,13,12,12, 9, 5, 8, 5, 7, 9,12,13,13, 8, 6, 8, 7, 7, 9,11,11,11, 9, 7, 9, 7, 7, 7, 7,10,12,10,10,11, 9, 8, 7, 7, 9,11,11, 12,13,12,11, 9, 8, 9,11,13,16,16,15,15,12,10,11, 12, }; static static_codebook _huff_book__44c0_s_long = { 2, 81, _huff_lengthlist__44c0_s_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44c0_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c0_s_p1_0[] = { 1, 5, 5, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 8,10, 9, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,10,11, 0, 0, 0, 0, 0, 0, 9,11,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,11, 9, 0, 0, 0, 0, 0, 0, 9,10,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,11,10, 0, 0, 0, 0, 0, 0, 9, 9,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9,10, 0, 0, 0, 0, 0, 0, 9,10,11, 0, 0, 0, 0, 0, 0, 9,11,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c0_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44c0_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c0_s_p1_0 = { _vq_quantthresh__44c0_s_p1_0, _vq_quantmap__44c0_s_p1_0, 3, 3 }; static static_codebook _44c0_s_p1_0 = { 8, 6561, _vq_lengthlist__44c0_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44c0_s_p1_0, NULL, &_vq_auxt__44c0_s_p1_0, NULL, 0 }; static long _vq_quantlist__44c0_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c0_s_p2_0[] = { 1, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 6, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c0_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c0_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c0_s_p2_0 = { _vq_quantthresh__44c0_s_p2_0, _vq_quantmap__44c0_s_p2_0, 5, 5 }; static static_codebook _44c0_s_p2_0 = { 4, 625, _vq_lengthlist__44c0_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c0_s_p2_0, NULL, &_vq_auxt__44c0_s_p2_0, NULL, 0 }; static long _vq_quantlist__44c0_s_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c0_s_p3_0[] = { 1, 3, 2, 8, 7, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c0_s_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c0_s_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c0_s_p3_0 = { _vq_quantthresh__44c0_s_p3_0, _vq_quantmap__44c0_s_p3_0, 9, 9 }; static static_codebook _44c0_s_p3_0 = { 2, 81, _vq_lengthlist__44c0_s_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c0_s_p3_0, NULL, &_vq_auxt__44c0_s_p3_0, NULL, 0 }; static long _vq_quantlist__44c0_s_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c0_s_p4_0[] = { 1, 3, 3, 6, 6, 6, 6, 8, 8, 0, 0, 0, 7, 7, 7, 7, 9, 9, 0, 0, 0, 7, 7, 7, 7, 9, 9, 0, 0, 0, 7, 7, 7, 8, 9, 9, 0, 0, 0, 7, 7, 7, 7, 9, 9, 0, 0, 0, 9, 9, 8, 8,10,10, 0, 0, 0, 8, 9, 8, 8,10,10, 0, 0, 0,10,10, 9, 9,10,10, 0, 0, 0, 0, 0, 9, 9,10, 10, }; static float _vq_quantthresh__44c0_s_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c0_s_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c0_s_p4_0 = { _vq_quantthresh__44c0_s_p4_0, _vq_quantmap__44c0_s_p4_0, 9, 9 }; static static_codebook _44c0_s_p4_0 = { 2, 81, _vq_lengthlist__44c0_s_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c0_s_p4_0, NULL, &_vq_auxt__44c0_s_p4_0, NULL, 0 }; static long _vq_quantlist__44c0_s_p5_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c0_s_p5_0[] = { 1, 4, 3, 6, 6, 8, 7, 8, 8, 8, 8, 9, 9,10,10,11, 11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9, 9,10,10,10, 11,11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10,10, 10,11,11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10, 11,11,11,11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10, 10,11,11,11,11, 0, 0, 0, 8, 8, 9, 9, 9, 9,10,10, 10,10,11,11,12,12, 0, 0, 0, 8, 8, 9, 9, 9, 9,10, 10,10,10,11,11,12,12, 0, 0, 0, 9, 9, 9, 9,10,10, 10,10,11,11,11,12,12,12, 0, 0, 0, 0, 0, 9, 9,10, 10,10,10,11,11,11,11,12,12, 0, 0, 0, 0, 0, 9, 9, 10,10,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9,10,10,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 10,10,11,11,11,11,11,12,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,11,10,11,11,11,11,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,12,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,11,12,12,12,12,13,13,13, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,12,13,13,13,14,14, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,13,13,14, 14, }; static float _vq_quantthresh__44c0_s_p5_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c0_s_p5_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c0_s_p5_0 = { _vq_quantthresh__44c0_s_p5_0, _vq_quantmap__44c0_s_p5_0, 17, 17 }; static static_codebook _44c0_s_p5_0 = { 2, 289, _vq_lengthlist__44c0_s_p5_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c0_s_p5_0, NULL, &_vq_auxt__44c0_s_p5_0, NULL, 0 }; static long _vq_quantlist__44c0_s_p6_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c0_s_p6_0[] = { 1, 4, 4, 7, 6, 6, 7, 6, 6, 4, 7, 7,10, 9, 9,10, 9, 9, 4, 6, 7,10, 9, 9,11, 9, 9, 7,10,10,11,11, 11,12,10,11, 6, 9, 9,11,10,11,11,10,10, 6, 9, 9, 11,10,11,11,10,10, 7,11,10,12,11,11,11,11,11, 7, 9, 9,10,10,10,11,11,10, 6, 9, 9,11,10,10,11,10, 10, }; static float _vq_quantthresh__44c0_s_p6_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44c0_s_p6_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c0_s_p6_0 = { _vq_quantthresh__44c0_s_p6_0, _vq_quantmap__44c0_s_p6_0, 3, 3 }; static static_codebook _44c0_s_p6_0 = { 4, 81, _vq_lengthlist__44c0_s_p6_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44c0_s_p6_0, NULL, &_vq_auxt__44c0_s_p6_0, NULL, 0 }; static long _vq_quantlist__44c0_s_p6_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c0_s_p6_1[] = { 2, 3, 3, 6, 6, 7, 7, 7, 7, 7, 8,10,10,10, 6, 6, 7, 7, 8, 8, 8, 8,10,10,10, 6, 6, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 8, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 9, 9, 8, 8, 8, 8,10,10, 10,10,10, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__44c0_s_p6_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c0_s_p6_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c0_s_p6_1 = { _vq_quantthresh__44c0_s_p6_1, _vq_quantmap__44c0_s_p6_1, 11, 11 }; static static_codebook _44c0_s_p6_1 = { 2, 121, _vq_lengthlist__44c0_s_p6_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c0_s_p6_1, NULL, &_vq_auxt__44c0_s_p6_1, NULL, 0 }; static long _vq_quantlist__44c0_s_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c0_s_p7_0[] = { 1, 4, 4, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 7, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 7, 5, 6, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11, 11, 0,12,12, 9, 9,10,10,10,10,11,11,11,11, 0,13, 13, 9, 9, 9, 9,10,10,11,11,11,12, 0, 0, 0,10,10, 10,10,11,11,11,11,12,12, 0, 0, 0,10,10, 9, 9,11, 11,11,12,12,12, 0, 0, 0,13,13,10,10,11,11,12,12, 13,13, 0, 0, 0,14,14,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0,11,11,11,11,13,12,13,13, 0, 0, 0, 0, 0,12,12,11,11,12,12,13,13, }; static float _vq_quantthresh__44c0_s_p7_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44c0_s_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c0_s_p7_0 = { _vq_quantthresh__44c0_s_p7_0, _vq_quantmap__44c0_s_p7_0, 13, 13 }; static static_codebook _44c0_s_p7_0 = { 2, 169, _vq_lengthlist__44c0_s_p7_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44c0_s_p7_0, NULL, &_vq_auxt__44c0_s_p7_0, NULL, 0 }; static long _vq_quantlist__44c0_s_p7_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c0_s_p7_1[] = { 2, 3, 3, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__44c0_s_p7_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c0_s_p7_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c0_s_p7_1 = { _vq_quantthresh__44c0_s_p7_1, _vq_quantmap__44c0_s_p7_1, 5, 5 }; static static_codebook _44c0_s_p7_1 = { 2, 25, _vq_lengthlist__44c0_s_p7_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c0_s_p7_1, NULL, &_vq_auxt__44c0_s_p7_1, NULL, 0 }; static long _vq_quantlist__44c0_s_p8_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c0_s_p8_0[] = { 1, 5, 5,10,10, 6, 9, 8,10,10, 6,10, 9,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10, 8,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,10,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11, }; static float _vq_quantthresh__44c0_s_p8_0[] = { -331.5, -110.5, 110.5, 331.5, }; static long _vq_quantmap__44c0_s_p8_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c0_s_p8_0 = { _vq_quantthresh__44c0_s_p8_0, _vq_quantmap__44c0_s_p8_0, 5, 5 }; static static_codebook _44c0_s_p8_0 = { 4, 625, _vq_lengthlist__44c0_s_p8_0, 1, -518283264, 1627103232, 3, 0, _vq_quantlist__44c0_s_p8_0, NULL, &_vq_auxt__44c0_s_p8_0, NULL, 0 }; static long _vq_quantlist__44c0_s_p8_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c0_s_p8_1[] = { 1, 4, 4, 6, 6, 7, 7, 9, 9,11,12,13,12, 6, 5, 5, 7, 7, 8, 8,10, 9,12,12,12,12, 6, 5, 5, 7, 7, 8, 8,10, 9,12,11,11,13,16, 7, 7, 8, 8, 9, 9,10,10, 12,12,13,12,16, 7, 7, 8, 7, 9, 9,10,10,11,12,12, 13,16,10,10, 8, 8,10,10,11,12,12,12,13,13,16,11, 10, 8, 7,11,10,11,11,12,11,13,13,16,16,16,10,10, 10,10,11,11,13,12,13,13,16,16,16,11, 9,11, 9,15, 13,12,13,13,13,16,16,16,15,13,11,11,12,13,12,12, 14,13,16,16,16,14,13,11,11,13,12,14,13,13,13,16, 16,16,16,16,13,13,13,12,14,13,14,14,16,16,16,16, 16,13,13,12,12,14,14,15,13, }; static float _vq_quantthresh__44c0_s_p8_1[] = { -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, }; static long _vq_quantmap__44c0_s_p8_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c0_s_p8_1 = { _vq_quantthresh__44c0_s_p8_1, _vq_quantmap__44c0_s_p8_1, 13, 13 }; static static_codebook _44c0_s_p8_1 = { 2, 169, _vq_lengthlist__44c0_s_p8_1, 1, -522616832, 1620115456, 4, 0, _vq_quantlist__44c0_s_p8_1, NULL, &_vq_auxt__44c0_s_p8_1, NULL, 0 }; static long _vq_quantlist__44c0_s_p8_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c0_s_p8_2[] = { 2, 4, 4, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9,10, 9, 9,10,10,10, 7, 7, 8, 8, 9, 8, 9, 9, 9, 9,10, 9, 9,10,10,10,10, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 9,10, 9,10,10,10,10, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,10,10, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9,10,10,10, 9,11,10,10,10,10, 8, 8, 9, 9, 9, 9, 9,10, 9, 9, 9,10,10,10,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9,10, 9, 9,10,11,10,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,11,11,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,11,10,10,11, 11,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 11,11,11,11, 9,10, 9,10, 9, 9, 9, 9,10, 9,10,11, 10,11,10,10,10,10,10, 9, 9, 9,10, 9, 9, 9,10,11, 11,10,11,11,10,11,10,10,10, 9, 9, 9, 9,10, 9, 9, 10,11,10,11,11,11,11,10,11,10,10, 9,10, 9, 9, 9, 10, }; static float _vq_quantthresh__44c0_s_p8_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c0_s_p8_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c0_s_p8_2 = { _vq_quantthresh__44c0_s_p8_2, _vq_quantmap__44c0_s_p8_2, 17, 17 }; static static_codebook _44c0_s_p8_2 = { 2, 289, _vq_lengthlist__44c0_s_p8_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c0_s_p8_2, NULL, &_vq_auxt__44c0_s_p8_2, NULL, 0 }; static long _huff_lengthlist__44c0_s_short[] = { 9, 8,12,11,12,13,14,14,16, 6, 1, 5, 6, 6, 9,12, 14,17, 9, 4, 5, 9, 7, 9,13,15,16, 8, 5, 8, 6, 8, 10,13,17,17, 9, 6, 7, 7, 8, 9,13,15,17,11, 8, 9, 9, 9,10,12,16,16,13, 7, 8, 7, 7, 9,12,14,15,13, 6, 7, 5, 5, 7,10,13,13,14, 7, 8, 5, 6, 7, 9,10, 12, }; static static_codebook _huff_book__44c0_s_short = { 2, 81, _huff_lengthlist__44c0_s_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44c0_sm_long[] = { 5, 4, 9,10, 9,10,11,12,13, 4, 1, 5, 7, 7, 9,11, 12,14, 8, 5, 7, 9, 8,10,13,13,13,10, 7, 9, 4, 6, 7,10,12,14, 9, 6, 7, 6, 6, 7,10,12,12, 9, 8, 9, 7, 6, 7, 8,11,12,11,11,11, 9, 8, 7, 8,10,12,12, 13,14,12,11, 9, 9, 9,12,12,17,17,15,16,12,10,11, 13, }; static static_codebook _huff_book__44c0_sm_long = { 2, 81, _huff_lengthlist__44c0_sm_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44c0_sm_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c0_sm_p1_0[] = { 1, 5, 5, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 9, 8, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 8,10, 9, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 8, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 9, 9,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c0_sm_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44c0_sm_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c0_sm_p1_0 = { _vq_quantthresh__44c0_sm_p1_0, _vq_quantmap__44c0_sm_p1_0, 3, 3 }; static static_codebook _44c0_sm_p1_0 = { 8, 6561, _vq_lengthlist__44c0_sm_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44c0_sm_p1_0, NULL, &_vq_auxt__44c0_sm_p1_0, NULL, 0 }; static long _vq_quantlist__44c0_sm_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c0_sm_p2_0[] = { 1, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c0_sm_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c0_sm_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c0_sm_p2_0 = { _vq_quantthresh__44c0_sm_p2_0, _vq_quantmap__44c0_sm_p2_0, 5, 5 }; static static_codebook _44c0_sm_p2_0 = { 4, 625, _vq_lengthlist__44c0_sm_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c0_sm_p2_0, NULL, &_vq_auxt__44c0_sm_p2_0, NULL, 0 }; static long _vq_quantlist__44c0_sm_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c0_sm_p3_0[] = { 1, 3, 3, 7, 7, 0, 0, 0, 0, 0, 5, 4, 7, 7, 0, 0, 0, 0, 0, 5, 5, 7, 7, 0, 0, 0, 0, 0, 6, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 9,10, 0, 0, 0, 0, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0,11,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c0_sm_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c0_sm_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c0_sm_p3_0 = { _vq_quantthresh__44c0_sm_p3_0, _vq_quantmap__44c0_sm_p3_0, 9, 9 }; static static_codebook _44c0_sm_p3_0 = { 2, 81, _vq_lengthlist__44c0_sm_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c0_sm_p3_0, NULL, &_vq_auxt__44c0_sm_p3_0, NULL, 0 }; static long _vq_quantlist__44c0_sm_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c0_sm_p4_0[] = { 1, 4, 3, 6, 6, 7, 7, 9, 9, 0, 5, 5, 7, 7, 8, 7, 9, 9, 0, 5, 5, 7, 7, 8, 8, 9, 9, 0, 7, 7, 8, 8, 8, 8,10,10, 0, 0, 0, 8, 8, 8, 8,10,10, 0, 0, 0, 9, 9, 9, 9,11,11, 0, 0, 0, 9, 9, 9, 9,11,11, 0, 0, 0,10,10,10,10,11,11, 0, 0, 0, 0, 0, 9, 9,11, 11, }; static float _vq_quantthresh__44c0_sm_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c0_sm_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c0_sm_p4_0 = { _vq_quantthresh__44c0_sm_p4_0, _vq_quantmap__44c0_sm_p4_0, 9, 9 }; static static_codebook _44c0_sm_p4_0 = { 2, 81, _vq_lengthlist__44c0_sm_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c0_sm_p4_0, NULL, &_vq_auxt__44c0_sm_p4_0, NULL, 0 }; static long _vq_quantlist__44c0_sm_p5_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c0_sm_p5_0[] = { 1, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 9, 9,10,10,11, 11, 0, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9,10,10,10,11, 11,11, 0, 5, 6, 7, 7, 8, 8, 9, 9, 9, 9,10,10,10, 11,11,11, 0, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9,10,10, 11,11,12,12, 0, 0, 0, 8, 8, 8, 8, 9, 9, 9, 9,10, 10,11,11,12,12, 0, 0, 0, 8, 8, 9, 9,10,10,10,10, 11,11,11,11,12,12, 0, 0, 0, 8, 8, 9, 9,10,10,10, 10,11,11,11,11,12,12, 0, 0, 0, 9, 9, 9, 9,10,10, 10,10,11,11,12,12,12,13, 0, 0, 0, 0, 0, 9, 9,10, 10,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9, 10,10,11,11,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9,10,10,11,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 10,10,10,10,11,11,12,12,12,13,13,13, 0, 0, 0, 0, 0, 0, 0,10,10,11,11,12,12,12,13,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,12,12,13,13,14,14, 0, 0, 0, 0, 0, 0, 0,11,11,12,11,12,12,13,13,13,13, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,13,13,13,13,14,14, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,13,13,14, 14, }; static float _vq_quantthresh__44c0_sm_p5_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c0_sm_p5_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c0_sm_p5_0 = { _vq_quantthresh__44c0_sm_p5_0, _vq_quantmap__44c0_sm_p5_0, 17, 17 }; static static_codebook _44c0_sm_p5_0 = { 2, 289, _vq_lengthlist__44c0_sm_p5_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c0_sm_p5_0, NULL, &_vq_auxt__44c0_sm_p5_0, NULL, 0 }; static long _vq_quantlist__44c0_sm_p6_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c0_sm_p6_0[] = { 1, 4, 4, 7, 6, 6, 7, 6, 6, 4, 7, 7,10, 9, 9,11, 9, 9, 4, 7, 7,10, 9, 9,11, 9, 9, 7,10,10,10,11, 11,11,10,10, 6, 9, 9,11,11,10,11,10,10, 6, 9, 9, 11,10,11,11,10,10, 7,11,10,11,11,11,11,11,11, 6, 9, 9,11,10,10,11,11,10, 6, 9, 9,11,10,10,11,10, 11, }; static float _vq_quantthresh__44c0_sm_p6_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44c0_sm_p6_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c0_sm_p6_0 = { _vq_quantthresh__44c0_sm_p6_0, _vq_quantmap__44c0_sm_p6_0, 3, 3 }; static static_codebook _44c0_sm_p6_0 = { 4, 81, _vq_lengthlist__44c0_sm_p6_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44c0_sm_p6_0, NULL, &_vq_auxt__44c0_sm_p6_0, NULL, 0 }; static long _vq_quantlist__44c0_sm_p6_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c0_sm_p6_1[] = { 2, 4, 4, 6, 6, 7, 7, 7, 7, 7, 8, 9, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,10, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 9, 9, 8, 8, 8, 8,10,10, 10,10,10, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__44c0_sm_p6_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c0_sm_p6_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c0_sm_p6_1 = { _vq_quantthresh__44c0_sm_p6_1, _vq_quantmap__44c0_sm_p6_1, 11, 11 }; static static_codebook _44c0_sm_p6_1 = { 2, 121, _vq_lengthlist__44c0_sm_p6_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c0_sm_p6_1, NULL, &_vq_auxt__44c0_sm_p6_1, NULL, 0 }; static long _vq_quantlist__44c0_sm_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c0_sm_p7_0[] = { 1, 4, 4, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 7, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 7, 6, 5, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11, 11, 0,12,12, 9, 9,10,10,10,10,11,11,11,11, 0,13, 13, 9, 9, 9, 9,10,10,11,11,11,12, 0, 0, 0, 9,10, 10,10,11,11,12,11,12,12, 0, 0, 0,10,10, 9, 9,11, 11,12,12,12,12, 0, 0, 0,13,13,10,10,11,11,12,12, 13,13, 0, 0, 0,14,14,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0,11,12,11,11,13,12,13,13, 0, 0, 0, 0, 0,12,12,11,11,13,12,14,14, }; static float _vq_quantthresh__44c0_sm_p7_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44c0_sm_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c0_sm_p7_0 = { _vq_quantthresh__44c0_sm_p7_0, _vq_quantmap__44c0_sm_p7_0, 13, 13 }; static static_codebook _44c0_sm_p7_0 = { 2, 169, _vq_lengthlist__44c0_sm_p7_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44c0_sm_p7_0, NULL, &_vq_auxt__44c0_sm_p7_0, NULL, 0 }; static long _vq_quantlist__44c0_sm_p7_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c0_sm_p7_1[] = { 2, 4, 4, 4, 4, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__44c0_sm_p7_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c0_sm_p7_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c0_sm_p7_1 = { _vq_quantthresh__44c0_sm_p7_1, _vq_quantmap__44c0_sm_p7_1, 5, 5 }; static static_codebook _44c0_sm_p7_1 = { 2, 25, _vq_lengthlist__44c0_sm_p7_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c0_sm_p7_1, NULL, &_vq_auxt__44c0_sm_p7_1, NULL, 0 }; static long _vq_quantlist__44c0_sm_p8_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c0_sm_p8_0[] = { 1, 3, 3,11,11,11,11,11,11, 3, 7, 6,11,11,11,11, 11,11, 4, 8, 7,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12, }; static float _vq_quantthresh__44c0_sm_p8_0[] = { -773.5, -552.5, -331.5, -110.5, 110.5, 331.5, 552.5, 773.5, }; static long _vq_quantmap__44c0_sm_p8_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c0_sm_p8_0 = { _vq_quantthresh__44c0_sm_p8_0, _vq_quantmap__44c0_sm_p8_0, 9, 9 }; static static_codebook _44c0_sm_p8_0 = { 2, 81, _vq_lengthlist__44c0_sm_p8_0, 1, -516186112, 1627103232, 4, 0, _vq_quantlist__44c0_sm_p8_0, NULL, &_vq_auxt__44c0_sm_p8_0, NULL, 0 }; static long _vq_quantlist__44c0_sm_p8_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c0_sm_p8_1[] = { 1, 4, 4, 6, 6, 7, 7, 9, 9,10,11,12,12, 6, 5, 5, 7, 7, 8, 8,10,10,12,11,12,12, 6, 5, 5, 7, 7, 8, 8,10,10,12,11,12,12,17, 7, 7, 8, 8, 9, 9,10,10, 12,12,13,13,18, 7, 7, 8, 7, 9, 9,10,10,12,12,12, 13,19,10,10, 8, 8,10,10,11,11,12,12,13,14,19,11, 10, 8, 7,10,10,11,11,12,12,13,12,19,19,19,10,10, 10,10,11,11,12,12,13,13,19,19,19,11, 9,11, 9,14, 12,13,12,13,13,19,20,18,13,14,11,11,12,12,13,13, 14,13,20,20,20,15,13,11,10,13,11,13,13,14,13,20, 20,20,20,20,13,14,12,12,13,13,13,13,20,20,20,20, 20,13,13,12,12,16,13,15,13, }; static float _vq_quantthresh__44c0_sm_p8_1[] = { -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, }; static long _vq_quantmap__44c0_sm_p8_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c0_sm_p8_1 = { _vq_quantthresh__44c0_sm_p8_1, _vq_quantmap__44c0_sm_p8_1, 13, 13 }; static static_codebook _44c0_sm_p8_1 = { 2, 169, _vq_lengthlist__44c0_sm_p8_1, 1, -522616832, 1620115456, 4, 0, _vq_quantlist__44c0_sm_p8_1, NULL, &_vq_auxt__44c0_sm_p8_1, NULL, 0 }; static long _vq_quantlist__44c0_sm_p8_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c0_sm_p8_2[] = { 2, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8,10, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10, 6, 6, 7, 7, 8, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 7, 7, 8, 8, 9, 8, 9, 9, 9, 9,10, 9, 9,10,10,10,11, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,10, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,11,10,10, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,11,11, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,11,11,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10, 9,11,11,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,11,11,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,11,10,11,11, 11,11,11, 9, 9,10, 9, 9, 9, 9, 9, 9, 9,10,11,10, 11,11,11,11,10,10,10,10, 9, 9, 9, 9, 9, 9,10,11, 11,11,11,11,11, 9,10, 9, 9, 9, 9, 9, 9, 9, 9,11, 11,10,11,11,11,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 10,11,10,11,11,11,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9, }; static float _vq_quantthresh__44c0_sm_p8_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c0_sm_p8_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c0_sm_p8_2 = { _vq_quantthresh__44c0_sm_p8_2, _vq_quantmap__44c0_sm_p8_2, 17, 17 }; static static_codebook _44c0_sm_p8_2 = { 2, 289, _vq_lengthlist__44c0_sm_p8_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c0_sm_p8_2, NULL, &_vq_auxt__44c0_sm_p8_2, NULL, 0 }; static long _huff_lengthlist__44c0_sm_short[] = { 6, 6,12,13,13,14,16,17,17, 4, 2, 5, 8, 7, 9,12, 15,15, 9, 4, 5, 9, 7, 9,12,16,18,11, 6, 7, 4, 6, 8,11,14,18,10, 5, 6, 5, 5, 7,10,14,17,10, 5, 7, 7, 6, 7,10,13,16,11, 5, 7, 7, 7, 8,10,12,15,13, 6, 7, 5, 5, 7, 9,12,13,16, 8, 9, 6, 6, 7, 9,10, 12, }; static static_codebook _huff_book__44c0_sm_short = { 2, 81, _huff_lengthlist__44c0_sm_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44c1_s_long[] = { 5, 5, 9,10, 9, 9,10,11,12, 5, 1, 5, 6, 6, 7,10, 12,14, 9, 5, 6, 8, 8,10,12,14,14,10, 5, 8, 5, 6, 8,11,13,14, 9, 5, 7, 6, 6, 8,10,12,11, 9, 7, 9, 7, 6, 6, 7,10,10,10, 9,12, 9, 8, 7, 7,10,12,11, 11,13,12,10, 9, 8, 9,11,11,14,15,15,13,11, 9, 9, 11, }; static static_codebook _huff_book__44c1_s_long = { 2, 81, _huff_lengthlist__44c1_s_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44c1_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c1_s_p1_0[] = { 2, 4, 4, 0, 0, 0, 0, 0, 0, 5, 7, 6, 0, 0, 0, 0, 0, 0, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9,10, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 8,10, 9, 0, 0, 0, 0, 0, 0, 8, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c1_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44c1_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c1_s_p1_0 = { _vq_quantthresh__44c1_s_p1_0, _vq_quantmap__44c1_s_p1_0, 3, 3 }; static static_codebook _44c1_s_p1_0 = { 8, 6561, _vq_lengthlist__44c1_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44c1_s_p1_0, NULL, &_vq_auxt__44c1_s_p1_0, NULL, 0 }; static long _vq_quantlist__44c1_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c1_s_p2_0[] = { 2, 3, 4, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c1_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c1_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c1_s_p2_0 = { _vq_quantthresh__44c1_s_p2_0, _vq_quantmap__44c1_s_p2_0, 5, 5 }; static static_codebook _44c1_s_p2_0 = { 4, 625, _vq_lengthlist__44c1_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c1_s_p2_0, NULL, &_vq_auxt__44c1_s_p2_0, NULL, 0 }; static long _vq_quantlist__44c1_s_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c1_s_p3_0[] = { 1, 3, 2, 7, 7, 0, 0, 0, 0, 0,13,13, 6, 6, 0, 0, 0, 0, 0,12, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 8, 9, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0,11,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c1_s_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c1_s_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c1_s_p3_0 = { _vq_quantthresh__44c1_s_p3_0, _vq_quantmap__44c1_s_p3_0, 9, 9 }; static static_codebook _44c1_s_p3_0 = { 2, 81, _vq_lengthlist__44c1_s_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c1_s_p3_0, NULL, &_vq_auxt__44c1_s_p3_0, NULL, 0 }; static long _vq_quantlist__44c1_s_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c1_s_p4_0[] = { 1, 3, 3, 6, 5, 6, 6, 8, 8, 0, 0, 0, 7, 7, 7, 7, 9, 9, 0, 0, 0, 7, 7, 7, 7, 9, 9, 0, 0, 0, 7, 7, 8, 8,10,10, 0, 0, 0, 7, 7, 8, 8,10,10, 0, 0, 0, 9, 9, 8, 8,10,10, 0, 0, 0, 8, 8, 8, 8,10,10, 0, 0, 0,10,10, 9, 9,11,11, 0, 0, 0, 0, 0, 9, 9,11, 11, }; static float _vq_quantthresh__44c1_s_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c1_s_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c1_s_p4_0 = { _vq_quantthresh__44c1_s_p4_0, _vq_quantmap__44c1_s_p4_0, 9, 9 }; static static_codebook _44c1_s_p4_0 = { 2, 81, _vq_lengthlist__44c1_s_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c1_s_p4_0, NULL, &_vq_auxt__44c1_s_p4_0, NULL, 0 }; static long _vq_quantlist__44c1_s_p5_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c1_s_p5_0[] = { 1, 4, 3, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9,10,10,11, 11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10,10,10, 11,11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10,10, 10,11,11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10, 11,11,11,11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10, 10,11,11,12,11, 0, 0, 0, 8, 8, 9, 9, 9,10,10,10, 10,10,11,11,12,12, 0, 0, 0, 8, 8, 9, 9,10, 9,10, 10,10,10,11,11,12,12, 0, 0, 0, 9, 9, 9, 9,10,10, 10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 9, 9,10, 10,10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 9, 9, 10,10,10,11,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9,10,10,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 10,10,10,10,11,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,10,10,11,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,12,12,13,13,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,11,11,12,12,13,13,13,13, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,12,12,13,13,14,14, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,13,13,14, 14, }; static float _vq_quantthresh__44c1_s_p5_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c1_s_p5_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c1_s_p5_0 = { _vq_quantthresh__44c1_s_p5_0, _vq_quantmap__44c1_s_p5_0, 17, 17 }; static static_codebook _44c1_s_p5_0 = { 2, 289, _vq_lengthlist__44c1_s_p5_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c1_s_p5_0, NULL, &_vq_auxt__44c1_s_p5_0, NULL, 0 }; static long _vq_quantlist__44c1_s_p6_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c1_s_p6_0[] = { 1, 4, 4, 7, 6, 6, 7, 6, 6, 4, 7, 7,10, 9, 9,11, 9, 9, 4, 7, 7,10, 9, 9,11, 9, 9, 6,10,10,11,11, 11,11,10,10, 6, 9, 9,11,10,10,11,10,10, 6, 9, 9, 11,10,11,11,10,10, 7,11,10,11,11,11,12,11,11, 7, 9, 9,11,10,10,11,11,10, 6, 9, 9,10,10,10,12,10, 11, }; static float _vq_quantthresh__44c1_s_p6_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44c1_s_p6_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c1_s_p6_0 = { _vq_quantthresh__44c1_s_p6_0, _vq_quantmap__44c1_s_p6_0, 3, 3 }; static static_codebook _44c1_s_p6_0 = { 4, 81, _vq_lengthlist__44c1_s_p6_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44c1_s_p6_0, NULL, &_vq_auxt__44c1_s_p6_0, NULL, 0 }; static long _vq_quantlist__44c1_s_p6_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c1_s_p6_1[] = { 2, 3, 3, 6, 6, 7, 7, 7, 7, 8, 8,10,10,10, 6, 6, 7, 7, 8, 8, 8, 8,10,10,10, 6, 6, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 9, 9, 8, 8, 8, 8,10,10, 10,10,10, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__44c1_s_p6_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c1_s_p6_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c1_s_p6_1 = { _vq_quantthresh__44c1_s_p6_1, _vq_quantmap__44c1_s_p6_1, 11, 11 }; static static_codebook _44c1_s_p6_1 = { 2, 121, _vq_lengthlist__44c1_s_p6_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c1_s_p6_1, NULL, &_vq_auxt__44c1_s_p6_1, NULL, 0 }; static long _vq_quantlist__44c1_s_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c1_s_p7_0[] = { 1, 4, 4, 6, 6, 7, 7, 7, 7, 8, 8,10, 9, 7, 5, 6, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 7, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10,10,11,10, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11, 11, 0,12,12, 9, 9, 9,10,10,10,11,11,11,11, 0,13, 13, 9, 9, 9, 9,10,10,11,11,11,11, 0, 0, 0,10,10, 10,10,11,11,12,11,12,12, 0, 0, 0,10,10,10, 9,11, 11,12,11,13,12, 0, 0, 0,13,13,10,10,11,11,12,12, 13,13, 0, 0, 0,14,14,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0,11,12,11,11,12,12,14,13, 0, 0, 0, 0, 0,12,11,11,11,13,10,14,13, }; static float _vq_quantthresh__44c1_s_p7_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44c1_s_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c1_s_p7_0 = { _vq_quantthresh__44c1_s_p7_0, _vq_quantmap__44c1_s_p7_0, 13, 13 }; static static_codebook _44c1_s_p7_0 = { 2, 169, _vq_lengthlist__44c1_s_p7_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44c1_s_p7_0, NULL, &_vq_auxt__44c1_s_p7_0, NULL, 0 }; static long _vq_quantlist__44c1_s_p7_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c1_s_p7_1[] = { 2, 3, 3, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__44c1_s_p7_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c1_s_p7_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c1_s_p7_1 = { _vq_quantthresh__44c1_s_p7_1, _vq_quantmap__44c1_s_p7_1, 5, 5 }; static static_codebook _44c1_s_p7_1 = { 2, 25, _vq_lengthlist__44c1_s_p7_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c1_s_p7_1, NULL, &_vq_auxt__44c1_s_p7_1, NULL, 0 }; static long _vq_quantlist__44c1_s_p8_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c1_s_p8_0[] = { 1, 4, 3,10,10,10,10,10,10,10,10,10,10, 4, 8, 6, 10,10,10,10,10,10,10,10,10,10, 4, 8, 7,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10, }; static float _vq_quantthresh__44c1_s_p8_0[] = { -1215.5, -994.5, -773.5, -552.5, -331.5, -110.5, 110.5, 331.5, 552.5, 773.5, 994.5, 1215.5, }; static long _vq_quantmap__44c1_s_p8_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c1_s_p8_0 = { _vq_quantthresh__44c1_s_p8_0, _vq_quantmap__44c1_s_p8_0, 13, 13 }; static static_codebook _44c1_s_p8_0 = { 2, 169, _vq_lengthlist__44c1_s_p8_0, 1, -514541568, 1627103232, 4, 0, _vq_quantlist__44c1_s_p8_0, NULL, &_vq_auxt__44c1_s_p8_0, NULL, 0 }; static long _vq_quantlist__44c1_s_p8_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c1_s_p8_1[] = { 1, 4, 4, 6, 5, 7, 7, 9, 9,10,10,12,12, 6, 5, 5, 7, 7, 8, 8,10,10,12,11,12,12, 6, 5, 5, 7, 7, 8, 8,10,10,11,11,12,12,15, 7, 7, 8, 8, 9, 9,11,11, 12,12,13,12,15, 8, 8, 8, 7, 9, 9,10,10,12,12,13, 13,16,11,10, 8, 8,10,10,11,11,12,12,13,13,16,11, 11, 9, 8,11,10,11,11,12,12,13,12,16,16,16,10,11, 10,11,12,12,12,12,13,13,16,16,16,11, 9,11, 9,14, 12,12,12,13,13,16,16,16,12,14,11,12,12,12,13,13, 14,13,16,16,16,15,13,12,10,13,10,13,14,13,13,16, 16,16,16,16,13,14,12,13,13,12,13,13,16,16,16,16, 16,13,12,12,11,14,12,15,13, }; static float _vq_quantthresh__44c1_s_p8_1[] = { -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, }; static long _vq_quantmap__44c1_s_p8_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c1_s_p8_1 = { _vq_quantthresh__44c1_s_p8_1, _vq_quantmap__44c1_s_p8_1, 13, 13 }; static static_codebook _44c1_s_p8_1 = { 2, 169, _vq_lengthlist__44c1_s_p8_1, 1, -522616832, 1620115456, 4, 0, _vq_quantlist__44c1_s_p8_1, NULL, &_vq_auxt__44c1_s_p8_1, NULL, 0 }; static long _vq_quantlist__44c1_s_p8_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c1_s_p8_2[] = { 2, 4, 4, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 7, 7, 8, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9,10, 9, 9,10,10,10, 7, 7, 8, 8, 9, 8, 9, 9, 9, 9,10, 9, 9,10,10,11,11, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10, 9, 9,10,10,10,10, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,11,11,11, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,11,11,11, 8, 8, 9, 9, 9, 9,10, 9, 9, 9, 9, 9,11,11,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11,10,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,11,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 9,10,10,11,11, 11,11,11, 9, 9, 9,10, 9, 9, 9, 9, 9, 9,10,11,11, 11,11,11,11,10,10,10,10, 9, 9, 9, 9, 9, 9,10,11, 11,11,11,11,11, 9,10, 9, 9, 9, 9,10, 9, 9, 9,11, 11,11,11,11,11,11,10,10, 9, 9, 9, 9, 9, 9,10, 9, 11,11,10,11,11,11,11,10,11, 9, 9, 9, 9, 9, 9, 9, 9, }; static float _vq_quantthresh__44c1_s_p8_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c1_s_p8_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c1_s_p8_2 = { _vq_quantthresh__44c1_s_p8_2, _vq_quantmap__44c1_s_p8_2, 17, 17 }; static static_codebook _44c1_s_p8_2 = { 2, 289, _vq_lengthlist__44c1_s_p8_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c1_s_p8_2, NULL, &_vq_auxt__44c1_s_p8_2, NULL, 0 }; static long _huff_lengthlist__44c1_s_short[] = { 6, 8,13,12,13,14,15,16,16, 4, 2, 4, 7, 6, 8,11, 13,15,10, 4, 4, 8, 6, 8,11,14,17,11, 5, 6, 5, 6, 8,12,14,17,11, 5, 5, 6, 5, 7,10,13,16,12, 6, 7, 8, 7, 8,10,13,15,13, 8, 8, 7, 7, 8,10,12,15,15, 7, 7, 5, 5, 7, 9,12,14,15, 8, 8, 6, 6, 7, 8,10, 11, }; static static_codebook _huff_book__44c1_s_short = { 2, 81, _huff_lengthlist__44c1_s_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44c1_sm_long[] = { 5, 4, 8,10, 9, 9,10,11,12, 4, 2, 5, 6, 6, 8,10, 11,13, 8, 4, 6, 8, 7, 9,12,12,14,10, 6, 8, 4, 5, 6, 9,11,12, 9, 5, 6, 5, 5, 6, 9,11,11, 9, 7, 9, 6, 5, 5, 7,10,10,10, 9,11, 8, 7, 6, 7, 9,11,11, 12,13,10,10, 9, 8, 9,11,11,15,15,12,13,11, 9,10, 11, }; static static_codebook _huff_book__44c1_sm_long = { 2, 81, _huff_lengthlist__44c1_sm_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44c1_sm_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c1_sm_p1_0[] = { 1, 5, 5, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 9, 8, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 7, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9, 9,10, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 8,10, 9, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 8, 9,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 9,10, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c1_sm_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44c1_sm_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c1_sm_p1_0 = { _vq_quantthresh__44c1_sm_p1_0, _vq_quantmap__44c1_sm_p1_0, 3, 3 }; static static_codebook _44c1_sm_p1_0 = { 8, 6561, _vq_lengthlist__44c1_sm_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44c1_sm_p1_0, NULL, &_vq_auxt__44c1_sm_p1_0, NULL, 0 }; static long _vq_quantlist__44c1_sm_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c1_sm_p2_0[] = { 2, 3, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c1_sm_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c1_sm_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c1_sm_p2_0 = { _vq_quantthresh__44c1_sm_p2_0, _vq_quantmap__44c1_sm_p2_0, 5, 5 }; static static_codebook _44c1_sm_p2_0 = { 4, 625, _vq_lengthlist__44c1_sm_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c1_sm_p2_0, NULL, &_vq_auxt__44c1_sm_p2_0, NULL, 0 }; static long _vq_quantlist__44c1_sm_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c1_sm_p3_0[] = { 1, 3, 3, 7, 7, 0, 0, 0, 0, 0, 5, 5, 6, 6, 0, 0, 0, 0, 0, 5, 5, 7, 7, 0, 0, 0, 0, 0, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 8, 9, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44c1_sm_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c1_sm_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c1_sm_p3_0 = { _vq_quantthresh__44c1_sm_p3_0, _vq_quantmap__44c1_sm_p3_0, 9, 9 }; static static_codebook _44c1_sm_p3_0 = { 2, 81, _vq_lengthlist__44c1_sm_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c1_sm_p3_0, NULL, &_vq_auxt__44c1_sm_p3_0, NULL, 0 }; static long _vq_quantlist__44c1_sm_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44c1_sm_p4_0[] = { 1, 3, 3, 6, 6, 7, 7, 9, 9, 0, 6, 6, 7, 7, 8, 8, 9, 9, 0, 6, 6, 7, 7, 8, 8, 9, 9, 0, 7, 7, 8, 8, 8, 8,10,10, 0, 0, 0, 8, 8, 8, 8,10,10, 0, 0, 0, 8, 8, 9, 9,11,11, 0, 0, 0, 9, 9, 9, 9,11,11, 0, 0, 0,10,10,10,10,11,11, 0, 0, 0, 0, 0, 9, 9,11, 11, }; static float _vq_quantthresh__44c1_sm_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44c1_sm_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44c1_sm_p4_0 = { _vq_quantthresh__44c1_sm_p4_0, _vq_quantmap__44c1_sm_p4_0, 9, 9 }; static static_codebook _44c1_sm_p4_0 = { 2, 81, _vq_lengthlist__44c1_sm_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44c1_sm_p4_0, NULL, &_vq_auxt__44c1_sm_p4_0, NULL, 0 }; static long _vq_quantlist__44c1_sm_p5_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c1_sm_p5_0[] = { 2, 3, 3, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9,10,10,11, 11, 0, 5, 5, 6, 6, 8, 8, 9, 9, 9, 9,10,10,10,10, 11,11, 0, 5, 5, 6, 6, 8, 8, 9, 9, 9, 9,10,10,10, 10,11,11, 0, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9,10,10, 11,11,12,12, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10, 10,11,11,12,12, 0, 0, 0, 8, 8, 8, 8, 9, 9,10,10, 10,11,11,11,12,12, 0, 0, 0, 8, 8, 8, 8, 9, 9,10, 10,10,10,11,11,12,12, 0, 0, 0, 9, 9, 9, 9,10,10, 10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 9, 9,10, 10,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9, 9, 9,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9, 9, 9,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9,10,10,11,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,10,10,11,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,11,11,12,12,13,13,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,11,11,12,12,13,13,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,12,12,13,13,14,14, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,12,12,13,13,14, 14, }; static float _vq_quantthresh__44c1_sm_p5_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c1_sm_p5_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c1_sm_p5_0 = { _vq_quantthresh__44c1_sm_p5_0, _vq_quantmap__44c1_sm_p5_0, 17, 17 }; static static_codebook _44c1_sm_p5_0 = { 2, 289, _vq_lengthlist__44c1_sm_p5_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c1_sm_p5_0, NULL, &_vq_auxt__44c1_sm_p5_0, NULL, 0 }; static long _vq_quantlist__44c1_sm_p6_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44c1_sm_p6_0[] = { 1, 4, 4, 7, 6, 6, 7, 6, 6, 4, 7, 7,10, 9, 9,11, 9, 9, 4, 7, 7,10, 9, 9,11, 9, 9, 7,10,10,10,11, 11,11,10,10, 6, 9, 9,11,11,10,11,10,10, 6, 9, 9, 11,10,11,11,10,10, 7,11,11,11,11,11,11,11,11, 6, 9, 9,11,10,10,11,11,10, 6, 9, 9,10,10,10,11,10, 11, }; static float _vq_quantthresh__44c1_sm_p6_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44c1_sm_p6_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44c1_sm_p6_0 = { _vq_quantthresh__44c1_sm_p6_0, _vq_quantmap__44c1_sm_p6_0, 3, 3 }; static static_codebook _44c1_sm_p6_0 = { 4, 81, _vq_lengthlist__44c1_sm_p6_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44c1_sm_p6_0, NULL, &_vq_auxt__44c1_sm_p6_0, NULL, 0 }; static long _vq_quantlist__44c1_sm_p6_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44c1_sm_p6_1[] = { 2, 4, 4, 6, 6, 7, 7, 7, 7, 8, 8,10, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,10, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,10, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 9, 8,10,10,10,10,10, 8, 8, 8, 8, 8, 8,10,10,10,10,10, 9, 9, 8, 8, 8, 8,10,10, 10,10,10, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__44c1_sm_p6_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44c1_sm_p6_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44c1_sm_p6_1 = { _vq_quantthresh__44c1_sm_p6_1, _vq_quantmap__44c1_sm_p6_1, 11, 11 }; static static_codebook _44c1_sm_p6_1 = { 2, 121, _vq_lengthlist__44c1_sm_p6_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44c1_sm_p6_1, NULL, &_vq_auxt__44c1_sm_p6_1, NULL, 0 }; static long _vq_quantlist__44c1_sm_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c1_sm_p7_0[] = { 1, 4, 4, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 7, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 7, 5, 6, 7, 7, 8, 8, 8, 8, 9, 9,11,10, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11, 11, 0,12,12, 9, 9,10,10,10,10,11,11,11,11, 0,13, 13, 9, 9, 9, 9,10,10,11,11,12,12, 0, 0, 0, 9,10, 9,10,11,11,12,11,13,12, 0, 0, 0,10,10, 9, 9,11, 11,12,12,13,12, 0, 0, 0,13,13,10,10,11,11,12,12, 13,13, 0, 0, 0,14,14,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0,11,12,11,11,12,13,14,13, 0, 0, 0, 0, 0,12,12,11,11,13,12,14,13, }; static float _vq_quantthresh__44c1_sm_p7_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44c1_sm_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c1_sm_p7_0 = { _vq_quantthresh__44c1_sm_p7_0, _vq_quantmap__44c1_sm_p7_0, 13, 13 }; static static_codebook _44c1_sm_p7_0 = { 2, 169, _vq_lengthlist__44c1_sm_p7_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44c1_sm_p7_0, NULL, &_vq_auxt__44c1_sm_p7_0, NULL, 0 }; static long _vq_quantlist__44c1_sm_p7_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44c1_sm_p7_1[] = { 2, 4, 4, 4, 5, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__44c1_sm_p7_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44c1_sm_p7_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44c1_sm_p7_1 = { _vq_quantthresh__44c1_sm_p7_1, _vq_quantmap__44c1_sm_p7_1, 5, 5 }; static static_codebook _44c1_sm_p7_1 = { 2, 25, _vq_lengthlist__44c1_sm_p7_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44c1_sm_p7_1, NULL, &_vq_auxt__44c1_sm_p7_1, NULL, 0 }; static long _vq_quantlist__44c1_sm_p8_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c1_sm_p8_0[] = { 1, 3, 3,13,13,13,13,13,13,13,13,13,13, 3, 6, 6, 13,13,13,13,13,13,13,13,13,13, 4, 8, 7,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13, }; static float _vq_quantthresh__44c1_sm_p8_0[] = { -1215.5, -994.5, -773.5, -552.5, -331.5, -110.5, 110.5, 331.5, 552.5, 773.5, 994.5, 1215.5, }; static long _vq_quantmap__44c1_sm_p8_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c1_sm_p8_0 = { _vq_quantthresh__44c1_sm_p8_0, _vq_quantmap__44c1_sm_p8_0, 13, 13 }; static static_codebook _44c1_sm_p8_0 = { 2, 169, _vq_lengthlist__44c1_sm_p8_0, 1, -514541568, 1627103232, 4, 0, _vq_quantlist__44c1_sm_p8_0, NULL, &_vq_auxt__44c1_sm_p8_0, NULL, 0 }; static long _vq_quantlist__44c1_sm_p8_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44c1_sm_p8_1[] = { 1, 4, 4, 6, 6, 7, 7, 9, 9,10,11,12,12, 6, 5, 5, 7, 7, 8, 7,10,10,11,11,12,12, 6, 5, 5, 7, 7, 8, 8,10,10,11,11,12,12,16, 7, 7, 8, 8, 9, 9,11,11, 12,12,13,13,17, 7, 7, 8, 7, 9, 9,11,10,12,12,13, 13,19,11,10, 8, 8,10,10,11,11,12,12,13,13,19,11, 11, 9, 7,11,10,11,11,12,12,13,12,19,19,19,10,10, 10,10,11,12,12,12,13,14,18,19,19,11, 9,11, 9,13, 12,12,12,13,13,19,20,19,13,15,11,11,12,12,13,13, 14,13,18,19,20,15,13,12,10,13,10,13,13,13,14,20, 20,20,20,20,13,14,12,12,13,12,13,13,20,20,20,20, 20,13,12,12,12,14,12,14,13, }; static float _vq_quantthresh__44c1_sm_p8_1[] = { -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, }; static long _vq_quantmap__44c1_sm_p8_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44c1_sm_p8_1 = { _vq_quantthresh__44c1_sm_p8_1, _vq_quantmap__44c1_sm_p8_1, 13, 13 }; static static_codebook _44c1_sm_p8_1 = { 2, 169, _vq_lengthlist__44c1_sm_p8_1, 1, -522616832, 1620115456, 4, 0, _vq_quantlist__44c1_sm_p8_1, NULL, &_vq_auxt__44c1_sm_p8_1, NULL, 0 }; static long _vq_quantlist__44c1_sm_p8_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44c1_sm_p8_2[] = { 2, 5, 5, 6, 6, 7, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8,10, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,11,11, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10,10, 9,10,10,10,10, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,11,10,10, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,11,11, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11,11,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10, 9,11,11,11,11,11, 9, 8, 9, 9, 9, 9, 9, 9, 9,10,10, 9,11,11,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 9,11,11,11,11, 11,11,11, 9, 9,10, 9, 9, 9, 9,10, 9,10,10,11,10, 11,11,11,11, 9,10,10,10, 9, 9, 9, 9, 9, 9,10,11, 11,11,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,11, 11,10,11,11,11,11,10,10, 9, 9, 9, 9, 9, 9,10, 9, 10,11,10,11,11,11,11,11,11, 9, 9,10, 9, 9, 9, 9, 9, }; static float _vq_quantthresh__44c1_sm_p8_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44c1_sm_p8_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44c1_sm_p8_2 = { _vq_quantthresh__44c1_sm_p8_2, _vq_quantmap__44c1_sm_p8_2, 17, 17 }; static static_codebook _44c1_sm_p8_2 = { 2, 289, _vq_lengthlist__44c1_sm_p8_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44c1_sm_p8_2, NULL, &_vq_auxt__44c1_sm_p8_2, NULL, 0 }; static long _huff_lengthlist__44c1_sm_short[] = { 4, 7,13,14,14,15,16,18,18, 4, 2, 5, 8, 7, 9,12, 15,15,10, 4, 5,10, 6, 8,11,15,17,12, 5, 7, 5, 6, 8,11,14,17,11, 5, 6, 6, 5, 6, 9,13,17,12, 6, 7, 6, 5, 6, 8,12,14,14, 7, 8, 6, 6, 7, 9,11,14,14, 8, 9, 6, 5, 6, 9,11,13,16,10,10, 7, 6, 7, 8,10, 11, }; static static_codebook _huff_book__44c1_sm_short = { 2, 81, _huff_lengthlist__44c1_sm_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44cn1_s_long[] = { 4, 4, 7, 8, 7, 8,10,12,17, 3, 1, 6, 6, 7, 8,10, 12,15, 7, 6, 9, 9, 9,11,12,14,17, 8, 6, 9, 6, 7, 9,11,13,17, 7, 6, 9, 7, 7, 8, 9,12,15, 8, 8,10, 8, 7, 7, 7,10,14, 9,10,12,10, 8, 8, 8,10,14,11, 13,15,13,12,11,11,12,16,17,18,18,19,20,18,16,16, 20, }; static static_codebook _huff_book__44cn1_s_long = { 2, 81, _huff_lengthlist__44cn1_s_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44cn1_s_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44cn1_s_p1_0[] = { 1, 4, 4, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 7, 9,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 7,10, 9, 0, 0, 0, 0, 0, 0, 8,10, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 8,10,10, 0, 0, 0, 0, 0, 0, 8, 9,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10,10, 0, 0, 0, 0, 0, 0, 9, 9,11, 0, 0, 0, 0, 0, 0,10,11,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10,10, 0, 0, 0, 0, 0, 0, 9,11, 9, 0, 0, 0, 0, 0, 0,10,11,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 8,10,10, 0, 0, 0, 0, 0, 0, 8,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10,10, 0, 0, 0, 0, 0, 0,10,11,11, 0, 0, 0, 0, 0, 0, 9, 9,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10,10, 0, 0, 0, 0, 0, 0,10,11,11, 0, 0, 0, 0, 0, 0, 9,11, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44cn1_s_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44cn1_s_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44cn1_s_p1_0 = { _vq_quantthresh__44cn1_s_p1_0, _vq_quantmap__44cn1_s_p1_0, 3, 3 }; static static_codebook _44cn1_s_p1_0 = { 8, 6561, _vq_lengthlist__44cn1_s_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44cn1_s_p1_0, NULL, &_vq_auxt__44cn1_s_p1_0, NULL, 0 }; static long _vq_quantlist__44cn1_s_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44cn1_s_p2_0[] = { 1, 4, 4, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44cn1_s_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44cn1_s_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44cn1_s_p2_0 = { _vq_quantthresh__44cn1_s_p2_0, _vq_quantmap__44cn1_s_p2_0, 5, 5 }; static static_codebook _44cn1_s_p2_0 = { 4, 625, _vq_lengthlist__44cn1_s_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44cn1_s_p2_0, NULL, &_vq_auxt__44cn1_s_p2_0, NULL, 0 }; static long _vq_quantlist__44cn1_s_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44cn1_s_p3_0[] = { 1, 2, 3, 7, 7, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 9, 8, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44cn1_s_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44cn1_s_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44cn1_s_p3_0 = { _vq_quantthresh__44cn1_s_p3_0, _vq_quantmap__44cn1_s_p3_0, 9, 9 }; static static_codebook _44cn1_s_p3_0 = { 2, 81, _vq_lengthlist__44cn1_s_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44cn1_s_p3_0, NULL, &_vq_auxt__44cn1_s_p3_0, NULL, 0 }; static long _vq_quantlist__44cn1_s_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44cn1_s_p4_0[] = { 1, 3, 3, 6, 6, 6, 6, 8, 8, 0, 0, 0, 6, 6, 7, 7, 9, 9, 0, 0, 0, 6, 6, 7, 7, 9, 9, 0, 0, 0, 7, 7, 8, 8,10,10, 0, 0, 0, 7, 7, 8, 8,10,10, 0, 0, 0, 9, 9, 9, 9,10,10, 0, 0, 0, 9, 9, 9, 9,10,10, 0, 0, 0,10,10,10,10,11,11, 0, 0, 0, 0, 0,10,10,11, 11, }; static float _vq_quantthresh__44cn1_s_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44cn1_s_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44cn1_s_p4_0 = { _vq_quantthresh__44cn1_s_p4_0, _vq_quantmap__44cn1_s_p4_0, 9, 9 }; static static_codebook _44cn1_s_p4_0 = { 2, 81, _vq_lengthlist__44cn1_s_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44cn1_s_p4_0, NULL, &_vq_auxt__44cn1_s_p4_0, NULL, 0 }; static long _vq_quantlist__44cn1_s_p5_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44cn1_s_p5_0[] = { 1, 4, 3, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9,10,10,10, 10, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10,10,10, 11,11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10,10, 10,11,11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10,10, 11,11,11,12, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9,10, 10,11,11,11,11, 0, 0, 0, 8, 8, 9, 9, 9, 9,10,10, 10,10,11,11,12,12, 0, 0, 0, 8, 8, 9, 9, 9, 9,10, 10,10,11,11,11,12,12, 0, 0, 0, 9, 9,10, 9,10,10, 10,10,11,11,11,11,12,12, 0, 0, 0, 0, 0, 9, 9,10, 10,10,10,11,11,12,12,12,12, 0, 0, 0, 0, 0, 9, 9, 10,10,10,11,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9,10,10,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 10,10,11,10,11,11,11,12,13,12,13,13, 0, 0, 0, 0, 0, 0, 0,11,10,11,11,12,12,12,12,13,13, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,12,12,13,13,13,14, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,12,12,13,13,13,14, 0, 0, 0, 0, 0, 0, 0,12,12,12,13,13,13,13,13,14,14, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,13,12,13,13,14, 14, }; static float _vq_quantthresh__44cn1_s_p5_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44cn1_s_p5_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44cn1_s_p5_0 = { _vq_quantthresh__44cn1_s_p5_0, _vq_quantmap__44cn1_s_p5_0, 17, 17 }; static static_codebook _44cn1_s_p5_0 = { 2, 289, _vq_lengthlist__44cn1_s_p5_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44cn1_s_p5_0, NULL, &_vq_auxt__44cn1_s_p5_0, NULL, 0 }; static long _vq_quantlist__44cn1_s_p6_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44cn1_s_p6_0[] = { 1, 4, 4, 7, 6, 6, 7, 6, 6, 4, 6, 6,10, 9, 9,11, 9, 9, 4, 6, 6,10, 9, 9,10, 9, 9, 7,10,10,11,11, 11,12,11,11, 7, 9, 9,11,11,10,11,10,10, 7, 9, 9, 11,10,11,11,10,10, 7,10,10,11,11,11,12,11,11, 7, 9, 9,11,10,10,11,10,10, 7, 9, 9,11,10,10,11,10, 10, }; static float _vq_quantthresh__44cn1_s_p6_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44cn1_s_p6_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44cn1_s_p6_0 = { _vq_quantthresh__44cn1_s_p6_0, _vq_quantmap__44cn1_s_p6_0, 3, 3 }; static static_codebook _44cn1_s_p6_0 = { 4, 81, _vq_lengthlist__44cn1_s_p6_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44cn1_s_p6_0, NULL, &_vq_auxt__44cn1_s_p6_0, NULL, 0 }; static long _vq_quantlist__44cn1_s_p6_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44cn1_s_p6_1[] = { 1, 4, 4, 6, 6, 7, 7, 8, 8, 8, 8,10,10,10, 7, 6, 8, 8, 8, 8, 8, 8,10,10,10, 7, 6, 7, 7, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 9, 9, 9, 9,10,10,10, 8, 8, 8, 8, 9, 9, 9, 9,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10, 9, 9, 9, 9, 9, 9,10,10,10,10,10, 9, 9, 9, 9, 9, 9,10,10, 10,10,10, 9, 9, 9, 9, 9, 9, }; static float _vq_quantthresh__44cn1_s_p6_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44cn1_s_p6_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44cn1_s_p6_1 = { _vq_quantthresh__44cn1_s_p6_1, _vq_quantmap__44cn1_s_p6_1, 11, 11 }; static static_codebook _44cn1_s_p6_1 = { 2, 121, _vq_lengthlist__44cn1_s_p6_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44cn1_s_p6_1, NULL, &_vq_auxt__44cn1_s_p6_1, NULL, 0 }; static long _vq_quantlist__44cn1_s_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44cn1_s_p7_0[] = { 1, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9,10,10, 6, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9,11,11, 7, 5, 5, 7, 7, 8, 8, 8, 8, 9,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11, 11, 0,12,12, 9, 9, 9,10,10,10,11,11,11,12, 0,13, 13, 9, 9, 9, 9,10,10,11,11,11,12, 0, 0, 0,10,10, 10,10,11,11,12,12,12,13, 0, 0, 0,10,10,10,10,11, 11,12,12,13,12, 0, 0, 0,14,14,11,10,11,12,12,13, 13,14, 0, 0, 0,15,15,11,11,12,11,12,12,14,13, 0, 0, 0, 0, 0,12,12,12,12,13,13,14,14, 0, 0, 0, 0, 0,13,13,12,12,13,13,13,14, }; static float _vq_quantthresh__44cn1_s_p7_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44cn1_s_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44cn1_s_p7_0 = { _vq_quantthresh__44cn1_s_p7_0, _vq_quantmap__44cn1_s_p7_0, 13, 13 }; static static_codebook _44cn1_s_p7_0 = { 2, 169, _vq_lengthlist__44cn1_s_p7_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44cn1_s_p7_0, NULL, &_vq_auxt__44cn1_s_p7_0, NULL, 0 }; static long _vq_quantlist__44cn1_s_p7_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44cn1_s_p7_1[] = { 2, 3, 3, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__44cn1_s_p7_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44cn1_s_p7_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44cn1_s_p7_1 = { _vq_quantthresh__44cn1_s_p7_1, _vq_quantmap__44cn1_s_p7_1, 5, 5 }; static static_codebook _44cn1_s_p7_1 = { 2, 25, _vq_lengthlist__44cn1_s_p7_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44cn1_s_p7_1, NULL, &_vq_auxt__44cn1_s_p7_1, NULL, 0 }; static long _vq_quantlist__44cn1_s_p8_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44cn1_s_p8_0[] = { 1, 7, 7,11,11, 8,11,11,11,11, 4,11, 3,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,10,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,10,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11, 7,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,10,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,10, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11, 8,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12, }; static float _vq_quantthresh__44cn1_s_p8_0[] = { -331.5, -110.5, 110.5, 331.5, }; static long _vq_quantmap__44cn1_s_p8_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44cn1_s_p8_0 = { _vq_quantthresh__44cn1_s_p8_0, _vq_quantmap__44cn1_s_p8_0, 5, 5 }; static static_codebook _44cn1_s_p8_0 = { 4, 625, _vq_lengthlist__44cn1_s_p8_0, 1, -518283264, 1627103232, 3, 0, _vq_quantlist__44cn1_s_p8_0, NULL, &_vq_auxt__44cn1_s_p8_0, NULL, 0 }; static long _vq_quantlist__44cn1_s_p8_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44cn1_s_p8_1[] = { 1, 4, 4, 6, 6, 8, 8, 9,10,10,11,11,11, 6, 5, 5, 7, 7, 8, 8, 9,10, 9,11,11,12, 5, 5, 5, 7, 7, 8, 9,10,10,12,12,14,13,15, 7, 7, 8, 8, 9,10,11,11, 10,12,10,11,15, 7, 8, 8, 8, 9, 9,11,11,13,12,12, 13,15,10,10, 8, 8,10,10,12,12,11,14,10,10,15,11, 11, 8, 8,10,10,12,13,13,14,15,13,15,15,15,10,10, 10,10,12,12,13,12,13,10,15,15,15,10,10,11,10,13, 11,13,13,15,13,15,15,15,13,13,10,11,11,11,12,10, 14,11,15,15,14,14,13,10,10,12,11,13,13,14,14,15, 15,15,15,15,11,11,11,11,12,11,15,12,15,15,15,15, 15,12,12,11,11,14,12,13,14, }; static float _vq_quantthresh__44cn1_s_p8_1[] = { -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, }; static long _vq_quantmap__44cn1_s_p8_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44cn1_s_p8_1 = { _vq_quantthresh__44cn1_s_p8_1, _vq_quantmap__44cn1_s_p8_1, 13, 13 }; static static_codebook _44cn1_s_p8_1 = { 2, 169, _vq_lengthlist__44cn1_s_p8_1, 1, -522616832, 1620115456, 4, 0, _vq_quantlist__44cn1_s_p8_1, NULL, &_vq_auxt__44cn1_s_p8_1, NULL, 0 }; static long _vq_quantlist__44cn1_s_p8_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44cn1_s_p8_2[] = { 3, 4, 3, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,11,11, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9,10, 9,10,11,10, 7, 6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9,10,10,10,11, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9,10,11,11,11, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,11,10,10,11,11, 8, 8, 8, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11,11,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,11,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11,10,10,11, 11,11,11, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,11,11, 10,11,11,11, 9,10,10, 9, 9, 9, 9, 9, 9, 9,10,11, 11,11,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11, 11,11,11,11,11,11,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 11,11,11,10,11,11,11,11,11, 9, 9, 9,10, 9, 9, 9, 9, }; static float _vq_quantthresh__44cn1_s_p8_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44cn1_s_p8_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44cn1_s_p8_2 = { _vq_quantthresh__44cn1_s_p8_2, _vq_quantmap__44cn1_s_p8_2, 17, 17 }; static static_codebook _44cn1_s_p8_2 = { 2, 289, _vq_lengthlist__44cn1_s_p8_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44cn1_s_p8_2, NULL, &_vq_auxt__44cn1_s_p8_2, NULL, 0 }; static long _huff_lengthlist__44cn1_s_short[] = { 10, 9,12,15,12,13,16,14,16, 7, 1, 5,14, 7,10,13, 16,16, 9, 4, 6,16, 8,11,16,16,16,14, 4, 7,16, 9, 12,14,16,16,10, 5, 7,14, 9,12,14,15,15,13, 8, 9, 14,10,12,13,14,15,13, 9, 9, 7, 6, 8,11,12,12,14, 8, 8, 5, 4, 5, 8,11,12,16,10,10, 6, 5, 6, 8, 9, 10, }; static static_codebook _huff_book__44cn1_s_short = { 2, 81, _huff_lengthlist__44cn1_s_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44cn1_sm_long[] = { 3, 3, 8, 8, 8, 8,10,12,14, 3, 2, 6, 7, 7, 8,10, 12,16, 7, 6, 7, 9, 8,10,12,14,16, 8, 6, 8, 4, 5, 7, 9,11,13, 7, 6, 8, 5, 6, 7, 9,11,14, 8, 8,10, 7, 7, 6, 8,10,13, 9,11,12, 9, 9, 7, 8,10,12,10, 13,15,11,11,10, 9,10,13,13,16,17,14,15,14,13,14, 17, }; static static_codebook _huff_book__44cn1_sm_long = { 2, 81, _huff_lengthlist__44cn1_sm_long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44cn1_sm_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44cn1_sm_p1_0[] = { 1, 4, 5, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 7, 9, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 8,10, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,10, 9, 0, 0, 0, 0, 0, 0, 9, 9,10, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 8,10, 9, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 8, 9,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9,10, 0, 0, 0, 0, 0, 0, 9,10,10, 0, 0, 0, 0, 0, 0, 9,10, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44cn1_sm_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44cn1_sm_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44cn1_sm_p1_0 = { _vq_quantthresh__44cn1_sm_p1_0, _vq_quantmap__44cn1_sm_p1_0, 3, 3 }; static static_codebook _44cn1_sm_p1_0 = { 8, 6561, _vq_lengthlist__44cn1_sm_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44cn1_sm_p1_0, NULL, &_vq_auxt__44cn1_sm_p1_0, NULL, 0 }; static long _vq_quantlist__44cn1_sm_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44cn1_sm_p2_0[] = { 1, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44cn1_sm_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44cn1_sm_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44cn1_sm_p2_0 = { _vq_quantthresh__44cn1_sm_p2_0, _vq_quantmap__44cn1_sm_p2_0, 5, 5 }; static static_codebook _44cn1_sm_p2_0 = { 4, 625, _vq_lengthlist__44cn1_sm_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44cn1_sm_p2_0, NULL, &_vq_auxt__44cn1_sm_p2_0, NULL, 0 }; static long _vq_quantlist__44cn1_sm_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44cn1_sm_p3_0[] = { 1, 3, 4, 7, 7, 0, 0, 0, 0, 0, 4, 4, 7, 7, 0, 0, 0, 0, 0, 4, 5, 7, 7, 0, 0, 0, 0, 0, 6, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0,10, 9, 0, 0, 0, 0, 0, 0, 0,11,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__44cn1_sm_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44cn1_sm_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44cn1_sm_p3_0 = { _vq_quantthresh__44cn1_sm_p3_0, _vq_quantmap__44cn1_sm_p3_0, 9, 9 }; static static_codebook _44cn1_sm_p3_0 = { 2, 81, _vq_lengthlist__44cn1_sm_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44cn1_sm_p3_0, NULL, &_vq_auxt__44cn1_sm_p3_0, NULL, 0 }; static long _vq_quantlist__44cn1_sm_p4_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44cn1_sm_p4_0[] = { 1, 4, 3, 6, 6, 7, 7, 9, 9, 0, 5, 5, 7, 7, 8, 7, 9, 9, 0, 5, 5, 7, 7, 8, 8, 9, 9, 0, 7, 7, 8, 8, 8, 8,10,10, 0, 0, 0, 8, 8, 8, 8,10,10, 0, 0, 0, 9, 9, 9, 9,10,10, 0, 0, 0, 9, 9, 9, 9,10,10, 0, 0, 0,10,10,10,10,11,11, 0, 0, 0, 0, 0,10,10,11, 11, }; static float _vq_quantthresh__44cn1_sm_p4_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44cn1_sm_p4_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44cn1_sm_p4_0 = { _vq_quantthresh__44cn1_sm_p4_0, _vq_quantmap__44cn1_sm_p4_0, 9, 9 }; static static_codebook _44cn1_sm_p4_0 = { 2, 81, _vq_lengthlist__44cn1_sm_p4_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44cn1_sm_p4_0, NULL, &_vq_auxt__44cn1_sm_p4_0, NULL, 0 }; static long _vq_quantlist__44cn1_sm_p5_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44cn1_sm_p5_0[] = { 1, 4, 4, 6, 6, 8, 8, 9, 9, 8, 8, 9, 9,10,10,11, 11, 0, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9,10,10,11,11, 12,12, 0, 6, 5, 7, 7, 8, 8, 9, 9, 9, 9,10,10,11, 11,12,12, 0, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9,10,10, 11,11,12,12, 0, 0, 0, 7, 7, 8, 8, 9, 9,10,10,11, 11,11,11,12,12, 0, 0, 0, 8, 8, 9, 9,10,10,10,10, 11,11,12,12,12,12, 0, 0, 0, 8, 8, 9, 9,10,10,10, 10,11,11,12,12,12,12, 0, 0, 0, 9, 9, 9, 9,10,10, 10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9,10, 10,10,10,11,11,12,12,13,13, 0, 0, 0, 0, 0, 9, 9, 10,10,11,11,12,12,13,13,13,13, 0, 0, 0, 0, 0, 9, 9,10,10,11,11,12,12,12,13,13,13, 0, 0, 0, 0, 0, 10,10,11,11,11,11,12,12,13,13,14,14, 0, 0, 0, 0, 0, 0, 0,11,11,11,11,12,12,13,13,14,14, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,13,13,13,13,14,14, 0, 0, 0, 0, 0, 0, 0,11,11,12,12,13,13,13,13,14,14, 0, 0, 0, 0, 0, 0, 0,12,12,12,13,13,13,14,14,14,14, 0, 0, 0, 0, 0, 0, 0, 0, 0,12,12,13,13,14,14,14, 14, }; static float _vq_quantthresh__44cn1_sm_p5_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44cn1_sm_p5_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44cn1_sm_p5_0 = { _vq_quantthresh__44cn1_sm_p5_0, _vq_quantmap__44cn1_sm_p5_0, 17, 17 }; static static_codebook _44cn1_sm_p5_0 = { 2, 289, _vq_lengthlist__44cn1_sm_p5_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44cn1_sm_p5_0, NULL, &_vq_auxt__44cn1_sm_p5_0, NULL, 0 }; static long _vq_quantlist__44cn1_sm_p6_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44cn1_sm_p6_0[] = { 1, 4, 4, 7, 6, 6, 7, 6, 6, 4, 7, 6,10, 9, 9,11, 9, 9, 4, 6, 7,10, 9, 9,11, 9, 9, 7,10,10,10,11, 11,11,11,10, 6, 9, 9,11,10,10,11,10,10, 6, 9, 9, 11,10,11,11,10,10, 7,11,11,11,11,11,12,11,11, 7, 9, 9,11,10,10,12,10,10, 7, 9, 9,11,10,10,11,10, 10, }; static float _vq_quantthresh__44cn1_sm_p6_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44cn1_sm_p6_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44cn1_sm_p6_0 = { _vq_quantthresh__44cn1_sm_p6_0, _vq_quantmap__44cn1_sm_p6_0, 3, 3 }; static static_codebook _44cn1_sm_p6_0 = { 4, 81, _vq_lengthlist__44cn1_sm_p6_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44cn1_sm_p6_0, NULL, &_vq_auxt__44cn1_sm_p6_0, NULL, 0 }; static long _vq_quantlist__44cn1_sm_p6_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44cn1_sm_p6_1[] = { 2, 4, 4, 5, 5, 7, 7, 7, 7, 8, 8,10, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,10, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,10, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8,10,10,10, 7, 7, 7, 7, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 8, 8,10,10,10, 8, 8, 8, 8, 8, 8, 9, 9,10,10,10,10,10, 8, 8, 8, 8, 9, 9,10,10,10,10,10, 9, 9, 9, 9, 8, 9,10,10, 10,10,10, 8, 9, 8, 8, 9, 8, }; static float _vq_quantthresh__44cn1_sm_p6_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44cn1_sm_p6_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44cn1_sm_p6_1 = { _vq_quantthresh__44cn1_sm_p6_1, _vq_quantmap__44cn1_sm_p6_1, 11, 11 }; static static_codebook _44cn1_sm_p6_1 = { 2, 121, _vq_lengthlist__44cn1_sm_p6_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44cn1_sm_p6_1, NULL, &_vq_auxt__44cn1_sm_p6_1, NULL, 0 }; static long _vq_quantlist__44cn1_sm_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44cn1_sm_p7_0[] = { 1, 4, 4, 6, 6, 7, 7, 7, 7, 9, 9,10,10, 7, 5, 5, 7, 7, 8, 8, 8, 8,10, 9,11,10, 7, 5, 5, 7, 7, 8, 8, 8, 8, 9,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10,10,11,11, 0, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11, 11, 0,12,12, 9, 9, 9,10,10,10,11,11,12,12, 0,13, 13, 9, 9, 9, 9,10,10,11,11,12,12, 0, 0, 0,10,10, 10,10,11,11,12,12,12,13, 0, 0, 0,10,10,10,10,11, 11,12,12,12,12, 0, 0, 0,14,14,11,11,11,11,12,13, 13,13, 0, 0, 0,14,14,11,10,11,11,12,12,13,13, 0, 0, 0, 0, 0,12,12,12,12,13,13,13,14, 0, 0, 0, 0, 0,13,12,12,12,13,13,13,14, }; static float _vq_quantthresh__44cn1_sm_p7_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44cn1_sm_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44cn1_sm_p7_0 = { _vq_quantthresh__44cn1_sm_p7_0, _vq_quantmap__44cn1_sm_p7_0, 13, 13 }; static static_codebook _44cn1_sm_p7_0 = { 2, 169, _vq_lengthlist__44cn1_sm_p7_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44cn1_sm_p7_0, NULL, &_vq_auxt__44cn1_sm_p7_0, NULL, 0 }; static long _vq_quantlist__44cn1_sm_p7_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44cn1_sm_p7_1[] = { 2, 4, 4, 4, 5, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, }; static float _vq_quantthresh__44cn1_sm_p7_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44cn1_sm_p7_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44cn1_sm_p7_1 = { _vq_quantthresh__44cn1_sm_p7_1, _vq_quantmap__44cn1_sm_p7_1, 5, 5 }; static static_codebook _44cn1_sm_p7_1 = { 2, 25, _vq_lengthlist__44cn1_sm_p7_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44cn1_sm_p7_1, NULL, &_vq_auxt__44cn1_sm_p7_1, NULL, 0 }; static long _vq_quantlist__44cn1_sm_p8_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44cn1_sm_p8_0[] = { 1, 4, 4,12,11,13,13,14,14, 4, 7, 7,11,13,14,14, 14,14, 3, 8, 3,14,14,14,14,14,14,14,10,12,14,14, 14,14,14,14,14,14, 5,14, 8,14,14,14,14,14,12,14, 13,14,14,14,14,14,14,14,13,14,10,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, 14, }; static float _vq_quantthresh__44cn1_sm_p8_0[] = { -773.5, -552.5, -331.5, -110.5, 110.5, 331.5, 552.5, 773.5, }; static long _vq_quantmap__44cn1_sm_p8_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44cn1_sm_p8_0 = { _vq_quantthresh__44cn1_sm_p8_0, _vq_quantmap__44cn1_sm_p8_0, 9, 9 }; static static_codebook _44cn1_sm_p8_0 = { 2, 81, _vq_lengthlist__44cn1_sm_p8_0, 1, -516186112, 1627103232, 4, 0, _vq_quantlist__44cn1_sm_p8_0, NULL, &_vq_auxt__44cn1_sm_p8_0, NULL, 0 }; static long _vq_quantlist__44cn1_sm_p8_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44cn1_sm_p8_1[] = { 1, 4, 4, 6, 6, 8, 8, 9, 9,10,11,11,11, 6, 5, 5, 7, 7, 8, 8,10,10,10,11,11,11, 6, 5, 5, 7, 7, 8, 8,10,10,11,12,12,12,14, 7, 7, 7, 8, 9, 9,11,11, 11,12,11,12,17, 7, 7, 8, 7, 9, 9,11,11,12,12,12, 12,14,11,11, 8, 8,10,10,11,12,12,13,11,12,14,11, 11, 8, 8,10,10,11,12,12,13,13,12,14,15,14,10,10, 10,10,11,12,12,12,12,11,14,13,16,10,10,10, 9,12, 11,12,12,13,14,14,15,14,14,13,10,10,11,11,12,11, 13,11,14,12,15,13,14,11,10,12,10,12,12,13,13,13, 13,14,15,15,12,12,11,11,12,11,13,12,14,14,14,14, 17,12,12,11,10,13,11,13,13, }; static float _vq_quantthresh__44cn1_sm_p8_1[] = { -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, }; static long _vq_quantmap__44cn1_sm_p8_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44cn1_sm_p8_1 = { _vq_quantthresh__44cn1_sm_p8_1, _vq_quantmap__44cn1_sm_p8_1, 13, 13 }; static static_codebook _44cn1_sm_p8_1 = { 2, 169, _vq_lengthlist__44cn1_sm_p8_1, 1, -522616832, 1620115456, 4, 0, _vq_quantlist__44cn1_sm_p8_1, NULL, &_vq_auxt__44cn1_sm_p8_1, NULL, 0 }; static long _vq_quantlist__44cn1_sm_p8_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44cn1_sm_p8_2[] = { 3, 4, 4, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10, 6, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9,10, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,11,10,11, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,11,11, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,11,10,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,11,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,11,11,10,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11,10,11,11, 11,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,11,11, 11,11,11,11, 9,10,10,10, 9, 9, 9, 9, 9, 9,11,10, 11,11,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,11, 11,11,11,11,11,11,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 10,11,11,11,11,11,11,11,11, 9, 9, 9, 9, 9, 9, 9, 9, }; static float _vq_quantthresh__44cn1_sm_p8_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44cn1_sm_p8_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44cn1_sm_p8_2 = { _vq_quantthresh__44cn1_sm_p8_2, _vq_quantmap__44cn1_sm_p8_2, 17, 17 }; static static_codebook _44cn1_sm_p8_2 = { 2, 289, _vq_lengthlist__44cn1_sm_p8_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44cn1_sm_p8_2, NULL, &_vq_auxt__44cn1_sm_p8_2, NULL, 0 }; static long _huff_lengthlist__44cn1_sm_short[] = { 5, 6,12,14,12,14,16,17,18, 4, 2, 5,11, 7,10,12, 14,15, 9, 4, 5,11, 7,10,13,15,18,15, 6, 7, 5, 6, 8,11,13,16,11, 5, 6, 5, 5, 6, 9,13,15,12, 5, 7, 6, 5, 6, 9,12,14,12, 6, 7, 8, 6, 7, 9,12,13,14, 8, 8, 7, 5, 5, 8,10,12,16, 9, 9, 8, 6, 6, 7, 9, 9, }; static static_codebook _huff_book__44cn1_sm_short = { 2, 81, _huff_lengthlist__44cn1_sm_short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; /********* End of inlined file: res_books_stereo.h *********/ /***** residue backends *********************************************/ static vorbis_info_residue0 _residue_44_low={ 0,-1, -1, 9,-1, /* 0 1 2 3 4 5 6 7 */ {0}, {-1}, { .5, 1.5, 2.5, 2.5, 4.5, 8.5, 16.5, 32.5}, { .5, .5, .5, 999., 4.5, 8.5, 16.5, 32.5}, }; static vorbis_info_residue0 _residue_44_mid={ 0,-1, -1, 10,-1, /* 0 1 2 3 4 5 6 7 8 */ {0}, {-1}, { .5, 1.5, 1.5, 2.5, 2.5, 4.5, 8.5, 16.5, 32.5}, { .5, .5, 999., .5, 999., 4.5, 8.5, 16.5, 32.5}, }; static vorbis_info_residue0 _residue_44_high={ 0,-1, -1, 10,-1, /* 0 1 2 3 4 5 6 7 8 */ {0}, {-1}, { .5, 1.5, 2.5, 4.5, 8.5, 16.5, 32.5, 71.5,157.5}, { .5, 1.5, 2.5, 3.5, 4.5, 8.5, 16.5, 71.5,157.5}, }; static static_bookblock _resbook_44s_n1={ { {0},{0,0,&_44cn1_s_p1_0},{0,0,&_44cn1_s_p2_0}, {0,0,&_44cn1_s_p3_0},{0,0,&_44cn1_s_p4_0},{0,0,&_44cn1_s_p5_0}, {&_44cn1_s_p6_0,&_44cn1_s_p6_1},{&_44cn1_s_p7_0,&_44cn1_s_p7_1}, {&_44cn1_s_p8_0,&_44cn1_s_p8_1,&_44cn1_s_p8_2} } }; static static_bookblock _resbook_44sm_n1={ { {0},{0,0,&_44cn1_sm_p1_0},{0,0,&_44cn1_sm_p2_0}, {0,0,&_44cn1_sm_p3_0},{0,0,&_44cn1_sm_p4_0},{0,0,&_44cn1_sm_p5_0}, {&_44cn1_sm_p6_0,&_44cn1_sm_p6_1},{&_44cn1_sm_p7_0,&_44cn1_sm_p7_1}, {&_44cn1_sm_p8_0,&_44cn1_sm_p8_1,&_44cn1_sm_p8_2} } }; static static_bookblock _resbook_44s_0={ { {0},{0,0,&_44c0_s_p1_0},{0,0,&_44c0_s_p2_0}, {0,0,&_44c0_s_p3_0},{0,0,&_44c0_s_p4_0},{0,0,&_44c0_s_p5_0}, {&_44c0_s_p6_0,&_44c0_s_p6_1},{&_44c0_s_p7_0,&_44c0_s_p7_1}, {&_44c0_s_p8_0,&_44c0_s_p8_1,&_44c0_s_p8_2} } }; static static_bookblock _resbook_44sm_0={ { {0},{0,0,&_44c0_sm_p1_0},{0,0,&_44c0_sm_p2_0}, {0,0,&_44c0_sm_p3_0},{0,0,&_44c0_sm_p4_0},{0,0,&_44c0_sm_p5_0}, {&_44c0_sm_p6_0,&_44c0_sm_p6_1},{&_44c0_sm_p7_0,&_44c0_sm_p7_1}, {&_44c0_sm_p8_0,&_44c0_sm_p8_1,&_44c0_sm_p8_2} } }; static static_bookblock _resbook_44s_1={ { {0},{0,0,&_44c1_s_p1_0},{0,0,&_44c1_s_p2_0}, {0,0,&_44c1_s_p3_0},{0,0,&_44c1_s_p4_0},{0,0,&_44c1_s_p5_0}, {&_44c1_s_p6_0,&_44c1_s_p6_1},{&_44c1_s_p7_0,&_44c1_s_p7_1}, {&_44c1_s_p8_0,&_44c1_s_p8_1,&_44c1_s_p8_2} } }; static static_bookblock _resbook_44sm_1={ { {0},{0,0,&_44c1_sm_p1_0},{0,0,&_44c1_sm_p2_0}, {0,0,&_44c1_sm_p3_0},{0,0,&_44c1_sm_p4_0},{0,0,&_44c1_sm_p5_0}, {&_44c1_sm_p6_0,&_44c1_sm_p6_1},{&_44c1_sm_p7_0,&_44c1_sm_p7_1}, {&_44c1_sm_p8_0,&_44c1_sm_p8_1,&_44c1_sm_p8_2} } }; static static_bookblock _resbook_44s_2={ { {0},{0,0,&_44c2_s_p1_0},{0,0,&_44c2_s_p2_0},{0,0,&_44c2_s_p3_0}, {0,0,&_44c2_s_p4_0},{0,0,&_44c2_s_p5_0},{0,0,&_44c2_s_p6_0}, {&_44c2_s_p7_0,&_44c2_s_p7_1},{&_44c2_s_p8_0,&_44c2_s_p8_1}, {&_44c2_s_p9_0,&_44c2_s_p9_1,&_44c2_s_p9_2} } }; static static_bookblock _resbook_44s_3={ { {0},{0,0,&_44c3_s_p1_0},{0,0,&_44c3_s_p2_0},{0,0,&_44c3_s_p3_0}, {0,0,&_44c3_s_p4_0},{0,0,&_44c3_s_p5_0},{0,0,&_44c3_s_p6_0}, {&_44c3_s_p7_0,&_44c3_s_p7_1},{&_44c3_s_p8_0,&_44c3_s_p8_1}, {&_44c3_s_p9_0,&_44c3_s_p9_1,&_44c3_s_p9_2} } }; static static_bookblock _resbook_44s_4={ { {0},{0,0,&_44c4_s_p1_0},{0,0,&_44c4_s_p2_0},{0,0,&_44c4_s_p3_0}, {0,0,&_44c4_s_p4_0},{0,0,&_44c4_s_p5_0},{0,0,&_44c4_s_p6_0}, {&_44c4_s_p7_0,&_44c4_s_p7_1},{&_44c4_s_p8_0,&_44c4_s_p8_1}, {&_44c4_s_p9_0,&_44c4_s_p9_1,&_44c4_s_p9_2} } }; static static_bookblock _resbook_44s_5={ { {0},{0,0,&_44c5_s_p1_0},{0,0,&_44c5_s_p2_0},{0,0,&_44c5_s_p3_0}, {0,0,&_44c5_s_p4_0},{0,0,&_44c5_s_p5_0},{0,0,&_44c5_s_p6_0}, {&_44c5_s_p7_0,&_44c5_s_p7_1},{&_44c5_s_p8_0,&_44c5_s_p8_1}, {&_44c5_s_p9_0,&_44c5_s_p9_1,&_44c5_s_p9_2} } }; static static_bookblock _resbook_44s_6={ { {0},{0,0,&_44c6_s_p1_0},{0,0,&_44c6_s_p2_0},{0,0,&_44c6_s_p3_0}, {0,0,&_44c6_s_p4_0}, {&_44c6_s_p5_0,&_44c6_s_p5_1}, {&_44c6_s_p6_0,&_44c6_s_p6_1}, {&_44c6_s_p7_0,&_44c6_s_p7_1}, {&_44c6_s_p8_0,&_44c6_s_p8_1}, {&_44c6_s_p9_0,&_44c6_s_p9_1,&_44c6_s_p9_2} } }; static static_bookblock _resbook_44s_7={ { {0},{0,0,&_44c7_s_p1_0},{0,0,&_44c7_s_p2_0},{0,0,&_44c7_s_p3_0}, {0,0,&_44c7_s_p4_0}, {&_44c7_s_p5_0,&_44c7_s_p5_1}, {&_44c7_s_p6_0,&_44c7_s_p6_1}, {&_44c7_s_p7_0,&_44c7_s_p7_1}, {&_44c7_s_p8_0,&_44c7_s_p8_1}, {&_44c7_s_p9_0,&_44c7_s_p9_1,&_44c7_s_p9_2} } }; static static_bookblock _resbook_44s_8={ { {0},{0,0,&_44c8_s_p1_0},{0,0,&_44c8_s_p2_0},{0,0,&_44c8_s_p3_0}, {0,0,&_44c8_s_p4_0}, {&_44c8_s_p5_0,&_44c8_s_p5_1}, {&_44c8_s_p6_0,&_44c8_s_p6_1}, {&_44c8_s_p7_0,&_44c8_s_p7_1}, {&_44c8_s_p8_0,&_44c8_s_p8_1}, {&_44c8_s_p9_0,&_44c8_s_p9_1,&_44c8_s_p9_2} } }; static static_bookblock _resbook_44s_9={ { {0},{0,0,&_44c9_s_p1_0},{0,0,&_44c9_s_p2_0},{0,0,&_44c9_s_p3_0}, {0,0,&_44c9_s_p4_0}, {&_44c9_s_p5_0,&_44c9_s_p5_1}, {&_44c9_s_p6_0,&_44c9_s_p6_1}, {&_44c9_s_p7_0,&_44c9_s_p7_1}, {&_44c9_s_p8_0,&_44c9_s_p8_1}, {&_44c9_s_p9_0,&_44c9_s_p9_1,&_44c9_s_p9_2} } }; static vorbis_residue_template _res_44s_n1[]={ {2,0, &_residue_44_low, &_huff_book__44cn1_s_short,&_huff_book__44cn1_sm_short, &_resbook_44s_n1,&_resbook_44sm_n1}, {2,0, &_residue_44_low, &_huff_book__44cn1_s_long,&_huff_book__44cn1_sm_long, &_resbook_44s_n1,&_resbook_44sm_n1} }; static vorbis_residue_template _res_44s_0[]={ {2,0, &_residue_44_low, &_huff_book__44c0_s_short,&_huff_book__44c0_sm_short, &_resbook_44s_0,&_resbook_44sm_0}, {2,0, &_residue_44_low, &_huff_book__44c0_s_long,&_huff_book__44c0_sm_long, &_resbook_44s_0,&_resbook_44sm_0} }; static vorbis_residue_template _res_44s_1[]={ {2,0, &_residue_44_low, &_huff_book__44c1_s_short,&_huff_book__44c1_sm_short, &_resbook_44s_1,&_resbook_44sm_1}, {2,0, &_residue_44_low, &_huff_book__44c1_s_long,&_huff_book__44c1_sm_long, &_resbook_44s_1,&_resbook_44sm_1} }; static vorbis_residue_template _res_44s_2[]={ {2,0, &_residue_44_mid, &_huff_book__44c2_s_short,&_huff_book__44c2_s_short, &_resbook_44s_2,&_resbook_44s_2}, {2,0, &_residue_44_mid, &_huff_book__44c2_s_long,&_huff_book__44c2_s_long, &_resbook_44s_2,&_resbook_44s_2} }; static vorbis_residue_template _res_44s_3[]={ {2,0, &_residue_44_mid, &_huff_book__44c3_s_short,&_huff_book__44c3_s_short, &_resbook_44s_3,&_resbook_44s_3}, {2,0, &_residue_44_mid, &_huff_book__44c3_s_long,&_huff_book__44c3_s_long, &_resbook_44s_3,&_resbook_44s_3} }; static vorbis_residue_template _res_44s_4[]={ {2,0, &_residue_44_mid, &_huff_book__44c4_s_short,&_huff_book__44c4_s_short, &_resbook_44s_4,&_resbook_44s_4}, {2,0, &_residue_44_mid, &_huff_book__44c4_s_long,&_huff_book__44c4_s_long, &_resbook_44s_4,&_resbook_44s_4} }; static vorbis_residue_template _res_44s_5[]={ {2,0, &_residue_44_mid, &_huff_book__44c5_s_short,&_huff_book__44c5_s_short, &_resbook_44s_5,&_resbook_44s_5}, {2,0, &_residue_44_mid, &_huff_book__44c5_s_long,&_huff_book__44c5_s_long, &_resbook_44s_5,&_resbook_44s_5} }; static vorbis_residue_template _res_44s_6[]={ {2,0, &_residue_44_high, &_huff_book__44c6_s_short,&_huff_book__44c6_s_short, &_resbook_44s_6,&_resbook_44s_6}, {2,0, &_residue_44_high, &_huff_book__44c6_s_long,&_huff_book__44c6_s_long, &_resbook_44s_6,&_resbook_44s_6} }; static vorbis_residue_template _res_44s_7[]={ {2,0, &_residue_44_high, &_huff_book__44c7_s_short,&_huff_book__44c7_s_short, &_resbook_44s_7,&_resbook_44s_7}, {2,0, &_residue_44_high, &_huff_book__44c7_s_long,&_huff_book__44c7_s_long, &_resbook_44s_7,&_resbook_44s_7} }; static vorbis_residue_template _res_44s_8[]={ {2,0, &_residue_44_high, &_huff_book__44c8_s_short,&_huff_book__44c8_s_short, &_resbook_44s_8,&_resbook_44s_8}, {2,0, &_residue_44_high, &_huff_book__44c8_s_long,&_huff_book__44c8_s_long, &_resbook_44s_8,&_resbook_44s_8} }; static vorbis_residue_template _res_44s_9[]={ {2,0, &_residue_44_high, &_huff_book__44c9_s_short,&_huff_book__44c9_s_short, &_resbook_44s_9,&_resbook_44s_9}, {2,0, &_residue_44_high, &_huff_book__44c9_s_long,&_huff_book__44c9_s_long, &_resbook_44s_9,&_resbook_44s_9} }; static vorbis_mapping_template _mapres_template_44_stereo[]={ { _map_nominal, _res_44s_n1 }, /* -1 */ { _map_nominal, _res_44s_0 }, /* 0 */ { _map_nominal, _res_44s_1 }, /* 1 */ { _map_nominal, _res_44s_2 }, /* 2 */ { _map_nominal, _res_44s_3 }, /* 3 */ { _map_nominal, _res_44s_4 }, /* 4 */ { _map_nominal, _res_44s_5 }, /* 5 */ { _map_nominal, _res_44s_6 }, /* 6 */ { _map_nominal, _res_44s_7 }, /* 7 */ { _map_nominal, _res_44s_8 }, /* 8 */ { _map_nominal, _res_44s_9 }, /* 9 */ }; /********* End of inlined file: residue_44.h *********/ /********* Start of inlined file: psych_44.h *********/ /* preecho trigger settings *****************************************/ static vorbis_info_psy_global _psy_global_44[5]={ {8, /* lines per eighth octave */ {20.f,14.f,12.f,12.f,12.f,12.f,12.f}, {-60.f,-30.f,-40.f,-40.f,-40.f,-40.f,-40.f}, 2,-75.f, -6.f, {99.},{{99.},{99.}},{0},{0},{{0.},{0.}} }, {8, /* lines per eighth octave */ {14.f,10.f,10.f,10.f,10.f,10.f,10.f}, {-40.f,-30.f,-25.f,-25.f,-25.f,-25.f,-25.f}, 2,-80.f, -6.f, {99.},{{99.},{99.}},{0},{0},{{0.},{0.}} }, {8, /* lines per eighth octave */ {12.f,10.f,10.f,10.f,10.f,10.f,10.f}, {-20.f,-20.f,-15.f,-15.f,-15.f,-15.f,-15.f}, 0,-80.f, -6.f, {99.},{{99.},{99.}},{0},{0},{{0.},{0.}} }, {8, /* lines per eighth octave */ {10.f,8.f,8.f,8.f,8.f,8.f,8.f}, {-20.f,-15.f,-12.f,-12.f,-12.f,-12.f,-12.f}, 0,-80.f, -6.f, {99.},{{99.},{99.}},{0},{0},{{0.},{0.}} }, {8, /* lines per eighth octave */ {10.f,6.f,6.f,6.f,6.f,6.f,6.f}, {-15.f,-15.f,-12.f,-12.f,-12.f,-12.f,-12.f}, 0,-85.f, -6.f, {99.},{{99.},{99.}},{0},{0},{{0.},{0.}} }, }; /* noise compander lookups * low, mid, high quality ****************/ static compandblock _psy_compand_44[6]={ /* sub-mode Z short */ {{ 0, 1, 2, 3, 4, 5, 6, 7, /* 7dB */ 8, 9,10,11,12,13,14, 15, /* 15dB */ 16,17,18,19,20,21,22, 23, /* 23dB */ 24,25,26,27,28,29,30, 31, /* 31dB */ 32,33,34,35,36,37,38, 39, /* 39dB */ }}, /* mode_Z nominal short */ {{ 0, 1, 2, 3, 4, 5, 6, 6, /* 7dB */ 7, 7, 7, 7, 6, 6, 6, 7, /* 15dB */ 7, 8, 9,10,11,12,13, 14, /* 23dB */ 15,16,17,17,17,18,18, 19, /* 31dB */ 19,19,20,21,22,23,24, 25, /* 39dB */ }}, /* mode A short */ {{ 0, 1, 2, 3, 4, 5, 5, 5, /* 7dB */ 6, 6, 6, 5, 4, 4, 4, 4, /* 15dB */ 4, 4, 5, 5, 5, 6, 6, 6, /* 23dB */ 7, 7, 7, 8, 8, 8, 9, 10, /* 31dB */ 11,12,13,14,15,16,17, 18, /* 39dB */ }}, /* sub-mode Z long */ {{ 0, 1, 2, 3, 4, 5, 6, 7, /* 7dB */ 8, 9,10,11,12,13,14, 15, /* 15dB */ 16,17,18,19,20,21,22, 23, /* 23dB */ 24,25,26,27,28,29,30, 31, /* 31dB */ 32,33,34,35,36,37,38, 39, /* 39dB */ }}, /* mode_Z nominal long */ {{ 0, 1, 2, 3, 4, 5, 6, 7, /* 7dB */ 8, 9,10,11,12,12,13, 13, /* 15dB */ 13,14,14,14,15,15,15, 15, /* 23dB */ 16,16,17,17,17,18,18, 19, /* 31dB */ 19,19,20,21,22,23,24, 25, /* 39dB */ }}, /* mode A long */ {{ 0, 1, 2, 3, 4, 5, 6, 7, /* 7dB */ 8, 8, 7, 6, 5, 4, 4, 4, /* 15dB */ 4, 4, 5, 5, 5, 6, 6, 6, /* 23dB */ 7, 7, 7, 8, 8, 8, 9, 10, /* 31dB */ 11,12,13,14,15,16,17, 18, /* 39dB */ }} }; /* tonal masking curve level adjustments *************************/ static vp_adjblock _vp_tonemask_adj_longblock[12]={ /* 63 125 250 500 1 2 4 8 16 */ {{ -3, -8,-13,-15,-10,-10,-10,-10,-10,-10,-10, 0, 0, 0, 0, 0, 0}}, /* -1 */ /* {{-15,-15,-15,-15,-10, -8, -4, -2, 0, 0, 0, 10, 0, 0, 0, 0, 0}}, 0 */ {{ -4,-10,-14,-16,-15,-14,-13,-12,-12,-12,-11, -1, -1, -1, -1, -1, 0}}, /* 0 */ /* {{-15,-15,-15,-15,-15,-12,-10, -8, 0, 0, 0, 5, 0, 0, 0, 0, 0}}, 1 */ {{ -6,-12,-14,-16,-15,-15,-14,-13,-13,-12,-12, -2, -2, -1, -1, -1, 0}}, /* 1 */ /* {{-15,-15,-15,-15,-15,-12,-10, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 2 */ {{-12,-13,-14,-16,-16,-16,-15,-14,-13,-12,-12, -6, -3, -1, -1, -1, 0}}, /* 2 */ /* {{-15,-15,-15,-15,-15,-12,-10, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 3 */ {{-15,-15,-15,-16,-16,-16,-16,-14,-13,-13,-13,-10, -4, -2, -1, -1, 0}}, /* 3 */ /* {{-15,-15,-15,-15,-15,-12,-10, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, *//* 4 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-13,-11, -7 -3, -1, -1 , 0}}, /* 4 */ /* {{-15,-15,-15,-15,-15,-12,-10, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 5 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-13,-11, -7 -3, -1, -1 , 0}}, /* 5 */ /* {{-15,-15,-15,-15,-15,-12,-10, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 6 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-14,-12, -8, -4, -2, -2, 0}}, /* 6 */ /* {{-15,-15,-15,-15,-15,-12,-10, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 7 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-14,-12, -9, -4, -2, -2, 0}}, /* 7 */ /* {{-15,-15,-15,-15,-15,-12,-10, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 8 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-14,-12, -9, -4, -2, -2, 0}}, /* 8 */ /* {{-15,-15,-15,-15,-15,-12,-10, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 9 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-14,-12, -9, -4, -2, -2, 0}}, /* 9 */ /* {{-15,-15,-15,-15,-15,-12,-10, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 10 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-14,-12, -9, -4, -2, -2, 0}}, /* 10 */ }; static vp_adjblock _vp_tonemask_adj_otherblock[12]={ /* 63 125 250 500 1 2 4 8 16 */ {{ -3, -8,-13,-15,-10,-10, -9, -9, -9, -9, -9, 1, 1, 1, 1, 1, 1}}, /* -1 */ /* {{-20,-20,-20,-20,-14,-12,-10, -8, -4, 0, 0, 10, 0, 0, 0, 0, 0}}, 0 */ {{ -4,-10,-14,-16,-14,-13,-12,-12,-11,-11,-10, 0, 0, 0, 0, 0, 0}}, /* 0 */ /* {{-20,-20,-20,-20,-20,-18,-16,-14,-10, 0, 0, 5, 0, 0, 0, 0, 0}}, 1 */ {{ -6,-12,-14,-16,-15,-15,-14,-13,-13,-12,-12, -2, -2, -1, 0, 0, 0}}, /* 1 */ /* {{-20,-20,-20,-20,-20,-18,-16,-14,-10, 0, 0, 0, 0, 0, 0, 0, 0}}, 2 */ {{-12,-13,-14,-16,-16,-16,-15,-14,-13,-12,-12, -5, -2, -1, 0, 0, 0}}, /* 2 */ /* {{-20,-20,-20,-20,-20,-18,-16,-14,-10, 0, 0, 0, 0, 0, 0, 0, 0}}, 3 */ {{-15,-15,-15,-16,-16,-16,-16,-14,-13,-13,-13,-10, -4, -2, 0, 0, 0}}, /* 3 */ /* {{-20,-20,-20,-20,-20,-18,-16,-14,-10, 0, 0, 0, 0, 0, 0, 0, 0}}, 4 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-13,-11, -7 -3, -1, -1 , 0}}, /* 4 */ /* {{-20,-20,-20,-20,-20,-18,-16,-14,-10, 0, 0, 0, 0, 0, 0, 0, 0}}, 5 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-13,-11, -7 -3, -1, -1 , 0}}, /* 5 */ /* {{-20,-20,-20,-20,-20,-18,-16,-14,-10, 0, 0, 0, 0, 0, 0, 0, 0}}, 6 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-14,-12, -8, -4, -2, -2, 0}}, /* 6 */ /* {{-20,-20,-20,-20,-20,-18,-16,-14,-10, 0, 0, 0, 0, 0, 0, 0, 0}}, 7 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-14,-12, -9, -4, -2, -2, 0}}, /* 7 */ /* {{-20,-20,-20,-20,-20,-18,-16,-14,-10, 0, 0, 0, 0, 0, 0, 0, 0}}, 8 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-14,-12, -9, -4, -2, -2, 0}}, /* 8 */ /* {{-20,-20,-20,-20,-20,-18,-16,-14,-10, 0, 0, 0, 0, 0, 0, 0, 0}}, 9 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-14,-12, -9, -4, -2, -2, 0}}, /* 9 */ /* {{-20,-20,-20,-20,-20,-18,-16,-14,-10, 0, 0, 0, 0, 0, 0, 0, 0}}, 10 */ {{-16,-16,-16,-16,-16,-16,-16,-15,-14,-14,-14,-12, -9, -4, -2, -2, 0}}, /* 10 */ }; /* noise bias (transition block) */ static noise3 _psy_noisebias_trans[12]={ /* 63 125 250 500 1k 2k 4k 8k 16k*/ /* -1 */ {{{-10,-10,-10,-10,-10, -4, 0, 0, 4, 8, 8, 8, 8, 10, 12, 14, 20}, {-30,-30,-30,-30,-26,-20,-16, -8, -6, -6, -2, 2, 2, 3, 6, 6, 15}, {-30,-30,-30,-30,-30,-24,-20,-14,-10, -6, -8, -8, -6, -6, -6, -4, -2}}}, /* 0 {{{-15,-15,-15,-15,-15,-12,-10, -8, 0, 2, 4, 4, 5, 5, 5, 8, 10}, {-30,-30,-30,-30,-26,-22,-20,-14, -8, -4, 0, 0, 0, 0, 2, 4, 10}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -6, -6, -6, -6, -4, -4, -4, -2}}},*/ {{{-15,-15,-15,-15,-15,-12, -6, -4, 0, 2, 4, 4, 5, 5, 5, 8, 10}, {-30,-30,-30,-30,-26,-22,-20,-14, -8, -4, 0, 0, 0, 0, 2, 3, 6}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -6, -6, -6, -6, -4, -4, -4, -2}}}, /* 1 {{{-15,-15,-15,-15,-15,-12,-10, -8, 0, 2, 4, 4, 5, 5, 5, 8, 10}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -4, -2, -2, -2, -2, 0, 2, 8}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -8, -8, -8, -8, -6, -6, -6, -4}}},*/ {{{-15,-15,-15,-15,-15,-12,-10, -8, 0, 2, 4, 4, 5, 5, 5, 8, 10}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -4, -2, -2, -2, -2, 0, 1, 4}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -8, -8, -8, -8, -6, -6, -6, -4}}}, /* 2 {{{-15,-15,-15,-15,-15,-12,-10, -8, 0, 2, 2, 2, 4, 4, 5, 6, 10}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -4, -2, -2, -2, -2, 0, 2, 6}, {-30,-30,-30,-30,-26,-22,-20,-14,-10,-10,-10,-10,-10, -8, -8, -8, -4}}}, */ {{{-15,-15,-15,-15,-15,-12,-10, -8, 0, 2, 2, 2, 4, 4, 5, 6, 10}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -4, -3, -3, -3, -2, -1, 0, 3}, {-30,-30,-30,-30,-26,-22,-20,-14,-10,-10,-10,-10,-10, -8, -8, -7, -4}}}, /* 3 {{{-15,-15,-15,-15,-15,-12,-10, -8, 0, 2, 2, 2, 4, 4, 4, 5, 8}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -4, -3, -3, -3, -3, -1, 1, 6}, {-30,-30,-30,-30,-26,-22,-20,-14,-10,-10,-10,-10,-10, -8, -8, -8, -4}}},*/ {{{-15,-15,-15,-15,-15,-12,-10, -8, 0, 2, 2, 2, 4, 4, 4, 5, 8}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -4, -3, -3, -3, -3, -2, 0, 2}, {-30,-30,-30,-30,-26,-22,-20,-14,-10,-10,-10,-10,-10, -8, -8, -8, -4}}}, /* 4 {{{-20,-20,-20,-20,-20,-18,-14, -8, -1, 1, 1, 1, 2, 3, 3, 4, 7}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -4, -3, -3, -3, -3, -1, 1, 5}, {-30,-30,-30,-30,-26,-22,-20,-14,-10,-10,-10,-10,-10, -8, -8, -8, -4}}},*/ {{{-20,-20,-20,-20,-20,-18,-14, -8, -1, 1, 1, 1, 2, 3, 3, 4, 7}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -4, -3, -3, -3, -3, -2, -1, 1}, {-30,-30,-30,-30,-26,-22,-20,-14,-10,-10,-10,-10,-10, -8, -8, -8, -4}}}, /* 5 {{{-24,-24,-24,-24,-20,-18,-14, -8, -1, 1, 1, 1, 2, 3, 3, 4, 7}, {-32,-32,-32,-32,-28,-24,-22,-16,-12, -6, -4, -4, -4, -4, -2, -1, 2}, {-34,-34,-34,-34,-30,-24,-24,-18,-14,-12,-12,-12,-12,-10,-10, -9, -5}}}, */ {{{-24,-24,-24,-24,-20,-18,-14, -8, -1, 1, 1, 1, 2, 3, 3, 4, 7}, {-32,-32,-32,-32,-28,-24,-22,-16,-12, -6, -4, -4, -4, -4, -3, -1, 0}, {-34,-34,-34,-34,-30,-24,-24,-18,-14,-12,-12,-12,-12,-10,-10, -9, -5}}}, /* 6 {{{-24,-24,-24,-24,-20,-18,-14, -8, -1, 1, 1, 1, 2, 3, 3, 4, 7}, {-32,-32,-32,-32,-28,-24,-24,-18,-14, -8, -6, -6, -6, -6, -4, -2, 1}, {-34,-34,-34,-34,-30,-26,-24,-18,-17,-15,-15,-15,-15,-13,-13,-12, -8}}},*/ {{{-24,-24,-24,-24,-20,-18,-14, -8, -1, 1, 1, 1, 2, 3, 3, 4, 7}, {-32,-32,-32,-32,-28,-24,-24,-18,-14, -8, -6, -6, -6, -6, -5, -2, 0}, {-34,-34,-34,-34,-30,-26,-26,-24,-22,-19,-19,-19,-19,-18,-17,-16,-12}}}, /* 7 {{{-24,-24,-24,-24,-20,-18,-14, -8, -1, 1, 1, 1, 2, 3, 3, 4, 7}, {-32,-32,-32,-32,-28,-24,-24,-18,-14,-12,-10, -8, -8, -8, -6, -4, 0}, {-34,-34,-34,-34,-30,-26,-26,-24,-22,-19,-19,-19,-19,-18,-17,-16,-12}}},*/ {{{-24,-24,-24,-24,-20,-18,-14, -8, -1, 1, 1, 1, 2, 3, 3, 4, 7}, {-32,-32,-32,-32,-28,-24,-24,-24,-18,-14,-12,-10,-10,-10, -8, -6, -2}, {-34,-34,-34,-34,-30,-26,-26,-26,-24,-24,-24,-24,-24,-24,-24,-20,-16}}}, /* 8 {{{-24,-24,-24,-24,-22,-20,-15,-10, -8, -2, 0, 0, 0, 1, 2, 3, 7}, {-36,-36,-36,-36,-30,-30,-30,-24,-18,-14,-12,-10,-10,-10, -8, -6, -2}, {-36,-36,-36,-36,-34,-30,-28,-26,-24,-24,-24,-24,-24,-24,-24,-20,-16}}},*/ {{{-24,-24,-24,-24,-22,-20,-15,-10, -8, -2, 0, 0, 0, 1, 2, 3, 7}, {-36,-36,-36,-36,-30,-30,-30,-24,-20,-16,-16,-16,-16,-14,-12,-10, -7}, {-36,-36,-36,-36,-34,-30,-28,-26,-24,-30,-30,-30,-30,-30,-30,-24,-20}}}, /* 9 {{{-28,-28,-28,-28,-28,-28,-28,-20,-14, -8, -4, -4, -4, -4, -4, -2, 2}, {-36,-36,-36,-36,-34,-32,-32,-28,-20,-16,-16,-16,-16,-14,-12,-10, -7}, {-40,-40,-40,-40,-40,-40,-40,-32,-30,-30,-30,-30,-30,-30,-30,-24,-20}}},*/ {{{-28,-28,-28,-28,-28,-28,-28,-20,-14, -8, -4, -4, -4, -4, -4, -2, 2}, {-38,-38,-38,-38,-36,-34,-34,-30,-24,-20,-20,-20,-20,-18,-16,-12,-10}, {-40,-40,-40,-40,-40,-40,-40,-38,-35,-35,-35,-35,-35,-35,-35,-35,-30}}}, /* 10 */ {{{-30,-30,-30,-30,-30,-30,-30,-28,-20,-14,-14,-14,-14,-14,-14,-12,-10}, {-40,-40,-40,-40,-40,-40,-40,-40,-35,-30,-30,-30,-30,-30,-30,-30,-20}, {-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40}}}, }; /* noise bias (long block) */ static noise3 _psy_noisebias_long[12]={ /*63 125 250 500 1k 2k 4k 8k 16k*/ /* -1 */ {{{-10,-10,-10,-10,-10, -4, 0, 0, 0, 6, 6, 6, 6, 10, 10, 12, 20}, {-20,-20,-20,-20,-20,-20,-10, -2, 0, 0, 0, 0, 0, 2, 4, 6, 15}, {-20,-20,-20,-20,-20,-20,-20,-10, -6, -6, -6, -6, -6, -4, -4, -4, -2}}}, /* 0 */ /* {{{-10,-10,-10,-10,-10,-10, -8, 2, 2, 2, 4, 4, 5, 5, 5, 8, 10}, {-20,-20,-20,-20,-20,-20,-20,-14, -6, 0, 0, 0, 0, 0, 2, 4, 10}, {-20,-20,-20,-20,-20,-20,-20,-14, -8, -6, -6, -6, -6, -4, -4, -4, -2}}},*/ {{{-10,-10,-10,-10,-10,-10, -8, 2, 2, 2, 4, 4, 5, 5, 5, 8, 10}, {-20,-20,-20,-20,-20,-20,-20,-14, -6, 0, 0, 0, 0, 0, 2, 3, 6}, {-20,-20,-20,-20,-20,-20,-20,-14, -8, -6, -6, -6, -6, -4, -4, -4, -2}}}, /* 1 */ /* {{{-10,-10,-10,-10,-10,-10, -8, -4, 0, 2, 4, 4, 5, 5, 5, 8, 10}, {-20,-20,-20,-20,-20,-20,-20,-14,-10, -4, -2, -2, -2, -2, 0, 2, 8}, {-20,-20,-20,-20,-20,-20,-20,-14,-10, -8, -8, -8, -8, -6, -6, -6, -4}}},*/ {{{-10,-10,-10,-10,-10,-10, -8, -4, 0, 2, 4, 4, 5, 5, 5, 8, 10}, {-20,-20,-20,-20,-20,-20,-20,-14,-10, -4, -2, -2, -2, -2, 0, 1, 4}, {-20,-20,-20,-20,-20,-20,-20,-14,-10, -8, -8, -8, -8, -6, -6, -6, -4}}}, /* 2 */ /* {{{-10,-10,-10,-10,-10,-10,-10, -8, 0, 2, 2, 2, 4, 4, 5, 6, 10}, {-20,-20,-20,-20,-20,-20,-20,-14,-10, -4, -2, -2, -2, -2, 0, 2, 6}, {-20,-20,-20,-20,-20,-20,-20,-14,-10,-10,-10,-10,-10, -8, -8, -8, -4}}},*/ {{{-10,-10,-10,-10,-10,-10,-10, -8, 0, 2, 2, 2, 4, 4, 5, 6, 10}, {-20,-20,-20,-20,-20,-20,-20,-14,-10, -4, -3, -3, -3, -2, -1, 0, 3}, {-20,-20,-20,-20,-20,-20,-20,-14,-10,-10,-10,-10,-10, -8, -8, -8, -4}}}, /* 3 */ /* {{{-10,-10,-10,-10,-10,-10,-10, -8, 0, 2, 2, 2, 4, 4, 4, 5, 8}, {-20,-20,-20,-20,-20,-20,-20,-14,-10, -4, -3, -3, -3, -3, -1, 1, 6}, {-20,-20,-20,-20,-20,-20,-20,-14,-10,-10,-10,-10,-10, -8, -8, -8, -4}}},*/ {{{-10,-10,-10,-10,-10,-10,-10, -8, 0, 2, 2, 2, 4, 4, 4, 5, 8}, {-20,-20,-20,-20,-20,-20,-20,-14,-10, -4, -3, -3, -3, -3, -2, 0, 2}, {-20,-20,-20,-20,-20,-20,-20,-14,-10,-10,-10,-10,-10, -8, -8, -8, -5}}}, /* 4 */ /* {{{-15,-15,-15,-15,-15,-15,-15,-10, -4, 1, 1, 1, 2, 3, 3, 4, 7}, {-20,-20,-20,-20,-20,-20,-20,-14,-10, -4, -3, -3, -3, -3, -1, 1, 5}, {-20,-20,-20,-20,-20,-20,-20,-14,-10,-10,-10,-10,-10, -8, -8, -8, -4}}},*/ {{{-15,-15,-15,-15,-15,-15,-15,-10, -4, 1, 1, 1, 2, 3, 3, 4, 7}, {-20,-20,-20,-20,-20,-20,-20,-14,-10, -4, -3, -3, -3, -3, -2, -1, 1}, {-20,-20,-20,-20,-20,-20,-20,-14,-10,-10,-10,-10,-10, -8, -8, -8, -7}}}, /* 5 */ /* {{{-15,-15,-15,-15,-15,-15,-15,-10, -4, 1, 1, 1, 2, 3, 3, 4, 7}, {-22,-22,-22,-22,-22,-22,-22,-16,-12, -6, -4, -4, -4, -4, -2, -1, 2}, {-24,-24,-24,-24,-24,-24,-24,-18,-14,-12,-12,-12,-12,-10,-10, -9, -5}}},*/ {{{-15,-15,-15,-15,-15,-15,-15,-10, -4, 1, 1, 1, 2, 3, 3, 4, 7}, {-22,-22,-22,-22,-22,-22,-22,-16,-12, -6, -4, -4, -4, -4, -3, -1, 0}, {-24,-24,-24,-24,-24,-24,-24,-18,-14,-12,-12,-12,-12,-10,-10, -9, -8}}}, /* 6 */ /* {{{-15,-15,-15,-15,-15,-15,-15,-10, -4, 1, 1, 1, 2, 3, 3, 4, 7}, {-24,-24,-24,-24,-24,-24,-24,-18,-14, -8, -6, -6, -6, -6, -4, -2, 1}, {-26,-26,-26,-26,-26,-26,-26,-18,-16,-15,-15,-15,-15,-13,-13,-12, -8}}},*/ {{{-15,-15,-15,-15,-15,-15,-15,-10, -4, 1, 1, 1, 2, 3, 3, 4, 7}, {-24,-24,-24,-24,-24,-24,-24,-18,-14, -8, -6, -6, -6, -6, -5, -2, 0}, {-26,-26,-26,-26,-26,-26,-26,-18,-16,-15,-15,-15,-15,-13,-13,-12,-10}}}, /* 7 */ {{{-15,-15,-15,-15,-15,-15,-15,-10, -4, 1, 1, 1, 2, 3, 3, 4, 7}, {-24,-24,-24,-24,-24,-24,-24,-18,-14,-10, -8, -8, -8, -8, -6, -4, 0}, {-26,-26,-26,-26,-26,-26,-26,-22,-20,-19,-19,-19,-19,-18,-17,-16,-12}}}, /* 8 */ {{{-15,-15,-15,-15,-15,-15,-15,-10, -4, 0, 0, 0, 0, 1, 2, 3, 7}, {-26,-26,-26,-26,-26,-26,-26,-20,-16,-12,-10,-10,-10,-10, -8, -6, -2}, {-28,-28,-28,-28,-28,-28,-28,-26,-24,-24,-24,-24,-24,-24,-24,-20,-16}}}, /* 9 */ {{{-22,-22,-22,-22,-22,-22,-22,-18,-14, -8, -4, -4, -4, -4, -4, -2, 2}, {-26,-26,-26,-26,-26,-26,-26,-22,-18,-16,-16,-16,-16,-14,-12,-10, -7}, {-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-24,-20}}}, /* 10 */ {{{-24,-24,-24,-24,-24,-24,-24,-24,-24,-18,-14,-14,-14,-14,-14,-12,-10}, {-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-20}, {-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40}}}, }; /* noise bias (impulse block) */ static noise3 _psy_noisebias_impulse[12]={ /* 63 125 250 500 1k 2k 4k 8k 16k*/ /* -1 */ {{{-10,-10,-10,-10,-10, -4, 0, 0, 4, 8, 8, 8, 8, 10, 12, 14, 20}, {-30,-30,-30,-30,-26,-20,-16, -8, -6, -6, -2, 2, 2, 3, 6, 6, 15}, {-30,-30,-30,-30,-30,-24,-20,-14,-10, -6, -8, -8, -6, -6, -6, -4, -2}}}, /* 0 */ /* {{{-10,-10,-10,-10,-10, -4, 0, 0, 4, 4, 8, 8, 8, 10, 12, 14, 20}, {-30,-30,-30,-30,-26,-22,-20,-14, -6, -2, 0, 0, 0, 0, 2, 4, 10}, {-30,-30,-30,-30,-30,-24,-20,-14,-10, -6, -8, -8, -6, -6, -6, -4, -2}}},*/ {{{-10,-10,-10,-10,-10, -4, 0, 0, 4, 4, 8, 8, 8, 10, 12, 14, 20}, {-30,-30,-30,-30,-26,-22,-20,-14, -6, -2, 0, 0, 0, 0, 2, 3, 6}, {-30,-30,-30,-30,-30,-24,-20,-14,-10, -6, -8, -8, -6, -6, -6, -4, -2}}}, /* 1 */ {{{-12,-12,-12,-12,-12, -8, -6, -4, 0, 4, 4, 4, 4, 10, 12, 14, 20}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -6, -4, -4, -2, -2, -2, -2, 2}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -8,-10,-10, -8, -8, -8, -6, -4}}}, /* 2 */ {{{-14,-14,-14,-14,-14,-10, -8, -6, -2, 2, 2, 2, 2, 8, 10, 10, 16}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -6, -6, -6, -4, -4, -4, -2, 0}, {-30,-30,-30,-30,-26,-22,-20,-14,-10,-10,-10,-10,-10,-10,-10, -8, -4}}}, /* 3 */ {{{-14,-14,-14,-14,-14,-10, -8, -6, -2, 2, 2, 2, 2, 6, 8, 8, 14}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -6, -6, -6, -4, -4, -4, -2, 0}, {-30,-30,-30,-30,-26,-22,-20,-14,-10,-10,-10,-10,-10,-10,-10, -8, -4}}}, /* 4 */ {{{-16,-16,-16,-16,-16,-12,-10, -6, -2, 0, 0, 0, 0, 4, 6, 6, 12}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -6, -6, -6, -4, -4, -4, -2, 0}, {-30,-30,-30,-30,-26,-22,-20,-14,-10,-10,-10,-10,-10,-10,-10, -8, -4}}}, /* 5 */ {{{-20,-20,-20,-20,-20,-18,-14,-10, -4, 0, 0, 0, 0, 4, 4, 6, 11}, {-32,-32,-32,-32,-28,-24,-22,-16,-10, -6, -8, -8, -6, -6, -6, -4, -2}, {-34,-34,-34,-34,-30,-26,-24,-18,-14,-12,-12,-12,-12,-12,-10, -9, -5}}}, /* 6 {{{-20,-20,-20,-20,-20,-18,-14,-10, -4, 0, 0, 0, 0, 4, 4, 6, 11}, {-34,-34,-34,-34,-30,-30,-24,-20,-12,-12,-14,-14,-10, -9, -8, -6, -4}, {-34,-34,-34,-34,-34,-30,-26,-20,-16,-15,-15,-15,-15,-15,-13,-12, -8}}},*/ {{{-20,-20,-20,-20,-20,-18,-14,-10, -4, 0, 0, 0, 0, 4, 4, 6, 11}, {-34,-34,-34,-34,-30,-30,-30,-24,-16,-16,-16,-16,-16,-16,-14,-14,-12}, {-36,-36,-36,-36,-36,-34,-28,-24,-20,-20,-20,-20,-20,-20,-20,-18,-16}}}, /* 7 */ /* {{{-22,-22,-22,-22,-22,-20,-14,-10, -6, 0, 0, 0, 0, 4, 4, 6, 11}, {-34,-34,-34,-34,-30,-30,-24,-20,-14,-14,-16,-16,-14,-12,-10,-10,-10}, {-34,-34,-34,-34,-32,-32,-30,-24,-20,-19,-19,-19,-19,-19,-17,-16,-12}}},*/ {{{-22,-22,-22,-22,-22,-20,-14,-10, -6, 0, 0, 0, 0, 4, 4, 6, 11}, {-34,-34,-34,-34,-30,-30,-30,-30,-26,-26,-26,-26,-26,-26,-26,-24,-22}, {-40,-40,-40,-40,-40,-40,-40,-32,-30,-30,-30,-30,-30,-30,-30,-30,-24}}}, /* 8 */ /* {{{-24,-24,-24,-24,-24,-22,-14,-10, -6, -1, -1, -1, -1, 3, 3, 5, 10}, {-34,-34,-34,-34,-30,-30,-30,-24,-20,-20,-20,-20,-20,-18,-16,-16,-14}, {-36,-36,-36,-36,-36,-34,-28,-24,-24,-24,-24,-24,-24,-24,-24,-20,-16}}},*/ {{{-24,-24,-24,-24,-24,-22,-14,-10, -6, -1, -1, -1, -1, 3, 3, 5, 10}, {-34,-34,-34,-34,-34,-32,-32,-30,-26,-26,-26,-26,-26,-26,-26,-26,-24}, {-40,-40,-40,-40,-40,-40,-40,-32,-30,-30,-30,-30,-30,-30,-30,-30,-24}}}, /* 9 */ /* {{{-28,-28,-28,-28,-28,-28,-28,-20,-14, -8, -4, -4, -4, -4, -4, -2, 2}, {-36,-36,-36,-36,-34,-32,-32,-30,-26,-26,-26,-26,-26,-22,-20,-20,-18}, {-40,-40,-40,-40,-40,-40,-40,-32,-30,-30,-30,-30,-30,-30,-30,-24,-20}}},*/ {{{-28,-28,-28,-28,-28,-28,-28,-20,-14, -8, -4, -4, -4, -4, -4, -2, 2}, {-36,-36,-36,-36,-34,-32,-32,-30,-26,-26,-26,-26,-26,-26,-26,-26,-26}, {-40,-40,-40,-40,-40,-40,-40,-32,-30,-30,-30,-30,-30,-30,-30,-24,-20}}}, /* 10 */ {{{-30,-30,-30,-30,-30,-26,-24,-24,-24,-20,-16,-16,-16,-16,-16,-14,-12}, {-40,-40,-40,-40,-40,-40,-40,-40,-35,-30,-30,-30,-30,-30,-30,-30,-26}, {-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40}}}, }; /* noise bias (padding block) */ static noise3 _psy_noisebias_padding[12]={ /* 63 125 250 500 1k 2k 4k 8k 16k*/ /* -1 */ {{{-10,-10,-10,-10,-10, -4, 0, 0, 4, 8, 8, 8, 8, 10, 12, 14, 20}, {-30,-30,-30,-30,-26,-20,-16, -8, -6, -6, -2, 2, 2, 3, 6, 6, 15}, {-30,-30,-30,-30,-30,-24,-20,-14,-10, -6, -8, -8, -6, -6, -6, -4, -2}}}, /* 0 */ {{{-10,-10,-10,-10,-10, -4, 0, 0, 4, 8, 8, 8, 8, 10, 12, 14, 20}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -4, -2, 2, 3, 6, 6, 8, 10}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -4, -4, -4, -4, -4, -2, 0, 2}}}, /* 1 */ {{{-12,-12,-12,-12,-12, -8, -6, -4, 0, 4, 4, 4, 4, 10, 12, 14, 20}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -4, 0, 0, 0, 2, 2, 4, 8}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -6, -6, -6, -6, -6, -4, -2, 0}}}, /* 2 */ /* {{{-14,-14,-14,-14,-14,-10, -8, -6, -2, 2, 2, 2, 2, 8, 10, 10, 16}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -4, 0, 0, 0, 2, 2, 4, 8}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -8, -8, -8, -8, -8, -6, -4, -2}}},*/ {{{-14,-14,-14,-14,-14,-10, -8, -6, -2, 2, 2, 2, 2, 8, 10, 10, 16}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -6, -1, -1, -1, 0, 0, 2, 6}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -8, -8, -8, -8, -8, -6, -4, -2}}}, /* 3 */ {{{-14,-14,-14,-14,-14,-10, -8, -6, -2, 2, 2, 2, 2, 6, 8, 8, 14}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -6, -1, -1, -1, 0, 0, 2, 6}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -8, -8, -8, -8, -8, -6, -4, -2}}}, /* 4 */ {{{-16,-16,-16,-16,-16,-12,-10, -6, -2, 0, 0, 0, 0, 4, 6, 6, 12}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -6, -1, -1, -1, -1, 0, 2, 6}, {-30,-30,-30,-30,-26,-22,-20,-14,-10, -8, -8, -8, -8, -8, -6, -4, -2}}}, /* 5 */ {{{-20,-20,-20,-20,-20,-18,-14,-10, -4, 0, 0, 0, 0, 4, 6, 6, 12}, {-32,-32,-32,-32,-28,-24,-22,-16,-12, -6, -3, -3, -3, -3, -2, 0, 4}, {-34,-34,-34,-34,-30,-26,-24,-18,-14,-10,-10,-10,-10,-10, -8, -5, -3}}}, /* 6 */ {{{-20,-20,-20,-20,-20,-18,-14,-10, -4, 0, 0, 0, 0, 4, 6, 6, 12}, {-34,-34,-34,-34,-30,-30,-24,-20,-14, -8, -4, -4, -4, -4, -3, -1, 4}, {-34,-34,-34,-34,-34,-30,-26,-20,-16,-13,-13,-13,-13,-13,-11, -8, -6}}}, /* 7 */ {{{-20,-20,-20,-20,-20,-18,-14,-10, -4, 0, 0, 0, 0, 4, 6, 6, 12}, {-34,-34,-34,-34,-30,-30,-30,-24,-16,-10, -8, -6, -6, -6, -5, -3, 1}, {-34,-34,-34,-34,-32,-32,-28,-22,-18,-16,-16,-16,-16,-16,-14,-12,-10}}}, /* 8 */ {{{-22,-22,-22,-22,-22,-20,-14,-10, -4, 0, 0, 0, 0, 3, 5, 5, 11}, {-34,-34,-34,-34,-30,-30,-30,-24,-16,-12,-10, -8, -8, -8, -7, -5, -2}, {-36,-36,-36,-36,-36,-34,-28,-22,-20,-20,-20,-20,-20,-20,-20,-16,-14}}}, /* 9 */ {{{-28,-28,-28,-28,-28,-28,-28,-20,-14, -8, -2, -2, -2, -2, 0, 2, 6}, {-36,-36,-36,-36,-34,-32,-32,-24,-16,-12,-12,-12,-12,-12,-10, -8, -5}, {-40,-40,-40,-40,-40,-40,-40,-32,-26,-24,-24,-24,-24,-24,-24,-20,-18}}}, /* 10 */ {{{-30,-30,-30,-30,-30,-26,-24,-24,-24,-20,-12,-12,-12,-12,-12,-10, -8}, {-40,-40,-40,-40,-40,-40,-40,-40,-35,-30,-25,-25,-25,-25,-25,-25,-15}, {-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40,-40}}}, }; static noiseguard _psy_noiseguards_44[4]={ {3,3,15}, {3,3,15}, {10,10,100}, {10,10,100}, }; static int _psy_tone_suppress[12]={ -20,-20,-20,-20,-20,-24,-30,-40,-40,-45,-45,-45, }; static int _psy_tone_0dB[12]={ 90,90,95,95,95,95,105,105,105,105,105,105, }; static int _psy_noise_suppress[12]={ -20,-20,-24,-24,-24,-24,-30,-40,-40,-45,-45,-45, }; static vorbis_info_psy _psy_info_template={ /* blockflag */ -1, /* ath_adjatt, ath_maxatt */ -140.,-140., /* tonemask att boost/decay,suppr,curves */ {0.f,0.f,0.f}, 0.,0., -40.f, {0.}, /*noisemaskp,supp, low/high window, low/hi guard, minimum */ 1, -0.f, .5f, .5f, 0,0,0, /* noiseoffset*3, noisecompand, max_curve_dB */ {{-1},{-1},{-1}},{-1},105.f, /* noise normalization - channel_p, point_p, start, partition, thresh. */ 0,0,-1,-1,0., }; /* ath ****************/ static int _psy_ath_floater[12]={ -100,-100,-100,-100,-100,-100,-105,-105,-105,-105,-110,-120, }; static int _psy_ath_abs[12]={ -130,-130,-130,-130,-140,-140,-140,-140,-140,-140,-140,-150, }; /* stereo setup. These don't map directly to quality level, there's an additional indirection as several of the below may be used in a single bitmanaged stream ****************/ /* various stereo possibilities */ /* stereo mode by base quality level */ static adj_stereo _psy_stereo_modes_44[12]={ /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 -1 */ {{ 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 1, 0, 0, 0, 0}, { 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 4, 3}, { 1, 2, 3, 4, 4, 4, 4, 4, 4, 5, 6, 7, 8, 8, 8}, { 12,12.5, 13,13.5, 14,14.5, 15, 99, 99, 99, 99, 99, 99, 99, 99}}, /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 */ /*{{ 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 1, 0, 0, 0, 0}, { 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 4, 3}, { 1, 2, 3, 4, 5, 5, 6, 6, 6, 6, 6, 7, 8, 8, 8}, { 12,12.5, 13,13.5, 14,14.5, 15, 99, 99, 99, 99, 99, 99, 99, 99}},*/ {{ 4, 4, 4, 4, 4, 4, 4, 3, 2, 1, 0, 0, 0, 0, 0}, { 8, 8, 8, 8, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 3}, { 1, 2, 3, 4, 4, 5, 6, 6, 6, 6, 6, 8, 8, 8, 8}, { 12,12.5, 13,13.5, 14,14.5, 15, 99, 99, 99, 99, 99, 99, 99, 99}}, /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 */ {{ 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 0, 0, 0, 0, 0}, { 8, 8, 8, 8, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 3}, { 1, 2, 3, 4, 4, 5, 6, 6, 6, 6, 6, 8, 8, 8, 8}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 2 */ /* {{ 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 0, 0, 0, 0, 0}, { 8, 8, 8, 6, 5, 5, 5, 5, 5, 5, 5, 4, 3, 2, 1}, { 3, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, */ {{ 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0}, { 8, 8, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 3, 2, 1}, { 3, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3 */ {{ 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0}, { 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1}, { 4, 4, 5, 6, 6, 6, 6, 6, 8, 8, 10, 10, 10, 10, 10}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 4 */ {{ 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 1, 0}, { 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 */ /* {{ 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0}, { 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}},*/ {{ 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0}, { 6, 7, 8, 8, 8, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 6 */ /* {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 3, 3, 3, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, */ {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 3, 3, 3, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 8, 8, 8, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 7 */ /* {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 3, 3, 3, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}},*/ {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 3, 3, 3, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 8, 8, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 8 */ /* {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}},*/ {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 8, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 9 */ {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 10 */ {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, }; /* tone master attenuation by base quality mode and bitrate tweak */ static att3 _psy_tone_masteratt_44[12]={ {{ 35, 21, 9}, 0, 0}, /* -1 */ {{ 30, 20, 8}, -2, 1.25}, /* 0 */ /* {{ 25, 14, 4}, 0, 0}, *//* 1 */ {{ 25, 12, 2}, 0, 0}, /* 1 */ /* {{ 20, 10, -2}, 0, 0}, *//* 2 */ {{ 20, 9, -3}, 0, 0}, /* 2 */ {{ 20, 9, -4}, 0, 0}, /* 3 */ {{ 20, 9, -4}, 0, 0}, /* 4 */ {{ 20, 6, -6}, 0, 0}, /* 5 */ {{ 20, 3, -10}, 0, 0}, /* 6 */ {{ 18, 1, -14}, 0, 0}, /* 7 */ {{ 18, 0, -16}, 0, 0}, /* 8 */ {{ 18, -2, -16}, 0, 0}, /* 9 */ {{ 12, -2, -20}, 0, 0}, /* 10 */ }; /* lowpass by mode **************/ static double _psy_lowpass_44[12]={ /* 15.1,15.8,16.5,17.9,20.5,48.,999.,999.,999.,999.,999. */ 13.9,15.1,15.8,16.5,17.2,18.9,20.1,48.,999.,999.,999.,999. }; /* noise normalization **********/ static int _noise_start_short_44[11]={ /* 16,16,16,16,32,32,9999,9999,9999,9999 */ 32,16,16,16,32,9999,9999,9999,9999,9999,9999 }; static int _noise_start_long_44[11]={ /* 128,128,128,256,512,512,9999,9999,9999,9999 */ 256,128,128,256,512,9999,9999,9999,9999,9999,9999 }; static int _noise_part_short_44[11]={ 8,8,8,8,8,8,8,8,8,8,8 }; static int _noise_part_long_44[11]={ 32,32,32,32,32,32,32,32,32,32,32 }; static double _noise_thresh_44[11]={ /* .2,.2,.3,.4,.5,.5,9999.,9999.,9999.,9999., */ .2,.2,.2,.4,.6,9999.,9999.,9999.,9999.,9999.,9999., }; static double _noise_thresh_5only[2]={ .5,.5, }; /********* End of inlined file: psych_44.h *********/ static double rate_mapping_44_stereo[12]={ 22500.,32000.,40000.,48000.,56000.,64000., 80000.,96000.,112000.,128000.,160000.,250001. }; static double quality_mapping_44[12]={ -.1,.0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1.0 }; static int blocksize_short_44[11]={ 512,256,256,256,256,256,256,256,256,256,256 }; static int blocksize_long_44[11]={ 4096,2048,2048,2048,2048,2048,2048,2048,2048,2048,2048 }; static double _psy_compand_short_mapping[12]={ 0.5, 1., 1., 1.3, 1.6, 2., 2., 2., 2., 2., 2., 2. }; static double _psy_compand_long_mapping[12]={ 3.5, 4., 4., 4.3, 4.6, 5., 5., 5., 5., 5., 5., 5. }; static double _global_mapping_44[12]={ /* 1., 1., 1.5, 2., 2., 2.5, 2.7, 3.0, 3.5, 4., 4. */ 0., 1., 1., 1.5, 2., 2., 2.5, 2.7, 3.0, 3.7, 4., 4. }; static int _floor_short_mapping_44[11]={ 1,0,0,2,2,4,5,5,5,5,5 }; static int _floor_long_mapping_44[11]={ 8,7,7,7,7,7,7,7,7,7,7 }; ve_setup_data_template ve_setup_44_stereo={ 11, rate_mapping_44_stereo, quality_mapping_44, 2, 40000, 50000, blocksize_short_44, blocksize_long_44, _psy_tone_masteratt_44, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_otherblock, _vp_tonemask_adj_longblock, _vp_tonemask_adj_otherblock, _psy_noiseguards_44, _psy_noisebias_impulse, _psy_noisebias_padding, _psy_noisebias_trans, _psy_noisebias_long, _psy_noise_suppress, _psy_compand_44, _psy_compand_short_mapping, _psy_compand_long_mapping, {_noise_start_short_44,_noise_start_long_44}, {_noise_part_short_44,_noise_part_long_44}, _noise_thresh_44, _psy_ath_floater, _psy_ath_abs, _psy_lowpass_44, _psy_global_44, _global_mapping_44, _psy_stereo_modes_44, _floor_books, _floor, _floor_short_mapping_44, _floor_long_mapping_44, _mapres_template_44_stereo }; /********* End of inlined file: setup_44.h *********/ /********* Start of inlined file: setup_44u.h *********/ /********* Start of inlined file: residue_44u.h *********/ /********* Start of inlined file: res_books_uncoupled.h *********/ static long _vq_quantlist__16u0__p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16u0__p1_0[] = { 1, 4, 4, 5, 7, 7, 5, 7, 8, 5, 8, 8, 8,10,10, 8, 10,11, 5, 8, 8, 8,10,10, 8,10,10, 4, 9, 9, 9,12, 11, 8,11,11, 8,12,11,10,12,14,10,13,13, 7,11,11, 10,14,12,11,14,14, 4, 9, 9, 8,11,11, 9,11,12, 7, 11,11,10,13,14,10,12,14, 8,11,12,10,14,14,10,13, 12, }; static float _vq_quantthresh__16u0__p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__16u0__p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16u0__p1_0 = { _vq_quantthresh__16u0__p1_0, _vq_quantmap__16u0__p1_0, 3, 3 }; static static_codebook _16u0__p1_0 = { 4, 81, _vq_lengthlist__16u0__p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__16u0__p1_0, NULL, &_vq_auxt__16u0__p1_0, NULL, 0 }; static long _vq_quantlist__16u0__p2_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16u0__p2_0[] = { 2, 4, 4, 5, 6, 6, 5, 6, 6, 5, 7, 7, 7, 8, 9, 7, 8, 9, 5, 7, 7, 7, 9, 8, 7, 9, 7, 4, 7, 7, 7, 9, 9, 7, 8, 8, 6, 9, 8, 7, 8,11, 9,11,10, 6, 8, 9, 8,11, 8, 9,10,11, 4, 7, 7, 7, 8, 8, 7, 9, 9, 6, 9, 8, 9,11,10, 8, 8,11, 6, 8, 9, 9,10,11, 8,11, 8, }; static float _vq_quantthresh__16u0__p2_0[] = { -0.5, 0.5, }; static long _vq_quantmap__16u0__p2_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16u0__p2_0 = { _vq_quantthresh__16u0__p2_0, _vq_quantmap__16u0__p2_0, 3, 3 }; static static_codebook _16u0__p2_0 = { 4, 81, _vq_lengthlist__16u0__p2_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__16u0__p2_0, NULL, &_vq_auxt__16u0__p2_0, NULL, 0 }; static long _vq_quantlist__16u0__p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16u0__p3_0[] = { 1, 5, 5, 7, 7, 6, 7, 7, 8, 8, 6, 7, 8, 8, 8, 8, 9, 9,11,11, 8, 9, 9,11,11, 6, 9, 8,10,10, 8,10, 10,11,11, 8,10,10,11,11,10,11,10,13,12, 9,11,10, 13,13, 6, 8, 9,10,10, 8,10,10,11,11, 8,10,10,11, 11, 9,10,11,13,12,10,10,11,12,12, 8,11,11,14,13, 10,12,11,15,13, 9,12,11,15,14,12,14,13,16,14,12, 13,13,17,14, 8,11,11,13,14, 9,11,12,14,15,10,11, 12,13,15,11,13,13,14,16,12,13,14,14,16, 5, 9, 9, 11,11, 9,11,11,12,12, 8,11,11,12,12,11,12,12,15, 14,10,12,12,15,15, 8,11,11,13,12,10,12,12,13,13, 10,12,12,14,13,12,12,13,14,15,11,13,13,17,16, 7, 11,11,13,13,10,12,12,14,13,10,12,12,13,14,12,13, 12,15,14,11,13,13,15,14, 9,12,12,16,15,11,13,13, 17,16,10,13,13,16,16,13,14,15,15,16,13,15,14,19, 17, 9,12,12,14,16,11,13,13,15,16,10,13,13,17,16, 13,14,13,17,15,12,15,15,16,17, 5, 9, 9,11,11, 8, 11,11,13,12, 9,11,11,12,12,10,12,12,14,15,11,12, 12,14,14, 7,11,10,13,12,10,12,12,14,13,10,11,12, 13,13,11,13,13,15,16,12,12,13,15,15, 7,11,11,13, 13,10,13,13,14,14,10,12,12,13,13,11,13,13,16,15, 12,13,13,15,14, 9,12,12,15,15,10,13,13,17,16,11, 12,13,15,15,12,15,14,18,18,13,14,14,16,17, 9,12, 12,15,16,10,13,13,15,16,11,13,13,15,16,13,15,15, 17,17,13,15,14,16,15, 7,11,11,15,16,10,13,12,16, 17,10,12,13,15,17,15,16,16,18,17,13,15,15,17,18, 8,12,12,16,16,11,13,14,17,18,11,13,13,18,16,15, 17,16,17,19,14,15,15,17,16, 8,12,12,16,15,11,14, 13,18,17,11,13,14,18,17,15,16,16,18,17,13,16,16, 18,18,11,15,14,18,17,13,14,15,18, 0,12,15,15, 0, 17,17,16,17,17,18,14,16,18,18, 0,11,14,14,17, 0, 12,15,14,17,19,12,15,14,18, 0,15,18,16, 0,17,14, 18,16,18, 0, 7,11,11,16,15,10,12,12,18,16,10,13, 13,16,15,13,15,14,17,17,14,16,16,19,18, 8,12,12, 16,16,11,13,13,18,16,11,13,14,17,16,14,15,15,19, 18,15,16,16, 0,19, 8,12,12,16,17,11,13,13,17,17, 11,14,13,17,17,13,15,15,17,19,15,17,17,19, 0,11, 14,15,19,17,12,15,16,18,18,12,14,15,19,17,14,16, 17, 0,18,16,16,19,17, 0,11,14,14,18,19,12,15,14, 17,17,13,16,14,17,16,14,17,16,18,18,15,18,15, 0, 18, }; static float _vq_quantthresh__16u0__p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16u0__p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16u0__p3_0 = { _vq_quantthresh__16u0__p3_0, _vq_quantmap__16u0__p3_0, 5, 5 }; static static_codebook _16u0__p3_0 = { 4, 625, _vq_lengthlist__16u0__p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16u0__p3_0, NULL, &_vq_auxt__16u0__p3_0, NULL, 0 }; static long _vq_quantlist__16u0__p4_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16u0__p4_0[] = { 3, 5, 5, 8, 8, 6, 6, 6, 9, 9, 6, 6, 6, 9, 9, 9, 10, 9,11,11, 9, 9, 9,11,11, 6, 7, 7,10,10, 7, 7, 8,10,10, 7, 7, 8,10,10,10,10,10,11,12, 9,10,10, 11,12, 6, 7, 7,10,10, 7, 8, 7,10,10, 7, 8, 7,10, 10,10,11,10,12,11,10,10,10,13,10, 9,10,10,12,12, 10,11,10,14,12, 9,11,11,13,13,11,12,13,13,13,11, 12,12,15,13, 9,10,10,12,13, 9,11,10,12,13,10,10, 11,12,13,11,12,12,12,13,11,12,12,13,13, 5, 7, 7, 10,10, 7, 8, 8,10,10, 7, 8, 8,10,10,10,11,10,12, 13,10,10,11,12,12, 6, 8, 8,11,10, 7, 8, 9,10,12, 8, 9, 9,11,11,11,10,11,11,12,10,11,11,13,12, 7, 8, 8,10,11, 8, 9, 8,11,10, 8, 9, 9,11,11,10,12, 10,13,11,10,11,11,13,13,10,11,10,14,13,10,10,11, 13,13,10,12,11,14,13,12,11,13,12,13,13,12,13,14, 14,10,11,11,13,13,10,11,10,12,13,10,12,12,12,14, 12,12,12,14,12,12,13,12,17,15, 5, 7, 7,10,10, 7, 8, 8,10,10, 7, 8, 8,11,10,10,10,11,12,12,10,11, 11,12,13, 6, 8, 8,11,10, 8, 9, 9,11,11, 7, 8, 9, 10,11,11,11,11,12,12,10,10,11,12,13, 6, 8, 8,10, 11, 8, 9, 9,11,11, 7, 9, 7,11,10,10,12,12,13,13, 11,11,10,13,11, 9,11,10,14,13,11,11,11,15,13,10, 10,11,13,13,12,13,13,14,14,12,11,12,12,13,10,11, 11,12,13,10,11,12,13,13,10,11,10,13,12,12,12,13, 14, 0,12,13,11,13,11, 8,10,10,13,13,10,11,11,14, 13,10,11,11,13,12,13,14,14,14,15,12,12,12,15,14, 9,11,10,13,12,10,10,11,13,14,11,11,11,15,12,13, 12,14,15,16,13,13,13,14,13, 9,11,11,12,12,10,12, 11,13,13,10,11,11,13,14,13,13,13,15,15,13,13,14, 17,15,11,12,12,14,14,10,11,12,13,15,12,13,13, 0, 15,13,11,14,12,16,14,16,14, 0,15,11,12,12,14,16, 11,13,12,16,15,12,13,13,14,15,12,14,12,15,13,15, 14,14,16,16, 8,10,10,13,13,10,11,10,13,14,10,11, 11,13,13,13,13,12,14,14,14,13,13,16,17, 9,10,10, 12,14,10,12,11,14,13,10,11,12,13,14,12,12,12,15, 15,13,13,13,14,14, 9,10,10,13,13,10,11,12,12,14, 10,11,10,13,13,13,13,13,14,16,13,13,13,14,14,11, 12,13,15,13,12,14,13,14,16,12,12,13,13,14,13,14, 14,17,15,13,12,17,13,16,11,12,13,14,15,12,13,14, 14,17,11,12,11,14,14,13,16,14,16, 0,14,15,11,15, 11, }; static float _vq_quantthresh__16u0__p4_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16u0__p4_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16u0__p4_0 = { _vq_quantthresh__16u0__p4_0, _vq_quantmap__16u0__p4_0, 5, 5 }; static static_codebook _16u0__p4_0 = { 4, 625, _vq_lengthlist__16u0__p4_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16u0__p4_0, NULL, &_vq_auxt__16u0__p4_0, NULL, 0 }; static long _vq_quantlist__16u0__p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__16u0__p5_0[] = { 1, 4, 4, 7, 7, 7, 7, 9, 9, 4, 6, 6, 8, 8, 8, 8, 9, 9, 4, 6, 6, 8, 8, 8, 8, 9, 9, 7, 8, 8, 9, 9, 9, 9,11,10, 7, 8, 8, 9, 9, 9, 9,10,11, 7, 8, 8, 9, 9,10,10,11,11, 7, 8, 8, 9, 9,10,10,11,11, 9, 9, 9,10,10,11,11,12,12, 9, 9, 9,10,10,11,11,12, 12, }; static float _vq_quantthresh__16u0__p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__16u0__p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__16u0__p5_0 = { _vq_quantthresh__16u0__p5_0, _vq_quantmap__16u0__p5_0, 9, 9 }; static static_codebook _16u0__p5_0 = { 2, 81, _vq_lengthlist__16u0__p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__16u0__p5_0, NULL, &_vq_auxt__16u0__p5_0, NULL, 0 }; static long _vq_quantlist__16u0__p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__16u0__p6_0[] = { 1, 4, 4, 7, 7,10,10,12,12,13,13,18,17, 3, 6, 6, 9, 9,11,11,13,13,14,14,18,17, 3, 6, 6, 9, 9,11, 11,13,13,14,14,17,18, 7, 9, 9,11,11,13,13,14,14, 15,15, 0, 0, 7, 9, 9,11,11,13,13,14,14,15,16,19, 18,10,11,11,13,13,14,14,16,15,17,18, 0, 0,10,11, 11,13,13,14,14,15,15,16,18, 0, 0,11,13,13,14,14, 15,15,17,17, 0,19, 0, 0,11,13,13,14,14,14,15,16, 18, 0,19, 0, 0,13,14,14,15,15,18,17,18,18, 0,19, 0, 0,13,14,14,15,16,16,16,18,18,19, 0, 0, 0,16, 17,17, 0,17,19,19, 0,19, 0, 0, 0, 0,16,19,16,17, 18, 0,19, 0, 0, 0, 0, 0, 0, }; static float _vq_quantthresh__16u0__p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__16u0__p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__16u0__p6_0 = { _vq_quantthresh__16u0__p6_0, _vq_quantmap__16u0__p6_0, 13, 13 }; static static_codebook _16u0__p6_0 = { 2, 169, _vq_lengthlist__16u0__p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__16u0__p6_0, NULL, &_vq_auxt__16u0__p6_0, NULL, 0 }; static long _vq_quantlist__16u0__p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16u0__p6_1[] = { 1, 4, 5, 6, 6, 4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 7, 7, }; static float _vq_quantthresh__16u0__p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16u0__p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16u0__p6_1 = { _vq_quantthresh__16u0__p6_1, _vq_quantmap__16u0__p6_1, 5, 5 }; static static_codebook _16u0__p6_1 = { 2, 25, _vq_lengthlist__16u0__p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16u0__p6_1, NULL, &_vq_auxt__16u0__p6_1, NULL, 0 }; static long _vq_quantlist__16u0__p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16u0__p7_0[] = { 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__16u0__p7_0[] = { -157.5, 157.5, }; static long _vq_quantmap__16u0__p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16u0__p7_0 = { _vq_quantthresh__16u0__p7_0, _vq_quantmap__16u0__p7_0, 3, 3 }; static static_codebook _16u0__p7_0 = { 4, 81, _vq_lengthlist__16u0__p7_0, 1, -518803456, 1628680192, 2, 0, _vq_quantlist__16u0__p7_0, NULL, &_vq_auxt__16u0__p7_0, NULL, 0 }; static long _vq_quantlist__16u0__p7_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__16u0__p7_1[] = { 1, 5, 5, 6, 5, 9,10,11,11,10,10,10,10,10,10, 5, 8, 8, 8,10,10,10,10,10,10,10,10,10,10,10, 5, 8, 9, 9, 9,10,10,10,10,10,10,10,10,10,10, 5,10, 8, 10,10,10,10,10,10,10,10,10,10,10,10, 4, 8, 9,10, 10,10,10,10,10,10,10,10,10,10,10, 9,10,10,10,10, 10,10,10,10,10,10,10,10,10,10, 9,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10, }; static float _vq_quantthresh__16u0__p7_1[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__16u0__p7_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__16u0__p7_1 = { _vq_quantthresh__16u0__p7_1, _vq_quantmap__16u0__p7_1, 15, 15 }; static static_codebook _16u0__p7_1 = { 2, 225, _vq_lengthlist__16u0__p7_1, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__16u0__p7_1, NULL, &_vq_auxt__16u0__p7_1, NULL, 0 }; static long _vq_quantlist__16u0__p7_2[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__16u0__p7_2[] = { 1, 6, 6, 7, 8, 7, 7,10, 9,10, 9,11,10, 9,11,10, 9, 9, 9, 9,10, 6, 8, 7, 9, 9, 8, 8,10,10, 9,11, 11,12,12,10, 9,11, 9,12,10, 9, 6, 9, 8, 9,12, 8, 8,11, 9,11,11,12,11,12,12,10,11,11,10,10,11, 7, 10, 9, 9, 9, 9, 9,10, 9,10, 9,10,10,12,10,10,10, 11,12,10,10, 7, 9, 9, 9,10, 9, 9,10,10, 9, 9, 9, 11,11,10,10,10,10, 9, 9,12, 7, 9,10, 9,11, 9,10, 9,10,11,11,11,10,11,12, 9,12,11,10,10,10, 7, 9, 9, 9, 9,10,12,10, 9,11,12,10,11,12,12,11, 9,10, 11,10,11, 7, 9,10,10,11,10, 9,10,11,11,11,10,12, 12,12,11,11,10,11,11,12, 8, 9,10,12,11,10,10,12, 12,12,12,12,10,11,11, 9,11,10,12,11,11, 8, 9,10, 10,11,12,11,11,10,10,10,12,12,12, 9,10,12,12,12, 12,12, 8,10,11,10,10,12, 9,11,12,12,11,12,12,12, 12,10,12,10,10,10,10, 8,12,11,11,11,10,10,11,12, 12,12,12,11,12,12,12,11,11,11,12,10, 9,10,10,12, 10,12,10,12,12,10,10,10,11,12,12,12,11,12,12,12, 11,10,11,12,12,12,11,12,12,11,12,12,11,12,12,12, 12,11,12,12,10,10,10,10,11,11,12,11,12,12,12,12, 12,12,12,11,12,11,10,11,11,12,11,11, 9,10,10,10, 12,10,10,11, 9,11,12,11,12,11,12,12,10,11,10,12, 9, 9, 9,12,11,10,11,10,12,10,12,10,12,12,12,11, 11,11,11,11,10, 9,10,10,11,10,11,11,12,11,10,11, 12,12,12,11,11, 9,12,10,12, 9,10,12,10,10,11,10, 11,11,12,11,10,11,10,11,11,11,11,12,11,11,10, 9, 10,10,10, 9,11,11,10, 9,12,10,11,12,11,12,12,11, 12,11,12,11,10,11,10,12,11,12,11,12,11,12,10,11, 10,10,12,11,10,11,11,11,10, }; static float _vq_quantthresh__16u0__p7_2[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__16u0__p7_2[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__16u0__p7_2 = { _vq_quantthresh__16u0__p7_2, _vq_quantmap__16u0__p7_2, 21, 21 }; static static_codebook _16u0__p7_2 = { 2, 441, _vq_lengthlist__16u0__p7_2, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__16u0__p7_2, NULL, &_vq_auxt__16u0__p7_2, NULL, 0 }; static long _huff_lengthlist__16u0__single[] = { 3, 5, 8, 7,14, 8, 9,19, 5, 2, 5, 5, 9, 6, 9,19, 8, 4, 5, 7, 8, 9,13,19, 7, 4, 6, 5, 9, 6, 9,19, 12, 8, 7, 9,10,11,13,19, 8, 5, 8, 6, 9, 6, 7,19, 8, 8,10, 7, 7, 4, 5,19,12,17,19,15,18,13,11,18, }; static static_codebook _huff_book__16u0__single = { 2, 64, _huff_lengthlist__16u0__single, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__16u1__long[] = { 3, 6,10, 8,12, 8,14, 8,14,19, 5, 3, 5, 5, 7, 6, 11, 7,16,19, 7, 5, 6, 7, 7, 9,11,12,19,19, 6, 4, 7, 5, 7, 6,10, 7,18,18, 8, 6, 7, 7, 7, 7, 8, 9, 18,18, 7, 5, 8, 5, 7, 5, 8, 6,18,18,12, 9,10, 9, 9, 9, 8, 9,18,18, 8, 7,10, 6, 8, 5, 6, 4,11,18, 11,15,16,12,11, 8, 8, 6, 9,18,14,18,18,18,16,16, 16,13,16,18, }; static static_codebook _huff_book__16u1__long = { 2, 100, _huff_lengthlist__16u1__long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__16u1__p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16u1__p1_0[] = { 1, 4, 4, 5, 7, 7, 5, 7, 7, 5, 8, 7, 7,10,10, 7, 9,10, 5, 7, 8, 7,10, 9, 7,10,10, 5, 8, 8, 8,10, 10, 8,10,10, 7,10,10,10,11,12,10,12,13, 7,10,10, 9,13,11,10,12,13, 5, 8, 8, 8,10,10, 8,10,10, 7, 10,10,10,12,12, 9,11,12, 7,10,11,10,12,12,10,13, 11, }; static float _vq_quantthresh__16u1__p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__16u1__p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16u1__p1_0 = { _vq_quantthresh__16u1__p1_0, _vq_quantmap__16u1__p1_0, 3, 3 }; static static_codebook _16u1__p1_0 = { 4, 81, _vq_lengthlist__16u1__p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__16u1__p1_0, NULL, &_vq_auxt__16u1__p1_0, NULL, 0 }; static long _vq_quantlist__16u1__p2_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16u1__p2_0[] = { 3, 4, 4, 5, 6, 6, 5, 6, 6, 5, 6, 6, 6, 7, 8, 6, 7, 8, 5, 6, 6, 6, 8, 7, 6, 8, 7, 5, 6, 6, 6, 8, 8, 6, 8, 8, 6, 8, 8, 7, 7,10, 8, 9, 9, 6, 8, 8, 7, 9, 8, 8, 9,10, 5, 6, 6, 6, 8, 8, 7, 8, 8, 6, 8, 8, 8,10, 9, 7, 8, 9, 6, 8, 8, 8, 9, 9, 7,10, 8, }; static float _vq_quantthresh__16u1__p2_0[] = { -0.5, 0.5, }; static long _vq_quantmap__16u1__p2_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16u1__p2_0 = { _vq_quantthresh__16u1__p2_0, _vq_quantmap__16u1__p2_0, 3, 3 }; static static_codebook _16u1__p2_0 = { 4, 81, _vq_lengthlist__16u1__p2_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__16u1__p2_0, NULL, &_vq_auxt__16u1__p2_0, NULL, 0 }; static long _vq_quantlist__16u1__p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16u1__p3_0[] = { 1, 5, 5, 8, 8, 6, 7, 7, 9, 9, 5, 7, 7, 9, 9, 9, 10, 9,11,11, 9, 9,10,11,11, 6, 8, 8,10,10, 8, 9, 10,11,11, 8, 9,10,11,11,10,11,11,12,13,10,11,11, 13,13, 6, 8, 8,10,10, 8,10, 9,11,11, 8,10, 9,11, 11,10,11,11,13,13,10,11,11,13,12, 9,11,11,14,13, 10,12,12,15,14,10,12,11,14,13,12,13,13,15,15,12, 13,13,16,14, 9,11,11,13,14,10,11,12,14,14,10,12, 12,14,15,12,13,13,14,15,12,13,14,15,16, 5, 8, 8, 11,11, 8,10,10,12,12, 8,10,10,12,12,11,12,12,14, 14,11,12,12,14,14, 8,10,10,12,12, 9,11,12,12,13, 10,12,12,13,13,12,12,13,14,15,11,13,13,15,15, 7, 10,10,12,12, 9,12,11,13,12,10,11,12,13,13,12,13, 12,15,14,11,12,13,15,15,10,12,12,15,14,11,13,13, 16,15,11,13,13,16,15,14,13,14,15,16,13,15,15,17, 17,10,12,12,14,15,11,12,12,15,15,11,13,13,15,16, 13,15,13,16,15,13,15,15,16,17, 5, 8, 8,11,11, 8, 10,10,12,12, 8,10,10,12,12,11,12,12,14,14,11,12, 12,14,14, 7,10,10,12,12,10,12,12,14,13, 9,11,12, 12,13,12,13,13,15,15,12,12,13,13,15, 7,10,10,12, 13,10,11,12,13,13,10,12,11,13,13,11,13,13,15,15, 12,13,12,15,14, 9,12,12,15,14,11,13,13,15,15,11, 12,13,15,15,13,14,14,17,19,13,13,14,16,16,10,12, 12,14,15,11,13,13,15,16,11,13,12,16,15,13,15,15, 17,18,14,15,13,16,15, 8,11,11,15,14,10,12,12,16, 15,10,12,12,16,16,14,15,15,18,17,13,14,15,16,18, 9,12,12,15,15,11,12,14,16,17,11,13,13,16,15,15, 15,15,17,18,14,15,16,17,17, 9,12,12,15,15,11,14, 13,16,16,11,13,13,16,16,15,16,15,17,18,14,16,15, 17,16,12,14,14,17,16,12,14,15,18,17,13,15,15,17, 17,15,15,18,16,20,15,16,17,18,18,11,14,14,16,17, 13,15,14,18,17,13,15,15,17,17,15,17,15,18,17,15, 17,16,19,18, 8,11,11,14,15,10,12,12,15,15,10,12, 12,16,16,13,14,14,17,16,14,15,15,17,17, 9,12,12, 15,16,11,13,13,16,16,11,12,13,16,16,14,16,15,20, 17,14,16,16,17,17, 9,12,12,15,16,11,13,13,16,17, 11,13,13,17,16,14,15,15,17,18,15,15,15,18,18,11, 14,14,17,16,13,15,15,17,17,13,14,14,18,17,15,16, 16,18,19,15,15,17,17,19,11,14,14,16,17,13,15,14, 17,19,13,15,14,18,17,15,17,16,18,18,15,17,15,18, 16, }; static float _vq_quantthresh__16u1__p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16u1__p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16u1__p3_0 = { _vq_quantthresh__16u1__p3_0, _vq_quantmap__16u1__p3_0, 5, 5 }; static static_codebook _16u1__p3_0 = { 4, 625, _vq_lengthlist__16u1__p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16u1__p3_0, NULL, &_vq_auxt__16u1__p3_0, NULL, 0 }; static long _vq_quantlist__16u1__p4_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16u1__p4_0[] = { 4, 5, 5, 8, 8, 6, 6, 7, 9, 9, 6, 6, 6, 9, 9, 9, 10, 9,11,11, 9, 9,10,11,11, 6, 7, 7,10, 9, 7, 7, 8, 9,10, 7, 7, 8,10,10,10,10,10,10,12, 9, 9,10, 11,12, 6, 7, 7, 9, 9, 7, 8, 7,10,10, 7, 8, 7,10, 10, 9,10, 9,12,11,10,10, 9,12,10, 9,10,10,12,11, 10,10,10,12,12, 9,10,10,12,12,12,11,12,13,13,11, 11,12,12,13, 9,10,10,11,12, 9,10,10,12,12,10,10, 10,12,12,11,12,11,14,13,11,12,12,14,13, 5, 7, 7, 10,10, 7, 8, 8,10,10, 7, 8, 7,10,10,10,10,10,12, 12,10,10,10,12,12, 6, 8, 7,10,10, 7, 7, 9,10,11, 8, 9, 9,11,10,10,10,11,11,13,10,10,11,12,13, 6, 8, 8,10,10, 7, 9, 8,11,10, 8, 9, 9,10,11,10,11, 10,13,11,10,11,10,12,12,10,11,10,12,11,10,10,10, 12,13,10,11,11,13,12,11,11,13,11,14,12,12,13,14, 14, 9,10,10,12,13,10,11,10,13,12,10,11,11,12,13, 11,12,11,14,12,12,13,13,15,14, 5, 7, 7,10,10, 7, 7, 8,10,10, 7, 8, 8,10,10,10,10,10,11,12,10,10, 10,12,12, 7, 8, 8,10,10, 8, 9, 8,11,10, 7, 8, 9, 10,11,10,11,11,12,12,10,10,11,11,13, 7, 7, 8,10, 10, 8, 8, 9,10,11, 7, 9, 7,11,10,10,11,11,13,12, 11,11,10,13,11, 9,10,10,12,12,10,11,11,13,12,10, 10,11,12,12,12,13,13,14,14,11,11,12,12,14,10,10, 11,12,12,10,11,11,12,13,10,10,10,13,12,12,13,13, 15,14,12,13,10,14,11, 8,10,10,12,12,10,11,10,13, 13, 9,10,10,12,12,12,13,13,15,14,11,12,12,13,13, 9,10,10,13,12,10,10,11,13,13,10,11,10,13,12,12, 12,13,14,15,12,13,12,15,13, 9,10,10,12,13,10,11, 10,13,12,10,10,11,12,13,12,14,12,15,13,12,12,13, 14,15,11,12,11,14,13,11,11,12,14,15,12,13,12,15, 14,13,11,15,11,16,13,14,14,16,15,11,12,12,14,14, 11,12,11,14,13,12,12,13,14,15,13,14,12,16,12,14, 14,14,15,15, 8,10,10,12,12, 9,10,10,12,12,10,10, 11,13,13,11,12,12,13,13,12,13,13,14,15, 9,10,10, 13,12,10,11,11,13,12,10,10,11,13,13,12,13,12,15, 14,12,12,13,13,16, 9, 9,10,12,13,10,10,11,12,13, 10,11,10,13,13,12,12,13,13,15,13,13,12,15,13,11, 12,12,14,14,12,13,12,15,14,11,11,12,13,14,14,14, 14,16,15,13,12,15,12,16,11,11,12,13,14,12,13,13, 14,15,10,12,11,14,13,14,15,14,16,16,13,14,11,15, 11, }; static float _vq_quantthresh__16u1__p4_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16u1__p4_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16u1__p4_0 = { _vq_quantthresh__16u1__p4_0, _vq_quantmap__16u1__p4_0, 5, 5 }; static static_codebook _16u1__p4_0 = { 4, 625, _vq_lengthlist__16u1__p4_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16u1__p4_0, NULL, &_vq_auxt__16u1__p4_0, NULL, 0 }; static long _vq_quantlist__16u1__p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__16u1__p5_0[] = { 1, 4, 4, 7, 7, 7, 7, 9, 9, 4, 6, 6, 8, 8, 8, 8, 10,10, 4, 5, 6, 8, 8, 8, 8,10,10, 7, 8, 8, 9, 9, 9, 9,11,11, 7, 8, 8, 9, 9, 9, 9,11,11, 7, 8, 8, 10, 9,11,11,12,11, 7, 8, 8, 9, 9,11,11,12,12, 9, 10,10,11,11,12,12,13,12, 9,10,10,11,11,12,12,12, 13, }; static float _vq_quantthresh__16u1__p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__16u1__p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__16u1__p5_0 = { _vq_quantthresh__16u1__p5_0, _vq_quantmap__16u1__p5_0, 9, 9 }; static static_codebook _16u1__p5_0 = { 2, 81, _vq_lengthlist__16u1__p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__16u1__p5_0, NULL, &_vq_auxt__16u1__p5_0, NULL, 0 }; static long _vq_quantlist__16u1__p6_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__16u1__p6_0[] = { 3, 4, 4, 6, 6, 7, 7, 9, 9, 4, 4, 4, 6, 6, 8, 8, 9, 9, 4, 4, 4, 6, 6, 7, 7, 9, 9, 6, 6, 6, 7, 7, 8, 8,10, 9, 6, 6, 6, 7, 7, 8, 8, 9,10, 7, 8, 7, 8, 8, 9, 9,10,10, 7, 8, 8, 8, 8, 9, 9,10,10, 9, 9, 9,10,10,10,10,11,11, 9, 9, 9,10,10,10,10,11, 11, }; static float _vq_quantthresh__16u1__p6_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__16u1__p6_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__16u1__p6_0 = { _vq_quantthresh__16u1__p6_0, _vq_quantmap__16u1__p6_0, 9, 9 }; static static_codebook _16u1__p6_0 = { 2, 81, _vq_lengthlist__16u1__p6_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__16u1__p6_0, NULL, &_vq_auxt__16u1__p6_0, NULL, 0 }; static long _vq_quantlist__16u1__p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16u1__p7_0[] = { 1, 4, 4, 4, 8, 8, 4, 8, 8, 5,11, 9, 8,12,11, 8, 12,11, 5,10,11, 8,11,12, 8,11,12, 4,11,11,11,14, 13,10,13,13, 8,14,13,12,14,16,12,16,15, 8,14,14, 13,16,14,12,15,16, 4,11,11,10,14,13,11,14,14, 8, 15,14,12,15,15,12,14,16, 8,14,14,11,16,15,12,15, 13, }; static float _vq_quantthresh__16u1__p7_0[] = { -5.5, 5.5, }; static long _vq_quantmap__16u1__p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16u1__p7_0 = { _vq_quantthresh__16u1__p7_0, _vq_quantmap__16u1__p7_0, 3, 3 }; static static_codebook _16u1__p7_0 = { 4, 81, _vq_lengthlist__16u1__p7_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__16u1__p7_0, NULL, &_vq_auxt__16u1__p7_0, NULL, 0 }; static long _vq_quantlist__16u1__p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__16u1__p7_1[] = { 2, 4, 4, 6, 6, 7, 7, 8, 8, 8, 8, 4, 6, 5, 7, 7, 8, 8, 8, 8, 8, 8, 4, 5, 6, 7, 7, 8, 8, 8, 8, 8, 8, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 7, 8, 8, 8, 8, 9, 9, 9,10, 9,10, 7, 8, 8, 8, 8, 9, 9, 9, 9,10, 9, 8, 8, 8, 9, 9,10,10,10,10,10,10, 8, 8, 8, 9, 9, 9, 9,10, 10,10,10, 8, 8, 8, 9, 9, 9,10,10,10,10,10, 8, 8, 8, 9, 9,10,10,10,10,10,10, }; static float _vq_quantthresh__16u1__p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__16u1__p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__16u1__p7_1 = { _vq_quantthresh__16u1__p7_1, _vq_quantmap__16u1__p7_1, 11, 11 }; static static_codebook _16u1__p7_1 = { 2, 121, _vq_lengthlist__16u1__p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__16u1__p7_1, NULL, &_vq_auxt__16u1__p7_1, NULL, 0 }; static long _vq_quantlist__16u1__p8_0[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__16u1__p8_0[] = { 1, 4, 4, 5, 5, 8, 8,10,10,12,12, 4, 7, 7, 8, 8, 9, 9,12,11,14,13, 4, 7, 7, 7, 8, 9,10,11,11,13, 12, 5, 8, 8, 9, 9,11,11,12,13,15,14, 5, 7, 8, 9, 9,11,11,13,13,17,15, 8, 9,10,11,11,12,13,17,14, 17,16, 8,10, 9,11,11,12,12,13,15,15,17,10,11,11, 12,13,14,15,15,16,16,17, 9,11,11,12,12,14,15,17, 15,15,16,11,14,12,14,15,16,15,16,16,16,15,11,13, 13,14,14,15,15,16,16,15,16, }; static float _vq_quantthresh__16u1__p8_0[] = { -49.5, -38.5, -27.5, -16.5, -5.5, 5.5, 16.5, 27.5, 38.5, 49.5, }; static long _vq_quantmap__16u1__p8_0[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__16u1__p8_0 = { _vq_quantthresh__16u1__p8_0, _vq_quantmap__16u1__p8_0, 11, 11 }; static static_codebook _16u1__p8_0 = { 2, 121, _vq_lengthlist__16u1__p8_0, 1, -524582912, 1618345984, 4, 0, _vq_quantlist__16u1__p8_0, NULL, &_vq_auxt__16u1__p8_0, NULL, 0 }; static long _vq_quantlist__16u1__p8_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__16u1__p8_1[] = { 2, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 4, 6, 6, 7, 7, 8, 7, 8, 8, 8, 8, 4, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, }; static float _vq_quantthresh__16u1__p8_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__16u1__p8_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__16u1__p8_1 = { _vq_quantthresh__16u1__p8_1, _vq_quantmap__16u1__p8_1, 11, 11 }; static static_codebook _16u1__p8_1 = { 2, 121, _vq_lengthlist__16u1__p8_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__16u1__p8_1, NULL, &_vq_auxt__16u1__p8_1, NULL, 0 }; static long _vq_quantlist__16u1__p9_0[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__16u1__p9_0[] = { 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__16u1__p9_0[] = { -1657.5, -1402.5, -1147.5, -892.5, -637.5, -382.5, -127.5, 127.5, 382.5, 637.5, 892.5, 1147.5, 1402.5, 1657.5, }; static long _vq_quantmap__16u1__p9_0[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__16u1__p9_0 = { _vq_quantthresh__16u1__p9_0, _vq_quantmap__16u1__p9_0, 15, 15 }; static static_codebook _16u1__p9_0 = { 2, 225, _vq_lengthlist__16u1__p9_0, 1, -514071552, 1627381760, 4, 0, _vq_quantlist__16u1__p9_0, NULL, &_vq_auxt__16u1__p9_0, NULL, 0 }; static long _vq_quantlist__16u1__p9_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__16u1__p9_1[] = { 1, 6, 5, 9, 9,10,10, 6, 7, 9, 9,10,10,10,10, 5, 10, 8,10, 8,10,10, 8, 8,10, 9,10,10,10,10, 5, 8, 9,10,10,10,10, 8,10,10,10,10,10,10,10, 9,10,10, 10,10,10,10, 9, 9,10,10,10,10,10,10, 9, 9, 8, 9, 10,10,10, 9,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10, 8,10,10,10,10, 10,10,10,10,10,10,10,10,10, 6, 8, 8,10,10,10, 8, 10,10,10,10,10,10,10,10, 5, 8, 8,10,10,10, 9, 9, 10,10,10,10,10,10,10,10, 9,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, }; static float _vq_quantthresh__16u1__p9_1[] = { -110.5, -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, 110.5, }; static long _vq_quantmap__16u1__p9_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__16u1__p9_1 = { _vq_quantthresh__16u1__p9_1, _vq_quantmap__16u1__p9_1, 15, 15 }; static static_codebook _16u1__p9_1 = { 2, 225, _vq_lengthlist__16u1__p9_1, 1, -522338304, 1620115456, 4, 0, _vq_quantlist__16u1__p9_1, NULL, &_vq_auxt__16u1__p9_1, NULL, 0 }; static long _vq_quantlist__16u1__p9_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__16u1__p9_2[] = { 1, 6, 6, 7, 8, 8,11,10, 9, 9,11, 9,10, 9,11,11, 9, 6, 7, 6,11, 8,11, 9,10,10,11, 9,11,10,10,10, 11, 9, 5, 7, 7, 8, 8,10,11, 8, 8,11, 9, 9,10,11, 9,10,11, 8, 9, 6, 8, 8, 9, 9,10,10,11,11,11, 9, 11,10, 9,11, 8, 8, 8, 9, 8, 9,10,11, 9, 9,11,11, 10, 9, 9,11,10, 8,11, 8, 9, 8,11, 9,10, 9,10,11, 11,10,10, 9,10,10, 8, 8, 9,10,10,10, 9,11, 9,10, 11,11,11,11,10, 9,11, 9, 9,11,11,10, 8,11,11,11, 9,10,10,11,10,11,11, 9,11,10, 9,11,10,10,10,10, 9,11,10,11,10, 9, 9,10,11, 9, 8,10,11,11,10,10, 11, 9,11,10,11,11,10,11, 9, 9, 8,10, 8, 9,11, 9, 8,10,10, 9,11,10,11,10,11, 9,11, 8,10,11,11,11, 11,10,10,11,11,11,11,10,11,11,10, 9, 8,10,10, 9, 11,10,11,11,11, 9, 9, 9,11,11,11,10,10, 9, 9,10, 9,11,11,11,11, 8,10,11,10,11,11,10,11,11, 9, 9, 9,10, 9,11, 9,11,11,11,11,11,10,11,11,10,11,10, 11,11, 9,11,10,11,10, 9,10, 9,10,10,11,11,11,11, 9,10, 9,10,11,11,10,11,11,11,11,11,11,10,11,11, 10, }; static float _vq_quantthresh__16u1__p9_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__16u1__p9_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__16u1__p9_2 = { _vq_quantthresh__16u1__p9_2, _vq_quantmap__16u1__p9_2, 17, 17 }; static static_codebook _16u1__p9_2 = { 2, 289, _vq_lengthlist__16u1__p9_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__16u1__p9_2, NULL, &_vq_auxt__16u1__p9_2, NULL, 0 }; static long _huff_lengthlist__16u1__short[] = { 5, 7,10, 9,11,10,15,11,13,16, 6, 4, 6, 6, 7, 7, 10, 9,12,16,10, 6, 5, 6, 6, 7,10,11,16,16, 9, 6, 7, 6, 7, 7,10, 8,14,16,11, 6, 5, 4, 5, 6, 8, 9, 15,16, 9, 6, 6, 5, 6, 6, 9, 8,14,16,12, 7, 6, 6, 5, 6, 6, 7,13,16, 8, 6, 7, 6, 5, 5, 4, 4,11,16, 9, 8, 9, 9, 7, 7, 6, 5,13,16,14,14,16,15,16,15, 16,16,16,16, }; static static_codebook _huff_book__16u1__short = { 2, 100, _huff_lengthlist__16u1__short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__16u2__long[] = { 5, 7,10,10,10,11,11,13,18,19, 6, 5, 5, 6, 7, 8, 9,12,19,19, 8, 5, 4, 4, 6, 7, 9,13,19,19, 8, 5, 4, 4, 5, 6, 8,12,17,19, 7, 5, 5, 4, 4, 5, 7,12, 18,18, 8, 7, 7, 6, 5, 5, 6,10,18,18, 9, 9, 9, 8, 6, 5, 6, 9,18,18,11,13,13,13, 8, 7, 7, 9,16,18, 13,17,18,16,11, 9, 9, 9,17,18,15,18,18,18,15,13, 13,14,18,18, }; static static_codebook _huff_book__16u2__long = { 2, 100, _huff_lengthlist__16u2__long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__16u2__short[] = { 8,11,12,12,14,15,16,16,16,16, 9, 7, 7, 8, 9,11, 13,14,16,16,13, 7, 6, 6, 7, 9,12,13,15,16,15, 7, 6, 5, 4, 6,10,11,14,16,12, 8, 7, 4, 2, 4, 7,10, 14,16,11, 9, 7, 5, 3, 4, 6, 9,14,16,11,10, 9, 7, 5, 5, 6, 9,16,16,10,10, 9, 8, 6, 6, 7,10,16,16, 11,11,11,10,10,10,11,14,16,16,16,14,14,13,14,16, 16,16,16,16, }; static static_codebook _huff_book__16u2__short = { 2, 100, _huff_lengthlist__16u2__short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__16u2_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16u2_p1_0[] = { 1, 5, 5, 5, 7, 7, 5, 7, 7, 5, 7, 7, 7, 9, 9, 7, 9, 9, 5, 7, 7, 7, 9, 9, 7, 9, 9, 5, 7, 7, 8, 9, 9, 7, 9, 9, 7, 9, 9, 9,10,10, 9,10,10, 7, 9, 9, 9,10,10, 9,10,11, 5, 7, 8, 8, 9, 9, 8, 9, 9, 7, 9, 9, 9,10,10, 9, 9,10, 7, 9, 9, 9,10,10, 9,11, 10, }; static float _vq_quantthresh__16u2_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__16u2_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16u2_p1_0 = { _vq_quantthresh__16u2_p1_0, _vq_quantmap__16u2_p1_0, 3, 3 }; static static_codebook _16u2_p1_0 = { 4, 81, _vq_lengthlist__16u2_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__16u2_p1_0, NULL, &_vq_auxt__16u2_p1_0, NULL, 0 }; static long _vq_quantlist__16u2_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16u2_p2_0[] = { 3, 5, 5, 8, 8, 5, 7, 7, 9, 9, 5, 7, 7, 9, 9, 9, 10, 9,11,11, 9, 9, 9,11,11, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10,10,10,10,12,12, 9,10,10, 11,12, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10, 10, 9,10,10,12,11,10,10,10,12,12, 9,10,10,12,12, 10,11,10,13,12, 9,10,10,12,12,12,12,12,14,14,11, 12,12,13,14, 9,10,10,12,12, 9,10,10,12,12,10,10, 10,12,12,11,12,12,14,13,12,13,12,14,14, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10,10,11,10,12, 12,10,10,11,12,12, 7, 8, 8,10,10, 8, 9, 9,11,11, 8, 9, 9,11,11,11,11,11,12,13,10,11,11,12,13, 7, 8, 8,10,10, 8, 9, 8,11,10, 8, 9, 9,11,11,10,11, 10,13,12,10,11,11,13,13, 9,11,10,13,13,10,11,11, 13,13,10,11,11,13,13,12,12,13,13,15,12,12,13,14, 15, 9,10,10,12,12,10,11,10,13,12,10,11,11,13,13, 11,13,11,14,13,12,13,13,15,15, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10,10,10,10,12,12,10,10, 11,12,12, 7, 8, 8,10,10, 8, 9, 9,11,11, 8, 8, 9, 10,11,10,11,11,13,13,10,10,11,12,13, 7, 8, 8,10, 11, 8, 9, 9,11,11, 8, 9, 9,11,11,10,11,11,13,12, 11,11,11,13,12, 9,10,10,12,12,10,11,11,13,13,10, 10,11,12,13,12,13,13,15,14,11,11,13,12,14,10,10, 11,13,13,10,11,11,13,13,10,11,11,13,13,12,13,13, 14,14,12,13,12,14,13, 8,10, 9,12,12, 9,11,10,13, 13, 9,10,10,12,13,12,13,13,14,14,12,12,13,14,14, 9,11,10,13,13,10,11,11,13,13,10,11,11,13,13,12, 13,13,15,15,13,13,13,14,15, 9,10,10,12,13,10,11, 10,13,12,10,11,11,13,13,12,13,12,15,14,13,13,13, 14,15,11,12,12,15,14,12,12,13,15,15,12,13,13,15, 14,14,13,15,14,16,13,14,15,16,16,11,12,12,14,14, 11,12,12,15,14,12,13,13,15,15,13,14,13,16,14,14, 14,14,16,16, 8, 9, 9,12,12, 9,10,10,13,12, 9,10, 10,13,13,12,12,12,14,14,12,12,13,15,15, 9,10,10, 13,12,10,11,11,13,13,10,10,11,13,14,12,13,13,15, 15,12,12,13,14,15, 9,10,10,13,13,10,11,11,13,13, 10,11,11,13,13,12,13,13,14,14,13,14,13,15,14,11, 12,12,14,14,12,13,13,15,14,11,12,12,14,15,14,14, 14,16,15,13,12,14,14,16,11,12,13,14,15,12,13,13, 14,16,12,13,12,15,14,13,15,14,16,16,14,15,13,16, 13, }; static float _vq_quantthresh__16u2_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16u2_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16u2_p2_0 = { _vq_quantthresh__16u2_p2_0, _vq_quantmap__16u2_p2_0, 5, 5 }; static static_codebook _16u2_p2_0 = { 4, 625, _vq_lengthlist__16u2_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16u2_p2_0, NULL, &_vq_auxt__16u2_p2_0, NULL, 0 }; static long _vq_quantlist__16u2_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__16u2_p3_0[] = { 2, 4, 4, 6, 6, 7, 7, 9, 9, 4, 5, 5, 6, 6, 8, 7, 9, 9, 4, 5, 5, 6, 6, 7, 8, 9, 9, 6, 6, 6, 7, 7, 8, 8,10,10, 6, 6, 6, 7, 7, 8, 8, 9,10, 7, 8, 7, 8, 8, 9, 9,10,10, 7, 8, 8, 8, 8, 9, 9,10,10, 9, 9, 9,10, 9,10,10,11,11, 9, 9, 9,10,10,10,10,11, 11, }; static float _vq_quantthresh__16u2_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__16u2_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__16u2_p3_0 = { _vq_quantthresh__16u2_p3_0, _vq_quantmap__16u2_p3_0, 9, 9 }; static static_codebook _16u2_p3_0 = { 2, 81, _vq_lengthlist__16u2_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__16u2_p3_0, NULL, &_vq_auxt__16u2_p3_0, NULL, 0 }; static long _vq_quantlist__16u2_p4_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__16u2_p4_0[] = { 2, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9,10,10,11,11,11, 11, 5, 5, 5, 7, 7, 8, 8, 9, 9, 9, 9,10,10,11,11, 12,11, 5, 5, 5, 7, 7, 8, 8, 9, 9, 9, 9,10,10,11, 11,12,12, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9,10,10, 11,11,12,12, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9,10, 10,11,11,12,12, 7, 8, 8, 8, 8, 9, 9, 9, 9,10,10, 11,11,12,12,12,12, 7, 8, 8, 8, 8, 9, 9, 9, 9,10, 10,11,11,11,12,12,12, 9, 9, 9, 9, 9, 9,10,10,10, 10,10,11,11,12,12,13,13, 8, 9, 9, 9, 9,10, 9,10, 10,10,10,11,11,12,12,13,13, 9, 9, 9, 9, 9,10,10, 10,10,11,11,11,12,12,12,13,13, 9, 9, 9, 9, 9,10, 10,10,10,11,11,12,11,12,12,13,13,10,10,10,10,10, 11,11,11,11,11,12,12,12,12,13,13,14,10,10,10,10, 10,11,11,11,11,12,11,12,12,13,12,13,13,11,11,11, 11,11,12,12,12,12,12,12,13,13,13,13,14,14,11,11, 11,11,11,12,12,12,12,12,12,13,12,13,13,14,14,11, 12,12,12,12,12,12,13,13,13,13,13,13,14,14,14,14, 11,12,12,12,12,12,12,13,13,13,13,14,13,14,14,14, 14, }; static float _vq_quantthresh__16u2_p4_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__16u2_p4_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__16u2_p4_0 = { _vq_quantthresh__16u2_p4_0, _vq_quantmap__16u2_p4_0, 17, 17 }; static static_codebook _16u2_p4_0 = { 2, 289, _vq_lengthlist__16u2_p4_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__16u2_p4_0, NULL, &_vq_auxt__16u2_p4_0, NULL, 0 }; static long _vq_quantlist__16u2_p5_0[] = { 1, 0, 2, }; static long _vq_lengthlist__16u2_p5_0[] = { 1, 4, 4, 5, 7, 7, 5, 7, 7, 5, 9, 8, 7,10, 9, 7, 10, 9, 5, 8, 9, 7, 9,10, 7, 9,10, 4, 9, 9, 9,11, 11, 8,11,11, 7,11,11,10,10,13,10,14,13, 7,11,11, 10,13,11,10,13,14, 5, 9, 9, 8,11,11, 9,11,11, 7, 11,11,10,14,13,10,12,14, 7,11,11,10,13,13,10,13, 10, }; static float _vq_quantthresh__16u2_p5_0[] = { -5.5, 5.5, }; static long _vq_quantmap__16u2_p5_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__16u2_p5_0 = { _vq_quantthresh__16u2_p5_0, _vq_quantmap__16u2_p5_0, 3, 3 }; static static_codebook _16u2_p5_0 = { 4, 81, _vq_lengthlist__16u2_p5_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__16u2_p5_0, NULL, &_vq_auxt__16u2_p5_0, NULL, 0 }; static long _vq_quantlist__16u2_p5_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__16u2_p5_1[] = { 2, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 5, 5, 5, 7, 7, 7, 7, 8, 8, 8, 8, 5, 5, 6, 7, 7, 7, 7, 8, 8, 8, 8, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, }; static float _vq_quantthresh__16u2_p5_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__16u2_p5_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__16u2_p5_1 = { _vq_quantthresh__16u2_p5_1, _vq_quantmap__16u2_p5_1, 11, 11 }; static static_codebook _16u2_p5_1 = { 2, 121, _vq_lengthlist__16u2_p5_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__16u2_p5_1, NULL, &_vq_auxt__16u2_p5_1, NULL, 0 }; static long _vq_quantlist__16u2_p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__16u2_p6_0[] = { 1, 4, 4, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 4, 6, 6, 8, 8, 9, 9, 9, 9,10,10,12,11, 4, 6, 6, 8, 8, 9, 9, 9, 9,10,10,11,12, 7, 8, 8, 9, 9,10,10,10,10, 12,12,13,12, 7, 8, 8, 9, 9,10,10,10,10,11,12,12, 12, 8, 9, 9,10,10,11,11,11,11,12,12,13,13, 8, 9, 9,10,10,11,11,11,11,12,13,13,13, 8, 9, 9,10,10, 11,11,12,12,13,13,14,14, 8, 9, 9,10,10,11,11,12, 12,13,13,14,14, 9,10,10,11,12,13,12,13,14,14,14, 14,14, 9,10,10,11,12,12,13,13,13,14,14,14,14,10, 11,11,12,12,13,13,14,14,15,15,15,15,10,11,11,12, 12,13,13,14,14,14,14,15,15, }; static float _vq_quantthresh__16u2_p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__16u2_p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__16u2_p6_0 = { _vq_quantthresh__16u2_p6_0, _vq_quantmap__16u2_p6_0, 13, 13 }; static static_codebook _16u2_p6_0 = { 2, 169, _vq_lengthlist__16u2_p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__16u2_p6_0, NULL, &_vq_auxt__16u2_p6_0, NULL, 0 }; static long _vq_quantlist__16u2_p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__16u2_p6_1[] = { 2, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 6, 6, }; static float _vq_quantthresh__16u2_p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__16u2_p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__16u2_p6_1 = { _vq_quantthresh__16u2_p6_1, _vq_quantmap__16u2_p6_1, 5, 5 }; static static_codebook _16u2_p6_1 = { 2, 25, _vq_lengthlist__16u2_p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__16u2_p6_1, NULL, &_vq_auxt__16u2_p6_1, NULL, 0 }; static long _vq_quantlist__16u2_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__16u2_p7_0[] = { 1, 4, 4, 7, 7, 7, 7, 8, 8, 9, 9,10,10, 4, 6, 6, 9, 9, 9, 9, 9, 9,10,10,11,11, 4, 6, 6, 8, 9, 9, 9, 9, 9,10,11,12,11, 7, 8, 9,10,10,10,10,11,10, 11,12,12,13, 7, 9, 9,10,10,10,10,10,10,11,12,13, 13, 7, 9, 8,10,10,11,11,11,12,12,13,13,14, 7, 9, 9,10,10,11,11,11,12,13,13,13,13, 8, 9, 9,10,11, 11,12,12,12,13,13,13,13, 8, 9, 9,10,11,11,11,12, 12,13,13,14,14, 9,10,10,12,11,12,13,13,13,14,13, 13,13, 9,10,10,11,11,12,12,13,14,13,13,14,13,10, 11,11,12,13,14,14,14,15,14,14,14,14,10,11,11,12, 12,13,13,13,14,14,14,15,14, }; static float _vq_quantthresh__16u2_p7_0[] = { -60.5, -49.5, -38.5, -27.5, -16.5, -5.5, 5.5, 16.5, 27.5, 38.5, 49.5, 60.5, }; static long _vq_quantmap__16u2_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__16u2_p7_0 = { _vq_quantthresh__16u2_p7_0, _vq_quantmap__16u2_p7_0, 13, 13 }; static static_codebook _16u2_p7_0 = { 2, 169, _vq_lengthlist__16u2_p7_0, 1, -523206656, 1618345984, 4, 0, _vq_quantlist__16u2_p7_0, NULL, &_vq_auxt__16u2_p7_0, NULL, 0 }; static long _vq_quantlist__16u2_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__16u2_p7_1[] = { 3, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 8, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__16u2_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__16u2_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__16u2_p7_1 = { _vq_quantthresh__16u2_p7_1, _vq_quantmap__16u2_p7_1, 11, 11 }; static static_codebook _16u2_p7_1 = { 2, 121, _vq_lengthlist__16u2_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__16u2_p7_1, NULL, &_vq_auxt__16u2_p7_1, NULL, 0 }; static long _vq_quantlist__16u2_p8_0[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__16u2_p8_0[] = { 1, 5, 5, 7, 7, 8, 8, 7, 7, 8, 8,10, 9,11,11, 4, 6, 6, 8, 8,10, 9, 9, 8, 9, 9,10,10,12,14, 4, 6, 7, 8, 9, 9,10, 9, 8, 9, 9,10,12,12,11, 7, 8, 8, 10,10,10,10, 9, 9,10,10,11,13,13,12, 7, 8, 8, 9, 11,11,10, 9, 9,11,10,12,11,11,14, 8, 9, 9,11,10, 11,11,10,10,11,11,13,12,14,12, 8, 9, 9,11,12,11, 11,10,10,12,11,12,12,12,14, 7, 8, 8, 9, 9,10,10, 10,11,12,11,13,13,14,12, 7, 8, 9, 9, 9,10,10,11, 11,11,12,12,14,14,14, 8,10, 9,10,11,11,11,11,14, 12,12,13,14,14,13, 9, 9, 9,10,11,11,11,12,12,12, 14,12,14,13,14,10,10,10,12,11,12,11,14,13,14,13, 14,14,13,14, 9,10,10,11,12,11,13,12,13,13,14,14, 14,13,14,10,13,13,12,12,11,12,14,13,14,13,14,12, 14,13,10,11,11,12,11,12,12,14,14,14,13,14,14,14, 14, }; static float _vq_quantthresh__16u2_p8_0[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__16u2_p8_0[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__16u2_p8_0 = { _vq_quantthresh__16u2_p8_0, _vq_quantmap__16u2_p8_0, 15, 15 }; static static_codebook _16u2_p8_0 = { 2, 225, _vq_lengthlist__16u2_p8_0, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__16u2_p8_0, NULL, &_vq_auxt__16u2_p8_0, NULL, 0 }; static long _vq_quantlist__16u2_p8_1[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__16u2_p8_1[] = { 2, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9,10, 9,10, 9, 9, 9,10,10,10,10, 5, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 10, 9,10,10,10,10,10,10,11,10, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9,10,10,10,10,10,10,10,10,10,10,10, 7, 7, 7, 8, 8, 9, 8, 9, 9,10, 9,10,10,10,10,10,10, 11,10,11,10, 7, 7, 7, 8, 8, 8, 9, 9, 9,10, 9,10, 10,10,10,10,10,10,10,10,10, 8, 8, 8, 9, 9, 9, 9, 10, 9,10,10,10,10,10,10,10,11,10,10,11,10, 8, 8, 8, 8, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,11, 11,10,10, 8, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10, 11,10,11,10,11,10,11,10, 8, 9, 9, 9, 9, 9,10,10, 10,10,10,10,10,10,10,10,11,11,10,10,10, 9,10, 9, 9,10,10,10,11,10,10,10,10,10,10,10,10,11,11,11, 11,11, 9, 9, 9,10, 9,10,10,10,10,10,10,11,10,11, 10,11,11,11,11,10,10, 9,10, 9,10,10,10,10,11,10, 10,10,10,10,11,10,11,10,11,10,10,11, 9,10,10,10, 10,10,10,10,10,10,11,10,10,11,11,10,11,11,11,11, 11, 9, 9,10,10,10,10,10,11,10,10,11,10,10,11,10, 10,11,11,11,11,11, 9,10,10,10,10,10,10,10,11,10, 11,10,11,10,11,11,11,11,11,10,11,10,10,10,10,10, 10,10,10,10,11,11,11,11,11,11,11,11,11,10,11,11, 10,10,10,10,10,11,10,10,10,11,10,11,11,11,11,10, 12,11,11,11,10,10,10,10,10,10,11,10,10,10,11,11, 12,11,11,11,11,11,11,11,11,11,10,10,10,11,10,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,10, 10,10,11,10,11,10,10,11,11,11,11,11,11,11,11,11, 11,11,11,10,10,10,10,10,10,10,11,11,10,11,11,10, 11,11,10,11,11,11,10,11,11, }; static float _vq_quantthresh__16u2_p8_1[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__16u2_p8_1[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__16u2_p8_1 = { _vq_quantthresh__16u2_p8_1, _vq_quantmap__16u2_p8_1, 21, 21 }; static static_codebook _16u2_p8_1 = { 2, 441, _vq_lengthlist__16u2_p8_1, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__16u2_p8_1, NULL, &_vq_auxt__16u2_p8_1, NULL, 0 }; static long _vq_quantlist__16u2_p9_0[] = { 5586, 4655, 6517, 3724, 7448, 2793, 8379, 1862, 9310, 931, 10241, 0, 11172, 5521, 5651, }; static long _vq_lengthlist__16u2_p9_0[] = { 1,10,10,10,10,10,10,10,10,10,10,10,10, 5, 4,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10, 4,10,10,10,10,10,10,10,10,10,10,10,10, 6, 6, 5,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 5, 5, }; static float _vq_quantthresh__16u2_p9_0[] = { -5120.5, -4189.5, -3258.5, -2327.5, -1396.5, -498, -32.5, 32.5, 498, 1396.5, 2327.5, 3258.5, 4189.5, 5120.5, }; static long _vq_quantmap__16u2_p9_0[] = { 11, 9, 7, 5, 3, 1, 13, 0, 14, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__16u2_p9_0 = { _vq_quantthresh__16u2_p9_0, _vq_quantmap__16u2_p9_0, 15, 15 }; static static_codebook _16u2_p9_0 = { 2, 225, _vq_lengthlist__16u2_p9_0, 1, -510275072, 1611661312, 14, 0, _vq_quantlist__16u2_p9_0, NULL, &_vq_auxt__16u2_p9_0, NULL, 0 }; static long _vq_quantlist__16u2_p9_1[] = { 392, 343, 441, 294, 490, 245, 539, 196, 588, 147, 637, 98, 686, 49, 735, 0, 784, 388, 396, }; static long _vq_lengthlist__16u2_p9_1[] = { 1,12,10,12,10,12,10,12,11,12,12,12,12,12,12,12, 12, 5, 5, 9,10,12,11,11,12,12,12,12,12,12,12,12, 12,12,12,12,10, 9, 9,11, 9,11,11,12,11,12,12,12, 12,12,12,12,12,12,12, 8, 8,10,11, 9,12,11,12,12, 12,12,12,12,12,12,12,12,12,12, 9, 8,10,11,12,11, 12,11,12,12,12,12,12,12,12,12,12,12,12, 8, 9,11, 11,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 9,10,11,12,11,12,11,12,12,12,12,12,12,12,12,12, 12,12,12, 9, 9,11,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11, 5, 8, 9, 9, 8,11, 9,11,11,11,11,11,11, 11,11,11,11, 5, 5, 4, 8, 8, 8, 8,10, 9,10,10,11, 11,11,11,11,11,11,11, 5, 4, }; static float _vq_quantthresh__16u2_p9_1[] = { -367.5, -318.5, -269.5, -220.5, -171.5, -122.5, -73.5, -26.5, -2, 2, 26.5, 73.5, 122.5, 171.5, 220.5, 269.5, 318.5, 367.5, }; static long _vq_quantmap__16u2_p9_1[] = { 15, 13, 11, 9, 7, 5, 3, 1, 17, 0, 18, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__16u2_p9_1 = { _vq_quantthresh__16u2_p9_1, _vq_quantmap__16u2_p9_1, 19, 19 }; static static_codebook _16u2_p9_1 = { 2, 361, _vq_lengthlist__16u2_p9_1, 1, -518488064, 1611661312, 10, 0, _vq_quantlist__16u2_p9_1, NULL, &_vq_auxt__16u2_p9_1, NULL, 0 }; static long _vq_quantlist__16u2_p9_2[] = { 24, 23, 25, 22, 26, 21, 27, 20, 28, 19, 29, 18, 30, 17, 31, 16, 32, 15, 33, 14, 34, 13, 35, 12, 36, 11, 37, 10, 38, 9, 39, 8, 40, 7, 41, 6, 42, 5, 43, 4, 44, 3, 45, 2, 46, 1, 47, 0, 48, }; static long _vq_lengthlist__16u2_p9_2[] = { 1, 3, 3, 4, 7, 7, 7, 8, 7, 7, 7, 7, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 9, 9, 8, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,12,12,10, 11, }; static float _vq_quantthresh__16u2_p9_2[] = { -23.5, -22.5, -21.5, -20.5, -19.5, -18.5, -17.5, -16.5, -15.5, -14.5, -13.5, -12.5, -11.5, -10.5, -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, }; static long _vq_quantmap__16u2_p9_2[] = { 47, 45, 43, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, }; static encode_aux_threshmatch _vq_auxt__16u2_p9_2 = { _vq_quantthresh__16u2_p9_2, _vq_quantmap__16u2_p9_2, 49, 49 }; static static_codebook _16u2_p9_2 = { 1, 49, _vq_lengthlist__16u2_p9_2, 1, -526909440, 1611661312, 6, 0, _vq_quantlist__16u2_p9_2, NULL, &_vq_auxt__16u2_p9_2, NULL, 0 }; static long _vq_quantlist__8u0__p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__8u0__p1_0[] = { 1, 4, 4, 5, 7, 7, 5, 7, 7, 5, 8, 8, 8,10,10, 7, 10,10, 5, 8, 8, 7,10,10, 8,10,10, 4, 9, 8, 8,11, 11, 8,11,11, 7,11,11,10,11,13,10,13,13, 7,11,11, 10,13,12,10,13,13, 5, 9, 8, 8,11,11, 8,11,11, 7, 11,11, 9,13,13,10,12,13, 7,11,11,10,13,13,10,13, 11, }; static float _vq_quantthresh__8u0__p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__8u0__p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__8u0__p1_0 = { _vq_quantthresh__8u0__p1_0, _vq_quantmap__8u0__p1_0, 3, 3 }; static static_codebook _8u0__p1_0 = { 4, 81, _vq_lengthlist__8u0__p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__8u0__p1_0, NULL, &_vq_auxt__8u0__p1_0, NULL, 0 }; static long _vq_quantlist__8u0__p2_0[] = { 1, 0, 2, }; static long _vq_lengthlist__8u0__p2_0[] = { 2, 4, 4, 5, 6, 6, 5, 6, 6, 5, 7, 7, 6, 7, 8, 6, 7, 8, 5, 7, 7, 6, 8, 8, 7, 9, 7, 5, 7, 7, 7, 9, 9, 7, 8, 8, 6, 9, 8, 7, 7,10, 8,10,10, 6, 8, 8, 8,10, 8, 8,10,10, 5, 7, 7, 7, 8, 8, 7, 8, 9, 6, 8, 8, 8,10,10, 8, 8,10, 6, 8, 9, 8,10,10, 7,10, 8, }; static float _vq_quantthresh__8u0__p2_0[] = { -0.5, 0.5, }; static long _vq_quantmap__8u0__p2_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__8u0__p2_0 = { _vq_quantthresh__8u0__p2_0, _vq_quantmap__8u0__p2_0, 3, 3 }; static static_codebook _8u0__p2_0 = { 4, 81, _vq_lengthlist__8u0__p2_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__8u0__p2_0, NULL, &_vq_auxt__8u0__p2_0, NULL, 0 }; static long _vq_quantlist__8u0__p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__8u0__p3_0[] = { 1, 5, 5, 7, 7, 6, 7, 7, 9, 9, 6, 7, 7, 9, 9, 8, 10, 9,11,11, 8, 9, 9,11,11, 6, 8, 8,10,10, 8,10, 10,11,11, 8,10,10,11,11,10,11,11,12,12,10,11,11, 12,13, 6, 8, 8,10,10, 8,10,10,11,11, 8,10,10,11, 11, 9,10,11,12,12,10,11,11,12,12, 8,11,11,14,13, 10,12,11,15,13,10,12,11,14,14,12,13,12,16,14,12, 14,12,16,15, 8,11,11,13,14,10,11,12,13,15,10,11, 12,13,15,11,12,13,14,15,12,12,14,14,16, 5, 8, 8, 11,11, 9,11,11,12,12, 8,10,11,12,12,11,12,12,15, 14,11,12,12,14,14, 7,11,10,13,12,10,11,12,13,14, 10,12,12,14,13,12,13,13,14,15,12,13,13,15,15, 7, 10,11,12,13,10,12,11,14,13,10,12,13,13,15,12,13, 12,14,14,11,13,13,15,16, 9,12,12,15,14,11,13,13, 15,16,11,13,13,16,16,13,14,15,15,15,12,14,15,17, 16, 9,12,12,14,15,11,13,13,15,16,11,13,13,16,18, 13,14,14,17,16,13,15,15,17,18, 5, 8, 9,11,11, 8, 11,11,12,12, 8,10,11,12,12,11,12,12,14,14,11,12, 12,14,15, 7,11,10,12,13,10,12,12,14,13,10,11,12, 13,14,11,13,13,15,14,12,13,13,14,15, 7,10,11,13, 13,10,12,12,13,14,10,12,12,13,13,11,13,13,16,16, 12,13,13,15,14, 9,12,12,16,15,10,13,13,15,15,11, 13,13,17,15,12,15,15,18,17,13,14,14,15,16, 9,12, 12,15,15,11,13,13,15,16,11,13,13,15,15,12,15,15, 16,16,13,15,14,17,15, 7,11,11,15,15,10,13,13,16, 15,10,13,13,15,16,14,15,15,17,19,13,15,14,15,18, 9,12,12,16,16,11,13,14,17,16,11,13,13,17,16,15, 15,16,17,19,13,15,16, 0,18, 9,12,12,16,15,11,14, 13,17,17,11,13,14,16,16,15,16,16,19,18,13,15,15, 17,19,11,14,14,19,16,12,14,15, 0,18,12,16,15,18, 17,15,15,18,16,19,14,15,17,19,19,11,14,14,18,19, 13,15,14,19,19,12,16,15,18,17,15,17,15, 0,16,14, 17,16,19, 0, 7,11,11,14,14,10,12,12,15,15,10,13, 13,16,15,13,15,15,17, 0,14,15,15,16,19, 9,12,12, 16,16,11,14,14,16,16,11,13,13,16,16,14,17,16,19, 0,14,18,17,17,19, 9,12,12,15,16,11,13,13,15,17, 12,14,13,19,16,13,15,15,17,19,15,17,16,17,19,11, 14,14,19,16,12,15,15,19,17,13,14,15,17,19,14,16, 17,19,19,16,15,16,17,19,11,15,14,16,16,12,15,15, 19, 0,12,14,15,19,19,14,16,16, 0,18,15,19,14,18, 16, }; static float _vq_quantthresh__8u0__p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__8u0__p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__8u0__p3_0 = { _vq_quantthresh__8u0__p3_0, _vq_quantmap__8u0__p3_0, 5, 5 }; static static_codebook _8u0__p3_0 = { 4, 625, _vq_lengthlist__8u0__p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__8u0__p3_0, NULL, &_vq_auxt__8u0__p3_0, NULL, 0 }; static long _vq_quantlist__8u0__p4_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__8u0__p4_0[] = { 3, 5, 5, 8, 8, 5, 6, 7, 9, 9, 6, 7, 6, 9, 9, 9, 9, 9,10,11, 9, 9, 9,11,10, 6, 7, 7,10,10, 7, 7, 8,10,10, 7, 8, 8,10,10,10,10,10,10,11, 9,10,10, 11,12, 6, 7, 7,10,10, 7, 8, 8,10,10, 7, 8, 7,10, 10, 9,10,10,12,11,10,10,10,11,10, 9,10,10,12,11, 10,10,10,13,11, 9,10,10,12,12,11,11,12,12,13,11, 11,11,12,13, 9,10,10,12,12,10,10,11,12,12,10,10, 11,12,12,11,11,11,13,13,11,12,12,13,13, 5, 7, 7, 10,10, 7, 8, 8,10,10, 7, 8, 8,10,10,10,11,11,12, 12,10,11,10,12,12, 7, 8, 8,11,11, 7, 8, 9,10,11, 8, 9, 9,11,11,11,10,11,10,12,10,11,11,12,13, 7, 8, 8,10,11, 8, 9, 8,12,10, 8, 9, 9,11,12,10,11, 10,13,11,10,11,11,13,12, 9,11,10,13,12,10,10,11, 12,12,10,11,11,13,13,12,10,13,11,14,11,12,12,15, 13, 9,11,11,13,13,10,11,11,13,12,10,11,11,12,14, 12,13,11,14,12,12,12,12,14,14, 5, 7, 7,10,10, 7, 8, 8,10,10, 7, 8, 8,11,10,10,11,11,12,12,10,11, 10,12,12, 7, 8, 8,10,11, 8, 9, 9,12,11, 8, 8, 9, 10,11,10,11,11,12,13,11,10,11,11,13, 6, 8, 8,10, 11, 8, 9, 9,11,11, 7, 9, 7,11,10,10,11,11,12,12, 10,11,10,13,10, 9,11,10,13,12,10,12,11,13,13,10, 10,11,12,13,11,12,13,15,14,11,11,13,12,13, 9,10, 11,12,13,10,11,11,12,13,10,11,10,13,12,12,13,13, 13,14,12,12,11,14,11, 8,10,10,12,13,10,11,11,13, 13,10,11,10,13,13,12,13,14,15,14,12,12,12,14,13, 9,10,10,13,12,10,10,12,13,13,10,11,11,15,12,12, 12,13,15,14,12,13,13,15,13, 9,10,11,12,13,10,12, 10,13,12,10,11,11,12,13,12,14,12,15,13,12,12,12, 15,14,11,12,11,14,13,11,11,12,14,14,12,13,13,14, 13,13,11,15,11,15,14,14,14,16,15,11,12,12,13,14, 11,13,11,14,14,12,12,13,14,15,12,14,12,15,12,13, 15,14,16,15, 8,10,10,12,12,10,10,10,12,13,10,11, 11,13,13,12,12,12,13,14,13,13,13,15,15, 9,10,10, 12,12,10,11,11,13,12,10,10,11,13,13,12,12,12,14, 14,12,12,13,15,14, 9,10,10,13,12,10,10,12,12,13, 10,11,10,13,13,12,13,13,14,14,12,13,12,14,13,11, 12,12,14,13,12,13,12,14,14,10,12,12,14,14,14,14, 14,16,14,13,12,14,12,15,10,12,12,14,15,12,13,13, 14,16,11,12,11,15,14,13,14,14,14,15,13,14,11,14, 12, }; static float _vq_quantthresh__8u0__p4_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__8u0__p4_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__8u0__p4_0 = { _vq_quantthresh__8u0__p4_0, _vq_quantmap__8u0__p4_0, 5, 5 }; static static_codebook _8u0__p4_0 = { 4, 625, _vq_lengthlist__8u0__p4_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__8u0__p4_0, NULL, &_vq_auxt__8u0__p4_0, NULL, 0 }; static long _vq_quantlist__8u0__p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__8u0__p5_0[] = { 1, 4, 4, 7, 7, 7, 7, 9, 9, 4, 6, 6, 8, 7, 8, 8, 10,10, 4, 6, 6, 8, 8, 8, 8,10,10, 6, 8, 8, 9, 9, 9, 9,11,11, 7, 8, 8, 9, 9, 9, 9,11,11, 7, 8, 8, 9, 9,10,10,12,11, 7, 8, 8, 9, 9,10,10,11,11, 9, 10,10,11,11,11,12,12,12, 9,10,10,11,11,12,12,12, 12, }; static float _vq_quantthresh__8u0__p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__8u0__p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__8u0__p5_0 = { _vq_quantthresh__8u0__p5_0, _vq_quantmap__8u0__p5_0, 9, 9 }; static static_codebook _8u0__p5_0 = { 2, 81, _vq_lengthlist__8u0__p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__8u0__p5_0, NULL, &_vq_auxt__8u0__p5_0, NULL, 0 }; static long _vq_quantlist__8u0__p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__8u0__p6_0[] = { 1, 4, 4, 7, 7, 9, 9,11,11,12,12,16,16, 3, 6, 6, 9, 9,11,11,12,12,13,14,18,16, 3, 6, 7, 9, 9,11, 11,13,12,14,14,17,16, 7, 9, 9,11,11,12,12,14,14, 14,14,17,16, 7, 9, 9,11,11,13,12,13,13,14,14,17, 0, 9,11,11,12,13,14,14,14,13,15,14,17,17, 9,11, 11,12,12,14,14,13,14,14,15, 0, 0,11,12,12,15,14, 15,14,15,14,15,16,17, 0,11,12,13,13,13,14,14,15, 14,15,15, 0, 0,12,14,14,15,15,14,16,15,15,17,16, 0,18,13,14,14,15,14,15,14,15,16,17,16, 0, 0,17, 17,18, 0,16,18,16, 0, 0, 0,17, 0, 0,16, 0, 0,16, 16, 0,15, 0,17, 0, 0, 0, 0, }; static float _vq_quantthresh__8u0__p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__8u0__p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__8u0__p6_0 = { _vq_quantthresh__8u0__p6_0, _vq_quantmap__8u0__p6_0, 13, 13 }; static static_codebook _8u0__p6_0 = { 2, 169, _vq_lengthlist__8u0__p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__8u0__p6_0, NULL, &_vq_auxt__8u0__p6_0, NULL, 0 }; static long _vq_quantlist__8u0__p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__8u0__p6_1[] = { 1, 4, 4, 6, 6, 4, 6, 5, 7, 7, 4, 5, 6, 7, 7, 6, 7, 7, 7, 7, 6, 7, 7, 7, 7, }; static float _vq_quantthresh__8u0__p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__8u0__p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__8u0__p6_1 = { _vq_quantthresh__8u0__p6_1, _vq_quantmap__8u0__p6_1, 5, 5 }; static static_codebook _8u0__p6_1 = { 2, 25, _vq_lengthlist__8u0__p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__8u0__p6_1, NULL, &_vq_auxt__8u0__p6_1, NULL, 0 }; static long _vq_quantlist__8u0__p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__8u0__p7_0[] = { 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__8u0__p7_0[] = { -157.5, 157.5, }; static long _vq_quantmap__8u0__p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__8u0__p7_0 = { _vq_quantthresh__8u0__p7_0, _vq_quantmap__8u0__p7_0, 3, 3 }; static static_codebook _8u0__p7_0 = { 4, 81, _vq_lengthlist__8u0__p7_0, 1, -518803456, 1628680192, 2, 0, _vq_quantlist__8u0__p7_0, NULL, &_vq_auxt__8u0__p7_0, NULL, 0 }; static long _vq_quantlist__8u0__p7_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__8u0__p7_1[] = { 1, 5, 5, 5, 5,10,10,11,11,11,11,11,11,11,11, 5, 7, 6, 8, 8, 9,10,11,11,11,11,11,11,11,11, 6, 6, 7, 9, 7,11,10,11,11,11,11,11,11,11,11, 5, 6, 6, 11, 8,11,11,11,11,11,11,11,11,11,11, 5, 6, 6, 9, 10,11,10,11,11,11,11,11,11,11,11, 7,10,10,11,11, 11,11,11,11,11,11,11,11,11,11, 7,11, 8,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10, }; static float _vq_quantthresh__8u0__p7_1[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__8u0__p7_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__8u0__p7_1 = { _vq_quantthresh__8u0__p7_1, _vq_quantmap__8u0__p7_1, 15, 15 }; static static_codebook _8u0__p7_1 = { 2, 225, _vq_lengthlist__8u0__p7_1, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__8u0__p7_1, NULL, &_vq_auxt__8u0__p7_1, NULL, 0 }; static long _vq_quantlist__8u0__p7_2[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__8u0__p7_2[] = { 1, 6, 5, 7, 7, 9, 9, 9, 9,10,12,12,10,11,11,10, 11,11,11,10,11, 6, 8, 8, 9, 9,10,10, 9,10,11,11, 10,11,11,11,11,10,11,11,11,11, 6, 7, 8, 9, 9, 9, 10,11,10,11,12,11,10,11,11,11,11,11,11,12,10, 8, 9, 9,10, 9,10,10, 9,10,10,10,10,10, 9,10,10,10, 10, 9,10,10, 9, 9, 9, 9,10,10, 9, 9,10,10,11,10, 9,12,10,11,10, 9,10,10,10, 8, 9, 9,10, 9,10, 9, 9,10,10, 9,10, 9,11,10,10,10,10,10, 9,10, 8, 8, 9, 9,10, 9,11, 9, 8, 9, 9,10,11,10,10,10,11,12, 9, 9,11, 8, 9, 8,11,10,11,10,10, 9,11,10,10,10, 10,10,10,10,11,11,11,11, 8, 9, 9, 9,10,10,10,11, 11,12,11,12,11,10,10,10,12,11,11,11,10, 8,10, 9, 11,10,10,11,12,10,11,12,11,11,12,11,12,12,10,11, 11,10, 9, 9,10,11,12,10,10,10,11,10,11,11,10,12, 12,10,11,10,11,12,10, 9,10,10,11,10,11,11,11,11, 11,12,11,11,11, 9,11,10,11,10,11,10, 9, 9,10,11, 11,11,10,10,11,12,12,11,12,11,11,11,12,12,12,12, 11, 9,11,11,12,10,11,11,11,11,11,11,12,11,11,12, 11,11,11,10,11,11, 9,11,10,11,11,11,10,10,10,11, 11,11,12,10,11,10,11,11,11,11,12, 9,11,10,11,11, 10,10,11,11, 9,11,11,12,10,10,10,10,10,11,11,10, 9,10,11,11,12,11,10,10,12,11,11,12,11,12,11,11, 10,10,11,11,10,12,11,10,11,10,11,10,10,10,11,11, 10,10,11,11,11,11,10,10,10,12,11,11,11,11,10, 9, 10,11,11,11,12,11,11,11,12,10,11,11,11, 9,10,11, 11,11,11,11,11,10,10,11,11,12,11,10,11,12,11,10, 10,11, 9,10,11,11,11,11,11,10,11,11,10,12,11,11, 11,12,11,11,11,10,10,11,11, }; static float _vq_quantthresh__8u0__p7_2[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__8u0__p7_2[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__8u0__p7_2 = { _vq_quantthresh__8u0__p7_2, _vq_quantmap__8u0__p7_2, 21, 21 }; static static_codebook _8u0__p7_2 = { 2, 441, _vq_lengthlist__8u0__p7_2, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__8u0__p7_2, NULL, &_vq_auxt__8u0__p7_2, NULL, 0 }; static long _huff_lengthlist__8u0__single[] = { 4, 7,11, 9,12, 8, 7,10, 6, 4, 5, 5, 7, 5, 6,16, 9, 5, 5, 6, 7, 7, 9,16, 7, 4, 6, 5, 7, 5, 7,17, 10, 7, 7, 8, 7, 7, 8,18, 7, 5, 6, 4, 5, 4, 5,15, 7, 6, 7, 5, 6, 4, 5,15,12,13,18,12,17,11, 9,17, }; static static_codebook _huff_book__8u0__single = { 2, 64, _huff_lengthlist__8u0__single, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__8u1__p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__8u1__p1_0[] = { 1, 4, 4, 5, 7, 7, 5, 7, 7, 5, 8, 8, 7, 9,10, 7, 9, 9, 5, 8, 8, 7,10, 9, 7, 9, 9, 5, 8, 8, 8,10, 10, 8,10,10, 7,10,10, 9,10,12,10,12,12, 7,10,10, 9,12,11,10,12,12, 5, 8, 8, 8,10,10, 8,10,10, 7, 10,10,10,12,12, 9,11,12, 7,10,10,10,12,12, 9,12, 10, }; static float _vq_quantthresh__8u1__p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__8u1__p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__8u1__p1_0 = { _vq_quantthresh__8u1__p1_0, _vq_quantmap__8u1__p1_0, 3, 3 }; static static_codebook _8u1__p1_0 = { 4, 81, _vq_lengthlist__8u1__p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__8u1__p1_0, NULL, &_vq_auxt__8u1__p1_0, NULL, 0 }; static long _vq_quantlist__8u1__p2_0[] = { 1, 0, 2, }; static long _vq_lengthlist__8u1__p2_0[] = { 3, 4, 5, 5, 6, 6, 5, 6, 6, 5, 7, 6, 6, 7, 8, 6, 7, 8, 5, 6, 6, 6, 8, 7, 6, 8, 7, 5, 6, 6, 7, 8, 8, 6, 7, 7, 6, 8, 7, 7, 7, 9, 8, 9, 9, 6, 7, 8, 7, 9, 7, 8, 9, 9, 5, 6, 6, 6, 7, 7, 7, 8, 8, 6, 8, 7, 8, 9, 9, 7, 7, 9, 6, 7, 8, 8, 9, 9, 7, 9, 7, }; static float _vq_quantthresh__8u1__p2_0[] = { -0.5, 0.5, }; static long _vq_quantmap__8u1__p2_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__8u1__p2_0 = { _vq_quantthresh__8u1__p2_0, _vq_quantmap__8u1__p2_0, 3, 3 }; static static_codebook _8u1__p2_0 = { 4, 81, _vq_lengthlist__8u1__p2_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__8u1__p2_0, NULL, &_vq_auxt__8u1__p2_0, NULL, 0 }; static long _vq_quantlist__8u1__p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__8u1__p3_0[] = { 1, 5, 5, 7, 7, 6, 7, 7, 9, 9, 6, 7, 7, 9, 9, 8, 10, 9,11,11, 9, 9, 9,11,11, 6, 8, 8,10,10, 8,10, 10,11,11, 8, 9,10,11,11,10,11,11,12,12,10,11,11, 12,13, 6, 8, 8,10,10, 8,10, 9,11,11, 8,10, 9,11, 11,10,11,11,12,12,10,11,11,12,12, 9,11,11,14,13, 10,12,11,14,14,10,12,11,14,13,12,13,13,15,14,12, 13,13,15,14, 8,11,11,13,14,10,11,12,13,15,10,11, 12,14,14,12,13,13,14,15,12,13,13,14,15, 5, 8, 8, 11,11, 8,10,10,12,12, 8,10,10,12,12,11,12,12,14, 13,11,12,12,13,14, 8,10,10,12,12, 9,11,12,13,14, 10,12,12,13,13,12,12,13,14,14,11,13,13,15,15, 7, 10,10,12,12, 9,12,11,14,12,10,11,12,13,14,12,13, 12,14,14,12,13,13,15,16,10,12,12,15,14,11,12,13, 15,15,11,13,13,15,16,14,14,15,15,16,13,14,15,17, 15, 9,12,12,14,15,11,13,12,15,15,11,13,13,15,15, 13,14,13,15,14,13,14,14,17, 0, 5, 8, 8,11,11, 8, 10,10,12,12, 8,10,10,12,12,11,12,12,14,14,11,12, 12,14,14, 7,10,10,12,12,10,12,12,13,13, 9,11,12, 12,13,11,12,13,15,15,11,12,13,14,15, 8,10,10,12, 12,10,12,11,13,13,10,12,11,13,13,11,13,13,15,14, 12,13,12,15,13, 9,12,12,14,14,11,13,13,16,15,11, 12,13,16,15,13,14,15,16,16,13,13,15,15,16,10,12, 12,15,14,11,13,13,14,16,11,13,13,15,16,13,15,15, 16,17,13,15,14,16,15, 8,11,11,14,15,10,12,12,15, 15,10,12,12,15,16,14,15,15,16,17,13,14,14,16,16, 9,12,12,15,15,11,13,14,15,17,11,13,13,15,16,14, 15,16,19,17,13,15,15, 0,17, 9,12,12,15,15,11,14, 13,16,15,11,13,13,15,16,15,15,15,18,17,13,15,15, 17,17,11,15,14,18,16,12,14,15,17,17,12,15,15,18, 18,15,15,16,15,19,14,16,16, 0, 0,11,14,14,16,17, 12,15,14,18,17,12,15,15,18,18,15,17,15,18,16,14, 16,16,18,18, 7,11,11,14,14,10,12,12,15,15,10,12, 13,15,15,13,14,15,16,16,14,15,15,18,18, 9,12,12, 15,15,11,13,13,16,15,11,12,13,16,16,14,15,15,17, 16,15,16,16,17,17, 9,12,12,15,15,11,13,13,15,17, 11,14,13,16,15,13,15,15,17,17,15,15,15,18,17,11, 14,14,17,15,12,14,15,17,18,13,13,15,17,17,14,16, 16,19,18,16,15,17,17, 0,11,14,14,17,17,12,15,15, 18, 0,12,15,14,18,16,14,17,17,19, 0,16,18,15, 0, 16, }; static float _vq_quantthresh__8u1__p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__8u1__p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__8u1__p3_0 = { _vq_quantthresh__8u1__p3_0, _vq_quantmap__8u1__p3_0, 5, 5 }; static static_codebook _8u1__p3_0 = { 4, 625, _vq_lengthlist__8u1__p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__8u1__p3_0, NULL, &_vq_auxt__8u1__p3_0, NULL, 0 }; static long _vq_quantlist__8u1__p4_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__8u1__p4_0[] = { 4, 5, 5, 9, 9, 6, 7, 7, 9, 9, 6, 7, 7, 9, 9, 9, 9, 9,11,11, 9, 9, 9,11,11, 6, 7, 7, 9, 9, 7, 7, 8, 9,10, 7, 7, 8, 9,10, 9, 9,10,10,11, 9, 9,10, 10,12, 6, 7, 7, 9, 9, 7, 8, 7,10, 9, 7, 8, 7,10, 9, 9,10, 9,12,11,10,10, 9,12,10, 9,10,10,12,11, 9,10,10,12,11, 9,10,10,12,12,11,11,12,12,13,11, 11,12,12,13, 9, 9,10,12,11, 9,10,10,12,12,10,10, 10,12,12,11,12,11,13,12,11,12,11,13,12, 6, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 7,10, 9,10,10,10,12, 12,10,10,10,12,11, 7, 8, 7,10,10, 7, 7, 9,10,11, 8, 9, 9,11,10,10,10,11,10,12,10,10,11,12,12, 7, 8, 8,10,10, 7, 9, 8,11,10, 8, 8, 9,11,11,10,11, 10,12,11,10,11,11,12,12, 9,10,10,12,12, 9,10,10, 12,12,10,11,11,13,12,11,10,12,10,14,12,12,12,13, 14, 9,10,10,12,12, 9,11,10,12,12,10,11,11,12,12, 11,12,11,14,12,12,12,12,14,14, 5, 7, 7, 9, 9, 7, 7, 7, 9,10, 7, 8, 8,10,10,10,10,10,11,11,10,10, 10,12,12, 7, 8, 8,10,10, 8, 9, 8,11,10, 7, 8, 9, 10,11,10,10,10,11,12,10,10,11,11,13, 6, 7, 8,10, 10, 8, 9, 9,10,10, 7, 9, 7,11,10,10,11,10,12,12, 10,11,10,12,10, 9,10,10,12,12,10,11,11,13,12, 9, 10,10,12,12,12,12,12,14,13,11,11,12,11,14, 9,10, 10,11,12,10,11,11,12,13, 9,10,10,12,12,12,12,12, 14,13,11,12,10,14,11, 9, 9,10,11,12, 9,10,10,12, 12, 9,10,10,12,12,12,12,12,14,14,11,12,12,13,12, 9,10, 9,12,12, 9,10,11,12,13,10,11,10,13,11,12, 12,13,13,14,12,12,12,13,13, 9,10,10,12,12,10,11, 10,13,12,10,10,11,12,13,12,13,12,14,13,12,12,12, 13,14,11,12,11,14,13,10,10,11,13,13,12,12,12,14, 13,12,10,14,10,15,13,14,14,14,14,11,11,12,13,14, 10,12,11,13,13,12,12,12,13,15,12,13,11,15,12,13, 13,14,14,14, 9,10, 9,12,12, 9,10,10,12,12,10,10, 10,12,12,11,11,12,12,13,12,12,12,14,14, 9,10,10, 12,12,10,11,10,13,12,10,10,11,12,13,12,12,12,14, 13,12,12,13,13,14, 9,10,10,12,13,10,10,11,11,12, 9,11,10,13,12,12,12,12,13,14,12,13,12,14,13,11, 12,11,13,13,12,13,12,14,13,10,11,12,13,13,13,13, 13,14,15,12,11,14,12,14,11,11,12,12,13,12,12,12, 13,14,10,12,10,14,13,13,13,13,14,15,12,14,11,15, 10, }; static float _vq_quantthresh__8u1__p4_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__8u1__p4_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__8u1__p4_0 = { _vq_quantthresh__8u1__p4_0, _vq_quantmap__8u1__p4_0, 5, 5 }; static static_codebook _8u1__p4_0 = { 4, 625, _vq_lengthlist__8u1__p4_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__8u1__p4_0, NULL, &_vq_auxt__8u1__p4_0, NULL, 0 }; static long _vq_quantlist__8u1__p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__8u1__p5_0[] = { 1, 4, 4, 7, 7, 7, 7, 9, 9, 4, 6, 5, 8, 7, 8, 8, 10,10, 4, 6, 6, 8, 8, 8, 8,10,10, 7, 8, 8, 9, 9, 9, 9,11,11, 7, 8, 8, 9, 9, 9, 9,11,11, 8, 8, 8, 9, 9,10,10,12,11, 8, 8, 8, 9, 9,10,10,11,11, 9, 10,10,11,11,11,11,13,12, 9,10,10,11,11,12,12,12, 13, }; static float _vq_quantthresh__8u1__p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__8u1__p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__8u1__p5_0 = { _vq_quantthresh__8u1__p5_0, _vq_quantmap__8u1__p5_0, 9, 9 }; static static_codebook _8u1__p5_0 = { 2, 81, _vq_lengthlist__8u1__p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__8u1__p5_0, NULL, &_vq_auxt__8u1__p5_0, NULL, 0 }; static long _vq_quantlist__8u1__p6_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__8u1__p6_0[] = { 3, 4, 4, 6, 6, 7, 7, 9, 9, 4, 4, 5, 6, 6, 7, 7, 9, 9, 4, 4, 4, 6, 6, 7, 7, 9, 9, 6, 6, 6, 7, 7, 8, 8, 9, 9, 6, 6, 6, 7, 7, 8, 8, 9, 9, 7, 7, 7, 8, 8, 8, 9,10,10, 7, 7, 7, 8, 8, 9, 8,10,10, 9, 9, 9, 9, 9,10,10,10,10, 9, 9, 9, 9, 9,10,10,10, 10, }; static float _vq_quantthresh__8u1__p6_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__8u1__p6_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__8u1__p6_0 = { _vq_quantthresh__8u1__p6_0, _vq_quantmap__8u1__p6_0, 9, 9 }; static static_codebook _8u1__p6_0 = { 2, 81, _vq_lengthlist__8u1__p6_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__8u1__p6_0, NULL, &_vq_auxt__8u1__p6_0, NULL, 0 }; static long _vq_quantlist__8u1__p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__8u1__p7_0[] = { 1, 4, 4, 5, 7, 7, 5, 7, 7, 5, 9, 9, 8,10,10, 8, 10,10, 5, 9, 9, 7,10,10, 8,10,10, 4,10,10, 9,12, 12, 9,11,11, 7,12,11,10,11,13,10,13,13, 7,12,12, 10,13,12,10,13,13, 4,10,10, 9,12,12, 9,12,12, 7, 12,12,10,13,13,10,12,13, 7,11,12,10,13,13,10,13, 11, }; static float _vq_quantthresh__8u1__p7_0[] = { -5.5, 5.5, }; static long _vq_quantmap__8u1__p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__8u1__p7_0 = { _vq_quantthresh__8u1__p7_0, _vq_quantmap__8u1__p7_0, 3, 3 }; static static_codebook _8u1__p7_0 = { 4, 81, _vq_lengthlist__8u1__p7_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__8u1__p7_0, NULL, &_vq_auxt__8u1__p7_0, NULL, 0 }; static long _vq_quantlist__8u1__p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__8u1__p7_1[] = { 2, 4, 4, 6, 6, 7, 7, 8, 8, 8, 8, 4, 5, 5, 7, 7, 8, 8, 9, 9, 9, 9, 4, 5, 5, 7, 7, 8, 8, 9, 9, 9, 9, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9,10,10,10,10, 8, 9, 9, 9, 9, 9, 9,10, 10,10,10, 8, 9, 9, 9, 9, 9, 9,10,10,10,10, 8, 9, 9, 9, 9, 9, 9,10,10,10,10, }; static float _vq_quantthresh__8u1__p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__8u1__p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__8u1__p7_1 = { _vq_quantthresh__8u1__p7_1, _vq_quantmap__8u1__p7_1, 11, 11 }; static static_codebook _8u1__p7_1 = { 2, 121, _vq_lengthlist__8u1__p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__8u1__p7_1, NULL, &_vq_auxt__8u1__p7_1, NULL, 0 }; static long _vq_quantlist__8u1__p8_0[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__8u1__p8_0[] = { 1, 4, 4, 6, 6, 8, 8,10,10,11,11, 4, 6, 6, 7, 7, 9, 9,11,11,13,12, 4, 6, 6, 7, 7, 9, 9,11,11,12, 12, 6, 7, 7, 9, 9,11,11,12,12,13,13, 6, 7, 7, 9, 9,11,11,12,12,13,13, 8, 9, 9,11,11,12,12,13,13, 14,14, 8, 9, 9,11,11,12,12,13,13,14,14, 9,11,11, 12,12,13,13,14,14,15,15, 9,11,11,12,12,13,13,14, 14,15,14,11,12,12,13,13,14,14,15,15,16,16,11,12, 12,13,13,14,14,15,15,15,15, }; static float _vq_quantthresh__8u1__p8_0[] = { -49.5, -38.5, -27.5, -16.5, -5.5, 5.5, 16.5, 27.5, 38.5, 49.5, }; static long _vq_quantmap__8u1__p8_0[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__8u1__p8_0 = { _vq_quantthresh__8u1__p8_0, _vq_quantmap__8u1__p8_0, 11, 11 }; static static_codebook _8u1__p8_0 = { 2, 121, _vq_lengthlist__8u1__p8_0, 1, -524582912, 1618345984, 4, 0, _vq_quantlist__8u1__p8_0, NULL, &_vq_auxt__8u1__p8_0, NULL, 0 }; static long _vq_quantlist__8u1__p8_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__8u1__p8_1[] = { 2, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 9, 9, 7, 8, 8, 8, 8, 8, 8, 9, 8, 9, 9, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, }; static float _vq_quantthresh__8u1__p8_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__8u1__p8_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__8u1__p8_1 = { _vq_quantthresh__8u1__p8_1, _vq_quantmap__8u1__p8_1, 11, 11 }; static static_codebook _8u1__p8_1 = { 2, 121, _vq_lengthlist__8u1__p8_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__8u1__p8_1, NULL, &_vq_auxt__8u1__p8_1, NULL, 0 }; static long _vq_quantlist__8u1__p9_0[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__8u1__p9_0[] = { 1, 4, 4,11,11,11,11,11,11,11,11,11,11,11,11, 3, 11, 8,11,11,11,11,11,11,11,11,11,11,11,11, 3, 9, 9,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10, }; static float _vq_quantthresh__8u1__p9_0[] = { -1657.5, -1402.5, -1147.5, -892.5, -637.5, -382.5, -127.5, 127.5, 382.5, 637.5, 892.5, 1147.5, 1402.5, 1657.5, }; static long _vq_quantmap__8u1__p9_0[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__8u1__p9_0 = { _vq_quantthresh__8u1__p9_0, _vq_quantmap__8u1__p9_0, 15, 15 }; static static_codebook _8u1__p9_0 = { 2, 225, _vq_lengthlist__8u1__p9_0, 1, -514071552, 1627381760, 4, 0, _vq_quantlist__8u1__p9_0, NULL, &_vq_auxt__8u1__p9_0, NULL, 0 }; static long _vq_quantlist__8u1__p9_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__8u1__p9_1[] = { 1, 4, 4, 7, 7, 9, 9, 7, 7, 8, 8,10,10,11,11, 4, 7, 7, 9, 9,10,10, 8, 8,10,10,10,11,10,11, 4, 7, 7, 9, 9,10,10, 8, 8,10, 9,11,11,11,11, 7, 9, 9, 12,12,11,12,10,10,11,10,12,11,11,11, 7, 9, 9,11, 11,13,12, 9, 9,11,10,11,11,12,11, 9,10,10,12,12, 14,14,10,10,11,12,12,11,11,11, 9,10,11,11,13,14, 13,10,11,11,11,12,11,12,12, 7, 8, 8,10, 9,11,10, 11,12,12,11,12,14,12,13, 7, 8, 8, 9,10,10,11,12, 12,12,11,12,12,12,13, 9, 9, 9,11,11,13,12,12,12, 12,11,12,12,13,12, 8,10,10,11,10,11,12,12,12,12, 12,12,14,12,12, 9,11,11,11,12,12,12,12,13,13,12, 12,13,13,12,10,11,11,12,11,12,12,12,11,12,13,12, 12,12,13,11,11,12,12,12,13,12,12,11,12,13,13,12, 12,13,12,11,12,12,13,13,12,13,12,13,13,13,13,14, 13, }; static float _vq_quantthresh__8u1__p9_1[] = { -110.5, -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, 110.5, }; static long _vq_quantmap__8u1__p9_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__8u1__p9_1 = { _vq_quantthresh__8u1__p9_1, _vq_quantmap__8u1__p9_1, 15, 15 }; static static_codebook _8u1__p9_1 = { 2, 225, _vq_lengthlist__8u1__p9_1, 1, -522338304, 1620115456, 4, 0, _vq_quantlist__8u1__p9_1, NULL, &_vq_auxt__8u1__p9_1, NULL, 0 }; static long _vq_quantlist__8u1__p9_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__8u1__p9_2[] = { 2, 5, 4, 6, 6, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 5, 6, 6, 7, 7, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 9, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 8, 8, 8, 9, 9, 9, 9,10,10,10, 9, 10,10,10,10,10,10, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9,10, 10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9,10,10,10, 10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9,10, 10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9,10, 10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9,10, 10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 10,10,10,10,10,10,10,10,10,10,10,10,10,10, 9,10, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10,10, 9, 10, 9,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10, }; static float _vq_quantthresh__8u1__p9_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__8u1__p9_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__8u1__p9_2 = { _vq_quantthresh__8u1__p9_2, _vq_quantmap__8u1__p9_2, 17, 17 }; static static_codebook _8u1__p9_2 = { 2, 289, _vq_lengthlist__8u1__p9_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__8u1__p9_2, NULL, &_vq_auxt__8u1__p9_2, NULL, 0 }; static long _huff_lengthlist__8u1__single[] = { 4, 7,13, 9,15, 9,16, 8,10,13, 7, 5, 8, 6, 9, 7, 10, 7,10,11,11, 6, 7, 8, 8, 9, 9, 9,12,16, 8, 5, 8, 6, 8, 6, 9, 7,10,12,11, 7, 7, 7, 6, 7, 7, 7, 11,15, 7, 5, 8, 6, 7, 5, 7, 6, 9,13,13, 9, 9, 8, 6, 6, 5, 5, 9,14, 8, 6, 8, 6, 6, 4, 5, 3, 5,13, 9, 9,11, 8,10, 7, 8, 4, 5,12,11,16,17,15,17,12, 13, 8, 8,15, }; static static_codebook _huff_book__8u1__single = { 2, 100, _huff_lengthlist__8u1__single, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44u0__long[] = { 5, 8,13,10,17,11,11,15, 7, 2, 4, 5, 8, 7, 9,16, 13, 4, 3, 5, 6, 8,11,20,10, 4, 5, 5, 7, 6, 8,18, 15, 7, 6, 7, 8,10,14,20,10, 6, 7, 6, 9, 7, 8,17, 9, 8,10, 8,10, 5, 4,11,12,17,19,14,16,10, 7,12, }; static static_codebook _huff_book__44u0__long = { 2, 64, _huff_lengthlist__44u0__long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44u0__p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u0__p1_0[] = { 1, 4, 4, 5, 8, 7, 5, 7, 8, 5, 8, 8, 8,11,11, 8, 10,10, 5, 8, 8, 8,11,10, 8,11,11, 4, 8, 8, 8,11, 11, 8,11,11, 8,12,11,11,13,13,11,13,14, 7,11,11, 10,13,12,11,13,14, 4, 8, 8, 8,11,11, 8,11,12, 8, 11,11,11,13,13,10,12,13, 8,11,11,11,14,13,11,14, 13, }; static float _vq_quantthresh__44u0__p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u0__p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u0__p1_0 = { _vq_quantthresh__44u0__p1_0, _vq_quantmap__44u0__p1_0, 3, 3 }; static static_codebook _44u0__p1_0 = { 4, 81, _vq_lengthlist__44u0__p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u0__p1_0, NULL, &_vq_auxt__44u0__p1_0, NULL, 0 }; static long _vq_quantlist__44u0__p2_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u0__p2_0[] = { 2, 4, 4, 5, 6, 6, 5, 6, 6, 5, 7, 7, 7, 8, 8, 6, 8, 8, 5, 7, 7, 6, 8, 8, 7, 8, 8, 4, 7, 7, 7, 8, 8, 7, 8, 8, 7, 8, 8, 8, 9,10, 8,10,10, 6, 8, 8, 8,10, 8, 8,10,10, 5, 7, 7, 7, 8, 8, 7, 8, 8, 6, 8, 8, 8,10,10, 8, 8,10, 6, 8, 8, 8,10,10, 8,10, 9, }; static float _vq_quantthresh__44u0__p2_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u0__p2_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u0__p2_0 = { _vq_quantthresh__44u0__p2_0, _vq_quantmap__44u0__p2_0, 3, 3 }; static static_codebook _44u0__p2_0 = { 4, 81, _vq_lengthlist__44u0__p2_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u0__p2_0, NULL, &_vq_auxt__44u0__p2_0, NULL, 0 }; static long _vq_quantlist__44u0__p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u0__p3_0[] = { 1, 5, 5, 8, 8, 5, 8, 7, 9, 9, 5, 7, 8, 9, 9, 9, 10, 9,12,12, 9, 9,10,12,12, 6, 8, 8,11,10, 8,10, 10,11,11, 8, 9,10,11,11,10,11,11,14,13,10,11,11, 13,13, 5, 8, 8,10,10, 8,10,10,11,11, 8,10,10,11, 11,10,11,11,13,13,10,11,11,13,13, 9,11,11,15,14, 10,12,12,15,14,10,12,11,15,14,13,14,14,16,16,12, 14,13,17,15, 9,11,11,14,15,10,11,12,14,16,10,11, 12,14,16,12,13,14,16,16,13,13,15,15,18, 5, 8, 8, 11,11, 8,10,10,12,12, 8,10,10,12,13,11,12,12,14, 14,11,12,12,15,15, 8,10,10,13,13,10,12,12,13,13, 10,12,12,14,14,12,13,13,15,15,12,13,13,16,16, 7, 10,10,12,12,10,12,11,13,13,10,12,12,13,14,12,13, 12,15,14,12,13,13,16,16,10,12,12,17,16,12,13,13, 16,15,11,13,13,17,17,15,15,15,16,17,14,15,15,19, 19,10,12,12,15,16,11,13,12,15,18,11,13,13,16,16, 14,15,15,17,17,14,15,15,17,19, 5, 8, 8,11,11, 8, 10,10,12,12, 8,10,10,12,12,11,12,12,16,15,11,12, 12,14,15, 7,10,10,13,13,10,12,12,14,13,10,11,12, 13,13,12,13,13,16,16,12,12,13,15,15, 8,10,10,13, 13,10,12,12,14,14,10,12,12,13,13,12,13,13,16,16, 12,13,13,15,15,10,12,12,16,15,11,13,13,17,16,11, 12,13,16,15,13,15,15,19,17,14,15,14,17,16,10,12, 12,16,16,11,13,13,16,17,12,13,13,15,17,14,15,15, 17,19,14,15,15,17,17, 8,11,11,16,16,10,13,12,17, 17,10,12,13,16,16,15,17,16,20,19,14,15,17,18,19, 9,12,12,16,17,11,13,14,17,18,11,13,13,19,18,16, 17,18,19,19,15,16,16,19,19, 9,12,12,16,17,11,14, 13,18,17,11,13,13,17,17,16,17,16,20,19,14,16,16, 18,18,12,15,15,19,17,14,15,16, 0,20,13,15,16,20, 17,18,16,20, 0, 0,15,16,19,20, 0,12,15,14,18,19, 13,16,15,20,19,13,16,15,20,18,17,18,17, 0,20,16, 17,16, 0, 0, 8,11,11,16,15,10,12,12,17,17,10,13, 13,17,16,14,16,15,18,20,15,16,16,19,19, 9,12,12, 16,16,11,13,13,17,16,11,13,14,17,18,15,15,16,20, 20,16,16,17,19,19, 9,13,12,16,17,11,14,13,17,17, 11,14,14,18,17,14,16,15,18,19,16,17,18,18,19,12, 14,15,19,18,13,15,16,18, 0,13,14,15, 0, 0,16,16, 17,20, 0,17,17,20,20, 0,12,15,15,19,20,13,15,15, 0, 0,14,16,15, 0, 0,15,18,16, 0, 0,17,18,16, 0, 19, }; static float _vq_quantthresh__44u0__p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u0__p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u0__p3_0 = { _vq_quantthresh__44u0__p3_0, _vq_quantmap__44u0__p3_0, 5, 5 }; static static_codebook _44u0__p3_0 = { 4, 625, _vq_lengthlist__44u0__p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u0__p3_0, NULL, &_vq_auxt__44u0__p3_0, NULL, 0 }; static long _vq_quantlist__44u0__p4_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u0__p4_0[] = { 4, 5, 5, 9, 9, 5, 6, 6, 9, 9, 5, 6, 6, 9, 9, 9, 10, 9,12,12, 9, 9,10,12,12, 5, 7, 7,10,10, 7, 7, 8,10,10, 6, 7, 8,10,10,10,10,10,11,13,10, 9,10, 12,13, 5, 7, 7,10,10, 6, 8, 7,10,10, 7, 8, 7,10, 10, 9,10,10,12,12,10,10,10,13,11, 9,10,10,13,13, 10,11,10,13,13,10,10,10,13,13,12,12,13,14,14,12, 12,13,14,14, 9,10,10,13,13,10,10,10,13,13,10,10, 10,13,13,12,13,12,15,14,12,13,12,15,15, 5, 7, 6, 10,10, 7, 8, 8,10,10, 7, 8, 8,10,10,10,11,10,13, 13,10,10,10,12,12, 7, 8, 8,11,10, 8, 8, 9,10,11, 8, 9, 9,11,11,11,10,11,11,14,11,11,11,13,13, 6, 8, 8,10,10, 7, 9, 8,11,10, 8, 9, 9,11,11,10,11, 10,14,11,10,11,11,13,13,10,11,11,14,13,10,10,11, 14,13,10,11,11,14,14,12,11,13,12,16,13,14,14,15, 15,10,10,11,13,14,10,11,10,14,13,10,11,11,14,14, 12,13,12,15,13,13,13,14,15,16, 5, 7, 7,10,10, 7, 8, 8,10,10, 7, 8, 8,10,10,10,10,10,13,13,10,10, 11,12,13, 6, 8, 8,11,10, 8, 9, 9,11,11, 7, 8, 9, 10,11,10,11,11,13,13,10,10,11,11,13, 6, 8, 8,10, 11, 8, 9, 9,11,11, 8, 9, 8,12,10,10,11,11,13,13, 10,11,10,14,11,10,10,10,14,13,10,11,11,14,13,10, 10,11,13,13,12,14,14,16,16,12,12,13,13,15,10,11, 11,13,14,10,11,11,14,15,10,11,10,13,13,13,14,13, 16,16,12,13,11,15,12, 9,10,10,13,13,10,11,11,14, 13,10,10,11,13,14,13,14,13,16,16,13,13,13,15,16, 9,10,10,13,13,10,10,11,13,14,10,11,11,15,13,13, 13,14,14,18,13,13,14,16,15, 9,10,10,13,14,10,11, 10,14,13,10,11,11,13,14,13,14,13,16,15,13,13,14, 15,16,12,13,12,16,14,11,11,13,15,15,13,14,13,16, 15,15,12,16,12,17,14,15,15,17,17,12,13,13,14,16, 11,13,11,16,15,12,13,14,15,16,14,15,13, 0,14,14, 16,16, 0, 0, 9,10,10,13,13,10,11,10,14,14,10,11, 11,13,13,12,13,13,14,16,13,14,14,16,16, 9,10,10, 14,14,11,11,11,14,13,10,10,11,14,14,13,13,13,16, 16,13,13,14,14,17, 9,10,10,13,14,10,11,11,13,15, 10,11,10,14,14,13,13,13,14,17,13,14,13,17,14,12, 13,13,16,14,13,14,13,16,15,12,12,13,15,16,15,15, 16,18,16,15,13,15,14, 0,12,12,13,14,16,13,13,14, 15,16,11,12,11,16,14,15,16,16,17,17,14,15,12,17, 12, }; static float _vq_quantthresh__44u0__p4_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u0__p4_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u0__p4_0 = { _vq_quantthresh__44u0__p4_0, _vq_quantmap__44u0__p4_0, 5, 5 }; static static_codebook _44u0__p4_0 = { 4, 625, _vq_lengthlist__44u0__p4_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u0__p4_0, NULL, &_vq_auxt__44u0__p4_0, NULL, 0 }; static long _vq_quantlist__44u0__p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u0__p5_0[] = { 1, 4, 4, 7, 7, 7, 7, 9, 9, 4, 6, 6, 8, 8, 8, 8, 9, 9, 4, 6, 6, 8, 8, 8, 8, 9, 9, 7, 8, 8, 9, 9, 9, 9,11,10, 7, 8, 8, 9, 9, 9, 9,10,10, 7, 8, 8, 9, 9,10,10,11,11, 7, 8, 8, 9, 9,10,10,11,11, 9, 9, 9,10,10,11,11,12,12, 9, 9, 9,10,11,11,11,12, 12, }; static float _vq_quantthresh__44u0__p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44u0__p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u0__p5_0 = { _vq_quantthresh__44u0__p5_0, _vq_quantmap__44u0__p5_0, 9, 9 }; static static_codebook _44u0__p5_0 = { 2, 81, _vq_lengthlist__44u0__p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44u0__p5_0, NULL, &_vq_auxt__44u0__p5_0, NULL, 0 }; static long _vq_quantlist__44u0__p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u0__p6_0[] = { 1, 4, 4, 6, 6, 8, 8,10, 9,11,10,14,13, 4, 6, 5, 8, 8, 9, 9,11,10,11,11,14,14, 4, 5, 6, 8, 8, 9, 9,10,10,11,11,14,14, 6, 8, 8, 9, 9,10,10,11,11, 12,12,16,15, 7, 8, 8, 9, 9,10,10,11,11,12,12,15, 15, 9,10,10,10,10,11,11,12,12,12,12,15,15, 9,10, 9,10,11,11,11,12,12,12,13,15,15,10,10,11,11,11, 12,12,13,12,13,13,16,15,10,11,11,11,11,12,12,13, 12,13,13,16,17,11,11,12,12,12,13,13,13,14,14,15, 17,17,11,11,12,12,12,13,13,13,14,14,14,16,18,14, 15,15,15,15,16,16,16,16,17,18, 0, 0,14,15,15,15, 15,17,16,17,18,17,17,18, 0, }; static float _vq_quantthresh__44u0__p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44u0__p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u0__p6_0 = { _vq_quantthresh__44u0__p6_0, _vq_quantmap__44u0__p6_0, 13, 13 }; static static_codebook _44u0__p6_0 = { 2, 169, _vq_lengthlist__44u0__p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44u0__p6_0, NULL, &_vq_auxt__44u0__p6_0, NULL, 0 }; static long _vq_quantlist__44u0__p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u0__p6_1[] = { 2, 4, 4, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, }; static float _vq_quantthresh__44u0__p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u0__p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u0__p6_1 = { _vq_quantthresh__44u0__p6_1, _vq_quantmap__44u0__p6_1, 5, 5 }; static static_codebook _44u0__p6_1 = { 2, 25, _vq_lengthlist__44u0__p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u0__p6_1, NULL, &_vq_auxt__44u0__p6_1, NULL, 0 }; static long _vq_quantlist__44u0__p7_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u0__p7_0[] = { 1, 4, 4,11,11, 9,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11, 9,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,10,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10, }; static float _vq_quantthresh__44u0__p7_0[] = { -253.5, -84.5, 84.5, 253.5, }; static long _vq_quantmap__44u0__p7_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u0__p7_0 = { _vq_quantthresh__44u0__p7_0, _vq_quantmap__44u0__p7_0, 5, 5 }; static static_codebook _44u0__p7_0 = { 4, 625, _vq_lengthlist__44u0__p7_0, 1, -518709248, 1626677248, 3, 0, _vq_quantlist__44u0__p7_0, NULL, &_vq_auxt__44u0__p7_0, NULL, 0 }; static long _vq_quantlist__44u0__p7_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u0__p7_1[] = { 1, 4, 4, 6, 6, 6, 6, 7, 7, 8, 8, 9, 9, 5, 7, 7, 8, 7, 7, 7, 9, 8,10, 9,10,11, 5, 7, 7, 8, 8, 7, 7, 8, 9,10,10,11,11, 6, 8, 8, 9, 9, 9, 9,11,10, 12,12,15,12, 6, 8, 8, 9, 9, 9, 9,11,11,12,11,14, 12, 7, 8, 8,10,10,12,12,13,13,13,15,13,13, 7, 8, 8,10,10,11,11,13,12,14,15,15,15, 9,10,10,11,12, 13,13,14,15,14,15,14,15, 8,10,10,12,12,14,14,15, 14,14,15,15,14,10,12,12,14,14,15,14,15,15,15,14, 15,15,10,12,12,13,14,15,14,15,15,14,15,15,15,12, 15,13,15,14,15,15,15,15,15,15,15,15,13,13,15,15, 15,15,15,15,15,15,15,15,15, }; static float _vq_quantthresh__44u0__p7_1[] = { -71.5, -58.5, -45.5, -32.5, -19.5, -6.5, 6.5, 19.5, 32.5, 45.5, 58.5, 71.5, }; static long _vq_quantmap__44u0__p7_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u0__p7_1 = { _vq_quantthresh__44u0__p7_1, _vq_quantmap__44u0__p7_1, 13, 13 }; static static_codebook _44u0__p7_1 = { 2, 169, _vq_lengthlist__44u0__p7_1, 1, -523010048, 1618608128, 4, 0, _vq_quantlist__44u0__p7_1, NULL, &_vq_auxt__44u0__p7_1, NULL, 0 }; static long _vq_quantlist__44u0__p7_2[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u0__p7_2[] = { 2, 5, 4, 6, 6, 7, 7, 8, 8, 8, 8, 9, 8, 5, 5, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 5, 6, 5, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 6, 7, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 6, 7, 7, 8, 7, 8, 8, 9, 9, 9, 9, 9, 9, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 7, 8, 8, 9, 8, 9, 8, 9, 9, 9, 9, 9, 9, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9,10, 9, 9,10,10, 9, }; static float _vq_quantthresh__44u0__p7_2[] = { -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, }; static long _vq_quantmap__44u0__p7_2[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u0__p7_2 = { _vq_quantthresh__44u0__p7_2, _vq_quantmap__44u0__p7_2, 13, 13 }; static static_codebook _44u0__p7_2 = { 2, 169, _vq_lengthlist__44u0__p7_2, 1, -531103744, 1611661312, 4, 0, _vq_quantlist__44u0__p7_2, NULL, &_vq_auxt__44u0__p7_2, NULL, 0 }; static long _huff_lengthlist__44u0__short[] = { 12,13,14,13,17,12,15,17, 5, 5, 6,10,10,11,15,16, 4, 3, 3, 7, 5, 7,10,16, 7, 7, 7,10, 9,11,12,16, 6, 5, 5, 9, 5, 6,10,16, 8, 7, 7, 9, 6, 7, 9,16, 11, 7, 3, 6, 4, 5, 8,16,12, 9, 4, 8, 5, 7, 9,16, }; static static_codebook _huff_book__44u0__short = { 2, 64, _huff_lengthlist__44u0__short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44u1__long[] = { 5, 8,13,10,17,11,11,15, 7, 2, 4, 5, 8, 7, 9,16, 13, 4, 3, 5, 6, 8,11,20,10, 4, 5, 5, 7, 6, 8,18, 15, 7, 6, 7, 8,10,14,20,10, 6, 7, 6, 9, 7, 8,17, 9, 8,10, 8,10, 5, 4,11,12,17,19,14,16,10, 7,12, }; static static_codebook _huff_book__44u1__long = { 2, 64, _huff_lengthlist__44u1__long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44u1__p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u1__p1_0[] = { 1, 4, 4, 5, 8, 7, 5, 7, 8, 5, 8, 8, 8,11,11, 8, 10,10, 5, 8, 8, 8,11,10, 8,11,11, 4, 8, 8, 8,11, 11, 8,11,11, 8,12,11,11,13,13,11,13,14, 7,11,11, 10,13,12,11,13,14, 4, 8, 8, 8,11,11, 8,11,12, 8, 11,11,11,13,13,10,12,13, 8,11,11,11,14,13,11,14, 13, }; static float _vq_quantthresh__44u1__p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u1__p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u1__p1_0 = { _vq_quantthresh__44u1__p1_0, _vq_quantmap__44u1__p1_0, 3, 3 }; static static_codebook _44u1__p1_0 = { 4, 81, _vq_lengthlist__44u1__p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u1__p1_0, NULL, &_vq_auxt__44u1__p1_0, NULL, 0 }; static long _vq_quantlist__44u1__p2_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u1__p2_0[] = { 2, 4, 4, 5, 6, 6, 5, 6, 6, 5, 7, 7, 7, 8, 8, 6, 8, 8, 5, 7, 7, 6, 8, 8, 7, 8, 8, 4, 7, 7, 7, 8, 8, 7, 8, 8, 7, 8, 8, 8, 9,10, 8,10,10, 6, 8, 8, 8,10, 8, 8,10,10, 5, 7, 7, 7, 8, 8, 7, 8, 8, 6, 8, 8, 8,10,10, 8, 8,10, 6, 8, 8, 8,10,10, 8,10, 9, }; static float _vq_quantthresh__44u1__p2_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u1__p2_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u1__p2_0 = { _vq_quantthresh__44u1__p2_0, _vq_quantmap__44u1__p2_0, 3, 3 }; static static_codebook _44u1__p2_0 = { 4, 81, _vq_lengthlist__44u1__p2_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u1__p2_0, NULL, &_vq_auxt__44u1__p2_0, NULL, 0 }; static long _vq_quantlist__44u1__p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u1__p3_0[] = { 1, 5, 5, 8, 8, 5, 8, 7, 9, 9, 5, 7, 8, 9, 9, 9, 10, 9,12,12, 9, 9,10,12,12, 6, 8, 8,11,10, 8,10, 10,11,11, 8, 9,10,11,11,10,11,11,14,13,10,11,11, 13,13, 5, 8, 8,10,10, 8,10,10,11,11, 8,10,10,11, 11,10,11,11,13,13,10,11,11,13,13, 9,11,11,15,14, 10,12,12,15,14,10,12,11,15,14,13,14,14,16,16,12, 14,13,17,15, 9,11,11,14,15,10,11,12,14,16,10,11, 12,14,16,12,13,14,16,16,13,13,15,15,18, 5, 8, 8, 11,11, 8,10,10,12,12, 8,10,10,12,13,11,12,12,14, 14,11,12,12,15,15, 8,10,10,13,13,10,12,12,13,13, 10,12,12,14,14,12,13,13,15,15,12,13,13,16,16, 7, 10,10,12,12,10,12,11,13,13,10,12,12,13,14,12,13, 12,15,14,12,13,13,16,16,10,12,12,17,16,12,13,13, 16,15,11,13,13,17,17,15,15,15,16,17,14,15,15,19, 19,10,12,12,15,16,11,13,12,15,18,11,13,13,16,16, 14,15,15,17,17,14,15,15,17,19, 5, 8, 8,11,11, 8, 10,10,12,12, 8,10,10,12,12,11,12,12,16,15,11,12, 12,14,15, 7,10,10,13,13,10,12,12,14,13,10,11,12, 13,13,12,13,13,16,16,12,12,13,15,15, 8,10,10,13, 13,10,12,12,14,14,10,12,12,13,13,12,13,13,16,16, 12,13,13,15,15,10,12,12,16,15,11,13,13,17,16,11, 12,13,16,15,13,15,15,19,17,14,15,14,17,16,10,12, 12,16,16,11,13,13,16,17,12,13,13,15,17,14,15,15, 17,19,14,15,15,17,17, 8,11,11,16,16,10,13,12,17, 17,10,12,13,16,16,15,17,16,20,19,14,15,17,18,19, 9,12,12,16,17,11,13,14,17,18,11,13,13,19,18,16, 17,18,19,19,15,16,16,19,19, 9,12,12,16,17,11,14, 13,18,17,11,13,13,17,17,16,17,16,20,19,14,16,16, 18,18,12,15,15,19,17,14,15,16, 0,20,13,15,16,20, 17,18,16,20, 0, 0,15,16,19,20, 0,12,15,14,18,19, 13,16,15,20,19,13,16,15,20,18,17,18,17, 0,20,16, 17,16, 0, 0, 8,11,11,16,15,10,12,12,17,17,10,13, 13,17,16,14,16,15,18,20,15,16,16,19,19, 9,12,12, 16,16,11,13,13,17,16,11,13,14,17,18,15,15,16,20, 20,16,16,17,19,19, 9,13,12,16,17,11,14,13,17,17, 11,14,14,18,17,14,16,15,18,19,16,17,18,18,19,12, 14,15,19,18,13,15,16,18, 0,13,14,15, 0, 0,16,16, 17,20, 0,17,17,20,20, 0,12,15,15,19,20,13,15,15, 0, 0,14,16,15, 0, 0,15,18,16, 0, 0,17,18,16, 0, 19, }; static float _vq_quantthresh__44u1__p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u1__p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u1__p3_0 = { _vq_quantthresh__44u1__p3_0, _vq_quantmap__44u1__p3_0, 5, 5 }; static static_codebook _44u1__p3_0 = { 4, 625, _vq_lengthlist__44u1__p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u1__p3_0, NULL, &_vq_auxt__44u1__p3_0, NULL, 0 }; static long _vq_quantlist__44u1__p4_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u1__p4_0[] = { 4, 5, 5, 9, 9, 5, 6, 6, 9, 9, 5, 6, 6, 9, 9, 9, 10, 9,12,12, 9, 9,10,12,12, 5, 7, 7,10,10, 7, 7, 8,10,10, 6, 7, 8,10,10,10,10,10,11,13,10, 9,10, 12,13, 5, 7, 7,10,10, 6, 8, 7,10,10, 7, 8, 7,10, 10, 9,10,10,12,12,10,10,10,13,11, 9,10,10,13,13, 10,11,10,13,13,10,10,10,13,13,12,12,13,14,14,12, 12,13,14,14, 9,10,10,13,13,10,10,10,13,13,10,10, 10,13,13,12,13,12,15,14,12,13,12,15,15, 5, 7, 6, 10,10, 7, 8, 8,10,10, 7, 8, 8,10,10,10,11,10,13, 13,10,10,10,12,12, 7, 8, 8,11,10, 8, 8, 9,10,11, 8, 9, 9,11,11,11,10,11,11,14,11,11,11,13,13, 6, 8, 8,10,10, 7, 9, 8,11,10, 8, 9, 9,11,11,10,11, 10,14,11,10,11,11,13,13,10,11,11,14,13,10,10,11, 14,13,10,11,11,14,14,12,11,13,12,16,13,14,14,15, 15,10,10,11,13,14,10,11,10,14,13,10,11,11,14,14, 12,13,12,15,13,13,13,14,15,16, 5, 7, 7,10,10, 7, 8, 8,10,10, 7, 8, 8,10,10,10,10,10,13,13,10,10, 11,12,13, 6, 8, 8,11,10, 8, 9, 9,11,11, 7, 8, 9, 10,11,10,11,11,13,13,10,10,11,11,13, 6, 8, 8,10, 11, 8, 9, 9,11,11, 8, 9, 8,12,10,10,11,11,13,13, 10,11,10,14,11,10,10,10,14,13,10,11,11,14,13,10, 10,11,13,13,12,14,14,16,16,12,12,13,13,15,10,11, 11,13,14,10,11,11,14,15,10,11,10,13,13,13,14,13, 16,16,12,13,11,15,12, 9,10,10,13,13,10,11,11,14, 13,10,10,11,13,14,13,14,13,16,16,13,13,13,15,16, 9,10,10,13,13,10,10,11,13,14,10,11,11,15,13,13, 13,14,14,18,13,13,14,16,15, 9,10,10,13,14,10,11, 10,14,13,10,11,11,13,14,13,14,13,16,15,13,13,14, 15,16,12,13,12,16,14,11,11,13,15,15,13,14,13,16, 15,15,12,16,12,17,14,15,15,17,17,12,13,13,14,16, 11,13,11,16,15,12,13,14,15,16,14,15,13, 0,14,14, 16,16, 0, 0, 9,10,10,13,13,10,11,10,14,14,10,11, 11,13,13,12,13,13,14,16,13,14,14,16,16, 9,10,10, 14,14,11,11,11,14,13,10,10,11,14,14,13,13,13,16, 16,13,13,14,14,17, 9,10,10,13,14,10,11,11,13,15, 10,11,10,14,14,13,13,13,14,17,13,14,13,17,14,12, 13,13,16,14,13,14,13,16,15,12,12,13,15,16,15,15, 16,18,16,15,13,15,14, 0,12,12,13,14,16,13,13,14, 15,16,11,12,11,16,14,15,16,16,17,17,14,15,12,17, 12, }; static float _vq_quantthresh__44u1__p4_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u1__p4_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u1__p4_0 = { _vq_quantthresh__44u1__p4_0, _vq_quantmap__44u1__p4_0, 5, 5 }; static static_codebook _44u1__p4_0 = { 4, 625, _vq_lengthlist__44u1__p4_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u1__p4_0, NULL, &_vq_auxt__44u1__p4_0, NULL, 0 }; static long _vq_quantlist__44u1__p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u1__p5_0[] = { 1, 4, 4, 7, 7, 7, 7, 9, 9, 4, 6, 6, 8, 8, 8, 8, 9, 9, 4, 6, 6, 8, 8, 8, 8, 9, 9, 7, 8, 8, 9, 9, 9, 9,11,10, 7, 8, 8, 9, 9, 9, 9,10,10, 7, 8, 8, 9, 9,10,10,11,11, 7, 8, 8, 9, 9,10,10,11,11, 9, 9, 9,10,10,11,11,12,12, 9, 9, 9,10,11,11,11,12, 12, }; static float _vq_quantthresh__44u1__p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44u1__p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u1__p5_0 = { _vq_quantthresh__44u1__p5_0, _vq_quantmap__44u1__p5_0, 9, 9 }; static static_codebook _44u1__p5_0 = { 2, 81, _vq_lengthlist__44u1__p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44u1__p5_0, NULL, &_vq_auxt__44u1__p5_0, NULL, 0 }; static long _vq_quantlist__44u1__p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u1__p6_0[] = { 1, 4, 4, 6, 6, 8, 8,10, 9,11,10,14,13, 4, 6, 5, 8, 8, 9, 9,11,10,11,11,14,14, 4, 5, 6, 8, 8, 9, 9,10,10,11,11,14,14, 6, 8, 8, 9, 9,10,10,11,11, 12,12,16,15, 7, 8, 8, 9, 9,10,10,11,11,12,12,15, 15, 9,10,10,10,10,11,11,12,12,12,12,15,15, 9,10, 9,10,11,11,11,12,12,12,13,15,15,10,10,11,11,11, 12,12,13,12,13,13,16,15,10,11,11,11,11,12,12,13, 12,13,13,16,17,11,11,12,12,12,13,13,13,14,14,15, 17,17,11,11,12,12,12,13,13,13,14,14,14,16,18,14, 15,15,15,15,16,16,16,16,17,18, 0, 0,14,15,15,15, 15,17,16,17,18,17,17,18, 0, }; static float _vq_quantthresh__44u1__p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44u1__p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u1__p6_0 = { _vq_quantthresh__44u1__p6_0, _vq_quantmap__44u1__p6_0, 13, 13 }; static static_codebook _44u1__p6_0 = { 2, 169, _vq_lengthlist__44u1__p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44u1__p6_0, NULL, &_vq_auxt__44u1__p6_0, NULL, 0 }; static long _vq_quantlist__44u1__p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u1__p6_1[] = { 2, 4, 4, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, }; static float _vq_quantthresh__44u1__p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u1__p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u1__p6_1 = { _vq_quantthresh__44u1__p6_1, _vq_quantmap__44u1__p6_1, 5, 5 }; static static_codebook _44u1__p6_1 = { 2, 25, _vq_lengthlist__44u1__p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u1__p6_1, NULL, &_vq_auxt__44u1__p6_1, NULL, 0 }; static long _vq_quantlist__44u1__p7_0[] = { 3, 2, 4, 1, 5, 0, 6, }; static long _vq_lengthlist__44u1__p7_0[] = { 1, 3, 2, 9, 9, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__44u1__p7_0[] = { -422.5, -253.5, -84.5, 84.5, 253.5, 422.5, }; static long _vq_quantmap__44u1__p7_0[] = { 5, 3, 1, 0, 2, 4, 6, }; static encode_aux_threshmatch _vq_auxt__44u1__p7_0 = { _vq_quantthresh__44u1__p7_0, _vq_quantmap__44u1__p7_0, 7, 7 }; static static_codebook _44u1__p7_0 = { 2, 49, _vq_lengthlist__44u1__p7_0, 1, -518017024, 1626677248, 3, 0, _vq_quantlist__44u1__p7_0, NULL, &_vq_auxt__44u1__p7_0, NULL, 0 }; static long _vq_quantlist__44u1__p7_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u1__p7_1[] = { 1, 4, 4, 6, 6, 6, 6, 7, 7, 8, 8, 9, 9, 5, 7, 7, 8, 7, 7, 7, 9, 8,10, 9,10,11, 5, 7, 7, 8, 8, 7, 7, 8, 9,10,10,11,11, 6, 8, 8, 9, 9, 9, 9,11,10, 12,12,15,12, 6, 8, 8, 9, 9, 9, 9,11,11,12,11,14, 12, 7, 8, 8,10,10,12,12,13,13,13,15,13,13, 7, 8, 8,10,10,11,11,13,12,14,15,15,15, 9,10,10,11,12, 13,13,14,15,14,15,14,15, 8,10,10,12,12,14,14,15, 14,14,15,15,14,10,12,12,14,14,15,14,15,15,15,14, 15,15,10,12,12,13,14,15,14,15,15,14,15,15,15,12, 15,13,15,14,15,15,15,15,15,15,15,15,13,13,15,15, 15,15,15,15,15,15,15,15,15, }; static float _vq_quantthresh__44u1__p7_1[] = { -71.5, -58.5, -45.5, -32.5, -19.5, -6.5, 6.5, 19.5, 32.5, 45.5, 58.5, 71.5, }; static long _vq_quantmap__44u1__p7_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u1__p7_1 = { _vq_quantthresh__44u1__p7_1, _vq_quantmap__44u1__p7_1, 13, 13 }; static static_codebook _44u1__p7_1 = { 2, 169, _vq_lengthlist__44u1__p7_1, 1, -523010048, 1618608128, 4, 0, _vq_quantlist__44u1__p7_1, NULL, &_vq_auxt__44u1__p7_1, NULL, 0 }; static long _vq_quantlist__44u1__p7_2[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u1__p7_2[] = { 2, 5, 4, 6, 6, 7, 7, 8, 8, 8, 8, 9, 8, 5, 5, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 5, 6, 5, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 6, 7, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 6, 7, 7, 8, 7, 8, 8, 9, 9, 9, 9, 9, 9, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 7, 8, 8, 9, 8, 9, 8, 9, 9, 9, 9, 9, 9, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9,10, 9, 9,10,10, 9, }; static float _vq_quantthresh__44u1__p7_2[] = { -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, }; static long _vq_quantmap__44u1__p7_2[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u1__p7_2 = { _vq_quantthresh__44u1__p7_2, _vq_quantmap__44u1__p7_2, 13, 13 }; static static_codebook _44u1__p7_2 = { 2, 169, _vq_lengthlist__44u1__p7_2, 1, -531103744, 1611661312, 4, 0, _vq_quantlist__44u1__p7_2, NULL, &_vq_auxt__44u1__p7_2, NULL, 0 }; static long _huff_lengthlist__44u1__short[] = { 12,13,14,13,17,12,15,17, 5, 5, 6,10,10,11,15,16, 4, 3, 3, 7, 5, 7,10,16, 7, 7, 7,10, 9,11,12,16, 6, 5, 5, 9, 5, 6,10,16, 8, 7, 7, 9, 6, 7, 9,16, 11, 7, 3, 6, 4, 5, 8,16,12, 9, 4, 8, 5, 7, 9,16, }; static static_codebook _huff_book__44u1__short = { 2, 64, _huff_lengthlist__44u1__short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44u2__long[] = { 5, 9,14,12,15,13,10,13, 7, 4, 5, 6, 8, 7, 8,12, 13, 4, 3, 5, 5, 6, 9,15,12, 6, 5, 6, 6, 6, 7,14, 14, 7, 4, 6, 4, 6, 8,15,12, 6, 6, 5, 5, 5, 6,14, 9, 7, 8, 6, 7, 5, 4,10,10,13,14,14,15,10, 6, 8, }; static static_codebook _huff_book__44u2__long = { 2, 64, _huff_lengthlist__44u2__long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44u2__p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u2__p1_0[] = { 1, 4, 4, 5, 8, 7, 5, 7, 8, 5, 8, 8, 8,11,11, 8, 10,11, 5, 8, 8, 8,11,10, 8,11,11, 4, 8, 8, 8,11, 11, 8,11,11, 8,11,11,11,13,14,11,13,13, 7,11,11, 10,13,12,11,14,14, 4, 8, 8, 8,11,11, 8,11,11, 8, 11,11,11,14,13,10,12,13, 8,11,11,11,13,13,11,13, 13, }; static float _vq_quantthresh__44u2__p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u2__p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u2__p1_0 = { _vq_quantthresh__44u2__p1_0, _vq_quantmap__44u2__p1_0, 3, 3 }; static static_codebook _44u2__p1_0 = { 4, 81, _vq_lengthlist__44u2__p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u2__p1_0, NULL, &_vq_auxt__44u2__p1_0, NULL, 0 }; static long _vq_quantlist__44u2__p2_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u2__p2_0[] = { 2, 5, 5, 5, 6, 6, 5, 6, 6, 5, 6, 6, 7, 8, 8, 6, 8, 8, 5, 6, 6, 6, 8, 7, 7, 8, 8, 5, 6, 6, 7, 8, 8, 6, 8, 8, 6, 8, 8, 8, 9,10, 8,10,10, 6, 8, 8, 7,10, 8, 8,10,10, 5, 6, 6, 6, 8, 8, 7, 8, 8, 6, 8, 8, 8,10,10, 8, 8,10, 6, 8, 8, 8,10,10, 8,10, 9, }; static float _vq_quantthresh__44u2__p2_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u2__p2_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u2__p2_0 = { _vq_quantthresh__44u2__p2_0, _vq_quantmap__44u2__p2_0, 3, 3 }; static static_codebook _44u2__p2_0 = { 4, 81, _vq_lengthlist__44u2__p2_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u2__p2_0, NULL, &_vq_auxt__44u2__p2_0, NULL, 0 }; static long _vq_quantlist__44u2__p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u2__p3_0[] = { 2, 4, 4, 7, 8, 5, 7, 7, 9, 9, 5, 7, 7, 9, 9, 8, 9, 9,12,11, 8, 9, 9,11,12, 5, 7, 7,10,10, 7, 9, 9,11,11, 7, 9, 9,10,11,10,11,11,13,13, 9,10,11, 12,13, 5, 7, 7,10,10, 7, 9, 9,11,10, 7, 9, 9,11, 11, 9,11,10,13,13,10,11,11,13,13, 8,10,10,14,13, 10,11,11,15,14, 9,11,11,15,14,13,14,13,16,14,12, 13,13,15,16, 8,10,10,13,14, 9,11,11,14,15,10,11, 11,14,15,12,13,13,15,15,12,13,14,15,16, 5, 7, 7, 10,10, 7, 9, 9,11,11, 7, 9, 9,11,12,10,11,11,14, 13,10,11,11,14,14, 7, 9, 9,12,12, 9,11,11,13,13, 9,11,11,13,13,12,13,12,14,14,11,12,13,15,15, 7, 9, 9,12,12, 8,11,10,13,12, 9,11,11,13,13,11,13, 12,15,13,11,13,13,15,16, 9,12,11,15,15,11,12,12, 16,15,11,12,13,16,16,13,14,15,16,15,13,15,15,17, 17, 9,11,11,14,15,10,12,12,15,15,11,13,12,15,16, 13,15,14,16,16,13,15,15,17,19, 5, 7, 7,10,10, 7, 9, 9,12,11, 7, 9, 9,11,11,10,11,11,14,14,10,11, 11,13,14, 7, 9, 9,12,12, 9,11,11,13,13, 9,10,11, 12,13,11,13,12,16,15,11,12,12,14,15, 7, 9, 9,12, 12, 9,11,11,13,13, 9,11,11,13,12,11,13,12,15,16, 12,13,13,15,14, 9,11,11,15,14,11,13,12,16,15,10, 11,12,15,15,13,14,14,18,17,13,14,14,15,17,10,11, 11,14,15,11,13,12,15,17,11,13,12,15,16,13,15,14, 18,17,14,15,15,16,18, 7,10,10,14,14,10,12,12,15, 15,10,12,12,15,15,14,15,15,18,17,13,15,15,16,16, 9,11,11,16,15,11,13,13,16,18,11,13,13,16,16,15, 16,16, 0, 0,14,15,16,18,17, 9,11,11,15,15,10,13, 12,17,16,11,12,13,16,17,14,15,16,19,19,14,15,15, 0,20,12,14,14, 0, 0,13,14,16,19,18,13,15,16,20, 17,16,18, 0, 0, 0,15,16,17,18,19,11,14,14, 0,19, 12,15,14,17,17,13,15,15, 0, 0,16,17,15,20,19,15, 17,16,19, 0, 8,10,10,14,15,10,12,11,15,15,10,11, 12,16,15,13,14,14,19,17,14,15,15, 0, 0, 9,11,11, 16,15,11,13,13,17,16,10,12,13,16,17,14,15,15,18, 18,14,15,16,20,19, 9,12,12, 0,15,11,13,13,16,17, 11,13,13,19,17,14,16,16,18,17,15,16,16,17,19,11, 14,14,18,18,13,14,15, 0, 0,12,14,15,19,18,15,16, 19, 0,19,15,16,19,19,17,12,14,14,16,19,13,15,15, 0,17,13,15,14,18,18,15,16,15, 0,18,16,17,17, 0, 0, }; static float _vq_quantthresh__44u2__p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u2__p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u2__p3_0 = { _vq_quantthresh__44u2__p3_0, _vq_quantmap__44u2__p3_0, 5, 5 }; static static_codebook _44u2__p3_0 = { 4, 625, _vq_lengthlist__44u2__p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u2__p3_0, NULL, &_vq_auxt__44u2__p3_0, NULL, 0 }; static long _vq_quantlist__44u2__p4_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u2__p4_0[] = { 4, 5, 5, 8, 8, 5, 7, 6, 9, 9, 5, 6, 7, 9, 9, 9, 9, 9,11,11, 9, 9, 9,11,11, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 7, 8,10,10,10,10,10,11,12, 9,10,10, 11,12, 5, 7, 7, 9, 9, 6, 8, 7,10,10, 7, 8, 8,10, 10, 9,10,10,12,11, 9,10,10,12,11, 9,10,10,12,12, 10,10,10,13,12, 9,10,10,12,13,12,12,12,14,14,11, 12,12,13,14, 9,10,10,12,12, 9,10,10,12,13,10,10, 10,12,13,11,12,12,14,13,12,12,12,14,13, 5, 7, 7, 10, 9, 7, 8, 8,10,10, 7, 8, 8,10,10,10,10,10,12, 12,10,10,10,12,12, 7, 8, 8,11,10, 8, 8, 9,11,11, 8, 9, 9,11,11,10,11,11,12,13,10,11,11,13,13, 6, 8, 8,10,10, 7, 9, 8,11,10, 8, 9, 9,11,11,10,11, 10,13,11,10,11,11,13,13, 9,10,10,13,13,10,11,11, 13,13,10,11,11,14,13,12,11,13,12,15,12,13,13,15, 15, 9,10,10,12,13,10,11,10,13,13,10,11,11,13,13, 12,13,11,15,13,12,13,13,15,15, 5, 7, 7, 9,10, 7, 8, 8,10,10, 7, 8, 8,10,10,10,10,10,12,12,10,10, 11,12,12, 6, 8, 8,10,10, 8, 9, 9,11,11, 7, 8, 9, 10,11,10,11,11,13,13,10,10,11,11,13, 7, 8, 8,10, 11, 8, 9, 9,11,11, 8, 9, 8,11,11,10,11,11,13,13, 10,11,11,13,12, 9,10,10,13,12,10,11,11,14,13,10, 10,11,13,13,12,13,13,15,15,12,11,13,12,14, 9,10, 10,12,13,10,11,11,13,14,10,11,11,13,13,12,13,13, 15,15,12,13,12,15,12, 8, 9, 9,12,12, 9,11,10,13, 13, 9,10,10,13,13,12,13,13,15,15,12,12,12,14,14, 9,10,10,13,13,10,11,11,13,14,10,11,11,14,12,13, 13,14,14,16,12,13,13,15,14, 9,10,10,13,13,10,11, 10,14,13,10,11,11,13,14,12,14,13,16,14,13,13,13, 14,15,11,13,12,15,14,11,12,13,14,15,12,13,13,16, 15,14,12,15,12,16,14,15,15,17,16,11,12,12,14,15, 11,13,11,15,14,12,13,13,15,16,13,15,12,17,13,14, 15,15,16,16, 8, 9, 9,12,12, 9,10,10,13,13, 9,10, 10,13,13,12,13,12,14,14,12,13,13,15,15, 9,10,10, 13,13,10,11,11,14,13,10,10,11,13,14,12,13,13,15, 14,12,12,14,14,16, 9,10,10,13,13,10,11,11,13,14, 10,11,11,14,13,13,13,13,15,15,13,14,13,16,14,11, 12,12,14,14,12,13,13,16,15,11,12,13,14,15,14,15, 15,16,16,14,13,15,13,17,11,12,12,14,15,12,13,13, 15,16,11,13,12,15,15,14,15,14,16,16,14,15,12,17, 13, }; static float _vq_quantthresh__44u2__p4_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u2__p4_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u2__p4_0 = { _vq_quantthresh__44u2__p4_0, _vq_quantmap__44u2__p4_0, 5, 5 }; static static_codebook _44u2__p4_0 = { 4, 625, _vq_lengthlist__44u2__p4_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u2__p4_0, NULL, &_vq_auxt__44u2__p4_0, NULL, 0 }; static long _vq_quantlist__44u2__p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u2__p5_0[] = { 1, 4, 4, 7, 7, 8, 8, 9, 9, 4, 6, 5, 8, 8, 8, 8, 10,10, 4, 5, 6, 8, 8, 8, 8,10,10, 7, 8, 8, 9, 9, 9, 9,11,11, 7, 8, 8, 9, 9, 9, 9,11,11, 8, 8, 8, 9, 9,10,11,12,12, 8, 8, 8, 9, 9,10,10,12,12,10, 10,10,11,11,12,12,13,13,10,10,10,11,11,12,12,13, 13, }; static float _vq_quantthresh__44u2__p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44u2__p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u2__p5_0 = { _vq_quantthresh__44u2__p5_0, _vq_quantmap__44u2__p5_0, 9, 9 }; static static_codebook _44u2__p5_0 = { 2, 81, _vq_lengthlist__44u2__p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44u2__p5_0, NULL, &_vq_auxt__44u2__p5_0, NULL, 0 }; static long _vq_quantlist__44u2__p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u2__p6_0[] = { 1, 4, 4, 6, 6, 8, 8,10,10,11,11,14,13, 4, 6, 5, 8, 8, 9, 9,11,10,12,11,15,14, 4, 5, 6, 8, 8, 9, 9,11,11,11,11,14,14, 6, 8, 8,10, 9,11,11,11,11, 12,12,15,15, 6, 8, 8, 9, 9,11,11,11,12,12,12,15, 15, 8,10,10,11,11,11,11,12,12,13,13,15,16, 8,10, 10,11,11,11,11,12,12,13,13,16,16,10,11,11,12,12, 12,12,13,13,13,13,17,16,10,11,11,12,12,12,12,13, 13,13,14,16,17,11,12,12,13,13,13,13,14,14,15,14, 18,17,11,12,12,13,13,13,13,14,14,14,15,19,18,14, 15,15,15,15,16,16,18,19,18,18, 0, 0,14,15,15,16, 15,17,17,16,18,17,18, 0, 0, }; static float _vq_quantthresh__44u2__p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44u2__p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u2__p6_0 = { _vq_quantthresh__44u2__p6_0, _vq_quantmap__44u2__p6_0, 13, 13 }; static static_codebook _44u2__p6_0 = { 2, 169, _vq_lengthlist__44u2__p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44u2__p6_0, NULL, &_vq_auxt__44u2__p6_0, NULL, 0 }; static long _vq_quantlist__44u2__p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u2__p6_1[] = { 2, 4, 4, 5, 5, 4, 5, 5, 6, 5, 4, 5, 5, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, }; static float _vq_quantthresh__44u2__p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u2__p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u2__p6_1 = { _vq_quantthresh__44u2__p6_1, _vq_quantmap__44u2__p6_1, 5, 5 }; static static_codebook _44u2__p6_1 = { 2, 25, _vq_lengthlist__44u2__p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u2__p6_1, NULL, &_vq_auxt__44u2__p6_1, NULL, 0 }; static long _vq_quantlist__44u2__p7_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u2__p7_0[] = { 1, 3, 2,12,12,12,12,12,12, 4,12,12,12,12,12,12, 12,12, 5,12,12,12,12,12,12,12,12,12,12,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11, }; static float _vq_quantthresh__44u2__p7_0[] = { -591.5, -422.5, -253.5, -84.5, 84.5, 253.5, 422.5, 591.5, }; static long _vq_quantmap__44u2__p7_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u2__p7_0 = { _vq_quantthresh__44u2__p7_0, _vq_quantmap__44u2__p7_0, 9, 9 }; static static_codebook _44u2__p7_0 = { 2, 81, _vq_lengthlist__44u2__p7_0, 1, -516612096, 1626677248, 4, 0, _vq_quantlist__44u2__p7_0, NULL, &_vq_auxt__44u2__p7_0, NULL, 0 }; static long _vq_quantlist__44u2__p7_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u2__p7_1[] = { 1, 4, 4, 7, 6, 7, 6, 8, 7, 9, 7, 9, 8, 4, 7, 6, 8, 8, 9, 8,10, 9,10,10,11,11, 4, 7, 7, 8, 8, 8, 8, 9,10,11,11,11,11, 6, 8, 8,10,10,10,10,11,11, 12,12,12,12, 7, 8, 8,10,10,10,10,11,11,12,12,13, 13, 7, 9, 9,11,10,12,12,13,13,14,13,14,14, 7, 9, 9,10,11,11,12,13,13,13,13,16,14, 9,10,10,12,12, 13,13,14,14,15,16,15,16, 9,10,10,12,12,12,13,14, 14,14,15,16,15,10,12,12,13,13,15,13,16,16,15,17, 17,17,10,11,11,12,14,14,14,15,15,17,17,15,17,11, 12,12,14,14,14,15,15,15,17,16,17,17,10,12,12,13, 14,14,14,17,15,17,17,17,17, }; static float _vq_quantthresh__44u2__p7_1[] = { -71.5, -58.5, -45.5, -32.5, -19.5, -6.5, 6.5, 19.5, 32.5, 45.5, 58.5, 71.5, }; static long _vq_quantmap__44u2__p7_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u2__p7_1 = { _vq_quantthresh__44u2__p7_1, _vq_quantmap__44u2__p7_1, 13, 13 }; static static_codebook _44u2__p7_1 = { 2, 169, _vq_lengthlist__44u2__p7_1, 1, -523010048, 1618608128, 4, 0, _vq_quantlist__44u2__p7_1, NULL, &_vq_auxt__44u2__p7_1, NULL, 0 }; static long _vq_quantlist__44u2__p7_2[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u2__p7_2[] = { 2, 5, 5, 6, 6, 7, 7, 8, 7, 8, 8, 8, 8, 5, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 5, 6, 6, 7, 7, 8, 7, 8, 8, 8, 8, 8, 8, 6, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 6, 7, 7, 8, 7, 8, 8, 9, 9, 9, 9, 9, 9, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, }; static float _vq_quantthresh__44u2__p7_2[] = { -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, }; static long _vq_quantmap__44u2__p7_2[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u2__p7_2 = { _vq_quantthresh__44u2__p7_2, _vq_quantmap__44u2__p7_2, 13, 13 }; static static_codebook _44u2__p7_2 = { 2, 169, _vq_lengthlist__44u2__p7_2, 1, -531103744, 1611661312, 4, 0, _vq_quantlist__44u2__p7_2, NULL, &_vq_auxt__44u2__p7_2, NULL, 0 }; static long _huff_lengthlist__44u2__short[] = { 13,15,17,17,15,15,12,17,11, 9, 7,10,10, 9,12,17, 10, 6, 3, 6, 5, 7,10,17,15,10, 6, 9, 8, 9,11,17, 15, 8, 4, 7, 3, 5, 9,16,16,10, 5, 8, 4, 5, 8,16, 13,11, 5, 8, 3, 3, 5,14,13,12, 7,10, 5, 5, 7,14, }; static static_codebook _huff_book__44u2__short = { 2, 64, _huff_lengthlist__44u2__short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44u3__long[] = { 6, 9,13,12,14,11,10,13, 8, 4, 5, 7, 8, 7, 8,12, 11, 4, 3, 5, 5, 7, 9,14,11, 6, 5, 6, 6, 6, 7,13, 13, 7, 5, 6, 4, 5, 7,14,11, 7, 6, 6, 5, 5, 6,13, 9, 7, 8, 6, 7, 5, 3, 9, 9,12,13,12,14,10, 6, 7, }; static static_codebook _huff_book__44u3__long = { 2, 64, _huff_lengthlist__44u3__long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44u3__p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u3__p1_0[] = { 1, 4, 4, 5, 8, 7, 5, 7, 8, 5, 8, 8, 8,10,11, 8, 10,11, 5, 8, 8, 8,11,10, 8,11,11, 4, 8, 8, 8,11, 11, 8,11,11, 8,11,11,11,13,14,11,14,14, 8,11,11, 10,14,12,11,14,14, 4, 8, 8, 8,11,11, 8,11,11, 7, 11,11,11,14,14,10,12,14, 8,11,11,11,14,14,11,14, 13, }; static float _vq_quantthresh__44u3__p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u3__p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u3__p1_0 = { _vq_quantthresh__44u3__p1_0, _vq_quantmap__44u3__p1_0, 3, 3 }; static static_codebook _44u3__p1_0 = { 4, 81, _vq_lengthlist__44u3__p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u3__p1_0, NULL, &_vq_auxt__44u3__p1_0, NULL, 0 }; static long _vq_quantlist__44u3__p2_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u3__p2_0[] = { 2, 5, 4, 5, 6, 6, 5, 6, 6, 5, 6, 6, 7, 8, 8, 6, 8, 8, 5, 6, 6, 6, 8, 8, 7, 8, 8, 5, 7, 6, 7, 8, 8, 6, 8, 8, 7, 8, 8, 8, 9,10, 8,10,10, 6, 8, 8, 8,10, 8, 8,10,10, 5, 6, 6, 6, 8, 8, 7, 8, 8, 6, 8, 8, 8,10,10, 8, 8,10, 7, 8, 8, 8,10,10, 8,10, 9, }; static float _vq_quantthresh__44u3__p2_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u3__p2_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u3__p2_0 = { _vq_quantthresh__44u3__p2_0, _vq_quantmap__44u3__p2_0, 3, 3 }; static static_codebook _44u3__p2_0 = { 4, 81, _vq_lengthlist__44u3__p2_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u3__p2_0, NULL, &_vq_auxt__44u3__p2_0, NULL, 0 }; static long _vq_quantlist__44u3__p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u3__p3_0[] = { 2, 4, 4, 7, 7, 5, 7, 7, 9, 9, 5, 7, 7, 9, 9, 8, 9, 9,12,12, 8, 9, 9,11,12, 5, 7, 7,10,10, 7, 9, 9,11,11, 7, 9, 9,10,11,10,11,11,13,13, 9,10,11, 13,13, 5, 7, 7,10,10, 7, 9, 9,11,10, 7, 9, 9,11, 11, 9,11,10,13,13,10,11,11,14,13, 8,10,10,14,13, 10,11,11,15,14, 9,11,11,14,14,13,14,13,16,16,12, 13,13,15,15, 8,10,10,13,14, 9,11,11,14,14,10,11, 11,14,15,12,13,13,15,15,13,14,14,15,16, 5, 7, 7, 10,10, 7, 9, 9,11,11, 7, 9, 9,11,12,10,11,11,14, 14,10,11,11,14,14, 7, 9, 9,12,12, 9,11,11,13,13, 9,11,11,13,13,12,12,13,15,15,11,12,13,15,16, 7, 9, 9,11,11, 8,11,10,13,12, 9,11,11,13,13,11,13, 12,15,13,11,13,13,15,16, 9,12,11,15,14,11,12,13, 16,15,11,13,13,15,16,14,14,15,17,16,13,15,16, 0, 17, 9,11,11,15,15,10,13,12,15,15,11,13,13,15,16, 13,15,13,16,15,14,16,15, 0,19, 5, 7, 7,10,10, 7, 9, 9,11,11, 7, 9, 9,11,11,10,12,11,14,14,10,11, 12,14,14, 7, 9, 9,12,12, 9,11,11,14,13, 9,10,11, 12,13,11,13,13,16,16,11,12,13,13,16, 7, 9, 9,12, 12, 9,11,11,13,13, 9,11,11,13,13,11,13,13,15,15, 12,13,12,15,14, 9,11,11,15,14,11,13,12,16,16,10, 12,12,15,15,13,15,15,17,19,13,14,15,16,17,10,12, 12,15,15,11,13,13,16,16,11,13,13,15,16,13,15,15, 0, 0,14,15,15,16,16, 8,10,10,14,14,10,12,12,15, 15,10,12,11,15,16,14,15,15,19,20,13,14,14,18,16, 9,11,11,15,15,11,13,13,17,16,11,13,13,16,16,15, 17,17,20,20,14,15,16,17,20, 9,11,11,15,15,10,13, 12,16,15,11,13,13,15,17,14,16,15,18, 0,14,16,15, 18,20,12,14,14, 0, 0,14,14,16, 0, 0,13,16,15, 0, 0,17,17,18, 0, 0,16,17,19,19, 0,12,14,14,18, 0, 12,16,14, 0,17,13,15,15,18, 0,16,18,17, 0,17,16, 18,17, 0, 0, 7,10,10,14,14,10,12,11,15,15,10,12, 12,16,15,13,15,15,18, 0,14,15,15,17, 0, 9,11,11, 15,15,11,13,13,16,16,11,12,13,16,16,14,15,16,17, 17,14,16,16,16,18, 9,11,12,16,16,11,13,13,17,17, 11,14,13,20,17,15,16,16,19, 0,15,16,17, 0,19,11, 13,14,17,16,14,15,15,20,18,13,14,15,17,19,16,18, 18, 0,20,16,16,19,17, 0,12,15,14,17, 0,14,15,15, 18,19,13,16,15,19,20,15,18,18, 0,20,17, 0,16, 0, 0, }; static float _vq_quantthresh__44u3__p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u3__p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u3__p3_0 = { _vq_quantthresh__44u3__p3_0, _vq_quantmap__44u3__p3_0, 5, 5 }; static static_codebook _44u3__p3_0 = { 4, 625, _vq_lengthlist__44u3__p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u3__p3_0, NULL, &_vq_auxt__44u3__p3_0, NULL, 0 }; static long _vq_quantlist__44u3__p4_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u3__p4_0[] = { 4, 5, 5, 8, 8, 5, 7, 6, 9, 9, 5, 6, 7, 9, 9, 9, 9, 9,11,11, 9, 9, 9,11,11, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 7, 8,10,10, 9,10,10,11,12, 9,10,10, 11,12, 5, 7, 7, 9, 9, 7, 8, 7,10,10, 7, 8, 8,10, 10, 9,10, 9,12,11, 9,10,10,12,11, 9,10, 9,12,12, 9,10,10,13,12, 9,10,10,12,13,12,12,12,14,14,11, 12,12,13,14, 9, 9,10,12,12, 9,10,10,12,12, 9,10, 10,12,13,11,12,11,14,13,12,12,12,14,13, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10,10,10,10,12, 12, 9,10,10,12,12, 7, 8, 8,11,10, 8, 8, 9,11,11, 8, 9, 9,11,11,11,11,11,12,13,10,11,11,13,13, 6, 8, 8,10,10, 7, 9, 8,11,10, 8, 9, 9,11,11,10,11, 10,13,11,10,11,11,13,13, 9,11,10,13,12,10,11,11, 13,13,10,11,11,13,13,12,12,13,12,15,12,13,13,15, 15, 9,10,10,12,13,10,11,10,13,12,10,11,11,13,14, 12,13,11,15,13,12,13,13,15,15, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10, 9,10,10,12,12,10,10, 11,12,12, 6, 8, 8,10,10, 8, 9, 9,11,11, 7, 8, 9, 10,11,10,11,11,13,13,10,10,11,11,13, 7, 8, 8,10, 10, 8, 9, 9,11,11, 8, 9, 9,11,11,10,11,11,13,13, 11,11,11,13,12, 9,10,10,13,12,10,11,11,14,13,10, 10,11,12,13,12,13,13,15,15,12,11,13,13,14, 9,10, 11,12,13,10,11,11,13,13,10,11,11,13,13,12,13,13, 15,15,12,13,12,15,12, 8, 9, 9,12,12, 9,11,10,13, 13, 9,10,10,13,13,12,13,13,15,14,12,12,12,14,13, 9,10,10,13,12,10,11,11,13,13,10,11,11,14,12,13, 13,14,14,16,12,13,13,15,15, 9,10,10,13,13,10,11, 10,14,13,10,11,11,13,14,12,14,13,15,14,13,13,13, 15,15,11,13,12,15,14,11,12,13,14,15,12,13,13,16, 14,14,12,15,12,16,14,15,15,17,15,11,12,12,14,14, 11,13,11,15,14,12,13,13,15,15,13,15,12,17,13,14, 15,15,16,16, 8, 9, 9,12,12, 9,10,10,12,13, 9,10, 10,13,13,12,12,12,14,14,12,13,13,15,15, 9,10,10, 13,12,10,11,11,14,13,10,10,11,13,14,12,13,13,15, 15,12,12,13,14,16, 9,10,10,13,13,10,11,11,13,14, 10,11,11,14,13,12,13,13,14,15,13,14,13,16,14,11, 12,12,14,14,12,13,13,15,14,11,12,13,14,15,14,15, 15,16,16,13,13,15,13,16,11,12,12,14,15,12,13,13, 14,15,11,13,12,15,14,14,15,15,16,16,14,15,12,16, 13, }; static float _vq_quantthresh__44u3__p4_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u3__p4_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u3__p4_0 = { _vq_quantthresh__44u3__p4_0, _vq_quantmap__44u3__p4_0, 5, 5 }; static static_codebook _44u3__p4_0 = { 4, 625, _vq_lengthlist__44u3__p4_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u3__p4_0, NULL, &_vq_auxt__44u3__p4_0, NULL, 0 }; static long _vq_quantlist__44u3__p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u3__p5_0[] = { 2, 3, 3, 6, 6, 7, 7, 9, 9, 4, 5, 5, 7, 7, 8, 8, 10,10, 4, 5, 5, 7, 7, 8, 8,10,10, 6, 7, 7, 8, 8, 9, 9,11,10, 6, 7, 7, 8, 8, 9, 9,10,10, 7, 8, 8, 9, 9,10,10,11,11, 7, 8, 8, 9, 9,10,10,11,11, 9, 10,10,11,10,11,11,12,12, 9,10,10,10,10,11,11,12, 12, }; static float _vq_quantthresh__44u3__p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44u3__p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u3__p5_0 = { _vq_quantthresh__44u3__p5_0, _vq_quantmap__44u3__p5_0, 9, 9 }; static static_codebook _44u3__p5_0 = { 2, 81, _vq_lengthlist__44u3__p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44u3__p5_0, NULL, &_vq_auxt__44u3__p5_0, NULL, 0 }; static long _vq_quantlist__44u3__p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u3__p6_0[] = { 1, 4, 4, 6, 6, 8, 8, 9, 9,10,11,13,14, 4, 6, 5, 8, 8, 9, 9,10,10,11,11,14,14, 4, 6, 6, 8, 8, 9, 9,10,10,11,11,14,14, 6, 8, 8, 9, 9,10,10,11,11, 12,12,15,15, 6, 8, 8, 9, 9,10,11,11,11,12,12,15, 15, 8, 9, 9,11,10,11,11,12,12,13,13,15,16, 8, 9, 9,10,11,11,11,12,12,13,13,16,16,10,10,11,11,11, 12,12,13,13,13,14,17,16, 9,10,11,12,11,12,12,13, 13,13,13,16,18,11,12,11,12,12,13,13,13,14,15,14, 17,17,11,11,12,12,12,13,13,13,14,14,15,18,17,14, 15,15,15,15,16,16,17,17,19,18, 0,20,14,15,14,15, 15,16,16,16,17,18,16,20,18, }; static float _vq_quantthresh__44u3__p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44u3__p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u3__p6_0 = { _vq_quantthresh__44u3__p6_0, _vq_quantmap__44u3__p6_0, 13, 13 }; static static_codebook _44u3__p6_0 = { 2, 169, _vq_lengthlist__44u3__p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44u3__p6_0, NULL, &_vq_auxt__44u3__p6_0, NULL, 0 }; static long _vq_quantlist__44u3__p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u3__p6_1[] = { 2, 4, 4, 5, 5, 4, 5, 5, 6, 5, 4, 5, 5, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, }; static float _vq_quantthresh__44u3__p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u3__p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u3__p6_1 = { _vq_quantthresh__44u3__p6_1, _vq_quantmap__44u3__p6_1, 5, 5 }; static static_codebook _44u3__p6_1 = { 2, 25, _vq_lengthlist__44u3__p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u3__p6_1, NULL, &_vq_auxt__44u3__p6_1, NULL, 0 }; static long _vq_quantlist__44u3__p7_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u3__p7_0[] = { 1, 3, 3,10,10,10,10,10,10, 4,10,10,10,10,10,10, 10,10, 4,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, }; static float _vq_quantthresh__44u3__p7_0[] = { -892.5, -637.5, -382.5, -127.5, 127.5, 382.5, 637.5, 892.5, }; static long _vq_quantmap__44u3__p7_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u3__p7_0 = { _vq_quantthresh__44u3__p7_0, _vq_quantmap__44u3__p7_0, 9, 9 }; static static_codebook _44u3__p7_0 = { 2, 81, _vq_lengthlist__44u3__p7_0, 1, -515907584, 1627381760, 4, 0, _vq_quantlist__44u3__p7_0, NULL, &_vq_auxt__44u3__p7_0, NULL, 0 }; static long _vq_quantlist__44u3__p7_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44u3__p7_1[] = { 1, 4, 4, 6, 6, 7, 6, 8, 7, 9, 8,10, 9,11,11, 4, 7, 7, 8, 7, 9, 9,10,10,11,11,11,11,12,12, 4, 7, 7, 7, 7, 9, 9,10,10,11,11,12,12,12,11, 6, 8, 8, 9, 9,10,10,11,11,12,12,13,12,13,13, 6, 8, 8, 9, 9,10,11,11,11,12,12,13,14,13,13, 8, 9, 9,11,11, 12,12,12,13,14,13,14,14,14,15, 8, 9, 9,11,11,11, 12,13,14,13,14,15,17,14,15, 9,10,10,12,12,13,13, 13,14,15,15,15,16,16,16, 9,11,11,12,12,13,13,14, 14,14,15,16,16,16,16,10,12,12,13,13,14,14,15,15, 15,16,17,17,17,17,10,12,11,13,13,15,14,15,14,16, 17,16,16,16,16,11,13,12,14,14,14,14,15,16,17,16, 17,17,17,17,11,13,12,14,14,14,15,17,16,17,17,17, 17,17,17,12,13,13,15,16,15,16,17,17,16,16,17,17, 17,17,12,13,13,15,15,15,16,17,17,17,16,17,16,17, 17, }; static float _vq_quantthresh__44u3__p7_1[] = { -110.5, -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, 110.5, }; static long _vq_quantmap__44u3__p7_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44u3__p7_1 = { _vq_quantthresh__44u3__p7_1, _vq_quantmap__44u3__p7_1, 15, 15 }; static static_codebook _44u3__p7_1 = { 2, 225, _vq_lengthlist__44u3__p7_1, 1, -522338304, 1620115456, 4, 0, _vq_quantlist__44u3__p7_1, NULL, &_vq_auxt__44u3__p7_1, NULL, 0 }; static long _vq_quantlist__44u3__p7_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44u3__p7_2[] = { 2, 5, 5, 7, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10,10, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9,10, 9, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10,10,10,10, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9,10, 9,10,10,10,10, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 7, 8, 8, 9, 8, 9, 9, 9, 9,10, 9,10,10,10,10,10,10, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10, 8, 9, 8, 9, 9, 9, 9,10, 9,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9,10, 9,10,10,10,10,10,10,10,10,10,10, 9, 9, 9,10, 9, 10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9,10, 10,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 10,10,10,10,10,10,10,10,10,10,10,10,10,11, 9,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,11, 9, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 9,10,10,10,10,10,10,10,10,10,10,10,11,11,11,10, 11, }; static float _vq_quantthresh__44u3__p7_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44u3__p7_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44u3__p7_2 = { _vq_quantthresh__44u3__p7_2, _vq_quantmap__44u3__p7_2, 17, 17 }; static static_codebook _44u3__p7_2 = { 2, 289, _vq_lengthlist__44u3__p7_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44u3__p7_2, NULL, &_vq_auxt__44u3__p7_2, NULL, 0 }; static long _huff_lengthlist__44u3__short[] = { 14,14,14,15,13,15,12,16,10, 8, 7, 9, 9, 8,12,16, 10, 5, 4, 6, 5, 6, 9,16,14, 8, 6, 8, 7, 8,10,16, 14, 7, 4, 6, 3, 5, 8,16,15, 9, 5, 7, 4, 4, 7,16, 13,10, 6, 7, 4, 3, 4,13,13,12, 7, 9, 5, 5, 6,12, }; static static_codebook _huff_book__44u3__short = { 2, 64, _huff_lengthlist__44u3__short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44u4__long[] = { 3, 8,12,12,13,12,11,13, 5, 4, 6, 7, 8, 8, 9,13, 9, 5, 4, 5, 5, 7, 9,13, 9, 6, 5, 6, 6, 7, 8,12, 12, 7, 5, 6, 4, 5, 8,13,11, 7, 6, 6, 5, 5, 6,12, 10, 8, 8, 7, 7, 5, 3, 8,10,12,13,12,12, 9, 6, 7, }; static static_codebook _huff_book__44u4__long = { 2, 64, _huff_lengthlist__44u4__long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44u4__p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u4__p1_0[] = { 1, 4, 4, 5, 8, 7, 5, 7, 8, 5, 8, 8, 8,10,11, 8, 10,11, 5, 8, 8, 8,11,10, 8,11,11, 4, 8, 8, 8,11, 11, 8,11,11, 8,11,11,11,13,14,11,15,14, 8,11,11, 10,13,12,11,14,14, 4, 8, 8, 8,11,11, 8,11,11, 7, 11,11,11,15,14,10,12,14, 8,11,11,11,14,14,11,14, 13, }; static float _vq_quantthresh__44u4__p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u4__p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u4__p1_0 = { _vq_quantthresh__44u4__p1_0, _vq_quantmap__44u4__p1_0, 3, 3 }; static static_codebook _44u4__p1_0 = { 4, 81, _vq_lengthlist__44u4__p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u4__p1_0, NULL, &_vq_auxt__44u4__p1_0, NULL, 0 }; static long _vq_quantlist__44u4__p2_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u4__p2_0[] = { 2, 5, 5, 5, 6, 6, 5, 6, 6, 5, 6, 6, 7, 8, 8, 6, 8, 8, 5, 6, 6, 6, 8, 8, 7, 8, 8, 5, 7, 6, 6, 8, 8, 6, 8, 8, 6, 8, 8, 8, 9,10, 8,10,10, 6, 8, 8, 8,10, 8, 8,10,10, 5, 6, 6, 6, 8, 8, 6, 8, 8, 6, 8, 8, 8,10,10, 8, 8,10, 6, 8, 8, 8,10,10, 8,10, 9, }; static float _vq_quantthresh__44u4__p2_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u4__p2_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u4__p2_0 = { _vq_quantthresh__44u4__p2_0, _vq_quantmap__44u4__p2_0, 3, 3 }; static static_codebook _44u4__p2_0 = { 4, 81, _vq_lengthlist__44u4__p2_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u4__p2_0, NULL, &_vq_auxt__44u4__p2_0, NULL, 0 }; static long _vq_quantlist__44u4__p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u4__p3_0[] = { 2, 4, 4, 8, 8, 5, 7, 7, 9, 9, 5, 7, 7, 9, 9, 8, 10, 9,12,12, 8, 9,10,12,12, 5, 7, 7,10,10, 7, 9, 9,11,11, 7, 9, 9,11,11,10,12,11,14,14, 9,10,11, 13,14, 5, 7, 7,10,10, 7, 9, 9,11,11, 7, 9, 9,11, 11, 9,11,10,14,13,10,11,11,14,14, 8,10,10,14,13, 10,12,12,15,14, 9,11,11,15,14,13,14,14,17,17,12, 14,14,16,16, 8,10,10,14,14, 9,11,11,14,15,10,12, 12,14,15,12,14,13,16,16,13,14,15,15,18, 4, 7, 7, 10,10, 7, 9, 9,12,11, 7, 9, 9,11,12,10,12,11,15, 14,10,11,12,14,15, 7, 9, 9,12,12, 9,11,12,13,13, 9,11,12,13,13,12,13,13,15,16,11,13,13,15,16, 7, 9, 9,12,12, 9,11,10,13,12, 9,11,12,13,14,11,13, 12,16,14,12,13,13,15,16,10,12,12,16,15,11,13,13, 17,16,11,13,13,17,16,14,15,15,17,17,14,16,16,18, 20, 9,11,11,15,16,11,13,12,16,16,11,13,13,16,17, 14,15,14,18,16,14,16,16,17,20, 5, 7, 7,10,10, 7, 9, 9,12,11, 7, 9,10,11,12,10,12,11,15,15,10,12, 12,14,14, 7, 9, 9,12,12, 9,12,11,14,13, 9,10,11, 12,13,12,13,14,16,16,11,12,13,14,16, 7, 9, 9,12, 12, 9,12,11,13,13, 9,12,11,13,13,11,13,13,16,16, 12,13,13,16,15, 9,11,11,16,14,11,13,13,16,16,11, 12,13,16,16,14,16,16,17,17,13,14,15,16,17,10,12, 12,15,15,11,13,13,16,17,11,13,13,16,16,14,16,15, 19,19,14,15,15,17,18, 8,10,10,14,14,10,12,12,15, 15,10,12,12,16,16,14,16,15,20,19,13,15,15,17,16, 9,12,12,16,16,11,13,13,16,18,11,14,13,16,17,16, 17,16,20, 0,15,16,18,18,20, 9,11,11,15,15,11,14, 12,17,16,11,13,13,17,17,15,17,15,20,20,14,16,16, 17, 0,13,15,14,18,16,14,15,16, 0,18,14,16,16, 0, 0,18,16, 0, 0,20,16,18,18, 0, 0,12,14,14,17,18, 13,15,14,20,18,14,16,15,19,19,16,20,16, 0,18,16, 19,17,19, 0, 8,10,10,14,14,10,12,12,16,15,10,12, 12,16,16,13,15,15,18,17,14,16,16,19, 0, 9,11,11, 16,15,11,14,13,18,17,11,12,13,17,18,14,17,16,18, 18,15,16,17,18,18, 9,12,12,16,16,11,13,13,16,18, 11,14,13,17,17,15,16,16,18,20,16,17,17,20,20,12, 14,14,18,17,14,16,16, 0,19,13,14,15,18, 0,16, 0, 0, 0, 0,16,16, 0,19,20,13,15,14, 0, 0,14,16,16, 18,19,14,16,15, 0,20,16,20,18, 0,20,17,20,17, 0, 0, }; static float _vq_quantthresh__44u4__p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u4__p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u4__p3_0 = { _vq_quantthresh__44u4__p3_0, _vq_quantmap__44u4__p3_0, 5, 5 }; static static_codebook _44u4__p3_0 = { 4, 625, _vq_lengthlist__44u4__p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u4__p3_0, NULL, &_vq_auxt__44u4__p3_0, NULL, 0 }; static long _vq_quantlist__44u4__p4_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u4__p4_0[] = { 4, 5, 5, 8, 8, 5, 7, 6, 9, 9, 5, 6, 7, 9, 9, 9, 9, 9,11,11, 8, 9, 9,11,11, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 7, 8,10,10, 9,10,10,11,12, 9,10,10, 11,12, 5, 7, 7, 9, 9, 7, 8, 7,10,10, 7, 8, 8,10, 10, 9,10,10,12,11, 9,10,10,12,11, 9,10, 9,12,12, 9,10,10,13,12, 9,10,10,12,12,12,12,12,14,14,11, 12,12,13,14, 9, 9,10,12,12, 9,10,10,13,13, 9,10, 10,12,13,11,12,12,14,13,11,12,12,14,14, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10,10,10,10,12, 12, 9,10,10,12,12, 7, 8, 8,11,10, 8, 8, 9,11,11, 8, 9, 9,11,11,11,11,11,12,13,10,11,11,13,13, 6, 8, 8,10,10, 7, 9, 8,11,10, 8, 9, 9,11,11,10,11, 10,13,11,10,11,11,13,13, 9,11,10,13,12,10,11,11, 13,14,10,11,11,14,13,12,12,13,12,15,12,13,13,15, 15, 9,10,10,12,13,10,11,10,13,12,10,11,11,13,14, 12,13,11,15,13,13,13,13,15,15, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10, 9,10,10,12,12,10,10, 11,12,13, 6, 8, 8,10,10, 8, 9, 9,11,11, 7, 8, 9, 10,11,10,11,11,13,13,10,10,11,11,13, 7, 8, 8,10, 11, 8, 9, 9,11,11, 8, 9, 8,11,11,10,11,11,13,13, 11,12,11,13,12, 9,10,10,13,12,10,11,11,14,13,10, 10,11,12,13,12,13,13,15,15,12,11,13,13,14, 9,10, 11,12,13,10,11,11,13,14,10,11,11,13,13,12,13,13, 15,15,12,13,12,15,12, 8, 9, 9,12,12, 9,11,10,13, 13, 9,10,10,13,13,12,13,13,15,15,12,12,12,14,14, 9,10,10,13,13,10,11,11,13,14,10,11,11,14,13,13, 13,14,14,16,13,13,13,15,15, 9,10,10,13,13,10,11, 10,14,13,10,11,11,13,14,12,14,13,16,14,12,13,13, 14,15,11,12,12,15,14,11,12,13,14,15,12,13,13,16, 15,14,12,15,12,16,14,15,15,16,16,11,12,12,14,14, 11,13,12,15,14,12,13,13,15,16,13,15,13,17,13,14, 15,15,16,17, 8, 9, 9,12,12, 9,10,10,12,13, 9,10, 10,13,13,12,12,12,14,14,12,13,13,15,15, 9,10,10, 13,12,10,11,11,14,13,10,10,11,13,14,13,13,13,15, 15,12,13,14,14,16, 9,10,10,13,13,10,11,11,13,14, 10,11,11,14,14,13,13,13,15,15,13,14,13,16,14,11, 12,12,15,14,12,13,13,16,15,11,12,13,14,15,14,15, 15,17,16,13,13,15,13,16,11,12,13,14,15,13,13,13, 15,16,11,13,12,15,14,14,15,15,16,16,14,15,12,17, 13, }; static float _vq_quantthresh__44u4__p4_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u4__p4_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u4__p4_0 = { _vq_quantthresh__44u4__p4_0, _vq_quantmap__44u4__p4_0, 5, 5 }; static static_codebook _44u4__p4_0 = { 4, 625, _vq_lengthlist__44u4__p4_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u4__p4_0, NULL, &_vq_auxt__44u4__p4_0, NULL, 0 }; static long _vq_quantlist__44u4__p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u4__p5_0[] = { 2, 3, 3, 6, 6, 7, 7, 9, 9, 4, 5, 5, 7, 7, 8, 8, 10, 9, 4, 5, 5, 7, 7, 8, 8,10,10, 6, 7, 7, 8, 8, 9, 9,11,10, 6, 7, 7, 8, 8, 9, 9,10,11, 7, 8, 8, 9, 9,10,10,11,11, 7, 8, 8, 9, 9,10,10,11,11, 9, 10,10,11,10,11,11,12,12, 9,10,10,10,11,11,11,12, 12, }; static float _vq_quantthresh__44u4__p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44u4__p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u4__p5_0 = { _vq_quantthresh__44u4__p5_0, _vq_quantmap__44u4__p5_0, 9, 9 }; static static_codebook _44u4__p5_0 = { 2, 81, _vq_lengthlist__44u4__p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44u4__p5_0, NULL, &_vq_auxt__44u4__p5_0, NULL, 0 }; static long _vq_quantlist__44u4__p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u4__p6_0[] = { 1, 4, 4, 6, 6, 8, 8, 9, 9,11,10,13,13, 4, 6, 5, 8, 8, 9, 9,10,10,11,11,14,14, 4, 6, 6, 8, 8, 9, 9,10,10,11,11,14,14, 6, 8, 8, 9, 9,10,10,11,11, 12,12,15,15, 6, 8, 8, 9, 9,10,11,11,11,12,12,15, 15, 8, 9, 9,11,10,11,11,12,12,13,13,16,16, 8, 9, 9,10,10,11,11,12,12,13,13,16,16,10,10,10,12,11, 12,12,13,13,14,14,16,16,10,10,10,11,12,12,12,13, 13,13,14,16,17,11,12,11,12,12,13,13,14,14,15,14, 18,17,11,11,12,12,12,13,13,14,14,14,15,19,18,14, 15,14,15,15,17,16,17,17,17,17,21, 0,14,15,15,16, 16,16,16,17,17,18,17,20,21, }; static float _vq_quantthresh__44u4__p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44u4__p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u4__p6_0 = { _vq_quantthresh__44u4__p6_0, _vq_quantmap__44u4__p6_0, 13, 13 }; static static_codebook _44u4__p6_0 = { 2, 169, _vq_lengthlist__44u4__p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44u4__p6_0, NULL, &_vq_auxt__44u4__p6_0, NULL, 0 }; static long _vq_quantlist__44u4__p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u4__p6_1[] = { 2, 4, 4, 5, 5, 4, 5, 5, 6, 5, 4, 5, 5, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, }; static float _vq_quantthresh__44u4__p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u4__p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u4__p6_1 = { _vq_quantthresh__44u4__p6_1, _vq_quantmap__44u4__p6_1, 5, 5 }; static static_codebook _44u4__p6_1 = { 2, 25, _vq_lengthlist__44u4__p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u4__p6_1, NULL, &_vq_auxt__44u4__p6_1, NULL, 0 }; static long _vq_quantlist__44u4__p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u4__p7_0[] = { 1, 3, 3,12,12,12,12,12,12,12,12,12,12, 3,12,11, 12,12,12,12,12,12,12,12,12,12, 4,11,10,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11, }; static float _vq_quantthresh__44u4__p7_0[] = { -1402.5, -1147.5, -892.5, -637.5, -382.5, -127.5, 127.5, 382.5, 637.5, 892.5, 1147.5, 1402.5, }; static long _vq_quantmap__44u4__p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u4__p7_0 = { _vq_quantthresh__44u4__p7_0, _vq_quantmap__44u4__p7_0, 13, 13 }; static static_codebook _44u4__p7_0 = { 2, 169, _vq_lengthlist__44u4__p7_0, 1, -514332672, 1627381760, 4, 0, _vq_quantlist__44u4__p7_0, NULL, &_vq_auxt__44u4__p7_0, NULL, 0 }; static long _vq_quantlist__44u4__p7_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44u4__p7_1[] = { 1, 4, 4, 6, 6, 7, 7, 9, 8,10, 8,10, 9,11,11, 4, 7, 6, 8, 7, 9, 9,10,10,11,10,11,10,12,10, 4, 6, 7, 8, 8, 9, 9,10,10,11,11,11,11,12,12, 6, 8, 8, 10, 9,11,10,12,11,12,12,12,12,13,13, 6, 8, 8,10, 10,10,11,11,11,12,12,13,12,13,13, 8, 9, 9,11,11, 12,11,12,12,13,13,13,13,13,13, 8, 9, 9,11,11,11, 12,12,12,13,13,13,13,13,13, 9,10,10,12,11,13,13, 13,13,14,13,13,14,14,14, 9,10,11,11,12,12,13,13, 13,13,13,14,15,14,14,10,11,11,12,12,13,13,14,14, 14,14,14,15,16,16,10,11,11,12,13,13,13,13,15,14, 14,15,16,15,16,10,12,12,13,13,14,14,14,15,15,15, 15,15,15,16,11,12,12,13,13,14,14,14,15,15,15,16, 15,17,16,11,12,12,13,13,13,15,15,14,16,16,16,16, 16,17,11,12,12,13,13,14,14,15,14,15,15,17,17,16, 16, }; static float _vq_quantthresh__44u4__p7_1[] = { -110.5, -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, 110.5, }; static long _vq_quantmap__44u4__p7_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44u4__p7_1 = { _vq_quantthresh__44u4__p7_1, _vq_quantmap__44u4__p7_1, 15, 15 }; static static_codebook _44u4__p7_1 = { 2, 225, _vq_lengthlist__44u4__p7_1, 1, -522338304, 1620115456, 4, 0, _vq_quantlist__44u4__p7_1, NULL, &_vq_auxt__44u4__p7_1, NULL, 0 }; static long _vq_quantlist__44u4__p7_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44u4__p7_2[] = { 2, 5, 5, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10,10,10,10, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9,10, 9,10, 9,10,10, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10, 8, 9, 8, 9, 9, 9, 9, 9, 9, 10,10,10,10,10,10,10,10, 8, 8, 8, 9, 9, 9, 9, 9, 10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9,10,10, 10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9,10, 10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9,10, 10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 10,10,10,10,10,10,10,10,10,11,10,10,10, 9, 9, 9, 10,10,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 9, 10, 9,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 9,10, 9,10,10,10,10,10,10,10,10,10,10,11,10,10, 10, }; static float _vq_quantthresh__44u4__p7_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44u4__p7_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44u4__p7_2 = { _vq_quantthresh__44u4__p7_2, _vq_quantmap__44u4__p7_2, 17, 17 }; static static_codebook _44u4__p7_2 = { 2, 289, _vq_lengthlist__44u4__p7_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44u4__p7_2, NULL, &_vq_auxt__44u4__p7_2, NULL, 0 }; static long _huff_lengthlist__44u4__short[] = { 14,17,15,17,16,14,13,16,10, 7, 7,10,13,10,15,16, 9, 4, 4, 6, 5, 7, 9,16,12, 8, 7, 8, 8, 8,11,16, 14, 7, 4, 6, 3, 5, 8,15,13, 8, 5, 7, 4, 5, 7,16, 12, 9, 6, 8, 3, 3, 5,16,14,13, 7,10, 5, 5, 7,15, }; static static_codebook _huff_book__44u4__short = { 2, 64, _huff_lengthlist__44u4__short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44u5__long[] = { 3, 8,13,12,14,12,16,11,13,14, 5, 4, 5, 6, 7, 8, 10, 9,12,15,10, 5, 5, 5, 6, 8, 9, 9,13,15,10, 5, 5, 6, 6, 7, 8, 8,11,13,12, 7, 5, 6, 4, 6, 7, 7, 11,14,11, 7, 7, 6, 6, 6, 7, 6,10,14,14, 9, 8, 8, 6, 7, 7, 7,11,16,11, 8, 8, 7, 6, 6, 7, 4, 7,12, 10,10,12,10,10, 9,10, 5, 6, 9,10,12,15,13,14,14, 14, 8, 7, 8, }; static static_codebook _huff_book__44u5__long = { 2, 100, _huff_lengthlist__44u5__long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44u5__p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u5__p1_0[] = { 1, 4, 4, 5, 8, 7, 5, 7, 7, 5, 8, 8, 8,10,10, 7, 9,10, 5, 8, 8, 7,10, 9, 8,10,10, 5, 8, 8, 8,10, 10, 8,10,10, 8,10,10,10,12,13,10,13,13, 7,10,10, 10,13,11,10,13,13, 4, 8, 8, 8,11,10, 8,10,10, 7, 10,10,10,13,13,10,11,13, 8,10,11,10,13,13,10,13, 12, }; static float _vq_quantthresh__44u5__p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u5__p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u5__p1_0 = { _vq_quantthresh__44u5__p1_0, _vq_quantmap__44u5__p1_0, 3, 3 }; static static_codebook _44u5__p1_0 = { 4, 81, _vq_lengthlist__44u5__p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u5__p1_0, NULL, &_vq_auxt__44u5__p1_0, NULL, 0 }; static long _vq_quantlist__44u5__p2_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u5__p2_0[] = { 3, 4, 4, 5, 6, 6, 5, 6, 6, 5, 6, 6, 6, 8, 8, 6, 7, 8, 5, 6, 6, 6, 8, 7, 6, 8, 8, 5, 6, 6, 6, 8, 8, 6, 8, 8, 6, 8, 8, 8, 9, 9, 8, 9, 9, 6, 8, 7, 7, 9, 8, 8, 9, 9, 5, 6, 6, 6, 8, 7, 6, 8, 8, 6, 8, 7, 8, 9, 9, 7, 8, 9, 6, 8, 8, 8, 9, 9, 8, 9, 9, }; static float _vq_quantthresh__44u5__p2_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u5__p2_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u5__p2_0 = { _vq_quantthresh__44u5__p2_0, _vq_quantmap__44u5__p2_0, 3, 3 }; static static_codebook _44u5__p2_0 = { 4, 81, _vq_lengthlist__44u5__p2_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u5__p2_0, NULL, &_vq_auxt__44u5__p2_0, NULL, 0 }; static long _vq_quantlist__44u5__p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u5__p3_0[] = { 2, 4, 5, 8, 8, 5, 7, 6, 9, 9, 5, 6, 7, 9, 9, 8, 10, 9,13,12, 8, 9,10,12,12, 5, 7, 7,10,10, 7, 9, 9,11,11, 6, 8, 9,11,11,10,11,11,14,14, 9,10,11, 13,14, 5, 7, 7, 9,10, 7, 9, 8,11,11, 7, 9, 9,11, 11, 9,11,10,14,13,10,11,11,14,14, 8,10,10,13,13, 10,11,11,15,14, 9,11,11,14,14,13,14,14,17,16,12, 13,13,15,16, 8,10,10,13,13, 9,11,11,14,15,10,11, 11,14,15,12,14,13,16,16,13,15,14,15,17, 5, 7, 7, 10,10, 7, 9, 9,11,11, 7, 9, 9,11,11,10,11,11,14, 14,10,11,12,14,14, 7, 9, 9,12,11, 9,11,11,13,13, 9,11,11,13,13,12,13,13,15,16,11,12,13,15,16, 6, 9, 9,11,11, 8,11,10,13,12, 9,11,11,13,14,11,13, 12,16,14,11,13,13,16,17,10,12,11,15,15,11,13,13, 16,16,11,13,13,17,16,14,15,15,17,17,14,16,16,17, 18, 9,11,11,14,15,10,12,12,15,15,11,13,13,16,17, 13,15,13,17,15,14,15,16,18, 0, 5, 7, 7,10,10, 7, 9, 9,11,11, 7, 9, 9,11,11,10,11,11,14,14,10,11, 12,14,15, 6, 9, 9,12,11, 9,11,11,13,13, 8,10,11, 12,13,11,13,13,16,15,11,12,13,14,15, 7, 9, 9,11, 12, 9,11,11,13,13, 9,11,11,13,13,11,13,13,15,16, 11,13,13,15,14, 9,11,11,15,14,11,13,13,17,15,10, 12,12,15,15,14,16,16,17,17,13,13,15,15,17,10,11, 12,15,15,11,13,13,16,16,11,13,13,15,15,14,15,15, 18,18,14,15,15,17,17, 8,10,10,13,13,10,12,11,15, 15,10,11,12,15,15,14,15,15,18,18,13,14,14,18,18, 9,11,11,15,16,11,13,13,17,17,11,13,13,16,16,15, 15,16,17, 0,14,15,17, 0, 0, 9,11,11,15,15,10,13, 12,18,16,11,13,13,15,16,14,16,15,20,20,14,15,16, 17, 0,13,14,14,20,16,14,15,16,19,18,14,15,15,19, 0,18,16, 0,20,20,16,18,18, 0, 0,12,14,14,18,18, 13,15,14,18,16,14,15,16,18,20,16,19,16, 0,17,17, 18,18,19, 0, 8,10,10,14,14,10,11,11,14,15,10,11, 12,15,15,13,15,14,19,17,13,15,15,17, 0, 9,11,11, 16,15,11,13,13,16,16,10,12,13,15,17,14,16,16,18, 18,14,15,15,18, 0, 9,11,11,15,15,11,13,13,16,17, 11,13,13,18,17,14,18,16,18,18,15,17,17,18, 0,12, 14,14,18,18,14,15,15,20, 0,13,14,15,17, 0,16,18, 17, 0, 0,16,16, 0,17,20,12,14,14,18,18,14,16,15, 0,18,14,16,15,18, 0,16,19,17, 0, 0,17,18,16, 0, 0, }; static float _vq_quantthresh__44u5__p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u5__p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u5__p3_0 = { _vq_quantthresh__44u5__p3_0, _vq_quantmap__44u5__p3_0, 5, 5 }; static static_codebook _44u5__p3_0 = { 4, 625, _vq_lengthlist__44u5__p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u5__p3_0, NULL, &_vq_auxt__44u5__p3_0, NULL, 0 }; static long _vq_quantlist__44u5__p4_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u5__p4_0[] = { 4, 5, 5, 8, 8, 6, 7, 6, 9, 9, 6, 6, 7, 9, 9, 8, 9, 9,11,11, 8, 9, 9,11,11, 6, 7, 7, 9, 9, 7, 8, 8,10,10, 6, 7, 8, 9,10, 9,10,10,11,12, 9, 9,10, 11,12, 6, 7, 7, 9, 9, 6, 8, 7,10, 9, 7, 8, 8,10, 10, 9,10, 9,12,11, 9,10,10,12,11, 8, 9, 9,12,11, 9,10,10,12,12, 9,10,10,12,12,11,12,12,13,14,11, 11,12,13,14, 8, 9, 9,11,12, 9,10,10,12,12, 9,10, 10,12,12,11,12,11,14,13,11,12,12,13,13, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10, 9,10,10,12, 12, 9,10,10,12,12, 7, 8, 8,10,10, 8, 8, 9,10,11, 8, 9, 9,11,11,10,10,11,11,13,10,11,11,12,13, 6, 7, 8,10,10, 7, 9, 8,11,10, 8, 9, 9,11,11,10,11, 10,13,11,10,11,11,12,12, 9,10,10,12,12,10,10,11, 12,13,10,11,11,13,13,12,11,13,12,15,12,13,13,14, 15, 9,10,10,12,12, 9,11,10,13,12,10,11,11,13,13, 11,13,11,14,12,12,13,13,14,15, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10, 9,10,10,12,12, 9,10, 10,12,12, 6, 8, 7,10,10, 8, 9, 9,11,11, 7, 8, 9, 10,11,10,11,11,12,12,10,10,11,11,13, 7, 8, 8,10, 10, 8, 9, 9,11,11, 8, 9, 8,11,10,10,11,11,13,12, 10,11,10,13,11, 9,10,10,12,12,10,11,11,13,12, 9, 10,10,12,13,12,13,13,14,15,11,11,13,12,14, 9,10, 10,12,12,10,11,11,13,13,10,11,10,13,12,12,13,13, 14,14,12,13,11,14,12, 8, 9, 9,12,12, 9,10,10,12, 12, 9,10,10,12,12,12,12,12,14,14,11,12,12,14,13, 9,10,10,12,12,10,11,11,13,13,10,11,11,13,12,12, 12,13,14,15,12,13,13,15,14, 9,10,10,12,12,10,11, 10,13,12,10,11,11,12,13,12,13,12,15,13,12,13,13, 14,15,11,12,12,14,13,11,12,12,14,15,12,13,13,15, 14,13,12,14,12,16,13,14,14,15,15,11,11,12,14,14, 11,12,11,14,13,12,13,13,14,15,13,14,12,16,12,14, 14,15,16,16, 8, 9, 9,11,12, 9,10,10,12,12, 9,10, 10,12,13,11,12,12,13,13,12,12,13,14,14, 9,10,10, 12,12,10,11,10,13,12,10,10,11,12,13,12,13,13,15, 14,12,12,13,13,15, 9,10,10,12,13,10,11,11,12,13, 10,11,11,13,13,12,13,13,14,15,12,13,12,15,14,11, 12,11,14,13,12,13,13,15,14,11,11,12,13,14,14,15, 14,16,15,13,12,14,13,16,11,12,12,13,14,12,13,13, 14,15,11,12,11,14,14,14,14,14,15,16,13,15,12,16, 12, }; static float _vq_quantthresh__44u5__p4_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u5__p4_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u5__p4_0 = { _vq_quantthresh__44u5__p4_0, _vq_quantmap__44u5__p4_0, 5, 5 }; static static_codebook _44u5__p4_0 = { 4, 625, _vq_lengthlist__44u5__p4_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u5__p4_0, NULL, &_vq_auxt__44u5__p4_0, NULL, 0 }; static long _vq_quantlist__44u5__p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u5__p5_0[] = { 2, 3, 3, 6, 6, 8, 8,10,10, 4, 5, 5, 8, 7, 8, 8, 11,10, 3, 5, 5, 7, 8, 8, 8,10,11, 6, 8, 7,10, 9, 10,10,11,11, 6, 7, 8, 9, 9, 9,10,11,12, 8, 8, 8, 10,10,11,11,13,12, 8, 8, 9, 9,10,11,11,12,13,10, 11,10,12,11,13,12,14,14,10,10,11,11,12,12,13,14, 14, }; static float _vq_quantthresh__44u5__p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44u5__p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u5__p5_0 = { _vq_quantthresh__44u5__p5_0, _vq_quantmap__44u5__p5_0, 9, 9 }; static static_codebook _44u5__p5_0 = { 2, 81, _vq_lengthlist__44u5__p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44u5__p5_0, NULL, &_vq_auxt__44u5__p5_0, NULL, 0 }; static long _vq_quantlist__44u5__p6_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u5__p6_0[] = { 3, 4, 4, 5, 5, 7, 7, 9, 9, 4, 5, 4, 6, 6, 7, 7, 9, 9, 4, 4, 5, 6, 6, 7, 7, 9, 9, 5, 6, 6, 7, 7, 8, 8,10,10, 6, 6, 6, 7, 7, 8, 8,10,10, 7, 7, 7, 8, 8, 9, 9,11,10, 7, 7, 7, 8, 8, 9, 9,10,11, 9, 9, 9,10,10,11,10,11,11, 9, 9, 9,10,10,11,10,11, 11, }; static float _vq_quantthresh__44u5__p6_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44u5__p6_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u5__p6_0 = { _vq_quantthresh__44u5__p6_0, _vq_quantmap__44u5__p6_0, 9, 9 }; static static_codebook _44u5__p6_0 = { 2, 81, _vq_lengthlist__44u5__p6_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44u5__p6_0, NULL, &_vq_auxt__44u5__p6_0, NULL, 0 }; static long _vq_quantlist__44u5__p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u5__p7_0[] = { 1, 4, 4, 5, 7, 7, 5, 7, 7, 5, 9, 9, 8,11,10, 7, 11,10, 5, 9, 9, 7,10,10, 8,10,11, 4, 9, 9, 9,12, 12, 9,12,12, 8,12,12,11,12,12,10,12,13, 7,12,12, 11,12,12,10,12,13, 4, 9, 9, 9,12,12, 9,12,12, 7, 12,11,10,13,13,11,12,12, 7,12,12,10,13,13,11,12, 12, }; static float _vq_quantthresh__44u5__p7_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44u5__p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u5__p7_0 = { _vq_quantthresh__44u5__p7_0, _vq_quantmap__44u5__p7_0, 3, 3 }; static static_codebook _44u5__p7_0 = { 4, 81, _vq_lengthlist__44u5__p7_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44u5__p7_0, NULL, &_vq_auxt__44u5__p7_0, NULL, 0 }; static long _vq_quantlist__44u5__p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u5__p7_1[] = { 2, 4, 4, 6, 6, 7, 7, 8, 8, 8, 8, 4, 5, 5, 7, 7, 8, 8, 9, 8, 8, 9, 4, 5, 5, 7, 7, 8, 8, 9, 9, 8, 9, 6, 7, 7, 8, 8, 9, 8, 9, 9, 9, 9, 6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9,10,10,10,10, 8, 9, 9, 9, 9, 9, 9,10, 10,10,10, 8, 9, 9, 9, 9, 9, 9,10,10,10,10, 8, 9, 9, 9, 9, 9, 9,10,10,10,10, }; static float _vq_quantthresh__44u5__p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44u5__p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u5__p7_1 = { _vq_quantthresh__44u5__p7_1, _vq_quantmap__44u5__p7_1, 11, 11 }; static static_codebook _44u5__p7_1 = { 2, 121, _vq_lengthlist__44u5__p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44u5__p7_1, NULL, &_vq_auxt__44u5__p7_1, NULL, 0 }; static long _vq_quantlist__44u5__p8_0[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u5__p8_0[] = { 1, 4, 4, 6, 6, 8, 8, 9, 9,10,10, 4, 6, 6, 7, 7, 9, 9,10,10,11,11, 4, 6, 6, 7, 7, 9, 9,10,10,11, 11, 6, 8, 7, 9, 9,10,10,11,11,13,12, 6, 8, 8, 9, 9,10,10,11,11,12,13, 8, 9, 9,10,10,12,12,13,12, 14,13, 8, 9, 9,10,10,12,12,13,13,14,14, 9,11,11, 12,12,13,13,14,14,15,14, 9,11,11,12,12,13,13,14, 14,15,14,11,12,12,13,13,14,14,15,14,15,14,11,11, 12,13,13,14,14,14,14,15,15, }; static float _vq_quantthresh__44u5__p8_0[] = { -49.5, -38.5, -27.5, -16.5, -5.5, 5.5, 16.5, 27.5, 38.5, 49.5, }; static long _vq_quantmap__44u5__p8_0[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u5__p8_0 = { _vq_quantthresh__44u5__p8_0, _vq_quantmap__44u5__p8_0, 11, 11 }; static static_codebook _44u5__p8_0 = { 2, 121, _vq_lengthlist__44u5__p8_0, 1, -524582912, 1618345984, 4, 0, _vq_quantlist__44u5__p8_0, NULL, &_vq_auxt__44u5__p8_0, NULL, 0 }; static long _vq_quantlist__44u5__p8_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u5__p8_1[] = { 3, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 5, 6, 5, 7, 6, 7, 7, 8, 8, 8, 8, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 6, 7, 6, 7, 7, 8, 8, 8, 8, 8, 8, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__44u5__p8_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44u5__p8_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u5__p8_1 = { _vq_quantthresh__44u5__p8_1, _vq_quantmap__44u5__p8_1, 11, 11 }; static static_codebook _44u5__p8_1 = { 2, 121, _vq_lengthlist__44u5__p8_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44u5__p8_1, NULL, &_vq_auxt__44u5__p8_1, NULL, 0 }; static long _vq_quantlist__44u5__p9_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u5__p9_0[] = { 1, 3, 2,12,10,13,13,13,13,13,13,13,13, 4, 9, 9, 13,13,13,13,13,13,13,13,13,13, 5,10, 9,13,13,13, 13,13,13,13,13,13,13,12,13,13,13,13,13,13,13,13, 13,13,13,13,11,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12, }; static float _vq_quantthresh__44u5__p9_0[] = { -1402.5, -1147.5, -892.5, -637.5, -382.5, -127.5, 127.5, 382.5, 637.5, 892.5, 1147.5, 1402.5, }; static long _vq_quantmap__44u5__p9_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u5__p9_0 = { _vq_quantthresh__44u5__p9_0, _vq_quantmap__44u5__p9_0, 13, 13 }; static static_codebook _44u5__p9_0 = { 2, 169, _vq_lengthlist__44u5__p9_0, 1, -514332672, 1627381760, 4, 0, _vq_quantlist__44u5__p9_0, NULL, &_vq_auxt__44u5__p9_0, NULL, 0 }; static long _vq_quantlist__44u5__p9_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44u5__p9_1[] = { 1, 4, 4, 7, 7, 8, 8, 8, 7, 8, 7, 9, 8, 9, 9, 4, 7, 6, 9, 8,10,10, 9, 8, 9, 9, 9, 9, 9, 8, 5, 6, 6, 8, 9,10,10, 9, 9, 9,10,10,10,10,11, 7, 8, 8, 10,10,11,11,10,10,11,11,11,12,11,11, 7, 8, 8,10, 10,11,11,10,10,11,11,12,11,11,11, 8, 9, 9,11,11, 12,12,11,11,12,11,12,12,12,12, 8, 9,10,11,11,12, 12,11,11,12,12,12,12,12,12, 8, 9, 9,10,10,12,11, 12,12,12,12,12,12,12,13, 8, 9, 9,11,11,11,11,12, 12,12,12,13,12,13,13, 9,10,10,11,11,12,12,12,13, 12,13,13,13,14,13, 9,10,10,11,11,12,12,12,13,13, 12,13,13,14,13, 9,11,10,12,11,13,12,12,13,13,13, 13,13,13,14, 9,10,10,12,12,12,12,12,13,13,13,13, 13,14,14,10,11,11,12,12,12,13,13,13,14,14,13,14, 14,14,10,11,11,12,12,12,12,13,12,13,14,13,14,14, 14, }; static float _vq_quantthresh__44u5__p9_1[] = { -110.5, -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, 110.5, }; static long _vq_quantmap__44u5__p9_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44u5__p9_1 = { _vq_quantthresh__44u5__p9_1, _vq_quantmap__44u5__p9_1, 15, 15 }; static static_codebook _44u5__p9_1 = { 2, 225, _vq_lengthlist__44u5__p9_1, 1, -522338304, 1620115456, 4, 0, _vq_quantlist__44u5__p9_1, NULL, &_vq_auxt__44u5__p9_1, NULL, 0 }; static long _vq_quantlist__44u5__p9_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44u5__p9_2[] = { 2, 5, 5, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 5, 6, 6, 7, 7, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 5, 6, 6, 7, 7, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 7, 7, 7, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 7, 7, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10,10,10, 8, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9,10, 9,10, 9,10, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,10,10, 8, 9, 9, 9, 9, 9, 9,10, 9,10, 9,10,10,10,10,10,10, 9, 9, 9, 9, 9,10, 9, 10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9,10, 9,10, 9,10,10,10,10,10,10, 9, 9, 9, 9, 9, 10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9,10,10, 9,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9,10, 9,10,10,10,10,10,10,10,10,10,10,10, 10, }; static float _vq_quantthresh__44u5__p9_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44u5__p9_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44u5__p9_2 = { _vq_quantthresh__44u5__p9_2, _vq_quantmap__44u5__p9_2, 17, 17 }; static static_codebook _44u5__p9_2 = { 2, 289, _vq_lengthlist__44u5__p9_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44u5__p9_2, NULL, &_vq_auxt__44u5__p9_2, NULL, 0 }; static long _huff_lengthlist__44u5__short[] = { 4,10,17,13,17,13,17,17,17,17, 3, 6, 8, 9,11, 9, 15,12,16,17, 6, 5, 5, 7, 7, 8,10,11,17,17, 7, 8, 7, 9, 9,10,13,13,17,17, 8, 6, 5, 7, 4, 7, 5, 8, 14,17, 9, 9, 8, 9, 7, 9, 8,10,16,17,12,10, 7, 8, 4, 7, 4, 7,16,17,12,11, 9,10, 6, 9, 5, 7,14,17, 14,13,10,15, 4, 8, 3, 5,14,17,17,14,11,15, 6,10, 6, 8,15,17, }; static static_codebook _huff_book__44u5__short = { 2, 100, _huff_lengthlist__44u5__short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44u6__long[] = { 3, 9,14,13,14,13,16,12,13,14, 5, 4, 6, 6, 8, 9, 11,10,12,15,10, 5, 5, 6, 6, 8,10,10,13,16,10, 6, 6, 6, 6, 8, 9, 9,12,14,13, 7, 6, 6, 4, 6, 6, 7, 11,14,10, 7, 7, 7, 6, 6, 6, 7,10,13,15,10, 9, 8, 5, 6, 5, 6,10,14,10, 9, 8, 8, 6, 6, 5, 4, 6,11, 11,11,12,11,10, 9, 9, 5, 5, 9,10,12,15,13,13,13, 13, 8, 7, 7, }; static static_codebook _huff_book__44u6__long = { 2, 100, _huff_lengthlist__44u6__long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44u6__p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u6__p1_0[] = { 1, 4, 4, 4, 8, 7, 5, 7, 7, 5, 8, 8, 8,10,10, 7, 9,10, 5, 8, 8, 7,10, 9, 8,10,10, 5, 8, 8, 8,10, 10, 8,10,10, 8,10,10,10,12,13,10,13,13, 7,10,10, 10,13,11,10,13,13, 5, 8, 8, 8,11,10, 8,10,10, 7, 10,10,10,13,13,10,11,13, 8,10,11,10,13,13,10,13, 12, }; static float _vq_quantthresh__44u6__p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u6__p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u6__p1_0 = { _vq_quantthresh__44u6__p1_0, _vq_quantmap__44u6__p1_0, 3, 3 }; static static_codebook _44u6__p1_0 = { 4, 81, _vq_lengthlist__44u6__p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u6__p1_0, NULL, &_vq_auxt__44u6__p1_0, NULL, 0 }; static long _vq_quantlist__44u6__p2_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u6__p2_0[] = { 3, 4, 4, 5, 6, 6, 5, 6, 6, 5, 6, 6, 6, 8, 8, 6, 7, 8, 5, 6, 6, 6, 8, 7, 6, 8, 8, 5, 6, 6, 6, 8, 8, 6, 8, 8, 6, 8, 8, 8, 9, 9, 8, 9, 9, 6, 7, 7, 7, 9, 8, 8, 9, 9, 5, 6, 6, 6, 8, 7, 6, 8, 8, 6, 8, 8, 8, 9, 9, 7, 8, 9, 6, 8, 8, 8, 9, 9, 8, 9, 9, }; static float _vq_quantthresh__44u6__p2_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u6__p2_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u6__p2_0 = { _vq_quantthresh__44u6__p2_0, _vq_quantmap__44u6__p2_0, 3, 3 }; static static_codebook _44u6__p2_0 = { 4, 81, _vq_lengthlist__44u6__p2_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u6__p2_0, NULL, &_vq_auxt__44u6__p2_0, NULL, 0 }; static long _vq_quantlist__44u6__p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u6__p3_0[] = { 2, 5, 4, 8, 8, 5, 7, 6, 9, 9, 5, 6, 7, 9, 9, 8, 9, 9,13,12, 8, 9,10,12,13, 5, 7, 7,10, 9, 7, 9, 9,11,11, 7, 8, 9,11,11,10,11,11,14,14, 9,10,11, 13,14, 5, 7, 7, 9,10, 6, 9, 8,11,11, 7, 9, 9,11, 11, 9,11,10,14,13,10,11,11,14,13, 8,10,10,13,13, 10,11,11,15,15, 9,11,11,14,14,13,14,14,17,16,12, 13,14,16,16, 8,10,10,13,14, 9,11,11,14,15,10,11, 12,14,15,12,14,13,16,15,13,14,14,15,17, 5, 7, 7, 10,10, 7, 9, 9,11,11, 7, 9, 9,11,11,10,12,11,14, 14,10,11,11,14,14, 7, 9, 9,12,11, 9,11,11,13,13, 9,11,11,13,13,11,13,13,14,15,11,12,13,15,16, 6, 9, 9,11,12, 8,11,10,13,12, 9,11,11,13,14,11,13, 12,16,14,11,13,13,15,16,10,12,11,14,15,11,13,13, 15,17,11,13,13,17,16,15,15,16,17,16,14,15,16,18, 0, 9,11,11,14,15,10,12,12,16,15,11,13,13,16,16, 13,15,14,18,15,14,16,16, 0, 0, 5, 7, 7,10,10, 7, 9, 9,11,11, 7, 9, 9,11,11,10,11,11,14,14,10,11, 12,14,14, 6, 9, 9,11,11, 9,11,11,13,13, 8,10,11, 12,13,11,13,13,16,15,11,12,13,14,16, 7, 9, 9,11, 12, 9,11,11,13,13, 9,11,11,13,13,11,13,13,16,15, 11,13,12,15,15, 9,11,11,15,14,11,13,13,17,16,10, 12,13,15,16,14,16,16, 0,18,14,14,15,15,17,10,11, 12,15,15,11,13,13,16,16,11,13,13,16,16,14,16,16, 19,17,14,15,15,17,17, 8,10,10,14,14,10,12,11,15, 15,10,11,12,16,15,14,15,15,18,20,13,14,16,17,18, 9,11,11,15,16,11,13,13,17,17,11,13,13,17,16,15, 16,16, 0, 0,15,16,16, 0, 0, 9,11,11,15,15,10,13, 12,17,15,11,13,13,17,16,15,17,15,20,19,15,16,16, 19, 0,13,15,14, 0,17,14,15,16, 0,20,15,16,16, 0, 19,17,18, 0, 0, 0,16,17,18, 0, 0,12,14,14,19,18, 13,15,14, 0,17,14,15,16,19,19,16,18,16, 0,19,19, 20,17,20, 0, 8,10,10,13,14,10,11,11,15,15,10,12, 12,15,16,14,15,14,19,16,14,15,15, 0,18, 9,11,11, 16,15,11,13,13, 0,16,11,12,13,16,17,14,16,17, 0, 19,15,16,16,18, 0, 9,11,11,15,16,11,13,13,16,16, 11,14,13,18,17,15,16,16,18,20,15,17,19, 0, 0,12, 14,14,17,17,14,16,15, 0, 0,13,14,15,19, 0,16,18, 20, 0, 0,16,16,18,18, 0,12,14,14,17,20,14,16,16, 19, 0,14,16,14, 0,20,16,20,17, 0, 0,17, 0,15, 0, 19, }; static float _vq_quantthresh__44u6__p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u6__p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u6__p3_0 = { _vq_quantthresh__44u6__p3_0, _vq_quantmap__44u6__p3_0, 5, 5 }; static static_codebook _44u6__p3_0 = { 4, 625, _vq_lengthlist__44u6__p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u6__p3_0, NULL, &_vq_auxt__44u6__p3_0, NULL, 0 }; static long _vq_quantlist__44u6__p4_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u6__p4_0[] = { 4, 5, 5, 8, 8, 6, 7, 6, 9, 9, 6, 6, 7, 9, 9, 8, 9, 9,11,11, 8, 9, 9,11,11, 6, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 7, 8, 9,10, 9,10,10,11,11, 9, 9,10, 11,12, 6, 7, 7, 9, 9, 7, 8, 7,10, 9, 7, 8, 8,10, 10, 9,10, 9,12,11, 9,10,10,12,11, 8, 9, 9,11,11, 9,10,10,12,12, 9,10,10,12,12,11,12,12,14,13,11, 11,12,13,13, 8, 9, 9,11,11, 9,10,10,12,12, 9,10, 10,12,12,11,12,11,13,12,11,12,12,13,13, 5, 7, 7, 9, 9, 7, 8, 7,10,10, 7, 7, 8,10,10, 9,10,10,12, 11, 9,10,10,11,12, 7, 8, 8,10,10, 8, 8, 9,11,11, 8, 9, 9,11,11,10,10,11,12,13,10,10,11,12,12, 6, 7, 7,10,10, 7, 9, 8,11,10, 8, 8, 9,10,11,10,11, 10,13,11,10,11,11,12,12, 9,10,10,12,12,10,10,11, 13,13,10,11,11,12,13,12,12,12,13,14,12,12,13,14, 14, 9,10,10,12,12, 9,10,10,13,12,10,11,11,13,13, 11,12,11,14,12,12,13,13,14,14, 6, 7, 7, 9, 9, 7, 8, 7,10,10, 7, 8, 8,10,10, 9,10,10,12,11, 9,10, 10,11,12, 6, 7, 7,10,10, 8, 9, 8,11,10, 7, 8, 9, 10,11,10,11,11,12,12,10,10,11,11,13, 7, 8, 8,10, 10, 8, 9, 9,11,11, 8, 9, 8,11,11,10,11,10,13,12, 10,11,11,13,12, 9,10,10,12,12,10,11,11,13,12, 9, 10,10,12,13,12,13,12,14,14,11,11,12,12,14, 9,10, 10,12,12,10,11,11,13,13,10,11,10,13,12,12,12,12, 14,14,12,13,12,14,13, 8, 9, 9,11,11, 9,10,10,12, 12, 9,10,10,12,12,11,12,12,14,13,11,12,12,13,14, 9,10,10,12,12,10,11,11,13,13,10,11,11,13,13,12, 12,13,14,15,12,12,13,14,14, 9,10,10,12,12, 9,11, 10,13,12,10,10,11,12,13,12,13,12,14,13,12,12,13, 14,15,11,12,12,14,13,11,12,12,14,14,12,13,13,14, 14,13,13,14,14,16,13,14,14,15,15,11,12,11,13,13, 11,12,11,14,13,12,12,13,14,15,12,14,12,15,12,13, 14,15,15,16, 8, 9, 9,11,11, 9,10,10,12,12, 9,10, 10,12,12,11,12,12,14,13,11,12,12,13,13, 9,10,10, 12,12,10,11,10,13,12, 9,10,11,12,13,12,13,12,14, 14,12,12,13,13,14, 9,10,10,12,12,10,11,11,13,13, 10,11,11,13,13,12,13,12,14,14,12,13,13,14,14,11, 11,11,13,13,12,13,12,14,14,11,11,12,13,14,14,14, 14,16,15,12,12,14,12,15,11,12,12,13,14,12,13,13, 14,15,11,12,12,14,14,13,14,14,16,16,13,14,13,16, 13, }; static float _vq_quantthresh__44u6__p4_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u6__p4_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u6__p4_0 = { _vq_quantthresh__44u6__p4_0, _vq_quantmap__44u6__p4_0, 5, 5 }; static static_codebook _44u6__p4_0 = { 4, 625, _vq_lengthlist__44u6__p4_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u6__p4_0, NULL, &_vq_auxt__44u6__p4_0, NULL, 0 }; static long _vq_quantlist__44u6__p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u6__p5_0[] = { 2, 3, 3, 6, 6, 8, 8,10,10, 4, 5, 5, 8, 7, 8, 8, 11,11, 3, 5, 5, 7, 8, 8, 8,11,11, 6, 8, 7, 9, 9, 10, 9,12,11, 6, 7, 8, 9, 9, 9,10,11,12, 8, 8, 8, 10, 9,12,11,13,13, 8, 8, 9, 9,10,11,12,13,13,10, 11,11,12,12,13,13,14,14,10,10,11,11,12,13,13,14, 14, }; static float _vq_quantthresh__44u6__p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44u6__p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u6__p5_0 = { _vq_quantthresh__44u6__p5_0, _vq_quantmap__44u6__p5_0, 9, 9 }; static static_codebook _44u6__p5_0 = { 2, 81, _vq_lengthlist__44u6__p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44u6__p5_0, NULL, &_vq_auxt__44u6__p5_0, NULL, 0 }; static long _vq_quantlist__44u6__p6_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u6__p6_0[] = { 3, 4, 4, 5, 5, 7, 7, 9, 9, 4, 5, 4, 6, 6, 7, 7, 9, 9, 4, 4, 5, 6, 6, 7, 8, 9, 9, 5, 6, 6, 7, 7, 8, 8,10,10, 5, 6, 6, 7, 7, 8, 8,10,10, 7, 8, 7, 8, 8,10, 9,11,11, 7, 7, 8, 8, 8, 9,10,10,11, 9, 9, 9,10,10,11,11,12,11, 9, 9, 9,10,10,11,11,11, 12, }; static float _vq_quantthresh__44u6__p6_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44u6__p6_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u6__p6_0 = { _vq_quantthresh__44u6__p6_0, _vq_quantmap__44u6__p6_0, 9, 9 }; static static_codebook _44u6__p6_0 = { 2, 81, _vq_lengthlist__44u6__p6_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44u6__p6_0, NULL, &_vq_auxt__44u6__p6_0, NULL, 0 }; static long _vq_quantlist__44u6__p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u6__p7_0[] = { 1, 4, 4, 5, 7, 7, 5, 7, 7, 5, 9, 8, 7,10,10, 8, 10,10, 5, 8, 9, 7,10,10, 7,10, 9, 4, 8, 8, 9,11, 11, 8,11,11, 7,11,11,10,10,13,10,13,13, 7,11,11, 10,13,12,10,13,13, 5, 9, 8, 8,11,11, 9,11,11, 7, 11,11,10,13,13,10,12,13, 7,11,11,10,13,13, 9,13, 10, }; static float _vq_quantthresh__44u6__p7_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44u6__p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u6__p7_0 = { _vq_quantthresh__44u6__p7_0, _vq_quantmap__44u6__p7_0, 3, 3 }; static static_codebook _44u6__p7_0 = { 4, 81, _vq_lengthlist__44u6__p7_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44u6__p7_0, NULL, &_vq_auxt__44u6__p7_0, NULL, 0 }; static long _vq_quantlist__44u6__p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u6__p7_1[] = { 3, 4, 4, 6, 6, 7, 7, 8, 8, 8, 8, 4, 5, 5, 7, 6, 8, 8, 8, 8, 8, 8, 4, 5, 5, 6, 7, 8, 8, 8, 8, 8, 8, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, }; static float _vq_quantthresh__44u6__p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44u6__p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u6__p7_1 = { _vq_quantthresh__44u6__p7_1, _vq_quantmap__44u6__p7_1, 11, 11 }; static static_codebook _44u6__p7_1 = { 2, 121, _vq_lengthlist__44u6__p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44u6__p7_1, NULL, &_vq_auxt__44u6__p7_1, NULL, 0 }; static long _vq_quantlist__44u6__p8_0[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u6__p8_0[] = { 1, 4, 4, 6, 6, 8, 8, 9, 9,10,10, 4, 6, 6, 7, 7, 9, 9,10,10,11,11, 4, 6, 6, 7, 7, 9, 9,10,10,11, 11, 6, 8, 8, 9, 9,10,10,11,11,12,12, 6, 8, 8, 9, 9,10,10,11,11,12,12, 8, 9, 9,10,10,11,11,12,12, 13,13, 8, 9, 9,10,10,11,11,12,12,13,13,10,10,10, 11,11,13,13,13,13,15,14, 9,10,10,12,11,12,13,13, 13,14,15,11,12,12,13,13,13,13,15,14,15,15,11,11, 12,13,13,14,14,14,15,15,15, }; static float _vq_quantthresh__44u6__p8_0[] = { -49.5, -38.5, -27.5, -16.5, -5.5, 5.5, 16.5, 27.5, 38.5, 49.5, }; static long _vq_quantmap__44u6__p8_0[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u6__p8_0 = { _vq_quantthresh__44u6__p8_0, _vq_quantmap__44u6__p8_0, 11, 11 }; static static_codebook _44u6__p8_0 = { 2, 121, _vq_lengthlist__44u6__p8_0, 1, -524582912, 1618345984, 4, 0, _vq_quantlist__44u6__p8_0, NULL, &_vq_auxt__44u6__p8_0, NULL, 0 }; static long _vq_quantlist__44u6__p8_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u6__p8_1[] = { 3, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 5, 6, 5, 7, 7, 7, 7, 8, 7, 8, 8, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__44u6__p8_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44u6__p8_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u6__p8_1 = { _vq_quantthresh__44u6__p8_1, _vq_quantmap__44u6__p8_1, 11, 11 }; static static_codebook _44u6__p8_1 = { 2, 121, _vq_lengthlist__44u6__p8_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44u6__p8_1, NULL, &_vq_auxt__44u6__p8_1, NULL, 0 }; static long _vq_quantlist__44u6__p9_0[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44u6__p9_0[] = { 1, 3, 2, 9, 8,15,15,15,15,15,15,15,15,15,15, 4, 8, 9,13,14,14,14,14,14,14,14,14,14,14,14, 5, 8, 9,14,14,14,14,14,14,14,14,14,14,14,14,11,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,11,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, 14, }; static float _vq_quantthresh__44u6__p9_0[] = { -1657.5, -1402.5, -1147.5, -892.5, -637.5, -382.5, -127.5, 127.5, 382.5, 637.5, 892.5, 1147.5, 1402.5, 1657.5, }; static long _vq_quantmap__44u6__p9_0[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44u6__p9_0 = { _vq_quantthresh__44u6__p9_0, _vq_quantmap__44u6__p9_0, 15, 15 }; static static_codebook _44u6__p9_0 = { 2, 225, _vq_lengthlist__44u6__p9_0, 1, -514071552, 1627381760, 4, 0, _vq_quantlist__44u6__p9_0, NULL, &_vq_auxt__44u6__p9_0, NULL, 0 }; static long _vq_quantlist__44u6__p9_1[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44u6__p9_1[] = { 1, 4, 4, 7, 7, 8, 9, 8, 8, 9, 8, 9, 8, 9, 9, 4, 7, 6, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 4, 7, 6, 9, 9,10,10, 9, 9,10,10,10,10,11,11, 7, 9, 8, 10,10,11,11,10,10,11,11,11,11,11,11, 7, 8, 9,10, 10,11,11,10,10,11,11,11,11,11,12, 8,10,10,11,11, 12,12,11,11,12,12,12,12,13,12, 8,10,10,11,11,12, 11,11,11,11,12,12,12,12,13, 8, 9, 9,11,10,11,11, 12,12,12,12,13,12,13,12, 8, 9, 9,11,11,11,11,12, 12,12,12,12,13,13,13, 9,10,10,11,12,12,12,12,12, 13,13,13,13,13,13, 9,10,10,11,11,12,12,12,12,13, 13,13,13,14,13,10,10,10,12,11,12,12,13,13,13,13, 13,13,13,13,10,10,11,11,11,12,12,13,13,13,13,13, 13,13,13,10,11,11,12,12,13,12,12,13,13,13,13,13, 13,14,10,11,11,12,12,13,12,13,13,13,14,13,13,14, 13, }; static float _vq_quantthresh__44u6__p9_1[] = { -110.5, -93.5, -76.5, -59.5, -42.5, -25.5, -8.5, 8.5, 25.5, 42.5, 59.5, 76.5, 93.5, 110.5, }; static long _vq_quantmap__44u6__p9_1[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44u6__p9_1 = { _vq_quantthresh__44u6__p9_1, _vq_quantmap__44u6__p9_1, 15, 15 }; static static_codebook _44u6__p9_1 = { 2, 225, _vq_lengthlist__44u6__p9_1, 1, -522338304, 1620115456, 4, 0, _vq_quantlist__44u6__p9_1, NULL, &_vq_auxt__44u6__p9_1, NULL, 0 }; static long _vq_quantlist__44u6__p9_2[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44u6__p9_2[] = { 3, 5, 5, 7, 7, 8, 8, 8, 8, 8, 8, 9, 8, 8, 9, 9, 9, 5, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 5, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9, 9, 9,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9, 9, 9,10, 9, 9,10, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 9,10, 9,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 9,10,10, 9, 9, 10, }; static float _vq_quantthresh__44u6__p9_2[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44u6__p9_2[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44u6__p9_2 = { _vq_quantthresh__44u6__p9_2, _vq_quantmap__44u6__p9_2, 17, 17 }; static static_codebook _44u6__p9_2 = { 2, 289, _vq_lengthlist__44u6__p9_2, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44u6__p9_2, NULL, &_vq_auxt__44u6__p9_2, NULL, 0 }; static long _huff_lengthlist__44u6__short[] = { 4,11,16,13,17,13,17,16,17,17, 4, 7, 9, 9,13,10, 16,12,16,17, 7, 6, 5, 7, 8, 9,12,12,16,17, 6, 9, 7, 9,10,10,15,15,17,17, 6, 7, 5, 7, 5, 7, 7,10, 16,17, 7, 9, 8, 9, 8,10,11,11,15,17, 7, 7, 7, 8, 5, 8, 8, 9,15,17, 8, 7, 9, 9, 7, 8, 7, 2, 7,15, 14,13,13,15, 5,10, 4, 3, 6,17,17,15,13,17, 7,11, 7, 6, 9,16, }; static static_codebook _huff_book__44u6__short = { 2, 100, _huff_lengthlist__44u6__short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44u7__long[] = { 3, 9,14,13,15,14,16,13,13,14, 5, 5, 7, 7, 8, 9, 11,10,12,15,10, 6, 5, 6, 6, 9,10,10,13,16,10, 6, 6, 6, 6, 8, 9, 9,12,15,14, 7, 6, 6, 5, 6, 6, 8, 12,15,10, 8, 7, 7, 6, 7, 7, 7,11,13,14,10, 9, 8, 5, 6, 4, 5, 9,12,10, 9, 9, 8, 6, 6, 5, 3, 6,11, 12,11,12,12,10, 9, 8, 5, 5, 8,10,11,15,13,13,13, 12, 8, 6, 7, }; static static_codebook _huff_book__44u7__long = { 2, 100, _huff_lengthlist__44u7__long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44u7__p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u7__p1_0[] = { 1, 4, 4, 4, 7, 7, 5, 7, 7, 5, 8, 8, 8,10,10, 7, 10,10, 5, 8, 8, 7,10,10, 8,10,10, 5, 8, 8, 8,11, 10, 8,10,10, 8,10,10,10,12,13,10,13,13, 7,10,10, 10,13,12,10,13,13, 5, 8, 8, 8,11,10, 8,10,11, 7, 10,10,10,13,13,10,12,13, 8,11,11,10,13,13,10,13, 12, }; static float _vq_quantthresh__44u7__p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u7__p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u7__p1_0 = { _vq_quantthresh__44u7__p1_0, _vq_quantmap__44u7__p1_0, 3, 3 }; static static_codebook _44u7__p1_0 = { 4, 81, _vq_lengthlist__44u7__p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u7__p1_0, NULL, &_vq_auxt__44u7__p1_0, NULL, 0 }; static long _vq_quantlist__44u7__p2_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u7__p2_0[] = { 3, 4, 4, 5, 6, 6, 5, 6, 6, 5, 6, 6, 6, 8, 8, 6, 7, 8, 5, 6, 6, 6, 8, 7, 6, 8, 8, 5, 6, 6, 6, 8, 7, 6, 8, 8, 6, 8, 8, 8, 9, 9, 8, 9, 9, 6, 8, 7, 7, 9, 8, 8, 9, 9, 5, 6, 6, 6, 8, 7, 6, 8, 8, 6, 8, 8, 8, 9, 9, 7, 8, 9, 6, 8, 8, 8, 9, 9, 8, 9, 9, }; static float _vq_quantthresh__44u7__p2_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u7__p2_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u7__p2_0 = { _vq_quantthresh__44u7__p2_0, _vq_quantmap__44u7__p2_0, 3, 3 }; static static_codebook _44u7__p2_0 = { 4, 81, _vq_lengthlist__44u7__p2_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u7__p2_0, NULL, &_vq_auxt__44u7__p2_0, NULL, 0 }; static long _vq_quantlist__44u7__p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u7__p3_0[] = { 2, 5, 4, 8, 8, 5, 7, 6, 9, 9, 5, 6, 7, 9, 9, 8, 9, 9,13,12, 8, 9,10,12,13, 5, 7, 7,10, 9, 7, 9, 9,11,11, 6, 8, 9,11,11,10,11,11,14,14, 9,10,11, 13,14, 5, 7, 7, 9, 9, 7, 9, 8,11,11, 7, 9, 9,11, 11, 9,11,10,14,13,10,11,11,14,14, 8,10,10,14,13, 10,11,12,15,14, 9,11,11,15,14,13,14,14,16,16,12, 13,14,17,16, 8,10,10,13,13, 9,11,11,14,15,10,11, 12,14,15,12,14,13,16,16,13,14,15,15,17, 5, 7, 7, 10,10, 7, 9, 9,11,11, 7, 9, 9,11,11,10,12,11,15, 14,10,11,12,14,14, 7, 9, 9,12,12, 9,11,11,13,13, 9,11,11,13,13,11,13,13,14,17,11,13,13,15,16, 6, 9, 9,11,11, 8,11,10,13,12, 9,11,11,13,13,11,13, 12,16,14,11,13,13,16,16,10,12,12,15,15,11,13,13, 16,16,11,13,13,16,15,14,16,17,17,19,14,16,16,18, 0, 9,11,11,14,15,10,13,12,16,15,11,13,13,16,16, 14,15,14, 0,16,14,16,16,18, 0, 5, 7, 7,10,10, 7, 9, 9,12,11, 7, 9, 9,11,12,10,11,11,15,14,10,11, 12,14,14, 6, 9, 9,11,11, 9,11,11,13,13, 8,10,11, 12,13,11,13,13,17,15,11,12,13,14,15, 7, 9, 9,11, 12, 9,11,11,13,13, 9,11,11,13,13,11,13,12,16,16, 11,13,13,15,14, 9,11,11,14,15,11,13,13,16,15,10, 12,13,16,16,15,16,16, 0, 0,14,13,15,16,18,10,11, 11,15,15,11,13,14,16,18,11,13,13,16,15,15,16,16, 19, 0,14,15,15,16,16, 8,10,10,13,13,10,12,11,16, 15,10,11,11,16,15,13,15,16,18, 0,13,14,15,17,17, 9,11,11,15,15,11,13,13,16,18,11,13,13,16,17,15, 16,16, 0, 0,15,18,16, 0,17, 9,11,11,15,15,11,13, 12,17,15,11,13,14,16,17,15,18,15, 0,17,15,16,16, 18,19,13,15,14, 0,18,14,16,16,19,18,14,16,15,19, 19,16,18,19, 0, 0,16,17, 0, 0, 0,12,14,14,17,17, 13,16,14, 0,18,14,16,15,18, 0,16,18,16,19,17,18, 19,17, 0, 0, 8,10,10,14,14, 9,12,11,15,15,10,11, 12,15,17,13,15,15,18,16,14,16,15,18,17, 9,11,11, 16,15,11,13,13, 0,16,11,12,13,16,15,15,16,16, 0, 17,15,15,16,18,17, 9,12,11,15,17,11,13,13,16,16, 11,14,13,16,16,15,15,16,18,19,16,18,16, 0, 0,12, 14,14, 0,16,14,16,16, 0,18,13,14,15,16, 0,17,16, 18, 0, 0,16,16,17,19, 0,13,14,14,17, 0,14,17,16, 0,19,14,15,15,18,19,17,16,18, 0, 0,15,19,16, 0, 0, }; static float _vq_quantthresh__44u7__p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u7__p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u7__p3_0 = { _vq_quantthresh__44u7__p3_0, _vq_quantmap__44u7__p3_0, 5, 5 }; static static_codebook _44u7__p3_0 = { 4, 625, _vq_lengthlist__44u7__p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u7__p3_0, NULL, &_vq_auxt__44u7__p3_0, NULL, 0 }; static long _vq_quantlist__44u7__p4_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u7__p4_0[] = { 4, 5, 5, 8, 8, 6, 7, 6, 9, 9, 6, 6, 7, 9, 9, 8, 9, 9,11,11, 8, 9, 9,10,11, 6, 7, 7, 9, 9, 7, 8, 8,10,10, 6, 7, 8, 9,10, 9,10,10,12,12, 9, 9,10, 11,12, 6, 7, 7, 9, 9, 6, 8, 7,10, 9, 7, 8, 8,10, 10, 9,10, 9,12,11, 9,10,10,12,11, 8, 9, 9,11,11, 9,10,10,12,12, 9,10,10,12,12,11,12,12,13,14,11, 11,12,13,13, 8, 9, 9,11,11, 9,10,10,12,11, 9,10, 10,12,12,11,12,11,13,13,11,12,12,13,13, 6, 7, 7, 9, 9, 7, 8, 7,10,10, 7, 7, 8,10,10, 9,10,10,12, 11, 9,10,10,12,12, 7, 8, 8,10,10, 8, 8, 9,11,11, 8, 9, 9,11,11,10,11,11,12,12,10,10,11,12,13, 6, 7, 7,10,10, 7, 9, 8,11,10, 8, 8, 9,10,11,10,11, 10,13,11,10,11,11,12,12, 9,10,10,12,12,10,10,11, 13,13,10,11,11,13,12,12,12,13,13,14,12,12,13,14, 14, 9,10,10,12,12, 9,10,10,12,12,10,11,11,13,13, 11,12,11,14,12,12,13,13,14,14, 6, 7, 7, 9, 9, 7, 8, 7,10,10, 7, 7, 8,10,10, 9,10,10,12,11, 9,10, 10,11,12, 6, 7, 7,10,10, 8, 9, 8,11,10, 7, 8, 9, 10,11,10,11,11,13,12,10,10,11,11,13, 7, 8, 8,10, 10, 8, 9, 9,11,11, 8, 9, 9,11,11,10,11,10,13,12, 10,11,11,12,12, 9,10,10,12,12,10,11,11,13,12, 9, 10,10,12,13,12,13,12,14,14,11,11,12,12,14, 9,10, 10,12,12,10,11,11,13,13,10,11,11,13,13,12,13,12, 14,14,12,13,12,14,13, 8, 9, 9,11,11, 9,10,10,12, 12, 9,10,10,12,12,11,12,12,14,13,11,12,12,13,13, 9,10,10,12,12,10,11,11,13,13,10,11,11,13,12,12, 13,13,14,14,12,12,13,14,14, 9,10,10,12,12, 9,11, 10,13,12,10,10,11,12,13,11,13,12,14,13,12,12,13, 14,14,11,12,12,13,13,11,12,13,14,14,12,13,13,14, 14,13,13,14,14,16,13,14,14,16,16,11,11,11,13,13, 11,12,11,14,13,12,12,13,14,15,13,14,12,16,13,14, 14,14,15,16, 8, 9, 9,11,11, 9,10,10,12,12, 9,10, 10,12,12,11,12,12,14,13,11,12,12,13,14, 9,10,10, 12,12,10,11,10,13,12, 9,10,11,12,13,12,13,12,14, 14,12,12,13,13,14, 9,10,10,12,12,10,11,11,12,13, 10,11,11,13,13,12,13,12,14,14,12,13,13,14,14,11, 12,12,13,13,12,13,12,14,14,11,11,12,13,14,13,15, 14,16,15,13,12,14,13,16,11,12,12,13,13,12,13,13, 14,14,12,12,12,14,14,13,14,14,15,15,13,14,13,16, 14, }; static float _vq_quantthresh__44u7__p4_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u7__p4_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u7__p4_0 = { _vq_quantthresh__44u7__p4_0, _vq_quantmap__44u7__p4_0, 5, 5 }; static static_codebook _44u7__p4_0 = { 4, 625, _vq_lengthlist__44u7__p4_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u7__p4_0, NULL, &_vq_auxt__44u7__p4_0, NULL, 0 }; static long _vq_quantlist__44u7__p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u7__p5_0[] = { 2, 3, 3, 6, 6, 7, 8,10,10, 4, 5, 5, 8, 7, 8, 8, 11,11, 3, 5, 5, 7, 7, 8, 9,11,11, 6, 8, 7, 9, 9, 10,10,12,12, 6, 7, 8, 9,10,10,10,12,12, 8, 8, 8, 10,10,12,11,13,13, 8, 8, 9,10,10,11,11,13,13,10, 11,11,12,12,13,13,14,14,10,11,11,12,12,13,13,14, 14, }; static float _vq_quantthresh__44u7__p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44u7__p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u7__p5_0 = { _vq_quantthresh__44u7__p5_0, _vq_quantmap__44u7__p5_0, 9, 9 }; static static_codebook _44u7__p5_0 = { 2, 81, _vq_lengthlist__44u7__p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44u7__p5_0, NULL, &_vq_auxt__44u7__p5_0, NULL, 0 }; static long _vq_quantlist__44u7__p6_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u7__p6_0[] = { 3, 4, 4, 5, 5, 7, 7, 9, 9, 4, 5, 4, 6, 6, 8, 7, 9, 9, 4, 4, 5, 6, 6, 7, 7, 9, 9, 5, 6, 6, 7, 7, 8, 8,10,10, 5, 6, 6, 7, 7, 8, 8,10,10, 7, 8, 7, 8, 8,10, 9,11,11, 7, 7, 8, 8, 8, 9,10,11,11, 9, 9, 9,10,10,11,10,12,11, 9, 9, 9,10,10,11,11,11, 12, }; static float _vq_quantthresh__44u7__p6_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44u7__p6_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u7__p6_0 = { _vq_quantthresh__44u7__p6_0, _vq_quantmap__44u7__p6_0, 9, 9 }; static static_codebook _44u7__p6_0 = { 2, 81, _vq_lengthlist__44u7__p6_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44u7__p6_0, NULL, &_vq_auxt__44u7__p6_0, NULL, 0 }; static long _vq_quantlist__44u7__p7_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u7__p7_0[] = { 1, 4, 4, 5, 7, 7, 5, 7, 7, 5, 9, 8, 8, 9, 9, 7, 10,10, 5, 8, 9, 7, 9,10, 8, 9, 9, 4, 9, 9, 9,11, 10, 8,10,10, 7,11,10,10,10,12,10,12,12, 7,10,10, 10,12,11,10,12,12, 5, 9, 9, 8,10,10, 9,11,11, 7, 11,10,10,12,12,10,11,12, 7,10,11,10,12,12,10,12, 10, }; static float _vq_quantthresh__44u7__p7_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44u7__p7_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u7__p7_0 = { _vq_quantthresh__44u7__p7_0, _vq_quantmap__44u7__p7_0, 3, 3 }; static static_codebook _44u7__p7_0 = { 4, 81, _vq_lengthlist__44u7__p7_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44u7__p7_0, NULL, &_vq_auxt__44u7__p7_0, NULL, 0 }; static long _vq_quantlist__44u7__p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u7__p7_1[] = { 3, 4, 4, 6, 6, 7, 7, 8, 8, 8, 8, 4, 5, 5, 6, 6, 8, 7, 8, 8, 8, 8, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8, 8, 6, 7, 6, 7, 7, 8, 8, 9, 9, 9, 9, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 9, 7, 8, 7, 8, 8, 9, 9, 9, 9, 9, 9, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 9, 9, 9, 9,10, 9, 9, 9, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9,10, 8, 8, 8, 9, 9, 9, 9,10, 9,10,10, 8, 8, 8, 9, 9, 9, 9, 9,10,10,10, }; static float _vq_quantthresh__44u7__p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44u7__p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u7__p7_1 = { _vq_quantthresh__44u7__p7_1, _vq_quantmap__44u7__p7_1, 11, 11 }; static static_codebook _44u7__p7_1 = { 2, 121, _vq_lengthlist__44u7__p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44u7__p7_1, NULL, &_vq_auxt__44u7__p7_1, NULL, 0 }; static long _vq_quantlist__44u7__p8_0[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u7__p8_0[] = { 1, 4, 4, 6, 6, 8, 8,10,10,11,11, 4, 6, 6, 7, 7, 9, 9,11,10,12,12, 5, 6, 5, 7, 7, 9, 9,10,11,12, 12, 6, 7, 7, 8, 8,10,10,11,11,13,13, 6, 7, 7, 8, 8,10,10,11,12,13,13, 8, 9, 9,10,10,11,11,12,12, 14,14, 8, 9, 9,10,10,11,11,12,12,14,14,10,10,10, 11,11,13,12,14,14,15,15,10,10,10,12,12,13,13,14, 14,15,15,11,12,12,13,13,14,14,15,14,16,15,11,12, 12,13,13,14,14,15,15,15,16, }; static float _vq_quantthresh__44u7__p8_0[] = { -49.5, -38.5, -27.5, -16.5, -5.5, 5.5, 16.5, 27.5, 38.5, 49.5, }; static long _vq_quantmap__44u7__p8_0[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u7__p8_0 = { _vq_quantthresh__44u7__p8_0, _vq_quantmap__44u7__p8_0, 11, 11 }; static static_codebook _44u7__p8_0 = { 2, 121, _vq_lengthlist__44u7__p8_0, 1, -524582912, 1618345984, 4, 0, _vq_quantlist__44u7__p8_0, NULL, &_vq_auxt__44u7__p8_0, NULL, 0 }; static long _vq_quantlist__44u7__p8_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u7__p8_1[] = { 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 7, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__44u7__p8_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44u7__p8_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u7__p8_1 = { _vq_quantthresh__44u7__p8_1, _vq_quantmap__44u7__p8_1, 11, 11 }; static static_codebook _44u7__p8_1 = { 2, 121, _vq_lengthlist__44u7__p8_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44u7__p8_1, NULL, &_vq_auxt__44u7__p8_1, NULL, 0 }; static long _vq_quantlist__44u7__p9_0[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u7__p9_0[] = { 1, 3, 3,10,10,10,10,10,10,10,10, 4,10,10,10,10, 10,10,10,10,10,10, 4,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, }; static float _vq_quantthresh__44u7__p9_0[] = { -2866.5, -2229.5, -1592.5, -955.5, -318.5, 318.5, 955.5, 1592.5, 2229.5, 2866.5, }; static long _vq_quantmap__44u7__p9_0[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u7__p9_0 = { _vq_quantthresh__44u7__p9_0, _vq_quantmap__44u7__p9_0, 11, 11 }; static static_codebook _44u7__p9_0 = { 2, 121, _vq_lengthlist__44u7__p9_0, 1, -512171520, 1630791680, 4, 0, _vq_quantlist__44u7__p9_0, NULL, &_vq_auxt__44u7__p9_0, NULL, 0 }; static long _vq_quantlist__44u7__p9_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u7__p9_1[] = { 1, 4, 4, 6, 5, 8, 6, 9, 8,10, 9,11,10, 4, 6, 6, 8, 8, 9, 9,11,10,11,11,11,11, 4, 6, 6, 8, 8,10, 9,11,11,11,11,11,12, 6, 8, 8,10,10,11,11,12,12, 13,12,13,13, 6, 8, 8,10,10,11,11,12,12,12,13,14, 13, 8,10,10,11,11,12,13,14,14,14,14,15,15, 8,10, 10,11,12,12,13,13,14,14,14,14,15, 9,11,11,13,13, 14,14,15,14,16,15,17,15, 9,11,11,12,13,14,14,15, 14,15,15,15,16,10,12,12,13,14,15,15,15,15,16,17, 16,17,10,13,12,13,14,14,16,16,16,16,15,16,17,11, 13,13,14,15,14,17,15,16,17,17,17,17,11,13,13,14, 15,15,15,15,17,17,16,17,16, }; static float _vq_quantthresh__44u7__p9_1[] = { -269.5, -220.5, -171.5, -122.5, -73.5, -24.5, 24.5, 73.5, 122.5, 171.5, 220.5, 269.5, }; static long _vq_quantmap__44u7__p9_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u7__p9_1 = { _vq_quantthresh__44u7__p9_1, _vq_quantmap__44u7__p9_1, 13, 13 }; static static_codebook _44u7__p9_1 = { 2, 169, _vq_lengthlist__44u7__p9_1, 1, -518889472, 1622704128, 4, 0, _vq_quantlist__44u7__p9_1, NULL, &_vq_auxt__44u7__p9_1, NULL, 0 }; static long _vq_quantlist__44u7__p9_2[] = { 24, 23, 25, 22, 26, 21, 27, 20, 28, 19, 29, 18, 30, 17, 31, 16, 32, 15, 33, 14, 34, 13, 35, 12, 36, 11, 37, 10, 38, 9, 39, 8, 40, 7, 41, 6, 42, 5, 43, 4, 44, 3, 45, 2, 46, 1, 47, 0, 48, }; static long _vq_lengthlist__44u7__p9_2[] = { 2, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, }; static float _vq_quantthresh__44u7__p9_2[] = { -23.5, -22.5, -21.5, -20.5, -19.5, -18.5, -17.5, -16.5, -15.5, -14.5, -13.5, -12.5, -11.5, -10.5, -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, }; static long _vq_quantmap__44u7__p9_2[] = { 47, 45, 43, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, }; static encode_aux_threshmatch _vq_auxt__44u7__p9_2 = { _vq_quantthresh__44u7__p9_2, _vq_quantmap__44u7__p9_2, 49, 49 }; static static_codebook _44u7__p9_2 = { 1, 49, _vq_lengthlist__44u7__p9_2, 1, -526909440, 1611661312, 6, 0, _vq_quantlist__44u7__p9_2, NULL, &_vq_auxt__44u7__p9_2, NULL, 0 }; static long _huff_lengthlist__44u7__short[] = { 5,12,17,16,16,17,17,17,17,17, 4, 7,11,11,12, 9, 17,10,17,17, 7, 7, 8, 9, 7, 9,11,10,15,17, 7, 9, 10,11,10,12,14,12,16,17, 7, 8, 5, 7, 4, 7, 7, 8, 16,16, 6,10, 9,10, 7,10,11,11,16,17, 6, 8, 8, 9, 5, 7, 5, 8,16,17, 5, 5, 8, 7, 6, 7, 7, 6, 6,14, 12,10,12,11, 7,11, 4, 4, 2, 7,17,15,15,15, 8,15, 6, 8, 5, 9, }; static static_codebook _huff_book__44u7__short = { 2, 100, _huff_lengthlist__44u7__short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44u8__long[] = { 3, 9,13,14,14,15,14,14,15,15, 5, 4, 6, 8,10,12, 12,14,15,15, 9, 5, 4, 5, 8,10,11,13,16,16,10, 7, 4, 3, 5, 7, 9,11,13,13,10, 9, 7, 4, 4, 6, 8,10, 12,14,13,11, 9, 6, 5, 5, 6, 8,12,14,13,11,10, 8, 7, 6, 6, 7,10,14,13,11,12,10, 8, 7, 6, 6, 9,13, 12,11,14,12,11, 9, 8, 7, 9,11,11,12,14,13,14,11, 10, 8, 8, 9, }; static static_codebook _huff_book__44u8__long = { 2, 100, _huff_lengthlist__44u8__long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44u8__short[] = { 6,14,18,18,17,17,17,17,17,17, 4, 7, 9, 9,10,13, 15,17,17,17, 6, 7, 5, 6, 8,11,16,17,16,17, 5, 7, 5, 4, 6,10,14,17,17,17, 6, 6, 6, 5, 7,10,13,16, 17,17, 7, 6, 7, 7, 7, 8, 7,10,15,16,12, 9, 9, 6, 6, 5, 3, 5,11,15,14,14,13, 5, 5, 7, 3, 4, 8,15, 17,17,13, 7, 7,10, 6, 6,10,15,17,17,16,10,11,14, 10,10,15,17, }; static static_codebook _huff_book__44u8__short = { 2, 100, _huff_lengthlist__44u8__short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44u8_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u8_p1_0[] = { 1, 5, 5, 5, 7, 7, 5, 7, 7, 5, 7, 7, 8, 9, 9, 7, 9, 9, 5, 7, 7, 7, 9, 9, 8, 9, 9, 5, 7, 7, 7, 9, 9, 7, 9, 9, 7, 9, 9, 9,10,11, 9,11,10, 7, 9, 9, 9,11,10, 9,10,11, 5, 7, 7, 7, 9, 9, 7, 9, 9, 7, 9, 9, 9,11,10, 9,10,10, 8, 9, 9, 9,11,11, 9,11, 10, }; static float _vq_quantthresh__44u8_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u8_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u8_p1_0 = { _vq_quantthresh__44u8_p1_0, _vq_quantmap__44u8_p1_0, 3, 3 }; static static_codebook _44u8_p1_0 = { 4, 81, _vq_lengthlist__44u8_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u8_p1_0, NULL, &_vq_auxt__44u8_p1_0, NULL, 0 }; static long _vq_quantlist__44u8_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u8_p2_0[] = { 4, 5, 5, 8, 8, 5, 7, 6, 9, 9, 5, 6, 7, 9, 9, 8, 9, 9,11,11, 8, 9, 9,11,11, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10, 9,10,10,12,12, 9,10,10, 11,12, 5, 7, 7, 9, 9, 7, 8, 7,10,10, 7, 8, 8,10, 10, 9,10, 9,12,11, 9,10,10,12,12, 8, 9, 9,12,11, 9,10,10,12,12, 9,10,10,12,12,11,12,12,14,14,11, 11,12,13,14, 8, 9, 9,11,11, 9,10,10,12,12, 9,10, 10,12,12,11,12,11,13,13,11,12,12,14,14, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10, 9,10,10,12, 12, 9,10,10,11,12, 7, 8, 8,10,10, 8, 9, 9,11,11, 8, 9, 9,11,11,10,11,11,12,13,10,11,11,12,13, 6, 8, 8,10,10, 8, 9, 8,11,10, 8, 9, 9,11,11,10,11, 10,13,12,10,11,11,13,13, 9,10,10,12,12,10,11,11, 13,13,10,11,11,13,13,12,12,13,13,14,12,13,13,14, 14, 9,10,10,12,12,10,11,10,13,12,10,11,11,13,13, 11,13,12,14,13,12,13,13,14,14, 5, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10, 9,10,10,12,12, 9,10, 10,12,12, 7, 8, 8,10,10, 8, 9, 9,11,11, 8, 8, 9, 10,11,10,11,11,13,13,10,10,11,12,13, 7, 8, 8,10, 10, 8, 9, 9,11,11, 8, 9, 9,11,11,10,11,11,13,13, 10,11,11,13,12, 9,10,10,12,12,10,11,11,13,13,10, 10,11,12,13,12,13,13,14,14,12,12,13,13,14, 9,10, 10,12,12,10,11,11,13,13,10,11,11,13,13,12,13,13, 15,14,12,13,13,14,13, 8, 9, 9,11,11, 9,10,10,12, 12, 9,10,10,12,12,12,12,12,14,13,11,12,12,14,14, 9,10,10,12,12,10,11,11,13,13,10,11,11,13,13,12, 13,13,14,15,12,13,13,14,15, 9,10,10,12,12,10,11, 10,13,12,10,11,11,13,13,12,13,12,15,14,12,13,13, 14,15,11,12,12,14,14,12,13,13,14,14,12,13,13,15, 14,14,14,14,14,16,14,14,15,16,16,11,12,12,14,14, 11,12,12,14,14,12,13,13,14,15,13,14,13,16,14,14, 14,14,16,16, 8, 9, 9,11,11, 9,10,10,12,12, 9,10, 10,12,12,11,12,12,14,13,11,12,12,14,14, 9,10,10, 12,12,10,11,11,13,13,10,10,11,12,13,12,13,13,15, 14,12,12,13,13,14, 9,10,10,12,12,10,11,11,13,13, 10,11,11,13,13,12,13,13,14,14,12,13,13,15,14,11, 12,12,14,13,12,13,13,15,14,11,12,12,13,14,14,15, 14,16,15,13,13,14,13,16,11,12,12,14,14,12,13,13, 14,15,12,13,12,15,14,14,14,14,16,15,14,15,13,16, 14, }; static float _vq_quantthresh__44u8_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u8_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u8_p2_0 = { _vq_quantthresh__44u8_p2_0, _vq_quantmap__44u8_p2_0, 5, 5 }; static static_codebook _44u8_p2_0 = { 4, 625, _vq_lengthlist__44u8_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u8_p2_0, NULL, &_vq_auxt__44u8_p2_0, NULL, 0 }; static long _vq_quantlist__44u8_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u8_p3_0[] = { 3, 4, 4, 5, 5, 7, 7, 9, 9, 4, 5, 4, 6, 6, 7, 7, 9, 9, 4, 4, 5, 6, 6, 7, 7, 9, 9, 5, 6, 6, 7, 7, 8, 8,10,10, 6, 6, 6, 7, 7, 8, 8,10,10, 7, 7, 7, 8, 8, 9, 9,11,10, 7, 7, 7, 8, 8, 9, 9,10,11, 9, 9, 9,10,10,11,10,12,11, 9, 9, 9, 9,10,11,11,11, 12, }; static float _vq_quantthresh__44u8_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44u8_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u8_p3_0 = { _vq_quantthresh__44u8_p3_0, _vq_quantmap__44u8_p3_0, 9, 9 }; static static_codebook _44u8_p3_0 = { 2, 81, _vq_lengthlist__44u8_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44u8_p3_0, NULL, &_vq_auxt__44u8_p3_0, NULL, 0 }; static long _vq_quantlist__44u8_p4_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44u8_p4_0[] = { 4, 4, 4, 6, 6, 7, 7, 8, 8, 8, 8,10,10,11,11,11, 11, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,10,10,11,11, 12,12, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,10,10,11, 11,12,12, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9,10,10, 11,11,12,12, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9,10, 10,11,11,12,12, 7, 7, 7, 8, 8, 9, 8,10, 9,10, 9, 11,10,12,11,13,12, 7, 7, 7, 8, 8, 8, 9, 9,10, 9, 10,10,11,11,12,12,13, 8, 8, 8, 9, 9, 9, 9,10,10, 11,10,11,11,12,12,13,13, 8, 8, 8, 9, 9, 9,10,10, 10,10,11,11,11,12,12,12,13, 8, 9, 9, 9, 9,10, 9, 11,10,11,11,12,11,13,12,13,13, 8, 9, 9, 9, 9, 9, 10,10,11,11,11,11,12,12,13,13,13,10,10,10,10,10, 11,10,11,11,12,11,13,12,13,13,14,13,10,10,10,10, 10,10,11,11,11,11,12,12,13,13,13,13,14,11,11,11, 11,11,12,11,12,12,13,12,13,13,14,13,14,14,11,11, 11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,11, 12,12,12,12,13,12,13,12,13,13,14,13,14,14,14,14, 11,12,12,12,12,12,12,13,13,13,13,13,14,14,14,14, 14, }; static float _vq_quantthresh__44u8_p4_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44u8_p4_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44u8_p4_0 = { _vq_quantthresh__44u8_p4_0, _vq_quantmap__44u8_p4_0, 17, 17 }; static static_codebook _44u8_p4_0 = { 2, 289, _vq_lengthlist__44u8_p4_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44u8_p4_0, NULL, &_vq_auxt__44u8_p4_0, NULL, 0 }; static long _vq_quantlist__44u8_p5_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u8_p5_0[] = { 1, 4, 4, 5, 7, 7, 5, 7, 7, 5, 8, 8, 8, 9, 9, 7, 9, 9, 5, 8, 8, 7, 9, 9, 8, 9, 9, 5, 8, 8, 8,10, 10, 8,10,10, 7,10,10, 9,10,12, 9,12,11, 7,10,10, 9,11,10, 9,11,12, 5, 8, 8, 8,10,10, 8,10,10, 7, 10,10, 9,11,11, 9,10,11, 7,10,10, 9,11,11,10,12, 10, }; static float _vq_quantthresh__44u8_p5_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44u8_p5_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u8_p5_0 = { _vq_quantthresh__44u8_p5_0, _vq_quantmap__44u8_p5_0, 3, 3 }; static static_codebook _44u8_p5_0 = { 4, 81, _vq_lengthlist__44u8_p5_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44u8_p5_0, NULL, &_vq_auxt__44u8_p5_0, NULL, 0 }; static long _vq_quantlist__44u8_p5_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u8_p5_1[] = { 4, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, }; static float _vq_quantthresh__44u8_p5_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44u8_p5_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u8_p5_1 = { _vq_quantthresh__44u8_p5_1, _vq_quantmap__44u8_p5_1, 11, 11 }; static static_codebook _44u8_p5_1 = { 2, 121, _vq_lengthlist__44u8_p5_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44u8_p5_1, NULL, &_vq_auxt__44u8_p5_1, NULL, 0 }; static long _vq_quantlist__44u8_p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u8_p6_0[] = { 2, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9,10,10, 4, 6, 5, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 4, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9,10,10,10, 6, 7, 7, 8, 8, 8, 8, 9, 8,10, 9,11, 10, 7, 8, 8, 8, 8, 8, 9, 9, 9,10,10,11,11, 7, 8, 8, 8, 8, 9, 8, 9, 9,10,10,11,11, 8, 8, 8, 9, 9, 9, 9, 9,10,10,10,11,11, 8, 8, 8, 9, 9, 9, 9,10, 9,10,10,11,11, 9, 9, 9, 9,10,10,10,10,10,10,11, 11,12, 9, 9, 9,10, 9,10,10,10,10,11,10,12,11,10, 10,10,10,10,11,11,11,11,11,12,12,12,10,10,10,10, 11,11,11,11,11,12,11,12,12, }; static float _vq_quantthresh__44u8_p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44u8_p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u8_p6_0 = { _vq_quantthresh__44u8_p6_0, _vq_quantmap__44u8_p6_0, 13, 13 }; static static_codebook _44u8_p6_0 = { 2, 169, _vq_lengthlist__44u8_p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44u8_p6_0, NULL, &_vq_auxt__44u8_p6_0, NULL, 0 }; static long _vq_quantlist__44u8_p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u8_p6_1[] = { 3, 4, 4, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, }; static float _vq_quantthresh__44u8_p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u8_p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u8_p6_1 = { _vq_quantthresh__44u8_p6_1, _vq_quantmap__44u8_p6_1, 5, 5 }; static static_codebook _44u8_p6_1 = { 2, 25, _vq_lengthlist__44u8_p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u8_p6_1, NULL, &_vq_auxt__44u8_p6_1, NULL, 0 }; static long _vq_quantlist__44u8_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u8_p7_0[] = { 1, 4, 5, 6, 6, 7, 7, 8, 8,10,10,11,11, 5, 6, 6, 7, 7, 8, 8, 9, 9,11,10,12,11, 5, 6, 6, 7, 7, 8, 8, 9, 9,10,11,11,12, 6, 7, 7, 8, 8, 9, 9,10,10, 11,11,12,12, 6, 7, 7, 8, 8, 9, 9,10,10,11,12,13, 12, 7, 8, 8, 9, 9,10,10,11,11,12,12,13,13, 8, 8, 8, 9, 9,10,10,11,11,12,12,13,13, 9, 9, 9,10,10, 11,11,12,12,13,13,14,14, 9, 9, 9,10,10,11,11,12, 12,13,13,14,14,10,11,11,12,11,13,12,13,13,14,14, 15,15,10,11,11,11,12,12,13,13,14,14,14,15,15,11, 12,12,13,13,14,13,15,14,15,15,16,15,11,11,12,13, 13,13,14,14,14,15,15,15,16, }; static float _vq_quantthresh__44u8_p7_0[] = { -60.5, -49.5, -38.5, -27.5, -16.5, -5.5, 5.5, 16.5, 27.5, 38.5, 49.5, 60.5, }; static long _vq_quantmap__44u8_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u8_p7_0 = { _vq_quantthresh__44u8_p7_0, _vq_quantmap__44u8_p7_0, 13, 13 }; static static_codebook _44u8_p7_0 = { 2, 169, _vq_lengthlist__44u8_p7_0, 1, -523206656, 1618345984, 4, 0, _vq_quantlist__44u8_p7_0, NULL, &_vq_auxt__44u8_p7_0, NULL, 0 }; static long _vq_quantlist__44u8_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u8_p7_1[] = { 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__44u8_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44u8_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u8_p7_1 = { _vq_quantthresh__44u8_p7_1, _vq_quantmap__44u8_p7_1, 11, 11 }; static static_codebook _44u8_p7_1 = { 2, 121, _vq_lengthlist__44u8_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44u8_p7_1, NULL, &_vq_auxt__44u8_p7_1, NULL, 0 }; static long _vq_quantlist__44u8_p8_0[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44u8_p8_0[] = { 1, 4, 4, 7, 7, 8, 8, 8, 7, 9, 8,10, 9,11,10, 4, 6, 6, 8, 8,10, 9, 9, 9,10,10,11,10,12,10, 4, 6, 6, 8, 8,10,10, 9, 9,10,10,11,11,11,12, 7, 8, 8, 10,10,11,11,11,10,12,11,12,12,13,11, 7, 8, 8,10, 10,11,11,10,10,11,11,12,12,13,13, 8,10,10,11,11, 12,11,12,11,13,12,13,12,14,13, 8,10, 9,11,11,12, 12,12,12,12,12,13,13,14,13, 8, 9, 9,11,10,12,11, 13,12,13,13,14,13,14,13, 8, 9, 9,10,11,12,12,12, 12,13,13,14,15,14,14, 9,10,10,12,11,13,12,13,13, 14,13,14,14,14,14, 9,10,10,12,12,12,12,13,13,14, 14,14,15,14,14,10,11,11,13,12,13,12,14,14,14,14, 14,14,15,15,10,11,11,12,12,13,13,14,14,14,15,15, 14,16,15,11,12,12,13,12,14,14,14,13,15,14,15,15, 15,17,11,12,12,13,13,14,14,14,15,15,14,15,15,14, 17, }; static float _vq_quantthresh__44u8_p8_0[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__44u8_p8_0[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44u8_p8_0 = { _vq_quantthresh__44u8_p8_0, _vq_quantmap__44u8_p8_0, 15, 15 }; static static_codebook _44u8_p8_0 = { 2, 225, _vq_lengthlist__44u8_p8_0, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__44u8_p8_0, NULL, &_vq_auxt__44u8_p8_0, NULL, 0 }; static long _vq_quantlist__44u8_p8_1[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__44u8_p8_1[] = { 4, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 5, 6, 6, 7, 7, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 9,10, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10, 10, 9,10, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9,10, 9, 10,10,10,10,10,10,10,10, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10, 9,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,10,10,10, 10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10, 10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9,10, 9, 10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10, 10, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9,10,10,10, 10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10, 9, 9, 9,10, 9,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9,10, 9,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10, 9, 9, 9,10, 9,10, 9,10,10,10,10,10, 10,10,10,10,10,10,10,10,10, }; static float _vq_quantthresh__44u8_p8_1[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__44u8_p8_1[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__44u8_p8_1 = { _vq_quantthresh__44u8_p8_1, _vq_quantmap__44u8_p8_1, 21, 21 }; static static_codebook _44u8_p8_1 = { 2, 441, _vq_lengthlist__44u8_p8_1, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__44u8_p8_1, NULL, &_vq_auxt__44u8_p8_1, NULL, 0 }; static long _vq_quantlist__44u8_p9_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u8_p9_0[] = { 1, 3, 3, 9, 9, 9, 9, 9, 9, 4, 9, 9, 9, 9, 9, 9, 9, 9, 5, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, }; static float _vq_quantthresh__44u8_p9_0[] = { -3258.5, -2327.5, -1396.5, -465.5, 465.5, 1396.5, 2327.5, 3258.5, }; static long _vq_quantmap__44u8_p9_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u8_p9_0 = { _vq_quantthresh__44u8_p9_0, _vq_quantmap__44u8_p9_0, 9, 9 }; static static_codebook _44u8_p9_0 = { 2, 81, _vq_lengthlist__44u8_p9_0, 1, -511895552, 1631393792, 4, 0, _vq_quantlist__44u8_p9_0, NULL, &_vq_auxt__44u8_p9_0, NULL, 0 }; static long _vq_quantlist__44u8_p9_1[] = { 9, 8, 10, 7, 11, 6, 12, 5, 13, 4, 14, 3, 15, 2, 16, 1, 17, 0, 18, }; static long _vq_lengthlist__44u8_p9_1[] = { 1, 4, 4, 7, 7, 8, 7, 8, 6, 9, 7,10, 8,11,10,11, 11,11,11, 4, 7, 6, 9, 9,10, 9, 9, 9,10,10,11,10, 11,10,11,11,13,11, 4, 7, 7, 9, 9, 9, 9, 9, 9,10, 10,11,10,11,11,11,12,11,12, 7, 9, 8,11,11,11,11, 10,10,11,11,12,12,12,12,12,12,14,13, 7, 8, 9,10, 11,11,11,10,10,11,11,11,11,12,12,14,12,13,14, 8, 9, 9,11,11,11,11,11,11,12,12,14,12,15,14,14,14, 15,14, 8, 9, 9,11,11,11,11,12,11,12,12,13,13,13, 13,13,13,14,14, 8, 9, 9,11,10,12,11,12,12,13,13, 13,13,15,14,14,14,16,16, 8, 9, 9,10,11,11,12,12, 12,13,13,13,14,14,14,15,16,15,15, 9,10,10,11,12, 12,13,13,13,14,14,16,14,14,16,16,16,16,15, 9,10, 10,11,11,12,13,13,14,15,14,16,14,15,16,16,16,16, 15,10,11,11,12,13,13,14,15,15,15,15,15,16,15,16, 15,16,15,15,10,11,11,13,13,14,13,13,15,14,15,15, 16,15,15,15,16,15,16,10,12,12,14,14,14,14,14,16, 16,15,15,15,16,16,16,16,16,16,11,12,12,14,14,14, 14,15,15,16,15,16,15,16,15,16,16,16,16,12,12,13, 14,14,15,16,16,16,16,16,16,15,16,16,16,16,16,16, 12,13,13,14,14,14,14,15,16,15,16,16,16,16,16,16, 16,16,16,12,13,14,14,14,16,15,16,15,16,16,16,16, 16,16,16,16,16,16,12,14,13,14,15,15,15,16,15,16, 16,15,16,16,16,16,16,16,16, }; static float _vq_quantthresh__44u8_p9_1[] = { -416.5, -367.5, -318.5, -269.5, -220.5, -171.5, -122.5, -73.5, -24.5, 24.5, 73.5, 122.5, 171.5, 220.5, 269.5, 318.5, 367.5, 416.5, }; static long _vq_quantmap__44u8_p9_1[] = { 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, }; static encode_aux_threshmatch _vq_auxt__44u8_p9_1 = { _vq_quantthresh__44u8_p9_1, _vq_quantmap__44u8_p9_1, 19, 19 }; static static_codebook _44u8_p9_1 = { 2, 361, _vq_lengthlist__44u8_p9_1, 1, -518287360, 1622704128, 5, 0, _vq_quantlist__44u8_p9_1, NULL, &_vq_auxt__44u8_p9_1, NULL, 0 }; static long _vq_quantlist__44u8_p9_2[] = { 24, 23, 25, 22, 26, 21, 27, 20, 28, 19, 29, 18, 30, 17, 31, 16, 32, 15, 33, 14, 34, 13, 35, 12, 36, 11, 37, 10, 38, 9, 39, 8, 40, 7, 41, 6, 42, 5, 43, 4, 44, 3, 45, 2, 46, 1, 47, 0, 48, }; static long _vq_lengthlist__44u8_p9_2[] = { 2, 3, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__44u8_p9_2[] = { -23.5, -22.5, -21.5, -20.5, -19.5, -18.5, -17.5, -16.5, -15.5, -14.5, -13.5, -12.5, -11.5, -10.5, -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, }; static long _vq_quantmap__44u8_p9_2[] = { 47, 45, 43, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, }; static encode_aux_threshmatch _vq_auxt__44u8_p9_2 = { _vq_quantthresh__44u8_p9_2, _vq_quantmap__44u8_p9_2, 49, 49 }; static static_codebook _44u8_p9_2 = { 1, 49, _vq_lengthlist__44u8_p9_2, 1, -526909440, 1611661312, 6, 0, _vq_quantlist__44u8_p9_2, NULL, &_vq_auxt__44u8_p9_2, NULL, 0 }; static long _huff_lengthlist__44u9__long[] = { 3, 9,13,13,14,15,14,14,15,15, 5, 5, 9,10,12,12, 13,14,16,15,10, 6, 6, 6, 8,11,12,13,16,15,11, 7, 5, 3, 5, 8,10,12,15,15,10,10, 7, 4, 3, 5, 8,10, 12,12,12,12, 9, 7, 5, 4, 6, 8,10,13,13,12,11, 9, 7, 5, 5, 6, 9,12,14,12,12,10, 8, 6, 6, 6, 7,11, 13,12,14,13,10, 8, 7, 7, 7,10,11,11,12,13,12,11, 10, 8, 8, 9, }; static static_codebook _huff_book__44u9__long = { 2, 100, _huff_lengthlist__44u9__long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _huff_lengthlist__44u9__short[] = { 9,16,18,18,17,17,17,17,17,17, 5, 8,11,12,11,12, 17,17,16,16, 6, 6, 8, 8, 9,10,14,15,16,16, 6, 7, 7, 4, 6, 9,13,16,16,16, 6, 6, 7, 4, 5, 8,11,15, 17,16, 7, 6, 7, 6, 6, 8, 9,10,14,16,11, 8, 8, 7, 6, 6, 3, 4,10,15,14,12,12,10, 5, 6, 3, 3, 8,13, 15,17,15,11, 6, 8, 6, 6, 9,14,17,15,15,12, 8,10, 9, 9,12,15, }; static static_codebook _huff_book__44u9__short = { 2, 100, _huff_lengthlist__44u9__short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44u9_p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u9_p1_0[] = { 1, 5, 5, 5, 7, 7, 5, 7, 7, 5, 7, 7, 7, 9, 9, 7, 9, 9, 5, 7, 7, 7, 9, 9, 7, 9, 9, 5, 7, 7, 7, 9, 9, 7, 9, 9, 8, 9, 9, 9,10,11, 9,11,11, 7, 9, 9, 9,11,10, 9,11,11, 5, 7, 7, 7, 9, 9, 8, 9,10, 7, 9, 9, 9,11,11, 9,10,11, 7, 9,10, 9,11,11, 9,11, 10, }; static float _vq_quantthresh__44u9_p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44u9_p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u9_p1_0 = { _vq_quantthresh__44u9_p1_0, _vq_quantmap__44u9_p1_0, 3, 3 }; static static_codebook _44u9_p1_0 = { 4, 81, _vq_lengthlist__44u9_p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44u9_p1_0, NULL, &_vq_auxt__44u9_p1_0, NULL, 0 }; static long _vq_quantlist__44u9_p2_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u9_p2_0[] = { 3, 5, 5, 8, 8, 5, 7, 7, 9, 9, 6, 7, 7, 9, 9, 8, 9, 9,11,10, 8, 9, 9,11,11, 6, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8, 9,10, 9,10,10,11,11, 9, 9,10, 11,11, 6, 7, 7, 9, 9, 7, 8, 8,10, 9, 7, 8, 8,10, 10, 9,10, 9,11,11, 9,10,10,11,11, 8, 9, 9,11,11, 9,10,10,12,11, 9,10,10,11,12,11,11,11,13,13,11, 11,11,12,13, 8, 9, 9,11,11, 9,10,10,11,11, 9,10, 10,12,11,11,12,11,13,12,11,11,12,13,13, 6, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10, 9,10,10,12, 11, 9,10,10,11,12, 7, 8, 8,10,10, 8, 9, 9,11,11, 8, 9, 9,10,10,10,11,11,12,12,10,10,11,12,12, 7, 8, 8,10,10, 8, 9, 8,10,10, 8, 9, 9,10,10,10,11, 10,12,11,10,10,11,12,12, 9,10,10,11,12,10,11,11, 12,12,10,11,10,12,12,12,12,12,13,13,11,12,12,13, 13, 9,10,10,11,11, 9,10,10,12,12,10,11,11,12,13, 11,12,11,13,12,12,12,12,13,14, 6, 7, 7, 9, 9, 7, 8, 8,10,10, 7, 8, 8,10,10, 9,10,10,11,11, 9,10, 10,11,12, 7, 8, 8,10,10, 8, 9, 9,11,10, 8, 8, 9, 10,10,10,11,10,12,12,10,10,11,11,12, 7, 8, 8,10, 10, 8, 9, 9,10,10, 8, 9, 9,10,10,10,11,10,12,12, 10,11,10,12,12, 9,10,10,12,11,10,11,11,12,12, 9, 10,10,12,12,12,12,12,13,13,11,11,12,12,14, 9,10, 10,11,12,10,11,11,12,12,10,11,11,12,12,11,12,12, 14,14,12,12,12,13,13, 8, 9, 9,11,11, 9,10,10,12, 11, 9,10,10,12,12,11,12,11,13,13,11,11,12,13,13, 9,10,10,12,12,10,11,11,12,12,10,11,11,12,12,12, 12,12,14,14,12,12,12,13,13, 9,10,10,12,11,10,11, 10,12,12,10,11,11,12,12,11,12,12,14,13,12,12,12, 13,14,11,12,11,13,13,11,12,12,13,13,12,12,12,14, 14,13,13,13,13,15,13,13,14,15,15,11,11,11,13,13, 11,12,11,13,13,11,12,12,13,13,12,13,12,15,13,13, 13,14,14,15, 8, 9, 9,11,11, 9,10,10,11,12, 9,10, 10,11,12,11,12,11,13,13,11,12,12,13,13, 9,10,10, 11,12,10,11,10,12,12,10,10,11,12,13,12,12,12,14, 13,11,12,12,13,14, 9,10,10,12,12,10,11,11,12,12, 10,11,11,12,12,12,12,12,14,13,12,12,12,14,13,11, 11,11,13,13,11,12,12,14,13,11,11,12,13,13,13,13, 13,15,14,12,12,13,13,15,11,12,12,13,13,12,12,12, 13,14,11,12,12,13,13,13,13,14,14,15,13,13,13,14, 14, }; static float _vq_quantthresh__44u9_p2_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u9_p2_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u9_p2_0 = { _vq_quantthresh__44u9_p2_0, _vq_quantmap__44u9_p2_0, 5, 5 }; static static_codebook _44u9_p2_0 = { 4, 625, _vq_lengthlist__44u9_p2_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u9_p2_0, NULL, &_vq_auxt__44u9_p2_0, NULL, 0 }; static long _vq_quantlist__44u9_p3_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44u9_p3_0[] = { 3, 4, 4, 5, 5, 7, 7, 8, 8, 4, 5, 5, 6, 6, 7, 7, 9, 9, 4, 4, 5, 6, 6, 7, 7, 9, 9, 5, 6, 6, 7, 7, 8, 8, 9, 9, 5, 6, 6, 7, 7, 8, 8, 9, 9, 7, 7, 7, 8, 8, 9, 9,10,10, 7, 7, 7, 8, 8, 9, 9,10,10, 8, 9, 9,10, 9,10,10,11,11, 8, 9, 9, 9,10,10,10,11, 11, }; static float _vq_quantthresh__44u9_p3_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44u9_p3_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44u9_p3_0 = { _vq_quantthresh__44u9_p3_0, _vq_quantmap__44u9_p3_0, 9, 9 }; static static_codebook _44u9_p3_0 = { 2, 81, _vq_lengthlist__44u9_p3_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44u9_p3_0, NULL, &_vq_auxt__44u9_p3_0, NULL, 0 }; static long _vq_quantlist__44u9_p4_0[] = { 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, }; static long _vq_lengthlist__44u9_p4_0[] = { 4, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9,10,10,11, 11, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 11,11, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9,10, 10,11,11, 6, 6, 6, 7, 6, 7, 7, 8, 8, 9, 9,10,10, 11,11,12,11, 6, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9,10, 10,11,11,11,12, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10,10,11,11,12,12, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9,10,10,11,11,12,12, 8, 8, 8, 8, 8, 9, 8,10, 9, 10,10,11,10,12,11,13,12, 8, 8, 8, 8, 8, 9, 9, 9, 10,10,10,10,11,11,12,12,12, 8, 8, 8, 9, 9, 9, 9, 10,10,11,10,12,11,12,12,13,12, 8, 8, 8, 9, 9, 9, 9,10,10,10,11,11,11,12,12,12,13, 9, 9, 9,10,10, 10,10,11,10,11,11,12,11,13,12,13,13, 9, 9,10,10, 10,10,10,10,11,11,11,11,12,12,13,13,13,10,11,10, 11,11,11,11,12,11,12,12,13,12,13,13,14,13,10,10, 10,11,11,11,11,11,12,12,12,12,13,13,13,13,14,11, 11,11,12,11,12,12,12,12,13,13,13,13,14,13,14,14, 11,11,11,11,12,12,12,12,12,12,13,13,13,13,14,14, 14, }; static float _vq_quantthresh__44u9_p4_0[] = { -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, }; static long _vq_quantmap__44u9_p4_0[] = { 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, }; static encode_aux_threshmatch _vq_auxt__44u9_p4_0 = { _vq_quantthresh__44u9_p4_0, _vq_quantmap__44u9_p4_0, 17, 17 }; static static_codebook _44u9_p4_0 = { 2, 289, _vq_lengthlist__44u9_p4_0, 1, -529530880, 1611661312, 5, 0, _vq_quantlist__44u9_p4_0, NULL, &_vq_auxt__44u9_p4_0, NULL, 0 }; static long _vq_quantlist__44u9_p5_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44u9_p5_0[] = { 1, 4, 4, 5, 7, 7, 5, 7, 7, 5, 8, 8, 8, 9, 9, 7, 9, 9, 5, 8, 8, 7, 9, 9, 8, 9, 9, 5, 8, 8, 8,10, 10, 8,10,10, 7,10,10, 9,10,12, 9,11,11, 7,10,10, 9,11,10, 9,11,12, 5, 8, 8, 8,10,10, 8,10,10, 7, 10,10, 9,12,11, 9,10,11, 7,10,10, 9,11,11,10,12, 10, }; static float _vq_quantthresh__44u9_p5_0[] = { -5.5, 5.5, }; static long _vq_quantmap__44u9_p5_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44u9_p5_0 = { _vq_quantthresh__44u9_p5_0, _vq_quantmap__44u9_p5_0, 3, 3 }; static static_codebook _44u9_p5_0 = { 4, 81, _vq_lengthlist__44u9_p5_0, 1, -529137664, 1618345984, 2, 0, _vq_quantlist__44u9_p5_0, NULL, &_vq_auxt__44u9_p5_0, NULL, 0 }; static long _vq_quantlist__44u9_p5_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u9_p5_1[] = { 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 7, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 7, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, }; static float _vq_quantthresh__44u9_p5_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44u9_p5_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u9_p5_1 = { _vq_quantthresh__44u9_p5_1, _vq_quantmap__44u9_p5_1, 11, 11 }; static static_codebook _44u9_p5_1 = { 2, 121, _vq_lengthlist__44u9_p5_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44u9_p5_1, NULL, &_vq_auxt__44u9_p5_1, NULL, 0 }; static long _vq_quantlist__44u9_p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u9_p6_0[] = { 2, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9,10,10, 4, 6, 5, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 9,10,10, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10,10,10,10, 6, 7, 7, 8, 8, 8, 8, 9, 9,10,10,10, 10, 7, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11,11, 7, 8, 8, 8, 8, 9, 9, 9, 9,10,10,11,11, 8, 8, 8, 9, 9, 9, 9, 9,10,10,10,11,11, 8, 8, 8, 9, 9, 9, 9,10, 9,10,10,11,11, 9, 9, 9,10,10,10,10,10,11,11,11, 11,12, 9, 9, 9,10,10,10,10,10,10,11,10,12,11,10, 10,10,10,10,11,11,11,11,11,12,12,12,10,10,10,10, 10,11,11,11,11,12,11,12,12, }; static float _vq_quantthresh__44u9_p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44u9_p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u9_p6_0 = { _vq_quantthresh__44u9_p6_0, _vq_quantmap__44u9_p6_0, 13, 13 }; static static_codebook _44u9_p6_0 = { 2, 169, _vq_lengthlist__44u9_p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44u9_p6_0, NULL, &_vq_auxt__44u9_p6_0, NULL, 0 }; static long _vq_quantlist__44u9_p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44u9_p6_1[] = { 4, 4, 4, 5, 5, 4, 5, 4, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, }; static float _vq_quantthresh__44u9_p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44u9_p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44u9_p6_1 = { _vq_quantthresh__44u9_p6_1, _vq_quantmap__44u9_p6_1, 5, 5 }; static static_codebook _44u9_p6_1 = { 2, 25, _vq_lengthlist__44u9_p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44u9_p6_1, NULL, &_vq_auxt__44u9_p6_1, NULL, 0 }; static long _vq_quantlist__44u9_p7_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44u9_p7_0[] = { 1, 4, 5, 6, 6, 7, 7, 8, 9,10,10,11,11, 5, 6, 6, 7, 7, 8, 8, 9, 9,10,10,11,11, 5, 6, 6, 7, 7, 8, 8, 9, 9,10,10,11,11, 6, 7, 7, 8, 8, 9, 9,10,10, 11,11,12,12, 6, 7, 7, 8, 8, 9, 9,10,10,11,11,12, 12, 8, 8, 8, 9, 9,10,10,11,11,12,12,13,13, 8, 8, 8, 9, 9,10,10,11,11,12,12,13,13, 9, 9, 9,10,10, 11,11,12,12,13,13,13,13, 9, 9, 9,10,10,11,11,12, 12,13,13,14,14,10,10,10,11,11,12,12,13,13,14,13, 15,14,10,10,10,11,11,12,12,13,13,14,14,14,14,11, 11,12,12,12,13,13,14,14,14,14,15,15,11,11,12,12, 12,13,13,14,14,14,15,15,15, }; static float _vq_quantthresh__44u9_p7_0[] = { -60.5, -49.5, -38.5, -27.5, -16.5, -5.5, 5.5, 16.5, 27.5, 38.5, 49.5, 60.5, }; static long _vq_quantmap__44u9_p7_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44u9_p7_0 = { _vq_quantthresh__44u9_p7_0, _vq_quantmap__44u9_p7_0, 13, 13 }; static static_codebook _44u9_p7_0 = { 2, 169, _vq_lengthlist__44u9_p7_0, 1, -523206656, 1618345984, 4, 0, _vq_quantlist__44u9_p7_0, NULL, &_vq_auxt__44u9_p7_0, NULL, 0 }; static long _vq_quantlist__44u9_p7_1[] = { 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, }; static long _vq_lengthlist__44u9_p7_1[] = { 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 7, 7, 7, 7, 7, 7, 7, 8, 7, 8, 8, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, }; static float _vq_quantthresh__44u9_p7_1[] = { -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, }; static long _vq_quantmap__44u9_p7_1[] = { 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, }; static encode_aux_threshmatch _vq_auxt__44u9_p7_1 = { _vq_quantthresh__44u9_p7_1, _vq_quantmap__44u9_p7_1, 11, 11 }; static static_codebook _44u9_p7_1 = { 2, 121, _vq_lengthlist__44u9_p7_1, 1, -531365888, 1611661312, 4, 0, _vq_quantlist__44u9_p7_1, NULL, &_vq_auxt__44u9_p7_1, NULL, 0 }; static long _vq_quantlist__44u9_p8_0[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44u9_p8_0[] = { 1, 4, 4, 7, 7, 8, 8, 8, 8, 9, 9,10, 9,11,10, 4, 6, 6, 8, 8, 9, 9, 9, 9,10,10,11,10,12,10, 4, 6, 6, 8, 8, 9,10, 9, 9,10,10,11,11,12,12, 7, 8, 8, 10,10,11,11,10,10,11,11,12,12,13,12, 7, 8, 8,10, 10,11,11,10,10,11,11,12,12,12,13, 8,10, 9,11,11, 12,12,11,11,12,12,13,13,14,13, 8, 9, 9,11,11,12, 12,11,12,12,12,13,13,14,13, 8, 9, 9,10,10,12,11, 13,12,13,13,14,13,15,14, 8, 9, 9,10,10,11,12,12, 12,13,13,13,14,14,14, 9,10,10,12,11,13,12,13,13, 14,13,14,14,14,15, 9,10,10,11,12,12,12,13,13,14, 14,14,15,15,15,10,11,11,12,12,13,13,14,14,14,14, 15,14,16,15,10,11,11,12,12,13,13,13,14,14,14,14, 14,15,16,11,12,12,13,13,14,13,14,14,15,14,15,16, 16,16,11,12,12,13,13,14,13,14,14,15,15,15,16,15, 15, }; static float _vq_quantthresh__44u9_p8_0[] = { -136.5, -115.5, -94.5, -73.5, -52.5, -31.5, -10.5, 10.5, 31.5, 52.5, 73.5, 94.5, 115.5, 136.5, }; static long _vq_quantmap__44u9_p8_0[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44u9_p8_0 = { _vq_quantthresh__44u9_p8_0, _vq_quantmap__44u9_p8_0, 15, 15 }; static static_codebook _44u9_p8_0 = { 2, 225, _vq_lengthlist__44u9_p8_0, 1, -520986624, 1620377600, 4, 0, _vq_quantlist__44u9_p8_0, NULL, &_vq_auxt__44u9_p8_0, NULL, 0 }; static long _vq_quantlist__44u9_p8_1[] = { 10, 9, 11, 8, 12, 7, 13, 6, 14, 5, 15, 4, 16, 3, 17, 2, 18, 1, 19, 0, 20, }; static long _vq_lengthlist__44u9_p8_1[] = { 4, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 7, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10,10,10, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9,10, 9,10,10,10,10, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 9,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,10,10,10, 10,10, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10, 10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10, 10, 9, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,10,10,10, 10,10,10,10,10,10, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9,10, 9, 9,10,10,10,10,10,10,10,10,10, 10,10,10,10,10, 9, 9, 9,10, 9,10, 9,10,10,10,10, 10,10,10,10,10,10,10,10,10,10, 9, 9, 9,10, 9,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10, 9, 9, 9,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10, }; static float _vq_quantthresh__44u9_p8_1[] = { -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, }; static long _vq_quantmap__44u9_p8_1[] = { 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, }; static encode_aux_threshmatch _vq_auxt__44u9_p8_1 = { _vq_quantthresh__44u9_p8_1, _vq_quantmap__44u9_p8_1, 21, 21 }; static static_codebook _44u9_p8_1 = { 2, 441, _vq_lengthlist__44u9_p8_1, 1, -529268736, 1611661312, 5, 0, _vq_quantlist__44u9_p8_1, NULL, &_vq_auxt__44u9_p8_1, NULL, 0 }; static long _vq_quantlist__44u9_p9_0[] = { 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, }; static long _vq_lengthlist__44u9_p9_0[] = { 1, 3, 3,11,11,11,11,11,11,11,11,11,11,11,11, 4, 10,11,11,11,11,11,11,11,11,11,11,11,11,11, 4,10, 10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10, }; static float _vq_quantthresh__44u9_p9_0[] = { -6051.5, -5120.5, -4189.5, -3258.5, -2327.5, -1396.5, -465.5, 465.5, 1396.5, 2327.5, 3258.5, 4189.5, 5120.5, 6051.5, }; static long _vq_quantmap__44u9_p9_0[] = { 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, }; static encode_aux_threshmatch _vq_auxt__44u9_p9_0 = { _vq_quantthresh__44u9_p9_0, _vq_quantmap__44u9_p9_0, 15, 15 }; static static_codebook _44u9_p9_0 = { 2, 225, _vq_lengthlist__44u9_p9_0, 1, -510036736, 1631393792, 4, 0, _vq_quantlist__44u9_p9_0, NULL, &_vq_auxt__44u9_p9_0, NULL, 0 }; static long _vq_quantlist__44u9_p9_1[] = { 9, 8, 10, 7, 11, 6, 12, 5, 13, 4, 14, 3, 15, 2, 16, 1, 17, 0, 18, }; static long _vq_lengthlist__44u9_p9_1[] = { 1, 4, 4, 7, 7, 8, 7, 8, 7, 9, 8,10, 9,10,10,11, 11,12,12, 4, 7, 6, 9, 9,10, 9, 9, 8,10,10,11,10, 12,10,13,12,13,12, 4, 6, 6, 9, 9, 9, 9, 9, 9,10, 10,11,11,11,12,12,12,12,12, 7, 9, 8,11,10,10,10, 11,10,11,11,12,12,13,12,13,13,13,13, 7, 8, 9,10, 10,11,11,10,10,11,11,11,12,13,13,13,13,14,14, 8, 9, 9,11,11,12,11,12,12,13,12,12,13,13,14,15,14, 14,14, 8, 9, 9,10,11,11,11,12,12,13,12,13,13,14, 14,14,15,14,16, 8, 9, 9,11,10,12,12,12,12,15,13, 13,13,17,14,15,15,15,14, 8, 9, 9,10,11,11,12,13, 12,13,13,13,14,15,14,14,14,16,15, 9,11,10,12,12, 13,13,13,13,14,14,16,15,14,14,14,15,15,17, 9,10, 10,11,11,13,13,13,14,14,13,15,14,15,14,15,16,15, 16,10,11,11,12,12,13,14,15,14,15,14,14,15,17,16, 15,15,17,17,10,12,11,13,12,14,14,13,14,15,15,15, 15,16,17,17,15,17,16,11,12,12,14,13,15,14,15,16, 17,15,17,15,17,15,15,16,17,15,11,11,12,14,14,14, 14,14,15,15,16,15,17,17,17,16,17,16,15,12,12,13, 14,14,14,15,14,15,15,16,16,17,16,17,15,17,17,16, 12,14,12,14,14,15,15,15,14,14,16,16,16,15,16,16, 15,17,15,12,13,13,14,15,14,15,17,15,17,16,17,17, 17,16,17,16,17,17,12,13,13,14,16,15,15,15,16,15, 17,17,15,17,15,17,16,16,17, }; static float _vq_quantthresh__44u9_p9_1[] = { -416.5, -367.5, -318.5, -269.5, -220.5, -171.5, -122.5, -73.5, -24.5, 24.5, 73.5, 122.5, 171.5, 220.5, 269.5, 318.5, 367.5, 416.5, }; static long _vq_quantmap__44u9_p9_1[] = { 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, }; static encode_aux_threshmatch _vq_auxt__44u9_p9_1 = { _vq_quantthresh__44u9_p9_1, _vq_quantmap__44u9_p9_1, 19, 19 }; static static_codebook _44u9_p9_1 = { 2, 361, _vq_lengthlist__44u9_p9_1, 1, -518287360, 1622704128, 5, 0, _vq_quantlist__44u9_p9_1, NULL, &_vq_auxt__44u9_p9_1, NULL, 0 }; static long _vq_quantlist__44u9_p9_2[] = { 24, 23, 25, 22, 26, 21, 27, 20, 28, 19, 29, 18, 30, 17, 31, 16, 32, 15, 33, 14, 34, 13, 35, 12, 36, 11, 37, 10, 38, 9, 39, 8, 40, 7, 41, 6, 42, 5, 43, 4, 44, 3, 45, 2, 46, 1, 47, 0, 48, }; static long _vq_lengthlist__44u9_p9_2[] = { 2, 4, 4, 5, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, }; static float _vq_quantthresh__44u9_p9_2[] = { -23.5, -22.5, -21.5, -20.5, -19.5, -18.5, -17.5, -16.5, -15.5, -14.5, -13.5, -12.5, -11.5, -10.5, -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, }; static long _vq_quantmap__44u9_p9_2[] = { 47, 45, 43, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, }; static encode_aux_threshmatch _vq_auxt__44u9_p9_2 = { _vq_quantthresh__44u9_p9_2, _vq_quantmap__44u9_p9_2, 49, 49 }; static static_codebook _44u9_p9_2 = { 1, 49, _vq_lengthlist__44u9_p9_2, 1, -526909440, 1611661312, 6, 0, _vq_quantlist__44u9_p9_2, NULL, &_vq_auxt__44u9_p9_2, NULL, 0 }; static long _huff_lengthlist__44un1__long[] = { 5, 6,12, 9,14, 9, 9,19, 6, 1, 5, 5, 8, 7, 9,19, 12, 4, 4, 7, 7, 9,11,18, 9, 5, 6, 6, 8, 7, 8,17, 14, 8, 7, 8, 8,10,12,18, 9, 6, 8, 6, 8, 6, 8,18, 9, 8,11, 8,11, 7, 5,15,16,18,18,18,17,15,11,18, }; static static_codebook _huff_book__44un1__long = { 2, 64, _huff_lengthlist__44un1__long, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; static long _vq_quantlist__44un1__p1_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44un1__p1_0[] = { 1, 4, 4, 5, 8, 7, 5, 7, 8, 5, 8, 8, 8,10,11, 8, 10,11, 5, 8, 8, 8,11,10, 8,11,10, 4, 9, 9, 8,11, 11, 8,11,11, 8,12,11,10,12,14,11,13,13, 7,11,11, 10,13,11,11,13,14, 4, 8, 9, 8,11,11, 8,11,12, 7, 11,11,11,14,13,10,11,13, 8,11,12,11,13,13,10,14, 12, }; static float _vq_quantthresh__44un1__p1_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44un1__p1_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44un1__p1_0 = { _vq_quantthresh__44un1__p1_0, _vq_quantmap__44un1__p1_0, 3, 3 }; static static_codebook _44un1__p1_0 = { 4, 81, _vq_lengthlist__44un1__p1_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44un1__p1_0, NULL, &_vq_auxt__44un1__p1_0, NULL, 0 }; static long _vq_quantlist__44un1__p2_0[] = { 1, 0, 2, }; static long _vq_lengthlist__44un1__p2_0[] = { 2, 4, 4, 5, 6, 6, 5, 6, 6, 5, 7, 7, 7, 8, 8, 6, 7, 9, 5, 7, 7, 6, 8, 7, 7, 9, 8, 4, 7, 7, 7, 9, 8, 7, 8, 8, 7, 9, 8, 8, 8,10, 9,10,10, 6, 8, 8, 7,10, 8, 9,10,10, 5, 7, 7, 7, 8, 8, 7, 8, 9, 6, 8, 8, 9,10,10, 7, 8,10, 6, 8, 9, 9,10,10, 8,10, 8, }; static float _vq_quantthresh__44un1__p2_0[] = { -0.5, 0.5, }; static long _vq_quantmap__44un1__p2_0[] = { 1, 0, 2, }; static encode_aux_threshmatch _vq_auxt__44un1__p2_0 = { _vq_quantthresh__44un1__p2_0, _vq_quantmap__44un1__p2_0, 3, 3 }; static static_codebook _44un1__p2_0 = { 4, 81, _vq_lengthlist__44un1__p2_0, 1, -535822336, 1611661312, 2, 0, _vq_quantlist__44un1__p2_0, NULL, &_vq_auxt__44un1__p2_0, NULL, 0 }; static long _vq_quantlist__44un1__p3_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44un1__p3_0[] = { 1, 5, 5, 8, 8, 5, 8, 7, 9, 9, 5, 7, 8, 9, 9, 9, 10, 9,12,12, 9, 9,10,11,12, 6, 8, 8,10,10, 8,10, 10,11,11, 8, 9,10,11,11,10,11,11,13,13,10,11,11, 12,13, 6, 8, 8,10,10, 8,10, 9,11,11, 8,10,10,11, 11,10,11,11,13,12,10,11,11,13,12, 9,11,11,15,13, 10,12,11,15,13,10,11,11,15,14,12,14,13,16,15,12, 13,13,17,16, 9,11,11,13,15,10,11,12,14,15,10,11, 12,14,15,12,13,13,15,16,12,13,13,16,16, 5, 8, 8, 11,11, 8,10,10,12,12, 8,10,10,12,12,11,12,12,14, 14,11,12,12,14,14, 8,11,10,13,12,10,11,12,12,13, 10,12,12,13,13,12,12,13,13,15,11,12,13,15,14, 7, 10,10,12,12, 9,12,11,13,12,10,12,12,13,14,12,13, 12,15,13,11,13,12,14,15,10,12,12,16,14,11,12,12, 16,15,11,13,12,17,16,13,13,15,15,17,13,15,15,20, 17,10,12,12,14,16,11,12,12,15,15,11,13,13,15,18, 13,14,13,15,15,13,15,14,16,16, 5, 8, 8,11,11, 8, 10,10,12,12, 8,10,10,12,12,11,12,12,14,14,11,12, 12,14,15, 7,10,10,13,12,10,12,12,14,13, 9,10,12, 12,13,11,13,13,15,15,11,12,13,13,15, 8,10,10,12, 13,10,12,12,13,13,10,12,11,13,13,11,13,12,15,15, 12,13,12,15,13,10,12,12,16,14,11,12,12,16,15,10, 12,12,16,14,14,15,14,18,16,13,13,14,15,16,10,12, 12,14,16,11,13,13,16,16,11,13,12,14,16,13,15,15, 18,18,13,15,13,16,14, 8,11,11,16,16,10,13,13,17, 16,10,12,12,16,15,14,16,15,20,17,13,14,14,17,17, 9,12,12,16,16,11,13,14,16,17,11,13,13,16,16,15, 15,19,18, 0,14,15,15,18,18, 9,12,12,17,16,11,13, 12,17,16,11,12,13,15,17,15,16,15, 0,19,14,15,14, 19,18,12,14,14, 0,16,13,14,14,19,18,13,15,16,17, 16,15,15,17,18, 0,14,16,16,19, 0,12,14,14,16,18, 13,15,13,17,18,13,15,14,17,18,15,18,14,18,18,16, 17,16, 0,17, 8,11,11,15,15,10,12,12,16,16,10,13, 13,16,16,13,15,14,17,17,14,15,17,17,18, 9,12,12, 16,15,11,13,13,16,16,11,12,13,17,17,14,14,15,17, 17,14,15,16, 0,18, 9,12,12,16,17,11,13,13,16,17, 11,14,13,18,17,14,16,14,17,17,15,17,17,18,18,12, 14,14, 0,16,13,15,15,19, 0,12,13,15, 0, 0,14,17, 16,19, 0,16,15,18,18, 0,12,14,14,17, 0,13,14,14, 17, 0,13,15,14, 0,18,15,16,16, 0,18,15,18,15, 0, 17, }; static float _vq_quantthresh__44un1__p3_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44un1__p3_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44un1__p3_0 = { _vq_quantthresh__44un1__p3_0, _vq_quantmap__44un1__p3_0, 5, 5 }; static static_codebook _44un1__p3_0 = { 4, 625, _vq_lengthlist__44un1__p3_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44un1__p3_0, NULL, &_vq_auxt__44un1__p3_0, NULL, 0 }; static long _vq_quantlist__44un1__p4_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44un1__p4_0[] = { 3, 5, 5, 9, 9, 5, 6, 6,10, 9, 5, 6, 6, 9,10,10, 10,10,12,11, 9,10,10,12,12, 5, 7, 7,10,10, 7, 7, 8,10,11, 7, 7, 8,10,11,10,10,11,11,13,10,10,11, 11,13, 6, 7, 7,10,10, 7, 8, 7,11,10, 7, 8, 7,10, 10,10,11, 9,13,11,10,11,10,13,11,10,10,10,14,13, 10,11,11,14,13,10,10,11,13,14,12,12,13,15,15,12, 12,13,13,14,10,10,10,12,13,10,11,10,13,13,10,11, 11,13,13,12,13,12,14,13,12,13,13,14,13, 5, 7, 7, 10,10, 7, 8, 8,11,10, 7, 8, 8,10,10,11,11,11,13, 13,10,11,11,12,12, 7, 8, 8,11,11, 7, 8, 9,10,12, 8, 9, 9,11,11,11,10,12,11,14,11,11,12,13,13, 6, 8, 8,10,11, 7, 9, 7,12,10, 8, 9,10,11,12,10,12, 10,14,11,11,12,11,13,13,10,11,11,14,14,10,10,11, 13,14,11,12,12,15,13,12,11,14,12,16,12,13,14,15, 16,10,10,11,13,14,10,11,10,14,12,11,12,12,13,14, 12,13,11,15,12,14,14,14,15,15, 5, 7, 7,10,10, 7, 8, 8,10,10, 7, 8, 8,10,11,10,11,10,12,12,10,11, 11,12,13, 6, 8, 8,11,11, 8, 9, 9,12,11, 7, 7, 9, 10,12,11,11,11,12,13,11,10,12,11,15, 7, 8, 8,11, 11, 8, 9, 9,11,11, 7, 9, 8,12,10,11,12,11,13,12, 11,12,10,15,11,10,11,10,14,12,11,12,11,14,13,10, 10,11,13,14,13,13,13,17,15,12,11,14,12,15,10,10, 11,13,14,11,12,12,14,14,10,11,10,14,13,13,14,13, 16,17,12,14,11,16,12, 9,10,10,14,13,10,11,10,14, 14,10,11,11,13,13,13,14,14,16,15,12,13,13,14,14, 9,11,10,14,13,10,10,12,13,14,11,12,11,14,13,13, 14,14,14,15,13,14,14,15,15, 9,10,11,13,14,10,11, 10,15,13,11,11,12,12,15,13,14,12,15,14,13,13,14, 14,15,12,13,12,16,14,11,11,12,15,14,13,15,13,16, 14,13,12,15,12,17,15,16,15,16,16,12,12,13,13,15, 11,13,11,15,14,13,13,14,15,17,13,14,12, 0,13,14, 15,14,15, 0, 9,10,10,13,13,10,11,11,13,13,10,11, 11,13,13,12,13,12,14,14,13,14,14,15,17, 9,10,10, 13,13,11,12,11,15,12,10,10,11,13,16,13,14,13,15, 14,13,13,14,15,16,10,10,11,13,14,11,11,12,13,14, 10,12,11,14,14,13,13,13,14,15,13,15,13,16,15,12, 13,12,15,13,12,15,13,15,15,11,11,13,14,15,15,15, 15,15,17,13,12,14,13,17,12,12,14,14,15,13,13,14, 14,16,11,13,11,16,15,14,16,16,17, 0,14,13,11,16, 12, }; static float _vq_quantthresh__44un1__p4_0[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44un1__p4_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44un1__p4_0 = { _vq_quantthresh__44un1__p4_0, _vq_quantmap__44un1__p4_0, 5, 5 }; static static_codebook _44un1__p4_0 = { 4, 625, _vq_lengthlist__44un1__p4_0, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44un1__p4_0, NULL, &_vq_auxt__44un1__p4_0, NULL, 0 }; static long _vq_quantlist__44un1__p5_0[] = { 4, 3, 5, 2, 6, 1, 7, 0, 8, }; static long _vq_lengthlist__44un1__p5_0[] = { 1, 4, 4, 7, 7, 8, 8, 9, 9, 4, 6, 5, 8, 7, 8, 8, 10, 9, 4, 6, 6, 8, 8, 8, 8,10,10, 7, 8, 7, 9, 9, 9, 9,11,10, 7, 8, 8, 9, 9, 9, 9,10,11, 8, 8, 8, 9, 9,10,10,11,11, 8, 8, 8, 9, 9,10,10,11,11, 9, 10,10,11,10,11,11,12,12, 9,10,10,10,11,11,11,12, 12, }; static float _vq_quantthresh__44un1__p5_0[] = { -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, }; static long _vq_quantmap__44un1__p5_0[] = { 7, 5, 3, 1, 0, 2, 4, 6, 8, }; static encode_aux_threshmatch _vq_auxt__44un1__p5_0 = { _vq_quantthresh__44un1__p5_0, _vq_quantmap__44un1__p5_0, 9, 9 }; static static_codebook _44un1__p5_0 = { 2, 81, _vq_lengthlist__44un1__p5_0, 1, -531628032, 1611661312, 4, 0, _vq_quantlist__44un1__p5_0, NULL, &_vq_auxt__44un1__p5_0, NULL, 0 }; static long _vq_quantlist__44un1__p6_0[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44un1__p6_0[] = { 1, 4, 4, 6, 6, 8, 8,10,10,11,11,15,15, 4, 5, 5, 8, 8, 9, 9,11,11,12,12,16,16, 4, 5, 6, 8, 8, 9, 9,11,11,12,12,14,14, 7, 8, 8, 9, 9,10,10,11,12, 13,13,16,17, 7, 8, 8, 9, 9,10,10,12,12,12,13,15, 15, 9,10,10,10,10,11,11,12,12,13,13,15,16, 9, 9, 9,10,10,11,11,13,12,13,13,17,17,10,11,11,11,12, 12,12,13,13,14,15, 0,18,10,11,11,12,12,12,13,14, 13,14,14,17,16,11,12,12,13,13,14,14,14,14,15,16, 17,16,11,12,12,13,13,14,14,14,14,15,15,17,17,14, 15,15,16,16,16,17,17,16, 0,17, 0,18,14,15,15,16, 16, 0,15,18,18, 0,16, 0, 0, }; static float _vq_quantthresh__44un1__p6_0[] = { -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, }; static long _vq_quantmap__44un1__p6_0[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44un1__p6_0 = { _vq_quantthresh__44un1__p6_0, _vq_quantmap__44un1__p6_0, 13, 13 }; static static_codebook _44un1__p6_0 = { 2, 169, _vq_lengthlist__44un1__p6_0, 1, -526516224, 1616117760, 4, 0, _vq_quantlist__44un1__p6_0, NULL, &_vq_auxt__44un1__p6_0, NULL, 0 }; static long _vq_quantlist__44un1__p6_1[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44un1__p6_1[] = { 2, 4, 4, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 6, 5, 5, 6, 5, 6, 6, 5, 6, 6, 6, 6, }; static float _vq_quantthresh__44un1__p6_1[] = { -1.5, -0.5, 0.5, 1.5, }; static long _vq_quantmap__44un1__p6_1[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44un1__p6_1 = { _vq_quantthresh__44un1__p6_1, _vq_quantmap__44un1__p6_1, 5, 5 }; static static_codebook _44un1__p6_1 = { 2, 25, _vq_lengthlist__44un1__p6_1, 1, -533725184, 1611661312, 3, 0, _vq_quantlist__44un1__p6_1, NULL, &_vq_auxt__44un1__p6_1, NULL, 0 }; static long _vq_quantlist__44un1__p7_0[] = { 2, 1, 3, 0, 4, }; static long _vq_lengthlist__44un1__p7_0[] = { 1, 5, 3,11,11,11,11,11,11,11, 8,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,10,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,10,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11, 8,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,10, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11, 7,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,10,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 10, }; static float _vq_quantthresh__44un1__p7_0[] = { -253.5, -84.5, 84.5, 253.5, }; static long _vq_quantmap__44un1__p7_0[] = { 3, 1, 0, 2, 4, }; static encode_aux_threshmatch _vq_auxt__44un1__p7_0 = { _vq_quantthresh__44un1__p7_0, _vq_quantmap__44un1__p7_0, 5, 5 }; static static_codebook _44un1__p7_0 = { 4, 625, _vq_lengthlist__44un1__p7_0, 1, -518709248, 1626677248, 3, 0, _vq_quantlist__44un1__p7_0, NULL, &_vq_auxt__44un1__p7_0, NULL, 0 }; static long _vq_quantlist__44un1__p7_1[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44un1__p7_1[] = { 1, 4, 4, 6, 6, 6, 6, 9, 8, 9, 8, 8, 8, 5, 7, 7, 7, 7, 8, 8, 8,10, 8,10, 8, 9, 5, 7, 7, 8, 7, 7, 8,10,10,11,10,12,11, 7, 8, 8, 9, 9, 9,10,11,11, 11,11,11,11, 7, 8, 8, 8, 9, 9, 9,10,10,10,11,11, 12, 7, 8, 8, 9, 9,10,11,11,12,11,12,11,11, 7, 8, 8, 9, 9,10,10,11,11,11,12,12,11, 8,10,10,10,10, 11,11,14,11,12,12,12,13, 9,10,10,10,10,12,11,14, 11,14,11,12,13,10,11,11,11,11,13,11,14,14,13,13, 13,14,11,11,11,12,11,12,12,12,13,14,14,13,14,12, 11,12,12,12,12,13,13,13,14,13,14,14,11,12,12,14, 12,13,13,12,13,13,14,14,14, }; static float _vq_quantthresh__44un1__p7_1[] = { -71.5, -58.5, -45.5, -32.5, -19.5, -6.5, 6.5, 19.5, 32.5, 45.5, 58.5, 71.5, }; static long _vq_quantmap__44un1__p7_1[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44un1__p7_1 = { _vq_quantthresh__44un1__p7_1, _vq_quantmap__44un1__p7_1, 13, 13 }; static static_codebook _44un1__p7_1 = { 2, 169, _vq_lengthlist__44un1__p7_1, 1, -523010048, 1618608128, 4, 0, _vq_quantlist__44un1__p7_1, NULL, &_vq_auxt__44un1__p7_1, NULL, 0 }; static long _vq_quantlist__44un1__p7_2[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, }; static long _vq_lengthlist__44un1__p7_2[] = { 3, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9, 9, 8, 4, 5, 5, 6, 6, 8, 8, 9, 8, 9, 9, 9, 9, 4, 5, 5, 7, 6, 8, 8, 8, 8, 9, 8, 9, 8, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 7, 8, 8, 8, 8, 9, 8, 9, 9,10, 9, 9,10, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10,10, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 9,10, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,10,10, 9, 9, 9,10, 9, 9,10, 9, 9,10,10, 10,10, 9, 9, 9, 9, 9, 9, 9,10, 9,10,10,10,10, 9, 9, 9,10, 9, 9,10,10, 9,10,10,10,10, 9, 9, 9,10, 9, 9, 9,10,10,10,10,10,10, }; static float _vq_quantthresh__44un1__p7_2[] = { -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, }; static long _vq_quantmap__44un1__p7_2[] = { 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, }; static encode_aux_threshmatch _vq_auxt__44un1__p7_2 = { _vq_quantthresh__44un1__p7_2, _vq_quantmap__44un1__p7_2, 13, 13 }; static static_codebook _44un1__p7_2 = { 2, 169, _vq_lengthlist__44un1__p7_2, 1, -531103744, 1611661312, 4, 0, _vq_quantlist__44un1__p7_2, NULL, &_vq_auxt__44un1__p7_2, NULL, 0 }; static long _huff_lengthlist__44un1__short[] = { 12,12,14,12,14,14,14,14,12, 6, 6, 8, 9, 9,11,14, 12, 4, 2, 6, 6, 7,11,14,13, 6, 5, 7, 8, 9,11,14, 13, 8, 5, 8, 6, 8,12,14,12, 7, 7, 8, 8, 8,10,14, 12, 6, 3, 4, 4, 4, 7,14,11, 7, 4, 6, 6, 6, 8,14, }; static static_codebook _huff_book__44un1__short = { 2, 64, _huff_lengthlist__44un1__short, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, 0 }; /********* End of inlined file: res_books_uncoupled.h *********/ /***** residue backends *********************************************/ static vorbis_info_residue0 _residue_44_low_un={ 0,-1, -1, 8,-1, {0}, {-1}, { .5, 1.5, 1.5, 2.5, 2.5, 4.5, 28.5}, { -1, 25, -1, 45, -1, -1, -1} }; static vorbis_info_residue0 _residue_44_mid_un={ 0,-1, -1, 10,-1, /* 0 1 2 3 4 5 6 7 8 9 */ {0}, {-1}, { .5, 1.5, 1.5, 2.5, 2.5, 4.5, 4.5, 16.5, 60.5}, { -1, 30, -1, 50, -1, 80, -1, -1, -1} }; static vorbis_info_residue0 _residue_44_hi_un={ 0,-1, -1, 10,-1, /* 0 1 2 3 4 5 6 7 8 9 */ {0}, {-1}, { .5, 1.5, 2.5, 4.5, 8.5, 16.5, 32.5, 71.5,157.5}, { -1, -1, -1, -1, -1, -1, -1, -1, -1} }; /* mapping conventions: only one submap (this would change for efficient 5.1 support for example)*/ /* Four psychoacoustic profiles are used, one for each blocktype */ static vorbis_info_mapping0 _map_nominal_u[2]={ {1, {0,0}, {0}, {0}, 0,{0},{0}}, {1, {0,0}, {1}, {1}, 0,{0},{0}} }; static static_bookblock _resbook_44u_n1={ { {0}, {0,0,&_44un1__p1_0}, {0,0,&_44un1__p2_0}, {0,0,&_44un1__p3_0}, {0,0,&_44un1__p4_0}, {0,0,&_44un1__p5_0}, {&_44un1__p6_0,&_44un1__p6_1}, {&_44un1__p7_0,&_44un1__p7_1,&_44un1__p7_2} } }; static static_bookblock _resbook_44u_0={ { {0}, {0,0,&_44u0__p1_0}, {0,0,&_44u0__p2_0}, {0,0,&_44u0__p3_0}, {0,0,&_44u0__p4_0}, {0,0,&_44u0__p5_0}, {&_44u0__p6_0,&_44u0__p6_1}, {&_44u0__p7_0,&_44u0__p7_1,&_44u0__p7_2} } }; static static_bookblock _resbook_44u_1={ { {0}, {0,0,&_44u1__p1_0}, {0,0,&_44u1__p2_0}, {0,0,&_44u1__p3_0}, {0,0,&_44u1__p4_0}, {0,0,&_44u1__p5_0}, {&_44u1__p6_0,&_44u1__p6_1}, {&_44u1__p7_0,&_44u1__p7_1,&_44u1__p7_2} } }; static static_bookblock _resbook_44u_2={ { {0}, {0,0,&_44u2__p1_0}, {0,0,&_44u2__p2_0}, {0,0,&_44u2__p3_0}, {0,0,&_44u2__p4_0}, {0,0,&_44u2__p5_0}, {&_44u2__p6_0,&_44u2__p6_1}, {&_44u2__p7_0,&_44u2__p7_1,&_44u2__p7_2} } }; static static_bookblock _resbook_44u_3={ { {0}, {0,0,&_44u3__p1_0}, {0,0,&_44u3__p2_0}, {0,0,&_44u3__p3_0}, {0,0,&_44u3__p4_0}, {0,0,&_44u3__p5_0}, {&_44u3__p6_0,&_44u3__p6_1}, {&_44u3__p7_0,&_44u3__p7_1,&_44u3__p7_2} } }; static static_bookblock _resbook_44u_4={ { {0}, {0,0,&_44u4__p1_0}, {0,0,&_44u4__p2_0}, {0,0,&_44u4__p3_0}, {0,0,&_44u4__p4_0}, {0,0,&_44u4__p5_0}, {&_44u4__p6_0,&_44u4__p6_1}, {&_44u4__p7_0,&_44u4__p7_1,&_44u4__p7_2} } }; static static_bookblock _resbook_44u_5={ { {0}, {0,0,&_44u5__p1_0}, {0,0,&_44u5__p2_0}, {0,0,&_44u5__p3_0}, {0,0,&_44u5__p4_0}, {0,0,&_44u5__p5_0}, {0,0,&_44u5__p6_0}, {&_44u5__p7_0,&_44u5__p7_1}, {&_44u5__p8_0,&_44u5__p8_1}, {&_44u5__p9_0,&_44u5__p9_1,&_44u5__p9_2} } }; static static_bookblock _resbook_44u_6={ { {0}, {0,0,&_44u6__p1_0}, {0,0,&_44u6__p2_0}, {0,0,&_44u6__p3_0}, {0,0,&_44u6__p4_0}, {0,0,&_44u6__p5_0}, {0,0,&_44u6__p6_0}, {&_44u6__p7_0,&_44u6__p7_1}, {&_44u6__p8_0,&_44u6__p8_1}, {&_44u6__p9_0,&_44u6__p9_1,&_44u6__p9_2} } }; static static_bookblock _resbook_44u_7={ { {0}, {0,0,&_44u7__p1_0}, {0,0,&_44u7__p2_0}, {0,0,&_44u7__p3_0}, {0,0,&_44u7__p4_0}, {0,0,&_44u7__p5_0}, {0,0,&_44u7__p6_0}, {&_44u7__p7_0,&_44u7__p7_1}, {&_44u7__p8_0,&_44u7__p8_1}, {&_44u7__p9_0,&_44u7__p9_1,&_44u7__p9_2} } }; static static_bookblock _resbook_44u_8={ { {0}, {0,0,&_44u8_p1_0}, {0,0,&_44u8_p2_0}, {0,0,&_44u8_p3_0}, {0,0,&_44u8_p4_0}, {&_44u8_p5_0,&_44u8_p5_1}, {&_44u8_p6_0,&_44u8_p6_1}, {&_44u8_p7_0,&_44u8_p7_1}, {&_44u8_p8_0,&_44u8_p8_1}, {&_44u8_p9_0,&_44u8_p9_1,&_44u8_p9_2} } }; static static_bookblock _resbook_44u_9={ { {0}, {0,0,&_44u9_p1_0}, {0,0,&_44u9_p2_0}, {0,0,&_44u9_p3_0}, {0,0,&_44u9_p4_0}, {&_44u9_p5_0,&_44u9_p5_1}, {&_44u9_p6_0,&_44u9_p6_1}, {&_44u9_p7_0,&_44u9_p7_1}, {&_44u9_p8_0,&_44u9_p8_1}, {&_44u9_p9_0,&_44u9_p9_1,&_44u9_p9_2} } }; static vorbis_residue_template _res_44u_n1[]={ {1,0, &_residue_44_low_un, &_huff_book__44un1__short,&_huff_book__44un1__short, &_resbook_44u_n1,&_resbook_44u_n1}, {1,0, &_residue_44_low_un, &_huff_book__44un1__long,&_huff_book__44un1__long, &_resbook_44u_n1,&_resbook_44u_n1} }; static vorbis_residue_template _res_44u_0[]={ {1,0, &_residue_44_low_un, &_huff_book__44u0__short,&_huff_book__44u0__short, &_resbook_44u_0,&_resbook_44u_0}, {1,0, &_residue_44_low_un, &_huff_book__44u0__long,&_huff_book__44u0__long, &_resbook_44u_0,&_resbook_44u_0} }; static vorbis_residue_template _res_44u_1[]={ {1,0, &_residue_44_low_un, &_huff_book__44u1__short,&_huff_book__44u1__short, &_resbook_44u_1,&_resbook_44u_1}, {1,0, &_residue_44_low_un, &_huff_book__44u1__long,&_huff_book__44u1__long, &_resbook_44u_1,&_resbook_44u_1} }; static vorbis_residue_template _res_44u_2[]={ {1,0, &_residue_44_low_un, &_huff_book__44u2__short,&_huff_book__44u2__short, &_resbook_44u_2,&_resbook_44u_2}, {1,0, &_residue_44_low_un, &_huff_book__44u2__long,&_huff_book__44u2__long, &_resbook_44u_2,&_resbook_44u_2} }; static vorbis_residue_template _res_44u_3[]={ {1,0, &_residue_44_low_un, &_huff_book__44u3__short,&_huff_book__44u3__short, &_resbook_44u_3,&_resbook_44u_3}, {1,0, &_residue_44_low_un, &_huff_book__44u3__long,&_huff_book__44u3__long, &_resbook_44u_3,&_resbook_44u_3} }; static vorbis_residue_template _res_44u_4[]={ {1,0, &_residue_44_low_un, &_huff_book__44u4__short,&_huff_book__44u4__short, &_resbook_44u_4,&_resbook_44u_4}, {1,0, &_residue_44_low_un, &_huff_book__44u4__long,&_huff_book__44u4__long, &_resbook_44u_4,&_resbook_44u_4} }; static vorbis_residue_template _res_44u_5[]={ {1,0, &_residue_44_mid_un, &_huff_book__44u5__short,&_huff_book__44u5__short, &_resbook_44u_5,&_resbook_44u_5}, {1,0, &_residue_44_mid_un, &_huff_book__44u5__long,&_huff_book__44u5__long, &_resbook_44u_5,&_resbook_44u_5} }; static vorbis_residue_template _res_44u_6[]={ {1,0, &_residue_44_mid_un, &_huff_book__44u6__short,&_huff_book__44u6__short, &_resbook_44u_6,&_resbook_44u_6}, {1,0, &_residue_44_mid_un, &_huff_book__44u6__long,&_huff_book__44u6__long, &_resbook_44u_6,&_resbook_44u_6} }; static vorbis_residue_template _res_44u_7[]={ {1,0, &_residue_44_mid_un, &_huff_book__44u7__short,&_huff_book__44u7__short, &_resbook_44u_7,&_resbook_44u_7}, {1,0, &_residue_44_mid_un, &_huff_book__44u7__long,&_huff_book__44u7__long, &_resbook_44u_7,&_resbook_44u_7} }; static vorbis_residue_template _res_44u_8[]={ {1,0, &_residue_44_hi_un, &_huff_book__44u8__short,&_huff_book__44u8__short, &_resbook_44u_8,&_resbook_44u_8}, {1,0, &_residue_44_hi_un, &_huff_book__44u8__long,&_huff_book__44u8__long, &_resbook_44u_8,&_resbook_44u_8} }; static vorbis_residue_template _res_44u_9[]={ {1,0, &_residue_44_hi_un, &_huff_book__44u9__short,&_huff_book__44u9__short, &_resbook_44u_9,&_resbook_44u_9}, {1,0, &_residue_44_hi_un, &_huff_book__44u9__long,&_huff_book__44u9__long, &_resbook_44u_9,&_resbook_44u_9} }; static vorbis_mapping_template _mapres_template_44_uncoupled[]={ { _map_nominal_u, _res_44u_n1 }, /* -1 */ { _map_nominal_u, _res_44u_0 }, /* 0 */ { _map_nominal_u, _res_44u_1 }, /* 1 */ { _map_nominal_u, _res_44u_2 }, /* 2 */ { _map_nominal_u, _res_44u_3 }, /* 3 */ { _map_nominal_u, _res_44u_4 }, /* 4 */ { _map_nominal_u, _res_44u_5 }, /* 5 */ { _map_nominal_u, _res_44u_6 }, /* 6 */ { _map_nominal_u, _res_44u_7 }, /* 7 */ { _map_nominal_u, _res_44u_8 }, /* 8 */ { _map_nominal_u, _res_44u_9 }, /* 9 */ }; /********* End of inlined file: residue_44u.h *********/ static double rate_mapping_44_un[12]={ 32000.,48000.,60000.,70000.,80000.,86000., 96000.,110000.,120000.,140000.,160000.,240001. }; ve_setup_data_template ve_setup_44_uncoupled={ 11, rate_mapping_44_un, quality_mapping_44, -1, 40000, 50000, blocksize_short_44, blocksize_long_44, _psy_tone_masteratt_44, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_otherblock, _vp_tonemask_adj_longblock, _vp_tonemask_adj_otherblock, _psy_noiseguards_44, _psy_noisebias_impulse, _psy_noisebias_padding, _psy_noisebias_trans, _psy_noisebias_long, _psy_noise_suppress, _psy_compand_44, _psy_compand_short_mapping, _psy_compand_long_mapping, {_noise_start_short_44,_noise_start_long_44}, {_noise_part_short_44,_noise_part_long_44}, _noise_thresh_44, _psy_ath_floater, _psy_ath_abs, _psy_lowpass_44, _psy_global_44, _global_mapping_44, NULL, _floor_books, _floor, _floor_short_mapping_44, _floor_long_mapping_44, _mapres_template_44_uncoupled }; /********* End of inlined file: setup_44u.h *********/ /********* Start of inlined file: setup_32.h *********/ static double rate_mapping_32[12]={ 18000.,28000.,35000.,45000.,56000.,60000., 75000.,90000.,100000.,115000.,150000.,190000., }; static double rate_mapping_32_un[12]={ 30000.,42000.,52000.,64000.,72000.,78000., 86000.,92000.,110000.,120000.,140000.,190000., }; static double _psy_lowpass_32[12]={ 12.3,13.,13.,14.,15.,99.,99.,99.,99.,99.,99.,99. }; ve_setup_data_template ve_setup_32_stereo={ 11, rate_mapping_32, quality_mapping_44, 2, 26000, 40000, blocksize_short_44, blocksize_long_44, _psy_tone_masteratt_44, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_otherblock, _vp_tonemask_adj_longblock, _vp_tonemask_adj_otherblock, _psy_noiseguards_44, _psy_noisebias_impulse, _psy_noisebias_padding, _psy_noisebias_trans, _psy_noisebias_long, _psy_noise_suppress, _psy_compand_44, _psy_compand_short_mapping, _psy_compand_long_mapping, {_noise_start_short_44,_noise_start_long_44}, {_noise_part_short_44,_noise_part_long_44}, _noise_thresh_44, _psy_ath_floater, _psy_ath_abs, _psy_lowpass_32, _psy_global_44, _global_mapping_44, _psy_stereo_modes_44, _floor_books, _floor, _floor_short_mapping_44, _floor_long_mapping_44, _mapres_template_44_stereo }; ve_setup_data_template ve_setup_32_uncoupled={ 11, rate_mapping_32_un, quality_mapping_44, -1, 26000, 40000, blocksize_short_44, blocksize_long_44, _psy_tone_masteratt_44, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_otherblock, _vp_tonemask_adj_longblock, _vp_tonemask_adj_otherblock, _psy_noiseguards_44, _psy_noisebias_impulse, _psy_noisebias_padding, _psy_noisebias_trans, _psy_noisebias_long, _psy_noise_suppress, _psy_compand_44, _psy_compand_short_mapping, _psy_compand_long_mapping, {_noise_start_short_44,_noise_start_long_44}, {_noise_part_short_44,_noise_part_long_44}, _noise_thresh_44, _psy_ath_floater, _psy_ath_abs, _psy_lowpass_32, _psy_global_44, _global_mapping_44, NULL, _floor_books, _floor, _floor_short_mapping_44, _floor_long_mapping_44, _mapres_template_44_uncoupled }; /********* End of inlined file: setup_32.h *********/ /********* Start of inlined file: setup_8.h *********/ /********* Start of inlined file: psych_8.h *********/ static att3 _psy_tone_masteratt_8[3]={ {{ 32, 25, 12}, 0, 0}, /* 0 */ {{ 30, 25, 12}, 0, 0}, /* 0 */ {{ 20, 0, -14}, 0, 0}, /* 0 */ }; static vp_adjblock _vp_tonemask_adj_8[3]={ /* adjust for mode zero */ /* 63 125 250 500 1 2 4 8 16 */ {{-15,-15,-15,-15,-10,-10, -6, 0, 0, 0, 0,10, 0, 0,99,99,99}}, /* 1 */ {{-15,-15,-15,-15,-10,-10, -6, 0, 0, 0, 0,10, 0, 0,99,99,99}}, /* 1 */ {{-15,-15,-15,-15,-10,-10, -6, 0, 0, 0, 0, 0, 0, 0,99,99,99}}, /* 1 */ }; static noise3 _psy_noisebias_8[3]={ /* 63 125 250 500 1k 2k 4k 8k 16k*/ {{{-10,-10,-10,-10, -5, -5, -5, 0, 4, 8, 8, 8, 10, 10, 99, 99, 99}, {-10,-10,-10,-10, -5, -5, -5, 0, 0, 4, 4, 4, 4, 4, 99, 99, 99}, {-30,-30,-30,-30,-30,-24,-20,-14,-10, -6, -8, -8, -6, -6, 99, 99, 99}}}, {{{-10,-10,-10,-10, -5, -5, -5, 0, 4, 8, 8, 8, 10, 10, 99, 99, 99}, {-10,-10,-10,-10,-10,-10, -5, -5, -5, 0, 0, 0, 0, 0, 99, 99, 99}, {-30,-30,-30,-30,-30,-24,-20,-14,-10, -6, -8, -8, -6, -6, 99, 99, 99}}}, {{{-15,-15,-15,-15,-15,-12,-10, -8, 0, 2, 4, 4, 5, 5, 99, 99, 99}, {-30,-30,-30,-30,-26,-22,-20,-14,-12,-12,-10,-10,-10,-10, 99, 99, 99}, {-30,-30,-30,-30,-26,-26,-26,-26,-26,-26,-26,-26,-26,-24, 99, 99, 99}}}, }; /* stereo mode by base quality level */ static adj_stereo _psy_stereo_modes_8[3]={ /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 */ {{ 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}, { 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, {{ 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}, { 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, {{ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}, { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, }; static noiseguard _psy_noiseguards_8[2]={ {10,10,-1}, {10,10,-1}, }; static compandblock _psy_compand_8[2]={ {{ 0, 1, 2, 3, 4, 5, 6, 7, /* 7dB */ 8, 8, 9, 9,10,10,11, 11, /* 15dB */ 12,12,13,13,14,14,15, 15, /* 23dB */ 16,16,17,17,17,18,18, 19, /* 31dB */ 19,19,20,21,22,23,24, 25, /* 39dB */ }}, {{ 0, 1, 2, 3, 4, 5, 6, 6, /* 7dB */ 7, 7, 6, 6, 5, 5, 4, 4, /* 15dB */ 3, 3, 3, 4, 5, 6, 7, 8, /* 23dB */ 9,10,11,12,13,14,15, 16, /* 31dB */ 17,18,19,20,21,22,23, 24, /* 39dB */ }}, }; static double _psy_lowpass_8[3]={3.,4.,4.}; static int _noise_start_8[2]={ 64,64, }; static int _noise_part_8[2]={ 8,8, }; static int _psy_ath_floater_8[3]={ -100,-100,-105, }; static int _psy_ath_abs_8[3]={ -130,-130,-140, }; /********* End of inlined file: psych_8.h *********/ /********* Start of inlined file: residue_8.h *********/ /***** residue backends *********************************************/ static static_bookblock _resbook_8s_0={ { {0},{0,0,&_8c0_s_p1_0},{0,0,&_8c0_s_p2_0},{0,0,&_8c0_s_p3_0}, {0,0,&_8c0_s_p4_0},{0,0,&_8c0_s_p5_0},{0,0,&_8c0_s_p6_0}, {&_8c0_s_p7_0,&_8c0_s_p7_1},{&_8c0_s_p8_0,&_8c0_s_p8_1}, {&_8c0_s_p9_0,&_8c0_s_p9_1,&_8c0_s_p9_2} } }; static static_bookblock _resbook_8s_1={ { {0},{0,0,&_8c1_s_p1_0},{0,0,&_8c1_s_p2_0},{0,0,&_8c1_s_p3_0}, {0,0,&_8c1_s_p4_0},{0,0,&_8c1_s_p5_0},{0,0,&_8c1_s_p6_0}, {&_8c1_s_p7_0,&_8c1_s_p7_1},{&_8c1_s_p8_0,&_8c1_s_p8_1}, {&_8c1_s_p9_0,&_8c1_s_p9_1,&_8c1_s_p9_2} } }; static vorbis_residue_template _res_8s_0[]={ {2,0, &_residue_44_mid, &_huff_book__8c0_s_single,&_huff_book__8c0_s_single, &_resbook_8s_0,&_resbook_8s_0}, }; static vorbis_residue_template _res_8s_1[]={ {2,0, &_residue_44_mid, &_huff_book__8c1_s_single,&_huff_book__8c1_s_single, &_resbook_8s_1,&_resbook_8s_1}, }; static vorbis_mapping_template _mapres_template_8_stereo[2]={ { _map_nominal, _res_8s_0 }, /* 0 */ { _map_nominal, _res_8s_1 }, /* 1 */ }; static static_bookblock _resbook_8u_0={ { {0}, {0,0,&_8u0__p1_0}, {0,0,&_8u0__p2_0}, {0,0,&_8u0__p3_0}, {0,0,&_8u0__p4_0}, {0,0,&_8u0__p5_0}, {&_8u0__p6_0,&_8u0__p6_1}, {&_8u0__p7_0,&_8u0__p7_1,&_8u0__p7_2} } }; static static_bookblock _resbook_8u_1={ { {0}, {0,0,&_8u1__p1_0}, {0,0,&_8u1__p2_0}, {0,0,&_8u1__p3_0}, {0,0,&_8u1__p4_0}, {0,0,&_8u1__p5_0}, {0,0,&_8u1__p6_0}, {&_8u1__p7_0,&_8u1__p7_1}, {&_8u1__p8_0,&_8u1__p8_1}, {&_8u1__p9_0,&_8u1__p9_1,&_8u1__p9_2} } }; static vorbis_residue_template _res_8u_0[]={ {1,0, &_residue_44_low_un, &_huff_book__8u0__single,&_huff_book__8u0__single, &_resbook_8u_0,&_resbook_8u_0}, }; static vorbis_residue_template _res_8u_1[]={ {1,0, &_residue_44_mid_un, &_huff_book__8u1__single,&_huff_book__8u1__single, &_resbook_8u_1,&_resbook_8u_1}, }; static vorbis_mapping_template _mapres_template_8_uncoupled[2]={ { _map_nominal_u, _res_8u_0 }, /* 0 */ { _map_nominal_u, _res_8u_1 }, /* 1 */ }; /********* End of inlined file: residue_8.h *********/ static int blocksize_8[2]={ 512,512 }; static int _floor_mapping_8[2]={ 6,6, }; static double rate_mapping_8[3]={ 6000.,9000.,32000., }; static double rate_mapping_8_uncoupled[3]={ 8000.,14000.,42000., }; static double quality_mapping_8[3]={ -.1,.0,1. }; static double _psy_compand_8_mapping[3]={ 0., 1., 1.}; static double _global_mapping_8[3]={ 1., 2., 3. }; ve_setup_data_template ve_setup_8_stereo={ 2, rate_mapping_8, quality_mapping_8, 2, 8000, 9000, blocksize_8, blocksize_8, _psy_tone_masteratt_8, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_8, NULL, _vp_tonemask_adj_8, _psy_noiseguards_8, _psy_noisebias_8, _psy_noisebias_8, NULL, NULL, _psy_noise_suppress, _psy_compand_8, _psy_compand_8_mapping, NULL, {_noise_start_8,_noise_start_8}, {_noise_part_8,_noise_part_8}, _noise_thresh_5only, _psy_ath_floater_8, _psy_ath_abs_8, _psy_lowpass_8, _psy_global_44, _global_mapping_8, _psy_stereo_modes_8, _floor_books, _floor, _floor_mapping_8, NULL, _mapres_template_8_stereo }; ve_setup_data_template ve_setup_8_uncoupled={ 2, rate_mapping_8_uncoupled, quality_mapping_8, -1, 8000, 9000, blocksize_8, blocksize_8, _psy_tone_masteratt_8, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_8, NULL, _vp_tonemask_adj_8, _psy_noiseguards_8, _psy_noisebias_8, _psy_noisebias_8, NULL, NULL, _psy_noise_suppress, _psy_compand_8, _psy_compand_8_mapping, NULL, {_noise_start_8,_noise_start_8}, {_noise_part_8,_noise_part_8}, _noise_thresh_5only, _psy_ath_floater_8, _psy_ath_abs_8, _psy_lowpass_8, _psy_global_44, _global_mapping_8, _psy_stereo_modes_8, _floor_books, _floor, _floor_mapping_8, NULL, _mapres_template_8_uncoupled }; /********* End of inlined file: setup_8.h *********/ /********* Start of inlined file: setup_11.h *********/ /********* Start of inlined file: psych_11.h *********/ static double _psy_lowpass_11[3]={4.5,5.5,30.,}; static att3 _psy_tone_masteratt_11[3]={ {{ 30, 25, 12}, 0, 0}, /* 0 */ {{ 30, 25, 12}, 0, 0}, /* 0 */ {{ 20, 0, -14}, 0, 0}, /* 0 */ }; static vp_adjblock _vp_tonemask_adj_11[3]={ /* adjust for mode zero */ /* 63 125 250 500 1 2 4 8 16 */ {{-20,-20,-20,-20,-20,-16,-10, 0, 0, 0, 0,10, 2, 0,99,99,99}}, /* 0 */ {{-20,-20,-20,-20,-20,-16,-10, 0, 0, 0, 0, 5, 0, 0,99,99,99}}, /* 1 */ {{-20,-20,-20,-20,-20,-16,-10, 0, 0, 0, 0, 0, 0, 0,99,99,99}}, /* 2 */ }; static noise3 _psy_noisebias_11[3]={ /* 63 125 250 500 1k 2k 4k 8k 16k*/ {{{-10,-10,-10,-10, -5, -5, -5, 0, 4, 10, 10, 12, 12, 12, 99, 99, 99}, {-15,-15,-15,-15,-10,-10, -5, 0, 0, 4, 4, 5, 5, 10, 99, 99, 99}, {-30,-30,-30,-30,-30,-24,-20,-14,-10, -6, -8, -8, -6, -6, 99, 99, 99}}}, {{{-10,-10,-10,-10, -5, -5, -5, 0, 4, 10, 10, 12, 12, 12, 99, 99, 99}, {-15,-15,-15,-15,-10,-10, -5, -5, -5, 0, 0, 0, 0, 0, 99, 99, 99}, {-30,-30,-30,-30,-30,-24,-20,-14,-10, -6, -8, -8, -6, -6, 99, 99, 99}}}, {{{-15,-15,-15,-15,-15,-12,-10, -8, 0, 2, 4, 4, 5, 5, 99, 99, 99}, {-30,-30,-30,-30,-26,-22,-20,-14,-12,-12,-10,-10,-10,-10, 99, 99, 99}, {-30,-30,-30,-30,-26,-26,-26,-26,-26,-26,-26,-26,-26,-24, 99, 99, 99}}}, }; static double _noise_thresh_11[3]={ .3,.5,.5 }; /********* End of inlined file: psych_11.h *********/ static int blocksize_11[2]={ 512,512 }; static int _floor_mapping_11[2]={ 6,6, }; static double rate_mapping_11[3]={ 8000.,13000.,44000., }; static double rate_mapping_11_uncoupled[3]={ 12000.,20000.,50000., }; static double quality_mapping_11[3]={ -.1,.0,1. }; ve_setup_data_template ve_setup_11_stereo={ 2, rate_mapping_11, quality_mapping_11, 2, 9000, 15000, blocksize_11, blocksize_11, _psy_tone_masteratt_11, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_11, NULL, _vp_tonemask_adj_11, _psy_noiseguards_8, _psy_noisebias_11, _psy_noisebias_11, NULL, NULL, _psy_noise_suppress, _psy_compand_8, _psy_compand_8_mapping, NULL, {_noise_start_8,_noise_start_8}, {_noise_part_8,_noise_part_8}, _noise_thresh_11, _psy_ath_floater_8, _psy_ath_abs_8, _psy_lowpass_11, _psy_global_44, _global_mapping_8, _psy_stereo_modes_8, _floor_books, _floor, _floor_mapping_11, NULL, _mapres_template_8_stereo }; ve_setup_data_template ve_setup_11_uncoupled={ 2, rate_mapping_11_uncoupled, quality_mapping_11, -1, 9000, 15000, blocksize_11, blocksize_11, _psy_tone_masteratt_11, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_11, NULL, _vp_tonemask_adj_11, _psy_noiseguards_8, _psy_noisebias_11, _psy_noisebias_11, NULL, NULL, _psy_noise_suppress, _psy_compand_8, _psy_compand_8_mapping, NULL, {_noise_start_8,_noise_start_8}, {_noise_part_8,_noise_part_8}, _noise_thresh_11, _psy_ath_floater_8, _psy_ath_abs_8, _psy_lowpass_11, _psy_global_44, _global_mapping_8, _psy_stereo_modes_8, _floor_books, _floor, _floor_mapping_11, NULL, _mapres_template_8_uncoupled }; /********* End of inlined file: setup_11.h *********/ /********* Start of inlined file: setup_16.h *********/ /********* Start of inlined file: psych_16.h *********/ /* stereo mode by base quality level */ static adj_stereo _psy_stereo_modes_16[4]={ /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 */ {{ 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}, { 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}, { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, {{ 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}, { 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}, { 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, {{ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}, { 5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}, { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8}, { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99}}, }; static double _psy_lowpass_16[4]={6.5,8,30.,99.}; static att3 _psy_tone_masteratt_16[4]={ {{ 30, 25, 12}, 0, 0}, /* 0 */ {{ 25, 22, 12}, 0, 0}, /* 0 */ {{ 20, 12, 0}, 0, 0}, /* 0 */ {{ 15, 0, -14}, 0, 0}, /* 0 */ }; static vp_adjblock _vp_tonemask_adj_16[4]={ /* adjust for mode zero */ /* 63 125 250 500 1 2 4 8 16 */ {{-20,-20,-20,-20,-20,-16,-10, 0, 0, 0, 0,10, 0, 0, 0, 0, 0}}, /* 0 */ {{-20,-20,-20,-20,-20,-16,-10, 0, 0, 0, 0,10, 0, 0, 0, 0, 0}}, /* 1 */ {{-20,-20,-20,-20,-20,-16,-10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, /* 2 */ {{-30,-30,-30,-30,-30,-26,-20,-10, -5, 0, 0, 0, 0, 0, 0, 0, 0}}, /* 2 */ }; static noise3 _psy_noisebias_16_short[4]={ /* 63 125 250 500 1k 2k 4k 8k 16k*/ {{{-15,-15,-15,-15,-15,-10,-10,-5, 4, 10, 10, 10, 10, 12, 12, 14, 20}, {-15,-15,-15,-15,-15,-10,-10, -5, 0, 0, 4, 5, 5, 6, 8, 8, 15}, {-30,-30,-30,-30,-30,-24,-20,-14,-10, -6, -8, -8, -6, -6, -6, -6, -6}}}, {{{-15,-15,-15,-15,-15,-10,-10,-5, 4, 6, 6, 6, 6, 8, 10, 12, 20}, {-15,-15,-15,-15,-15,-15,-15,-10, -5, -5, -5, 4, 5, 6, 8, 8, 15}, {-30,-30,-30,-30,-30,-24,-20,-14,-10,-10,-10,-10,-10,-10,-10,-10,-10}}}, {{{-15,-15,-15,-15,-15,-12,-10, -8, 0, 2, 4, 4, 5, 5, 5, 8, 12}, {-20,-20,-20,-20,-16,-12,-20,-14,-10,-10, -8, 0, 0, 0, 0, 2, 5}, {-30,-30,-30,-30,-26,-26,-26,-26,-26,-26,-26,-26,-26,-24,-20,-20,-20}}}, {{{-15,-15,-15,-15,-15,-12,-10, -8, -5, -5, -5, -5, -5, 0, 0, 0, 6}, {-30,-30,-30,-30,-26,-22,-20,-14,-12,-12,-10,-10,-10,-10,-10,-10, -6}, {-30,-30,-30,-30,-26,-26,-26,-26,-26,-26,-26,-26,-26,-24,-20,-20,-20}}}, }; static noise3 _psy_noisebias_16_impulse[4]={ /* 63 125 250 500 1k 2k 4k 8k 16k*/ {{{-15,-15,-15,-15,-15,-10,-10,-5, 4, 10, 10, 10, 10, 12, 12, 14, 20}, {-15,-15,-15,-15,-15,-10,-10, -5, 0, 0, 4, 5, 5, 6, 8, 8, 15}, {-30,-30,-30,-30,-30,-24,-20,-14,-10, -6, -8, -8, -6, -6, -6, -6, -6}}}, {{{-15,-15,-15,-15,-15,-10,-10,-5, 4, 4, 4, 4, 5, 5, 6, 8, 15}, {-15,-15,-15,-15,-15,-15,-15,-10, -5, -5, -5, 0, 0, 0, 0, 4, 10}, {-30,-30,-30,-30,-30,-24,-20,-14,-10,-10,-10,-10,-10,-10,-10,-10,-10}}}, {{{-15,-15,-15,-15,-15,-12,-10, -8, 0, 0, 0, 0, 0, 0, 0, 4, 10}, {-20,-20,-20,-20,-16,-12,-20,-14,-10,-10,-10,-10,-10,-10,-10, -7, -5}, {-30,-30,-30,-30,-26,-26,-26,-26,-26,-26,-26,-26,-26,-24,-20,-20,-20}}}, {{{-15,-15,-15,-15,-15,-12,-10, -8, -5, -5, -5, -5, -5, 0, 0, 0, 6}, {-30,-30,-30,-30,-26,-22,-20,-18,-18,-18,-20,-20,-20,-20,-20,-20,-16}, {-30,-30,-30,-30,-26,-26,-26,-26,-26,-26,-26,-26,-26,-24,-20,-20,-20}}}, }; static noise3 _psy_noisebias_16[4]={ /* 63 125 250 500 1k 2k 4k 8k 16k*/ {{{-10,-10,-10,-10, -5, -5, -5, 0, 4, 6, 8, 8, 10, 10, 10, 14, 20}, {-10,-10,-10,-10,-10, -5, -2, -2, 0, 0, 0, 4, 5, 6, 8, 8, 15}, {-30,-30,-30,-30,-30,-24,-20,-14,-10, -6, -8, -8, -6, -6, -6, -6, -6}}}, {{{-10,-10,-10,-10, -5, -5, -5, 0, 4, 6, 6, 6, 6, 8, 10, 12, 20}, {-15,-15,-15,-15,-15,-10, -5, -5, 0, 0, 0, 4, 5, 6, 8, 8, 15}, {-30,-30,-30,-30,-30,-24,-20,-14,-10, -6, -8, -8, -6, -6, -6, -6, -6}}}, {{{-15,-15,-15,-15,-15,-12,-10, -8, 0, 2, 4, 4, 5, 5, 5, 8, 12}, {-20,-20,-20,-20,-16,-12,-20,-10, -5, -5, 0, 0, 0, 0, 0, 2, 5}, {-30,-30,-30,-30,-26,-26,-26,-26,-26,-26,-26,-26,-26,-24,-20,-20,-20}}}, {{{-15,-15,-15,-15,-15,-12,-10, -8, -5, -5, -5, -5, -5, 0, 0, 0, 6}, {-30,-30,-30,-30,-26,-22,-20,-14,-12,-12,-10,-10,-10,-10,-10,-10, -6}, {-30,-30,-30,-30,-26,-26,-26,-26,-26,-26,-26,-26,-26,-24,-20,-20,-20}}}, }; static double _noise_thresh_16[4]={ .3,.5,.5,.5 }; static int _noise_start_16[3]={ 256,256,9999 }; static int _noise_part_16[4]={ 8,8,8,8 }; static int _psy_ath_floater_16[4]={ -100,-100,-100,-105, }; static int _psy_ath_abs_16[4]={ -130,-130,-130,-140, }; /********* End of inlined file: psych_16.h *********/ /********* Start of inlined file: residue_16.h *********/ /***** residue backends *********************************************/ static static_bookblock _resbook_16s_0={ { {0}, {0,0,&_16c0_s_p1_0}, {0,0,&_16c0_s_p2_0}, {0,0,&_16c0_s_p3_0}, {0,0,&_16c0_s_p4_0}, {0,0,&_16c0_s_p5_0}, {0,0,&_16c0_s_p6_0}, {&_16c0_s_p7_0,&_16c0_s_p7_1}, {&_16c0_s_p8_0,&_16c0_s_p8_1}, {&_16c0_s_p9_0,&_16c0_s_p9_1,&_16c0_s_p9_2} } }; static static_bookblock _resbook_16s_1={ { {0}, {0,0,&_16c1_s_p1_0}, {0,0,&_16c1_s_p2_0}, {0,0,&_16c1_s_p3_0}, {0,0,&_16c1_s_p4_0}, {0,0,&_16c1_s_p5_0}, {0,0,&_16c1_s_p6_0}, {&_16c1_s_p7_0,&_16c1_s_p7_1}, {&_16c1_s_p8_0,&_16c1_s_p8_1}, {&_16c1_s_p9_0,&_16c1_s_p9_1,&_16c1_s_p9_2} } }; static static_bookblock _resbook_16s_2={ { {0}, {0,0,&_16c2_s_p1_0}, {0,0,&_16c2_s_p2_0}, {0,0,&_16c2_s_p3_0}, {0,0,&_16c2_s_p4_0}, {&_16c2_s_p5_0,&_16c2_s_p5_1}, {&_16c2_s_p6_0,&_16c2_s_p6_1}, {&_16c2_s_p7_0,&_16c2_s_p7_1}, {&_16c2_s_p8_0,&_16c2_s_p8_1}, {&_16c2_s_p9_0,&_16c2_s_p9_1,&_16c2_s_p9_2} } }; static vorbis_residue_template _res_16s_0[]={ {2,0, &_residue_44_mid, &_huff_book__16c0_s_single,&_huff_book__16c0_s_single, &_resbook_16s_0,&_resbook_16s_0}, }; static vorbis_residue_template _res_16s_1[]={ {2,0, &_residue_44_mid, &_huff_book__16c1_s_short,&_huff_book__16c1_s_short, &_resbook_16s_1,&_resbook_16s_1}, {2,0, &_residue_44_mid, &_huff_book__16c1_s_long,&_huff_book__16c1_s_long, &_resbook_16s_1,&_resbook_16s_1} }; static vorbis_residue_template _res_16s_2[]={ {2,0, &_residue_44_high, &_huff_book__16c2_s_short,&_huff_book__16c2_s_short, &_resbook_16s_2,&_resbook_16s_2}, {2,0, &_residue_44_high, &_huff_book__16c2_s_long,&_huff_book__16c2_s_long, &_resbook_16s_2,&_resbook_16s_2} }; static vorbis_mapping_template _mapres_template_16_stereo[3]={ { _map_nominal, _res_16s_0 }, /* 0 */ { _map_nominal, _res_16s_1 }, /* 1 */ { _map_nominal, _res_16s_2 }, /* 2 */ }; static static_bookblock _resbook_16u_0={ { {0}, {0,0,&_16u0__p1_0}, {0,0,&_16u0__p2_0}, {0,0,&_16u0__p3_0}, {0,0,&_16u0__p4_0}, {0,0,&_16u0__p5_0}, {&_16u0__p6_0,&_16u0__p6_1}, {&_16u0__p7_0,&_16u0__p7_1,&_16u0__p7_2} } }; static static_bookblock _resbook_16u_1={ { {0}, {0,0,&_16u1__p1_0}, {0,0,&_16u1__p2_0}, {0,0,&_16u1__p3_0}, {0,0,&_16u1__p4_0}, {0,0,&_16u1__p5_0}, {0,0,&_16u1__p6_0}, {&_16u1__p7_0,&_16u1__p7_1}, {&_16u1__p8_0,&_16u1__p8_1}, {&_16u1__p9_0,&_16u1__p9_1,&_16u1__p9_2} } }; static static_bookblock _resbook_16u_2={ { {0}, {0,0,&_16u2_p1_0}, {0,0,&_16u2_p2_0}, {0,0,&_16u2_p3_0}, {0,0,&_16u2_p4_0}, {&_16u2_p5_0,&_16u2_p5_1}, {&_16u2_p6_0,&_16u2_p6_1}, {&_16u2_p7_0,&_16u2_p7_1}, {&_16u2_p8_0,&_16u2_p8_1}, {&_16u2_p9_0,&_16u2_p9_1,&_16u2_p9_2} } }; static vorbis_residue_template _res_16u_0[]={ {1,0, &_residue_44_low_un, &_huff_book__16u0__single,&_huff_book__16u0__single, &_resbook_16u_0,&_resbook_16u_0}, }; static vorbis_residue_template _res_16u_1[]={ {1,0, &_residue_44_mid_un, &_huff_book__16u1__short,&_huff_book__16u1__short, &_resbook_16u_1,&_resbook_16u_1}, {1,0, &_residue_44_mid_un, &_huff_book__16u1__long,&_huff_book__16u1__long, &_resbook_16u_1,&_resbook_16u_1} }; static vorbis_residue_template _res_16u_2[]={ {1,0, &_residue_44_hi_un, &_huff_book__16u2__short,&_huff_book__16u2__short, &_resbook_16u_2,&_resbook_16u_2}, {1,0, &_residue_44_hi_un, &_huff_book__16u2__long,&_huff_book__16u2__long, &_resbook_16u_2,&_resbook_16u_2} }; static vorbis_mapping_template _mapres_template_16_uncoupled[3]={ { _map_nominal_u, _res_16u_0 }, /* 0 */ { _map_nominal_u, _res_16u_1 }, /* 1 */ { _map_nominal_u, _res_16u_2 }, /* 2 */ }; /********* End of inlined file: residue_16.h *********/ static int blocksize_16_short[3]={ 1024,512,512 }; static int blocksize_16_long[3]={ 1024,1024,1024 }; static int _floor_mapping_16_short[3]={ 9,3,3 }; static int _floor_mapping_16[3]={ 9,9,9 }; static double rate_mapping_16[4]={ 12000.,20000.,44000.,86000. }; static double rate_mapping_16_uncoupled[4]={ 16000.,28000.,64000.,100000. }; static double _global_mapping_16[4]={ 1., 2., 3., 4. }; static double quality_mapping_16[4]={ -.1,.05,.5,1. }; static double _psy_compand_16_mapping[4]={ 0., .8, 1., 1.}; ve_setup_data_template ve_setup_16_stereo={ 3, rate_mapping_16, quality_mapping_16, 2, 15000, 19000, blocksize_16_short, blocksize_16_long, _psy_tone_masteratt_16, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_16, _vp_tonemask_adj_16, _vp_tonemask_adj_16, _psy_noiseguards_8, _psy_noisebias_16_impulse, _psy_noisebias_16_short, _psy_noisebias_16_short, _psy_noisebias_16, _psy_noise_suppress, _psy_compand_8, _psy_compand_16_mapping, _psy_compand_16_mapping, {_noise_start_16,_noise_start_16}, { _noise_part_16, _noise_part_16}, _noise_thresh_16, _psy_ath_floater_16, _psy_ath_abs_16, _psy_lowpass_16, _psy_global_44, _global_mapping_16, _psy_stereo_modes_16, _floor_books, _floor, _floor_mapping_16_short, _floor_mapping_16, _mapres_template_16_stereo }; ve_setup_data_template ve_setup_16_uncoupled={ 3, rate_mapping_16_uncoupled, quality_mapping_16, -1, 15000, 19000, blocksize_16_short, blocksize_16_long, _psy_tone_masteratt_16, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_16, _vp_tonemask_adj_16, _vp_tonemask_adj_16, _psy_noiseguards_8, _psy_noisebias_16_impulse, _psy_noisebias_16_short, _psy_noisebias_16_short, _psy_noisebias_16, _psy_noise_suppress, _psy_compand_8, _psy_compand_16_mapping, _psy_compand_16_mapping, {_noise_start_16,_noise_start_16}, { _noise_part_16, _noise_part_16}, _noise_thresh_16, _psy_ath_floater_16, _psy_ath_abs_16, _psy_lowpass_16, _psy_global_44, _global_mapping_16, _psy_stereo_modes_16, _floor_books, _floor, _floor_mapping_16_short, _floor_mapping_16, _mapres_template_16_uncoupled }; /********* End of inlined file: setup_16.h *********/ /********* Start of inlined file: setup_22.h *********/ static double rate_mapping_22[4]={ 15000.,20000.,44000.,86000. }; static double rate_mapping_22_uncoupled[4]={ 16000.,28000.,50000.,90000. }; static double _psy_lowpass_22[4]={9.5,11.,30.,99.}; ve_setup_data_template ve_setup_22_stereo={ 3, rate_mapping_22, quality_mapping_16, 2, 19000, 26000, blocksize_16_short, blocksize_16_long, _psy_tone_masteratt_16, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_16, _vp_tonemask_adj_16, _vp_tonemask_adj_16, _psy_noiseguards_8, _psy_noisebias_16_impulse, _psy_noisebias_16_short, _psy_noisebias_16_short, _psy_noisebias_16, _psy_noise_suppress, _psy_compand_8, _psy_compand_8_mapping, _psy_compand_8_mapping, {_noise_start_16,_noise_start_16}, { _noise_part_16, _noise_part_16}, _noise_thresh_16, _psy_ath_floater_16, _psy_ath_abs_16, _psy_lowpass_22, _psy_global_44, _global_mapping_16, _psy_stereo_modes_16, _floor_books, _floor, _floor_mapping_16_short, _floor_mapping_16, _mapres_template_16_stereo }; ve_setup_data_template ve_setup_22_uncoupled={ 3, rate_mapping_22_uncoupled, quality_mapping_16, -1, 19000, 26000, blocksize_16_short, blocksize_16_long, _psy_tone_masteratt_16, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_16, _vp_tonemask_adj_16, _vp_tonemask_adj_16, _psy_noiseguards_8, _psy_noisebias_16_impulse, _psy_noisebias_16_short, _psy_noisebias_16_short, _psy_noisebias_16, _psy_noise_suppress, _psy_compand_8, _psy_compand_8_mapping, _psy_compand_8_mapping, {_noise_start_16,_noise_start_16}, { _noise_part_16, _noise_part_16}, _noise_thresh_16, _psy_ath_floater_16, _psy_ath_abs_16, _psy_lowpass_22, _psy_global_44, _global_mapping_16, _psy_stereo_modes_16, _floor_books, _floor, _floor_mapping_16_short, _floor_mapping_16, _mapres_template_16_uncoupled }; /********* End of inlined file: setup_22.h *********/ /********* Start of inlined file: setup_X.h *********/ static double rate_mapping_X[12]={ -1.,-1.,-1.,-1.,-1.,-1., -1.,-1.,-1.,-1.,-1.,-1. }; ve_setup_data_template ve_setup_X_stereo={ 11, rate_mapping_X, quality_mapping_44, 2, 50000, 200000, blocksize_short_44, blocksize_long_44, _psy_tone_masteratt_44, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_otherblock, _vp_tonemask_adj_longblock, _vp_tonemask_adj_otherblock, _psy_noiseguards_44, _psy_noisebias_impulse, _psy_noisebias_padding, _psy_noisebias_trans, _psy_noisebias_long, _psy_noise_suppress, _psy_compand_44, _psy_compand_short_mapping, _psy_compand_long_mapping, {_noise_start_short_44,_noise_start_long_44}, {_noise_part_short_44,_noise_part_long_44}, _noise_thresh_44, _psy_ath_floater, _psy_ath_abs, _psy_lowpass_44, _psy_global_44, _global_mapping_44, _psy_stereo_modes_44, _floor_books, _floor, _floor_short_mapping_44, _floor_long_mapping_44, _mapres_template_44_stereo }; ve_setup_data_template ve_setup_X_uncoupled={ 11, rate_mapping_X, quality_mapping_44, -1, 50000, 200000, blocksize_short_44, blocksize_long_44, _psy_tone_masteratt_44, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_otherblock, _vp_tonemask_adj_longblock, _vp_tonemask_adj_otherblock, _psy_noiseguards_44, _psy_noisebias_impulse, _psy_noisebias_padding, _psy_noisebias_trans, _psy_noisebias_long, _psy_noise_suppress, _psy_compand_44, _psy_compand_short_mapping, _psy_compand_long_mapping, {_noise_start_short_44,_noise_start_long_44}, {_noise_part_short_44,_noise_part_long_44}, _noise_thresh_44, _psy_ath_floater, _psy_ath_abs, _psy_lowpass_44, _psy_global_44, _global_mapping_44, NULL, _floor_books, _floor, _floor_short_mapping_44, _floor_long_mapping_44, _mapres_template_44_uncoupled }; ve_setup_data_template ve_setup_XX_stereo={ 2, rate_mapping_X, quality_mapping_8, 2, 0, 8000, blocksize_8, blocksize_8, _psy_tone_masteratt_8, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_8, NULL, _vp_tonemask_adj_8, _psy_noiseguards_8, _psy_noisebias_8, _psy_noisebias_8, NULL, NULL, _psy_noise_suppress, _psy_compand_8, _psy_compand_8_mapping, NULL, {_noise_start_8,_noise_start_8}, {_noise_part_8,_noise_part_8}, _noise_thresh_5only, _psy_ath_floater_8, _psy_ath_abs_8, _psy_lowpass_8, _psy_global_44, _global_mapping_8, _psy_stereo_modes_8, _floor_books, _floor, _floor_mapping_8, NULL, _mapres_template_8_stereo }; ve_setup_data_template ve_setup_XX_uncoupled={ 2, rate_mapping_X, quality_mapping_8, -1, 0, 8000, blocksize_8, blocksize_8, _psy_tone_masteratt_8, _psy_tone_0dB, _psy_tone_suppress, _vp_tonemask_adj_8, NULL, _vp_tonemask_adj_8, _psy_noiseguards_8, _psy_noisebias_8, _psy_noisebias_8, NULL, NULL, _psy_noise_suppress, _psy_compand_8, _psy_compand_8_mapping, NULL, {_noise_start_8,_noise_start_8}, {_noise_part_8,_noise_part_8}, _noise_thresh_5only, _psy_ath_floater_8, _psy_ath_abs_8, _psy_lowpass_8, _psy_global_44, _global_mapping_8, _psy_stereo_modes_8, _floor_books, _floor, _floor_mapping_8, NULL, _mapres_template_8_uncoupled }; /********* End of inlined file: setup_X.h *********/ static ve_setup_data_template *setup_list[]={ &ve_setup_44_stereo, &ve_setup_44_uncoupled, &ve_setup_32_stereo, &ve_setup_32_uncoupled, &ve_setup_22_stereo, &ve_setup_22_uncoupled, &ve_setup_16_stereo, &ve_setup_16_uncoupled, &ve_setup_11_stereo, &ve_setup_11_uncoupled, &ve_setup_8_stereo, &ve_setup_8_uncoupled, &ve_setup_X_stereo, &ve_setup_X_uncoupled, &ve_setup_XX_stereo, &ve_setup_XX_uncoupled, 0 }; static int vorbis_encode_toplevel_setup(vorbis_info *vi,int ch,long rate){ if(vi && vi->codec_setup){ vi->version=0; vi->channels=ch; vi->rate=rate; return(0); } return(OV_EINVAL); } static void vorbis_encode_floor_setup(vorbis_info *vi,double s,int block, static_codebook ***books, vorbis_info_floor1 *in, int *x){ int i,k,is=s; vorbis_info_floor1 *f=(vorbis_info_floor1*) _ogg_calloc(1,sizeof(*f)); codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; memcpy(f,in+x[is],sizeof(*f)); /* fill in the lowpass field, even if it's temporary */ f->n=ci->blocksizes[block]>>1; /* books */ { int partitions=f->partitions; int maxclass=-1; int maxbook=-1; for(i=0;ipartitionclass[i]>maxclass)maxclass=f->partitionclass[i]; for(i=0;i<=maxclass;i++){ if(f->class_book[i]>maxbook)maxbook=f->class_book[i]; f->class_book[i]+=ci->books; for(k=0;k<(1<class_subs[i]);k++){ if(f->class_subbook[i][k]>maxbook)maxbook=f->class_subbook[i][k]; if(f->class_subbook[i][k]>=0)f->class_subbook[i][k]+=ci->books; } } for(i=0;i<=maxbook;i++) ci->book_param[ci->books++]=books[x[is]][i]; } /* for now, we're only using floor 1 */ ci->floor_type[ci->floors]=1; ci->floor_param[ci->floors]=f; ci->floors++; return; } static void vorbis_encode_global_psych_setup(vorbis_info *vi,double s, vorbis_info_psy_global *in, double *x){ int i,is=s; double ds=s-is; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; vorbis_info_psy_global *g=&ci->psy_g_param; memcpy(g,in+(int)x[is],sizeof(*g)); ds=x[is]*(1.-ds)+x[is+1]*ds; is=(int)ds; ds-=is; if(ds==0 && is>0){ is--; ds=1.; } /* interpolate the trigger threshholds */ for(i=0;i<4;i++){ g->preecho_thresh[i]=in[is].preecho_thresh[i]*(1.-ds)+in[is+1].preecho_thresh[i]*ds; g->postecho_thresh[i]=in[is].postecho_thresh[i]*(1.-ds)+in[is+1].postecho_thresh[i]*ds; } g->ampmax_att_per_sec=ci->hi.amplitude_track_dBpersec; return; } static void vorbis_encode_global_stereo(vorbis_info *vi, highlevel_encode_setup *hi, adj_stereo *p){ float s=hi->stereo_point_setting; int i,is=s; double ds=s-is; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; vorbis_info_psy_global *g=&ci->psy_g_param; if(p){ memcpy(g->coupling_prepointamp,p[is].pre,sizeof(*p[is].pre)*PACKETBLOBS); memcpy(g->coupling_postpointamp,p[is].post,sizeof(*p[is].post)*PACKETBLOBS); if(hi->managed){ /* interpolate the kHz threshholds */ for(i=0;icoupling_pointlimit[0][i]=kHz*1000./vi->rate*ci->blocksizes[0]; g->coupling_pointlimit[1][i]=kHz*1000./vi->rate*ci->blocksizes[1]; g->coupling_pkHz[i]=kHz; kHz=p[is].lowpasskHz[i]*(1.-ds)+p[is+1].lowpasskHz[i]*ds; g->sliding_lowpass[0][i]=kHz*1000./vi->rate*ci->blocksizes[0]; g->sliding_lowpass[1][i]=kHz*1000./vi->rate*ci->blocksizes[1]; } }else{ float kHz=p[is].kHz[PACKETBLOBS/2]*(1.-ds)+p[is+1].kHz[PACKETBLOBS/2]*ds; for(i=0;icoupling_pointlimit[0][i]=kHz*1000./vi->rate*ci->blocksizes[0]; g->coupling_pointlimit[1][i]=kHz*1000./vi->rate*ci->blocksizes[1]; g->coupling_pkHz[i]=kHz; } kHz=p[is].lowpasskHz[PACKETBLOBS/2]*(1.-ds)+p[is+1].lowpasskHz[PACKETBLOBS/2]*ds; for(i=0;isliding_lowpass[0][i]=kHz*1000./vi->rate*ci->blocksizes[0]; g->sliding_lowpass[1][i]=kHz*1000./vi->rate*ci->blocksizes[1]; } } }else{ for(i=0;isliding_lowpass[0][i]=ci->blocksizes[0]; g->sliding_lowpass[1][i]=ci->blocksizes[1]; } } return; } static void vorbis_encode_psyset_setup(vorbis_info *vi,double s, int *nn_start, int *nn_partition, double *nn_thresh, int block){ codec_setup_info *ci=(codec_setup_info*) vi->codec_setup; vorbis_info_psy *p=ci->psy_param[block]; highlevel_encode_setup *hi=&ci->hi; int is=s; if(block>=ci->psys) ci->psys=block+1; if(!p){ p=(vorbis_info_psy*)_ogg_calloc(1,sizeof(*p)); ci->psy_param[block]=p; } memcpy(p,&_psy_info_template,sizeof(*p)); p->blockflag=block>>1; if(hi->noise_normalize_p){ p->normal_channel_p=1; p->normal_point_p=1; p->normal_start=nn_start[is]; p->normal_partition=nn_partition[is]; p->normal_thresh=nn_thresh[is]; } return; } static void vorbis_encode_tonemask_setup(vorbis_info *vi,double s,int block, att3 *att, int *max, vp_adjblock *in){ int i,is=s; double ds=s-is; codec_setup_info *ci=(codec_setup_info*) vi->codec_setup; vorbis_info_psy *p=ci->psy_param[block]; /* 0 and 2 are only used by bitmanagement, but there's no harm to always filling the values in here */ p->tone_masteratt[0]=att[is].att[0]*(1.-ds)+att[is+1].att[0]*ds; p->tone_masteratt[1]=att[is].att[1]*(1.-ds)+att[is+1].att[1]*ds; p->tone_masteratt[2]=att[is].att[2]*(1.-ds)+att[is+1].att[2]*ds; p->tone_centerboost=att[is].boost*(1.-ds)+att[is+1].boost*ds; p->tone_decay=att[is].decay*(1.-ds)+att[is+1].decay*ds; p->max_curve_dB=max[is]*(1.-ds)+max[is+1]*ds; for(i=0;itoneatt[i]=in[is].block[i]*(1.-ds)+in[is+1].block[i]*ds; return; } static void vorbis_encode_compand_setup(vorbis_info *vi,double s,int block, compandblock *in, double *x){ int i,is=s; double ds=s-is; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; vorbis_info_psy *p=ci->psy_param[block]; ds=x[is]*(1.-ds)+x[is+1]*ds; is=(int)ds; ds-=is; if(ds==0 && is>0){ is--; ds=1.; } /* interpolate the compander settings */ for(i=0;inoisecompand[i]=in[is].data[i]*(1.-ds)+in[is+1].data[i]*ds; return; } static void vorbis_encode_peak_setup(vorbis_info *vi,double s,int block, int *suppress){ int is=s; double ds=s-is; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; vorbis_info_psy *p=ci->psy_param[block]; p->tone_abs_limit=suppress[is]*(1.-ds)+suppress[is+1]*ds; return; } static void vorbis_encode_noisebias_setup(vorbis_info *vi,double s,int block, int *suppress, noise3 *in, noiseguard *guard, double userbias){ int i,is=s,j; double ds=s-is; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; vorbis_info_psy *p=ci->psy_param[block]; p->noisemaxsupp=suppress[is]*(1.-ds)+suppress[is+1]*ds; p->noisewindowlomin=guard[block].lo; p->noisewindowhimin=guard[block].hi; p->noisewindowfixed=guard[block].fixed; for(j=0;jnoiseoff[j][i]=in[is].data[j][i]*(1.-ds)+in[is+1].data[j][i]*ds; /* impulse blocks may take a user specified bias to boost the nominal/high noise encoding depth */ for(j=0;jnoiseoff[j][0]+6; /* the lowest it can go */ for(i=0;inoiseoff[j][i]+=userbias; if(p->noiseoff[j][i]noiseoff[j][i]=min; } } return; } static void vorbis_encode_ath_setup(vorbis_info *vi,int block){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; vorbis_info_psy *p=ci->psy_param[block]; p->ath_adjatt=ci->hi.ath_floating_dB; p->ath_maxatt=ci->hi.ath_absolute_dB; return; } static int book_dup_or_new(codec_setup_info *ci,static_codebook *book){ int i; for(i=0;ibooks;i++) if(ci->book_param[i]==book)return(i); return(ci->books++); } static void vorbis_encode_blocksize_setup(vorbis_info *vi,double s, int *shortb,int *longb){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; int is=s; int blockshort=shortb[is]; int blocklong=longb[is]; ci->blocksizes[0]=blockshort; ci->blocksizes[1]=blocklong; } static void vorbis_encode_residue_setup(vorbis_info *vi, int number, int block, vorbis_residue_template *res){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; int i,n; vorbis_info_residue0 *r=(vorbis_info_residue0*)(ci->residue_param[number]= (vorbis_info_residue0*)_ogg_malloc(sizeof(*r))); memcpy(r,res->res,sizeof(*r)); if(ci->residues<=number)ci->residues=number+1; switch(ci->blocksizes[block]){ case 64:case 128:case 256: r->grouping=16; break; default: r->grouping=32; break; } ci->residue_type[number]=res->res_type; /* to be adjusted by lowpass/pointlimit later */ n=r->end=ci->blocksizes[block]>>1; if(res->res_type==2) n=r->end*=vi->channels; /* fill in all the books */ { int booklist=0,k; if(ci->hi.managed){ for(i=0;ipartitions;i++) for(k=0;k<3;k++) if(res->books_base_managed->books[i][k]) r->secondstages[i]|=(1<groupbook=book_dup_or_new(ci,res->book_aux_managed); ci->book_param[r->groupbook]=res->book_aux_managed; for(i=0;ipartitions;i++){ for(k=0;k<3;k++){ if(res->books_base_managed->books[i][k]){ int bookid=book_dup_or_new(ci,res->books_base_managed->books[i][k]); r->booklist[booklist++]=bookid; ci->book_param[bookid]=res->books_base_managed->books[i][k]; } } } }else{ for(i=0;ipartitions;i++) for(k=0;k<3;k++) if(res->books_base->books[i][k]) r->secondstages[i]|=(1<groupbook=book_dup_or_new(ci,res->book_aux); ci->book_param[r->groupbook]=res->book_aux; for(i=0;ipartitions;i++){ for(k=0;k<3;k++){ if(res->books_base->books[i][k]){ int bookid=book_dup_or_new(ci,res->books_base->books[i][k]); r->booklist[booklist++]=bookid; ci->book_param[bookid]=res->books_base->books[i][k]; } } } } } /* lowpass setup/pointlimit */ { double freq=ci->hi.lowpass_kHz*1000.; vorbis_info_floor1 *f=(vorbis_info_floor1*)ci->floor_param[block]; /* by convention */ double nyq=vi->rate/2.; long blocksize=ci->blocksizes[block]>>1; /* lowpass needs to be set in the floor and the residue. */ if(freq>nyq)freq=nyq; /* in the floor, the granularity can be very fine; it doesn't alter the encoding structure, only the samples used to fit the floor approximation */ f->n=freq/nyq*blocksize; /* this res may by limited by the maximum pointlimit of the mode, not the lowpass. the floor is always lowpass limited. */ if(res->limit_type){ if(ci->hi.managed) freq=ci->psy_g_param.coupling_pkHz[PACKETBLOBS-1]*1000.; else freq=ci->psy_g_param.coupling_pkHz[PACKETBLOBS/2]*1000.; if(freq>nyq)freq=nyq; } /* in the residue, we're constrained, physically, by partition boundaries. We still lowpass 'wherever', but we have to round up here to next boundary, or the vorbis spec will round it *down* to previous boundary in encode/decode */ if(ci->residue_type[block]==2) r->end=(int)((freq/nyq*blocksize*2)/r->grouping+.9)* /* round up only if we're well past */ r->grouping; else r->end=(int)((freq/nyq*blocksize)/r->grouping+.9)* /* round up only if we're well past */ r->grouping; } } /* we assume two maps in this encoder */ static void vorbis_encode_map_n_res_setup(vorbis_info *vi,double s, vorbis_mapping_template *maps){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; int i,j,is=s,modes=2; vorbis_info_mapping0 *map=maps[is].map; vorbis_info_mode *mode=_mode_template; vorbis_residue_template *res=maps[is].res; if(ci->blocksizes[0]==ci->blocksizes[1])modes=1; for(i=0;imap_param[i]=_ogg_calloc(1,sizeof(*map)); ci->mode_param[i]=(vorbis_info_mode*)_ogg_calloc(1,sizeof(*mode)); memcpy(ci->mode_param[i],mode+i,sizeof(*_mode_template)); if(i>=ci->modes)ci->modes=i+1; ci->map_type[i]=0; memcpy(ci->map_param[i],map+i,sizeof(*map)); if(i>=ci->maps)ci->maps=i+1; for(j=0;jcodec_setup; highlevel_encode_setup *hi=&ci->hi; ve_setup_data_template *setup=(ve_setup_data_template *)hi->setup; int is=hi->base_setting; double ds=hi->base_setting-is; int ch=vi->channels; double *r=setup->rate_mapping; if(r==NULL) return(-1); return((r[is]*(1.-ds)+r[is+1]*ds)*ch); } static void get_setup_template(vorbis_info *vi, long ch,long srate, double req,int q_or_bitrate){ int i=0,j; codec_setup_info *ci=(codec_setup_info*) vi->codec_setup; highlevel_encode_setup *hi=&ci->hi; if(q_or_bitrate)req/=ch; while(setup_list[i]){ if(setup_list[i]->coupling_restriction==-1 || setup_list[i]->coupling_restriction==ch){ if(srate>=setup_list[i]->samplerate_min_restriction && srate<=setup_list[i]->samplerate_max_restriction){ int mappings=setup_list[i]->mappings; double *map=(q_or_bitrate? setup_list[i]->rate_mapping: setup_list[i]->quality_mapping); /* the template matches. Does the requested quality mode fall within this template's modes? */ if(reqmap[setup_list[i]->mappings]){++i;continue;} for(j=0;j=map[j] && reqsetup=setup_list[i]; if(j==mappings) hi->base_setting=j-.001; else{ float low=map[j]; float high=map[j+1]; float del=(req-low)/(high-low); hi->base_setting=j+del; } return; } } i++; } hi->setup=NULL; } /* encoders will need to use vorbis_info_init beforehand and call vorbis_info clear when all done */ /* two interfaces; this, more detailed one, and later a convenience layer on top */ /* the final setup call */ int vorbis_encode_setup_init(vorbis_info *vi){ int i0=0,singleblock=0; codec_setup_info *ci=(codec_setup_info*) vi->codec_setup; ve_setup_data_template *setup=NULL; highlevel_encode_setup *hi=&ci->hi; if(ci==NULL)return(OV_EINVAL); if(!hi->impulse_block_p)i0=1; /* too low/high an ATH floater is nonsensical, but doesn't break anything */ if(hi->ath_floating_dB>-80)hi->ath_floating_dB=-80; if(hi->ath_floating_dB<-200)hi->ath_floating_dB=-200; /* again, bound this to avoid the app shooting itself int he foot too badly */ if(hi->amplitude_track_dBpersec>0.)hi->amplitude_track_dBpersec=0.; if(hi->amplitude_track_dBpersec<-99999.)hi->amplitude_track_dBpersec=-99999.; /* get the appropriate setup template; matches the fetch in previous stages */ setup=(ve_setup_data_template *)hi->setup; if(setup==NULL)return(OV_EINVAL); hi->set_in_stone=1; /* choose block sizes from configured sizes as well as paying attention to long_block_p and short_block_p. If the configured short and long blocks are the same length, we set long_block_p and unset short_block_p */ vorbis_encode_blocksize_setup(vi,hi->base_setting, setup->blocksize_short, setup->blocksize_long); if(ci->blocksizes[0]==ci->blocksizes[1])singleblock=1; /* floor setup; choose proper floor params. Allocated on the floor stack in order; if we alloc only long floor, it's 0 */ vorbis_encode_floor_setup(vi,hi->short_setting,0, setup->floor_books, setup->floor_params, setup->floor_short_mapping); if(!singleblock) vorbis_encode_floor_setup(vi,hi->long_setting,1, setup->floor_books, setup->floor_params, setup->floor_long_mapping); /* setup of [mostly] short block detection and stereo*/ vorbis_encode_global_psych_setup(vi,hi->trigger_setting, setup->global_params, setup->global_mapping); vorbis_encode_global_stereo(vi,hi,setup->stereo_modes); /* basic psych setup and noise normalization */ vorbis_encode_psyset_setup(vi,hi->short_setting, setup->psy_noise_normal_start[0], setup->psy_noise_normal_partition[0], setup->psy_noise_normal_thresh, 0); vorbis_encode_psyset_setup(vi,hi->short_setting, setup->psy_noise_normal_start[0], setup->psy_noise_normal_partition[0], setup->psy_noise_normal_thresh, 1); if(!singleblock){ vorbis_encode_psyset_setup(vi,hi->long_setting, setup->psy_noise_normal_start[1], setup->psy_noise_normal_partition[1], setup->psy_noise_normal_thresh, 2); vorbis_encode_psyset_setup(vi,hi->long_setting, setup->psy_noise_normal_start[1], setup->psy_noise_normal_partition[1], setup->psy_noise_normal_thresh, 3); } /* tone masking setup */ vorbis_encode_tonemask_setup(vi,hi->block[i0].tone_mask_setting,0, setup->psy_tone_masteratt, setup->psy_tone_0dB, setup->psy_tone_adj_impulse); vorbis_encode_tonemask_setup(vi,hi->block[1].tone_mask_setting,1, setup->psy_tone_masteratt, setup->psy_tone_0dB, setup->psy_tone_adj_other); if(!singleblock){ vorbis_encode_tonemask_setup(vi,hi->block[2].tone_mask_setting,2, setup->psy_tone_masteratt, setup->psy_tone_0dB, setup->psy_tone_adj_other); vorbis_encode_tonemask_setup(vi,hi->block[3].tone_mask_setting,3, setup->psy_tone_masteratt, setup->psy_tone_0dB, setup->psy_tone_adj_long); } /* noise companding setup */ vorbis_encode_compand_setup(vi,hi->block[i0].noise_compand_setting,0, setup->psy_noise_compand, setup->psy_noise_compand_short_mapping); vorbis_encode_compand_setup(vi,hi->block[1].noise_compand_setting,1, setup->psy_noise_compand, setup->psy_noise_compand_short_mapping); if(!singleblock){ vorbis_encode_compand_setup(vi,hi->block[2].noise_compand_setting,2, setup->psy_noise_compand, setup->psy_noise_compand_long_mapping); vorbis_encode_compand_setup(vi,hi->block[3].noise_compand_setting,3, setup->psy_noise_compand, setup->psy_noise_compand_long_mapping); } /* peak guarding setup */ vorbis_encode_peak_setup(vi,hi->block[i0].tone_peaklimit_setting,0, setup->psy_tone_dBsuppress); vorbis_encode_peak_setup(vi,hi->block[1].tone_peaklimit_setting,1, setup->psy_tone_dBsuppress); if(!singleblock){ vorbis_encode_peak_setup(vi,hi->block[2].tone_peaklimit_setting,2, setup->psy_tone_dBsuppress); vorbis_encode_peak_setup(vi,hi->block[3].tone_peaklimit_setting,3, setup->psy_tone_dBsuppress); } /* noise bias setup */ vorbis_encode_noisebias_setup(vi,hi->block[i0].noise_bias_setting,0, setup->psy_noise_dBsuppress, setup->psy_noise_bias_impulse, setup->psy_noiseguards, (i0==0?hi->impulse_noisetune:0.)); vorbis_encode_noisebias_setup(vi,hi->block[1].noise_bias_setting,1, setup->psy_noise_dBsuppress, setup->psy_noise_bias_padding, setup->psy_noiseguards,0.); if(!singleblock){ vorbis_encode_noisebias_setup(vi,hi->block[2].noise_bias_setting,2, setup->psy_noise_dBsuppress, setup->psy_noise_bias_trans, setup->psy_noiseguards,0.); vorbis_encode_noisebias_setup(vi,hi->block[3].noise_bias_setting,3, setup->psy_noise_dBsuppress, setup->psy_noise_bias_long, setup->psy_noiseguards,0.); } vorbis_encode_ath_setup(vi,0); vorbis_encode_ath_setup(vi,1); if(!singleblock){ vorbis_encode_ath_setup(vi,2); vorbis_encode_ath_setup(vi,3); } vorbis_encode_map_n_res_setup(vi,hi->base_setting,setup->maps); /* set bitrate readonlies and management */ if(hi->bitrate_av>0) vi->bitrate_nominal=hi->bitrate_av; else{ vi->bitrate_nominal=setting_to_approx_bitrate(vi); } vi->bitrate_lower=hi->bitrate_min; vi->bitrate_upper=hi->bitrate_max; if(hi->bitrate_av) vi->bitrate_window=(double)hi->bitrate_reservoir/hi->bitrate_av; else vi->bitrate_window=0.; if(hi->managed){ ci->bi.avg_rate=hi->bitrate_av; ci->bi.min_rate=hi->bitrate_min; ci->bi.max_rate=hi->bitrate_max; ci->bi.reservoir_bits=hi->bitrate_reservoir; ci->bi.reservoir_bias= hi->bitrate_reservoir_bias; ci->bi.slew_damp=hi->bitrate_av_damp; } return(0); } static int vorbis_encode_setup_setting(vorbis_info *vi, long channels, long rate){ int ret=0,i,is; codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; highlevel_encode_setup *hi=&ci->hi; ve_setup_data_template *setup=(ve_setup_data_template*) hi->setup; double ds; ret=vorbis_encode_toplevel_setup(vi,channels,rate); if(ret)return(ret); is=hi->base_setting; ds=hi->base_setting-is; hi->short_setting=hi->base_setting; hi->long_setting=hi->base_setting; hi->managed=0; hi->impulse_block_p=1; hi->noise_normalize_p=1; hi->stereo_point_setting=hi->base_setting; hi->lowpass_kHz= setup->psy_lowpass[is]*(1.-ds)+setup->psy_lowpass[is+1]*ds; hi->ath_floating_dB=setup->psy_ath_float[is]*(1.-ds)+ setup->psy_ath_float[is+1]*ds; hi->ath_absolute_dB=setup->psy_ath_abs[is]*(1.-ds)+ setup->psy_ath_abs[is+1]*ds; hi->amplitude_track_dBpersec=-6.; hi->trigger_setting=hi->base_setting; for(i=0;i<4;i++){ hi->block[i].tone_mask_setting=hi->base_setting; hi->block[i].tone_peaklimit_setting=hi->base_setting; hi->block[i].noise_bias_setting=hi->base_setting; hi->block[i].noise_compand_setting=hi->base_setting; } return(ret); } int vorbis_encode_setup_vbr(vorbis_info *vi, long channels, long rate, float quality){ codec_setup_info *ci=(codec_setup_info*) vi->codec_setup; highlevel_encode_setup *hi=&ci->hi; quality+=.0000001; if(quality>=1.)quality=.9999; get_setup_template(vi,channels,rate,quality,0); if(!hi->setup)return OV_EIMPL; return vorbis_encode_setup_setting(vi,channels,rate); } int vorbis_encode_init_vbr(vorbis_info *vi, long channels, long rate, float base_quality /* 0. to 1. */ ){ int ret=0; ret=vorbis_encode_setup_vbr(vi,channels,rate,base_quality); if(ret){ vorbis_info_clear(vi); return ret; } ret=vorbis_encode_setup_init(vi); if(ret) vorbis_info_clear(vi); return(ret); } int vorbis_encode_setup_managed(vorbis_info *vi, long channels, long rate, long max_bitrate, long nominal_bitrate, long min_bitrate){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; highlevel_encode_setup *hi=&ci->hi; double tnominal=nominal_bitrate; int ret=0; if(nominal_bitrate<=0.){ if(max_bitrate>0.){ if(min_bitrate>0.) nominal_bitrate=(max_bitrate+min_bitrate)*.5; else nominal_bitrate=max_bitrate*.875; }else{ if(min_bitrate>0.){ nominal_bitrate=min_bitrate; }else{ return(OV_EINVAL); } } } get_setup_template(vi,channels,rate,nominal_bitrate,1); if(!hi->setup)return OV_EIMPL; ret=vorbis_encode_setup_setting(vi,channels,rate); if(ret){ vorbis_info_clear(vi); return ret; } /* initialize management with sane defaults */ hi->managed=1; hi->bitrate_min=min_bitrate; hi->bitrate_max=max_bitrate; hi->bitrate_av=tnominal; hi->bitrate_av_damp=1.5f; /* full range in no less than 1.5 second */ hi->bitrate_reservoir=nominal_bitrate*2; hi->bitrate_reservoir_bias=.1; /* bias toward hoarding bits */ return(ret); } int vorbis_encode_init(vorbis_info *vi, long channels, long rate, long max_bitrate, long nominal_bitrate, long min_bitrate){ int ret=vorbis_encode_setup_managed(vi,channels,rate, max_bitrate, nominal_bitrate, min_bitrate); if(ret){ vorbis_info_clear(vi); return(ret); } ret=vorbis_encode_setup_init(vi); if(ret) vorbis_info_clear(vi); return(ret); } int vorbis_encode_ctl(vorbis_info *vi,int number,void *arg){ if(vi){ codec_setup_info *ci=(codec_setup_info*)vi->codec_setup; highlevel_encode_setup *hi=&ci->hi; int setp=(number&0xf); /* a read request has a low nibble of 0 */ if(setp && hi->set_in_stone)return(OV_EINVAL); switch(number){ /* now deprecated *****************/ case OV_ECTL_RATEMANAGE_GET: { struct ovectl_ratemanage_arg *ai= (struct ovectl_ratemanage_arg *)arg; ai->management_active=hi->managed; ai->bitrate_hard_window=ai->bitrate_av_window= (double)hi->bitrate_reservoir/vi->rate; ai->bitrate_av_window_center=1.; ai->bitrate_hard_min=hi->bitrate_min; ai->bitrate_hard_max=hi->bitrate_max; ai->bitrate_av_lo=hi->bitrate_av; ai->bitrate_av_hi=hi->bitrate_av; } return(0); /* now deprecated *****************/ case OV_ECTL_RATEMANAGE_SET: { struct ovectl_ratemanage_arg *ai= (struct ovectl_ratemanage_arg *)arg; if(ai==NULL){ hi->managed=0; }else{ hi->managed=ai->management_active; vorbis_encode_ctl(vi,OV_ECTL_RATEMANAGE_AVG,arg); vorbis_encode_ctl(vi,OV_ECTL_RATEMANAGE_HARD,arg); } } return 0; /* now deprecated *****************/ case OV_ECTL_RATEMANAGE_AVG: { struct ovectl_ratemanage_arg *ai= (struct ovectl_ratemanage_arg *)arg; if(ai==NULL){ hi->bitrate_av=0; }else{ hi->bitrate_av=(ai->bitrate_av_lo+ai->bitrate_av_hi)*.5; } } return(0); /* now deprecated *****************/ case OV_ECTL_RATEMANAGE_HARD: { struct ovectl_ratemanage_arg *ai= (struct ovectl_ratemanage_arg *)arg; if(ai==NULL){ hi->bitrate_min=0; hi->bitrate_max=0; }else{ hi->bitrate_min=ai->bitrate_hard_min; hi->bitrate_max=ai->bitrate_hard_max; hi->bitrate_reservoir=ai->bitrate_hard_window* (hi->bitrate_max+hi->bitrate_min)*.5; } if(hi->bitrate_reservoir<128.) hi->bitrate_reservoir=128.; } return(0); /* replacement ratemanage interface */ case OV_ECTL_RATEMANAGE2_GET: { struct ovectl_ratemanage2_arg *ai= (struct ovectl_ratemanage2_arg *)arg; if(ai==NULL)return OV_EINVAL; ai->management_active=hi->managed; ai->bitrate_limit_min_kbps=hi->bitrate_min/1000; ai->bitrate_limit_max_kbps=hi->bitrate_max/1000; ai->bitrate_average_kbps=hi->bitrate_av/1000; ai->bitrate_average_damping=hi->bitrate_av_damp; ai->bitrate_limit_reservoir_bits=hi->bitrate_reservoir; ai->bitrate_limit_reservoir_bias=hi->bitrate_reservoir_bias; } return (0); case OV_ECTL_RATEMANAGE2_SET: { struct ovectl_ratemanage2_arg *ai= (struct ovectl_ratemanage2_arg *)arg; if(ai==NULL){ hi->managed=0; }else{ /* sanity check; only catch invariant violations */ if(ai->bitrate_limit_min_kbps>0 && ai->bitrate_average_kbps>0 && ai->bitrate_limit_min_kbps>ai->bitrate_average_kbps) return OV_EINVAL; if(ai->bitrate_limit_max_kbps>0 && ai->bitrate_average_kbps>0 && ai->bitrate_limit_max_kbpsbitrate_average_kbps) return OV_EINVAL; if(ai->bitrate_limit_min_kbps>0 && ai->bitrate_limit_max_kbps>0 && ai->bitrate_limit_min_kbps>ai->bitrate_limit_max_kbps) return OV_EINVAL; if(ai->bitrate_average_damping <= 0.) return OV_EINVAL; if(ai->bitrate_limit_reservoir_bits < 0) return OV_EINVAL; if(ai->bitrate_limit_reservoir_bias < 0.) return OV_EINVAL; if(ai->bitrate_limit_reservoir_bias > 1.) return OV_EINVAL; hi->managed=ai->management_active; hi->bitrate_min=ai->bitrate_limit_min_kbps * 1000; hi->bitrate_max=ai->bitrate_limit_max_kbps * 1000; hi->bitrate_av=ai->bitrate_average_kbps * 1000; hi->bitrate_av_damp=ai->bitrate_average_damping; hi->bitrate_reservoir=ai->bitrate_limit_reservoir_bits; hi->bitrate_reservoir_bias=ai->bitrate_limit_reservoir_bias; } } return 0; case OV_ECTL_LOWPASS_GET: { double *farg=(double *)arg; *farg=hi->lowpass_kHz; } return(0); case OV_ECTL_LOWPASS_SET: { double *farg=(double *)arg; hi->lowpass_kHz=*farg; if(hi->lowpass_kHz<2.)hi->lowpass_kHz=2.; if(hi->lowpass_kHz>99.)hi->lowpass_kHz=99.; } return(0); case OV_ECTL_IBLOCK_GET: { double *farg=(double *)arg; *farg=hi->impulse_noisetune; } return(0); case OV_ECTL_IBLOCK_SET: { double *farg=(double *)arg; hi->impulse_noisetune=*farg; if(hi->impulse_noisetune>0.)hi->impulse_noisetune=0.; if(hi->impulse_noisetune<-15.)hi->impulse_noisetune=-15.; } return(0); } return(OV_EIMPL); } return(OV_EINVAL); } #endif /********* End of inlined file: vorbisenc.c *********/ /********* Start of inlined file: vorbisfile.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include #include #include #include /* A 'chained bitstream' is a Vorbis bitstream that contains more than one logical bitstream arranged end to end (the only form of Ogg multiplexing allowed in a Vorbis bitstream; grouping [parallel multiplexing] is not allowed in Vorbis) */ /* A Vorbis file can be played beginning to end (streamed) without worrying ahead of time about chaining (see decoder_example.c). If we have the whole file, however, and want random access (seeking/scrubbing) or desire to know the total length/time of a file, we need to account for the possibility of chaining. */ /* We can handle things a number of ways; we can determine the entire bitstream structure right off the bat, or find pieces on demand. This example determines and caches structure for the entire bitstream, but builds a virtual decoder on the fly when moving between links in the chain. */ /* There are also different ways to implement seeking. Enough information exists in an Ogg bitstream to seek to sample-granularity positions in the output. Or, one can seek by picking some portion of the stream roughly in the desired area if we only want coarse navigation through the stream. */ /************************************************************************* * Many, many internal helpers. The intention is not to be confusing; * rampant duplication and monolithic function implementation would be * harder to understand anyway. The high level functions are last. Begin * grokking near the end of the file */ /* read a little more data from the file/pipe into the ogg_sync framer */ #define CHUNKSIZE 8500 /* a shade over 8k; anyone using pages well over 8k gets what they deserve */ static long _get_data(OggVorbis_File *vf){ errno=0; if(vf->datasource){ char *buffer=ogg_sync_buffer(&vf->oy,CHUNKSIZE); long bytes=(vf->callbacks.read_func)(buffer,1,CHUNKSIZE,vf->datasource); if(bytes>0)ogg_sync_wrote(&vf->oy,bytes); if(bytes==0 && errno)return(-1); return(bytes); }else return(0); } /* save a tiny smidge of verbosity to make the code more readable */ static void _seek_helper(OggVorbis_File *vf,ogg_int64_t offset){ if(vf->datasource){ (vf->callbacks.seek_func)(vf->datasource, offset, SEEK_SET); vf->offset=offset; ogg_sync_reset(&vf->oy); }else{ /* shouldn't happen unless someone writes a broken callback */ return; } } /* The read/seek functions track absolute position within the stream */ /* from the head of the stream, get the next page. boundary specifies if the function is allowed to fetch more data from the stream (and how much) or only use internally buffered data. boundary: -1) unbounded search 0) read no additional data; use cached only n) search for a new page beginning for n bytes return: <0) did not find a page (OV_FALSE, OV_EOF, OV_EREAD) n) found a page at absolute offset n */ static ogg_int64_t _get_next_page(OggVorbis_File *vf,ogg_page *og, ogg_int64_t boundary){ if(boundary>0)boundary+=vf->offset; while(1){ long more; if(boundary>0 && vf->offset>=boundary)return(OV_FALSE); more=ogg_sync_pageseek(&vf->oy,og); if(more<0){ /* skipped n bytes */ vf->offset-=more; }else{ if(more==0){ /* send more paramedics */ if(!boundary)return(OV_FALSE); { long ret=_get_data(vf); if(ret==0)return(OV_EOF); if(ret<0)return(OV_EREAD); } }else{ /* got a page. Return the offset at the page beginning, advance the internal offset past the page end */ ogg_int64_t ret=vf->offset; vf->offset+=more; return(ret); } } } } /* find the latest page beginning before the current stream cursor position. Much dirtier than the above as Ogg doesn't have any backward search linkage. no 'readp' as it will certainly have to read. */ /* returns offset or OV_EREAD, OV_FAULT */ static ogg_int64_t _get_prev_page(OggVorbis_File *vf,ogg_page *og){ ogg_int64_t begin=vf->offset; ogg_int64_t end=begin; ogg_int64_t ret; ogg_int64_t offset=-1; while(offset==-1){ begin-=CHUNKSIZE; if(begin<0) begin=0; _seek_helper(vf,begin); while(vf->offsetoffset); if(ret==OV_EREAD)return(OV_EREAD); if(ret<0){ break; }else{ offset=ret; } } } /* we have the offset. Actually snork and hold the page now */ _seek_helper(vf,offset); ret=_get_next_page(vf,og,CHUNKSIZE); if(ret<0) /* this shouldn't be possible */ return(OV_EFAULT); return(offset); } /* finds each bitstream link one at a time using a bisection search (has to begin by knowing the offset of the lb's initial page). Recurses for each link so it can alloc the link storage after finding them all, then unroll and fill the cache at the same time */ static int _bisect_forward_serialno(OggVorbis_File *vf, ogg_int64_t begin, ogg_int64_t searched, ogg_int64_t end, long currentno, long m){ ogg_int64_t endsearched=end; ogg_int64_t next=end; ogg_page og; ogg_int64_t ret; /* the below guards against garbage seperating the last and first pages of two links. */ while(searched=0)next=ret; }else{ searched=ret+og.header_len+og.body_len; } } _seek_helper(vf,next); ret=_get_next_page(vf,&og,-1); if(ret==OV_EREAD)return(OV_EREAD); if(searched>=end || ret<0){ vf->links=m+1; vf->offsets=(ogg_int64_t*)_ogg_malloc((vf->links+1)*sizeof(*vf->offsets)); vf->serialnos=(long*)_ogg_malloc(vf->links*sizeof(*vf->serialnos)); vf->offsets[m+1]=searched; }else{ ret=_bisect_forward_serialno(vf,next,vf->offset, end,ogg_page_serialno(&og),m+1); if(ret==OV_EREAD)return(OV_EREAD); } vf->offsets[m]=begin; vf->serialnos[m]=currentno; return(0); } /* uses the local ogg_stream storage in vf; this is important for non-streaming input sources */ static int _fetch_headers(OggVorbis_File *vf,vorbis_info *vi,vorbis_comment *vc, long *serialno,ogg_page *og_ptr){ ogg_page og; ogg_packet op; int i,ret; if(!og_ptr){ ogg_int64_t llret=_get_next_page(vf,&og,CHUNKSIZE); if(llret==OV_EREAD)return(OV_EREAD); if(llret<0)return OV_ENOTVORBIS; og_ptr=&og; } ogg_stream_reset_serialno(&vf->os,ogg_page_serialno(og_ptr)); if(serialno)*serialno=vf->os.serialno; vf->ready_state=STREAMSET; /* extract the initial header from the first page and verify that the Ogg bitstream is in fact Vorbis data */ vorbis_info_init(vi); vorbis_comment_init(vc); i=0; while(i<3){ ogg_stream_pagein(&vf->os,og_ptr); while(i<3){ int result=ogg_stream_packetout(&vf->os,&op); if(result==0)break; if(result==-1){ ret=OV_EBADHEADER; goto bail_header; } if((ret=vorbis_synthesis_headerin(vi,vc,&op))){ goto bail_header; } i++; } if(i<3) if(_get_next_page(vf,og_ptr,CHUNKSIZE)<0){ ret=OV_EBADHEADER; goto bail_header; } } return 0; bail_header: vorbis_info_clear(vi); vorbis_comment_clear(vc); vf->ready_state=OPENED; return ret; } /* last step of the OggVorbis_File initialization; get all the vorbis_info structs and PCM positions. Only called by the seekable initialization (local stream storage is hacked slightly; pay attention to how that's done) */ /* this is void and does not propogate errors up because we want to be able to open and use damaged bitstreams as well as we can. Just watch out for missing information for links in the OggVorbis_File struct */ static void _prefetch_all_headers(OggVorbis_File *vf, ogg_int64_t dataoffset){ ogg_page og; int i; ogg_int64_t ret; vf->vi=(vorbis_info*) _ogg_realloc(vf->vi,vf->links*sizeof(*vf->vi)); vf->vc=(vorbis_comment*) _ogg_realloc(vf->vc,vf->links*sizeof(*vf->vc)); vf->dataoffsets=(ogg_int64_t*) _ogg_malloc(vf->links*sizeof(*vf->dataoffsets)); vf->pcmlengths=(ogg_int64_t*) _ogg_malloc(vf->links*2*sizeof(*vf->pcmlengths)); for(i=0;ilinks;i++){ if(i==0){ /* we already grabbed the initial header earlier. Just set the offset */ vf->dataoffsets[i]=dataoffset; _seek_helper(vf,dataoffset); }else{ /* seek to the location of the initial header */ _seek_helper(vf,vf->offsets[i]); if(_fetch_headers(vf,vf->vi+i,vf->vc+i,NULL,NULL)<0){ vf->dataoffsets[i]=-1; }else{ vf->dataoffsets[i]=vf->offset; } } /* fetch beginning PCM offset */ if(vf->dataoffsets[i]!=-1){ ogg_int64_t accumulated=0; long lastblock=-1; int result; ogg_stream_reset_serialno(&vf->os,vf->serialnos[i]); while(1){ ogg_packet op; ret=_get_next_page(vf,&og,-1); if(ret<0) /* this should not be possible unless the file is truncated/mangled */ break; if(ogg_page_serialno(&og)!=vf->serialnos[i]) break; /* count blocksizes of all frames in the page */ ogg_stream_pagein(&vf->os,&og); while((result=ogg_stream_packetout(&vf->os,&op))){ if(result>0){ /* ignore holes */ long thisblock=vorbis_packet_blocksize(vf->vi+i,&op); if(lastblock!=-1) accumulated+=(lastblock+thisblock)>>2; lastblock=thisblock; } } if(ogg_page_granulepos(&og)!=-1){ /* pcm offset of last packet on the first audio page */ accumulated= ogg_page_granulepos(&og)-accumulated; break; } } /* less than zero? This is a stream with samples trimmed off the beginning, a normal occurrence; set the offset to zero */ if(accumulated<0)accumulated=0; vf->pcmlengths[i*2]=accumulated; } /* get the PCM length of this link. To do this, get the last page of the stream */ { ogg_int64_t end=vf->offsets[i+1]; _seek_helper(vf,end); while(1){ ret=_get_prev_page(vf,&og); if(ret<0){ /* this should not be possible */ vorbis_info_clear(vf->vi+i); vorbis_comment_clear(vf->vc+i); break; } if(ogg_page_granulepos(&og)!=-1){ vf->pcmlengths[i*2+1]=ogg_page_granulepos(&og)-vf->pcmlengths[i*2]; break; } vf->offset=ret; } } } } static int _make_decode_ready(OggVorbis_File *vf){ if(vf->ready_state>STREAMSET)return 0; if(vf->ready_stateseekable){ if(vorbis_synthesis_init(&vf->vd,vf->vi+vf->current_link)) return OV_EBADLINK; }else{ if(vorbis_synthesis_init(&vf->vd,vf->vi)) return OV_EBADLINK; } vorbis_block_init(&vf->vd,&vf->vb); vf->ready_state=INITSET; vf->bittrack=0.f; vf->samptrack=0.f; return 0; } static int _open_seekable2(OggVorbis_File *vf){ long serialno=vf->current_serialno; ogg_int64_t dataoffset=vf->offset, end; ogg_page og; /* we're partially open and have a first link header state in storage in vf */ /* we can seek, so set out learning all about this file */ (vf->callbacks.seek_func)(vf->datasource,0,SEEK_END); vf->offset=vf->end=(vf->callbacks.tell_func)(vf->datasource); /* We get the offset for the last page of the physical bitstream. Most OggVorbis files will contain a single logical bitstream */ end=_get_prev_page(vf,&og); if(end<0)return(end); /* more than one logical bitstream? */ if(ogg_page_serialno(&og)!=serialno){ /* Chained bitstream. Bisect-search each logical bitstream section. Do so based on serial number only */ if(_bisect_forward_serialno(vf,0,0,end+1,serialno,0)<0)return(OV_EREAD); }else{ /* Only one logical bitstream */ if(_bisect_forward_serialno(vf,0,end,end+1,serialno,0))return(OV_EREAD); } /* the initial header memory is referenced by vf after; don't free it */ _prefetch_all_headers(vf,dataoffset); return(ov_raw_seek(vf,0)); } /* clear out the current logical bitstream decoder */ static void _decode_clear(OggVorbis_File *vf){ vorbis_dsp_clear(&vf->vd); vorbis_block_clear(&vf->vb); vf->ready_state=OPENED; } /* fetch and process a packet. Handles the case where we're at a bitstream boundary and dumps the decoding machine. If the decoding machine is unloaded, it loads it. It also keeps pcm_offset up to date (seek and read both use this. seek uses a special hack with readp). return: <0) error, OV_HOLE (lost packet) or OV_EOF 0) need more data (only if readp==0) 1) got a packet */ static int _fetch_and_process_packet(OggVorbis_File *vf, ogg_packet *op_in, int readp, int spanp){ ogg_page og; /* handle one packet. Try to fetch it from current stream state */ /* extract packets from page */ while(1){ /* process a packet if we can. If the machine isn't loaded, neither is a page */ if(vf->ready_state==INITSET){ while(1) { ogg_packet op; ogg_packet *op_ptr=(op_in?op_in:&op); int result=ogg_stream_packetout(&vf->os,op_ptr); ogg_int64_t granulepos; op_in=NULL; if(result==-1)return(OV_HOLE); /* hole in the data. */ if(result>0){ /* got a packet. process it */ granulepos=op_ptr->granulepos; if(!vorbis_synthesis(&vf->vb,op_ptr)){ /* lazy check for lazy header handling. The header packets aren't audio, so if/when we submit them, vorbis_synthesis will reject them */ /* suck in the synthesis data and track bitrate */ { int oldsamples=vorbis_synthesis_pcmout(&vf->vd,NULL); /* for proper use of libvorbis within libvorbisfile, oldsamples will always be zero. */ if(oldsamples)return(OV_EFAULT); vorbis_synthesis_blockin(&vf->vd,&vf->vb); vf->samptrack+=vorbis_synthesis_pcmout(&vf->vd,NULL)-oldsamples; vf->bittrack+=op_ptr->bytes*8; } /* update the pcm offset. */ if(granulepos!=-1 && !op_ptr->e_o_s){ int link=(vf->seekable?vf->current_link:0); int i,samples; /* this packet has a pcm_offset on it (the last packet completed on a page carries the offset) After processing (above), we know the pcm position of the *last* sample ready to be returned. Find the offset of the *first* As an aside, this trick is inaccurate if we begin reading anew right at the last page; the end-of-stream granulepos declares the last frame in the stream, and the last packet of the last page may be a partial frame. So, we need a previous granulepos from an in-sequence page to have a reference point. Thus the !op_ptr->e_o_s clause above */ if(vf->seekable && link>0) granulepos-=vf->pcmlengths[link*2]; if(granulepos<0)granulepos=0; /* actually, this shouldn't be possible here unless the stream is very broken */ samples=vorbis_synthesis_pcmout(&vf->vd,NULL); granulepos-=samples; for(i=0;ipcmlengths[i*2+1]; vf->pcm_offset=granulepos; } return(1); } } else break; } } if(vf->ready_state>=OPENED){ ogg_int64_t ret; if(!readp)return(0); if((ret=_get_next_page(vf,&og,-1))<0){ return(OV_EOF); /* eof. leave unitialized */ } /* bitrate tracking; add the header's bytes here, the body bytes are done by packet above */ vf->bittrack+=og.header_len*8; /* has our decoding just traversed a bitstream boundary? */ if(vf->ready_state==INITSET){ if(vf->current_serialno!=ogg_page_serialno(&og)){ if(!spanp) return(OV_EOF); _decode_clear(vf); if(!vf->seekable){ vorbis_info_clear(vf->vi); vorbis_comment_clear(vf->vc); } } } } /* Do we need to load a new machine before submitting the page? */ /* This is different in the seekable and non-seekable cases. In the seekable case, we already have all the header information loaded and cached; we just initialize the machine with it and continue on our merry way. In the non-seekable (streaming) case, we'll only be at a boundary if we just left the previous logical bitstream and we're now nominally at the header of the next bitstream */ if(vf->ready_state!=INITSET){ int link; if(vf->ready_stateseekable){ vf->current_serialno=ogg_page_serialno(&og); /* match the serialno to bitstream section. We use this rather than offset positions to avoid problems near logical bitstream boundaries */ for(link=0;linklinks;link++) if(vf->serialnos[link]==vf->current_serialno)break; if(link==vf->links)return(OV_EBADLINK); /* sign of a bogus stream. error out, leave machine uninitialized */ vf->current_link=link; ogg_stream_reset_serialno(&vf->os,vf->current_serialno); vf->ready_state=STREAMSET; }else{ /* we're streaming */ /* fetch the three header packets, build the info struct */ int ret=_fetch_headers(vf,vf->vi,vf->vc,&vf->current_serialno,&og); if(ret)return(ret); vf->current_link++; link=0; } } { int ret=_make_decode_ready(vf); if(ret<0)return ret; } } ogg_stream_pagein(&vf->os,&og); } } /* if, eg, 64 bit stdio is configured by default, this will build with fseek64 */ static int _fseek64_wrap(FILE *f,ogg_int64_t off,int whence){ if(f==NULL)return(-1); return fseek(f,off,whence); } static int _ov_open1(void *f,OggVorbis_File *vf,char *initial, long ibytes, ov_callbacks callbacks){ int offsettest=(f?callbacks.seek_func(f,0,SEEK_CUR):-1); int ret; memset(vf,0,sizeof(*vf)); vf->datasource=f; vf->callbacks = callbacks; /* init the framing state */ ogg_sync_init(&vf->oy); /* perhaps some data was previously read into a buffer for testing against other stream types. Allow initialization from this previously read data (as we may be reading from a non-seekable stream) */ if(initial){ char *buffer=ogg_sync_buffer(&vf->oy,ibytes); memcpy(buffer,initial,ibytes); ogg_sync_wrote(&vf->oy,ibytes); } /* can we seek? Stevens suggests the seek test was portable */ if(offsettest!=-1)vf->seekable=1; /* No seeking yet; Set up a 'single' (current) logical bitstream entry for partial open */ vf->links=1; vf->vi=(vorbis_info*) _ogg_calloc(vf->links,sizeof(*vf->vi)); vf->vc=(vorbis_comment*) _ogg_calloc(vf->links,sizeof(*vf->vc)); ogg_stream_init(&vf->os,-1); /* fill in the serialno later */ /* Try to fetch the headers, maintaining all the storage */ if((ret=_fetch_headers(vf,vf->vi,vf->vc,&vf->current_serialno,NULL))<0){ vf->datasource=NULL; ov_clear(vf); }else vf->ready_state=PARTOPEN; return(ret); } static int _ov_open2(OggVorbis_File *vf){ if(vf->ready_state != PARTOPEN) return OV_EINVAL; vf->ready_state=OPENED; if(vf->seekable){ int ret=_open_seekable2(vf); if(ret){ vf->datasource=NULL; ov_clear(vf); } return(ret); }else vf->ready_state=STREAMSET; return 0; } /* clear out the OggVorbis_File struct */ int ov_clear(OggVorbis_File *vf){ if(vf){ vorbis_block_clear(&vf->vb); vorbis_dsp_clear(&vf->vd); ogg_stream_clear(&vf->os); if(vf->vi && vf->links){ int i; for(i=0;ilinks;i++){ vorbis_info_clear(vf->vi+i); vorbis_comment_clear(vf->vc+i); } _ogg_free(vf->vi); _ogg_free(vf->vc); } if(vf->dataoffsets)_ogg_free(vf->dataoffsets); if(vf->pcmlengths)_ogg_free(vf->pcmlengths); if(vf->serialnos)_ogg_free(vf->serialnos); if(vf->offsets)_ogg_free(vf->offsets); ogg_sync_clear(&vf->oy); if(vf->datasource)(vf->callbacks.close_func)(vf->datasource); memset(vf,0,sizeof(*vf)); } #ifdef DEBUG_LEAKS _VDBG_dump(); #endif return(0); } /* inspects the OggVorbis file and finds/documents all the logical bitstreams contained in it. Tries to be tolerant of logical bitstream sections that are truncated/woogie. return: -1) error 0) OK */ int ov_open_callbacks(void *f,OggVorbis_File *vf,char *initial,long ibytes, ov_callbacks callbacks){ int ret=_ov_open1(f,vf,initial,ibytes,callbacks); if(ret)return ret; return _ov_open2(vf); } int ov_open(FILE *f,OggVorbis_File *vf,char *initial,long ibytes){ ov_callbacks callbacks = { (size_t (*)(void *, size_t, size_t, void *)) fread, (int (*)(void *, ogg_int64_t, int)) _fseek64_wrap, (int (*)(void *)) fclose, (long (*)(void *)) ftell }; return ov_open_callbacks((void *)f, vf, initial, ibytes, callbacks); } /* cheap hack for game usage where downsampling is desirable; there's no need for SRC as we can just do it cheaply in libvorbis. */ int ov_halfrate(OggVorbis_File *vf,int flag){ int i; if(vf->vi==NULL)return OV_EINVAL; if(!vf->seekable)return OV_EINVAL; if(vf->ready_state>=STREAMSET) _decode_clear(vf); /* clear out stream state; later on libvorbis will be able to swap this on the fly, but for now dumping the decode machine is needed to reinit the MDCT lookups. 1.1 libvorbis is planned to be able to switch on the fly */ for(i=0;ilinks;i++){ if(vorbis_synthesis_halfrate(vf->vi+i,flag)){ ov_halfrate(vf,0); return OV_EINVAL; } } return 0; } int ov_halfrate_p(OggVorbis_File *vf){ if(vf->vi==NULL)return OV_EINVAL; return vorbis_synthesis_halfrate_p(vf->vi); } /* Only partially open the vorbis file; test for Vorbisness, and load the headers for the first chain. Do not seek (although test for seekability). Use ov_test_open to finish opening the file, else ov_clear to close/free it. Same return codes as open. */ int ov_test_callbacks(void *f,OggVorbis_File *vf,char *initial,long ibytes, ov_callbacks callbacks) { return _ov_open1(f,vf,initial,ibytes,callbacks); } int ov_test(FILE *f,OggVorbis_File *vf,char *initial,long ibytes){ ov_callbacks callbacks = { (size_t (*)(void *, size_t, size_t, void *)) fread, (int (*)(void *, ogg_int64_t, int)) _fseek64_wrap, (int (*)(void *)) fclose, (long (*)(void *)) ftell }; return ov_test_callbacks((void *)f, vf, initial, ibytes, callbacks); } int ov_test_open(OggVorbis_File *vf){ if(vf->ready_state!=PARTOPEN)return(OV_EINVAL); return _ov_open2(vf); } /* How many logical bitstreams in this physical bitstream? */ long ov_streams(OggVorbis_File *vf){ return vf->links; } /* Is the FILE * associated with vf seekable? */ long ov_seekable(OggVorbis_File *vf){ return vf->seekable; } /* returns the bitrate for a given logical bitstream or the entire physical bitstream. If the file is open for random access, it will find the *actual* average bitrate. If the file is streaming, it returns the nominal bitrate (if set) else the average of the upper/lower bounds (if set) else -1 (unset). If you want the actual bitrate field settings, get them from the vorbis_info structs */ long ov_bitrate(OggVorbis_File *vf,int i){ if(vf->ready_state=vf->links)return(OV_EINVAL); if(!vf->seekable && i!=0)return(ov_bitrate(vf,0)); if(i<0){ ogg_int64_t bits=0; int i; float br; for(i=0;ilinks;i++) bits+=(vf->offsets[i+1]-vf->dataoffsets[i])*8; /* This once read: return(rint(bits/ov_time_total(vf,-1))); * gcc 3.x on x86 miscompiled this at optimisation level 2 and above, * so this is slightly transformed to make it work. */ br = bits/ov_time_total(vf,-1); return(rint(br)); }else{ if(vf->seekable){ /* return the actual bitrate */ return(rint((vf->offsets[i+1]-vf->dataoffsets[i])*8/ov_time_total(vf,i))); }else{ /* return nominal if set */ if(vf->vi[i].bitrate_nominal>0){ return vf->vi[i].bitrate_nominal; }else{ if(vf->vi[i].bitrate_upper>0){ if(vf->vi[i].bitrate_lower>0){ return (vf->vi[i].bitrate_upper+vf->vi[i].bitrate_lower)/2; }else{ return vf->vi[i].bitrate_upper; } } return(OV_FALSE); } } } } /* returns the actual bitrate since last call. returns -1 if no additional data to offer since last call (or at beginning of stream), EINVAL if stream is only partially open */ long ov_bitrate_instant(OggVorbis_File *vf){ int link=(vf->seekable?vf->current_link:0); long ret; if(vf->ready_statesamptrack==0)return(OV_FALSE); ret=vf->bittrack/vf->samptrack*vf->vi[link].rate+.5; vf->bittrack=0.f; vf->samptrack=0.f; return(ret); } /* Guess */ long ov_serialnumber(OggVorbis_File *vf,int i){ if(i>=vf->links)return(ov_serialnumber(vf,vf->links-1)); if(!vf->seekable && i>=0)return(ov_serialnumber(vf,-1)); if(i<0){ return(vf->current_serialno); }else{ return(vf->serialnos[i]); } } /* returns: total raw (compressed) length of content if i==-1 raw (compressed) length of that logical bitstream for i==0 to n OV_EINVAL if the stream is not seekable (we can't know the length) or if stream is only partially open */ ogg_int64_t ov_raw_total(OggVorbis_File *vf,int i){ if(vf->ready_stateseekable || i>=vf->links)return(OV_EINVAL); if(i<0){ ogg_int64_t acc=0; int i; for(i=0;ilinks;i++) acc+=ov_raw_total(vf,i); return(acc); }else{ return(vf->offsets[i+1]-vf->offsets[i]); } } /* returns: total PCM length (samples) of content if i==-1 PCM length (samples) of that logical bitstream for i==0 to n OV_EINVAL if the stream is not seekable (we can't know the length) or only partially open */ ogg_int64_t ov_pcm_total(OggVorbis_File *vf,int i){ if(vf->ready_stateseekable || i>=vf->links)return(OV_EINVAL); if(i<0){ ogg_int64_t acc=0; int i; for(i=0;ilinks;i++) acc+=ov_pcm_total(vf,i); return(acc); }else{ return(vf->pcmlengths[i*2+1]); } } /* returns: total seconds of content if i==-1 seconds in that logical bitstream for i==0 to n OV_EINVAL if the stream is not seekable (we can't know the length) or only partially open */ double ov_time_total(OggVorbis_File *vf,int i){ if(vf->ready_stateseekable || i>=vf->links)return(OV_EINVAL); if(i<0){ double acc=0; int i; for(i=0;ilinks;i++) acc+=ov_time_total(vf,i); return(acc); }else{ return((double)(vf->pcmlengths[i*2+1])/vf->vi[i].rate); } } /* seek to an offset relative to the *compressed* data. This also scans packets to update the PCM cursor. It will cross a logical bitstream boundary, but only if it can't get any packets out of the tail of the bitstream we seek to (so no surprises). returns zero on success, nonzero on failure */ int ov_raw_seek(OggVorbis_File *vf,ogg_int64_t pos){ ogg_stream_state work_os; if(vf->ready_stateseekable) return(OV_ENOSEEK); /* don't dump machine if we can't seek */ if(pos<0 || pos>vf->end)return(OV_EINVAL); /* don't yet clear out decoding machine (if it's initialized), in the case we're in the same link. Restart the decode lapping, and let _fetch_and_process_packet deal with a potential bitstream boundary */ vf->pcm_offset=-1; ogg_stream_reset_serialno(&vf->os, vf->current_serialno); /* must set serialno */ vorbis_synthesis_restart(&vf->vd); _seek_helper(vf,pos); /* we need to make sure the pcm_offset is set, but we don't want to advance the raw cursor past good packets just to get to the first with a granulepos. That's not equivalent behavior to beginning decoding as immediately after the seek position as possible. So, a hack. We use two stream states; a local scratch state and the shared vf->os stream state. We use the local state to scan, and the shared state as a buffer for later decode. Unfortuantely, on the last page we still advance to last packet because the granulepos on the last page is not necessarily on a packet boundary, and we need to make sure the granpos is correct. */ { ogg_page og; ogg_packet op; int lastblock=0; int accblock=0; int thisblock; int eosflag; ogg_stream_init(&work_os,vf->current_serialno); /* get the memory ready */ ogg_stream_reset(&work_os); /* eliminate the spurious OV_HOLE return from not necessarily starting from the beginning */ while(1){ if(vf->ready_state>=STREAMSET){ /* snarf/scan a packet if we can */ int result=ogg_stream_packetout(&work_os,&op); if(result>0){ if(vf->vi[vf->current_link].codec_setup){ thisblock=vorbis_packet_blocksize(vf->vi+vf->current_link,&op); if(thisblock<0){ ogg_stream_packetout(&vf->os,NULL); thisblock=0; }else{ if(eosflag) ogg_stream_packetout(&vf->os,NULL); else if(lastblock)accblock+=(lastblock+thisblock)>>2; } if(op.granulepos!=-1){ int i,link=vf->current_link; ogg_int64_t granulepos=op.granulepos-vf->pcmlengths[link*2]; if(granulepos<0)granulepos=0; for(i=0;ipcmlengths[i*2+1]; vf->pcm_offset=granulepos-accblock; break; } lastblock=thisblock; continue; }else ogg_stream_packetout(&vf->os,NULL); } } if(!lastblock){ if(_get_next_page(vf,&og,-1)<0){ vf->pcm_offset=ov_pcm_total(vf,-1); break; } }else{ /* huh? Bogus stream with packets but no granulepos */ vf->pcm_offset=-1; break; } /* has our decoding just traversed a bitstream boundary? */ if(vf->ready_state>=STREAMSET) if(vf->current_serialno!=ogg_page_serialno(&og)){ _decode_clear(vf); /* clear out stream state */ ogg_stream_clear(&work_os); } if(vf->ready_statecurrent_serialno=ogg_page_serialno(&og); for(link=0;linklinks;link++) if(vf->serialnos[link]==vf->current_serialno)break; if(link==vf->links)goto seek_error; /* sign of a bogus stream. error out, leave machine uninitialized */ vf->current_link=link; ogg_stream_reset_serialno(&vf->os,vf->current_serialno); ogg_stream_reset_serialno(&work_os,vf->current_serialno); vf->ready_state=STREAMSET; } ogg_stream_pagein(&vf->os,&og); ogg_stream_pagein(&work_os,&og); eosflag=ogg_page_eos(&og); } } ogg_stream_clear(&work_os); vf->bittrack=0.f; vf->samptrack=0.f; return(0); seek_error: /* dump the machine so we're in a known state */ vf->pcm_offset=-1; ogg_stream_clear(&work_os); _decode_clear(vf); return OV_EBADLINK; } /* Page granularity seek (faster than sample granularity because we don't do the last bit of decode to find a specific sample). Seek to the last [granule marked] page preceeding the specified pos location, such that decoding past the returned point will quickly arrive at the requested position. */ int ov_pcm_seek_page(OggVorbis_File *vf,ogg_int64_t pos){ int link=-1; ogg_int64_t result=0; ogg_int64_t total=ov_pcm_total(vf,-1); if(vf->ready_stateseekable)return(OV_ENOSEEK); if(pos<0 || pos>total)return(OV_EINVAL); /* which bitstream section does this pcm offset occur in? */ for(link=vf->links-1;link>=0;link--){ total-=vf->pcmlengths[link*2+1]; if(pos>=total)break; } /* search within the logical bitstream for the page with the highest pcm_pos preceeding (or equal to) pos. There is a danger here; missing pages or incorrect frame number information in the bitstream could make our task impossible. Account for that (it would be an error condition) */ /* new search algorithm by HB (Nicholas Vinen) */ { ogg_int64_t end=vf->offsets[link+1]; ogg_int64_t begin=vf->offsets[link]; ogg_int64_t begintime = vf->pcmlengths[link*2]; ogg_int64_t endtime = vf->pcmlengths[link*2+1]+begintime; ogg_int64_t target=pos-total+begintime; ogg_int64_t best=begin; ogg_page og; while(beginoffset); if(result==OV_EREAD) goto seek_error; if(result<0){ if(bisect<=begin+1) end=begin; /* found it */ else{ if(bisect==0) goto seek_error; bisect-=CHUNKSIZE; if(bisect<=begin)bisect=begin+1; _seek_helper(vf,bisect); } }else{ ogg_int64_t granulepos=ogg_page_granulepos(&og); if(granulepos==-1)continue; if(granuleposoffset; /* raw offset of next page */ begintime=granulepos; if(target-begintime>44100)break; bisect=begin; /* *not* begin + 1 */ }else{ if(bisect<=begin+1) end=begin; /* found it */ else{ if(end==vf->offset){ /* we're pretty close - we'd be stuck in */ end=result; bisect-=CHUNKSIZE; /* an endless loop otherwise. */ if(bisect<=begin)bisect=begin+1; _seek_helper(vf,bisect); }else{ end=result; endtime=granulepos; break; } } } } } } /* found our page. seek to it, update pcm offset. Easier case than raw_seek, don't keep packets preceeding granulepos. */ { ogg_page og; ogg_packet op; /* seek */ _seek_helper(vf,best); vf->pcm_offset=-1; if(_get_next_page(vf,&og,-1)<0)return(OV_EOF); /* shouldn't happen */ if(link!=vf->current_link){ /* Different link; dump entire decode machine */ _decode_clear(vf); vf->current_link=link; vf->current_serialno=ogg_page_serialno(&og); vf->ready_state=STREAMSET; }else{ vorbis_synthesis_restart(&vf->vd); } ogg_stream_reset_serialno(&vf->os,vf->current_serialno); ogg_stream_pagein(&vf->os,&og); /* pull out all but last packet; the one with granulepos */ while(1){ result=ogg_stream_packetpeek(&vf->os,&op); if(result==0){ /* !!! the packet finishing this page originated on a preceeding page. Keep fetching previous pages until we get one with a granulepos or without the 'continued' flag set. Then just use raw_seek for simplicity. */ _seek_helper(vf,best); while(1){ result=_get_prev_page(vf,&og); if(result<0) goto seek_error; if(ogg_page_granulepos(&og)>-1 || !ogg_page_continued(&og)){ return ov_raw_seek(vf,result); } vf->offset=result; } } if(result<0){ result = OV_EBADPACKET; goto seek_error; } if(op.granulepos!=-1){ vf->pcm_offset=op.granulepos-vf->pcmlengths[vf->current_link*2]; if(vf->pcm_offset<0)vf->pcm_offset=0; vf->pcm_offset+=total; break; }else result=ogg_stream_packetout(&vf->os,NULL); } } } /* verify result */ if(vf->pcm_offset>pos || pos>ov_pcm_total(vf,-1)){ result=OV_EFAULT; goto seek_error; } vf->bittrack=0.f; vf->samptrack=0.f; return(0); seek_error: /* dump machine so we're in a known state */ vf->pcm_offset=-1; _decode_clear(vf); return (int)result; } /* seek to a sample offset relative to the decompressed pcm stream returns zero on success, nonzero on failure */ int ov_pcm_seek(OggVorbis_File *vf,ogg_int64_t pos){ int thisblock,lastblock=0; int ret=ov_pcm_seek_page(vf,pos); if(ret<0)return(ret); if((ret=_make_decode_ready(vf)))return ret; /* discard leading packets we don't need for the lapping of the position we want; don't decode them */ while(1){ ogg_packet op; ogg_page og; int ret=ogg_stream_packetpeek(&vf->os,&op); if(ret>0){ thisblock=vorbis_packet_blocksize(vf->vi+vf->current_link,&op); if(thisblock<0){ ogg_stream_packetout(&vf->os,NULL); continue; /* non audio packet */ } if(lastblock)vf->pcm_offset+=(lastblock+thisblock)>>2; if(vf->pcm_offset+((thisblock+ vorbis_info_blocksize(vf->vi,1))>>2)>=pos)break; /* remove the packet from packet queue and track its granulepos */ ogg_stream_packetout(&vf->os,NULL); vorbis_synthesis_trackonly(&vf->vb,&op); /* set up a vb with only tracking, no pcm_decode */ vorbis_synthesis_blockin(&vf->vd,&vf->vb); /* end of logical stream case is hard, especially with exact length positioning. */ if(op.granulepos>-1){ int i; /* always believe the stream markers */ vf->pcm_offset=op.granulepos-vf->pcmlengths[vf->current_link*2]; if(vf->pcm_offset<0)vf->pcm_offset=0; for(i=0;icurrent_link;i++) vf->pcm_offset+=vf->pcmlengths[i*2+1]; } lastblock=thisblock; }else{ if(ret<0 && ret!=OV_HOLE)break; /* suck in a new page */ if(_get_next_page(vf,&og,-1)<0)break; if(vf->current_serialno!=ogg_page_serialno(&og))_decode_clear(vf); if(vf->ready_statecurrent_serialno=ogg_page_serialno(&og); for(link=0;linklinks;link++) if(vf->serialnos[link]==vf->current_serialno)break; if(link==vf->links)return(OV_EBADLINK); vf->current_link=link; ogg_stream_reset_serialno(&vf->os,vf->current_serialno); vf->ready_state=STREAMSET; ret=_make_decode_ready(vf); if(ret)return ret; lastblock=0; } ogg_stream_pagein(&vf->os,&og); } } vf->bittrack=0.f; vf->samptrack=0.f; /* discard samples until we reach the desired position. Crossing a logical bitstream boundary with abandon is OK. */ while(vf->pcm_offsetpcm_offset; long samples=vorbis_synthesis_pcmout(&vf->vd,NULL); if(samples>target)samples=target; vorbis_synthesis_read(&vf->vd,samples); vf->pcm_offset+=samples; if(samplespcm_offset=ov_pcm_total(vf,-1); /* eof */ } return 0; } /* seek to a playback time relative to the decompressed pcm stream returns zero on success, nonzero on failure */ int ov_time_seek(OggVorbis_File *vf,double seconds){ /* translate time to PCM position and call ov_pcm_seek */ int link=-1; ogg_int64_t pcm_total=ov_pcm_total(vf,-1); double time_total=ov_time_total(vf,-1); if(vf->ready_stateseekable)return(OV_ENOSEEK); if(seconds<0 || seconds>time_total)return(OV_EINVAL); /* which bitstream section does this time offset occur in? */ for(link=vf->links-1;link>=0;link--){ pcm_total-=vf->pcmlengths[link*2+1]; time_total-=ov_time_total(vf,link); if(seconds>=time_total)break; } /* enough information to convert time offset to pcm offset */ { ogg_int64_t target=pcm_total+(seconds-time_total)*vf->vi[link].rate; return(ov_pcm_seek(vf,target)); } } /* page-granularity version of ov_time_seek returns zero on success, nonzero on failure */ int ov_time_seek_page(OggVorbis_File *vf,double seconds){ /* translate time to PCM position and call ov_pcm_seek */ int link=-1; ogg_int64_t pcm_total=ov_pcm_total(vf,-1); double time_total=ov_time_total(vf,-1); if(vf->ready_stateseekable)return(OV_ENOSEEK); if(seconds<0 || seconds>time_total)return(OV_EINVAL); /* which bitstream section does this time offset occur in? */ for(link=vf->links-1;link>=0;link--){ pcm_total-=vf->pcmlengths[link*2+1]; time_total-=ov_time_total(vf,link); if(seconds>=time_total)break; } /* enough information to convert time offset to pcm offset */ { ogg_int64_t target=pcm_total+(seconds-time_total)*vf->vi[link].rate; return(ov_pcm_seek_page(vf,target)); } } /* tell the current stream offset cursor. Note that seek followed by tell will likely not give the set offset due to caching */ ogg_int64_t ov_raw_tell(OggVorbis_File *vf){ if(vf->ready_stateoffset); } /* return PCM offset (sample) of next PCM sample to be read */ ogg_int64_t ov_pcm_tell(OggVorbis_File *vf){ if(vf->ready_statepcm_offset); } /* return time offset (seconds) of next PCM sample to be read */ double ov_time_tell(OggVorbis_File *vf){ int link=0; ogg_int64_t pcm_total=0; double time_total=0.f; if(vf->ready_stateseekable){ pcm_total=ov_pcm_total(vf,-1); time_total=ov_time_total(vf,-1); /* which bitstream section does this time offset occur in? */ for(link=vf->links-1;link>=0;link--){ pcm_total-=vf->pcmlengths[link*2+1]; time_total-=ov_time_total(vf,link); if(vf->pcm_offset>=pcm_total)break; } } return((double)time_total+(double)(vf->pcm_offset-pcm_total)/vf->vi[link].rate); } /* link: -1) return the vorbis_info struct for the bitstream section currently being decoded 0-n) to request information for a specific bitstream section In the case of a non-seekable bitstream, any call returns the current bitstream. NULL in the case that the machine is not initialized */ vorbis_info *ov_info(OggVorbis_File *vf,int link){ if(vf->seekable){ if(link<0) if(vf->ready_state>=STREAMSET) return vf->vi+vf->current_link; else return vf->vi; else if(link>=vf->links) return NULL; else return vf->vi+link; }else{ return vf->vi; } } /* grr, strong typing, grr, no templates/inheritence, grr */ vorbis_comment *ov_comment(OggVorbis_File *vf,int link){ if(vf->seekable){ if(link<0) if(vf->ready_state>=STREAMSET) return vf->vc+vf->current_link; else return vf->vc; else if(link>=vf->links) return NULL; else return vf->vc+link; }else{ return vf->vc; } } static int host_is_big_endian() { ogg_int32_t pattern = 0xfeedface; /* deadbeef */ unsigned char *bytewise = (unsigned char *)&pattern; if (bytewise[0] == 0xfe) return 1; return 0; } /* up to this point, everything could more or less hide the multiple logical bitstream nature of chaining from the toplevel application if the toplevel application didn't particularly care. However, at the point that we actually read audio back, the multiple-section nature must surface: Multiple bitstream sections do not necessarily have to have the same number of channels or sampling rate. ov_read returns the sequential logical bitstream number currently being decoded along with the PCM data in order that the toplevel application can take action on channel/sample rate changes. This number will be incremented even for streamed (non-seekable) streams (for seekable streams, it represents the actual logical bitstream index within the physical bitstream. Note that the accessor functions above are aware of this dichotomy). input values: buffer) a buffer to hold packed PCM data for return length) the byte length requested to be placed into buffer bigendianp) should the data be packed LSB first (0) or MSB first (1) word) word size for output. currently 1 (byte) or 2 (16 bit short) return values: <0) error/hole in data (OV_HOLE), partial open (OV_EINVAL) 0) EOF n) number of bytes of PCM actually returned. The below works on a packet-by-packet basis, so the return length is not related to the 'length' passed in, just guaranteed to fit. *section) set to the logical bitstream number */ long ov_read(OggVorbis_File *vf,char *buffer,int length, int bigendianp,int word,int sgned,int *bitstream){ int i,j; int host_endian = host_is_big_endian(); float **pcm; long samples; if(vf->ready_stateready_state==INITSET){ samples=vorbis_synthesis_pcmout(&vf->vd,&pcm); if(samples)break; } /* suck in another packet */ { int ret=_fetch_and_process_packet(vf,NULL,1,1); if(ret==OV_EOF) return(0); if(ret<=0) return(ret); } } if(samples>0){ /* yay! proceed to pack data into the byte buffer */ long channels=ov_info(vf,-1)->channels; long bytespersample=word * channels; vorbis_fpu_control fpu; (void) fpu; // (to avoid a warning about it being unused) if(samples>length/bytespersample)samples=length/bytespersample; if(samples <= 0) return OV_EINVAL; /* a tight loop to pack each size */ { int val; if(word==1){ int off=(sgned?0:128); vorbis_fpu_setround(&fpu); for(j=0;j127)val=127; else if(val<-128)val=-128; *buffer++=val+off; } vorbis_fpu_restore(fpu); }else{ int off=(sgned?0:32768); if(host_endian==bigendianp){ if(sgned){ vorbis_fpu_setround(&fpu); for(i=0;i32767)val=32767; else if(val<-32768)val=-32768; *dest=val; dest+=channels; } } vorbis_fpu_restore(fpu); }else{ vorbis_fpu_setround(&fpu); for(i=0;i32767)val=32767; else if(val<-32768)val=-32768; *dest=val+off; dest+=channels; } } vorbis_fpu_restore(fpu); } }else if(bigendianp){ vorbis_fpu_setround(&fpu); for(j=0;j32767)val=32767; else if(val<-32768)val=-32768; val+=off; *buffer++=(val>>8); *buffer++=(val&0xff); } vorbis_fpu_restore(fpu); }else{ int val; vorbis_fpu_setround(&fpu); for(j=0;j32767)val=32767; else if(val<-32768)val=-32768; val+=off; *buffer++=(val&0xff); *buffer++=(val>>8); } vorbis_fpu_restore(fpu); } } } vorbis_synthesis_read(&vf->vd,samples); vf->pcm_offset+=samples; if(bitstream)*bitstream=vf->current_link; return(samples*bytespersample); }else{ return(samples); } } /* input values: pcm_channels) a float vector per channel of output length) the sample length being read by the app return values: <0) error/hole in data (OV_HOLE), partial open (OV_EINVAL) 0) EOF n) number of samples of PCM actually returned. The below works on a packet-by-packet basis, so the return length is not related to the 'length' passed in, just guaranteed to fit. *section) set to the logical bitstream number */ long ov_read_float(OggVorbis_File *vf,float ***pcm_channels,int length, int *bitstream){ if(vf->ready_stateready_state==INITSET){ float **pcm; long samples=vorbis_synthesis_pcmout(&vf->vd,&pcm); if(samples){ if(pcm_channels)*pcm_channels=pcm; if(samples>length)samples=length; vorbis_synthesis_read(&vf->vd,samples); vf->pcm_offset+=samples; if(bitstream)*bitstream=vf->current_link; return samples; } } /* suck in another packet */ { int ret=_fetch_and_process_packet(vf,NULL,1,1); if(ret==OV_EOF)return(0); if(ret<=0)return(ret); } } } extern float *vorbis_window(vorbis_dsp_state *v,int W); extern void _analysis_output_always(const char *base,int i,float *v,int n,int bark,int dB, ogg_int64_t off); static void _ov_splice(float **pcm,float **lappcm, int n1, int n2, int ch1, int ch2, float *w1, float *w2){ int i,j; float *w=w1; int n=n1; if(n1>n2){ n=n2; w=w2; } /* splice */ for(j=0;jready_state==INITSET)break; /* suck in another packet */ { int ret=_fetch_and_process_packet(vf,NULL,1,0); if(ret<0 && ret!=OV_HOLE)return(ret); } } return 0; } /* make sure vf is INITSET and that we have a primed buffer; if we're crosslapping at a stream section boundary, this also makes sure we're sanity checking against the right stream information */ static int _ov_initprime(OggVorbis_File *vf){ vorbis_dsp_state *vd=&vf->vd; while(1){ if(vf->ready_state==INITSET) if(vorbis_synthesis_pcmout(vd,NULL))break; /* suck in another packet */ { int ret=_fetch_and_process_packet(vf,NULL,1,0); if(ret<0 && ret!=OV_HOLE)return(ret); } } return 0; } /* grab enough data for lapping from vf; this may be in the form of unreturned, already-decoded pcm, remaining PCM we will need to decode, or synthetic postextrapolation from last packets. */ static void _ov_getlap(OggVorbis_File *vf,vorbis_info *vi,vorbis_dsp_state *vd, float **lappcm,int lapsize){ int lapcount=0,i; float **pcm; /* try first to decode the lapping data */ while(lapcountlapsize-lapcount)samples=lapsize-lapcount; for(i=0;ichannels;i++) memcpy(lappcm[i]+lapcount,pcm[i],sizeof(**pcm)*samples); lapcount+=samples; vorbis_synthesis_read(vd,samples); }else{ /* suck in another packet */ int ret=_fetch_and_process_packet(vf,NULL,1,0); /* do *not* span */ if(ret==OV_EOF)break; } } if(lapcountvd,&pcm); if(samples==0){ for(i=0;ichannels;i++) memset(lappcm[i]+lapcount,0,sizeof(**pcm)*lapsize-lapcount); lapcount=lapsize; }else{ if(samples>lapsize-lapcount)samples=lapsize-lapcount; for(i=0;ichannels;i++) memcpy(lappcm[i]+lapcount,pcm[i],sizeof(**pcm)*samples); lapcount+=samples; } } } /* this sets up crosslapping of a sample by using trailing data from sample 1 and lapping it into the windowing buffer of sample 2 */ int ov_crosslap(OggVorbis_File *vf1, OggVorbis_File *vf2){ vorbis_info *vi1,*vi2; float **lappcm; float **pcm; float *w1,*w2; int n1,n2,i,ret,hs1,hs2; if(vf1==vf2)return(0); /* degenerate case */ if(vf1->ready_stateready_statechannels); n1=vorbis_info_blocksize(vi1,0)>>(1+hs1); n2=vorbis_info_blocksize(vi2,0)>>(1+hs2); w1=vorbis_window(&vf1->vd,0); w2=vorbis_window(&vf2->vd,0); for(i=0;ichannels;i++) lappcm[i]=(float*) alloca(sizeof(**lappcm)*n1); _ov_getlap(vf1,vi1,&vf1->vd,lappcm,n1); /* have a lapping buffer from vf1; now to splice it into the lapping buffer of vf2 */ /* consolidate and expose the buffer. */ vorbis_synthesis_lapout(&vf2->vd,&pcm); _analysis_output_always("pcmL",0,pcm[0],n1*2,0,0,0); _analysis_output_always("pcmR",0,pcm[1],n1*2,0,0,0); /* splice */ _ov_splice(pcm,lappcm,n1,n2,vi1->channels,vi2->channels,w1,w2); /* done */ return(0); } static int _ov_64_seek_lap(OggVorbis_File *vf,ogg_int64_t pos, int (*localseek)(OggVorbis_File *,ogg_int64_t)){ vorbis_info *vi; float **lappcm; float **pcm; float *w1,*w2; int n1,n2,ch1,ch2,hs; int i,ret; if(vf->ready_statechannels; n1=vorbis_info_blocksize(vi,0)>>(1+hs); w1=vorbis_window(&vf->vd,0); /* window arrays from libvorbis are persistent; even if the decode state from this link gets dumped, this window array continues to exist */ lappcm=(float**) alloca(sizeof(*lappcm)*ch1); for(i=0;ivd,lappcm,n1); /* have lapping data; seek and prime the buffer */ ret=localseek(vf,pos); if(ret)return ret; ret=_ov_initprime(vf); if(ret)return(ret); /* Guard against cross-link changes; they're perfectly legal */ vi=ov_info(vf,-1); ch2=vi->channels; n2=vorbis_info_blocksize(vi,0)>>(1+hs); w2=vorbis_window(&vf->vd,0); /* consolidate and expose the buffer. */ vorbis_synthesis_lapout(&vf->vd,&pcm); /* splice */ _ov_splice(pcm,lappcm,n1,n2,ch1,ch2,w1,w2); /* done */ return(0); } int ov_raw_seek_lap(OggVorbis_File *vf,ogg_int64_t pos){ return _ov_64_seek_lap(vf,pos,ov_raw_seek); } int ov_pcm_seek_lap(OggVorbis_File *vf,ogg_int64_t pos){ return _ov_64_seek_lap(vf,pos,ov_pcm_seek); } int ov_pcm_seek_page_lap(OggVorbis_File *vf,ogg_int64_t pos){ return _ov_64_seek_lap(vf,pos,ov_pcm_seek_page); } static int _ov_d_seek_lap(OggVorbis_File *vf,double pos, int (*localseek)(OggVorbis_File *,double)){ vorbis_info *vi; float **lappcm; float **pcm; float *w1,*w2; int n1,n2,ch1,ch2,hs; int i,ret; if(vf->ready_statechannels; n1=vorbis_info_blocksize(vi,0)>>(1+hs); w1=vorbis_window(&vf->vd,0); /* window arrays from libvorbis are persistent; even if the decode state from this link gets dumped, this window array continues to exist */ lappcm=(float**) alloca(sizeof(*lappcm)*ch1); for(i=0;ivd,lappcm,n1); /* have lapping data; seek and prime the buffer */ ret=localseek(vf,pos); if(ret)return ret; ret=_ov_initprime(vf); if(ret)return(ret); /* Guard against cross-link changes; they're perfectly legal */ vi=ov_info(vf,-1); ch2=vi->channels; n2=vorbis_info_blocksize(vi,0)>>(1+hs); w2=vorbis_window(&vf->vd,0); /* consolidate and expose the buffer. */ vorbis_synthesis_lapout(&vf->vd,&pcm); /* splice */ _ov_splice(pcm,lappcm,n1,n2,ch1,ch2,w1,w2); /* done */ return(0); } int ov_time_seek_lap(OggVorbis_File *vf,double pos){ return _ov_d_seek_lap(vf,pos,ov_time_seek); } int ov_time_seek_page_lap(OggVorbis_File *vf,double pos){ return _ov_d_seek_lap(vf,pos,ov_time_seek_page); } #endif /********* End of inlined file: vorbisfile.c *********/ /********* Start of inlined file: window.c *********/ /********* Start of inlined file: juce_OggVorbisHeader.h *********/ // This file is included at the start of each Ogg-Vorbis .c file, just to do a few housekeeping // tasks.. #if JUCE_MSVC #pragma warning (disable: 4267 4127 4244 4996 4100 4701 4702 4013 4133 4206 4305 4189 4706) #endif /********* End of inlined file: juce_OggVorbisHeader.h *********/ #if JUCE_USE_OGGVORBIS #include #include static float vwin64[32] = { 0.0009460463F, 0.0085006468F, 0.0235352254F, 0.0458950567F, 0.0753351908F, 0.1115073077F, 0.1539457973F, 0.2020557475F, 0.2551056759F, 0.3122276645F, 0.3724270287F, 0.4346027792F, 0.4975789974F, 0.5601459521F, 0.6211085051F, 0.6793382689F, 0.7338252629F, 0.7837245849F, 0.8283939355F, 0.8674186656F, 0.9006222429F, 0.9280614787F, 0.9500073081F, 0.9669131782F, 0.9793740220F, 0.9880792941F, 0.9937636139F, 0.9971582668F, 0.9989462667F, 0.9997230082F, 0.9999638688F, 0.9999995525F, }; static float vwin128[64] = { 0.0002365472F, 0.0021280687F, 0.0059065254F, 0.0115626550F, 0.0190823442F, 0.0284463735F, 0.0396300935F, 0.0526030430F, 0.0673285281F, 0.0837631763F, 0.1018564887F, 0.1215504095F, 0.1427789367F, 0.1654677960F, 0.1895342001F, 0.2148867160F, 0.2414252576F, 0.2690412240F, 0.2976177952F, 0.3270303960F, 0.3571473350F, 0.3878306189F, 0.4189369387F, 0.4503188188F, 0.4818259135F, 0.5133064334F, 0.5446086751F, 0.5755826278F, 0.6060816248F, 0.6359640047F, 0.6650947483F, 0.6933470543F, 0.7206038179F, 0.7467589810F, 0.7717187213F, 0.7954024542F, 0.8177436264F, 0.8386902831F, 0.8582053981F, 0.8762669622F, 0.8928678298F, 0.9080153310F, 0.9217306608F, 0.9340480615F, 0.9450138200F, 0.9546851041F, 0.9631286621F, 0.9704194171F, 0.9766389810F, 0.9818741197F, 0.9862151938F, 0.9897546035F, 0.9925852598F, 0.9947991032F, 0.9964856900F, 0.9977308602F, 0.9986155015F, 0.9992144193F, 0.9995953200F, 0.9998179155F, 0.9999331503F, 0.9999825563F, 0.9999977357F, 0.9999999720F, }; static float vwin256[128] = { 0.0000591390F, 0.0005321979F, 0.0014780301F, 0.0028960636F, 0.0047854363F, 0.0071449926F, 0.0099732775F, 0.0132685298F, 0.0170286741F, 0.0212513119F, 0.0259337111F, 0.0310727950F, 0.0366651302F, 0.0427069140F, 0.0491939614F, 0.0561216907F, 0.0634851102F, 0.0712788035F, 0.0794969160F, 0.0881331402F, 0.0971807028F, 0.1066323515F, 0.1164803426F, 0.1267164297F, 0.1373318534F, 0.1483173323F, 0.1596630553F, 0.1713586755F, 0.1833933062F, 0.1957555184F, 0.2084333404F, 0.2214142599F, 0.2346852280F, 0.2482326664F, 0.2620424757F, 0.2761000481F, 0.2903902813F, 0.3048975959F, 0.3196059553F, 0.3344988887F, 0.3495595160F, 0.3647705766F, 0.3801144597F, 0.3955732382F, 0.4111287047F, 0.4267624093F, 0.4424557009F, 0.4581897696F, 0.4739456913F, 0.4897044744F, 0.5054471075F, 0.5211546088F, 0.5368080763F, 0.5523887395F, 0.5678780103F, 0.5832575361F, 0.5985092508F, 0.6136154277F, 0.6285587300F, 0.6433222619F, 0.6578896175F, 0.6722449294F, 0.6863729144F, 0.7002589187F, 0.7138889597F, 0.7272497662F, 0.7403288154F, 0.7531143679F, 0.7655954985F, 0.7777621249F, 0.7896050322F, 0.8011158947F, 0.8122872932F, 0.8231127294F, 0.8335866365F, 0.8437043850F, 0.8534622861F, 0.8628575905F, 0.8718884835F, 0.8805540765F, 0.8888543947F, 0.8967903616F, 0.9043637797F, 0.9115773078F, 0.9184344360F, 0.9249394562F, 0.9310974312F, 0.9369141608F, 0.9423961446F, 0.9475505439F, 0.9523851406F, 0.9569082947F, 0.9611289005F, 0.9650563408F, 0.9687004405F, 0.9720714191F, 0.9751798427F, 0.9780365753F, 0.9806527301F, 0.9830396204F, 0.9852087111F, 0.9871715701F, 0.9889398207F, 0.9905250941F, 0.9919389832F, 0.9931929973F, 0.9942985174F, 0.9952667537F, 0.9961087037F, 0.9968351119F, 0.9974564312F, 0.9979827858F, 0.9984239359F, 0.9987892441F, 0.9990876435F, 0.9993276081F, 0.9995171241F, 0.9996636648F, 0.9997741654F, 0.9998550016F, 0.9999119692F, 0.9999502656F, 0.9999744742F, 0.9999885497F, 0.9999958064F, 0.9999989077F, 0.9999998584F, 0.9999999983F, }; static float vwin512[256] = { 0.0000147849F, 0.0001330607F, 0.0003695946F, 0.0007243509F, 0.0011972759F, 0.0017882983F, 0.0024973285F, 0.0033242588F, 0.0042689632F, 0.0053312973F, 0.0065110982F, 0.0078081841F, 0.0092223540F, 0.0107533880F, 0.0124010466F, 0.0141650703F, 0.0160451800F, 0.0180410758F, 0.0201524373F, 0.0223789233F, 0.0247201710F, 0.0271757958F, 0.0297453914F, 0.0324285286F, 0.0352247556F, 0.0381335972F, 0.0411545545F, 0.0442871045F, 0.0475306997F, 0.0508847676F, 0.0543487103F, 0.0579219038F, 0.0616036982F, 0.0653934164F, 0.0692903546F, 0.0732937809F, 0.0774029356F, 0.0816170305F, 0.0859352485F, 0.0903567428F, 0.0948806375F, 0.0995060259F, 0.1042319712F, 0.1090575056F, 0.1139816300F, 0.1190033137F, 0.1241214941F, 0.1293350764F, 0.1346429333F, 0.1400439046F, 0.1455367974F, 0.1511203852F, 0.1567934083F, 0.1625545735F, 0.1684025537F, 0.1743359881F, 0.1803534820F, 0.1864536069F, 0.1926349000F, 0.1988958650F, 0.2052349715F, 0.2116506555F, 0.2181413191F, 0.2247053313F, 0.2313410275F, 0.2380467105F, 0.2448206500F, 0.2516610835F, 0.2585662164F, 0.2655342226F, 0.2725632448F, 0.2796513950F, 0.2867967551F, 0.2939973773F, 0.3012512852F, 0.3085564739F, 0.3159109111F, 0.3233125375F, 0.3307592680F, 0.3382489922F, 0.3457795756F, 0.3533488602F, 0.3609546657F, 0.3685947904F, 0.3762670121F, 0.3839690896F, 0.3916987634F, 0.3994537572F, 0.4072317788F, 0.4150305215F, 0.4228476653F, 0.4306808783F, 0.4385278181F, 0.4463861329F, 0.4542534630F, 0.4621274424F, 0.4700057001F, 0.4778858615F, 0.4857655502F, 0.4936423891F, 0.5015140023F, 0.5093780165F, 0.5172320626F, 0.5250737772F, 0.5329008043F, 0.5407107971F, 0.5485014192F, 0.5562703465F, 0.5640152688F, 0.5717338914F, 0.5794239366F, 0.5870831457F, 0.5947092801F, 0.6023001235F, 0.6098534829F, 0.6173671907F, 0.6248391059F, 0.6322671161F, 0.6396491384F, 0.6469831217F, 0.6542670475F, 0.6614989319F, 0.6686768267F, 0.6757988210F, 0.6828630426F, 0.6898676592F, 0.6968108799F, 0.7036909564F, 0.7105061843F, 0.7172549043F, 0.7239355032F, 0.7305464154F, 0.7370861235F, 0.7435531598F, 0.7499461068F, 0.7562635986F, 0.7625043214F, 0.7686670148F, 0.7747504721F, 0.7807535410F, 0.7866751247F, 0.7925141825F, 0.7982697296F, 0.8039408387F, 0.8095266395F, 0.8150263196F, 0.8204391248F, 0.8257643590F, 0.8310013848F, 0.8361496236F, 0.8412085555F, 0.8461777194F, 0.8510567129F, 0.8558451924F, 0.8605428730F, 0.8651495278F, 0.8696649882F, 0.8740891432F, 0.8784219392F, 0.8826633797F, 0.8868135244F, 0.8908724888F, 0.8948404441F, 0.8987176157F, 0.9025042831F, 0.9062007791F, 0.9098074886F, 0.9133248482F, 0.9167533451F, 0.9200935163F, 0.9233459472F, 0.9265112712F, 0.9295901680F, 0.9325833632F, 0.9354916263F, 0.9383157705F, 0.9410566504F, 0.9437151618F, 0.9462922398F, 0.9487888576F, 0.9512060252F, 0.9535447882F, 0.9558062262F, 0.9579914516F, 0.9601016078F, 0.9621378683F, 0.9641014348F, 0.9659935361F, 0.9678154261F, 0.9695683830F, 0.9712537071F, 0.9728727198F, 0.9744267618F, 0.9759171916F, 0.9773453842F, 0.9787127293F, 0.9800206298F, 0.9812705006F, 0.9824637665F, 0.9836018613F, 0.9846862258F, 0.9857183066F, 0.9866995544F, 0.9876314227F, 0.9885153662F, 0.9893528393F, 0.9901452948F, 0.9908941823F, 0.9916009470F, 0.9922670279F, 0.9928938570F, 0.9934828574F, 0.9940354423F, 0.9945530133F, 0.9950369595F, 0.9954886562F, 0.9959094633F, 0.9963007242F, 0.9966637649F, 0.9969998925F, 0.9973103939F, 0.9975965351F, 0.9978595598F, 0.9981006885F, 0.9983211172F, 0.9985220166F, 0.9987045311F, 0.9988697776F, 0.9990188449F, 0.9991527924F, 0.9992726499F, 0.9993794157F, 0.9994740570F, 0.9995575079F, 0.9996306699F, 0.9996944099F, 0.9997495605F, 0.9997969190F, 0.9998372465F, 0.9998712678F, 0.9998996704F, 0.9999231041F, 0.9999421807F, 0.9999574732F, 0.9999695157F, 0.9999788026F, 0.9999857885F, 0.9999908879F, 0.9999944746F, 0.9999968817F, 0.9999984010F, 0.9999992833F, 0.9999997377F, 0.9999999317F, 0.9999999911F, 0.9999999999F, }; static float vwin1024[512] = { 0.0000036962F, 0.0000332659F, 0.0000924041F, 0.0001811086F, 0.0002993761F, 0.0004472021F, 0.0006245811F, 0.0008315063F, 0.0010679699F, 0.0013339631F, 0.0016294757F, 0.0019544965F, 0.0023090133F, 0.0026930125F, 0.0031064797F, 0.0035493989F, 0.0040217533F, 0.0045235250F, 0.0050546946F, 0.0056152418F, 0.0062051451F, 0.0068243817F, 0.0074729278F, 0.0081507582F, 0.0088578466F, 0.0095941655F, 0.0103596863F, 0.0111543789F, 0.0119782122F, 0.0128311538F, 0.0137131701F, 0.0146242260F, 0.0155642855F, 0.0165333111F, 0.0175312640F, 0.0185581042F, 0.0196137903F, 0.0206982797F, 0.0218115284F, 0.0229534910F, 0.0241241208F, 0.0253233698F, 0.0265511886F, 0.0278075263F, 0.0290923308F, 0.0304055484F, 0.0317471241F, 0.0331170013F, 0.0345151222F, 0.0359414274F, 0.0373958560F, 0.0388783456F, 0.0403888325F, 0.0419272511F, 0.0434935347F, 0.0450876148F, 0.0467094213F, 0.0483588828F, 0.0500359261F, 0.0517404765F, 0.0534724575F, 0.0552317913F, 0.0570183983F, 0.0588321971F, 0.0606731048F, 0.0625410369F, 0.0644359070F, 0.0663576272F, 0.0683061077F, 0.0702812571F, 0.0722829821F, 0.0743111878F, 0.0763657775F, 0.0784466526F, 0.0805537129F, 0.0826868561F, 0.0848459782F, 0.0870309736F, 0.0892417345F, 0.0914781514F, 0.0937401128F, 0.0960275056F, 0.0983402145F, 0.1006781223F, 0.1030411101F, 0.1054290568F, 0.1078418397F, 0.1102793336F, 0.1127414119F, 0.1152279457F, 0.1177388042F, 0.1202738544F, 0.1228329618F, 0.1254159892F, 0.1280227980F, 0.1306532471F, 0.1333071937F, 0.1359844927F, 0.1386849970F, 0.1414085575F, 0.1441550230F, 0.1469242403F, 0.1497160539F, 0.1525303063F, 0.1553668381F, 0.1582254875F, 0.1611060909F, 0.1640084822F, 0.1669324936F, 0.1698779549F, 0.1728446939F, 0.1758325362F, 0.1788413055F, 0.1818708232F, 0.1849209084F, 0.1879913785F, 0.1910820485F, 0.1941927312F, 0.1973232376F, 0.2004733764F, 0.2036429541F, 0.2068317752F, 0.2100396421F, 0.2132663552F, 0.2165117125F, 0.2197755102F, 0.2230575422F, 0.2263576007F, 0.2296754753F, 0.2330109540F, 0.2363638225F, 0.2397338646F, 0.2431208619F, 0.2465245941F, 0.2499448389F, 0.2533813719F, 0.2568339669F, 0.2603023956F, 0.2637864277F, 0.2672858312F, 0.2708003718F, 0.2743298135F, 0.2778739186F, 0.2814324472F, 0.2850051576F, 0.2885918065F, 0.2921921485F, 0.2958059366F, 0.2994329219F, 0.3030728538F, 0.3067254799F, 0.3103905462F, 0.3140677969F, 0.3177569747F, 0.3214578205F, 0.3251700736F, 0.3288934718F, 0.3326277513F, 0.3363726468F, 0.3401278914F, 0.3438932168F, 0.3476683533F, 0.3514530297F, 0.3552469734F, 0.3590499106F, 0.3628615659F, 0.3666816630F, 0.3705099239F, 0.3743460698F, 0.3781898204F, 0.3820408945F, 0.3858990095F, 0.3897638820F, 0.3936352274F, 0.3975127601F, 0.4013961936F, 0.4052852405F, 0.4091796123F, 0.4130790198F, 0.4169831732F, 0.4208917815F, 0.4248045534F, 0.4287211965F, 0.4326414181F, 0.4365649248F, 0.4404914225F, 0.4444206167F, 0.4483522125F, 0.4522859146F, 0.4562214270F, 0.4601584538F, 0.4640966984F, 0.4680358644F, 0.4719756548F, 0.4759157726F, 0.4798559209F, 0.4837958024F, 0.4877351199F, 0.4916735765F, 0.4956108751F, 0.4995467188F, 0.5034808109F, 0.5074128550F, 0.5113425550F, 0.5152696149F, 0.5191937395F, 0.5231146336F, 0.5270320028F, 0.5309455530F, 0.5348549910F, 0.5387600239F, 0.5426603597F, 0.5465557070F, 0.5504457754F, 0.5543302752F, 0.5582089175F, 0.5620814145F, 0.5659474793F, 0.5698068262F, 0.5736591704F, 0.5775042283F, 0.5813417176F, 0.5851713571F, 0.5889928670F, 0.5928059689F, 0.5966103856F, 0.6004058415F, 0.6041920626F, 0.6079687761F, 0.6117357113F, 0.6154925986F, 0.6192391705F, 0.6229751612F, 0.6267003064F, 0.6304143441F, 0.6341170137F, 0.6378080569F, 0.6414872173F, 0.6451542405F, 0.6488088741F, 0.6524508681F, 0.6560799742F, 0.6596959469F, 0.6632985424F, 0.6668875197F, 0.6704626398F, 0.6740236662F, 0.6775703649F, 0.6811025043F, 0.6846198554F, 0.6881221916F, 0.6916092892F, 0.6950809269F, 0.6985368861F, 0.7019769510F, 0.7054009085F, 0.7088085484F, 0.7121996632F, 0.7155740484F, 0.7189315023F, 0.7222718263F, 0.7255948245F, 0.7289003043F, 0.7321880760F, 0.7354579530F, 0.7387097518F, 0.7419432921F, 0.7451583966F, 0.7483548915F, 0.7515326059F, 0.7546913723F, 0.7578310265F, 0.7609514077F, 0.7640523581F, 0.7671337237F, 0.7701953535F, 0.7732371001F, 0.7762588195F, 0.7792603711F, 0.7822416178F, 0.7852024259F, 0.7881426654F, 0.7910622097F, 0.7939609356F, 0.7968387237F, 0.7996954579F, 0.8025310261F, 0.8053453193F, 0.8081382324F, 0.8109096638F, 0.8136595156F, 0.8163876936F, 0.8190941071F, 0.8217786690F, 0.8244412960F, 0.8270819086F, 0.8297004305F, 0.8322967896F, 0.8348709171F, 0.8374227481F, 0.8399522213F, 0.8424592789F, 0.8449438672F, 0.8474059356F, 0.8498454378F, 0.8522623306F, 0.8546565748F, 0.8570281348F, 0.8593769787F, 0.8617030779F, 0.8640064080F, 0.8662869477F, 0.8685446796F, 0.8707795899F, 0.8729916682F, 0.8751809079F, 0.8773473059F, 0.8794908626F, 0.8816115819F, 0.8837094713F, 0.8857845418F, 0.8878368079F, 0.8898662874F, 0.8918730019F, 0.8938569760F, 0.8958182380F, 0.8977568194F, 0.8996727552F, 0.9015660837F, 0.9034368465F, 0.9052850885F, 0.9071108577F, 0.9089142057F, 0.9106951869F, 0.9124538591F, 0.9141902832F, 0.9159045233F, 0.9175966464F, 0.9192667228F, 0.9209148257F, 0.9225410313F, 0.9241454187F, 0.9257280701F, 0.9272890704F, 0.9288285075F, 0.9303464720F, 0.9318430576F, 0.9333183603F, 0.9347724792F, 0.9362055158F, 0.9376175745F, 0.9390087622F, 0.9403791881F, 0.9417289644F, 0.9430582055F, 0.9443670283F, 0.9456555521F, 0.9469238986F, 0.9481721917F, 0.9494005577F, 0.9506091252F, 0.9517980248F, 0.9529673894F, 0.9541173540F, 0.9552480557F, 0.9563596334F, 0.9574522282F, 0.9585259830F, 0.9595810428F, 0.9606175542F, 0.9616356656F, 0.9626355274F, 0.9636172915F, 0.9645811114F, 0.9655271425F, 0.9664555414F, 0.9673664664F, 0.9682600774F, 0.9691365355F, 0.9699960034F, 0.9708386448F, 0.9716646250F, 0.9724741103F, 0.9732672685F, 0.9740442683F, 0.9748052795F, 0.9755504729F, 0.9762800205F, 0.9769940950F, 0.9776928703F, 0.9783765210F, 0.9790452223F, 0.9796991504F, 0.9803384823F, 0.9809633954F, 0.9815740679F, 0.9821706784F, 0.9827534063F, 0.9833224312F, 0.9838779332F, 0.9844200928F, 0.9849490910F, 0.9854651087F, 0.9859683274F, 0.9864589286F, 0.9869370940F, 0.9874030054F, 0.9878568447F, 0.9882987937F, 0.9887290343F, 0.9891477481F, 0.9895551169F, 0.9899513220F, 0.9903365446F, 0.9907109658F, 0.9910747662F, 0.9914281260F, 0.9917712252F, 0.9921042433F, 0.9924273593F, 0.9927407516F, 0.9930445982F, 0.9933390763F, 0.9936243626F, 0.9939006331F, 0.9941680631F, 0.9944268269F, 0.9946770982F, 0.9949190498F, 0.9951528537F, 0.9953786808F, 0.9955967011F, 0.9958070836F, 0.9960099963F, 0.9962056061F, 0.9963940787F, 0.9965755786F, 0.9967502693F, 0.9969183129F, 0.9970798704F, 0.9972351013F, 0.9973841640F, 0.9975272151F, 0.9976644103F, 0.9977959036F, 0.9979218476F, 0.9980423932F, 0.9981576901F, 0.9982678862F, 0.9983731278F, 0.9984735596F, 0.9985693247F, 0.9986605645F, 0.9987474186F, 0.9988300248F, 0.9989085193F, 0.9989830364F, 0.9990537085F, 0.9991206662F, 0.9991840382F, 0.9992439513F, 0.9993005303F, 0.9993538982F, 0.9994041757F, 0.9994514817F, 0.9994959330F, 0.9995376444F, 0.9995767286F, 0.9996132960F, 0.9996474550F, 0.9996793121F, 0.9997089710F, 0.9997365339F, 0.9997621003F, 0.9997857677F, 0.9998076311F, 0.9998277836F, 0.9998463156F, 0.9998633155F, 0.9998788692F, 0.9998930603F, 0.9999059701F, 0.9999176774F, 0.9999282586F, 0.9999377880F, 0.9999463370F, 0.9999539749F, 0.9999607685F, 0.9999667820F, 0.9999720773F, 0.9999767136F, 0.9999807479F, 0.9999842344F, 0.9999872249F, 0.9999897688F, 0.9999919127F, 0.9999937009F, 0.9999951749F, 0.9999963738F, 0.9999973342F, 0.9999980900F, 0.9999986724F, 0.9999991103F, 0.9999994297F, 0.9999996543F, 0.9999998049F, 0.9999999000F, 0.9999999552F, 0.9999999836F, 0.9999999957F, 0.9999999994F, 1.0000000000F, }; static float vwin2048[1024] = { 0.0000009241F, 0.0000083165F, 0.0000231014F, 0.0000452785F, 0.0000748476F, 0.0001118085F, 0.0001561608F, 0.0002079041F, 0.0002670379F, 0.0003335617F, 0.0004074748F, 0.0004887765F, 0.0005774661F, 0.0006735427F, 0.0007770054F, 0.0008878533F, 0.0010060853F, 0.0011317002F, 0.0012646969F, 0.0014050742F, 0.0015528307F, 0.0017079650F, 0.0018704756F, 0.0020403610F, 0.0022176196F, 0.0024022497F, 0.0025942495F, 0.0027936173F, 0.0030003511F, 0.0032144490F, 0.0034359088F, 0.0036647286F, 0.0039009061F, 0.0041444391F, 0.0043953253F, 0.0046535621F, 0.0049191472F, 0.0051920781F, 0.0054723520F, 0.0057599664F, 0.0060549184F, 0.0063572052F, 0.0066668239F, 0.0069837715F, 0.0073080449F, 0.0076396410F, 0.0079785566F, 0.0083247884F, 0.0086783330F, 0.0090391871F, 0.0094073470F, 0.0097828092F, 0.0101655700F, 0.0105556258F, 0.0109529726F, 0.0113576065F, 0.0117695237F, 0.0121887200F, 0.0126151913F, 0.0130489335F, 0.0134899422F, 0.0139382130F, 0.0143937415F, 0.0148565233F, 0.0153265536F, 0.0158038279F, 0.0162883413F, 0.0167800889F, 0.0172790660F, 0.0177852675F, 0.0182986882F, 0.0188193231F, 0.0193471668F, 0.0198822141F, 0.0204244594F, 0.0209738974F, 0.0215305225F, 0.0220943289F, 0.0226653109F, 0.0232434627F, 0.0238287784F, 0.0244212519F, 0.0250208772F, 0.0256276481F, 0.0262415582F, 0.0268626014F, 0.0274907711F, 0.0281260608F, 0.0287684638F, 0.0294179736F, 0.0300745833F, 0.0307382859F, 0.0314090747F, 0.0320869424F, 0.0327718819F, 0.0334638860F, 0.0341629474F, 0.0348690586F, 0.0355822122F, 0.0363024004F, 0.0370296157F, 0.0377638502F, 0.0385050960F, 0.0392533451F, 0.0400085896F, 0.0407708211F, 0.0415400315F, 0.0423162123F, 0.0430993552F, 0.0438894515F, 0.0446864926F, 0.0454904698F, 0.0463013742F, 0.0471191969F, 0.0479439288F, 0.0487755607F, 0.0496140836F, 0.0504594879F, 0.0513117642F, 0.0521709031F, 0.0530368949F, 0.0539097297F, 0.0547893979F, 0.0556758894F, 0.0565691941F, 0.0574693019F, 0.0583762026F, 0.0592898858F, 0.0602103410F, 0.0611375576F, 0.0620715250F, 0.0630122324F, 0.0639596688F, 0.0649138234F, 0.0658746848F, 0.0668422421F, 0.0678164838F, 0.0687973985F, 0.0697849746F, 0.0707792005F, 0.0717800645F, 0.0727875547F, 0.0738016591F, 0.0748223656F, 0.0758496620F, 0.0768835359F, 0.0779239751F, 0.0789709668F, 0.0800244985F, 0.0810845574F, 0.0821511306F, 0.0832242052F, 0.0843037679F, 0.0853898056F, 0.0864823050F, 0.0875812525F, 0.0886866347F, 0.0897984378F, 0.0909166480F, 0.0920412513F, 0.0931722338F, 0.0943095813F, 0.0954532795F, 0.0966033140F, 0.0977596702F, 0.0989223336F, 0.1000912894F, 0.1012665227F, 0.1024480185F, 0.1036357616F, 0.1048297369F, 0.1060299290F, 0.1072363224F, 0.1084489014F, 0.1096676504F, 0.1108925534F, 0.1121235946F, 0.1133607577F, 0.1146040267F, 0.1158533850F, 0.1171088163F, 0.1183703040F, 0.1196378312F, 0.1209113812F, 0.1221909370F, 0.1234764815F, 0.1247679974F, 0.1260654674F, 0.1273688740F, 0.1286781995F, 0.1299934263F, 0.1313145365F, 0.1326415121F, 0.1339743349F, 0.1353129866F, 0.1366574490F, 0.1380077035F, 0.1393637315F, 0.1407255141F, 0.1420930325F, 0.1434662677F, 0.1448452004F, 0.1462298115F, 0.1476200814F, 0.1490159906F, 0.1504175195F, 0.1518246482F, 0.1532373569F, 0.1546556253F, 0.1560794333F, 0.1575087606F, 0.1589435866F, 0.1603838909F, 0.1618296526F, 0.1632808509F, 0.1647374648F, 0.1661994731F, 0.1676668546F, 0.1691395880F, 0.1706176516F, 0.1721010238F, 0.1735896829F, 0.1750836068F, 0.1765827736F, 0.1780871610F, 0.1795967468F, 0.1811115084F, 0.1826314234F, 0.1841564689F, 0.1856866221F, 0.1872218600F, 0.1887621595F, 0.1903074974F, 0.1918578503F, 0.1934131947F, 0.1949735068F, 0.1965387630F, 0.1981089393F, 0.1996840117F, 0.2012639560F, 0.2028487479F, 0.2044383630F, 0.2060327766F, 0.2076319642F, 0.2092359007F, 0.2108445614F, 0.2124579211F, 0.2140759545F, 0.2156986364F, 0.2173259411F, 0.2189578432F, 0.2205943168F, 0.2222353361F, 0.2238808751F, 0.2255309076F, 0.2271854073F, 0.2288443480F, 0.2305077030F, 0.2321754457F, 0.2338475493F, 0.2355239869F, 0.2372047315F, 0.2388897560F, 0.2405790329F, 0.2422725350F, 0.2439702347F, 0.2456721043F, 0.2473781159F, 0.2490882418F, 0.2508024539F, 0.2525207240F, 0.2542430237F, 0.2559693248F, 0.2576995986F, 0.2594338166F, 0.2611719498F, 0.2629139695F, 0.2646598466F, 0.2664095520F, 0.2681630564F, 0.2699203304F, 0.2716813445F, 0.2734460691F, 0.2752144744F, 0.2769865307F, 0.2787622079F, 0.2805414760F, 0.2823243047F, 0.2841106637F, 0.2859005227F, 0.2876938509F, 0.2894906179F, 0.2912907928F, 0.2930943447F, 0.2949012426F, 0.2967114554F, 0.2985249520F, 0.3003417009F, 0.3021616708F, 0.3039848301F, 0.3058111471F, 0.3076405901F, 0.3094731273F, 0.3113087266F, 0.3131473560F, 0.3149889833F, 0.3168335762F, 0.3186811024F, 0.3205315294F, 0.3223848245F, 0.3242409552F, 0.3260998886F, 0.3279615918F, 0.3298260319F, 0.3316931758F, 0.3335629903F, 0.3354354423F, 0.3373104982F, 0.3391881247F, 0.3410682882F, 0.3429509551F, 0.3448360917F, 0.3467236642F, 0.3486136387F, 0.3505059811F, 0.3524006575F, 0.3542976336F, 0.3561968753F, 0.3580983482F, 0.3600020179F, 0.3619078499F, 0.3638158096F, 0.3657258625F, 0.3676379737F, 0.3695521086F, 0.3714682321F, 0.3733863094F, 0.3753063055F, 0.3772281852F, 0.3791519134F, 0.3810774548F, 0.3830047742F, 0.3849338362F, 0.3868646053F, 0.3887970459F, 0.3907311227F, 0.3926667998F, 0.3946040417F, 0.3965428125F, 0.3984830765F, 0.4004247978F, 0.4023679403F, 0.4043124683F, 0.4062583455F, 0.4082055359F, 0.4101540034F, 0.4121037117F, 0.4140546246F, 0.4160067058F, 0.4179599190F, 0.4199142277F, 0.4218695956F, 0.4238259861F, 0.4257833627F, 0.4277416888F, 0.4297009279F, 0.4316610433F, 0.4336219983F, 0.4355837562F, 0.4375462803F, 0.4395095337F, 0.4414734797F, 0.4434380815F, 0.4454033021F, 0.4473691046F, 0.4493354521F, 0.4513023078F, 0.4532696345F, 0.4552373954F, 0.4572055533F, 0.4591740713F, 0.4611429123F, 0.4631120393F, 0.4650814151F, 0.4670510028F, 0.4690207650F, 0.4709906649F, 0.4729606651F, 0.4749307287F, 0.4769008185F, 0.4788708972F, 0.4808409279F, 0.4828108732F, 0.4847806962F, 0.4867503597F, 0.4887198264F, 0.4906890593F, 0.4926580213F, 0.4946266753F, 0.4965949840F, 0.4985629105F, 0.5005304176F, 0.5024974683F, 0.5044640255F, 0.5064300522F, 0.5083955114F, 0.5103603659F, 0.5123245790F, 0.5142881136F, 0.5162509328F, 0.5182129997F, 0.5201742774F, 0.5221347290F, 0.5240943178F, 0.5260530070F, 0.5280107598F, 0.5299675395F, 0.5319233095F, 0.5338780330F, 0.5358316736F, 0.5377841946F, 0.5397355596F, 0.5416857320F, 0.5436346755F, 0.5455823538F, 0.5475287304F, 0.5494737691F, 0.5514174337F, 0.5533596881F, 0.5553004962F, 0.5572398218F, 0.5591776291F, 0.5611138821F, 0.5630485449F, 0.5649815818F, 0.5669129570F, 0.5688426349F, 0.5707705799F, 0.5726967564F, 0.5746211290F, 0.5765436624F, 0.5784643212F, 0.5803830702F, 0.5822998743F, 0.5842146984F, 0.5861275076F, 0.5880382669F, 0.5899469416F, 0.5918534968F, 0.5937578981F, 0.5956601107F, 0.5975601004F, 0.5994578326F, 0.6013532732F, 0.6032463880F, 0.6051371429F, 0.6070255039F, 0.6089114372F, 0.6107949090F, 0.6126758856F, 0.6145543334F, 0.6164302191F, 0.6183035092F, 0.6201741706F, 0.6220421700F, 0.6239074745F, 0.6257700513F, 0.6276298674F, 0.6294868903F, 0.6313410873F, 0.6331924262F, 0.6350408745F, 0.6368864001F, 0.6387289710F, 0.6405685552F, 0.6424051209F, 0.6442386364F, 0.6460690702F, 0.6478963910F, 0.6497205673F, 0.6515415682F, 0.6533593625F, 0.6551739194F, 0.6569852082F, 0.6587931984F, 0.6605978593F, 0.6623991609F, 0.6641970728F, 0.6659915652F, 0.6677826081F, 0.6695701718F, 0.6713542268F, 0.6731347437F, 0.6749116932F, 0.6766850461F, 0.6784547736F, 0.6802208469F, 0.6819832374F, 0.6837419164F, 0.6854968559F, 0.6872480275F, 0.6889954034F, 0.6907389556F, 0.6924786566F, 0.6942144788F, 0.6959463950F, 0.6976743780F, 0.6993984008F, 0.7011184365F, 0.7028344587F, 0.7045464407F, 0.7062543564F, 0.7079581796F, 0.7096578844F, 0.7113534450F, 0.7130448359F, 0.7147320316F, 0.7164150070F, 0.7180937371F, 0.7197681970F, 0.7214383620F, 0.7231042077F, 0.7247657098F, 0.7264228443F, 0.7280755871F, 0.7297239147F, 0.7313678035F, 0.7330072301F, 0.7346421715F, 0.7362726046F, 0.7378985069F, 0.7395198556F, 0.7411366285F, 0.7427488034F, 0.7443563584F, 0.7459592717F, 0.7475575218F, 0.7491510873F, 0.7507399471F, 0.7523240803F, 0.7539034661F, 0.7554780839F, 0.7570479136F, 0.7586129349F, 0.7601731279F, 0.7617284730F, 0.7632789506F, 0.7648245416F, 0.7663652267F, 0.7679009872F, 0.7694318044F, 0.7709576599F, 0.7724785354F, 0.7739944130F, 0.7755052749F, 0.7770111035F, 0.7785118815F, 0.7800075916F, 0.7814982170F, 0.7829837410F, 0.7844641472F, 0.7859394191F, 0.7874095408F, 0.7888744965F, 0.7903342706F, 0.7917888476F, 0.7932382124F, 0.7946823501F, 0.7961212460F, 0.7975548855F, 0.7989832544F, 0.8004063386F, 0.8018241244F, 0.8032365981F, 0.8046437463F, 0.8060455560F, 0.8074420141F, 0.8088331080F, 0.8102188253F, 0.8115991536F, 0.8129740810F, 0.8143435957F, 0.8157076861F, 0.8170663409F, 0.8184195489F, 0.8197672994F, 0.8211095817F, 0.8224463853F, 0.8237777001F, 0.8251035161F, 0.8264238235F, 0.8277386129F, 0.8290478750F, 0.8303516008F, 0.8316497814F, 0.8329424083F, 0.8342294731F, 0.8355109677F, 0.8367868841F, 0.8380572148F, 0.8393219523F, 0.8405810893F, 0.8418346190F, 0.8430825345F, 0.8443248294F, 0.8455614974F, 0.8467925323F, 0.8480179285F, 0.8492376802F, 0.8504517822F, 0.8516602292F, 0.8528630164F, 0.8540601391F, 0.8552515928F, 0.8564373733F, 0.8576174766F, 0.8587918990F, 0.8599606368F, 0.8611236868F, 0.8622810460F, 0.8634327113F, 0.8645786802F, 0.8657189504F, 0.8668535195F, 0.8679823857F, 0.8691055472F, 0.8702230025F, 0.8713347503F, 0.8724407896F, 0.8735411194F, 0.8746357394F, 0.8757246489F, 0.8768078479F, 0.8778853364F, 0.8789571146F, 0.8800231832F, 0.8810835427F, 0.8821381942F, 0.8831871387F, 0.8842303777F, 0.8852679127F, 0.8862997456F, 0.8873258784F, 0.8883463132F, 0.8893610527F, 0.8903700994F, 0.8913734562F, 0.8923711263F, 0.8933631129F, 0.8943494196F, 0.8953300500F, 0.8963050083F, 0.8972742985F, 0.8982379249F, 0.8991958922F, 0.9001482052F, 0.9010948688F, 0.9020358883F, 0.9029712690F, 0.9039010165F, 0.9048251367F, 0.9057436357F, 0.9066565195F, 0.9075637946F, 0.9084654678F, 0.9093615456F, 0.9102520353F, 0.9111369440F, 0.9120162792F, 0.9128900484F, 0.9137582595F, 0.9146209204F, 0.9154780394F, 0.9163296248F, 0.9171756853F, 0.9180162296F, 0.9188512667F, 0.9196808057F, 0.9205048559F, 0.9213234270F, 0.9221365285F, 0.9229441704F, 0.9237463629F, 0.9245431160F, 0.9253344404F, 0.9261203465F, 0.9269008453F, 0.9276759477F, 0.9284456648F, 0.9292100080F, 0.9299689889F, 0.9307226190F, 0.9314709103F, 0.9322138747F, 0.9329515245F, 0.9336838721F, 0.9344109300F, 0.9351327108F, 0.9358492275F, 0.9365604931F, 0.9372665208F, 0.9379673239F, 0.9386629160F, 0.9393533107F, 0.9400385220F, 0.9407185637F, 0.9413934501F, 0.9420631954F, 0.9427278141F, 0.9433873208F, 0.9440417304F, 0.9446910576F, 0.9453353176F, 0.9459745255F, 0.9466086968F, 0.9472378469F, 0.9478619915F, 0.9484811463F, 0.9490953274F, 0.9497045506F, 0.9503088323F, 0.9509081888F, 0.9515026365F, 0.9520921921F, 0.9526768723F, 0.9532566940F, 0.9538316742F, 0.9544018300F, 0.9549671786F, 0.9555277375F, 0.9560835241F, 0.9566345562F, 0.9571808513F, 0.9577224275F, 0.9582593027F, 0.9587914949F, 0.9593190225F, 0.9598419038F, 0.9603601571F, 0.9608738012F, 0.9613828546F, 0.9618873361F, 0.9623872646F, 0.9628826591F, 0.9633735388F, 0.9638599227F, 0.9643418303F, 0.9648192808F, 0.9652922939F, 0.9657608890F, 0.9662250860F, 0.9666849046F, 0.9671403646F, 0.9675914861F, 0.9680382891F, 0.9684807937F, 0.9689190202F, 0.9693529890F, 0.9697827203F, 0.9702082347F, 0.9706295529F, 0.9710466953F, 0.9714596828F, 0.9718685362F, 0.9722732762F, 0.9726739240F, 0.9730705005F, 0.9734630267F, 0.9738515239F, 0.9742360134F, 0.9746165163F, 0.9749930540F, 0.9753656481F, 0.9757343198F, 0.9760990909F, 0.9764599829F, 0.9768170175F, 0.9771702164F, 0.9775196013F, 0.9778651941F, 0.9782070167F, 0.9785450909F, 0.9788794388F, 0.9792100824F, 0.9795370437F, 0.9798603449F, 0.9801800080F, 0.9804960554F, 0.9808085092F, 0.9811173916F, 0.9814227251F, 0.9817245318F, 0.9820228343F, 0.9823176549F, 0.9826090160F, 0.9828969402F, 0.9831814498F, 0.9834625674F, 0.9837403156F, 0.9840147169F, 0.9842857939F, 0.9845535692F, 0.9848180654F, 0.9850793052F, 0.9853373113F, 0.9855921062F, 0.9858437127F, 0.9860921535F, 0.9863374512F, 0.9865796287F, 0.9868187085F, 0.9870547136F, 0.9872876664F, 0.9875175899F, 0.9877445067F, 0.9879684396F, 0.9881894112F, 0.9884074444F, 0.9886225619F, 0.9888347863F, 0.9890441404F, 0.9892506468F, 0.9894543284F, 0.9896552077F, 0.9898533074F, 0.9900486502F, 0.9902412587F, 0.9904311555F, 0.9906183633F, 0.9908029045F, 0.9909848019F, 0.9911640779F, 0.9913407550F, 0.9915148557F, 0.9916864025F, 0.9918554179F, 0.9920219241F, 0.9921859437F, 0.9923474989F, 0.9925066120F, 0.9926633054F, 0.9928176012F, 0.9929695218F, 0.9931190891F, 0.9932663254F, 0.9934112527F, 0.9935538932F, 0.9936942686F, 0.9938324012F, 0.9939683126F, 0.9941020248F, 0.9942335597F, 0.9943629388F, 0.9944901841F, 0.9946153170F, 0.9947383593F, 0.9948593325F, 0.9949782579F, 0.9950951572F, 0.9952100516F, 0.9953229625F, 0.9954339111F, 0.9955429186F, 0.9956500062F, 0.9957551948F, 0.9958585056F, 0.9959599593F, 0.9960595769F, 0.9961573792F, 0.9962533869F, 0.9963476206F, 0.9964401009F, 0.9965308483F, 0.9966198833F, 0.9967072261F, 0.9967928971F, 0.9968769164F, 0.9969593041F, 0.9970400804F, 0.9971192651F, 0.9971968781F, 0.9972729391F, 0.9973474680F, 0.9974204842F, 0.9974920074F, 0.9975620569F, 0.9976306521F, 0.9976978122F, 0.9977635565F, 0.9978279039F, 0.9978908736F, 0.9979524842F, 0.9980127547F, 0.9980717037F, 0.9981293499F, 0.9981857116F, 0.9982408073F, 0.9982946554F, 0.9983472739F, 0.9983986810F, 0.9984488947F, 0.9984979328F, 0.9985458132F, 0.9985925534F, 0.9986381711F, 0.9986826838F, 0.9987261086F, 0.9987684630F, 0.9988097640F, 0.9988500286F, 0.9988892738F, 0.9989275163F, 0.9989647727F, 0.9990010597F, 0.9990363938F, 0.9990707911F, 0.9991042679F, 0.9991368404F, 0.9991685244F, 0.9991993358F, 0.9992292905F, 0.9992584038F, 0.9992866914F, 0.9993141686F, 0.9993408506F, 0.9993667526F, 0.9993918895F, 0.9994162761F, 0.9994399273F, 0.9994628576F, 0.9994850815F, 0.9995066133F, 0.9995274672F, 0.9995476574F, 0.9995671978F, 0.9995861021F, 0.9996043841F, 0.9996220573F, 0.9996391352F, 0.9996556310F, 0.9996715579F, 0.9996869288F, 0.9997017568F, 0.9997160543F, 0.9997298342F, 0.9997431088F, 0.9997558905F, 0.9997681914F, 0.9997800236F, 0.9997913990F, 0.9998023292F, 0.9998128261F, 0.9998229009F, 0.9998325650F, 0.9998418296F, 0.9998507058F, 0.9998592044F, 0.9998673362F, 0.9998751117F, 0.9998825415F, 0.9998896358F, 0.9998964047F, 0.9999028584F, 0.9999090066F, 0.9999148590F, 0.9999204253F, 0.9999257148F, 0.9999307368F, 0.9999355003F, 0.9999400144F, 0.9999442878F, 0.9999483293F, 0.9999521472F, 0.9999557499F, 0.9999591457F, 0.9999623426F, 0.9999653483F, 0.9999681708F, 0.9999708175F, 0.9999732959F, 0.9999756132F, 0.9999777765F, 0.9999797928F, 0.9999816688F, 0.9999834113F, 0.9999850266F, 0.9999865211F, 0.9999879009F, 0.9999891721F, 0.9999903405F, 0.9999914118F, 0.9999923914F, 0.9999932849F, 0.9999940972F, 0.9999948336F, 0.9999954989F, 0.9999960978F, 0.9999966349F, 0.9999971146F, 0.9999975411F, 0.9999979185F, 0.9999982507F, 0.9999985414F, 0.9999987944F, 0.9999990129F, 0.9999992003F, 0.9999993596F, 0.9999994939F, 0.9999996059F, 0.9999996981F, 0.9999997732F, 0.9999998333F, 0.9999998805F, 0.9999999170F, 0.9999999444F, 0.9999999643F, 0.9999999784F, 0.9999999878F, 0.9999999937F, 0.9999999972F, 0.9999999990F, 0.9999999997F, 1.0000000000F, 1.0000000000F, }; static float vwin4096[2048] = { 0.0000002310F, 0.0000020791F, 0.0000057754F, 0.0000113197F, 0.0000187121F, 0.0000279526F, 0.0000390412F, 0.0000519777F, 0.0000667623F, 0.0000833949F, 0.0001018753F, 0.0001222036F, 0.0001443798F, 0.0001684037F, 0.0001942754F, 0.0002219947F, 0.0002515616F, 0.0002829761F, 0.0003162380F, 0.0003513472F, 0.0003883038F, 0.0004271076F, 0.0004677584F, 0.0005102563F, 0.0005546011F, 0.0006007928F, 0.0006488311F, 0.0006987160F, 0.0007504474F, 0.0008040251F, 0.0008594490F, 0.0009167191F, 0.0009758351F, 0.0010367969F, 0.0010996044F, 0.0011642574F, 0.0012307558F, 0.0012990994F, 0.0013692880F, 0.0014413216F, 0.0015151998F, 0.0015909226F, 0.0016684898F, 0.0017479011F, 0.0018291565F, 0.0019122556F, 0.0019971983F, 0.0020839845F, 0.0021726138F, 0.0022630861F, 0.0023554012F, 0.0024495588F, 0.0025455588F, 0.0026434008F, 0.0027430847F, 0.0028446103F, 0.0029479772F, 0.0030531853F, 0.0031602342F, 0.0032691238F, 0.0033798538F, 0.0034924239F, 0.0036068338F, 0.0037230833F, 0.0038411721F, 0.0039610999F, 0.0040828664F, 0.0042064714F, 0.0043319145F, 0.0044591954F, 0.0045883139F, 0.0047192696F, 0.0048520622F, 0.0049866914F, 0.0051231569F, 0.0052614583F, 0.0054015953F, 0.0055435676F, 0.0056873748F, 0.0058330166F, 0.0059804926F, 0.0061298026F, 0.0062809460F, 0.0064339226F, 0.0065887320F, 0.0067453738F, 0.0069038476F, 0.0070641531F, 0.0072262899F, 0.0073902575F, 0.0075560556F, 0.0077236838F, 0.0078931417F, 0.0080644288F, 0.0082375447F, 0.0084124891F, 0.0085892615F, 0.0087678614F, 0.0089482885F, 0.0091305422F, 0.0093146223F, 0.0095005281F, 0.0096882592F, 0.0098778153F, 0.0100691958F, 0.0102624002F, 0.0104574281F, 0.0106542791F, 0.0108529525F, 0.0110534480F, 0.0112557651F, 0.0114599032F, 0.0116658618F, 0.0118736405F, 0.0120832387F, 0.0122946560F, 0.0125078917F, 0.0127229454F, 0.0129398166F, 0.0131585046F, 0.0133790090F, 0.0136013292F, 0.0138254647F, 0.0140514149F, 0.0142791792F, 0.0145087572F, 0.0147401481F, 0.0149733515F, 0.0152083667F, 0.0154451932F, 0.0156838304F, 0.0159242777F, 0.0161665345F, 0.0164106001F, 0.0166564741F, 0.0169041557F, 0.0171536443F, 0.0174049393F, 0.0176580401F, 0.0179129461F, 0.0181696565F, 0.0184281708F, 0.0186884883F, 0.0189506084F, 0.0192145303F, 0.0194802535F, 0.0197477772F, 0.0200171008F, 0.0202882236F, 0.0205611449F, 0.0208358639F, 0.0211123801F, 0.0213906927F, 0.0216708011F, 0.0219527043F, 0.0222364019F, 0.0225218930F, 0.0228091769F, 0.0230982529F, 0.0233891203F, 0.0236817782F, 0.0239762259F, 0.0242724628F, 0.0245704880F, 0.0248703007F, 0.0251719002F, 0.0254752858F, 0.0257804565F, 0.0260874117F, 0.0263961506F, 0.0267066722F, 0.0270189760F, 0.0273330609F, 0.0276489263F, 0.0279665712F, 0.0282859949F, 0.0286071966F, 0.0289301753F, 0.0292549303F, 0.0295814607F, 0.0299097656F, 0.0302398442F, 0.0305716957F, 0.0309053191F, 0.0312407135F, 0.0315778782F, 0.0319168122F, 0.0322575145F, 0.0325999844F, 0.0329442209F, 0.0332902231F, 0.0336379900F, 0.0339875208F, 0.0343388146F, 0.0346918703F, 0.0350466871F, 0.0354032640F, 0.0357616000F, 0.0361216943F, 0.0364835458F, 0.0368471535F, 0.0372125166F, 0.0375796339F, 0.0379485046F, 0.0383191276F, 0.0386915020F, 0.0390656267F, 0.0394415008F, 0.0398191231F, 0.0401984927F, 0.0405796086F, 0.0409624698F, 0.0413470751F, 0.0417334235F, 0.0421215141F, 0.0425113457F, 0.0429029172F, 0.0432962277F, 0.0436912760F, 0.0440880610F, 0.0444865817F, 0.0448868370F, 0.0452888257F, 0.0456925468F, 0.0460979992F, 0.0465051816F, 0.0469140931F, 0.0473247325F, 0.0477370986F, 0.0481511902F, 0.0485670064F, 0.0489845458F, 0.0494038074F, 0.0498247899F, 0.0502474922F, 0.0506719131F, 0.0510980514F, 0.0515259060F, 0.0519554756F, 0.0523867590F, 0.0528197550F, 0.0532544624F, 0.0536908800F, 0.0541290066F, 0.0545688408F, 0.0550103815F, 0.0554536274F, 0.0558985772F, 0.0563452297F, 0.0567935837F, 0.0572436377F, 0.0576953907F, 0.0581488412F, 0.0586039880F, 0.0590608297F, 0.0595193651F, 0.0599795929F, 0.0604415117F, 0.0609051202F, 0.0613704170F, 0.0618374009F, 0.0623060704F, 0.0627764243F, 0.0632484611F, 0.0637221795F, 0.0641975781F, 0.0646746555F, 0.0651534104F, 0.0656338413F, 0.0661159469F, 0.0665997257F, 0.0670851763F, 0.0675722973F, 0.0680610873F, 0.0685515448F, 0.0690436684F, 0.0695374567F, 0.0700329081F, 0.0705300213F, 0.0710287947F, 0.0715292269F, 0.0720313163F, 0.0725350616F, 0.0730404612F, 0.0735475136F, 0.0740562172F, 0.0745665707F, 0.0750785723F, 0.0755922207F, 0.0761075143F, 0.0766244515F, 0.0771430307F, 0.0776632505F, 0.0781851092F, 0.0787086052F, 0.0792337371F, 0.0797605032F, 0.0802889018F, 0.0808189315F, 0.0813505905F, 0.0818838773F, 0.0824187903F, 0.0829553277F, 0.0834934881F, 0.0840332697F, 0.0845746708F, 0.0851176899F, 0.0856623252F, 0.0862085751F, 0.0867564379F, 0.0873059119F, 0.0878569954F, 0.0884096867F, 0.0889639840F, 0.0895198858F, 0.0900773902F, 0.0906364955F, 0.0911972000F, 0.0917595019F, 0.0923233995F, 0.0928888909F, 0.0934559745F, 0.0940246485F, 0.0945949110F, 0.0951667604F, 0.0957401946F, 0.0963152121F, 0.0968918109F, 0.0974699893F, 0.0980497454F, 0.0986310773F, 0.0992139832F, 0.0997984614F, 0.1003845098F, 0.1009721267F, 0.1015613101F, 0.1021520582F, 0.1027443692F, 0.1033382410F, 0.1039336718F, 0.1045306597F, 0.1051292027F, 0.1057292990F, 0.1063309466F, 0.1069341435F, 0.1075388878F, 0.1081451776F, 0.1087530108F, 0.1093623856F, 0.1099732998F, 0.1105857516F, 0.1111997389F, 0.1118152597F, 0.1124323121F, 0.1130508939F, 0.1136710032F, 0.1142926379F, 0.1149157960F, 0.1155404755F, 0.1161666742F, 0.1167943901F, 0.1174236211F, 0.1180543652F, 0.1186866202F, 0.1193203841F, 0.1199556548F, 0.1205924300F, 0.1212307078F, 0.1218704860F, 0.1225117624F, 0.1231545349F, 0.1237988013F, 0.1244445596F, 0.1250918074F, 0.1257405427F, 0.1263907632F, 0.1270424667F, 0.1276956512F, 0.1283503142F, 0.1290064537F, 0.1296640674F, 0.1303231530F, 0.1309837084F, 0.1316457312F, 0.1323092193F, 0.1329741703F, 0.1336405820F, 0.1343084520F, 0.1349777782F, 0.1356485582F, 0.1363207897F, 0.1369944704F, 0.1376695979F, 0.1383461700F, 0.1390241842F, 0.1397036384F, 0.1403845300F, 0.1410668567F, 0.1417506162F, 0.1424358061F, 0.1431224240F, 0.1438104674F, 0.1444999341F, 0.1451908216F, 0.1458831274F, 0.1465768492F, 0.1472719844F, 0.1479685308F, 0.1486664857F, 0.1493658468F, 0.1500666115F, 0.1507687775F, 0.1514723422F, 0.1521773031F, 0.1528836577F, 0.1535914035F, 0.1543005380F, 0.1550110587F, 0.1557229631F, 0.1564362485F, 0.1571509124F, 0.1578669524F, 0.1585843657F, 0.1593031499F, 0.1600233024F, 0.1607448205F, 0.1614677017F, 0.1621919433F, 0.1629175428F, 0.1636444975F, 0.1643728047F, 0.1651024619F, 0.1658334665F, 0.1665658156F, 0.1672995067F, 0.1680345371F, 0.1687709041F, 0.1695086050F, 0.1702476372F, 0.1709879978F, 0.1717296843F, 0.1724726938F, 0.1732170237F, 0.1739626711F, 0.1747096335F, 0.1754579079F, 0.1762074916F, 0.1769583819F, 0.1777105760F, 0.1784640710F, 0.1792188642F, 0.1799749529F, 0.1807323340F, 0.1814910049F, 0.1822509628F, 0.1830122046F, 0.1837747277F, 0.1845385292F, 0.1853036062F, 0.1860699558F, 0.1868375751F, 0.1876064613F, 0.1883766114F, 0.1891480226F, 0.1899206919F, 0.1906946164F, 0.1914697932F, 0.1922462194F, 0.1930238919F, 0.1938028079F, 0.1945829643F, 0.1953643583F, 0.1961469868F, 0.1969308468F, 0.1977159353F, 0.1985022494F, 0.1992897859F, 0.2000785420F, 0.2008685145F, 0.2016597005F, 0.2024520968F, 0.2032457005F, 0.2040405084F, 0.2048365175F, 0.2056337247F, 0.2064321269F, 0.2072317211F, 0.2080325041F, 0.2088344727F, 0.2096376240F, 0.2104419547F, 0.2112474618F, 0.2120541420F, 0.2128619923F, 0.2136710094F, 0.2144811902F, 0.2152925315F, 0.2161050301F, 0.2169186829F, 0.2177334866F, 0.2185494381F, 0.2193665340F, 0.2201847712F, 0.2210041465F, 0.2218246565F, 0.2226462981F, 0.2234690680F, 0.2242929629F, 0.2251179796F, 0.2259441147F, 0.2267713650F, 0.2275997272F, 0.2284291979F, 0.2292597739F, 0.2300914518F, 0.2309242283F, 0.2317581001F, 0.2325930638F, 0.2334291160F, 0.2342662534F, 0.2351044727F, 0.2359437703F, 0.2367841431F, 0.2376255875F, 0.2384681001F, 0.2393116776F, 0.2401563165F, 0.2410020134F, 0.2418487649F, 0.2426965675F, 0.2435454178F, 0.2443953122F, 0.2452462474F, 0.2460982199F, 0.2469512262F, 0.2478052628F, 0.2486603262F, 0.2495164129F, 0.2503735194F, 0.2512316421F, 0.2520907776F, 0.2529509222F, 0.2538120726F, 0.2546742250F, 0.2555373760F, 0.2564015219F, 0.2572666593F, 0.2581327845F, 0.2589998939F, 0.2598679840F, 0.2607370510F, 0.2616070916F, 0.2624781019F, 0.2633500783F, 0.2642230173F, 0.2650969152F, 0.2659717684F, 0.2668475731F, 0.2677243257F, 0.2686020226F, 0.2694806601F, 0.2703602344F, 0.2712407419F, 0.2721221789F, 0.2730045417F, 0.2738878265F, 0.2747720297F, 0.2756571474F, 0.2765431760F, 0.2774301117F, 0.2783179508F, 0.2792066895F, 0.2800963240F, 0.2809868505F, 0.2818782654F, 0.2827705647F, 0.2836637447F, 0.2845578016F, 0.2854527315F, 0.2863485307F, 0.2872451953F, 0.2881427215F, 0.2890411055F, 0.2899403433F, 0.2908404312F, 0.2917413654F, 0.2926431418F, 0.2935457567F, 0.2944492061F, 0.2953534863F, 0.2962585932F, 0.2971645230F, 0.2980712717F, 0.2989788356F, 0.2998872105F, 0.3007963927F, 0.3017063781F, 0.3026171629F, 0.3035287430F, 0.3044411145F, 0.3053542736F, 0.3062682161F, 0.3071829381F, 0.3080984356F, 0.3090147047F, 0.3099317413F, 0.3108495414F, 0.3117681011F, 0.3126874163F, 0.3136074830F, 0.3145282972F, 0.3154498548F, 0.3163721517F, 0.3172951841F, 0.3182189477F, 0.3191434385F, 0.3200686525F, 0.3209945856F, 0.3219212336F, 0.3228485927F, 0.3237766585F, 0.3247054271F, 0.3256348943F, 0.3265650560F, 0.3274959081F, 0.3284274465F, 0.3293596671F, 0.3302925657F, 0.3312261382F, 0.3321603804F, 0.3330952882F, 0.3340308574F, 0.3349670838F, 0.3359039634F, 0.3368414919F, 0.3377796651F, 0.3387184789F, 0.3396579290F, 0.3405980113F, 0.3415387216F, 0.3424800556F, 0.3434220091F, 0.3443645779F, 0.3453077578F, 0.3462515446F, 0.3471959340F, 0.3481409217F, 0.3490865036F, 0.3500326754F, 0.3509794328F, 0.3519267715F, 0.3528746873F, 0.3538231759F, 0.3547722330F, 0.3557218544F, 0.3566720357F, 0.3576227727F, 0.3585740610F, 0.3595258964F, 0.3604782745F, 0.3614311910F, 0.3623846417F, 0.3633386221F, 0.3642931280F, 0.3652481549F, 0.3662036987F, 0.3671597548F, 0.3681163191F, 0.3690733870F, 0.3700309544F, 0.3709890167F, 0.3719475696F, 0.3729066089F, 0.3738661299F, 0.3748261285F, 0.3757866002F, 0.3767475406F, 0.3777089453F, 0.3786708100F, 0.3796331302F, 0.3805959014F, 0.3815591194F, 0.3825227796F, 0.3834868777F, 0.3844514093F, 0.3854163698F, 0.3863817549F, 0.3873475601F, 0.3883137810F, 0.3892804131F, 0.3902474521F, 0.3912148933F, 0.3921827325F, 0.3931509650F, 0.3941195865F, 0.3950885925F, 0.3960579785F, 0.3970277400F, 0.3979978725F, 0.3989683716F, 0.3999392328F, 0.4009104516F, 0.4018820234F, 0.4028539438F, 0.4038262084F, 0.4047988125F, 0.4057717516F, 0.4067450214F, 0.4077186172F, 0.4086925345F, 0.4096667688F, 0.4106413155F, 0.4116161703F, 0.4125913284F, 0.4135667854F, 0.4145425368F, 0.4155185780F, 0.4164949044F, 0.4174715116F, 0.4184483949F, 0.4194255498F, 0.4204029718F, 0.4213806563F, 0.4223585987F, 0.4233367946F, 0.4243152392F, 0.4252939281F, 0.4262728566F, 0.4272520202F, 0.4282314144F, 0.4292110345F, 0.4301908760F, 0.4311709343F, 0.4321512047F, 0.4331316828F, 0.4341123639F, 0.4350932435F, 0.4360743168F, 0.4370555794F, 0.4380370267F, 0.4390186540F, 0.4400004567F, 0.4409824303F, 0.4419645701F, 0.4429468716F, 0.4439293300F, 0.4449119409F, 0.4458946996F, 0.4468776014F, 0.4478606418F, 0.4488438162F, 0.4498271199F, 0.4508105483F, 0.4517940967F, 0.4527777607F, 0.4537615355F, 0.4547454165F, 0.4557293991F, 0.4567134786F, 0.4576976505F, 0.4586819101F, 0.4596662527F, 0.4606506738F, 0.4616351687F, 0.4626197328F, 0.4636043614F, 0.4645890499F, 0.4655737936F, 0.4665585880F, 0.4675434284F, 0.4685283101F, 0.4695132286F, 0.4704981791F, 0.4714831570F, 0.4724681577F, 0.4734531766F, 0.4744382089F, 0.4754232501F, 0.4764082956F, 0.4773933406F, 0.4783783806F, 0.4793634108F, 0.4803484267F, 0.4813334237F, 0.4823183969F, 0.4833033419F, 0.4842882540F, 0.4852731285F, 0.4862579608F, 0.4872427462F, 0.4882274802F, 0.4892121580F, 0.4901967751F, 0.4911813267F, 0.4921658083F, 0.4931502151F, 0.4941345427F, 0.4951187863F, 0.4961029412F, 0.4970870029F, 0.4980709667F, 0.4990548280F, 0.5000385822F, 0.5010222245F, 0.5020057505F, 0.5029891553F, 0.5039724345F, 0.5049555834F, 0.5059385973F, 0.5069214716F, 0.5079042018F, 0.5088867831F, 0.5098692110F, 0.5108514808F, 0.5118335879F, 0.5128155277F, 0.5137972956F, 0.5147788869F, 0.5157602971F, 0.5167415215F, 0.5177225555F, 0.5187033945F, 0.5196840339F, 0.5206644692F, 0.5216446956F, 0.5226247086F, 0.5236045035F, 0.5245840759F, 0.5255634211F, 0.5265425344F, 0.5275214114F, 0.5285000474F, 0.5294784378F, 0.5304565781F, 0.5314344637F, 0.5324120899F, 0.5333894522F, 0.5343665461F, 0.5353433670F, 0.5363199102F, 0.5372961713F, 0.5382721457F, 0.5392478287F, 0.5402232159F, 0.5411983027F, 0.5421730845F, 0.5431475569F, 0.5441217151F, 0.5450955548F, 0.5460690714F, 0.5470422602F, 0.5480151169F, 0.5489876368F, 0.5499598155F, 0.5509316484F, 0.5519031310F, 0.5528742587F, 0.5538450271F, 0.5548154317F, 0.5557854680F, 0.5567551314F, 0.5577244174F, 0.5586933216F, 0.5596618395F, 0.5606299665F, 0.5615976983F, 0.5625650302F, 0.5635319580F, 0.5644984770F, 0.5654645828F, 0.5664302709F, 0.5673955370F, 0.5683603765F, 0.5693247850F, 0.5702887580F, 0.5712522912F, 0.5722153800F, 0.5731780200F, 0.5741402069F, 0.5751019362F, 0.5760632034F, 0.5770240042F, 0.5779843341F, 0.5789441889F, 0.5799035639F, 0.5808624549F, 0.5818208575F, 0.5827787673F, 0.5837361800F, 0.5846930910F, 0.5856494961F, 0.5866053910F, 0.5875607712F, 0.5885156324F, 0.5894699703F, 0.5904237804F, 0.5913770586F, 0.5923298004F, 0.5932820016F, 0.5942336578F, 0.5951847646F, 0.5961353179F, 0.5970853132F, 0.5980347464F, 0.5989836131F, 0.5999319090F, 0.6008796298F, 0.6018267713F, 0.6027733292F, 0.6037192993F, 0.6046646773F, 0.6056094589F, 0.6065536400F, 0.6074972162F, 0.6084401833F, 0.6093825372F, 0.6103242736F, 0.6112653884F, 0.6122058772F, 0.6131457359F, 0.6140849604F, 0.6150235464F, 0.6159614897F, 0.6168987862F, 0.6178354318F, 0.6187714223F, 0.6197067535F, 0.6206414213F, 0.6215754215F, 0.6225087501F, 0.6234414028F, 0.6243733757F, 0.6253046646F, 0.6262352654F, 0.6271651739F, 0.6280943862F, 0.6290228982F, 0.6299507057F, 0.6308778048F, 0.6318041913F, 0.6327298612F, 0.6336548105F, 0.6345790352F, 0.6355025312F, 0.6364252945F, 0.6373473211F, 0.6382686070F, 0.6391891483F, 0.6401089409F, 0.6410279808F, 0.6419462642F, 0.6428637869F, 0.6437805452F, 0.6446965350F, 0.6456117524F, 0.6465261935F, 0.6474398544F, 0.6483527311F, 0.6492648197F, 0.6501761165F, 0.6510866174F, 0.6519963186F, 0.6529052162F, 0.6538133064F, 0.6547205854F, 0.6556270492F, 0.6565326941F, 0.6574375162F, 0.6583415117F, 0.6592446769F, 0.6601470079F, 0.6610485009F, 0.6619491521F, 0.6628489578F, 0.6637479143F, 0.6646460177F, 0.6655432643F, 0.6664396505F, 0.6673351724F, 0.6682298264F, 0.6691236087F, 0.6700165157F, 0.6709085436F, 0.6717996889F, 0.6726899478F, 0.6735793167F, 0.6744677918F, 0.6753553697F, 0.6762420466F, 0.6771278190F, 0.6780126832F, 0.6788966357F, 0.6797796728F, 0.6806617909F, 0.6815429866F, 0.6824232562F, 0.6833025961F, 0.6841810030F, 0.6850584731F, 0.6859350031F, 0.6868105894F, 0.6876852284F, 0.6885589168F, 0.6894316510F, 0.6903034275F, 0.6911742430F, 0.6920440939F, 0.6929129769F, 0.6937808884F, 0.6946478251F, 0.6955137837F, 0.6963787606F, 0.6972427525F, 0.6981057560F, 0.6989677678F, 0.6998287845F, 0.7006888028F, 0.7015478194F, 0.7024058309F, 0.7032628340F, 0.7041188254F, 0.7049738019F, 0.7058277601F, 0.7066806969F, 0.7075326089F, 0.7083834929F, 0.7092333457F, 0.7100821640F, 0.7109299447F, 0.7117766846F, 0.7126223804F, 0.7134670291F, 0.7143106273F, 0.7151531721F, 0.7159946602F, 0.7168350885F, 0.7176744539F, 0.7185127534F, 0.7193499837F, 0.7201861418F, 0.7210212247F, 0.7218552293F, 0.7226881526F, 0.7235199914F, 0.7243507428F, 0.7251804039F, 0.7260089715F, 0.7268364426F, 0.7276628144F, 0.7284880839F, 0.7293122481F, 0.7301353040F, 0.7309572487F, 0.7317780794F, 0.7325977930F, 0.7334163868F, 0.7342338579F, 0.7350502033F, 0.7358654202F, 0.7366795059F, 0.7374924573F, 0.7383042718F, 0.7391149465F, 0.7399244787F, 0.7407328655F, 0.7415401041F, 0.7423461920F, 0.7431511261F, 0.7439549040F, 0.7447575227F, 0.7455589797F, 0.7463592723F, 0.7471583976F, 0.7479563532F, 0.7487531363F, 0.7495487443F, 0.7503431745F, 0.7511364244F, 0.7519284913F, 0.7527193726F, 0.7535090658F, 0.7542975683F, 0.7550848776F, 0.7558709910F, 0.7566559062F, 0.7574396205F, 0.7582221314F, 0.7590034366F, 0.7597835334F, 0.7605624194F, 0.7613400923F, 0.7621165495F, 0.7628917886F, 0.7636658072F, 0.7644386030F, 0.7652101735F, 0.7659805164F, 0.7667496292F, 0.7675175098F, 0.7682841556F, 0.7690495645F, 0.7698137341F, 0.7705766622F, 0.7713383463F, 0.7720987844F, 0.7728579741F, 0.7736159132F, 0.7743725994F, 0.7751280306F, 0.7758822046F, 0.7766351192F, 0.7773867722F, 0.7781371614F, 0.7788862848F, 0.7796341401F, 0.7803807253F, 0.7811260383F, 0.7818700769F, 0.7826128392F, 0.7833543230F, 0.7840945263F, 0.7848334471F, 0.7855710833F, 0.7863074330F, 0.7870424941F, 0.7877762647F, 0.7885087428F, 0.7892399264F, 0.7899698137F, 0.7906984026F, 0.7914256914F, 0.7921516780F, 0.7928763607F, 0.7935997375F, 0.7943218065F, 0.7950425661F, 0.7957620142F, 0.7964801492F, 0.7971969692F, 0.7979124724F, 0.7986266570F, 0.7993395214F, 0.8000510638F, 0.8007612823F, 0.8014701754F, 0.8021777413F, 0.8028839784F, 0.8035888849F, 0.8042924592F, 0.8049946997F, 0.8056956048F, 0.8063951727F, 0.8070934020F, 0.8077902910F, 0.8084858381F, 0.8091800419F, 0.8098729007F, 0.8105644130F, 0.8112545774F, 0.8119433922F, 0.8126308561F, 0.8133169676F, 0.8140017251F, 0.8146851272F, 0.8153671726F, 0.8160478598F, 0.8167271874F, 0.8174051539F, 0.8180817582F, 0.8187569986F, 0.8194308741F, 0.8201033831F, 0.8207745244F, 0.8214442966F, 0.8221126986F, 0.8227797290F, 0.8234453865F, 0.8241096700F, 0.8247725781F, 0.8254341097F, 0.8260942636F, 0.8267530385F, 0.8274104334F, 0.8280664470F, 0.8287210782F, 0.8293743259F, 0.8300261889F, 0.8306766662F, 0.8313257566F, 0.8319734591F, 0.8326197727F, 0.8332646963F, 0.8339082288F, 0.8345503692F, 0.8351911167F, 0.8358304700F, 0.8364684284F, 0.8371049907F, 0.8377401562F, 0.8383739238F, 0.8390062927F, 0.8396372618F, 0.8402668305F, 0.8408949977F, 0.8415217626F, 0.8421471245F, 0.8427710823F, 0.8433936354F, 0.8440147830F, 0.8446345242F, 0.8452528582F, 0.8458697844F, 0.8464853020F, 0.8470994102F, 0.8477121084F, 0.8483233958F, 0.8489332718F, 0.8495417356F, 0.8501487866F, 0.8507544243F, 0.8513586479F, 0.8519614568F, 0.8525628505F, 0.8531628283F, 0.8537613897F, 0.8543585341F, 0.8549542611F, 0.8555485699F, 0.8561414603F, 0.8567329315F, 0.8573229832F, 0.8579116149F, 0.8584988262F, 0.8590846165F, 0.8596689855F, 0.8602519327F, 0.8608334577F, 0.8614135603F, 0.8619922399F, 0.8625694962F, 0.8631453289F, 0.8637197377F, 0.8642927222F, 0.8648642821F, 0.8654344172F, 0.8660031272F, 0.8665704118F, 0.8671362708F, 0.8677007039F, 0.8682637109F, 0.8688252917F, 0.8693854460F, 0.8699441737F, 0.8705014745F, 0.8710573485F, 0.8716117953F, 0.8721648150F, 0.8727164073F, 0.8732665723F, 0.8738153098F, 0.8743626197F, 0.8749085021F, 0.8754529569F, 0.8759959840F, 0.8765375835F, 0.8770777553F, 0.8776164996F, 0.8781538162F, 0.8786897054F, 0.8792241670F, 0.8797572013F, 0.8802888082F, 0.8808189880F, 0.8813477407F, 0.8818750664F, 0.8824009653F, 0.8829254375F, 0.8834484833F, 0.8839701028F, 0.8844902961F, 0.8850090636F, 0.8855264054F, 0.8860423218F, 0.8865568131F, 0.8870698794F, 0.8875815212F, 0.8880917386F, 0.8886005319F, 0.8891079016F, 0.8896138479F, 0.8901183712F, 0.8906214719F, 0.8911231503F, 0.8916234067F, 0.8921222417F, 0.8926196556F, 0.8931156489F, 0.8936102219F, 0.8941033752F, 0.8945951092F, 0.8950854244F, 0.8955743212F, 0.8960618003F, 0.8965478621F, 0.8970325071F, 0.8975157359F, 0.8979975490F, 0.8984779471F, 0.8989569307F, 0.8994345004F, 0.8999106568F, 0.9003854005F, 0.9008587323F, 0.9013306526F, 0.9018011623F, 0.9022702619F, 0.9027379521F, 0.9032042337F, 0.9036691074F, 0.9041325739F, 0.9045946339F, 0.9050552882F, 0.9055145376F, 0.9059723828F, 0.9064288246F, 0.9068838638F, 0.9073375013F, 0.9077897379F, 0.9082405743F, 0.9086900115F, 0.9091380503F, 0.9095846917F, 0.9100299364F, 0.9104737854F, 0.9109162397F, 0.9113573001F, 0.9117969675F, 0.9122352430F, 0.9126721275F, 0.9131076219F, 0.9135417273F, 0.9139744447F, 0.9144057750F, 0.9148357194F, 0.9152642787F, 0.9156914542F, 0.9161172468F, 0.9165416576F, 0.9169646877F, 0.9173863382F, 0.9178066102F, 0.9182255048F, 0.9186430232F, 0.9190591665F, 0.9194739359F, 0.9198873324F, 0.9202993574F, 0.9207100120F, 0.9211192973F, 0.9215272147F, 0.9219337653F, 0.9223389504F, 0.9227427713F, 0.9231452290F, 0.9235463251F, 0.9239460607F, 0.9243444371F, 0.9247414557F, 0.9251371177F, 0.9255314245F, 0.9259243774F, 0.9263159778F, 0.9267062270F, 0.9270951264F, 0.9274826774F, 0.9278688814F, 0.9282537398F, 0.9286372540F, 0.9290194254F, 0.9294002555F, 0.9297797458F, 0.9301578976F, 0.9305347125F, 0.9309101919F, 0.9312843373F, 0.9316571503F, 0.9320286323F, 0.9323987849F, 0.9327676097F, 0.9331351080F, 0.9335012816F, 0.9338661320F, 0.9342296607F, 0.9345918694F, 0.9349527596F, 0.9353123330F, 0.9356705911F, 0.9360275357F, 0.9363831683F, 0.9367374905F, 0.9370905042F, 0.9374422108F, 0.9377926122F, 0.9381417099F, 0.9384895057F, 0.9388360014F, 0.9391811985F, 0.9395250989F, 0.9398677043F, 0.9402090165F, 0.9405490371F, 0.9408877680F, 0.9412252110F, 0.9415613678F, 0.9418962402F, 0.9422298301F, 0.9425621392F, 0.9428931695F, 0.9432229226F, 0.9435514005F, 0.9438786050F, 0.9442045381F, 0.9445292014F, 0.9448525971F, 0.9451747268F, 0.9454955926F, 0.9458151963F, 0.9461335399F, 0.9464506253F, 0.9467664545F, 0.9470810293F, 0.9473943517F, 0.9477064238F, 0.9480172474F, 0.9483268246F, 0.9486351573F, 0.9489422475F, 0.9492480973F, 0.9495527087F, 0.9498560837F, 0.9501582243F, 0.9504591325F, 0.9507588105F, 0.9510572603F, 0.9513544839F, 0.9516504834F, 0.9519452609F, 0.9522388186F, 0.9525311584F, 0.9528222826F, 0.9531121932F, 0.9534008923F, 0.9536883821F, 0.9539746647F, 0.9542597424F, 0.9545436171F, 0.9548262912F, 0.9551077667F, 0.9553880459F, 0.9556671309F, 0.9559450239F, 0.9562217272F, 0.9564972429F, 0.9567715733F, 0.9570447206F, 0.9573166871F, 0.9575874749F, 0.9578570863F, 0.9581255236F, 0.9583927890F, 0.9586588849F, 0.9589238134F, 0.9591875769F, 0.9594501777F, 0.9597116180F, 0.9599719003F, 0.9602310267F, 0.9604889995F, 0.9607458213F, 0.9610014942F, 0.9612560206F, 0.9615094028F, 0.9617616433F, 0.9620127443F, 0.9622627083F, 0.9625115376F, 0.9627592345F, 0.9630058016F, 0.9632512411F, 0.9634955555F, 0.9637387471F, 0.9639808185F, 0.9642217720F, 0.9644616100F, 0.9647003349F, 0.9649379493F, 0.9651744556F, 0.9654098561F, 0.9656441534F, 0.9658773499F, 0.9661094480F, 0.9663404504F, 0.9665703593F, 0.9667991774F, 0.9670269071F, 0.9672535509F, 0.9674791114F, 0.9677035909F, 0.9679269921F, 0.9681493174F, 0.9683705694F, 0.9685907506F, 0.9688098636F, 0.9690279108F, 0.9692448948F, 0.9694608182F, 0.9696756836F, 0.9698894934F, 0.9701022503F, 0.9703139569F, 0.9705246156F, 0.9707342291F, 0.9709428000F, 0.9711503309F, 0.9713568243F, 0.9715622829F, 0.9717667093F, 0.9719701060F, 0.9721724757F, 0.9723738210F, 0.9725741446F, 0.9727734490F, 0.9729717369F, 0.9731690109F, 0.9733652737F, 0.9735605279F, 0.9737547762F, 0.9739480212F, 0.9741402656F, 0.9743315120F, 0.9745217631F, 0.9747110216F, 0.9748992901F, 0.9750865714F, 0.9752728681F, 0.9754581829F, 0.9756425184F, 0.9758258775F, 0.9760082627F, 0.9761896768F, 0.9763701224F, 0.9765496024F, 0.9767281193F, 0.9769056760F, 0.9770822751F, 0.9772579193F, 0.9774326114F, 0.9776063542F, 0.9777791502F, 0.9779510023F, 0.9781219133F, 0.9782918858F, 0.9784609226F, 0.9786290264F, 0.9787962000F, 0.9789624461F, 0.9791277676F, 0.9792921671F, 0.9794556474F, 0.9796182113F, 0.9797798615F, 0.9799406009F, 0.9801004321F, 0.9802593580F, 0.9804173813F, 0.9805745049F, 0.9807307314F, 0.9808860637F, 0.9810405046F, 0.9811940568F, 0.9813467232F, 0.9814985065F, 0.9816494095F, 0.9817994351F, 0.9819485860F, 0.9820968650F, 0.9822442750F, 0.9823908186F, 0.9825364988F, 0.9826813184F, 0.9828252801F, 0.9829683868F, 0.9831106413F, 0.9832520463F, 0.9833926048F, 0.9835323195F, 0.9836711932F, 0.9838092288F, 0.9839464291F, 0.9840827969F, 0.9842183351F, 0.9843530464F, 0.9844869337F, 0.9846199998F, 0.9847522475F, 0.9848836798F, 0.9850142993F, 0.9851441090F, 0.9852731117F, 0.9854013101F, 0.9855287073F, 0.9856553058F, 0.9857811087F, 0.9859061188F, 0.9860303388F, 0.9861537717F, 0.9862764202F, 0.9863982872F, 0.9865193756F, 0.9866396882F, 0.9867592277F, 0.9868779972F, 0.9869959993F, 0.9871132370F, 0.9872297131F, 0.9873454304F, 0.9874603918F, 0.9875746001F, 0.9876880581F, 0.9878007688F, 0.9879127348F, 0.9880239592F, 0.9881344447F, 0.9882441941F, 0.9883532104F, 0.9884614962F, 0.9885690546F, 0.9886758883F, 0.9887820001F, 0.9888873930F, 0.9889920697F, 0.9890960331F, 0.9891992859F, 0.9893018312F, 0.9894036716F, 0.9895048100F, 0.9896052493F, 0.9897049923F, 0.9898040418F, 0.9899024006F, 0.9900000717F, 0.9900970577F, 0.9901933616F, 0.9902889862F, 0.9903839343F, 0.9904782087F, 0.9905718122F, 0.9906647477F, 0.9907570180F, 0.9908486259F, 0.9909395742F, 0.9910298658F, 0.9911195034F, 0.9912084899F, 0.9912968281F, 0.9913845208F, 0.9914715708F, 0.9915579810F, 0.9916437540F, 0.9917288928F, 0.9918134001F, 0.9918972788F, 0.9919805316F, 0.9920631613F, 0.9921451707F, 0.9922265626F, 0.9923073399F, 0.9923875052F, 0.9924670615F, 0.9925460114F, 0.9926243577F, 0.9927021033F, 0.9927792508F, 0.9928558032F, 0.9929317631F, 0.9930071333F, 0.9930819167F, 0.9931561158F, 0.9932297337F, 0.9933027728F, 0.9933752362F, 0.9934471264F, 0.9935184462F, 0.9935891985F, 0.9936593859F, 0.9937290112F, 0.9937980771F, 0.9938665864F, 0.9939345418F, 0.9940019460F, 0.9940688018F, 0.9941351118F, 0.9942008789F, 0.9942661057F, 0.9943307950F, 0.9943949494F, 0.9944585717F, 0.9945216645F, 0.9945842307F, 0.9946462728F, 0.9947077936F, 0.9947687957F, 0.9948292820F, 0.9948892550F, 0.9949487174F, 0.9950076719F, 0.9950661212F, 0.9951240679F, 0.9951815148F, 0.9952384645F, 0.9952949196F, 0.9953508828F, 0.9954063568F, 0.9954613442F, 0.9955158476F, 0.9955698697F, 0.9956234132F, 0.9956764806F, 0.9957290746F, 0.9957811978F, 0.9958328528F, 0.9958840423F, 0.9959347688F, 0.9959850351F, 0.9960348435F, 0.9960841969F, 0.9961330977F, 0.9961815486F, 0.9962295521F, 0.9962771108F, 0.9963242274F, 0.9963709043F, 0.9964171441F, 0.9964629494F, 0.9965083228F, 0.9965532668F, 0.9965977840F, 0.9966418768F, 0.9966855479F, 0.9967287998F, 0.9967716350F, 0.9968140559F, 0.9968560653F, 0.9968976655F, 0.9969388591F, 0.9969796485F, 0.9970200363F, 0.9970600250F, 0.9970996170F, 0.9971388149F, 0.9971776211F, 0.9972160380F, 0.9972540683F, 0.9972917142F, 0.9973289783F, 0.9973658631F, 0.9974023709F, 0.9974385042F, 0.9974742655F, 0.9975096571F, 0.9975446816F, 0.9975793413F, 0.9976136386F, 0.9976475759F, 0.9976811557F, 0.9977143803F, 0.9977472521F, 0.9977797736F, 0.9978119470F, 0.9978437748F, 0.9978752593F, 0.9979064029F, 0.9979372079F, 0.9979676768F, 0.9979978117F, 0.9980276151F, 0.9980570893F, 0.9980862367F, 0.9981150595F, 0.9981435600F, 0.9981717406F, 0.9981996035F, 0.9982271511F, 0.9982543856F, 0.9982813093F, 0.9983079246F, 0.9983342336F, 0.9983602386F, 0.9983859418F, 0.9984113456F, 0.9984364522F, 0.9984612638F, 0.9984857825F, 0.9985100108F, 0.9985339507F, 0.9985576044F, 0.9985809743F, 0.9986040624F, 0.9986268710F, 0.9986494022F, 0.9986716583F, 0.9986936413F, 0.9987153535F, 0.9987367969F, 0.9987579738F, 0.9987788864F, 0.9987995366F, 0.9988199267F, 0.9988400587F, 0.9988599348F, 0.9988795572F, 0.9988989278F, 0.9989180487F, 0.9989369222F, 0.9989555501F, 0.9989739347F, 0.9989920780F, 0.9990099820F, 0.9990276487F, 0.9990450803F, 0.9990622787F, 0.9990792460F, 0.9990959841F, 0.9991124952F, 0.9991287812F, 0.9991448440F, 0.9991606858F, 0.9991763084F, 0.9991917139F, 0.9992069042F, 0.9992218813F, 0.9992366471F, 0.9992512035F, 0.9992655525F, 0.9992796961F, 0.9992936361F, 0.9993073744F, 0.9993209131F, 0.9993342538F, 0.9993473987F, 0.9993603494F, 0.9993731080F, 0.9993856762F, 0.9993980559F, 0.9994102490F, 0.9994222573F, 0.9994340827F, 0.9994457269F, 0.9994571918F, 0.9994684793F, 0.9994795910F, 0.9994905288F, 0.9995012945F, 0.9995118898F, 0.9995223165F, 0.9995325765F, 0.9995426713F, 0.9995526029F, 0.9995623728F, 0.9995719829F, 0.9995814349F, 0.9995907304F, 0.9995998712F, 0.9996088590F, 0.9996176954F, 0.9996263821F, 0.9996349208F, 0.9996433132F, 0.9996515609F, 0.9996596656F, 0.9996676288F, 0.9996754522F, 0.9996831375F, 0.9996906862F, 0.9996981000F, 0.9997053804F, 0.9997125290F, 0.9997195474F, 0.9997264371F, 0.9997331998F, 0.9997398369F, 0.9997463500F, 0.9997527406F, 0.9997590103F, 0.9997651606F, 0.9997711930F, 0.9997771089F, 0.9997829098F, 0.9997885973F, 0.9997941728F, 0.9997996378F, 0.9998049936F, 0.9998102419F, 0.9998153839F, 0.9998204211F, 0.9998253550F, 0.9998301868F, 0.9998349182F, 0.9998395503F, 0.9998440847F, 0.9998485226F, 0.9998528654F, 0.9998571146F, 0.9998612713F, 0.9998653370F, 0.9998693130F, 0.9998732007F, 0.9998770012F, 0.9998807159F, 0.9998843461F, 0.9998878931F, 0.9998913581F, 0.9998947424F, 0.9998980473F, 0.9999012740F, 0.9999044237F, 0.9999074976F, 0.9999104971F, 0.9999134231F, 0.9999162771F, 0.9999190601F, 0.9999217733F, 0.9999244179F, 0.9999269950F, 0.9999295058F, 0.9999319515F, 0.9999343332F, 0.9999366519F, 0.9999389088F, 0.9999411050F, 0.9999432416F, 0.9999453196F, 0.9999473402F, 0.9999493044F, 0.9999512132F, 0.9999530677F, 0.9999548690F, 0.9999566180F, 0.9999583157F, 0.9999599633F, 0.9999615616F, 0.9999631116F, 0.9999646144F, 0.9999660709F, 0.9999674820F, 0.9999688487F, 0.9999701719F, 0.9999714526F, 0.9999726917F, 0.9999738900F, 0.9999750486F, 0.9999761682F, 0.9999772497F, 0.9999782941F, 0.9999793021F, 0.9999802747F, 0.9999812126F, 0.9999821167F, 0.9999829878F, 0.9999838268F, 0.9999846343F, 0.9999854113F, 0.9999861584F, 0.9999868765F, 0.9999875664F, 0.9999882287F, 0.9999888642F, 0.9999894736F, 0.9999900577F, 0.9999906172F, 0.9999911528F, 0.9999916651F, 0.9999921548F, 0.9999926227F, 0.9999930693F, 0.9999934954F, 0.9999939015F, 0.9999942883F, 0.9999946564F, 0.9999950064F, 0.9999953390F, 0.9999956547F, 0.9999959541F, 0.9999962377F, 0.9999965062F, 0.9999967601F, 0.9999969998F, 0.9999972260F, 0.9999974392F, 0.9999976399F, 0.9999978285F, 0.9999980056F, 0.9999981716F, 0.9999983271F, 0.9999984724F, 0.9999986081F, 0.9999987345F, 0.9999988521F, 0.9999989613F, 0.9999990625F, 0.9999991562F, 0.9999992426F, 0.9999993223F, 0.9999993954F, 0.9999994625F, 0.9999995239F, 0.9999995798F, 0.9999996307F, 0.9999996768F, 0.9999997184F, 0.9999997559F, 0.9999997895F, 0.9999998195F, 0.9999998462F, 0.9999998698F, 0.9999998906F, 0.9999999088F, 0.9999999246F, 0.9999999383F, 0.9999999500F, 0.9999999600F, 0.9999999684F, 0.9999999754F, 0.9999999811F, 0.9999999858F, 0.9999999896F, 0.9999999925F, 0.9999999948F, 0.9999999965F, 0.9999999978F, 0.9999999986F, 0.9999999992F, 0.9999999996F, 0.9999999998F, 0.9999999999F, 1.0000000000F, 1.0000000000F, 1.0000000000F, }; static float vwin8192[4096] = { 0.0000000578F, 0.0000005198F, 0.0000014438F, 0.0000028299F, 0.0000046780F, 0.0000069882F, 0.0000097604F, 0.0000129945F, 0.0000166908F, 0.0000208490F, 0.0000254692F, 0.0000305515F, 0.0000360958F, 0.0000421021F, 0.0000485704F, 0.0000555006F, 0.0000628929F, 0.0000707472F, 0.0000790635F, 0.0000878417F, 0.0000970820F, 0.0001067842F, 0.0001169483F, 0.0001275744F, 0.0001386625F, 0.0001502126F, 0.0001622245F, 0.0001746984F, 0.0001876343F, 0.0002010320F, 0.0002148917F, 0.0002292132F, 0.0002439967F, 0.0002592421F, 0.0002749493F, 0.0002911184F, 0.0003077493F, 0.0003248421F, 0.0003423967F, 0.0003604132F, 0.0003788915F, 0.0003978316F, 0.0004172335F, 0.0004370971F, 0.0004574226F, 0.0004782098F, 0.0004994587F, 0.0005211694F, 0.0005433418F, 0.0005659759F, 0.0005890717F, 0.0006126292F, 0.0006366484F, 0.0006611292F, 0.0006860716F, 0.0007114757F, 0.0007373414F, 0.0007636687F, 0.0007904576F, 0.0008177080F, 0.0008454200F, 0.0008735935F, 0.0009022285F, 0.0009313250F, 0.0009608830F, 0.0009909025F, 0.0010213834F, 0.0010523257F, 0.0010837295F, 0.0011155946F, 0.0011479211F, 0.0011807090F, 0.0012139582F, 0.0012476687F, 0.0012818405F, 0.0013164736F, 0.0013515679F, 0.0013871235F, 0.0014231402F, 0.0014596182F, 0.0014965573F, 0.0015339576F, 0.0015718190F, 0.0016101415F, 0.0016489251F, 0.0016881698F, 0.0017278754F, 0.0017680421F, 0.0018086698F, 0.0018497584F, 0.0018913080F, 0.0019333185F, 0.0019757898F, 0.0020187221F, 0.0020621151F, 0.0021059690F, 0.0021502837F, 0.0021950591F, 0.0022402953F, 0.0022859921F, 0.0023321497F, 0.0023787679F, 0.0024258467F, 0.0024733861F, 0.0025213861F, 0.0025698466F, 0.0026187676F, 0.0026681491F, 0.0027179911F, 0.0027682935F, 0.0028190562F, 0.0028702794F, 0.0029219628F, 0.0029741066F, 0.0030267107F, 0.0030797749F, 0.0031332994F, 0.0031872841F, 0.0032417289F, 0.0032966338F, 0.0033519988F, 0.0034078238F, 0.0034641089F, 0.0035208539F, 0.0035780589F, 0.0036357237F, 0.0036938485F, 0.0037524331F, 0.0038114775F, 0.0038709817F, 0.0039309456F, 0.0039913692F, 0.0040522524F, 0.0041135953F, 0.0041753978F, 0.0042376599F, 0.0043003814F, 0.0043635624F, 0.0044272029F, 0.0044913028F, 0.0045558620F, 0.0046208806F, 0.0046863585F, 0.0047522955F, 0.0048186919F, 0.0048855473F, 0.0049528619F, 0.0050206356F, 0.0050888684F, 0.0051575601F, 0.0052267108F, 0.0052963204F, 0.0053663890F, 0.0054369163F, 0.0055079025F, 0.0055793474F, 0.0056512510F, 0.0057236133F, 0.0057964342F, 0.0058697137F, 0.0059434517F, 0.0060176482F, 0.0060923032F, 0.0061674166F, 0.0062429883F, 0.0063190183F, 0.0063955066F, 0.0064724532F, 0.0065498579F, 0.0066277207F, 0.0067060416F, 0.0067848205F, 0.0068640575F, 0.0069437523F, 0.0070239051F, 0.0071045157F, 0.0071855840F, 0.0072671102F, 0.0073490940F, 0.0074315355F, 0.0075144345F, 0.0075977911F, 0.0076816052F, 0.0077658768F, 0.0078506057F, 0.0079357920F, 0.0080214355F, 0.0081075363F, 0.0081940943F, 0.0082811094F, 0.0083685816F, 0.0084565108F, 0.0085448970F, 0.0086337401F, 0.0087230401F, 0.0088127969F, 0.0089030104F, 0.0089936807F, 0.0090848076F, 0.0091763911F, 0.0092684311F, 0.0093609276F, 0.0094538805F, 0.0095472898F, 0.0096411554F, 0.0097354772F, 0.0098302552F, 0.0099254894F, 0.0100211796F, 0.0101173259F, 0.0102139281F, 0.0103109863F, 0.0104085002F, 0.0105064700F, 0.0106048955F, 0.0107037766F, 0.0108031133F, 0.0109029056F, 0.0110031534F, 0.0111038565F, 0.0112050151F, 0.0113066289F, 0.0114086980F, 0.0115112222F, 0.0116142015F, 0.0117176359F, 0.0118215252F, 0.0119258695F, 0.0120306686F, 0.0121359225F, 0.0122416312F, 0.0123477944F, 0.0124544123F, 0.0125614847F, 0.0126690116F, 0.0127769928F, 0.0128854284F, 0.0129943182F, 0.0131036623F, 0.0132134604F, 0.0133237126F, 0.0134344188F, 0.0135455790F, 0.0136571929F, 0.0137692607F, 0.0138817821F, 0.0139947572F, 0.0141081859F, 0.0142220681F, 0.0143364037F, 0.0144511927F, 0.0145664350F, 0.0146821304F, 0.0147982791F, 0.0149148808F, 0.0150319355F, 0.0151494431F, 0.0152674036F, 0.0153858168F, 0.0155046828F, 0.0156240014F, 0.0157437726F, 0.0158639962F, 0.0159846723F, 0.0161058007F, 0.0162273814F, 0.0163494142F, 0.0164718991F, 0.0165948361F, 0.0167182250F, 0.0168420658F, 0.0169663584F, 0.0170911027F, 0.0172162987F, 0.0173419462F, 0.0174680452F, 0.0175945956F, 0.0177215974F, 0.0178490504F, 0.0179769545F, 0.0181053098F, 0.0182341160F, 0.0183633732F, 0.0184930812F, 0.0186232399F, 0.0187538494F, 0.0188849094F, 0.0190164200F, 0.0191483809F, 0.0192807923F, 0.0194136539F, 0.0195469656F, 0.0196807275F, 0.0198149394F, 0.0199496012F, 0.0200847128F, 0.0202202742F, 0.0203562853F, 0.0204927460F, 0.0206296561F, 0.0207670157F, 0.0209048245F, 0.0210430826F, 0.0211817899F, 0.0213209462F, 0.0214605515F, 0.0216006057F, 0.0217411086F, 0.0218820603F, 0.0220234605F, 0.0221653093F, 0.0223076066F, 0.0224503521F, 0.0225935459F, 0.0227371879F, 0.0228812779F, 0.0230258160F, 0.0231708018F, 0.0233162355F, 0.0234621169F, 0.0236084459F, 0.0237552224F, 0.0239024462F, 0.0240501175F, 0.0241982359F, 0.0243468015F, 0.0244958141F, 0.0246452736F, 0.0247951800F, 0.0249455331F, 0.0250963329F, 0.0252475792F, 0.0253992720F, 0.0255514111F, 0.0257039965F, 0.0258570281F, 0.0260105057F, 0.0261644293F, 0.0263187987F, 0.0264736139F, 0.0266288747F, 0.0267845811F, 0.0269407330F, 0.0270973302F, 0.0272543727F, 0.0274118604F, 0.0275697930F, 0.0277281707F, 0.0278869932F, 0.0280462604F, 0.0282059723F, 0.0283661287F, 0.0285267295F, 0.0286877747F, 0.0288492641F, 0.0290111976F, 0.0291735751F, 0.0293363965F, 0.0294996617F, 0.0296633706F, 0.0298275231F, 0.0299921190F, 0.0301571583F, 0.0303226409F, 0.0304885667F, 0.0306549354F, 0.0308217472F, 0.0309890017F, 0.0311566989F, 0.0313248388F, 0.0314934211F, 0.0316624459F, 0.0318319128F, 0.0320018220F, 0.0321721732F, 0.0323429663F, 0.0325142013F, 0.0326858779F, 0.0328579962F, 0.0330305559F, 0.0332035570F, 0.0333769994F, 0.0335508829F, 0.0337252074F, 0.0338999728F, 0.0340751790F, 0.0342508259F, 0.0344269134F, 0.0346034412F, 0.0347804094F, 0.0349578178F, 0.0351356663F, 0.0353139548F, 0.0354926831F, 0.0356718511F, 0.0358514588F, 0.0360315059F, 0.0362119924F, 0.0363929182F, 0.0365742831F, 0.0367560870F, 0.0369383297F, 0.0371210113F, 0.0373041315F, 0.0374876902F, 0.0376716873F, 0.0378561226F, 0.0380409961F, 0.0382263077F, 0.0384120571F, 0.0385982443F, 0.0387848691F, 0.0389719315F, 0.0391594313F, 0.0393473683F, 0.0395357425F, 0.0397245537F, 0.0399138017F, 0.0401034866F, 0.0402936080F, 0.0404841660F, 0.0406751603F, 0.0408665909F, 0.0410584576F, 0.0412507603F, 0.0414434988F, 0.0416366731F, 0.0418302829F, 0.0420243282F, 0.0422188088F, 0.0424137246F, 0.0426090755F, 0.0428048613F, 0.0430010819F, 0.0431977371F, 0.0433948269F, 0.0435923511F, 0.0437903095F, 0.0439887020F, 0.0441875285F, 0.0443867889F, 0.0445864830F, 0.0447866106F, 0.0449871717F, 0.0451881661F, 0.0453895936F, 0.0455914542F, 0.0457937477F, 0.0459964738F, 0.0461996326F, 0.0464032239F, 0.0466072475F, 0.0468117032F, 0.0470165910F, 0.0472219107F, 0.0474276622F, 0.0476338452F, 0.0478404597F, 0.0480475056F, 0.0482549827F, 0.0484628907F, 0.0486712297F, 0.0488799994F, 0.0490891998F, 0.0492988306F, 0.0495088917F, 0.0497193830F, 0.0499303043F, 0.0501416554F, 0.0503534363F, 0.0505656468F, 0.0507782867F, 0.0509913559F, 0.0512048542F, 0.0514187815F, 0.0516331376F, 0.0518479225F, 0.0520631358F, 0.0522787775F, 0.0524948475F, 0.0527113455F, 0.0529282715F, 0.0531456252F, 0.0533634066F, 0.0535816154F, 0.0538002515F, 0.0540193148F, 0.0542388051F, 0.0544587222F, 0.0546790660F, 0.0548998364F, 0.0551210331F, 0.0553426561F, 0.0555647051F, 0.0557871801F, 0.0560100807F, 0.0562334070F, 0.0564571587F, 0.0566813357F, 0.0569059378F, 0.0571309649F, 0.0573564168F, 0.0575822933F, 0.0578085942F, 0.0580353195F, 0.0582624689F, 0.0584900423F, 0.0587180396F, 0.0589464605F, 0.0591753049F, 0.0594045726F, 0.0596342635F, 0.0598643774F, 0.0600949141F, 0.0603258735F, 0.0605572555F, 0.0607890597F, 0.0610212862F, 0.0612539346F, 0.0614870049F, 0.0617204968F, 0.0619544103F, 0.0621887451F, 0.0624235010F, 0.0626586780F, 0.0628942758F, 0.0631302942F, 0.0633667331F, 0.0636035923F, 0.0638408717F, 0.0640785710F, 0.0643166901F, 0.0645552288F, 0.0647941870F, 0.0650335645F, 0.0652733610F, 0.0655135765F, 0.0657542108F, 0.0659952636F, 0.0662367348F, 0.0664786242F, 0.0667209316F, 0.0669636570F, 0.0672068000F, 0.0674503605F, 0.0676943384F, 0.0679387334F, 0.0681835454F, 0.0684287742F, 0.0686744196F, 0.0689204814F, 0.0691669595F, 0.0694138536F, 0.0696611637F, 0.0699088894F, 0.0701570307F, 0.0704055873F, 0.0706545590F, 0.0709039458F, 0.0711537473F, 0.0714039634F, 0.0716545939F, 0.0719056387F, 0.0721570975F, 0.0724089702F, 0.0726612565F, 0.0729139563F, 0.0731670694F, 0.0734205956F, 0.0736745347F, 0.0739288866F, 0.0741836510F, 0.0744388277F, 0.0746944166F, 0.0749504175F, 0.0752068301F, 0.0754636543F, 0.0757208899F, 0.0759785367F, 0.0762365946F, 0.0764950632F, 0.0767539424F, 0.0770132320F, 0.0772729319F, 0.0775330418F, 0.0777935616F, 0.0780544909F, 0.0783158298F, 0.0785775778F, 0.0788397349F, 0.0791023009F, 0.0793652755F, 0.0796286585F, 0.0798924498F, 0.0801566492F, 0.0804212564F, 0.0806862712F, 0.0809516935F, 0.0812175231F, 0.0814837597F, 0.0817504031F, 0.0820174532F, 0.0822849097F, 0.0825527724F, 0.0828210412F, 0.0830897158F, 0.0833587960F, 0.0836282816F, 0.0838981724F, 0.0841684682F, 0.0844391688F, 0.0847102740F, 0.0849817835F, 0.0852536973F, 0.0855260150F, 0.0857987364F, 0.0860718614F, 0.0863453897F, 0.0866193211F, 0.0868936554F, 0.0871683924F, 0.0874435319F, 0.0877190737F, 0.0879950175F, 0.0882713632F, 0.0885481105F, 0.0888252592F, 0.0891028091F, 0.0893807600F, 0.0896591117F, 0.0899378639F, 0.0902170165F, 0.0904965692F, 0.0907765218F, 0.0910568740F, 0.0913376258F, 0.0916187767F, 0.0919003268F, 0.0921822756F, 0.0924646230F, 0.0927473687F, 0.0930305126F, 0.0933140545F, 0.0935979940F, 0.0938823310F, 0.0941670653F, 0.0944521966F, 0.0947377247F, 0.0950236494F, 0.0953099704F, 0.0955966876F, 0.0958838007F, 0.0961713094F, 0.0964592136F, 0.0967475131F, 0.0970362075F, 0.0973252967F, 0.0976147805F, 0.0979046585F, 0.0981949307F, 0.0984855967F, 0.0987766563F, 0.0990681093F, 0.0993599555F, 0.0996521945F, 0.0999448263F, 0.1002378506F, 0.1005312671F, 0.1008250755F, 0.1011192757F, 0.1014138675F, 0.1017088505F, 0.1020042246F, 0.1022999895F, 0.1025961450F, 0.1028926909F, 0.1031896268F, 0.1034869526F, 0.1037846680F, 0.1040827729F, 0.1043812668F, 0.1046801497F, 0.1049794213F, 0.1052790813F, 0.1055791294F, 0.1058795656F, 0.1061803894F, 0.1064816006F, 0.1067831991F, 0.1070851846F, 0.1073875568F, 0.1076903155F, 0.1079934604F, 0.1082969913F, 0.1086009079F, 0.1089052101F, 0.1092098975F, 0.1095149699F, 0.1098204270F, 0.1101262687F, 0.1104324946F, 0.1107391045F, 0.1110460982F, 0.1113534754F, 0.1116612359F, 0.1119693793F, 0.1122779055F, 0.1125868142F, 0.1128961052F, 0.1132057781F, 0.1135158328F, 0.1138262690F, 0.1141370863F, 0.1144482847F, 0.1147598638F, 0.1150718233F, 0.1153841631F, 0.1156968828F, 0.1160099822F, 0.1163234610F, 0.1166373190F, 0.1169515559F, 0.1172661714F, 0.1175811654F, 0.1178965374F, 0.1182122874F, 0.1185284149F, 0.1188449198F, 0.1191618018F, 0.1194790606F, 0.1197966960F, 0.1201147076F, 0.1204330953F, 0.1207518587F, 0.1210709976F, 0.1213905118F, 0.1217104009F, 0.1220306647F, 0.1223513029F, 0.1226723153F, 0.1229937016F, 0.1233154615F, 0.1236375948F, 0.1239601011F, 0.1242829803F, 0.1246062319F, 0.1249298559F, 0.1252538518F, 0.1255782195F, 0.1259029586F, 0.1262280689F, 0.1265535501F, 0.1268794019F, 0.1272056241F, 0.1275322163F, 0.1278591784F, 0.1281865099F, 0.1285142108F, 0.1288422805F, 0.1291707190F, 0.1294995259F, 0.1298287009F, 0.1301582437F, 0.1304881542F, 0.1308184319F, 0.1311490766F, 0.1314800881F, 0.1318114660F, 0.1321432100F, 0.1324753200F, 0.1328077955F, 0.1331406364F, 0.1334738422F, 0.1338074129F, 0.1341413479F, 0.1344756472F, 0.1348103103F, 0.1351453370F, 0.1354807270F, 0.1358164801F, 0.1361525959F, 0.1364890741F, 0.1368259145F, 0.1371631167F, 0.1375006805F, 0.1378386056F, 0.1381768917F, 0.1385155384F, 0.1388545456F, 0.1391939129F, 0.1395336400F, 0.1398737266F, 0.1402141724F, 0.1405549772F, 0.1408961406F, 0.1412376623F, 0.1415795421F, 0.1419217797F, 0.1422643746F, 0.1426073268F, 0.1429506358F, 0.1432943013F, 0.1436383231F, 0.1439827008F, 0.1443274342F, 0.1446725229F, 0.1450179667F, 0.1453637652F, 0.1457099181F, 0.1460564252F, 0.1464032861F, 0.1467505006F, 0.1470980682F, 0.1474459888F, 0.1477942620F, 0.1481428875F, 0.1484918651F, 0.1488411942F, 0.1491908748F, 0.1495409065F, 0.1498912889F, 0.1502420218F, 0.1505931048F, 0.1509445376F, 0.1512963200F, 0.1516484516F, 0.1520009321F, 0.1523537612F, 0.1527069385F, 0.1530604638F, 0.1534143368F, 0.1537685571F, 0.1541231244F, 0.1544780384F, 0.1548332987F, 0.1551889052F, 0.1555448574F, 0.1559011550F, 0.1562577978F, 0.1566147853F, 0.1569721173F, 0.1573297935F, 0.1576878135F, 0.1580461771F, 0.1584048838F, 0.1587639334F, 0.1591233255F, 0.1594830599F, 0.1598431361F, 0.1602035540F, 0.1605643131F, 0.1609254131F, 0.1612868537F, 0.1616486346F, 0.1620107555F, 0.1623732160F, 0.1627360158F, 0.1630991545F, 0.1634626319F, 0.1638264476F, 0.1641906013F, 0.1645550926F, 0.1649199212F, 0.1652850869F, 0.1656505892F, 0.1660164278F, 0.1663826024F, 0.1667491127F, 0.1671159583F, 0.1674831388F, 0.1678506541F, 0.1682185036F, 0.1685866872F, 0.1689552044F, 0.1693240549F, 0.1696932384F, 0.1700627545F, 0.1704326029F, 0.1708027833F, 0.1711732952F, 0.1715441385F, 0.1719153127F, 0.1722868175F, 0.1726586526F, 0.1730308176F, 0.1734033121F, 0.1737761359F, 0.1741492886F, 0.1745227698F, 0.1748965792F, 0.1752707164F, 0.1756451812F, 0.1760199731F, 0.1763950918F, 0.1767705370F, 0.1771463083F, 0.1775224054F, 0.1778988279F, 0.1782755754F, 0.1786526477F, 0.1790300444F, 0.1794077651F, 0.1797858094F, 0.1801641771F, 0.1805428677F, 0.1809218810F, 0.1813012165F, 0.1816808739F, 0.1820608528F, 0.1824411530F, 0.1828217739F, 0.1832027154F, 0.1835839770F, 0.1839655584F, 0.1843474592F, 0.1847296790F, 0.1851122175F, 0.1854950744F, 0.1858782492F, 0.1862617417F, 0.1866455514F, 0.1870296780F, 0.1874141211F, 0.1877988804F, 0.1881839555F, 0.1885693461F, 0.1889550517F, 0.1893410721F, 0.1897274068F, 0.1901140555F, 0.1905010178F, 0.1908882933F, 0.1912758818F, 0.1916637828F, 0.1920519959F, 0.1924405208F, 0.1928293571F, 0.1932185044F, 0.1936079625F, 0.1939977308F, 0.1943878091F, 0.1947781969F, 0.1951688939F, 0.1955598998F, 0.1959512141F, 0.1963428364F, 0.1967347665F, 0.1971270038F, 0.1975195482F, 0.1979123990F, 0.1983055561F, 0.1986990190F, 0.1990927873F, 0.1994868607F, 0.1998812388F, 0.2002759212F, 0.2006709075F, 0.2010661974F, 0.2014617904F, 0.2018576862F, 0.2022538844F, 0.2026503847F, 0.2030471865F, 0.2034442897F, 0.2038416937F, 0.2042393982F, 0.2046374028F, 0.2050357071F, 0.2054343107F, 0.2058332133F, 0.2062324145F, 0.2066319138F, 0.2070317110F, 0.2074318055F, 0.2078321970F, 0.2082328852F, 0.2086338696F, 0.2090351498F, 0.2094367255F, 0.2098385962F, 0.2102407617F, 0.2106432213F, 0.2110459749F, 0.2114490220F, 0.2118523621F, 0.2122559950F, 0.2126599202F, 0.2130641373F, 0.2134686459F, 0.2138734456F, 0.2142785361F, 0.2146839168F, 0.2150895875F, 0.2154955478F, 0.2159017972F, 0.2163083353F, 0.2167151617F, 0.2171222761F, 0.2175296780F, 0.2179373670F, 0.2183453428F, 0.2187536049F, 0.2191621529F, 0.2195709864F, 0.2199801051F, 0.2203895085F, 0.2207991961F, 0.2212091677F, 0.2216194228F, 0.2220299610F, 0.2224407818F, 0.2228518850F, 0.2232632699F, 0.2236749364F, 0.2240868839F, 0.2244991121F, 0.2249116204F, 0.2253244086F, 0.2257374763F, 0.2261508229F, 0.2265644481F, 0.2269783514F, 0.2273925326F, 0.2278069911F, 0.2282217265F, 0.2286367384F, 0.2290520265F, 0.2294675902F, 0.2298834292F, 0.2302995431F, 0.2307159314F, 0.2311325937F, 0.2315495297F, 0.2319667388F, 0.2323842207F, 0.2328019749F, 0.2332200011F, 0.2336382988F, 0.2340568675F, 0.2344757070F, 0.2348948166F, 0.2353141961F, 0.2357338450F, 0.2361537629F, 0.2365739493F, 0.2369944038F, 0.2374151261F, 0.2378361156F, 0.2382573720F, 0.2386788948F, 0.2391006836F, 0.2395227380F, 0.2399450575F, 0.2403676417F, 0.2407904902F, 0.2412136026F, 0.2416369783F, 0.2420606171F, 0.2424845185F, 0.2429086820F, 0.2433331072F, 0.2437577936F, 0.2441827409F, 0.2446079486F, 0.2450334163F, 0.2454591435F, 0.2458851298F, 0.2463113747F, 0.2467378779F, 0.2471646389F, 0.2475916573F, 0.2480189325F, 0.2484464643F, 0.2488742521F, 0.2493022955F, 0.2497305940F, 0.2501591473F, 0.2505879549F, 0.2510170163F, 0.2514463311F, 0.2518758989F, 0.2523057193F, 0.2527357916F, 0.2531661157F, 0.2535966909F, 0.2540275169F, 0.2544585931F, 0.2548899193F, 0.2553214948F, 0.2557533193F, 0.2561853924F, 0.2566177135F, 0.2570502822F, 0.2574830981F, 0.2579161608F, 0.2583494697F, 0.2587830245F, 0.2592168246F, 0.2596508697F, 0.2600851593F, 0.2605196929F, 0.2609544701F, 0.2613894904F, 0.2618247534F, 0.2622602586F, 0.2626960055F, 0.2631319938F, 0.2635682230F, 0.2640046925F, 0.2644414021F, 0.2648783511F, 0.2653155391F, 0.2657529657F, 0.2661906305F, 0.2666285329F, 0.2670666725F, 0.2675050489F, 0.2679436616F, 0.2683825101F, 0.2688215940F, 0.2692609127F, 0.2697004660F, 0.2701402532F, 0.2705802739F, 0.2710205278F, 0.2714610142F, 0.2719017327F, 0.2723426830F, 0.2727838644F, 0.2732252766F, 0.2736669191F, 0.2741087914F, 0.2745508930F, 0.2749932235F, 0.2754357824F, 0.2758785693F, 0.2763215837F, 0.2767648251F, 0.2772082930F, 0.2776519870F, 0.2780959066F, 0.2785400513F, 0.2789844207F, 0.2794290143F, 0.2798738316F, 0.2803188722F, 0.2807641355F, 0.2812096211F, 0.2816553286F, 0.2821012574F, 0.2825474071F, 0.2829937773F, 0.2834403673F, 0.2838871768F, 0.2843342053F, 0.2847814523F, 0.2852289174F, 0.2856765999F, 0.2861244996F, 0.2865726159F, 0.2870209482F, 0.2874694962F, 0.2879182594F, 0.2883672372F, 0.2888164293F, 0.2892658350F, 0.2897154540F, 0.2901652858F, 0.2906153298F, 0.2910655856F, 0.2915160527F, 0.2919667306F, 0.2924176189F, 0.2928687171F, 0.2933200246F, 0.2937715409F, 0.2942232657F, 0.2946751984F, 0.2951273386F, 0.2955796856F, 0.2960322391F, 0.2964849986F, 0.2969379636F, 0.2973911335F, 0.2978445080F, 0.2982980864F, 0.2987518684F, 0.2992058534F, 0.2996600409F, 0.3001144305F, 0.3005690217F, 0.3010238139F, 0.3014788067F, 0.3019339995F, 0.3023893920F, 0.3028449835F, 0.3033007736F, 0.3037567618F, 0.3042129477F, 0.3046693306F, 0.3051259102F, 0.3055826859F, 0.3060396572F, 0.3064968236F, 0.3069541847F, 0.3074117399F, 0.3078694887F, 0.3083274307F, 0.3087855653F, 0.3092438920F, 0.3097024104F, 0.3101611199F, 0.3106200200F, 0.3110791103F, 0.3115383902F, 0.3119978592F, 0.3124575169F, 0.3129173627F, 0.3133773961F, 0.3138376166F, 0.3142980238F, 0.3147586170F, 0.3152193959F, 0.3156803598F, 0.3161415084F, 0.3166028410F, 0.3170643573F, 0.3175260566F, 0.3179879384F, 0.3184500023F, 0.3189122478F, 0.3193746743F, 0.3198372814F, 0.3203000685F, 0.3207630351F, 0.3212261807F, 0.3216895048F, 0.3221530069F, 0.3226166865F, 0.3230805430F, 0.3235445760F, 0.3240087849F, 0.3244731693F, 0.3249377285F, 0.3254024622F, 0.3258673698F, 0.3263324507F, 0.3267977045F, 0.3272631306F, 0.3277287286F, 0.3281944978F, 0.3286604379F, 0.3291265482F, 0.3295928284F, 0.3300592777F, 0.3305258958F, 0.3309926821F, 0.3314596361F, 0.3319267573F, 0.3323940451F, 0.3328614990F, 0.3333291186F, 0.3337969033F, 0.3342648525F, 0.3347329658F, 0.3352012427F, 0.3356696825F, 0.3361382849F, 0.3366070492F, 0.3370759749F, 0.3375450616F, 0.3380143087F, 0.3384837156F, 0.3389532819F, 0.3394230071F, 0.3398928905F, 0.3403629317F, 0.3408331302F, 0.3413034854F, 0.3417739967F, 0.3422446638F, 0.3427154860F, 0.3431864628F, 0.3436575938F, 0.3441288782F, 0.3446003158F, 0.3450719058F, 0.3455436478F, 0.3460155412F, 0.3464875856F, 0.3469597804F, 0.3474321250F, 0.3479046189F, 0.3483772617F, 0.3488500527F, 0.3493229914F, 0.3497960774F, 0.3502693100F, 0.3507426887F, 0.3512162131F, 0.3516898825F, 0.3521636965F, 0.3526376545F, 0.3531117559F, 0.3535860003F, 0.3540603870F, 0.3545349157F, 0.3550095856F, 0.3554843964F, 0.3559593474F, 0.3564344381F, 0.3569096680F, 0.3573850366F, 0.3578605432F, 0.3583361875F, 0.3588119687F, 0.3592878865F, 0.3597639402F, 0.3602401293F, 0.3607164533F, 0.3611929117F, 0.3616695038F, 0.3621462292F, 0.3626230873F, 0.3631000776F, 0.3635771995F, 0.3640544525F, 0.3645318360F, 0.3650093496F, 0.3654869926F, 0.3659647645F, 0.3664426648F, 0.3669206930F, 0.3673988484F, 0.3678771306F, 0.3683555390F, 0.3688340731F, 0.3693127322F, 0.3697915160F, 0.3702704237F, 0.3707494549F, 0.3712286091F, 0.3717078857F, 0.3721872840F, 0.3726668037F, 0.3731464441F, 0.3736262047F, 0.3741060850F, 0.3745860843F, 0.3750662023F, 0.3755464382F, 0.3760267915F, 0.3765072618F, 0.3769878484F, 0.3774685509F, 0.3779493686F, 0.3784303010F, 0.3789113475F, 0.3793925076F, 0.3798737809F, 0.3803551666F, 0.3808366642F, 0.3813182733F, 0.3817999932F, 0.3822818234F, 0.3827637633F, 0.3832458124F, 0.3837279702F, 0.3842102360F, 0.3846926093F, 0.3851750897F, 0.3856576764F, 0.3861403690F, 0.3866231670F, 0.3871060696F, 0.3875890765F, 0.3880721870F, 0.3885554007F, 0.3890387168F, 0.3895221349F, 0.3900056544F, 0.3904892748F, 0.3909729955F, 0.3914568160F, 0.3919407356F, 0.3924247539F, 0.3929088702F, 0.3933930841F, 0.3938773949F, 0.3943618021F, 0.3948463052F, 0.3953309035F, 0.3958155966F, 0.3963003838F, 0.3967852646F, 0.3972702385F, 0.3977553048F, 0.3982404631F, 0.3987257127F, 0.3992110531F, 0.3996964838F, 0.4001820041F, 0.4006676136F, 0.4011533116F, 0.4016390976F, 0.4021249710F, 0.4026109313F, 0.4030969779F, 0.4035831102F, 0.4040693277F, 0.4045556299F, 0.4050420160F, 0.4055284857F, 0.4060150383F, 0.4065016732F, 0.4069883899F, 0.4074751879F, 0.4079620665F, 0.4084490252F, 0.4089360635F, 0.4094231807F, 0.4099103763F, 0.4103976498F, 0.4108850005F, 0.4113724280F, 0.4118599315F, 0.4123475107F, 0.4128351648F, 0.4133228934F, 0.4138106959F, 0.4142985716F, 0.4147865201F, 0.4152745408F, 0.4157626330F, 0.4162507963F, 0.4167390301F, 0.4172273337F, 0.4177157067F, 0.4182041484F, 0.4186926583F, 0.4191812359F, 0.4196698805F, 0.4201585915F, 0.4206473685F, 0.4211362108F, 0.4216251179F, 0.4221140892F, 0.4226031241F, 0.4230922221F, 0.4235813826F, 0.4240706050F, 0.4245598887F, 0.4250492332F, 0.4255386379F, 0.4260281022F, 0.4265176256F, 0.4270072075F, 0.4274968473F, 0.4279865445F, 0.4284762984F, 0.4289661086F, 0.4294559743F, 0.4299458951F, 0.4304358704F, 0.4309258996F, 0.4314159822F, 0.4319061175F, 0.4323963050F, 0.4328865441F, 0.4333768342F, 0.4338671749F, 0.4343575654F, 0.4348480052F, 0.4353384938F, 0.4358290306F, 0.4363196149F, 0.4368102463F, 0.4373009241F, 0.4377916478F, 0.4382824168F, 0.4387732305F, 0.4392640884F, 0.4397549899F, 0.4402459343F, 0.4407369212F, 0.4412279499F, 0.4417190198F, 0.4422101305F, 0.4427012813F, 0.4431924717F, 0.4436837010F, 0.4441749686F, 0.4446662742F, 0.4451576169F, 0.4456489963F, 0.4461404118F, 0.4466318628F, 0.4471233487F, 0.4476148690F, 0.4481064230F, 0.4485980103F, 0.4490896302F, 0.4495812821F, 0.4500729654F, 0.4505646797F, 0.4510564243F, 0.4515481986F, 0.4520400021F, 0.4525318341F, 0.4530236942F, 0.4535155816F, 0.4540074959F, 0.4544994365F, 0.4549914028F, 0.4554833941F, 0.4559754100F, 0.4564674499F, 0.4569595131F, 0.4574515991F, 0.4579437074F, 0.4584358372F, 0.4589279881F, 0.4594201595F, 0.4599123508F, 0.4604045615F, 0.4608967908F, 0.4613890383F, 0.4618813034F, 0.4623735855F, 0.4628658841F, 0.4633581984F, 0.4638505281F, 0.4643428724F, 0.4648352308F, 0.4653276028F, 0.4658199877F, 0.4663123849F, 0.4668047940F, 0.4672972143F, 0.4677896451F, 0.4682820861F, 0.4687745365F, 0.4692669958F, 0.4697594634F, 0.4702519387F, 0.4707444211F, 0.4712369102F, 0.4717294052F, 0.4722219056F, 0.4727144109F, 0.4732069204F, 0.4736994336F, 0.4741919498F, 0.4746844686F, 0.4751769893F, 0.4756695113F, 0.4761620341F, 0.4766545571F, 0.4771470797F, 0.4776396013F, 0.4781321213F, 0.4786246392F, 0.4791171544F, 0.4796096663F, 0.4801021744F, 0.4805946779F, 0.4810871765F, 0.4815796694F, 0.4820721561F, 0.4825646360F, 0.4830571086F, 0.4835495732F, 0.4840420293F, 0.4845344763F, 0.4850269136F, 0.4855193407F, 0.4860117569F, 0.4865041617F, 0.4869965545F, 0.4874889347F, 0.4879813018F, 0.4884736551F, 0.4889659941F, 0.4894583182F, 0.4899506268F, 0.4904429193F, 0.4909351952F, 0.4914274538F, 0.4919196947F, 0.4924119172F, 0.4929041207F, 0.4933963046F, 0.4938884685F, 0.4943806116F, 0.4948727335F, 0.4953648335F, 0.4958569110F, 0.4963489656F, 0.4968409965F, 0.4973330032F, 0.4978249852F, 0.4983169419F, 0.4988088726F, 0.4993007768F, 0.4997926539F, 0.5002845034F, 0.5007763247F, 0.5012681171F, 0.5017598801F, 0.5022516132F, 0.5027433157F, 0.5032349871F, 0.5037266268F, 0.5042182341F, 0.5047098086F, 0.5052013497F, 0.5056928567F, 0.5061843292F, 0.5066757664F, 0.5071671679F, 0.5076585330F, 0.5081498613F, 0.5086411520F, 0.5091324047F, 0.5096236187F, 0.5101147934F, 0.5106059284F, 0.5110970230F, 0.5115880766F, 0.5120790887F, 0.5125700587F, 0.5130609860F, 0.5135518700F, 0.5140427102F, 0.5145335059F, 0.5150242566F, 0.5155149618F, 0.5160056208F, 0.5164962331F, 0.5169867980F, 0.5174773151F, 0.5179677837F, 0.5184582033F, 0.5189485733F, 0.5194388931F, 0.5199291621F, 0.5204193798F, 0.5209095455F, 0.5213996588F, 0.5218897190F, 0.5223797256F, 0.5228696779F, 0.5233595755F, 0.5238494177F, 0.5243392039F, 0.5248289337F, 0.5253186063F, 0.5258082213F, 0.5262977781F, 0.5267872760F, 0.5272767146F, 0.5277660932F, 0.5282554112F, 0.5287446682F, 0.5292338635F, 0.5297229965F, 0.5302120667F, 0.5307010736F, 0.5311900164F, 0.5316788947F, 0.5321677079F, 0.5326564554F, 0.5331451366F, 0.5336337511F, 0.5341222981F, 0.5346107771F, 0.5350991876F, 0.5355875290F, 0.5360758007F, 0.5365640021F, 0.5370521327F, 0.5375401920F, 0.5380281792F, 0.5385160939F, 0.5390039355F, 0.5394917034F, 0.5399793971F, 0.5404670159F, 0.5409545594F, 0.5414420269F, 0.5419294179F, 0.5424167318F, 0.5429039680F, 0.5433911261F, 0.5438782053F, 0.5443652051F, 0.5448521250F, 0.5453389644F, 0.5458257228F, 0.5463123995F, 0.5467989940F, 0.5472855057F, 0.5477719341F, 0.5482582786F, 0.5487445387F, 0.5492307137F, 0.5497168031F, 0.5502028063F, 0.5506887228F, 0.5511745520F, 0.5516602934F, 0.5521459463F, 0.5526315103F, 0.5531169847F, 0.5536023690F, 0.5540876626F, 0.5545728649F, 0.5550579755F, 0.5555429937F, 0.5560279189F, 0.5565127507F, 0.5569974884F, 0.5574821315F, 0.5579666794F, 0.5584511316F, 0.5589354875F, 0.5594197465F, 0.5599039080F, 0.5603879716F, 0.5608719367F, 0.5613558026F, 0.5618395689F, 0.5623232350F, 0.5628068002F, 0.5632902642F, 0.5637736262F, 0.5642568858F, 0.5647400423F, 0.5652230953F, 0.5657060442F, 0.5661888883F, 0.5666716272F, 0.5671542603F, 0.5676367870F, 0.5681192069F, 0.5686015192F, 0.5690837235F, 0.5695658192F, 0.5700478058F, 0.5705296827F, 0.5710114494F, 0.5714931052F, 0.5719746497F, 0.5724560822F, 0.5729374023F, 0.5734186094F, 0.5738997029F, 0.5743806823F, 0.5748615470F, 0.5753422965F, 0.5758229301F, 0.5763034475F, 0.5767838480F, 0.5772641310F, 0.5777442960F, 0.5782243426F, 0.5787042700F, 0.5791840778F, 0.5796637654F, 0.5801433322F, 0.5806227778F, 0.5811021016F, 0.5815813029F, 0.5820603814F, 0.5825393363F, 0.5830181673F, 0.5834968737F, 0.5839754549F, 0.5844539105F, 0.5849322399F, 0.5854104425F, 0.5858885179F, 0.5863664653F, 0.5868442844F, 0.5873219746F, 0.5877995353F, 0.5882769660F, 0.5887542661F, 0.5892314351F, 0.5897084724F, 0.5901853776F, 0.5906621500F, 0.5911387892F, 0.5916152945F, 0.5920916655F, 0.5925679016F, 0.5930440022F, 0.5935199669F, 0.5939957950F, 0.5944714861F, 0.5949470396F, 0.5954224550F, 0.5958977317F, 0.5963728692F, 0.5968478669F, 0.5973227244F, 0.5977974411F, 0.5982720163F, 0.5987464497F, 0.5992207407F, 0.5996948887F, 0.6001688932F, 0.6006427537F, 0.6011164696F, 0.6015900405F, 0.6020634657F, 0.6025367447F, 0.6030098770F, 0.6034828621F, 0.6039556995F, 0.6044283885F, 0.6049009288F, 0.6053733196F, 0.6058455606F, 0.6063176512F, 0.6067895909F, 0.6072613790F, 0.6077330152F, 0.6082044989F, 0.6086758295F, 0.6091470065F, 0.6096180294F, 0.6100888977F, 0.6105596108F, 0.6110301682F, 0.6115005694F, 0.6119708139F, 0.6124409011F, 0.6129108305F, 0.6133806017F, 0.6138502139F, 0.6143196669F, 0.6147889599F, 0.6152580926F, 0.6157270643F, 0.6161958746F, 0.6166645230F, 0.6171330088F, 0.6176013317F, 0.6180694910F, 0.6185374863F, 0.6190053171F, 0.6194729827F, 0.6199404828F, 0.6204078167F, 0.6208749841F, 0.6213419842F, 0.6218088168F, 0.6222754811F, 0.6227419768F, 0.6232083032F, 0.6236744600F, 0.6241404465F, 0.6246062622F, 0.6250719067F, 0.6255373795F, 0.6260026799F, 0.6264678076F, 0.6269327619F, 0.6273975425F, 0.6278621487F, 0.6283265800F, 0.6287908361F, 0.6292549163F, 0.6297188201F, 0.6301825471F, 0.6306460966F, 0.6311094683F, 0.6315726617F, 0.6320356761F, 0.6324985111F, 0.6329611662F, 0.6334236410F, 0.6338859348F, 0.6343480472F, 0.6348099777F, 0.6352717257F, 0.6357332909F, 0.6361946726F, 0.6366558704F, 0.6371168837F, 0.6375777122F, 0.6380383552F, 0.6384988123F, 0.6389590830F, 0.6394191668F, 0.6398790631F, 0.6403387716F, 0.6407982916F, 0.6412576228F, 0.6417167645F, 0.6421757163F, 0.6426344778F, 0.6430930483F, 0.6435514275F, 0.6440096149F, 0.6444676098F, 0.6449254119F, 0.6453830207F, 0.6458404356F, 0.6462976562F, 0.6467546820F, 0.6472115125F, 0.6476681472F, 0.6481245856F, 0.6485808273F, 0.6490368717F, 0.6494927183F, 0.6499483667F, 0.6504038164F, 0.6508590670F, 0.6513141178F, 0.6517689684F, 0.6522236185F, 0.6526780673F, 0.6531323146F, 0.6535863598F, 0.6540402024F, 0.6544938419F, 0.6549472779F, 0.6554005099F, 0.6558535373F, 0.6563063598F, 0.6567589769F, 0.6572113880F, 0.6576635927F, 0.6581155906F, 0.6585673810F, 0.6590189637F, 0.6594703380F, 0.6599215035F, 0.6603724598F, 0.6608232064F, 0.6612737427F, 0.6617240684F, 0.6621741829F, 0.6626240859F, 0.6630737767F, 0.6635232550F, 0.6639725202F, 0.6644215720F, 0.6648704098F, 0.6653190332F, 0.6657674417F, 0.6662156348F, 0.6666636121F, 0.6671113731F, 0.6675589174F, 0.6680062445F, 0.6684533538F, 0.6689002450F, 0.6693469177F, 0.6697933712F, 0.6702396052F, 0.6706856193F, 0.6711314129F, 0.6715769855F, 0.6720223369F, 0.6724674664F, 0.6729123736F, 0.6733570581F, 0.6738015194F, 0.6742457570F, 0.6746897706F, 0.6751335596F, 0.6755771236F, 0.6760204621F, 0.6764635747F, 0.6769064609F, 0.6773491204F, 0.6777915525F, 0.6782337570F, 0.6786757332F, 0.6791174809F, 0.6795589995F, 0.6800002886F, 0.6804413477F, 0.6808821765F, 0.6813227743F, 0.6817631409F, 0.6822032758F, 0.6826431785F, 0.6830828485F, 0.6835222855F, 0.6839614890F, 0.6844004585F, 0.6848391936F, 0.6852776939F, 0.6857159589F, 0.6861539883F, 0.6865917815F, 0.6870293381F, 0.6874666576F, 0.6879037398F, 0.6883405840F, 0.6887771899F, 0.6892135571F, 0.6896496850F, 0.6900855733F, 0.6905212216F, 0.6909566294F, 0.6913917963F, 0.6918267218F, 0.6922614055F, 0.6926958471F, 0.6931300459F, 0.6935640018F, 0.6939977141F, 0.6944311825F, 0.6948644066F, 0.6952973859F, 0.6957301200F, 0.6961626085F, 0.6965948510F, 0.6970268470F, 0.6974585961F, 0.6978900980F, 0.6983213521F, 0.6987523580F, 0.6991831154F, 0.6996136238F, 0.7000438828F, 0.7004738921F, 0.7009036510F, 0.7013331594F, 0.7017624166F, 0.7021914224F, 0.7026201763F, 0.7030486779F, 0.7034769268F, 0.7039049226F, 0.7043326648F, 0.7047601531F, 0.7051873870F, 0.7056143662F, 0.7060410902F, 0.7064675586F, 0.7068937711F, 0.7073197271F, 0.7077454264F, 0.7081708684F, 0.7085960529F, 0.7090209793F, 0.7094456474F, 0.7098700566F, 0.7102942066F, 0.7107180970F, 0.7111417274F, 0.7115650974F, 0.7119882066F, 0.7124110545F, 0.7128336409F, 0.7132559653F, 0.7136780272F, 0.7140998264F, 0.7145213624F, 0.7149426348F, 0.7153636433F, 0.7157843874F, 0.7162048668F, 0.7166250810F, 0.7170450296F, 0.7174647124F, 0.7178841289F, 0.7183032786F, 0.7187221613F, 0.7191407765F, 0.7195591239F, 0.7199772030F, 0.7203950135F, 0.7208125550F, 0.7212298271F, 0.7216468294F, 0.7220635616F, 0.7224800233F, 0.7228962140F, 0.7233121335F, 0.7237277813F, 0.7241431571F, 0.7245582604F, 0.7249730910F, 0.7253876484F, 0.7258019322F, 0.7262159422F, 0.7266296778F, 0.7270431388F, 0.7274563247F, 0.7278692353F, 0.7282818700F, 0.7286942287F, 0.7291063108F, 0.7295181160F, 0.7299296440F, 0.7303408944F, 0.7307518669F, 0.7311625609F, 0.7315729763F, 0.7319831126F, 0.7323929695F, 0.7328025466F, 0.7332118435F, 0.7336208600F, 0.7340295955F, 0.7344380499F, 0.7348462226F, 0.7352541134F, 0.7356617220F, 0.7360690478F, 0.7364760907F, 0.7368828502F, 0.7372893259F, 0.7376955176F, 0.7381014249F, 0.7385070475F, 0.7389123849F, 0.7393174368F, 0.7397222029F, 0.7401266829F, 0.7405308763F, 0.7409347829F, 0.7413384023F, 0.7417417341F, 0.7421447780F, 0.7425475338F, 0.7429500009F, 0.7433521791F, 0.7437540681F, 0.7441556674F, 0.7445569769F, 0.7449579960F, 0.7453587245F, 0.7457591621F, 0.7461593084F, 0.7465591631F, 0.7469587259F, 0.7473579963F, 0.7477569741F, 0.7481556590F, 0.7485540506F, 0.7489521486F, 0.7493499526F, 0.7497474623F, 0.7501446775F, 0.7505415977F, 0.7509382227F, 0.7513345521F, 0.7517305856F, 0.7521263229F, 0.7525217636F, 0.7529169074F, 0.7533117541F, 0.7537063032F, 0.7541005545F, 0.7544945076F, 0.7548881623F, 0.7552815182F, 0.7556745749F, 0.7560673323F, 0.7564597899F, 0.7568519474F, 0.7572438046F, 0.7576353611F, 0.7580266166F, 0.7584175708F, 0.7588082235F, 0.7591985741F, 0.7595886226F, 0.7599783685F, 0.7603678116F, 0.7607569515F, 0.7611457879F, 0.7615343206F, 0.7619225493F, 0.7623104735F, 0.7626980931F, 0.7630854078F, 0.7634724171F, 0.7638591209F, 0.7642455188F, 0.7646316106F, 0.7650173959F, 0.7654028744F, 0.7657880459F, 0.7661729100F, 0.7665574664F, 0.7669417150F, 0.7673256553F, 0.7677092871F, 0.7680926100F, 0.7684756239F, 0.7688583284F, 0.7692407232F, 0.7696228080F, 0.7700045826F, 0.7703860467F, 0.7707671999F, 0.7711480420F, 0.7715285728F, 0.7719087918F, 0.7722886989F, 0.7726682938F, 0.7730475762F, 0.7734265458F, 0.7738052023F, 0.7741835454F, 0.7745615750F, 0.7749392906F, 0.7753166921F, 0.7756937791F, 0.7760705514F, 0.7764470087F, 0.7768231508F, 0.7771989773F, 0.7775744880F, 0.7779496827F, 0.7783245610F, 0.7786991227F, 0.7790733676F, 0.7794472953F, 0.7798209056F, 0.7801941982F, 0.7805671729F, 0.7809398294F, 0.7813121675F, 0.7816841869F, 0.7820558873F, 0.7824272684F, 0.7827983301F, 0.7831690720F, 0.7835394940F, 0.7839095957F, 0.7842793768F, 0.7846488373F, 0.7850179767F, 0.7853867948F, 0.7857552914F, 0.7861234663F, 0.7864913191F, 0.7868588497F, 0.7872260578F, 0.7875929431F, 0.7879595055F, 0.7883257445F, 0.7886916601F, 0.7890572520F, 0.7894225198F, 0.7897874635F, 0.7901520827F, 0.7905163772F, 0.7908803468F, 0.7912439912F, 0.7916073102F, 0.7919703035F, 0.7923329710F, 0.7926953124F, 0.7930573274F, 0.7934190158F, 0.7937803774F, 0.7941414120F, 0.7945021193F, 0.7948624991F, 0.7952225511F, 0.7955822752F, 0.7959416711F, 0.7963007387F, 0.7966594775F, 0.7970178875F, 0.7973759685F, 0.7977337201F, 0.7980911422F, 0.7984482346F, 0.7988049970F, 0.7991614292F, 0.7995175310F, 0.7998733022F, 0.8002287426F, 0.8005838519F, 0.8009386299F, 0.8012930765F, 0.8016471914F, 0.8020009744F, 0.8023544253F, 0.8027075438F, 0.8030603298F, 0.8034127831F, 0.8037649035F, 0.8041166906F, 0.8044681445F, 0.8048192647F, 0.8051700512F, 0.8055205038F, 0.8058706222F, 0.8062204062F, 0.8065698556F, 0.8069189702F, 0.8072677499F, 0.8076161944F, 0.8079643036F, 0.8083120772F, 0.8086595151F, 0.8090066170F, 0.8093533827F, 0.8096998122F, 0.8100459051F, 0.8103916613F, 0.8107370806F, 0.8110821628F, 0.8114269077F, 0.8117713151F, 0.8121153849F, 0.8124591169F, 0.8128025108F, 0.8131455666F, 0.8134882839F, 0.8138306627F, 0.8141727027F, 0.8145144038F, 0.8148557658F, 0.8151967886F, 0.8155374718F, 0.8158778154F, 0.8162178192F, 0.8165574830F, 0.8168968067F, 0.8172357900F, 0.8175744328F, 0.8179127349F, 0.8182506962F, 0.8185883164F, 0.8189255955F, 0.8192625332F, 0.8195991295F, 0.8199353840F, 0.8202712967F, 0.8206068673F, 0.8209420958F, 0.8212769820F, 0.8216115256F, 0.8219457266F, 0.8222795848F, 0.8226131000F, 0.8229462721F, 0.8232791009F, 0.8236115863F, 0.8239437280F, 0.8242755260F, 0.8246069801F, 0.8249380901F, 0.8252688559F, 0.8255992774F, 0.8259293544F, 0.8262590867F, 0.8265884741F, 0.8269175167F, 0.8272462141F, 0.8275745663F, 0.8279025732F, 0.8282302344F, 0.8285575501F, 0.8288845199F, 0.8292111437F, 0.8295374215F, 0.8298633530F, 0.8301889382F, 0.8305141768F, 0.8308390688F, 0.8311636141F, 0.8314878124F, 0.8318116637F, 0.8321351678F, 0.8324583246F, 0.8327811340F, 0.8331035957F, 0.8334257098F, 0.8337474761F, 0.8340688944F, 0.8343899647F, 0.8347106867F, 0.8350310605F, 0.8353510857F, 0.8356707624F, 0.8359900904F, 0.8363090696F, 0.8366276999F, 0.8369459811F, 0.8372639131F, 0.8375814958F, 0.8378987292F, 0.8382156130F, 0.8385321472F, 0.8388483316F, 0.8391641662F, 0.8394796508F, 0.8397947853F, 0.8401095697F, 0.8404240037F, 0.8407380873F, 0.8410518204F, 0.8413652029F, 0.8416782347F, 0.8419909156F, 0.8423032456F, 0.8426152245F, 0.8429268523F, 0.8432381289F, 0.8435490541F, 0.8438596279F, 0.8441698502F, 0.8444797208F, 0.8447892396F, 0.8450984067F, 0.8454072218F, 0.8457156849F, 0.8460237959F, 0.8463315547F, 0.8466389612F, 0.8469460154F, 0.8472527170F, 0.8475590661F, 0.8478650625F, 0.8481707063F, 0.8484759971F, 0.8487809351F, 0.8490855201F, 0.8493897521F, 0.8496936308F, 0.8499971564F, 0.8503003286F, 0.8506031474F, 0.8509056128F, 0.8512077246F, 0.8515094828F, 0.8518108872F, 0.8521119379F, 0.8524126348F, 0.8527129777F, 0.8530129666F, 0.8533126015F, 0.8536118822F, 0.8539108087F, 0.8542093809F, 0.8545075988F, 0.8548054623F, 0.8551029712F, 0.8554001257F, 0.8556969255F, 0.8559933707F, 0.8562894611F, 0.8565851968F, 0.8568805775F, 0.8571756034F, 0.8574702743F, 0.8577645902F, 0.8580585509F, 0.8583521566F, 0.8586454070F, 0.8589383021F, 0.8592308420F, 0.8595230265F, 0.8598148556F, 0.8601063292F, 0.8603974473F, 0.8606882098F, 0.8609786167F, 0.8612686680F, 0.8615583636F, 0.8618477034F, 0.8621366874F, 0.8624253156F, 0.8627135878F, 0.8630015042F, 0.8632890646F, 0.8635762690F, 0.8638631173F, 0.8641496096F, 0.8644357457F, 0.8647215257F, 0.8650069495F, 0.8652920171F, 0.8655767283F, 0.8658610833F, 0.8661450820F, 0.8664287243F, 0.8667120102F, 0.8669949397F, 0.8672775127F, 0.8675597293F, 0.8678415894F, 0.8681230929F, 0.8684042398F, 0.8686850302F, 0.8689654640F, 0.8692455412F, 0.8695252617F, 0.8698046255F, 0.8700836327F, 0.8703622831F, 0.8706405768F, 0.8709185138F, 0.8711960940F, 0.8714733174F, 0.8717501840F, 0.8720266939F, 0.8723028469F, 0.8725786430F, 0.8728540824F, 0.8731291648F, 0.8734038905F, 0.8736782592F, 0.8739522711F, 0.8742259261F, 0.8744992242F, 0.8747721653F, 0.8750447496F, 0.8753169770F, 0.8755888475F, 0.8758603611F, 0.8761315177F, 0.8764023175F, 0.8766727603F, 0.8769428462F, 0.8772125752F, 0.8774819474F, 0.8777509626F, 0.8780196209F, 0.8782879224F, 0.8785558669F, 0.8788234546F, 0.8790906854F, 0.8793575594F, 0.8796240765F, 0.8798902368F, 0.8801560403F, 0.8804214870F, 0.8806865768F, 0.8809513099F, 0.8812156863F, 0.8814797059F, 0.8817433687F, 0.8820066749F, 0.8822696243F, 0.8825322171F, 0.8827944532F, 0.8830563327F, 0.8833178556F, 0.8835790219F, 0.8838398316F, 0.8841002848F, 0.8843603815F, 0.8846201217F, 0.8848795054F, 0.8851385327F, 0.8853972036F, 0.8856555182F, 0.8859134764F, 0.8861710783F, 0.8864283239F, 0.8866852133F, 0.8869417464F, 0.8871979234F, 0.8874537443F, 0.8877092090F, 0.8879643177F, 0.8882190704F, 0.8884734671F, 0.8887275078F, 0.8889811927F, 0.8892345216F, 0.8894874948F, 0.8897401122F, 0.8899923738F, 0.8902442798F, 0.8904958301F, 0.8907470248F, 0.8909978640F, 0.8912483477F, 0.8914984759F, 0.8917482487F, 0.8919976662F, 0.8922467284F, 0.8924954353F, 0.8927437871F, 0.8929917837F, 0.8932394252F, 0.8934867118F, 0.8937336433F, 0.8939802199F, 0.8942264417F, 0.8944723087F, 0.8947178210F, 0.8949629785F, 0.8952077815F, 0.8954522299F, 0.8956963239F, 0.8959400634F, 0.8961834486F, 0.8964264795F, 0.8966691561F, 0.8969114786F, 0.8971534470F, 0.8973950614F, 0.8976363219F, 0.8978772284F, 0.8981177812F, 0.8983579802F, 0.8985978256F, 0.8988373174F, 0.8990764556F, 0.8993152405F, 0.8995536720F, 0.8997917502F, 0.9000294751F, 0.9002668470F, 0.9005038658F, 0.9007405317F, 0.9009768446F, 0.9012128048F, 0.9014484123F, 0.9016836671F, 0.9019185693F, 0.9021531191F, 0.9023873165F, 0.9026211616F, 0.9028546546F, 0.9030877954F, 0.9033205841F, 0.9035530210F, 0.9037851059F, 0.9040168392F, 0.9042482207F, 0.9044792507F, 0.9047099293F, 0.9049402564F, 0.9051702323F, 0.9053998569F, 0.9056291305F, 0.9058580531F, 0.9060866248F, 0.9063148457F, 0.9065427159F, 0.9067702355F, 0.9069974046F, 0.9072242233F, 0.9074506917F, 0.9076768100F, 0.9079025782F, 0.9081279964F, 0.9083530647F, 0.9085777833F, 0.9088021523F, 0.9090261717F, 0.9092498417F, 0.9094731623F, 0.9096961338F, 0.9099187561F, 0.9101410295F, 0.9103629540F, 0.9105845297F, 0.9108057568F, 0.9110266354F, 0.9112471656F, 0.9114673475F, 0.9116871812F, 0.9119066668F, 0.9121258046F, 0.9123445945F, 0.9125630367F, 0.9127811314F, 0.9129988786F, 0.9132162785F, 0.9134333312F, 0.9136500368F, 0.9138663954F, 0.9140824073F, 0.9142980724F, 0.9145133910F, 0.9147283632F, 0.9149429890F, 0.9151572687F, 0.9153712023F, 0.9155847900F, 0.9157980319F, 0.9160109282F, 0.9162234790F, 0.9164356844F, 0.9166475445F, 0.9168590595F, 0.9170702296F, 0.9172810548F, 0.9174915354F, 0.9177016714F, 0.9179114629F, 0.9181209102F, 0.9183300134F, 0.9185387726F, 0.9187471879F, 0.9189552595F, 0.9191629876F, 0.9193703723F, 0.9195774136F, 0.9197841119F, 0.9199904672F, 0.9201964797F, 0.9204021495F, 0.9206074767F, 0.9208124616F, 0.9210171043F, 0.9212214049F, 0.9214253636F, 0.9216289805F, 0.9218322558F, 0.9220351896F, 0.9222377821F, 0.9224400335F, 0.9226419439F, 0.9228435134F, 0.9230447423F, 0.9232456307F, 0.9234461787F, 0.9236463865F, 0.9238462543F, 0.9240457822F, 0.9242449704F, 0.9244438190F, 0.9246423282F, 0.9248404983F, 0.9250383293F, 0.9252358214F, 0.9254329747F, 0.9256297896F, 0.9258262660F, 0.9260224042F, 0.9262182044F, 0.9264136667F, 0.9266087913F, 0.9268035783F, 0.9269980280F, 0.9271921405F, 0.9273859160F, 0.9275793546F, 0.9277724566F, 0.9279652221F, 0.9281576513F, 0.9283497443F, 0.9285415014F, 0.9287329227F, 0.9289240084F, 0.9291147586F, 0.9293051737F, 0.9294952536F, 0.9296849987F, 0.9298744091F, 0.9300634850F, 0.9302522266F, 0.9304406340F, 0.9306287074F, 0.9308164471F, 0.9310038532F, 0.9311909259F, 0.9313776654F, 0.9315640719F, 0.9317501455F, 0.9319358865F, 0.9321212951F, 0.9323063713F, 0.9324911155F, 0.9326755279F, 0.9328596085F, 0.9330433577F, 0.9332267756F, 0.9334098623F, 0.9335926182F, 0.9337750434F, 0.9339571380F, 0.9341389023F, 0.9343203366F, 0.9345014409F, 0.9346822155F, 0.9348626606F, 0.9350427763F, 0.9352225630F, 0.9354020207F, 0.9355811498F, 0.9357599503F, 0.9359384226F, 0.9361165667F, 0.9362943830F, 0.9364718716F, 0.9366490327F, 0.9368258666F, 0.9370023733F, 0.9371785533F, 0.9373544066F, 0.9375299335F, 0.9377051341F, 0.9378800087F, 0.9380545576F, 0.9382287809F, 0.9384026787F, 0.9385762515F, 0.9387494993F, 0.9389224223F, 0.9390950209F, 0.9392672951F, 0.9394392453F, 0.9396108716F, 0.9397821743F, 0.9399531536F, 0.9401238096F, 0.9402941427F, 0.9404641530F, 0.9406338407F, 0.9408032061F, 0.9409722495F, 0.9411409709F, 0.9413093707F, 0.9414774491F, 0.9416452062F, 0.9418126424F, 0.9419797579F, 0.9421465528F, 0.9423130274F, 0.9424791819F, 0.9426450166F, 0.9428105317F, 0.9429757274F, 0.9431406039F, 0.9433051616F, 0.9434694005F, 0.9436333209F, 0.9437969232F, 0.9439602074F, 0.9441231739F, 0.9442858229F, 0.9444481545F, 0.9446101691F, 0.9447718669F, 0.9449332481F, 0.9450943129F, 0.9452550617F, 0.9454154945F, 0.9455756118F, 0.9457354136F, 0.9458949003F, 0.9460540721F, 0.9462129292F, 0.9463714719F, 0.9465297003F, 0.9466876149F, 0.9468452157F, 0.9470025031F, 0.9471594772F, 0.9473161384F, 0.9474724869F, 0.9476285229F, 0.9477842466F, 0.9479396584F, 0.9480947585F, 0.9482495470F, 0.9484040243F, 0.9485581906F, 0.9487120462F, 0.9488655913F, 0.9490188262F, 0.9491717511F, 0.9493243662F, 0.9494766718F, 0.9496286683F, 0.9497803557F, 0.9499317345F, 0.9500828047F, 0.9502335668F, 0.9503840209F, 0.9505341673F, 0.9506840062F, 0.9508335380F, 0.9509827629F, 0.9511316810F, 0.9512802928F, 0.9514285984F, 0.9515765982F, 0.9517242923F, 0.9518716810F, 0.9520187646F, 0.9521655434F, 0.9523120176F, 0.9524581875F, 0.9526040534F, 0.9527496154F, 0.9528948739F, 0.9530398292F, 0.9531844814F, 0.9533288310F, 0.9534728780F, 0.9536166229F, 0.9537600659F, 0.9539032071F, 0.9540460470F, 0.9541885858F, 0.9543308237F, 0.9544727611F, 0.9546143981F, 0.9547557351F, 0.9548967723F, 0.9550375100F, 0.9551779485F, 0.9553180881F, 0.9554579290F, 0.9555974714F, 0.9557367158F, 0.9558756623F, 0.9560143112F, 0.9561526628F, 0.9562907174F, 0.9564284752F, 0.9565659366F, 0.9567031017F, 0.9568399710F, 0.9569765446F, 0.9571128229F, 0.9572488061F, 0.9573844944F, 0.9575198883F, 0.9576549879F, 0.9577897936F, 0.9579243056F, 0.9580585242F, 0.9581924497F, 0.9583260824F, 0.9584594226F, 0.9585924705F, 0.9587252264F, 0.9588576906F, 0.9589898634F, 0.9591217452F, 0.9592533360F, 0.9593846364F, 0.9595156465F, 0.9596463666F, 0.9597767971F, 0.9599069382F, 0.9600367901F, 0.9601663533F, 0.9602956279F, 0.9604246143F, 0.9605533128F, 0.9606817236F, 0.9608098471F, 0.9609376835F, 0.9610652332F, 0.9611924963F, 0.9613194733F, 0.9614461644F, 0.9615725699F, 0.9616986901F, 0.9618245253F, 0.9619500757F, 0.9620753418F, 0.9622003238F, 0.9623250219F, 0.9624494365F, 0.9625735679F, 0.9626974163F, 0.9628209821F, 0.9629442656F, 0.9630672671F, 0.9631899868F, 0.9633124251F, 0.9634345822F, 0.9635564585F, 0.9636780543F, 0.9637993699F, 0.9639204056F, 0.9640411616F, 0.9641616383F, 0.9642818359F, 0.9644017549F, 0.9645213955F, 0.9646407579F, 0.9647598426F, 0.9648786497F, 0.9649971797F, 0.9651154328F, 0.9652334092F, 0.9653511095F, 0.9654685337F, 0.9655856823F, 0.9657025556F, 0.9658191538F, 0.9659354773F, 0.9660515263F, 0.9661673013F, 0.9662828024F, 0.9663980300F, 0.9665129845F, 0.9666276660F, 0.9667420750F, 0.9668562118F, 0.9669700766F, 0.9670836698F, 0.9671969917F, 0.9673100425F, 0.9674228227F, 0.9675353325F, 0.9676475722F, 0.9677595422F, 0.9678712428F, 0.9679826742F, 0.9680938368F, 0.9682047309F, 0.9683153569F, 0.9684257150F, 0.9685358056F, 0.9686456289F, 0.9687551853F, 0.9688644752F, 0.9689734987F, 0.9690822564F, 0.9691907483F, 0.9692989750F, 0.9694069367F, 0.9695146337F, 0.9696220663F, 0.9697292349F, 0.9698361398F, 0.9699427813F, 0.9700491597F, 0.9701552754F, 0.9702611286F, 0.9703667197F, 0.9704720490F, 0.9705771169F, 0.9706819236F, 0.9707864695F, 0.9708907549F, 0.9709947802F, 0.9710985456F, 0.9712020514F, 0.9713052981F, 0.9714082859F, 0.9715110151F, 0.9716134862F, 0.9717156993F, 0.9718176549F, 0.9719193532F, 0.9720207946F, 0.9721219794F, 0.9722229080F, 0.9723235806F, 0.9724239976F, 0.9725241593F, 0.9726240661F, 0.9727237183F, 0.9728231161F, 0.9729222601F, 0.9730211503F, 0.9731197873F, 0.9732181713F, 0.9733163027F, 0.9734141817F, 0.9735118088F, 0.9736091842F, 0.9737063083F, 0.9738031814F, 0.9738998039F, 0.9739961760F, 0.9740922981F, 0.9741881706F, 0.9742837938F, 0.9743791680F, 0.9744742935F, 0.9745691707F, 0.9746637999F, 0.9747581814F, 0.9748523157F, 0.9749462029F, 0.9750398435F, 0.9751332378F, 0.9752263861F, 0.9753192887F, 0.9754119461F, 0.9755043585F, 0.9755965262F, 0.9756884496F, 0.9757801291F, 0.9758715650F, 0.9759627575F, 0.9760537071F, 0.9761444141F, 0.9762348789F, 0.9763251016F, 0.9764150828F, 0.9765048228F, 0.9765943218F, 0.9766835802F, 0.9767725984F, 0.9768613767F, 0.9769499154F, 0.9770382149F, 0.9771262755F, 0.9772140976F, 0.9773016815F, 0.9773890275F, 0.9774761360F, 0.9775630073F, 0.9776496418F, 0.9777360398F, 0.9778222016F, 0.9779081277F, 0.9779938182F, 0.9780792736F, 0.9781644943F, 0.9782494805F, 0.9783342326F, 0.9784187509F, 0.9785030359F, 0.9785870877F, 0.9786709069F, 0.9787544936F, 0.9788378484F, 0.9789209714F, 0.9790038631F, 0.9790865238F, 0.9791689538F, 0.9792511535F, 0.9793331232F, 0.9794148633F, 0.9794963742F, 0.9795776561F, 0.9796587094F, 0.9797395345F, 0.9798201316F, 0.9799005013F, 0.9799806437F, 0.9800605593F, 0.9801402483F, 0.9802197112F, 0.9802989483F, 0.9803779600F, 0.9804567465F, 0.9805353082F, 0.9806136455F, 0.9806917587F, 0.9807696482F, 0.9808473143F, 0.9809247574F, 0.9810019778F, 0.9810789759F, 0.9811557519F, 0.9812323064F, 0.9813086395F, 0.9813847517F, 0.9814606433F, 0.9815363147F, 0.9816117662F, 0.9816869981F, 0.9817620108F, 0.9818368047F, 0.9819113801F, 0.9819857374F, 0.9820598769F, 0.9821337989F, 0.9822075038F, 0.9822809920F, 0.9823542638F, 0.9824273195F, 0.9825001596F, 0.9825727843F, 0.9826451940F, 0.9827173891F, 0.9827893700F, 0.9828611368F, 0.9829326901F, 0.9830040302F, 0.9830751574F, 0.9831460720F, 0.9832167745F, 0.9832872652F, 0.9833575444F, 0.9834276124F, 0.9834974697F, 0.9835671166F, 0.9836365535F, 0.9837057806F, 0.9837747983F, 0.9838436071F, 0.9839122072F, 0.9839805990F, 0.9840487829F, 0.9841167591F, 0.9841845282F, 0.9842520903F, 0.9843194459F, 0.9843865953F, 0.9844535389F, 0.9845202771F, 0.9845868101F, 0.9846531383F, 0.9847192622F, 0.9847851820F, 0.9848508980F, 0.9849164108F, 0.9849817205F, 0.9850468276F, 0.9851117324F, 0.9851764352F, 0.9852409365F, 0.9853052366F, 0.9853693358F, 0.9854332344F, 0.9854969330F, 0.9855604317F, 0.9856237309F, 0.9856868310F, 0.9857497325F, 0.9858124355F, 0.9858749404F, 0.9859372477F, 0.9859993577F, 0.9860612707F, 0.9861229871F, 0.9861845072F, 0.9862458315F, 0.9863069601F, 0.9863678936F, 0.9864286322F, 0.9864891764F, 0.9865495264F, 0.9866096826F, 0.9866696454F, 0.9867294152F, 0.9867889922F, 0.9868483769F, 0.9869075695F, 0.9869665706F, 0.9870253803F, 0.9870839991F, 0.9871424273F, 0.9872006653F, 0.9872587135F, 0.9873165721F, 0.9873742415F, 0.9874317222F, 0.9874890144F, 0.9875461185F, 0.9876030348F, 0.9876597638F, 0.9877163057F, 0.9877726610F, 0.9878288300F, 0.9878848130F, 0.9879406104F, 0.9879962225F, 0.9880516497F, 0.9881068924F, 0.9881619509F, 0.9882168256F, 0.9882715168F, 0.9883260249F, 0.9883803502F, 0.9884344931F, 0.9884884539F, 0.9885422331F, 0.9885958309F, 0.9886492477F, 0.9887024838F, 0.9887555397F, 0.9888084157F, 0.9888611120F, 0.9889136292F, 0.9889659675F, 0.9890181273F, 0.9890701089F, 0.9891219128F, 0.9891735392F, 0.9892249885F, 0.9892762610F, 0.9893273572F, 0.9893782774F, 0.9894290219F, 0.9894795911F, 0.9895299853F, 0.9895802049F, 0.9896302502F, 0.9896801217F, 0.9897298196F, 0.9897793443F, 0.9898286961F, 0.9898778755F, 0.9899268828F, 0.9899757183F, 0.9900243823F, 0.9900728753F, 0.9901211976F, 0.9901693495F, 0.9902173314F, 0.9902651436F, 0.9903127865F, 0.9903602605F, 0.9904075659F, 0.9904547031F, 0.9905016723F, 0.9905484740F, 0.9905951086F, 0.9906415763F, 0.9906878775F, 0.9907340126F, 0.9907799819F, 0.9908257858F, 0.9908714247F, 0.9909168988F, 0.9909622086F, 0.9910073543F, 0.9910523364F, 0.9910971552F, 0.9911418110F, 0.9911863042F, 0.9912306351F, 0.9912748042F, 0.9913188117F, 0.9913626580F, 0.9914063435F, 0.9914498684F, 0.9914932333F, 0.9915364383F, 0.9915794839F, 0.9916223703F, 0.9916650981F, 0.9917076674F, 0.9917500787F, 0.9917923323F, 0.9918344286F, 0.9918763679F, 0.9919181505F, 0.9919597769F, 0.9920012473F, 0.9920425621F, 0.9920837217F, 0.9921247263F, 0.9921655765F, 0.9922062724F, 0.9922468145F, 0.9922872030F, 0.9923274385F, 0.9923675211F, 0.9924074513F, 0.9924472294F, 0.9924868557F, 0.9925263306F, 0.9925656544F, 0.9926048275F, 0.9926438503F, 0.9926827230F, 0.9927214461F, 0.9927600199F, 0.9927984446F, 0.9928367208F, 0.9928748486F, 0.9929128285F, 0.9929506608F, 0.9929883459F, 0.9930258841F, 0.9930632757F, 0.9931005211F, 0.9931376207F, 0.9931745747F, 0.9932113836F, 0.9932480476F, 0.9932845671F, 0.9933209425F, 0.9933571742F, 0.9933932623F, 0.9934292074F, 0.9934650097F, 0.9935006696F, 0.9935361874F, 0.9935715635F, 0.9936067982F, 0.9936418919F, 0.9936768448F, 0.9937116574F, 0.9937463300F, 0.9937808629F, 0.9938152565F, 0.9938495111F, 0.9938836271F, 0.9939176047F, 0.9939514444F, 0.9939851465F, 0.9940187112F, 0.9940521391F, 0.9940854303F, 0.9941185853F, 0.9941516044F, 0.9941844879F, 0.9942172361F, 0.9942498495F, 0.9942823283F, 0.9943146729F, 0.9943468836F, 0.9943789608F, 0.9944109047F, 0.9944427158F, 0.9944743944F, 0.9945059408F, 0.9945373553F, 0.9945686384F, 0.9945997902F, 0.9946308112F, 0.9946617017F, 0.9946924621F, 0.9947230926F, 0.9947535937F, 0.9947839656F, 0.9948142086F, 0.9948443232F, 0.9948743097F, 0.9949041683F, 0.9949338995F, 0.9949635035F, 0.9949929807F, 0.9950223315F, 0.9950515561F, 0.9950806549F, 0.9951096282F, 0.9951384764F, 0.9951671998F, 0.9951957987F, 0.9952242735F, 0.9952526245F, 0.9952808520F, 0.9953089564F, 0.9953369380F, 0.9953647971F, 0.9953925340F, 0.9954201491F, 0.9954476428F, 0.9954750153F, 0.9955022670F, 0.9955293981F, 0.9955564092F, 0.9955833003F, 0.9956100720F, 0.9956367245F, 0.9956632582F, 0.9956896733F, 0.9957159703F, 0.9957421494F, 0.9957682110F, 0.9957941553F, 0.9958199828F, 0.9958456937F, 0.9958712884F, 0.9958967672F, 0.9959221305F, 0.9959473784F, 0.9959725115F, 0.9959975300F, 0.9960224342F, 0.9960472244F, 0.9960719011F, 0.9960964644F, 0.9961209148F, 0.9961452525F, 0.9961694779F, 0.9961935913F, 0.9962175930F, 0.9962414834F, 0.9962652627F, 0.9962889313F, 0.9963124895F, 0.9963359377F, 0.9963592761F, 0.9963825051F, 0.9964056250F, 0.9964286361F, 0.9964515387F, 0.9964743332F, 0.9964970198F, 0.9965195990F, 0.9965420709F, 0.9965644360F, 0.9965866946F, 0.9966088469F, 0.9966308932F, 0.9966528340F, 0.9966746695F, 0.9966964001F, 0.9967180260F, 0.9967395475F, 0.9967609651F, 0.9967822789F, 0.9968034894F, 0.9968245968F, 0.9968456014F, 0.9968665036F, 0.9968873037F, 0.9969080019F, 0.9969285987F, 0.9969490942F, 0.9969694889F, 0.9969897830F, 0.9970099769F, 0.9970300708F, 0.9970500651F, 0.9970699601F, 0.9970897561F, 0.9971094533F, 0.9971290522F, 0.9971485531F, 0.9971679561F, 0.9971872617F, 0.9972064702F, 0.9972255818F, 0.9972445968F, 0.9972635157F, 0.9972823386F, 0.9973010659F, 0.9973196980F, 0.9973382350F, 0.9973566773F, 0.9973750253F, 0.9973932791F, 0.9974114392F, 0.9974295059F, 0.9974474793F, 0.9974653599F, 0.9974831480F, 0.9975008438F, 0.9975184476F, 0.9975359598F, 0.9975533806F, 0.9975707104F, 0.9975879495F, 0.9976050981F, 0.9976221566F, 0.9976391252F, 0.9976560043F, 0.9976727941F, 0.9976894950F, 0.9977061073F, 0.9977226312F, 0.9977390671F, 0.9977554152F, 0.9977716759F, 0.9977878495F, 0.9978039361F, 0.9978199363F, 0.9978358501F, 0.9978516780F, 0.9978674202F, 0.9978830771F, 0.9978986488F, 0.9979141358F, 0.9979295383F, 0.9979448566F, 0.9979600909F, 0.9979752417F, 0.9979903091F, 0.9980052936F, 0.9980201952F, 0.9980350145F, 0.9980497515F, 0.9980644067F, 0.9980789804F, 0.9980934727F, 0.9981078841F, 0.9981222147F, 0.9981364649F, 0.9981506350F, 0.9981647253F, 0.9981787360F, 0.9981926674F, 0.9982065199F, 0.9982202936F, 0.9982339890F, 0.9982476062F, 0.9982611456F, 0.9982746074F, 0.9982879920F, 0.9983012996F, 0.9983145304F, 0.9983276849F, 0.9983407632F, 0.9983537657F, 0.9983666926F, 0.9983795442F, 0.9983923208F, 0.9984050226F, 0.9984176501F, 0.9984302033F, 0.9984426827F, 0.9984550884F, 0.9984674208F, 0.9984796802F, 0.9984918667F, 0.9985039808F, 0.9985160227F, 0.9985279926F, 0.9985398909F, 0.9985517177F, 0.9985634734F, 0.9985751583F, 0.9985867727F, 0.9985983167F, 0.9986097907F, 0.9986211949F, 0.9986325297F, 0.9986437953F, 0.9986549919F, 0.9986661199F, 0.9986771795F, 0.9986881710F, 0.9986990946F, 0.9987099507F, 0.9987207394F, 0.9987314611F, 0.9987421161F, 0.9987527045F, 0.9987632267F, 0.9987736829F, 0.9987840734F, 0.9987943985F, 0.9988046584F, 0.9988148534F, 0.9988249838F, 0.9988350498F, 0.9988450516F, 0.9988549897F, 0.9988648641F, 0.9988746753F, 0.9988844233F, 0.9988941086F, 0.9989037313F, 0.9989132918F, 0.9989227902F, 0.9989322269F, 0.9989416021F, 0.9989509160F, 0.9989601690F, 0.9989693613F, 0.9989784931F, 0.9989875647F, 0.9989965763F, 0.9990055283F, 0.9990144208F, 0.9990232541F, 0.9990320286F, 0.9990407443F, 0.9990494016F, 0.9990580008F, 0.9990665421F, 0.9990750257F, 0.9990834519F, 0.9990918209F, 0.9991001331F, 0.9991083886F, 0.9991165877F, 0.9991247307F, 0.9991328177F, 0.9991408491F, 0.9991488251F, 0.9991567460F, 0.9991646119F, 0.9991724232F, 0.9991801801F, 0.9991878828F, 0.9991955316F, 0.9992031267F, 0.9992106684F, 0.9992181569F, 0.9992255925F, 0.9992329753F, 0.9992403057F, 0.9992475839F, 0.9992548101F, 0.9992619846F, 0.9992691076F, 0.9992761793F, 0.9992832001F, 0.9992901701F, 0.9992970895F, 0.9993039587F, 0.9993107777F, 0.9993175470F, 0.9993242667F, 0.9993309371F, 0.9993375583F, 0.9993441307F, 0.9993506545F, 0.9993571298F, 0.9993635570F, 0.9993699362F, 0.9993762678F, 0.9993825519F, 0.9993887887F, 0.9993949785F, 0.9994011216F, 0.9994072181F, 0.9994132683F, 0.9994192725F, 0.9994252307F, 0.9994311434F, 0.9994370107F, 0.9994428327F, 0.9994486099F, 0.9994543423F, 0.9994600303F, 0.9994656739F, 0.9994712736F, 0.9994768294F, 0.9994823417F, 0.9994878105F, 0.9994932363F, 0.9994986191F, 0.9995039592F, 0.9995092568F, 0.9995145122F, 0.9995197256F, 0.9995248971F, 0.9995300270F, 0.9995351156F, 0.9995401630F, 0.9995451695F, 0.9995501352F, 0.9995550604F, 0.9995599454F, 0.9995647903F, 0.9995695953F, 0.9995743607F, 0.9995790866F, 0.9995837734F, 0.9995884211F, 0.9995930300F, 0.9995976004F, 0.9996021324F, 0.9996066263F, 0.9996110822F, 0.9996155004F, 0.9996198810F, 0.9996242244F, 0.9996285306F, 0.9996327999F, 0.9996370326F, 0.9996412287F, 0.9996453886F, 0.9996495125F, 0.9996536004F, 0.9996576527F, 0.9996616696F, 0.9996656512F, 0.9996695977F, 0.9996735094F, 0.9996773865F, 0.9996812291F, 0.9996850374F, 0.9996888118F, 0.9996925523F, 0.9996962591F, 0.9996999325F, 0.9997035727F, 0.9997071798F, 0.9997107541F, 0.9997142957F, 0.9997178049F, 0.9997212818F, 0.9997247266F, 0.9997281396F, 0.9997315209F, 0.9997348708F, 0.9997381893F, 0.9997414767F, 0.9997447333F, 0.9997479591F, 0.9997511544F, 0.9997543194F, 0.9997574542F, 0.9997605591F, 0.9997636342F, 0.9997666797F, 0.9997696958F, 0.9997726828F, 0.9997756407F, 0.9997785698F, 0.9997814703F, 0.9997843423F, 0.9997871860F, 0.9997900016F, 0.9997927894F, 0.9997955494F, 0.9997982818F, 0.9998009869F, 0.9998036648F, 0.9998063157F, 0.9998089398F, 0.9998115373F, 0.9998141082F, 0.9998166529F, 0.9998191715F, 0.9998216642F, 0.9998241311F, 0.9998265724F, 0.9998289884F, 0.9998313790F, 0.9998337447F, 0.9998360854F, 0.9998384015F, 0.9998406930F, 0.9998429602F, 0.9998452031F, 0.9998474221F, 0.9998496171F, 0.9998517885F, 0.9998539364F, 0.9998560610F, 0.9998581624F, 0.9998602407F, 0.9998622962F, 0.9998643291F, 0.9998663394F, 0.9998683274F, 0.9998702932F, 0.9998722370F, 0.9998741589F, 0.9998760591F, 0.9998779378F, 0.9998797952F, 0.9998816313F, 0.9998834464F, 0.9998852406F, 0.9998870141F, 0.9998887670F, 0.9998904995F, 0.9998922117F, 0.9998939039F, 0.9998955761F, 0.9998972285F, 0.9998988613F, 0.9999004746F, 0.9999020686F, 0.9999036434F, 0.9999051992F, 0.9999067362F, 0.9999082544F, 0.9999097541F, 0.9999112354F, 0.9999126984F, 0.9999141433F, 0.9999155703F, 0.9999169794F, 0.9999183709F, 0.9999197449F, 0.9999211014F, 0.9999224408F, 0.9999237631F, 0.9999250684F, 0.9999263570F, 0.9999276289F, 0.9999288843F, 0.9999301233F, 0.9999313461F, 0.9999325529F, 0.9999337437F, 0.9999349187F, 0.9999360780F, 0.9999372218F, 0.9999383503F, 0.9999394635F, 0.9999405616F, 0.9999416447F, 0.9999427129F, 0.9999437665F, 0.9999448055F, 0.9999458301F, 0.9999468404F, 0.9999478365F, 0.9999488185F, 0.9999497867F, 0.9999507411F, 0.9999516819F, 0.9999526091F, 0.9999535230F, 0.9999544236F, 0.9999553111F, 0.9999561856F, 0.9999570472F, 0.9999578960F, 0.9999587323F, 0.9999595560F, 0.9999603674F, 0.9999611666F, 0.9999619536F, 0.9999627286F, 0.9999634917F, 0.9999642431F, 0.9999649828F, 0.9999657110F, 0.9999664278F, 0.9999671334F, 0.9999678278F, 0.9999685111F, 0.9999691835F, 0.9999698451F, 0.9999704960F, 0.9999711364F, 0.9999717662F, 0.9999723858F, 0.9999729950F, 0.9999735942F, 0.9999741834F, 0.9999747626F, 0.9999753321F, 0.9999758919F, 0.9999764421F, 0.9999769828F, 0.9999775143F, 0.9999780364F, 0.9999785495F, 0.9999790535F, 0.9999795485F, 0.9999800348F, 0.9999805124F, 0.9999809813F, 0.9999814417F, 0.9999818938F, 0.9999823375F, 0.9999827731F, 0.9999832005F, 0.9999836200F, 0.9999840316F, 0.9999844353F, 0.9999848314F, 0.9999852199F, 0.9999856008F, 0.9999859744F, 0.9999863407F, 0.9999866997F, 0.9999870516F, 0.9999873965F, 0.9999877345F, 0.9999880656F, 0.9999883900F, 0.9999887078F, 0.9999890190F, 0.9999893237F, 0.9999896220F, 0.9999899140F, 0.9999901999F, 0.9999904796F, 0.9999907533F, 0.9999910211F, 0.9999912830F, 0.9999915391F, 0.9999917896F, 0.9999920345F, 0.9999922738F, 0.9999925077F, 0.9999927363F, 0.9999929596F, 0.9999931777F, 0.9999933907F, 0.9999935987F, 0.9999938018F, 0.9999940000F, 0.9999941934F, 0.9999943820F, 0.9999945661F, 0.9999947456F, 0.9999949206F, 0.9999950912F, 0.9999952575F, 0.9999954195F, 0.9999955773F, 0.9999957311F, 0.9999958807F, 0.9999960265F, 0.9999961683F, 0.9999963063F, 0.9999964405F, 0.9999965710F, 0.9999966979F, 0.9999968213F, 0.9999969412F, 0.9999970576F, 0.9999971707F, 0.9999972805F, 0.9999973871F, 0.9999974905F, 0.9999975909F, 0.9999976881F, 0.9999977824F, 0.9999978738F, 0.9999979624F, 0.9999980481F, 0.9999981311F, 0.9999982115F, 0.9999982892F, 0.9999983644F, 0.9999984370F, 0.9999985072F, 0.9999985750F, 0.9999986405F, 0.9999987037F, 0.9999987647F, 0.9999988235F, 0.9999988802F, 0.9999989348F, 0.9999989873F, 0.9999990379F, 0.9999990866F, 0.9999991334F, 0.9999991784F, 0.9999992217F, 0.9999992632F, 0.9999993030F, 0.9999993411F, 0.9999993777F, 0.9999994128F, 0.9999994463F, 0.9999994784F, 0.9999995091F, 0.9999995384F, 0.9999995663F, 0.9999995930F, 0.9999996184F, 0.9999996426F, 0.9999996657F, 0.9999996876F, 0.9999997084F, 0.9999997282F, 0.9999997469F, 0.9999997647F, 0.9999997815F, 0.9999997973F, 0.9999998123F, 0.9999998265F, 0.9999998398F, 0.9999998524F, 0.9999998642F, 0.9999998753F, 0.9999998857F, 0.9999998954F, 0.9999999045F, 0.9999999130F, 0.9999999209F, 0.9999999282F, 0.9999999351F, 0.9999999414F, 0.9999999472F, 0.9999999526F, 0.9999999576F, 0.9999999622F, 0.9999999664F, 0.9999999702F, 0.9999999737F, 0.9999999769F, 0.9999999798F, 0.9999999824F, 0.9999999847F, 0.9999999868F, 0.9999999887F, 0.9999999904F, 0.9999999919F, 0.9999999932F, 0.9999999943F, 0.9999999953F, 0.9999999961F, 0.9999999969F, 0.9999999975F, 0.9999999980F, 0.9999999985F, 0.9999999988F, 0.9999999991F, 0.9999999993F, 0.9999999995F, 0.9999999997F, 0.9999999998F, 0.9999999999F, 0.9999999999F, 1.0000000000F, 1.0000000000F, 1.0000000000F, 1.0000000000F, 1.0000000000F, 1.0000000000F, 1.0000000000F, }; static float *vwin[8] = { vwin64, vwin128, vwin256, vwin512, vwin1024, vwin2048, vwin4096, vwin8192, }; float *_vorbis_window_get(int n){ return vwin[n]; } void _vorbis_apply_window(float *d,int *winno,long *blocksizes, int lW,int W,int nW){ lW=(W?lW:0); nW=(W?nW:0); { float *windowLW=vwin[winno[lW]]; float *windowNW=vwin[winno[nW]]; long n=blocksizes[W]; long ln=blocksizes[lW]; long rn=blocksizes[nW]; long leftbegin=n/4-ln/4; long leftend=leftbegin+ln/2; long rightbegin=n/2+n/4-rn/4; long rightend=rightbegin+rn/2; int i,p; for(i=0;i #include #include #endif } BEGIN_JUCE_NAMESPACE using namespace OggVorbisNamespace; #define oggFormatName TRANS("Ogg-Vorbis file") static const tchar* const oggExtensions[] = { T(".ogg"), 0 }; class OggReader : public AudioFormatReader { OggVorbis_File ovFile; ov_callbacks callbacks; AudioSampleBuffer reservoir; int reservoirStart, samplesInReservoir; public: OggReader (InputStream* const inp) : AudioFormatReader (inp, oggFormatName), reservoir (2, 4096), reservoirStart (0), samplesInReservoir (0) { sampleRate = 0; usesFloatingPointData = true; callbacks.read_func = &oggReadCallback; callbacks.seek_func = &oggSeekCallback; callbacks.close_func = &oggCloseCallback; callbacks.tell_func = &oggTellCallback; const int err = ov_open_callbacks (input, &ovFile, 0, 0, callbacks); if (err == 0) { vorbis_info* info = ov_info (&ovFile, -1); lengthInSamples = (uint32) ov_pcm_total (&ovFile, -1); numChannels = info->channels; bitsPerSample = 16; sampleRate = info->rate; reservoir.setSize (numChannels, (int) jmin (lengthInSamples, (int64) reservoir.getNumSamples())); } } ~OggReader() { ov_clear (&ovFile); } bool readSamples (int** destSamples, int numDestChannels, int startOffsetInDestBuffer, int64 startSampleInFile, int numSamples) { while (numSamples > 0) { const int numAvailable = reservoirStart + samplesInReservoir - startSampleInFile; if (startSampleInFile >= reservoirStart && numAvailable > 0) { // got a few samples overlapping, so use them before seeking.. const int numToUse = jmin (numSamples, numAvailable); for (int i = jmin (numDestChannels, reservoir.getNumChannels()); --i >= 0;) if (destSamples[i] != 0) memcpy (destSamples[i] + startOffsetInDestBuffer, reservoir.getSampleData (i, (int) (startSampleInFile - reservoirStart)), sizeof (float) * numToUse); startSampleInFile += numToUse; numSamples -= numToUse; startOffsetInDestBuffer += numToUse; if (numSamples == 0) break; } if (startSampleInFile < reservoirStart || startSampleInFile + numSamples > reservoirStart + samplesInReservoir) { // buffer miss, so refill the reservoir int bitStream = 0; reservoirStart = jmax (0, (int) startSampleInFile); samplesInReservoir = reservoir.getNumSamples(); if (reservoirStart != (int) ov_pcm_tell (&ovFile)) ov_pcm_seek (&ovFile, reservoirStart); int offset = 0; int numToRead = samplesInReservoir; while (numToRead > 0) { float** dataIn = 0; const int samps = ov_read_float (&ovFile, &dataIn, numToRead, &bitStream); if (samps == 0) break; jassert (samps <= numToRead); for (int i = jmin (numChannels, reservoir.getNumChannels()); --i >= 0;) { memcpy (reservoir.getSampleData (i, offset), dataIn[i], sizeof (float) * samps); } numToRead -= samps; offset += samps; } if (numToRead > 0) reservoir.clear (offset, numToRead); } } if (numSamples > 0) { for (int i = numDestChannels; --i >= 0;) if (destSamples[i] != 0) zeromem (destSamples[i] + startOffsetInDestBuffer, sizeof (int) * numSamples); } return true; } static size_t oggReadCallback (void* ptr, size_t size, size_t nmemb, void* datasource) { return (size_t) (((InputStream*) datasource)->read (ptr, (int) (size * nmemb)) / size); } static int oggSeekCallback (void* datasource, ogg_int64_t offset, int whence) { InputStream* const in = (InputStream*) datasource; if (whence == SEEK_CUR) offset += in->getPosition(); else if (whence == SEEK_END) offset += in->getTotalLength(); in->setPosition (offset); return 0; } static int oggCloseCallback (void*) { return 0; } static long oggTellCallback (void* datasource) { return (long) ((InputStream*) datasource)->getPosition(); } juce_UseDebuggingNewOperator }; class OggWriter : public AudioFormatWriter { ogg_stream_state os; ogg_page og; ogg_packet op; vorbis_info vi; vorbis_comment vc; vorbis_dsp_state vd; vorbis_block vb; public: bool ok; OggWriter (OutputStream* const out, const double sampleRate, const int numChannels, const int bitsPerSample, const int qualityIndex) : AudioFormatWriter (out, oggFormatName, sampleRate, numChannels, bitsPerSample) { ok = false; vorbis_info_init (&vi); if (vorbis_encode_init_vbr (&vi, numChannels, (int) sampleRate, jlimit (0.0f, 1.0f, qualityIndex * 0.5f)) == 0) { vorbis_comment_init (&vc); if (JUCEApplication::getInstance() != 0) vorbis_comment_add_tag (&vc, "ENCODER", (char*) (const char*) JUCEApplication::getInstance()->getApplicationName()); vorbis_analysis_init (&vd, &vi); vorbis_block_init (&vd, &vb); ogg_stream_init (&os, Random::getSystemRandom().nextInt()); ogg_packet header; ogg_packet header_comm; ogg_packet header_code; vorbis_analysis_headerout (&vd, &vc, &header, &header_comm, &header_code); ogg_stream_packetin (&os, &header); ogg_stream_packetin (&os, &header_comm); ogg_stream_packetin (&os, &header_code); for (;;) { if (ogg_stream_flush (&os, &og) == 0) break; output->write (og.header, og.header_len); output->write (og.body, og.body_len); } ok = true; } } ~OggWriter() { if (ok) { // write a zero-length packet to show ogg that we're finished.. write (0, 0); ogg_stream_clear (&os); vorbis_block_clear (&vb); vorbis_dsp_clear (&vd); vorbis_comment_clear (&vc); vorbis_info_clear (&vi); output->flush(); } else { vorbis_info_clear (&vi); output = 0; // to stop the base class deleting this, as it needs to be returned // to the caller of createWriter() } } bool write (const int** samplesToWrite, int numSamples) { if (! ok) return false; if (numSamples > 0) { const double gain = 1.0 / 0x80000000u; float** const vorbisBuffer = vorbis_analysis_buffer (&vd, numSamples); for (int i = numChannels; --i >= 0;) { float* const dst = vorbisBuffer[i]; const int* const src = samplesToWrite [i]; if (src != 0 && dst != 0) { for (int j = 0; j < numSamples; ++j) dst[j] = (float) (src[j] * gain); } } } vorbis_analysis_wrote (&vd, numSamples); while (vorbis_analysis_blockout (&vd, &vb) == 1) { vorbis_analysis (&vb, 0); vorbis_bitrate_addblock (&vb); while (vorbis_bitrate_flushpacket (&vd, &op)) { ogg_stream_packetin (&os, &op); for (;;) { if (ogg_stream_pageout (&os, &og) == 0) break; output->write (og.header, og.header_len); output->write (og.body, og.body_len); if (ogg_page_eos (&og)) break; } } } return true; } juce_UseDebuggingNewOperator }; OggVorbisAudioFormat::OggVorbisAudioFormat() : AudioFormat (oggFormatName, (const tchar**) oggExtensions) { } OggVorbisAudioFormat::~OggVorbisAudioFormat() { } const Array OggVorbisAudioFormat::getPossibleSampleRates() { const int rates[] = { 22050, 32000, 44100, 48000, 0 }; return Array (rates); } const Array OggVorbisAudioFormat::getPossibleBitDepths() { Array depths; depths.add (32); return depths; } bool OggVorbisAudioFormat::canDoStereo() { return true; } bool OggVorbisAudioFormat::canDoMono() { return true; } AudioFormatReader* OggVorbisAudioFormat::createReaderFor (InputStream* in, const bool deleteStreamIfOpeningFails) { OggReader* r = new OggReader (in); if (r->sampleRate == 0) { if (! deleteStreamIfOpeningFails) r->input = 0; deleteAndZero (r); } return r; } AudioFormatWriter* OggVorbisAudioFormat::createWriterFor (OutputStream* out, double sampleRate, unsigned int numChannels, int bitsPerSample, const StringPairArray& /*metadataValues*/, int qualityOptionIndex) { OggWriter* w = new OggWriter (out, sampleRate, numChannels, bitsPerSample, qualityOptionIndex); if (! w->ok) deleteAndZero (w); return w; } bool OggVorbisAudioFormat::isCompressed() { return true; } const StringArray OggVorbisAudioFormat::getQualityOptions() { StringArray s; s.add ("Low Quality"); s.add ("Medium Quality"); s.add ("High Quality"); return s; } int OggVorbisAudioFormat::estimateOggFileQuality (const File& source) { FileInputStream* const in = source.createInputStream(); if (in != 0) { AudioFormatReader* const r = createReaderFor (in, true); if (r != 0) { const int64 numSamps = r->lengthInSamples; delete r; const int64 fileNumSamps = source.getSize() / 4; const double ratio = numSamps / (double) fileNumSamps; if (ratio > 12.0) return 0; else if (ratio > 6.0) return 1; else return 2; } } return 1; } END_JUCE_NAMESPACE #endif /********* End of inlined file: juce_OggVorbisAudioFormat.cpp *********/ /********* Start of inlined file: juce_JPEGLoader.cpp *********/ #if JUCE_MSVC #pragma warning (push) #endif namespace jpeglibNamespace { #if JUCE_INCLUDE_JPEGLIB_CODE extern "C" { #define JPEG_INTERNALS #undef FAR /********* Start of inlined file: jpeglib.h *********/ #ifndef JPEGLIB_H #define JPEGLIB_H /* * First we include the configuration files that record how this * installation of the JPEG library is set up. jconfig.h can be * generated automatically for many systems. jmorecfg.h contains * manual configuration options that most people need not worry about. */ #ifndef JCONFIG_INCLUDED /* in case jinclude.h already did */ /********* Start of inlined file: jconfig.h *********/ /* see jconfig.doc for explanations */ // disable all the warnings under MSVC #ifdef _MSC_VER #pragma warning (disable: 4996 4267 4100 4127 4702 4244) #endif #ifdef __BORLANDC__ #pragma warn -8057 #pragma warn -8019 #pragma warn -8004 #pragma warn -8008 #endif #define HAVE_PROTOTYPES #define HAVE_UNSIGNED_CHAR #define HAVE_UNSIGNED_SHORT /* #define void char */ /* #define const */ #undef CHAR_IS_UNSIGNED #define HAVE_STDDEF_H #define HAVE_STDLIB_H #undef NEED_BSD_STRINGS #undef NEED_SYS_TYPES_H #undef NEED_FAR_POINTERS /* we presume a 32-bit flat memory model */ #undef NEED_SHORT_EXTERNAL_NAMES #undef INCOMPLETE_TYPES_BROKEN /* Define "boolean" as unsigned char, not int, per Windows custom */ #ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ typedef unsigned char boolean; #endif #define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ #ifdef JPEG_INTERNALS #undef RIGHT_SHIFT_IS_UNSIGNED #endif /* JPEG_INTERNALS */ #ifdef JPEG_CJPEG_DJPEG #define BMP_SUPPORTED /* BMP image file format */ #define GIF_SUPPORTED /* GIF image file format */ #define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */ #undef RLE_SUPPORTED /* Utah RLE image file format */ #define TARGA_SUPPORTED /* Targa image file format */ #define TWO_FILE_COMMANDLINE /* optional */ #define USE_SETMODE /* Microsoft has setmode() */ #undef NEED_SIGNAL_CATCHER #undef DONT_USE_B_MODE #undef PROGRESS_REPORT /* optional */ #endif /* JPEG_CJPEG_DJPEG */ /********* End of inlined file: jconfig.h *********/ /* widely used configuration options */ #endif /********* Start of inlined file: jmorecfg.h *********/ /* * Define BITS_IN_JSAMPLE as either * 8 for 8-bit sample values (the usual setting) * 12 for 12-bit sample values * Only 8 and 12 are legal data precisions for lossy JPEG according to the * JPEG standard, and the IJG code does not support anything else! * We do not support run-time selection of data precision, sorry. */ #define BITS_IN_JSAMPLE 8 /* use 8 or 12 */ /* * Maximum number of components (color channels) allowed in JPEG image. * To meet the letter of the JPEG spec, set this to 255. However, darn * few applications need more than 4 channels (maybe 5 for CMYK + alpha * mask). We recommend 10 as a reasonable compromise; use 4 if you are * really short on memory. (Each allowed component costs a hundred or so * bytes of storage, whether actually used in an image or not.) */ #define MAX_COMPONENTS 10 /* maximum number of image components */ /* * Basic data types. * You may need to change these if you have a machine with unusual data * type sizes; for example, "char" not 8 bits, "short" not 16 bits, * or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits, * but it had better be at least 16. */ /* Representation of a single sample (pixel element value). * We frequently allocate large arrays of these, so it's important to keep * them small. But if you have memory to burn and access to char or short * arrays is very slow on your hardware, you might want to change these. */ #if BITS_IN_JSAMPLE == 8 /* JSAMPLE should be the smallest type that will hold the values 0..255. * You can use a signed char by having GETJSAMPLE mask it with 0xFF. */ #ifdef HAVE_UNSIGNED_CHAR typedef unsigned char JSAMPLE; #define GETJSAMPLE(value) ((int) (value)) #else /* not HAVE_UNSIGNED_CHAR */ typedef char JSAMPLE; #ifdef CHAR_IS_UNSIGNED #define GETJSAMPLE(value) ((int) (value)) #else #define GETJSAMPLE(value) ((int) (value) & 0xFF) #endif /* CHAR_IS_UNSIGNED */ #endif /* HAVE_UNSIGNED_CHAR */ #define MAXJSAMPLE 255 #define CENTERJSAMPLE 128 #endif /* BITS_IN_JSAMPLE == 8 */ #if BITS_IN_JSAMPLE == 12 /* JSAMPLE should be the smallest type that will hold the values 0..4095. * On nearly all machines "short" will do nicely. */ typedef short JSAMPLE; #define GETJSAMPLE(value) ((int) (value)) #define MAXJSAMPLE 4095 #define CENTERJSAMPLE 2048 #endif /* BITS_IN_JSAMPLE == 12 */ /* Representation of a DCT frequency coefficient. * This should be a signed value of at least 16 bits; "short" is usually OK. * Again, we allocate large arrays of these, but you can change to int * if you have memory to burn and "short" is really slow. */ typedef short JCOEF; /* Compressed datastreams are represented as arrays of JOCTET. * These must be EXACTLY 8 bits wide, at least once they are written to * external storage. Note that when using the stdio data source/destination * managers, this is also the data type passed to fread/fwrite. */ #ifdef HAVE_UNSIGNED_CHAR typedef unsigned char JOCTET; #define GETJOCTET(value) (value) #else /* not HAVE_UNSIGNED_CHAR */ typedef char JOCTET; #ifdef CHAR_IS_UNSIGNED #define GETJOCTET(value) (value) #else #define GETJOCTET(value) ((value) & 0xFF) #endif /* CHAR_IS_UNSIGNED */ #endif /* HAVE_UNSIGNED_CHAR */ /* These typedefs are used for various table entries and so forth. * They must be at least as wide as specified; but making them too big * won't cost a huge amount of memory, so we don't provide special * extraction code like we did for JSAMPLE. (In other words, these * typedefs live at a different point on the speed/space tradeoff curve.) */ /* UINT8 must hold at least the values 0..255. */ #ifdef HAVE_UNSIGNED_CHAR typedef unsigned char UINT8; #else /* not HAVE_UNSIGNED_CHAR */ #ifdef CHAR_IS_UNSIGNED typedef char UINT8; #else /* not CHAR_IS_UNSIGNED */ typedef short UINT8; #endif /* CHAR_IS_UNSIGNED */ #endif /* HAVE_UNSIGNED_CHAR */ /* UINT16 must hold at least the values 0..65535. */ #ifdef HAVE_UNSIGNED_SHORT typedef unsigned short UINT16; #else /* not HAVE_UNSIGNED_SHORT */ typedef unsigned int UINT16; #endif /* HAVE_UNSIGNED_SHORT */ /* INT16 must hold at least the values -32768..32767. */ #ifndef XMD_H /* X11/xmd.h correctly defines INT16 */ typedef short INT16; #endif /* INT32 must hold at least signed 32-bit values. */ #ifndef XMD_H /* X11/xmd.h correctly defines INT32 */ typedef long INT32; #endif /* Datatype used for image dimensions. The JPEG standard only supports * images up to 64K*64K due to 16-bit fields in SOF markers. Therefore * "unsigned int" is sufficient on all machines. However, if you need to * handle larger images and you don't mind deviating from the spec, you * can change this datatype. */ typedef unsigned int JDIMENSION; #define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */ /* These macros are used in all function definitions and extern declarations. * You could modify them if you need to change function linkage conventions; * in particular, you'll need to do that to make the library a Windows DLL. * Another application is to make all functions global for use with debuggers * or code profilers that require it. */ /* a function called through method pointers: */ #define METHODDEF(type) static type /* a function used only in its module: */ #define LOCAL(type) static type /* a function referenced thru EXTERNs: */ #define GLOBAL(type) type /* a reference to a GLOBAL function: */ #define EXTERN(type) extern type /* This macro is used to declare a "method", that is, a function pointer. * We want to supply prototype parameters if the compiler can cope. * Note that the arglist parameter must be parenthesized! * Again, you can customize this if you need special linkage keywords. */ #ifdef HAVE_PROTOTYPES #define JMETHOD(type,methodname,arglist) type (*methodname) arglist #else #define JMETHOD(type,methodname,arglist) type (*methodname) () #endif /* Here is the pseudo-keyword for declaring pointers that must be "far" * on 80x86 machines. Most of the specialized coding for 80x86 is handled * by just saying "FAR *" where such a pointer is needed. In a few places * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol. */ #ifdef NEED_FAR_POINTERS #define FAR far #else #define FAR #endif /* * On a few systems, type boolean and/or its values FALSE, TRUE may appear * in standard header files. Or you may have conflicts with application- * specific header files that you want to include together with these files. * Defining HAVE_BOOLEAN before including jpeglib.h should make it work. */ #ifndef HAVE_BOOLEAN typedef int boolean; #endif #ifndef FALSE /* in case these macros already exist */ #define FALSE 0 /* values of boolean */ #endif #ifndef TRUE #define TRUE 1 #endif /* * The remaining options affect code selection within the JPEG library, * but they don't need to be visible to most applications using the library. * To minimize application namespace pollution, the symbols won't be * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined. */ #ifdef JPEG_INTERNALS #define JPEG_INTERNAL_OPTIONS #endif #ifdef JPEG_INTERNAL_OPTIONS /* * These defines indicate whether to include various optional functions. * Undefining some of these symbols will produce a smaller but less capable * library. Note that you can leave certain source files out of the * compilation/linking process if you've #undef'd the corresponding symbols. * (You may HAVE to do that if your compiler doesn't like null source files.) */ /* Arithmetic coding is unsupported for legal reasons. Complaints to IBM. */ /* Capability options common to encoder and decoder: */ #define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */ #define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */ #define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */ /* Encoder capability options: */ #undef C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */ #define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ #define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ #define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */ /* Note: if you selected 12-bit data precision, it is dangerous to turn off * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit * precision, so jchuff.c normally uses entropy optimization to compute * usable tables for higher precision. If you don't want to do optimization, * you'll have to supply different default Huffman tables. * The exact same statements apply for progressive JPEG: the default tables * don't work for progressive mode. (This may get fixed, however.) */ #define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */ /* Decoder capability options: */ #undef D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */ #define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ #define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ #define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */ #define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */ #define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */ #undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */ #define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */ #define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */ #define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */ /* more capability options later, no doubt */ /* * Ordering of RGB data in scanlines passed to or from the application. * If your application wants to deal with data in the order B,G,R, just * change these macros. You can also deal with formats such as R,G,B,X * (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing * the offsets will also change the order in which colormap data is organized. * RESTRICTIONS: * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats. * 2. These macros only affect RGB<=>YCbCr color conversion, so they are not * useful if you are using JPEG color spaces other than YCbCr or grayscale. * 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE * is not 3 (they don't understand about dummy color components!). So you * can't use color quantization if you change that value. */ #define RGB_RED 0 /* Offset of Red in an RGB scanline element */ #define RGB_GREEN 1 /* Offset of Green */ #define RGB_BLUE 2 /* Offset of Blue */ #define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */ /* Definitions for speed-related optimizations. */ /* If your compiler supports inline functions, define INLINE * as the inline keyword; otherwise define it as empty. */ #ifndef INLINE #ifdef __GNUC__ /* for instance, GNU C knows about inline */ #define INLINE __inline__ #endif #ifndef INLINE #define INLINE /* default is to define it as empty */ #endif #endif /* On some machines (notably 68000 series) "int" is 32 bits, but multiplying * two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER * as short on such a machine. MULTIPLIER must be at least 16 bits wide. */ #ifndef MULTIPLIER #define MULTIPLIER int /* type for fastest integer multiply */ #endif /* FAST_FLOAT should be either float or double, whichever is done faster * by your compiler. (Note that this type is only used in the floating point * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.) * Typically, float is faster in ANSI C compilers, while double is faster in * pre-ANSI compilers (because they insist on converting to double anyway). * The code below therefore chooses float if we have ANSI-style prototypes. */ #ifndef FAST_FLOAT #ifdef HAVE_PROTOTYPES #define FAST_FLOAT float #else #define FAST_FLOAT double #endif #endif #endif /* JPEG_INTERNAL_OPTIONS */ /********* End of inlined file: jmorecfg.h *********/ /* seldom changed options */ /* Version ID for the JPEG library. * Might be useful for tests like "#if JPEG_LIB_VERSION >= 60". */ #define JPEG_LIB_VERSION 62 /* Version 6b */ /* Various constants determining the sizes of things. * All of these are specified by the JPEG standard, so don't change them * if you want to be compatible. */ #define DCTSIZE 8 /* The basic DCT block is 8x8 samples */ #define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */ #define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */ #define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */ #define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */ #define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */ #define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */ /* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard; * the PostScript DCT filter can emit files with many more than 10 blocks/MCU. * If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU * to handle it. We even let you do this from the jconfig.h file. However, * we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe * sometimes emits noncompliant files doesn't mean you should too. */ #define C_MAX_BLOCKS_IN_MCU 10 /* compressor's limit on blocks per MCU */ #ifndef D_MAX_BLOCKS_IN_MCU #define D_MAX_BLOCKS_IN_MCU 10 /* decompressor's limit on blocks per MCU */ #endif /* Data structures for images (arrays of samples and of DCT coefficients). * On 80x86 machines, the image arrays are too big for near pointers, * but the pointer arrays can fit in near memory. */ typedef JSAMPLE FAR *JSAMPROW; /* ptr to one image row of pixel samples. */ typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */ typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */ typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */ typedef JBLOCK FAR *JBLOCKROW; /* pointer to one row of coefficient blocks */ typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */ typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */ typedef JCOEF FAR *JCOEFPTR; /* useful in a couple of places */ /* Types for JPEG compression parameters and working tables. */ /* DCT coefficient quantization tables. */ typedef struct { /* This array gives the coefficient quantizers in natural array order * (not the zigzag order in which they are stored in a JPEG DQT marker). * CAUTION: IJG versions prior to v6a kept this array in zigzag order. */ UINT16 quantval[DCTSIZE2]; /* quantization step for each coefficient */ /* This field is used only during compression. It's initialized FALSE when * the table is created, and set TRUE when it's been output to the file. * You could suppress output of a table by setting this to TRUE. * (See jpeg_suppress_tables for an example.) */ boolean sent_table; /* TRUE when table has been output */ } JQUANT_TBL; /* Huffman coding tables. */ typedef struct { /* These two fields directly represent the contents of a JPEG DHT marker */ UINT8 bits[17]; /* bits[k] = # of symbols with codes of */ /* length k bits; bits[0] is unused */ UINT8 huffval[256]; /* The symbols, in order of incr code length */ /* This field is used only during compression. It's initialized FALSE when * the table is created, and set TRUE when it's been output to the file. * You could suppress output of a table by setting this to TRUE. * (See jpeg_suppress_tables for an example.) */ boolean sent_table; /* TRUE when table has been output */ } JHUFF_TBL; /* Basic info about one component (color channel). */ typedef struct { /* These values are fixed over the whole image. */ /* For compression, they must be supplied by parameter setup; */ /* for decompression, they are read from the SOF marker. */ int component_id; /* identifier for this component (0..255) */ int component_index; /* its index in SOF or cinfo->comp_info[] */ int h_samp_factor; /* horizontal sampling factor (1..4) */ int v_samp_factor; /* vertical sampling factor (1..4) */ int quant_tbl_no; /* quantization table selector (0..3) */ /* These values may vary between scans. */ /* For compression, they must be supplied by parameter setup; */ /* for decompression, they are read from the SOS marker. */ /* The decompressor output side may not use these variables. */ int dc_tbl_no; /* DC entropy table selector (0..3) */ int ac_tbl_no; /* AC entropy table selector (0..3) */ /* Remaining fields should be treated as private by applications. */ /* These values are computed during compression or decompression startup: */ /* Component's size in DCT blocks. * Any dummy blocks added to complete an MCU are not counted; therefore * these values do not depend on whether a scan is interleaved or not. */ JDIMENSION width_in_blocks; JDIMENSION height_in_blocks; /* Size of a DCT block in samples. Always DCTSIZE for compression. * For decompression this is the size of the output from one DCT block, * reflecting any scaling we choose to apply during the IDCT step. * Values of 1,2,4,8 are likely to be supported. Note that different * components may receive different IDCT scalings. */ int DCT_scaled_size; /* The downsampled dimensions are the component's actual, unpadded number * of samples at the main buffer (preprocessing/compression interface), thus * downsampled_width = ceil(image_width * Hi/Hmax) * and similarly for height. For decompression, IDCT scaling is included, so * downsampled_width = ceil(image_width * Hi/Hmax * DCT_scaled_size/DCTSIZE) */ JDIMENSION downsampled_width; /* actual width in samples */ JDIMENSION downsampled_height; /* actual height in samples */ /* This flag is used only for decompression. In cases where some of the * components will be ignored (eg grayscale output from YCbCr image), * we can skip most computations for the unused components. */ boolean component_needed; /* do we need the value of this component? */ /* These values are computed before starting a scan of the component. */ /* The decompressor output side may not use these variables. */ int MCU_width; /* number of blocks per MCU, horizontally */ int MCU_height; /* number of blocks per MCU, vertically */ int MCU_blocks; /* MCU_width * MCU_height */ int MCU_sample_width; /* MCU width in samples, MCU_width*DCT_scaled_size */ int last_col_width; /* # of non-dummy blocks across in last MCU */ int last_row_height; /* # of non-dummy blocks down in last MCU */ /* Saved quantization table for component; NULL if none yet saved. * See jdinput.c comments about the need for this information. * This field is currently used only for decompression. */ JQUANT_TBL * quant_table; /* Private per-component storage for DCT or IDCT subsystem. */ void * dct_table; } jpeg_component_info; /* The script for encoding a multiple-scan file is an array of these: */ typedef struct { int comps_in_scan; /* number of components encoded in this scan */ int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */ int Ss, Se; /* progressive JPEG spectral selection parms */ int Ah, Al; /* progressive JPEG successive approx. parms */ } jpeg_scan_info; /* The decompressor can save APPn and COM markers in a list of these: */ typedef struct jpeg_marker_struct FAR * jpeg_saved_marker_ptr; struct jpeg_marker_struct { jpeg_saved_marker_ptr next; /* next in list, or NULL */ UINT8 marker; /* marker code: JPEG_COM, or JPEG_APP0+n */ unsigned int original_length; /* # bytes of data in the file */ unsigned int data_length; /* # bytes of data saved at data[] */ JOCTET FAR * data; /* the data contained in the marker */ /* the marker length word is not counted in data_length or original_length */ }; /* Known color spaces. */ typedef enum { JCS_UNKNOWN, /* error/unspecified */ JCS_GRAYSCALE, /* monochrome */ JCS_RGB, /* red/green/blue */ JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */ JCS_CMYK, /* C/M/Y/K */ JCS_YCCK /* Y/Cb/Cr/K */ } J_COLOR_SPACE; /* DCT/IDCT algorithm options. */ typedef enum { JDCT_ISLOW, /* slow but accurate integer algorithm */ JDCT_IFAST, /* faster, less accurate integer method */ JDCT_FLOAT /* floating-point: accurate, fast on fast HW */ } J_DCT_METHOD; #ifndef JDCT_DEFAULT /* may be overridden in jconfig.h */ #define JDCT_DEFAULT JDCT_ISLOW #endif #ifndef JDCT_FASTEST /* may be overridden in jconfig.h */ #define JDCT_FASTEST JDCT_IFAST #endif /* Dithering options for decompression. */ typedef enum { JDITHER_NONE, /* no dithering */ JDITHER_ORDERED, /* simple ordered dither */ JDITHER_FS /* Floyd-Steinberg error diffusion dither */ } J_DITHER_MODE; /* Common fields between JPEG compression and decompression master structs. */ #define jpeg_common_fields \ struct jpeg_error_mgr * err; /* Error handler module */\ struct jpeg_memory_mgr * mem; /* Memory manager module */\ struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\ void * client_data; /* Available for use by application */\ boolean is_decompressor; /* So common code can tell which is which */\ int global_state /* For checking call sequence validity */ /* Routines that are to be used by both halves of the library are declared * to receive a pointer to this structure. There are no actual instances of * jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct. */ struct jpeg_common_struct { jpeg_common_fields; /* Fields common to both master struct types */ /* Additional fields follow in an actual jpeg_compress_struct or * jpeg_decompress_struct. All three structs must agree on these * initial fields! (This would be a lot cleaner in C++.) */ }; typedef struct jpeg_common_struct * j_common_ptr; typedef struct jpeg_compress_struct * j_compress_ptr; typedef struct jpeg_decompress_struct * j_decompress_ptr; /* Master record for a compression instance */ struct jpeg_compress_struct { jpeg_common_fields; /* Fields shared with jpeg_decompress_struct */ /* Destination for compressed data */ struct jpeg_destination_mgr * dest; /* Description of source image --- these fields must be filled in by * outer application before starting compression. in_color_space must * be correct before you can even call jpeg_set_defaults(). */ JDIMENSION image_width; /* input image width */ JDIMENSION image_height; /* input image height */ int input_components; /* # of color components in input image */ J_COLOR_SPACE in_color_space; /* colorspace of input image */ double input_gamma; /* image gamma of input image */ /* Compression parameters --- these fields must be set before calling * jpeg_start_compress(). We recommend calling jpeg_set_defaults() to * initialize everything to reasonable defaults, then changing anything * the application specifically wants to change. That way you won't get * burnt when new parameters are added. Also note that there are several * helper routines to simplify changing parameters. */ int data_precision; /* bits of precision in image data */ int num_components; /* # of color components in JPEG image */ J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */ jpeg_component_info * comp_info; /* comp_info[i] describes component that appears i'th in SOF */ JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS]; /* ptrs to coefficient quantization tables, or NULL if not defined */ JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS]; JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS]; /* ptrs to Huffman coding tables, or NULL if not defined */ UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */ UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */ UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */ int num_scans; /* # of entries in scan_info array */ const jpeg_scan_info * scan_info; /* script for multi-scan file, or NULL */ /* The default value of scan_info is NULL, which causes a single-scan * sequential JPEG file to be emitted. To create a multi-scan file, * set num_scans and scan_info to point to an array of scan definitions. */ boolean raw_data_in; /* TRUE=caller supplies downsampled data */ boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */ boolean optimize_coding; /* TRUE=optimize entropy encoding parms */ boolean CCIR601_sampling; /* TRUE=first samples are cosited */ int smoothing_factor; /* 1..100, or 0 for no input smoothing */ J_DCT_METHOD dct_method; /* DCT algorithm selector */ /* The restart interval can be specified in absolute MCUs by setting * restart_interval, or in MCU rows by setting restart_in_rows * (in which case the correct restart_interval will be figured * for each scan). */ unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */ int restart_in_rows; /* if > 0, MCU rows per restart interval */ /* Parameters controlling emission of special markers. */ boolean write_JFIF_header; /* should a JFIF marker be written? */ UINT8 JFIF_major_version; /* What to write for the JFIF version number */ UINT8 JFIF_minor_version; /* These three values are not used by the JPEG code, merely copied */ /* into the JFIF APP0 marker. density_unit can be 0 for unknown, */ /* 1 for dots/inch, or 2 for dots/cm. Note that the pixel aspect */ /* ratio is defined by X_density/Y_density even when density_unit=0. */ UINT8 density_unit; /* JFIF code for pixel size units */ UINT16 X_density; /* Horizontal pixel density */ UINT16 Y_density; /* Vertical pixel density */ boolean write_Adobe_marker; /* should an Adobe marker be written? */ /* State variable: index of next scanline to be written to * jpeg_write_scanlines(). Application may use this to control its * processing loop, e.g., "while (next_scanline < image_height)". */ JDIMENSION next_scanline; /* 0 .. image_height-1 */ /* Remaining fields are known throughout compressor, but generally * should not be touched by a surrounding application. */ /* * These fields are computed during compression startup */ boolean progressive_mode; /* TRUE if scan script uses progressive mode */ int max_h_samp_factor; /* largest h_samp_factor */ int max_v_samp_factor; /* largest v_samp_factor */ JDIMENSION total_iMCU_rows; /* # of iMCU rows to be input to coef ctlr */ /* The coefficient controller receives data in units of MCU rows as defined * for fully interleaved scans (whether the JPEG file is interleaved or not). * There are v_samp_factor * DCTSIZE sample rows of each component in an * "iMCU" (interleaved MCU) row. */ /* * These fields are valid during any one scan. * They describe the components and MCUs actually appearing in the scan. */ int comps_in_scan; /* # of JPEG components in this scan */ jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN]; /* *cur_comp_info[i] describes component that appears i'th in SOS */ JDIMENSION MCUs_per_row; /* # of MCUs across the image */ JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */ int blocks_in_MCU; /* # of DCT blocks per MCU */ int MCU_membership[C_MAX_BLOCKS_IN_MCU]; /* MCU_membership[i] is index in cur_comp_info of component owning */ /* i'th block in an MCU */ int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */ /* * Links to compression subobjects (methods and private variables of modules) */ struct jpeg_comp_master * master; struct jpeg_c_main_controller * main; struct jpeg_c_prep_controller * prep; struct jpeg_c_coef_controller * coef; struct jpeg_marker_writer * marker; struct jpeg_color_converter * cconvert; struct jpeg_downsampler * downsample; struct jpeg_forward_dct * fdct; struct jpeg_entropy_encoder * entropy; jpeg_scan_info * script_space; /* workspace for jpeg_simple_progression */ int script_space_size; }; /* Master record for a decompression instance */ struct jpeg_decompress_struct { jpeg_common_fields; /* Fields shared with jpeg_compress_struct */ /* Source of compressed data */ struct jpeg_source_mgr * src; /* Basic description of image --- filled in by jpeg_read_header(). */ /* Application may inspect these values to decide how to process image. */ JDIMENSION image_width; /* nominal image width (from SOF marker) */ JDIMENSION image_height; /* nominal image height */ int num_components; /* # of color components in JPEG image */ J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */ /* Decompression processing parameters --- these fields must be set before * calling jpeg_start_decompress(). Note that jpeg_read_header() initializes * them to default values. */ J_COLOR_SPACE out_color_space; /* colorspace for output */ unsigned int scale_num, scale_denom; /* fraction by which to scale image */ double output_gamma; /* image gamma wanted in output */ boolean buffered_image; /* TRUE=multiple output passes */ boolean raw_data_out; /* TRUE=downsampled data wanted */ J_DCT_METHOD dct_method; /* IDCT algorithm selector */ boolean do_fancy_upsampling; /* TRUE=apply fancy upsampling */ boolean do_block_smoothing; /* TRUE=apply interblock smoothing */ boolean quantize_colors; /* TRUE=colormapped output wanted */ /* the following are ignored if not quantize_colors: */ J_DITHER_MODE dither_mode; /* type of color dithering to use */ boolean two_pass_quantize; /* TRUE=use two-pass color quantization */ int desired_number_of_colors; /* max # colors to use in created colormap */ /* these are significant only in buffered-image mode: */ boolean enable_1pass_quant; /* enable future use of 1-pass quantizer */ boolean enable_external_quant;/* enable future use of external colormap */ boolean enable_2pass_quant; /* enable future use of 2-pass quantizer */ /* Description of actual output image that will be returned to application. * These fields are computed by jpeg_start_decompress(). * You can also use jpeg_calc_output_dimensions() to determine these values * in advance of calling jpeg_start_decompress(). */ JDIMENSION output_width; /* scaled image width */ JDIMENSION output_height; /* scaled image height */ int out_color_components; /* # of color components in out_color_space */ int output_components; /* # of color components returned */ /* output_components is 1 (a colormap index) when quantizing colors; * otherwise it equals out_color_components. */ int rec_outbuf_height; /* min recommended height of scanline buffer */ /* If the buffer passed to jpeg_read_scanlines() is less than this many rows * high, space and time will be wasted due to unnecessary data copying. * Usually rec_outbuf_height will be 1 or 2, at most 4. */ /* When quantizing colors, the output colormap is described by these fields. * The application can supply a colormap by setting colormap non-NULL before * calling jpeg_start_decompress; otherwise a colormap is created during * jpeg_start_decompress or jpeg_start_output. * The map has out_color_components rows and actual_number_of_colors columns. */ int actual_number_of_colors; /* number of entries in use */ JSAMPARRAY colormap; /* The color map as a 2-D pixel array */ /* State variables: these variables indicate the progress of decompression. * The application may examine these but must not modify them. */ /* Row index of next scanline to be read from jpeg_read_scanlines(). * Application may use this to control its processing loop, e.g., * "while (output_scanline < output_height)". */ JDIMENSION output_scanline; /* 0 .. output_height-1 */ /* Current input scan number and number of iMCU rows completed in scan. * These indicate the progress of the decompressor input side. */ int input_scan_number; /* Number of SOS markers seen so far */ JDIMENSION input_iMCU_row; /* Number of iMCU rows completed */ /* The "output scan number" is the notional scan being displayed by the * output side. The decompressor will not allow output scan/row number * to get ahead of input scan/row, but it can fall arbitrarily far behind. */ int output_scan_number; /* Nominal scan number being displayed */ JDIMENSION output_iMCU_row; /* Number of iMCU rows read */ /* Current progression status. coef_bits[c][i] indicates the precision * with which component c's DCT coefficient i (in zigzag order) is known. * It is -1 when no data has yet been received, otherwise it is the point * transform (shift) value for the most recent scan of the coefficient * (thus, 0 at completion of the progression). * This pointer is NULL when reading a non-progressive file. */ int (*coef_bits)[DCTSIZE2]; /* -1 or current Al value for each coef */ /* Internal JPEG parameters --- the application usually need not look at * these fields. Note that the decompressor output side may not use * any parameters that can change between scans. */ /* Quantization and Huffman tables are carried forward across input * datastreams when processing abbreviated JPEG datastreams. */ JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS]; /* ptrs to coefficient quantization tables, or NULL if not defined */ JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS]; JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS]; /* ptrs to Huffman coding tables, or NULL if not defined */ /* These parameters are never carried across datastreams, since they * are given in SOF/SOS markers or defined to be reset by SOI. */ int data_precision; /* bits of precision in image data */ jpeg_component_info * comp_info; /* comp_info[i] describes component that appears i'th in SOF */ boolean progressive_mode; /* TRUE if SOFn specifies progressive mode */ boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */ UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */ UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */ UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */ unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */ /* These fields record data obtained from optional markers recognized by * the JPEG library. */ boolean saw_JFIF_marker; /* TRUE iff a JFIF APP0 marker was found */ /* Data copied from JFIF marker; only valid if saw_JFIF_marker is TRUE: */ UINT8 JFIF_major_version; /* JFIF version number */ UINT8 JFIF_minor_version; UINT8 density_unit; /* JFIF code for pixel size units */ UINT16 X_density; /* Horizontal pixel density */ UINT16 Y_density; /* Vertical pixel density */ boolean saw_Adobe_marker; /* TRUE iff an Adobe APP14 marker was found */ UINT8 Adobe_transform; /* Color transform code from Adobe marker */ boolean CCIR601_sampling; /* TRUE=first samples are cosited */ /* Aside from the specific data retained from APPn markers known to the * library, the uninterpreted contents of any or all APPn and COM markers * can be saved in a list for examination by the application. */ jpeg_saved_marker_ptr marker_list; /* Head of list of saved markers */ /* Remaining fields are known throughout decompressor, but generally * should not be touched by a surrounding application. */ /* * These fields are computed during decompression startup */ int max_h_samp_factor; /* largest h_samp_factor */ int max_v_samp_factor; /* largest v_samp_factor */ int min_DCT_scaled_size; /* smallest DCT_scaled_size of any component */ JDIMENSION total_iMCU_rows; /* # of iMCU rows in image */ /* The coefficient controller's input and output progress is measured in * units of "iMCU" (interleaved MCU) rows. These are the same as MCU rows * in fully interleaved JPEG scans, but are used whether the scan is * interleaved or not. We define an iMCU row as v_samp_factor DCT block * rows of each component. Therefore, the IDCT output contains * v_samp_factor*DCT_scaled_size sample rows of a component per iMCU row. */ JSAMPLE * sample_range_limit; /* table for fast range-limiting */ /* * These fields are valid during any one scan. * They describe the components and MCUs actually appearing in the scan. * Note that the decompressor output side must not use these fields. */ int comps_in_scan; /* # of JPEG components in this scan */ jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN]; /* *cur_comp_info[i] describes component that appears i'th in SOS */ JDIMENSION MCUs_per_row; /* # of MCUs across the image */ JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */ int blocks_in_MCU; /* # of DCT blocks per MCU */ int MCU_membership[D_MAX_BLOCKS_IN_MCU]; /* MCU_membership[i] is index in cur_comp_info of component owning */ /* i'th block in an MCU */ int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */ /* This field is shared between entropy decoder and marker parser. * It is either zero or the code of a JPEG marker that has been * read from the data source, but has not yet been processed. */ int unread_marker; /* * Links to decompression subobjects (methods, private variables of modules) */ struct jpeg_decomp_master * master; struct jpeg_d_main_controller * main; struct jpeg_d_coef_controller * coef; struct jpeg_d_post_controller * post; struct jpeg_input_controller * inputctl; struct jpeg_marker_reader * marker; struct jpeg_entropy_decoder * entropy; struct jpeg_inverse_dct * idct; struct jpeg_upsampler * upsample; struct jpeg_color_deconverter * cconvert; struct jpeg_color_quantizer * cquantize; }; /* "Object" declarations for JPEG modules that may be supplied or called * directly by the surrounding application. * As with all objects in the JPEG library, these structs only define the * publicly visible methods and state variables of a module. Additional * private fields may exist after the public ones. */ /* Error handler object */ struct jpeg_error_mgr { /* Error exit handler: does not return to caller */ JMETHOD(void, error_exit, (j_common_ptr cinfo)); /* Conditionally emit a trace or warning message */ JMETHOD(void, emit_message, (j_common_ptr cinfo, int msg_level)); /* Routine that actually outputs a trace or error message */ JMETHOD(void, output_message, (j_common_ptr cinfo)); /* Format a message string for the most recent JPEG error or message */ JMETHOD(void, format_message, (j_common_ptr cinfo, char * buffer)); #define JMSG_LENGTH_MAX 200 /* recommended size of format_message buffer */ /* Reset error state variables at start of a new image */ JMETHOD(void, reset_error_mgr, (j_common_ptr cinfo)); /* The message ID code and any parameters are saved here. * A message can have one string parameter or up to 8 int parameters. */ int msg_code; #define JMSG_STR_PARM_MAX 80 union { int i[8]; char s[JMSG_STR_PARM_MAX]; } msg_parm; /* Standard state variables for error facility */ int trace_level; /* max msg_level that will be displayed */ /* For recoverable corrupt-data errors, we emit a warning message, * but keep going unless emit_message chooses to abort. emit_message * should count warnings in num_warnings. The surrounding application * can check for bad data by seeing if num_warnings is nonzero at the * end of processing. */ long num_warnings; /* number of corrupt-data warnings */ /* These fields point to the table(s) of error message strings. * An application can change the table pointer to switch to a different * message list (typically, to change the language in which errors are * reported). Some applications may wish to add additional error codes * that will be handled by the JPEG library error mechanism; the second * table pointer is used for this purpose. * * First table includes all errors generated by JPEG library itself. * Error code 0 is reserved for a "no such error string" message. */ const char * const * jpeg_message_table; /* Library errors */ int last_jpeg_message; /* Table contains strings 0..last_jpeg_message */ /* Second table can be added by application (see cjpeg/djpeg for example). * It contains strings numbered first_addon_message..last_addon_message. */ const char * const * addon_message_table; /* Non-library errors */ int first_addon_message; /* code for first string in addon table */ int last_addon_message; /* code for last string in addon table */ }; /* Progress monitor object */ struct jpeg_progress_mgr { JMETHOD(void, progress_monitor, (j_common_ptr cinfo)); long pass_counter; /* work units completed in this pass */ long pass_limit; /* total number of work units in this pass */ int completed_passes; /* passes completed so far */ int total_passes; /* total number of passes expected */ }; /* Data destination object for compression */ struct jpeg_destination_mgr { JOCTET * next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ JMETHOD(void, init_destination, (j_compress_ptr cinfo)); JMETHOD(boolean, empty_output_buffer, (j_compress_ptr cinfo)); JMETHOD(void, term_destination, (j_compress_ptr cinfo)); }; /* Data source object for decompression */ struct jpeg_source_mgr { const JOCTET * next_input_byte; /* => next byte to read from buffer */ size_t bytes_in_buffer; /* # of bytes remaining in buffer */ JMETHOD(void, init_source, (j_decompress_ptr cinfo)); JMETHOD(boolean, fill_input_buffer, (j_decompress_ptr cinfo)); JMETHOD(void, skip_input_data, (j_decompress_ptr cinfo, long num_bytes)); JMETHOD(boolean, resync_to_restart, (j_decompress_ptr cinfo, int desired)); JMETHOD(void, term_source, (j_decompress_ptr cinfo)); }; /* Memory manager object. * Allocates "small" objects (a few K total), "large" objects (tens of K), * and "really big" objects (virtual arrays with backing store if needed). * The memory manager does not allow individual objects to be freed; rather, * each created object is assigned to a pool, and whole pools can be freed * at once. This is faster and more convenient than remembering exactly what * to free, especially where malloc()/free() are not too speedy. * NB: alloc routines never return NULL. They exit to error_exit if not * successful. */ #define JPOOL_PERMANENT 0 /* lasts until master record is destroyed */ #define JPOOL_IMAGE 1 /* lasts until done with image/datastream */ #define JPOOL_NUMPOOLS 2 typedef struct jvirt_sarray_control * jvirt_sarray_ptr; typedef struct jvirt_barray_control * jvirt_barray_ptr; struct jpeg_memory_mgr { /* Method pointers */ JMETHOD(void *, alloc_small, (j_common_ptr cinfo, int pool_id, size_t sizeofobject)); JMETHOD(void FAR *, alloc_large, (j_common_ptr cinfo, int pool_id, size_t sizeofobject)); JMETHOD(JSAMPARRAY, alloc_sarray, (j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow, JDIMENSION numrows)); JMETHOD(JBLOCKARRAY, alloc_barray, (j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow, JDIMENSION numrows)); JMETHOD(jvirt_sarray_ptr, request_virt_sarray, (j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION samplesperrow, JDIMENSION numrows, JDIMENSION maxaccess)); JMETHOD(jvirt_barray_ptr, request_virt_barray, (j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION blocksperrow, JDIMENSION numrows, JDIMENSION maxaccess)); JMETHOD(void, realize_virt_arrays, (j_common_ptr cinfo)); JMETHOD(JSAMPARRAY, access_virt_sarray, (j_common_ptr cinfo, jvirt_sarray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable)); JMETHOD(JBLOCKARRAY, access_virt_barray, (j_common_ptr cinfo, jvirt_barray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable)); JMETHOD(void, free_pool, (j_common_ptr cinfo, int pool_id)); JMETHOD(void, self_destruct, (j_common_ptr cinfo)); /* Limit on memory allocation for this JPEG object. (Note that this is * merely advisory, not a guaranteed maximum; it only affects the space * used for virtual-array buffers.) May be changed by outer application * after creating the JPEG object. */ long max_memory_to_use; /* Maximum allocation request accepted by alloc_large. */ long max_alloc_chunk; }; /* Routine signature for application-supplied marker processing methods. * Need not pass marker code since it is stored in cinfo->unread_marker. */ typedef JMETHOD(boolean, jpeg_marker_parser_method, (j_decompress_ptr cinfo)); /* Declarations for routines called by application. * The JPP macro hides prototype parameters from compilers that can't cope. * Note JPP requires double parentheses. */ #ifdef HAVE_PROTOTYPES #define JPP(arglist) arglist #else #define JPP(arglist) () #endif /* Short forms of external names for systems with brain-damaged linkers. * We shorten external names to be unique in the first six letters, which * is good enough for all known systems. * (If your compiler itself needs names to be unique in less than 15 * characters, you are out of luck. Get a better compiler.) */ #ifdef NEED_SHORT_EXTERNAL_NAMES #define jpeg_std_error jStdError #define jpeg_CreateCompress jCreaCompress #define jpeg_CreateDecompress jCreaDecompress #define jpeg_destroy_compress jDestCompress #define jpeg_destroy_decompress jDestDecompress #define jpeg_stdio_dest jStdDest #define jpeg_stdio_src jStdSrc #define jpeg_set_defaults jSetDefaults #define jpeg_set_colorspace jSetColorspace #define jpeg_default_colorspace jDefColorspace #define jpeg_set_quality jSetQuality #define jpeg_set_linear_quality jSetLQuality #define jpeg_add_quant_table jAddQuantTable #define jpeg_quality_scaling jQualityScaling #define jpeg_simple_progression jSimProgress #define jpeg_suppress_tables jSuppressTables #define jpeg_alloc_quant_table jAlcQTable #define jpeg_alloc_huff_table jAlcHTable #define jpeg_start_compress jStrtCompress #define jpeg_write_scanlines jWrtScanlines #define jpeg_finish_compress jFinCompress #define jpeg_write_raw_data jWrtRawData #define jpeg_write_marker jWrtMarker #define jpeg_write_m_header jWrtMHeader #define jpeg_write_m_byte jWrtMByte #define jpeg_write_tables jWrtTables #define jpeg_read_header jReadHeader #define jpeg_start_decompress jStrtDecompress #define jpeg_read_scanlines jReadScanlines #define jpeg_finish_decompress jFinDecompress #define jpeg_read_raw_data jReadRawData #define jpeg_has_multiple_scans jHasMultScn #define jpeg_start_output jStrtOutput #define jpeg_finish_output jFinOutput #define jpeg_input_complete jInComplete #define jpeg_new_colormap jNewCMap #define jpeg_consume_input jConsumeInput #define jpeg_calc_output_dimensions jCalcDimensions #define jpeg_save_markers jSaveMarkers #define jpeg_set_marker_processor jSetMarker #define jpeg_read_coefficients jReadCoefs #define jpeg_write_coefficients jWrtCoefs #define jpeg_copy_critical_parameters jCopyCrit #define jpeg_abort_compress jAbrtCompress #define jpeg_abort_decompress jAbrtDecompress #define jpeg_abort jAbort #define jpeg_destroy jDestroy #define jpeg_resync_to_restart jResyncRestart #endif /* NEED_SHORT_EXTERNAL_NAMES */ /* Default error-management setup */ EXTERN(struct jpeg_error_mgr *) jpeg_std_error JPP((struct jpeg_error_mgr * err)); /* Initialization of JPEG compression objects. * jpeg_create_compress() and jpeg_create_decompress() are the exported * names that applications should call. These expand to calls on * jpeg_CreateCompress and jpeg_CreateDecompress with additional information * passed for version mismatch checking. * NB: you must set up the error-manager BEFORE calling jpeg_create_xxx. */ #define jpeg_create_compress(cinfo) \ jpeg_CreateCompress((cinfo), JPEG_LIB_VERSION, \ (size_t) sizeof(struct jpeg_compress_struct)) #define jpeg_create_decompress(cinfo) \ jpeg_CreateDecompress((cinfo), JPEG_LIB_VERSION, \ (size_t) sizeof(struct jpeg_decompress_struct)) EXTERN(void) jpeg_CreateCompress JPP((j_compress_ptr cinfo, int version, size_t structsize)); EXTERN(void) jpeg_CreateDecompress JPP((j_decompress_ptr cinfo, int version, size_t structsize)); /* Destruction of JPEG compression objects */ EXTERN(void) jpeg_destroy_compress JPP((j_compress_ptr cinfo)); EXTERN(void) jpeg_destroy_decompress JPP((j_decompress_ptr cinfo)); /* Standard data source and destination managers: stdio streams. */ /* Caller is responsible for opening the file before and closing after. */ EXTERN(void) jpeg_stdio_dest JPP((j_compress_ptr cinfo, FILE * outfile)); EXTERN(void) jpeg_stdio_src JPP((j_decompress_ptr cinfo, FILE * infile)); /* Default parameter setup for compression */ EXTERN(void) jpeg_set_defaults JPP((j_compress_ptr cinfo)); /* Compression parameter setup aids */ EXTERN(void) jpeg_set_colorspace JPP((j_compress_ptr cinfo, J_COLOR_SPACE colorspace)); EXTERN(void) jpeg_default_colorspace JPP((j_compress_ptr cinfo)); EXTERN(void) jpeg_set_quality JPP((j_compress_ptr cinfo, int quality, boolean force_baseline)); EXTERN(void) jpeg_set_linear_quality JPP((j_compress_ptr cinfo, int scale_factor, boolean force_baseline)); EXTERN(void) jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl, const unsigned int *basic_table, int scale_factor, boolean force_baseline)); EXTERN(int) jpeg_quality_scaling JPP((int quality)); EXTERN(void) jpeg_simple_progression JPP((j_compress_ptr cinfo)); EXTERN(void) jpeg_suppress_tables JPP((j_compress_ptr cinfo, boolean suppress)); EXTERN(JQUANT_TBL *) jpeg_alloc_quant_table JPP((j_common_ptr cinfo)); EXTERN(JHUFF_TBL *) jpeg_alloc_huff_table JPP((j_common_ptr cinfo)); /* Main entry points for compression */ EXTERN(void) jpeg_start_compress JPP((j_compress_ptr cinfo, boolean write_all_tables)); EXTERN(JDIMENSION) jpeg_write_scanlines JPP((j_compress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION num_lines)); EXTERN(void) jpeg_finish_compress JPP((j_compress_ptr cinfo)); /* Replaces jpeg_write_scanlines when writing raw downsampled data. */ EXTERN(JDIMENSION) jpeg_write_raw_data JPP((j_compress_ptr cinfo, JSAMPIMAGE data, JDIMENSION num_lines)); /* Write a special marker. See libjpeg.doc concerning safe usage. */ EXTERN(void) jpeg_write_marker JPP((j_compress_ptr cinfo, int marker, const JOCTET * dataptr, unsigned int datalen)); /* Same, but piecemeal. */ EXTERN(void) jpeg_write_m_header JPP((j_compress_ptr cinfo, int marker, unsigned int datalen)); EXTERN(void) jpeg_write_m_byte JPP((j_compress_ptr cinfo, int val)); /* Alternate compression function: just write an abbreviated table file */ EXTERN(void) jpeg_write_tables JPP((j_compress_ptr cinfo)); /* Decompression startup: read start of JPEG datastream to see what's there */ EXTERN(int) jpeg_read_header JPP((j_decompress_ptr cinfo, boolean require_image)); /* Return value is one of: */ #define JPEG_SUSPENDED 0 /* Suspended due to lack of input data */ #define JPEG_HEADER_OK 1 /* Found valid image datastream */ #define JPEG_HEADER_TABLES_ONLY 2 /* Found valid table-specs-only datastream */ /* If you pass require_image = TRUE (normal case), you need not check for * a TABLES_ONLY return code; an abbreviated file will cause an error exit. * JPEG_SUSPENDED is only possible if you use a data source module that can * give a suspension return (the stdio source module doesn't). */ /* Main entry points for decompression */ EXTERN(boolean) jpeg_start_decompress JPP((j_decompress_ptr cinfo)); EXTERN(JDIMENSION) jpeg_read_scanlines JPP((j_decompress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION max_lines)); EXTERN(boolean) jpeg_finish_decompress JPP((j_decompress_ptr cinfo)); /* Replaces jpeg_read_scanlines when reading raw downsampled data. */ EXTERN(JDIMENSION) jpeg_read_raw_data JPP((j_decompress_ptr cinfo, JSAMPIMAGE data, JDIMENSION max_lines)); /* Additional entry points for buffered-image mode. */ EXTERN(boolean) jpeg_has_multiple_scans JPP((j_decompress_ptr cinfo)); EXTERN(boolean) jpeg_start_output JPP((j_decompress_ptr cinfo, int scan_number)); EXTERN(boolean) jpeg_finish_output JPP((j_decompress_ptr cinfo)); EXTERN(boolean) jpeg_input_complete JPP((j_decompress_ptr cinfo)); EXTERN(void) jpeg_new_colormap JPP((j_decompress_ptr cinfo)); EXTERN(int) jpeg_consume_input JPP((j_decompress_ptr cinfo)); /* Return value is one of: */ /* #define JPEG_SUSPENDED 0 Suspended due to lack of input data */ #define JPEG_REACHED_SOS 1 /* Reached start of new scan */ #define JPEG_REACHED_EOI 2 /* Reached end of image */ #define JPEG_ROW_COMPLETED 3 /* Completed one iMCU row */ #define JPEG_SCAN_COMPLETED 4 /* Completed last iMCU row of a scan */ /* Precalculate output dimensions for current decompression parameters. */ EXTERN(void) jpeg_calc_output_dimensions JPP((j_decompress_ptr cinfo)); /* Control saving of COM and APPn markers into marker_list. */ EXTERN(void) jpeg_save_markers JPP((j_decompress_ptr cinfo, int marker_code, unsigned int length_limit)); /* Install a special processing method for COM or APPn markers. */ EXTERN(void) jpeg_set_marker_processor JPP((j_decompress_ptr cinfo, int marker_code, jpeg_marker_parser_method routine)); /* Read or write raw DCT coefficients --- useful for lossless transcoding. */ EXTERN(jvirt_barray_ptr *) jpeg_read_coefficients JPP((j_decompress_ptr cinfo)); EXTERN(void) jpeg_write_coefficients JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)); EXTERN(void) jpeg_copy_critical_parameters JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo)); /* If you choose to abort compression or decompression before completing * jpeg_finish_(de)compress, then you need to clean up to release memory, * temporary files, etc. You can just call jpeg_destroy_(de)compress * if you're done with the JPEG object, but if you want to clean it up and * reuse it, call this: */ EXTERN(void) jpeg_abort_compress JPP((j_compress_ptr cinfo)); EXTERN(void) jpeg_abort_decompress JPP((j_decompress_ptr cinfo)); /* Generic versions of jpeg_abort and jpeg_destroy that work on either * flavor of JPEG object. These may be more convenient in some places. */ EXTERN(void) jpeg_abort JPP((j_common_ptr cinfo)); EXTERN(void) jpeg_destroy JPP((j_common_ptr cinfo)); /* Default restart-marker-resync procedure for use by data source modules */ EXTERN(boolean) jpeg_resync_to_restart JPP((j_decompress_ptr cinfo, int desired)); /* These marker codes are exported since applications and data source modules * are likely to want to use them. */ #define JPEG_RST0 0xD0 /* RST0 marker code */ #define JPEG_EOI 0xD9 /* EOI marker code */ #define JPEG_APP0 0xE0 /* APP0 marker code */ #define JPEG_COM 0xFE /* COM marker code */ /* If we have a brain-damaged compiler that emits warnings (or worse, errors) * for structure definitions that are never filled in, keep it quiet by * supplying dummy definitions for the various substructures. */ #ifdef INCOMPLETE_TYPES_BROKEN #ifndef JPEG_INTERNALS /* will be defined in jpegint.h */ struct jvirt_sarray_control { long dummy; }; struct jvirt_barray_control { long dummy; }; struct jpeg_comp_master { long dummy; }; struct jpeg_c_main_controller { long dummy; }; struct jpeg_c_prep_controller { long dummy; }; struct jpeg_c_coef_controller { long dummy; }; struct jpeg_marker_writer { long dummy; }; struct jpeg_color_converter { long dummy; }; struct jpeg_downsampler { long dummy; }; struct jpeg_forward_dct { long dummy; }; struct jpeg_entropy_encoder { long dummy; }; struct jpeg_decomp_master { long dummy; }; struct jpeg_d_main_controller { long dummy; }; struct jpeg_d_coef_controller { long dummy; }; struct jpeg_d_post_controller { long dummy; }; struct jpeg_input_controller { long dummy; }; struct jpeg_marker_reader { long dummy; }; struct jpeg_entropy_decoder { long dummy; }; struct jpeg_inverse_dct { long dummy; }; struct jpeg_upsampler { long dummy; }; struct jpeg_color_deconverter { long dummy; }; struct jpeg_color_quantizer { long dummy; }; #endif /* JPEG_INTERNALS */ #endif /* INCOMPLETE_TYPES_BROKEN */ /* * The JPEG library modules define JPEG_INTERNALS before including this file. * The internal structure declarations are read only when that is true. * Applications using the library should not include jpegint.h, but may wish * to include jerror.h. */ #ifdef JPEG_INTERNALS /********* Start of inlined file: jpegint.h *********/ /* Declarations for both compression & decompression */ typedef enum { /* Operating modes for buffer controllers */ JBUF_PASS_THRU, /* Plain stripwise operation */ /* Remaining modes require a full-image buffer to have been created */ JBUF_SAVE_SOURCE, /* Run source subobject only, save output */ JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */ JBUF_SAVE_AND_PASS /* Run both subobjects, save output */ } J_BUF_MODE; /* Values of global_state field (jdapi.c has some dependencies on ordering!) */ #define CSTATE_START 100 /* after create_compress */ #define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */ #define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */ #define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */ #define DSTATE_START 200 /* after create_decompress */ #define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */ #define DSTATE_READY 202 /* found SOS, ready for start_decompress */ #define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/ #define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */ #define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */ #define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */ #define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */ #define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */ #define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */ #define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */ /* Declarations for compression modules */ /* Master control module */ struct jpeg_comp_master { JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo)); JMETHOD(void, pass_startup, (j_compress_ptr cinfo)); JMETHOD(void, finish_pass, (j_compress_ptr cinfo)); /* State variables made visible to other modules */ boolean call_pass_startup; /* True if pass_startup must be called */ boolean is_last_pass; /* True during last pass */ }; /* Main buffer control (downsampled-data buffer) */ struct jpeg_c_main_controller { JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); JMETHOD(void, process_data, (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)); }; /* Compression preprocessing (downsampling input buffer control) */ struct jpeg_c_prep_controller { JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); JMETHOD(void, pre_process_data, (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail, JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, JDIMENSION out_row_groups_avail)); }; /* Coefficient buffer control */ struct jpeg_c_coef_controller { JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); JMETHOD(boolean, compress_data, (j_compress_ptr cinfo, JSAMPIMAGE input_buf)); }; /* Colorspace conversion */ struct jpeg_color_converter { JMETHOD(void, start_pass, (j_compress_ptr cinfo)); JMETHOD(void, color_convert, (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows)); }; /* Downsampling */ struct jpeg_downsampler { JMETHOD(void, start_pass, (j_compress_ptr cinfo)); JMETHOD(void, downsample, (j_compress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_index, JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)); boolean need_context_rows; /* TRUE if need rows above & below */ }; /* Forward DCT (also controls coefficient quantization) */ struct jpeg_forward_dct { JMETHOD(void, start_pass, (j_compress_ptr cinfo)); /* perhaps this should be an array??? */ JMETHOD(void, forward_DCT, (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks)); }; /* Entropy encoding */ struct jpeg_entropy_encoder { JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics)); JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data)); JMETHOD(void, finish_pass, (j_compress_ptr cinfo)); }; /* Marker writing */ struct jpeg_marker_writer { JMETHOD(void, write_file_header, (j_compress_ptr cinfo)); JMETHOD(void, write_frame_header, (j_compress_ptr cinfo)); JMETHOD(void, write_scan_header, (j_compress_ptr cinfo)); JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo)); JMETHOD(void, write_tables_only, (j_compress_ptr cinfo)); /* These routines are exported to allow insertion of extra markers */ /* Probably only COM and APPn markers should be written this way */ JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker, unsigned int datalen)); JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val)); }; /* Declarations for decompression modules */ /* Master control module */ struct jpeg_decomp_master { JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo)); JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo)); /* State variables made visible to other modules */ boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */ }; /* Input control module */ struct jpeg_input_controller { JMETHOD(int, consume_input, (j_decompress_ptr cinfo)); JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo)); JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo)); JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo)); /* State variables made visible to other modules */ boolean has_multiple_scans; /* True if file has multiple scans */ boolean eoi_reached; /* True when EOI has been consumed */ }; /* Main buffer control (downsampled-data buffer) */ struct jpeg_d_main_controller { JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)); JMETHOD(void, process_data, (j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); }; /* Coefficient buffer control */ struct jpeg_d_coef_controller { JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo)); JMETHOD(int, consume_data, (j_decompress_ptr cinfo)); JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo)); JMETHOD(int, decompress_data, (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); /* Pointer to array of coefficient virtual arrays, or NULL if none */ jvirt_barray_ptr *coef_arrays; }; /* Decompression postprocessing (color quantization buffer control) */ struct jpeg_d_post_controller { JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)); JMETHOD(void, post_process_data, (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); }; /* Marker reading & parsing */ struct jpeg_marker_reader { JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo)); /* Read markers until SOS or EOI. * Returns same codes as are defined for jpeg_consume_input: * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. */ JMETHOD(int, read_markers, (j_decompress_ptr cinfo)); /* Read a restart marker --- exported for use by entropy decoder only */ jpeg_marker_parser_method read_restart_marker; /* State of marker reader --- nominally internal, but applications * supplying COM or APPn handlers might like to know the state. */ boolean saw_SOI; /* found SOI? */ boolean saw_SOF; /* found SOF? */ int next_restart_num; /* next restart number expected (0-7) */ unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */ }; /* Entropy decoding */ struct jpeg_entropy_decoder { JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)); /* This is here to share code between baseline and progressive decoders; */ /* other modules probably should not use it */ boolean insufficient_data; /* set TRUE after emitting warning */ }; /* Inverse DCT (also performs dequantization) */ typedef JMETHOD(void, inverse_DCT_method_ptr, (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); struct jpeg_inverse_dct { JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); /* It is useful to allow each component to have a separate IDCT method. */ inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS]; }; /* Upsampling (note that upsampler must also call color converter) */ struct jpeg_upsampler { JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); JMETHOD(void, upsample, (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); boolean need_context_rows; /* TRUE if need rows above & below */ }; /* Colorspace conversion */ struct jpeg_color_deconverter { JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); JMETHOD(void, color_convert, (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows)); }; /* Color quantization or color precision reduction */ struct jpeg_color_quantizer { JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan)); JMETHOD(void, color_quantize, (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)); JMETHOD(void, finish_pass, (j_decompress_ptr cinfo)); JMETHOD(void, new_color_map, (j_decompress_ptr cinfo)); }; /* Miscellaneous useful macros */ #undef MAX #define MAX(a,b) ((a) > (b) ? (a) : (b)) #undef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) /* We assume that right shift corresponds to signed division by 2 with * rounding towards minus infinity. This is correct for typical "arithmetic * shift" instructions that shift in copies of the sign bit. But some * C compilers implement >> with an unsigned shift. For these machines you * must define RIGHT_SHIFT_IS_UNSIGNED. * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. * It is only applied with constant shift counts. SHIFT_TEMPS must be * included in the variables of any routine using RIGHT_SHIFT. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define SHIFT_TEMPS INT32 shift_temp; #define RIGHT_SHIFT(x,shft) \ ((shift_temp = (x)) < 0 ? \ (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ (shift_temp >> (shft))) #else #define SHIFT_TEMPS #define RIGHT_SHIFT(x,shft) ((x) >> (shft)) #endif /* Short forms of external names for systems with brain-damaged linkers. */ #ifdef NEED_SHORT_EXTERNAL_NAMES #define jinit_compress_master jICompress #define jinit_c_master_control jICMaster #define jinit_c_main_controller jICMainC #define jinit_c_prep_controller jICPrepC #define jinit_c_coef_controller jICCoefC #define jinit_color_converter jICColor #define jinit_downsampler jIDownsampler #define jinit_forward_dct jIFDCT #define jinit_huff_encoder jIHEncoder #define jinit_phuff_encoder jIPHEncoder #define jinit_marker_writer jIMWriter #define jinit_master_decompress jIDMaster #define jinit_d_main_controller jIDMainC #define jinit_d_coef_controller jIDCoefC #define jinit_d_post_controller jIDPostC #define jinit_input_controller jIInCtlr #define jinit_marker_reader jIMReader #define jinit_huff_decoder jIHDecoder #define jinit_phuff_decoder jIPHDecoder #define jinit_inverse_dct jIIDCT #define jinit_upsampler jIUpsampler #define jinit_color_deconverter jIDColor #define jinit_1pass_quantizer jI1Quant #define jinit_2pass_quantizer jI2Quant #define jinit_merged_upsampler jIMUpsampler #define jinit_memory_mgr jIMemMgr #define jdiv_round_up jDivRound #define jround_up jRound #define jcopy_sample_rows jCopySamples #define jcopy_block_row jCopyBlocks #define jzero_far jZeroFar #define jpeg_zigzag_order jZIGTable #define jpeg_natural_order jZAGTable #endif /* NEED_SHORT_EXTERNAL_NAMES */ /* Compression module initialization routines */ EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo)); EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo, boolean transcode_only)); EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo, boolean need_full_buffer)); EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo, boolean need_full_buffer)); EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo, boolean need_full_buffer)); EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo)); EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo)); EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo)); EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo)); EXTERN(void) jinit_phuff_encoder JPP((j_compress_ptr cinfo)); EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo)); /* Decompression module initialization routines */ EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo)); EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo, boolean need_full_buffer)); EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo, boolean need_full_buffer)); EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo, boolean need_full_buffer)); EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo)); EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo)); EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo)); EXTERN(void) jinit_phuff_decoder JPP((j_decompress_ptr cinfo)); EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo)); EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo)); EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo)); EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo)); EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo)); EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo)); /* Memory manager initialization */ EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo)); /* Utility routines in jutils.c */ EXTERN(long) jdiv_round_up JPP((long a, long b)); EXTERN(long) jround_up JPP((long a, long b)); EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row, JSAMPARRAY output_array, int dest_row, int num_rows, JDIMENSION num_cols)); EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row, JDIMENSION num_blocks)); EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero)); /* Constant tables in jutils.c */ #if 0 /* This table is not actually needed in v6a */ extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */ #endif extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */ /* Suppress undefined-structure complaints if necessary. */ #ifdef INCOMPLETE_TYPES_BROKEN #ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */ struct jvirt_sarray_control { long dummy; }; struct jvirt_barray_control { long dummy; }; #endif #endif /* INCOMPLETE_TYPES_BROKEN */ /********* End of inlined file: jpegint.h *********/ /* fetch private declarations */ /********* Start of inlined file: jerror.h *********/ /* * To define the enum list of message codes, include this file without * defining macro JMESSAGE. To create a message string table, include it * again with a suitable JMESSAGE definition (see jerror.c for an example). */ #ifndef JMESSAGE #ifndef JERROR_H /* First time through, define the enum list */ #define JMAKE_ENUM_LIST #else /* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */ #define JMESSAGE(code,string) #endif /* JERROR_H */ #endif /* JMESSAGE */ #ifdef JMAKE_ENUM_LIST typedef enum { #define JMESSAGE(code,string) code , #endif /* JMAKE_ENUM_LIST */ JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */ /* For maintenance convenience, list is alphabetical by message code name */ JMESSAGE(JERR_ARITH_NOTIMPL, "Sorry, there are legal restrictions on arithmetic coding") JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix") JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix") JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode") JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS") JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range") JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported") JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition") JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace") JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace") JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length") JMESSAGE(JERR_BAD_LIB_VERSION, "Wrong JPEG library version: library is %d, caller expects %d") JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan") JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d") JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d") JMESSAGE(JERR_BAD_PROGRESSION, "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d") JMESSAGE(JERR_BAD_PROG_SCRIPT, "Invalid progressive parameters at scan script entry %d") JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors") JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d") JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d") JMESSAGE(JERR_BAD_STRUCT_SIZE, "JPEG parameter struct mismatch: library thinks size is %u, caller expects %u") JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access") JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small") JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here") JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet") JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d") JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request") JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d") JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x") JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d") JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d") JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)") JMESSAGE(JERR_EMS_READ, "Read from EMS failed") JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed") JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan") JMESSAGE(JERR_FILE_READ, "Input file read error") JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?") JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet") JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow") JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry") JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels") JMESSAGE(JERR_INPUT_EMPTY, "Empty input file") JMESSAGE(JERR_INPUT_EOF, "Premature end of input file") JMESSAGE(JERR_MISMATCHED_QUANT_TABLE, "Cannot transcode due to multiple use of quantization table %d") JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data") JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change") JMESSAGE(JERR_NOTIMPL, "Not implemented yet") JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time") JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported") JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined") JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image") JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined") JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x") JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)") JMESSAGE(JERR_QUANT_COMPONENTS, "Cannot quantize more than %d color components") JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors") JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors") JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers") JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker") JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x") JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers") JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF") JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s") JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file") JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file") JMESSAGE(JERR_TFILE_WRITE, "Write failed on temporary file --- out of disk space?") JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines") JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x") JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up") JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation") JMESSAGE(JERR_XMS_READ, "Read from XMS failed") JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed") JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT) JMESSAGE(JMSG_VERSION, JVERSION) JMESSAGE(JTRC_16BIT_TABLES, "Caution: quantization tables are too coarse for baseline JPEG") JMESSAGE(JTRC_ADOBE, "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d") JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u") JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u") JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x") JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x") JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d") JMESSAGE(JTRC_DRI, "Define Restart Interval %u") JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u") JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u") JMESSAGE(JTRC_EOI, "End Of Image") JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d") JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d") JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE, "Warning: thumbnail image size does not match data length %u") JMESSAGE(JTRC_JFIF_EXTENSION, "JFIF extension marker: type 0x%02x, length %u") JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image") JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u") JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x") JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u") JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors") JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors") JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization") JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d") JMESSAGE(JTRC_RST, "RST%d") JMESSAGE(JTRC_SMOOTH_NOTIMPL, "Smoothing not supported with nonstandard sampling ratios") JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d") JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d") JMESSAGE(JTRC_SOI, "Start of Image") JMESSAGE(JTRC_SOS, "Start Of Scan: %d components") JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d") JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d") JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s") JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s") JMESSAGE(JTRC_THUMB_JPEG, "JFIF extension marker: JPEG-compressed thumbnail image, length %u") JMESSAGE(JTRC_THUMB_PALETTE, "JFIF extension marker: palette thumbnail image, length %u") JMESSAGE(JTRC_THUMB_RGB, "JFIF extension marker: RGB thumbnail image, length %u") JMESSAGE(JTRC_UNKNOWN_IDS, "Unrecognized component IDs %d %d %d, assuming YCbCr") JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u") JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u") JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d") JMESSAGE(JWRN_BOGUS_PROGRESSION, "Inconsistent progression sequence for component %d coefficient %d") JMESSAGE(JWRN_EXTRANEOUS_DATA, "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x") JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment") JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code") JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d") JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file") JMESSAGE(JWRN_MUST_RESYNC, "Corrupt JPEG data: found marker 0x%02x instead of RST%d") JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG") JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines") #ifdef JMAKE_ENUM_LIST JMSG_LASTMSGCODE } J_MESSAGE_CODE; #undef JMAKE_ENUM_LIST #endif /* JMAKE_ENUM_LIST */ /* Zap JMESSAGE macro so that future re-inclusions do nothing by default */ #undef JMESSAGE #ifndef JERROR_H #define JERROR_H /* Macros to simplify using the error and trace message stuff */ /* The first parameter is either type of cinfo pointer */ /* Fatal errors (print message and exit) */ #define ERREXIT(cinfo,code) \ ((cinfo)->err->msg_code = (code), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXIT1(cinfo,code,p1) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXIT2(cinfo,code,p1,p2) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXIT3(cinfo,code,p1,p2,p3) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (cinfo)->err->msg_parm.i[2] = (p3), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXIT4(cinfo,code,p1,p2,p3,p4) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (cinfo)->err->msg_parm.i[2] = (p3), \ (cinfo)->err->msg_parm.i[3] = (p4), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXITS(cinfo,code,str) \ ((cinfo)->err->msg_code = (code), \ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define MAKESTMT(stuff) do { stuff } while (0) /* Nonfatal errors (we can keep going, but the data is probably corrupt) */ #define WARNMS(cinfo,code) \ ((cinfo)->err->msg_code = (code), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) #define WARNMS1(cinfo,code,p1) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) #define WARNMS2(cinfo,code,p1,p2) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) /* Informational/debugging messages */ #define TRACEMS(cinfo,lvl,code) \ ((cinfo)->err->msg_code = (code), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) #define TRACEMS1(cinfo,lvl,code,p1) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) #define TRACEMS2(cinfo,lvl,code,p1,p2) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) #define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) #define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) #define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ _mp[4] = (p5); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) #define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) #define TRACEMSS(cinfo,lvl,code,str) \ ((cinfo)->err->msg_code = (code), \ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) #endif /* JERROR_H */ /********* End of inlined file: jerror.h *********/ /* fetch error codes too */ #endif #endif /* JPEGLIB_H */ /********* End of inlined file: jpeglib.h *********/ /********* Start of inlined file: jcapimin.c *********/ #define JPEG_INTERNALS /********* Start of inlined file: jinclude.h *********/ /* Include auto-config file to find out which system include files we need. */ #ifndef __jinclude_h__ #define __jinclude_h__ /********* Start of inlined file: jconfig.h *********/ /* see jconfig.doc for explanations */ // disable all the warnings under MSVC #ifdef _MSC_VER #pragma warning (disable: 4996 4267 4100 4127 4702 4244) #endif #ifdef __BORLANDC__ #pragma warn -8057 #pragma warn -8019 #pragma warn -8004 #pragma warn -8008 #endif #define HAVE_PROTOTYPES #define HAVE_UNSIGNED_CHAR #define HAVE_UNSIGNED_SHORT /* #define void char */ /* #define const */ #undef CHAR_IS_UNSIGNED #define HAVE_STDDEF_H #define HAVE_STDLIB_H #undef NEED_BSD_STRINGS #undef NEED_SYS_TYPES_H #undef NEED_FAR_POINTERS /* we presume a 32-bit flat memory model */ #undef NEED_SHORT_EXTERNAL_NAMES #undef INCOMPLETE_TYPES_BROKEN /* Define "boolean" as unsigned char, not int, per Windows custom */ #ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ typedef unsigned char boolean; #endif #define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ #ifdef JPEG_INTERNALS #undef RIGHT_SHIFT_IS_UNSIGNED #endif /* JPEG_INTERNALS */ #ifdef JPEG_CJPEG_DJPEG #define BMP_SUPPORTED /* BMP image file format */ #define GIF_SUPPORTED /* GIF image file format */ #define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */ #undef RLE_SUPPORTED /* Utah RLE image file format */ #define TARGA_SUPPORTED /* Targa image file format */ #define TWO_FILE_COMMANDLINE /* optional */ #define USE_SETMODE /* Microsoft has setmode() */ #undef NEED_SIGNAL_CATCHER #undef DONT_USE_B_MODE #undef PROGRESS_REPORT /* optional */ #endif /* JPEG_CJPEG_DJPEG */ /********* End of inlined file: jconfig.h *********/ /* auto configuration options */ #define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */ /* * We need the NULL macro and size_t typedef. * On an ANSI-conforming system it is sufficient to include . * Otherwise, we get them from or ; we may have to * pull in as well. * Note that the core JPEG library does not require ; * only the default error handler and data source/destination modules do. * But we must pull it in because of the references to FILE in jpeglib.h. * You can remove those references if you want to compile without . */ #ifdef HAVE_STDDEF_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #ifdef NEED_SYS_TYPES_H #include #endif #include /* * We need memory copying and zeroing functions, plus strncpy(). * ANSI and System V implementations declare these in . * BSD doesn't have the mem() functions, but it does have bcopy()/bzero(). * Some systems may declare memset and memcpy in . * * NOTE: we assume the size parameters to these functions are of type size_t. * Change the casts in these macros if not! */ #ifdef NEED_BSD_STRINGS #include #define MEMZERO(target,size) bzero((void *)(target), (size_t)(size)) #define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size)) #else /* not BSD, assume ANSI/SysV string lib */ #include #define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size)) #define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size)) #endif /* * In ANSI C, and indeed any rational implementation, size_t is also the * type returned by sizeof(). However, it seems there are some irrational * implementations out there, in which sizeof() returns an int even though * size_t is defined as long or unsigned long. To ensure consistent results * we always use this SIZEOF() macro in place of using sizeof() directly. */ #define SIZEOF(object) ((size_t) sizeof(object)) /* * The modules that use fread() and fwrite() always invoke them through * these macros. On some systems you may need to twiddle the argument casts. * CAUTION: argument order is different from underlying functions! */ #define JFREAD(file,buf,sizeofbuf) \ ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) #define JFWRITE(file,buf,sizeofbuf) \ ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) typedef enum { /* JPEG marker codes */ M_SOF0 = 0xc0, M_SOF1 = 0xc1, M_SOF2 = 0xc2, M_SOF3 = 0xc3, M_SOF5 = 0xc5, M_SOF6 = 0xc6, M_SOF7 = 0xc7, M_JPG = 0xc8, M_SOF9 = 0xc9, M_SOF10 = 0xca, M_SOF11 = 0xcb, M_SOF13 = 0xcd, M_SOF14 = 0xce, M_SOF15 = 0xcf, M_DHT = 0xc4, M_DAC = 0xcc, M_RST0 = 0xd0, M_RST1 = 0xd1, M_RST2 = 0xd2, M_RST3 = 0xd3, M_RST4 = 0xd4, M_RST5 = 0xd5, M_RST6 = 0xd6, M_RST7 = 0xd7, M_SOI = 0xd8, M_EOI = 0xd9, M_SOS = 0xda, M_DQT = 0xdb, M_DNL = 0xdc, M_DRI = 0xdd, M_DHP = 0xde, M_EXP = 0xdf, M_APP0 = 0xe0, M_APP1 = 0xe1, M_APP2 = 0xe2, M_APP3 = 0xe3, M_APP4 = 0xe4, M_APP5 = 0xe5, M_APP6 = 0xe6, M_APP7 = 0xe7, M_APP8 = 0xe8, M_APP9 = 0xe9, M_APP10 = 0xea, M_APP11 = 0xeb, M_APP12 = 0xec, M_APP13 = 0xed, M_APP14 = 0xee, M_APP15 = 0xef, M_JPG0 = 0xf0, M_JPG13 = 0xfd, M_COM = 0xfe, M_TEM = 0x01, M_ERROR = 0x100 } JPEG_MARKER; /* * Figure F.12: extend sign bit. * On some machines, a shift and add will be faster than a table lookup. */ #ifdef AVOID_TABLES #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) #else #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) static const int extend_test[16] = /* entry n is 2**(n-1) */ { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; #endif /* AVOID_TABLES */ #endif /********* End of inlined file: jinclude.h *********/ /* * Initialization of a JPEG compression object. * The error manager must already be set up (in case memory manager fails). */ GLOBAL(void) jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize) { int i; /* Guard against version mismatches between library and caller. */ cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ if (version != JPEG_LIB_VERSION) ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); if (structsize != SIZEOF(struct jpeg_compress_struct)) ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, (int) SIZEOF(struct jpeg_compress_struct), (int) structsize); /* For debugging purposes, we zero the whole master structure. * But the application has already set the err pointer, and may have set * client_data, so we have to save and restore those fields. * Note: if application hasn't set client_data, tools like Purify may * complain here. */ { struct jpeg_error_mgr * err = cinfo->err; void * client_data = cinfo->client_data; /* ignore Purify complaint here */ MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct)); cinfo->err = err; cinfo->client_data = client_data; } cinfo->is_decompressor = FALSE; /* Initialize a memory manager instance for this object */ jinit_memory_mgr((j_common_ptr) cinfo); /* Zero out pointers to permanent structures. */ cinfo->progress = NULL; cinfo->dest = NULL; cinfo->comp_info = NULL; for (i = 0; i < NUM_QUANT_TBLS; i++) cinfo->quant_tbl_ptrs[i] = NULL; for (i = 0; i < NUM_HUFF_TBLS; i++) { cinfo->dc_huff_tbl_ptrs[i] = NULL; cinfo->ac_huff_tbl_ptrs[i] = NULL; } cinfo->script_space = NULL; cinfo->input_gamma = 1.0; /* in case application forgets */ /* OK, I'm ready */ cinfo->global_state = CSTATE_START; } /* * Destruction of a JPEG compression object */ GLOBAL(void) jpeg_destroy_compress (j_compress_ptr cinfo) { jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ } /* * Abort processing of a JPEG compression operation, * but don't destroy the object itself. */ GLOBAL(void) jpeg_abort_compress (j_compress_ptr cinfo) { jpeg_abort((j_common_ptr) cinfo); /* use common routine */ } /* * Forcibly suppress or un-suppress all quantization and Huffman tables. * Marks all currently defined tables as already written (if suppress) * or not written (if !suppress). This will control whether they get emitted * by a subsequent jpeg_start_compress call. * * This routine is exported for use by applications that want to produce * abbreviated JPEG datastreams. It logically belongs in jcparam.c, but * since it is called by jpeg_start_compress, we put it here --- otherwise * jcparam.o would be linked whether the application used it or not. */ GLOBAL(void) jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress) { int i; JQUANT_TBL * qtbl; JHUFF_TBL * htbl; for (i = 0; i < NUM_QUANT_TBLS; i++) { if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL) qtbl->sent_table = suppress; } for (i = 0; i < NUM_HUFF_TBLS; i++) { if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL) htbl->sent_table = suppress; if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL) htbl->sent_table = suppress; } } /* * Finish JPEG compression. * * If a multipass operating mode was selected, this may do a great deal of * work including most of the actual output. */ GLOBAL(void) jpeg_finish_compress (j_compress_ptr cinfo) { JDIMENSION iMCU_row; if (cinfo->global_state == CSTATE_SCANNING || cinfo->global_state == CSTATE_RAW_OK) { /* Terminate first pass */ if (cinfo->next_scanline < cinfo->image_height) ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); (*cinfo->master->finish_pass) (cinfo); } else if (cinfo->global_state != CSTATE_WRCOEFS) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Perform any remaining passes */ while (! cinfo->master->is_last_pass) { (*cinfo->master->prepare_for_pass) (cinfo); for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) { if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long) iMCU_row; cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows; (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); } /* We bypass the main controller and invoke coef controller directly; * all work is being done from the coefficient buffer. */ if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL)) ERREXIT(cinfo, JERR_CANT_SUSPEND); } (*cinfo->master->finish_pass) (cinfo); } /* Write EOI, do final cleanup */ (*cinfo->marker->write_file_trailer) (cinfo); (*cinfo->dest->term_destination) (cinfo); /* We can use jpeg_abort to release memory and reset global_state */ jpeg_abort((j_common_ptr) cinfo); } /* * Write a special marker. * This is only recommended for writing COM or APPn markers. * Must be called after jpeg_start_compress() and before * first call to jpeg_write_scanlines() or jpeg_write_raw_data(). */ GLOBAL(void) jpeg_write_marker (j_compress_ptr cinfo, int marker, const JOCTET *dataptr, unsigned int datalen) { JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val)); if (cinfo->next_scanline != 0 || (cinfo->global_state != CSTATE_SCANNING && cinfo->global_state != CSTATE_RAW_OK && cinfo->global_state != CSTATE_WRCOEFS)) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); (*cinfo->marker->write_marker_header) (cinfo, marker, datalen); write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */ while (datalen--) { (*write_marker_byte) (cinfo, *dataptr); dataptr++; } } /* Same, but piecemeal. */ GLOBAL(void) jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen) { if (cinfo->next_scanline != 0 || (cinfo->global_state != CSTATE_SCANNING && cinfo->global_state != CSTATE_RAW_OK && cinfo->global_state != CSTATE_WRCOEFS)) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); (*cinfo->marker->write_marker_header) (cinfo, marker, datalen); } GLOBAL(void) jpeg_write_m_byte (j_compress_ptr cinfo, int val) { (*cinfo->marker->write_marker_byte) (cinfo, val); } /* * Alternate compression function: just write an abbreviated table file. * Before calling this, all parameters and a data destination must be set up. * * To produce a pair of files containing abbreviated tables and abbreviated * image data, one would proceed as follows: * * initialize JPEG object * set JPEG parameters * set destination to table file * jpeg_write_tables(cinfo); * set destination to image file * jpeg_start_compress(cinfo, FALSE); * write data... * jpeg_finish_compress(cinfo); * * jpeg_write_tables has the side effect of marking all tables written * (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress * will not re-emit the tables unless it is passed write_all_tables=TRUE. */ GLOBAL(void) jpeg_write_tables (j_compress_ptr cinfo) { if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* (Re)initialize error mgr and destination modules */ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); (*cinfo->dest->init_destination) (cinfo); /* Initialize the marker writer ... bit of a crock to do it here. */ jinit_marker_writer(cinfo); /* Write them tables! */ (*cinfo->marker->write_tables_only) (cinfo); /* And clean up. */ (*cinfo->dest->term_destination) (cinfo); /* * In library releases up through v6a, we called jpeg_abort() here to free * any working memory allocated by the destination manager and marker * writer. Some applications had a problem with that: they allocated space * of their own from the library memory manager, and didn't want it to go * away during write_tables. So now we do nothing. This will cause a * memory leak if an app calls write_tables repeatedly without doing a full * compression cycle or otherwise resetting the JPEG object. However, that * seems less bad than unexpectedly freeing memory in the normal case. * An app that prefers the old behavior can call jpeg_abort for itself after * each call to jpeg_write_tables(). */ } /********* End of inlined file: jcapimin.c *********/ /********* Start of inlined file: jcapistd.c *********/ #define JPEG_INTERNALS /* * Compression initialization. * Before calling this, all parameters and a data destination must be set up. * * We require a write_all_tables parameter as a failsafe check when writing * multiple datastreams from the same compression object. Since prior runs * will have left all the tables marked sent_table=TRUE, a subsequent run * would emit an abbreviated stream (no tables) by default. This may be what * is wanted, but for safety's sake it should not be the default behavior: * programmers should have to make a deliberate choice to emit abbreviated * images. Therefore the documentation and examples should encourage people * to pass write_all_tables=TRUE; then it will take active thought to do the * wrong thing. */ GLOBAL(void) jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables) { if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (write_all_tables) jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */ /* (Re)initialize error mgr and destination modules */ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); (*cinfo->dest->init_destination) (cinfo); /* Perform master selection of active modules */ jinit_compress_master(cinfo); /* Set up for the first pass */ (*cinfo->master->prepare_for_pass) (cinfo); /* Ready for application to drive first pass through jpeg_write_scanlines * or jpeg_write_raw_data. */ cinfo->next_scanline = 0; cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING); } /* * Write some scanlines of data to the JPEG compressor. * * The return value will be the number of lines actually written. * This should be less than the supplied num_lines only in case that * the data destination module has requested suspension of the compressor, * or if more than image_height scanlines are passed in. * * Note: we warn about excess calls to jpeg_write_scanlines() since * this likely signals an application programmer error. However, * excess scanlines passed in the last valid call are *silently* ignored, * so that the application need not adjust num_lines for end-of-image * when using a multiple-scanline buffer. */ GLOBAL(JDIMENSION) jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION num_lines) { JDIMENSION row_ctr, rows_left; if (cinfo->global_state != CSTATE_SCANNING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->next_scanline >= cinfo->image_height) WARNMS(cinfo, JWRN_TOO_MUCH_DATA); /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long) cinfo->next_scanline; cinfo->progress->pass_limit = (long) cinfo->image_height; (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); } /* Give master control module another chance if this is first call to * jpeg_write_scanlines. This lets output of the frame/scan headers be * delayed so that application can write COM, etc, markers between * jpeg_start_compress and jpeg_write_scanlines. */ if (cinfo->master->call_pass_startup) (*cinfo->master->pass_startup) (cinfo); /* Ignore any extra scanlines at bottom of image. */ rows_left = cinfo->image_height - cinfo->next_scanline; if (num_lines > rows_left) num_lines = rows_left; row_ctr = 0; (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines); cinfo->next_scanline += row_ctr; return row_ctr; } /* * Alternate entry point to write raw data. * Processes exactly one iMCU row per call, unless suspended. */ GLOBAL(JDIMENSION) jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data, JDIMENSION num_lines) { JDIMENSION lines_per_iMCU_row; if (cinfo->global_state != CSTATE_RAW_OK) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->next_scanline >= cinfo->image_height) { WARNMS(cinfo, JWRN_TOO_MUCH_DATA); return 0; } /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long) cinfo->next_scanline; cinfo->progress->pass_limit = (long) cinfo->image_height; (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); } /* Give master control module another chance if this is first call to * jpeg_write_raw_data. This lets output of the frame/scan headers be * delayed so that application can write COM, etc, markers between * jpeg_start_compress and jpeg_write_raw_data. */ if (cinfo->master->call_pass_startup) (*cinfo->master->pass_startup) (cinfo); /* Verify that at least one iMCU row has been passed. */ lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE; if (num_lines < lines_per_iMCU_row) ERREXIT(cinfo, JERR_BUFFER_SIZE); /* Directly compress the row. */ if (! (*cinfo->coef->compress_data) (cinfo, data)) { /* If compressor did not consume the whole row, suspend processing. */ return 0; } /* OK, we processed one iMCU row. */ cinfo->next_scanline += lines_per_iMCU_row; return lines_per_iMCU_row; } /********* End of inlined file: jcapistd.c *********/ /********* Start of inlined file: jccoefct.c *********/ #define JPEG_INTERNALS /* We use a full-image coefficient buffer when doing Huffman optimization, * and also for writing multiple-scan JPEG files. In all cases, the DCT * step is run during the first pass, and subsequent passes need only read * the buffered coefficients. */ #ifdef ENTROPY_OPT_SUPPORTED #define FULL_COEF_BUFFER_SUPPORTED #else #ifdef C_MULTISCAN_FILES_SUPPORTED #define FULL_COEF_BUFFER_SUPPORTED #endif #endif /* Private buffer controller object */ typedef struct { struct jpeg_c_coef_controller pub; /* public fields */ JDIMENSION iMCU_row_num; /* iMCU row # within image */ JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ int MCU_vert_offset; /* counts MCU rows within iMCU row */ int MCU_rows_per_iMCU_row; /* number of such rows needed */ /* For single-pass compression, it's sufficient to buffer just one MCU * (although this may prove a bit slow in practice). We allocate a * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each * MCU constructed and sent. (On 80x86, the workspace is FAR even though * it's not really very big; this is to keep the module interfaces unchanged * when a large coefficient buffer is necessary.) * In multi-pass modes, this array points to the current MCU's blocks * within the virtual arrays. */ JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; /* In multi-pass modes, we need a virtual block array for each component. */ jvirt_barray_ptr whole_image[MAX_COMPONENTS]; } my_coef_controller; typedef my_coef_controller * my_coef_ptr; /* Forward declarations */ METHODDEF(boolean) compress_data JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); #ifdef FULL_COEF_BUFFER_SUPPORTED METHODDEF(boolean) compress_first_pass JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); METHODDEF(boolean) compress_output JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); #endif LOCAL(void) start_iMCU_row (j_compress_ptr cinfo) /* Reset within-iMCU-row counters for a new row */ { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; /* In an interleaved scan, an MCU row is the same as an iMCU row. * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. * But at the bottom of the image, process only what's left. */ if (cinfo->comps_in_scan > 1) { coef->MCU_rows_per_iMCU_row = 1; } else { if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; else coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; } coef->mcu_ctr = 0; coef->MCU_vert_offset = 0; } /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; coef->iMCU_row_num = 0; start_iMCU_row(cinfo); switch (pass_mode) { case JBUF_PASS_THRU: if (coef->whole_image[0] != NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->pub.compress_data = compress_data; break; #ifdef FULL_COEF_BUFFER_SUPPORTED case JBUF_SAVE_AND_PASS: if (coef->whole_image[0] == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->pub.compress_data = compress_first_pass; break; case JBUF_CRANK_DEST: if (coef->whole_image[0] == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->pub.compress_data = compress_output; break; #endif default: ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); break; } } /* * Process some data in the single-pass case. * We process the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the image. * Returns TRUE if the iMCU row is completed, FALSE if suspended. * * NB: input_buf contains a plane for each component in image, * which we index according to the component's SOF position. */ METHODDEF(boolean) compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; int blkn, bi, ci, yindex, yoffset, blockcnt; JDIMENSION ypos, xpos; jpeg_component_info *compptr; /* Loop to write as much as one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; MCU_col_num++) { /* Determine where data comes from in input_buf and do the DCT thing. * Each call on forward_DCT processes a horizontal row of DCT blocks * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks * sequentially. Dummy blocks at the right or bottom edge are filled in * specially. The data in them does not matter for image reconstruction, * so we fill them with values that will encode to the smallest amount of * data, viz: all zeroes in the AC entries, DC entries equal to previous * block's DC value. (Thanks to Thomas Kinsman for this idea.) */ blkn = 0; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width : compptr->last_col_width; xpos = MCU_col_num * compptr->MCU_sample_width; ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */ for (yindex = 0; yindex < compptr->MCU_height; yindex++) { if (coef->iMCU_row_num < last_iMCU_row || yoffset+yindex < compptr->last_row_height) { (*cinfo->fdct->forward_DCT) (cinfo, compptr, input_buf[compptr->component_index], coef->MCU_buffer[blkn], ypos, xpos, (JDIMENSION) blockcnt); if (blockcnt < compptr->MCU_width) { /* Create some dummy blocks at the right edge of the image. */ jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt], (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); for (bi = blockcnt; bi < compptr->MCU_width; bi++) { coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; } } } else { /* Create a row of dummy blocks at the bottom of the image. */ jzero_far((void FAR *) coef->MCU_buffer[blkn], compptr->MCU_width * SIZEOF(JBLOCK)); for (bi = 0; bi < compptr->MCU_width; bi++) { coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; } } blkn += compptr->MCU_width; ypos += DCTSIZE; } } /* Try to write the MCU. In event of a suspension failure, we will * re-DCT the MCU on restart (a bit inefficient, could be fixed...) */ if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->mcu_ctr = MCU_col_num; return FALSE; } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->mcu_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ coef->iMCU_row_num++; start_iMCU_row(cinfo); return TRUE; } #ifdef FULL_COEF_BUFFER_SUPPORTED /* * Process some data in the first pass of a multi-pass case. * We process the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the image. * This amount of data is read from the source buffer, DCT'd and quantized, * and saved into the virtual arrays. We also generate suitable dummy blocks * as needed at the right and lower edges. (The dummy blocks are constructed * in the virtual arrays, which have been padded appropriately.) This makes * it possible for subsequent passes not to worry about real vs. dummy blocks. * * We must also emit the data to the entropy encoder. This is conveniently * done by calling compress_output() after we've loaded the current strip * of the virtual arrays. * * NB: input_buf contains a plane for each component in image. All * components are DCT'd and loaded into the virtual arrays in this pass. * However, it may be that only a subset of the components are emitted to * the entropy encoder during this first pass; be careful about looking * at the scan-dependent variables (MCU dimensions, etc). */ METHODDEF(boolean) compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; JDIMENSION blocks_across, MCUs_across, MCUindex; int bi, ci, h_samp_factor, block_row, block_rows, ndummy; JCOEF lastDC; jpeg_component_info *compptr; JBLOCKARRAY buffer; JBLOCKROW thisblockrow, lastblockrow; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Align the virtual buffer for this component. */ buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[ci], coef->iMCU_row_num * compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, TRUE); /* Count non-dummy DCT block rows in this iMCU row. */ if (coef->iMCU_row_num < last_iMCU_row) block_rows = compptr->v_samp_factor; else { /* NB: can't use last_row_height here, since may not be set! */ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); if (block_rows == 0) block_rows = compptr->v_samp_factor; } blocks_across = compptr->width_in_blocks; h_samp_factor = compptr->h_samp_factor; /* Count number of dummy blocks to be added at the right margin. */ ndummy = (int) (blocks_across % h_samp_factor); if (ndummy > 0) ndummy = h_samp_factor - ndummy; /* Perform DCT for all non-dummy blocks in this iMCU row. Each call * on forward_DCT processes a complete horizontal row of DCT blocks. */ for (block_row = 0; block_row < block_rows; block_row++) { thisblockrow = buffer[block_row]; (*cinfo->fdct->forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow, (JDIMENSION) (block_row * DCTSIZE), (JDIMENSION) 0, blocks_across); if (ndummy > 0) { /* Create dummy blocks at the right edge of the image. */ thisblockrow += blocks_across; /* => first dummy block */ jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); lastDC = thisblockrow[-1][0]; for (bi = 0; bi < ndummy; bi++) { thisblockrow[bi][0] = lastDC; } } } /* If at end of image, create dummy block rows as needed. * The tricky part here is that within each MCU, we want the DC values * of the dummy blocks to match the last real block's DC value. * This squeezes a few more bytes out of the resulting file... */ if (coef->iMCU_row_num == last_iMCU_row) { blocks_across += ndummy; /* include lower right corner */ MCUs_across = blocks_across / h_samp_factor; for (block_row = block_rows; block_row < compptr->v_samp_factor; block_row++) { thisblockrow = buffer[block_row]; lastblockrow = buffer[block_row-1]; jzero_far((void FAR *) thisblockrow, (size_t) (blocks_across * SIZEOF(JBLOCK))); for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { lastDC = lastblockrow[h_samp_factor-1][0]; for (bi = 0; bi < h_samp_factor; bi++) { thisblockrow[bi][0] = lastDC; } thisblockrow += h_samp_factor; /* advance to next MCU in row */ lastblockrow += h_samp_factor; } } } } /* NB: compress_output will increment iMCU_row_num if successful. * A suspension return will result in redoing all the work above next time. */ /* Emit data to the entropy encoder, sharing code with subsequent passes */ return compress_output(cinfo, input_buf); } /* * Process some data in subsequent passes of a multi-pass case. * We process the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the scan. * The data is obtained from the virtual arrays and fed to the entropy coder. * Returns TRUE if the iMCU row is completed, FALSE if suspended. * * NB: input_buf is ignored; it is likely to be a NULL pointer. */ METHODDEF(boolean) compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ int blkn, ci, xindex, yindex, yoffset; JDIMENSION start_col; JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; JBLOCKROW buffer_ptr; jpeg_component_info *compptr; /* Align the virtual buffers for the components used in this scan. * NB: during first pass, this is safe only because the buffers will * already be aligned properly, so jmemmgr.c won't need to do any I/O. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; buffer[ci] = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], coef->iMCU_row_num * compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, FALSE); } /* Loop to process one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) { /* Construct list of pointers to DCT blocks belonging to this MCU */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; start_col = MCU_col_num * compptr->MCU_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { buffer_ptr = buffer[ci][yindex+yoffset] + start_col; for (xindex = 0; xindex < compptr->MCU_width; xindex++) { coef->MCU_buffer[blkn++] = buffer_ptr++; } } } /* Try to write the MCU. */ if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->mcu_ctr = MCU_col_num; return FALSE; } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->mcu_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ coef->iMCU_row_num++; start_iMCU_row(cinfo); return TRUE; } #endif /* FULL_COEF_BUFFER_SUPPORTED */ /* * Initialize coefficient buffer controller. */ GLOBAL(void) jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) { my_coef_ptr coef; coef = (my_coef_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller)); cinfo->coef = (struct jpeg_c_coef_controller *) coef; coef->pub.start_pass = start_pass_coef; /* Create the coefficient buffer. */ if (need_full_buffer) { #ifdef FULL_COEF_BUFFER_SUPPORTED /* Allocate a full-image virtual array for each component, */ /* padded to a multiple of samp_factor DCT blocks in each direction. */ int ci; jpeg_component_info *compptr; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, (JDIMENSION) jround_up((long) compptr->width_in_blocks, (long) compptr->h_samp_factor), (JDIMENSION) jround_up((long) compptr->height_in_blocks, (long) compptr->v_samp_factor), (JDIMENSION) compptr->v_samp_factor); } #else ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); #endif } else { /* We only need a single-MCU buffer. */ JBLOCKROW buffer; int i; buffer = (JBLOCKROW) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { coef->MCU_buffer[i] = buffer + i; } coef->whole_image[0] = NULL; /* flag for no virtual arrays */ } } /********* End of inlined file: jccoefct.c *********/ /********* Start of inlined file: jccolor.c *********/ #define JPEG_INTERNALS /* Private subobject */ typedef struct { struct jpeg_color_converter pub; /* public fields */ /* Private state for RGB->YCC conversion */ INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */ } my_color_converter; typedef my_color_converter * my_cconvert_ptr; /**************** RGB -> YCbCr conversion: most common case **************/ /* * YCbCr is defined per CCIR 601-1, except that Cb and Cr are * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. * The conversion equations to be implemented are therefore * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2, * rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0) * were not represented exactly. Now we sacrifice exact representation of * maximum red and maximum blue in order to get exact grayscales. * * To avoid floating-point arithmetic, we represent the fractional constants * as integers scaled up by 2^16 (about 4 digits precision); we have to divide * the products by 2^16, with appropriate rounding, to get the correct answer. * * For even more speed, we avoid doing any multiplications in the inner loop * by precalculating the constants times R,G,B for all possible values. * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); * for 12-bit samples it is still acceptable. It's not very reasonable for * 16-bit samples, but if you want lossless storage you shouldn't be changing * colorspace anyway. * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included * in the tables to save adding them separately in the inner loop. */ #define SCALEBITS 16 /* speediest right-shift on some machines */ #define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS) #define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) #define FIX(x) ((INT32) ((x) * (1L< Y section */ #define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */ #define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */ #define R_CB_OFF (3*(MAXJSAMPLE+1)) #define G_CB_OFF (4*(MAXJSAMPLE+1)) #define B_CB_OFF (5*(MAXJSAMPLE+1)) #define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */ #define G_CR_OFF (6*(MAXJSAMPLE+1)) #define B_CR_OFF (7*(MAXJSAMPLE+1)) #define TABLE_SIZE (8*(MAXJSAMPLE+1)) /* * Initialize for RGB->YCC colorspace conversion. */ METHODDEF(void) rgb_ycc_start (j_compress_ptr cinfo) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; INT32 * rgb_ycc_tab; INT32 i; /* Allocate and fill in the conversion tables. */ cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (TABLE_SIZE * SIZEOF(INT32))); for (i = 0; i <= MAXJSAMPLE; i++) { rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i; rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i; rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF; rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i; rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i; /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr. * This ensures that the maximum output will round to MAXJSAMPLE * not MAXJSAMPLE+1, and thus that we don't have to range-limit. */ rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; /* B=>Cb and R=>Cr tables are the same rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; */ rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i; rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i; } } /* * Convert some rows of samples to the JPEG colorspace. * * Note that we change from the application's interleaved-pixel format * to our internal noninterleaved, one-plane-per-component format. * The input buffer is therefore three times as wide as the output buffer. * * A starting row offset is provided only for the output buffer. The caller * can easily adjust the passed input_buf value to accommodate any row * offset required on that side. */ METHODDEF(void) rgb_ycc_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int r, g, b; register INT32 * ctab = cconvert->rgb_ycc_tab; register JSAMPROW inptr; register JSAMPROW outptr0, outptr1, outptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; output_row++; for (col = 0; col < num_cols; col++) { r = GETJSAMPLE(inptr[RGB_RED]); g = GETJSAMPLE(inptr[RGB_GREEN]); b = GETJSAMPLE(inptr[RGB_BLUE]); inptr += RGB_PIXELSIZE; /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations * must be too; we do not need an explicit range-limiting operation. * Hence the value being shifted is never negative, and we don't * need the general RIGHT_SHIFT macro. */ /* Y */ outptr0[col] = (JSAMPLE) ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) >> SCALEBITS); /* Cb */ outptr1[col] = (JSAMPLE) ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) >> SCALEBITS); /* Cr */ outptr2[col] = (JSAMPLE) ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) >> SCALEBITS); } } } /**************** Cases other than RGB -> YCbCr **************/ /* * Convert some rows of samples to the JPEG colorspace. * This version handles RGB->grayscale conversion, which is the same * as the RGB->Y portion of RGB->YCbCr. * We assume rgb_ycc_start has been called (we only use the Y tables). */ METHODDEF(void) rgb_gray_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int r, g, b; register INT32 * ctab = cconvert->rgb_ycc_tab; register JSAMPROW inptr; register JSAMPROW outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while (--num_rows >= 0) { inptr = *input_buf++; outptr = output_buf[0][output_row]; output_row++; for (col = 0; col < num_cols; col++) { r = GETJSAMPLE(inptr[RGB_RED]); g = GETJSAMPLE(inptr[RGB_GREEN]); b = GETJSAMPLE(inptr[RGB_BLUE]); inptr += RGB_PIXELSIZE; /* Y */ outptr[col] = (JSAMPLE) ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) >> SCALEBITS); } } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles Adobe-style CMYK->YCCK conversion, * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same * conversion as above, while passing K (black) unchanged. * We assume rgb_ycc_start has been called. */ METHODDEF(void) cmyk_ycck_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int r, g, b; register INT32 * ctab = cconvert->rgb_ycc_tab; register JSAMPROW inptr; register JSAMPROW outptr0, outptr1, outptr2, outptr3; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; outptr3 = output_buf[3][output_row]; output_row++; for (col = 0; col < num_cols; col++) { r = MAXJSAMPLE - GETJSAMPLE(inptr[0]); g = MAXJSAMPLE - GETJSAMPLE(inptr[1]); b = MAXJSAMPLE - GETJSAMPLE(inptr[2]); /* K passes through as-is */ outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */ inptr += 4; /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations * must be too; we do not need an explicit range-limiting operation. * Hence the value being shifted is never negative, and we don't * need the general RIGHT_SHIFT macro. */ /* Y */ outptr0[col] = (JSAMPLE) ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) >> SCALEBITS); /* Cb */ outptr1[col] = (JSAMPLE) ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) >> SCALEBITS); /* Cr */ outptr2[col] = (JSAMPLE) ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) >> SCALEBITS); } } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles grayscale output with no conversion. * The source can be either plain grayscale or YCbCr (since Y == gray). */ METHODDEF(void) grayscale_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { register JSAMPROW inptr; register JSAMPROW outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; int instride = cinfo->input_components; while (--num_rows >= 0) { inptr = *input_buf++; outptr = output_buf[0][output_row]; output_row++; for (col = 0; col < num_cols; col++) { outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */ inptr += instride; } } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles multi-component colorspaces without conversion. * We assume input_components == num_components. */ METHODDEF(void) null_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { register JSAMPROW inptr; register JSAMPROW outptr; register JDIMENSION col; register int ci; int nc = cinfo->num_components; JDIMENSION num_cols = cinfo->image_width; while (--num_rows >= 0) { /* It seems fastest to make a separate pass for each component. */ for (ci = 0; ci < nc; ci++) { inptr = *input_buf; outptr = output_buf[ci][output_row]; for (col = 0; col < num_cols; col++) { outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */ inptr += nc; } } input_buf++; output_row++; } } /* * Empty method for start_pass. */ METHODDEF(void) null_method (j_compress_ptr cinfo) { /* no work needed */ } /* * Module initialization routine for input colorspace conversion. */ GLOBAL(void) jinit_color_converter (j_compress_ptr cinfo) { my_cconvert_ptr cconvert; cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_converter)); cinfo->cconvert = (struct jpeg_color_converter *) cconvert; /* set start_pass to null method until we find out differently */ cconvert->pub.start_pass = null_method; /* Make sure input_components agrees with in_color_space */ switch (cinfo->in_color_space) { case JCS_GRAYSCALE: if (cinfo->input_components != 1) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; case JCS_RGB: #if RGB_PIXELSIZE != 3 if (cinfo->input_components != RGB_PIXELSIZE) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; #endif /* else share code with YCbCr */ case JCS_YCbCr: if (cinfo->input_components != 3) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; case JCS_CMYK: case JCS_YCCK: if (cinfo->input_components != 4) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; default: /* JCS_UNKNOWN can be anything */ if (cinfo->input_components < 1) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; } /* Check num_components, set conversion method based on requested space */ switch (cinfo->jpeg_color_space) { case JCS_GRAYSCALE: if (cinfo->num_components != 1) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (cinfo->in_color_space == JCS_GRAYSCALE) cconvert->pub.color_convert = grayscale_convert; else if (cinfo->in_color_space == JCS_RGB) { cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = rgb_gray_convert; } else if (cinfo->in_color_space == JCS_YCbCr) cconvert->pub.color_convert = grayscale_convert; else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_RGB: if (cinfo->num_components != 3) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3) cconvert->pub.color_convert = null_convert; else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_YCbCr: if (cinfo->num_components != 3) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (cinfo->in_color_space == JCS_RGB) { cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = rgb_ycc_convert; } else if (cinfo->in_color_space == JCS_YCbCr) cconvert->pub.color_convert = null_convert; else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_CMYK: if (cinfo->num_components != 4) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (cinfo->in_color_space == JCS_CMYK) cconvert->pub.color_convert = null_convert; else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_YCCK: if (cinfo->num_components != 4) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (cinfo->in_color_space == JCS_CMYK) { cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = cmyk_ycck_convert; } else if (cinfo->in_color_space == JCS_YCCK) cconvert->pub.color_convert = null_convert; else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; default: /* allow null conversion of JCS_UNKNOWN */ if (cinfo->jpeg_color_space != cinfo->in_color_space || cinfo->num_components != cinfo->input_components) ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); cconvert->pub.color_convert = null_convert; break; } } /********* End of inlined file: jccolor.c *********/ #undef FIX /********* Start of inlined file: jcdctmgr.c *********/ #define JPEG_INTERNALS /********* Start of inlined file: jdct.h *********/ /* * A forward DCT routine is given a pointer to a work area of type DCTELEM[]; * the DCT is to be performed in-place in that buffer. Type DCTELEM is int * for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT * implementations use an array of type FAST_FLOAT, instead.) * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE). * The DCT outputs are returned scaled up by a factor of 8; they therefore * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This * convention improves accuracy in integer implementations and saves some * work in floating-point ones. * Quantization of the output coefficients is done by jcdctmgr.c. */ #ifndef __jdct_h__ #define __jdct_h__ #if BITS_IN_JSAMPLE == 8 typedef int DCTELEM; /* 16 or 32 bits is fine */ #else typedef INT32 DCTELEM; /* must have 32 bits */ #endif typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data)); typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data)); /* * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer * to an output sample array. The routine must dequantize the input data as * well as perform the IDCT; for dequantization, it uses the multiplier table * pointed to by compptr->dct_table. The output data is to be placed into the * sample array starting at a specified column. (Any row offset needed will * be applied to the array pointer before it is passed to the IDCT code.) * Note that the number of samples emitted by the IDCT routine is * DCT_scaled_size * DCT_scaled_size. */ /* typedef inverse_DCT_method_ptr is declared in jpegint.h */ /* * Each IDCT routine has its own ideas about the best dct_table element type. */ typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ #if BITS_IN_JSAMPLE == 8 typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ #define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ #else typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */ #define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */ #endif typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ /* * Each IDCT routine is responsible for range-limiting its results and * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could * be quite far out of range if the input data is corrupt, so a bulletproof * range-limiting step is required. We use a mask-and-table-lookup method * to do the combined operations quickly. See the comments with * prepare_range_limit_table (in jdmaster.c) for more info. */ #define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE) #define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */ /* Short forms of external names for systems with brain-damaged linkers. */ #ifdef NEED_SHORT_EXTERNAL_NAMES #define jpeg_fdct_islow jFDislow #define jpeg_fdct_ifast jFDifast #define jpeg_fdct_float jFDfloat #define jpeg_idct_islow jRDislow #define jpeg_idct_ifast jRDifast #define jpeg_idct_float jRDfloat #define jpeg_idct_4x4 jRD4x4 #define jpeg_idct_2x2 jRD2x2 #define jpeg_idct_1x1 jRD1x1 #endif /* NEED_SHORT_EXTERNAL_NAMES */ /* Extern declarations for the forward and inverse DCT routines. */ EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data)); EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data)); EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data)); EXTERN(void) jpeg_idct_islow JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); EXTERN(void) jpeg_idct_ifast JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); EXTERN(void) jpeg_idct_float JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); EXTERN(void) jpeg_idct_4x4 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); EXTERN(void) jpeg_idct_2x2 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); EXTERN(void) jpeg_idct_1x1 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); /* * Macros for handling fixed-point arithmetic; these are used by many * but not all of the DCT/IDCT modules. * * All values are expected to be of type INT32. * Fractional constants are scaled left by CONST_BITS bits. * CONST_BITS is defined within each module using these macros, * and may differ from one module to the next. */ #define ONE ((INT32) 1) #define CONST_SCALE (ONE << CONST_BITS) /* Convert a positive real constant to an integer scaled by CONST_SCALE. * Caution: some C compilers fail to reduce "FIX(constant)" at compile time, * thus causing a lot of useless floating-point operations at run time. */ #define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) /* Descale and correctly round an INT32 value that's scaled by N bits. * We assume RIGHT_SHIFT rounds towards minus infinity, so adding * the fudge factor is correct for either sign of X. */ #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * This macro is used only when the two inputs will actually be no more than * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a * full 32x32 multiply. This provides a useful speedup on many machines. * Unfortunately there is no way to specify a 16x16->32 multiply portably * in C, but some C compilers will do the right thing if you provide the * correct combination of casts. */ #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const))) #endif #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const))) #endif #ifndef MULTIPLY16C16 /* default definition */ #define MULTIPLY16C16(var,const) ((var) * (const)) #endif /* Same except both inputs are variables. */ #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ #define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2))) #endif #ifndef MULTIPLY16V16 /* default definition */ #define MULTIPLY16V16(var1,var2) ((var1) * (var2)) #endif #endif /********* End of inlined file: jdct.h *********/ /* Private declarations for DCT subsystem */ /* Private subobject for this module */ typedef struct { struct jpeg_forward_dct pub; /* public fields */ /* Pointer to the DCT routine actually in use */ forward_DCT_method_ptr do_dct; /* The actual post-DCT divisors --- not identical to the quant table * entries, because of scaling (especially for an unnormalized DCT). * Each table is given in normal array order. */ DCTELEM * divisors[NUM_QUANT_TBLS]; #ifdef DCT_FLOAT_SUPPORTED /* Same as above for the floating-point case. */ float_DCT_method_ptr do_float_dct; FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; #endif } my_fdct_controller; typedef my_fdct_controller * my_fdct_ptr; /* * Initialize for a processing pass. * Verify that all referenced Q-tables are present, and set up * the divisor table for each one. * In the current implementation, DCT of all components is done during * the first pass, even if only some components will be output in the * first scan. Hence all components should be examined here. */ METHODDEF(void) start_pass_fdctmgr (j_compress_ptr cinfo) { my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; int ci, qtblno, i; jpeg_component_info *compptr; JQUANT_TBL * qtbl; DCTELEM * dtbl; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { qtblno = compptr->quant_tbl_no; /* Make sure specified quantization table is present */ if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || cinfo->quant_tbl_ptrs[qtblno] == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); qtbl = cinfo->quant_tbl_ptrs[qtblno]; /* Compute divisors for this quant table */ /* We may do this more than once for same table, but it's not a big deal */ switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: /* For LL&M IDCT method, divisors are equal to raw quantization * coefficients multiplied by 8 (to counteract scaling). */ if (fdct->divisors[qtblno] == NULL) { fdct->divisors[qtblno] = (DCTELEM *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, DCTSIZE2 * SIZEOF(DCTELEM)); } dtbl = fdct->divisors[qtblno]; for (i = 0; i < DCTSIZE2; i++) { dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; } break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: { /* For AA&N IDCT method, divisors are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * We apply a further scale factor of 8. */ #define CONST_BITS 14 static const INT16 aanscales[DCTSIZE2] = { /* precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; SHIFT_TEMPS if (fdct->divisors[qtblno] == NULL) { fdct->divisors[qtblno] = (DCTELEM *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, DCTSIZE2 * SIZEOF(DCTELEM)); } dtbl = fdct->divisors[qtblno]; for (i = 0; i < DCTSIZE2; i++) { dtbl[i] = (DCTELEM) DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], (INT32) aanscales[i]), CONST_BITS-3); } } break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: { /* For float AA&N IDCT method, divisors are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * We apply a further scale factor of 8. * What's actually stored is 1/divisor so that the inner loop can * use a multiplication rather than a division. */ FAST_FLOAT * fdtbl; int row, col; static const double aanscalefactor[DCTSIZE] = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100, 0.275899379 }; if (fdct->float_divisors[qtblno] == NULL) { fdct->float_divisors[qtblno] = (FAST_FLOAT *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, DCTSIZE2 * SIZEOF(FAST_FLOAT)); } fdtbl = fdct->float_divisors[qtblno]; i = 0; for (row = 0; row < DCTSIZE; row++) { for (col = 0; col < DCTSIZE; col++) { fdtbl[i] = (FAST_FLOAT) (1.0 / (((double) qtbl->quantval[i] * aanscalefactor[row] * aanscalefactor[col] * 8.0))); i++; } } } break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } } } /* * Perform forward DCT on one or more blocks of a component. * * The input samples are taken from the sample_data[] array starting at * position start_row/start_col, and moving to the right for any additional * blocks. The quantized coefficients are returned in coef_blocks[]. */ METHODDEF(void) forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) /* This version is used for integer DCT implementations. */ { /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; forward_DCT_method_ptr do_dct = fdct->do_dct; DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ JDIMENSION bi; sample_data += start_row; /* fold in the vertical offset once */ for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { /* Load data into workspace, applying unsigned->signed conversion */ { register DCTELEM *workspaceptr; register JSAMPROW elemptr; register int elemr; workspaceptr = workspace; for (elemr = 0; elemr < DCTSIZE; elemr++) { elemptr = sample_data[elemr] + start_col; #if DCTSIZE == 8 /* unroll the inner loop */ *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; #else { register int elemc; for (elemc = DCTSIZE; elemc > 0; elemc--) { *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; } } #endif } } /* Perform the DCT */ (*do_dct) (workspace); /* Quantize/descale the coefficients, and store into coef_blocks[] */ { register DCTELEM temp, qval; register int i; register JCOEFPTR output_ptr = coef_blocks[bi]; for (i = 0; i < DCTSIZE2; i++) { qval = divisors[i]; temp = workspace[i]; /* Divide the coefficient value by qval, ensuring proper rounding. * Since C does not specify the direction of rounding for negative * quotients, we have to force the dividend positive for portability. * * In most files, at least half of the output values will be zero * (at default quantization settings, more like three-quarters...) * so we should ensure that this case is fast. On many machines, * a comparison is enough cheaper than a divide to make a special test * a win. Since both inputs will be nonnegative, we need only test * for a < b to discover whether a/b is 0. * If your machine's division is fast enough, define FAST_DIVIDE. */ #ifdef FAST_DIVIDE #define DIVIDE_BY(a,b) a /= b #else #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 #endif if (temp < 0) { temp = -temp; temp += qval>>1; /* for rounding */ DIVIDE_BY(temp, qval); temp = -temp; } else { temp += qval>>1; /* for rounding */ DIVIDE_BY(temp, qval); } output_ptr[i] = (JCOEF) temp; } } } } #ifdef DCT_FLOAT_SUPPORTED METHODDEF(void) forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) /* This version is used for floating-point DCT implementations. */ { /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; float_DCT_method_ptr do_dct = fdct->do_float_dct; FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ JDIMENSION bi; sample_data += start_row; /* fold in the vertical offset once */ for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { /* Load data into workspace, applying unsigned->signed conversion */ { register FAST_FLOAT *workspaceptr; register JSAMPROW elemptr; register int elemr; workspaceptr = workspace; for (elemr = 0; elemr < DCTSIZE; elemr++) { elemptr = sample_data[elemr] + start_col; #if DCTSIZE == 8 /* unroll the inner loop */ *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); #else { register int elemc; for (elemc = DCTSIZE; elemc > 0; elemc--) { *workspaceptr++ = (FAST_FLOAT) (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); } } #endif } } /* Perform the DCT */ (*do_dct) (workspace); /* Quantize/descale the coefficients, and store into coef_blocks[] */ { register FAST_FLOAT temp; register int i; register JCOEFPTR output_ptr = coef_blocks[bi]; for (i = 0; i < DCTSIZE2; i++) { /* Apply the quantization and scaling factor */ temp = workspace[i] * divisors[i]; /* Round to nearest integer. * Since C does not specify the direction of rounding for negative * quotients, we have to force the dividend positive for portability. * The maximum coefficient size is +-16K (for 12-bit data), so this * code should work for either 16-bit or 32-bit ints. */ output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); } } } } #endif /* DCT_FLOAT_SUPPORTED */ /* * Initialize FDCT manager. */ GLOBAL(void) jinit_forward_dct (j_compress_ptr cinfo) { my_fdct_ptr fdct; int i; fdct = (my_fdct_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_fdct_controller)); cinfo->fdct = (struct jpeg_forward_dct *) fdct; fdct->pub.start_pass = start_pass_fdctmgr; switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: fdct->pub.forward_DCT = forward_DCT; fdct->do_dct = jpeg_fdct_islow; break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: fdct->pub.forward_DCT = forward_DCT; fdct->do_dct = jpeg_fdct_ifast; break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: fdct->pub.forward_DCT = forward_DCT_float; fdct->do_float_dct = jpeg_fdct_float; break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } /* Mark divisor tables unallocated */ for (i = 0; i < NUM_QUANT_TBLS; i++) { fdct->divisors[i] = NULL; #ifdef DCT_FLOAT_SUPPORTED fdct->float_divisors[i] = NULL; #endif } } /********* End of inlined file: jcdctmgr.c *********/ #undef CONST_BITS /********* Start of inlined file: jchuff.c *********/ #define JPEG_INTERNALS /********* Start of inlined file: jchuff.h *********/ /* The legal range of a DCT coefficient is * -1024 .. +1023 for 8-bit data; * -16384 .. +16383 for 12-bit data. * Hence the magnitude should always fit in 10 or 14 bits respectively. */ #ifndef _jchuff_h_ #define _jchuff_h_ #if BITS_IN_JSAMPLE == 8 #define MAX_COEF_BITS 10 #else #define MAX_COEF_BITS 14 #endif /* Derived data constructed for each Huffman table */ typedef struct { unsigned int ehufco[256]; /* code for each symbol */ char ehufsi[256]; /* length of code for each symbol */ /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ } c_derived_tbl; /* Short forms of external names for systems with brain-damaged linkers. */ #ifdef NEED_SHORT_EXTERNAL_NAMES #define jpeg_make_c_derived_tbl jMkCDerived #define jpeg_gen_optimal_table jGenOptTbl #endif /* NEED_SHORT_EXTERNAL_NAMES */ /* Expand a Huffman table definition into the derived format */ EXTERN(void) jpeg_make_c_derived_tbl JPP((j_compress_ptr cinfo, boolean isDC, int tblno, c_derived_tbl ** pdtbl)); /* Generate an optimal table definition given the specified counts */ EXTERN(void) jpeg_gen_optimal_table JPP((j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])); #endif /********* End of inlined file: jchuff.h *********/ /* Declarations shared with jcphuff.c */ /* Expanded entropy encoder object for Huffman encoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ typedef struct { INT32 put_buffer; /* current bit-accumulation buffer */ int put_bits; /* # of bits now in it */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state; /* This macro is to work around compilers with missing or broken * structure assignment. You'll need to fix this code if you have * such a compiler and you change MAX_COMPS_IN_SCAN. */ #ifndef NO_STRUCT_ASSIGN #define ASSIGN_STATE(dest,src) ((dest) = (src)) #else #if MAX_COMPS_IN_SCAN == 4 #define ASSIGN_STATE(dest,src) \ ((dest).put_buffer = (src).put_buffer, \ (dest).put_bits = (src).put_bits, \ (dest).last_dc_val[0] = (src).last_dc_val[0], \ (dest).last_dc_val[1] = (src).last_dc_val[1], \ (dest).last_dc_val[2] = (src).last_dc_val[2], \ (dest).last_dc_val[3] = (src).last_dc_val[3]) #endif #endif typedef struct { struct jpeg_entropy_encoder pub; /* public fields */ savable_state saved; /* Bit buffer & DC state at start of MCU */ /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ int next_restart_num; /* next restart number to write (0-7) */ /* Pointers to derived tables (these workspaces have image lifespan) */ c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ long * dc_count_ptrs[NUM_HUFF_TBLS]; long * ac_count_ptrs[NUM_HUFF_TBLS]; #endif } huff_entropy_encoder; typedef huff_entropy_encoder * huff_entropy_ptr; /* Working state while writing an MCU. * This struct contains all the fields that are needed by subroutines. */ typedef struct { JOCTET * next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ savable_state cur; /* Current bit buffer & DC state */ j_compress_ptr cinfo; /* dump_buffer needs access to this */ } working_state; /* Forward declarations */ METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo, JBLOCKROW *MCU_data)); METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo)); #ifdef ENTROPY_OPT_SUPPORTED METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo, JBLOCKROW *MCU_data)); METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo)); #endif /* * Initialize for a Huffman-compressed scan. * If gather_statistics is TRUE, we do not output anything during the scan, * just count the Huffman symbols used and generate Huffman code tables. */ METHODDEF(void) start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci, dctbl, actbl; jpeg_component_info * compptr; if (gather_statistics) { #ifdef ENTROPY_OPT_SUPPORTED entropy->pub.encode_mcu = encode_mcu_gather; entropy->pub.finish_pass = finish_pass_gather; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { entropy->pub.encode_mcu = encode_mcu_huff; entropy->pub.finish_pass = finish_pass_huff; } for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; if (gather_statistics) { #ifdef ENTROPY_OPT_SUPPORTED /* Check for invalid table indexes */ /* (make_c_derived_tbl does this in the other path) */ if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); if (actbl < 0 || actbl >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); /* Allocate and zero the statistics tables */ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ if (entropy->dc_count_ptrs[dctbl] == NULL) entropy->dc_count_ptrs[dctbl] = (long *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long)); if (entropy->ac_count_ptrs[actbl] == NULL) entropy->ac_count_ptrs[actbl] = (long *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long)); #endif } else { /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, & entropy->dc_derived_tbls[dctbl]); jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, & entropy->ac_derived_tbls[actbl]); } /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } /* Initialize bit buffer to empty */ entropy->saved.put_buffer = 0; entropy->saved.put_bits = 0; /* Initialize restart stuff */ entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num = 0; } /* * Compute the derived values for a Huffman table. * This routine also performs some validation checks on the table. * * Note this is also used by jcphuff.c. */ GLOBAL(void) jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, c_derived_tbl ** pdtbl) { JHUFF_TBL *htbl; c_derived_tbl *dtbl; int p, i, l, lastp, si, maxsymbol; char huffsize[257]; unsigned int huffcode[257]; unsigned int code; /* Note that huffsize[] and huffcode[] are filled in code-length order, * paralleling the order of the symbols themselves in htbl->huffval[]. */ /* Find the input Huffman table */ if (tblno < 0 || tblno >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); htbl = isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; if (htbl == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); /* Allocate a workspace if we haven't already done so. */ if (*pdtbl == NULL) *pdtbl = (c_derived_tbl *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(c_derived_tbl)); dtbl = *pdtbl; /* Figure C.1: make table of Huffman code length for each symbol */ p = 0; for (l = 1; l <= 16; l++) { i = (int) htbl->bits[l]; if (i < 0 || p + i > 256) /* protect against table overrun */ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); while (i--) huffsize[p++] = (char) l; } huffsize[p] = 0; lastp = p; /* Figure C.2: generate the codes themselves */ /* We also validate that the counts represent a legal Huffman code tree. */ code = 0; si = huffsize[0]; p = 0; while (huffsize[p]) { while (((int) huffsize[p]) == si) { huffcode[p++] = code; code++; } /* code is now 1 more than the last code used for codelength si; but * it must still fit in si bits, since no code is allowed to be all ones. */ if (((INT32) code) >= (((INT32) 1) << si)) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); code <<= 1; si++; } /* Figure C.3: generate encoding tables */ /* These are code and size indexed by symbol value */ /* Set all codeless symbols to have code length 0; * this lets us detect duplicate VAL entries here, and later * allows emit_bits to detect any attempt to emit such symbols. */ MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); /* This is also a convenient place to check for out-of-range * and duplicated VAL entries. We allow 0..255 for AC symbols * but only 0..15 for DC. (We could constrain them further * based on data depth and mode, but this seems enough.) */ maxsymbol = isDC ? 15 : 255; for (p = 0; p < lastp; p++) { i = htbl->huffval[p]; if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); dtbl->ehufco[i] = huffcode[p]; dtbl->ehufsi[i] = huffsize[p]; } } /* Outputting bytes to the file */ /* Emit a byte, taking 'action' if must suspend. */ #define emit_byte(state,val,action) \ { *(state)->next_output_byte++ = (JOCTET) (val); \ if (--(state)->free_in_buffer == 0) \ if (! dump_buffer(state)) \ { action; } } LOCAL(boolean) dump_buffer (working_state * state) /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ { struct jpeg_destination_mgr * dest = state->cinfo->dest; if (! (*dest->empty_output_buffer) (state->cinfo)) return FALSE; /* After a successful buffer dump, must reset buffer pointers */ state->next_output_byte = dest->next_output_byte; state->free_in_buffer = dest->free_in_buffer; return TRUE; } /* Outputting bits to the file */ /* Only the right 24 bits of put_buffer are used; the valid bits are * left-justified in this part. At most 16 bits can be passed to emit_bits * in one call, and we never retain more than 7 bits in put_buffer * between calls, so 24 bits are sufficient. */ INLINE LOCAL(boolean) emit_bits (working_state * state, unsigned int code, int size) /* Emit some bits; return TRUE if successful, FALSE if must suspend */ { /* This routine is heavily used, so it's worth coding tightly. */ register INT32 put_buffer = (INT32) code; register int put_bits = state->cur.put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if (size == 0) ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); put_buffer &= (((INT32) 1)<cur.put_buffer; /* and merge with old buffer contents */ while (put_bits >= 8) { int c = (int) ((put_buffer >> 16) & 0xFF); emit_byte(state, c, return FALSE); if (c == 0xFF) { /* need to stuff a zero byte? */ emit_byte(state, 0, return FALSE); } put_buffer <<= 8; put_bits -= 8; } state->cur.put_buffer = put_buffer; /* update state variables */ state->cur.put_bits = put_bits; return TRUE; } LOCAL(boolean) flush_bits (working_state * state) { if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */ return FALSE; state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ state->cur.put_bits = 0; return TRUE; } /* Encode a single block's worth of coefficients */ LOCAL(boolean) encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { register int temp, temp2; register int nbits; register int k, r, i; /* Encode the DC coefficient difference per section F.1.2.1 */ temp = temp2 = block[0] - last_dc_val; if (temp < 0) { temp = -temp; /* temp is abs value of input */ /* For a negative input, want temp2 = bitwise complement of abs(input) */ /* This code assumes we are on a two's complement machine */ temp2--; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 0; while (temp) { nbits++; temp >>= 1; } /* Check for out-of-range coefficient values. * Since we're encoding a difference, the range limit is twice as much. */ if (nbits > MAX_COEF_BITS+1) ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); /* Emit the Huffman-coded symbol for the number of bits */ if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) return FALSE; /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (nbits) /* emit_bits rejects calls with size 0 */ if (! emit_bits(state, (unsigned int) temp2, nbits)) return FALSE; /* Encode the AC coefficients per section F.1.2.2 */ r = 0; /* r = run length of zeros */ for (k = 1; k < DCTSIZE2; k++) { if ((temp = block[jpeg_natural_order[k]]) == 0) { r++; } else { /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while (r > 15) { if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) return FALSE; r -= 16; } temp2 = temp; if (temp < 0) { temp = -temp; /* temp is abs value of input */ /* This code assumes we are on a two's complement machine */ temp2--; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 1; /* there must be at least one 1 bit */ while ((temp >>= 1)) nbits++; /* Check for out-of-range coefficient values */ if (nbits > MAX_COEF_BITS) ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); /* Emit Huffman symbol for run length / number of bits */ i = (r << 4) + nbits; if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i])) return FALSE; /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (! emit_bits(state, (unsigned int) temp2, nbits)) return FALSE; r = 0; } } /* If the last coef(s) were zero, emit an end-of-block code */ if (r > 0) if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0])) return FALSE; return TRUE; } /* * Emit a restart marker & resynchronize predictions. */ LOCAL(boolean) emit_restart (working_state * state, int restart_num) { int ci; if (! flush_bits(state)) return FALSE; emit_byte(state, 0xFF, return FALSE); emit_byte(state, JPEG_RST0 + restart_num, return FALSE); /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) state->cur.last_dc_val[ci] = 0; /* The restart counter is not updated until we successfully write the MCU. */ return TRUE; } /* * Encode and output one MCU's worth of Huffman-compressed coefficients. */ METHODDEF(boolean) encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; working_state state; int blkn, ci; jpeg_component_info * compptr; /* Load up working state */ state.next_output_byte = cinfo->dest->next_output_byte; state.free_in_buffer = cinfo->dest->free_in_buffer; ASSIGN_STATE(state.cur, entropy->saved); state.cinfo = cinfo; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! emit_restart(&state, entropy->next_restart_num)) return FALSE; } /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; if (! encode_one_block(&state, MCU_data[blkn][0], state.cur.last_dc_val[ci], entropy->dc_derived_tbls[compptr->dc_tbl_no], entropy->ac_derived_tbls[compptr->ac_tbl_no])) return FALSE; /* Update last_dc_val */ state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; } /* Completed MCU, so update state */ cinfo->dest->next_output_byte = state.next_output_byte; cinfo->dest->free_in_buffer = state.free_in_buffer; ASSIGN_STATE(entropy->saved, state.cur); /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * Finish up at the end of a Huffman-compressed scan. */ METHODDEF(void) finish_pass_huff (j_compress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; working_state state; /* Load up working state ... flush_bits needs it */ state.next_output_byte = cinfo->dest->next_output_byte; state.free_in_buffer = cinfo->dest->free_in_buffer; ASSIGN_STATE(state.cur, entropy->saved); state.cinfo = cinfo; /* Flush out the last data */ if (! flush_bits(&state)) ERREXIT(cinfo, JERR_CANT_SUSPEND); /* Update state */ cinfo->dest->next_output_byte = state.next_output_byte; cinfo->dest->free_in_buffer = state.free_in_buffer; ASSIGN_STATE(entropy->saved, state.cur); } /* * Huffman coding optimization. * * We first scan the supplied data and count the number of uses of each symbol * that is to be Huffman-coded. (This process MUST agree with the code above.) * Then we build a Huffman coding tree for the observed counts. * Symbols which are not needed at all for the particular image are not * assigned any code, which saves space in the DHT marker as well as in * the compressed data. */ #ifdef ENTROPY_OPT_SUPPORTED /* Process a single block's worth of coefficients */ LOCAL(void) htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, long dc_counts[], long ac_counts[]) { register int temp; register int nbits; register int k, r; /* Encode the DC coefficient difference per section F.1.2.1 */ temp = block[0] - last_dc_val; if (temp < 0) temp = -temp; /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 0; while (temp) { nbits++; temp >>= 1; } /* Check for out-of-range coefficient values. * Since we're encoding a difference, the range limit is twice as much. */ if (nbits > MAX_COEF_BITS+1) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count the Huffman symbol for the number of bits */ dc_counts[nbits]++; /* Encode the AC coefficients per section F.1.2.2 */ r = 0; /* r = run length of zeros */ for (k = 1; k < DCTSIZE2; k++) { if ((temp = block[jpeg_natural_order[k]]) == 0) { r++; } else { /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while (r > 15) { ac_counts[0xF0]++; r -= 16; } /* Find the number of bits needed for the magnitude of the coefficient */ if (temp < 0) temp = -temp; /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 1; /* there must be at least one 1 bit */ while ((temp >>= 1)) nbits++; /* Check for out-of-range coefficient values */ if (nbits > MAX_COEF_BITS) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count Huffman symbol for run length / number of bits */ ac_counts[(r << 4) + nbits]++; r = 0; } } /* If the last coef(s) were zero, emit an end-of-block code */ if (r > 0) ac_counts[0]++; } /* * Trial-encode one MCU's worth of Huffman-compressed coefficients. * No data is actually output, so no suspension return is possible. */ METHODDEF(boolean) encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int blkn, ci; jpeg_component_info * compptr; /* Take care of restart intervals if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0; /* Update restart state */ entropy->restarts_to_go = cinfo->restart_interval; } entropy->restarts_to_go--; } for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], entropy->dc_count_ptrs[compptr->dc_tbl_no], entropy->ac_count_ptrs[compptr->ac_tbl_no]); entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; } return TRUE; } /* * Generate the best Huffman code table for the given counts, fill htbl. * Note this is also used by jcphuff.c. * * The JPEG standard requires that no symbol be assigned a codeword of all * one bits (so that padding bits added at the end of a compressed segment * can't look like a valid code). Because of the canonical ordering of * codewords, this just means that there must be an unused slot in the * longest codeword length category. Section K.2 of the JPEG spec suggests * reserving such a slot by pretending that symbol 256 is a valid symbol * with count 1. In theory that's not optimal; giving it count zero but * including it in the symbol set anyway should give a better Huffman code. * But the theoretically better code actually seems to come out worse in * practice, because it produces more all-ones bytes (which incur stuffed * zero bytes in the final file). In any case the difference is tiny. * * The JPEG standard requires Huffman codes to be no more than 16 bits long. * If some symbols have a very small but nonzero probability, the Huffman tree * must be adjusted to meet the code length restriction. We currently use * the adjustment method suggested in JPEG section K.2. This method is *not* * optimal; it may not choose the best possible limited-length code. But * typically only very-low-frequency symbols will be given less-than-optimal * lengths, so the code is almost optimal. Experimental comparisons against * an optimal limited-length-code algorithm indicate that the difference is * microscopic --- usually less than a hundredth of a percent of total size. * So the extra complexity of an optimal algorithm doesn't seem worthwhile. */ GLOBAL(void) jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) { #define MAX_CLEN 32 /* assumed maximum initial code length */ UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ int codesize[257]; /* codesize[k] = code length of symbol k */ int others[257]; /* next symbol in current branch of tree */ int c1, c2; int p, i, j; long v; /* This algorithm is explained in section K.2 of the JPEG standard */ MEMZERO(bits, SIZEOF(bits)); MEMZERO(codesize, SIZEOF(codesize)); for (i = 0; i < 257; i++) others[i] = -1; /* init links to empty */ freq[256] = 1; /* make sure 256 has a nonzero count */ /* Including the pseudo-symbol 256 in the Huffman procedure guarantees * that no real symbol is given code-value of all ones, because 256 * will be placed last in the largest codeword category. */ /* Huffman's basic algorithm to assign optimal code lengths to symbols */ for (;;) { /* Find the smallest nonzero frequency, set c1 = its symbol */ /* In case of ties, take the larger symbol number */ c1 = -1; v = 1000000000L; for (i = 0; i <= 256; i++) { if (freq[i] && freq[i] <= v) { v = freq[i]; c1 = i; } } /* Find the next smallest nonzero frequency, set c2 = its symbol */ /* In case of ties, take the larger symbol number */ c2 = -1; v = 1000000000L; for (i = 0; i <= 256; i++) { if (freq[i] && freq[i] <= v && i != c1) { v = freq[i]; c2 = i; } } /* Done if we've merged everything into one frequency */ if (c2 < 0) break; /* Else merge the two counts/trees */ freq[c1] += freq[c2]; freq[c2] = 0; /* Increment the codesize of everything in c1's tree branch */ codesize[c1]++; while (others[c1] >= 0) { c1 = others[c1]; codesize[c1]++; } others[c1] = c2; /* chain c2 onto c1's tree branch */ /* Increment the codesize of everything in c2's tree branch */ codesize[c2]++; while (others[c2] >= 0) { c2 = others[c2]; codesize[c2]++; } } /* Now count the number of symbols of each code length */ for (i = 0; i <= 256; i++) { if (codesize[i]) { /* The JPEG standard seems to think that this can't happen, */ /* but I'm paranoid... */ if (codesize[i] > MAX_CLEN) ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); bits[codesize[i]]++; } } /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure * Huffman procedure assigned any such lengths, we must adjust the coding. * Here is what the JPEG spec says about how this next bit works: * Since symbols are paired for the longest Huffman code, the symbols are * removed from this length category two at a time. The prefix for the pair * (which is one bit shorter) is allocated to one of the pair; then, * skipping the BITS entry for that prefix length, a code word from the next * shortest nonzero BITS entry is converted into a prefix for two code words * one bit longer. */ for (i = MAX_CLEN; i > 16; i--) { while (bits[i] > 0) { j = i - 2; /* find length of new prefix to be used */ while (bits[j] == 0) j--; bits[i] -= 2; /* remove two symbols */ bits[i-1]++; /* one goes in this length */ bits[j+1] += 2; /* two new symbols in this length */ bits[j]--; /* symbol of this length is now a prefix */ } } /* Remove the count for the pseudo-symbol 256 from the largest codelength */ while (bits[i] == 0) /* find largest codelength still in use */ i--; bits[i]--; /* Return final symbol counts (only for lengths 0..16) */ MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); /* Return a list of the symbols sorted by code length */ /* It's not real clear to me why we don't need to consider the codelength * changes made above, but the JPEG spec seems to think this works. */ p = 0; for (i = 1; i <= MAX_CLEN; i++) { for (j = 0; j <= 255; j++) { if (codesize[j] == i) { htbl->huffval[p] = (UINT8) j; p++; } } } /* Set sent_table FALSE so updated table will be written to JPEG file. */ htbl->sent_table = FALSE; } /* * Finish up a statistics-gathering pass and create the new Huffman tables. */ METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci, dctbl, actbl; jpeg_component_info * compptr; JHUFF_TBL **htblptr; boolean did_dc[NUM_HUFF_TBLS]; boolean did_ac[NUM_HUFF_TBLS]; /* It's important not to apply jpeg_gen_optimal_table more than once * per table, because it clobbers the input frequency counts! */ MEMZERO(did_dc, SIZEOF(did_dc)); MEMZERO(did_ac, SIZEOF(did_ac)); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; if (! did_dc[dctbl]) { htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); did_dc[dctbl] = TRUE; } if (! did_ac[actbl]) { htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); did_ac[actbl] = TRUE; } } } #endif /* ENTROPY_OPT_SUPPORTED */ /* * Module initialization routine for Huffman entropy encoding. */ GLOBAL(void) jinit_huff_encoder (j_compress_ptr cinfo) { huff_entropy_ptr entropy; int i; entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder)); cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; entropy->pub.start_pass = start_pass_huff; /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; #ifdef ENTROPY_OPT_SUPPORTED entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; #endif } } /********* End of inlined file: jchuff.c *********/ #undef emit_byte /********* Start of inlined file: jcinit.c *********/ #define JPEG_INTERNALS /* * Master selection of compression modules. * This is done once at the start of processing an image. We determine * which modules will be used and give them appropriate initialization calls. */ GLOBAL(void) jinit_compress_master (j_compress_ptr cinfo) { /* Initialize master control (includes parameter checking/processing) */ jinit_c_master_control(cinfo, FALSE /* full compression */); /* Preprocessing */ if (! cinfo->raw_data_in) { jinit_color_converter(cinfo); jinit_downsampler(cinfo); jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */); } /* Forward DCT */ jinit_forward_dct(cinfo); /* Entropy encoding: either Huffman or arithmetic coding. */ if (cinfo->arith_code) { ERREXIT(cinfo, JERR_ARITH_NOTIMPL); } else { if (cinfo->progressive_mode) { #ifdef C_PROGRESSIVE_SUPPORTED jinit_phuff_encoder(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else jinit_huff_encoder(cinfo); } /* Need a full-image coefficient buffer in any multi-pass mode. */ jinit_c_coef_controller(cinfo, (boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding)); jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */); jinit_marker_writer(cinfo); /* We can now tell the memory manager to allocate virtual arrays. */ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); /* Write the datastream header (SOI) immediately. * Frame and scan headers are postponed till later. * This lets application insert special markers after the SOI. */ (*cinfo->marker->write_file_header) (cinfo); } /********* End of inlined file: jcinit.c *********/ /********* Start of inlined file: jcmainct.c *********/ #define JPEG_INTERNALS /* Note: currently, there is no operating mode in which a full-image buffer * is needed at this step. If there were, that mode could not be used with * "raw data" input, since this module is bypassed in that case. However, * we've left the code here for possible use in special applications. */ #undef FULL_MAIN_BUFFER_SUPPORTED /* Private buffer controller object */ typedef struct { struct jpeg_c_main_controller pub; /* public fields */ JDIMENSION cur_iMCU_row; /* number of current iMCU row */ JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */ boolean suspended; /* remember if we suspended output */ J_BUF_MODE pass_mode; /* current operating mode */ /* If using just a strip buffer, this points to the entire set of buffers * (we allocate one for each component). In the full-image case, this * points to the currently accessible strips of the virtual arrays. */ JSAMPARRAY buffer[MAX_COMPONENTS]; #ifdef FULL_MAIN_BUFFER_SUPPORTED /* If using full-image storage, this array holds pointers to virtual-array * control blocks for each component. Unused if not full-image storage. */ jvirt_sarray_ptr whole_image[MAX_COMPONENTS]; #endif } my_main_controller; typedef my_main_controller * my_main_ptr; /* Forward declarations */ METHODDEF(void) process_data_simple_main JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)); #ifdef FULL_MAIN_BUFFER_SUPPORTED METHODDEF(void) process_data_buffer_main JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)); #endif /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode) { my_main_ptr main_ = (my_main_ptr) cinfo->main; /* Do nothing in raw-data mode. */ if (cinfo->raw_data_in) return; main_->cur_iMCU_row = 0; /* initialize counters */ main_->rowgroup_ctr = 0; main_->suspended = FALSE; main_->pass_mode = pass_mode; /* save mode for use by process_data */ switch (pass_mode) { case JBUF_PASS_THRU: #ifdef FULL_MAIN_BUFFER_SUPPORTED if (main_->whole_image[0] != NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); #endif main_->pub.process_data = process_data_simple_main; break; #ifdef FULL_MAIN_BUFFER_SUPPORTED case JBUF_SAVE_SOURCE: case JBUF_CRANK_DEST: case JBUF_SAVE_AND_PASS: if (main_->whole_image[0] == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); main_->pub.process_data = process_data_buffer_main; break; #endif default: ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); break; } } /* * Process some data. * This routine handles the simple pass-through mode, * where we have only a strip buffer. */ METHODDEF(void) process_data_simple_main (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail) { my_main_ptr main_ = (my_main_ptr) cinfo->main; while (main_->cur_iMCU_row < cinfo->total_iMCU_rows) { /* Read input data if we haven't filled the main buffer yet */ if (main_->rowgroup_ctr < DCTSIZE) (*cinfo->prep->pre_process_data) (cinfo, input_buf, in_row_ctr, in_rows_avail, main_->buffer, &main_->rowgroup_ctr, (JDIMENSION) DCTSIZE); /* If we don't have a full iMCU row buffered, return to application for * more data. Note that preprocessor will always pad to fill the iMCU row * at the bottom of the image. */ if (main_->rowgroup_ctr != DCTSIZE) return; /* Send the completed row to the compressor */ if (! (*cinfo->coef->compress_data) (cinfo, main_->buffer)) { /* If compressor did not consume the whole row, then we must need to * suspend processing and return to the application. In this situation * we pretend we didn't yet consume the last input row; otherwise, if * it happened to be the last row of the image, the application would * think we were done. */ if (! main_->suspended) { (*in_row_ctr)--; main_->suspended = TRUE; } return; } /* We did finish the row. Undo our little suspension hack if a previous * call suspended; then mark the main buffer empty. */ if (main_->suspended) { (*in_row_ctr)++; main_->suspended = FALSE; } main_->rowgroup_ctr = 0; main_->cur_iMCU_row++; } } #ifdef FULL_MAIN_BUFFER_SUPPORTED /* * Process some data. * This routine handles all of the modes that use a full-size buffer. */ METHODDEF(void) process_data_buffer_main (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail) { my_main_ptr main = (my_main_ptr) cinfo->main; int ci; jpeg_component_info *compptr; boolean writing = (main->pass_mode != JBUF_CRANK_DEST); while (main->cur_iMCU_row < cinfo->total_iMCU_rows) { /* Realign the virtual buffers if at the start of an iMCU row. */ if (main->rowgroup_ctr == 0) { for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { main->buffer[ci] = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, main->whole_image[ci], main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE), (JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing); } /* In a read pass, pretend we just read some source data. */ if (! writing) { *in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE; main->rowgroup_ctr = DCTSIZE; } } /* If a write pass, read input data until the current iMCU row is full. */ /* Note: preprocessor will pad if necessary to fill the last iMCU row. */ if (writing) { (*cinfo->prep->pre_process_data) (cinfo, input_buf, in_row_ctr, in_rows_avail, main->buffer, &main->rowgroup_ctr, (JDIMENSION) DCTSIZE); /* Return to application if we need more data to fill the iMCU row. */ if (main->rowgroup_ctr < DCTSIZE) return; } /* Emit data, unless this is a sink-only pass. */ if (main->pass_mode != JBUF_SAVE_SOURCE) { if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) { /* If compressor did not consume the whole row, then we must need to * suspend processing and return to the application. In this situation * we pretend we didn't yet consume the last input row; otherwise, if * it happened to be the last row of the image, the application would * think we were done. */ if (! main->suspended) { (*in_row_ctr)--; main->suspended = TRUE; } return; } /* We did finish the row. Undo our little suspension hack if a previous * call suspended; then mark the main buffer empty. */ if (main->suspended) { (*in_row_ctr)++; main->suspended = FALSE; } } /* If get here, we are done with this iMCU row. Mark buffer empty. */ main->rowgroup_ctr = 0; main->cur_iMCU_row++; } } #endif /* FULL_MAIN_BUFFER_SUPPORTED */ /* * Initialize main buffer controller. */ GLOBAL(void) jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer) { my_main_ptr main_; int ci; jpeg_component_info *compptr; main_ = (my_main_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_main_controller)); cinfo->main = (struct jpeg_c_main_controller *) main_; main_->pub.start_pass = start_pass_main; /* We don't need to create a buffer in raw-data mode. */ if (cinfo->raw_data_in) return; /* Create the buffer. It holds downsampled data, so each component * may be of a different size. */ if (need_full_buffer) { #ifdef FULL_MAIN_BUFFER_SUPPORTED /* Allocate a full-image virtual array for each component */ /* Note we pad the bottom to a multiple of the iMCU height */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { main->whole_image[ci] = (*cinfo->mem->request_virt_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, compptr->width_in_blocks * DCTSIZE, (JDIMENSION) jround_up((long) compptr->height_in_blocks, (long) compptr->v_samp_factor) * DCTSIZE, (JDIMENSION) (compptr->v_samp_factor * DCTSIZE)); } #else ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); #endif } else { #ifdef FULL_MAIN_BUFFER_SUPPORTED main_->whole_image[0] = NULL; /* flag for no virtual arrays */ #endif /* Allocate a strip buffer for each component */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { main_->buffer[ci] = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, compptr->width_in_blocks * DCTSIZE, (JDIMENSION) (compptr->v_samp_factor * DCTSIZE)); } } } /********* End of inlined file: jcmainct.c *********/ /********* Start of inlined file: jcmarker.c *********/ #define JPEG_INTERNALS /* Private state */ typedef struct { struct jpeg_marker_writer pub; /* public fields */ unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */ } my_marker_writer; typedef my_marker_writer * my_marker_ptr; /* * Basic output routines. * * Note that we do not support suspension while writing a marker. * Therefore, an application using suspension must ensure that there is * enough buffer space for the initial markers (typ. 600-700 bytes) before * calling jpeg_start_compress, and enough space to write the trailing EOI * (a few bytes) before calling jpeg_finish_compress. Multipass compression * modes are not supported at all with suspension, so those two are the only * points where markers will be written. */ LOCAL(void) emit_byte (j_compress_ptr cinfo, int val) /* Emit a byte */ { struct jpeg_destination_mgr * dest = cinfo->dest; *(dest->next_output_byte)++ = (JOCTET) val; if (--dest->free_in_buffer == 0) { if (! (*dest->empty_output_buffer) (cinfo)) ERREXIT(cinfo, JERR_CANT_SUSPEND); } } LOCAL(void) emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark) /* Emit a marker code */ { emit_byte(cinfo, 0xFF); emit_byte(cinfo, (int) mark); } LOCAL(void) emit_2bytes (j_compress_ptr cinfo, int value) /* Emit a 2-byte integer; these are always MSB first in JPEG files */ { emit_byte(cinfo, (value >> 8) & 0xFF); emit_byte(cinfo, value & 0xFF); } /* * Routines to write specific marker types. */ LOCAL(int) emit_dqt (j_compress_ptr cinfo, int index) /* Emit a DQT marker */ /* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */ { JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index]; int prec; int i; if (qtbl == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index); prec = 0; for (i = 0; i < DCTSIZE2; i++) { if (qtbl->quantval[i] > 255) prec = 1; } if (! qtbl->sent_table) { emit_marker(cinfo, M_DQT); emit_2bytes(cinfo, prec ? DCTSIZE2*2 + 1 + 2 : DCTSIZE2 + 1 + 2); emit_byte(cinfo, index + (prec<<4)); for (i = 0; i < DCTSIZE2; i++) { /* The table entries must be emitted in zigzag order. */ unsigned int qval = qtbl->quantval[jpeg_natural_order[i]]; if (prec) emit_byte(cinfo, (int) (qval >> 8)); emit_byte(cinfo, (int) (qval & 0xFF)); } qtbl->sent_table = TRUE; } return prec; } LOCAL(void) emit_dht (j_compress_ptr cinfo, int index, boolean is_ac) /* Emit a DHT marker */ { JHUFF_TBL * htbl; int length, i; if (is_ac) { htbl = cinfo->ac_huff_tbl_ptrs[index]; index += 0x10; /* output index has AC bit set */ } else { htbl = cinfo->dc_huff_tbl_ptrs[index]; } if (htbl == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index); if (! htbl->sent_table) { emit_marker(cinfo, M_DHT); length = 0; for (i = 1; i <= 16; i++) length += htbl->bits[i]; emit_2bytes(cinfo, length + 2 + 1 + 16); emit_byte(cinfo, index); for (i = 1; i <= 16; i++) emit_byte(cinfo, htbl->bits[i]); for (i = 0; i < length; i++) emit_byte(cinfo, htbl->huffval[i]); htbl->sent_table = TRUE; } } LOCAL(void) emit_dac (j_compress_ptr cinfo) /* Emit a DAC marker */ /* Since the useful info is so small, we want to emit all the tables in */ /* one DAC marker. Therefore this routine does its own scan of the table. */ { #ifdef C_ARITH_CODING_SUPPORTED char dc_in_use[NUM_ARITH_TBLS]; char ac_in_use[NUM_ARITH_TBLS]; int length, i; jpeg_component_info *compptr; for (i = 0; i < NUM_ARITH_TBLS; i++) dc_in_use[i] = ac_in_use[i] = 0; for (i = 0; i < cinfo->comps_in_scan; i++) { compptr = cinfo->cur_comp_info[i]; dc_in_use[compptr->dc_tbl_no] = 1; ac_in_use[compptr->ac_tbl_no] = 1; } length = 0; for (i = 0; i < NUM_ARITH_TBLS; i++) length += dc_in_use[i] + ac_in_use[i]; emit_marker(cinfo, M_DAC); emit_2bytes(cinfo, length*2 + 2); for (i = 0; i < NUM_ARITH_TBLS; i++) { if (dc_in_use[i]) { emit_byte(cinfo, i); emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4)); } if (ac_in_use[i]) { emit_byte(cinfo, i + 0x10); emit_byte(cinfo, cinfo->arith_ac_K[i]); } } #endif /* C_ARITH_CODING_SUPPORTED */ } LOCAL(void) emit_dri (j_compress_ptr cinfo) /* Emit a DRI marker */ { emit_marker(cinfo, M_DRI); emit_2bytes(cinfo, 4); /* fixed length */ emit_2bytes(cinfo, (int) cinfo->restart_interval); } LOCAL(void) emit_sof (j_compress_ptr cinfo, JPEG_MARKER code) /* Emit a SOF marker */ { int ci; jpeg_component_info *compptr; emit_marker(cinfo, code); emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */ /* Make sure image isn't bigger than SOF field can handle */ if ((long) cinfo->image_height > 65535L || (long) cinfo->image_width > 65535L) ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535); emit_byte(cinfo, cinfo->data_precision); emit_2bytes(cinfo, (int) cinfo->image_height); emit_2bytes(cinfo, (int) cinfo->image_width); emit_byte(cinfo, cinfo->num_components); for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { emit_byte(cinfo, compptr->component_id); emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor); emit_byte(cinfo, compptr->quant_tbl_no); } } LOCAL(void) emit_sos (j_compress_ptr cinfo) /* Emit a SOS marker */ { int i, td, ta; jpeg_component_info *compptr; emit_marker(cinfo, M_SOS); emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */ emit_byte(cinfo, cinfo->comps_in_scan); for (i = 0; i < cinfo->comps_in_scan; i++) { compptr = cinfo->cur_comp_info[i]; emit_byte(cinfo, compptr->component_id); td = compptr->dc_tbl_no; ta = compptr->ac_tbl_no; if (cinfo->progressive_mode) { /* Progressive mode: only DC or only AC tables are used in one scan; * furthermore, Huffman coding of DC refinement uses no table at all. * We emit 0 for unused field(s); this is recommended by the P&M text * but does not seem to be specified in the standard. */ if (cinfo->Ss == 0) { ta = 0; /* DC scan */ if (cinfo->Ah != 0 && !cinfo->arith_code) td = 0; /* no DC table either */ } else { td = 0; /* AC scan */ } } emit_byte(cinfo, (td << 4) + ta); } emit_byte(cinfo, cinfo->Ss); emit_byte(cinfo, cinfo->Se); emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al); } LOCAL(void) emit_jfif_app0 (j_compress_ptr cinfo) /* Emit a JFIF-compliant APP0 marker */ { /* * Length of APP0 block (2 bytes) * Block ID (4 bytes - ASCII "JFIF") * Zero byte (1 byte to terminate the ID string) * Version Major, Minor (2 bytes - major first) * Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm) * Xdpu (2 bytes - dots per unit horizontal) * Ydpu (2 bytes - dots per unit vertical) * Thumbnail X size (1 byte) * Thumbnail Y size (1 byte) */ emit_marker(cinfo, M_APP0); emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */ emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */ emit_byte(cinfo, 0x46); emit_byte(cinfo, 0x49); emit_byte(cinfo, 0x46); emit_byte(cinfo, 0); emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */ emit_byte(cinfo, cinfo->JFIF_minor_version); emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */ emit_2bytes(cinfo, (int) cinfo->X_density); emit_2bytes(cinfo, (int) cinfo->Y_density); emit_byte(cinfo, 0); /* No thumbnail image */ emit_byte(cinfo, 0); } LOCAL(void) emit_adobe_app14 (j_compress_ptr cinfo) /* Emit an Adobe APP14 marker */ { /* * Length of APP14 block (2 bytes) * Block ID (5 bytes - ASCII "Adobe") * Version Number (2 bytes - currently 100) * Flags0 (2 bytes - currently 0) * Flags1 (2 bytes - currently 0) * Color transform (1 byte) * * Although Adobe TN 5116 mentions Version = 101, all the Adobe files * now in circulation seem to use Version = 100, so that's what we write. * * We write the color transform byte as 1 if the JPEG color space is * YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with * whether the encoder performed a transformation, which is pretty useless. */ emit_marker(cinfo, M_APP14); emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */ emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */ emit_byte(cinfo, 0x64); emit_byte(cinfo, 0x6F); emit_byte(cinfo, 0x62); emit_byte(cinfo, 0x65); emit_2bytes(cinfo, 100); /* Version */ emit_2bytes(cinfo, 0); /* Flags0 */ emit_2bytes(cinfo, 0); /* Flags1 */ switch (cinfo->jpeg_color_space) { case JCS_YCbCr: emit_byte(cinfo, 1); /* Color transform = 1 */ break; case JCS_YCCK: emit_byte(cinfo, 2); /* Color transform = 2 */ break; default: emit_byte(cinfo, 0); /* Color transform = 0 */ break; } } /* * These routines allow writing an arbitrary marker with parameters. * The only intended use is to emit COM or APPn markers after calling * write_file_header and before calling write_frame_header. * Other uses are not guaranteed to produce desirable results. * Counting the parameter bytes properly is the caller's responsibility. */ METHODDEF(void) write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen) /* Emit an arbitrary marker header */ { if (datalen > (unsigned int) 65533) /* safety check */ ERREXIT(cinfo, JERR_BAD_LENGTH); emit_marker(cinfo, (JPEG_MARKER) marker); emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */ } METHODDEF(void) write_marker_byte (j_compress_ptr cinfo, int val) /* Emit one byte of marker parameters following write_marker_header */ { emit_byte(cinfo, val); } /* * Write datastream header. * This consists of an SOI and optional APPn markers. * We recommend use of the JFIF marker, but not the Adobe marker, * when using YCbCr or grayscale data. The JFIF marker should NOT * be used for any other JPEG colorspace. The Adobe marker is helpful * to distinguish RGB, CMYK, and YCCK colorspaces. * Note that an application can write additional header markers after * jpeg_start_compress returns. */ METHODDEF(void) write_file_header (j_compress_ptr cinfo) { my_marker_ptr marker = (my_marker_ptr) cinfo->marker; emit_marker(cinfo, M_SOI); /* first the SOI */ /* SOI is defined to reset restart interval to 0 */ marker->last_restart_interval = 0; if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */ emit_jfif_app0(cinfo); if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */ emit_adobe_app14(cinfo); } /* * Write frame header. * This consists of DQT and SOFn markers. * Note that we do not emit the SOF until we have emitted the DQT(s). * This avoids compatibility problems with incorrect implementations that * try to error-check the quant table numbers as soon as they see the SOF. */ METHODDEF(void) write_frame_header (j_compress_ptr cinfo) { int ci, prec; boolean is_baseline; jpeg_component_info *compptr; /* Emit DQT for each quantization table. * Note that emit_dqt() suppresses any duplicate tables. */ prec = 0; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { prec += emit_dqt(cinfo, compptr->quant_tbl_no); } /* now prec is nonzero iff there are any 16-bit quant tables. */ /* Check for a non-baseline specification. * Note we assume that Huffman table numbers won't be changed later. */ if (cinfo->arith_code || cinfo->progressive_mode || cinfo->data_precision != 8) { is_baseline = FALSE; } else { is_baseline = TRUE; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1) is_baseline = FALSE; } if (prec && is_baseline) { is_baseline = FALSE; /* If it's baseline except for quantizer size, warn the user */ TRACEMS(cinfo, 0, JTRC_16BIT_TABLES); } } /* Emit the proper SOF marker */ if (cinfo->arith_code) { emit_sof(cinfo, M_SOF9); /* SOF code for arithmetic coding */ } else { if (cinfo->progressive_mode) emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */ else if (is_baseline) emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */ else emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */ } } /* * Write scan header. * This consists of DHT or DAC markers, optional DRI, and SOS. * Compressed data will be written following the SOS. */ METHODDEF(void) write_scan_header (j_compress_ptr cinfo) { my_marker_ptr marker = (my_marker_ptr) cinfo->marker; int i; jpeg_component_info *compptr; if (cinfo->arith_code) { /* Emit arith conditioning info. We may have some duplication * if the file has multiple scans, but it's so small it's hardly * worth worrying about. */ emit_dac(cinfo); } else { /* Emit Huffman tables. * Note that emit_dht() suppresses any duplicate tables. */ for (i = 0; i < cinfo->comps_in_scan; i++) { compptr = cinfo->cur_comp_info[i]; if (cinfo->progressive_mode) { /* Progressive mode: only DC or only AC tables are used in one scan */ if (cinfo->Ss == 0) { if (cinfo->Ah == 0) /* DC needs no table for refinement scan */ emit_dht(cinfo, compptr->dc_tbl_no, FALSE); } else { emit_dht(cinfo, compptr->ac_tbl_no, TRUE); } } else { /* Sequential mode: need both DC and AC tables */ emit_dht(cinfo, compptr->dc_tbl_no, FALSE); emit_dht(cinfo, compptr->ac_tbl_no, TRUE); } } } /* Emit DRI if required --- note that DRI value could change for each scan. * We avoid wasting space with unnecessary DRIs, however. */ if (cinfo->restart_interval != marker->last_restart_interval) { emit_dri(cinfo); marker->last_restart_interval = cinfo->restart_interval; } emit_sos(cinfo); } /* * Write datastream trailer. */ METHODDEF(void) write_file_trailer (j_compress_ptr cinfo) { emit_marker(cinfo, M_EOI); } /* * Write an abbreviated table-specification datastream. * This consists of SOI, DQT and DHT tables, and EOI. * Any table that is defined and not marked sent_table = TRUE will be * emitted. Note that all tables will be marked sent_table = TRUE at exit. */ METHODDEF(void) write_tables_only (j_compress_ptr cinfo) { int i; emit_marker(cinfo, M_SOI); for (i = 0; i < NUM_QUANT_TBLS; i++) { if (cinfo->quant_tbl_ptrs[i] != NULL) (void) emit_dqt(cinfo, i); } if (! cinfo->arith_code) { for (i = 0; i < NUM_HUFF_TBLS; i++) { if (cinfo->dc_huff_tbl_ptrs[i] != NULL) emit_dht(cinfo, i, FALSE); if (cinfo->ac_huff_tbl_ptrs[i] != NULL) emit_dht(cinfo, i, TRUE); } } emit_marker(cinfo, M_EOI); } /* * Initialize the marker writer module. */ GLOBAL(void) jinit_marker_writer (j_compress_ptr cinfo) { my_marker_ptr marker; /* Create the subobject */ marker = (my_marker_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_marker_writer)); cinfo->marker = (struct jpeg_marker_writer *) marker; /* Initialize method pointers */ marker->pub.write_file_header = write_file_header; marker->pub.write_frame_header = write_frame_header; marker->pub.write_scan_header = write_scan_header; marker->pub.write_file_trailer = write_file_trailer; marker->pub.write_tables_only = write_tables_only; marker->pub.write_marker_header = write_marker_header; marker->pub.write_marker_byte = write_marker_byte; /* Initialize private state */ marker->last_restart_interval = 0; } /********* End of inlined file: jcmarker.c *********/ /********* Start of inlined file: jcmaster.c *********/ #define JPEG_INTERNALS /* Private state */ typedef enum { main_pass, /* input data, also do first output step */ huff_opt_pass, /* Huffman code optimization pass */ output_pass /* data output pass */ } c_pass_type; typedef struct { struct jpeg_comp_master pub; /* public fields */ c_pass_type pass_type; /* the type of the current pass */ int pass_number; /* # of passes completed */ int total_passes; /* total # of passes needed */ int scan_number; /* current index in scan_info[] */ } my_comp_master; typedef my_comp_master * my_master_ptr; /* * Support routines that do various essential calculations. */ LOCAL(void) initial_setup (j_compress_ptr cinfo) /* Do computations that are needed before master selection phase */ { int ci; jpeg_component_info *compptr; long samplesperrow; JDIMENSION jd_samplesperrow; /* Sanity check on image dimensions */ if (cinfo->image_height <= 0 || cinfo->image_width <= 0 || cinfo->num_components <= 0 || cinfo->input_components <= 0) ERREXIT(cinfo, JERR_EMPTY_IMAGE); /* Make sure image isn't bigger than I can handle */ if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION || (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION) ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); /* Width of an input scanline must be representable as JDIMENSION. */ samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components; jd_samplesperrow = (JDIMENSION) samplesperrow; if ((long) jd_samplesperrow != samplesperrow) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); /* For now, precision must match compiled-in value... */ if (cinfo->data_precision != BITS_IN_JSAMPLE) ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); /* Check that number of components won't exceed internal array sizes */ if (cinfo->num_components > MAX_COMPONENTS) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, MAX_COMPONENTS); /* Compute maximum sampling factors; check factor validity */ cinfo->max_h_samp_factor = 1; cinfo->max_v_samp_factor = 1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) ERREXIT(cinfo, JERR_BAD_SAMPLING); cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, compptr->h_samp_factor); cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, compptr->v_samp_factor); } /* Compute dimensions of components */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Fill in the correct component_index value; don't rely on application */ compptr->component_index = ci; /* For compression, we never do DCT scaling. */ compptr->DCT_scaled_size = DCTSIZE; /* Size in DCT blocks */ compptr->width_in_blocks = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, (long) (cinfo->max_h_samp_factor * DCTSIZE)); compptr->height_in_blocks = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, (long) (cinfo->max_v_samp_factor * DCTSIZE)); /* Size in samples */ compptr->downsampled_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, (long) cinfo->max_h_samp_factor); compptr->downsampled_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, (long) cinfo->max_v_samp_factor); /* Mark component needed (this flag isn't actually used for compression) */ compptr->component_needed = TRUE; } /* Compute number of fully interleaved MCU rows (number of times that * main controller will call coefficient controller). */ cinfo->total_iMCU_rows = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, (long) (cinfo->max_v_samp_factor*DCTSIZE)); } #ifdef C_MULTISCAN_FILES_SUPPORTED LOCAL(void) validate_script (j_compress_ptr cinfo) /* Verify that the scan script in cinfo->scan_info[] is valid; also * determine whether it uses progressive JPEG, and set cinfo->progressive_mode. */ { const jpeg_scan_info * scanptr; int scanno, ncomps, ci, coefi, thisi; int Ss, Se, Ah, Al; boolean component_sent[MAX_COMPONENTS]; #ifdef C_PROGRESSIVE_SUPPORTED int * last_bitpos_ptr; int last_bitpos[MAX_COMPONENTS][DCTSIZE2]; /* -1 until that coefficient has been seen; then last Al for it */ #endif if (cinfo->num_scans <= 0) ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0); /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1; * for progressive JPEG, no scan can have this. */ scanptr = cinfo->scan_info; if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) { #ifdef C_PROGRESSIVE_SUPPORTED cinfo->progressive_mode = TRUE; last_bitpos_ptr = & last_bitpos[0][0]; for (ci = 0; ci < cinfo->num_components; ci++) for (coefi = 0; coefi < DCTSIZE2; coefi++) *last_bitpos_ptr++ = -1; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { cinfo->progressive_mode = FALSE; for (ci = 0; ci < cinfo->num_components; ci++) component_sent[ci] = FALSE; } for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) { /* Validate component indexes */ ncomps = scanptr->comps_in_scan; if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN); for (ci = 0; ci < ncomps; ci++) { thisi = scanptr->component_index[ci]; if (thisi < 0 || thisi >= cinfo->num_components) ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); /* Components must appear in SOF order within each scan */ if (ci > 0 && thisi <= scanptr->component_index[ci-1]) ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); } /* Validate progression parameters */ Ss = scanptr->Ss; Se = scanptr->Se; Ah = scanptr->Ah; Al = scanptr->Al; if (cinfo->progressive_mode) { #ifdef C_PROGRESSIVE_SUPPORTED /* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that * seems wrong: the upper bound ought to depend on data precision. * Perhaps they really meant 0..N+1 for N-bit precision. * Here we allow 0..10 for 8-bit data; Al larger than 10 results in * out-of-range reconstructed DC values during the first DC scan, * which might cause problems for some decoders. */ #if BITS_IN_JSAMPLE == 8 #define MAX_AH_AL 10 #else #define MAX_AH_AL 13 #endif if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 || Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL) ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); if (Ss == 0) { if (Se != 0) /* DC and AC together not OK */ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); } else { if (ncomps != 1) /* AC scans must be for only one component */ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); } for (ci = 0; ci < ncomps; ci++) { last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0]; if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); for (coefi = Ss; coefi <= Se; coefi++) { if (last_bitpos_ptr[coefi] < 0) { /* first scan of this coefficient */ if (Ah != 0) ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); } else { /* not first scan */ if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1) ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); } last_bitpos_ptr[coefi] = Al; } } #endif } else { /* For sequential JPEG, all progression parameters must be these: */ if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0) ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); /* Make sure components are not sent twice */ for (ci = 0; ci < ncomps; ci++) { thisi = scanptr->component_index[ci]; if (component_sent[thisi]) ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); component_sent[thisi] = TRUE; } } } /* Now verify that everything got sent. */ if (cinfo->progressive_mode) { #ifdef C_PROGRESSIVE_SUPPORTED /* For progressive mode, we only check that at least some DC data * got sent for each component; the spec does not require that all bits * of all coefficients be transmitted. Would it be wiser to enforce * transmission of all coefficient bits?? */ for (ci = 0; ci < cinfo->num_components; ci++) { if (last_bitpos[ci][0] < 0) ERREXIT(cinfo, JERR_MISSING_DATA); } #endif } else { for (ci = 0; ci < cinfo->num_components; ci++) { if (! component_sent[ci]) ERREXIT(cinfo, JERR_MISSING_DATA); } } } #endif /* C_MULTISCAN_FILES_SUPPORTED */ LOCAL(void) select_scan_parameters (j_compress_ptr cinfo) /* Set up the scan parameters for the current scan */ { int ci; #ifdef C_MULTISCAN_FILES_SUPPORTED if (cinfo->scan_info != NULL) { /* Prepare for current scan --- the script is already validated */ my_master_ptr master = (my_master_ptr) cinfo->master; const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number; cinfo->comps_in_scan = scanptr->comps_in_scan; for (ci = 0; ci < scanptr->comps_in_scan; ci++) { cinfo->cur_comp_info[ci] = &cinfo->comp_info[scanptr->component_index[ci]]; } cinfo->Ss = scanptr->Ss; cinfo->Se = scanptr->Se; cinfo->Ah = scanptr->Ah; cinfo->Al = scanptr->Al; } else #endif { /* Prepare for single sequential-JPEG scan containing all components */ if (cinfo->num_components > MAX_COMPS_IN_SCAN) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, MAX_COMPS_IN_SCAN); cinfo->comps_in_scan = cinfo->num_components; for (ci = 0; ci < cinfo->num_components; ci++) { cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci]; } cinfo->Ss = 0; cinfo->Se = DCTSIZE2-1; cinfo->Ah = 0; cinfo->Al = 0; } } LOCAL(void) per_scan_setup (j_compress_ptr cinfo) /* Do computations that are needed before processing a JPEG scan */ /* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */ { int ci, mcublks, tmp; jpeg_component_info *compptr; if (cinfo->comps_in_scan == 1) { /* Noninterleaved (single-component) scan */ compptr = cinfo->cur_comp_info[0]; /* Overall image size in MCUs */ cinfo->MCUs_per_row = compptr->width_in_blocks; cinfo->MCU_rows_in_scan = compptr->height_in_blocks; /* For noninterleaved scan, always one block per MCU */ compptr->MCU_width = 1; compptr->MCU_height = 1; compptr->MCU_blocks = 1; compptr->MCU_sample_width = DCTSIZE; compptr->last_col_width = 1; /* For noninterleaved scans, it is convenient to define last_row_height * as the number of block rows present in the last iMCU row. */ tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); if (tmp == 0) tmp = compptr->v_samp_factor; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ cinfo->blocks_in_MCU = 1; cinfo->MCU_membership[0] = 0; } else { /* Interleaved (multi-component) scan */ if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, MAX_COMPS_IN_SCAN); /* Overall image size in MCUs */ cinfo->MCUs_per_row = (JDIMENSION) jdiv_round_up((long) cinfo->image_width, (long) (cinfo->max_h_samp_factor*DCTSIZE)); cinfo->MCU_rows_in_scan = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, (long) (cinfo->max_v_samp_factor*DCTSIZE)); cinfo->blocks_in_MCU = 0; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Sampling factors give # of blocks of component in each MCU */ compptr->MCU_width = compptr->h_samp_factor; compptr->MCU_height = compptr->v_samp_factor; compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; compptr->MCU_sample_width = compptr->MCU_width * DCTSIZE; /* Figure number of non-dummy blocks in last MCU column & row */ tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); if (tmp == 0) tmp = compptr->MCU_width; compptr->last_col_width = tmp; tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); if (tmp == 0) tmp = compptr->MCU_height; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ mcublks = compptr->MCU_blocks; if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU) ERREXIT(cinfo, JERR_BAD_MCU_SIZE); while (mcublks-- > 0) { cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; } } } /* Convert restart specified in rows to actual MCU count. */ /* Note that count must fit in 16 bits, so we provide limiting. */ if (cinfo->restart_in_rows > 0) { long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row; cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L); } } /* * Per-pass setup. * This is called at the beginning of each pass. We determine which modules * will be active during this pass and give them appropriate start_pass calls. * We also set is_last_pass to indicate whether any more passes will be * required. */ METHODDEF(void) prepare_for_pass (j_compress_ptr cinfo) { my_master_ptr master = (my_master_ptr) cinfo->master; switch (master->pass_type) { case main_pass: /* Initial pass: will collect input data, and do either Huffman * optimization or data output for the first scan. */ select_scan_parameters(cinfo); per_scan_setup(cinfo); if (! cinfo->raw_data_in) { (*cinfo->cconvert->start_pass) (cinfo); (*cinfo->downsample->start_pass) (cinfo); (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU); } (*cinfo->fdct->start_pass) (cinfo); (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding); (*cinfo->coef->start_pass) (cinfo, (master->total_passes > 1 ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); if (cinfo->optimize_coding) { /* No immediate data output; postpone writing frame/scan headers */ master->pub.call_pass_startup = FALSE; } else { /* Will write frame/scan headers at first jpeg_write_scanlines call */ master->pub.call_pass_startup = TRUE; } break; #ifdef ENTROPY_OPT_SUPPORTED case huff_opt_pass: /* Do Huffman optimization for a scan after the first one. */ select_scan_parameters(cinfo); per_scan_setup(cinfo); if (cinfo->Ss != 0 || cinfo->Ah == 0 || cinfo->arith_code) { (*cinfo->entropy->start_pass) (cinfo, TRUE); (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); master->pub.call_pass_startup = FALSE; break; } /* Special case: Huffman DC refinement scans need no Huffman table * and therefore we can skip the optimization pass for them. */ master->pass_type = output_pass; master->pass_number++; /*FALLTHROUGH*/ #endif case output_pass: /* Do a data-output pass. */ /* We need not repeat per-scan setup if prior optimization pass did it. */ if (! cinfo->optimize_coding) { select_scan_parameters(cinfo); per_scan_setup(cinfo); } (*cinfo->entropy->start_pass) (cinfo, FALSE); (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); /* We emit frame/scan headers now */ if (master->scan_number == 0) (*cinfo->marker->write_frame_header) (cinfo); (*cinfo->marker->write_scan_header) (cinfo); master->pub.call_pass_startup = FALSE; break; default: ERREXIT(cinfo, JERR_NOT_COMPILED); } master->pub.is_last_pass = (master->pass_number == master->total_passes-1); /* Set up progress monitor's pass info if present */ if (cinfo->progress != NULL) { cinfo->progress->completed_passes = master->pass_number; cinfo->progress->total_passes = master->total_passes; } } /* * Special start-of-pass hook. * This is called by jpeg_write_scanlines if call_pass_startup is TRUE. * In single-pass processing, we need this hook because we don't want to * write frame/scan headers during jpeg_start_compress; we want to let the * application write COM markers etc. between jpeg_start_compress and the * jpeg_write_scanlines loop. * In multi-pass processing, this routine is not used. */ METHODDEF(void) pass_startup (j_compress_ptr cinfo) { cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */ (*cinfo->marker->write_frame_header) (cinfo); (*cinfo->marker->write_scan_header) (cinfo); } /* * Finish up at end of pass. */ METHODDEF(void) finish_pass_master (j_compress_ptr cinfo) { my_master_ptr master = (my_master_ptr) cinfo->master; /* The entropy coder always needs an end-of-pass call, * either to analyze statistics or to flush its output buffer. */ (*cinfo->entropy->finish_pass) (cinfo); /* Update state for next pass */ switch (master->pass_type) { case main_pass: /* next pass is either output of scan 0 (after optimization) * or output of scan 1 (if no optimization). */ master->pass_type = output_pass; if (! cinfo->optimize_coding) master->scan_number++; break; case huff_opt_pass: /* next pass is always output of current scan */ master->pass_type = output_pass; break; case output_pass: /* next pass is either optimization or output of next scan */ if (cinfo->optimize_coding) master->pass_type = huff_opt_pass; master->scan_number++; break; } master->pass_number++; } /* * Initialize master compression control. */ GLOBAL(void) jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only) { my_master_ptr master; master = (my_master_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_comp_master)); cinfo->master = (struct jpeg_comp_master *) master; master->pub.prepare_for_pass = prepare_for_pass; master->pub.pass_startup = pass_startup; master->pub.finish_pass = finish_pass_master; master->pub.is_last_pass = FALSE; /* Validate parameters, determine derived values */ initial_setup(cinfo); if (cinfo->scan_info != NULL) { #ifdef C_MULTISCAN_FILES_SUPPORTED validate_script(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { cinfo->progressive_mode = FALSE; cinfo->num_scans = 1; } if (cinfo->progressive_mode) /* TEMPORARY HACK ??? */ cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */ /* Initialize my private state */ if (transcode_only) { /* no main pass in transcoding */ if (cinfo->optimize_coding) master->pass_type = huff_opt_pass; else master->pass_type = output_pass; } else { /* for normal compression, first pass is always this type: */ master->pass_type = main_pass; } master->scan_number = 0; master->pass_number = 0; if (cinfo->optimize_coding) master->total_passes = cinfo->num_scans * 2; else master->total_passes = cinfo->num_scans; } /********* End of inlined file: jcmaster.c *********/ /********* Start of inlined file: jcomapi.c *********/ #define JPEG_INTERNALS /* * Abort processing of a JPEG compression or decompression operation, * but don't destroy the object itself. * * For this, we merely clean up all the nonpermanent memory pools. * Note that temp files (virtual arrays) are not allowed to belong to * the permanent pool, so we will be able to close all temp files here. * Closing a data source or destination, if necessary, is the application's * responsibility. */ GLOBAL(void) jpeg_abort (j_common_ptr cinfo) { int pool; /* Do nothing if called on a not-initialized or destroyed JPEG object. */ if (cinfo->mem == NULL) return; /* Releasing pools in reverse order might help avoid fragmentation * with some (brain-damaged) malloc libraries. */ for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) { (*cinfo->mem->free_pool) (cinfo, pool); } /* Reset overall state for possible reuse of object */ if (cinfo->is_decompressor) { cinfo->global_state = DSTATE_START; /* Try to keep application from accessing now-deleted marker list. * A bit kludgy to do it here, but this is the most central place. */ ((j_decompress_ptr) cinfo)->marker_list = NULL; } else { cinfo->global_state = CSTATE_START; } } /* * Destruction of a JPEG object. * * Everything gets deallocated except the master jpeg_compress_struct itself * and the error manager struct. Both of these are supplied by the application * and must be freed, if necessary, by the application. (Often they are on * the stack and so don't need to be freed anyway.) * Closing a data source or destination, if necessary, is the application's * responsibility. */ GLOBAL(void) jpeg_destroy (j_common_ptr cinfo) { /* We need only tell the memory manager to release everything. */ /* NB: mem pointer is NULL if memory mgr failed to initialize. */ if (cinfo->mem != NULL) (*cinfo->mem->self_destruct) (cinfo); cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */ cinfo->global_state = 0; /* mark it destroyed */ } /* * Convenience routines for allocating quantization and Huffman tables. * (Would jutils.c be a more reasonable place to put these?) */ GLOBAL(JQUANT_TBL *) jpeg_alloc_quant_table (j_common_ptr cinfo) { JQUANT_TBL *tbl; tbl = (JQUANT_TBL *) (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL)); tbl->sent_table = FALSE; /* make sure this is false in any new table */ return tbl; } GLOBAL(JHUFF_TBL *) jpeg_alloc_huff_table (j_common_ptr cinfo) { JHUFF_TBL *tbl; tbl = (JHUFF_TBL *) (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL)); tbl->sent_table = FALSE; /* make sure this is false in any new table */ return tbl; } /********* End of inlined file: jcomapi.c *********/ /********* Start of inlined file: jcparam.c *********/ #define JPEG_INTERNALS /* * Quantization table setup routines */ GLOBAL(void) jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl, const unsigned int *basic_table, int scale_factor, boolean force_baseline) /* Define a quantization table equal to the basic_table times * a scale factor (given as a percentage). * If force_baseline is TRUE, the computed quantization table entries * are limited to 1..255 for JPEG baseline compatibility. */ { JQUANT_TBL ** qtblptr; int i; long temp; /* Safety check to ensure start_compress not called yet. */ if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS) ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl); qtblptr = & cinfo->quant_tbl_ptrs[which_tbl]; if (*qtblptr == NULL) *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo); for (i = 0; i < DCTSIZE2; i++) { temp = ((long) basic_table[i] * scale_factor + 50L) / 100L; /* limit the values to the valid range */ if (temp <= 0L) temp = 1L; if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */ if (force_baseline && temp > 255L) temp = 255L; /* limit to baseline range if requested */ (*qtblptr)->quantval[i] = (UINT16) temp; } /* Initialize sent_table FALSE so table will be written to JPEG file. */ (*qtblptr)->sent_table = FALSE; } GLOBAL(void) jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor, boolean force_baseline) /* Set or change the 'quality' (quantization) setting, using default tables * and a straight percentage-scaling quality scale. In most cases it's better * to use jpeg_set_quality (below); this entry point is provided for * applications that insist on a linear percentage scaling. */ { /* These are the sample quantization tables given in JPEG spec section K.1. * The spec says that the values given produce "good" quality, and * when divided by 2, "very good" quality. */ static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { 16, 11, 10, 16, 24, 40, 51, 61, 12, 12, 14, 19, 26, 58, 60, 55, 14, 13, 16, 24, 40, 57, 69, 56, 14, 17, 22, 29, 51, 87, 80, 62, 18, 22, 37, 56, 68, 109, 103, 77, 24, 35, 55, 64, 81, 104, 113, 92, 49, 64, 78, 87, 103, 121, 120, 101, 72, 92, 95, 98, 112, 100, 103, 99 }; static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { 17, 18, 24, 47, 99, 99, 99, 99, 18, 21, 26, 66, 99, 99, 99, 99, 24, 26, 56, 99, 99, 99, 99, 99, 47, 66, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 }; /* Set up two quantization tables using the specified scaling */ jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, scale_factor, force_baseline); jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, scale_factor, force_baseline); } GLOBAL(int) jpeg_quality_scaling (int quality) /* Convert a user-specified quality rating to a percentage scaling factor * for an underlying quantization table, using our recommended scaling curve. * The input 'quality' factor should be 0 (terrible) to 100 (very good). */ { /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */ if (quality <= 0) quality = 1; if (quality > 100) quality = 100; /* The basic table is used as-is (scaling 100) for a quality of 50. * Qualities 50..100 are converted to scaling percentage 200 - 2*Q; * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table * to make all the table entries 1 (hence, minimum quantization loss). * Qualities 1..50 are converted to scaling percentage 5000/Q. */ if (quality < 50) quality = 5000 / quality; else quality = 200 - quality*2; return quality; } GLOBAL(void) jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline) /* Set or change the 'quality' (quantization) setting, using default tables. * This is the standard quality-adjusting entry point for typical user * interfaces; only those who want detailed control over quantization tables * would use the preceding three routines directly. */ { /* Convert user 0-100 rating to percentage scaling */ quality = jpeg_quality_scaling(quality); /* Set up standard quality tables */ jpeg_set_linear_quality(cinfo, quality, force_baseline); } /* * Huffman table setup routines */ LOCAL(void) add_huff_table (j_compress_ptr cinfo, JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val) /* Define a Huffman table */ { int nsymbols, len; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); /* Copy the number-of-symbols-of-each-code-length counts */ MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits)); /* Validate the counts. We do this here mainly so we can copy the right * number of symbols from the val[] array, without risking marching off * the end of memory. jchuff.c will do a more thorough test later. */ nsymbols = 0; for (len = 1; len <= 16; len++) nsymbols += bits[len]; if (nsymbols < 1 || nsymbols > 256) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8)); /* Initialize sent_table FALSE so table will be written to JPEG file. */ (*htblptr)->sent_table = FALSE; } LOCAL(void) std_huff_tables (j_compress_ptr cinfo) /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */ /* IMPORTANT: these are only valid for 8-bit data precision! */ { static const UINT8 bits_dc_luminance[17] = { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; static const UINT8 val_dc_luminance[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; static const UINT8 bits_dc_chrominance[17] = { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; static const UINT8 val_dc_chrominance[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; static const UINT8 bits_ac_luminance[17] = { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; static const UINT8 val_ac_luminance[] = { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; static const UINT8 bits_ac_chrominance[17] = { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; static const UINT8 val_ac_chrominance[] = { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0], bits_dc_luminance, val_dc_luminance); add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0], bits_ac_luminance, val_ac_luminance); add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1], bits_dc_chrominance, val_dc_chrominance); add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1], bits_ac_chrominance, val_ac_chrominance); } /* * Default parameter setup for compression. * * Applications that don't choose to use this routine must do their * own setup of all these parameters. Alternately, you can call this * to establish defaults and then alter parameters selectively. This * is the recommended approach since, if we add any new parameters, * your code will still work (they'll be set to reasonable defaults). */ GLOBAL(void) jpeg_set_defaults (j_compress_ptr cinfo) { int i; /* Safety check to ensure start_compress not called yet. */ if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Allocate comp_info array large enough for maximum component count. * Array is made permanent in case application wants to compress * multiple images at same param settings. */ if (cinfo->comp_info == NULL) cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, MAX_COMPONENTS * SIZEOF(jpeg_component_info)); /* Initialize everything not dependent on the color space */ cinfo->data_precision = BITS_IN_JSAMPLE; /* Set up two quantization tables using default quality of 75 */ jpeg_set_quality(cinfo, 75, TRUE); /* Set up two Huffman tables */ std_huff_tables(cinfo); /* Initialize default arithmetic coding conditioning */ for (i = 0; i < NUM_ARITH_TBLS; i++) { cinfo->arith_dc_L[i] = 0; cinfo->arith_dc_U[i] = 1; cinfo->arith_ac_K[i] = 5; } /* Default is no multiple-scan output */ cinfo->scan_info = NULL; cinfo->num_scans = 0; /* Expect normal source image, not raw downsampled data */ cinfo->raw_data_in = FALSE; /* Use Huffman coding, not arithmetic coding, by default */ cinfo->arith_code = FALSE; /* By default, don't do extra passes to optimize entropy coding */ cinfo->optimize_coding = FALSE; /* The standard Huffman tables are only valid for 8-bit data precision. * If the precision is higher, force optimization on so that usable * tables will be computed. This test can be removed if default tables * are supplied that are valid for the desired precision. */ if (cinfo->data_precision > 8) cinfo->optimize_coding = TRUE; /* By default, use the simpler non-cosited sampling alignment */ cinfo->CCIR601_sampling = FALSE; /* No input smoothing */ cinfo->smoothing_factor = 0; /* DCT algorithm preference */ cinfo->dct_method = JDCT_DEFAULT; /* No restart markers */ cinfo->restart_interval = 0; cinfo->restart_in_rows = 0; /* Fill in default JFIF marker parameters. Note that whether the marker * will actually be written is determined by jpeg_set_colorspace. * * By default, the library emits JFIF version code 1.01. * An application that wants to emit JFIF 1.02 extension markers should set * JFIF_minor_version to 2. We could probably get away with just defaulting * to 1.02, but there may still be some decoders in use that will complain * about that; saying 1.01 should minimize compatibility problems. */ cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */ cinfo->JFIF_minor_version = 1; cinfo->density_unit = 0; /* Pixel size is unknown by default */ cinfo->X_density = 1; /* Pixel aspect ratio is square by default */ cinfo->Y_density = 1; /* Choose JPEG colorspace based on input space, set defaults accordingly */ jpeg_default_colorspace(cinfo); } /* * Select an appropriate JPEG colorspace for in_color_space. */ GLOBAL(void) jpeg_default_colorspace (j_compress_ptr cinfo) { switch (cinfo->in_color_space) { case JCS_GRAYSCALE: jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); break; case JCS_RGB: jpeg_set_colorspace(cinfo, JCS_YCbCr); break; case JCS_YCbCr: jpeg_set_colorspace(cinfo, JCS_YCbCr); break; case JCS_CMYK: jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */ break; case JCS_YCCK: jpeg_set_colorspace(cinfo, JCS_YCCK); break; case JCS_UNKNOWN: jpeg_set_colorspace(cinfo, JCS_UNKNOWN); break; default: ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); } } /* * Set the JPEG colorspace, and choose colorspace-dependent default values. */ GLOBAL(void) jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) { jpeg_component_info * compptr; int ci; #define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \ (compptr = &cinfo->comp_info[index], \ compptr->component_id = (id), \ compptr->h_samp_factor = (hsamp), \ compptr->v_samp_factor = (vsamp), \ compptr->quant_tbl_no = (quant), \ compptr->dc_tbl_no = (dctbl), \ compptr->ac_tbl_no = (actbl) ) /* Safety check to ensure start_compress not called yet. */ if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* For all colorspaces, we use Q and Huff tables 0 for luminance components, * tables 1 for chrominance components. */ cinfo->jpeg_color_space = colorspace; cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */ cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */ switch (colorspace) { case JCS_GRAYSCALE: cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ cinfo->num_components = 1; /* JFIF specifies component ID 1 */ SET_COMP(0, 1, 1,1, 0, 0,0); break; case JCS_RGB: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */ cinfo->num_components = 3; SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0); SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0); SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0); break; case JCS_YCbCr: cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ cinfo->num_components = 3; /* JFIF specifies component IDs 1,2,3 */ /* We default to 2x2 subsamples of chrominance */ SET_COMP(0, 1, 2,2, 0, 0,0); SET_COMP(1, 2, 1,1, 1, 1,1); SET_COMP(2, 3, 1,1, 1, 1,1); break; case JCS_CMYK: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */ cinfo->num_components = 4; SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0); SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0); SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0); SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0); break; case JCS_YCCK: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */ cinfo->num_components = 4; SET_COMP(0, 1, 2,2, 0, 0,0); SET_COMP(1, 2, 1,1, 1, 1,1); SET_COMP(2, 3, 1,1, 1, 1,1); SET_COMP(3, 4, 2,2, 0, 0,0); break; case JCS_UNKNOWN: cinfo->num_components = cinfo->input_components; if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, MAX_COMPONENTS); for (ci = 0; ci < cinfo->num_components; ci++) { SET_COMP(ci, ci, 1,1, 0, 0,0); } break; default: ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); } } #ifdef C_PROGRESSIVE_SUPPORTED LOCAL(jpeg_scan_info *) fill_a_scan (jpeg_scan_info * scanptr, int ci, int Ss, int Se, int Ah, int Al) /* Support routine: generate one scan for specified component */ { scanptr->comps_in_scan = 1; scanptr->component_index[0] = ci; scanptr->Ss = Ss; scanptr->Se = Se; scanptr->Ah = Ah; scanptr->Al = Al; scanptr++; return scanptr; } LOCAL(jpeg_scan_info *) fill_scans (jpeg_scan_info * scanptr, int ncomps, int Ss, int Se, int Ah, int Al) /* Support routine: generate one scan for each component */ { int ci; for (ci = 0; ci < ncomps; ci++) { scanptr->comps_in_scan = 1; scanptr->component_index[0] = ci; scanptr->Ss = Ss; scanptr->Se = Se; scanptr->Ah = Ah; scanptr->Al = Al; scanptr++; } return scanptr; } LOCAL(jpeg_scan_info *) fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al) /* Support routine: generate interleaved DC scan if possible, else N scans */ { int ci; if (ncomps <= MAX_COMPS_IN_SCAN) { /* Single interleaved DC scan */ scanptr->comps_in_scan = ncomps; for (ci = 0; ci < ncomps; ci++) scanptr->component_index[ci] = ci; scanptr->Ss = scanptr->Se = 0; scanptr->Ah = Ah; scanptr->Al = Al; scanptr++; } else { /* Noninterleaved DC scan for each component */ scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al); } return scanptr; } /* * Create a recommended progressive-JPEG script. * cinfo->num_components and cinfo->jpeg_color_space must be correct. */ GLOBAL(void) jpeg_simple_progression (j_compress_ptr cinfo) { int ncomps = cinfo->num_components; int nscans; jpeg_scan_info * scanptr; /* Safety check to ensure start_compress not called yet. */ if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Figure space needed for script. Calculation must match code below! */ if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { /* Custom script for YCbCr color images. */ nscans = 10; } else { /* All-purpose script for other color spaces. */ if (ncomps > MAX_COMPS_IN_SCAN) nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */ else nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */ } /* Allocate space for script. * We need to put it in the permanent pool in case the application performs * multiple compressions without changing the settings. To avoid a memory * leak if jpeg_simple_progression is called repeatedly for the same JPEG * object, we try to re-use previously allocated space, and we allocate * enough space to handle YCbCr even if initially asked for grayscale. */ if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) { cinfo->script_space_size = MAX(nscans, 10); cinfo->script_space = (jpeg_scan_info *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, cinfo->script_space_size * SIZEOF(jpeg_scan_info)); } scanptr = cinfo->script_space; cinfo->scan_info = scanptr; cinfo->num_scans = nscans; if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { /* Custom script for YCbCr color images. */ /* Initial DC scan */ scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); /* Initial AC scan: get some luma data out in a hurry */ scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2); /* Chroma data is too small to be worth expending many scans on */ scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1); scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1); /* Complete spectral selection for luma AC */ scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2); /* Refine next bit of luma AC */ scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1); /* Finish DC successive approximation */ scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); /* Finish AC successive approximation */ scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0); scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0); /* Luma bottom bit comes last since it's usually largest scan */ scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0); } else { /* All-purpose script for other color spaces. */ /* Successive approximation first pass */ scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2); scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2); /* Successive approximation second pass */ scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1); /* Successive approximation final pass */ scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0); } } #endif /* C_PROGRESSIVE_SUPPORTED */ /********* End of inlined file: jcparam.c *********/ /********* Start of inlined file: jcphuff.c *********/ #define JPEG_INTERNALS #ifdef C_PROGRESSIVE_SUPPORTED /* Expanded entropy encoder object for progressive Huffman encoding. */ typedef struct { struct jpeg_entropy_encoder pub; /* public fields */ /* Mode flag: TRUE for optimization, FALSE for actual data output */ boolean gather_statistics; /* Bit-level coding status. * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. */ JOCTET * next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ INT32 put_buffer; /* current bit-accumulation buffer */ int put_bits; /* # of bits now in it */ j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ /* Coding status for DC components */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ /* Coding status for AC components */ int ac_tbl_no; /* the table number of the single component */ unsigned int EOBRUN; /* run length of EOBs */ unsigned int BE; /* # of buffered correction bits before MCU */ char * bit_buffer; /* buffer for correction bits (1 per char) */ /* packing correction bits tightly would save some space but cost time... */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ int next_restart_num; /* next restart number to write (0-7) */ /* Pointers to derived tables (these workspaces have image lifespan). * Since any one scan codes only DC or only AC, we only need one set * of tables, not one for DC and one for AC. */ c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; /* Statistics tables for optimization; again, one set is enough */ long * count_ptrs[NUM_HUFF_TBLS]; } phuff_entropy_encoder; typedef phuff_entropy_encoder * phuff_entropy_ptr; /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit * buffer can hold. Larger sizes may slightly improve compression, but * 1000 is already well into the realm of overkill. * The minimum safe size is 64 bits. */ #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. * We assume that int right shift is unsigned if INT32 right shift is, * which should be safe. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define ISHIFT_TEMPS int ishift_temp; #define IRIGHT_SHIFT(x,shft) \ ((ishift_temp = (x)) < 0 ? \ (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ (ishift_temp >> (shft))) #else #define ISHIFT_TEMPS #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) #endif /* Forward declarations */ METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo, JBLOCKROW *MCU_data)); METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo, JBLOCKROW *MCU_data)); METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo, JBLOCKROW *MCU_data)); METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo, JBLOCKROW *MCU_data)); METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo)); METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo)); /* * Initialize for a Huffman-compressed scan using progressive JPEG. */ METHODDEF(void) start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; boolean is_DC_band; int ci, tbl; jpeg_component_info * compptr; entropy->cinfo = cinfo; entropy->gather_statistics = gather_statistics; is_DC_band = (cinfo->Ss == 0); /* We assume jcmaster.c already validated the scan parameters. */ /* Select execution routines */ if (cinfo->Ah == 0) { if (is_DC_band) entropy->pub.encode_mcu = encode_mcu_DC_first; else entropy->pub.encode_mcu = encode_mcu_AC_first; } else { if (is_DC_band) entropy->pub.encode_mcu = encode_mcu_DC_refine; else { entropy->pub.encode_mcu = encode_mcu_AC_refine; /* AC refinement needs a correction bit buffer */ if (entropy->bit_buffer == NULL) entropy->bit_buffer = (char *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(char)); } } if (gather_statistics) entropy->pub.finish_pass = finish_pass_gather_phuff; else entropy->pub.finish_pass = finish_pass_phuff; /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 * for AC coefficients. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Initialize DC predictions to 0 */ entropy->last_dc_val[ci] = 0; /* Get table index */ if (is_DC_band) { if (cinfo->Ah != 0) /* DC refinement needs no table */ continue; tbl = compptr->dc_tbl_no; } else { entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; } if (gather_statistics) { /* Check for invalid table index */ /* (make_c_derived_tbl does this in the other path) */ if (tbl < 0 || tbl >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); /* Allocate and zero the statistics tables */ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ if (entropy->count_ptrs[tbl] == NULL) entropy->count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long)); } else { /* Compute derived values for Huffman table */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, & entropy->derived_tbls[tbl]); } } /* Initialize AC stuff */ entropy->EOBRUN = 0; entropy->BE = 0; /* Initialize bit buffer to empty */ entropy->put_buffer = 0; entropy->put_bits = 0; /* Initialize restart stuff */ entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num = 0; } /* Outputting bytes to the file. * NB: these must be called only when actually outputting, * that is, entropy->gather_statistics == FALSE. */ /* Emit a byte */ #define emit_byte(entropy,val) \ { *(entropy)->next_output_byte++ = (JOCTET) (val); \ if (--(entropy)->free_in_buffer == 0) \ dump_buffer_p(entropy); } LOCAL(void) dump_buffer_p (phuff_entropy_ptr entropy) /* Empty the output buffer; we do not support suspension in this module. */ { struct jpeg_destination_mgr * dest = entropy->cinfo->dest; if (! (*dest->empty_output_buffer) (entropy->cinfo)) ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); /* After a successful buffer dump, must reset buffer pointers */ entropy->next_output_byte = dest->next_output_byte; entropy->free_in_buffer = dest->free_in_buffer; } /* Outputting bits to the file */ /* Only the right 24 bits of put_buffer are used; the valid bits are * left-justified in this part. At most 16 bits can be passed to emit_bits * in one call, and we never retain more than 7 bits in put_buffer * between calls, so 24 bits are sufficient. */ INLINE LOCAL(void) emit_bits_p (phuff_entropy_ptr entropy, unsigned int code, int size) /* Emit some bits, unless we are in gather mode */ { /* This routine is heavily used, so it's worth coding tightly. */ register INT32 put_buffer = (INT32) code; register int put_bits = entropy->put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if (size == 0) ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); if (entropy->gather_statistics) return; /* do nothing if we're only getting stats */ put_buffer &= (((INT32) 1)<put_buffer; /* and merge with old buffer contents */ while (put_bits >= 8) { int c = (int) ((put_buffer >> 16) & 0xFF); emit_byte(entropy, c); if (c == 0xFF) { /* need to stuff a zero byte? */ emit_byte(entropy, 0); } put_buffer <<= 8; put_bits -= 8; } entropy->put_buffer = put_buffer; /* update variables */ entropy->put_bits = put_bits; } LOCAL(void) flush_bits_p (phuff_entropy_ptr entropy) { emit_bits_p(entropy, 0x7F, 7); /* fill any partial byte with ones */ entropy->put_buffer = 0; /* and reset bit-buffer to empty */ entropy->put_bits = 0; } /* * Emit (or just count) a Huffman symbol. */ INLINE LOCAL(void) emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) { if (entropy->gather_statistics) entropy->count_ptrs[tbl_no][symbol]++; else { c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; emit_bits_p(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); } } /* * Emit bits from a correction bit buffer. */ LOCAL(void) emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart, unsigned int nbits) { if (entropy->gather_statistics) return; /* no real work */ while (nbits > 0) { emit_bits_p(entropy, (unsigned int) (*bufstart), 1); bufstart++; nbits--; } } /* * Emit any pending EOBRUN symbol. */ LOCAL(void) emit_eobrun (phuff_entropy_ptr entropy) { register int temp, nbits; if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ temp = entropy->EOBRUN; nbits = 0; while ((temp >>= 1)) nbits++; /* safety check: shouldn't happen given limited correction-bit buffer */ if (nbits > 14) ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); if (nbits) emit_bits_p(entropy, entropy->EOBRUN, nbits); entropy->EOBRUN = 0; /* Emit any buffered correction bits */ emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); entropy->BE = 0; } } /* * Emit a restart marker & resynchronize predictions. */ LOCAL(void) emit_restart_p (phuff_entropy_ptr entropy, int restart_num) { int ci; emit_eobrun(entropy); if (! entropy->gather_statistics) { flush_bits_p(entropy); emit_byte(entropy, 0xFF); emit_byte(entropy, JPEG_RST0 + restart_num); } if (entropy->cinfo->Ss == 0) { /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) entropy->last_dc_val[ci] = 0; } else { /* Re-initialize all AC-related fields to 0 */ entropy->EOBRUN = 0; entropy->BE = 0; } } /* * MCU encoding for DC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; register int temp, temp2; register int nbits; int blkn, ci; int Al = cinfo->Al; JBLOCKROW block; jpeg_component_info * compptr; ISHIFT_TEMPS entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart_p(entropy, entropy->next_restart_num); /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; /* Compute the DC value after the required point transform by Al. * This is simply an arithmetic right shift. */ temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); /* DC differences are figured on the point-transformed values. */ temp = temp2 - entropy->last_dc_val[ci]; entropy->last_dc_val[ci] = temp2; /* Encode the DC coefficient difference per section G.1.2.1 */ temp2 = temp; if (temp < 0) { temp = -temp; /* temp is abs value of input */ /* For a negative input, want temp2 = bitwise complement of abs(input) */ /* This code assumes we are on a two's complement machine */ temp2--; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 0; while (temp) { nbits++; temp >>= 1; } /* Check for out-of-range coefficient values. * Since we're encoding a difference, the range limit is twice as much. */ if (nbits > MAX_COEF_BITS+1) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count/emit the Huffman-coded symbol for the number of bits */ emit_symbol(entropy, compptr->dc_tbl_no, nbits); /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (nbits) /* emit_bits rejects calls with size 0 */ emit_bits_p(entropy, (unsigned int) temp2, nbits); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * MCU encoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; register int temp, temp2; register int nbits; register int r, k; int Se = cinfo->Se; int Al = cinfo->Al; JBLOCKROW block; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart_p(entropy, entropy->next_restart_num); /* Encode the MCU data block */ block = MCU_data[0]; /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ r = 0; /* r = run length of zeros */ for (k = cinfo->Ss; k <= Se; k++) { if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { r++; continue; } /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably * in C, we shift after obtaining the absolute value; so the code is * interwoven with finding the abs value (temp) and output bits (temp2). */ if (temp < 0) { temp = -temp; /* temp is abs value of input */ temp >>= Al; /* apply the point transform */ /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ temp2 = ~temp; } else { temp >>= Al; /* apply the point transform */ temp2 = temp; } /* Watch out for case that nonzero coef is zero after point transform */ if (temp == 0) { r++; continue; } /* Emit any pending EOBRUN */ if (entropy->EOBRUN > 0) emit_eobrun(entropy); /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while (r > 15) { emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); r -= 16; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 1; /* there must be at least one 1 bit */ while ((temp >>= 1)) nbits++; /* Check for out-of-range coefficient values */ if (nbits > MAX_COEF_BITS) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count/emit Huffman symbol for run length / number of bits */ emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ emit_bits_p(entropy, (unsigned int) temp2, nbits); r = 0; /* reset zero run length */ } if (r > 0) { /* If there are trailing zeroes, */ entropy->EOBRUN++; /* count an EOB */ if (entropy->EOBRUN == 0x7FFF) emit_eobrun(entropy); /* force it out to avoid overflow */ } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * MCU encoding for DC successive approximation refinement scan. * Note: we assume such scans can be multi-component, although the spec * is not very clear on the point. */ METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; register int temp; int blkn; int Al = cinfo->Al; JBLOCKROW block; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart_p(entropy, entropy->next_restart_num); /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; /* We simply emit the Al'th bit of the DC coefficient value. */ temp = (*block)[0]; emit_bits_p(entropy, (unsigned int) (temp >> Al), 1); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * MCU encoding for AC successive approximation refinement scan. */ METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; register int temp; register int r, k; int EOB; char *BR_buffer; unsigned int BR; int Se = cinfo->Se; int Al = cinfo->Al; JBLOCKROW block; int absvalues[DCTSIZE2]; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart_p(entropy, entropy->next_restart_num); /* Encode the MCU data block */ block = MCU_data[0]; /* It is convenient to make a pre-pass to determine the transformed * coefficients' absolute values and the EOB position. */ EOB = 0; for (k = cinfo->Ss; k <= Se; k++) { temp = (*block)[jpeg_natural_order[k]]; /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably * in C, we shift after obtaining the absolute value. */ if (temp < 0) temp = -temp; /* temp is abs value of input */ temp >>= Al; /* apply the point transform */ absvalues[k] = temp; /* save abs value for main pass */ if (temp == 1) EOB = k; /* EOB = index of last newly-nonzero coef */ } /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ r = 0; /* r = run length of zeros */ BR = 0; /* BR = count of buffered bits added now */ BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ for (k = cinfo->Ss; k <= Se; k++) { if ((temp = absvalues[k]) == 0) { r++; continue; } /* Emit any required ZRLs, but not if they can be folded into EOB */ while (r > 15 && k <= EOB) { /* emit any pending EOBRUN and the BE correction bits */ emit_eobrun(entropy); /* Emit ZRL */ emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); r -= 16; /* Emit buffered correction bits that must be associated with ZRL */ emit_buffered_bits(entropy, BR_buffer, BR); BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ BR = 0; } /* If the coef was previously nonzero, it only needs a correction bit. * NOTE: a straight translation of the spec's figure G.7 would suggest * that we also need to test r > 15. But if r > 15, we can only get here * if k > EOB, which implies that this coefficient is not 1. */ if (temp > 1) { /* The correction bit is the next bit of the absolute value. */ BR_buffer[BR++] = (char) (temp & 1); continue; } /* Emit any pending EOBRUN and the BE correction bits */ emit_eobrun(entropy); /* Count/emit Huffman symbol for run length / number of bits */ emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); /* Emit output bit for newly-nonzero coef */ temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; emit_bits_p(entropy, (unsigned int) temp, 1); /* Emit buffered correction bits that must be associated with this code */ emit_buffered_bits(entropy, BR_buffer, BR); BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ BR = 0; r = 0; /* reset zero run length */ } if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ entropy->EOBRUN++; /* count an EOB */ entropy->BE += BR; /* concat my correction bits to older ones */ /* We force out the EOB if we risk either: * 1. overflow of the EOB counter; * 2. overflow of the correction bit buffer during the next MCU. */ if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) emit_eobrun(entropy); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * Finish up at the end of a Huffman-compressed progressive scan. */ METHODDEF(void) finish_pass_phuff (j_compress_ptr cinfo) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Flush out any buffered data */ emit_eobrun(entropy); flush_bits_p(entropy); cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; } /* * Finish up a statistics-gathering pass and create the new Huffman tables. */ METHODDEF(void) finish_pass_gather_phuff (j_compress_ptr cinfo) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; boolean is_DC_band; int ci, tbl; jpeg_component_info * compptr; JHUFF_TBL **htblptr; boolean did[NUM_HUFF_TBLS]; /* Flush out buffered data (all we care about is counting the EOB symbol) */ emit_eobrun(entropy); is_DC_band = (cinfo->Ss == 0); /* It's important not to apply jpeg_gen_optimal_table more than once * per table, because it clobbers the input frequency counts! */ MEMZERO(did, SIZEOF(did)); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; if (is_DC_band) { if (cinfo->Ah != 0) /* DC refinement needs no table */ continue; tbl = compptr->dc_tbl_no; } else { tbl = compptr->ac_tbl_no; } if (! did[tbl]) { if (is_DC_band) htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; else htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); did[tbl] = TRUE; } } } /* * Module initialization routine for progressive Huffman entropy encoding. */ GLOBAL(void) jinit_phuff_encoder (j_compress_ptr cinfo) { phuff_entropy_ptr entropy; int i; entropy = (phuff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(phuff_entropy_encoder)); cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; entropy->pub.start_pass = start_pass_phuff; /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->derived_tbls[i] = NULL; entropy->count_ptrs[i] = NULL; } entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ } #endif /* C_PROGRESSIVE_SUPPORTED */ /********* End of inlined file: jcphuff.c *********/ /********* Start of inlined file: jcprepct.c *********/ #define JPEG_INTERNALS /* At present, jcsample.c can request context rows only for smoothing. * In the future, we might also need context rows for CCIR601 sampling * or other more-complex downsampling procedures. The code to support * context rows should be compiled only if needed. */ #ifdef INPUT_SMOOTHING_SUPPORTED #define CONTEXT_ROWS_SUPPORTED #endif /* * For the simple (no-context-row) case, we just need to buffer one * row group's worth of pixels for the downsampling step. At the bottom of * the image, we pad to a full row group by replicating the last pixel row. * The downsampler's last output row is then replicated if needed to pad * out to a full iMCU row. * * When providing context rows, we must buffer three row groups' worth of * pixels. Three row groups are physically allocated, but the row pointer * arrays are made five row groups high, with the extra pointers above and * below "wrapping around" to point to the last and first real row groups. * This allows the downsampler to access the proper context rows. * At the top and bottom of the image, we create dummy context rows by * copying the first or last real pixel row. This copying could be avoided * by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the * trouble on the compression side. */ /* Private buffer controller object */ typedef struct { struct jpeg_c_prep_controller pub; /* public fields */ /* Downsampling input buffer. This buffer holds color-converted data * until we have enough to do a downsample step. */ JSAMPARRAY color_buf[MAX_COMPONENTS]; JDIMENSION rows_to_go; /* counts rows remaining in source image */ int next_buf_row; /* index of next row to store in color_buf */ #ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */ int this_row_group; /* starting row index of group to process */ int next_buf_stop; /* downsample when we reach this index */ #endif } my_prep_controller; typedef my_prep_controller * my_prep_ptr; /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode) { my_prep_ptr prep = (my_prep_ptr) cinfo->prep; if (pass_mode != JBUF_PASS_THRU) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); /* Initialize total-height counter for detecting bottom of image */ prep->rows_to_go = cinfo->image_height; /* Mark the conversion buffer empty */ prep->next_buf_row = 0; #ifdef CONTEXT_ROWS_SUPPORTED /* Preset additional state variables for context mode. * These aren't used in non-context mode, so we needn't test which mode. */ prep->this_row_group = 0; /* Set next_buf_stop to stop after two row groups have been read in. */ prep->next_buf_stop = 2 * cinfo->max_v_samp_factor; #endif } /* * Expand an image vertically from height input_rows to height output_rows, * by duplicating the bottom row. */ LOCAL(void) expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols, int input_rows, int output_rows) { register int row; for (row = input_rows; row < output_rows; row++) { jcopy_sample_rows(image_data, input_rows-1, image_data, row, 1, num_cols); } } /* * Process some data in the simple no-context case. * * Preprocessor output data is counted in "row groups". A row group * is defined to be v_samp_factor sample rows of each component. * Downsampling will produce this much data from each max_v_samp_factor * input rows. */ METHODDEF(void) pre_process_data (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail, JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, JDIMENSION out_row_groups_avail) { my_prep_ptr prep = (my_prep_ptr) cinfo->prep; int numrows, ci; JDIMENSION inrows; jpeg_component_info * compptr; while (*in_row_ctr < in_rows_avail && *out_row_group_ctr < out_row_groups_avail) { /* Do color conversion to fill the conversion buffer. */ inrows = in_rows_avail - *in_row_ctr; numrows = cinfo->max_v_samp_factor - prep->next_buf_row; numrows = (int) MIN((JDIMENSION) numrows, inrows); (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, prep->color_buf, (JDIMENSION) prep->next_buf_row, numrows); *in_row_ctr += numrows; prep->next_buf_row += numrows; prep->rows_to_go -= numrows; /* If at bottom of image, pad to fill the conversion buffer. */ if (prep->rows_to_go == 0 && prep->next_buf_row < cinfo->max_v_samp_factor) { for (ci = 0; ci < cinfo->num_components; ci++) { expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, prep->next_buf_row, cinfo->max_v_samp_factor); } prep->next_buf_row = cinfo->max_v_samp_factor; } /* If we've filled the conversion buffer, empty it. */ if (prep->next_buf_row == cinfo->max_v_samp_factor) { (*cinfo->downsample->downsample) (cinfo, prep->color_buf, (JDIMENSION) 0, output_buf, *out_row_group_ctr); prep->next_buf_row = 0; (*out_row_group_ctr)++; } /* If at bottom of image, pad the output to a full iMCU height. * Note we assume the caller is providing a one-iMCU-height output buffer! */ if (prep->rows_to_go == 0 && *out_row_group_ctr < out_row_groups_avail) { for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { expand_bottom_edge(output_buf[ci], compptr->width_in_blocks * DCTSIZE, (int) (*out_row_group_ctr * compptr->v_samp_factor), (int) (out_row_groups_avail * compptr->v_samp_factor)); } *out_row_group_ctr = out_row_groups_avail; break; /* can exit outer loop without test */ } } } #ifdef CONTEXT_ROWS_SUPPORTED /* * Process some data in the context case. */ METHODDEF(void) pre_process_context (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail, JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, JDIMENSION out_row_groups_avail) { my_prep_ptr prep = (my_prep_ptr) cinfo->prep; int numrows, ci; int buf_height = cinfo->max_v_samp_factor * 3; JDIMENSION inrows; while (*out_row_group_ctr < out_row_groups_avail) { if (*in_row_ctr < in_rows_avail) { /* Do color conversion to fill the conversion buffer. */ inrows = in_rows_avail - *in_row_ctr; numrows = prep->next_buf_stop - prep->next_buf_row; numrows = (int) MIN((JDIMENSION) numrows, inrows); (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, prep->color_buf, (JDIMENSION) prep->next_buf_row, numrows); /* Pad at top of image, if first time through */ if (prep->rows_to_go == cinfo->image_height) { for (ci = 0; ci < cinfo->num_components; ci++) { int row; for (row = 1; row <= cinfo->max_v_samp_factor; row++) { jcopy_sample_rows(prep->color_buf[ci], 0, prep->color_buf[ci], -row, 1, cinfo->image_width); } } } *in_row_ctr += numrows; prep->next_buf_row += numrows; prep->rows_to_go -= numrows; } else { /* Return for more data, unless we are at the bottom of the image. */ if (prep->rows_to_go != 0) break; /* When at bottom of image, pad to fill the conversion buffer. */ if (prep->next_buf_row < prep->next_buf_stop) { for (ci = 0; ci < cinfo->num_components; ci++) { expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, prep->next_buf_row, prep->next_buf_stop); } prep->next_buf_row = prep->next_buf_stop; } } /* If we've gotten enough data, downsample a row group. */ if (prep->next_buf_row == prep->next_buf_stop) { (*cinfo->downsample->downsample) (cinfo, prep->color_buf, (JDIMENSION) prep->this_row_group, output_buf, *out_row_group_ctr); (*out_row_group_ctr)++; /* Advance pointers with wraparound as necessary. */ prep->this_row_group += cinfo->max_v_samp_factor; if (prep->this_row_group >= buf_height) prep->this_row_group = 0; if (prep->next_buf_row >= buf_height) prep->next_buf_row = 0; prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor; } } } /* * Create the wrapped-around downsampling input buffer needed for context mode. */ LOCAL(void) create_context_buffer (j_compress_ptr cinfo) { my_prep_ptr prep = (my_prep_ptr) cinfo->prep; int rgroup_height = cinfo->max_v_samp_factor; int ci, i; jpeg_component_info * compptr; JSAMPARRAY true_buffer, fake_buffer; /* Grab enough space for fake row pointers for all the components; * we need five row groups' worth of pointers for each component. */ fake_buffer = (JSAMPARRAY) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (cinfo->num_components * 5 * rgroup_height) * SIZEOF(JSAMPROW)); for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Allocate the actual buffer space (3 row groups) for this component. * We make the buffer wide enough to allow the downsampler to edge-expand * horizontally within the buffer, if it so chooses. */ true_buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE * cinfo->max_h_samp_factor) / compptr->h_samp_factor), (JDIMENSION) (3 * rgroup_height)); /* Copy true buffer row pointers into the middle of the fake row array */ MEMCOPY(fake_buffer + rgroup_height, true_buffer, 3 * rgroup_height * SIZEOF(JSAMPROW)); /* Fill in the above and below wraparound pointers */ for (i = 0; i < rgroup_height; i++) { fake_buffer[i] = true_buffer[2 * rgroup_height + i]; fake_buffer[4 * rgroup_height + i] = true_buffer[i]; } prep->color_buf[ci] = fake_buffer + rgroup_height; fake_buffer += 5 * rgroup_height; /* point to space for next component */ } } #endif /* CONTEXT_ROWS_SUPPORTED */ /* * Initialize preprocessing controller. */ GLOBAL(void) jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer) { my_prep_ptr prep; int ci; jpeg_component_info * compptr; if (need_full_buffer) /* safety check */ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); prep = (my_prep_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_prep_controller)); cinfo->prep = (struct jpeg_c_prep_controller *) prep; prep->pub.start_pass = start_pass_prep; /* Allocate the color conversion buffer. * We make the buffer wide enough to allow the downsampler to edge-expand * horizontally within the buffer, if it so chooses. */ if (cinfo->downsample->need_context_rows) { /* Set up to provide context rows */ #ifdef CONTEXT_ROWS_SUPPORTED prep->pub.pre_process_data = pre_process_context; create_context_buffer(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { /* No context, just make it tall enough for one row group */ prep->pub.pre_process_data = pre_process_data; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { prep->color_buf[ci] = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE * cinfo->max_h_samp_factor) / compptr->h_samp_factor), (JDIMENSION) cinfo->max_v_samp_factor); } } } /********* End of inlined file: jcprepct.c *********/ /********* Start of inlined file: jcsample.c *********/ #define JPEG_INTERNALS /* Pointer to routine to downsample a single component */ typedef JMETHOD(void, downsample1_ptr, (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data)); /* Private subobject */ typedef struct { struct jpeg_downsampler pub; /* public fields */ /* Downsampling method pointers, one per component */ downsample1_ptr methods[MAX_COMPONENTS]; } my_downsampler; typedef my_downsampler * my_downsample_ptr; /* * Initialize for a downsampling pass. */ METHODDEF(void) start_pass_downsample (j_compress_ptr cinfo) { /* no work for now */ } /* * Expand a component horizontally from width input_cols to width output_cols, * by duplicating the rightmost samples. */ LOCAL(void) expand_right_edge (JSAMPARRAY image_data, int num_rows, JDIMENSION input_cols, JDIMENSION output_cols) { register JSAMPROW ptr; register JSAMPLE pixval; register int count; int row; int numcols = (int) (output_cols - input_cols); if (numcols > 0) { for (row = 0; row < num_rows; row++) { ptr = image_data[row] + input_cols; pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ for (count = numcols; count > 0; count--) *ptr++ = pixval; } } } /* * Do downsampling for a whole row group (all components). * * In this version we simply downsample each component independently. */ METHODDEF(void) sep_downsample (j_compress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_index, JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) { my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; int ci; jpeg_component_info * compptr; JSAMPARRAY in_ptr, out_ptr; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { in_ptr = input_buf[ci] + in_row_index; out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor); (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); } } /* * Downsample pixel values of a single component. * One row group is processed per call. * This version handles arbitrary integral sampling ratios, without smoothing. * Note that this version is not actually used for customary sampling ratios. */ METHODDEF(void) int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; JSAMPROW inptr, outptr; INT32 outvalue; h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor; v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor; numpix = h_expand * v_expand; numpix2 = numpix/2; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width, output_cols * h_expand); inrow = 0; for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; for (outcol = 0, outcol_h = 0; outcol < output_cols; outcol++, outcol_h += h_expand) { outvalue = 0; for (v = 0; v < v_expand; v++) { inptr = input_data[inrow+v] + outcol_h; for (h = 0; h < h_expand; h++) { outvalue += (INT32) GETJSAMPLE(*inptr++); } } *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); } inrow += v_expand; } } /* * Downsample pixel values of a single component. * This version handles the special case of a full-size component, * without smoothing. */ METHODDEF(void) fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { /* Copy the data */ jcopy_sample_rows(input_data, 0, output_data, 0, cinfo->max_v_samp_factor, cinfo->image_width); /* Edge-expand */ expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, compptr->width_in_blocks * DCTSIZE); } /* * Downsample pixel values of a single component. * This version handles the common case of 2:1 horizontal and 1:1 vertical, * without smoothing. * * A note about the "bias" calculations: when rounding fractional values to * integer, we do not want to always round 0.5 up to the next integer. * If we did that, we'd introduce a noticeable bias towards larger values. * Instead, this code is arranged so that 0.5 will be rounded up or down at * alternate pixel locations (a simple ordered dither pattern). */ METHODDEF(void) h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int outrow; JDIMENSION outcol; JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; register JSAMPROW inptr, outptr; register int bias; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width, output_cols * 2); for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr = input_data[outrow]; bias = 0; /* bias = 0,1,0,1,... for successive samples */ for (outcol = 0; outcol < output_cols; outcol++) { *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) + bias) >> 1); bias ^= 1; /* 0=>1, 1=>0 */ inptr += 2; } } } /* * Downsample pixel values of a single component. * This version handles the standard case of 2:1 horizontal and 2:1 vertical, * without smoothing. */ METHODDEF(void) h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int inrow, outrow; JDIMENSION outcol; JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; register JSAMPROW inptr0, inptr1, outptr; register int bias; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width, output_cols * 2); inrow = 0; for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr0 = input_data[inrow]; inptr1 = input_data[inrow+1]; bias = 1; /* bias = 1,2,1,2,... for successive samples */ for (outcol = 0; outcol < output_cols; outcol++) { *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) + bias) >> 2); bias ^= 3; /* 1=>2, 2=>1 */ inptr0 += 2; inptr1 += 2; } inrow += 2; } } #ifdef INPUT_SMOOTHING_SUPPORTED /* * Downsample pixel values of a single component. * This version handles the standard case of 2:1 horizontal and 2:1 vertical, * with smoothing. One row of context is required. */ METHODDEF(void) h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int inrow, outrow; JDIMENSION colctr; JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; INT32 membersum, neighsum, memberscale, neighscale; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, cinfo->image_width, output_cols * 2); /* We don't bother to form the individual "smoothed" input pixel values; * we can directly compute the output which is the average of the four * smoothed values. Each of the four member pixels contributes a fraction * (1-8*SF) to its own smoothed image and a fraction SF to each of the three * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final * output. The four corner-adjacent neighbor pixels contribute a fraction * SF to just one smoothed pixel, or SF/4 to the final output; while the * eight edge-adjacent neighbors contribute SF to each of two smoothed * pixels, or SF/2 overall. In order to use integer arithmetic, these * factors are scaled by 2^16 = 65536. * Also recall that SF = smoothing_factor / 1024. */ memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ inrow = 0; for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr0 = input_data[inrow]; inptr1 = input_data[inrow+1]; above_ptr = input_data[inrow-1]; below_ptr = input_data[inrow+2]; /* Special case for first column: pretend column -1 is same as column 0 */ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); neighsum += neighsum; neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); membersum = membersum * memberscale + neighsum * neighscale; *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; for (colctr = output_cols - 2; colctr > 0; colctr--) { /* sum of pixels directly mapped to this output element */ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); /* sum of edge-neighbor pixels */ neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); /* The edge-neighbors count twice as much as corner-neighbors */ neighsum += neighsum; /* Add in the corner-neighbors */ neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); /* form final output scaled up by 2^16 */ membersum = membersum * memberscale + neighsum * neighscale; /* round, descale and output it */ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; } /* Special case for last column */ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); neighsum += neighsum; neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); membersum = membersum * memberscale + neighsum * neighscale; *outptr = (JSAMPLE) ((membersum + 32768) >> 16); inrow += 2; } } /* * Downsample pixel values of a single component. * This version handles the special case of a full-size component, * with smoothing. One row of context is required. */ METHODDEF(void) fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int outrow; JDIMENSION colctr; JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; register JSAMPROW inptr, above_ptr, below_ptr, outptr; INT32 membersum, neighsum, memberscale, neighscale; int colsum, lastcolsum, nextcolsum; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, cinfo->image_width, output_cols); /* Each of the eight neighbor pixels contributes a fraction SF to the * smoothed pixel, while the main pixel contributes (1-8*SF). In order * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. * Also recall that SF = smoothing_factor / 1024. */ memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr = input_data[outrow]; above_ptr = input_data[outrow-1]; below_ptr = input_data[outrow+1]; /* Special case for first column */ colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + GETJSAMPLE(*inptr); membersum = GETJSAMPLE(*inptr++); nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(*inptr); neighsum = colsum + (colsum - membersum) + nextcolsum; membersum = membersum * memberscale + neighsum * neighscale; *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); lastcolsum = colsum; colsum = nextcolsum; for (colctr = output_cols - 2; colctr > 0; colctr--) { membersum = GETJSAMPLE(*inptr++); above_ptr++; below_ptr++; nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(*inptr); neighsum = lastcolsum + (colsum - membersum) + nextcolsum; membersum = membersum * memberscale + neighsum * neighscale; *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); lastcolsum = colsum; colsum = nextcolsum; } /* Special case for last column */ membersum = GETJSAMPLE(*inptr); neighsum = lastcolsum + (colsum - membersum) + colsum; membersum = membersum * memberscale + neighsum * neighscale; *outptr = (JSAMPLE) ((membersum + 32768) >> 16); } } #endif /* INPUT_SMOOTHING_SUPPORTED */ /* * Module initialization routine for downsampling. * Note that we must select a routine for each component. */ GLOBAL(void) jinit_downsampler (j_compress_ptr cinfo) { my_downsample_ptr downsample; int ci; jpeg_component_info * compptr; boolean smoothok = TRUE; downsample = (my_downsample_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_downsampler)); cinfo->downsample = (struct jpeg_downsampler *) downsample; downsample->pub.start_pass = start_pass_downsample; downsample->pub.downsample = sep_downsample; downsample->pub.need_context_rows = FALSE; if (cinfo->CCIR601_sampling) ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); /* Verify we can handle the sampling factors, and set up method pointers */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (compptr->h_samp_factor == cinfo->max_h_samp_factor && compptr->v_samp_factor == cinfo->max_v_samp_factor) { #ifdef INPUT_SMOOTHING_SUPPORTED if (cinfo->smoothing_factor) { downsample->methods[ci] = fullsize_smooth_downsample; downsample->pub.need_context_rows = TRUE; } else #endif downsample->methods[ci] = fullsize_downsample; } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && compptr->v_samp_factor == cinfo->max_v_samp_factor) { smoothok = FALSE; downsample->methods[ci] = h2v1_downsample; } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) { #ifdef INPUT_SMOOTHING_SUPPORTED if (cinfo->smoothing_factor) { downsample->methods[ci] = h2v2_smooth_downsample; downsample->pub.need_context_rows = TRUE; } else #endif downsample->methods[ci] = h2v2_downsample; } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 && (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) { smoothok = FALSE; downsample->methods[ci] = int_downsample; } else ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); } #ifdef INPUT_SMOOTHING_SUPPORTED if (cinfo->smoothing_factor && !smoothok) TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); #endif } /********* End of inlined file: jcsample.c *********/ /********* Start of inlined file: jctrans.c *********/ #define JPEG_INTERNALS /* Forward declarations */ LOCAL(void) transencode_master_selection JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)); LOCAL(void) transencode_coef_controller JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)); /* * Compression initialization for writing raw-coefficient data. * Before calling this, all parameters and a data destination must be set up. * Call jpeg_finish_compress() to actually write the data. * * The number of passed virtual arrays must match cinfo->num_components. * Note that the virtual arrays need not be filled or even realized at * the time write_coefficients is called; indeed, if the virtual arrays * were requested from this compression object's memory manager, they * typically will be realized during this routine and filled afterwards. */ GLOBAL(void) jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays) { if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Mark all tables to be written */ jpeg_suppress_tables(cinfo, FALSE); /* (Re)initialize error mgr and destination modules */ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); (*cinfo->dest->init_destination) (cinfo); /* Perform master selection of active modules */ transencode_master_selection(cinfo, coef_arrays); /* Wait for jpeg_finish_compress() call */ cinfo->next_scanline = 0; /* so jpeg_write_marker works */ cinfo->global_state = CSTATE_WRCOEFS; } /* * Initialize the compression object with default parameters, * then copy from the source object all parameters needed for lossless * transcoding. Parameters that can be varied without loss (such as * scan script and Huffman optimization) are left in their default states. */ GLOBAL(void) jpeg_copy_critical_parameters (j_decompress_ptr srcinfo, j_compress_ptr dstinfo) { JQUANT_TBL ** qtblptr; jpeg_component_info *incomp, *outcomp; JQUANT_TBL *c_quant, *slot_quant; int tblno, ci, coefi; /* Safety check to ensure start_compress not called yet. */ if (dstinfo->global_state != CSTATE_START) ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state); /* Copy fundamental image dimensions */ dstinfo->image_width = srcinfo->image_width; dstinfo->image_height = srcinfo->image_height; dstinfo->input_components = srcinfo->num_components; dstinfo->in_color_space = srcinfo->jpeg_color_space; /* Initialize all parameters to default values */ jpeg_set_defaults(dstinfo); /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB. * Fix it to get the right header markers for the image colorspace. */ jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space); dstinfo->data_precision = srcinfo->data_precision; dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling; /* Copy the source's quantization tables. */ for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { if (srcinfo->quant_tbl_ptrs[tblno] != NULL) { qtblptr = & dstinfo->quant_tbl_ptrs[tblno]; if (*qtblptr == NULL) *qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo); MEMCOPY((*qtblptr)->quantval, srcinfo->quant_tbl_ptrs[tblno]->quantval, SIZEOF((*qtblptr)->quantval)); (*qtblptr)->sent_table = FALSE; } } /* Copy the source's per-component info. * Note we assume jpeg_set_defaults has allocated the dest comp_info array. */ dstinfo->num_components = srcinfo->num_components; if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS) ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components, MAX_COMPONENTS); for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info; ci < dstinfo->num_components; ci++, incomp++, outcomp++) { outcomp->component_id = incomp->component_id; outcomp->h_samp_factor = incomp->h_samp_factor; outcomp->v_samp_factor = incomp->v_samp_factor; outcomp->quant_tbl_no = incomp->quant_tbl_no; /* Make sure saved quantization table for component matches the qtable * slot. If not, the input file re-used this qtable slot. * IJG encoder currently cannot duplicate this. */ tblno = outcomp->quant_tbl_no; if (tblno < 0 || tblno >= NUM_QUANT_TBLS || srcinfo->quant_tbl_ptrs[tblno] == NULL) ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno); slot_quant = srcinfo->quant_tbl_ptrs[tblno]; c_quant = incomp->quant_table; if (c_quant != NULL) { for (coefi = 0; coefi < DCTSIZE2; coefi++) { if (c_quant->quantval[coefi] != slot_quant->quantval[coefi]) ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno); } } /* Note: we do not copy the source's Huffman table assignments; * instead we rely on jpeg_set_colorspace to have made a suitable choice. */ } /* Also copy JFIF version and resolution information, if available. * Strictly speaking this isn't "critical" info, but it's nearly * always appropriate to copy it if available. In particular, * if the application chooses to copy JFIF 1.02 extension markers from * the source file, we need to copy the version to make sure we don't * emit a file that has 1.02 extensions but a claimed version of 1.01. * We will *not*, however, copy version info from mislabeled "2.01" files. */ if (srcinfo->saw_JFIF_marker) { if (srcinfo->JFIF_major_version == 1) { dstinfo->JFIF_major_version = srcinfo->JFIF_major_version; dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version; } dstinfo->density_unit = srcinfo->density_unit; dstinfo->X_density = srcinfo->X_density; dstinfo->Y_density = srcinfo->Y_density; } } /* * Master selection of compression modules for transcoding. * This substitutes for jcinit.c's initialization of the full compressor. */ LOCAL(void) transencode_master_selection (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays) { /* Although we don't actually use input_components for transcoding, * jcmaster.c's initial_setup will complain if input_components is 0. */ cinfo->input_components = 1; /* Initialize master control (includes parameter checking/processing) */ jinit_c_master_control(cinfo, TRUE /* transcode only */); /* Entropy encoding: either Huffman or arithmetic coding. */ if (cinfo->arith_code) { ERREXIT(cinfo, JERR_ARITH_NOTIMPL); } else { if (cinfo->progressive_mode) { #ifdef C_PROGRESSIVE_SUPPORTED jinit_phuff_encoder(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else jinit_huff_encoder(cinfo); } /* We need a special coefficient buffer controller. */ transencode_coef_controller(cinfo, coef_arrays); jinit_marker_writer(cinfo); /* We can now tell the memory manager to allocate virtual arrays. */ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); /* Write the datastream header (SOI, JFIF) immediately. * Frame and scan headers are postponed till later. * This lets application insert special markers after the SOI. */ (*cinfo->marker->write_file_header) (cinfo); } /* * The rest of this file is a special implementation of the coefficient * buffer controller. This is similar to jccoefct.c, but it handles only * output from presupplied virtual arrays. Furthermore, we generate any * dummy padding blocks on-the-fly rather than expecting them to be present * in the arrays. */ /* Private buffer controller object */ typedef struct { struct jpeg_c_coef_controller pub; /* public fields */ JDIMENSION iMCU_row_num; /* iMCU row # within image */ JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ int MCU_vert_offset; /* counts MCU rows within iMCU row */ int MCU_rows_per_iMCU_row; /* number of such rows needed */ /* Virtual block array for each component. */ jvirt_barray_ptr * whole_image; /* Workspace for constructing dummy blocks at right/bottom edges. */ JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU]; } my_coef_controller2; typedef my_coef_controller2 * my_coef_ptr2; LOCAL(void) start_iMCU_row2 (j_compress_ptr cinfo) /* Reset within-iMCU-row counters for a new row */ { my_coef_ptr2 coef = (my_coef_ptr2) cinfo->coef; /* In an interleaved scan, an MCU row is the same as an iMCU row. * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. * But at the bottom of the image, process only what's left. */ if (cinfo->comps_in_scan > 1) { coef->MCU_rows_per_iMCU_row = 1; } else { if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; else coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; } coef->mcu_ctr = 0; coef->MCU_vert_offset = 0; } /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_coef2 (j_compress_ptr cinfo, J_BUF_MODE pass_mode) { my_coef_ptr2 coef = (my_coef_ptr2) cinfo->coef; if (pass_mode != JBUF_CRANK_DEST) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->iMCU_row_num = 0; start_iMCU_row2(cinfo); } /* * Process some data. * We process the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the scan. * The data is obtained from the virtual arrays and fed to the entropy coder. * Returns TRUE if the iMCU row is completed, FALSE if suspended. * * NB: input_buf is ignored; it is likely to be a NULL pointer. */ METHODDEF(boolean) compress_output2 (j_compress_ptr cinfo, JSAMPIMAGE input_buf) { my_coef_ptr2 coef = (my_coef_ptr2) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; int blkn, ci, xindex, yindex, yoffset, blockcnt; JDIMENSION start_col; JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; JBLOCKROW buffer_ptr; jpeg_component_info *compptr; /* Align the virtual buffers for the components used in this scan. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; buffer[ci] = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], coef->iMCU_row_num * compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, FALSE); } /* Loop to process one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) { /* Construct list of pointers to DCT blocks belonging to this MCU */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; start_col = MCU_col_num * compptr->MCU_width; blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width : compptr->last_col_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { if (coef->iMCU_row_num < last_iMCU_row || yindex+yoffset < compptr->last_row_height) { /* Fill in pointers to real blocks in this row */ buffer_ptr = buffer[ci][yindex+yoffset] + start_col; for (xindex = 0; xindex < blockcnt; xindex++) MCU_buffer[blkn++] = buffer_ptr++; } else { /* At bottom of image, need a whole row of dummy blocks */ xindex = 0; } /* Fill in any dummy blocks needed in this row. * Dummy blocks are filled in the same way as in jccoefct.c: * all zeroes in the AC entries, DC entries equal to previous * block's DC value. The init routine has already zeroed the * AC entries, so we need only set the DC entries correctly. */ for (; xindex < compptr->MCU_width; xindex++) { MCU_buffer[blkn] = coef->dummy_buffer[blkn]; MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0]; blkn++; } } } /* Try to write the MCU. */ if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->mcu_ctr = MCU_col_num; return FALSE; } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->mcu_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ coef->iMCU_row_num++; start_iMCU_row2(cinfo); return TRUE; } /* * Initialize coefficient buffer controller. * * Each passed coefficient array must be the right size for that * coefficient: width_in_blocks wide and height_in_blocks high, * with unitheight at least v_samp_factor. */ LOCAL(void) transencode_coef_controller (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays) { my_coef_ptr2 coef; JBLOCKROW buffer; int i; coef = (my_coef_ptr2) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller2)); cinfo->coef = (struct jpeg_c_coef_controller *) coef; coef->pub.start_pass = start_pass_coef2; coef->pub.compress_data = compress_output2; /* Save pointer to virtual arrays */ coef->whole_image = coef_arrays; /* Allocate and pre-zero space for dummy DCT blocks. */ buffer = (JBLOCKROW) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { coef->dummy_buffer[i] = buffer + i; } } /********* End of inlined file: jctrans.c *********/ /********* Start of inlined file: jdapistd.c *********/ #define JPEG_INTERNALS /* Forward declarations */ LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo)); /* * Decompression initialization. * jpeg_read_header must be completed before calling this. * * If a multipass operating mode was selected, this will do all but the * last pass, and thus may take a great deal of time. * * Returns FALSE if suspended. The return value need be inspected only if * a suspending data source is used. */ GLOBAL(boolean) jpeg_start_decompress (j_decompress_ptr cinfo) { if (cinfo->global_state == DSTATE_READY) { /* First call: initialize master control, select active modules */ jinit_master_decompress(cinfo); if (cinfo->buffered_image) { /* No more work here; expecting jpeg_start_output next */ cinfo->global_state = DSTATE_BUFIMAGE; return TRUE; } cinfo->global_state = DSTATE_PRELOAD; } if (cinfo->global_state == DSTATE_PRELOAD) { /* If file has multiple scans, absorb them all into the coef buffer */ if (cinfo->inputctl->has_multiple_scans) { #ifdef D_MULTISCAN_FILES_SUPPORTED for (;;) { int retcode; /* Call progress monitor hook if present */ if (cinfo->progress != NULL) (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); /* Absorb some more input */ retcode = (*cinfo->inputctl->consume_input) (cinfo); if (retcode == JPEG_SUSPENDED) return FALSE; if (retcode == JPEG_REACHED_EOI) break; /* Advance progress counter if appropriate */ if (cinfo->progress != NULL && (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { /* jdmaster underestimated number of scans; ratchet up one scan */ cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; } } } #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif /* D_MULTISCAN_FILES_SUPPORTED */ } cinfo->output_scan_number = cinfo->input_scan_number; } else if (cinfo->global_state != DSTATE_PRESCAN) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Perform any dummy output passes, and set up for the final pass */ return output_pass_setup(cinfo); } /* * Set up for an output pass, and perform any dummy pass(es) needed. * Common subroutine for jpeg_start_decompress and jpeg_start_output. * Entry: global_state = DSTATE_PRESCAN only if previously suspended. * Exit: If done, returns TRUE and sets global_state for proper output mode. * If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN. */ LOCAL(boolean) output_pass_setup (j_decompress_ptr cinfo) { if (cinfo->global_state != DSTATE_PRESCAN) { /* First call: do pass setup */ (*cinfo->master->prepare_for_output_pass) (cinfo); cinfo->output_scanline = 0; cinfo->global_state = DSTATE_PRESCAN; } /* Loop over any required dummy passes */ while (cinfo->master->is_dummy_pass) { #ifdef QUANT_2PASS_SUPPORTED /* Crank through the dummy pass */ while (cinfo->output_scanline < cinfo->output_height) { JDIMENSION last_scanline; /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long) cinfo->output_scanline; cinfo->progress->pass_limit = (long) cinfo->output_height; (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); } /* Process some data */ last_scanline = cinfo->output_scanline; (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL, &cinfo->output_scanline, (JDIMENSION) 0); if (cinfo->output_scanline == last_scanline) return FALSE; /* No progress made, must suspend */ } /* Finish up dummy pass, and set up for another one */ (*cinfo->master->finish_output_pass) (cinfo); (*cinfo->master->prepare_for_output_pass) (cinfo); cinfo->output_scanline = 0; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif /* QUANT_2PASS_SUPPORTED */ } /* Ready for application to drive output pass through * jpeg_read_scanlines or jpeg_read_raw_data. */ cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING; return TRUE; } /* * Read some scanlines of data from the JPEG decompressor. * * The return value will be the number of lines actually read. * This may be less than the number requested in several cases, * including bottom of image, data source suspension, and operating * modes that emit multiple scanlines at a time. * * Note: we warn about excess calls to jpeg_read_scanlines() since * this likely signals an application programmer error. However, * an oversize buffer (max_lines > scanlines remaining) is not an error. */ GLOBAL(JDIMENSION) jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION max_lines) { JDIMENSION row_ctr; if (cinfo->global_state != DSTATE_SCANNING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->output_scanline >= cinfo->output_height) { WARNMS(cinfo, JWRN_TOO_MUCH_DATA); return 0; } /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long) cinfo->output_scanline; cinfo->progress->pass_limit = (long) cinfo->output_height; (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); } /* Process some data */ row_ctr = 0; (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines); cinfo->output_scanline += row_ctr; return row_ctr; } /* * Alternate entry point to read raw data. * Processes exactly one iMCU row per call, unless suspended. */ GLOBAL(JDIMENSION) jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data, JDIMENSION max_lines) { JDIMENSION lines_per_iMCU_row; if (cinfo->global_state != DSTATE_RAW_OK) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->output_scanline >= cinfo->output_height) { WARNMS(cinfo, JWRN_TOO_MUCH_DATA); return 0; } /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long) cinfo->output_scanline; cinfo->progress->pass_limit = (long) cinfo->output_height; (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); } /* Verify that at least one iMCU row can be returned. */ lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size; if (max_lines < lines_per_iMCU_row) ERREXIT(cinfo, JERR_BUFFER_SIZE); /* Decompress directly into user's buffer. */ if (! (*cinfo->coef->decompress_data) (cinfo, data)) return 0; /* suspension forced, can do nothing more */ /* OK, we processed one iMCU row. */ cinfo->output_scanline += lines_per_iMCU_row; return lines_per_iMCU_row; } /* Additional entry points for buffered-image mode. */ #ifdef D_MULTISCAN_FILES_SUPPORTED /* * Initialize for an output pass in buffered-image mode. */ GLOBAL(boolean) jpeg_start_output (j_decompress_ptr cinfo, int scan_number) { if (cinfo->global_state != DSTATE_BUFIMAGE && cinfo->global_state != DSTATE_PRESCAN) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Limit scan number to valid range */ if (scan_number <= 0) scan_number = 1; if (cinfo->inputctl->eoi_reached && scan_number > cinfo->input_scan_number) scan_number = cinfo->input_scan_number; cinfo->output_scan_number = scan_number; /* Perform any dummy output passes, and set up for the real pass */ return output_pass_setup(cinfo); } /* * Finish up after an output pass in buffered-image mode. * * Returns FALSE if suspended. The return value need be inspected only if * a suspending data source is used. */ GLOBAL(boolean) jpeg_finish_output (j_decompress_ptr cinfo) { if ((cinfo->global_state == DSTATE_SCANNING || cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) { /* Terminate this pass. */ /* We do not require the whole pass to have been completed. */ (*cinfo->master->finish_output_pass) (cinfo); cinfo->global_state = DSTATE_BUFPOST; } else if (cinfo->global_state != DSTATE_BUFPOST) { /* BUFPOST = repeat call after a suspension, anything else is error */ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); } /* Read markers looking for SOS or EOI */ while (cinfo->input_scan_number <= cinfo->output_scan_number && ! cinfo->inputctl->eoi_reached) { if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) return FALSE; /* Suspend, come back later */ } cinfo->global_state = DSTATE_BUFIMAGE; return TRUE; } #endif /* D_MULTISCAN_FILES_SUPPORTED */ /********* End of inlined file: jdapistd.c *********/ /********* Start of inlined file: jdapimin.c *********/ #define JPEG_INTERNALS /* * Initialization of a JPEG decompression object. * The error manager must already be set up (in case memory manager fails). */ GLOBAL(void) jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize) { int i; /* Guard against version mismatches between library and caller. */ cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ if (version != JPEG_LIB_VERSION) ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); if (structsize != SIZEOF(struct jpeg_decompress_struct)) ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, (int) SIZEOF(struct jpeg_decompress_struct), (int) structsize); /* For debugging purposes, we zero the whole master structure. * But the application has already set the err pointer, and may have set * client_data, so we have to save and restore those fields. * Note: if application hasn't set client_data, tools like Purify may * complain here. */ { struct jpeg_error_mgr * err = cinfo->err; void * client_data = cinfo->client_data; /* ignore Purify complaint here */ MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct)); cinfo->err = err; cinfo->client_data = client_data; } cinfo->is_decompressor = TRUE; /* Initialize a memory manager instance for this object */ jinit_memory_mgr((j_common_ptr) cinfo); /* Zero out pointers to permanent structures. */ cinfo->progress = NULL; cinfo->src = NULL; for (i = 0; i < NUM_QUANT_TBLS; i++) cinfo->quant_tbl_ptrs[i] = NULL; for (i = 0; i < NUM_HUFF_TBLS; i++) { cinfo->dc_huff_tbl_ptrs[i] = NULL; cinfo->ac_huff_tbl_ptrs[i] = NULL; } /* Initialize marker processor so application can override methods * for COM, APPn markers before calling jpeg_read_header. */ cinfo->marker_list = NULL; jinit_marker_reader(cinfo); /* And initialize the overall input controller. */ jinit_input_controller(cinfo); /* OK, I'm ready */ cinfo->global_state = DSTATE_START; } /* * Destruction of a JPEG decompression object */ GLOBAL(void) jpeg_destroy_decompress (j_decompress_ptr cinfo) { jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ } /* * Abort processing of a JPEG decompression operation, * but don't destroy the object itself. */ GLOBAL(void) jpeg_abort_decompress (j_decompress_ptr cinfo) { jpeg_abort((j_common_ptr) cinfo); /* use common routine */ } /* * Set default decompression parameters. */ LOCAL(void) default_decompress_parms (j_decompress_ptr cinfo) { /* Guess the input colorspace, and set output colorspace accordingly. */ /* (Wish JPEG committee had provided a real way to specify this...) */ /* Note application may override our guesses. */ switch (cinfo->num_components) { case 1: cinfo->jpeg_color_space = JCS_GRAYSCALE; cinfo->out_color_space = JCS_GRAYSCALE; break; case 3: if (cinfo->saw_JFIF_marker) { cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */ } else if (cinfo->saw_Adobe_marker) { switch (cinfo->Adobe_transform) { case 0: cinfo->jpeg_color_space = JCS_RGB; break; case 1: cinfo->jpeg_color_space = JCS_YCbCr; break; default: WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ break; } } else { /* Saw no special markers, try to guess from the component IDs */ int cid0 = cinfo->comp_info[0].component_id; int cid1 = cinfo->comp_info[1].component_id; int cid2 = cinfo->comp_info[2].component_id; if (cid0 == 1 && cid1 == 2 && cid2 == 3) cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */ else if (cid0 == 82 && cid1 == 71 && cid2 == 66) cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */ else { TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2); cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ } } /* Always guess RGB is proper output colorspace. */ cinfo->out_color_space = JCS_RGB; break; case 4: if (cinfo->saw_Adobe_marker) { switch (cinfo->Adobe_transform) { case 0: cinfo->jpeg_color_space = JCS_CMYK; break; case 2: cinfo->jpeg_color_space = JCS_YCCK; break; default: WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */ break; } } else { /* No special markers, assume straight CMYK. */ cinfo->jpeg_color_space = JCS_CMYK; } cinfo->out_color_space = JCS_CMYK; break; default: cinfo->jpeg_color_space = JCS_UNKNOWN; cinfo->out_color_space = JCS_UNKNOWN; break; } /* Set defaults for other decompression parameters. */ cinfo->scale_num = 1; /* 1:1 scaling */ cinfo->scale_denom = 1; cinfo->output_gamma = 1.0; cinfo->buffered_image = FALSE; cinfo->raw_data_out = FALSE; cinfo->dct_method = JDCT_DEFAULT; cinfo->do_fancy_upsampling = TRUE; cinfo->do_block_smoothing = TRUE; cinfo->quantize_colors = FALSE; /* We set these in case application only sets quantize_colors. */ cinfo->dither_mode = JDITHER_FS; #ifdef QUANT_2PASS_SUPPORTED cinfo->two_pass_quantize = TRUE; #else cinfo->two_pass_quantize = FALSE; #endif cinfo->desired_number_of_colors = 256; cinfo->colormap = NULL; /* Initialize for no mode change in buffered-image mode. */ cinfo->enable_1pass_quant = FALSE; cinfo->enable_external_quant = FALSE; cinfo->enable_2pass_quant = FALSE; } /* * Decompression startup: read start of JPEG datastream to see what's there. * Need only initialize JPEG object and supply a data source before calling. * * This routine will read as far as the first SOS marker (ie, actual start of * compressed data), and will save all tables and parameters in the JPEG * object. It will also initialize the decompression parameters to default * values, and finally return JPEG_HEADER_OK. On return, the application may * adjust the decompression parameters and then call jpeg_start_decompress. * (Or, if the application only wanted to determine the image parameters, * the data need not be decompressed. In that case, call jpeg_abort or * jpeg_destroy to release any temporary space.) * If an abbreviated (tables only) datastream is presented, the routine will * return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then * re-use the JPEG object to read the abbreviated image datastream(s). * It is unnecessary (but OK) to call jpeg_abort in this case. * The JPEG_SUSPENDED return code only occurs if the data source module * requests suspension of the decompressor. In this case the application * should load more source data and then re-call jpeg_read_header to resume * processing. * If a non-suspending data source is used and require_image is TRUE, then the * return code need not be inspected since only JPEG_HEADER_OK is possible. * * This routine is now just a front end to jpeg_consume_input, with some * extra error checking. */ GLOBAL(int) jpeg_read_header (j_decompress_ptr cinfo, boolean require_image) { int retcode; if (cinfo->global_state != DSTATE_START && cinfo->global_state != DSTATE_INHEADER) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); retcode = jpeg_consume_input(cinfo); switch (retcode) { case JPEG_REACHED_SOS: retcode = JPEG_HEADER_OK; break; case JPEG_REACHED_EOI: if (require_image) /* Complain if application wanted an image */ ERREXIT(cinfo, JERR_NO_IMAGE); /* Reset to start state; it would be safer to require the application to * call jpeg_abort, but we can't change it now for compatibility reasons. * A side effect is to free any temporary memory (there shouldn't be any). */ jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */ retcode = JPEG_HEADER_TABLES_ONLY; break; case JPEG_SUSPENDED: /* no work */ break; } return retcode; } /* * Consume data in advance of what the decompressor requires. * This can be called at any time once the decompressor object has * been created and a data source has been set up. * * This routine is essentially a state machine that handles a couple * of critical state-transition actions, namely initial setup and * transition from header scanning to ready-for-start_decompress. * All the actual input is done via the input controller's consume_input * method. */ GLOBAL(int) jpeg_consume_input (j_decompress_ptr cinfo) { int retcode = JPEG_SUSPENDED; /* NB: every possible DSTATE value should be listed in this switch */ switch (cinfo->global_state) { case DSTATE_START: /* Start-of-datastream actions: reset appropriate modules */ (*cinfo->inputctl->reset_input_controller) (cinfo); /* Initialize application's data source module */ (*cinfo->src->init_source) (cinfo); cinfo->global_state = DSTATE_INHEADER; /*FALLTHROUGH*/ case DSTATE_INHEADER: retcode = (*cinfo->inputctl->consume_input) (cinfo); if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */ /* Set up default parameters based on header data */ default_decompress_parms(cinfo); /* Set global state: ready for start_decompress */ cinfo->global_state = DSTATE_READY; } break; case DSTATE_READY: /* Can't advance past first SOS until start_decompress is called */ retcode = JPEG_REACHED_SOS; break; case DSTATE_PRELOAD: case DSTATE_PRESCAN: case DSTATE_SCANNING: case DSTATE_RAW_OK: case DSTATE_BUFIMAGE: case DSTATE_BUFPOST: case DSTATE_STOPPING: retcode = (*cinfo->inputctl->consume_input) (cinfo); break; default: ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); } return retcode; } /* * Have we finished reading the input file? */ GLOBAL(boolean) jpeg_input_complete (j_decompress_ptr cinfo) { /* Check for valid jpeg object */ if (cinfo->global_state < DSTATE_START || cinfo->global_state > DSTATE_STOPPING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); return cinfo->inputctl->eoi_reached; } /* * Is there more than one scan? */ GLOBAL(boolean) jpeg_has_multiple_scans (j_decompress_ptr cinfo) { /* Only valid after jpeg_read_header completes */ if (cinfo->global_state < DSTATE_READY || cinfo->global_state > DSTATE_STOPPING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); return cinfo->inputctl->has_multiple_scans; } /* * Finish JPEG decompression. * * This will normally just verify the file trailer and release temp storage. * * Returns FALSE if suspended. The return value need be inspected only if * a suspending data source is used. */ GLOBAL(boolean) jpeg_finish_decompress (j_decompress_ptr cinfo) { if ((cinfo->global_state == DSTATE_SCANNING || cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) { /* Terminate final pass of non-buffered mode */ if (cinfo->output_scanline < cinfo->output_height) ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); (*cinfo->master->finish_output_pass) (cinfo); cinfo->global_state = DSTATE_STOPPING; } else if (cinfo->global_state == DSTATE_BUFIMAGE) { /* Finishing after a buffered-image operation */ cinfo->global_state = DSTATE_STOPPING; } else if (cinfo->global_state != DSTATE_STOPPING) { /* STOPPING = repeat call after a suspension, anything else is error */ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); } /* Read until EOI */ while (! cinfo->inputctl->eoi_reached) { if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) return FALSE; /* Suspend, come back later */ } /* Do final cleanup */ (*cinfo->src->term_source) (cinfo); /* We can use jpeg_abort to release memory and reset global_state */ jpeg_abort((j_common_ptr) cinfo); return TRUE; } /********* End of inlined file: jdapimin.c *********/ /********* Start of inlined file: jdatasrc.c *********/ /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ /********* Start of inlined file: jerror.h *********/ /* * To define the enum list of message codes, include this file without * defining macro JMESSAGE. To create a message string table, include it * again with a suitable JMESSAGE definition (see jerror.c for an example). */ #ifndef JMESSAGE #ifndef JERROR_H /* First time through, define the enum list */ #define JMAKE_ENUM_LIST #else /* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */ #define JMESSAGE(code,string) #endif /* JERROR_H */ #endif /* JMESSAGE */ #ifdef JMAKE_ENUM_LIST typedef enum { #define JMESSAGE(code,string) code , #endif /* JMAKE_ENUM_LIST */ JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */ /* For maintenance convenience, list is alphabetical by message code name */ JMESSAGE(JERR_ARITH_NOTIMPL, "Sorry, there are legal restrictions on arithmetic coding") JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix") JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix") JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode") JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS") JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range") JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported") JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition") JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace") JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace") JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length") JMESSAGE(JERR_BAD_LIB_VERSION, "Wrong JPEG library version: library is %d, caller expects %d") JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan") JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d") JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d") JMESSAGE(JERR_BAD_PROGRESSION, "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d") JMESSAGE(JERR_BAD_PROG_SCRIPT, "Invalid progressive parameters at scan script entry %d") JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors") JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d") JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d") JMESSAGE(JERR_BAD_STRUCT_SIZE, "JPEG parameter struct mismatch: library thinks size is %u, caller expects %u") JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access") JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small") JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here") JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet") JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d") JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request") JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d") JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x") JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d") JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d") JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)") JMESSAGE(JERR_EMS_READ, "Read from EMS failed") JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed") JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan") JMESSAGE(JERR_FILE_READ, "Input file read error") JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?") JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet") JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow") JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry") JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels") JMESSAGE(JERR_INPUT_EMPTY, "Empty input file") JMESSAGE(JERR_INPUT_EOF, "Premature end of input file") JMESSAGE(JERR_MISMATCHED_QUANT_TABLE, "Cannot transcode due to multiple use of quantization table %d") JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data") JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change") JMESSAGE(JERR_NOTIMPL, "Not implemented yet") JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time") JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported") JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined") JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image") JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined") JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x") JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)") JMESSAGE(JERR_QUANT_COMPONENTS, "Cannot quantize more than %d color components") JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors") JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors") JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers") JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker") JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x") JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers") JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF") JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s") JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file") JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file") JMESSAGE(JERR_TFILE_WRITE, "Write failed on temporary file --- out of disk space?") JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines") JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x") JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up") JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation") JMESSAGE(JERR_XMS_READ, "Read from XMS failed") JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed") JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT) JMESSAGE(JMSG_VERSION, JVERSION) JMESSAGE(JTRC_16BIT_TABLES, "Caution: quantization tables are too coarse for baseline JPEG") JMESSAGE(JTRC_ADOBE, "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d") JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u") JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u") JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x") JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x") JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d") JMESSAGE(JTRC_DRI, "Define Restart Interval %u") JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u") JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u") JMESSAGE(JTRC_EOI, "End Of Image") JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d") JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d") JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE, "Warning: thumbnail image size does not match data length %u") JMESSAGE(JTRC_JFIF_EXTENSION, "JFIF extension marker: type 0x%02x, length %u") JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image") JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u") JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x") JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u") JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors") JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors") JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization") JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d") JMESSAGE(JTRC_RST, "RST%d") JMESSAGE(JTRC_SMOOTH_NOTIMPL, "Smoothing not supported with nonstandard sampling ratios") JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d") JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d") JMESSAGE(JTRC_SOI, "Start of Image") JMESSAGE(JTRC_SOS, "Start Of Scan: %d components") JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d") JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d") JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s") JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s") JMESSAGE(JTRC_THUMB_JPEG, "JFIF extension marker: JPEG-compressed thumbnail image, length %u") JMESSAGE(JTRC_THUMB_PALETTE, "JFIF extension marker: palette thumbnail image, length %u") JMESSAGE(JTRC_THUMB_RGB, "JFIF extension marker: RGB thumbnail image, length %u") JMESSAGE(JTRC_UNKNOWN_IDS, "Unrecognized component IDs %d %d %d, assuming YCbCr") JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u") JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u") JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d") JMESSAGE(JWRN_BOGUS_PROGRESSION, "Inconsistent progression sequence for component %d coefficient %d") JMESSAGE(JWRN_EXTRANEOUS_DATA, "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x") JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment") JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code") JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d") JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file") JMESSAGE(JWRN_MUST_RESYNC, "Corrupt JPEG data: found marker 0x%02x instead of RST%d") JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG") JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines") #ifdef JMAKE_ENUM_LIST JMSG_LASTMSGCODE } J_MESSAGE_CODE; #undef JMAKE_ENUM_LIST #endif /* JMAKE_ENUM_LIST */ /* Zap JMESSAGE macro so that future re-inclusions do nothing by default */ #undef JMESSAGE #ifndef JERROR_H #define JERROR_H /* Macros to simplify using the error and trace message stuff */ /* The first parameter is either type of cinfo pointer */ /* Fatal errors (print message and exit) */ #define ERREXIT(cinfo,code) \ ((cinfo)->err->msg_code = (code), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXIT1(cinfo,code,p1) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXIT2(cinfo,code,p1,p2) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXIT3(cinfo,code,p1,p2,p3) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (cinfo)->err->msg_parm.i[2] = (p3), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXIT4(cinfo,code,p1,p2,p3,p4) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (cinfo)->err->msg_parm.i[2] = (p3), \ (cinfo)->err->msg_parm.i[3] = (p4), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXITS(cinfo,code,str) \ ((cinfo)->err->msg_code = (code), \ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define MAKESTMT(stuff) do { stuff } while (0) /* Nonfatal errors (we can keep going, but the data is probably corrupt) */ #define WARNMS(cinfo,code) \ ((cinfo)->err->msg_code = (code), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) #define WARNMS1(cinfo,code,p1) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) #define WARNMS2(cinfo,code,p1,p2) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) /* Informational/debugging messages */ #define TRACEMS(cinfo,lvl,code) \ ((cinfo)->err->msg_code = (code), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) #define TRACEMS1(cinfo,lvl,code,p1) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) #define TRACEMS2(cinfo,lvl,code,p1,p2) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) #define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) #define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) #define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ _mp[4] = (p5); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) #define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) #define TRACEMSS(cinfo,lvl,code,str) \ ((cinfo)->err->msg_code = (code), \ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) #endif /* JERROR_H */ /********* End of inlined file: jerror.h *********/ /* Expanded data source object for stdio input */ typedef struct { struct jpeg_source_mgr pub; /* public fields */ FILE * infile; /* source stream */ JOCTET * buffer; /* start of buffer */ boolean start_of_file; /* have we gotten any data yet? */ } my_source_mgr; typedef my_source_mgr * my_src_ptr; #define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */ /* * Initialize source --- called by jpeg_read_header * before any data is actually read. */ METHODDEF(void) init_source (j_decompress_ptr cinfo) { my_src_ptr src = (my_src_ptr) cinfo->src; /* We reset the empty-input-file flag for each image, * but we don't clear the input buffer. * This is correct behavior for reading a series of images from one source. */ src->start_of_file = TRUE; } /* * Fill the input buffer --- called whenever buffer is emptied. * * In typical applications, this should read fresh data into the buffer * (ignoring the current state of next_input_byte & bytes_in_buffer), * reset the pointer & count to the start of the buffer, and return TRUE * indicating that the buffer has been reloaded. It is not necessary to * fill the buffer entirely, only to obtain at least one more byte. * * There is no such thing as an EOF return. If the end of the file has been * reached, the routine has a choice of ERREXIT() or inserting fake data into * the buffer. In most cases, generating a warning message and inserting a * fake EOI marker is the best course of action --- this will allow the * decompressor to output however much of the image is there. However, * the resulting error message is misleading if the real problem is an empty * input file, so we handle that case specially. * * In applications that need to be able to suspend compression due to input * not being available yet, a FALSE return indicates that no more data can be * obtained right now, but more may be forthcoming later. In this situation, * the decompressor will return to its caller (with an indication of the * number of scanlines it has read, if any). The application should resume * decompression after it has loaded more data into the input buffer. Note * that there are substantial restrictions on the use of suspension --- see * the documentation. * * When suspending, the decompressor will back up to a convenient restart point * (typically the start of the current MCU). next_input_byte & bytes_in_buffer * indicate where the restart point will be if the current call returns FALSE. * Data beyond this point must be rescanned after resumption, so move it to * the front of the buffer rather than discarding it. */ METHODDEF(boolean) fill_input_buffer (j_decompress_ptr cinfo) { my_src_ptr src = (my_src_ptr) cinfo->src; size_t nbytes; nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE); if (nbytes <= 0) { if (src->start_of_file) /* Treat empty input file as fatal error */ ERREXIT(cinfo, JERR_INPUT_EMPTY); WARNMS(cinfo, JWRN_JPEG_EOF); /* Insert a fake EOI marker */ src->buffer[0] = (JOCTET) 0xFF; src->buffer[1] = (JOCTET) JPEG_EOI; nbytes = 2; } src->pub.next_input_byte = src->buffer; src->pub.bytes_in_buffer = nbytes; src->start_of_file = FALSE; return TRUE; } /* * Skip data --- used to skip over a potentially large amount of * uninteresting data (such as an APPn marker). * * Writers of suspendable-input applications must note that skip_input_data * is not granted the right to give a suspension return. If the skip extends * beyond the data currently in the buffer, the buffer can be marked empty so * that the next read will cause a fill_input_buffer call that can suspend. * Arranging for additional bytes to be discarded before reloading the input * buffer is the application writer's problem. */ METHODDEF(void) skip_input_data (j_decompress_ptr cinfo, long num_bytes) { my_src_ptr src = (my_src_ptr) cinfo->src; /* Just a dumb implementation for now. Could use fseek() except * it doesn't work on pipes. Not clear that being smart is worth * any trouble anyway --- large skips are infrequent. */ if (num_bytes > 0) { while (num_bytes > (long) src->pub.bytes_in_buffer) { num_bytes -= (long) src->pub.bytes_in_buffer; (void) fill_input_buffer(cinfo); /* note we assume that fill_input_buffer will never return FALSE, * so suspension need not be handled. */ } src->pub.next_input_byte += (size_t) num_bytes; src->pub.bytes_in_buffer -= (size_t) num_bytes; } } /* * An additional method that can be provided by data source modules is the * resync_to_restart method for error recovery in the presence of RST markers. * For the moment, this source module just uses the default resync method * provided by the JPEG library. That method assumes that no backtracking * is possible. */ /* * Terminate source --- called by jpeg_finish_decompress * after all data has been read. Often a no-op. * * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding * application must deal with any cleanup that should happen even * for error exit. */ METHODDEF(void) term_source (j_decompress_ptr cinfo) { /* no work necessary here */ } /* * Prepare for input from a stdio stream. * The caller must have already opened the stream, and is responsible * for closing it after finishing decompression. */ GLOBAL(void) jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile) { my_src_ptr src; /* The source object and input buffer are made permanent so that a series * of JPEG images can be read from the same file by calling jpeg_stdio_src * only before the first one. (If we discarded the buffer at the end of * one image, we'd likely lose the start of the next one.) * This makes it unsafe to use this manager and a different source * manager serially with the same JPEG object. Caveat programmer. */ if (cinfo->src == NULL) { /* first time for this JPEG object? */ cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_source_mgr)); src = (my_src_ptr) cinfo->src; src->buffer = (JOCTET *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, INPUT_BUF_SIZE * SIZEOF(JOCTET)); } src = (my_src_ptr) cinfo->src; src->pub.init_source = init_source; src->pub.fill_input_buffer = fill_input_buffer; src->pub.skip_input_data = skip_input_data; src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */ src->pub.term_source = term_source; src->infile = infile; src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */ src->pub.next_input_byte = NULL; /* until buffer loaded */ } /********* End of inlined file: jdatasrc.c *********/ /********* Start of inlined file: jdcoefct.c *********/ #define JPEG_INTERNALS /* Block smoothing is only applicable for progressive JPEG, so: */ #ifndef D_PROGRESSIVE_SUPPORTED #undef BLOCK_SMOOTHING_SUPPORTED #endif /* Private buffer controller object */ typedef struct { struct jpeg_d_coef_controller pub; /* public fields */ /* These variables keep track of the current location of the input side. */ /* cinfo->input_iMCU_row is also used for this. */ JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ int MCU_vert_offset; /* counts MCU rows within iMCU row */ int MCU_rows_per_iMCU_row; /* number of such rows needed */ /* The output side's location is represented by cinfo->output_iMCU_row. */ /* In single-pass modes, it's sufficient to buffer just one MCU. * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, * and let the entropy decoder write into that workspace each time. * (On 80x86, the workspace is FAR even though it's not really very big; * this is to keep the module interfaces unchanged when a large coefficient * buffer is necessary.) * In multi-pass modes, this array points to the current MCU's blocks * within the virtual arrays; it is used only by the input side. */ JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; #ifdef D_MULTISCAN_FILES_SUPPORTED /* In multi-pass modes, we need a virtual block array for each component. */ jvirt_barray_ptr whole_image[MAX_COMPONENTS]; #endif #ifdef BLOCK_SMOOTHING_SUPPORTED /* When doing block smoothing, we latch coefficient Al values here */ int * coef_bits_latch; #define SAVED_COEFS 6 /* we save coef_bits[0..5] */ #endif } my_coef_controller3; typedef my_coef_controller3 * my_coef_ptr3; /* Forward declarations */ METHODDEF(int) decompress_onepass JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); #ifdef D_MULTISCAN_FILES_SUPPORTED METHODDEF(int) decompress_data JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); #endif #ifdef BLOCK_SMOOTHING_SUPPORTED LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); METHODDEF(int) decompress_smooth_data JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); #endif LOCAL(void) start_iMCU_row3 (j_decompress_ptr cinfo) /* Reset within-iMCU-row counters for a new row (input side) */ { my_coef_ptr3 coef = (my_coef_ptr3) cinfo->coef; /* In an interleaved scan, an MCU row is the same as an iMCU row. * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. * But at the bottom of the image, process only what's left. */ if (cinfo->comps_in_scan > 1) { coef->MCU_rows_per_iMCU_row = 1; } else { if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; else coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; } coef->MCU_ctr = 0; coef->MCU_vert_offset = 0; } /* * Initialize for an input processing pass. */ METHODDEF(void) start_input_pass (j_decompress_ptr cinfo) { cinfo->input_iMCU_row = 0; start_iMCU_row3(cinfo); } /* * Initialize for an output processing pass. */ METHODDEF(void) start_output_pass (j_decompress_ptr cinfo) { #ifdef BLOCK_SMOOTHING_SUPPORTED my_coef_ptr3 coef = (my_coef_ptr3) cinfo->coef; /* If multipass, check to see whether to use block smoothing on this pass */ if (coef->pub.coef_arrays != NULL) { if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) coef->pub.decompress_data = decompress_smooth_data; else coef->pub.decompress_data = decompress_data; } #endif cinfo->output_iMCU_row = 0; } /* * Decompress and return some data in the single-pass case. * Always attempts to emit one fully interleaved MCU row ("iMCU" row). * Input and output must run in lockstep since we have only a one-MCU buffer. * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. * * NB: output_buf contains a plane for each component in image, * which we index according to the component's SOF position. */ METHODDEF(int) decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) { my_coef_ptr3 coef = (my_coef_ptr3) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; int blkn, ci, xindex, yindex, yoffset, useful_width; JSAMPARRAY output_ptr; JDIMENSION start_col, output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; /* Loop to process as much as one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; MCU_col_num++) { /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ jzero_far((void FAR *) coef->MCU_buffer[0], (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->MCU_ctr = MCU_col_num; return JPEG_SUSPENDED; } /* Determine where data should go in output_buf and do the IDCT thing. * We skip dummy blocks at the right and bottom edges (but blkn gets * incremented past them!). Note the inner loop relies on having * allocated the MCU_buffer[] blocks sequentially. */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Don't bother to IDCT an uninteresting component. */ if (! compptr->component_needed) { blkn += compptr->MCU_blocks; continue; } inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width : compptr->last_col_width; output_ptr = output_buf[compptr->component_index] + yoffset * compptr->DCT_scaled_size; start_col = MCU_col_num * compptr->MCU_sample_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { if (cinfo->input_iMCU_row < last_iMCU_row || yoffset+yindex < compptr->last_row_height) { output_col = start_col; for (xindex = 0; xindex < useful_width; xindex++) { (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) coef->MCU_buffer[blkn+xindex], output_ptr, output_col); output_col += compptr->DCT_scaled_size; } } blkn += compptr->MCU_width; output_ptr += compptr->DCT_scaled_size; } } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->MCU_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ cinfo->output_iMCU_row++; if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { start_iMCU_row3(cinfo); return JPEG_ROW_COMPLETED; } /* Completed the scan */ (*cinfo->inputctl->finish_input_pass) (cinfo); return JPEG_SCAN_COMPLETED; } /* * Dummy consume-input routine for single-pass operation. */ METHODDEF(int) dummy_consume_data (j_decompress_ptr cinfo) { return JPEG_SUSPENDED; /* Always indicate nothing was done */ } #ifdef D_MULTISCAN_FILES_SUPPORTED /* * Consume input data and store it in the full-image coefficient buffer. * We read as much as one fully interleaved MCU row ("iMCU" row) per call, * ie, v_samp_factor block rows for each component in the scan. * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. */ METHODDEF(int) consume_data (j_decompress_ptr cinfo) { my_coef_ptr3 coef = (my_coef_ptr3) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ int blkn, ci, xindex, yindex, yoffset; JDIMENSION start_col; JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; JBLOCKROW buffer_ptr; jpeg_component_info *compptr; /* Align the virtual buffers for the components used in this scan. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; buffer[ci] = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], cinfo->input_iMCU_row * compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, TRUE); /* Note: entropy decoder expects buffer to be zeroed, * but this is handled automatically by the memory manager * because we requested a pre-zeroed array. */ } /* Loop to process one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) { /* Construct list of pointers to DCT blocks belonging to this MCU */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; start_col = MCU_col_num * compptr->MCU_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { buffer_ptr = buffer[ci][yindex+yoffset] + start_col; for (xindex = 0; xindex < compptr->MCU_width; xindex++) { coef->MCU_buffer[blkn++] = buffer_ptr++; } } } /* Try to fetch the MCU. */ if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->MCU_ctr = MCU_col_num; return JPEG_SUSPENDED; } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->MCU_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { start_iMCU_row3(cinfo); return JPEG_ROW_COMPLETED; } /* Completed the scan */ (*cinfo->inputctl->finish_input_pass) (cinfo); return JPEG_SCAN_COMPLETED; } /* * Decompress and return some data in the multi-pass case. * Always attempts to emit one fully interleaved MCU row ("iMCU" row). * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. * * NB: output_buf contains a plane for each component in image. */ METHODDEF(int) decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) { my_coef_ptr3 coef = (my_coef_ptr3) cinfo->coef; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; JDIMENSION block_num; int ci, block_row, block_rows; JBLOCKARRAY buffer; JBLOCKROW buffer_ptr; JSAMPARRAY output_ptr; JDIMENSION output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; /* Force some input to be done if we are getting ahead of the input. */ while (cinfo->input_scan_number < cinfo->output_scan_number || (cinfo->input_scan_number == cinfo->output_scan_number && cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) return JPEG_SUSPENDED; } /* OK, output from the virtual arrays. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Don't bother to IDCT an uninteresting component. */ if (! compptr->component_needed) continue; /* Align the virtual buffer for this component. */ buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[ci], cinfo->output_iMCU_row * compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, FALSE); /* Count non-dummy DCT block rows in this iMCU row. */ if (cinfo->output_iMCU_row < last_iMCU_row) block_rows = compptr->v_samp_factor; else { /* NB: can't use last_row_height here; it is input-side-dependent! */ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); if (block_rows == 0) block_rows = compptr->v_samp_factor; } inverse_DCT = cinfo->idct->inverse_DCT[ci]; output_ptr = output_buf[ci]; /* Loop over all DCT blocks to be processed. */ for (block_row = 0; block_row < block_rows; block_row++) { buffer_ptr = buffer[block_row]; output_col = 0; for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, output_ptr, output_col); buffer_ptr++; output_col += compptr->DCT_scaled_size; } output_ptr += compptr->DCT_scaled_size; } } if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) return JPEG_ROW_COMPLETED; return JPEG_SCAN_COMPLETED; } #endif /* D_MULTISCAN_FILES_SUPPORTED */ #ifdef BLOCK_SMOOTHING_SUPPORTED /* * This code applies interblock smoothing as described by section K.8 * of the JPEG standard: the first 5 AC coefficients are estimated from * the DC values of a DCT block and its 8 neighboring blocks. * We apply smoothing only for progressive JPEG decoding, and only if * the coefficients it can estimate are not yet known to full precision. */ /* Natural-order array positions of the first 5 zigzag-order coefficients */ #define Q01_POS 1 #define Q10_POS 8 #define Q20_POS 16 #define Q11_POS 9 #define Q02_POS 2 /* * Determine whether block smoothing is applicable and safe. * We also latch the current states of the coef_bits[] entries for the * AC coefficients; otherwise, if the input side of the decompressor * advances into a new scan, we might think the coefficients are known * more accurately than they really are. */ LOCAL(boolean) smoothing_ok (j_decompress_ptr cinfo) { my_coef_ptr3 coef = (my_coef_ptr3) cinfo->coef; boolean smoothing_useful = FALSE; int ci, coefi; jpeg_component_info *compptr; JQUANT_TBL * qtable; int * coef_bits; int * coef_bits_latch; if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) return FALSE; /* Allocate latch area if not already done */ if (coef->coef_bits_latch == NULL) coef->coef_bits_latch = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->num_components * (SAVED_COEFS * SIZEOF(int))); coef_bits_latch = coef->coef_bits_latch; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* All components' quantization values must already be latched. */ if ((qtable = compptr->quant_table) == NULL) return FALSE; /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ if (qtable->quantval[0] == 0 || qtable->quantval[Q01_POS] == 0 || qtable->quantval[Q10_POS] == 0 || qtable->quantval[Q20_POS] == 0 || qtable->quantval[Q11_POS] == 0 || qtable->quantval[Q02_POS] == 0) return FALSE; /* DC values must be at least partly known for all components. */ coef_bits = cinfo->coef_bits[ci]; if (coef_bits[0] < 0) return FALSE; /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ for (coefi = 1; coefi <= 5; coefi++) { coef_bits_latch[coefi] = coef_bits[coefi]; if (coef_bits[coefi] != 0) smoothing_useful = TRUE; } coef_bits_latch += SAVED_COEFS; } return smoothing_useful; } /* * Variant of decompress_data for use when doing block smoothing. */ METHODDEF(int) decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) { my_coef_ptr3 coef = (my_coef_ptr3) cinfo->coef; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; JDIMENSION block_num, last_block_column; int ci, block_row, block_rows, access_rows; JBLOCKARRAY buffer; JBLOCKROW buffer_ptr, prev_block_row, next_block_row; JSAMPARRAY output_ptr; JDIMENSION output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; boolean first_row, last_row; JBLOCK workspace; int *coef_bits; JQUANT_TBL *quanttbl; INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; int Al, pred; /* Force some input to be done if we are getting ahead of the input. */ while (cinfo->input_scan_number <= cinfo->output_scan_number && ! cinfo->inputctl->eoi_reached) { if (cinfo->input_scan_number == cinfo->output_scan_number) { /* If input is working on current scan, we ordinarily want it to * have completed the current row. But if input scan is DC, * we want it to keep one row ahead so that next block row's DC * values are up to date. */ JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) break; } if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) return JPEG_SUSPENDED; } /* OK, output from the virtual arrays. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Don't bother to IDCT an uninteresting component. */ if (! compptr->component_needed) continue; /* Count non-dummy DCT block rows in this iMCU row. */ if (cinfo->output_iMCU_row < last_iMCU_row) { block_rows = compptr->v_samp_factor; access_rows = block_rows * 2; /* this and next iMCU row */ last_row = FALSE; } else { /* NB: can't use last_row_height here; it is input-side-dependent! */ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); if (block_rows == 0) block_rows = compptr->v_samp_factor; access_rows = block_rows; /* this iMCU row only */ last_row = TRUE; } /* Align the virtual buffer for this component. */ if (cinfo->output_iMCU_row > 0) { access_rows += compptr->v_samp_factor; /* prior iMCU row too */ buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[ci], (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, (JDIMENSION) access_rows, FALSE); buffer += compptr->v_samp_factor; /* point to current iMCU row */ first_row = FALSE; } else { buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[ci], (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); first_row = TRUE; } /* Fetch component-dependent info */ coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); quanttbl = compptr->quant_table; Q00 = quanttbl->quantval[0]; Q01 = quanttbl->quantval[Q01_POS]; Q10 = quanttbl->quantval[Q10_POS]; Q20 = quanttbl->quantval[Q20_POS]; Q11 = quanttbl->quantval[Q11_POS]; Q02 = quanttbl->quantval[Q02_POS]; inverse_DCT = cinfo->idct->inverse_DCT[ci]; output_ptr = output_buf[ci]; /* Loop over all DCT blocks to be processed. */ for (block_row = 0; block_row < block_rows; block_row++) { buffer_ptr = buffer[block_row]; if (first_row && block_row == 0) prev_block_row = buffer_ptr; else prev_block_row = buffer[block_row-1]; if (last_row && block_row == block_rows-1) next_block_row = buffer_ptr; else next_block_row = buffer[block_row+1]; /* We fetch the surrounding DC values using a sliding-register approach. * Initialize all nine here so as to do the right thing on narrow pics. */ DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; DC7 = DC8 = DC9 = (int) next_block_row[0][0]; output_col = 0; last_block_column = compptr->width_in_blocks - 1; for (block_num = 0; block_num <= last_block_column; block_num++) { /* Fetch current DCT block into workspace so we can modify it. */ jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); /* Update DC values */ if (block_num < last_block_column) { DC3 = (int) prev_block_row[1][0]; DC6 = (int) buffer_ptr[1][0]; DC9 = (int) next_block_row[1][0]; } /* Compute coefficient estimates per K.8. * An estimate is applied only if coefficient is still zero, * and is not known to be fully accurate. */ /* AC01 */ if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { num = 36 * Q00 * (DC4 - DC6); if (num >= 0) { pred = (int) (((Q01<<7) + num) / (Q01<<8)); if (Al > 0 && pred >= (1< 0 && pred >= (1<= 0) { pred = (int) (((Q10<<7) + num) / (Q10<<8)); if (Al > 0 && pred >= (1< 0 && pred >= (1<= 0) { pred = (int) (((Q20<<7) + num) / (Q20<<8)); if (Al > 0 && pred >= (1< 0 && pred >= (1<= 0) { pred = (int) (((Q11<<7) + num) / (Q11<<8)); if (Al > 0 && pred >= (1< 0 && pred >= (1<= 0) { pred = (int) (((Q02<<7) + num) / (Q02<<8)); if (Al > 0 && pred >= (1< 0 && pred >= (1<DCT_scaled_size; } output_ptr += compptr->DCT_scaled_size; } } if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) return JPEG_ROW_COMPLETED; return JPEG_SCAN_COMPLETED; } #endif /* BLOCK_SMOOTHING_SUPPORTED */ /* * Initialize coefficient buffer controller. */ GLOBAL(void) jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) { my_coef_ptr3 coef; coef = (my_coef_ptr3) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller3)); cinfo->coef = (struct jpeg_d_coef_controller *) coef; coef->pub.start_input_pass = start_input_pass; coef->pub.start_output_pass = start_output_pass; #ifdef BLOCK_SMOOTHING_SUPPORTED coef->coef_bits_latch = NULL; #endif /* Create the coefficient buffer. */ if (need_full_buffer) { #ifdef D_MULTISCAN_FILES_SUPPORTED /* Allocate a full-image virtual array for each component, */ /* padded to a multiple of samp_factor DCT blocks in each direction. */ /* Note we ask for a pre-zeroed array. */ int ci, access_rows; jpeg_component_info *compptr; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { access_rows = compptr->v_samp_factor; #ifdef BLOCK_SMOOTHING_SUPPORTED /* If block smoothing could be used, need a bigger window */ if (cinfo->progressive_mode) access_rows *= 3; #endif coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, (JDIMENSION) jround_up((long) compptr->width_in_blocks, (long) compptr->h_samp_factor), (JDIMENSION) jround_up((long) compptr->height_in_blocks, (long) compptr->v_samp_factor), (JDIMENSION) access_rows); } coef->pub.consume_data = consume_data; coef->pub.decompress_data = decompress_data; coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { /* We only need a single-MCU buffer. */ JBLOCKROW buffer; int i; buffer = (JBLOCKROW) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { coef->MCU_buffer[i] = buffer + i; } coef->pub.consume_data = dummy_consume_data; coef->pub.decompress_data = decompress_onepass; coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ } } /********* End of inlined file: jdcoefct.c *********/ #undef FIX /********* Start of inlined file: jdcolor.c *********/ #define JPEG_INTERNALS /* Private subobject */ typedef struct { struct jpeg_color_deconverter pub; /* public fields */ /* Private state for YCC->RGB conversion */ int * Cr_r_tab; /* => table for Cr to R conversion */ int * Cb_b_tab; /* => table for Cb to B conversion */ INT32 * Cr_g_tab; /* => table for Cr to G conversion */ INT32 * Cb_g_tab; /* => table for Cb to G conversion */ } my_color_deconverter2; typedef my_color_deconverter2 * my_cconvert_ptr2; /**************** YCbCr -> RGB conversion: most common case **************/ /* * YCbCr is defined per CCIR 601-1, except that Cb and Cr are * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. * The conversion equations to be implemented are therefore * R = Y + 1.40200 * Cr * G = Y - 0.34414 * Cb - 0.71414 * Cr * B = Y + 1.77200 * Cb * where Cb and Cr represent the incoming values less CENTERJSAMPLE. * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) * * To avoid floating-point arithmetic, we represent the fractional constants * as integers scaled up by 2^16 (about 4 digits precision); we have to divide * the products by 2^16, with appropriate rounding, to get the correct answer. * Notice that Y, being an integral input, does not contribute any fraction * so it need not participate in the rounding. * * For even more speed, we avoid doing any multiplications in the inner loop * by precalculating the constants times Cb and Cr for all possible values. * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); * for 12-bit samples it is still acceptable. It's not very reasonable for * 16-bit samples, but if you want lossless storage you shouldn't be changing * colorspace anyway. * The Cr=>R and Cb=>B values can be rounded to integers in advance; the * values for the G calculation are left scaled up, since we must add them * together before rounding. */ #define SCALEBITS 16 /* speediest right-shift on some machines */ #define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) #define FIX(x) ((INT32) ((x) * (1L<RGB colorspace conversion. */ LOCAL(void) build_ycc_rgb_table (j_decompress_ptr cinfo) { my_cconvert_ptr2 cconvert = (my_cconvert_ptr2) cinfo->cconvert; int i; INT32 x; SHIFT_TEMPS cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ /* Cr=>R value is nearest int to 1.40200 * x */ cconvert->Cr_r_tab[i] = (int) RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); /* Cb=>B value is nearest int to 1.77200 * x */ cconvert->Cb_b_tab[i] = (int) RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); /* Cr=>G value is scaled-up -0.71414 * x */ cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x; /* Cb=>G value is scaled-up -0.34414 * x */ /* We also add in ONE_HALF so that need not do it in inner loop */ cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; } } /* * Convert some rows of samples to the output colorspace. * * Note that we change from noninterleaved, one-plane-per-component format * to interleaved-pixel format. The output buffer is therefore three times * as wide as the input buffer. * A starting row offset is provided only for the input buffer. The caller * can easily adjust the passed output_buf value to accommodate any row * offset required on that side. */ METHODDEF(void) ycc_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr2 cconvert = (my_cconvert_ptr2) cinfo->cconvert; register int y, cb, cr; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; register int * Crrtab = cconvert->Cr_r_tab; register int * Cbbtab = cconvert->Cb_b_tab; register INT32 * Crgtab = cconvert->Cr_g_tab; register INT32 * Cbgtab = cconvert->Cb_g_tab; SHIFT_TEMPS while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { y = GETJSAMPLE(inptr0[col]); cb = GETJSAMPLE(inptr1[col]); cr = GETJSAMPLE(inptr2[col]); /* Range-limiting is essential due to noise introduced by DCT losses. */ outptr[RGB_RED] = range_limit[y + Crrtab[cr]]; outptr[RGB_GREEN] = range_limit[y + ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS))]; outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]]; outptr += RGB_PIXELSIZE; } } } /**************** Cases other than YCbCr -> RGB **************/ /* * Color conversion for no colorspace change: just copy the data, * converting from separate-planes to interleaved representation. */ METHODDEF(void) null_convert2 (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW inptr, outptr; register JDIMENSION count; register int num_components = cinfo->num_components; JDIMENSION num_cols = cinfo->output_width; int ci; while (--num_rows >= 0) { for (ci = 0; ci < num_components; ci++) { inptr = input_buf[ci][input_row]; outptr = output_buf[0] + ci; for (count = num_cols; count > 0; count--) { *outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */ outptr += num_components; } } input_row++; output_buf++; } } /* * Color conversion for grayscale: just copy the data. * This also works for YCbCr -> grayscale conversion, in which * we just copy the Y (luminance) component and ignore chrominance. */ METHODDEF(void) grayscale_convert2 (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0, num_rows, cinfo->output_width); } /* * Convert grayscale to RGB: just duplicate the graylevel three times. * This is provided to support applications that don't want to cope * with grayscale as a separate case. */ METHODDEF(void) gray_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW inptr, outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { inptr = input_buf[0][input_row++]; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { /* We can dispense with GETJSAMPLE() here */ outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col]; outptr += RGB_PIXELSIZE; } } } /* * Adobe-style YCCK->CMYK conversion. * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same * conversion as above, while passing K (black) unchanged. * We assume build_ycc_rgb_table has been called. */ METHODDEF(void) ycck_cmyk_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr2 cconvert = (my_cconvert_ptr2) cinfo->cconvert; register int y, cb, cr; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2, inptr3; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; register int * Crrtab = cconvert->Cr_r_tab; register int * Cbbtab = cconvert->Cb_b_tab; register INT32 * Crgtab = cconvert->Cr_g_tab; register INT32 * Cbgtab = cconvert->Cb_g_tab; SHIFT_TEMPS while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; inptr3 = input_buf[3][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { y = GETJSAMPLE(inptr0[col]); cb = GETJSAMPLE(inptr1[col]); cr = GETJSAMPLE(inptr2[col]); /* Range-limiting is essential due to noise introduced by DCT losses. */ outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */ outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */ ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS)))]; outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */ /* K passes through unchanged */ outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */ outptr += 4; } } } /* * Empty method for start_pass. */ METHODDEF(void) start_pass_dcolor (j_decompress_ptr cinfo) { /* no work needed */ } /* * Module initialization routine for output colorspace conversion. */ GLOBAL(void) jinit_color_deconverter (j_decompress_ptr cinfo) { my_cconvert_ptr2 cconvert; int ci; cconvert = (my_cconvert_ptr2) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_deconverter2)); cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert; cconvert->pub.start_pass = start_pass_dcolor; /* Make sure num_components agrees with jpeg_color_space */ switch (cinfo->jpeg_color_space) { case JCS_GRAYSCALE: if (cinfo->num_components != 1) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; case JCS_RGB: case JCS_YCbCr: if (cinfo->num_components != 3) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; case JCS_CMYK: case JCS_YCCK: if (cinfo->num_components != 4) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; default: /* JCS_UNKNOWN can be anything */ if (cinfo->num_components < 1) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; } /* Set out_color_components and conversion method based on requested space. * Also clear the component_needed flags for any unused components, * so that earlier pipeline stages can avoid useless computation. */ switch (cinfo->out_color_space) { case JCS_GRAYSCALE: cinfo->out_color_components = 1; if (cinfo->jpeg_color_space == JCS_GRAYSCALE || cinfo->jpeg_color_space == JCS_YCbCr) { cconvert->pub.color_convert = grayscale_convert2; /* For color->grayscale conversion, only the Y (0) component is needed */ for (ci = 1; ci < cinfo->num_components; ci++) cinfo->comp_info[ci].component_needed = FALSE; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_RGB: cinfo->out_color_components = RGB_PIXELSIZE; if (cinfo->jpeg_color_space == JCS_YCbCr) { cconvert->pub.color_convert = ycc_rgb_convert; build_ycc_rgb_table(cinfo); } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) { cconvert->pub.color_convert = gray_rgb_convert; } else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) { cconvert->pub.color_convert = null_convert2; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_CMYK: cinfo->out_color_components = 4; if (cinfo->jpeg_color_space == JCS_YCCK) { cconvert->pub.color_convert = ycck_cmyk_convert; build_ycc_rgb_table(cinfo); } else if (cinfo->jpeg_color_space == JCS_CMYK) { cconvert->pub.color_convert = null_convert2; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; default: /* Permit null conversion to same output space */ if (cinfo->out_color_space == cinfo->jpeg_color_space) { cinfo->out_color_components = cinfo->num_components; cconvert->pub.color_convert = null_convert2; } else /* unsupported non-null conversion */ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; } if (cinfo->quantize_colors) cinfo->output_components = 1; /* single colormapped output component */ else cinfo->output_components = cinfo->out_color_components; } /********* End of inlined file: jdcolor.c *********/ #undef FIX /********* Start of inlined file: jddctmgr.c *********/ #define JPEG_INTERNALS /* * The decompressor input side (jdinput.c) saves away the appropriate * quantization table for each component at the start of the first scan * involving that component. (This is necessary in order to correctly * decode files that reuse Q-table slots.) * When we are ready to make an output pass, the saved Q-table is converted * to a multiplier table that will actually be used by the IDCT routine. * The multiplier table contents are IDCT-method-dependent. To support * application changes in IDCT method between scans, we can remake the * multiplier tables if necessary. * In buffered-image mode, the first output pass may occur before any data * has been seen for some components, and thus before their Q-tables have * been saved away. To handle this case, multiplier tables are preset * to zeroes; the result of the IDCT will be a neutral gray level. */ /* Private subobject for this module */ typedef struct { struct jpeg_inverse_dct pub; /* public fields */ /* This array contains the IDCT method code that each multiplier table * is currently set up for, or -1 if it's not yet set up. * The actual multiplier tables are pointed to by dct_table in the * per-component comp_info structures. */ int cur_method[MAX_COMPONENTS]; } my_idct_controller; typedef my_idct_controller * my_idct_ptr; /* Allocated multiplier tables: big enough for any supported variant */ typedef union { ISLOW_MULT_TYPE islow_array[DCTSIZE2]; #ifdef DCT_IFAST_SUPPORTED IFAST_MULT_TYPE ifast_array[DCTSIZE2]; #endif #ifdef DCT_FLOAT_SUPPORTED FLOAT_MULT_TYPE float_array[DCTSIZE2]; #endif } multiplier_table; /* The current scaled-IDCT routines require ISLOW-style multiplier tables, * so be sure to compile that code if either ISLOW or SCALING is requested. */ #ifdef DCT_ISLOW_SUPPORTED #define PROVIDE_ISLOW_TABLES #else #ifdef IDCT_SCALING_SUPPORTED #define PROVIDE_ISLOW_TABLES #endif #endif /* * Prepare for an output pass. * Here we select the proper IDCT routine for each component and build * a matching multiplier table. */ METHODDEF(void) start_pass (j_decompress_ptr cinfo) { my_idct_ptr idct = (my_idct_ptr) cinfo->idct; int ci, i; jpeg_component_info *compptr; int method = 0; inverse_DCT_method_ptr method_ptr = NULL; JQUANT_TBL * qtbl; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Select the proper IDCT routine for this component's scaling */ switch (compptr->DCT_scaled_size) { #ifdef IDCT_SCALING_SUPPORTED case 1: method_ptr = jpeg_idct_1x1; method = JDCT_ISLOW; /* jidctred uses islow-style table */ break; case 2: method_ptr = jpeg_idct_2x2; method = JDCT_ISLOW; /* jidctred uses islow-style table */ break; case 4: method_ptr = jpeg_idct_4x4; method = JDCT_ISLOW; /* jidctred uses islow-style table */ break; #endif case DCTSIZE: switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: method_ptr = jpeg_idct_islow; method = JDCT_ISLOW; break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: method_ptr = jpeg_idct_ifast; method = JDCT_IFAST; break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: method_ptr = jpeg_idct_float; method = JDCT_FLOAT; break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } break; default: ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); break; } idct->pub.inverse_DCT[ci] = method_ptr; /* Create multiplier table from quant table. * However, we can skip this if the component is uninteresting * or if we already built the table. Also, if no quant table * has yet been saved for the component, we leave the * multiplier table all-zero; we'll be reading zeroes from the * coefficient controller's buffer anyway. */ if (! compptr->component_needed || idct->cur_method[ci] == method) continue; qtbl = compptr->quant_table; if (qtbl == NULL) /* happens if no data yet for component */ continue; idct->cur_method[ci] = method; switch (method) { #ifdef PROVIDE_ISLOW_TABLES case JDCT_ISLOW: { /* For LL&M IDCT method, multipliers are equal to raw quantization * coefficients, but are stored as ints to ensure access efficiency. */ ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; for (i = 0; i < DCTSIZE2; i++) { ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; } } break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: { /* For AA&N IDCT method, multipliers are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * For integer operation, the multiplier table is to be scaled by * IFAST_SCALE_BITS. */ IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; #define CONST_BITS 14 static const INT16 aanscales[DCTSIZE2] = { /* precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; SHIFT_TEMPS for (i = 0; i < DCTSIZE2; i++) { ifmtbl[i] = (IFAST_MULT_TYPE) DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], (INT32) aanscales[i]), CONST_BITS-IFAST_SCALE_BITS); } } break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: { /* For float AA&N IDCT method, multipliers are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 */ FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; int row, col; static const double aanscalefactor[DCTSIZE] = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100, 0.275899379 }; i = 0; for (row = 0; row < DCTSIZE; row++) { for (col = 0; col < DCTSIZE; col++) { fmtbl[i] = (FLOAT_MULT_TYPE) ((double) qtbl->quantval[i] * aanscalefactor[row] * aanscalefactor[col]); i++; } } } break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } } } /* * Initialize IDCT manager. */ GLOBAL(void) jinit_inverse_dct (j_decompress_ptr cinfo) { my_idct_ptr idct; int ci; jpeg_component_info *compptr; idct = (my_idct_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_idct_controller)); cinfo->idct = (struct jpeg_inverse_dct *) idct; idct->pub.start_pass = start_pass; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Allocate and pre-zero a multiplier table for each component */ compptr->dct_table = (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(multiplier_table)); MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); /* Mark multiplier table not yet set up for any method */ idct->cur_method[ci] = -1; } } /********* End of inlined file: jddctmgr.c *********/ #undef CONST_BITS #undef ASSIGN_STATE /********* Start of inlined file: jdhuff.c *********/ #define JPEG_INTERNALS /********* Start of inlined file: jdhuff.h *********/ /* Short forms of external names for systems with brain-damaged linkers. */ #ifndef __jdhuff_h__ #define __jdhuff_h__ #ifdef NEED_SHORT_EXTERNAL_NAMES #define jpeg_make_d_derived_tbl jMkDDerived #define jpeg_fill_bit_buffer jFilBitBuf #define jpeg_huff_decode jHufDecode #endif /* NEED_SHORT_EXTERNAL_NAMES */ /* Derived data constructed for each Huffman table */ #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */ typedef struct { /* Basic tables: (element [0] of each array is unused) */ INT32 maxcode[18]; /* largest code of length k (-1 if none) */ /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ INT32 valoffset[17]; /* huffval[] offset for codes of length k */ /* valoffset[k] = huffval[] index of 1st symbol of code length k, less * the smallest code of length k; so given a code of length k, the * corresponding symbol is huffval[code + valoffset[k]] */ /* Link to public Huffman table (needed only in jpeg_huff_decode) */ JHUFF_TBL *pub; /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of * the input data stream. If the next Huffman code is no more * than HUFF_LOOKAHEAD bits long, we can obtain its length and * the corresponding symbol directly from these tables. */ int look_nbits[1< 32 bits on your machine, and shifting/masking longs is * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE * appropriately should be a win. Unfortunately we can't define the size * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) * because not all machines measure sizeof in 8-bit bytes. */ typedef struct { /* Bitreading state saved across MCUs */ bit_buf_type get_buffer; /* current bit-extraction buffer */ int bits_left; /* # of unused bits in it */ } bitread_perm_state; typedef struct { /* Bitreading working state within an MCU */ /* Current data source location */ /* We need a copy, rather than munging the original, in case of suspension */ const JOCTET * next_input_byte; /* => next byte to read from source */ size_t bytes_in_buffer; /* # of bytes remaining in source buffer */ /* Bit input buffer --- note these values are kept in register variables, * not in this struct, inside the inner loops. */ bit_buf_type get_buffer; /* current bit-extraction buffer */ int bits_left; /* # of unused bits in it */ /* Pointer needed by jpeg_fill_bit_buffer. */ j_decompress_ptr cinfo; /* back link to decompress master record */ } bitread_working_state; /* Macros to declare and load/save bitread local variables. */ #define BITREAD_STATE_VARS \ register bit_buf_type get_buffer; \ register int bits_left; \ bitread_working_state br_state #define BITREAD_LOAD_STATE(cinfop,permstate) \ br_state.cinfo = cinfop; \ br_state.next_input_byte = cinfop->src->next_input_byte; \ br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \ get_buffer = permstate.get_buffer; \ bits_left = permstate.bits_left; #define BITREAD_SAVE_STATE(cinfop,permstate) \ cinfop->src->next_input_byte = br_state.next_input_byte; \ cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \ permstate.get_buffer = get_buffer; \ permstate.bits_left = bits_left /* * These macros provide the in-line portion of bit fetching. * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer * before using GET_BITS, PEEK_BITS, or DROP_BITS. * The variables get_buffer and bits_left are assumed to be locals, * but the state struct might not be (jpeg_huff_decode needs this). * CHECK_BIT_BUFFER(state,n,action); * Ensure there are N bits in get_buffer; if suspend, take action. * val = GET_BITS(n); * Fetch next N bits. * val = PEEK_BITS(n); * Fetch next N bits without removing them from the buffer. * DROP_BITS(n); * Discard next N bits. * The value N should be a simple variable, not an expression, because it * is evaluated multiple times. */ #define CHECK_BIT_BUFFER(state,nbits,action) \ { if (bits_left < (nbits)) { \ if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \ { action; } \ get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } #define GET_BITS(nbits) \ (((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1)) #define PEEK_BITS(nbits) \ (((int) (get_buffer >> (bits_left - (nbits)))) & ((1<<(nbits))-1)) #define DROP_BITS(nbits) \ (bits_left -= (nbits)) /* Load up the bit buffer to a depth of at least nbits */ EXTERN(boolean) jpeg_fill_bit_buffer JPP((bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, int nbits)); /* * Code for extracting next Huffman-coded symbol from input bit stream. * Again, this is time-critical and we make the main paths be macros. * * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits * without looping. Usually, more than 95% of the Huffman codes will be 8 * or fewer bits long. The few overlength codes are handled with a loop, * which need not be inline code. * * Notes about the HUFF_DECODE macro: * 1. Near the end of the data segment, we may fail to get enough bits * for a lookahead. In that case, we do it the hard way. * 2. If the lookahead table contains no entry, the next code must be * more than HUFF_LOOKAHEAD bits long. * 3. jpeg_huff_decode returns -1 if forced to suspend. */ #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \ { register int nb, look; \ if (bits_left < HUFF_LOOKAHEAD) { \ if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \ get_buffer = state.get_buffer; bits_left = state.bits_left; \ if (bits_left < HUFF_LOOKAHEAD) { \ nb = 1; goto slowlabel; \ } \ } \ look = PEEK_BITS(HUFF_LOOKAHEAD); \ if ((nb = htbl->look_nbits[look]) != 0) { \ DROP_BITS(nb); \ result = htbl->look_sym[look]; \ } else { \ nb = HUFF_LOOKAHEAD+1; \ slowlabel: \ if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \ { failaction; } \ get_buffer = state.get_buffer; bits_left = state.bits_left; \ } \ } /* Out-of-line case for Huffman code fetching */ EXTERN(int) jpeg_huff_decode JPP((bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, d_derived_tbl * htbl, int min_bits)); #endif /********* End of inlined file: jdhuff.h *********/ /* Declarations shared with jdphuff.c */ /* * Expanded entropy decoder object for Huffman decoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ typedef struct { int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state2; /* This macro is to work around compilers with missing or broken * structure assignment. You'll need to fix this code if you have * such a compiler and you change MAX_COMPS_IN_SCAN. */ #ifndef NO_STRUCT_ASSIGN #define ASSIGN_STATE(dest,src) ((dest) = (src)) #else #if MAX_COMPS_IN_SCAN == 4 #define ASSIGN_STATE(dest,src) \ ((dest).last_dc_val[0] = (src).last_dc_val[0], \ (dest).last_dc_val[1] = (src).last_dc_val[1], \ (dest).last_dc_val[2] = (src).last_dc_val[2], \ (dest).last_dc_val[3] = (src).last_dc_val[3]) #endif #endif typedef struct { struct jpeg_entropy_decoder pub; /* public fields */ /* These fields are loaded into local variables at start of each MCU. * In case of suspension, we exit WITHOUT updating them. */ bitread_perm_state bitstate; /* Bit buffer at start of MCU */ savable_state2 saved; /* Other state at start of MCU */ /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ /* Pointers to derived tables (these workspaces have image lifespan) */ d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; /* Precalculated info set up by start_pass for use in decode_mcu: */ /* Pointers to derived tables to be used for each block within an MCU */ d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; /* Whether we care about the DC and AC coefficient values for each block */ boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; } huff_entropy_decoder2; typedef huff_entropy_decoder2 * huff_entropy_ptr2; /* * Initialize for a Huffman-compressed scan. */ METHODDEF(void) start_pass_huff_decoder (j_decompress_ptr cinfo) { huff_entropy_ptr2 entropy = (huff_entropy_ptr2) cinfo->entropy; int ci, blkn, dctbl, actbl; jpeg_component_info * compptr; /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. * This ought to be an error condition, but we make it a warning because * there are some baseline files out there with all zeroes in these bytes. */ if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || cinfo->Ah != 0 || cinfo->Al != 0) WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, & entropy->dc_derived_tbls[dctbl]); jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, & entropy->ac_derived_tbls[actbl]); /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } /* Precalculate decoding info for each block in an MCU of this scan */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; /* Precalculate which table to use for each block */ entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; /* Decide whether we really care about the coefficient values */ if (compptr->component_needed) { entropy->dc_needed[blkn] = TRUE; /* we don't need the ACs if producing a 1/8th-size image */ entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1); } else { entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; } } /* Initialize bitread state variables */ entropy->bitstate.bits_left = 0; entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ entropy->pub.insufficient_data = FALSE; /* Initialize restart counter */ entropy->restarts_to_go = cinfo->restart_interval; } /* * Compute the derived values for a Huffman table. * This routine also performs some validation checks on the table. * * Note this is also used by jdphuff.c. */ GLOBAL(void) jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, d_derived_tbl ** pdtbl) { JHUFF_TBL *htbl; d_derived_tbl *dtbl; int p, i, l, si, numsymbols; int lookbits, ctr; char huffsize[257]; unsigned int huffcode[257]; unsigned int code; /* Note that huffsize[] and huffcode[] are filled in code-length order, * paralleling the order of the symbols themselves in htbl->huffval[]. */ /* Find the input Huffman table */ if (tblno < 0 || tblno >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); htbl = isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; if (htbl == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); /* Allocate a workspace if we haven't already done so. */ if (*pdtbl == NULL) *pdtbl = (d_derived_tbl *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(d_derived_tbl)); dtbl = *pdtbl; dtbl->pub = htbl; /* fill in back link */ /* Figure C.1: make table of Huffman code length for each symbol */ p = 0; for (l = 1; l <= 16; l++) { i = (int) htbl->bits[l]; if (i < 0 || p + i > 256) /* protect against table overrun */ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); while (i--) huffsize[p++] = (char) l; } huffsize[p] = 0; numsymbols = p; /* Figure C.2: generate the codes themselves */ /* We also validate that the counts represent a legal Huffman code tree. */ code = 0; si = huffsize[0]; p = 0; while (huffsize[p]) { while (((int) huffsize[p]) == si) { huffcode[p++] = code; code++; } /* code is now 1 more than the last code used for codelength si; but * it must still fit in si bits, since no code is allowed to be all ones. */ if (((INT32) code) >= (((INT32) 1) << si)) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); code <<= 1; si++; } /* Figure F.15: generate decoding tables for bit-sequential decoding */ p = 0; for (l = 1; l <= 16; l++) { if (htbl->bits[l]) { /* valoffset[l] = huffval[] index of 1st symbol of code length l, * minus the minimum code of length l */ dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; p += htbl->bits[l]; dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ } else { dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ } } dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ /* Compute lookahead tables to speed up decoding. * First we set all the table entries to 0, indicating "too long"; * then we iterate through the Huffman codes that are short enough and * fill in all the entries that correspond to bit sequences starting * with that code. */ MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); p = 0; for (l = 1; l <= HUFF_LOOKAHEAD; l++) { for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { /* l = current code's length, p = its index in huffcode[] & huffval[]. */ /* Generate left-justified code followed by all possible bit sequences */ lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { dtbl->look_nbits[lookbits] = l; dtbl->look_sym[lookbits] = htbl->huffval[p]; lookbits++; } } } /* Validate symbols as being reasonable. * For AC tables, we make no check, but accept all byte values 0..255. * For DC tables, we require the symbols to be in range 0..15. * (Tighter bounds could be applied depending on the data depth and mode, * but this is sufficient to ensure safe decoding.) */ if (isDC) { for (i = 0; i < numsymbols; i++) { int sym = htbl->huffval[i]; if (sym < 0 || sym > 15) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); } } } /* * Out-of-line code for bit fetching (shared with jdphuff.c). * See jdhuff.h for info about usage. * Note: current values of get_buffer and bits_left are passed as parameters, * but are returned in the corresponding fields of the state struct. * * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width * of get_buffer to be used. (On machines with wider words, an even larger * buffer could be used.) However, on some machines 32-bit shifts are * quite slow and take time proportional to the number of places shifted. * (This is true with most PC compilers, for instance.) In this case it may * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. */ #ifdef SLOW_SHIFT_32 #define MIN_GET_BITS 15 /* minimum allowable value */ #else #define MIN_GET_BITS (BIT_BUF_SIZE-7) #endif GLOBAL(boolean) jpeg_fill_bit_buffer (bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, int nbits) /* Load up the bit buffer to a depth of at least nbits */ { /* Copy heavily used state fields into locals (hopefully registers) */ register const JOCTET * next_input_byte = state->next_input_byte; register size_t bytes_in_buffer = state->bytes_in_buffer; j_decompress_ptr cinfo = state->cinfo; /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ /* (It is assumed that no request will be for more than that many bits.) */ /* We fail to do so only if we hit a marker or are forced to suspend. */ if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ while (bits_left < MIN_GET_BITS) { register int c; /* Attempt to read a byte */ if (bytes_in_buffer == 0) { if (! (*cinfo->src->fill_input_buffer) (cinfo)) return FALSE; next_input_byte = cinfo->src->next_input_byte; bytes_in_buffer = cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = GETJOCTET(*next_input_byte++); /* If it's 0xFF, check and discard stuffed zero byte */ if (c == 0xFF) { /* Loop here to discard any padding FF's on terminating marker, * so that we can save a valid unread_marker value. NOTE: we will * accept multiple FF's followed by a 0 as meaning a single FF data * byte. This data pattern is not valid according to the standard. */ do { if (bytes_in_buffer == 0) { if (! (*cinfo->src->fill_input_buffer) (cinfo)) return FALSE; next_input_byte = cinfo->src->next_input_byte; bytes_in_buffer = cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = GETJOCTET(*next_input_byte++); } while (c == 0xFF); if (c == 0) { /* Found FF/00, which represents an FF data byte */ c = 0xFF; } else { /* Oops, it's actually a marker indicating end of compressed data. * Save the marker code for later use. * Fine point: it might appear that we should save the marker into * bitread working state, not straight into permanent state. But * once we have hit a marker, we cannot need to suspend within the * current MCU, because we will read no more bytes from the data * source. So it is OK to update permanent state right away. */ cinfo->unread_marker = c; /* See if we need to insert some fake zero bits. */ goto no_more_bytes; } } /* OK, load c into get_buffer */ get_buffer = (get_buffer << 8) | c; bits_left += 8; } /* end while */ } else { no_more_bytes: /* We get here if we've read the marker that terminates the compressed * data segment. There should be enough bits in the buffer register * to satisfy the request; if so, no problem. */ if (nbits > bits_left) { /* Uh-oh. Report corrupted data to user and stuff zeroes into * the data stream, so that we can produce some kind of image. * We use a nonvolatile flag to ensure that only one warning message * appears per data segment. */ if (! cinfo->entropy->insufficient_data) { WARNMS(cinfo, JWRN_HIT_MARKER); cinfo->entropy->insufficient_data = TRUE; } /* Fill the buffer with zero bits */ get_buffer <<= MIN_GET_BITS - bits_left; bits_left = MIN_GET_BITS; } } /* Unload the local registers */ state->next_input_byte = next_input_byte; state->bytes_in_buffer = bytes_in_buffer; state->get_buffer = get_buffer; state->bits_left = bits_left; return TRUE; } /* * Out-of-line code for Huffman code decoding. * See jdhuff.h for info about usage. */ GLOBAL(int) jpeg_huff_decode (bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, d_derived_tbl * htbl, int min_bits) { register int l = min_bits; register INT32 code; /* HUFF_DECODE has determined that the code is at least min_bits */ /* bits long, so fetch that many bits in one swoop. */ CHECK_BIT_BUFFER(*state, l, return -1); code = GET_BITS(l); /* Collect the rest of the Huffman code one bit at a time. */ /* This is per Figure F.16 in the JPEG spec. */ while (code > htbl->maxcode[l]) { code <<= 1; CHECK_BIT_BUFFER(*state, 1, return -1); code |= GET_BITS(1); l++; } /* Unload the local registers */ state->get_buffer = get_buffer; state->bits_left = bits_left; /* With garbage input we may reach the sentinel value l = 17. */ if (l > 16) { WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); return 0; /* fake a zero as the safest result */ } return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; } /* * Check for a restart marker & resynchronize decoder. * Returns FALSE if must suspend. */ LOCAL(boolean) process_restart (j_decompress_ptr cinfo) { huff_entropy_ptr2 entropy = (huff_entropy_ptr2) cinfo->entropy; int ci; /* Throw away any unused bits remaining in bit buffer; */ /* include any full bytes in next_marker's count of discarded bytes */ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; entropy->bitstate.bits_left = 0; /* Advance past the RSTn marker */ if (! (*cinfo->marker->read_restart_marker) (cinfo)) return FALSE; /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0; /* Reset restart counter */ entropy->restarts_to_go = cinfo->restart_interval; /* Reset out-of-data flag, unless read_restart_marker left us smack up * against a marker. In that case we will end up treating the next data * segment as empty, and we can avoid producing bogus output pixels by * leaving the flag set. */ if (cinfo->unread_marker == 0) entropy->pub.insufficient_data = FALSE; return TRUE; } /* * Decode and return one MCU's worth of Huffman-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. * (Wholesale zeroing is usually a little faster than retail...) * * Returns FALSE if data source requested suspension. In that case no * changes have been made to permanent state. (Exception: some output * coefficients may already have been assigned. This is harmless for * this module, since we'll just re-assign them on the next call.) */ METHODDEF(boolean) decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr2 entropy = (huff_entropy_ptr2) cinfo->entropy; int blkn; BITREAD_STATE_VARS; savable_state2 state; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restart(cinfo)) return FALSE; } /* If we've run out of data, just leave the MCU set to zeroes. * This way, we return uniform gray for the remainder of the segment. */ if (! entropy->pub.insufficient_data) { /* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(state, entropy->saved); /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { JBLOCKROW block = MCU_data[blkn]; d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; register int s, k, r; /* Decode a single block's worth of coefficients */ /* Section F.2.2.1: decode the DC coefficient difference */ HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); if (s) { CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); } if (entropy->dc_needed[blkn]) { /* Convert DC difference to actual value, update last_dc_val */ int ci = cinfo->MCU_membership[blkn]; s += state.last_dc_val[ci]; state.last_dc_val[ci] = s; /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ (*block)[0] = (JCOEF) s; } if (entropy->ac_needed[blkn]) { /* Section F.2.2.2: decode the AC coefficients */ /* Since zeroes are skipped, output area must be cleared beforehand */ for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE(s, br_state, actbl, return FALSE, label2); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); /* Output coefficient in natural (dezigzagged) order. * Note: the extra entries in jpeg_natural_order[] will save us * if k >= DCTSIZE2, which could happen if the data is corrupted. */ (*block)[jpeg_natural_order[k]] = (JCOEF) s; } else { if (r != 15) break; k += 15; } } } else { /* Section F.2.2.2: decode the AC coefficients */ /* In this path we just discard the values */ for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE(s, br_state, actbl, return FALSE, label3); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); DROP_BITS(s); } else { if (r != 15) break; k += 15; } } } } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(entropy->saved, state); } /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; } /* * Module initialization routine for Huffman entropy decoding. */ GLOBAL(void) jinit_huff_decoder (j_decompress_ptr cinfo) { huff_entropy_ptr2 entropy; int i; entropy = (huff_entropy_ptr2) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_decoder2)); cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; entropy->pub.start_pass = start_pass_huff_decoder; entropy->pub.decode_mcu = decode_mcu; /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; } } /********* End of inlined file: jdhuff.c *********/ /********* Start of inlined file: jdinput.c *********/ #define JPEG_INTERNALS /* Private state */ typedef struct { struct jpeg_input_controller pub; /* public fields */ boolean inheaders; /* TRUE until first SOS is reached */ } my_input_controller; typedef my_input_controller * my_inputctl_ptr; /* Forward declarations */ METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo)); /* * Routines to calculate various quantities related to the size of the image. */ LOCAL(void) initial_setup2 (j_decompress_ptr cinfo) /* Called once, when first SOS marker is reached */ { int ci; jpeg_component_info *compptr; /* Make sure image isn't bigger than I can handle */ if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION || (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION) ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); /* For now, precision must match compiled-in value... */ if (cinfo->data_precision != BITS_IN_JSAMPLE) ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); /* Check that number of components won't exceed internal array sizes */ if (cinfo->num_components > MAX_COMPONENTS) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, MAX_COMPONENTS); /* Compute maximum sampling factors; check factor validity */ cinfo->max_h_samp_factor = 1; cinfo->max_v_samp_factor = 1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) ERREXIT(cinfo, JERR_BAD_SAMPLING); cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, compptr->h_samp_factor); cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, compptr->v_samp_factor); } /* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE. * In the full decompressor, this will be overridden by jdmaster.c; * but in the transcoder, jdmaster.c is not used, so we must do it here. */ cinfo->min_DCT_scaled_size = DCTSIZE; /* Compute dimensions of components */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { compptr->DCT_scaled_size = DCTSIZE; /* Size in DCT blocks */ compptr->width_in_blocks = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, (long) (cinfo->max_h_samp_factor * DCTSIZE)); compptr->height_in_blocks = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, (long) (cinfo->max_v_samp_factor * DCTSIZE)); /* downsampled_width and downsampled_height will also be overridden by * jdmaster.c if we are doing full decompression. The transcoder library * doesn't use these values, but the calling application might. */ /* Size in samples */ compptr->downsampled_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, (long) cinfo->max_h_samp_factor); compptr->downsampled_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, (long) cinfo->max_v_samp_factor); /* Mark component needed, until color conversion says otherwise */ compptr->component_needed = TRUE; /* Mark no quantization table yet saved for component */ compptr->quant_table = NULL; } /* Compute number of fully interleaved MCU rows. */ cinfo->total_iMCU_rows = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, (long) (cinfo->max_v_samp_factor*DCTSIZE)); /* Decide whether file contains multiple scans */ if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode) cinfo->inputctl->has_multiple_scans = TRUE; else cinfo->inputctl->has_multiple_scans = FALSE; } LOCAL(void) per_scan_setup2 (j_decompress_ptr cinfo) /* Do computations that are needed before processing a JPEG scan */ /* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */ { int ci, mcublks, tmp; jpeg_component_info *compptr; if (cinfo->comps_in_scan == 1) { /* Noninterleaved (single-component) scan */ compptr = cinfo->cur_comp_info[0]; /* Overall image size in MCUs */ cinfo->MCUs_per_row = compptr->width_in_blocks; cinfo->MCU_rows_in_scan = compptr->height_in_blocks; /* For noninterleaved scan, always one block per MCU */ compptr->MCU_width = 1; compptr->MCU_height = 1; compptr->MCU_blocks = 1; compptr->MCU_sample_width = compptr->DCT_scaled_size; compptr->last_col_width = 1; /* For noninterleaved scans, it is convenient to define last_row_height * as the number of block rows present in the last iMCU row. */ tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); if (tmp == 0) tmp = compptr->v_samp_factor; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ cinfo->blocks_in_MCU = 1; cinfo->MCU_membership[0] = 0; } else { /* Interleaved (multi-component) scan */ if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, MAX_COMPS_IN_SCAN); /* Overall image size in MCUs */ cinfo->MCUs_per_row = (JDIMENSION) jdiv_round_up((long) cinfo->image_width, (long) (cinfo->max_h_samp_factor*DCTSIZE)); cinfo->MCU_rows_in_scan = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, (long) (cinfo->max_v_samp_factor*DCTSIZE)); cinfo->blocks_in_MCU = 0; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Sampling factors give # of blocks of component in each MCU */ compptr->MCU_width = compptr->h_samp_factor; compptr->MCU_height = compptr->v_samp_factor; compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_scaled_size; /* Figure number of non-dummy blocks in last MCU column & row */ tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); if (tmp == 0) tmp = compptr->MCU_width; compptr->last_col_width = tmp; tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); if (tmp == 0) tmp = compptr->MCU_height; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ mcublks = compptr->MCU_blocks; if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU) ERREXIT(cinfo, JERR_BAD_MCU_SIZE); while (mcublks-- > 0) { cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; } } } } /* * Save away a copy of the Q-table referenced by each component present * in the current scan, unless already saved during a prior scan. * * In a multiple-scan JPEG file, the encoder could assign different components * the same Q-table slot number, but change table definitions between scans * so that each component uses a different Q-table. (The IJG encoder is not * currently capable of doing this, but other encoders might.) Since we want * to be able to dequantize all the components at the end of the file, this * means that we have to save away the table actually used for each component. * We do this by copying the table at the start of the first scan containing * the component. * The JPEG spec prohibits the encoder from changing the contents of a Q-table * slot between scans of a component using that slot. If the encoder does so * anyway, this decoder will simply use the Q-table values that were current * at the start of the first scan for the component. * * The decompressor output side looks only at the saved quant tables, * not at the current Q-table slots. */ LOCAL(void) latch_quant_tables (j_decompress_ptr cinfo) { int ci, qtblno; jpeg_component_info *compptr; JQUANT_TBL * qtbl; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* No work if we already saved Q-table for this component */ if (compptr->quant_table != NULL) continue; /* Make sure specified quantization table is present */ qtblno = compptr->quant_tbl_no; if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || cinfo->quant_tbl_ptrs[qtblno] == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); /* OK, save away the quantization table */ qtbl = (JQUANT_TBL *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(JQUANT_TBL)); MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL)); compptr->quant_table = qtbl; } } /* * Initialize the input modules to read a scan of compressed data. * The first call to this is done by jdmaster.c after initializing * the entire decompressor (during jpeg_start_decompress). * Subsequent calls come from consume_markers, below. */ METHODDEF(void) start_input_pass2 (j_decompress_ptr cinfo) { per_scan_setup2(cinfo); latch_quant_tables(cinfo); (*cinfo->entropy->start_pass) (cinfo); (*cinfo->coef->start_input_pass) (cinfo); cinfo->inputctl->consume_input = cinfo->coef->consume_data; } /* * Finish up after inputting a compressed-data scan. * This is called by the coefficient controller after it's read all * the expected data of the scan. */ METHODDEF(void) finish_input_pass (j_decompress_ptr cinfo) { cinfo->inputctl->consume_input = consume_markers; } /* * Read JPEG markers before, between, or after compressed-data scans. * Change state as necessary when a new scan is reached. * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. * * The consume_input method pointer points either here or to the * coefficient controller's consume_data routine, depending on whether * we are reading a compressed data segment or inter-segment markers. */ METHODDEF(int) consume_markers (j_decompress_ptr cinfo) { my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; int val; if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */ return JPEG_REACHED_EOI; val = (*cinfo->marker->read_markers) (cinfo); switch (val) { case JPEG_REACHED_SOS: /* Found SOS */ if (inputctl->inheaders) { /* 1st SOS */ initial_setup2(cinfo); inputctl->inheaders = FALSE; /* Note: start_input_pass must be called by jdmaster.c * before any more input can be consumed. jdapimin.c is * responsible for enforcing this sequencing. */ } else { /* 2nd or later SOS marker */ if (! inputctl->pub.has_multiple_scans) ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */ start_input_pass2(cinfo); } break; case JPEG_REACHED_EOI: /* Found EOI */ inputctl->pub.eoi_reached = TRUE; if (inputctl->inheaders) { /* Tables-only datastream, apparently */ if (cinfo->marker->saw_SOF) ERREXIT(cinfo, JERR_SOF_NO_SOS); } else { /* Prevent infinite loop in coef ctlr's decompress_data routine * if user set output_scan_number larger than number of scans. */ if (cinfo->output_scan_number > cinfo->input_scan_number) cinfo->output_scan_number = cinfo->input_scan_number; } break; case JPEG_SUSPENDED: break; } return val; } /* * Reset state to begin a fresh datastream. */ METHODDEF(void) reset_input_controller (j_decompress_ptr cinfo) { my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; inputctl->pub.consume_input = consume_markers; inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ inputctl->pub.eoi_reached = FALSE; inputctl->inheaders = TRUE; /* Reset other modules */ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); (*cinfo->marker->reset_marker_reader) (cinfo); /* Reset progression state -- would be cleaner if entropy decoder did this */ cinfo->coef_bits = NULL; } /* * Initialize the input controller module. * This is called only once, when the decompression object is created. */ GLOBAL(void) jinit_input_controller (j_decompress_ptr cinfo) { my_inputctl_ptr inputctl; /* Create subobject in permanent pool */ inputctl = (my_inputctl_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_input_controller)); cinfo->inputctl = (struct jpeg_input_controller *) inputctl; /* Initialize method pointers */ inputctl->pub.consume_input = consume_markers; inputctl->pub.reset_input_controller = reset_input_controller; inputctl->pub.start_input_pass = start_input_pass2; inputctl->pub.finish_input_pass = finish_input_pass; /* Initialize state: can't use reset_input_controller since we don't * want to try to reset other modules yet. */ inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ inputctl->pub.eoi_reached = FALSE; inputctl->inheaders = TRUE; } /********* End of inlined file: jdinput.c *********/ /********* Start of inlined file: jdmainct.c *********/ #define JPEG_INTERNALS /* * In the current system design, the main buffer need never be a full-image * buffer; any full-height buffers will be found inside the coefficient or * postprocessing controllers. Nonetheless, the main controller is not * trivial. Its responsibility is to provide context rows for upsampling/ * rescaling, and doing this in an efficient fashion is a bit tricky. * * Postprocessor input data is counted in "row groups". A row group * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) * sample rows of each component. (We require DCT_scaled_size values to be * chosen such that these numbers are integers. In practice DCT_scaled_size * values will likely be powers of two, so we actually have the stronger * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.) * Upsampling will typically produce max_v_samp_factor pixel rows from each * row group (times any additional scale factor that the upsampler is * applying). * * The coefficient controller will deliver data to us one iMCU row at a time; * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or * exactly min_DCT_scaled_size row groups. (This amount of data corresponds * to one row of MCUs when the image is fully interleaved.) Note that the * number of sample rows varies across components, but the number of row * groups does not. Some garbage sample rows may be included in the last iMCU * row at the bottom of the image. * * Depending on the vertical scaling algorithm used, the upsampler may need * access to the sample row(s) above and below its current input row group. * The upsampler is required to set need_context_rows TRUE at global selection * time if so. When need_context_rows is FALSE, this controller can simply * obtain one iMCU row at a time from the coefficient controller and dole it * out as row groups to the postprocessor. * * When need_context_rows is TRUE, this controller guarantees that the buffer * passed to postprocessing contains at least one row group's worth of samples * above and below the row group(s) being processed. Note that the context * rows "above" the first passed row group appear at negative row offsets in * the passed buffer. At the top and bottom of the image, the required * context rows are manufactured by duplicating the first or last real sample * row; this avoids having special cases in the upsampling inner loops. * * The amount of context is fixed at one row group just because that's a * convenient number for this controller to work with. The existing * upsamplers really only need one sample row of context. An upsampler * supporting arbitrary output rescaling might wish for more than one row * group of context when shrinking the image; tough, we don't handle that. * (This is justified by the assumption that downsizing will be handled mostly * by adjusting the DCT_scaled_size values, so that the actual scale factor at * the upsample step needn't be much less than one.) * * To provide the desired context, we have to retain the last two row groups * of one iMCU row while reading in the next iMCU row. (The last row group * can't be processed until we have another row group for its below-context, * and so we have to save the next-to-last group too for its above-context.) * We could do this most simply by copying data around in our buffer, but * that'd be very slow. We can avoid copying any data by creating a rather * strange pointer structure. Here's how it works. We allocate a workspace * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number * of row groups per iMCU row). We create two sets of redundant pointers to * the workspace. Labeling the physical row groups 0 to M+1, the synthesized * pointer lists look like this: * M+1 M-1 * master pointer --> 0 master pointer --> 0 * 1 1 * ... ... * M-3 M-3 * M-2 M * M-1 M+1 * M M-2 * M+1 M-1 * 0 0 * We read alternate iMCU rows using each master pointer; thus the last two * row groups of the previous iMCU row remain un-overwritten in the workspace. * The pointer lists are set up so that the required context rows appear to * be adjacent to the proper places when we pass the pointer lists to the * upsampler. * * The above pictures describe the normal state of the pointer lists. * At top and bottom of the image, we diddle the pointer lists to duplicate * the first or last sample row as necessary (this is cheaper than copying * sample rows around). * * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that * situation each iMCU row provides only one row group so the buffering logic * must be different (eg, we must read two iMCU rows before we can emit the * first row group). For now, we simply do not support providing context * rows when min_DCT_scaled_size is 1. That combination seems unlikely to * be worth providing --- if someone wants a 1/8th-size preview, they probably * want it quick and dirty, so a context-free upsampler is sufficient. */ /* Private buffer controller object */ typedef struct { struct jpeg_d_main_controller pub; /* public fields */ /* Pointer to allocated workspace (M or M+2 row groups). */ JSAMPARRAY buffer[MAX_COMPONENTS]; boolean buffer_full; /* Have we gotten an iMCU row from decoder? */ JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */ /* Remaining fields are only used in the context case. */ /* These are the master pointers to the funny-order pointer lists. */ JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */ int whichptr; /* indicates which pointer set is now in use */ int context_state; /* process_data state machine status */ JDIMENSION rowgroups_avail; /* row groups available to postprocessor */ JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */ } my_main_controller4; typedef my_main_controller4 * my_main_ptr4; /* context_state values: */ #define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */ #define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */ #define CTX_POSTPONED_ROW 2 /* feeding postponed row group */ /* Forward declarations */ METHODDEF(void) process_data_simple_main2 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); METHODDEF(void) process_data_context_main JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); #ifdef QUANT_2PASS_SUPPORTED METHODDEF(void) process_data_crank_post JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); #endif LOCAL(void) alloc_funny_pointers (j_decompress_ptr cinfo) /* Allocate space for the funny pointer lists. * This is done only once, not once per pass. */ { my_main_ptr4 main_ = (my_main_ptr4) cinfo->main; int ci, rgroup; int M = cinfo->min_DCT_scaled_size; jpeg_component_info *compptr; JSAMPARRAY xbuf; /* Get top-level space for component array pointers. * We alloc both arrays with one call to save a few cycles. */ main_->xbuffer[0] = (JSAMPIMAGE) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->num_components * 2 * SIZEOF(JSAMPARRAY)); main_->xbuffer[1] = main_->xbuffer[0] + cinfo->num_components; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) / cinfo->min_DCT_scaled_size; /* height of a row group of component */ /* Get space for pointer lists --- M+4 row groups in each list. * We alloc both pointer lists with one call to save a few cycles. */ xbuf = (JSAMPARRAY) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW)); xbuf += rgroup; /* want one row group at negative offsets */ main_->xbuffer[0][ci] = xbuf; xbuf += rgroup * (M + 4); main_->xbuffer[1][ci] = xbuf; } } LOCAL(void) make_funny_pointers (j_decompress_ptr cinfo) /* Create the funny pointer lists discussed in the comments above. * The actual workspace is already allocated (in main->buffer), * and the space for the pointer lists is allocated too. * This routine just fills in the curiously ordered lists. * This will be repeated at the beginning of each pass. */ { my_main_ptr4 main_ = (my_main_ptr4) cinfo->main; int ci, i, rgroup; int M = cinfo->min_DCT_scaled_size; jpeg_component_info *compptr; JSAMPARRAY buf, xbuf0, xbuf1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) / cinfo->min_DCT_scaled_size; /* height of a row group of component */ xbuf0 = main_->xbuffer[0][ci]; xbuf1 = main_->xbuffer[1][ci]; /* First copy the workspace pointers as-is */ buf = main_->buffer[ci]; for (i = 0; i < rgroup * (M + 2); i++) { xbuf0[i] = xbuf1[i] = buf[i]; } /* In the second list, put the last four row groups in swapped order */ for (i = 0; i < rgroup * 2; i++) { xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i]; xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i]; } /* The wraparound pointers at top and bottom will be filled later * (see set_wraparound_pointers, below). Initially we want the "above" * pointers to duplicate the first actual data line. This only needs * to happen in xbuffer[0]. */ for (i = 0; i < rgroup; i++) { xbuf0[i - rgroup] = xbuf0[0]; } } } LOCAL(void) set_wraparound_pointers (j_decompress_ptr cinfo) /* Set up the "wraparound" pointers at top and bottom of the pointer lists. * This changes the pointer list state from top-of-image to the normal state. */ { my_main_ptr4 main_ = (my_main_ptr4) cinfo->main; int ci, i, rgroup; int M = cinfo->min_DCT_scaled_size; jpeg_component_info *compptr; JSAMPARRAY xbuf0, xbuf1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) / cinfo->min_DCT_scaled_size; /* height of a row group of component */ xbuf0 = main_->xbuffer[0][ci]; xbuf1 = main_->xbuffer[1][ci]; for (i = 0; i < rgroup; i++) { xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i]; xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i]; xbuf0[rgroup*(M+2) + i] = xbuf0[i]; xbuf1[rgroup*(M+2) + i] = xbuf1[i]; } } } LOCAL(void) set_bottom_pointers (j_decompress_ptr cinfo) /* Change the pointer lists to duplicate the last sample row at the bottom * of the image. whichptr indicates which xbuffer holds the final iMCU row. * Also sets rowgroups_avail to indicate number of nondummy row groups in row. */ { my_main_ptr4 main_ = (my_main_ptr4) cinfo->main; int ci, i, rgroup, iMCUheight, rows_left; jpeg_component_info *compptr; JSAMPARRAY xbuf; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Count sample rows in one iMCU row and in one row group */ iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size; rgroup = iMCUheight / cinfo->min_DCT_scaled_size; /* Count nondummy sample rows remaining for this component */ rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight); if (rows_left == 0) rows_left = iMCUheight; /* Count nondummy row groups. Should get same answer for each component, * so we need only do it once. */ if (ci == 0) { main_->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1); } /* Duplicate the last real sample row rgroup*2 times; this pads out the * last partial rowgroup and ensures at least one full rowgroup of context. */ xbuf = main_->xbuffer[main_->whichptr][ci]; for (i = 0; i < rgroup * 2; i++) { xbuf[rows_left + i] = xbuf[rows_left-1]; } } } /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_main2 (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) { my_main_ptr4 main_ = (my_main_ptr4) cinfo->main; switch (pass_mode) { case JBUF_PASS_THRU: if (cinfo->upsample->need_context_rows) { main_->pub.process_data = process_data_context_main; make_funny_pointers(cinfo); /* Create the xbuffer[] lists */ main_->whichptr = 0; /* Read first iMCU row into xbuffer[0] */ main_->context_state = CTX_PREPARE_FOR_IMCU; main_->iMCU_row_ctr = 0; } else { /* Simple case with no context needed */ main_->pub.process_data = process_data_simple_main2; } main_->buffer_full = FALSE; /* Mark buffer empty */ main_->rowgroup_ctr = 0; break; #ifdef QUANT_2PASS_SUPPORTED case JBUF_CRANK_DEST: /* For last pass of 2-pass quantization, just crank the postprocessor */ main_->pub.process_data = process_data_crank_post; break; #endif default: ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); break; } } /* * Process some data. * This handles the simple case where no context is required. */ METHODDEF(void) process_data_simple_main2 (j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_main_ptr4 main_ = (my_main_ptr4) cinfo->main; JDIMENSION rowgroups_avail; /* Read input data if we haven't filled the main buffer yet */ if (! main_->buffer_full) { if (! (*cinfo->coef->decompress_data) (cinfo, main_->buffer)) return; /* suspension forced, can do nothing more */ main_->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ } /* There are always min_DCT_scaled_size row groups in an iMCU row. */ rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size; /* Note: at the bottom of the image, we may pass extra garbage row groups * to the postprocessor. The postprocessor has to check for bottom * of image anyway (at row resolution), so no point in us doing it too. */ /* Feed the postprocessor */ (*cinfo->post->post_process_data) (cinfo, main_->buffer, &main_->rowgroup_ctr, rowgroups_avail, output_buf, out_row_ctr, out_rows_avail); /* Has postprocessor consumed all the data yet? If so, mark buffer empty */ if (main_->rowgroup_ctr >= rowgroups_avail) { main_->buffer_full = FALSE; main_->rowgroup_ctr = 0; } } /* * Process some data. * This handles the case where context rows must be provided. */ METHODDEF(void) process_data_context_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_main_ptr4 main_ = (my_main_ptr4) cinfo->main; /* Read input data if we haven't filled the main buffer yet */ if (! main_->buffer_full) { if (! (*cinfo->coef->decompress_data) (cinfo, main_->xbuffer[main_->whichptr])) return; /* suspension forced, can do nothing more */ main_->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ main_->iMCU_row_ctr++; /* count rows received */ } /* Postprocessor typically will not swallow all the input data it is handed * in one call (due to filling the output buffer first). Must be prepared * to exit and restart. This switch lets us keep track of how far we got. * Note that each case falls through to the next on successful completion. */ switch (main_->context_state) { case CTX_POSTPONED_ROW: /* Call postprocessor using previously set pointers for postponed row */ (*cinfo->post->post_process_data) (cinfo, main_->xbuffer[main_->whichptr], &main_->rowgroup_ctr, main_->rowgroups_avail, output_buf, out_row_ctr, out_rows_avail); if (main_->rowgroup_ctr < main_->rowgroups_avail) return; /* Need to suspend */ main_->context_state = CTX_PREPARE_FOR_IMCU; if (*out_row_ctr >= out_rows_avail) return; /* Postprocessor exactly filled output buf */ /*FALLTHROUGH*/ case CTX_PREPARE_FOR_IMCU: /* Prepare to process first M-1 row groups of this iMCU row */ main_->rowgroup_ctr = 0; main_->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1); /* Check for bottom of image: if so, tweak pointers to "duplicate" * the last sample row, and adjust rowgroups_avail to ignore padding rows. */ if (main_->iMCU_row_ctr == cinfo->total_iMCU_rows) set_bottom_pointers(cinfo); main_->context_state = CTX_PROCESS_IMCU; /*FALLTHROUGH*/ case CTX_PROCESS_IMCU: /* Call postprocessor using previously set pointers */ (*cinfo->post->post_process_data) (cinfo, main_->xbuffer[main_->whichptr], &main_->rowgroup_ctr, main_->rowgroups_avail, output_buf, out_row_ctr, out_rows_avail); if (main_->rowgroup_ctr < main_->rowgroups_avail) return; /* Need to suspend */ /* After the first iMCU, change wraparound pointers to normal state */ if (main_->iMCU_row_ctr == 1) set_wraparound_pointers(cinfo); /* Prepare to load new iMCU row using other xbuffer list */ main_->whichptr ^= 1; /* 0=>1 or 1=>0 */ main_->buffer_full = FALSE; /* Still need to process last row group of this iMCU row, */ /* which is saved at index M+1 of the other xbuffer */ main_->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1); main_->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2); main_->context_state = CTX_POSTPONED_ROW; } } /* * Process some data. * Final pass of two-pass quantization: just call the postprocessor. * Source data will be the postprocessor controller's internal buffer. */ #ifdef QUANT_2PASS_SUPPORTED METHODDEF(void) process_data_crank_post (j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL, (JDIMENSION *) NULL, (JDIMENSION) 0, output_buf, out_row_ctr, out_rows_avail); } #endif /* QUANT_2PASS_SUPPORTED */ /* * Initialize main buffer controller. */ GLOBAL(void) jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer) { my_main_ptr4 main_; int ci, rgroup, ngroups; jpeg_component_info *compptr; main_ = (my_main_ptr4) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_main_controller4)); cinfo->main = (struct jpeg_d_main_controller *) main_; main_->pub.start_pass = start_pass_main2; if (need_full_buffer) /* shouldn't happen */ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); /* Allocate the workspace. * ngroups is the number of row groups we need. */ if (cinfo->upsample->need_context_rows) { if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */ ERREXIT(cinfo, JERR_NOTIMPL); alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */ ngroups = cinfo->min_DCT_scaled_size + 2; } else { ngroups = cinfo->min_DCT_scaled_size; } for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) / cinfo->min_DCT_scaled_size; /* height of a row group of component */ main_->buffer[ci] = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, compptr->width_in_blocks * compptr->DCT_scaled_size, (JDIMENSION) (rgroup * ngroups)); } } /********* End of inlined file: jdmainct.c *********/ /********* Start of inlined file: jdmarker.c *********/ #define JPEG_INTERNALS /* Private state */ typedef struct { struct jpeg_marker_reader pub; /* public fields */ /* Application-overridable marker processing methods */ jpeg_marker_parser_method process_COM; jpeg_marker_parser_method process_APPn[16]; /* Limit on marker data length to save for each marker type */ unsigned int length_limit_COM; unsigned int length_limit_APPn[16]; /* Status of COM/APPn marker saving */ jpeg_saved_marker_ptr cur_marker; /* NULL if not processing a marker */ unsigned int bytes_read; /* data bytes read so far in marker */ /* Note: cur_marker is not linked into marker_list until it's all read. */ } my_marker_reader; typedef my_marker_reader * my_marker_ptr2; /* * Macros for fetching data from the data source module. * * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect * the current restart point; we update them only when we have reached a * suitable place to restart if a suspension occurs. */ /* Declare and initialize local copies of input pointer/count */ #define INPUT_VARS(cinfo) \ struct jpeg_source_mgr * datasrc = (cinfo)->src; \ const JOCTET * next_input_byte = datasrc->next_input_byte; \ size_t bytes_in_buffer = datasrc->bytes_in_buffer /* Unload the local copies --- do this only at a restart boundary */ #define INPUT_SYNC(cinfo) \ ( datasrc->next_input_byte = next_input_byte, \ datasrc->bytes_in_buffer = bytes_in_buffer ) /* Reload the local copies --- used only in MAKE_BYTE_AVAIL */ #define INPUT_RELOAD(cinfo) \ ( next_input_byte = datasrc->next_input_byte, \ bytes_in_buffer = datasrc->bytes_in_buffer ) /* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available. * Note we do *not* do INPUT_SYNC before calling fill_input_buffer, * but we must reload the local copies after a successful fill. */ #define MAKE_BYTE_AVAIL(cinfo,action) \ if (bytes_in_buffer == 0) { \ if (! (*datasrc->fill_input_buffer) (cinfo)) \ { action; } \ INPUT_RELOAD(cinfo); \ } /* Read a byte into variable V. * If must suspend, take the specified action (typically "return FALSE"). */ #define INPUT_BYTE(cinfo,V,action) \ MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \ bytes_in_buffer--; \ V = GETJOCTET(*next_input_byte++); ) /* As above, but read two bytes interpreted as an unsigned 16-bit integer. * V should be declared unsigned int or perhaps INT32. */ #define INPUT_2BYTES(cinfo,V,action) \ MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \ bytes_in_buffer--; \ V = ((unsigned int) GETJOCTET(*next_input_byte++)) << 8; \ MAKE_BYTE_AVAIL(cinfo,action); \ bytes_in_buffer--; \ V += GETJOCTET(*next_input_byte++); ) /* * Routines to process JPEG markers. * * Entry condition: JPEG marker itself has been read and its code saved * in cinfo->unread_marker; input restart point is just after the marker. * * Exit: if return TRUE, have read and processed any parameters, and have * updated the restart point to point after the parameters. * If return FALSE, was forced to suspend before reaching end of * marker parameters; restart point has not been moved. Same routine * will be called again after application supplies more input data. * * This approach to suspension assumes that all of a marker's parameters * can fit into a single input bufferload. This should hold for "normal" * markers. Some COM/APPn markers might have large parameter segments * that might not fit. If we are simply dropping such a marker, we use * skip_input_data to get past it, and thereby put the problem on the * source manager's shoulders. If we are saving the marker's contents * into memory, we use a slightly different convention: when forced to * suspend, the marker processor updates the restart point to the end of * what it's consumed (ie, the end of the buffer) before returning FALSE. * On resumption, cinfo->unread_marker still contains the marker code, * but the data source will point to the next chunk of marker data. * The marker processor must retain internal state to deal with this. * * Note that we don't bother to avoid duplicate trace messages if a * suspension occurs within marker parameters. Other side effects * require more care. */ LOCAL(boolean) get_soi (j_decompress_ptr cinfo) /* Process an SOI marker */ { int i; TRACEMS(cinfo, 1, JTRC_SOI); if (cinfo->marker->saw_SOI) ERREXIT(cinfo, JERR_SOI_DUPLICATE); /* Reset all parameters that are defined to be reset by SOI */ for (i = 0; i < NUM_ARITH_TBLS; i++) { cinfo->arith_dc_L[i] = 0; cinfo->arith_dc_U[i] = 1; cinfo->arith_ac_K[i] = 5; } cinfo->restart_interval = 0; /* Set initial assumptions for colorspace etc */ cinfo->jpeg_color_space = JCS_UNKNOWN; cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */ cinfo->saw_JFIF_marker = FALSE; cinfo->JFIF_major_version = 1; /* set default JFIF APP0 values */ cinfo->JFIF_minor_version = 1; cinfo->density_unit = 0; cinfo->X_density = 1; cinfo->Y_density = 1; cinfo->saw_Adobe_marker = FALSE; cinfo->Adobe_transform = 0; cinfo->marker->saw_SOI = TRUE; return TRUE; } LOCAL(boolean) get_sof (j_decompress_ptr cinfo, boolean is_prog, boolean is_arith) /* Process a SOFn marker */ { INT32 length; int c, ci; jpeg_component_info * compptr; INPUT_VARS(cinfo); cinfo->progressive_mode = is_prog; cinfo->arith_code = is_arith; INPUT_2BYTES(cinfo, length, return FALSE); INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE); INPUT_2BYTES(cinfo, cinfo->image_height, return FALSE); INPUT_2BYTES(cinfo, cinfo->image_width, return FALSE); INPUT_BYTE(cinfo, cinfo->num_components, return FALSE); length -= 8; TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker, (int) cinfo->image_width, (int) cinfo->image_height, cinfo->num_components); if (cinfo->marker->saw_SOF) ERREXIT(cinfo, JERR_SOF_DUPLICATE); /* We don't support files in which the image height is initially specified */ /* as 0 and is later redefined by DNL. As long as we have to check that, */ /* might as well have a general sanity check. */ if (cinfo->image_height <= 0 || cinfo->image_width <= 0 || cinfo->num_components <= 0) ERREXIT(cinfo, JERR_EMPTY_IMAGE); if (length != (cinfo->num_components * 3)) ERREXIT(cinfo, JERR_BAD_LENGTH); if (cinfo->comp_info == NULL) /* do only once, even if suspend */ cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->num_components * SIZEOF(jpeg_component_info)); for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { compptr->component_index = ci; INPUT_BYTE(cinfo, compptr->component_id, return FALSE); INPUT_BYTE(cinfo, c, return FALSE); compptr->h_samp_factor = (c >> 4) & 15; compptr->v_samp_factor = (c ) & 15; INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE); TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT, compptr->component_id, compptr->h_samp_factor, compptr->v_samp_factor, compptr->quant_tbl_no); } cinfo->marker->saw_SOF = TRUE; INPUT_SYNC(cinfo); return TRUE; } LOCAL(boolean) get_sos (j_decompress_ptr cinfo) /* Process a SOS marker */ { INT32 length; int i, ci, n, c, cc; jpeg_component_info * compptr; INPUT_VARS(cinfo); if (! cinfo->marker->saw_SOF) ERREXIT(cinfo, JERR_SOS_NO_SOF); INPUT_2BYTES(cinfo, length, return FALSE); INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */ TRACEMS1(cinfo, 1, JTRC_SOS, n); if (length != (n * 2 + 6) || n < 1 || n > MAX_COMPS_IN_SCAN) ERREXIT(cinfo, JERR_BAD_LENGTH); cinfo->comps_in_scan = n; /* Collect the component-spec parameters */ for (i = 0; i < n; i++) { INPUT_BYTE(cinfo, cc, return FALSE); INPUT_BYTE(cinfo, c, return FALSE); for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (cc == compptr->component_id) goto id_found; } ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc); id_found: cinfo->cur_comp_info[i] = compptr; compptr->dc_tbl_no = (c >> 4) & 15; compptr->ac_tbl_no = (c ) & 15; TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc, compptr->dc_tbl_no, compptr->ac_tbl_no); } /* Collect the additional scan parameters Ss, Se, Ah/Al. */ INPUT_BYTE(cinfo, c, return FALSE); cinfo->Ss = c; INPUT_BYTE(cinfo, c, return FALSE); cinfo->Se = c; INPUT_BYTE(cinfo, c, return FALSE); cinfo->Ah = (c >> 4) & 15; cinfo->Al = (c ) & 15; TRACEMS4(cinfo, 1, JTRC_SOS_PARAMS, cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); /* Prepare to scan data & restart markers */ cinfo->marker->next_restart_num = 0; /* Count another SOS marker */ cinfo->input_scan_number++; INPUT_SYNC(cinfo); return TRUE; } #ifdef D_ARITH_CODING_SUPPORTED LOCAL(boolean) get_dac (j_decompress_ptr cinfo) /* Process a DAC marker */ { INT32 length; int index, val; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; while (length > 0) { INPUT_BYTE(cinfo, index, return FALSE); INPUT_BYTE(cinfo, val, return FALSE); length -= 2; TRACEMS2(cinfo, 1, JTRC_DAC, index, val); if (index < 0 || index >= (2*NUM_ARITH_TBLS)) ERREXIT1(cinfo, JERR_DAC_INDEX, index); if (index >= NUM_ARITH_TBLS) { /* define AC table */ cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val; } else { /* define DC table */ cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F); cinfo->arith_dc_U[index] = (UINT8) (val >> 4); if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index]) ERREXIT1(cinfo, JERR_DAC_VALUE, val); } } if (length != 0) ERREXIT(cinfo, JERR_BAD_LENGTH); INPUT_SYNC(cinfo); return TRUE; } #else /* ! D_ARITH_CODING_SUPPORTED */ #define get_dac(cinfo) skip_variable(cinfo) #endif /* D_ARITH_CODING_SUPPORTED */ LOCAL(boolean) get_dht (j_decompress_ptr cinfo) /* Process a DHT marker */ { INT32 length; UINT8 bits[17]; UINT8 huffval[256]; int i, index, count; JHUFF_TBL **htblptr; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; while (length > 16) { INPUT_BYTE(cinfo, index, return FALSE); TRACEMS1(cinfo, 1, JTRC_DHT, index); bits[0] = 0; count = 0; for (i = 1; i <= 16; i++) { INPUT_BYTE(cinfo, bits[i], return FALSE); count += bits[i]; } length -= 1 + 16; TRACEMS8(cinfo, 2, JTRC_HUFFBITS, bits[1], bits[2], bits[3], bits[4], bits[5], bits[6], bits[7], bits[8]); TRACEMS8(cinfo, 2, JTRC_HUFFBITS, bits[9], bits[10], bits[11], bits[12], bits[13], bits[14], bits[15], bits[16]); /* Here we just do minimal validation of the counts to avoid walking * off the end of our table space. jdhuff.c will check more carefully. */ if (count > 256 || ((INT32) count) > length) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); for (i = 0; i < count; i++) INPUT_BYTE(cinfo, huffval[i], return FALSE); length -= count; if (index & 0x10) { /* AC table definition */ index -= 0x10; htblptr = &cinfo->ac_huff_tbl_ptrs[index]; } else { /* DC table definition */ htblptr = &cinfo->dc_huff_tbl_ptrs[index]; } if (index < 0 || index >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_DHT_INDEX, index); if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits)); MEMCOPY((*htblptr)->huffval, huffval, SIZEOF((*htblptr)->huffval)); } if (length != 0) ERREXIT(cinfo, JERR_BAD_LENGTH); INPUT_SYNC(cinfo); return TRUE; } LOCAL(boolean) get_dqt (j_decompress_ptr cinfo) /* Process a DQT marker */ { INT32 length; int n, i, prec; unsigned int tmp; JQUANT_TBL *quant_ptr; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; while (length > 0) { INPUT_BYTE(cinfo, n, return FALSE); prec = n >> 4; n &= 0x0F; TRACEMS2(cinfo, 1, JTRC_DQT, n, prec); if (n >= NUM_QUANT_TBLS) ERREXIT1(cinfo, JERR_DQT_INDEX, n); if (cinfo->quant_tbl_ptrs[n] == NULL) cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) cinfo); quant_ptr = cinfo->quant_tbl_ptrs[n]; for (i = 0; i < DCTSIZE2; i++) { if (prec) INPUT_2BYTES(cinfo, tmp, return FALSE); else INPUT_BYTE(cinfo, tmp, return FALSE); /* We convert the zigzag-order table to natural array order. */ quant_ptr->quantval[jpeg_natural_order[i]] = (UINT16) tmp; } if (cinfo->err->trace_level >= 2) { for (i = 0; i < DCTSIZE2; i += 8) { TRACEMS8(cinfo, 2, JTRC_QUANTVALS, quant_ptr->quantval[i], quant_ptr->quantval[i+1], quant_ptr->quantval[i+2], quant_ptr->quantval[i+3], quant_ptr->quantval[i+4], quant_ptr->quantval[i+5], quant_ptr->quantval[i+6], quant_ptr->quantval[i+7]); } } length -= DCTSIZE2+1; if (prec) length -= DCTSIZE2; } if (length != 0) ERREXIT(cinfo, JERR_BAD_LENGTH); INPUT_SYNC(cinfo); return TRUE; } LOCAL(boolean) get_dri (j_decompress_ptr cinfo) /* Process a DRI marker */ { INT32 length; unsigned int tmp; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); if (length != 4) ERREXIT(cinfo, JERR_BAD_LENGTH); INPUT_2BYTES(cinfo, tmp, return FALSE); TRACEMS1(cinfo, 1, JTRC_DRI, tmp); cinfo->restart_interval = tmp; INPUT_SYNC(cinfo); return TRUE; } /* * Routines for processing APPn and COM markers. * These are either saved in memory or discarded, per application request. * APP0 and APP14 are specially checked to see if they are * JFIF and Adobe markers, respectively. */ #define APP0_DATA_LEN 14 /* Length of interesting data in APP0 */ #define APP14_DATA_LEN 12 /* Length of interesting data in APP14 */ #define APPN_DATA_LEN 14 /* Must be the largest of the above!! */ LOCAL(void) examine_app0 (j_decompress_ptr cinfo, JOCTET FAR * data, unsigned int datalen, INT32 remaining) /* Examine first few bytes from an APP0. * Take appropriate action if it is a JFIF marker. * datalen is # of bytes at data[], remaining is length of rest of marker data. */ { INT32 totallen = (INT32) datalen + remaining; if (datalen >= APP0_DATA_LEN && GETJOCTET(data[0]) == 0x4A && GETJOCTET(data[1]) == 0x46 && GETJOCTET(data[2]) == 0x49 && GETJOCTET(data[3]) == 0x46 && GETJOCTET(data[4]) == 0) { /* Found JFIF APP0 marker: save info */ cinfo->saw_JFIF_marker = TRUE; cinfo->JFIF_major_version = GETJOCTET(data[5]); cinfo->JFIF_minor_version = GETJOCTET(data[6]); cinfo->density_unit = GETJOCTET(data[7]); cinfo->X_density = (GETJOCTET(data[8]) << 8) + GETJOCTET(data[9]); cinfo->Y_density = (GETJOCTET(data[10]) << 8) + GETJOCTET(data[11]); /* Check version. * Major version must be 1, anything else signals an incompatible change. * (We used to treat this as an error, but now it's a nonfatal warning, * because some bozo at Hijaak couldn't read the spec.) * Minor version should be 0..2, but process anyway if newer. */ if (cinfo->JFIF_major_version != 1) WARNMS2(cinfo, JWRN_JFIF_MAJOR, cinfo->JFIF_major_version, cinfo->JFIF_minor_version); /* Generate trace messages */ TRACEMS5(cinfo, 1, JTRC_JFIF, cinfo->JFIF_major_version, cinfo->JFIF_minor_version, cinfo->X_density, cinfo->Y_density, cinfo->density_unit); /* Validate thumbnail dimensions and issue appropriate messages */ if (GETJOCTET(data[12]) | GETJOCTET(data[13])) TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL, GETJOCTET(data[12]), GETJOCTET(data[13])); totallen -= APP0_DATA_LEN; if (totallen != ((INT32)GETJOCTET(data[12]) * (INT32)GETJOCTET(data[13]) * (INT32) 3)) TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int) totallen); } else if (datalen >= 6 && GETJOCTET(data[0]) == 0x4A && GETJOCTET(data[1]) == 0x46 && GETJOCTET(data[2]) == 0x58 && GETJOCTET(data[3]) == 0x58 && GETJOCTET(data[4]) == 0) { /* Found JFIF "JFXX" extension APP0 marker */ /* The library doesn't actually do anything with these, * but we try to produce a helpful trace message. */ switch (GETJOCTET(data[5])) { case 0x10: TRACEMS1(cinfo, 1, JTRC_THUMB_JPEG, (int) totallen); break; case 0x11: TRACEMS1(cinfo, 1, JTRC_THUMB_PALETTE, (int) totallen); break; case 0x13: TRACEMS1(cinfo, 1, JTRC_THUMB_RGB, (int) totallen); break; default: TRACEMS2(cinfo, 1, JTRC_JFIF_EXTENSION, GETJOCTET(data[5]), (int) totallen); break; } } else { /* Start of APP0 does not match "JFIF" or "JFXX", or too short */ TRACEMS1(cinfo, 1, JTRC_APP0, (int) totallen); } } LOCAL(void) examine_app14 (j_decompress_ptr cinfo, JOCTET FAR * data, unsigned int datalen, INT32 remaining) /* Examine first few bytes from an APP14. * Take appropriate action if it is an Adobe marker. * datalen is # of bytes at data[], remaining is length of rest of marker data. */ { unsigned int version, flags0, flags1, transform; if (datalen >= APP14_DATA_LEN && GETJOCTET(data[0]) == 0x41 && GETJOCTET(data[1]) == 0x64 && GETJOCTET(data[2]) == 0x6F && GETJOCTET(data[3]) == 0x62 && GETJOCTET(data[4]) == 0x65) { /* Found Adobe APP14 marker */ version = (GETJOCTET(data[5]) << 8) + GETJOCTET(data[6]); flags0 = (GETJOCTET(data[7]) << 8) + GETJOCTET(data[8]); flags1 = (GETJOCTET(data[9]) << 8) + GETJOCTET(data[10]); transform = GETJOCTET(data[11]); TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform); cinfo->saw_Adobe_marker = TRUE; cinfo->Adobe_transform = (UINT8) transform; } else { /* Start of APP14 does not match "Adobe", or too short */ TRACEMS1(cinfo, 1, JTRC_APP14, (int) (datalen + remaining)); } } METHODDEF(boolean) get_interesting_appn (j_decompress_ptr cinfo) /* Process an APP0 or APP14 marker without saving it */ { INT32 length; JOCTET b[APPN_DATA_LEN]; unsigned int i, numtoread; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; /* get the interesting part of the marker data */ if (length >= APPN_DATA_LEN) numtoread = APPN_DATA_LEN; else if (length > 0) numtoread = (unsigned int) length; else numtoread = 0; for (i = 0; i < numtoread; i++) INPUT_BYTE(cinfo, b[i], return FALSE); length -= numtoread; /* process it */ switch (cinfo->unread_marker) { case M_APP0: examine_app0(cinfo, (JOCTET FAR *) b, numtoread, length); break; case M_APP14: examine_app14(cinfo, (JOCTET FAR *) b, numtoread, length); break; default: /* can't get here unless jpeg_save_markers chooses wrong processor */ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker); break; } /* skip any remaining data -- could be lots */ INPUT_SYNC(cinfo); if (length > 0) (*cinfo->src->skip_input_data) (cinfo, (long) length); return TRUE; } #ifdef SAVE_MARKERS_SUPPORTED METHODDEF(boolean) save_marker (j_decompress_ptr cinfo) /* Save an APPn or COM marker into the marker list */ { my_marker_ptr2 marker = (my_marker_ptr2) cinfo->marker; jpeg_saved_marker_ptr cur_marker = marker->cur_marker; unsigned int bytes_read, data_length; JOCTET FAR * data; INT32 length = 0; INPUT_VARS(cinfo); if (cur_marker == NULL) { /* begin reading a marker */ INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; if (length >= 0) { /* watch out for bogus length word */ /* figure out how much we want to save */ unsigned int limit; if (cinfo->unread_marker == (int) M_COM) limit = marker->length_limit_COM; else limit = marker->length_limit_APPn[cinfo->unread_marker - (int) M_APP0]; if ((unsigned int) length < limit) limit = (unsigned int) length; /* allocate and initialize the marker item */ cur_marker = (jpeg_saved_marker_ptr) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(struct jpeg_marker_struct) + limit); cur_marker->next = NULL; cur_marker->marker = (UINT8) cinfo->unread_marker; cur_marker->original_length = (unsigned int) length; cur_marker->data_length = limit; /* data area is just beyond the jpeg_marker_struct */ data = cur_marker->data = (JOCTET FAR *) (cur_marker + 1); marker->cur_marker = cur_marker; marker->bytes_read = 0; bytes_read = 0; data_length = limit; } else { /* deal with bogus length word */ bytes_read = data_length = 0; data = NULL; } } else { /* resume reading a marker */ bytes_read = marker->bytes_read; data_length = cur_marker->data_length; data = cur_marker->data + bytes_read; } while (bytes_read < data_length) { INPUT_SYNC(cinfo); /* move the restart point to here */ marker->bytes_read = bytes_read; /* If there's not at least one byte in buffer, suspend */ MAKE_BYTE_AVAIL(cinfo, return FALSE); /* Copy bytes with reasonable rapidity */ while (bytes_read < data_length && bytes_in_buffer > 0) { *data++ = *next_input_byte++; bytes_in_buffer--; bytes_read++; } } /* Done reading what we want to read */ if (cur_marker != NULL) { /* will be NULL if bogus length word */ /* Add new marker to end of list */ if (cinfo->marker_list == NULL) { cinfo->marker_list = cur_marker; } else { jpeg_saved_marker_ptr prev = cinfo->marker_list; while (prev->next != NULL) prev = prev->next; prev->next = cur_marker; } /* Reset pointer & calc remaining data length */ data = cur_marker->data; length = cur_marker->original_length - data_length; } /* Reset to initial state for next marker */ marker->cur_marker = NULL; /* Process the marker if interesting; else just make a generic trace msg */ switch (cinfo->unread_marker) { case M_APP0: examine_app0(cinfo, data, data_length, length); break; case M_APP14: examine_app14(cinfo, data, data_length, length); break; default: TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) (data_length + length)); break; } /* skip any remaining data -- could be lots */ INPUT_SYNC(cinfo); /* do before skip_input_data */ if (length > 0) (*cinfo->src->skip_input_data) (cinfo, (long) length); return TRUE; } #endif /* SAVE_MARKERS_SUPPORTED */ METHODDEF(boolean) skip_variable (j_decompress_ptr cinfo) /* Skip over an unknown or uninteresting variable-length marker */ { INT32 length; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) length); INPUT_SYNC(cinfo); /* do before skip_input_data */ if (length > 0) (*cinfo->src->skip_input_data) (cinfo, (long) length); return TRUE; } /* * Find the next JPEG marker, save it in cinfo->unread_marker. * Returns FALSE if had to suspend before reaching a marker; * in that case cinfo->unread_marker is unchanged. * * Note that the result might not be a valid marker code, * but it will never be 0 or FF. */ LOCAL(boolean) next_marker (j_decompress_ptr cinfo) { int c; INPUT_VARS(cinfo); for (;;) { INPUT_BYTE(cinfo, c, return FALSE); /* Skip any non-FF bytes. * This may look a bit inefficient, but it will not occur in a valid file. * We sync after each discarded byte so that a suspending data source * can discard the byte from its buffer. */ while (c != 0xFF) { cinfo->marker->discarded_bytes++; INPUT_SYNC(cinfo); INPUT_BYTE(cinfo, c, return FALSE); } /* This loop swallows any duplicate FF bytes. Extra FFs are legal as * pad bytes, so don't count them in discarded_bytes. We assume there * will not be so many consecutive FF bytes as to overflow a suspending * data source's input buffer. */ do { INPUT_BYTE(cinfo, c, return FALSE); } while (c == 0xFF); if (c != 0) break; /* found a valid marker, exit loop */ /* Reach here if we found a stuffed-zero data sequence (FF/00). * Discard it and loop back to try again. */ cinfo->marker->discarded_bytes += 2; INPUT_SYNC(cinfo); } if (cinfo->marker->discarded_bytes != 0) { WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c); cinfo->marker->discarded_bytes = 0; } cinfo->unread_marker = c; INPUT_SYNC(cinfo); return TRUE; } LOCAL(boolean) first_marker (j_decompress_ptr cinfo) /* Like next_marker, but used to obtain the initial SOI marker. */ /* For this marker, we do not allow preceding garbage or fill; otherwise, * we might well scan an entire input file before realizing it ain't JPEG. * If an application wants to process non-JFIF files, it must seek to the * SOI before calling the JPEG library. */ { int c, c2; INPUT_VARS(cinfo); INPUT_BYTE(cinfo, c, return FALSE); INPUT_BYTE(cinfo, c2, return FALSE); if (c != 0xFF || c2 != (int) M_SOI) ERREXIT2(cinfo, JERR_NO_SOI, c, c2); cinfo->unread_marker = c2; INPUT_SYNC(cinfo); return TRUE; } /* * Read markers until SOS or EOI. * * Returns same codes as are defined for jpeg_consume_input: * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. */ METHODDEF(int) read_markers (j_decompress_ptr cinfo) { /* Outer loop repeats once for each marker. */ for (;;) { /* Collect the marker proper, unless we already did. */ /* NB: first_marker() enforces the requirement that SOI appear first. */ if (cinfo->unread_marker == 0) { if (! cinfo->marker->saw_SOI) { if (! first_marker(cinfo)) return JPEG_SUSPENDED; } else { if (! next_marker(cinfo)) return JPEG_SUSPENDED; } } /* At this point cinfo->unread_marker contains the marker code and the * input point is just past the marker proper, but before any parameters. * A suspension will cause us to return with this state still true. */ switch (cinfo->unread_marker) { case M_SOI: if (! get_soi(cinfo)) return JPEG_SUSPENDED; break; case M_SOF0: /* Baseline */ case M_SOF1: /* Extended sequential, Huffman */ if (! get_sof(cinfo, FALSE, FALSE)) return JPEG_SUSPENDED; break; case M_SOF2: /* Progressive, Huffman */ if (! get_sof(cinfo, TRUE, FALSE)) return JPEG_SUSPENDED; break; case M_SOF9: /* Extended sequential, arithmetic */ if (! get_sof(cinfo, FALSE, TRUE)) return JPEG_SUSPENDED; break; case M_SOF10: /* Progressive, arithmetic */ if (! get_sof(cinfo, TRUE, TRUE)) return JPEG_SUSPENDED; break; /* Currently unsupported SOFn types */ case M_SOF3: /* Lossless, Huffman */ case M_SOF5: /* Differential sequential, Huffman */ case M_SOF6: /* Differential progressive, Huffman */ case M_SOF7: /* Differential lossless, Huffman */ case M_JPG: /* Reserved for JPEG extensions */ case M_SOF11: /* Lossless, arithmetic */ case M_SOF13: /* Differential sequential, arithmetic */ case M_SOF14: /* Differential progressive, arithmetic */ case M_SOF15: /* Differential lossless, arithmetic */ ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker); break; case M_SOS: if (! get_sos(cinfo)) return JPEG_SUSPENDED; cinfo->unread_marker = 0; /* processed the marker */ return JPEG_REACHED_SOS; case M_EOI: TRACEMS(cinfo, 1, JTRC_EOI); cinfo->unread_marker = 0; /* processed the marker */ return JPEG_REACHED_EOI; case M_DAC: if (! get_dac(cinfo)) return JPEG_SUSPENDED; break; case M_DHT: if (! get_dht(cinfo)) return JPEG_SUSPENDED; break; case M_DQT: if (! get_dqt(cinfo)) return JPEG_SUSPENDED; break; case M_DRI: if (! get_dri(cinfo)) return JPEG_SUSPENDED; break; case M_APP0: case M_APP1: case M_APP2: case M_APP3: case M_APP4: case M_APP5: case M_APP6: case M_APP7: case M_APP8: case M_APP9: case M_APP10: case M_APP11: case M_APP12: case M_APP13: case M_APP14: case M_APP15: if (! (*((my_marker_ptr2) cinfo->marker)->process_APPn[ cinfo->unread_marker - (int) M_APP0]) (cinfo)) return JPEG_SUSPENDED; break; case M_COM: if (! (*((my_marker_ptr2) cinfo->marker)->process_COM) (cinfo)) return JPEG_SUSPENDED; break; case M_RST0: /* these are all parameterless */ case M_RST1: case M_RST2: case M_RST3: case M_RST4: case M_RST5: case M_RST6: case M_RST7: case M_TEM: TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker); break; case M_DNL: /* Ignore DNL ... perhaps the wrong thing */ if (! skip_variable(cinfo)) return JPEG_SUSPENDED; break; default: /* must be DHP, EXP, JPGn, or RESn */ /* For now, we treat the reserved markers as fatal errors since they are * likely to be used to signal incompatible JPEG Part 3 extensions. * Once the JPEG 3 version-number marker is well defined, this code * ought to change! */ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker); break; } /* Successfully processed marker, so reset state variable */ cinfo->unread_marker = 0; } /* end loop */ } /* * Read a restart marker, which is expected to appear next in the datastream; * if the marker is not there, take appropriate recovery action. * Returns FALSE if suspension is required. * * This is called by the entropy decoder after it has read an appropriate * number of MCUs. cinfo->unread_marker may be nonzero if the entropy decoder * has already read a marker from the data source. Under normal conditions * cinfo->unread_marker will be reset to 0 before returning; if not reset, * it holds a marker which the decoder will be unable to read past. */ METHODDEF(boolean) read_restart_marker (j_decompress_ptr cinfo) { /* Obtain a marker unless we already did. */ /* Note that next_marker will complain if it skips any data. */ if (cinfo->unread_marker == 0) { if (! next_marker(cinfo)) return FALSE; } if (cinfo->unread_marker == ((int) M_RST0 + cinfo->marker->next_restart_num)) { /* Normal case --- swallow the marker and let entropy decoder continue */ TRACEMS1(cinfo, 3, JTRC_RST, cinfo->marker->next_restart_num); cinfo->unread_marker = 0; } else { /* Uh-oh, the restart markers have been messed up. */ /* Let the data source manager determine how to resync. */ if (! (*cinfo->src->resync_to_restart) (cinfo, cinfo->marker->next_restart_num)) return FALSE; } /* Update next-restart state */ cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7; return TRUE; } /* * This is the default resync_to_restart method for data source managers * to use if they don't have any better approach. Some data source managers * may be able to back up, or may have additional knowledge about the data * which permits a more intelligent recovery strategy; such managers would * presumably supply their own resync method. * * read_restart_marker calls resync_to_restart if it finds a marker other than * the restart marker it was expecting. (This code is *not* used unless * a nonzero restart interval has been declared.) cinfo->unread_marker is * the marker code actually found (might be anything, except 0 or FF). * The desired restart marker number (0..7) is passed as a parameter. * This routine is supposed to apply whatever error recovery strategy seems * appropriate in order to position the input stream to the next data segment. * Note that cinfo->unread_marker is treated as a marker appearing before * the current data-source input point; usually it should be reset to zero * before returning. * Returns FALSE if suspension is required. * * This implementation is substantially constrained by wanting to treat the * input as a data stream; this means we can't back up. Therefore, we have * only the following actions to work with: * 1. Simply discard the marker and let the entropy decoder resume at next * byte of file. * 2. Read forward until we find another marker, discarding intervening * data. (In theory we could look ahead within the current bufferload, * without having to discard data if we don't find the desired marker. * This idea is not implemented here, in part because it makes behavior * dependent on buffer size and chance buffer-boundary positions.) * 3. Leave the marker unread (by failing to zero cinfo->unread_marker). * This will cause the entropy decoder to process an empty data segment, * inserting dummy zeroes, and then we will reprocess the marker. * * #2 is appropriate if we think the desired marker lies ahead, while #3 is * appropriate if the found marker is a future restart marker (indicating * that we have missed the desired restart marker, probably because it got * corrupted). * We apply #2 or #3 if the found marker is a restart marker no more than * two counts behind or ahead of the expected one. We also apply #2 if the * found marker is not a legal JPEG marker code (it's certainly bogus data). * If the found marker is a restart marker more than 2 counts away, we do #1 * (too much risk that the marker is erroneous; with luck we will be able to * resync at some future point). * For any valid non-restart JPEG marker, we apply #3. This keeps us from * overrunning the end of a scan. An implementation limited to single-scan * files might find it better to apply #2 for markers other than EOI, since * any other marker would have to be bogus data in that case. */ GLOBAL(boolean) jpeg_resync_to_restart (j_decompress_ptr cinfo, int desired) { int marker = cinfo->unread_marker; int action = 1; /* Always put up a warning. */ WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired); /* Outer loop handles repeated decision after scanning forward. */ for (;;) { if (marker < (int) M_SOF0) action = 2; /* invalid marker */ else if (marker < (int) M_RST0 || marker > (int) M_RST7) action = 3; /* valid non-restart marker */ else { if (marker == ((int) M_RST0 + ((desired+1) & 7)) || marker == ((int) M_RST0 + ((desired+2) & 7))) action = 3; /* one of the next two expected restarts */ else if (marker == ((int) M_RST0 + ((desired-1) & 7)) || marker == ((int) M_RST0 + ((desired-2) & 7))) action = 2; /* a prior restart, so advance */ else action = 1; /* desired restart or too far away */ } TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action); switch (action) { case 1: /* Discard marker and let entropy decoder resume processing. */ cinfo->unread_marker = 0; return TRUE; case 2: /* Scan to the next marker, and repeat the decision loop. */ if (! next_marker(cinfo)) return FALSE; marker = cinfo->unread_marker; break; case 3: /* Return without advancing past this marker. */ /* Entropy decoder will be forced to process an empty segment. */ return TRUE; } } /* end loop */ } /* * Reset marker processing state to begin a fresh datastream. */ METHODDEF(void) reset_marker_reader (j_decompress_ptr cinfo) { my_marker_ptr2 marker = (my_marker_ptr2) cinfo->marker; cinfo->comp_info = NULL; /* until allocated by get_sof */ cinfo->input_scan_number = 0; /* no SOS seen yet */ cinfo->unread_marker = 0; /* no pending marker */ marker->pub.saw_SOI = FALSE; /* set internal state too */ marker->pub.saw_SOF = FALSE; marker->pub.discarded_bytes = 0; marker->cur_marker = NULL; } /* * Initialize the marker reader module. * This is called only once, when the decompression object is created. */ GLOBAL(void) jinit_marker_reader (j_decompress_ptr cinfo) { my_marker_ptr2 marker; int i; /* Create subobject in permanent pool */ marker = (my_marker_ptr2) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_marker_reader)); cinfo->marker = (struct jpeg_marker_reader *) marker; /* Initialize public method pointers */ marker->pub.reset_marker_reader = reset_marker_reader; marker->pub.read_markers = read_markers; marker->pub.read_restart_marker = read_restart_marker; /* Initialize COM/APPn processing. * By default, we examine and then discard APP0 and APP14, * but simply discard COM and all other APPn. */ marker->process_COM = skip_variable; marker->length_limit_COM = 0; for (i = 0; i < 16; i++) { marker->process_APPn[i] = skip_variable; marker->length_limit_APPn[i] = 0; } marker->process_APPn[0] = get_interesting_appn; marker->process_APPn[14] = get_interesting_appn; /* Reset marker processing state */ reset_marker_reader(cinfo); } /* * Control saving of COM and APPn markers into marker_list. */ #ifdef SAVE_MARKERS_SUPPORTED GLOBAL(void) jpeg_save_markers (j_decompress_ptr cinfo, int marker_code, unsigned int length_limit) { my_marker_ptr2 marker = (my_marker_ptr2) cinfo->marker; long maxlength; jpeg_marker_parser_method processor; /* Length limit mustn't be larger than what we can allocate * (should only be a concern in a 16-bit environment). */ maxlength = cinfo->mem->max_alloc_chunk - SIZEOF(struct jpeg_marker_struct); if (((long) length_limit) > maxlength) length_limit = (unsigned int) maxlength; /* Choose processor routine to use. * APP0/APP14 have special requirements. */ if (length_limit) { processor = save_marker; /* If saving APP0/APP14, save at least enough for our internal use. */ if (marker_code == (int) M_APP0 && length_limit < APP0_DATA_LEN) length_limit = APP0_DATA_LEN; else if (marker_code == (int) M_APP14 && length_limit < APP14_DATA_LEN) length_limit = APP14_DATA_LEN; } else { processor = skip_variable; /* If discarding APP0/APP14, use our regular on-the-fly processor. */ if (marker_code == (int) M_APP0 || marker_code == (int) M_APP14) processor = get_interesting_appn; } if (marker_code == (int) M_COM) { marker->process_COM = processor; marker->length_limit_COM = length_limit; } else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15) { marker->process_APPn[marker_code - (int) M_APP0] = processor; marker->length_limit_APPn[marker_code - (int) M_APP0] = length_limit; } else ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code); } #endif /* SAVE_MARKERS_SUPPORTED */ /* * Install a special processing method for COM or APPn markers. */ GLOBAL(void) jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code, jpeg_marker_parser_method routine) { my_marker_ptr2 marker = (my_marker_ptr2) cinfo->marker; if (marker_code == (int) M_COM) marker->process_COM = routine; else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15) marker->process_APPn[marker_code - (int) M_APP0] = routine; else ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code); } /********* End of inlined file: jdmarker.c *********/ /********* Start of inlined file: jdmaster.c *********/ #define JPEG_INTERNALS /* Private state */ typedef struct { struct jpeg_decomp_master pub; /* public fields */ int pass_number; /* # of passes completed */ boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ /* Saved references to initialized quantizer modules, * in case we need to switch modes. */ struct jpeg_color_quantizer * quantizer_1pass; struct jpeg_color_quantizer * quantizer_2pass; } my_decomp_master; typedef my_decomp_master * my_master_ptr6; /* * Determine whether merged upsample/color conversion should be used. * CRUCIAL: this must match the actual capabilities of jdmerge.c! */ LOCAL(boolean) use_merged_upsample (j_decompress_ptr cinfo) { #ifdef UPSAMPLE_MERGING_SUPPORTED /* Merging is the equivalent of plain box-filter upsampling */ if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling) return FALSE; /* jdmerge.c only supports YCC=>RGB color conversion */ if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 || cinfo->out_color_space != JCS_RGB || cinfo->out_color_components != RGB_PIXELSIZE) return FALSE; /* and it only handles 2h1v or 2h2v sampling ratios */ if (cinfo->comp_info[0].h_samp_factor != 2 || cinfo->comp_info[1].h_samp_factor != 1 || cinfo->comp_info[2].h_samp_factor != 1 || cinfo->comp_info[0].v_samp_factor > 2 || cinfo->comp_info[1].v_samp_factor != 1 || cinfo->comp_info[2].v_samp_factor != 1) return FALSE; /* furthermore, it doesn't work if we've scaled the IDCTs differently */ if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size || cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size || cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size) return FALSE; /* ??? also need to test for upsample-time rescaling, when & if supported */ return TRUE; /* by golly, it'll work... */ #else return FALSE; #endif } /* * Compute output image dimensions and related values. * NOTE: this is exported for possible use by application. * Hence it mustn't do anything that can't be done twice. * Also note that it may be called before the master module is initialized! */ GLOBAL(void) jpeg_calc_output_dimensions (j_decompress_ptr cinfo) /* Do computations that are needed before master selection phase */ { #ifdef IDCT_SCALING_SUPPORTED int ci; jpeg_component_info *compptr; #endif /* Prevent application from calling me at wrong times */ if (cinfo->global_state != DSTATE_READY) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); #ifdef IDCT_SCALING_SUPPORTED /* Compute actual output image dimensions and DCT scaling choices. */ if (cinfo->scale_num * 8 <= cinfo->scale_denom) { /* Provide 1/8 scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width, 8L); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, 8L); cinfo->min_DCT_scaled_size = 1; } else if (cinfo->scale_num * 4 <= cinfo->scale_denom) { /* Provide 1/4 scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width, 4L); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, 4L); cinfo->min_DCT_scaled_size = 2; } else if (cinfo->scale_num * 2 <= cinfo->scale_denom) { /* Provide 1/2 scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width, 2L); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, 2L); cinfo->min_DCT_scaled_size = 4; } else { /* Provide 1/1 scaling */ cinfo->output_width = cinfo->image_width; cinfo->output_height = cinfo->image_height; cinfo->min_DCT_scaled_size = DCTSIZE; } /* In selecting the actual DCT scaling for each component, we try to * scale up the chroma components via IDCT scaling rather than upsampling. * This saves time if the upsampler gets to use 1:1 scaling. * Note this code assumes that the supported DCT scalings are powers of 2. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { int ssize = cinfo->min_DCT_scaled_size; while (ssize < DCTSIZE && (compptr->h_samp_factor * ssize * 2 <= cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) && (compptr->v_samp_factor * ssize * 2 <= cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) { ssize = ssize * 2; } compptr->DCT_scaled_size = ssize; } /* Recompute downsampled dimensions of components; * application needs to know these if using raw downsampled data. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Size in samples, after IDCT scaling */ compptr->downsampled_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * (long) (compptr->h_samp_factor * compptr->DCT_scaled_size), (long) (cinfo->max_h_samp_factor * DCTSIZE)); compptr->downsampled_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * (long) (compptr->v_samp_factor * compptr->DCT_scaled_size), (long) (cinfo->max_v_samp_factor * DCTSIZE)); } #else /* !IDCT_SCALING_SUPPORTED */ /* Hardwire it to "no scaling" */ cinfo->output_width = cinfo->image_width; cinfo->output_height = cinfo->image_height; /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE, * and has computed unscaled downsampled_width and downsampled_height. */ #endif /* IDCT_SCALING_SUPPORTED */ /* Report number of components in selected colorspace. */ /* Probably this should be in the color conversion module... */ switch (cinfo->out_color_space) { case JCS_GRAYSCALE: cinfo->out_color_components = 1; break; case JCS_RGB: #if RGB_PIXELSIZE != 3 cinfo->out_color_components = RGB_PIXELSIZE; break; #endif /* else share code with YCbCr */ case JCS_YCbCr: cinfo->out_color_components = 3; break; case JCS_CMYK: case JCS_YCCK: cinfo->out_color_components = 4; break; default: /* else must be same colorspace as in file */ cinfo->out_color_components = cinfo->num_components; break; } cinfo->output_components = (cinfo->quantize_colors ? 1 : cinfo->out_color_components); /* See if upsampler will want to emit more than one row at a time */ if (use_merged_upsample(cinfo)) cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; else cinfo->rec_outbuf_height = 1; } /* * Several decompression processes need to range-limit values to the range * 0..MAXJSAMPLE; the input value may fall somewhat outside this range * due to noise introduced by quantization, roundoff error, etc. These * processes are inner loops and need to be as fast as possible. On most * machines, particularly CPUs with pipelines or instruction prefetch, * a (subscript-check-less) C table lookup * x = sample_range_limit[x]; * is faster than explicit tests * if (x < 0) x = 0; * else if (x > MAXJSAMPLE) x = MAXJSAMPLE; * These processes all use a common table prepared by the routine below. * * For most steps we can mathematically guarantee that the initial value * of x is within MAXJSAMPLE+1 of the legal range, so a table running from * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial * limiting step (just after the IDCT), a wildly out-of-range value is * possible if the input data is corrupt. To avoid any chance of indexing * off the end of memory and getting a bad-pointer trap, we perform the * post-IDCT limiting thus: * x = range_limit[x & MASK]; * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit * samples. Under normal circumstances this is more than enough range and * a correct output will be generated; with bogus input data the mask will * cause wraparound, and we will safely generate a bogus-but-in-range output. * For the post-IDCT step, we want to convert the data from signed to unsigned * representation by adding CENTERJSAMPLE at the same time that we limit it. * So the post-IDCT limiting table ends up looking like this: * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE, * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), * 0,1,...,CENTERJSAMPLE-1 * Negative inputs select values from the upper half of the table after * masking. * * We can save some space by overlapping the start of the post-IDCT table * with the simpler range limiting table. The post-IDCT table begins at * sample_range_limit + CENTERJSAMPLE. * * Note that the table is allocated in near data space on PCs; it's small * enough and used often enough to justify this. */ LOCAL(void) prepare_range_limit_table (j_decompress_ptr cinfo) /* Allocate and fill in the sample_range_limit table */ { JSAMPLE * table; int i; table = (JSAMPLE *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE)); table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */ cinfo->sample_range_limit = table; /* First segment of "simple" table: limit[x] = 0 for x < 0 */ MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE)); /* Main part of "simple" table: limit[x] = x */ for (i = 0; i <= MAXJSAMPLE; i++) table[i] = (JSAMPLE) i; table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */ /* End of simple table, rest of first half of post-IDCT table */ for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++) table[i] = MAXJSAMPLE; /* Second half of post-IDCT table */ MEMZERO(table + (2 * (MAXJSAMPLE+1)), (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE)); MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE), cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE)); } /* * Master selection of decompression modules. * This is done once at jpeg_start_decompress time. We determine * which modules will be used and give them appropriate initialization calls. * We also initialize the decompressor input side to begin consuming data. * * Since jpeg_read_header has finished, we know what is in the SOF * and (first) SOS markers. We also have all the application parameter * settings. */ LOCAL(void) master_selection (j_decompress_ptr cinfo) { my_master_ptr6 master = (my_master_ptr6) cinfo->master; boolean use_c_buffer; long samplesperrow; JDIMENSION jd_samplesperrow; /* Initialize dimensions and other stuff */ jpeg_calc_output_dimensions(cinfo); prepare_range_limit_table(cinfo); /* Width of an output scanline must be representable as JDIMENSION. */ samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; jd_samplesperrow = (JDIMENSION) samplesperrow; if ((long) jd_samplesperrow != samplesperrow) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); /* Initialize my private state */ master->pass_number = 0; master->using_merged_upsample = use_merged_upsample(cinfo); /* Color quantizer selection */ master->quantizer_1pass = NULL; master->quantizer_2pass = NULL; /* No mode changes if not using buffered-image mode. */ if (! cinfo->quantize_colors || ! cinfo->buffered_image) { cinfo->enable_1pass_quant = FALSE; cinfo->enable_external_quant = FALSE; cinfo->enable_2pass_quant = FALSE; } if (cinfo->quantize_colors) { if (cinfo->raw_data_out) ERREXIT(cinfo, JERR_NOTIMPL); /* 2-pass quantizer only works in 3-component color space. */ if (cinfo->out_color_components != 3) { cinfo->enable_1pass_quant = TRUE; cinfo->enable_external_quant = FALSE; cinfo->enable_2pass_quant = FALSE; cinfo->colormap = NULL; } else if (cinfo->colormap != NULL) { cinfo->enable_external_quant = TRUE; } else if (cinfo->two_pass_quantize) { cinfo->enable_2pass_quant = TRUE; } else { cinfo->enable_1pass_quant = TRUE; } if (cinfo->enable_1pass_quant) { #ifdef QUANT_1PASS_SUPPORTED jinit_1pass_quantizer(cinfo); master->quantizer_1pass = cinfo->cquantize; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } /* We use the 2-pass code to map to external colormaps. */ if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { #ifdef QUANT_2PASS_SUPPORTED jinit_2pass_quantizer(cinfo); master->quantizer_2pass = cinfo->cquantize; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } /* If both quantizers are initialized, the 2-pass one is left active; * this is necessary for starting with quantization to an external map. */ } /* Post-processing: in particular, color conversion first */ if (! cinfo->raw_data_out) { if (master->using_merged_upsample) { #ifdef UPSAMPLE_MERGING_SUPPORTED jinit_merged_upsampler(cinfo); /* does color conversion too */ #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { jinit_color_deconverter(cinfo); jinit_upsampler(cinfo); } jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); } /* Inverse DCT */ jinit_inverse_dct(cinfo); /* Entropy decoding: either Huffman or arithmetic coding. */ if (cinfo->arith_code) { ERREXIT(cinfo, JERR_ARITH_NOTIMPL); } else { if (cinfo->progressive_mode) { #ifdef D_PROGRESSIVE_SUPPORTED jinit_phuff_decoder(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else jinit_huff_decoder(cinfo); } /* Initialize principal buffer controllers. */ use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; jinit_d_coef_controller(cinfo, use_c_buffer); if (! cinfo->raw_data_out) jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); /* We can now tell the memory manager to allocate virtual arrays. */ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); /* Initialize input side of decompressor to consume first scan. */ (*cinfo->inputctl->start_input_pass) (cinfo); #ifdef D_MULTISCAN_FILES_SUPPORTED /* If jpeg_start_decompress will read the whole file, initialize * progress monitoring appropriately. The input step is counted * as one pass. */ if (cinfo->progress != NULL && ! cinfo->buffered_image && cinfo->inputctl->has_multiple_scans) { int nscans; /* Estimate number of scans to set pass_limit. */ if (cinfo->progressive_mode) { /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ nscans = 2 + 3 * cinfo->num_components; } else { /* For a nonprogressive multiscan file, estimate 1 scan per component. */ nscans = cinfo->num_components; } cinfo->progress->pass_counter = 0L; cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; cinfo->progress->completed_passes = 0; cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); /* Count the input pass as done */ master->pass_number++; } #endif /* D_MULTISCAN_FILES_SUPPORTED */ } /* * Per-pass setup. * This is called at the beginning of each output pass. We determine which * modules will be active during this pass and give them appropriate * start_pass calls. We also set is_dummy_pass to indicate whether this * is a "real" output pass or a dummy pass for color quantization. * (In the latter case, jdapistd.c will crank the pass to completion.) */ METHODDEF(void) prepare_for_output_pass (j_decompress_ptr cinfo) { my_master_ptr6 master = (my_master_ptr6) cinfo->master; if (master->pub.is_dummy_pass) { #ifdef QUANT_2PASS_SUPPORTED /* Final pass of 2-pass quantization */ master->pub.is_dummy_pass = FALSE; (*cinfo->cquantize->start_pass) (cinfo, FALSE); (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif /* QUANT_2PASS_SUPPORTED */ } else { if (cinfo->quantize_colors && cinfo->colormap == NULL) { /* Select new quantization method */ if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { cinfo->cquantize = master->quantizer_2pass; master->pub.is_dummy_pass = TRUE; } else if (cinfo->enable_1pass_quant) { cinfo->cquantize = master->quantizer_1pass; } else { ERREXIT(cinfo, JERR_MODE_CHANGE); } } (*cinfo->idct->start_pass) (cinfo); (*cinfo->coef->start_output_pass) (cinfo); if (! cinfo->raw_data_out) { if (! master->using_merged_upsample) (*cinfo->cconvert->start_pass) (cinfo); (*cinfo->upsample->start_pass) (cinfo); if (cinfo->quantize_colors) (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); (*cinfo->post->start_pass) (cinfo, (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); } } /* Set up progress monitor's pass info if present */ if (cinfo->progress != NULL) { cinfo->progress->completed_passes = master->pass_number; cinfo->progress->total_passes = master->pass_number + (master->pub.is_dummy_pass ? 2 : 1); /* In buffered-image mode, we assume one more output pass if EOI not * yet reached, but no more passes if EOI has been reached. */ if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) { cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); } } } /* * Finish up at end of an output pass. */ METHODDEF(void) finish_output_pass (j_decompress_ptr cinfo) { my_master_ptr6 master = (my_master_ptr6) cinfo->master; if (cinfo->quantize_colors) (*cinfo->cquantize->finish_pass) (cinfo); master->pass_number++; } #ifdef D_MULTISCAN_FILES_SUPPORTED /* * Switch to a new external colormap between output passes. */ GLOBAL(void) jpeg_new_colormap (j_decompress_ptr cinfo) { my_master_ptr6 master = (my_master_ptr6) cinfo->master; /* Prevent application from calling me at wrong times */ if (cinfo->global_state != DSTATE_BUFIMAGE) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->quantize_colors && cinfo->enable_external_quant && cinfo->colormap != NULL) { /* Select 2-pass quantizer for external colormap use */ cinfo->cquantize = master->quantizer_2pass; /* Notify quantizer of colormap change */ (*cinfo->cquantize->new_color_map) (cinfo); master->pub.is_dummy_pass = FALSE; /* just in case */ } else ERREXIT(cinfo, JERR_MODE_CHANGE); } #endif /* D_MULTISCAN_FILES_SUPPORTED */ /* * Initialize master decompression control and select active modules. * This is performed at the start of jpeg_start_decompress. */ GLOBAL(void) jinit_master_decompress (j_decompress_ptr cinfo) { my_master_ptr6 master; master = (my_master_ptr6) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_decomp_master)); cinfo->master = (struct jpeg_decomp_master *) master; master->pub.prepare_for_output_pass = prepare_for_output_pass; master->pub.finish_output_pass = finish_output_pass; master->pub.is_dummy_pass = FALSE; master_selection(cinfo); } /********* End of inlined file: jdmaster.c *********/ #undef FIX /********* Start of inlined file: jdmerge.c *********/ #define JPEG_INTERNALS #ifdef UPSAMPLE_MERGING_SUPPORTED /* Private subobject */ typedef struct { struct jpeg_upsampler pub; /* public fields */ /* Pointer to routine to do actual upsampling/conversion of one row group */ JMETHOD(void, upmethod, (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf)); /* Private state for YCC->RGB conversion */ int * Cr_r_tab; /* => table for Cr to R conversion */ int * Cb_b_tab; /* => table for Cb to B conversion */ INT32 * Cr_g_tab; /* => table for Cr to G conversion */ INT32 * Cb_g_tab; /* => table for Cb to G conversion */ /* For 2:1 vertical sampling, we produce two output rows at a time. * We need a "spare" row buffer to hold the second output row if the * application provides just a one-row buffer; we also use the spare * to discard the dummy last row if the image height is odd. */ JSAMPROW spare_row; boolean spare_full; /* T if spare buffer is occupied */ JDIMENSION out_row_width; /* samples per output row */ JDIMENSION rows_to_go; /* counts rows remaining in image */ } my_upsampler; typedef my_upsampler * my_upsample_ptr; #define SCALEBITS 16 /* speediest right-shift on some machines */ #define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) #define FIX(x) ((INT32) ((x) * (1L<RGB colorspace conversion. * This is taken directly from jdcolor.c; see that file for more info. */ LOCAL(void) build_ycc_rgb_table2 (j_decompress_ptr cinfo) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; int i; INT32 x; SHIFT_TEMPS upsample->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); upsample->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); upsample->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); upsample->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ /* Cr=>R value is nearest int to 1.40200 * x */ upsample->Cr_r_tab[i] = (int) RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); /* Cb=>B value is nearest int to 1.77200 * x */ upsample->Cb_b_tab[i] = (int) RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); /* Cr=>G value is scaled-up -0.71414 * x */ upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x; /* Cb=>G value is scaled-up -0.34414 * x */ /* We also add in ONE_HALF so that need not do it in inner loop */ upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; } } /* * Initialize for an upsampling pass. */ METHODDEF(void) start_pass_merged_upsample (j_decompress_ptr cinfo) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; /* Mark the spare buffer empty */ upsample->spare_full = FALSE; /* Initialize total-height counter for detecting bottom of image */ upsample->rows_to_go = cinfo->output_height; } /* * Control routine to do upsampling (and color conversion). * * The control routine just handles the row buffering considerations. */ METHODDEF(void) merged_2v_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) /* 2:1 vertical sampling case: may need a spare row. */ { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; JSAMPROW work_ptrs[2]; JDIMENSION num_rows; /* number of rows returned to caller */ if (upsample->spare_full) { /* If we have a spare row saved from a previous cycle, just return it. */ jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0, 1, upsample->out_row_width); num_rows = 1; upsample->spare_full = FALSE; } else { /* Figure number of rows to return to caller. */ num_rows = 2; /* Not more than the distance to the end of the image. */ if (num_rows > upsample->rows_to_go) num_rows = upsample->rows_to_go; /* And not more than what the client can accept: */ out_rows_avail -= *out_row_ctr; if (num_rows > out_rows_avail) num_rows = out_rows_avail; /* Create output pointer array for upsampler. */ work_ptrs[0] = output_buf[*out_row_ctr]; if (num_rows > 1) { work_ptrs[1] = output_buf[*out_row_ctr + 1]; } else { work_ptrs[1] = upsample->spare_row; upsample->spare_full = TRUE; } /* Now do the upsampling. */ (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs); } /* Adjust counts */ *out_row_ctr += num_rows; upsample->rows_to_go -= num_rows; /* When the buffer is emptied, declare this input row group consumed */ if (! upsample->spare_full) (*in_row_group_ctr)++; } METHODDEF(void) merged_1v_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) /* 1:1 vertical sampling case: much easier, never need a spare row. */ { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; /* Just do the upsampling. */ (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, output_buf + *out_row_ctr); /* Adjust counts */ (*out_row_ctr)++; (*in_row_group_ctr)++; } /* * These are the routines invoked by the control routines to do * the actual upsampling/conversion. One row group is processed per call. * * Note: since we may be writing directly into application-supplied buffers, * we have to be honest about the output width; we can't assume the buffer * has been rounded up to an even width. */ /* * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. */ METHODDEF(void) h2v1_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr; JSAMPROW inptr0, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; int * Crrtab = upsample->Cr_r_tab; int * Cbbtab = upsample->Cb_b_tab; INT32 * Crgtab = upsample->Cr_g_tab; INT32 * Cbgtab = upsample->Cb_g_tab; SHIFT_TEMPS inptr0 = input_buf[0][in_row_group_ctr]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr = output_buf[0]; /* Loop for each pair of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 2 Y values and emit 2 pixels */ y = GETJSAMPLE(*inptr0++); outptr[RGB_RED] = range_limit[y + cred]; outptr[RGB_GREEN] = range_limit[y + cgreen]; outptr[RGB_BLUE] = range_limit[y + cblue]; outptr += RGB_PIXELSIZE; y = GETJSAMPLE(*inptr0++); outptr[RGB_RED] = range_limit[y + cred]; outptr[RGB_GREEN] = range_limit[y + cgreen]; outptr[RGB_BLUE] = range_limit[y + cblue]; outptr += RGB_PIXELSIZE; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = GETJSAMPLE(*inptr1); cr = GETJSAMPLE(*inptr2); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = GETJSAMPLE(*inptr0); outptr[RGB_RED] = range_limit[y + cred]; outptr[RGB_GREEN] = range_limit[y + cgreen]; outptr[RGB_BLUE] = range_limit[y + cblue]; } } /* * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. */ METHODDEF(void) h2v2_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr0, outptr1; JSAMPROW inptr00, inptr01, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; int * Crrtab = upsample->Cr_r_tab; int * Cbbtab = upsample->Cb_b_tab; INT32 * Crgtab = upsample->Cr_g_tab; INT32 * Cbgtab = upsample->Cb_g_tab; SHIFT_TEMPS inptr00 = input_buf[0][in_row_group_ctr*2]; inptr01 = input_buf[0][in_row_group_ctr*2 + 1]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr0 = output_buf[0]; outptr1 = output_buf[1]; /* Loop for each group of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 4 Y values and emit 4 pixels */ y = GETJSAMPLE(*inptr00++); outptr0[RGB_RED] = range_limit[y + cred]; outptr0[RGB_GREEN] = range_limit[y + cgreen]; outptr0[RGB_BLUE] = range_limit[y + cblue]; outptr0 += RGB_PIXELSIZE; y = GETJSAMPLE(*inptr00++); outptr0[RGB_RED] = range_limit[y + cred]; outptr0[RGB_GREEN] = range_limit[y + cgreen]; outptr0[RGB_BLUE] = range_limit[y + cblue]; outptr0 += RGB_PIXELSIZE; y = GETJSAMPLE(*inptr01++); outptr1[RGB_RED] = range_limit[y + cred]; outptr1[RGB_GREEN] = range_limit[y + cgreen]; outptr1[RGB_BLUE] = range_limit[y + cblue]; outptr1 += RGB_PIXELSIZE; y = GETJSAMPLE(*inptr01++); outptr1[RGB_RED] = range_limit[y + cred]; outptr1[RGB_GREEN] = range_limit[y + cgreen]; outptr1[RGB_BLUE] = range_limit[y + cblue]; outptr1 += RGB_PIXELSIZE; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = GETJSAMPLE(*inptr1); cr = GETJSAMPLE(*inptr2); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = GETJSAMPLE(*inptr00); outptr0[RGB_RED] = range_limit[y + cred]; outptr0[RGB_GREEN] = range_limit[y + cgreen]; outptr0[RGB_BLUE] = range_limit[y + cblue]; y = GETJSAMPLE(*inptr01); outptr1[RGB_RED] = range_limit[y + cred]; outptr1[RGB_GREEN] = range_limit[y + cgreen]; outptr1[RGB_BLUE] = range_limit[y + cblue]; } } /* * Module initialization routine for merged upsampling/color conversion. * * NB: this is called under the conditions determined by use_merged_upsample() * in jdmaster.c. That routine MUST correspond to the actual capabilities * of this module; no safety checks are made here. */ GLOBAL(void) jinit_merged_upsampler (j_decompress_ptr cinfo) { my_upsample_ptr upsample; upsample = (my_upsample_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_upsampler)); cinfo->upsample = (struct jpeg_upsampler *) upsample; upsample->pub.start_pass = start_pass_merged_upsample; upsample->pub.need_context_rows = FALSE; upsample->out_row_width = cinfo->output_width * cinfo->out_color_components; if (cinfo->max_v_samp_factor == 2) { upsample->pub.upsample = merged_2v_upsample; upsample->upmethod = h2v2_merged_upsample; /* Allocate a spare row buffer */ upsample->spare_row = (JSAMPROW) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, (size_t) (upsample->out_row_width * SIZEOF(JSAMPLE))); } else { upsample->pub.upsample = merged_1v_upsample; upsample->upmethod = h2v1_merged_upsample; /* No spare row needed */ upsample->spare_row = NULL; } build_ycc_rgb_table2(cinfo); } #endif /* UPSAMPLE_MERGING_SUPPORTED */ /********* End of inlined file: jdmerge.c *********/ #undef ASSIGN_STATE /********* Start of inlined file: jdphuff.c *********/ #define JPEG_INTERNALS #ifdef D_PROGRESSIVE_SUPPORTED /* * Expanded entropy decoder object for progressive Huffman decoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ typedef struct { unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state3; /* This macro is to work around compilers with missing or broken * structure assignment. You'll need to fix this code if you have * such a compiler and you change MAX_COMPS_IN_SCAN. */ #ifndef NO_STRUCT_ASSIGN #define ASSIGN_STATE(dest,src) ((dest) = (src)) #else #if MAX_COMPS_IN_SCAN == 4 #define ASSIGN_STATE(dest,src) \ ((dest).EOBRUN = (src).EOBRUN, \ (dest).last_dc_val[0] = (src).last_dc_val[0], \ (dest).last_dc_val[1] = (src).last_dc_val[1], \ (dest).last_dc_val[2] = (src).last_dc_val[2], \ (dest).last_dc_val[3] = (src).last_dc_val[3]) #endif #endif typedef struct { struct jpeg_entropy_decoder pub; /* public fields */ /* These fields are loaded into local variables at start of each MCU. * In case of suspension, we exit WITHOUT updating them. */ bitread_perm_state bitstate; /* Bit buffer at start of MCU */ savable_state3 saved; /* Other state at start of MCU */ /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ /* Pointers to derived tables (these workspaces have image lifespan) */ d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ } phuff_entropy_decoder; typedef phuff_entropy_decoder * phuff_entropy_ptr2; /* Forward declarations */ METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo, JBLOCKROW *MCU_data)); METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo, JBLOCKROW *MCU_data)); METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo, JBLOCKROW *MCU_data)); METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo, JBLOCKROW *MCU_data)); /* * Initialize for a Huffman-compressed scan. */ METHODDEF(void) start_pass_phuff_decoder (j_decompress_ptr cinfo) { phuff_entropy_ptr2 entropy = (phuff_entropy_ptr2) cinfo->entropy; boolean is_DC_band, bad; int ci, coefi, tbl; int *coef_bit_ptr; jpeg_component_info * compptr; is_DC_band = (cinfo->Ss == 0); /* Validate scan parameters */ bad = FALSE; if (is_DC_band) { if (cinfo->Se != 0) bad = TRUE; } else { /* need not check Ss/Se < 0 since they came from unsigned bytes */ if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) bad = TRUE; /* AC scans may have only one component */ if (cinfo->comps_in_scan != 1) bad = TRUE; } if (cinfo->Ah != 0) { /* Successive approximation refinement scan: must have Al = Ah-1. */ if (cinfo->Al != cinfo->Ah-1) bad = TRUE; } if (cinfo->Al > 13) /* need not check for < 0 */ bad = TRUE; /* Arguably the maximum Al value should be less than 13 for 8-bit precision, * but the spec doesn't say so, and we try to be liberal about what we * accept. Note: large Al values could result in out-of-range DC * coefficients during early scans, leading to bizarre displays due to * overflows in the IDCT math. But we won't crash. */ if (bad) ERREXIT4(cinfo, JERR_BAD_PROGRESSION, cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); /* Update progression status, and verify that scan order is legal. * Note that inter-scan inconsistencies are treated as warnings * not fatal errors ... not clear if this is right way to behave. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { int cindex = cinfo->cur_comp_info[ci]->component_index; coef_bit_ptr = & cinfo->coef_bits[cindex][0]; if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; if (cinfo->Ah != expected) WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); coef_bit_ptr[coefi] = cinfo->Al; } } /* Select MCU decoding routine */ if (cinfo->Ah == 0) { if (is_DC_band) entropy->pub.decode_mcu = decode_mcu_DC_first; else entropy->pub.decode_mcu = decode_mcu_AC_first; } else { if (is_DC_band) entropy->pub.decode_mcu = decode_mcu_DC_refine; else entropy->pub.decode_mcu = decode_mcu_AC_refine; } for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Make sure requested tables are present, and compute derived tables. * We may build same derived table more than once, but it's not expensive. */ if (is_DC_band) { if (cinfo->Ah == 0) { /* DC refinement needs no table */ tbl = compptr->dc_tbl_no; jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, & entropy->derived_tbls[tbl]); } } else { tbl = compptr->ac_tbl_no; jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, & entropy->derived_tbls[tbl]); /* remember the single active table */ entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; } /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } /* Initialize bitread state variables */ entropy->bitstate.bits_left = 0; entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ entropy->pub.insufficient_data = FALSE; /* Initialize private state variables */ entropy->saved.EOBRUN = 0; /* Initialize restart counter */ entropy->restarts_to_go = cinfo->restart_interval; } /* * Check for a restart marker & resynchronize decoder. * Returns FALSE if must suspend. */ LOCAL(boolean) process_restartp (j_decompress_ptr cinfo) { phuff_entropy_ptr2 entropy = (phuff_entropy_ptr2) cinfo->entropy; int ci; /* Throw away any unused bits remaining in bit buffer; */ /* include any full bytes in next_marker's count of discarded bytes */ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; entropy->bitstate.bits_left = 0; /* Advance past the RSTn marker */ if (! (*cinfo->marker->read_restart_marker) (cinfo)) return FALSE; /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0; /* Re-init EOB run count, too */ entropy->saved.EOBRUN = 0; /* Reset restart counter */ entropy->restarts_to_go = cinfo->restart_interval; /* Reset out-of-data flag, unless read_restart_marker left us smack up * against a marker. In that case we will end up treating the next data * segment as empty, and we can avoid producing bogus output pixels by * leaving the flag set. */ if (cinfo->unread_marker == 0) entropy->pub.insufficient_data = FALSE; return TRUE; } /* * Huffman MCU decoding. * Each of these routines decodes and returns one MCU's worth of * Huffman-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. * * We return FALSE if data source requested suspension. In that case no * changes have been made to permanent state. (Exception: some output * coefficients may already have been assigned. This is harmless for * spectral selection, since we'll just re-assign them on the next call. * Successive approximation AC refinement has to be more careful, however.) */ /* * MCU decoding for DC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr2 entropy = (phuff_entropy_ptr2) cinfo->entropy; int Al = cinfo->Al; register int s, r; int blkn, ci; JBLOCKROW block; BITREAD_STATE_VARS; savable_state3 state; d_derived_tbl * tbl; jpeg_component_info * compptr; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restartp(cinfo)) return FALSE; } /* If we've run out of data, just leave the MCU set to zeroes. * This way, we return uniform gray for the remainder of the segment. */ if (! entropy->pub.insufficient_data) { /* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(state, entropy->saved); /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; tbl = entropy->derived_tbls[compptr->dc_tbl_no]; /* Decode a single block's worth of coefficients */ /* Section F.2.2.1: decode the DC coefficient difference */ HUFF_DECODE(s, br_state, tbl, return FALSE, label1); if (s) { CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); } /* Convert DC difference to actual value, update last_dc_val */ s += state.last_dc_val[ci]; state.last_dc_val[ci] = s; /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ (*block)[0] = (JCOEF) (s << Al); } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(entropy->saved, state); } /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; } /* * MCU decoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr2 entropy = (phuff_entropy_ptr2) cinfo->entropy; int Se = cinfo->Se; int Al = cinfo->Al; register int s, k, r; unsigned int EOBRUN; JBLOCKROW block; BITREAD_STATE_VARS; d_derived_tbl * tbl; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restartp(cinfo)) return FALSE; } /* If we've run out of data, just leave the MCU set to zeroes. * This way, we return uniform gray for the remainder of the segment. */ if (! entropy->pub.insufficient_data) { /* Load up working state. * We can avoid loading/saving bitread state if in an EOB run. */ EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ /* There is always only one block per MCU */ if (EOBRUN > 0) /* if it's a band of zeroes... */ EOBRUN--; /* ...process it now (we do nothing) */ else { BITREAD_LOAD_STATE(cinfo,entropy->bitstate); block = MCU_data[0]; tbl = entropy->ac_derived_tbl; for (k = cinfo->Ss; k <= Se; k++) { HUFF_DECODE(s, br_state, tbl, return FALSE, label2); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); /* Scale and output coefficient in natural (dezigzagged) order */ (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al); } else { if (r == 15) { /* ZRL */ k += 15; /* skip 15 zeroes in band */ } else { /* EOBr, run length is 2^r + appended bits */ EOBRUN = 1 << r; if (r) { /* EOBr, r > 0 */ CHECK_BIT_BUFFER(br_state, r, return FALSE); r = GET_BITS(r); EOBRUN += r; } EOBRUN--; /* this band is processed at this moment */ break; /* force end-of-band */ } } } BITREAD_SAVE_STATE(cinfo,entropy->bitstate); } /* Completed MCU, so update state */ entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ } /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; } /* * MCU decoding for DC successive approximation refinement scan. * Note: we assume such scans can be multi-component, although the spec * is not very clear on the point. */ METHODDEF(boolean) decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr2 entropy = (phuff_entropy_ptr2) cinfo->entropy; int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ int blkn; JBLOCKROW block; BITREAD_STATE_VARS; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restartp(cinfo)) return FALSE; } /* Not worth the cycles to check insufficient_data here, * since we will not change the data anyway if we read zeroes. */ /* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; /* Encoded data is simply the next bit of the two's-complement DC value */ CHECK_BIT_BUFFER(br_state, 1, return FALSE); if (GET_BITS(1)) (*block)[0] |= p1; /* Note: since we use |=, repeating the assignment later is safe */ } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; } /* * MCU decoding for AC successive approximation refinement scan. */ METHODDEF(boolean) decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr2 entropy = (phuff_entropy_ptr2) cinfo->entropy; int Se = cinfo->Se; int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ register int s, k, r; unsigned int EOBRUN; JBLOCKROW block; JCOEFPTR thiscoef; BITREAD_STATE_VARS; d_derived_tbl * tbl; int num_newnz; int newnz_pos[DCTSIZE2]; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restartp(cinfo)) return FALSE; } /* If we've run out of data, don't modify the MCU. */ if (! entropy->pub.insufficient_data) { /* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ /* There is always only one block per MCU */ block = MCU_data[0]; tbl = entropy->ac_derived_tbl; /* If we are forced to suspend, we must undo the assignments to any newly * nonzero coefficients in the block, because otherwise we'd get confused * next time about which coefficients were already nonzero. * But we need not undo addition of bits to already-nonzero coefficients; * instead, we can test the current bit to see if we already did it. */ num_newnz = 0; /* initialize coefficient loop counter to start of band */ k = cinfo->Ss; if (EOBRUN == 0) { for (; k <= Se; k++) { HUFF_DECODE(s, br_state, tbl, goto undoit, label3); r = s >> 4; s &= 15; if (s) { if (s != 1) /* size of new coef should always be 1 */ WARNMS(cinfo, JWRN_HUFF_BAD_CODE); CHECK_BIT_BUFFER(br_state, 1, goto undoit); if (GET_BITS(1)) s = p1; /* newly nonzero coef is positive */ else s = m1; /* newly nonzero coef is negative */ } else { if (r != 15) { EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ if (r) { CHECK_BIT_BUFFER(br_state, r, goto undoit); r = GET_BITS(r); EOBRUN += r; } break; /* rest of block is handled by EOB logic */ } /* note s = 0 for processing ZRL */ } /* Advance over already-nonzero coefs and r still-zero coefs, * appending correction bits to the nonzeroes. A correction bit is 1 * if the absolute value of the coefficient must be increased. */ do { thiscoef = *block + jpeg_natural_order[k]; if (*thiscoef != 0) { CHECK_BIT_BUFFER(br_state, 1, goto undoit); if (GET_BITS(1)) { if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ if (*thiscoef >= 0) *thiscoef += p1; else *thiscoef += m1; } } } else { if (--r < 0) break; /* reached target zero coefficient */ } k++; } while (k <= Se); if (s) { int pos = jpeg_natural_order[k]; /* Output newly nonzero coefficient */ (*block)[pos] = (JCOEF) s; /* Remember its position in case we have to suspend */ newnz_pos[num_newnz++] = pos; } } } if (EOBRUN > 0) { /* Scan any remaining coefficient positions after the end-of-band * (the last newly nonzero coefficient, if any). Append a correction * bit to each already-nonzero coefficient. A correction bit is 1 * if the absolute value of the coefficient must be increased. */ for (; k <= Se; k++) { thiscoef = *block + jpeg_natural_order[k]; if (*thiscoef != 0) { CHECK_BIT_BUFFER(br_state, 1, goto undoit); if (GET_BITS(1)) { if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ if (*thiscoef >= 0) *thiscoef += p1; else *thiscoef += m1; } } } } /* Count one block completed in EOB run */ EOBRUN--; } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ } /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; undoit: /* Re-zero any output coefficients that we made newly nonzero */ while (num_newnz > 0) (*block)[newnz_pos[--num_newnz]] = 0; return FALSE; } /* * Module initialization routine for progressive Huffman entropy decoding. */ GLOBAL(void) jinit_phuff_decoder (j_decompress_ptr cinfo) { phuff_entropy_ptr2 entropy; int *coef_bit_ptr; int ci, i; entropy = (phuff_entropy_ptr2) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(phuff_entropy_decoder)); cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; entropy->pub.start_pass = start_pass_phuff_decoder; /* Mark derived tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->derived_tbls[i] = NULL; } /* Create progression status table */ cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->num_components*DCTSIZE2*SIZEOF(int)); coef_bit_ptr = & cinfo->coef_bits[0][0]; for (ci = 0; ci < cinfo->num_components; ci++) for (i = 0; i < DCTSIZE2; i++) *coef_bit_ptr++ = -1; } #endif /* D_PROGRESSIVE_SUPPORTED */ /********* End of inlined file: jdphuff.c *********/ /********* Start of inlined file: jdpostct.c *********/ #define JPEG_INTERNALS /* Private buffer controller object */ typedef struct { struct jpeg_d_post_controller pub; /* public fields */ /* Color quantization source buffer: this holds output data from * the upsample/color conversion step to be passed to the quantizer. * For two-pass color quantization, we need a full-image buffer; * for one-pass operation, a strip buffer is sufficient. */ jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */ JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */ JDIMENSION strip_height; /* buffer size in rows */ /* for two-pass mode only: */ JDIMENSION starting_row; /* row # of first row in current strip */ JDIMENSION next_row; /* index of next row to fill/empty in strip */ } my_post_controller; typedef my_post_controller * my_post_ptr; /* Forward declarations */ METHODDEF(void) post_process_1pass JPP((j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); #ifdef QUANT_2PASS_SUPPORTED METHODDEF(void) post_process_prepass JPP((j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); METHODDEF(void) post_process_2pass JPP((j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); #endif /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) { my_post_ptr post = (my_post_ptr) cinfo->post; switch (pass_mode) { case JBUF_PASS_THRU: if (cinfo->quantize_colors) { /* Single-pass processing with color quantization. */ post->pub.post_process_data = post_process_1pass; /* We could be doing buffered-image output before starting a 2-pass * color quantization; in that case, jinit_d_post_controller did not * allocate a strip buffer. Use the virtual-array buffer as workspace. */ if (post->buffer == NULL) { post->buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, post->whole_image, (JDIMENSION) 0, post->strip_height, TRUE); } } else { /* For single-pass processing without color quantization, * I have no work to do; just call the upsampler directly. */ post->pub.post_process_data = cinfo->upsample->upsample; } break; #ifdef QUANT_2PASS_SUPPORTED case JBUF_SAVE_AND_PASS: /* First pass of 2-pass quantization */ if (post->whole_image == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); post->pub.post_process_data = post_process_prepass; break; case JBUF_CRANK_DEST: /* Second pass of 2-pass quantization */ if (post->whole_image == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); post->pub.post_process_data = post_process_2pass; break; #endif /* QUANT_2PASS_SUPPORTED */ default: ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); break; } post->starting_row = post->next_row = 0; } /* * Process some data in the one-pass (strip buffer) case. * This is used for color precision reduction as well as one-pass quantization. */ METHODDEF(void) post_process_1pass (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_post_ptr post = (my_post_ptr) cinfo->post; JDIMENSION num_rows, max_rows; /* Fill the buffer, but not more than what we can dump out in one go. */ /* Note we rely on the upsampler to detect bottom of image. */ max_rows = out_rows_avail - *out_row_ctr; if (max_rows > post->strip_height) max_rows = post->strip_height; num_rows = 0; (*cinfo->upsample->upsample) (cinfo, input_buf, in_row_group_ctr, in_row_groups_avail, post->buffer, &num_rows, max_rows); /* Quantize and emit data. */ (*cinfo->cquantize->color_quantize) (cinfo, post->buffer, output_buf + *out_row_ctr, (int) num_rows); *out_row_ctr += num_rows; } #ifdef QUANT_2PASS_SUPPORTED /* * Process some data in the first pass of 2-pass quantization. */ METHODDEF(void) post_process_prepass (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_post_ptr post = (my_post_ptr) cinfo->post; JDIMENSION old_next_row, num_rows; /* Reposition virtual buffer if at start of strip. */ if (post->next_row == 0) { post->buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, post->whole_image, post->starting_row, post->strip_height, TRUE); } /* Upsample some data (up to a strip height's worth). */ old_next_row = post->next_row; (*cinfo->upsample->upsample) (cinfo, input_buf, in_row_group_ctr, in_row_groups_avail, post->buffer, &post->next_row, post->strip_height); /* Allow quantizer to scan new data. No data is emitted, */ /* but we advance out_row_ctr so outer loop can tell when we're done. */ if (post->next_row > old_next_row) { num_rows = post->next_row - old_next_row; (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row, (JSAMPARRAY) NULL, (int) num_rows); *out_row_ctr += num_rows; } /* Advance if we filled the strip. */ if (post->next_row >= post->strip_height) { post->starting_row += post->strip_height; post->next_row = 0; } } /* * Process some data in the second pass of 2-pass quantization. */ METHODDEF(void) post_process_2pass (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_post_ptr post = (my_post_ptr) cinfo->post; JDIMENSION num_rows, max_rows; /* Reposition virtual buffer if at start of strip. */ if (post->next_row == 0) { post->buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, post->whole_image, post->starting_row, post->strip_height, FALSE); } /* Determine number of rows to emit. */ num_rows = post->strip_height - post->next_row; /* available in strip */ max_rows = out_rows_avail - *out_row_ctr; /* available in output area */ if (num_rows > max_rows) num_rows = max_rows; /* We have to check bottom of image here, can't depend on upsampler. */ max_rows = cinfo->output_height - post->starting_row; if (num_rows > max_rows) num_rows = max_rows; /* Quantize and emit data. */ (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + post->next_row, output_buf + *out_row_ctr, (int) num_rows); *out_row_ctr += num_rows; /* Advance if we filled the strip. */ post->next_row += num_rows; if (post->next_row >= post->strip_height) { post->starting_row += post->strip_height; post->next_row = 0; } } #endif /* QUANT_2PASS_SUPPORTED */ /* * Initialize postprocessing controller. */ GLOBAL(void) jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer) { my_post_ptr post; post = (my_post_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_post_controller)); cinfo->post = (struct jpeg_d_post_controller *) post; post->pub.start_pass = start_pass_dpost; post->whole_image = NULL; /* flag for no virtual arrays */ post->buffer = NULL; /* flag for no strip buffer */ /* Create the quantization buffer, if needed */ if (cinfo->quantize_colors) { /* The buffer strip height is max_v_samp_factor, which is typically * an efficient number of rows for upsampling to return. * (In the presence of output rescaling, we might want to be smarter?) */ post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor; if (need_full_buffer) { /* Two-pass color quantization: need full-image storage. */ /* We round up the number of rows to a multiple of the strip height. */ #ifdef QUANT_2PASS_SUPPORTED post->whole_image = (*cinfo->mem->request_virt_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, cinfo->output_width * cinfo->out_color_components, (JDIMENSION) jround_up((long) cinfo->output_height, (long) post->strip_height), post->strip_height); #else ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); #endif /* QUANT_2PASS_SUPPORTED */ } else { /* One-pass color quantization: just make a strip buffer. */ post->buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->output_width * cinfo->out_color_components, post->strip_height); } } } /********* End of inlined file: jdpostct.c *********/ #undef FIX /********* Start of inlined file: jdsample.c *********/ #define JPEG_INTERNALS /* Pointer to routine to upsample a single component */ typedef JMETHOD(void, upsample1_ptr, (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)); /* Private subobject */ typedef struct { struct jpeg_upsampler pub; /* public fields */ /* Color conversion buffer. When using separate upsampling and color * conversion steps, this buffer holds one upsampled row group until it * has been color converted and output. * Note: we do not allocate any storage for component(s) which are full-size, * ie do not need rescaling. The corresponding entry of color_buf[] is * simply set to point to the input data array, thereby avoiding copying. */ JSAMPARRAY color_buf[MAX_COMPONENTS]; /* Per-component upsampling method pointers */ upsample1_ptr methods[MAX_COMPONENTS]; int next_row_out; /* counts rows emitted from color_buf */ JDIMENSION rows_to_go; /* counts rows remaining in image */ /* Height of an input row group for each component. */ int rowgroup_height[MAX_COMPONENTS]; /* These arrays save pixel expansion factors so that int_expand need not * recompute them each time. They are unused for other upsampling methods. */ UINT8 h_expand[MAX_COMPONENTS]; UINT8 v_expand[MAX_COMPONENTS]; } my_upsampler2; typedef my_upsampler2 * my_upsample_ptr2; /* * Initialize for an upsampling pass. */ METHODDEF(void) start_pass_upsample (j_decompress_ptr cinfo) { my_upsample_ptr2 upsample = (my_upsample_ptr2) cinfo->upsample; /* Mark the conversion buffer empty */ upsample->next_row_out = cinfo->max_v_samp_factor; /* Initialize total-height counter for detecting bottom of image */ upsample->rows_to_go = cinfo->output_height; } /* * Control routine to do upsampling (and color conversion). * * In this version we upsample each component independently. * We upsample one row group into the conversion buffer, then apply * color conversion a row at a time. */ METHODDEF(void) sep_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_upsample_ptr2 upsample = (my_upsample_ptr2) cinfo->upsample; int ci; jpeg_component_info * compptr; JDIMENSION num_rows; /* Fill the conversion buffer, if it's empty */ if (upsample->next_row_out >= cinfo->max_v_samp_factor) { for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Invoke per-component upsample method. Notice we pass a POINTER * to color_buf[ci], so that fullsize_upsample can change it. */ (*upsample->methods[ci]) (cinfo, compptr, input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), upsample->color_buf + ci); } upsample->next_row_out = 0; } /* Color-convert and emit rows */ /* How many we have in the buffer: */ num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); /* Not more than the distance to the end of the image. Need this test * in case the image height is not a multiple of max_v_samp_factor: */ if (num_rows > upsample->rows_to_go) num_rows = upsample->rows_to_go; /* And not more than what the client can accept: */ out_rows_avail -= *out_row_ctr; if (num_rows > out_rows_avail) num_rows = out_rows_avail; (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, (JDIMENSION) upsample->next_row_out, output_buf + *out_row_ctr, (int) num_rows); /* Adjust counts */ *out_row_ctr += num_rows; upsample->rows_to_go -= num_rows; upsample->next_row_out += num_rows; /* When the buffer is emptied, declare this input row group consumed */ if (upsample->next_row_out >= cinfo->max_v_samp_factor) (*in_row_group_ctr)++; } /* * These are the routines invoked by sep_upsample to upsample pixel values * of a single component. One row group is processed per call. */ /* * For full-size components, we just make color_buf[ci] point at the * input buffer, and thus avoid copying any data. Note that this is * safe only because sep_upsample doesn't declare the input row group * "consumed" until we are done color converting and emitting it. */ METHODDEF(void) fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { *output_data_ptr = input_data; } /* * This is a no-op version used for "uninteresting" components. * These components will not be referenced by color conversion. */ METHODDEF(void) noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { *output_data_ptr = NULL; /* safety check */ } /* * This version handles any integral sampling ratios. * This is not used for typical JPEG files, so it need not be fast. * Nor, for that matter, is it particularly accurate: the algorithm is * simple replication of the input pixel onto the corresponding output * pixels. The hi-falutin sampling literature refers to this as a * "box filter". A box filter tends to introduce visible artifacts, * so if you are actually going to use 3:1 or 4:1 sampling ratios * you would be well advised to improve this code. */ METHODDEF(void) int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { my_upsample_ptr2 upsample = (my_upsample_ptr2) cinfo->upsample; JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr, outptr; register JSAMPLE invalue; register int h; JSAMPROW outend; int h_expand, v_expand; int inrow, outrow; h_expand = upsample->h_expand[compptr->component_index]; v_expand = upsample->v_expand[compptr->component_index]; inrow = outrow = 0; while (outrow < cinfo->max_v_samp_factor) { /* Generate one output row with proper horizontal expansion */ inptr = input_data[inrow]; outptr = output_data[outrow]; outend = outptr + cinfo->output_width; while (outptr < outend) { invalue = *inptr++; /* don't need GETJSAMPLE() here */ for (h = h_expand; h > 0; h--) { *outptr++ = invalue; } } /* Generate any additional output rows by duplicating the first one */ if (v_expand > 1) { jcopy_sample_rows(output_data, outrow, output_data, outrow+1, v_expand-1, cinfo->output_width); } inrow++; outrow += v_expand; } } /* * Fast processing for the common case of 2:1 horizontal and 1:1 vertical. * It's still a box filter. */ METHODDEF(void) h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr, outptr; register JSAMPLE invalue; JSAMPROW outend; int inrow; for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { inptr = input_data[inrow]; outptr = output_data[inrow]; outend = outptr + cinfo->output_width; while (outptr < outend) { invalue = *inptr++; /* don't need GETJSAMPLE() here */ *outptr++ = invalue; *outptr++ = invalue; } } } /* * Fast processing for the common case of 2:1 horizontal and 2:1 vertical. * It's still a box filter. */ METHODDEF(void) h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr, outptr; register JSAMPLE invalue; JSAMPROW outend; int inrow, outrow; inrow = outrow = 0; while (outrow < cinfo->max_v_samp_factor) { inptr = input_data[inrow]; outptr = output_data[outrow]; outend = outptr + cinfo->output_width; while (outptr < outend) { invalue = *inptr++; /* don't need GETJSAMPLE() here */ *outptr++ = invalue; *outptr++ = invalue; } jcopy_sample_rows(output_data, outrow, output_data, outrow+1, 1, cinfo->output_width); inrow++; outrow += 2; } } /* * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. * * The upsampling algorithm is linear interpolation between pixel centers, * also known as a "triangle filter". This is a good compromise between * speed and visual quality. The centers of the output pixels are 1/4 and 3/4 * of the way between input pixel centers. * * A note about the "bias" calculations: when rounding fractional values to * integer, we do not want to always round 0.5 up to the next integer. * If we did that, we'd introduce a noticeable bias towards larger values. * Instead, this code is arranged so that 0.5 will be rounded up or down at * alternate pixel locations (a simple ordered dither pattern). */ METHODDEF(void) h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr, outptr; register int invalue; register JDIMENSION colctr; int inrow; for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { inptr = input_data[inrow]; outptr = output_data[inrow]; /* Special case for first column */ invalue = GETJSAMPLE(*inptr++); *outptr++ = (JSAMPLE) invalue; *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2); for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { /* General case: 3/4 * nearer pixel + 1/4 * further pixel */ invalue = GETJSAMPLE(*inptr++) * 3; *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2); *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2); } /* Special case for last column */ invalue = GETJSAMPLE(*inptr); *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2); *outptr++ = (JSAMPLE) invalue; } } /* * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. * Again a triangle filter; see comments for h2v1 case, above. * * It is OK for us to reference the adjacent input rows because we demanded * context from the main buffer controller (see initialization code). */ METHODDEF(void) h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr0, inptr1, outptr; #if BITS_IN_JSAMPLE == 8 register int thiscolsum, lastcolsum, nextcolsum; #else register INT32 thiscolsum, lastcolsum, nextcolsum; #endif register JDIMENSION colctr; int inrow, outrow, v; inrow = outrow = 0; while (outrow < cinfo->max_v_samp_factor) { for (v = 0; v < 2; v++) { /* inptr0 points to nearest input row, inptr1 points to next nearest */ inptr0 = input_data[inrow]; if (v == 0) /* next nearest is row above */ inptr1 = input_data[inrow-1]; else /* next nearest is row below */ inptr1 = input_data[inrow+1]; outptr = output_data[outrow++]; /* Special case for first column */ thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4); *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); lastcolsum = thiscolsum; thiscolsum = nextcolsum; for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */ /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */ nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); lastcolsum = thiscolsum; thiscolsum = nextcolsum; } /* Special case for last column */ *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4); } inrow++; } } /* * Module initialization routine for upsampling. */ GLOBAL(void) jinit_upsampler (j_decompress_ptr cinfo) { my_upsample_ptr2 upsample; int ci; jpeg_component_info * compptr; boolean need_buffer, do_fancy; int h_in_group, v_in_group, h_out_group, v_out_group; upsample = (my_upsample_ptr2) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_upsampler2)); cinfo->upsample = (struct jpeg_upsampler *) upsample; upsample->pub.start_pass = start_pass_upsample; upsample->pub.upsample = sep_upsample; upsample->pub.need_context_rows = FALSE; /* until we find out differently */ if (cinfo->CCIR601_sampling) /* this isn't supported */ ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1, * so don't ask for it. */ do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1; /* Verify we can handle the sampling factors, select per-component methods, * and create storage as needed. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Compute size of an "input group" after IDCT scaling. This many samples * are to be converted to max_h_samp_factor * max_v_samp_factor pixels. */ h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) / cinfo->min_DCT_scaled_size; v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) / cinfo->min_DCT_scaled_size; h_out_group = cinfo->max_h_samp_factor; v_out_group = cinfo->max_v_samp_factor; upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ need_buffer = TRUE; if (! compptr->component_needed) { /* Don't bother to upsample an uninteresting component. */ upsample->methods[ci] = noop_upsample; need_buffer = FALSE; } else if (h_in_group == h_out_group && v_in_group == v_out_group) { /* Fullsize components can be processed without any work. */ upsample->methods[ci] = fullsize_upsample; need_buffer = FALSE; } else if (h_in_group * 2 == h_out_group && v_in_group == v_out_group) { /* Special cases for 2h1v upsampling */ if (do_fancy && compptr->downsampled_width > 2) upsample->methods[ci] = h2v1_fancy_upsample; else upsample->methods[ci] = h2v1_upsample; } else if (h_in_group * 2 == h_out_group && v_in_group * 2 == v_out_group) { /* Special cases for 2h2v upsampling */ if (do_fancy && compptr->downsampled_width > 2) { upsample->methods[ci] = h2v2_fancy_upsample; upsample->pub.need_context_rows = TRUE; } else upsample->methods[ci] = h2v2_upsample; } else if ((h_out_group % h_in_group) == 0 && (v_out_group % v_in_group) == 0) { /* Generic integral-factors upsampling method */ upsample->methods[ci] = int_upsample; upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); } else ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); if (need_buffer) { upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) jround_up((long) cinfo->output_width, (long) cinfo->max_h_samp_factor), (JDIMENSION) cinfo->max_v_samp_factor); } } } /********* End of inlined file: jdsample.c *********/ /********* Start of inlined file: jdtrans.c *********/ #define JPEG_INTERNALS /* Forward declarations */ LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo)); /* * Read the coefficient arrays from a JPEG file. * jpeg_read_header must be completed before calling this. * * The entire image is read into a set of virtual coefficient-block arrays, * one per component. The return value is a pointer to the array of * virtual-array descriptors. These can be manipulated directly via the * JPEG memory manager, or handed off to jpeg_write_coefficients(). * To release the memory occupied by the virtual arrays, call * jpeg_finish_decompress() when done with the data. * * An alternative usage is to simply obtain access to the coefficient arrays * during a buffered-image-mode decompression operation. This is allowed * after any jpeg_finish_output() call. The arrays can be accessed until * jpeg_finish_decompress() is called. (Note that any call to the library * may reposition the arrays, so don't rely on access_virt_barray() results * to stay valid across library calls.) * * Returns NULL if suspended. This case need be checked only if * a suspending data source is used. */ GLOBAL(jvirt_barray_ptr *) jpeg_read_coefficients (j_decompress_ptr cinfo) { if (cinfo->global_state == DSTATE_READY) { /* First call: initialize active modules */ transdecode_master_selection(cinfo); cinfo->global_state = DSTATE_RDCOEFS; } if (cinfo->global_state == DSTATE_RDCOEFS) { /* Absorb whole file into the coef buffer */ for (;;) { int retcode; /* Call progress monitor hook if present */ if (cinfo->progress != NULL) (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); /* Absorb some more input */ retcode = (*cinfo->inputctl->consume_input) (cinfo); if (retcode == JPEG_SUSPENDED) return NULL; if (retcode == JPEG_REACHED_EOI) break; /* Advance progress counter if appropriate */ if (cinfo->progress != NULL && (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { /* startup underestimated number of scans; ratchet up one scan */ cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; } } } /* Set state so that jpeg_finish_decompress does the right thing */ cinfo->global_state = DSTATE_STOPPING; } /* At this point we should be in state DSTATE_STOPPING if being used * standalone, or in state DSTATE_BUFIMAGE if being invoked to get access * to the coefficients during a full buffered-image-mode decompression. */ if ((cinfo->global_state == DSTATE_STOPPING || cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) { return cinfo->coef->coef_arrays; } /* Oops, improper usage */ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); return NULL; /* keep compiler happy */ } /* * Master selection of decompression modules for transcoding. * This substitutes for jdmaster.c's initialization of the full decompressor. */ LOCAL(void) transdecode_master_selection (j_decompress_ptr cinfo) { /* This is effectively a buffered-image operation. */ cinfo->buffered_image = TRUE; /* Entropy decoding: either Huffman or arithmetic coding. */ if (cinfo->arith_code) { ERREXIT(cinfo, JERR_ARITH_NOTIMPL); } else { if (cinfo->progressive_mode) { #ifdef D_PROGRESSIVE_SUPPORTED jinit_phuff_decoder(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else jinit_huff_decoder(cinfo); } /* Always get a full-image coefficient buffer. */ jinit_d_coef_controller(cinfo, TRUE); /* We can now tell the memory manager to allocate virtual arrays. */ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); /* Initialize input side of decompressor to consume first scan. */ (*cinfo->inputctl->start_input_pass) (cinfo); /* Initialize progress monitoring. */ if (cinfo->progress != NULL) { int nscans; /* Estimate number of scans to set pass_limit. */ if (cinfo->progressive_mode) { /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ nscans = 2 + 3 * cinfo->num_components; } else if (cinfo->inputctl->has_multiple_scans) { /* For a nonprogressive multiscan file, estimate 1 scan per component. */ nscans = cinfo->num_components; } else { nscans = 1; } cinfo->progress->pass_counter = 0L; cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; cinfo->progress->completed_passes = 0; cinfo->progress->total_passes = 1; } } /********* End of inlined file: jdtrans.c *********/ /********* Start of inlined file: jfdctflt.c *********/ #define JPEG_INTERNALS #ifdef DCT_FLOAT_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* * Perform the forward DCT on one block of samples. */ GLOBAL(void) jpeg_fdct_float (FAST_FLOAT * data) { FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; FAST_FLOAT tmp10, tmp11, tmp12, tmp13; FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; FAST_FLOAT *dataptr; int ctr; /* Pass 1: process rows. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[0] + dataptr[7]; tmp7 = dataptr[0] - dataptr[7]; tmp1 = dataptr[1] + dataptr[6]; tmp6 = dataptr[1] - dataptr[6]; tmp2 = dataptr[2] + dataptr[5]; tmp5 = dataptr[2] - dataptr[5]; tmp3 = dataptr[3] + dataptr[4]; tmp4 = dataptr[3] - dataptr[4]; /* Even part */ tmp10 = tmp0 + tmp3; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[0] = tmp10 + tmp11; /* phase 3 */ dataptr[4] = tmp10 - tmp11; z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ dataptr[2] = tmp13 + z1; /* phase 5 */ dataptr[6] = tmp13 - z1; /* Odd part */ tmp10 = tmp4 + tmp5; /* phase 2 */ tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; /* The rotator is modified from fig 4-8 to avoid extra negations. */ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ z11 = tmp7 + z3; /* phase 5 */ z13 = tmp7 - z3; dataptr[5] = z13 + z2; /* phase 6 */ dataptr[3] = z13 - z2; dataptr[1] = z11 + z4; dataptr[7] = z11 - z4; dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; /* Even part */ tmp10 = tmp0 + tmp3; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ dataptr[DCTSIZE*4] = tmp10 - tmp11; z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ dataptr[DCTSIZE*6] = tmp13 - z1; /* Odd part */ tmp10 = tmp4 + tmp5; /* phase 2 */ tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; /* The rotator is modified from fig 4-8 to avoid extra negations. */ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ z11 = tmp7 + z3; /* phase 5 */ z13 = tmp7 - z3; dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ dataptr[DCTSIZE*3] = z13 - z2; dataptr[DCTSIZE*1] = z11 + z4; dataptr[DCTSIZE*7] = z11 - z4; dataptr++; /* advance pointer to next column */ } } #endif /* DCT_FLOAT_SUPPORTED */ /********* End of inlined file: jfdctflt.c *********/ /********* Start of inlined file: jfdctint.c *********/ #define JPEG_INTERNALS #ifdef DCT_ISLOW_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* * The poop on this scaling stuff is as follows: * * Each 1-D DCT step produces outputs which are a factor of sqrt(N) * larger than the true DCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D DCT, * because the y0 and y4 outputs need not be divided by sqrt(N). * In the IJG code, this factor of 8 is removed by the quantization step * (in jcdctmgr.c), NOT in this module. * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (For 12-bit sample data, the intermediate * array is INT32 anyway.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 13 #define PASS1_BITS 2 #else #define CONST_BITS 13 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 13 #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ #else #define FIX_0_298631336 FIX(0.298631336) #define FIX_0_390180644 FIX(0.390180644) #define FIX_0_541196100 FIX(0.541196100) #define FIX_0_765366865 FIX(0.765366865) #define FIX_0_899976223 FIX(0.899976223) #define FIX_1_175875602 FIX(1.175875602) #define FIX_1_501321110 FIX(1.501321110) #define FIX_1_847759065 FIX(1.847759065) #define FIX_1_961570560 FIX(1.961570560) #define FIX_2_053119869 FIX(2.053119869) #define FIX_2_562915447 FIX(2.562915447) #define FIX_3_072711026 FIX(3.072711026) #endif /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */ #if BITS_IN_JSAMPLE == 8 #define MULTIPLY(var,const) MULTIPLY16C16(var,const) #else #define MULTIPLY(var,const) ((var) * (const)) #endif /* * Perform the forward DCT on one block of samples. */ GLOBAL(void) jpeg_fdct_islow (DCTELEM * data) { INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; INT32 tmp10, tmp11, tmp12, tmp13; INT32 z1, z2, z3, z4, z5; DCTELEM *dataptr; int ctr; SHIFT_TEMPS /* Pass 1: process rows. */ /* Note results are scaled up by sqrt(8) compared to a true DCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[0] + dataptr[7]; tmp7 = dataptr[0] - dataptr[7]; tmp1 = dataptr[1] + dataptr[6]; tmp6 = dataptr[1] - dataptr[6]; tmp2 = dataptr[2] + dataptr[5]; tmp5 = dataptr[2] - dataptr[5]; tmp3 = dataptr[3] + dataptr[4]; tmp4 = dataptr[3] - dataptr[4]; /* Even part per LL&M figure 1 --- note that published figure is faulty; * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". */ tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), CONST_BITS-PASS1_BITS); dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), CONST_BITS-PASS1_BITS); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). * cK represents cos(K*pi/16). * i0..i3 in the paper are tmp4..tmp7 here. */ z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; z3 = tmp4 + tmp6; z4 = tmp5 + tmp7; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; /* Even part per LL&M figure 1 --- note that published figure is faulty; * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". */ tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), CONST_BITS+PASS1_BITS); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). * cK represents cos(K*pi/16). * i0..i3 in the paper are tmp4..tmp7 here. */ z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; z3 = tmp4 + tmp6; z4 = tmp5 + tmp7; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS+PASS1_BITS); dataptr++; /* advance pointer to next column */ } } #endif /* DCT_ISLOW_SUPPORTED */ /********* End of inlined file: jfdctint.c *********/ #undef CONST_BITS #undef MULTIPLY #undef FIX_0_541196100 /********* Start of inlined file: jfdctfst.c *********/ #define JPEG_INTERNALS #ifdef DCT_IFAST_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Scaling decisions are generally the same as in the LL&M algorithm; * see jfdctint.c for more details. However, we choose to descale * (right shift) multiplication products as soon as they are formed, * rather than carrying additional fractional bits into subsequent additions. * This compromises accuracy slightly, but it lets us save a few shifts. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) * everywhere except in the multiplications proper; this saves a good deal * of work on 16-bit-int machines. * * Again to save a few shifts, the intermediate results between pass 1 and * pass 2 are not upscaled, but are represented only to integral precision. * * A final compromise is to represent the multiplicative constants to only * 8 fractional bits, rather than 13. This saves some shifting work on some * machines, and may also reduce the cost of multiplication (since there * are fewer one-bits in the constants). */ #define CONST_BITS 8 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 8 #define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */ #define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */ #define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */ #define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */ #else #define FIX_0_382683433 FIX(0.382683433) #define FIX_0_541196100 FIX(0.541196100) #define FIX_0_707106781 FIX(0.707106781) #define FIX_1_306562965 FIX(1.306562965) #endif /* We can gain a little more speed, with a further compromise in accuracy, * by omitting the addition in a descaling shift. This yields an incorrectly * rounded result half the time... */ #ifndef USE_ACCURATE_ROUNDING #undef DESCALE #define DESCALE(x,n) RIGHT_SHIFT(x, n) #endif /* Multiply a DCTELEM variable by an INT32 constant, and immediately * descale to yield a DCTELEM result. */ #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) /* * Perform the forward DCT on one block of samples. */ GLOBAL(void) jpeg_fdct_ifast (DCTELEM * data) { DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; DCTELEM tmp10, tmp11, tmp12, tmp13; DCTELEM z1, z2, z3, z4, z5, z11, z13; DCTELEM *dataptr; int ctr; SHIFT_TEMPS /* Pass 1: process rows. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[0] + dataptr[7]; tmp7 = dataptr[0] - dataptr[7]; tmp1 = dataptr[1] + dataptr[6]; tmp6 = dataptr[1] - dataptr[6]; tmp2 = dataptr[2] + dataptr[5]; tmp5 = dataptr[2] - dataptr[5]; tmp3 = dataptr[3] + dataptr[4]; tmp4 = dataptr[3] - dataptr[4]; /* Even part */ tmp10 = tmp0 + tmp3; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[0] = tmp10 + tmp11; /* phase 3 */ dataptr[4] = tmp10 - tmp11; z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ dataptr[2] = tmp13 + z1; /* phase 5 */ dataptr[6] = tmp13 - z1; /* Odd part */ tmp10 = tmp4 + tmp5; /* phase 2 */ tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; /* The rotator is modified from fig 4-8 to avoid extra negations. */ z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ z11 = tmp7 + z3; /* phase 5 */ z13 = tmp7 - z3; dataptr[5] = z13 + z2; /* phase 6 */ dataptr[3] = z13 - z2; dataptr[1] = z11 + z4; dataptr[7] = z11 - z4; dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; /* Even part */ tmp10 = tmp0 + tmp3; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ dataptr[DCTSIZE*4] = tmp10 - tmp11; z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ dataptr[DCTSIZE*6] = tmp13 - z1; /* Odd part */ tmp10 = tmp4 + tmp5; /* phase 2 */ tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; /* The rotator is modified from fig 4-8 to avoid extra negations. */ z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ z11 = tmp7 + z3; /* phase 5 */ z13 = tmp7 - z3; dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ dataptr[DCTSIZE*3] = z13 - z2; dataptr[DCTSIZE*1] = z11 + z4; dataptr[DCTSIZE*7] = z11 - z4; dataptr++; /* advance pointer to next column */ } } #endif /* DCT_IFAST_SUPPORTED */ /********* End of inlined file: jfdctfst.c *********/ #undef FIX_0_541196100 /********* Start of inlined file: jidctflt.c *********/ #define JPEG_INTERNALS #ifdef DCT_FLOAT_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce a float result. */ #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) /* * Perform dequantization and inverse DCT on one block of coefficients. */ GLOBAL(void) jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; FAST_FLOAT tmp10, tmp11, tmp12, tmp13; FAST_FLOAT z5, z10, z11, z12, z13; JCOEFPTR inptr; FLOAT_MULT_TYPE * quantptr; FAST_FLOAT * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; ctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { /* AC terms all zero */ FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; wsptr[DCTSIZE*2] = dcval; wsptr[DCTSIZE*3] = dcval; wsptr[DCTSIZE*4] = dcval; wsptr[DCTSIZE*5] = dcval; wsptr[DCTSIZE*6] = dcval; wsptr[DCTSIZE*7] = dcval; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; continue; } /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); tmp10 = tmp0 + tmp2; /* phase 3 */ tmp11 = tmp0 - tmp2; tmp13 = tmp1 + tmp3; /* phases 5-3 */ tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ tmp0 = tmp10 + tmp13; /* phase 2 */ tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); z13 = tmp6 + tmp5; /* phase 6 */ z10 = tmp6 - tmp5; z11 = tmp4 + tmp7; z12 = tmp4 - tmp7; tmp7 = z11 + z13; /* phase 5 */ tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; wsptr[DCTSIZE*0] = tmp0 + tmp7; wsptr[DCTSIZE*7] = tmp0 - tmp7; wsptr[DCTSIZE*1] = tmp1 + tmp6; wsptr[DCTSIZE*6] = tmp1 - tmp6; wsptr[DCTSIZE*2] = tmp2 + tmp5; wsptr[DCTSIZE*5] = tmp2 - tmp5; wsptr[DCTSIZE*4] = tmp3 + tmp4; wsptr[DCTSIZE*3] = tmp3 - tmp4; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. * However, the column calculation has created many nonzero AC terms, so * the simplification applies less often (typically 5% to 10% of the time). * And testing floats for zero is relatively expensive, so we don't bother. */ /* Even part */ tmp10 = wsptr[0] + wsptr[4]; tmp11 = wsptr[0] - wsptr[4]; tmp13 = wsptr[2] + wsptr[6]; tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ z13 = wsptr[5] + wsptr[3]; z10 = wsptr[5] - wsptr[3]; z11 = wsptr[1] + wsptr[7]; z12 = wsptr[1] - wsptr[7]; tmp7 = z11 + z13; tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; /* Final output stage: scale down by a factor of 8 and range-limit */ outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) & RANGE_MASK]; outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) & RANGE_MASK]; outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) & RANGE_MASK]; outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) & RANGE_MASK]; outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) & RANGE_MASK]; outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) & RANGE_MASK]; outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) & RANGE_MASK]; outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } #endif /* DCT_FLOAT_SUPPORTED */ /********* End of inlined file: jidctflt.c *********/ #undef CONST_BITS #undef FIX_1_847759065 #undef MULTIPLY #undef DEQUANTIZE #undef DESCALE /********* Start of inlined file: jidctfst.c *********/ #define JPEG_INTERNALS #ifdef DCT_IFAST_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Scaling decisions are generally the same as in the LL&M algorithm; * see jidctint.c for more details. However, we choose to descale * (right shift) multiplication products as soon as they are formed, * rather than carrying additional fractional bits into subsequent additions. * This compromises accuracy slightly, but it lets us save a few shifts. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) * everywhere except in the multiplications proper; this saves a good deal * of work on 16-bit-int machines. * * The dequantized coefficients are not integers because the AA&N scaling * factors have been incorporated. We represent them scaled up by PASS1_BITS, * so that the first and second IDCT rounds have the same input scaling. * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to * avoid a descaling shift; this compromises accuracy rather drastically * for small quantization table entries, but it saves a lot of shifts. * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, * so we use a much larger scaling factor to preserve accuracy. * * A final compromise is to represent the multiplicative constants to only * 8 fractional bits, rather than 13. This saves some shifting work on some * machines, and may also reduce the cost of multiplication (since there * are fewer one-bits in the constants). */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 8 #define PASS1_BITS 2 #else #define CONST_BITS 8 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 8 #define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */ #define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */ #define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */ #define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */ #else #define FIX_1_082392200 FIX(1.082392200) #define FIX_1_414213562 FIX(1.414213562) #define FIX_1_847759065 FIX(1.847759065) #define FIX_2_613125930 FIX(2.613125930) #endif /* We can gain a little more speed, with a further compromise in accuracy, * by omitting the addition in a descaling shift. This yields an incorrectly * rounded result half the time... */ #ifndef USE_ACCURATE_ROUNDING #undef DESCALE #define DESCALE(x,n) RIGHT_SHIFT(x, n) #endif /* Multiply a DCTELEM variable by an INT32 constant, and immediately * descale to yield a DCTELEM result. */ #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 * multiplication will do. For 12-bit data, the multiplier table is * declared INT32, so a 32-bit multiply will be used. */ #if BITS_IN_JSAMPLE == 8 #define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) #else #define DEQUANTIZE(coef,quantval) \ DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) #endif /* Like DESCALE, but applies to a DCTELEM and produces an int. * We assume that int right shift is unsigned if INT32 right shift is. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define ISHIFT_TEMPS DCTELEM ishift_temp; #if BITS_IN_JSAMPLE == 8 #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ #else #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ #endif #define IRIGHT_SHIFT(x,shft) \ ((ishift_temp = (x)) < 0 ? \ (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ (ishift_temp >> (shft))) #else #define ISHIFT_TEMPS #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) #endif #ifdef USE_ACCURATE_ROUNDING #define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) #else #define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n)) #endif /* * Perform dequantization and inverse DCT on one block of coefficients. */ GLOBAL(void) jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; DCTELEM tmp10, tmp11, tmp12, tmp13; DCTELEM z5, z10, z11, z12, z13; JCOEFPTR inptr; IFAST_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE2]; /* buffers data between passes */ SHIFT_TEMPS /* for DESCALE */ ISHIFT_TEMPS /* for IDESCALE */ /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; ctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { /* AC terms all zero */ int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; wsptr[DCTSIZE*2] = dcval; wsptr[DCTSIZE*3] = dcval; wsptr[DCTSIZE*4] = dcval; wsptr[DCTSIZE*5] = dcval; wsptr[DCTSIZE*6] = dcval; wsptr[DCTSIZE*7] = dcval; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; continue; } /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); tmp10 = tmp0 + tmp2; /* phase 3 */ tmp11 = tmp0 - tmp2; tmp13 = tmp1 + tmp3; /* phases 5-3 */ tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ tmp0 = tmp10 + tmp13; /* phase 2 */ tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); z13 = tmp6 + tmp5; /* phase 6 */ z10 = tmp6 - tmp5; z11 = tmp4 + tmp7; z12 = tmp4 - tmp7; tmp7 = z11 + z13; /* phase 5 */ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. * However, the column calculation has created many nonzero AC terms, so * the simplification applies less often (typically 5% to 10% of the time). * On machines with very fast multiplication, it's possible that the * test takes more time than it's worth. In that case this section * may be commented out. */ #ifndef NO_ZERO_ROW_TEST if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; outptr[2] = dcval; outptr[3] = dcval; outptr[4] = dcval; outptr[5] = dcval; outptr[6] = dcval; outptr[7] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part */ tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; tmp7 = z11 + z13; /* phase 5 */ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; /* Final output stage: scale down by a factor of 8 and range-limit */ outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } #endif /* DCT_IFAST_SUPPORTED */ /********* End of inlined file: jidctfst.c *********/ #undef CONST_BITS #undef FIX_1_847759065 #undef MULTIPLY #undef DEQUANTIZE /********* Start of inlined file: jidctint.c *********/ #define JPEG_INTERNALS #ifdef DCT_ISLOW_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* * The poop on this scaling stuff is as follows: * * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) * larger than the true IDCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D IDCT, * because the y0 and y4 inputs need not be divided by sqrt(N). * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (To scale up 12-bit sample data further, an * intermediate INT32 array would be needed.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 13 #define PASS1_BITS 2 #else #define CONST_BITS 13 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 13 #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ #else #define FIX_0_298631336 FIX(0.298631336) #define FIX_0_390180644 FIX(0.390180644) #define FIX_0_541196100 FIX(0.541196100) #define FIX_0_765366865 FIX(0.765366865) #define FIX_0_899976223 FIX(0.899976223) #define FIX_1_175875602 FIX(1.175875602) #define FIX_1_501321110 FIX(1.501321110) #define FIX_1_847759065 FIX(1.847759065) #define FIX_1_961570560 FIX(1.961570560) #define FIX_2_053119869 FIX(2.053119869) #define FIX_2_562915447 FIX(2.562915447) #define FIX_3_072711026 FIX(3.072711026) #endif /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */ #if BITS_IN_JSAMPLE == 8 #define MULTIPLY(var,const) MULTIPLY16C16(var,const) #else #define MULTIPLY(var,const) ((var) * (const)) #endif /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce an int result. In this module, both inputs and result * are 16 bits or less, so either int or short multiply will work. */ #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) /* * Perform dequantization and inverse DCT on one block of coefficients. */ GLOBAL(void) jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp0, tmp1, tmp2, tmp3; INT32 tmp10, tmp11, tmp12, tmp13; INT32 z1, z2, z3, z4, z5; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE2]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; ctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { /* AC terms all zero */ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; wsptr[DCTSIZE*2] = dcval; wsptr[DCTSIZE*3] = dcval; wsptr[DCTSIZE*4] = dcval; wsptr[DCTSIZE*5] = dcval; wsptr[DCTSIZE*6] = dcval; wsptr[DCTSIZE*7] = dcval; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; continue; } /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); z1 = MULTIPLY(z2 + z3, FIX_0_541196100); tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); tmp0 = (z2 + z3) << CONST_BITS; tmp1 = (z2 - z3) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; z3 = tmp0 + tmp2; z4 = tmp1 + tmp3; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. * However, the column calculation has created many nonzero AC terms, so * the simplification applies less often (typically 5% to 10% of the time). * On machines with very fast multiplication, it's possible that the * test takes more time than it's worth. In that case this section * may be commented out. */ #ifndef NO_ZERO_ROW_TEST if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; outptr[2] = dcval; outptr[3] = dcval; outptr[4] = dcval; outptr[5] = dcval; outptr[6] = dcval; outptr[7] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ z2 = (INT32) wsptr[2]; z3 = (INT32) wsptr[6]; z1 = MULTIPLY(z2 + z3, FIX_0_541196100); tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS; tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ tmp0 = (INT32) wsptr[7]; tmp1 = (INT32) wsptr[5]; tmp2 = (INT32) wsptr[3]; tmp3 = (INT32) wsptr[1]; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; z3 = tmp0 + tmp2; z4 = tmp1 + tmp3; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } #endif /* DCT_ISLOW_SUPPORTED */ /********* End of inlined file: jidctint.c *********/ /********* Start of inlined file: jidctred.c *********/ #define JPEG_INTERNALS #ifdef IDCT_SCALING_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Scaling is the same as in jidctint.c. */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 13 #define PASS1_BITS 2 #else #define CONST_BITS 13 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 13 #define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */ #define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */ #define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */ #define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */ #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ #define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */ #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ #define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */ #define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */ #define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */ #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ #define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */ #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ #define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */ #else #define FIX_0_211164243 FIX(0.211164243) #define FIX_0_509795579 FIX(0.509795579) #define FIX_0_601344887 FIX(0.601344887) #define FIX_0_720959822 FIX(0.720959822) #define FIX_0_765366865 FIX(0.765366865) #define FIX_0_850430095 FIX(0.850430095) #define FIX_0_899976223 FIX(0.899976223) #define FIX_1_061594337 FIX(1.061594337) #define FIX_1_272758580 FIX(1.272758580) #define FIX_1_451774981 FIX(1.451774981) #define FIX_1_847759065 FIX(1.847759065) #define FIX_2_172734803 FIX(2.172734803) #define FIX_2_562915447 FIX(2.562915447) #define FIX_3_624509785 FIX(3.624509785) #endif /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */ #if BITS_IN_JSAMPLE == 8 #define MULTIPLY(var,const) MULTIPLY16C16(var,const) #else #define MULTIPLY(var,const) ((var) * (const)) #endif /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce an int result. In this module, both inputs and result * are 16 bits or less, so either int or short multiply will work. */ #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 4x4 output block. */ GLOBAL(void) jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp0, tmp2, tmp10, tmp12; INT32 z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE*4]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { /* Don't bother to process column 4, because second pass won't use it */ if (ctr == DCTSIZE-4) continue; if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { /* AC terms all zero; we need not examine term 4 for 4x4 output */ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; wsptr[DCTSIZE*2] = dcval; wsptr[DCTSIZE*3] = dcval; continue; } /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp0 <<= (CONST_BITS+1); z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865); tmp10 = tmp0 + tmp2; tmp12 = tmp0 - tmp2; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ /* Final output stage */ wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1); wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1); wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1); wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1); } /* Pass 2: process 4 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 4; ctr++) { outptr = output_buf[ctr] + output_col; /* It's not clear whether a zero row test is worthwhile here ... */ #ifndef NO_ZERO_ROW_TEST if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; outptr[2] = dcval; outptr[3] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part */ tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1); tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065) + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865); tmp10 = tmp0 + tmp2; tmp12 = tmp0 - tmp2; /* Odd part */ z1 = (INT32) wsptr[7]; z2 = (INT32) wsptr[5]; z3 = (INT32) wsptr[3]; z4 = (INT32) wsptr[1]; tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ /* Final output stage */ outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2, CONST_BITS+PASS1_BITS+3+1) & RANGE_MASK]; outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2, CONST_BITS+PASS1_BITS+3+1) & RANGE_MASK]; outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0, CONST_BITS+PASS1_BITS+3+1) & RANGE_MASK]; outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0, CONST_BITS+PASS1_BITS+3+1) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 2x2 output block. */ GLOBAL(void) jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp0, tmp10, z1; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE*2]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { /* Don't bother to process columns 2,4,6 */ if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6) continue; if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) { /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; continue; } /* Even part */ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp10 = z1 << (CONST_BITS+2); /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */ z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ /* Final output stage */ wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2); wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2); } /* Pass 2: process 2 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 2; ctr++) { outptr = output_buf[ctr] + output_col; /* It's not clear whether a zero row test is worthwhile here ... */ #ifndef NO_ZERO_ROW_TEST if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part */ tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2); /* Odd part */ tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */ + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */ + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */ + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ /* Final output stage */ outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0, CONST_BITS+PASS1_BITS+3+2) & RANGE_MASK]; outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0, CONST_BITS+PASS1_BITS+3+2) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 1x1 output block. */ GLOBAL(void) jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { int dcval; ISLOW_MULT_TYPE * quantptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); SHIFT_TEMPS /* We hardly need an inverse DCT routine for this: just take the * average pixel value, which is one-eighth of the DC coefficient. */ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; dcval = DEQUANTIZE(coef_block[0], quantptr[0]); dcval = (int) DESCALE((INT32) dcval, 3); output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; } #endif /* IDCT_SCALING_SUPPORTED */ /********* End of inlined file: jidctred.c *********/ /********* Start of inlined file: jmemmgr.c *********/ #define JPEG_INTERNALS #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ /********* Start of inlined file: jmemsys.h *********/ #ifndef __jmemsys_h__ #define __jmemsys_h__ /* Short forms of external names for systems with brain-damaged linkers. */ #ifdef NEED_SHORT_EXTERNAL_NAMES #define jpeg_get_small jGetSmall #define jpeg_free_small jFreeSmall #define jpeg_get_large jGetLarge #define jpeg_free_large jFreeLarge #define jpeg_mem_available jMemAvail #define jpeg_open_backing_store jOpenBackStore #define jpeg_mem_init jMemInit #define jpeg_mem_term jMemTerm #endif /* NEED_SHORT_EXTERNAL_NAMES */ /* * These two functions are used to allocate and release small chunks of * memory. (Typically the total amount requested through jpeg_get_small is * no more than 20K or so; this will be requested in chunks of a few K each.) * Behavior should be the same as for the standard library functions malloc * and free; in particular, jpeg_get_small must return NULL on failure. * On most systems, these ARE malloc and free. jpeg_free_small is passed the * size of the object being freed, just in case it's needed. * On an 80x86 machine using small-data memory model, these manage near heap. */ EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject)); EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object, size_t sizeofobject)); /* * These two functions are used to allocate and release large chunks of * memory (up to the total free space designated by jpeg_mem_available). * The interface is the same as above, except that on an 80x86 machine, * far pointers are used. On most other machines these are identical to * the jpeg_get/free_small routines; but we keep them separate anyway, * in case a different allocation strategy is desirable for large chunks. */ EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo, size_t sizeofobject)); EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object, size_t sizeofobject)); /* * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may * be requested in a single call to jpeg_get_large (and jpeg_get_small for that * matter, but that case should never come into play). This macro is needed * to model the 64Kb-segment-size limit of far addressing on 80x86 machines. * On those machines, we expect that jconfig.h will provide a proper value. * On machines with 32-bit flat address spaces, any large constant may be used. * * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type * size_t and will be a multiple of sizeof(align_type). */ #ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */ #define MAX_ALLOC_CHUNK 1000000000L #endif /* * This routine computes the total space still available for allocation by * jpeg_get_large. If more space than this is needed, backing store will be * used. NOTE: any memory already allocated must not be counted. * * There is a minimum space requirement, corresponding to the minimum * feasible buffer sizes; jmemmgr.c will request that much space even if * jpeg_mem_available returns zero. The maximum space needed, enough to hold * all working storage in memory, is also passed in case it is useful. * Finally, the total space already allocated is passed. If no better * method is available, cinfo->mem->max_memory_to_use - already_allocated * is often a suitable calculation. * * It is OK for jpeg_mem_available to underestimate the space available * (that'll just lead to more backing-store access than is really necessary). * However, an overestimate will lead to failure. Hence it's wise to subtract * a slop factor from the true available space. 5% should be enough. * * On machines with lots of virtual memory, any large constant may be returned. * Conversely, zero may be returned to always use the minimum amount of memory. */ EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo, long min_bytes_needed, long max_bytes_needed, long already_allocated)); /* * This structure holds whatever state is needed to access a single * backing-store object. The read/write/close method pointers are called * by jmemmgr.c to manipulate the backing-store object; all other fields * are private to the system-dependent backing store routines. */ #define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */ #ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */ typedef unsigned short XMSH; /* type of extended-memory handles */ typedef unsigned short EMSH; /* type of expanded-memory handles */ typedef union { short file_handle; /* DOS file handle if it's a temp file */ XMSH xms_handle; /* handle if it's a chunk of XMS */ EMSH ems_handle; /* handle if it's a chunk of EMS */ } handle_union; #endif /* USE_MSDOS_MEMMGR */ #ifdef USE_MAC_MEMMGR /* Mac-specific junk */ #include #endif /* USE_MAC_MEMMGR */ //typedef struct backing_store_struct * backing_store_ptr; typedef struct backing_store_struct { /* Methods for reading/writing/closing this backing-store object */ JMETHOD(void, read_backing_store, (j_common_ptr cinfo, struct backing_store_struct *info, void FAR * buffer_address, long file_offset, long byte_count)); JMETHOD(void, write_backing_store, (j_common_ptr cinfo, struct backing_store_struct *info, void FAR * buffer_address, long file_offset, long byte_count)); JMETHOD(void, close_backing_store, (j_common_ptr cinfo, struct backing_store_struct *info)); /* Private fields for system-dependent backing-store management */ #ifdef USE_MSDOS_MEMMGR /* For the MS-DOS manager (jmemdos.c), we need: */ handle_union handle; /* reference to backing-store storage object */ char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ #else #ifdef USE_MAC_MEMMGR /* For the Mac manager (jmemmac.c), we need: */ short temp_file; /* file reference number to temp file */ FSSpec tempSpec; /* the FSSpec for the temp file */ char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ #else /* For a typical implementation with temp files, we need: */ FILE * temp_file; /* stdio reference to temp file */ char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */ #endif #endif } backing_store_info; /* * Initial opening of a backing-store object. This must fill in the * read/write/close pointers in the object. The read/write routines * may take an error exit if the specified maximum file size is exceeded. * (If jpeg_mem_available always returns a large value, this routine can * just take an error exit.) */ EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo, struct backing_store_struct *info, long total_bytes_needed)); /* * These routines take care of any system-dependent initialization and * cleanup required. jpeg_mem_init will be called before anything is * allocated (and, therefore, nothing in cinfo is of use except the error * manager pointer). It should return a suitable default value for * max_memory_to_use; this may subsequently be overridden by the surrounding * application. (Note that max_memory_to_use is only important if * jpeg_mem_available chooses to consult it ... no one else will.) * jpeg_mem_term may assume that all requested memory has been freed and that * all opened backing-store objects have been closed. */ EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo)); EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo)); #endif /********* End of inlined file: jmemsys.h *********/ /* import the system-dependent declarations */ #ifndef NO_GETENV #ifndef HAVE_STDLIB_H /* should declare getenv() */ extern char * getenv JPP((const char * name)); #endif #endif /* * Some important notes: * The allocation routines provided here must never return NULL. * They should exit to error_exit if unsuccessful. * * It's not a good idea to try to merge the sarray and barray routines, * even though they are textually almost the same, because samples are * usually stored as bytes while coefficients are shorts or ints. Thus, * in machines where byte pointers have a different representation from * word pointers, the resulting machine code could not be the same. */ /* * Many machines require storage alignment: longs must start on 4-byte * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() * always returns pointers that are multiples of the worst-case alignment * requirement, and we had better do so too. * There isn't any really portable way to determine the worst-case alignment * requirement. This module assumes that the alignment requirement is * multiples of sizeof(ALIGN_TYPE). * By default, we define ALIGN_TYPE as double. This is necessary on some * workstations (where doubles really do need 8-byte alignment) and will work * fine on nearly everything. If your machine has lesser alignment needs, * you can save a few bytes by making ALIGN_TYPE smaller. * The only place I know of where this will NOT work is certain Macintosh * 680x0 compilers that define double as a 10-byte IEEE extended float. * Doing 10-byte alignment is counterproductive because longwords won't be * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have * such a compiler. */ #ifndef ALIGN_TYPE /* so can override from jconfig.h */ #define ALIGN_TYPE double #endif /* * We allocate objects from "pools", where each pool is gotten with a single * request to jpeg_get_small() or jpeg_get_large(). There is no per-object * overhead within a pool, except for alignment padding. Each pool has a * header with a link to the next pool of the same class. * Small and large pool headers are identical except that the latter's * link pointer must be FAR on 80x86 machines. * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple * of the alignment requirement of ALIGN_TYPE. */ typedef union small_pool_struct * small_pool_ptr; typedef union small_pool_struct { struct { small_pool_ptr next; /* next in list of pools */ size_t bytes_used; /* how many bytes already used within pool */ size_t bytes_left; /* bytes still available in this pool */ } hdr; ALIGN_TYPE dummy; /* included in union to ensure alignment */ } small_pool_hdr; typedef union large_pool_struct FAR * large_pool_ptr; typedef union large_pool_struct { struct { large_pool_ptr next; /* next in list of pools */ size_t bytes_used; /* how many bytes already used within pool */ size_t bytes_left; /* bytes still available in this pool */ } hdr; ALIGN_TYPE dummy; /* included in union to ensure alignment */ } large_pool_hdr; /* * Here is the full definition of a memory manager object. */ typedef struct { struct jpeg_memory_mgr pub; /* public fields */ /* Each pool identifier (lifetime class) names a linked list of pools. */ small_pool_ptr small_list[JPOOL_NUMPOOLS]; large_pool_ptr large_list[JPOOL_NUMPOOLS]; /* Since we only have one lifetime class of virtual arrays, only one * linked list is necessary (for each datatype). Note that the virtual * array control blocks being linked together are actually stored somewhere * in the small-pool list. */ jvirt_sarray_ptr virt_sarray_list; jvirt_barray_ptr virt_barray_list; /* This counts total space obtained from jpeg_get_small/large */ long total_space_allocated; /* alloc_sarray and alloc_barray set this value for use by virtual * array routines. */ JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ } my_memory_mgr; typedef my_memory_mgr * my_mem_ptr; /* * The control blocks for virtual arrays. * Note that these blocks are allocated in the "small" pool area. * System-dependent info for the associated backing store (if any) is hidden * inside the backing_store_info struct. */ struct jvirt_sarray_control { JSAMPARRAY mem_buffer; /* => the in-memory buffer */ JDIMENSION rows_in_array; /* total virtual array height */ JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ JDIMENSION rows_in_mem; /* height of memory buffer */ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ JDIMENSION cur_start_row; /* first logical row # in the buffer */ JDIMENSION first_undef_row; /* row # of first uninitialized row */ boolean pre_zero; /* pre-zero mode requested? */ boolean dirty; /* do current buffer contents need written? */ boolean b_s_open; /* is backing-store data valid? */ jvirt_sarray_ptr next; /* link to next virtual sarray control block */ backing_store_info b_s_info; /* System-dependent control info */ }; struct jvirt_barray_control { JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ JDIMENSION rows_in_array; /* total virtual array height */ JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ JDIMENSION rows_in_mem; /* height of memory buffer */ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ JDIMENSION cur_start_row; /* first logical row # in the buffer */ JDIMENSION first_undef_row; /* row # of first uninitialized row */ boolean pre_zero; /* pre-zero mode requested? */ boolean dirty; /* do current buffer contents need written? */ boolean b_s_open; /* is backing-store data valid? */ jvirt_barray_ptr next; /* link to next virtual barray control block */ backing_store_info b_s_info; /* System-dependent control info */ }; #ifdef MEM_STATS /* optional extra stuff for statistics */ LOCAL(void) print_mem_stats (j_common_ptr cinfo, int pool_id) { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; small_pool_ptr shdr_ptr; large_pool_ptr lhdr_ptr; /* Since this is only a debugging stub, we can cheat a little by using * fprintf directly rather than going through the trace message code. * This is helpful because message parm array can't handle longs. */ fprintf(stderr, "Freeing pool %d, total space = %ld\n", pool_id, mem->total_space_allocated); for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; lhdr_ptr = lhdr_ptr->hdr.next) { fprintf(stderr, " Large chunk used %ld\n", (long) lhdr_ptr->hdr.bytes_used); } for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; shdr_ptr = shdr_ptr->hdr.next) { fprintf(stderr, " Small chunk used %ld free %ld\n", (long) shdr_ptr->hdr.bytes_used, (long) shdr_ptr->hdr.bytes_left); } } #endif /* MEM_STATS */ LOCAL(void) out_of_memory (j_common_ptr cinfo, int which) /* Report an out-of-memory error and stop execution */ /* If we compiled MEM_STATS support, report alloc requests before dying */ { #ifdef MEM_STATS cinfo->err->trace_level = 2; /* force self_destruct to report stats */ #endif ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); } /* * Allocation of "small" objects. * * For these, we use pooled storage. When a new pool must be created, * we try to get enough space for the current request plus a "slop" factor, * where the slop will be the amount of leftover space in the new pool. * The speed vs. space tradeoff is largely determined by the slop values. * A different slop value is provided for each pool class (lifetime), * and we also distinguish the first pool of a class from later ones. * NOTE: the values given work fairly well on both 16- and 32-bit-int * machines, but may be too small if longs are 64 bits or more. */ static const size_t first_pool_slop[JPOOL_NUMPOOLS] = { 1600, /* first PERMANENT pool */ 16000 /* first IMAGE pool */ }; static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = { 0, /* additional PERMANENT pools */ 5000 /* additional IMAGE pools */ }; #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ METHODDEF(void *) alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) /* Allocate a "small" object */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; small_pool_ptr hdr_ptr, prev_hdr_ptr; char * data_ptr; size_t odd_bytes, min_request, slop; /* Check for unsatisfiable request (do now to ensure no overflow below) */ if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); if (odd_bytes > 0) sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; /* See if space is available in any existing pool */ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ prev_hdr_ptr = NULL; hdr_ptr = mem->small_list[pool_id]; while (hdr_ptr != NULL) { if (hdr_ptr->hdr.bytes_left >= sizeofobject) break; /* found pool with enough space */ prev_hdr_ptr = hdr_ptr; hdr_ptr = hdr_ptr->hdr.next; } /* Time to make a new pool? */ if (hdr_ptr == NULL) { /* min_request is what we need now, slop is what will be leftover */ min_request = sizeofobject + SIZEOF(small_pool_hdr); if (prev_hdr_ptr == NULL) /* first pool in class? */ slop = first_pool_slop[pool_id]; else slop = extra_pool_slop[pool_id]; /* Don't ask for more than MAX_ALLOC_CHUNK */ if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) slop = (size_t) (MAX_ALLOC_CHUNK-min_request); /* Try to get space, if fail reduce slop and try again */ for (;;) { hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); if (hdr_ptr != NULL) break; slop /= 2; if (slop < MIN_SLOP) /* give up when it gets real small */ out_of_memory(cinfo, 2); /* jpeg_get_small failed */ } mem->total_space_allocated += min_request + slop; /* Success, initialize the new pool header and add to end of list */ hdr_ptr->hdr.next = NULL; hdr_ptr->hdr.bytes_used = 0; hdr_ptr->hdr.bytes_left = sizeofobject + slop; if (prev_hdr_ptr == NULL) /* first pool in class? */ mem->small_list[pool_id] = hdr_ptr; else prev_hdr_ptr->hdr.next = hdr_ptr; } /* OK, allocate the object from the current pool */ data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ hdr_ptr->hdr.bytes_used += sizeofobject; hdr_ptr->hdr.bytes_left -= sizeofobject; return (void *) data_ptr; } /* * Allocation of "large" objects. * * The external semantics of these are the same as "small" objects, * except that FAR pointers are used on 80x86. However the pool * management heuristics are quite different. We assume that each * request is large enough that it may as well be passed directly to * jpeg_get_large; the pool management just links everything together * so that we can free it all on demand. * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY * structures. The routines that create these structures (see below) * deliberately bunch rows together to ensure a large request size. */ METHODDEF(void FAR *) alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) /* Allocate a "large" object */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; large_pool_ptr hdr_ptr; size_t odd_bytes; /* Check for unsatisfiable request (do now to ensure no overflow below) */ if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); if (odd_bytes > 0) sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; /* Always make a new pool */ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + SIZEOF(large_pool_hdr)); if (hdr_ptr == NULL) out_of_memory(cinfo, 4); /* jpeg_get_large failed */ mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); /* Success, initialize the new pool header and add to list */ hdr_ptr->hdr.next = mem->large_list[pool_id]; /* We maintain space counts in each pool header for statistical purposes, * even though they are not needed for allocation. */ hdr_ptr->hdr.bytes_used = sizeofobject; hdr_ptr->hdr.bytes_left = 0; mem->large_list[pool_id] = hdr_ptr; return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ } /* * Creation of 2-D sample arrays. * The pointers are in near heap, the samples themselves in FAR heap. * * To minimize allocation overhead and to allow I/O of large contiguous * blocks, we allocate the sample rows in groups of as many rows as possible * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. * NB: the virtual array control routines, later in this file, know about * this chunking of rows. The rowsperchunk value is left in the mem manager * object so that it can be saved away if this sarray is the workspace for * a virtual array. */ METHODDEF(JSAMPARRAY) alloc_sarray (j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow, JDIMENSION numrows) /* Allocate a 2-D sample array */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; JSAMPARRAY result; JSAMPROW workspace; JDIMENSION rowsperchunk, currow, i; long ltemp; /* Calculate max # of rows allowed in one allocation chunk */ ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / ((long) samplesperrow * SIZEOF(JSAMPLE)); if (ltemp <= 0) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); if (ltemp < (long) numrows) rowsperchunk = (JDIMENSION) ltemp; else rowsperchunk = numrows; mem->last_rowsperchunk = rowsperchunk; /* Get space for row pointers (small object) */ result = (JSAMPARRAY) alloc_small(cinfo, pool_id, (size_t) (numrows * SIZEOF(JSAMPROW))); /* Get the rows themselves (large objects) */ currow = 0; while (currow < numrows) { rowsperchunk = MIN(rowsperchunk, numrows - currow); workspace = (JSAMPROW) alloc_large(cinfo, pool_id, (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow * SIZEOF(JSAMPLE))); for (i = rowsperchunk; i > 0; i--) { result[currow++] = workspace; workspace += samplesperrow; } } return result; } /* * Creation of 2-D coefficient-block arrays. * This is essentially the same as the code for sample arrays, above. */ METHODDEF(JBLOCKARRAY) alloc_barray (j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow, JDIMENSION numrows) /* Allocate a 2-D coefficient-block array */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; JBLOCKARRAY result; JBLOCKROW workspace; JDIMENSION rowsperchunk, currow, i; long ltemp; /* Calculate max # of rows allowed in one allocation chunk */ ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / ((long) blocksperrow * SIZEOF(JBLOCK)); if (ltemp <= 0) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); if (ltemp < (long) numrows) rowsperchunk = (JDIMENSION) ltemp; else rowsperchunk = numrows; mem->last_rowsperchunk = rowsperchunk; /* Get space for row pointers (small object) */ result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, (size_t) (numrows * SIZEOF(JBLOCKROW))); /* Get the rows themselves (large objects) */ currow = 0; while (currow < numrows) { rowsperchunk = MIN(rowsperchunk, numrows - currow); workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow * SIZEOF(JBLOCK))); for (i = rowsperchunk; i > 0; i--) { result[currow++] = workspace; workspace += blocksperrow; } } return result; } /* * About virtual array management: * * The above "normal" array routines are only used to allocate strip buffers * (as wide as the image, but just a few rows high). Full-image-sized buffers * are handled as "virtual" arrays. The array is still accessed a strip at a * time, but the memory manager must save the whole array for repeated * accesses. The intended implementation is that there is a strip buffer in * memory (as high as is possible given the desired memory limit), plus a * backing file that holds the rest of the array. * * The request_virt_array routines are told the total size of the image and * the maximum number of rows that will be accessed at once. The in-memory * buffer must be at least as large as the maxaccess value. * * The request routines create control blocks but not the in-memory buffers. * That is postponed until realize_virt_arrays is called. At that time the * total amount of space needed is known (approximately, anyway), so free * memory can be divided up fairly. * * The access_virt_array routines are responsible for making a specific strip * area accessible (after reading or writing the backing file, if necessary). * Note that the access routines are told whether the caller intends to modify * the accessed strip; during a read-only pass this saves having to rewrite * data to disk. The access routines are also responsible for pre-zeroing * any newly accessed rows, if pre-zeroing was requested. * * In current usage, the access requests are usually for nonoverlapping * strips; that is, successive access start_row numbers differ by exactly * num_rows = maxaccess. This means we can get good performance with simple * buffer dump/reload logic, by making the in-memory buffer be a multiple * of the access height; then there will never be accesses across bufferload * boundaries. The code will still work with overlapping access requests, * but it doesn't handle bufferload overlaps very efficiently. */ METHODDEF(jvirt_sarray_ptr) request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION samplesperrow, JDIMENSION numrows, JDIMENSION maxaccess) /* Request a virtual 2-D sample array */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; jvirt_sarray_ptr result; /* Only IMAGE-lifetime virtual arrays are currently supported */ if (pool_id != JPOOL_IMAGE) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ /* get control block */ result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, SIZEOF(struct jvirt_sarray_control)); result->mem_buffer = NULL; /* marks array not yet realized */ result->rows_in_array = numrows; result->samplesperrow = samplesperrow; result->maxaccess = maxaccess; result->pre_zero = pre_zero; result->b_s_open = FALSE; /* no associated backing-store object */ result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ mem->virt_sarray_list = result; return result; } METHODDEF(jvirt_barray_ptr) request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION blocksperrow, JDIMENSION numrows, JDIMENSION maxaccess) /* Request a virtual 2-D coefficient-block array */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; jvirt_barray_ptr result; /* Only IMAGE-lifetime virtual arrays are currently supported */ if (pool_id != JPOOL_IMAGE) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ /* get control block */ result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, SIZEOF(struct jvirt_barray_control)); result->mem_buffer = NULL; /* marks array not yet realized */ result->rows_in_array = numrows; result->blocksperrow = blocksperrow; result->maxaccess = maxaccess; result->pre_zero = pre_zero; result->b_s_open = FALSE; /* no associated backing-store object */ result->next = mem->virt_barray_list; /* add to list of virtual arrays */ mem->virt_barray_list = result; return result; } METHODDEF(void) realize_virt_arrays (j_common_ptr cinfo) /* Allocate the in-memory buffers for any unrealized virtual arrays */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; long space_per_minheight, maximum_space, avail_mem; long minheights, max_minheights; jvirt_sarray_ptr sptr; jvirt_barray_ptr bptr; /* Compute the minimum space needed (maxaccess rows in each buffer) * and the maximum space needed (full image height in each buffer). * These may be of use to the system-dependent jpeg_mem_available routine. */ space_per_minheight = 0; maximum_space = 0; for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { if (sptr->mem_buffer == NULL) { /* if not realized yet */ space_per_minheight += (long) sptr->maxaccess * (long) sptr->samplesperrow * SIZEOF(JSAMPLE); maximum_space += (long) sptr->rows_in_array * (long) sptr->samplesperrow * SIZEOF(JSAMPLE); } } for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { if (bptr->mem_buffer == NULL) { /* if not realized yet */ space_per_minheight += (long) bptr->maxaccess * (long) bptr->blocksperrow * SIZEOF(JBLOCK); maximum_space += (long) bptr->rows_in_array * (long) bptr->blocksperrow * SIZEOF(JBLOCK); } } if (space_per_minheight <= 0) return; /* no unrealized arrays, no work */ /* Determine amount of memory to actually use; this is system-dependent. */ avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, mem->total_space_allocated); /* If the maximum space needed is available, make all the buffers full * height; otherwise parcel it out with the same number of minheights * in each buffer. */ if (avail_mem >= maximum_space) max_minheights = 1000000000L; else { max_minheights = avail_mem / space_per_minheight; /* If there doesn't seem to be enough space, try to get the minimum * anyway. This allows a "stub" implementation of jpeg_mem_available(). */ if (max_minheights <= 0) max_minheights = 1; } /* Allocate the in-memory buffers and initialize backing store as needed. */ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { if (sptr->mem_buffer == NULL) { /* if not realized yet */ minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; if (minheights <= max_minheights) { /* This buffer fits in memory */ sptr->rows_in_mem = sptr->rows_in_array; } else { /* It doesn't fit in memory, create backing store. */ sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); jpeg_open_backing_store(cinfo, & sptr->b_s_info, (long) sptr->rows_in_array * (long) sptr->samplesperrow * (long) SIZEOF(JSAMPLE)); sptr->b_s_open = TRUE; } sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, sptr->samplesperrow, sptr->rows_in_mem); sptr->rowsperchunk = mem->last_rowsperchunk; sptr->cur_start_row = 0; sptr->first_undef_row = 0; sptr->dirty = FALSE; } } for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { if (bptr->mem_buffer == NULL) { /* if not realized yet */ minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; if (minheights <= max_minheights) { /* This buffer fits in memory */ bptr->rows_in_mem = bptr->rows_in_array; } else { /* It doesn't fit in memory, create backing store. */ bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); jpeg_open_backing_store(cinfo, & bptr->b_s_info, (long) bptr->rows_in_array * (long) bptr->blocksperrow * (long) SIZEOF(JBLOCK)); bptr->b_s_open = TRUE; } bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, bptr->blocksperrow, bptr->rows_in_mem); bptr->rowsperchunk = mem->last_rowsperchunk; bptr->cur_start_row = 0; bptr->first_undef_row = 0; bptr->dirty = FALSE; } } } LOCAL(void) do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) /* Do backing store read or write of a virtual sample array */ { long bytesperrow, file_offset, byte_count, rows, thisrow, i; bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); file_offset = ptr->cur_start_row * bytesperrow; /* Loop to read or write each allocation chunk in mem_buffer */ for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { /* One chunk, but check for short chunk at end of buffer */ rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); /* Transfer no more than is currently defined */ thisrow = (long) ptr->cur_start_row + i; rows = MIN(rows, (long) ptr->first_undef_row - thisrow); /* Transfer no more than fits in file */ rows = MIN(rows, (long) ptr->rows_in_array - thisrow); if (rows <= 0) /* this chunk might be past end of file! */ break; byte_count = rows * bytesperrow; if (writing) (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, (void FAR *) ptr->mem_buffer[i], file_offset, byte_count); else (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, (void FAR *) ptr->mem_buffer[i], file_offset, byte_count); file_offset += byte_count; } } LOCAL(void) do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) /* Do backing store read or write of a virtual coefficient-block array */ { long bytesperrow, file_offset, byte_count, rows, thisrow, i; bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); file_offset = ptr->cur_start_row * bytesperrow; /* Loop to read or write each allocation chunk in mem_buffer */ for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { /* One chunk, but check for short chunk at end of buffer */ rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); /* Transfer no more than is currently defined */ thisrow = (long) ptr->cur_start_row + i; rows = MIN(rows, (long) ptr->first_undef_row - thisrow); /* Transfer no more than fits in file */ rows = MIN(rows, (long) ptr->rows_in_array - thisrow); if (rows <= 0) /* this chunk might be past end of file! */ break; byte_count = rows * bytesperrow; if (writing) (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, (void FAR *) ptr->mem_buffer[i], file_offset, byte_count); else (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, (void FAR *) ptr->mem_buffer[i], file_offset, byte_count); file_offset += byte_count; } } METHODDEF(JSAMPARRAY) access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable) /* Access the part of a virtual sample array starting at start_row */ /* and extending for num_rows rows. writable is true if */ /* caller intends to modify the accessed area. */ { JDIMENSION end_row = start_row + num_rows; JDIMENSION undef_row; /* debugging check */ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || ptr->mem_buffer == NULL) ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); /* Make the desired part of the virtual array accessible */ if (start_row < ptr->cur_start_row || end_row > ptr->cur_start_row+ptr->rows_in_mem) { if (! ptr->b_s_open) ERREXIT(cinfo, JERR_VIRTUAL_BUG); /* Flush old buffer contents if necessary */ if (ptr->dirty) { do_sarray_io(cinfo, ptr, TRUE); ptr->dirty = FALSE; } /* Decide what part of virtual array to access. * Algorithm: if target address > current window, assume forward scan, * load starting at target address. If target address < current window, * assume backward scan, load so that target area is top of window. * Note that when switching from forward write to forward read, will have * start_row = 0, so the limiting case applies and we load from 0 anyway. */ if (start_row > ptr->cur_start_row) { ptr->cur_start_row = start_row; } else { /* use long arithmetic here to avoid overflow & unsigned problems */ long ltemp; ltemp = (long) end_row - (long) ptr->rows_in_mem; if (ltemp < 0) ltemp = 0; /* don't fall off front end of file */ ptr->cur_start_row = (JDIMENSION) ltemp; } /* Read in the selected part of the array. * During the initial write pass, we will do no actual read * because the selected part is all undefined. */ do_sarray_io(cinfo, ptr, FALSE); } /* Ensure the accessed part of the array is defined; prezero if needed. * To improve locality of access, we only prezero the part of the array * that the caller is about to access, not the entire in-memory array. */ if (ptr->first_undef_row < end_row) { if (ptr->first_undef_row < start_row) { if (writable) /* writer skipped over a section of array */ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); undef_row = start_row; /* but reader is allowed to read ahead */ } else { undef_row = ptr->first_undef_row; } if (writable) ptr->first_undef_row = end_row; if (ptr->pre_zero) { size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ end_row -= ptr->cur_start_row; while (undef_row < end_row) { jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); undef_row++; } } else { if (! writable) /* reader looking at undefined data */ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); } } /* Flag the buffer dirty if caller will write in it */ if (writable) ptr->dirty = TRUE; /* Return address of proper part of the buffer */ return ptr->mem_buffer + (start_row - ptr->cur_start_row); } METHODDEF(JBLOCKARRAY) access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable) /* Access the part of a virtual block array starting at start_row */ /* and extending for num_rows rows. writable is true if */ /* caller intends to modify the accessed area. */ { JDIMENSION end_row = start_row + num_rows; JDIMENSION undef_row; /* debugging check */ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || ptr->mem_buffer == NULL) ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); /* Make the desired part of the virtual array accessible */ if (start_row < ptr->cur_start_row || end_row > ptr->cur_start_row+ptr->rows_in_mem) { if (! ptr->b_s_open) ERREXIT(cinfo, JERR_VIRTUAL_BUG); /* Flush old buffer contents if necessary */ if (ptr->dirty) { do_barray_io(cinfo, ptr, TRUE); ptr->dirty = FALSE; } /* Decide what part of virtual array to access. * Algorithm: if target address > current window, assume forward scan, * load starting at target address. If target address < current window, * assume backward scan, load so that target area is top of window. * Note that when switching from forward write to forward read, will have * start_row = 0, so the limiting case applies and we load from 0 anyway. */ if (start_row > ptr->cur_start_row) { ptr->cur_start_row = start_row; } else { /* use long arithmetic here to avoid overflow & unsigned problems */ long ltemp; ltemp = (long) end_row - (long) ptr->rows_in_mem; if (ltemp < 0) ltemp = 0; /* don't fall off front end of file */ ptr->cur_start_row = (JDIMENSION) ltemp; } /* Read in the selected part of the array. * During the initial write pass, we will do no actual read * because the selected part is all undefined. */ do_barray_io(cinfo, ptr, FALSE); } /* Ensure the accessed part of the array is defined; prezero if needed. * To improve locality of access, we only prezero the part of the array * that the caller is about to access, not the entire in-memory array. */ if (ptr->first_undef_row < end_row) { if (ptr->first_undef_row < start_row) { if (writable) /* writer skipped over a section of array */ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); undef_row = start_row; /* but reader is allowed to read ahead */ } else { undef_row = ptr->first_undef_row; } if (writable) ptr->first_undef_row = end_row; if (ptr->pre_zero) { size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ end_row -= ptr->cur_start_row; while (undef_row < end_row) { jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); undef_row++; } } else { if (! writable) /* reader looking at undefined data */ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); } } /* Flag the buffer dirty if caller will write in it */ if (writable) ptr->dirty = TRUE; /* Return address of proper part of the buffer */ return ptr->mem_buffer + (start_row - ptr->cur_start_row); } /* * Release all objects belonging to a specified pool. */ METHODDEF(void) free_pool (j_common_ptr cinfo, int pool_id) { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; small_pool_ptr shdr_ptr; large_pool_ptr lhdr_ptr; size_t space_freed; if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ #ifdef MEM_STATS if (cinfo->err->trace_level > 1) print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ #endif /* If freeing IMAGE pool, close any virtual arrays first */ if (pool_id == JPOOL_IMAGE) { jvirt_sarray_ptr sptr; jvirt_barray_ptr bptr; for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { if (sptr->b_s_open) { /* there may be no backing store */ sptr->b_s_open = FALSE; /* prevent recursive close if error */ (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); } } mem->virt_sarray_list = NULL; for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { if (bptr->b_s_open) { /* there may be no backing store */ bptr->b_s_open = FALSE; /* prevent recursive close if error */ (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); } } mem->virt_barray_list = NULL; } /* Release large objects */ lhdr_ptr = mem->large_list[pool_id]; mem->large_list[pool_id] = NULL; while (lhdr_ptr != NULL) { large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; space_freed = lhdr_ptr->hdr.bytes_used + lhdr_ptr->hdr.bytes_left + SIZEOF(large_pool_hdr); jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); mem->total_space_allocated -= space_freed; lhdr_ptr = next_lhdr_ptr; } /* Release small objects */ shdr_ptr = mem->small_list[pool_id]; mem->small_list[pool_id] = NULL; while (shdr_ptr != NULL) { small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; space_freed = shdr_ptr->hdr.bytes_used + shdr_ptr->hdr.bytes_left + SIZEOF(small_pool_hdr); jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); mem->total_space_allocated -= space_freed; shdr_ptr = next_shdr_ptr; } } /* * Close up shop entirely. * Note that this cannot be called unless cinfo->mem is non-NULL. */ METHODDEF(void) self_destruct (j_common_ptr cinfo) { int pool; /* Close all backing store, release all memory. * Releasing pools in reverse order might help avoid fragmentation * with some (brain-damaged) malloc libraries. */ for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { free_pool(cinfo, pool); } /* Release the memory manager control block too. */ jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); cinfo->mem = NULL; /* ensures I will be called only once */ jpeg_mem_term(cinfo); /* system-dependent cleanup */ } /* * Memory manager initialization. * When this is called, only the error manager pointer is valid in cinfo! */ GLOBAL(void) jinit_memory_mgr (j_common_ptr cinfo) { my_mem_ptr mem; long max_to_use; int pool; size_t test_mac; cinfo->mem = NULL; /* for safety if init fails */ /* Check for configuration errors. * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably * doesn't reflect any real hardware alignment requirement. * The test is a little tricky: for X>0, X and X-1 have no one-bits * in common if and only if X is a power of 2, ie has only one one-bit. * Some compilers may give an "unreachable code" warning here; ignore it. */ if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be * a multiple of SIZEOF(ALIGN_TYPE). * Again, an "unreachable code" warning may be ignored here. * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. */ test_mac = (size_t) MAX_ALLOC_CHUNK; if ((long) test_mac != MAX_ALLOC_CHUNK || (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ /* Attempt to allocate memory manager's control block */ mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); if (mem == NULL) { jpeg_mem_term(cinfo); /* system-dependent cleanup */ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); } /* OK, fill in the method pointers */ mem->pub.alloc_small = alloc_small; mem->pub.alloc_large = alloc_large; mem->pub.alloc_sarray = alloc_sarray; mem->pub.alloc_barray = alloc_barray; mem->pub.request_virt_sarray = request_virt_sarray; mem->pub.request_virt_barray = request_virt_barray; mem->pub.realize_virt_arrays = realize_virt_arrays; mem->pub.access_virt_sarray = access_virt_sarray; mem->pub.access_virt_barray = access_virt_barray; mem->pub.free_pool = free_pool; mem->pub.self_destruct = self_destruct; /* Make MAX_ALLOC_CHUNK accessible to other modules */ mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; /* Initialize working state */ mem->pub.max_memory_to_use = max_to_use; for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { mem->small_list[pool] = NULL; mem->large_list[pool] = NULL; } mem->virt_sarray_list = NULL; mem->virt_barray_list = NULL; mem->total_space_allocated = SIZEOF(my_memory_mgr); /* Declare ourselves open for business */ cinfo->mem = & mem->pub; /* Check for an environment variable JPEGMEM; if found, override the * default max_memory setting from jpeg_mem_init. Note that the * surrounding application may again override this value. * If your system doesn't support getenv(), define NO_GETENV to disable * this feature. */ #ifndef NO_GETENV { char * memenv; if ((memenv = getenv("JPEGMEM")) != NULL) { char ch = 'x'; if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { if (ch == 'm' || ch == 'M') max_to_use *= 1000L; mem->pub.max_memory_to_use = max_to_use * 1000L; } } } #endif } /********* End of inlined file: jmemmgr.c *********/ /********* Start of inlined file: jmemnobs.c *********/ #define JPEG_INTERNALS #ifndef HAVE_STDLIB_H /* should declare malloc(),free() */ extern void * malloc JPP((size_t size)); extern void free JPP((void *ptr)); #endif /* * Memory allocation and freeing are controlled by the regular library * routines malloc() and free(). */ GLOBAL(void *) jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject) { return (void *) malloc(sizeofobject); } GLOBAL(void) jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject) { free(object); } /* * "Large" objects are treated the same as "small" ones. * NB: although we include FAR keywords in the routine declarations, * this file won't actually work in 80x86 small/medium model; at least, * you probably won't be able to process useful-size images in only 64KB. */ GLOBAL(void FAR *) jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject) { return (void FAR *) malloc(sizeofobject); } GLOBAL(void) jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject) { free(object); } /* * This routine computes the total memory space available for allocation. * Here we always say, "we got all you want bud!" */ GLOBAL(long) jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed, long max_bytes_needed, long already_allocated) { return max_bytes_needed; } /* * Backing store (temporary file) management. * Since jpeg_mem_available always promised the moon, * this should never be called and we can just error out. */ GLOBAL(void) jpeg_open_backing_store (j_common_ptr cinfo, struct backing_store_struct *info, long total_bytes_needed) { ERREXIT(cinfo, JERR_NO_BACKING_STORE); } /* * These routines take care of any system-dependent initialization and * cleanup required. Here, there isn't any. */ GLOBAL(long) jpeg_mem_init (j_common_ptr cinfo) { return 0; /* just set max_memory_to_use to 0 */ } GLOBAL(void) jpeg_mem_term (j_common_ptr cinfo) { /* no work */ } /********* End of inlined file: jmemnobs.c *********/ /********* Start of inlined file: jquant1.c *********/ #define JPEG_INTERNALS #ifdef QUANT_1PASS_SUPPORTED /* * The main purpose of 1-pass quantization is to provide a fast, if not very * high quality, colormapped output capability. A 2-pass quantizer usually * gives better visual quality; however, for quantized grayscale output this * quantizer is perfectly adequate. Dithering is highly recommended with this * quantizer, though you can turn it off if you really want to. * * In 1-pass quantization the colormap must be chosen in advance of seeing the * image. We use a map consisting of all combinations of Ncolors[i] color * values for the i'th component. The Ncolors[] values are chosen so that * their product, the total number of colors, is no more than that requested. * (In most cases, the product will be somewhat less.) * * Since the colormap is orthogonal, the representative value for each color * component can be determined without considering the other components; * then these indexes can be combined into a colormap index by a standard * N-dimensional-array-subscript calculation. Most of the arithmetic involved * can be precalculated and stored in the lookup table colorindex[]. * colorindex[i][j] maps pixel value j in component i to the nearest * representative value (grid plane) for that component; this index is * multiplied by the array stride for component i, so that the * index of the colormap entry closest to a given pixel value is just * sum( colorindex[component-number][pixel-component-value] ) * Aside from being fast, this scheme allows for variable spacing between * representative values with no additional lookup cost. * * If gamma correction has been applied in color conversion, it might be wise * to adjust the color grid spacing so that the representative colors are * equidistant in linear space. At this writing, gamma correction is not * implemented by jdcolor, so nothing is done here. */ /* Declarations for ordered dithering. * * We use a standard 16x16 ordered dither array. The basic concept of ordered * dithering is described in many references, for instance Dale Schumacher's * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). * In place of Schumacher's comparisons against a "threshold" value, we add a * "dither" value to the input pixel and then round the result to the nearest * output value. The dither value is equivalent to (0.5 - threshold) times * the distance between output values. For ordered dithering, we assume that * the output colors are equally spaced; if not, results will probably be * worse, since the dither may be too much or too little at a given point. * * The normal calculation would be to form pixel value + dither, range-limit * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. * We can skip the separate range-limiting step by extending the colorindex * table in both directions. */ #define ODITHER_SIZE 16 /* dimension of dither matrix */ /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { /* Bayer's order-4 dither array. Generated by the code given in * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. * The values in this array must range from 0 to ODITHER_CELLS-1. */ { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } }; /* Declarations for Floyd-Steinberg dithering. * * Errors are accumulated into the array fserrors[], at a resolution of * 1/16th of a pixel count. The error at a given pixel is propagated * to its not-yet-processed neighbors using the standard F-S fractions, * ... (here) 7/16 * 3/16 5/16 1/16 * We work left-to-right on even rows, right-to-left on odd rows. * * We can get away with a single array (holding one row's worth of errors) * by using it to store the current row's errors at pixel columns not yet * processed, but the next row's errors at columns already processed. We * need only a few extra variables to hold the errors immediately around the * current column. (If we are lucky, those variables are in registers, but * even if not, they're probably cheaper to access than array elements are.) * * The fserrors[] array is indexed [component#][position]. * We provide (#columns + 2) entries per component; the extra entry at each * end saves us from special-casing the first and last pixels. * * Note: on a wide image, we might not have enough room in a PC's near data * segment to hold the error array; so it is allocated with alloc_large. */ #if BITS_IN_JSAMPLE == 8 typedef INT16 FSERROR; /* 16 bits should be enough */ typedef int LOCFSERROR; /* use 'int' for calculation temps */ #else typedef INT32 FSERROR; /* may need more than 16 bits */ typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ #endif typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ /* Private subobject */ #define MAX_Q_COMPS 4 /* max components I can handle */ typedef struct { struct jpeg_color_quantizer pub; /* public fields */ /* Initially allocated colormap is saved here */ JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ int sv_actual; /* number of entries in use */ JSAMPARRAY colorindex; /* Precomputed mapping for speed */ /* colorindex[i][j] = index of color closest to pixel value j in component i, * premultiplied as described above. Since colormap indexes must fit into * JSAMPLEs, the entries of this array will too. */ boolean is_padded; /* is the colorindex padded for odither? */ int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ /* Variables for ordered dithering */ int row_index; /* cur row's vertical index in dither matrix */ ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ /* Variables for Floyd-Steinberg dithering */ FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ boolean on_odd_row; /* flag to remember which row we are on */ } my_cquantizer; typedef my_cquantizer * my_cquantize_ptr; /* * Policy-making subroutines for create_colormap and create_colorindex. * These routines determine the colormap to be used. The rest of the module * only assumes that the colormap is orthogonal. * * * select_ncolors decides how to divvy up the available colors * among the components. * * output_value defines the set of representative values for a component. * * largest_input_value defines the mapping from input values to * representative values for a component. * Note that the latter two routines may impose different policies for * different components, though this is not currently done. */ LOCAL(int) select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) /* Determine allocation of desired colors to components, */ /* and fill in Ncolors[] array to indicate choice. */ /* Return value is total number of colors (product of Ncolors[] values). */ { int nc = cinfo->out_color_components; /* number of color components */ int max_colors = cinfo->desired_number_of_colors; int total_colors, iroot, i, j; boolean changed; long temp; static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; /* We can allocate at least the nc'th root of max_colors per component. */ /* Compute floor(nc'th root of max_colors). */ iroot = 1; do { iroot++; temp = iroot; /* set temp = iroot ** nc */ for (i = 1; i < nc; i++) temp *= iroot; } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ iroot--; /* now iroot = floor(root) */ /* Must have at least 2 color values per component */ if (iroot < 2) ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); /* Initialize to iroot color values for each component */ total_colors = 1; for (i = 0; i < nc; i++) { Ncolors[i] = iroot; total_colors *= iroot; } /* We may be able to increment the count for one or more components without * exceeding max_colors, though we know not all can be incremented. * Sometimes, the first component can be incremented more than once! * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) * In RGB colorspace, try to increment G first, then R, then B. */ do { changed = FALSE; for (i = 0; i < nc; i++) { j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); /* calculate new total_colors if Ncolors[j] is incremented */ temp = total_colors / Ncolors[j]; temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ if (temp > (long) max_colors) break; /* won't fit, done with this pass */ Ncolors[j]++; /* OK, apply the increment */ total_colors = (int) temp; changed = TRUE; } } while (changed); return total_colors; } LOCAL(int) output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) /* Return j'th output value, where j will range from 0 to maxj */ /* The output values must fall in 0..MAXJSAMPLE in increasing order */ { /* We always provide values 0 and MAXJSAMPLE for each component; * any additional values are equally spaced between these limits. * (Forcing the upper and lower values to the limits ensures that * dithering can't produce a color outside the selected gamut.) */ return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); } LOCAL(int) largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) /* Return largest input value that should map to j'th output value */ /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ { /* Breakpoints are halfway between values returned by output_value */ return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); } /* * Create the colormap. */ LOCAL(void) create_colormap (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; JSAMPARRAY colormap; /* Created colormap */ int total_colors; /* Number of distinct output colors */ int i,j,k, nci, blksize, blkdist, ptr, val; /* Select number of colors for each component */ total_colors = select_ncolors(cinfo, cquantize->Ncolors); /* Report selected color counts */ if (cinfo->out_color_components == 3) TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, total_colors, cquantize->Ncolors[0], cquantize->Ncolors[1], cquantize->Ncolors[2]); else TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); /* Allocate and fill in the colormap. */ /* The colors are ordered in the map in standard row-major order, */ /* i.e. rightmost (highest-indexed) color changes most rapidly. */ colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); /* blksize is number of adjacent repeated entries for a component */ /* blkdist is distance between groups of identical entries for a component */ blkdist = total_colors; for (i = 0; i < cinfo->out_color_components; i++) { /* fill in colormap entries for i'th color component */ nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ blksize = blkdist / nci; for (j = 0; j < nci; j++) { /* Compute j'th output value (out of nci) for component */ val = output_value(cinfo, i, j, nci-1); /* Fill in all colormap entries that have this value of this component */ for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { /* fill in blksize entries beginning at ptr */ for (k = 0; k < blksize; k++) colormap[i][ptr+k] = (JSAMPLE) val; } } blkdist = blksize; /* blksize of this color is blkdist of next */ } /* Save the colormap in private storage, * where it will survive color quantization mode changes. */ cquantize->sv_colormap = colormap; cquantize->sv_actual = total_colors; } /* * Create the color index table. */ LOCAL(void) create_colorindex (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; JSAMPROW indexptr; int i,j,k, nci, blksize, val, pad; /* For ordered dither, we pad the color index tables by MAXJSAMPLE in * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). * This is not necessary in the other dithering modes. However, we * flag whether it was done in case user changes dithering mode. */ if (cinfo->dither_mode == JDITHER_ORDERED) { pad = MAXJSAMPLE*2; cquantize->is_padded = TRUE; } else { pad = 0; cquantize->is_padded = FALSE; } cquantize->colorindex = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) (MAXJSAMPLE+1 + pad), (JDIMENSION) cinfo->out_color_components); /* blksize is number of adjacent repeated entries for a component */ blksize = cquantize->sv_actual; for (i = 0; i < cinfo->out_color_components; i++) { /* fill in colorindex entries for i'th color component */ nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ blksize = blksize / nci; /* adjust colorindex pointers to provide padding at negative indexes. */ if (pad) cquantize->colorindex[i] += MAXJSAMPLE; /* in loop, val = index of current output value, */ /* and k = largest j that maps to current val */ indexptr = cquantize->colorindex[i]; val = 0; k = largest_input_value(cinfo, i, 0, nci-1); for (j = 0; j <= MAXJSAMPLE; j++) { while (j > k) /* advance val if past boundary */ k = largest_input_value(cinfo, i, ++val, nci-1); /* premultiply so that no multiplication needed in main processing */ indexptr[j] = (JSAMPLE) (val * blksize); } /* Pad at both ends if necessary */ if (pad) for (j = 1; j <= MAXJSAMPLE; j++) { indexptr[-j] = indexptr[0]; indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; } } } /* * Create an ordered-dither array for a component having ncolors * distinct output values. */ LOCAL(ODITHER_MATRIX_PTR) make_odither_array (j_decompress_ptr cinfo, int ncolors) { ODITHER_MATRIX_PTR odither; int j,k; INT32 num,den; odither = (ODITHER_MATRIX_PTR) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(ODITHER_MATRIX)); /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). * Hence the dither value for the matrix cell with fill order f * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). * On 16-bit-int machine, be careful to avoid overflow. */ den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); for (j = 0; j < ODITHER_SIZE; j++) { for (k = 0; k < ODITHER_SIZE; k++) { num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) * MAXJSAMPLE; /* Ensure round towards zero despite C's lack of consistency * about rounding negative values in integer division... */ odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); } } return odither; } /* * Create the ordered-dither tables. * Components having the same number of representative colors may * share a dither table. */ LOCAL(void) create_odither_tables (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; ODITHER_MATRIX_PTR odither; int i, j, nci; for (i = 0; i < cinfo->out_color_components; i++) { nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ odither = NULL; /* search for matching prior component */ for (j = 0; j < i; j++) { if (nci == cquantize->Ncolors[j]) { odither = cquantize->odither[j]; break; } } if (odither == NULL) /* need a new table? */ odither = make_odither_array(cinfo, nci); cquantize->odither[i] = odither; } } /* * Map some rows of pixels to the output colormapped representation. */ METHODDEF(void) color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* General case, no dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; JSAMPARRAY colorindex = cquantize->colorindex; register int pixcode, ci; register JSAMPROW ptrin, ptrout; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; register int nc = cinfo->out_color_components; for (row = 0; row < num_rows; row++) { ptrin = input_buf[row]; ptrout = output_buf[row]; for (col = width; col > 0; col--) { pixcode = 0; for (ci = 0; ci < nc; ci++) { pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); } *ptrout++ = (JSAMPLE) pixcode; } } } METHODDEF(void) color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* Fast path for out_color_components==3, no dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; register int pixcode; register JSAMPROW ptrin, ptrout; JSAMPROW colorindex0 = cquantize->colorindex[0]; JSAMPROW colorindex1 = cquantize->colorindex[1]; JSAMPROW colorindex2 = cquantize->colorindex[2]; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { ptrin = input_buf[row]; ptrout = output_buf[row]; for (col = width; col > 0; col--) { pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); *ptrout++ = (JSAMPLE) pixcode; } } } METHODDEF(void) quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* General case, with ordered dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; register JSAMPROW input_ptr; register JSAMPROW output_ptr; JSAMPROW colorindex_ci; int * dither; /* points to active row of dither matrix */ int row_index, col_index; /* current indexes into dither matrix */ int nc = cinfo->out_color_components; int ci; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { /* Initialize output values to 0 so can process components separately */ jzero_far((void FAR *) output_buf[row], (size_t) (width * SIZEOF(JSAMPLE))); row_index = cquantize->row_index; for (ci = 0; ci < nc; ci++) { input_ptr = input_buf[row] + ci; output_ptr = output_buf[row]; colorindex_ci = cquantize->colorindex[ci]; dither = cquantize->odither[ci][row_index]; col_index = 0; for (col = width; col > 0; col--) { /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, * select output value, accumulate into output code for this pixel. * Range-limiting need not be done explicitly, as we have extended * the colorindex table to produce the right answers for out-of-range * inputs. The maximum dither is +- MAXJSAMPLE; this sets the * required amount of padding. */ *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; input_ptr += nc; output_ptr++; col_index = (col_index + 1) & ODITHER_MASK; } } /* Advance row index for next row */ row_index = (row_index + 1) & ODITHER_MASK; cquantize->row_index = row_index; } } METHODDEF(void) quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* Fast path for out_color_components==3, with ordered dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; register int pixcode; register JSAMPROW input_ptr; register JSAMPROW output_ptr; JSAMPROW colorindex0 = cquantize->colorindex[0]; JSAMPROW colorindex1 = cquantize->colorindex[1]; JSAMPROW colorindex2 = cquantize->colorindex[2]; int * dither0; /* points to active row of dither matrix */ int * dither1; int * dither2; int row_index, col_index; /* current indexes into dither matrix */ int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { row_index = cquantize->row_index; input_ptr = input_buf[row]; output_ptr = output_buf[row]; dither0 = cquantize->odither[0][row_index]; dither1 = cquantize->odither[1][row_index]; dither2 = cquantize->odither[2][row_index]; col_index = 0; for (col = width; col > 0; col--) { pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + dither0[col_index]]); pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + dither1[col_index]]); pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + dither2[col_index]]); *output_ptr++ = (JSAMPLE) pixcode; col_index = (col_index + 1) & ODITHER_MASK; } row_index = (row_index + 1) & ODITHER_MASK; cquantize->row_index = row_index; } } METHODDEF(void) quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* General case, with Floyd-Steinberg dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; register LOCFSERROR cur; /* current error or pixel value */ LOCFSERROR belowerr; /* error for pixel below cur */ LOCFSERROR bpreverr; /* error for below/prev col */ LOCFSERROR bnexterr; /* error for below/next col */ LOCFSERROR delta; register FSERRPTR errorptr; /* => fserrors[] at column before current */ register JSAMPROW input_ptr; register JSAMPROW output_ptr; JSAMPROW colorindex_ci; JSAMPROW colormap_ci; int pixcode; int nc = cinfo->out_color_components; int dir; /* 1 for left-to-right, -1 for right-to-left */ int dirnc; /* dir * nc */ int ci; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; JSAMPLE *range_limit = cinfo->sample_range_limit; SHIFT_TEMPS for (row = 0; row < num_rows; row++) { /* Initialize output values to 0 so can process components separately */ jzero_far((void FAR *) output_buf[row], (size_t) (width * SIZEOF(JSAMPLE))); for (ci = 0; ci < nc; ci++) { input_ptr = input_buf[row] + ci; output_ptr = output_buf[row]; if (cquantize->on_odd_row) { /* work right to left in this row */ input_ptr += (width-1) * nc; /* so point to rightmost pixel */ output_ptr += width-1; dir = -1; dirnc = -nc; errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ } else { /* work left to right in this row */ dir = 1; dirnc = nc; errorptr = cquantize->fserrors[ci]; /* => entry before first column */ } colorindex_ci = cquantize->colorindex[ci]; colormap_ci = cquantize->sv_colormap[ci]; /* Preset error values: no error propagated to first pixel from left */ cur = 0; /* and no error propagated to row below yet */ belowerr = bpreverr = 0; for (col = width; col > 0; col--) { /* cur holds the error propagated from the previous pixel on the * current line. Add the error propagated from the previous line * to form the complete error correction term for this pixel, and * round the error term (which is expressed * 16) to an integer. * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct * for either sign of the error value. * Note: errorptr points to *previous* column's array entry. */ cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. * The maximum error is +- MAXJSAMPLE; this sets the required size * of the range_limit array. */ cur += GETJSAMPLE(*input_ptr); cur = GETJSAMPLE(range_limit[cur]); /* Select output value, accumulate into output code for this pixel */ pixcode = GETJSAMPLE(colorindex_ci[cur]); *output_ptr += (JSAMPLE) pixcode; /* Compute actual representation error at this pixel */ /* Note: we can do this even though we don't have the final */ /* pixel code, because the colormap is orthogonal. */ cur -= GETJSAMPLE(colormap_ci[pixcode]); /* Compute error fractions to be propagated to adjacent pixels. * Add these into the running sums, and simultaneously shift the * next-line error sums left by 1 column. */ bnexterr = cur; delta = cur * 2; cur += delta; /* form error * 3 */ errorptr[0] = (FSERROR) (bpreverr + cur); cur += delta; /* form error * 5 */ bpreverr = belowerr + cur; belowerr = bnexterr; cur += delta; /* form error * 7 */ /* At this point cur contains the 7/16 error value to be propagated * to the next pixel on the current line, and all the errors for the * next line have been shifted over. We are therefore ready to move on. */ input_ptr += dirnc; /* advance input ptr to next column */ output_ptr += dir; /* advance output ptr to next column */ errorptr += dir; /* advance errorptr to current column */ } /* Post-loop cleanup: we must unload the final error value into the * final fserrors[] entry. Note we need not unload belowerr because * it is for the dummy column before or after the actual array. */ errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ } cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); } } /* * Allocate workspace for Floyd-Steinberg errors. */ LOCAL(void) alloc_fs_workspace (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; size_t arraysize; int i; arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); for (i = 0; i < cinfo->out_color_components; i++) { cquantize->fserrors[i] = (FSERRPTR) (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); } } /* * Initialize for one-pass color quantization. */ METHODDEF(void) start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; size_t arraysize; int i; /* Install my colormap. */ cinfo->colormap = cquantize->sv_colormap; cinfo->actual_number_of_colors = cquantize->sv_actual; /* Initialize for desired dithering mode. */ switch (cinfo->dither_mode) { case JDITHER_NONE: if (cinfo->out_color_components == 3) cquantize->pub.color_quantize = color_quantize3; else cquantize->pub.color_quantize = color_quantize; break; case JDITHER_ORDERED: if (cinfo->out_color_components == 3) cquantize->pub.color_quantize = quantize3_ord_dither; else cquantize->pub.color_quantize = quantize_ord_dither; cquantize->row_index = 0; /* initialize state for ordered dither */ /* If user changed to ordered dither from another mode, * we must recreate the color index table with padding. * This will cost extra space, but probably isn't very likely. */ if (! cquantize->is_padded) create_colorindex(cinfo); /* Create ordered-dither tables if we didn't already. */ if (cquantize->odither[0] == NULL) create_odither_tables(cinfo); break; case JDITHER_FS: cquantize->pub.color_quantize = quantize_fs_dither; cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ /* Allocate Floyd-Steinberg workspace if didn't already. */ if (cquantize->fserrors[0] == NULL) alloc_fs_workspace(cinfo); /* Initialize the propagated errors to zero. */ arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); for (i = 0; i < cinfo->out_color_components; i++) jzero_far((void FAR *) cquantize->fserrors[i], arraysize); break; default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } } /* * Finish up at the end of the pass. */ METHODDEF(void) finish_pass_1_quant (j_decompress_ptr cinfo) { /* no work in 1-pass case */ } /* * Switch to a new external colormap between output passes. * Shouldn't get to this module! */ METHODDEF(void) new_color_map_1_quant (j_decompress_ptr cinfo) { ERREXIT(cinfo, JERR_MODE_CHANGE); } /* * Module initialization routine for 1-pass color quantization. */ GLOBAL(void) jinit_1pass_quantizer (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize; cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_cquantizer)); cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; cquantize->pub.start_pass = start_pass_1_quant; cquantize->pub.finish_pass = finish_pass_1_quant; cquantize->pub.new_color_map = new_color_map_1_quant; cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ /* Make sure my internal arrays won't overflow */ if (cinfo->out_color_components > MAX_Q_COMPS) ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); /* Make sure colormap indexes can be represented by JSAMPLEs */ if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); /* Create the colormap and color index table. */ create_colormap(cinfo); create_colorindex(cinfo); /* Allocate Floyd-Steinberg workspace now if requested. * We do this now since it is FAR storage and may affect the memory * manager's space calculations. If the user changes to FS dither * mode in a later pass, we will allocate the space then, and will * possibly overrun the max_memory_to_use setting. */ if (cinfo->dither_mode == JDITHER_FS) alloc_fs_workspace(cinfo); } #endif /* QUANT_1PASS_SUPPORTED */ /********* End of inlined file: jquant1.c *********/ /********* Start of inlined file: jquant2.c *********/ #define JPEG_INTERNALS #ifdef QUANT_2PASS_SUPPORTED /* * This module implements the well-known Heckbert paradigm for color * quantization. Most of the ideas used here can be traced back to * Heckbert's seminal paper * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. * * In the first pass over the image, we accumulate a histogram showing the * usage count of each possible color. To keep the histogram to a reasonable * size, we reduce the precision of the input; typical practice is to retain * 5 or 6 bits per color, so that 8 or 4 different input values are counted * in the same histogram cell. * * Next, the color-selection step begins with a box representing the whole * color space, and repeatedly splits the "largest" remaining box until we * have as many boxes as desired colors. Then the mean color in each * remaining box becomes one of the possible output colors. * * The second pass over the image maps each input pixel to the closest output * color (optionally after applying a Floyd-Steinberg dithering correction). * This mapping is logically trivial, but making it go fast enough requires * considerable care. * * Heckbert-style quantizers vary a good deal in their policies for choosing * the "largest" box and deciding where to cut it. The particular policies * used here have proved out well in experimental comparisons, but better ones * may yet be found. * * In earlier versions of the IJG code, this module quantized in YCbCr color * space, processing the raw upsampled data without a color conversion step. * This allowed the color conversion math to be done only once per colormap * entry, not once per pixel. However, that optimization precluded other * useful optimizations (such as merging color conversion with upsampling) * and it also interfered with desired capabilities such as quantizing to an * externally-supplied colormap. We have therefore abandoned that approach. * The present code works in the post-conversion color space, typically RGB. * * To improve the visual quality of the results, we actually work in scaled * RGB space, giving G distances more weight than R, and R in turn more than * B. To do everything in integer math, we must use integer scale factors. * The 2/3/1 scale factors used here correspond loosely to the relative * weights of the colors in the NTSC grayscale equation. * If you want to use this code to quantize a non-RGB color space, you'll * probably need to change these scale factors. */ #define R_SCALE 2 /* scale R distances by this much */ #define G_SCALE 3 /* scale G distances by this much */ #define B_SCALE 1 /* and B by this much */ /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B * and B,G,R orders. If you define some other weird order in jmorecfg.h, * you'll get compile errors until you extend this logic. In that case * you'll probably want to tweak the histogram sizes too. */ #if RGB_RED == 0 #define C0_SCALE R_SCALE #endif #if RGB_BLUE == 0 #define C0_SCALE B_SCALE #endif #if RGB_GREEN == 1 #define C1_SCALE G_SCALE #endif #if RGB_RED == 2 #define C2_SCALE R_SCALE #endif #if RGB_BLUE == 2 #define C2_SCALE B_SCALE #endif /* * First we have the histogram data structure and routines for creating it. * * The number of bits of precision can be adjusted by changing these symbols. * We recommend keeping 6 bits for G and 5 each for R and B. * If you have plenty of memory and cycles, 6 bits all around gives marginally * better results; if you are short of memory, 5 bits all around will save * some space but degrade the results. * To maintain a fully accurate histogram, we'd need to allocate a "long" * (preferably unsigned long) for each cell. In practice this is overkill; * we can get by with 16 bits per cell. Few of the cell counts will overflow, * and clamping those that do overflow to the maximum value will give close- * enough results. This reduces the recommended histogram size from 256Kb * to 128Kb, which is a useful savings on PC-class machines. * (In the second pass the histogram space is re-used for pixel mapping data; * in that capacity, each cell must be able to store zero to the number of * desired colors. 16 bits/cell is plenty for that too.) * Since the JPEG code is intended to run in small memory model on 80x86 * machines, we can't just allocate the histogram in one chunk. Instead * of a true 3-D array, we use a row of pointers to 2-D arrays. Each * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that * on 80x86 machines, the pointer row is in near memory but the actual * arrays are in far memory (same arrangement as we use for image arrays). */ #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ /* These will do the right thing for either R,G,B or B,G,R color order, * but you may not like the results for other color orders. */ #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ #define HIST_C1_BITS 6 /* bits of precision in G histogram */ #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ /* Number of elements along histogram axes. */ #define HIST_C0_ELEMS (1<cquantize; register JSAMPROW ptr; register histptr histp; register hist3d histogram = cquantize->histogram; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { ptr = input_buf[row]; for (col = width; col > 0; col--) { /* get pixel value and index into the histogram */ histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] [GETJSAMPLE(ptr[1]) >> C1_SHIFT] [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; /* increment, check for overflow and undo increment if so. */ if (++(*histp) <= 0) (*histp)--; ptr += 3; } } } /* * Next we have the really interesting routines: selection of a colormap * given the completed histogram. * These routines work with a list of "boxes", each representing a rectangular * subset of the input color space (to histogram precision). */ typedef struct { /* The bounds of the box (inclusive); expressed as histogram indexes */ int c0min, c0max; int c1min, c1max; int c2min, c2max; /* The volume (actually 2-norm) of the box */ INT32 volume; /* The number of nonzero histogram cells within this box */ long colorcount; } box; typedef box * boxptr; LOCAL(boxptr) find_biggest_color_pop (boxptr boxlist, int numboxes) /* Find the splittable box with the largest color population */ /* Returns NULL if no splittable boxes remain */ { register boxptr boxp; register int i; register long maxc = 0; boxptr which = NULL; for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->colorcount > maxc && boxp->volume > 0) { which = boxp; maxc = boxp->colorcount; } } return which; } LOCAL(boxptr) find_biggest_volume (boxptr boxlist, int numboxes) /* Find the splittable box with the largest (scaled) volume */ /* Returns NULL if no splittable boxes remain */ { register boxptr boxp; register int i; register INT32 maxv = 0; boxptr which = NULL; for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->volume > maxv) { which = boxp; maxv = boxp->volume; } } return which; } LOCAL(void) update_box (j_decompress_ptr cinfo, boxptr boxp) /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ /* and recompute its volume and population */ { my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize; hist3d histogram = cquantize->histogram; histptr histp; int c0,c1,c2; int c0min,c0max,c1min,c1max,c2min,c2max; INT32 dist0,dist1,dist2; long ccount; c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max; if (c0max > c0min) for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c0min = c0min = c0; goto have_c0min; } } have_c0min: if (c0max > c0min) for (c0 = c0max; c0 >= c0min; c0--) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c0max = c0max = c0; goto have_c0max; } } have_c0max: if (c1max > c1min) for (c1 = c1min; c1 <= c1max; c1++) for (c0 = c0min; c0 <= c0max; c0++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c1min = c1min = c1; goto have_c1min; } } have_c1min: if (c1max > c1min) for (c1 = c1max; c1 >= c1min; c1--) for (c0 = c0min; c0 <= c0max; c0++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c1max = c1max = c1; goto have_c1max; } } have_c1max: if (c2max > c2min) for (c2 = c2min; c2 <= c2max; c2++) for (c0 = c0min; c0 <= c0max; c0++) { histp = & histogram[c0][c1min][c2]; for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) if (*histp != 0) { boxp->c2min = c2min = c2; goto have_c2min; } } have_c2min: if (c2max > c2min) for (c2 = c2max; c2 >= c2min; c2--) for (c0 = c0min; c0 <= c0max; c0++) { histp = & histogram[c0][c1min][c2]; for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) if (*histp != 0) { boxp->c2max = c2max = c2; goto have_c2max; } } have_c2max: /* Update box volume. * We use 2-norm rather than real volume here; this biases the method * against making long narrow boxes, and it has the side benefit that * a box is splittable iff norm > 0. * Since the differences are expressed in histogram-cell units, * we have to shift back to JSAMPLE units to get consistent distances; * after which, we scale according to the selected distance scale factors. */ dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; /* Now scan remaining volume of box and compute population */ ccount = 0; for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++, histp++) if (*histp != 0) { ccount++; } } boxp->colorcount = ccount; } LOCAL(int) median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, int desired_colors) /* Repeatedly select and split the largest box until we have enough boxes */ { int n,lb; int c0,c1,c2,cmax; register boxptr b1,b2; while (numboxes < desired_colors) { /* Select box to split. * Current algorithm: by population for first half, then by volume. */ if (numboxes*2 <= desired_colors) { b1 = find_biggest_color_pop(boxlist, numboxes); } else { b1 = find_biggest_volume(boxlist, numboxes); } if (b1 == NULL) /* no splittable boxes left! */ break; b2 = &boxlist[numboxes]; /* where new box will go */ /* Copy the color bounds to the new box. */ b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; /* Choose which axis to split the box on. * Current algorithm: longest scaled axis. * See notes in update_box about scaling distances. */ c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; /* We want to break any ties in favor of green, then red, blue last. * This code does the right thing for R,G,B or B,G,R color orders only. */ #if RGB_RED == 0 cmax = c1; n = 1; if (c0 > cmax) { cmax = c0; n = 0; } if (c2 > cmax) { n = 2; } #else cmax = c1; n = 1; if (c2 > cmax) { cmax = c2; n = 2; } if (c0 > cmax) { n = 0; } #endif /* Choose split point along selected axis, and update box bounds. * Current algorithm: split at halfway point. * (Since the box has been shrunk to minimum volume, * any split will produce two nonempty subboxes.) * Note that lb value is max for lower box, so must be < old max. */ switch (n) { case 0: lb = (b1->c0max + b1->c0min) / 2; b1->c0max = lb; b2->c0min = lb+1; break; case 1: lb = (b1->c1max + b1->c1min) / 2; b1->c1max = lb; b2->c1min = lb+1; break; case 2: lb = (b1->c2max + b1->c2min) / 2; b1->c2max = lb; b2->c2min = lb+1; break; } /* Update stats for boxes */ update_box(cinfo, b1); update_box(cinfo, b2); numboxes++; } return numboxes; } LOCAL(void) compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) /* Compute representative color for a box, put it in colormap[icolor] */ { /* Current algorithm: mean weighted by pixels (not colors) */ /* Note it is important to get the rounding correct! */ my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize; hist3d histogram = cquantize->histogram; histptr histp; int c0,c1,c2; int c0min,c0max,c1min,c1max,c2min,c2max; long count; long total = 0; long c0total = 0; long c1total = 0; long c2total = 0; c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max; for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) { if ((count = *histp++) != 0) { total += count; c0total += ((c0 << C0_SHIFT) + ((1<>1)) * count; c1total += ((c1 << C1_SHIFT) + ((1<>1)) * count; c2total += ((c2 << C2_SHIFT) + ((1<>1)) * count; } } } cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); } LOCAL(void) select_colors (j_decompress_ptr cinfo, int desired_colors) /* Master routine for color selection */ { boxptr boxlist; int numboxes; int i; /* Allocate workspace for box list */ boxlist = (boxptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); /* Initialize one box containing whole space */ numboxes = 1; boxlist[0].c0min = 0; boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; boxlist[0].c1min = 0; boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; boxlist[0].c2min = 0; boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; /* Shrink it to actually-used volume and set its statistics */ update_box(cinfo, & boxlist[0]); /* Perform median-cut to produce final box list */ numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); /* Compute the representative color for each box, fill colormap */ for (i = 0; i < numboxes; i++) compute_color(cinfo, & boxlist[i], i); cinfo->actual_number_of_colors = numboxes; TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); } /* * These routines are concerned with the time-critical task of mapping input * colors to the nearest color in the selected colormap. * * We re-use the histogram space as an "inverse color map", essentially a * cache for the results of nearest-color searches. All colors within a * histogram cell will be mapped to the same colormap entry, namely the one * closest to the cell's center. This may not be quite the closest entry to * the actual input color, but it's almost as good. A zero in the cache * indicates we haven't found the nearest color for that cell yet; the array * is cleared to zeroes before starting the mapping pass. When we find the * nearest color for a cell, its colormap index plus one is recorded in the * cache for future use. The pass2 scanning routines call fill_inverse_cmap * when they need to use an unfilled entry in the cache. * * Our method of efficiently finding nearest colors is based on the "locally * sorted search" idea described by Heckbert and on the incremental distance * calculation described by Spencer W. Thomas in chapter III.1 of Graphics * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that * the distances from a given colormap entry to each cell of the histogram can * be computed quickly using an incremental method: the differences between * distances to adjacent cells themselves differ by a constant. This allows a * fairly fast implementation of the "brute force" approach of computing the * distance from every colormap entry to every histogram cell. Unfortunately, * it needs a work array to hold the best-distance-so-far for each histogram * cell (because the inner loop has to be over cells, not colormap entries). * The work array elements have to be INT32s, so the work array would need * 256Kb at our recommended precision. This is not feasible in DOS machines. * * To get around these problems, we apply Thomas' method to compute the * nearest colors for only the cells within a small subbox of the histogram. * The work array need be only as big as the subbox, so the memory usage * problem is solved. Furthermore, we need not fill subboxes that are never * referenced in pass2; many images use only part of the color gamut, so a * fair amount of work is saved. An additional advantage of this * approach is that we can apply Heckbert's locality criterion to quickly * eliminate colormap entries that are far away from the subbox; typically * three-fourths of the colormap entries are rejected by Heckbert's criterion, * and we need not compute their distances to individual cells in the subbox. * The speed of this approach is heavily influenced by the subbox size: too * small means too much overhead, too big loses because Heckbert's criterion * can't eliminate as many colormap entries. Empirically the best subbox * size seems to be about 1/512th of the histogram (1/8th in each direction). * * Thomas' article also describes a refined method which is asymptotically * faster than the brute-force method, but it is also far more complex and * cannot efficiently be applied to small subboxes. It is therefore not * useful for programs intended to be portable to DOS machines. On machines * with plenty of memory, filling the whole histogram in one shot with Thomas' * refined method might be faster than the present code --- but then again, * it might not be any faster, and it's certainly more complicated. */ /* log2(histogram cells in update box) for each axis; this can be adjusted */ #define BOX_C0_LOG (HIST_C0_BITS-3) #define BOX_C1_LOG (HIST_C1_BITS-3) #define BOX_C2_LOG (HIST_C2_BITS-3) #define BOX_C0_ELEMS (1<actual_number_of_colors; int maxc0, maxc1, maxc2; int centerc0, centerc1, centerc2; int i, x, ncolors; INT32 minmaxdist, min_dist, max_dist, tdist; INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ /* Compute true coordinates of update box's upper corner and center. * Actually we compute the coordinates of the center of the upper-corner * histogram cell, which are the upper bounds of the volume we care about. * Note that since ">>" rounds down, the "center" values may be closer to * min than to max; hence comparisons to them must be "<=", not "<". */ maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); centerc0 = (minc0 + maxc0) >> 1; maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); centerc1 = (minc1 + maxc1) >> 1; maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); centerc2 = (minc2 + maxc2) >> 1; /* For each color in colormap, find: * 1. its minimum squared-distance to any point in the update box * (zero if color is within update box); * 2. its maximum squared-distance to any point in the update box. * Both of these can be found by considering only the corners of the box. * We save the minimum distance for each color in mindist[]; * only the smallest maximum distance is of interest. */ minmaxdist = 0x7FFFFFFFL; for (i = 0; i < numcolors; i++) { /* We compute the squared-c0-distance term, then add in the other two. */ x = GETJSAMPLE(cinfo->colormap[0][i]); if (x < minc0) { tdist = (x - minc0) * C0_SCALE; min_dist = tdist*tdist; tdist = (x - maxc0) * C0_SCALE; max_dist = tdist*tdist; } else if (x > maxc0) { tdist = (x - maxc0) * C0_SCALE; min_dist = tdist*tdist; tdist = (x - minc0) * C0_SCALE; max_dist = tdist*tdist; } else { /* within cell range so no contribution to min_dist */ min_dist = 0; if (x <= centerc0) { tdist = (x - maxc0) * C0_SCALE; max_dist = tdist*tdist; } else { tdist = (x - minc0) * C0_SCALE; max_dist = tdist*tdist; } } x = GETJSAMPLE(cinfo->colormap[1][i]); if (x < minc1) { tdist = (x - minc1) * C1_SCALE; min_dist += tdist*tdist; tdist = (x - maxc1) * C1_SCALE; max_dist += tdist*tdist; } else if (x > maxc1) { tdist = (x - maxc1) * C1_SCALE; min_dist += tdist*tdist; tdist = (x - minc1) * C1_SCALE; max_dist += tdist*tdist; } else { /* within cell range so no contribution to min_dist */ if (x <= centerc1) { tdist = (x - maxc1) * C1_SCALE; max_dist += tdist*tdist; } else { tdist = (x - minc1) * C1_SCALE; max_dist += tdist*tdist; } } x = GETJSAMPLE(cinfo->colormap[2][i]); if (x < minc2) { tdist = (x - minc2) * C2_SCALE; min_dist += tdist*tdist; tdist = (x - maxc2) * C2_SCALE; max_dist += tdist*tdist; } else if (x > maxc2) { tdist = (x - maxc2) * C2_SCALE; min_dist += tdist*tdist; tdist = (x - minc2) * C2_SCALE; max_dist += tdist*tdist; } else { /* within cell range so no contribution to min_dist */ if (x <= centerc2) { tdist = (x - maxc2) * C2_SCALE; max_dist += tdist*tdist; } else { tdist = (x - minc2) * C2_SCALE; max_dist += tdist*tdist; } } mindist[i] = min_dist; /* save away the results */ if (max_dist < minmaxdist) minmaxdist = max_dist; } /* Now we know that no cell in the update box is more than minmaxdist * away from some colormap entry. Therefore, only colors that are * within minmaxdist of some part of the box need be considered. */ ncolors = 0; for (i = 0; i < numcolors; i++) { if (mindist[i] <= minmaxdist) colorlist[ncolors++] = (JSAMPLE) i; } return ncolors; } LOCAL(void) find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) /* Find the closest colormap entry for each cell in the update box, * given the list of candidate colors prepared by find_nearby_colors. * Return the indexes of the closest entries in the bestcolor[] array. * This routine uses Thomas' incremental distance calculation method to * find the distance from a colormap entry to successive cells in the box. */ { int ic0, ic1, ic2; int i, icolor; register INT32 * bptr; /* pointer into bestdist[] array */ JSAMPLE * cptr; /* pointer into bestcolor[] array */ INT32 dist0, dist1; /* initial distance values */ register INT32 dist2; /* current distance in inner loop */ INT32 xx0, xx1; /* distance increments */ register INT32 xx2; INT32 inc0, inc1, inc2; /* initial values for increments */ /* This array holds the distance to the nearest-so-far color for each cell */ INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; /* Initialize best-distance for each cell of the update box */ bptr = bestdist; for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) *bptr++ = 0x7FFFFFFFL; /* For each color selected by find_nearby_colors, * compute its distance to the center of each cell in the box. * If that's less than best-so-far, update best distance and color number. */ /* Nominal steps between cell centers ("x" in Thomas article) */ #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) for (i = 0; i < numcolors; i++) { icolor = GETJSAMPLE(colorlist[i]); /* Compute (square of) distance from minc0/c1/c2 to this color */ inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; dist0 = inc0*inc0; inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; dist0 += inc1*inc1; inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; dist0 += inc2*inc2; /* Form the initial difference increments */ inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; /* Now loop over all cells in box, updating distance per Thomas method */ bptr = bestdist; cptr = bestcolor; xx0 = inc0; for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { dist1 = dist0; xx1 = inc1; for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { dist2 = dist1; xx2 = inc2; for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { if (dist2 < *bptr) { *bptr = dist2; *cptr = (JSAMPLE) icolor; } dist2 += xx2; xx2 += 2 * STEP_C2 * STEP_C2; bptr++; cptr++; } dist1 += xx1; xx1 += 2 * STEP_C1 * STEP_C1; } dist0 += xx0; xx0 += 2 * STEP_C0 * STEP_C0; } } } LOCAL(void) fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) /* Fill the inverse-colormap entries in the update box that contains */ /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ /* we can fill as many others as we wish.) */ { my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize; hist3d histogram = cquantize->histogram; int minc0, minc1, minc2; /* lower left corner of update box */ int ic0, ic1, ic2; register JSAMPLE * cptr; /* pointer into bestcolor[] array */ register histptr cachep; /* pointer into main cache array */ /* This array lists the candidate colormap indexes. */ JSAMPLE colorlist[MAXNUMCOLORS]; int numcolors; /* number of candidate colors */ /* This array holds the actually closest colormap index for each cell. */ JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; /* Convert cell coordinates to update box ID */ c0 >>= BOX_C0_LOG; c1 >>= BOX_C1_LOG; c2 >>= BOX_C2_LOG; /* Compute true coordinates of update box's origin corner. * Actually we compute the coordinates of the center of the corner * histogram cell, which are the lower bounds of the volume we care about. */ minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); /* Determine which colormap entries are close enough to be candidates * for the nearest entry to some cell in the update box. */ numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); /* Determine the actually nearest colors. */ find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, bestcolor); /* Save the best color numbers (plus 1) in the main cache array */ c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ c1 <<= BOX_C1_LOG; c2 <<= BOX_C2_LOG; cptr = bestcolor; for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { cachep = & histogram[c0+ic0][c1+ic1][c2]; for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); } } } } /* * Map some rows of pixels to the output colormapped representation. */ METHODDEF(void) pass2_no_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* This version performs no dithering */ { my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize; hist3d histogram = cquantize->histogram; register JSAMPROW inptr, outptr; register histptr cachep; register int c0, c1, c2; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { inptr = input_buf[row]; outptr = output_buf[row]; for (col = width; col > 0; col--) { /* get pixel value and index into the cache */ c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; cachep = & histogram[c0][c1][c2]; /* If we have not seen this color before, find nearest colormap entry */ /* and update the cache */ if (*cachep == 0) fill_inverse_cmap(cinfo, c0,c1,c2); /* Now emit the colormap index for this cell */ *outptr++ = (JSAMPLE) (*cachep - 1); } } } METHODDEF(void) pass2_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* This version performs Floyd-Steinberg dithering */ { my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize; hist3d histogram = cquantize->histogram; register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ register FSERRPTR errorptr; /* => fserrors[] at column before current */ JSAMPROW inptr; /* => current input pixel */ JSAMPROW outptr; /* => current output pixel */ histptr cachep; int dir; /* +1 or -1 depending on direction */ int dir3; /* 3*dir, for advancing inptr & errorptr */ int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; JSAMPLE *range_limit = cinfo->sample_range_limit; int *error_limit = cquantize->error_limiter; JSAMPROW colormap0 = cinfo->colormap[0]; JSAMPROW colormap1 = cinfo->colormap[1]; JSAMPROW colormap2 = cinfo->colormap[2]; SHIFT_TEMPS for (row = 0; row < num_rows; row++) { inptr = input_buf[row]; outptr = output_buf[row]; if (cquantize->on_odd_row) { /* work right to left in this row */ inptr += (width-1) * 3; /* so point to rightmost pixel */ outptr += width-1; dir = -1; dir3 = -3; errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ cquantize->on_odd_row = FALSE; /* flip for next time */ } else { /* work left to right in this row */ dir = 1; dir3 = 3; errorptr = cquantize->fserrors; /* => entry before first real column */ cquantize->on_odd_row = TRUE; /* flip for next time */ } /* Preset error values: no error propagated to first pixel from left */ cur0 = cur1 = cur2 = 0; /* and no error propagated to row below yet */ belowerr0 = belowerr1 = belowerr2 = 0; bpreverr0 = bpreverr1 = bpreverr2 = 0; for (col = width; col > 0; col--) { /* curN holds the error propagated from the previous pixel on the * current line. Add the error propagated from the previous line * to form the complete error correction term for this pixel, and * round the error term (which is expressed * 16) to an integer. * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct * for either sign of the error value. * Note: errorptr points to *previous* column's array entry. */ cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); /* Limit the error using transfer function set by init_error_limit. * See comments with init_error_limit for rationale. */ cur0 = error_limit[cur0]; cur1 = error_limit[cur1]; cur2 = error_limit[cur2]; /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. * The maximum error is +- MAXJSAMPLE (or less with error limiting); * this sets the required size of the range_limit array. */ cur0 += GETJSAMPLE(inptr[0]); cur1 += GETJSAMPLE(inptr[1]); cur2 += GETJSAMPLE(inptr[2]); cur0 = GETJSAMPLE(range_limit[cur0]); cur1 = GETJSAMPLE(range_limit[cur1]); cur2 = GETJSAMPLE(range_limit[cur2]); /* Index into the cache with adjusted pixel value */ cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; /* If we have not seen this color before, find nearest colormap */ /* entry and update the cache */ if (*cachep == 0) fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); /* Now emit the colormap index for this cell */ { register int pixcode = *cachep - 1; *outptr = (JSAMPLE) pixcode; /* Compute representation error for this pixel */ cur0 -= GETJSAMPLE(colormap0[pixcode]); cur1 -= GETJSAMPLE(colormap1[pixcode]); cur2 -= GETJSAMPLE(colormap2[pixcode]); } /* Compute error fractions to be propagated to adjacent pixels. * Add these into the running sums, and simultaneously shift the * next-line error sums left by 1 column. */ { register LOCFSERROR bnexterr, delta; bnexterr = cur0; /* Process component 0 */ delta = cur0 * 2; cur0 += delta; /* form error * 3 */ errorptr[0] = (FSERROR) (bpreverr0 + cur0); cur0 += delta; /* form error * 5 */ bpreverr0 = belowerr0 + cur0; belowerr0 = bnexterr; cur0 += delta; /* form error * 7 */ bnexterr = cur1; /* Process component 1 */ delta = cur1 * 2; cur1 += delta; /* form error * 3 */ errorptr[1] = (FSERROR) (bpreverr1 + cur1); cur1 += delta; /* form error * 5 */ bpreverr1 = belowerr1 + cur1; belowerr1 = bnexterr; cur1 += delta; /* form error * 7 */ bnexterr = cur2; /* Process component 2 */ delta = cur2 * 2; cur2 += delta; /* form error * 3 */ errorptr[2] = (FSERROR) (bpreverr2 + cur2); cur2 += delta; /* form error * 5 */ bpreverr2 = belowerr2 + cur2; belowerr2 = bnexterr; cur2 += delta; /* form error * 7 */ } /* At this point curN contains the 7/16 error value to be propagated * to the next pixel on the current line, and all the errors for the * next line have been shifted over. We are therefore ready to move on. */ inptr += dir3; /* Advance pixel pointers to next column */ outptr += dir; errorptr += dir3; /* advance errorptr to current column */ } /* Post-loop cleanup: we must unload the final error values into the * final fserrors[] entry. Note we need not unload belowerrN because * it is for the dummy column before or after the actual array. */ errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ errorptr[1] = (FSERROR) bpreverr1; errorptr[2] = (FSERROR) bpreverr2; } } /* * Initialize the error-limiting transfer function (lookup table). * The raw F-S error computation can potentially compute error values of up to * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be * much less, otherwise obviously wrong pixels will be created. (Typical * effects include weird fringes at color-area boundaries, isolated bright * pixels in a dark area, etc.) The standard advice for avoiding this problem * is to ensure that the "corners" of the color cube are allocated as output * colors; then repeated errors in the same direction cannot cause cascading * error buildup. However, that only prevents the error from getting * completely out of hand; Aaron Giles reports that error limiting improves * the results even with corner colors allocated. * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty * well, but the smoother transfer function used below is even better. Thanks * to Aaron Giles for this idea. */ LOCAL(void) init_error_limit (j_decompress_ptr cinfo) /* Allocate and fill in the error_limiter table */ { my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize; int * table; int in, out; table = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ cquantize->error_limiter = table; #define STEPSIZE ((MAXJSAMPLE+1)/16) /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ out = 0; for (in = 0; in < STEPSIZE; in++, out++) { table[in] = out; table[-in] = -out; } /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { table[in] = out; table[-in] = -out; } /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ for (; in <= MAXJSAMPLE; in++) { table[in] = out; table[-in] = -out; } #undef STEPSIZE } /* * Finish up at the end of each pass. */ METHODDEF(void) finish_pass1 (j_decompress_ptr cinfo) { my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize; /* Select the representative colors and fill in cinfo->colormap */ cinfo->colormap = cquantize->sv_colormap; select_colors(cinfo, cquantize->desired); /* Force next pass to zero the color index table */ cquantize->needs_zeroed = TRUE; } METHODDEF(void) finish_pass2 (j_decompress_ptr cinfo) { /* no work */ } /* * Initialize for each processing pass. */ METHODDEF(void) start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) { my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize; hist3d histogram = cquantize->histogram; int i; /* Only F-S dithering or no dithering is supported. */ /* If user asks for ordered dither, give him F-S. */ if (cinfo->dither_mode != JDITHER_NONE) cinfo->dither_mode = JDITHER_FS; if (is_pre_scan) { /* Set up method pointers */ cquantize->pub.color_quantize = prescan_quantize; cquantize->pub.finish_pass = finish_pass1; cquantize->needs_zeroed = TRUE; /* Always zero histogram */ } else { /* Set up method pointers */ if (cinfo->dither_mode == JDITHER_FS) cquantize->pub.color_quantize = pass2_fs_dither; else cquantize->pub.color_quantize = pass2_no_dither; cquantize->pub.finish_pass = finish_pass2; /* Make sure color count is acceptable */ i = cinfo->actual_number_of_colors; if (i < 1) ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); if (i > MAXNUMCOLORS) ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); if (cinfo->dither_mode == JDITHER_FS) { size_t arraysize = (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))); /* Allocate Floyd-Steinberg workspace if we didn't already. */ if (cquantize->fserrors == NULL) cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); /* Initialize the propagated errors to zero. */ jzero_far((void FAR *) cquantize->fserrors, arraysize); /* Make the error-limit table if we didn't already. */ if (cquantize->error_limiter == NULL) init_error_limit(cinfo); cquantize->on_odd_row = FALSE; } } /* Zero the histogram or inverse color map, if necessary */ if (cquantize->needs_zeroed) { for (i = 0; i < HIST_C0_ELEMS; i++) { jzero_far((void FAR *) histogram[i], HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); } cquantize->needs_zeroed = FALSE; } } /* * Switch to a new external colormap between output passes. */ METHODDEF(void) new_color_map_2_quant (j_decompress_ptr cinfo) { my_cquantize_ptr2 cquantize = (my_cquantize_ptr2) cinfo->cquantize; /* Reset the inverse color map */ cquantize->needs_zeroed = TRUE; } /* * Module initialization routine for 2-pass color quantization. */ GLOBAL(void) jinit_2pass_quantizer (j_decompress_ptr cinfo) { my_cquantize_ptr2 cquantize; int i; cquantize = (my_cquantize_ptr2) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_cquantizer2)); cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; cquantize->pub.start_pass = start_pass_2_quant; cquantize->pub.new_color_map = new_color_map_2_quant; cquantize->fserrors = NULL; /* flag optional arrays not allocated */ cquantize->error_limiter = NULL; /* Make sure jdmaster didn't give me a case I can't handle */ if (cinfo->out_color_components != 3) ERREXIT(cinfo, JERR_NOTIMPL); /* Allocate the histogram/inverse colormap storage */ cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); for (i = 0; i < HIST_C0_ELEMS; i++) { cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); } cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ /* Allocate storage for the completed colormap, if required. * We do this now since it is FAR storage and may affect * the memory manager's space calculations. */ if (cinfo->enable_2pass_quant) { /* Make sure color count is acceptable */ int desired = cinfo->desired_number_of_colors; /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ if (desired < 8) ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); /* Make sure colormap indexes can be represented by JSAMPLEs */ if (desired > MAXNUMCOLORS) ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); cquantize->desired = desired; } else cquantize->sv_colormap = NULL; /* Only F-S dithering or no dithering is supported. */ /* If user asks for ordered dither, give him F-S. */ if (cinfo->dither_mode != JDITHER_NONE) cinfo->dither_mode = JDITHER_FS; /* Allocate Floyd-Steinberg workspace if necessary. * This isn't really needed until pass 2, but again it is FAR storage. * Although we will cope with a later change in dither_mode, * we do not promise to honor max_memory_to_use if dither_mode changes. */ if (cinfo->dither_mode == JDITHER_FS) { cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); /* Might as well create the error-limiting table too. */ init_error_limit(cinfo); } } #endif /* QUANT_2PASS_SUPPORTED */ /********* End of inlined file: jquant2.c *********/ /********* Start of inlined file: jutils.c *********/ #define JPEG_INTERNALS /* * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element * of a DCT block read in natural order (left to right, top to bottom). */ #if 0 /* This table is not actually needed in v6a */ const int jpeg_zigzag_order[DCTSIZE2] = { 0, 1, 5, 6, 14, 15, 27, 28, 2, 4, 7, 13, 16, 26, 29, 42, 3, 8, 12, 17, 25, 30, 41, 43, 9, 11, 18, 24, 31, 40, 44, 53, 10, 19, 23, 32, 39, 45, 52, 54, 20, 22, 33, 38, 46, 51, 55, 60, 21, 34, 37, 47, 50, 56, 59, 61, 35, 36, 48, 49, 57, 58, 62, 63 }; #endif /* * jpeg_natural_order[i] is the natural-order position of the i'th element * of zigzag order. * * When reading corrupted data, the Huffman decoders could attempt * to reference an entry beyond the end of this array (if the decoded * zero run length reaches past the end of the block). To prevent * wild stores without adding an inner-loop test, we put some extra * "63"s after the real entries. This will cause the extra coefficient * to be stored in location 63 of the block, not somewhere random. * The worst case would be a run-length of 15, which means we need 16 * fake entries. */ const int jpeg_natural_order[DCTSIZE2+16] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ 63, 63, 63, 63, 63, 63, 63, 63 }; /* * Arithmetic utilities */ GLOBAL(long) jdiv_round_up (long a, long b) /* Compute a/b rounded up to next integer, ie, ceil(a/b) */ /* Assumes a >= 0, b > 0 */ { return (a + b - 1L) / b; } GLOBAL(long) jround_up (long a, long b) /* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */ /* Assumes a >= 0, b > 0 */ { a += b - 1L; return a - (a % b); } /* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays * and coefficient-block arrays. This won't work on 80x86 because the arrays * are FAR and we're assuming a small-pointer memory model. However, some * DOS compilers provide far-pointer versions of memcpy() and memset() even * in the small-model libraries. These will be used if USE_FMEM is defined. * Otherwise, the routines below do it the hard way. (The performance cost * is not all that great, because these routines aren't very heavily used.) */ #ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */ #define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size) #define FMEMZERO(target,size) MEMZERO(target,size) #else /* 80x86 case, define if we can */ #ifdef USE_FMEM #define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size)) #define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size)) #endif #endif GLOBAL(void) jcopy_sample_rows (JSAMPARRAY input_array, int source_row, JSAMPARRAY output_array, int dest_row, int num_rows, JDIMENSION num_cols) /* Copy some rows of samples from one place to another. * num_rows rows are copied from input_array[source_row++] * to output_array[dest_row++]; these areas may overlap for duplication. * The source and destination arrays must be at least as wide as num_cols. */ { register JSAMPROW inptr, outptr; #ifdef FMEMCOPY register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE)); #else register JDIMENSION count; #endif register int row; input_array += source_row; output_array += dest_row; for (row = num_rows; row > 0; row--) { inptr = *input_array++; outptr = *output_array++; #ifdef FMEMCOPY FMEMCOPY(outptr, inptr, count); #else for (count = num_cols; count > 0; count--) *outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */ #endif } } GLOBAL(void) jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row, JDIMENSION num_blocks) /* Copy a row of coefficient blocks from one place to another. */ { #ifdef FMEMCOPY FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF))); #else register JCOEFPTR inptr, outptr; register long count; inptr = (JCOEFPTR) input_row; outptr = (JCOEFPTR) output_row; for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) { *outptr++ = *inptr++; } #endif } GLOBAL(void) jzero_far (void FAR * target, size_t bytestozero) /* Zero out a chunk of FAR memory. */ /* This might be sample-array data, block-array data, or alloc_large data. */ { #ifdef FMEMZERO FMEMZERO(target, bytestozero); #else register char FAR * ptr = (char FAR *) target; register size_t count; for (count = bytestozero; count > 0; count--) { *ptr++ = 0; } #endif } /********* End of inlined file: jutils.c *********/ /********* Start of inlined file: transupp.c *********/ /* Although this file really shouldn't have access to the library internals, * it's helpful to let it call jround_up() and jcopy_block_row(). */ #define JPEG_INTERNALS /********* Start of inlined file: transupp.h *********/ /* If you happen not to want the image transform support, disable it here */ #ifndef TRANSFORMS_SUPPORTED #define TRANSFORMS_SUPPORTED 1 /* 0 disables transform code */ #endif /* Short forms of external names for systems with brain-damaged linkers. */ #ifdef NEED_SHORT_EXTERNAL_NAMES #define jtransform_request_workspace jTrRequest #define jtransform_adjust_parameters jTrAdjust #define jtransform_execute_transformation jTrExec #define jcopy_markers_setup jCMrkSetup #define jcopy_markers_execute jCMrkExec #endif /* NEED_SHORT_EXTERNAL_NAMES */ /* * Codes for supported types of image transformations. */ typedef enum { JXFORM_NONE, /* no transformation */ JXFORM_FLIP_H, /* horizontal flip */ JXFORM_FLIP_V, /* vertical flip */ JXFORM_TRANSPOSE, /* transpose across UL-to-LR axis */ JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */ JXFORM_ROT_90, /* 90-degree clockwise rotation */ JXFORM_ROT_180, /* 180-degree rotation */ JXFORM_ROT_270 /* 270-degree clockwise (or 90 ccw) */ } JXFORM_CODE; /* * Although rotating and flipping data expressed as DCT coefficients is not * hard, there is an asymmetry in the JPEG format specification for images * whose dimensions aren't multiples of the iMCU size. The right and bottom * image edges are padded out to the next iMCU boundary with junk data; but * no padding is possible at the top and left edges. If we were to flip * the whole image including the pad data, then pad garbage would become * visible at the top and/or left, and real pixels would disappear into the * pad margins --- perhaps permanently, since encoders & decoders may not * bother to preserve DCT blocks that appear to be completely outside the * nominal image area. So, we have to exclude any partial iMCUs from the * basic transformation. * * Transpose is the only transformation that can handle partial iMCUs at the * right and bottom edges completely cleanly. flip_h can flip partial iMCUs * at the bottom, but leaves any partial iMCUs at the right edge untouched. * Similarly flip_v leaves any partial iMCUs at the bottom edge untouched. * The other transforms are defined as combinations of these basic transforms * and process edge blocks in a way that preserves the equivalence. * * The "trim" option causes untransformable partial iMCUs to be dropped; * this is not strictly lossless, but it usually gives the best-looking * result for odd-size images. Note that when this option is active, * the expected mathematical equivalences between the transforms may not hold. * (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim * followed by -rot 180 -trim trims both edges.) * * We also offer a "force to grayscale" option, which simply discards the * chrominance channels of a YCbCr image. This is lossless in the sense that * the luminance channel is preserved exactly. It's not the same kind of * thing as the rotate/flip transformations, but it's convenient to handle it * as part of this package, mainly because the transformation routines have to * be aware of the option to know how many components to work on. */ typedef struct { /* Options: set by caller */ JXFORM_CODE transform; /* image transform operator */ boolean trim; /* if TRUE, trim partial MCUs as needed */ boolean force_grayscale; /* if TRUE, convert color image to grayscale */ /* Internal workspace: caller should not touch these */ int num_components; /* # of components in workspace */ jvirt_barray_ptr * workspace_coef_arrays; /* workspace for transformations */ } jpeg_transform_info; #if TRANSFORMS_SUPPORTED /* Request any required workspace */ EXTERN(void) jtransform_request_workspace JPP((j_decompress_ptr srcinfo, jpeg_transform_info *info)); /* Adjust output image parameters */ EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info)); /* Execute the actual transformation, if any */ EXTERN(void) jtransform_execute_transformation JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info)); #endif /* TRANSFORMS_SUPPORTED */ /* * Support for copying optional markers from source to destination file. */ typedef enum { JCOPYOPT_NONE, /* copy no optional markers */ JCOPYOPT_COMMENTS, /* copy only comment (COM) markers */ JCOPYOPT_ALL /* copy all optional markers */ } JCOPY_OPTION; #define JCOPYOPT_DEFAULT JCOPYOPT_COMMENTS /* recommended default */ /* Setup decompression object to save desired markers in memory */ EXTERN(void) jcopy_markers_setup JPP((j_decompress_ptr srcinfo, JCOPY_OPTION option)); /* Copy markers saved in the given source object to the destination object */ EXTERN(void) jcopy_markers_execute JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JCOPY_OPTION option)); /********* End of inlined file: transupp.h *********/ /* My own external interface */ #if TRANSFORMS_SUPPORTED /* * Lossless image transformation routines. These routines work on DCT * coefficient arrays and thus do not require any lossy decompression * or recompression of the image. * Thanks to Guido Vollbeding for the initial design and code of this feature. * * Horizontal flipping is done in-place, using a single top-to-bottom * pass through the virtual source array. It will thus be much the * fastest option for images larger than main memory. * * The other routines require a set of destination virtual arrays, so they * need twice as much memory as jpegtran normally does. The destination * arrays are always written in normal scan order (top to bottom) because * the virtual array manager expects this. The source arrays will be scanned * in the corresponding order, which means multiple passes through the source * arrays for most of the transforms. That could result in much thrashing * if the image is larger than main memory. * * Some notes about the operating environment of the individual transform * routines: * 1. Both the source and destination virtual arrays are allocated from the * source JPEG object, and therefore should be manipulated by calling the * source's memory manager. * 2. The destination's component count should be used. It may be smaller * than the source's when forcing to grayscale. * 3. Likewise the destination's sampling factors should be used. When * forcing to grayscale the destination's sampling factors will be all 1, * and we may as well take that as the effective iMCU size. * 4. When "trim" is in effect, the destination's dimensions will be the * trimmed values but the source's will be untrimmed. * 5. All the routines assume that the source and destination buffers are * padded out to a full iMCU boundary. This is true, although for the * source buffer it is an undocumented property of jdcoefct.c. * Notes 2,3,4 boil down to this: generally we should use the destination's * dimensions and ignore the source's. */ LOCAL(void) do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays) /* Horizontal flip; done in-place, so no separate dest array is required */ { JDIMENSION MCU_cols, comp_width, blk_x, blk_y; int ci, k, offset_y; JBLOCKARRAY buffer; JCOEFPTR ptr1, ptr2; JCOEF temp1, temp2; jpeg_component_info *compptr; /* Horizontal mirroring of DCT blocks is accomplished by swapping * pairs of blocks in-place. Within a DCT block, we perform horizontal * mirroring by changing the signs of odd-numbered columns. * Partial iMCUs at the right edge are left untouched. */ MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; for (blk_y = 0; blk_y < compptr->height_in_blocks; blk_y += compptr->v_samp_factor) { buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) { ptr1 = buffer[offset_y][blk_x]; ptr2 = buffer[offset_y][comp_width - blk_x - 1]; /* this unrolled loop doesn't need to know which row it's on... */ for (k = 0; k < DCTSIZE2; k += 2) { temp1 = *ptr1; /* swap even column */ temp2 = *ptr2; *ptr1++ = temp2; *ptr2++ = temp1; temp1 = *ptr1; /* swap odd column with sign change */ temp2 = *ptr2; *ptr1++ = -temp2; *ptr2++ = -temp1; } } } } } } LOCAL(void) do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Vertical flip */ { JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; int ci, i, j, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JBLOCKROW src_row_ptr, dst_row_ptr; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* We output into a separate array because we can't touch different * rows of the source virtual array simultaneously. Otherwise, this * is a pretty straightforward analog of horizontal flip. * Within a DCT block, vertical mirroring is done by changing the signs * of odd-numbered rows. * Partial iMCUs at the bottom edge are copied verbatim. */ MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_height = MCU_rows * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); if (dst_blk_y < comp_height) { /* Row is within the mirrorable area. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, FALSE); } else { /* Bottom-edge blocks will be copied verbatim. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, FALSE); } for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { if (dst_blk_y < comp_height) { /* Row is within the mirrorable area. */ dst_row_ptr = dst_buffer[offset_y]; src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { dst_ptr = dst_row_ptr[dst_blk_x]; src_ptr = src_row_ptr[dst_blk_x]; for (i = 0; i < DCTSIZE; i += 2) { /* copy even row */ for (j = 0; j < DCTSIZE; j++) *dst_ptr++ = *src_ptr++; /* copy odd row with sign change */ for (j = 0; j < DCTSIZE; j++) *dst_ptr++ = - *src_ptr++; } } } else { /* Just copy row verbatim. */ jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y], compptr->width_in_blocks); } } } } } LOCAL(void) do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Transpose source into destination */ { JDIMENSION dst_blk_x, dst_blk_y; int ci, i, j, offset_x, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* Transposing pixels within a block just requires transposing the * DCT coefficients. * Partial iMCUs at the edges require no special treatment; we simply * process all the available DCT blocks for every component. */ for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x += compptr->h_samp_factor) { src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, (JDIMENSION) compptr->h_samp_factor, FALSE); for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; for (i = 0; i < DCTSIZE; i++) for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; } } } } } } LOCAL(void) do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* 90 degree rotation is equivalent to * 1. Transposing the image; * 2. Horizontal mirroring. * These two steps are merged into a single processing routine. */ { JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; int ci, i, j, offset_x, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* Because of the horizontal mirror step, we can't process partial iMCUs * at the (output) right edge properly. They just get transposed and * not mirrored. */ MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x += compptr->h_samp_factor) { src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, (JDIMENSION) compptr->h_samp_factor, FALSE); for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; if (dst_blk_x < comp_width) { /* Block is within the mirrorable area. */ dst_ptr = dst_buffer[offset_y] [comp_width - dst_blk_x - offset_x - 1]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; i++; for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; } } else { /* Edge blocks are transposed but not mirrored. */ dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; for (i = 0; i < DCTSIZE; i++) for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; } } } } } } } LOCAL(void) do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* 270 degree rotation is equivalent to * 1. Horizontal mirroring; * 2. Transposing the image. * These two steps are merged into a single processing routine. */ { JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; int ci, i, j, offset_x, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* Because of the horizontal mirror step, we can't process partial iMCUs * at the (output) bottom edge properly. They just get transposed and * not mirrored. */ MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_height = MCU_rows * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x += compptr->h_samp_factor) { src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, (JDIMENSION) compptr->h_samp_factor, FALSE); for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; if (dst_blk_y < comp_height) { /* Block is within the mirrorable area. */ src_ptr = src_buffer[offset_x] [comp_height - dst_blk_y - offset_y - 1]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) { dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; j++; dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; } } } else { /* Edge blocks are transposed but not mirrored. */ src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; for (i = 0; i < DCTSIZE; i++) for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; } } } } } } } LOCAL(void) do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* 180 degree rotation is equivalent to * 1. Vertical mirroring; * 2. Horizontal mirroring. * These two steps are merged into a single processing routine. */ { JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; int ci, i, j, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JBLOCKROW src_row_ptr, dst_row_ptr; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; comp_height = MCU_rows * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); if (dst_blk_y < comp_height) { /* Row is within the vertically mirrorable area. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, FALSE); } else { /* Bottom-edge rows are only mirrored horizontally. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, FALSE); } for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { if (dst_blk_y < comp_height) { /* Row is within the mirrorable area. */ dst_row_ptr = dst_buffer[offset_y]; src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; /* Process the blocks that can be mirrored both ways. */ for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) { dst_ptr = dst_row_ptr[dst_blk_x]; src_ptr = src_row_ptr[comp_width - dst_blk_x - 1]; for (i = 0; i < DCTSIZE; i += 2) { /* For even row, negate every odd column. */ for (j = 0; j < DCTSIZE; j += 2) { *dst_ptr++ = *src_ptr++; *dst_ptr++ = - *src_ptr++; } /* For odd row, negate every even column. */ for (j = 0; j < DCTSIZE; j += 2) { *dst_ptr++ = - *src_ptr++; *dst_ptr++ = *src_ptr++; } } } /* Any remaining right-edge blocks are only mirrored vertically. */ for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { dst_ptr = dst_row_ptr[dst_blk_x]; src_ptr = src_row_ptr[dst_blk_x]; for (i = 0; i < DCTSIZE; i += 2) { for (j = 0; j < DCTSIZE; j++) *dst_ptr++ = *src_ptr++; for (j = 0; j < DCTSIZE; j++) *dst_ptr++ = - *src_ptr++; } } } else { /* Remaining rows are just mirrored horizontally. */ dst_row_ptr = dst_buffer[offset_y]; src_row_ptr = src_buffer[offset_y]; /* Process the blocks that can be mirrored. */ for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) { dst_ptr = dst_row_ptr[dst_blk_x]; src_ptr = src_row_ptr[comp_width - dst_blk_x - 1]; for (i = 0; i < DCTSIZE2; i += 2) { *dst_ptr++ = *src_ptr++; *dst_ptr++ = - *src_ptr++; } } /* Any remaining right-edge blocks are only copied. */ for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { dst_ptr = dst_row_ptr[dst_blk_x]; src_ptr = src_row_ptr[dst_blk_x]; for (i = 0; i < DCTSIZE2; i++) *dst_ptr++ = *src_ptr++; } } } } } } LOCAL(void) do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Transverse transpose is equivalent to * 1. 180 degree rotation; * 2. Transposition; * or * 1. Horizontal mirroring; * 2. Transposition; * 3. Horizontal mirroring. * These steps are merged into a single processing routine. */ { JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; int ci, i, j, offset_x, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; comp_height = MCU_rows * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x += compptr->h_samp_factor) { src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, (JDIMENSION) compptr->h_samp_factor, FALSE); for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { if (dst_blk_y < comp_height) { src_ptr = src_buffer[offset_x] [comp_height - dst_blk_y - offset_y - 1]; if (dst_blk_x < comp_width) { /* Block is within the mirrorable area. */ dst_ptr = dst_buffer[offset_y] [comp_width - dst_blk_x - offset_x - 1]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) { dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; j++; dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; } i++; for (j = 0; j < DCTSIZE; j++) { dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; j++; dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; } } } else { /* Right-edge blocks are mirrored in y only */ dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) { dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; j++; dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; } } } } else { src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; if (dst_blk_x < comp_width) { /* Bottom-edge blocks are mirrored in x only */ dst_ptr = dst_buffer[offset_y] [comp_width - dst_blk_x - offset_x - 1]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; i++; for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; } } else { /* At lower right corner, just transpose, no mirroring */ dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; for (i = 0; i < DCTSIZE; i++) for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; } } } } } } } } /* Request any required workspace. * * We allocate the workspace virtual arrays from the source decompression * object, so that all the arrays (both the original data and the workspace) * will be taken into account while making memory management decisions. * Hence, this routine must be called after jpeg_read_header (which reads * the image dimensions) and before jpeg_read_coefficients (which realizes * the source's virtual arrays). */ GLOBAL(void) jtransform_request_workspace (j_decompress_ptr srcinfo, jpeg_transform_info *info) { jvirt_barray_ptr *coef_arrays = NULL; jpeg_component_info *compptr; int ci; if (info->force_grayscale && srcinfo->jpeg_color_space == JCS_YCbCr && srcinfo->num_components == 3) { /* We'll only process the first component */ info->num_components = 1; } else { /* Process all the components */ info->num_components = srcinfo->num_components; } switch (info->transform) { case JXFORM_NONE: case JXFORM_FLIP_H: /* Don't need a workspace array */ break; case JXFORM_FLIP_V: case JXFORM_ROT_180: /* Need workspace arrays having same dimensions as source image. * Note that we allocate arrays padded out to the next iMCU boundary, * so that transform routines need not worry about missing edge blocks. */ coef_arrays = (jvirt_barray_ptr *) (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, SIZEOF(jvirt_barray_ptr) * info->num_components); for (ci = 0; ci < info->num_components; ci++) { compptr = srcinfo->comp_info + ci; coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE, (JDIMENSION) jround_up((long) compptr->width_in_blocks, (long) compptr->h_samp_factor), (JDIMENSION) jround_up((long) compptr->height_in_blocks, (long) compptr->v_samp_factor), (JDIMENSION) compptr->v_samp_factor); } break; case JXFORM_TRANSPOSE: case JXFORM_TRANSVERSE: case JXFORM_ROT_90: case JXFORM_ROT_270: /* Need workspace arrays having transposed dimensions. * Note that we allocate arrays padded out to the next iMCU boundary, * so that transform routines need not worry about missing edge blocks. */ coef_arrays = (jvirt_barray_ptr *) (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, SIZEOF(jvirt_barray_ptr) * info->num_components); for (ci = 0; ci < info->num_components; ci++) { compptr = srcinfo->comp_info + ci; coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE, (JDIMENSION) jround_up((long) compptr->height_in_blocks, (long) compptr->v_samp_factor), (JDIMENSION) jround_up((long) compptr->width_in_blocks, (long) compptr->h_samp_factor), (JDIMENSION) compptr->h_samp_factor); } break; } info->workspace_coef_arrays = coef_arrays; } /* Transpose destination image parameters */ LOCAL(void) transpose_critical_parameters (j_compress_ptr dstinfo) { int tblno, i, j, ci, itemp; jpeg_component_info *compptr; JQUANT_TBL *qtblptr; JDIMENSION dtemp; UINT16 qtemp; /* Transpose basic image dimensions */ dtemp = dstinfo->image_width; dstinfo->image_width = dstinfo->image_height; dstinfo->image_height = dtemp; /* Transpose sampling factors */ for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; itemp = compptr->h_samp_factor; compptr->h_samp_factor = compptr->v_samp_factor; compptr->v_samp_factor = itemp; } /* Transpose quantization tables */ for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { qtblptr = dstinfo->quant_tbl_ptrs[tblno]; if (qtblptr != NULL) { for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < i; j++) { qtemp = qtblptr->quantval[i*DCTSIZE+j]; qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i]; qtblptr->quantval[j*DCTSIZE+i] = qtemp; } } } } } /* Trim off any partial iMCUs on the indicated destination edge */ LOCAL(void) trim_right_edge (j_compress_ptr dstinfo) { int ci, max_h_samp_factor; JDIMENSION MCU_cols; /* We have to compute max_h_samp_factor ourselves, * because it hasn't been set yet in the destination * (and we don't want to use the source's value). */ max_h_samp_factor = 1; for (ci = 0; ci < dstinfo->num_components; ci++) { int h_samp_factor = dstinfo->comp_info[ci].h_samp_factor; max_h_samp_factor = MAX(max_h_samp_factor, h_samp_factor); } MCU_cols = dstinfo->image_width / (max_h_samp_factor * DCTSIZE); if (MCU_cols > 0) /* can't trim to 0 pixels */ dstinfo->image_width = MCU_cols * (max_h_samp_factor * DCTSIZE); } LOCAL(void) trim_bottom_edge (j_compress_ptr dstinfo) { int ci, max_v_samp_factor; JDIMENSION MCU_rows; /* We have to compute max_v_samp_factor ourselves, * because it hasn't been set yet in the destination * (and we don't want to use the source's value). */ max_v_samp_factor = 1; for (ci = 0; ci < dstinfo->num_components; ci++) { int v_samp_factor = dstinfo->comp_info[ci].v_samp_factor; max_v_samp_factor = MAX(max_v_samp_factor, v_samp_factor); } MCU_rows = dstinfo->image_height / (max_v_samp_factor * DCTSIZE); if (MCU_rows > 0) /* can't trim to 0 pixels */ dstinfo->image_height = MCU_rows * (max_v_samp_factor * DCTSIZE); } /* Adjust output image parameters as needed. * * This must be called after jpeg_copy_critical_parameters() * and before jpeg_write_coefficients(). * * The return value is the set of virtual coefficient arrays to be written * (either the ones allocated by jtransform_request_workspace, or the * original source data arrays). The caller will need to pass this value * to jpeg_write_coefficients(). */ GLOBAL(jvirt_barray_ptr *) jtransform_adjust_parameters (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info) { /* If force-to-grayscale is requested, adjust destination parameters */ if (info->force_grayscale) { /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed * properly. Among other things, the target h_samp_factor & v_samp_factor * will get set to 1, which typically won't match the source. * In fact we do this even if the source is already grayscale; that * provides an easy way of coercing a grayscale JPEG with funny sampling * factors to the customary 1,1. (Some decoders fail on other factors.) */ if ((dstinfo->jpeg_color_space == JCS_YCbCr && dstinfo->num_components == 3) || (dstinfo->jpeg_color_space == JCS_GRAYSCALE && dstinfo->num_components == 1)) { /* We have to preserve the source's quantization table number. */ int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no; jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE); dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no; } else { /* Sorry, can't do it */ ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL); } } /* Correct the destination's image dimensions etc if necessary */ switch (info->transform) { case JXFORM_NONE: /* Nothing to do */ break; case JXFORM_FLIP_H: if (info->trim) trim_right_edge(dstinfo); break; case JXFORM_FLIP_V: if (info->trim) trim_bottom_edge(dstinfo); break; case JXFORM_TRANSPOSE: transpose_critical_parameters(dstinfo); /* transpose does NOT have to trim anything */ break; case JXFORM_TRANSVERSE: transpose_critical_parameters(dstinfo); if (info->trim) { trim_right_edge(dstinfo); trim_bottom_edge(dstinfo); } break; case JXFORM_ROT_90: transpose_critical_parameters(dstinfo); if (info->trim) trim_right_edge(dstinfo); break; case JXFORM_ROT_180: if (info->trim) { trim_right_edge(dstinfo); trim_bottom_edge(dstinfo); } break; case JXFORM_ROT_270: transpose_critical_parameters(dstinfo); if (info->trim) trim_bottom_edge(dstinfo); break; } /* Return the appropriate output data set */ if (info->workspace_coef_arrays != NULL) return info->workspace_coef_arrays; return src_coef_arrays; } /* Execute the actual transformation, if any. * * This must be called *after* jpeg_write_coefficients, because it depends * on jpeg_write_coefficients to have computed subsidiary values such as * the per-component width and height fields in the destination object. * * Note that some transformations will modify the source data arrays! */ GLOBAL(void) jtransform_execute_transformation (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info) { jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays; switch (info->transform) { case JXFORM_NONE: break; case JXFORM_FLIP_H: do_flip_h(srcinfo, dstinfo, src_coef_arrays); break; case JXFORM_FLIP_V: do_flip_v(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); break; case JXFORM_TRANSPOSE: do_transpose(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); break; case JXFORM_TRANSVERSE: do_transverse(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); break; case JXFORM_ROT_90: do_rot_90(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); break; case JXFORM_ROT_180: do_rot_180(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); break; case JXFORM_ROT_270: do_rot_270(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); break; } } #endif /* TRANSFORMS_SUPPORTED */ /* Setup decompression object to save desired markers in memory. * This must be called before jpeg_read_header() to have the desired effect. */ GLOBAL(void) jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option) { #ifdef SAVE_MARKERS_SUPPORTED int m; /* Save comments except under NONE option */ if (option != JCOPYOPT_NONE) { jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF); } /* Save all types of APPn markers iff ALL option */ if (option == JCOPYOPT_ALL) { for (m = 0; m < 16; m++) jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF); } #endif /* SAVE_MARKERS_SUPPORTED */ } /* Copy markers saved in the given source object to the destination object. * This should be called just after jpeg_start_compress() or * jpeg_write_coefficients(). * Note that those routines will have written the SOI, and also the * JFIF APP0 or Adobe APP14 markers if selected. */ GLOBAL(void) jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JCOPY_OPTION option) { jpeg_saved_marker_ptr marker; /* In the current implementation, we don't actually need to examine the * option flag here; we just copy everything that got saved. * But to avoid confusion, we do not output JFIF and Adobe APP14 markers * if the encoder library already wrote one. */ for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) { if (dstinfo->write_JFIF_header && marker->marker == JPEG_APP0 && marker->data_length >= 5 && GETJOCTET(marker->data[0]) == 0x4A && GETJOCTET(marker->data[1]) == 0x46 && GETJOCTET(marker->data[2]) == 0x49 && GETJOCTET(marker->data[3]) == 0x46 && GETJOCTET(marker->data[4]) == 0) continue; /* reject duplicate JFIF */ if (dstinfo->write_Adobe_marker && marker->marker == JPEG_APP0+14 && marker->data_length >= 5 && GETJOCTET(marker->data[0]) == 0x41 && GETJOCTET(marker->data[1]) == 0x64 && GETJOCTET(marker->data[2]) == 0x6F && GETJOCTET(marker->data[3]) == 0x62 && GETJOCTET(marker->data[4]) == 0x65) continue; /* reject duplicate Adobe */ #ifdef NEED_FAR_POINTERS /* We could use jpeg_write_marker if the data weren't FAR... */ { unsigned int i; jpeg_write_m_header(dstinfo, marker->marker, marker->data_length); for (i = 0; i < marker->data_length; i++) jpeg_write_m_byte(dstinfo, marker->data[i]); } #else jpeg_write_marker(dstinfo, marker->marker, marker->data, marker->data_length); #endif } } /********* End of inlined file: transupp.c *********/ } #else #define JPEG_INTERNALS #undef FAR #include #endif } #if JUCE_MSVC #pragma warning (pop) #endif BEGIN_JUCE_NAMESPACE using namespace jpeglibNamespace; #if ! JUCE_MSVC using jpeglibNamespace::boolean; #endif struct JPEGDecodingFailure {}; static void fatalErrorHandler (j_common_ptr) { throw JPEGDecodingFailure(); } static void silentErrorCallback1 (j_common_ptr) {} static void silentErrorCallback2 (j_common_ptr, int) {} static void silentErrorCallback3 (j_common_ptr, char*) {} static void setupSilentErrorHandler (struct jpeg_error_mgr& err) { zerostruct (err); err.error_exit = fatalErrorHandler; err.emit_message = silentErrorCallback2; err.output_message = silentErrorCallback1; err.format_message = silentErrorCallback3; err.reset_error_mgr = silentErrorCallback1; } static void dummyCallback1 (j_decompress_ptr) throw() { } static void jpegSkip (j_decompress_ptr decompStruct, long num) throw() { decompStruct->src->next_input_byte += num; num = jmin (num, (int) decompStruct->src->bytes_in_buffer); decompStruct->src->bytes_in_buffer -= num; } static boolean jpegFill (j_decompress_ptr) throw() { return 0; } Image* juce_loadJPEGImageFromStream (InputStream& in) throw() { MemoryBlock mb; in.readIntoMemoryBlock (mb); Image* image = 0; if (mb.getSize() > 16) { struct jpeg_decompress_struct jpegDecompStruct; struct jpeg_error_mgr jerr; setupSilentErrorHandler (jerr); jpegDecompStruct.err = &jerr; jpeg_create_decompress (&jpegDecompStruct); jpegDecompStruct.src = (jpeg_source_mgr*)(jpegDecompStruct.mem->alloc_small) ((j_common_ptr)(&jpegDecompStruct), JPOOL_PERMANENT, sizeof (jpeg_source_mgr)); jpegDecompStruct.src->init_source = dummyCallback1; jpegDecompStruct.src->fill_input_buffer = jpegFill; jpegDecompStruct.src->skip_input_data = jpegSkip; jpegDecompStruct.src->resync_to_restart = jpeg_resync_to_restart; jpegDecompStruct.src->term_source = dummyCallback1; jpegDecompStruct.src->next_input_byte = (const unsigned char*) mb.getData(); jpegDecompStruct.src->bytes_in_buffer = mb.getSize(); try { jpeg_read_header (&jpegDecompStruct, TRUE); jpeg_calc_output_dimensions (&jpegDecompStruct); const int width = jpegDecompStruct.output_width; const int height = jpegDecompStruct.output_height; jpegDecompStruct.out_color_space = JCS_RGB; JSAMPARRAY buffer = (*jpegDecompStruct.mem->alloc_sarray) ((j_common_ptr) &jpegDecompStruct, JPOOL_IMAGE, width * 3, 1); if (jpeg_start_decompress (&jpegDecompStruct)) { image = new Image (Image::RGB, width, height, false); for (int y = 0; y < height; ++y) { jpeg_read_scanlines (&jpegDecompStruct, buffer, 1); int stride, pixelStride; uint8* pixels = image->lockPixelDataReadWrite (0, y, width, 1, stride, pixelStride); const uint8* src = *buffer; uint8* dest = pixels; for (int i = width; --i >= 0;) { ((PixelRGB*) dest)->setARGB (0, src[0], src[1], src[2]); dest += pixelStride; src += 3; } image->releasePixelDataReadWrite (pixels); } jpeg_finish_decompress (&jpegDecompStruct); in.setPosition (((char*) jpegDecompStruct.src->next_input_byte) - (char*) mb.getData()); } jpeg_destroy_decompress (&jpegDecompStruct); } catch (...) {} } return image; } static const int bufferSize = 512; struct JuceJpegDest : public jpeg_destination_mgr { OutputStream* output; char* buffer; }; static void jpegWriteInit (j_compress_ptr) throw() { } static void jpegWriteTerminate (j_compress_ptr cinfo) throw() { JuceJpegDest* const dest = (JuceJpegDest*) cinfo->dest; const int numToWrite = bufferSize - dest->free_in_buffer; dest->output->write (dest->buffer, numToWrite); } static boolean jpegWriteFlush (j_compress_ptr cinfo) throw() { JuceJpegDest* const dest = (JuceJpegDest*) cinfo->dest; const int numToWrite = bufferSize; dest->next_output_byte = (JOCTET*) dest->buffer; dest->free_in_buffer = bufferSize; return dest->output->write (dest->buffer, numToWrite); } bool juce_writeJPEGImageToStream (const Image& image, OutputStream& out, float quality) throw() { if (image.hasAlphaChannel()) { // this method could fill the background in white and still save the image.. jassertfalse return true; } struct jpeg_compress_struct jpegCompStruct; struct jpeg_error_mgr jerr; setupSilentErrorHandler (jerr); jpegCompStruct.err = &jerr; jpeg_create_compress (&jpegCompStruct); JuceJpegDest dest; jpegCompStruct.dest = &dest; dest.output = &out; dest.buffer = (char*) juce_malloc (bufferSize); dest.next_output_byte = (JOCTET*) dest.buffer; dest.free_in_buffer = bufferSize; dest.init_destination = jpegWriteInit; dest.empty_output_buffer = jpegWriteFlush; dest.term_destination = jpegWriteTerminate; jpegCompStruct.image_width = image.getWidth(); jpegCompStruct.image_height = image.getHeight(); jpegCompStruct.input_components = 3; jpegCompStruct.in_color_space = JCS_RGB; jpegCompStruct.write_JFIF_header = 1; jpegCompStruct.X_density = 72; jpegCompStruct.Y_density = 72; jpeg_set_defaults (&jpegCompStruct); jpegCompStruct.dct_method = JDCT_FLOAT; jpegCompStruct.optimize_coding = 1; // jpegCompStruct.smoothing_factor = 10; if (quality < 0.0f) quality = 0.85f; jpeg_set_quality (&jpegCompStruct, jlimit (0, 100, roundFloatToInt (quality * 100.0f)), TRUE); jpeg_start_compress (&jpegCompStruct, TRUE); const int strideBytes = jpegCompStruct.image_width * jpegCompStruct.input_components; JSAMPARRAY buffer = (*jpegCompStruct.mem->alloc_sarray) ((j_common_ptr) &jpegCompStruct, JPOOL_IMAGE, strideBytes, 1); while (jpegCompStruct.next_scanline < jpegCompStruct.image_height) { int stride, pixelStride; const uint8* pixels = image.lockPixelDataReadOnly (0, jpegCompStruct.next_scanline, jpegCompStruct.image_width, 1, stride, pixelStride); const uint8* src = pixels; uint8* dst = *buffer; for (int i = jpegCompStruct.image_width; --i >= 0;) { *dst++ = ((const PixelRGB*) src)->getRed(); *dst++ = ((const PixelRGB*) src)->getGreen(); *dst++ = ((const PixelRGB*) src)->getBlue(); src += pixelStride; } jpeg_write_scanlines (&jpegCompStruct, buffer, 1); image.releasePixelDataReadOnly (pixels); } jpeg_finish_compress (&jpegCompStruct); jpeg_destroy_compress (&jpegCompStruct); juce_free (dest.buffer); out.flush(); return true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_JPEGLoader.cpp *********/ /********* Start of inlined file: juce_PNGLoader.cpp *********/ #ifdef _MSC_VER #pragma warning (push) #pragma warning (disable: 4390 4611) #endif namespace zlibNamespace { #if JUCE_INCLUDE_ZLIB_CODE #undef OS_CODE #undef fdopen #undef OS_CODE #else #include #endif } namespace pnglibNamespace { using namespace zlibNamespace; #if JUCE_INCLUDE_PNGLIB_CODE #if _MSC_VER != 1310 using ::calloc; // (causes conflict in VS.NET 2003) using ::malloc; using ::free; #endif extern "C" { using ::abs; #define PNG_INTERNAL #define NO_DUMMY_DECL #define PNG_SETJMP_NOT_SUPPORTED /********* Start of inlined file: png.h *********/ /* png.h - header file for PNG reference library * * libpng version 1.2.21 - October 4, 2007 * Copyright (c) 1998-2007 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) * * Authors and maintainers: * libpng versions 0.71, May 1995, through 0.88, January 1996: Guy Schalnat * libpng versions 0.89c, June 1996, through 0.96, May 1997: Andreas Dilger * libpng versions 0.97, January 1998, through 1.2.21 - October 4, 2007: Glenn * See also "Contributing Authors", below. * * Note about libpng version numbers: * * Due to various miscommunications, unforeseen code incompatibilities * and occasional factors outside the authors' control, version numbering * on the library has not always been consistent and straightforward. * The following table summarizes matters since version 0.89c, which was * the first widely used release: * * source png.h png.h shared-lib * version string int version * ------- ------ ----- ---------- * 0.89c "1.0 beta 3" 0.89 89 1.0.89 * 0.90 "1.0 beta 4" 0.90 90 0.90 [should have been 2.0.90] * 0.95 "1.0 beta 5" 0.95 95 0.95 [should have been 2.0.95] * 0.96 "1.0 beta 6" 0.96 96 0.96 [should have been 2.0.96] * 0.97b "1.00.97 beta 7" 1.00.97 97 1.0.1 [should have been 2.0.97] * 0.97c 0.97 97 2.0.97 * 0.98 0.98 98 2.0.98 * 0.99 0.99 98 2.0.99 * 0.99a-m 0.99 99 2.0.99 * 1.00 1.00 100 2.1.0 [100 should be 10000] * 1.0.0 (from here on, the 100 2.1.0 [100 should be 10000] * 1.0.1 png.h string is 10001 2.1.0 * 1.0.1a-e identical to the 10002 from here on, the shared library * 1.0.2 source version) 10002 is 2.V where V is the source code * 1.0.2a-b 10003 version, except as noted. * 1.0.3 10003 * 1.0.3a-d 10004 * 1.0.4 10004 * 1.0.4a-f 10005 * 1.0.5 (+ 2 patches) 10005 * 1.0.5a-d 10006 * 1.0.5e-r 10100 (not source compatible) * 1.0.5s-v 10006 (not binary compatible) * 1.0.6 (+ 3 patches) 10006 (still binary incompatible) * 1.0.6d-f 10007 (still binary incompatible) * 1.0.6g 10007 * 1.0.6h 10007 10.6h (testing xy.z so-numbering) * 1.0.6i 10007 10.6i * 1.0.6j 10007 2.1.0.6j (incompatible with 1.0.0) * 1.0.7beta11-14 DLLNUM 10007 2.1.0.7beta11-14 (binary compatible) * 1.0.7beta15-18 1 10007 2.1.0.7beta15-18 (binary compatible) * 1.0.7rc1-2 1 10007 2.1.0.7rc1-2 (binary compatible) * 1.0.7 1 10007 (still compatible) * 1.0.8beta1-4 1 10008 2.1.0.8beta1-4 * 1.0.8rc1 1 10008 2.1.0.8rc1 * 1.0.8 1 10008 2.1.0.8 * 1.0.9beta1-6 1 10009 2.1.0.9beta1-6 * 1.0.9rc1 1 10009 2.1.0.9rc1 * 1.0.9beta7-10 1 10009 2.1.0.9beta7-10 * 1.0.9rc2 1 10009 2.1.0.9rc2 * 1.0.9 1 10009 2.1.0.9 * 1.0.10beta1 1 10010 2.1.0.10beta1 * 1.0.10rc1 1 10010 2.1.0.10rc1 * 1.0.10 1 10010 2.1.0.10 * 1.0.11beta1-3 1 10011 2.1.0.11beta1-3 * 1.0.11rc1 1 10011 2.1.0.11rc1 * 1.0.11 1 10011 2.1.0.11 * 1.0.12beta1-2 2 10012 2.1.0.12beta1-2 * 1.0.12rc1 2 10012 2.1.0.12rc1 * 1.0.12 2 10012 2.1.0.12 * 1.1.0a-f - 10100 2.1.1.0a-f (branch abandoned) * 1.2.0beta1-2 2 10200 2.1.2.0beta1-2 * 1.2.0beta3-5 3 10200 3.1.2.0beta3-5 * 1.2.0rc1 3 10200 3.1.2.0rc1 * 1.2.0 3 10200 3.1.2.0 * 1.2.1beta1-4 3 10201 3.1.2.1beta1-4 * 1.2.1rc1-2 3 10201 3.1.2.1rc1-2 * 1.2.1 3 10201 3.1.2.1 * 1.2.2beta1-6 12 10202 12.so.0.1.2.2beta1-6 * 1.0.13beta1 10 10013 10.so.0.1.0.13beta1 * 1.0.13rc1 10 10013 10.so.0.1.0.13rc1 * 1.2.2rc1 12 10202 12.so.0.1.2.2rc1 * 1.0.13 10 10013 10.so.0.1.0.13 * 1.2.2 12 10202 12.so.0.1.2.2 * 1.2.3rc1-6 12 10203 12.so.0.1.2.3rc1-6 * 1.2.3 12 10203 12.so.0.1.2.3 * 1.2.4beta1-3 13 10204 12.so.0.1.2.4beta1-3 * 1.0.14rc1 13 10014 10.so.0.1.0.14rc1 * 1.2.4rc1 13 10204 12.so.0.1.2.4rc1 * 1.0.14 10 10014 10.so.0.1.0.14 * 1.2.4 13 10204 12.so.0.1.2.4 * 1.2.5beta1-2 13 10205 12.so.0.1.2.5beta1-2 * 1.0.15rc1-3 10 10015 10.so.0.1.0.15rc1-3 * 1.2.5rc1-3 13 10205 12.so.0.1.2.5rc1-3 * 1.0.15 10 10015 10.so.0.1.0.15 * 1.2.5 13 10205 12.so.0.1.2.5 * 1.2.6beta1-4 13 10206 12.so.0.1.2.6beta1-4 * 1.0.16 10 10016 10.so.0.1.0.16 * 1.2.6 13 10206 12.so.0.1.2.6 * 1.2.7beta1-2 13 10207 12.so.0.1.2.7beta1-2 * 1.0.17rc1 10 10017 10.so.0.1.0.17rc1 * 1.2.7rc1 13 10207 12.so.0.1.2.7rc1 * 1.0.17 10 10017 10.so.0.1.0.17 * 1.2.7 13 10207 12.so.0.1.2.7 * 1.2.8beta1-5 13 10208 12.so.0.1.2.8beta1-5 * 1.0.18rc1-5 10 10018 10.so.0.1.0.18rc1-5 * 1.2.8rc1-5 13 10208 12.so.0.1.2.8rc1-5 * 1.0.18 10 10018 10.so.0.1.0.18 * 1.2.8 13 10208 12.so.0.1.2.8 * 1.2.9beta1-3 13 10209 12.so.0.1.2.9beta1-3 * 1.2.9beta4-11 13 10209 12.so.0.9[.0] * 1.2.9rc1 13 10209 12.so.0.9[.0] * 1.2.9 13 10209 12.so.0.9[.0] * 1.2.10beta1-8 13 10210 12.so.0.10[.0] * 1.2.10rc1-3 13 10210 12.so.0.10[.0] * 1.2.10 13 10210 12.so.0.10[.0] * 1.2.11beta1-4 13 10211 12.so.0.11[.0] * 1.0.19rc1-5 10 10019 10.so.0.19[.0] * 1.2.11rc1-5 13 10211 12.so.0.11[.0] * 1.0.19 10 10019 10.so.0.19[.0] * 1.2.11 13 10211 12.so.0.11[.0] * 1.0.20 10 10020 10.so.0.20[.0] * 1.2.12 13 10212 12.so.0.12[.0] * 1.2.13beta1 13 10213 12.so.0.13[.0] * 1.0.21 10 10021 10.so.0.21[.0] * 1.2.13 13 10213 12.so.0.13[.0] * 1.2.14beta1-2 13 10214 12.so.0.14[.0] * 1.0.22rc1 10 10022 10.so.0.22[.0] * 1.2.14rc1 13 10214 12.so.0.14[.0] * 1.0.22 10 10022 10.so.0.22[.0] * 1.2.14 13 10214 12.so.0.14[.0] * 1.2.15beta1-6 13 10215 12.so.0.15[.0] * 1.0.23rc1-5 10 10023 10.so.0.23[.0] * 1.2.15rc1-5 13 10215 12.so.0.15[.0] * 1.0.23 10 10023 10.so.0.23[.0] * 1.2.15 13 10215 12.so.0.15[.0] * 1.2.16beta1-2 13 10216 12.so.0.16[.0] * 1.2.16rc1 13 10216 12.so.0.16[.0] * 1.0.24 10 10024 10.so.0.24[.0] * 1.2.16 13 10216 12.so.0.16[.0] * 1.2.17beta1-2 13 10217 12.so.0.17[.0] * 1.0.25rc1 10 10025 10.so.0.25[.0] * 1.2.17rc1-3 13 10217 12.so.0.17[.0] * 1.0.25 10 10025 10.so.0.25[.0] * 1.2.17 13 10217 12.so.0.17[.0] * 1.0.26 10 10026 10.so.0.26[.0] * 1.2.18 13 10218 12.so.0.18[.0] * 1.2.19beta1-31 13 10219 12.so.0.19[.0] * 1.0.27rc1-6 10 10027 10.so.0.27[.0] * 1.2.19rc1-6 13 10219 12.so.0.19[.0] * 1.0.27 10 10027 10.so.0.27[.0] * 1.2.19 13 10219 12.so.0.19[.0] * 1.2.20beta01-04 13 10220 12.so.0.20[.0] * 1.0.28rc1-6 10 10028 10.so.0.28[.0] * 1.2.20rc1-6 13 10220 12.so.0.20[.0] * 1.0.28 10 10028 10.so.0.28[.0] * 1.2.20 13 10220 12.so.0.20[.0] * 1.2.21beta1-2 13 10221 12.so.0.21[.0] * 1.2.21rc1-3 13 10221 12.so.0.21[.0] * 1.0.29 10 10029 10.so.0.29[.0] * 1.2.21 13 10221 12.so.0.21[.0] * * Henceforth the source version will match the shared-library major * and minor numbers; the shared-library major version number will be * used for changes in backward compatibility, as it is intended. The * PNG_LIBPNG_VER macro, which is not used within libpng but is available * for applications, is an unsigned integer of the form xyyzz corresponding * to the source version x.y.z (leading zeros in y and z). Beta versions * were given the previous public release number plus a letter, until * version 1.0.6j; from then on they were given the upcoming public * release number plus "betaNN" or "rcN". * * Binary incompatibility exists only when applications make direct access * to the info_ptr or png_ptr members through png.h, and the compiled * application is loaded with a different version of the library. * * DLLNUM will change each time there are forward or backward changes * in binary compatibility (e.g., when a new feature is added). * * See libpng.txt or libpng.3 for more information. The PNG specification * is available as a W3C Recommendation and as an ISO Specification, * * e.g. #define PNG_USER_PRIVATEBUILD "Build by MyCompany for xyz reasons." * #define PNG_USER_DLLFNAME_POSTFIX * e.g. // private DLL "libpng13gx.dll" * #define PNG_USER_DLLFNAME_POSTFIX "gx" * * The following macros are also at your disposal if you want to complete the * DLL VERSIONINFO structure. * - PNG_USER_VERSIONINFO_COMMENTS * - PNG_USER_VERSIONINFO_COMPANYNAME * - PNG_USER_VERSIONINFO_LEGALTRADEMARKS */ #ifdef __STDC__ #ifdef SPECIALBUILD # pragma message("PNG_LIBPNG_SPECIALBUILD (and deprecated SPECIALBUILD)\ are now LIBPNG reserved macros. Use PNG_USER_PRIVATEBUILD instead.") #endif #ifdef PRIVATEBUILD # pragma message("PRIVATEBUILD is deprecated.\ Use PNG_USER_PRIVATEBUILD instead.") # define PNG_USER_PRIVATEBUILD PRIVATEBUILD #endif #endif /* __STDC__ */ #ifndef PNG_VERSION_INFO_ONLY /* End of material added to libpng-1.2.8 */ /* Added at libpng-1.2.19, removed at libpng-1.2.20 because it caused trouble Restored at libpng-1.2.21 */ # define PNG_WARN_UNINITIALIZED_ROW 1 /* End of material added at libpng-1.2.19/1.2.21 */ /* This is the size of the compression buffer, and thus the size of * an IDAT chunk. Make this whatever size you feel is best for your * machine. One of these will be allocated per png_struct. When this * is full, it writes the data to the disk, and does some other * calculations. Making this an extremely small size will slow * the library down, but you may want to experiment to determine * where it becomes significant, if you are concerned with memory * usage. Note that zlib allocates at least 32Kb also. For readers, * this describes the size of the buffer available to read the data in. * Unless this gets smaller than the size of a row (compressed), * it should not make much difference how big this is. */ #ifndef PNG_ZBUF_SIZE # define PNG_ZBUF_SIZE 8192 #endif /* Enable if you want a write-only libpng */ #ifndef PNG_NO_READ_SUPPORTED # define PNG_READ_SUPPORTED #endif /* Enable if you want a read-only libpng */ #ifndef PNG_NO_WRITE_SUPPORTED # define PNG_WRITE_SUPPORTED #endif /* Enabled by default in 1.2.0. You can disable this if you don't need to support PNGs that are embedded in MNG datastreams */ #if !defined(PNG_1_0_X) && !defined(PNG_NO_MNG_FEATURES) # ifndef PNG_MNG_FEATURES_SUPPORTED # define PNG_MNG_FEATURES_SUPPORTED # endif #endif #ifndef PNG_NO_FLOATING_POINT_SUPPORTED # ifndef PNG_FLOATING_POINT_SUPPORTED # define PNG_FLOATING_POINT_SUPPORTED # endif #endif /* If you are running on a machine where you cannot allocate more * than 64K of memory at once, uncomment this. While libpng will not * normally need that much memory in a chunk (unless you load up a very * large file), zlib needs to know how big of a chunk it can use, and * libpng thus makes sure to check any memory allocation to verify it * will fit into memory. #define PNG_MAX_MALLOC_64K */ #if defined(MAXSEG_64K) && !defined(PNG_MAX_MALLOC_64K) # define PNG_MAX_MALLOC_64K #endif /* Special munging to support doing things the 'cygwin' way: * 'Normal' png-on-win32 defines/defaults: * PNG_BUILD_DLL -- building dll * PNG_USE_DLL -- building an application, linking to dll * (no define) -- building static library, or building an * application and linking to the static lib * 'Cygwin' defines/defaults: * PNG_BUILD_DLL -- (ignored) building the dll * (no define) -- (ignored) building an application, linking to the dll * PNG_STATIC -- (ignored) building the static lib, or building an * application that links to the static lib. * ALL_STATIC -- (ignored) building various static libs, or building an * application that links to the static libs. * Thus, * a cygwin user should define either PNG_BUILD_DLL or PNG_STATIC, and * this bit of #ifdefs will define the 'correct' config variables based on * that. If a cygwin user *wants* to define 'PNG_USE_DLL' that's okay, but * unnecessary. * * Also, the precedence order is: * ALL_STATIC (since we can't #undef something outside our namespace) * PNG_BUILD_DLL * PNG_STATIC * (nothing) == PNG_USE_DLL * * CYGWIN (2002-01-20): The preceding is now obsolete. With the advent * of auto-import in binutils, we no longer need to worry about * __declspec(dllexport) / __declspec(dllimport) and friends. Therefore, * we don't need to worry about PNG_STATIC or ALL_STATIC when it comes * to __declspec() stuff. However, we DO need to worry about * PNG_BUILD_DLL and PNG_STATIC because those change some defaults * such as CONSOLE_IO and whether GLOBAL_ARRAYS are allowed. */ #if defined(__CYGWIN__) # if defined(ALL_STATIC) # if defined(PNG_BUILD_DLL) # undef PNG_BUILD_DLL # endif # if defined(PNG_USE_DLL) # undef PNG_USE_DLL # endif # if defined(PNG_DLL) # undef PNG_DLL # endif # if !defined(PNG_STATIC) # define PNG_STATIC # endif # else # if defined (PNG_BUILD_DLL) # if defined(PNG_STATIC) # undef PNG_STATIC # endif # if defined(PNG_USE_DLL) # undef PNG_USE_DLL # endif # if !defined(PNG_DLL) # define PNG_DLL # endif # else # if defined(PNG_STATIC) # if defined(PNG_USE_DLL) # undef PNG_USE_DLL # endif # if defined(PNG_DLL) # undef PNG_DLL # endif # else # if !defined(PNG_USE_DLL) # define PNG_USE_DLL # endif # if !defined(PNG_DLL) # define PNG_DLL # endif # endif # endif # endif #endif /* This protects us against compilers that run on a windowing system * and thus don't have or would rather us not use the stdio types: * stdin, stdout, and stderr. The only one currently used is stderr * in png_error() and png_warning(). #defining PNG_NO_CONSOLE_IO will * prevent these from being compiled and used. #defining PNG_NO_STDIO * will also prevent these, plus will prevent the entire set of stdio * macros and functions (FILE *, printf, etc.) from being compiled and used, * unless (PNG_DEBUG > 0) has been #defined. * * #define PNG_NO_CONSOLE_IO * #define PNG_NO_STDIO */ #if defined(_WIN32_WCE) # include /* Console I/O functions are not supported on WindowsCE */ # define PNG_NO_CONSOLE_IO # ifdef PNG_DEBUG # undef PNG_DEBUG # endif #endif #ifdef PNG_BUILD_DLL # ifndef PNG_CONSOLE_IO_SUPPORTED # ifndef PNG_NO_CONSOLE_IO # define PNG_NO_CONSOLE_IO # endif # endif #endif # ifdef PNG_NO_STDIO # ifndef PNG_NO_CONSOLE_IO # define PNG_NO_CONSOLE_IO # endif # ifdef PNG_DEBUG # if (PNG_DEBUG > 0) # include # endif # endif # else # if !defined(_WIN32_WCE) /* "stdio.h" functions are not supported on WindowsCE */ # include # endif # endif /* This macro protects us against machines that don't have function * prototypes (ie K&R style headers). If your compiler does not handle * function prototypes, define this macro and use the included ansi2knr. * I've always been able to use _NO_PROTO as the indicator, but you may * need to drag the empty declaration out in front of here, or change the * ifdef to suit your own needs. */ #ifndef PNGARG #ifdef OF /* zlib prototype munger */ # define PNGARG(arglist) OF(arglist) #else #ifdef _NO_PROTO # define PNGARG(arglist) () # ifndef PNG_TYPECAST_NULL # define PNG_TYPECAST_NULL # endif #else # define PNGARG(arglist) arglist #endif /* _NO_PROTO */ #endif /* OF */ #endif /* PNGARG */ /* Try to determine if we are compiling on a Mac. Note that testing for * just __MWERKS__ is not good enough, because the Codewarrior is now used * on non-Mac platforms. */ #ifndef MACOS # if (defined(__MWERKS__) && defined(macintosh)) || defined(applec) || \ defined(THINK_C) || defined(__SC__) || defined(TARGET_OS_MAC) # define MACOS # endif #endif /* enough people need this for various reasons to include it here */ #if !defined(MACOS) && !defined(RISCOS) && !defined(_WIN32_WCE) # include #endif #if !defined(PNG_SETJMP_NOT_SUPPORTED) && !defined(PNG_NO_SETJMP_SUPPORTED) # define PNG_SETJMP_SUPPORTED #endif #ifdef PNG_SETJMP_SUPPORTED /* This is an attempt to force a single setjmp behaviour on Linux. If * the X config stuff didn't define _BSD_SOURCE we wouldn't need this. */ # ifdef __linux__ # ifdef _BSD_SOURCE # define PNG_SAVE_BSD_SOURCE # undef _BSD_SOURCE # endif # ifdef _SETJMP_H /* If you encounter a compiler error here, see the explanation * near the end of INSTALL. */ __png.h__ already includes setjmp.h; __dont__ include it again.; # endif # endif /* __linux__ */ /* include setjmp.h for error handling */ # include # ifdef __linux__ # ifdef PNG_SAVE_BSD_SOURCE # define _BSD_SOURCE # undef PNG_SAVE_BSD_SOURCE # endif # endif /* __linux__ */ #endif /* PNG_SETJMP_SUPPORTED */ #ifdef BSD #if ! JUCE_MAC # include #endif #else # include #endif /* Other defines for things like memory and the like can go here. */ #ifdef PNG_INTERNAL #include /* The functions exported by PNG_EXTERN are PNG_INTERNAL functions, which * aren't usually used outside the library (as far as I know), so it is * debatable if they should be exported at all. In the future, when it is * possible to have run-time registry of chunk-handling functions, some of * these will be made available again. #define PNG_EXTERN extern */ #define PNG_EXTERN /* Other defines specific to compilers can go here. Try to keep * them inside an appropriate ifdef/endif pair for portability. */ #if defined(PNG_FLOATING_POINT_SUPPORTED) # if defined(MACOS) /* We need to check that hasn't already been included earlier * as it seems it doesn't agree with , yet we should really use * if possible. */ # if !defined(__MATH_H__) && !defined(__MATH_H) && !defined(__cmath__) # include # endif # else # include # endif # if defined(_AMIGA) && defined(__SASC) && defined(_M68881) /* Amiga SAS/C: We must include builtin FPU functions when compiling using * MATH=68881 */ # include # endif #endif /* Codewarrior on NT has linking problems without this. */ #if (defined(__MWERKS__) && defined(WIN32)) || defined(__STDC__) # define PNG_ALWAYS_EXTERN #endif /* This provides the non-ANSI (far) memory allocation routines. */ #if defined(__TURBOC__) && defined(__MSDOS__) # include # include #endif /* I have no idea why is this necessary... */ #if defined(_MSC_VER) && (defined(WIN32) || defined(_Windows) || \ defined(_WINDOWS) || defined(_WIN32) || defined(__WIN32__)) # include #endif /* This controls how fine the dithering gets. As this allocates * a largish chunk of memory (32K), those who are not as concerned * with dithering quality can decrease some or all of these. */ #ifndef PNG_DITHER_RED_BITS # define PNG_DITHER_RED_BITS 5 #endif #ifndef PNG_DITHER_GREEN_BITS # define PNG_DITHER_GREEN_BITS 5 #endif #ifndef PNG_DITHER_BLUE_BITS # define PNG_DITHER_BLUE_BITS 5 #endif /* This controls how fine the gamma correction becomes when you * are only interested in 8 bits anyway. Increasing this value * results in more memory being used, and more pow() functions * being called to fill in the gamma tables. Don't set this value * less then 8, and even that may not work (I haven't tested it). */ #ifndef PNG_MAX_GAMMA_8 # define PNG_MAX_GAMMA_8 11 #endif /* This controls how much a difference in gamma we can tolerate before * we actually start doing gamma conversion. */ #ifndef PNG_GAMMA_THRESHOLD # define PNG_GAMMA_THRESHOLD 0.05 #endif #endif /* PNG_INTERNAL */ /* The following uses const char * instead of char * for error * and warning message functions, so some compilers won't complain. * If you do not want to use const, define PNG_NO_CONST here. */ #ifndef PNG_NO_CONST # define PNG_CONST const #else # define PNG_CONST #endif /* The following defines give you the ability to remove code from the * library that you will not be using. I wish I could figure out how to * automate this, but I can't do that without making it seriously hard * on the users. So if you are not using an ability, change the #define * to and #undef, and that part of the library will not be compiled. If * your linker can't find a function, you may want to make sure the * ability is defined here. Some of these depend upon some others being * defined. I haven't figured out all the interactions here, so you may * have to experiment awhile to get everything to compile. If you are * creating or using a shared library, you probably shouldn't touch this, * as it will affect the size of the structures, and this will cause bad * things to happen if the library and/or application ever change. */ /* Any features you will not be using can be undef'ed here */ /* GR-P, 0.96a: Set "*TRANSFORMS_SUPPORTED as default but allow user * to turn it off with "*TRANSFORMS_NOT_SUPPORTED" or *PNG_NO_*_TRANSFORMS * on the compile line, then pick and choose which ones to define without * having to edit this file. It is safe to use the *TRANSFORMS_NOT_SUPPORTED * if you only want to have a png-compliant reader/writer but don't need * any of the extra transformations. This saves about 80 kbytes in a * typical installation of the library. (PNG_NO_* form added in version * 1.0.1c, for consistency) */ /* The size of the png_text structure changed in libpng-1.0.6 when * iTXt support was added. iTXt support was turned off by default through * libpng-1.2.x, to support old apps that malloc the png_text structure * instead of calling png_set_text() and letting libpng malloc it. It * was turned on by default in libpng-1.3.0. */ #if defined(PNG_1_0_X) || defined (PNG_1_2_X) # ifndef PNG_NO_iTXt_SUPPORTED # define PNG_NO_iTXt_SUPPORTED # endif # ifndef PNG_NO_READ_iTXt # define PNG_NO_READ_iTXt # endif # ifndef PNG_NO_WRITE_iTXt # define PNG_NO_WRITE_iTXt # endif #endif #if !defined(PNG_NO_iTXt_SUPPORTED) # if !defined(PNG_READ_iTXt_SUPPORTED) && !defined(PNG_NO_READ_iTXt) # define PNG_READ_iTXt # endif # if !defined(PNG_WRITE_iTXt_SUPPORTED) && !defined(PNG_NO_WRITE_iTXt) # define PNG_WRITE_iTXt # endif #endif /* The following support, added after version 1.0.0, can be turned off here en * masse by defining PNG_LEGACY_SUPPORTED in case you need binary compatibility * with old applications that require the length of png_struct and png_info * to remain unchanged. */ #ifdef PNG_LEGACY_SUPPORTED # define PNG_NO_FREE_ME # define PNG_NO_READ_UNKNOWN_CHUNKS # define PNG_NO_WRITE_UNKNOWN_CHUNKS # define PNG_NO_READ_USER_CHUNKS # define PNG_NO_READ_iCCP # define PNG_NO_WRITE_iCCP # define PNG_NO_READ_iTXt # define PNG_NO_WRITE_iTXt # define PNG_NO_READ_sCAL # define PNG_NO_WRITE_sCAL # define PNG_NO_READ_sPLT # define PNG_NO_WRITE_sPLT # define PNG_NO_INFO_IMAGE # define PNG_NO_READ_RGB_TO_GRAY # define PNG_NO_READ_USER_TRANSFORM # define PNG_NO_WRITE_USER_TRANSFORM # define PNG_NO_USER_MEM # define PNG_NO_READ_EMPTY_PLTE # define PNG_NO_MNG_FEATURES # define PNG_NO_FIXED_POINT_SUPPORTED #endif /* Ignore attempt to turn off both floating and fixed point support */ #if !defined(PNG_FLOATING_POINT_SUPPORTED) || \ !defined(PNG_NO_FIXED_POINT_SUPPORTED) # define PNG_FIXED_POINT_SUPPORTED #endif #ifndef PNG_NO_FREE_ME # define PNG_FREE_ME_SUPPORTED #endif #if defined(PNG_READ_SUPPORTED) #if !defined(PNG_READ_TRANSFORMS_NOT_SUPPORTED) && \ !defined(PNG_NO_READ_TRANSFORMS) # define PNG_READ_TRANSFORMS_SUPPORTED #endif #ifdef PNG_READ_TRANSFORMS_SUPPORTED # ifndef PNG_NO_READ_EXPAND # define PNG_READ_EXPAND_SUPPORTED # endif # ifndef PNG_NO_READ_SHIFT # define PNG_READ_SHIFT_SUPPORTED # endif # ifndef PNG_NO_READ_PACK # define PNG_READ_PACK_SUPPORTED # endif # ifndef PNG_NO_READ_BGR # define PNG_READ_BGR_SUPPORTED # endif # ifndef PNG_NO_READ_SWAP # define PNG_READ_SWAP_SUPPORTED # endif # ifndef PNG_NO_READ_PACKSWAP # define PNG_READ_PACKSWAP_SUPPORTED # endif # ifndef PNG_NO_READ_INVERT # define PNG_READ_INVERT_SUPPORTED # endif # ifndef PNG_NO_READ_DITHER # define PNG_READ_DITHER_SUPPORTED # endif # ifndef PNG_NO_READ_BACKGROUND # define PNG_READ_BACKGROUND_SUPPORTED # endif # ifndef PNG_NO_READ_16_TO_8 # define PNG_READ_16_TO_8_SUPPORTED # endif # ifndef PNG_NO_READ_FILLER # define PNG_READ_FILLER_SUPPORTED # endif # ifndef PNG_NO_READ_GAMMA # define PNG_READ_GAMMA_SUPPORTED # endif # ifndef PNG_NO_READ_GRAY_TO_RGB # define PNG_READ_GRAY_TO_RGB_SUPPORTED # endif # ifndef PNG_NO_READ_SWAP_ALPHA # define PNG_READ_SWAP_ALPHA_SUPPORTED # endif # ifndef PNG_NO_READ_INVERT_ALPHA # define PNG_READ_INVERT_ALPHA_SUPPORTED # endif # ifndef PNG_NO_READ_STRIP_ALPHA # define PNG_READ_STRIP_ALPHA_SUPPORTED # endif # ifndef PNG_NO_READ_USER_TRANSFORM # define PNG_READ_USER_TRANSFORM_SUPPORTED # endif # ifndef PNG_NO_READ_RGB_TO_GRAY # define PNG_READ_RGB_TO_GRAY_SUPPORTED # endif #endif /* PNG_READ_TRANSFORMS_SUPPORTED */ #if !defined(PNG_NO_PROGRESSIVE_READ) && \ !defined(PNG_PROGRESSIVE_READ_SUPPORTED) /* if you don't do progressive */ # define PNG_PROGRESSIVE_READ_SUPPORTED /* reading. This is not talking */ #endif /* about interlacing capability! You'll */ /* still have interlacing unless you change the following line: */ #define PNG_READ_INTERLACING_SUPPORTED /* required in PNG-compliant decoders */ #ifndef PNG_NO_READ_COMPOSITE_NODIV # ifndef PNG_NO_READ_COMPOSITED_NODIV /* libpng-1.0.x misspelling */ # define PNG_READ_COMPOSITE_NODIV_SUPPORTED /* well tested on Intel, SGI */ # endif #endif #if defined(PNG_1_0_X) || defined (PNG_1_2_X) /* Deprecated, will be removed from version 2.0.0. Use PNG_MNG_FEATURES_SUPPORTED instead. */ #ifndef PNG_NO_READ_EMPTY_PLTE # define PNG_READ_EMPTY_PLTE_SUPPORTED #endif #endif #endif /* PNG_READ_SUPPORTED */ #if defined(PNG_WRITE_SUPPORTED) # if !defined(PNG_WRITE_TRANSFORMS_NOT_SUPPORTED) && \ !defined(PNG_NO_WRITE_TRANSFORMS) # define PNG_WRITE_TRANSFORMS_SUPPORTED #endif #ifdef PNG_WRITE_TRANSFORMS_SUPPORTED # ifndef PNG_NO_WRITE_SHIFT # define PNG_WRITE_SHIFT_SUPPORTED # endif # ifndef PNG_NO_WRITE_PACK # define PNG_WRITE_PACK_SUPPORTED # endif # ifndef PNG_NO_WRITE_BGR # define PNG_WRITE_BGR_SUPPORTED # endif # ifndef PNG_NO_WRITE_SWAP # define PNG_WRITE_SWAP_SUPPORTED # endif # ifndef PNG_NO_WRITE_PACKSWAP # define PNG_WRITE_PACKSWAP_SUPPORTED # endif # ifndef PNG_NO_WRITE_INVERT # define PNG_WRITE_INVERT_SUPPORTED # endif # ifndef PNG_NO_WRITE_FILLER # define PNG_WRITE_FILLER_SUPPORTED /* same as WRITE_STRIP_ALPHA */ # endif # ifndef PNG_NO_WRITE_SWAP_ALPHA # define PNG_WRITE_SWAP_ALPHA_SUPPORTED # endif # ifndef PNG_NO_WRITE_INVERT_ALPHA # define PNG_WRITE_INVERT_ALPHA_SUPPORTED # endif # ifndef PNG_NO_WRITE_USER_TRANSFORM # define PNG_WRITE_USER_TRANSFORM_SUPPORTED # endif #endif /* PNG_WRITE_TRANSFORMS_SUPPORTED */ #if !defined(PNG_NO_WRITE_INTERLACING_SUPPORTED) && \ !defined(PNG_WRITE_INTERLACING_SUPPORTED) #define PNG_WRITE_INTERLACING_SUPPORTED /* not required for PNG-compliant encoders, but can cause trouble if left undefined */ #endif #if !defined(PNG_NO_WRITE_WEIGHTED_FILTER) && \ !defined(PNG_WRITE_WEIGHTED_FILTER) && \ defined(PNG_FLOATING_POINT_SUPPORTED) # define PNG_WRITE_WEIGHTED_FILTER_SUPPORTED #endif #ifndef PNG_NO_WRITE_FLUSH # define PNG_WRITE_FLUSH_SUPPORTED #endif #if defined(PNG_1_0_X) || defined (PNG_1_2_X) /* Deprecated, see PNG_MNG_FEATURES_SUPPORTED, above */ #ifndef PNG_NO_WRITE_EMPTY_PLTE # define PNG_WRITE_EMPTY_PLTE_SUPPORTED #endif #endif #endif /* PNG_WRITE_SUPPORTED */ #ifndef PNG_1_0_X # ifndef PNG_NO_ERROR_NUMBERS # define PNG_ERROR_NUMBERS_SUPPORTED # endif #endif /* PNG_1_0_X */ #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) # ifndef PNG_NO_USER_TRANSFORM_PTR # define PNG_USER_TRANSFORM_PTR_SUPPORTED # endif #endif #ifndef PNG_NO_STDIO # define PNG_TIME_RFC1123_SUPPORTED #endif /* This adds extra functions in pngget.c for accessing data from the * info pointer (added in version 0.99) * png_get_image_width() * png_get_image_height() * png_get_bit_depth() * png_get_color_type() * png_get_compression_type() * png_get_filter_type() * png_get_interlace_type() * png_get_pixel_aspect_ratio() * png_get_pixels_per_meter() * png_get_x_offset_pixels() * png_get_y_offset_pixels() * png_get_x_offset_microns() * png_get_y_offset_microns() */ #if !defined(PNG_NO_EASY_ACCESS) && !defined(PNG_EASY_ACCESS_SUPPORTED) # define PNG_EASY_ACCESS_SUPPORTED #endif /* PNG_ASSEMBLER_CODE was enabled by default in version 1.2.0 * and removed from version 1.2.20. The following will be removed * from libpng-1.4.0 */ #if defined(PNG_READ_SUPPORTED) && !defined(PNG_NO_OPTIMIZED_CODE) # ifndef PNG_OPTIMIZED_CODE_SUPPORTED # define PNG_OPTIMIZED_CODE_SUPPORTED # endif #endif #if defined(PNG_READ_SUPPORTED) && !defined(PNG_NO_ASSEMBLER_CODE) # ifndef PNG_ASSEMBLER_CODE_SUPPORTED # define PNG_ASSEMBLER_CODE_SUPPORTED # endif # if defined(__GNUC__) && defined(__x86_64__) && (__GNUC__ < 4) /* work around 64-bit gcc compiler bugs in gcc-3.x */ # if !defined(PNG_MMX_CODE_SUPPORTED) && !defined(PNG_NO_MMX_CODE) # define PNG_NO_MMX_CODE # endif # endif # if defined(__APPLE__) # if !defined(PNG_MMX_CODE_SUPPORTED) && !defined(PNG_NO_MMX_CODE) # define PNG_NO_MMX_CODE # endif # endif # if (defined(__MWERKS__) && ((__MWERKS__ < 0x0900) || macintosh)) # if !defined(PNG_MMX_CODE_SUPPORTED) && !defined(PNG_NO_MMX_CODE) # define PNG_NO_MMX_CODE # endif # endif # if !defined(PNG_MMX_CODE_SUPPORTED) && !defined(PNG_NO_MMX_CODE) # define PNG_MMX_CODE_SUPPORTED # endif #endif /* end of obsolete code to be removed from libpng-1.4.0 */ #if !defined(PNG_1_0_X) #if !defined(PNG_NO_USER_MEM) && !defined(PNG_USER_MEM_SUPPORTED) # define PNG_USER_MEM_SUPPORTED #endif #endif /* PNG_1_0_X */ /* Added at libpng-1.2.6 */ #if !defined(PNG_1_0_X) #ifndef PNG_SET_USER_LIMITS_SUPPORTED #if !defined(PNG_NO_SET_USER_LIMITS) && !defined(PNG_SET_USER_LIMITS_SUPPORTED) # define PNG_SET_USER_LIMITS_SUPPORTED #endif #endif #endif /* PNG_1_0_X */ /* Added at libpng-1.0.16 and 1.2.6. To accept all valid PNGS no matter * how large, set these limits to 0x7fffffffL */ #ifndef PNG_USER_WIDTH_MAX # define PNG_USER_WIDTH_MAX 1000000L #endif #ifndef PNG_USER_HEIGHT_MAX # define PNG_USER_HEIGHT_MAX 1000000L #endif /* These are currently experimental features, define them if you want */ /* very little testing */ /* #ifdef PNG_READ_SUPPORTED # ifndef PNG_READ_16_TO_8_ACCURATE_SCALE_SUPPORTED # define PNG_READ_16_TO_8_ACCURATE_SCALE_SUPPORTED # endif #endif */ /* This is only for PowerPC big-endian and 680x0 systems */ /* some testing */ /* #ifndef PNG_READ_BIG_ENDIAN_SUPPORTED # define PNG_READ_BIG_ENDIAN_SUPPORTED #endif */ /* Buggy compilers (e.g., gcc 2.7.2.2) need this */ /* #define PNG_NO_POINTER_INDEXING */ /* These functions are turned off by default, as they will be phased out. */ /* #define PNG_USELESS_TESTS_SUPPORTED #define PNG_CORRECT_PALETTE_SUPPORTED */ /* Any chunks you are not interested in, you can undef here. The * ones that allocate memory may be expecially important (hIST, * tEXt, zTXt, tRNS, pCAL). Others will just save time and make png_info * a bit smaller. */ #if defined(PNG_READ_SUPPORTED) && \ !defined(PNG_READ_ANCILLARY_CHUNKS_NOT_SUPPORTED) && \ !defined(PNG_NO_READ_ANCILLARY_CHUNKS) # define PNG_READ_ANCILLARY_CHUNKS_SUPPORTED #endif #if defined(PNG_WRITE_SUPPORTED) && \ !defined(PNG_WRITE_ANCILLARY_CHUNKS_NOT_SUPPORTED) && \ !defined(PNG_NO_WRITE_ANCILLARY_CHUNKS) # define PNG_WRITE_ANCILLARY_CHUNKS_SUPPORTED #endif #ifdef PNG_READ_ANCILLARY_CHUNKS_SUPPORTED #ifdef PNG_NO_READ_TEXT # define PNG_NO_READ_iTXt # define PNG_NO_READ_tEXt # define PNG_NO_READ_zTXt #endif #ifndef PNG_NO_READ_bKGD # define PNG_READ_bKGD_SUPPORTED # define PNG_bKGD_SUPPORTED #endif #ifndef PNG_NO_READ_cHRM # define PNG_READ_cHRM_SUPPORTED # define PNG_cHRM_SUPPORTED #endif #ifndef PNG_NO_READ_gAMA # define PNG_READ_gAMA_SUPPORTED # define PNG_gAMA_SUPPORTED #endif #ifndef PNG_NO_READ_hIST # define PNG_READ_hIST_SUPPORTED # define PNG_hIST_SUPPORTED #endif #ifndef PNG_NO_READ_iCCP # define PNG_READ_iCCP_SUPPORTED # define PNG_iCCP_SUPPORTED #endif #ifndef PNG_NO_READ_iTXt # ifndef PNG_READ_iTXt_SUPPORTED # define PNG_READ_iTXt_SUPPORTED # endif # ifndef PNG_iTXt_SUPPORTED # define PNG_iTXt_SUPPORTED # endif #endif #ifndef PNG_NO_READ_oFFs # define PNG_READ_oFFs_SUPPORTED # define PNG_oFFs_SUPPORTED #endif #ifndef PNG_NO_READ_pCAL # define PNG_READ_pCAL_SUPPORTED # define PNG_pCAL_SUPPORTED #endif #ifndef PNG_NO_READ_sCAL # define PNG_READ_sCAL_SUPPORTED # define PNG_sCAL_SUPPORTED #endif #ifndef PNG_NO_READ_pHYs # define PNG_READ_pHYs_SUPPORTED # define PNG_pHYs_SUPPORTED #endif #ifndef PNG_NO_READ_sBIT # define PNG_READ_sBIT_SUPPORTED # define PNG_sBIT_SUPPORTED #endif #ifndef PNG_NO_READ_sPLT # define PNG_READ_sPLT_SUPPORTED # define PNG_sPLT_SUPPORTED #endif #ifndef PNG_NO_READ_sRGB # define PNG_READ_sRGB_SUPPORTED # define PNG_sRGB_SUPPORTED #endif #ifndef PNG_NO_READ_tEXt # define PNG_READ_tEXt_SUPPORTED # define PNG_tEXt_SUPPORTED #endif #ifndef PNG_NO_READ_tIME # define PNG_READ_tIME_SUPPORTED # define PNG_tIME_SUPPORTED #endif #ifndef PNG_NO_READ_tRNS # define PNG_READ_tRNS_SUPPORTED # define PNG_tRNS_SUPPORTED #endif #ifndef PNG_NO_READ_zTXt # define PNG_READ_zTXt_SUPPORTED # define PNG_zTXt_SUPPORTED #endif #ifndef PNG_NO_READ_UNKNOWN_CHUNKS # define PNG_READ_UNKNOWN_CHUNKS_SUPPORTED # ifndef PNG_UNKNOWN_CHUNKS_SUPPORTED # define PNG_UNKNOWN_CHUNKS_SUPPORTED # endif # ifndef PNG_NO_HANDLE_AS_UNKNOWN # define PNG_HANDLE_AS_UNKNOWN_SUPPORTED # endif #endif #if !defined(PNG_NO_READ_USER_CHUNKS) && \ defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) # define PNG_READ_USER_CHUNKS_SUPPORTED # define PNG_USER_CHUNKS_SUPPORTED # ifdef PNG_NO_READ_UNKNOWN_CHUNKS # undef PNG_NO_READ_UNKNOWN_CHUNKS # endif # ifdef PNG_NO_HANDLE_AS_UNKNOWN # undef PNG_NO_HANDLE_AS_UNKNOWN # endif #endif #ifndef PNG_NO_READ_OPT_PLTE # define PNG_READ_OPT_PLTE_SUPPORTED /* only affects support of the */ #endif /* optional PLTE chunk in RGB and RGBA images */ #if defined(PNG_READ_iTXt_SUPPORTED) || defined(PNG_READ_tEXt_SUPPORTED) || \ defined(PNG_READ_zTXt_SUPPORTED) # define PNG_READ_TEXT_SUPPORTED # define PNG_TEXT_SUPPORTED #endif #endif /* PNG_READ_ANCILLARY_CHUNKS_SUPPORTED */ #ifdef PNG_WRITE_ANCILLARY_CHUNKS_SUPPORTED #ifdef PNG_NO_WRITE_TEXT # define PNG_NO_WRITE_iTXt # define PNG_NO_WRITE_tEXt # define PNG_NO_WRITE_zTXt #endif #ifndef PNG_NO_WRITE_bKGD # define PNG_WRITE_bKGD_SUPPORTED # ifndef PNG_bKGD_SUPPORTED # define PNG_bKGD_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_cHRM # define PNG_WRITE_cHRM_SUPPORTED # ifndef PNG_cHRM_SUPPORTED # define PNG_cHRM_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_gAMA # define PNG_WRITE_gAMA_SUPPORTED # ifndef PNG_gAMA_SUPPORTED # define PNG_gAMA_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_hIST # define PNG_WRITE_hIST_SUPPORTED # ifndef PNG_hIST_SUPPORTED # define PNG_hIST_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_iCCP # define PNG_WRITE_iCCP_SUPPORTED # ifndef PNG_iCCP_SUPPORTED # define PNG_iCCP_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_iTXt # ifndef PNG_WRITE_iTXt_SUPPORTED # define PNG_WRITE_iTXt_SUPPORTED # endif # ifndef PNG_iTXt_SUPPORTED # define PNG_iTXt_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_oFFs # define PNG_WRITE_oFFs_SUPPORTED # ifndef PNG_oFFs_SUPPORTED # define PNG_oFFs_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_pCAL # define PNG_WRITE_pCAL_SUPPORTED # ifndef PNG_pCAL_SUPPORTED # define PNG_pCAL_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_sCAL # define PNG_WRITE_sCAL_SUPPORTED # ifndef PNG_sCAL_SUPPORTED # define PNG_sCAL_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_pHYs # define PNG_WRITE_pHYs_SUPPORTED # ifndef PNG_pHYs_SUPPORTED # define PNG_pHYs_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_sBIT # define PNG_WRITE_sBIT_SUPPORTED # ifndef PNG_sBIT_SUPPORTED # define PNG_sBIT_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_sPLT # define PNG_WRITE_sPLT_SUPPORTED # ifndef PNG_sPLT_SUPPORTED # define PNG_sPLT_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_sRGB # define PNG_WRITE_sRGB_SUPPORTED # ifndef PNG_sRGB_SUPPORTED # define PNG_sRGB_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_tEXt # define PNG_WRITE_tEXt_SUPPORTED # ifndef PNG_tEXt_SUPPORTED # define PNG_tEXt_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_tIME # define PNG_WRITE_tIME_SUPPORTED # ifndef PNG_tIME_SUPPORTED # define PNG_tIME_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_tRNS # define PNG_WRITE_tRNS_SUPPORTED # ifndef PNG_tRNS_SUPPORTED # define PNG_tRNS_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_zTXt # define PNG_WRITE_zTXt_SUPPORTED # ifndef PNG_zTXt_SUPPORTED # define PNG_zTXt_SUPPORTED # endif #endif #ifndef PNG_NO_WRITE_UNKNOWN_CHUNKS # define PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED # ifndef PNG_UNKNOWN_CHUNKS_SUPPORTED # define PNG_UNKNOWN_CHUNKS_SUPPORTED # endif # ifndef PNG_NO_HANDLE_AS_UNKNOWN # ifndef PNG_HANDLE_AS_UNKNOWN_SUPPORTED # define PNG_HANDLE_AS_UNKNOWN_SUPPORTED # endif # endif #endif #if defined(PNG_WRITE_iTXt_SUPPORTED) || defined(PNG_WRITE_tEXt_SUPPORTED) || \ defined(PNG_WRITE_zTXt_SUPPORTED) # define PNG_WRITE_TEXT_SUPPORTED # ifndef PNG_TEXT_SUPPORTED # define PNG_TEXT_SUPPORTED # endif #endif #endif /* PNG_WRITE_ANCILLARY_CHUNKS_SUPPORTED */ /* Turn this off to disable png_read_png() and * png_write_png() and leave the row_pointers member * out of the info structure. */ #ifndef PNG_NO_INFO_IMAGE # define PNG_INFO_IMAGE_SUPPORTED #endif /* need the time information for reading tIME chunks */ #if defined(PNG_tIME_SUPPORTED) # if !defined(_WIN32_WCE) /* "time.h" functions are not supported on WindowsCE */ # include # endif #endif /* Some typedefs to get us started. These should be safe on most of the * common platforms. The typedefs should be at least as large as the * numbers suggest (a png_uint_32 must be at least 32 bits long), but they * don't have to be exactly that size. Some compilers dislike passing * unsigned shorts as function parameters, so you may be better off using * unsigned int for png_uint_16. Likewise, for 64-bit systems, you may * want to have unsigned int for png_uint_32 instead of unsigned long. */ typedef unsigned long png_uint_32; typedef long png_int_32; typedef unsigned short png_uint_16; typedef short png_int_16; typedef unsigned char png_byte; /* This is usually size_t. It is typedef'ed just in case you need it to change (I'm not sure if you will or not, so I thought I'd be safe) */ #ifdef PNG_SIZE_T typedef PNG_SIZE_T png_size_t; # define png_sizeof(x) png_convert_size(sizeof (x)) #else typedef size_t png_size_t; # define png_sizeof(x) sizeof (x) #endif /* The following is needed for medium model support. It cannot be in the * PNG_INTERNAL section. Needs modification for other compilers besides * MSC. Model independent support declares all arrays and pointers to be * large using the far keyword. The zlib version used must also support * model independent data. As of version zlib 1.0.4, the necessary changes * have been made in zlib. The USE_FAR_KEYWORD define triggers other * changes that are needed. (Tim Wegner) */ /* Separate compiler dependencies (problem here is that zlib.h always defines FAR. (SJT) */ #ifdef __BORLANDC__ # if defined(__LARGE__) || defined(__HUGE__) || defined(__COMPACT__) # define LDATA 1 # else # define LDATA 0 # endif /* GRR: why is Cygwin in here? Cygwin is not Borland C... */ # if !defined(__WIN32__) && !defined(__FLAT__) && !defined(__CYGWIN__) # define PNG_MAX_MALLOC_64K # if (LDATA != 1) # ifndef FAR # define FAR __far # endif # define USE_FAR_KEYWORD # endif /* LDATA != 1 */ /* Possibly useful for moving data out of default segment. * Uncomment it if you want. Could also define FARDATA as * const if your compiler supports it. (SJT) # define FARDATA FAR */ # endif /* __WIN32__, __FLAT__, __CYGWIN__ */ #endif /* __BORLANDC__ */ /* Suggest testing for specific compiler first before testing for * FAR. The Watcom compiler defines both __MEDIUM__ and M_I86MM, * making reliance oncertain keywords suspect. (SJT) */ /* MSC Medium model */ #if defined(FAR) # if defined(M_I86MM) # define USE_FAR_KEYWORD # define FARDATA FAR # include # endif #endif /* SJT: default case */ #ifndef FAR # define FAR #endif /* At this point FAR is always defined */ #ifndef FARDATA # define FARDATA #endif /* Typedef for floating-point numbers that are converted to fixed-point with a multiple of 100,000, e.g., int_gamma */ typedef png_int_32 png_fixed_point; /* Add typedefs for pointers */ typedef void FAR * png_voidp; typedef png_byte FAR * png_bytep; typedef png_uint_32 FAR * png_uint_32p; typedef png_int_32 FAR * png_int_32p; typedef png_uint_16 FAR * png_uint_16p; typedef png_int_16 FAR * png_int_16p; typedef PNG_CONST char FAR * png_const_charp; typedef char FAR * png_charp; typedef png_fixed_point FAR * png_fixed_point_p; #ifndef PNG_NO_STDIO #if defined(_WIN32_WCE) typedef HANDLE png_FILE_p; #else typedef FILE * png_FILE_p; #endif #endif #ifdef PNG_FLOATING_POINT_SUPPORTED typedef double FAR * png_doublep; #endif /* Pointers to pointers; i.e. arrays */ typedef png_byte FAR * FAR * png_bytepp; typedef png_uint_32 FAR * FAR * png_uint_32pp; typedef png_int_32 FAR * FAR * png_int_32pp; typedef png_uint_16 FAR * FAR * png_uint_16pp; typedef png_int_16 FAR * FAR * png_int_16pp; typedef PNG_CONST char FAR * FAR * png_const_charpp; typedef char FAR * FAR * png_charpp; typedef png_fixed_point FAR * FAR * png_fixed_point_pp; #ifdef PNG_FLOATING_POINT_SUPPORTED typedef double FAR * FAR * png_doublepp; #endif /* Pointers to pointers to pointers; i.e., pointer to array */ typedef char FAR * FAR * FAR * png_charppp; #if 0 /* SPC - Is this stuff deprecated? */ /* It'll be removed as of libpng-1.3.0 - GR-P */ /* libpng typedefs for types in zlib. If zlib changes * or another compression library is used, then change these. * Eliminates need to change all the source files. */ typedef charf * png_zcharp; typedef charf * FAR * png_zcharpp; typedef z_stream FAR * png_zstreamp; #endif /* (PNG_1_0_X) || defined(PNG_1_2_X) */ /* * Define PNG_BUILD_DLL if the module being built is a Windows * LIBPNG DLL. * * Define PNG_USE_DLL if you want to *link* to the Windows LIBPNG DLL. * It is equivalent to Microsoft predefined macro _DLL that is * automatically defined when you compile using the share * version of the CRT (C Run-Time library) * * The cygwin mods make this behavior a little different: * Define PNG_BUILD_DLL if you are building a dll for use with cygwin * Define PNG_STATIC if you are building a static library for use with cygwin, * -or- if you are building an application that you want to link to the * static library. * PNG_USE_DLL is defined by default (no user action needed) unless one of * the other flags is defined. */ #if !defined(PNG_DLL) && (defined(PNG_BUILD_DLL) || defined(PNG_USE_DLL)) # define PNG_DLL #endif /* If CYGWIN, then disallow GLOBAL ARRAYS unless building a static lib. * When building a static lib, default to no GLOBAL ARRAYS, but allow * command-line override */ #if defined(__CYGWIN__) # if !defined(PNG_STATIC) # if defined(PNG_USE_GLOBAL_ARRAYS) # undef PNG_USE_GLOBAL_ARRAYS # endif # if !defined(PNG_USE_LOCAL_ARRAYS) # define PNG_USE_LOCAL_ARRAYS # endif # else # if defined(PNG_USE_LOCAL_ARRAYS) || defined(PNG_NO_GLOBAL_ARRAYS) # if defined(PNG_USE_GLOBAL_ARRAYS) # undef PNG_USE_GLOBAL_ARRAYS # endif # endif # endif # if !defined(PNG_USE_LOCAL_ARRAYS) && !defined(PNG_USE_GLOBAL_ARRAYS) # define PNG_USE_LOCAL_ARRAYS # endif #endif /* Do not use global arrays (helps with building DLL's) * They are no longer used in libpng itself, since version 1.0.5c, * but might be required for some pre-1.0.5c applications. */ #if !defined(PNG_USE_LOCAL_ARRAYS) && !defined(PNG_USE_GLOBAL_ARRAYS) # if defined(PNG_NO_GLOBAL_ARRAYS) || \ (defined(__GNUC__) && defined(PNG_DLL)) || defined(_MSC_VER) # define PNG_USE_LOCAL_ARRAYS # else # define PNG_USE_GLOBAL_ARRAYS # endif #endif #if defined(__CYGWIN__) # undef PNGAPI # define PNGAPI __cdecl # undef PNG_IMPEXP # define PNG_IMPEXP #endif /* If you define PNGAPI, e.g., with compiler option "-DPNGAPI=__stdcall", * you may get warnings regarding the linkage of png_zalloc and png_zfree. * Don't ignore those warnings; you must also reset the default calling * convention in your compiler to match your PNGAPI, and you must build * zlib and your applications the same way you build libpng. */ #if defined(__MINGW32__) && !defined(PNG_MODULEDEF) # ifndef PNG_NO_MODULEDEF # define PNG_NO_MODULEDEF # endif #endif #if !defined(PNG_IMPEXP) && defined(PNG_BUILD_DLL) && !defined(PNG_NO_MODULEDEF) # define PNG_IMPEXP #endif #if defined(PNG_DLL) || defined(_DLL) || defined(__DLL__ ) || \ (( defined(_Windows) || defined(_WINDOWS) || \ defined(WIN32) || defined(_WIN32) || defined(__WIN32__) )) # ifndef PNGAPI # if defined(__GNUC__) || (defined (_MSC_VER) && (_MSC_VER >= 800)) # define PNGAPI __cdecl # else # define PNGAPI _cdecl # endif # endif # if !defined(PNG_IMPEXP) && (!defined(PNG_DLL) || \ 0 /* WINCOMPILER_WITH_NO_SUPPORT_FOR_DECLIMPEXP */) # define PNG_IMPEXP # endif # if !defined(PNG_IMPEXP) # define PNG_EXPORT_TYPE1(type,symbol) PNG_IMPEXP type PNGAPI symbol # define PNG_EXPORT_TYPE2(type,symbol) type PNG_IMPEXP PNGAPI symbol /* Borland/Microsoft */ # if defined(_MSC_VER) || defined(__BORLANDC__) # if (_MSC_VER >= 800) || (__BORLANDC__ >= 0x500) # define PNG_EXPORT PNG_EXPORT_TYPE1 # else # define PNG_EXPORT PNG_EXPORT_TYPE2 # if defined(PNG_BUILD_DLL) # define PNG_IMPEXP __export # else # define PNG_IMPEXP /*__import */ /* doesn't exist AFAIK in VC++ */ # endif /* Exists in Borland C++ for C++ classes (== huge) */ # endif # endif # if !defined(PNG_IMPEXP) # if defined(PNG_BUILD_DLL) # define PNG_IMPEXP __declspec(dllexport) # else # define PNG_IMPEXP __declspec(dllimport) # endif # endif # endif /* PNG_IMPEXP */ #else /* !(DLL || non-cygwin WINDOWS) */ # if (defined(__IBMC__) || defined(__IBMCPP__)) && defined(__OS2__) # ifndef PNGAPI # define PNGAPI _System # endif # else # if 0 /* ... other platforms, with other meanings */ # endif # endif #endif #ifndef PNGAPI # define PNGAPI #endif #ifndef PNG_IMPEXP # define PNG_IMPEXP #endif #ifdef PNG_BUILDSYMS # ifndef PNG_EXPORT # define PNG_EXPORT(type,symbol) PNG_FUNCTION_EXPORT symbol END # endif # ifdef PNG_USE_GLOBAL_ARRAYS # ifndef PNG_EXPORT_VAR # define PNG_EXPORT_VAR(type) PNG_DATA_EXPORT # endif # endif #endif #ifndef PNG_EXPORT # define PNG_EXPORT(type,symbol) PNG_IMPEXP type PNGAPI symbol #endif #ifdef PNG_USE_GLOBAL_ARRAYS # ifndef PNG_EXPORT_VAR # define PNG_EXPORT_VAR(type) extern PNG_IMPEXP type # endif #endif /* User may want to use these so they are not in PNG_INTERNAL. Any library * functions that are passed far data must be model independent. */ #ifndef PNG_ABORT # define PNG_ABORT() abort() #endif #ifdef PNG_SETJMP_SUPPORTED # define png_jmpbuf(png_ptr) ((png_ptr)->jmpbuf) #else # define png_jmpbuf(png_ptr) \ (LIBPNG_WAS_COMPILED_WITH__PNG_SETJMP_NOT_SUPPORTED) #endif #if defined(USE_FAR_KEYWORD) /* memory model independent fns */ /* use this to make far-to-near assignments */ # define CHECK 1 # define NOCHECK 0 # define CVT_PTR(ptr) (png_far_to_near(png_ptr,ptr,CHECK)) # define CVT_PTR_NOCHECK(ptr) (png_far_to_near(png_ptr,ptr,NOCHECK)) # define png_snprintf _fsnprintf /* Added to v 1.2.19 */ # define png_strcpy _fstrcpy # define png_strncpy _fstrncpy /* Added to v 1.2.6 */ # define png_strlen _fstrlen # define png_memcmp _fmemcmp /* SJT: added */ # define png_memcpy _fmemcpy # define png_memset _fmemset #else /* use the usual functions */ # define CVT_PTR(ptr) (ptr) # define CVT_PTR_NOCHECK(ptr) (ptr) # ifndef PNG_NO_SNPRINTF # ifdef _MSC_VER # define png_snprintf _snprintf /* Added to v 1.2.19 */ # define png_snprintf2 _snprintf # define png_snprintf6 _snprintf # else # define png_snprintf snprintf /* Added to v 1.2.19 */ # define png_snprintf2 snprintf # define png_snprintf6 snprintf # endif # else /* You don't have or don't want to use snprintf(). Caution: Using * sprintf instead of snprintf exposes your application to accidental * or malevolent buffer overflows. If you don't have snprintf() * as a general rule you should provide one (you can get one from * Portable OpenSSH). */ # define png_snprintf(s1,n,fmt,x1) sprintf(s1,fmt,x1) # define png_snprintf2(s1,n,fmt,x1,x2) sprintf(s1,fmt,x1,x2) # define png_snprintf6(s1,n,fmt,x1,x2,x3,x4,x5,x6) \ sprintf(s1,fmt,x1,x2,x3,x4,x5,x6) # endif # define png_strcpy strcpy # define png_strncpy strncpy /* Added to v 1.2.6 */ # define png_strlen strlen # define png_memcmp memcmp /* SJT: added */ # define png_memcpy memcpy # define png_memset memset #endif /* End of memory model independent support */ /* Just a little check that someone hasn't tried to define something * contradictory. */ #if (PNG_ZBUF_SIZE > 65536L) && defined(PNG_MAX_MALLOC_64K) # undef PNG_ZBUF_SIZE # define PNG_ZBUF_SIZE 65536L #endif /* Added at libpng-1.2.8 */ #endif /* PNG_VERSION_INFO_ONLY */ #endif /* PNGCONF_H */ /********* End of inlined file: pngconf.h *********/ #ifdef _MSC_VER #pragma warning (disable: 4996 4100) #endif /* * Added at libpng-1.2.8 */ /* Ref MSDN: Private as priority over Special * VS_FF_PRIVATEBUILD File *was not* built using standard release * procedures. If this value is given, the StringFileInfo block must * contain a PrivateBuild string. * * VS_FF_SPECIALBUILD File *was* built by the original company using * standard release procedures but is a variation of the standard * file of the same version number. If this value is given, the * StringFileInfo block must contain a SpecialBuild string. */ #if defined(PNG_USER_PRIVATEBUILD) # define PNG_LIBPNG_BUILD_TYPE \ (PNG_LIBPNG_BUILD_BASE_TYPE | PNG_LIBPNG_BUILD_PRIVATE) #else # if defined(PNG_LIBPNG_SPECIALBUILD) # define PNG_LIBPNG_BUILD_TYPE \ (PNG_LIBPNG_BUILD_BASE_TYPE | PNG_LIBPNG_BUILD_SPECIAL) # else # define PNG_LIBPNG_BUILD_TYPE (PNG_LIBPNG_BUILD_BASE_TYPE) # endif #endif #ifndef PNG_VERSION_INFO_ONLY /* Inhibit C++ name-mangling for libpng functions but not for system calls. */ #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ /* This file is arranged in several sections. The first section contains * structure and type definitions. The second section contains the external * library functions, while the third has the internal library functions, * which applications aren't expected to use directly. */ #ifndef PNG_NO_TYPECAST_NULL #define int_p_NULL (int *)NULL #define png_bytep_NULL (png_bytep)NULL #define png_bytepp_NULL (png_bytepp)NULL #define png_doublep_NULL (png_doublep)NULL #define png_error_ptr_NULL (png_error_ptr)NULL #define png_flush_ptr_NULL (png_flush_ptr)NULL #define png_free_ptr_NULL (png_free_ptr)NULL #define png_infopp_NULL (png_infopp)NULL #define png_malloc_ptr_NULL (png_malloc_ptr)NULL #define png_read_status_ptr_NULL (png_read_status_ptr)NULL #define png_rw_ptr_NULL (png_rw_ptr)NULL #define png_structp_NULL (png_structp)NULL #define png_uint_16p_NULL (png_uint_16p)NULL #define png_voidp_NULL (png_voidp)NULL #define png_write_status_ptr_NULL (png_write_status_ptr)NULL #else #define int_p_NULL NULL #define png_bytep_NULL NULL #define png_bytepp_NULL NULL #define png_doublep_NULL NULL #define png_error_ptr_NULL NULL #define png_flush_ptr_NULL NULL #define png_free_ptr_NULL NULL #define png_infopp_NULL NULL #define png_malloc_ptr_NULL NULL #define png_read_status_ptr_NULL NULL #define png_rw_ptr_NULL NULL #define png_structp_NULL NULL #define png_uint_16p_NULL NULL #define png_voidp_NULL NULL #define png_write_status_ptr_NULL NULL #endif /* variables declared in png.c - only it needs to define PNG_NO_EXTERN */ #if !defined(PNG_NO_EXTERN) || defined(PNG_ALWAYS_EXTERN) /* Version information for C files, stored in png.c. This had better match * the version above. */ #ifdef PNG_USE_GLOBAL_ARRAYS PNG_EXPORT_VAR (PNG_CONST char) png_libpng_ver[18]; /* need room for 99.99.99beta99z */ #else #define png_libpng_ver png_get_header_ver(NULL) #endif #ifdef PNG_USE_GLOBAL_ARRAYS /* This was removed in version 1.0.5c */ /* Structures to facilitate easy interlacing. See png.c for more details */ PNG_EXPORT_VAR (PNG_CONST int FARDATA) png_pass_start[7]; PNG_EXPORT_VAR (PNG_CONST int FARDATA) png_pass_inc[7]; PNG_EXPORT_VAR (PNG_CONST int FARDATA) png_pass_ystart[7]; PNG_EXPORT_VAR (PNG_CONST int FARDATA) png_pass_yinc[7]; PNG_EXPORT_VAR (PNG_CONST int FARDATA) png_pass_mask[7]; PNG_EXPORT_VAR (PNG_CONST int FARDATA) png_pass_dsp_mask[7]; /* This isn't currently used. If you need it, see png.c for more details. PNG_EXPORT_VAR (PNG_CONST int FARDATA) png_pass_height[7]; */ #endif #endif /* PNG_NO_EXTERN */ /* Three color definitions. The order of the red, green, and blue, (and the * exact size) is not important, although the size of the fields need to * be png_byte or png_uint_16 (as defined below). */ typedef struct png_color_struct { png_byte red; png_byte green; png_byte blue; } png_color; typedef png_color FAR * png_colorp; typedef png_color FAR * FAR * png_colorpp; typedef struct png_color_16_struct { png_byte index; /* used for palette files */ png_uint_16 red; /* for use in red green blue files */ png_uint_16 green; png_uint_16 blue; png_uint_16 gray; /* for use in grayscale files */ } png_color_16; typedef png_color_16 FAR * png_color_16p; typedef png_color_16 FAR * FAR * png_color_16pp; typedef struct png_color_8_struct { png_byte red; /* for use in red green blue files */ png_byte green; png_byte blue; png_byte gray; /* for use in grayscale files */ png_byte alpha; /* for alpha channel files */ } png_color_8; typedef png_color_8 FAR * png_color_8p; typedef png_color_8 FAR * FAR * png_color_8pp; /* * The following two structures are used for the in-core representation * of sPLT chunks. */ typedef struct png_sPLT_entry_struct { png_uint_16 red; png_uint_16 green; png_uint_16 blue; png_uint_16 alpha; png_uint_16 frequency; } png_sPLT_entry; typedef png_sPLT_entry FAR * png_sPLT_entryp; typedef png_sPLT_entry FAR * FAR * png_sPLT_entrypp; /* When the depth of the sPLT palette is 8 bits, the color and alpha samples * occupy the LSB of their respective members, and the MSB of each member * is zero-filled. The frequency member always occupies the full 16 bits. */ typedef struct png_sPLT_struct { png_charp name; /* palette name */ png_byte depth; /* depth of palette samples */ png_sPLT_entryp entries; /* palette entries */ png_int_32 nentries; /* number of palette entries */ } png_sPLT_t; typedef png_sPLT_t FAR * png_sPLT_tp; typedef png_sPLT_t FAR * FAR * png_sPLT_tpp; #ifdef PNG_TEXT_SUPPORTED /* png_text holds the contents of a text/ztxt/itxt chunk in a PNG file, * and whether that contents is compressed or not. The "key" field * points to a regular zero-terminated C string. The "text", "lang", and * "lang_key" fields can be regular C strings, empty strings, or NULL pointers. * However, the * structure returned by png_get_text() will always contain * regular zero-terminated C strings (possibly empty), never NULL pointers, * so they can be safely used in printf() and other string-handling functions. */ typedef struct png_text_struct { int compression; /* compression value: -1: tEXt, none 0: zTXt, deflate 1: iTXt, none 2: iTXt, deflate */ png_charp key; /* keyword, 1-79 character description of "text" */ png_charp text; /* comment, may be an empty string (ie "") or a NULL pointer */ png_size_t text_length; /* length of the text string */ #ifdef PNG_iTXt_SUPPORTED png_size_t itxt_length; /* length of the itxt string */ png_charp lang; /* language code, 0-79 characters or a NULL pointer */ png_charp lang_key; /* keyword translated UTF-8 string, 0 or more chars or a NULL pointer */ #endif } png_text; typedef png_text FAR * png_textp; typedef png_text FAR * FAR * png_textpp; #endif /* Supported compression types for text in PNG files (tEXt, and zTXt). * The values of the PNG_TEXT_COMPRESSION_ defines should NOT be changed. */ #define PNG_TEXT_COMPRESSION_NONE_WR -3 #define PNG_TEXT_COMPRESSION_zTXt_WR -2 #define PNG_TEXT_COMPRESSION_NONE -1 #define PNG_TEXT_COMPRESSION_zTXt 0 #define PNG_ITXT_COMPRESSION_NONE 1 #define PNG_ITXT_COMPRESSION_zTXt 2 #define PNG_TEXT_COMPRESSION_LAST 3 /* Not a valid value */ /* png_time is a way to hold the time in an machine independent way. * Two conversions are provided, both from time_t and struct tm. There * is no portable way to convert to either of these structures, as far * as I know. If you know of a portable way, send it to me. As a side * note - PNG has always been Year 2000 compliant! */ typedef struct png_time_struct { png_uint_16 year; /* full year, as in, 1995 */ png_byte month; /* month of year, 1 - 12 */ png_byte day; /* day of month, 1 - 31 */ png_byte hour; /* hour of day, 0 - 23 */ png_byte minute; /* minute of hour, 0 - 59 */ png_byte second; /* second of minute, 0 - 60 (for leap seconds) */ } png_time; typedef png_time FAR * png_timep; typedef png_time FAR * FAR * png_timepp; #if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) /* png_unknown_chunk is a structure to hold queued chunks for which there is * no specific support. The idea is that we can use this to queue * up private chunks for output even though the library doesn't actually * know about their semantics. */ typedef struct png_unknown_chunk_t { png_byte name[5]; png_byte *data; png_size_t size; /* libpng-using applications should NOT directly modify this byte. */ png_byte location; /* mode of operation at read time */ } png_unknown_chunk; typedef png_unknown_chunk FAR * png_unknown_chunkp; typedef png_unknown_chunk FAR * FAR * png_unknown_chunkpp; #endif /* png_info is a structure that holds the information in a PNG file so * that the application can find out the characteristics of the image. * If you are reading the file, this structure will tell you what is * in the PNG file. If you are writing the file, fill in the information * you want to put into the PNG file, then call png_write_info(). * The names chosen should be very close to the PNG specification, so * consult that document for information about the meaning of each field. * * With libpng < 0.95, it was only possible to directly set and read the * the values in the png_info_struct, which meant that the contents and * order of the values had to remain fixed. With libpng 0.95 and later, * however, there are now functions that abstract the contents of * png_info_struct from the application, so this makes it easier to use * libpng with dynamic libraries, and even makes it possible to use * libraries that don't have all of the libpng ancillary chunk-handing * functionality. * * In any case, the order of the parameters in png_info_struct should NOT * be changed for as long as possible to keep compatibility with applications * that use the old direct-access method with png_info_struct. * * The following members may have allocated storage attached that should be * cleaned up before the structure is discarded: palette, trans, text, * pcal_purpose, pcal_units, pcal_params, hist, iccp_name, iccp_profile, * splt_palettes, scal_unit, row_pointers, and unknowns. By default, these * are automatically freed when the info structure is deallocated, if they were * allocated internally by libpng. This behavior can be changed by means * of the png_data_freer() function. * * More allocation details: all the chunk-reading functions that * change these members go through the corresponding png_set_* * functions. A function to clear these members is available: see * png_free_data(). The png_set_* functions do not depend on being * able to point info structure members to any of the storage they are * passed (they make their own copies), EXCEPT that the png_set_text * functions use the same storage passed to them in the text_ptr or * itxt_ptr structure argument, and the png_set_rows and png_set_unknowns * functions do not make their own copies. */ typedef struct png_info_struct { /* the following are necessary for every PNG file */ png_uint_32 width; /* width of image in pixels (from IHDR) */ png_uint_32 height; /* height of image in pixels (from IHDR) */ png_uint_32 valid; /* valid chunk data (see PNG_INFO_ below) */ png_uint_32 rowbytes; /* bytes needed to hold an untransformed row */ png_colorp palette; /* array of color values (valid & PNG_INFO_PLTE) */ png_uint_16 num_palette; /* number of color entries in "palette" (PLTE) */ png_uint_16 num_trans; /* number of transparent palette color (tRNS) */ png_byte bit_depth; /* 1, 2, 4, 8, or 16 bits/channel (from IHDR) */ png_byte color_type; /* see PNG_COLOR_TYPE_ below (from IHDR) */ /* The following three should have been named *_method not *_type */ png_byte compression_type; /* must be PNG_COMPRESSION_TYPE_BASE (IHDR) */ png_byte filter_type; /* must be PNG_FILTER_TYPE_BASE (from IHDR) */ png_byte interlace_type; /* One of PNG_INTERLACE_NONE, PNG_INTERLACE_ADAM7 */ /* The following is informational only on read, and not used on writes. */ png_byte channels; /* number of data channels per pixel (1, 2, 3, 4) */ png_byte pixel_depth; /* number of bits per pixel */ png_byte spare_byte; /* to align the data, and for future use */ png_byte signature[8]; /* magic bytes read by libpng from start of file */ /* The rest of the data is optional. If you are reading, check the * valid field to see if the information in these are valid. If you * are writing, set the valid field to those chunks you want written, * and initialize the appropriate fields below. */ #if defined(PNG_gAMA_SUPPORTED) && defined(PNG_FLOATING_POINT_SUPPORTED) /* The gAMA chunk describes the gamma characteristics of the system * on which the image was created, normally in the range [1.0, 2.5]. * Data is valid if (valid & PNG_INFO_gAMA) is non-zero. */ float gamma; /* gamma value of image, if (valid & PNG_INFO_gAMA) */ #endif #if defined(PNG_sRGB_SUPPORTED) /* GR-P, 0.96a */ /* Data valid if (valid & PNG_INFO_sRGB) non-zero. */ png_byte srgb_intent; /* sRGB rendering intent [0, 1, 2, or 3] */ #endif #if defined(PNG_TEXT_SUPPORTED) /* The tEXt, and zTXt chunks contain human-readable textual data in * uncompressed, compressed, and optionally compressed forms, respectively. * The data in "text" is an array of pointers to uncompressed, * null-terminated C strings. Each chunk has a keyword that describes the * textual data contained in that chunk. Keywords are not required to be * unique, and the text string may be empty. Any number of text chunks may * be in an image. */ int num_text; /* number of comments read/to write */ int max_text; /* current size of text array */ png_textp text; /* array of comments read/to write */ #endif /* PNG_TEXT_SUPPORTED */ #if defined(PNG_tIME_SUPPORTED) /* The tIME chunk holds the last time the displayed image data was * modified. See the png_time struct for the contents of this struct. */ png_time mod_time; #endif #if defined(PNG_sBIT_SUPPORTED) /* The sBIT chunk specifies the number of significant high-order bits * in the pixel data. Values are in the range [1, bit_depth], and are * only specified for the channels in the pixel data. The contents of * the low-order bits is not specified. Data is valid if * (valid & PNG_INFO_sBIT) is non-zero. */ png_color_8 sig_bit; /* significant bits in color channels */ #endif #if defined(PNG_tRNS_SUPPORTED) || defined(PNG_READ_EXPAND_SUPPORTED) || \ defined(PNG_READ_BACKGROUND_SUPPORTED) /* The tRNS chunk supplies transparency data for paletted images and * other image types that don't need a full alpha channel. There are * "num_trans" transparency values for a paletted image, stored in the * same order as the palette colors, starting from index 0. Values * for the data are in the range [0, 255], ranging from fully transparent * to fully opaque, respectively. For non-paletted images, there is a * single color specified that should be treated as fully transparent. * Data is valid if (valid & PNG_INFO_tRNS) is non-zero. */ png_bytep trans; /* transparent values for paletted image */ png_color_16 trans_values; /* transparent color for non-palette image */ #endif #if defined(PNG_bKGD_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) /* The bKGD chunk gives the suggested image background color if the * display program does not have its own background color and the image * is needs to composited onto a background before display. The colors * in "background" are normally in the same color space/depth as the * pixel data. Data is valid if (valid & PNG_INFO_bKGD) is non-zero. */ png_color_16 background; #endif #if defined(PNG_oFFs_SUPPORTED) /* The oFFs chunk gives the offset in "offset_unit_type" units rightwards * and downwards from the top-left corner of the display, page, or other * application-specific co-ordinate space. See the PNG_OFFSET_ defines * below for the unit types. Valid if (valid & PNG_INFO_oFFs) non-zero. */ png_int_32 x_offset; /* x offset on page */ png_int_32 y_offset; /* y offset on page */ png_byte offset_unit_type; /* offset units type */ #endif #if defined(PNG_pHYs_SUPPORTED) /* The pHYs chunk gives the physical pixel density of the image for * display or printing in "phys_unit_type" units (see PNG_RESOLUTION_ * defines below). Data is valid if (valid & PNG_INFO_pHYs) is non-zero. */ png_uint_32 x_pixels_per_unit; /* horizontal pixel density */ png_uint_32 y_pixels_per_unit; /* vertical pixel density */ png_byte phys_unit_type; /* resolution type (see PNG_RESOLUTION_ below) */ #endif #if defined(PNG_hIST_SUPPORTED) /* The hIST chunk contains the relative frequency or importance of the * various palette entries, so that a viewer can intelligently select a * reduced-color palette, if required. Data is an array of "num_palette" * values in the range [0,65535]. Data valid if (valid & PNG_INFO_hIST) * is non-zero. */ png_uint_16p hist; #endif #ifdef PNG_cHRM_SUPPORTED /* The cHRM chunk describes the CIE color characteristics of the monitor * on which the PNG was created. This data allows the viewer to do gamut * mapping of the input image to ensure that the viewer sees the same * colors in the image as the creator. Values are in the range * [0.0, 0.8]. Data valid if (valid & PNG_INFO_cHRM) non-zero. */ #ifdef PNG_FLOATING_POINT_SUPPORTED float x_white; float y_white; float x_red; float y_red; float x_green; float y_green; float x_blue; float y_blue; #endif #endif #if defined(PNG_pCAL_SUPPORTED) /* The pCAL chunk describes a transformation between the stored pixel * values and original physical data values used to create the image. * The integer range [0, 2^bit_depth - 1] maps to the floating-point * range given by [pcal_X0, pcal_X1], and are further transformed by a * (possibly non-linear) transformation function given by "pcal_type" * and "pcal_params" into "pcal_units". Please see the PNG_EQUATION_ * defines below, and the PNG-Group's PNG extensions document for a * complete description of the transformations and how they should be * implemented, and for a description of the ASCII parameter strings. * Data values are valid if (valid & PNG_INFO_pCAL) non-zero. */ png_charp pcal_purpose; /* pCAL chunk description string */ png_int_32 pcal_X0; /* minimum value */ png_int_32 pcal_X1; /* maximum value */ png_charp pcal_units; /* Latin-1 string giving physical units */ png_charpp pcal_params; /* ASCII strings containing parameter values */ png_byte pcal_type; /* equation type (see PNG_EQUATION_ below) */ png_byte pcal_nparams; /* number of parameters given in pcal_params */ #endif /* New members added in libpng-1.0.6 */ #ifdef PNG_FREE_ME_SUPPORTED png_uint_32 free_me; /* flags items libpng is responsible for freeing */ #endif #if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) /* storage for unknown chunks that the library doesn't recognize. */ png_unknown_chunkp unknown_chunks; png_size_t unknown_chunks_num; #endif #if defined(PNG_iCCP_SUPPORTED) /* iCCP chunk data. */ png_charp iccp_name; /* profile name */ png_charp iccp_profile; /* International Color Consortium profile data */ /* Note to maintainer: should be png_bytep */ png_uint_32 iccp_proflen; /* ICC profile data length */ png_byte iccp_compression; /* Always zero */ #endif #if defined(PNG_sPLT_SUPPORTED) /* data on sPLT chunks (there may be more than one). */ png_sPLT_tp splt_palettes; png_uint_32 splt_palettes_num; #endif #if defined(PNG_sCAL_SUPPORTED) /* The sCAL chunk describes the actual physical dimensions of the * subject matter of the graphic. The chunk contains a unit specification * a byte value, and two ASCII strings representing floating-point * values. The values are width and height corresponsing to one pixel * in the image. This external representation is converted to double * here. Data values are valid if (valid & PNG_INFO_sCAL) is non-zero. */ png_byte scal_unit; /* unit of physical scale */ #ifdef PNG_FLOATING_POINT_SUPPORTED double scal_pixel_width; /* width of one pixel */ double scal_pixel_height; /* height of one pixel */ #endif #ifdef PNG_FIXED_POINT_SUPPORTED png_charp scal_s_width; /* string containing height */ png_charp scal_s_height; /* string containing width */ #endif #endif #if defined(PNG_INFO_IMAGE_SUPPORTED) /* Memory has been allocated if (valid & PNG_ALLOCATED_INFO_ROWS) non-zero */ /* Data valid if (valid & PNG_INFO_IDAT) non-zero */ png_bytepp row_pointers; /* the image bits */ #endif #if defined(PNG_FIXED_POINT_SUPPORTED) && defined(PNG_gAMA_SUPPORTED) png_fixed_point int_gamma; /* gamma of image, if (valid & PNG_INFO_gAMA) */ #endif #if defined(PNG_cHRM_SUPPORTED) && defined(PNG_FIXED_POINT_SUPPORTED) png_fixed_point int_x_white; png_fixed_point int_y_white; png_fixed_point int_x_red; png_fixed_point int_y_red; png_fixed_point int_x_green; png_fixed_point int_y_green; png_fixed_point int_x_blue; png_fixed_point int_y_blue; #endif } png_info; typedef png_info FAR * png_infop; typedef png_info FAR * FAR * png_infopp; /* Maximum positive integer used in PNG is (2^31)-1 */ #define PNG_UINT_31_MAX ((png_uint_32)0x7fffffffL) #define PNG_UINT_32_MAX ((png_uint_32)(-1)) #define PNG_SIZE_MAX ((png_size_t)(-1)) #if defined(PNG_1_0_X) || defined (PNG_1_2_X) /* PNG_MAX_UINT is deprecated; use PNG_UINT_31_MAX instead. */ #define PNG_MAX_UINT PNG_UINT_31_MAX #endif /* These describe the color_type field in png_info. */ /* color type masks */ #define PNG_COLOR_MASK_PALETTE 1 #define PNG_COLOR_MASK_COLOR 2 #define PNG_COLOR_MASK_ALPHA 4 /* color types. Note that not all combinations are legal */ #define PNG_COLOR_TYPE_GRAY 0 #define PNG_COLOR_TYPE_PALETTE (PNG_COLOR_MASK_COLOR | PNG_COLOR_MASK_PALETTE) #define PNG_COLOR_TYPE_RGB (PNG_COLOR_MASK_COLOR) #define PNG_COLOR_TYPE_RGB_ALPHA (PNG_COLOR_MASK_COLOR | PNG_COLOR_MASK_ALPHA) #define PNG_COLOR_TYPE_GRAY_ALPHA (PNG_COLOR_MASK_ALPHA) /* aliases */ #define PNG_COLOR_TYPE_RGBA PNG_COLOR_TYPE_RGB_ALPHA #define PNG_COLOR_TYPE_GA PNG_COLOR_TYPE_GRAY_ALPHA /* This is for compression type. PNG 1.0-1.2 only define the single type. */ #define PNG_COMPRESSION_TYPE_BASE 0 /* Deflate method 8, 32K window */ #define PNG_COMPRESSION_TYPE_DEFAULT PNG_COMPRESSION_TYPE_BASE /* This is for filter type. PNG 1.0-1.2 only define the single type. */ #define PNG_FILTER_TYPE_BASE 0 /* Single row per-byte filtering */ #define PNG_INTRAPIXEL_DIFFERENCING 64 /* Used only in MNG datastreams */ #define PNG_FILTER_TYPE_DEFAULT PNG_FILTER_TYPE_BASE /* These are for the interlacing type. These values should NOT be changed. */ #define PNG_INTERLACE_NONE 0 /* Non-interlaced image */ #define PNG_INTERLACE_ADAM7 1 /* Adam7 interlacing */ #define PNG_INTERLACE_LAST 2 /* Not a valid value */ /* These are for the oFFs chunk. These values should NOT be changed. */ #define PNG_OFFSET_PIXEL 0 /* Offset in pixels */ #define PNG_OFFSET_MICROMETER 1 /* Offset in micrometers (1/10^6 meter) */ #define PNG_OFFSET_LAST 2 /* Not a valid value */ /* These are for the pCAL chunk. These values should NOT be changed. */ #define PNG_EQUATION_LINEAR 0 /* Linear transformation */ #define PNG_EQUATION_BASE_E 1 /* Exponential base e transform */ #define PNG_EQUATION_ARBITRARY 2 /* Arbitrary base exponential transform */ #define PNG_EQUATION_HYPERBOLIC 3 /* Hyperbolic sine transformation */ #define PNG_EQUATION_LAST 4 /* Not a valid value */ /* These are for the sCAL chunk. These values should NOT be changed. */ #define PNG_SCALE_UNKNOWN 0 /* unknown unit (image scale) */ #define PNG_SCALE_METER 1 /* meters per pixel */ #define PNG_SCALE_RADIAN 2 /* radians per pixel */ #define PNG_SCALE_LAST 3 /* Not a valid value */ /* These are for the pHYs chunk. These values should NOT be changed. */ #define PNG_RESOLUTION_UNKNOWN 0 /* pixels/unknown unit (aspect ratio) */ #define PNG_RESOLUTION_METER 1 /* pixels/meter */ #define PNG_RESOLUTION_LAST 2 /* Not a valid value */ /* These are for the sRGB chunk. These values should NOT be changed. */ #define PNG_sRGB_INTENT_PERCEPTUAL 0 #define PNG_sRGB_INTENT_RELATIVE 1 #define PNG_sRGB_INTENT_SATURATION 2 #define PNG_sRGB_INTENT_ABSOLUTE 3 #define PNG_sRGB_INTENT_LAST 4 /* Not a valid value */ /* This is for text chunks */ #define PNG_KEYWORD_MAX_LENGTH 79 /* Maximum number of entries in PLTE/sPLT/tRNS arrays */ #define PNG_MAX_PALETTE_LENGTH 256 /* These determine if an ancillary chunk's data has been successfully read * from the PNG header, or if the application has filled in the corresponding * data in the info_struct to be written into the output file. The values * of the PNG_INFO_ defines should NOT be changed. */ #define PNG_INFO_gAMA 0x0001 #define PNG_INFO_sBIT 0x0002 #define PNG_INFO_cHRM 0x0004 #define PNG_INFO_PLTE 0x0008 #define PNG_INFO_tRNS 0x0010 #define PNG_INFO_bKGD 0x0020 #define PNG_INFO_hIST 0x0040 #define PNG_INFO_pHYs 0x0080 #define PNG_INFO_oFFs 0x0100 #define PNG_INFO_tIME 0x0200 #define PNG_INFO_pCAL 0x0400 #define PNG_INFO_sRGB 0x0800 /* GR-P, 0.96a */ #define PNG_INFO_iCCP 0x1000 /* ESR, 1.0.6 */ #define PNG_INFO_sPLT 0x2000 /* ESR, 1.0.6 */ #define PNG_INFO_sCAL 0x4000 /* ESR, 1.0.6 */ #define PNG_INFO_IDAT 0x8000L /* ESR, 1.0.6 */ /* This is used for the transformation routines, as some of them * change these values for the row. It also should enable using * the routines for other purposes. */ typedef struct png_row_info_struct { png_uint_32 width; /* width of row */ png_uint_32 rowbytes; /* number of bytes in row */ png_byte color_type; /* color type of row */ png_byte bit_depth; /* bit depth of row */ png_byte channels; /* number of channels (1, 2, 3, or 4) */ png_byte pixel_depth; /* bits per pixel (depth * channels) */ } png_row_info; typedef png_row_info FAR * png_row_infop; typedef png_row_info FAR * FAR * png_row_infopp; /* These are the function types for the I/O functions and for the functions * that allow the user to override the default I/O functions with his or her * own. The png_error_ptr type should match that of user-supplied warning * and error functions, while the png_rw_ptr type should match that of the * user read/write data functions. */ typedef struct png_struct_def png_struct; typedef png_struct FAR * png_structp; typedef void (PNGAPI *png_error_ptr) PNGARG((png_structp, png_const_charp)); typedef void (PNGAPI *png_rw_ptr) PNGARG((png_structp, png_bytep, png_size_t)); typedef void (PNGAPI *png_flush_ptr) PNGARG((png_structp)); typedef void (PNGAPI *png_read_status_ptr) PNGARG((png_structp, png_uint_32, int)); typedef void (PNGAPI *png_write_status_ptr) PNGARG((png_structp, png_uint_32, int)); #ifdef PNG_PROGRESSIVE_READ_SUPPORTED typedef void (PNGAPI *png_progressive_info_ptr) PNGARG((png_structp, png_infop)); typedef void (PNGAPI *png_progressive_end_ptr) PNGARG((png_structp, png_infop)); typedef void (PNGAPI *png_progressive_row_ptr) PNGARG((png_structp, png_bytep, png_uint_32, int)); #endif #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_LEGACY_SUPPORTED) typedef void (PNGAPI *png_user_transform_ptr) PNGARG((png_structp, png_row_infop, png_bytep)); #endif #if defined(PNG_USER_CHUNKS_SUPPORTED) typedef int (PNGAPI *png_user_chunk_ptr) PNGARG((png_structp, png_unknown_chunkp)); #endif #if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) typedef void (PNGAPI *png_unknown_chunk_ptr) PNGARG((png_structp)); #endif /* Transform masks for the high-level interface */ #define PNG_TRANSFORM_IDENTITY 0x0000 /* read and write */ #define PNG_TRANSFORM_STRIP_16 0x0001 /* read only */ #define PNG_TRANSFORM_STRIP_ALPHA 0x0002 /* read only */ #define PNG_TRANSFORM_PACKING 0x0004 /* read and write */ #define PNG_TRANSFORM_PACKSWAP 0x0008 /* read and write */ #define PNG_TRANSFORM_EXPAND 0x0010 /* read only */ #define PNG_TRANSFORM_INVERT_MONO 0x0020 /* read and write */ #define PNG_TRANSFORM_SHIFT 0x0040 /* read and write */ #define PNG_TRANSFORM_BGR 0x0080 /* read and write */ #define PNG_TRANSFORM_SWAP_ALPHA 0x0100 /* read and write */ #define PNG_TRANSFORM_SWAP_ENDIAN 0x0200 /* read and write */ #define PNG_TRANSFORM_INVERT_ALPHA 0x0400 /* read and write */ #define PNG_TRANSFORM_STRIP_FILLER 0x0800 /* WRITE only */ /* Flags for MNG supported features */ #define PNG_FLAG_MNG_EMPTY_PLTE 0x01 #define PNG_FLAG_MNG_FILTER_64 0x04 #define PNG_ALL_MNG_FEATURES 0x05 typedef png_voidp (*png_malloc_ptr) PNGARG((png_structp, png_size_t)); typedef void (*png_free_ptr) PNGARG((png_structp, png_voidp)); /* The structure that holds the information to read and write PNG files. * The only people who need to care about what is inside of this are the * people who will be modifying the library for their own special needs. * It should NOT be accessed directly by an application, except to store * the jmp_buf. */ struct png_struct_def { #ifdef PNG_SETJMP_SUPPORTED jmp_buf jmpbuf; /* used in png_error */ #endif png_error_ptr error_fn; /* function for printing errors and aborting */ png_error_ptr warning_fn; /* function for printing warnings */ png_voidp error_ptr; /* user supplied struct for error functions */ png_rw_ptr write_data_fn; /* function for writing output data */ png_rw_ptr read_data_fn; /* function for reading input data */ png_voidp io_ptr; /* ptr to application struct for I/O functions */ #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) png_user_transform_ptr read_user_transform_fn; /* user read transform */ #endif #if defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) png_user_transform_ptr write_user_transform_fn; /* user write transform */ #endif /* These were added in libpng-1.0.2 */ #if defined(PNG_USER_TRANSFORM_PTR_SUPPORTED) #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) png_voidp user_transform_ptr; /* user supplied struct for user transform */ png_byte user_transform_depth; /* bit depth of user transformed pixels */ png_byte user_transform_channels; /* channels in user transformed pixels */ #endif #endif png_uint_32 mode; /* tells us where we are in the PNG file */ png_uint_32 flags; /* flags indicating various things to libpng */ png_uint_32 transformations; /* which transformations to perform */ z_stream zstream; /* pointer to decompression structure (below) */ png_bytep zbuf; /* buffer for zlib */ png_size_t zbuf_size; /* size of zbuf */ int zlib_level; /* holds zlib compression level */ int zlib_method; /* holds zlib compression method */ int zlib_window_bits; /* holds zlib compression window bits */ int zlib_mem_level; /* holds zlib compression memory level */ int zlib_strategy; /* holds zlib compression strategy */ png_uint_32 width; /* width of image in pixels */ png_uint_32 height; /* height of image in pixels */ png_uint_32 num_rows; /* number of rows in current pass */ png_uint_32 usr_width; /* width of row at start of write */ png_uint_32 rowbytes; /* size of row in bytes */ png_uint_32 irowbytes; /* size of current interlaced row in bytes */ png_uint_32 iwidth; /* width of current interlaced row in pixels */ png_uint_32 row_number; /* current row in interlace pass */ png_bytep prev_row; /* buffer to save previous (unfiltered) row */ png_bytep row_buf; /* buffer to save current (unfiltered) row */ png_bytep sub_row; /* buffer to save "sub" row when filtering */ png_bytep up_row; /* buffer to save "up" row when filtering */ png_bytep avg_row; /* buffer to save "avg" row when filtering */ png_bytep paeth_row; /* buffer to save "Paeth" row when filtering */ png_row_info row_info; /* used for transformation routines */ png_uint_32 idat_size; /* current IDAT size for read */ png_uint_32 crc; /* current chunk CRC value */ png_colorp palette; /* palette from the input file */ png_uint_16 num_palette; /* number of color entries in palette */ png_uint_16 num_trans; /* number of transparency values */ png_byte chunk_name[5]; /* null-terminated name of current chunk */ png_byte compression; /* file compression type (always 0) */ png_byte filter; /* file filter type (always 0) */ png_byte interlaced; /* PNG_INTERLACE_NONE, PNG_INTERLACE_ADAM7 */ png_byte pass; /* current interlace pass (0 - 6) */ png_byte do_filter; /* row filter flags (see PNG_FILTER_ below ) */ png_byte color_type; /* color type of file */ png_byte bit_depth; /* bit depth of file */ png_byte usr_bit_depth; /* bit depth of users row */ png_byte pixel_depth; /* number of bits per pixel */ png_byte channels; /* number of channels in file */ png_byte usr_channels; /* channels at start of write */ png_byte sig_bytes; /* magic bytes read/written from start of file */ #if defined(PNG_READ_FILLER_SUPPORTED) || defined(PNG_WRITE_FILLER_SUPPORTED) #ifdef PNG_LEGACY_SUPPORTED png_byte filler; /* filler byte for pixel expansion */ #else png_uint_16 filler; /* filler bytes for pixel expansion */ #endif #endif #if defined(PNG_bKGD_SUPPORTED) png_byte background_gamma_type; # ifdef PNG_FLOATING_POINT_SUPPORTED float background_gamma; # endif png_color_16 background; /* background color in screen gamma space */ #if defined(PNG_READ_GAMMA_SUPPORTED) png_color_16 background_1; /* background normalized to gamma 1.0 */ #endif #endif /* PNG_bKGD_SUPPORTED */ #if defined(PNG_WRITE_FLUSH_SUPPORTED) png_flush_ptr output_flush_fn;/* Function for flushing output */ png_uint_32 flush_dist; /* how many rows apart to flush, 0 - no flush */ png_uint_32 flush_rows; /* number of rows written since last flush */ #endif #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) int gamma_shift; /* number of "insignificant" bits 16-bit gamma */ #ifdef PNG_FLOATING_POINT_SUPPORTED float gamma; /* file gamma value */ float screen_gamma; /* screen gamma value (display_exponent) */ #endif #endif #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) png_bytep gamma_table; /* gamma table for 8-bit depth files */ png_bytep gamma_from_1; /* converts from 1.0 to screen */ png_bytep gamma_to_1; /* converts from file to 1.0 */ png_uint_16pp gamma_16_table; /* gamma table for 16-bit depth files */ png_uint_16pp gamma_16_from_1; /* converts from 1.0 to screen */ png_uint_16pp gamma_16_to_1; /* converts from file to 1.0 */ #endif #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_sBIT_SUPPORTED) png_color_8 sig_bit; /* significant bits in each available channel */ #endif #if defined(PNG_READ_SHIFT_SUPPORTED) || defined(PNG_WRITE_SHIFT_SUPPORTED) png_color_8 shift; /* shift for significant bit tranformation */ #endif #if defined(PNG_tRNS_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) \ || defined(PNG_READ_EXPAND_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) png_bytep trans; /* transparency values for paletted files */ png_color_16 trans_values; /* transparency values for non-paletted files */ #endif png_read_status_ptr read_row_fn; /* called after each row is decoded */ png_write_status_ptr write_row_fn; /* called after each row is encoded */ #ifdef PNG_PROGRESSIVE_READ_SUPPORTED png_progressive_info_ptr info_fn; /* called after header data fully read */ png_progressive_row_ptr row_fn; /* called after each prog. row is decoded */ png_progressive_end_ptr end_fn; /* called after image is complete */ png_bytep save_buffer_ptr; /* current location in save_buffer */ png_bytep save_buffer; /* buffer for previously read data */ png_bytep current_buffer_ptr; /* current location in current_buffer */ png_bytep current_buffer; /* buffer for recently used data */ png_uint_32 push_length; /* size of current input chunk */ png_uint_32 skip_length; /* bytes to skip in input data */ png_size_t save_buffer_size; /* amount of data now in save_buffer */ png_size_t save_buffer_max; /* total size of save_buffer */ png_size_t buffer_size; /* total amount of available input data */ png_size_t current_buffer_size; /* amount of data now in current_buffer */ int process_mode; /* what push library is currently doing */ int cur_palette; /* current push library palette index */ # if defined(PNG_TEXT_SUPPORTED) png_size_t current_text_size; /* current size of text input data */ png_size_t current_text_left; /* how much text left to read in input */ png_charp current_text; /* current text chunk buffer */ png_charp current_text_ptr; /* current location in current_text */ # endif /* PNG_TEXT_SUPPORTED */ #endif /* PNG_PROGRESSIVE_READ_SUPPORTED */ #if defined(__TURBOC__) && !defined(_Windows) && !defined(__FLAT__) /* for the Borland special 64K segment handler */ png_bytepp offset_table_ptr; png_bytep offset_table; png_uint_16 offset_table_number; png_uint_16 offset_table_count; png_uint_16 offset_table_count_free; #endif #if defined(PNG_READ_DITHER_SUPPORTED) png_bytep palette_lookup; /* lookup table for dithering */ png_bytep dither_index; /* index translation for palette files */ #endif #if defined(PNG_READ_DITHER_SUPPORTED) || defined(PNG_hIST_SUPPORTED) png_uint_16p hist; /* histogram */ #endif #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) png_byte heuristic_method; /* heuristic for row filter selection */ png_byte num_prev_filters; /* number of weights for previous rows */ png_bytep prev_filters; /* filter type(s) of previous row(s) */ png_uint_16p filter_weights; /* weight(s) for previous line(s) */ png_uint_16p inv_filter_weights; /* 1/weight(s) for previous line(s) */ png_uint_16p filter_costs; /* relative filter calculation cost */ png_uint_16p inv_filter_costs; /* 1/relative filter calculation cost */ #endif #if defined(PNG_TIME_RFC1123_SUPPORTED) png_charp time_buffer; /* String to hold RFC 1123 time text */ #endif /* New members added in libpng-1.0.6 */ #ifdef PNG_FREE_ME_SUPPORTED png_uint_32 free_me; /* flags items libpng is responsible for freeing */ #endif #if defined(PNG_USER_CHUNKS_SUPPORTED) png_voidp user_chunk_ptr; png_user_chunk_ptr read_user_chunk_fn; /* user read chunk handler */ #endif #if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) int num_chunk_list; png_bytep chunk_list; #endif /* New members added in libpng-1.0.3 */ #if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) png_byte rgb_to_gray_status; /* These were changed from png_byte in libpng-1.0.6 */ png_uint_16 rgb_to_gray_red_coeff; png_uint_16 rgb_to_gray_green_coeff; png_uint_16 rgb_to_gray_blue_coeff; #endif /* New member added in libpng-1.0.4 (renamed in 1.0.9) */ #if defined(PNG_MNG_FEATURES_SUPPORTED) || \ defined(PNG_READ_EMPTY_PLTE_SUPPORTED) || \ defined(PNG_WRITE_EMPTY_PLTE_SUPPORTED) /* changed from png_byte to png_uint_32 at version 1.2.0 */ #ifdef PNG_1_0_X png_byte mng_features_permitted; #else png_uint_32 mng_features_permitted; #endif /* PNG_1_0_X */ #endif /* New member added in libpng-1.0.7 */ #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) png_fixed_point int_gamma; #endif /* New member added in libpng-1.0.9, ifdef'ed out in 1.0.12, enabled in 1.2.0 */ #if defined(PNG_MNG_FEATURES_SUPPORTED) png_byte filter_type; #endif #if defined(PNG_1_0_X) /* New member added in libpng-1.0.10, ifdef'ed out in 1.2.0 */ png_uint_32 row_buf_size; #endif /* New members added in libpng-1.2.0 */ #if defined(PNG_ASSEMBLER_CODE_SUPPORTED) # if !defined(PNG_1_0_X) # if defined(PNG_MMX_CODE_SUPPORTED) png_byte mmx_bitdepth_threshold; png_uint_32 mmx_rowbytes_threshold; # endif png_uint_32 asm_flags; # endif #endif /* New members added in libpng-1.0.2 but first enabled by default in 1.2.0 */ #ifdef PNG_USER_MEM_SUPPORTED png_voidp mem_ptr; /* user supplied struct for mem functions */ png_malloc_ptr malloc_fn; /* function for allocating memory */ png_free_ptr free_fn; /* function for freeing memory */ #endif /* New member added in libpng-1.0.13 and 1.2.0 */ png_bytep big_row_buf; /* buffer to save current (unfiltered) row */ #if defined(PNG_READ_DITHER_SUPPORTED) /* The following three members were added at version 1.0.14 and 1.2.4 */ png_bytep dither_sort; /* working sort array */ png_bytep index_to_palette; /* where the original index currently is */ /* in the palette */ png_bytep palette_to_index; /* which original index points to this */ /* palette color */ #endif /* New members added in libpng-1.0.16 and 1.2.6 */ png_byte compression_type; #ifdef PNG_SET_USER_LIMITS_SUPPORTED png_uint_32 user_width_max; png_uint_32 user_height_max; #endif /* New member added in libpng-1.0.25 and 1.2.17 */ #if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) /* storage for unknown chunk that the library doesn't recognize. */ png_unknown_chunk unknown_chunk; #endif }; /* This triggers a compiler error in png.c, if png.c and png.h * do not agree upon the version number. */ typedef png_structp version_1_2_21; typedef png_struct FAR * FAR * png_structpp; /* Here are the function definitions most commonly used. This is not * the place to find out how to use libpng. See libpng.txt for the * full explanation, see example.c for the summary. This just provides * a simple one line description of the use of each function. */ /* Returns the version number of the library */ extern PNG_EXPORT(png_uint_32,png_access_version_number) PNGARG((void)); /* Tell lib we have already handled the first magic bytes. * Handling more than 8 bytes from the beginning of the file is an error. */ extern PNG_EXPORT(void,png_set_sig_bytes) PNGARG((png_structp png_ptr, int num_bytes)); /* Check sig[start] through sig[start + num_to_check - 1] to see if it's a * PNG file. Returns zero if the supplied bytes match the 8-byte PNG * signature, and non-zero otherwise. Having num_to_check == 0 or * start > 7 will always fail (ie return non-zero). */ extern PNG_EXPORT(int,png_sig_cmp) PNGARG((png_bytep sig, png_size_t start, png_size_t num_to_check)); /* Simple signature checking function. This is the same as calling * png_check_sig(sig, n) := !png_sig_cmp(sig, 0, n). */ extern PNG_EXPORT(int,png_check_sig) PNGARG((png_bytep sig, int num)); /* Allocate and initialize png_ptr struct for reading, and any other memory. */ extern PNG_EXPORT(png_structp,png_create_read_struct) PNGARG((png_const_charp user_png_ver, png_voidp error_ptr, png_error_ptr error_fn, png_error_ptr warn_fn)); /* Allocate and initialize png_ptr struct for writing, and any other memory */ extern PNG_EXPORT(png_structp,png_create_write_struct) PNGARG((png_const_charp user_png_ver, png_voidp error_ptr, png_error_ptr error_fn, png_error_ptr warn_fn)); #ifdef PNG_WRITE_SUPPORTED extern PNG_EXPORT(png_uint_32,png_get_compression_buffer_size) PNGARG((png_structp png_ptr)); #endif #ifdef PNG_WRITE_SUPPORTED extern PNG_EXPORT(void,png_set_compression_buffer_size) PNGARG((png_structp png_ptr, png_uint_32 size)); #endif /* Reset the compression stream */ extern PNG_EXPORT(int,png_reset_zstream) PNGARG((png_structp png_ptr)); /* New functions added in libpng-1.0.2 (not enabled by default until 1.2.0) */ #ifdef PNG_USER_MEM_SUPPORTED extern PNG_EXPORT(png_structp,png_create_read_struct_2) PNGARG((png_const_charp user_png_ver, png_voidp error_ptr, png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr, png_malloc_ptr malloc_fn, png_free_ptr free_fn)); extern PNG_EXPORT(png_structp,png_create_write_struct_2) PNGARG((png_const_charp user_png_ver, png_voidp error_ptr, png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr, png_malloc_ptr malloc_fn, png_free_ptr free_fn)); #endif /* Write a PNG chunk - size, type, (optional) data, CRC. */ extern PNG_EXPORT(void,png_write_chunk) PNGARG((png_structp png_ptr, png_bytep chunk_name, png_bytep data, png_size_t length)); /* Write the start of a PNG chunk - length and chunk name. */ extern PNG_EXPORT(void,png_write_chunk_start) PNGARG((png_structp png_ptr, png_bytep chunk_name, png_uint_32 length)); /* Write the data of a PNG chunk started with png_write_chunk_start(). */ extern PNG_EXPORT(void,png_write_chunk_data) PNGARG((png_structp png_ptr, png_bytep data, png_size_t length)); /* Finish a chunk started with png_write_chunk_start() (includes CRC). */ extern PNG_EXPORT(void,png_write_chunk_end) PNGARG((png_structp png_ptr)); /* Allocate and initialize the info structure */ extern PNG_EXPORT(png_infop,png_create_info_struct) PNGARG((png_structp png_ptr)); #if defined(PNG_1_0_X) || defined (PNG_1_2_X) /* Initialize the info structure (old interface - DEPRECATED) */ extern PNG_EXPORT(void,png_info_init) PNGARG((png_infop info_ptr)); #undef png_info_init #define png_info_init(info_ptr) png_info_init_3(&info_ptr,\ png_sizeof(png_info)); #endif extern PNG_EXPORT(void,png_info_init_3) PNGARG((png_infopp info_ptr, png_size_t png_info_struct_size)); /* Writes all the PNG information before the image. */ extern PNG_EXPORT(void,png_write_info_before_PLTE) PNGARG((png_structp png_ptr, png_infop info_ptr)); extern PNG_EXPORT(void,png_write_info) PNGARG((png_structp png_ptr, png_infop info_ptr)); #ifndef PNG_NO_SEQUENTIAL_READ_SUPPORTED /* read the information before the actual image data. */ extern PNG_EXPORT(void,png_read_info) PNGARG((png_structp png_ptr, png_infop info_ptr)); #endif #if defined(PNG_TIME_RFC1123_SUPPORTED) extern PNG_EXPORT(png_charp,png_convert_to_rfc1123) PNGARG((png_structp png_ptr, png_timep ptime)); #endif #if !defined(_WIN32_WCE) /* "time.h" functions are not supported on WindowsCE */ #if defined(PNG_WRITE_tIME_SUPPORTED) /* convert from a struct tm to png_time */ extern PNG_EXPORT(void,png_convert_from_struct_tm) PNGARG((png_timep ptime, struct tm FAR * ttime)); /* convert from time_t to png_time. Uses gmtime() */ extern PNG_EXPORT(void,png_convert_from_time_t) PNGARG((png_timep ptime, time_t ttime)); #endif /* PNG_WRITE_tIME_SUPPORTED */ #endif /* _WIN32_WCE */ #if defined(PNG_READ_EXPAND_SUPPORTED) /* Expand data to 24-bit RGB, or 8-bit grayscale, with alpha if available. */ extern PNG_EXPORT(void,png_set_expand) PNGARG((png_structp png_ptr)); #if !defined(PNG_1_0_X) extern PNG_EXPORT(void,png_set_expand_gray_1_2_4_to_8) PNGARG((png_structp png_ptr)); #endif extern PNG_EXPORT(void,png_set_palette_to_rgb) PNGARG((png_structp png_ptr)); extern PNG_EXPORT(void,png_set_tRNS_to_alpha) PNGARG((png_structp png_ptr)); #if defined(PNG_1_0_X) || defined (PNG_1_2_X) /* Deprecated */ extern PNG_EXPORT(void,png_set_gray_1_2_4_to_8) PNGARG((png_structp png_ptr)); #endif #endif #if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED) /* Use blue, green, red order for pixels. */ extern PNG_EXPORT(void,png_set_bgr) PNGARG((png_structp png_ptr)); #endif #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) /* Expand the grayscale to 24-bit RGB if necessary. */ extern PNG_EXPORT(void,png_set_gray_to_rgb) PNGARG((png_structp png_ptr)); #endif #if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) /* Reduce RGB to grayscale. */ #ifdef PNG_FLOATING_POINT_SUPPORTED extern PNG_EXPORT(void,png_set_rgb_to_gray) PNGARG((png_structp png_ptr, int error_action, double red, double green )); #endif extern PNG_EXPORT(void,png_set_rgb_to_gray_fixed) PNGARG((png_structp png_ptr, int error_action, png_fixed_point red, png_fixed_point green )); extern PNG_EXPORT(png_byte,png_get_rgb_to_gray_status) PNGARG((png_structp png_ptr)); #endif extern PNG_EXPORT(void,png_build_grayscale_palette) PNGARG((int bit_depth, png_colorp palette)); #if defined(PNG_READ_STRIP_ALPHA_SUPPORTED) extern PNG_EXPORT(void,png_set_strip_alpha) PNGARG((png_structp png_ptr)); #endif #if defined(PNG_READ_SWAP_ALPHA_SUPPORTED) || \ defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED) extern PNG_EXPORT(void,png_set_swap_alpha) PNGARG((png_structp png_ptr)); #endif #if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) || \ defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED) extern PNG_EXPORT(void,png_set_invert_alpha) PNGARG((png_structp png_ptr)); #endif #if defined(PNG_READ_FILLER_SUPPORTED) || defined(PNG_WRITE_FILLER_SUPPORTED) /* Add a filler byte to 8-bit Gray or 24-bit RGB images. */ extern PNG_EXPORT(void,png_set_filler) PNGARG((png_structp png_ptr, png_uint_32 filler, int flags)); /* The values of the PNG_FILLER_ defines should NOT be changed */ #define PNG_FILLER_BEFORE 0 #define PNG_FILLER_AFTER 1 /* Add an alpha byte to 8-bit Gray or 24-bit RGB images. */ #if !defined(PNG_1_0_X) extern PNG_EXPORT(void,png_set_add_alpha) PNGARG((png_structp png_ptr, png_uint_32 filler, int flags)); #endif #endif /* PNG_READ_FILLER_SUPPORTED || PNG_WRITE_FILLER_SUPPORTED */ #if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED) /* Swap bytes in 16-bit depth files. */ extern PNG_EXPORT(void,png_set_swap) PNGARG((png_structp png_ptr)); #endif #if defined(PNG_READ_PACK_SUPPORTED) || defined(PNG_WRITE_PACK_SUPPORTED) /* Use 1 byte per pixel in 1, 2, or 4-bit depth files. */ extern PNG_EXPORT(void,png_set_packing) PNGARG((png_structp png_ptr)); #endif #if defined(PNG_READ_PACKSWAP_SUPPORTED) || defined(PNG_WRITE_PACKSWAP_SUPPORTED) /* Swap packing order of pixels in bytes. */ extern PNG_EXPORT(void,png_set_packswap) PNGARG((png_structp png_ptr)); #endif #if defined(PNG_READ_SHIFT_SUPPORTED) || defined(PNG_WRITE_SHIFT_SUPPORTED) /* Converts files to legal bit depths. */ extern PNG_EXPORT(void,png_set_shift) PNGARG((png_structp png_ptr, png_color_8p true_bits)); #endif #if defined(PNG_READ_INTERLACING_SUPPORTED) || \ defined(PNG_WRITE_INTERLACING_SUPPORTED) /* Have the code handle the interlacing. Returns the number of passes. */ extern PNG_EXPORT(int,png_set_interlace_handling) PNGARG((png_structp png_ptr)); #endif #if defined(PNG_READ_INVERT_SUPPORTED) || defined(PNG_WRITE_INVERT_SUPPORTED) /* Invert monochrome files */ extern PNG_EXPORT(void,png_set_invert_mono) PNGARG((png_structp png_ptr)); #endif #if defined(PNG_READ_BACKGROUND_SUPPORTED) /* Handle alpha and tRNS by replacing with a background color. */ #ifdef PNG_FLOATING_POINT_SUPPORTED extern PNG_EXPORT(void,png_set_background) PNGARG((png_structp png_ptr, png_color_16p background_color, int background_gamma_code, int need_expand, double background_gamma)); #endif #define PNG_BACKGROUND_GAMMA_UNKNOWN 0 #define PNG_BACKGROUND_GAMMA_SCREEN 1 #define PNG_BACKGROUND_GAMMA_FILE 2 #define PNG_BACKGROUND_GAMMA_UNIQUE 3 #endif #if defined(PNG_READ_16_TO_8_SUPPORTED) /* strip the second byte of information from a 16-bit depth file. */ extern PNG_EXPORT(void,png_set_strip_16) PNGARG((png_structp png_ptr)); #endif #if defined(PNG_READ_DITHER_SUPPORTED) /* Turn on dithering, and reduce the palette to the number of colors available. */ extern PNG_EXPORT(void,png_set_dither) PNGARG((png_structp png_ptr, png_colorp palette, int num_palette, int maximum_colors, png_uint_16p histogram, int full_dither)); #endif #if defined(PNG_READ_GAMMA_SUPPORTED) /* Handle gamma correction. Screen_gamma=(display_exponent) */ #ifdef PNG_FLOATING_POINT_SUPPORTED extern PNG_EXPORT(void,png_set_gamma) PNGARG((png_structp png_ptr, double screen_gamma, double default_file_gamma)); #endif #endif #if defined(PNG_1_0_X) || defined (PNG_1_2_X) #if defined(PNG_READ_EMPTY_PLTE_SUPPORTED) || \ defined(PNG_WRITE_EMPTY_PLTE_SUPPORTED) /* Permit or disallow empty PLTE (0: not permitted, 1: permitted) */ /* Deprecated and will be removed. Use png_permit_mng_features() instead. */ extern PNG_EXPORT(void,png_permit_empty_plte) PNGARG((png_structp png_ptr, int empty_plte_permitted)); #endif #endif #if defined(PNG_WRITE_FLUSH_SUPPORTED) /* Set how many lines between output flushes - 0 for no flushing */ extern PNG_EXPORT(void,png_set_flush) PNGARG((png_structp png_ptr, int nrows)); /* Flush the current PNG output buffer */ extern PNG_EXPORT(void,png_write_flush) PNGARG((png_structp png_ptr)); #endif /* optional update palette with requested transformations */ extern PNG_EXPORT(void,png_start_read_image) PNGARG((png_structp png_ptr)); /* optional call to update the users info structure */ extern PNG_EXPORT(void,png_read_update_info) PNGARG((png_structp png_ptr, png_infop info_ptr)); #ifndef PNG_NO_SEQUENTIAL_READ_SUPPORTED /* read one or more rows of image data. */ extern PNG_EXPORT(void,png_read_rows) PNGARG((png_structp png_ptr, png_bytepp row, png_bytepp display_row, png_uint_32 num_rows)); #endif #ifndef PNG_NO_SEQUENTIAL_READ_SUPPORTED /* read a row of data. */ extern PNG_EXPORT(void,png_read_row) PNGARG((png_structp png_ptr, png_bytep row, png_bytep display_row)); #endif #ifndef PNG_NO_SEQUENTIAL_READ_SUPPORTED /* read the whole image into memory at once. */ extern PNG_EXPORT(void,png_read_image) PNGARG((png_structp png_ptr, png_bytepp image)); #endif /* write a row of image data */ extern PNG_EXPORT(void,png_write_row) PNGARG((png_structp png_ptr, png_bytep row)); /* write a few rows of image data */ extern PNG_EXPORT(void,png_write_rows) PNGARG((png_structp png_ptr, png_bytepp row, png_uint_32 num_rows)); /* write the image data */ extern PNG_EXPORT(void,png_write_image) PNGARG((png_structp png_ptr, png_bytepp image)); /* writes the end of the PNG file. */ extern PNG_EXPORT(void,png_write_end) PNGARG((png_structp png_ptr, png_infop info_ptr)); #ifndef PNG_NO_SEQUENTIAL_READ_SUPPORTED /* read the end of the PNG file. */ extern PNG_EXPORT(void,png_read_end) PNGARG((png_structp png_ptr, png_infop info_ptr)); #endif /* free any memory associated with the png_info_struct */ extern PNG_EXPORT(void,png_destroy_info_struct) PNGARG((png_structp png_ptr, png_infopp info_ptr_ptr)); /* free any memory associated with the png_struct and the png_info_structs */ extern PNG_EXPORT(void,png_destroy_read_struct) PNGARG((png_structpp png_ptr_ptr, png_infopp info_ptr_ptr, png_infopp end_info_ptr_ptr)); /* free all memory used by the read (old method - NOT DLL EXPORTED) */ extern void png_read_destroy PNGARG((png_structp png_ptr, png_infop info_ptr, png_infop end_info_ptr)); /* free any memory associated with the png_struct and the png_info_structs */ extern PNG_EXPORT(void,png_destroy_write_struct) PNGARG((png_structpp png_ptr_ptr, png_infopp info_ptr_ptr)); /* free any memory used in png_ptr struct (old method - NOT DLL EXPORTED) */ extern void png_write_destroy PNGARG((png_structp png_ptr)); /* set the libpng method of handling chunk CRC errors */ extern PNG_EXPORT(void,png_set_crc_action) PNGARG((png_structp png_ptr, int crit_action, int ancil_action)); /* Values for png_set_crc_action() to say how to handle CRC errors in * ancillary and critical chunks, and whether to use the data contained * therein. Note that it is impossible to "discard" data in a critical * chunk. For versions prior to 0.90, the action was always error/quit, * whereas in version 0.90 and later, the action for CRC errors in ancillary * chunks is warn/discard. These values should NOT be changed. * * value action:critical action:ancillary */ #define PNG_CRC_DEFAULT 0 /* error/quit warn/discard data */ #define PNG_CRC_ERROR_QUIT 1 /* error/quit error/quit */ #define PNG_CRC_WARN_DISCARD 2 /* (INVALID) warn/discard data */ #define PNG_CRC_WARN_USE 3 /* warn/use data warn/use data */ #define PNG_CRC_QUIET_USE 4 /* quiet/use data quiet/use data */ #define PNG_CRC_NO_CHANGE 5 /* use current value use current value */ /* These functions give the user control over the scan-line filtering in * libpng and the compression methods used by zlib. These functions are * mainly useful for testing, as the defaults should work with most users. * Those users who are tight on memory or want faster performance at the * expense of compression can modify them. See the compression library * header file (zlib.h) for an explination of the compression functions. */ /* set the filtering method(s) used by libpng. Currently, the only valid * value for "method" is 0. */ extern PNG_EXPORT(void,png_set_filter) PNGARG((png_structp png_ptr, int method, int filters)); /* Flags for png_set_filter() to say which filters to use. The flags * are chosen so that they don't conflict with real filter types * below, in case they are supplied instead of the #defined constants. * These values should NOT be changed. */ #define PNG_NO_FILTERS 0x00 #define PNG_FILTER_NONE 0x08 #define PNG_FILTER_SUB 0x10 #define PNG_FILTER_UP 0x20 #define PNG_FILTER_AVG 0x40 #define PNG_FILTER_PAETH 0x80 #define PNG_ALL_FILTERS (PNG_FILTER_NONE | PNG_FILTER_SUB | PNG_FILTER_UP | \ PNG_FILTER_AVG | PNG_FILTER_PAETH) /* Filter values (not flags) - used in pngwrite.c, pngwutil.c for now. * These defines should NOT be changed. */ #define PNG_FILTER_VALUE_NONE 0 #define PNG_FILTER_VALUE_SUB 1 #define PNG_FILTER_VALUE_UP 2 #define PNG_FILTER_VALUE_AVG 3 #define PNG_FILTER_VALUE_PAETH 4 #define PNG_FILTER_VALUE_LAST 5 #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) /* EXPERIMENTAL */ /* The "heuristic_method" is given by one of the PNG_FILTER_HEURISTIC_ * defines, either the default (minimum-sum-of-absolute-differences), or * the experimental method (weighted-minimum-sum-of-absolute-differences). * * Weights are factors >= 1.0, indicating how important it is to keep the * filter type consistent between rows. Larger numbers mean the current * filter is that many times as likely to be the same as the "num_weights" * previous filters. This is cumulative for each previous row with a weight. * There needs to be "num_weights" values in "filter_weights", or it can be * NULL if the weights aren't being specified. Weights have no influence on * the selection of the first row filter. Well chosen weights can (in theory) * improve the compression for a given image. * * Costs are factors >= 1.0 indicating the relative decoding costs of a * filter type. Higher costs indicate more decoding expense, and are * therefore less likely to be selected over a filter with lower computational * costs. There needs to be a value in "filter_costs" for each valid filter * type (given by PNG_FILTER_VALUE_LAST), or it can be NULL if you aren't * setting the costs. Costs try to improve the speed of decompression without * unduly increasing the compressed image size. * * A negative weight or cost indicates the default value is to be used, and * values in the range [0.0, 1.0) indicate the value is to remain unchanged. * The default values for both weights and costs are currently 1.0, but may * change if good general weighting/cost heuristics can be found. If both * the weights and costs are set to 1.0, this degenerates the WEIGHTED method * to the UNWEIGHTED method, but with added encoding time/computation. */ #ifdef PNG_FLOATING_POINT_SUPPORTED extern PNG_EXPORT(void,png_set_filter_heuristics) PNGARG((png_structp png_ptr, int heuristic_method, int num_weights, png_doublep filter_weights, png_doublep filter_costs)); #endif #endif /* PNG_WRITE_WEIGHTED_FILTER_SUPPORTED */ /* Heuristic used for row filter selection. These defines should NOT be * changed. */ #define PNG_FILTER_HEURISTIC_DEFAULT 0 /* Currently "UNWEIGHTED" */ #define PNG_FILTER_HEURISTIC_UNWEIGHTED 1 /* Used by libpng < 0.95 */ #define PNG_FILTER_HEURISTIC_WEIGHTED 2 /* Experimental feature */ #define PNG_FILTER_HEURISTIC_LAST 3 /* Not a valid value */ /* Set the library compression level. Currently, valid values range from * 0 - 9, corresponding directly to the zlib compression levels 0 - 9 * (0 - no compression, 9 - "maximal" compression). Note that tests have * shown that zlib compression levels 3-6 usually perform as well as level 9 * for PNG images, and do considerably fewer caclulations. In the future, * these values may not correspond directly to the zlib compression levels. */ extern PNG_EXPORT(void,png_set_compression_level) PNGARG((png_structp png_ptr, int level)); extern PNG_EXPORT(void,png_set_compression_mem_level) PNGARG((png_structp png_ptr, int mem_level)); extern PNG_EXPORT(void,png_set_compression_strategy) PNGARG((png_structp png_ptr, int strategy)); extern PNG_EXPORT(void,png_set_compression_window_bits) PNGARG((png_structp png_ptr, int window_bits)); extern PNG_EXPORT(void,png_set_compression_method) PNGARG((png_structp png_ptr, int method)); /* These next functions are called for input/output, memory, and error * handling. They are in the file pngrio.c, pngwio.c, and pngerror.c, * and call standard C I/O routines such as fread(), fwrite(), and * fprintf(). These functions can be made to use other I/O routines * at run time for those applications that need to handle I/O in a * different manner by calling png_set_???_fn(). See libpng.txt for * more information. */ #if !defined(PNG_NO_STDIO) /* Initialize the input/output for the PNG file to the default functions. */ extern PNG_EXPORT(void,png_init_io) PNGARG((png_structp png_ptr, png_FILE_p fp)); #endif /* Replace the (error and abort), and warning functions with user * supplied functions. If no messages are to be printed you must still * write and use replacement functions. The replacement error_fn should * still do a longjmp to the last setjmp location if you are using this * method of error handling. If error_fn or warning_fn is NULL, the * default function will be used. */ extern PNG_EXPORT(void,png_set_error_fn) PNGARG((png_structp png_ptr, png_voidp error_ptr, png_error_ptr error_fn, png_error_ptr warning_fn)); /* Return the user pointer associated with the error functions */ extern PNG_EXPORT(png_voidp,png_get_error_ptr) PNGARG((png_structp png_ptr)); /* Replace the default data output functions with a user supplied one(s). * If buffered output is not used, then output_flush_fn can be set to NULL. * If PNG_WRITE_FLUSH_SUPPORTED is not defined at libpng compile time * output_flush_fn will be ignored (and thus can be NULL). */ extern PNG_EXPORT(void,png_set_write_fn) PNGARG((png_structp png_ptr, png_voidp io_ptr, png_rw_ptr write_data_fn, png_flush_ptr output_flush_fn)); /* Replace the default data input function with a user supplied one. */ extern PNG_EXPORT(void,png_set_read_fn) PNGARG((png_structp png_ptr, png_voidp io_ptr, png_rw_ptr read_data_fn)); /* Return the user pointer associated with the I/O functions */ extern PNG_EXPORT(png_voidp,png_get_io_ptr) PNGARG((png_structp png_ptr)); extern PNG_EXPORT(void,png_set_read_status_fn) PNGARG((png_structp png_ptr, png_read_status_ptr read_row_fn)); extern PNG_EXPORT(void,png_set_write_status_fn) PNGARG((png_structp png_ptr, png_write_status_ptr write_row_fn)); #ifdef PNG_USER_MEM_SUPPORTED /* Replace the default memory allocation functions with user supplied one(s). */ extern PNG_EXPORT(void,png_set_mem_fn) PNGARG((png_structp png_ptr, png_voidp mem_ptr, png_malloc_ptr malloc_fn, png_free_ptr free_fn)); /* Return the user pointer associated with the memory functions */ extern PNG_EXPORT(png_voidp,png_get_mem_ptr) PNGARG((png_structp png_ptr)); #endif #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_LEGACY_SUPPORTED) extern PNG_EXPORT(void,png_set_read_user_transform_fn) PNGARG((png_structp png_ptr, png_user_transform_ptr read_user_transform_fn)); #endif #if defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_LEGACY_SUPPORTED) extern PNG_EXPORT(void,png_set_write_user_transform_fn) PNGARG((png_structp png_ptr, png_user_transform_ptr write_user_transform_fn)); #endif #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_LEGACY_SUPPORTED) extern PNG_EXPORT(void,png_set_user_transform_info) PNGARG((png_structp png_ptr, png_voidp user_transform_ptr, int user_transform_depth, int user_transform_channels)); /* Return the user pointer associated with the user transform functions */ extern PNG_EXPORT(png_voidp,png_get_user_transform_ptr) PNGARG((png_structp png_ptr)); #endif #ifdef PNG_USER_CHUNKS_SUPPORTED extern PNG_EXPORT(void,png_set_read_user_chunk_fn) PNGARG((png_structp png_ptr, png_voidp user_chunk_ptr, png_user_chunk_ptr read_user_chunk_fn)); extern PNG_EXPORT(png_voidp,png_get_user_chunk_ptr) PNGARG((png_structp png_ptr)); #endif #ifdef PNG_PROGRESSIVE_READ_SUPPORTED /* Sets the function callbacks for the push reader, and a pointer to a * user-defined structure available to the callback functions. */ extern PNG_EXPORT(void,png_set_progressive_read_fn) PNGARG((png_structp png_ptr, png_voidp progressive_ptr, png_progressive_info_ptr info_fn, png_progressive_row_ptr row_fn, png_progressive_end_ptr end_fn)); /* returns the user pointer associated with the push read functions */ extern PNG_EXPORT(png_voidp,png_get_progressive_ptr) PNGARG((png_structp png_ptr)); /* function to be called when data becomes available */ extern PNG_EXPORT(void,png_process_data) PNGARG((png_structp png_ptr, png_infop info_ptr, png_bytep buffer, png_size_t buffer_size)); /* function that combines rows. Not very much different than the * png_combine_row() call. Is this even used????? */ extern PNG_EXPORT(void,png_progressive_combine_row) PNGARG((png_structp png_ptr, png_bytep old_row, png_bytep new_row)); #endif /* PNG_PROGRESSIVE_READ_SUPPORTED */ extern PNG_EXPORT(png_voidp,png_malloc) PNGARG((png_structp png_ptr, png_uint_32 size)); #if defined(PNG_1_0_X) # define png_malloc_warn png_malloc #else /* Added at libpng version 1.2.4 */ extern PNG_EXPORT(png_voidp,png_malloc_warn) PNGARG((png_structp png_ptr, png_uint_32 size)); #endif /* frees a pointer allocated by png_malloc() */ extern PNG_EXPORT(void,png_free) PNGARG((png_structp png_ptr, png_voidp ptr)); #if defined(PNG_1_0_X) /* Function to allocate memory for zlib. */ extern PNG_EXPORT(voidpf,png_zalloc) PNGARG((voidpf png_ptr, uInt items, uInt size)); /* Function to free memory for zlib */ extern PNG_EXPORT(void,png_zfree) PNGARG((voidpf png_ptr, voidpf ptr)); #endif /* Free data that was allocated internally */ extern PNG_EXPORT(void,png_free_data) PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 free_me, int num)); #ifdef PNG_FREE_ME_SUPPORTED /* Reassign responsibility for freeing existing data, whether allocated * by libpng or by the application */ extern PNG_EXPORT(void,png_data_freer) PNGARG((png_structp png_ptr, png_infop info_ptr, int freer, png_uint_32 mask)); #endif /* assignments for png_data_freer */ #define PNG_DESTROY_WILL_FREE_DATA 1 #define PNG_SET_WILL_FREE_DATA 1 #define PNG_USER_WILL_FREE_DATA 2 /* Flags for png_ptr->free_me and info_ptr->free_me */ #define PNG_FREE_HIST 0x0008 #define PNG_FREE_ICCP 0x0010 #define PNG_FREE_SPLT 0x0020 #define PNG_FREE_ROWS 0x0040 #define PNG_FREE_PCAL 0x0080 #define PNG_FREE_SCAL 0x0100 #define PNG_FREE_UNKN 0x0200 #define PNG_FREE_LIST 0x0400 #define PNG_FREE_PLTE 0x1000 #define PNG_FREE_TRNS 0x2000 #define PNG_FREE_TEXT 0x4000 #define PNG_FREE_ALL 0x7fff #define PNG_FREE_MUL 0x4220 /* PNG_FREE_SPLT|PNG_FREE_TEXT|PNG_FREE_UNKN */ #ifdef PNG_USER_MEM_SUPPORTED extern PNG_EXPORT(png_voidp,png_malloc_default) PNGARG((png_structp png_ptr, png_uint_32 size)); extern PNG_EXPORT(void,png_free_default) PNGARG((png_structp png_ptr, png_voidp ptr)); #endif extern PNG_EXPORT(png_voidp,png_memcpy_check) PNGARG((png_structp png_ptr, png_voidp s1, png_voidp s2, png_uint_32 size)); extern PNG_EXPORT(png_voidp,png_memset_check) PNGARG((png_structp png_ptr, png_voidp s1, int value, png_uint_32 size)); #if defined(USE_FAR_KEYWORD) /* memory model conversion function */ extern void *png_far_to_near PNGARG((png_structp png_ptr,png_voidp ptr, int check)); #endif /* USE_FAR_KEYWORD */ #ifndef PNG_NO_ERROR_TEXT /* Fatal error in PNG image of libpng - can't continue */ extern PNG_EXPORT(void,png_error) PNGARG((png_structp png_ptr, png_const_charp error_message)); /* The same, but the chunk name is prepended to the error string. */ extern PNG_EXPORT(void,png_chunk_error) PNGARG((png_structp png_ptr, png_const_charp error_message)); #else /* Fatal error in PNG image of libpng - can't continue */ extern PNG_EXPORT(void,png_err) PNGARG((png_structp png_ptr)); #endif #ifndef PNG_NO_WARNINGS /* Non-fatal error in libpng. Can continue, but may have a problem. */ extern PNG_EXPORT(void,png_warning) PNGARG((png_structp png_ptr, png_const_charp warning_message)); #ifdef PNG_READ_SUPPORTED /* Non-fatal error in libpng, chunk name is prepended to message. */ extern PNG_EXPORT(void,png_chunk_warning) PNGARG((png_structp png_ptr, png_const_charp warning_message)); #endif /* PNG_READ_SUPPORTED */ #endif /* PNG_NO_WARNINGS */ /* The png_set_ functions are for storing values in the png_info_struct. * Similarly, the png_get_ calls are used to read values from the * png_info_struct, either storing the parameters in the passed variables, or * setting pointers into the png_info_struct where the data is stored. The * png_get_ functions return a non-zero value if the data was available * in info_ptr, or return zero and do not change any of the parameters if the * data was not available. * * These functions should be used instead of directly accessing png_info * to avoid problems with future changes in the size and internal layout of * png_info_struct. */ /* Returns "flag" if chunk data is valid in info_ptr. */ extern PNG_EXPORT(png_uint_32,png_get_valid) PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 flag)); /* Returns number of bytes needed to hold a transformed row. */ extern PNG_EXPORT(png_uint_32,png_get_rowbytes) PNGARG((png_structp png_ptr, png_infop info_ptr)); #if defined(PNG_INFO_IMAGE_SUPPORTED) /* Returns row_pointers, which is an array of pointers to scanlines that was returned from png_read_png(). */ extern PNG_EXPORT(png_bytepp,png_get_rows) PNGARG((png_structp png_ptr, png_infop info_ptr)); /* Set row_pointers, which is an array of pointers to scanlines for use by png_write_png(). */ extern PNG_EXPORT(void,png_set_rows) PNGARG((png_structp png_ptr, png_infop info_ptr, png_bytepp row_pointers)); #endif /* Returns number of color channels in image. */ extern PNG_EXPORT(png_byte,png_get_channels) PNGARG((png_structp png_ptr, png_infop info_ptr)); #ifdef PNG_EASY_ACCESS_SUPPORTED /* Returns image width in pixels. */ extern PNG_EXPORT(png_uint_32, png_get_image_width) PNGARG((png_structp png_ptr, png_infop info_ptr)); /* Returns image height in pixels. */ extern PNG_EXPORT(png_uint_32, png_get_image_height) PNGARG((png_structp png_ptr, png_infop info_ptr)); /* Returns image bit_depth. */ extern PNG_EXPORT(png_byte, png_get_bit_depth) PNGARG((png_structp png_ptr, png_infop info_ptr)); /* Returns image color_type. */ extern PNG_EXPORT(png_byte, png_get_color_type) PNGARG((png_structp png_ptr, png_infop info_ptr)); /* Returns image filter_type. */ extern PNG_EXPORT(png_byte, png_get_filter_type) PNGARG((png_structp png_ptr, png_infop info_ptr)); /* Returns image interlace_type. */ extern PNG_EXPORT(png_byte, png_get_interlace_type) PNGARG((png_structp png_ptr, png_infop info_ptr)); /* Returns image compression_type. */ extern PNG_EXPORT(png_byte, png_get_compression_type) PNGARG((png_structp png_ptr, png_infop info_ptr)); /* Returns image resolution in pixels per meter, from pHYs chunk data. */ extern PNG_EXPORT(png_uint_32, png_get_pixels_per_meter) PNGARG((png_structp png_ptr, png_infop info_ptr)); extern PNG_EXPORT(png_uint_32, png_get_x_pixels_per_meter) PNGARG((png_structp png_ptr, png_infop info_ptr)); extern PNG_EXPORT(png_uint_32, png_get_y_pixels_per_meter) PNGARG((png_structp png_ptr, png_infop info_ptr)); /* Returns pixel aspect ratio, computed from pHYs chunk data. */ #ifdef PNG_FLOATING_POINT_SUPPORTED extern PNG_EXPORT(float, png_get_pixel_aspect_ratio) PNGARG((png_structp png_ptr, png_infop info_ptr)); #endif /* Returns image x, y offset in pixels or microns, from oFFs chunk data. */ extern PNG_EXPORT(png_int_32, png_get_x_offset_pixels) PNGARG((png_structp png_ptr, png_infop info_ptr)); extern PNG_EXPORT(png_int_32, png_get_y_offset_pixels) PNGARG((png_structp png_ptr, png_infop info_ptr)); extern PNG_EXPORT(png_int_32, png_get_x_offset_microns) PNGARG((png_structp png_ptr, png_infop info_ptr)); extern PNG_EXPORT(png_int_32, png_get_y_offset_microns) PNGARG((png_structp png_ptr, png_infop info_ptr)); #endif /* PNG_EASY_ACCESS_SUPPORTED */ /* Returns pointer to signature string read from PNG header */ extern PNG_EXPORT(png_bytep,png_get_signature) PNGARG((png_structp png_ptr, png_infop info_ptr)); #if defined(PNG_bKGD_SUPPORTED) extern PNG_EXPORT(png_uint_32,png_get_bKGD) PNGARG((png_structp png_ptr, png_infop info_ptr, png_color_16p *background)); #endif #if defined(PNG_bKGD_SUPPORTED) extern PNG_EXPORT(void,png_set_bKGD) PNGARG((png_structp png_ptr, png_infop info_ptr, png_color_16p background)); #endif #if defined(PNG_cHRM_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED extern PNG_EXPORT(png_uint_32,png_get_cHRM) PNGARG((png_structp png_ptr, png_infop info_ptr, double *white_x, double *white_y, double *red_x, double *red_y, double *green_x, double *green_y, double *blue_x, double *blue_y)); #endif #ifdef PNG_FIXED_POINT_SUPPORTED extern PNG_EXPORT(png_uint_32,png_get_cHRM_fixed) PNGARG((png_structp png_ptr, png_infop info_ptr, png_fixed_point *int_white_x, png_fixed_point *int_white_y, png_fixed_point *int_red_x, png_fixed_point *int_red_y, png_fixed_point *int_green_x, png_fixed_point *int_green_y, png_fixed_point *int_blue_x, png_fixed_point *int_blue_y)); #endif #endif #if defined(PNG_cHRM_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED extern PNG_EXPORT(void,png_set_cHRM) PNGARG((png_structp png_ptr, png_infop info_ptr, double white_x, double white_y, double red_x, double red_y, double green_x, double green_y, double blue_x, double blue_y)); #endif #ifdef PNG_FIXED_POINT_SUPPORTED extern PNG_EXPORT(void,png_set_cHRM_fixed) PNGARG((png_structp png_ptr, png_infop info_ptr, png_fixed_point int_white_x, png_fixed_point int_white_y, png_fixed_point int_red_x, png_fixed_point int_red_y, png_fixed_point int_green_x, png_fixed_point int_green_y, png_fixed_point int_blue_x, png_fixed_point int_blue_y)); #endif #endif #if defined(PNG_gAMA_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED extern PNG_EXPORT(png_uint_32,png_get_gAMA) PNGARG((png_structp png_ptr, png_infop info_ptr, double *file_gamma)); #endif extern PNG_EXPORT(png_uint_32,png_get_gAMA_fixed) PNGARG((png_structp png_ptr, png_infop info_ptr, png_fixed_point *int_file_gamma)); #endif #if defined(PNG_gAMA_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED extern PNG_EXPORT(void,png_set_gAMA) PNGARG((png_structp png_ptr, png_infop info_ptr, double file_gamma)); #endif extern PNG_EXPORT(void,png_set_gAMA_fixed) PNGARG((png_structp png_ptr, png_infop info_ptr, png_fixed_point int_file_gamma)); #endif #if defined(PNG_hIST_SUPPORTED) extern PNG_EXPORT(png_uint_32,png_get_hIST) PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_16p *hist)); #endif #if defined(PNG_hIST_SUPPORTED) extern PNG_EXPORT(void,png_set_hIST) PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_16p hist)); #endif extern PNG_EXPORT(png_uint_32,png_get_IHDR) PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 *width, png_uint_32 *height, int *bit_depth, int *color_type, int *interlace_method, int *compression_method, int *filter_method)); extern PNG_EXPORT(void,png_set_IHDR) PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 width, png_uint_32 height, int bit_depth, int color_type, int interlace_method, int compression_method, int filter_method)); #if defined(PNG_oFFs_SUPPORTED) extern PNG_EXPORT(png_uint_32,png_get_oFFs) PNGARG((png_structp png_ptr, png_infop info_ptr, png_int_32 *offset_x, png_int_32 *offset_y, int *unit_type)); #endif #if defined(PNG_oFFs_SUPPORTED) extern PNG_EXPORT(void,png_set_oFFs) PNGARG((png_structp png_ptr, png_infop info_ptr, png_int_32 offset_x, png_int_32 offset_y, int unit_type)); #endif #if defined(PNG_pCAL_SUPPORTED) extern PNG_EXPORT(png_uint_32,png_get_pCAL) PNGARG((png_structp png_ptr, png_infop info_ptr, png_charp *purpose, png_int_32 *X0, png_int_32 *X1, int *type, int *nparams, png_charp *units, png_charpp *params)); #endif #if defined(PNG_pCAL_SUPPORTED) extern PNG_EXPORT(void,png_set_pCAL) PNGARG((png_structp png_ptr, png_infop info_ptr, png_charp purpose, png_int_32 X0, png_int_32 X1, int type, int nparams, png_charp units, png_charpp params)); #endif #if defined(PNG_pHYs_SUPPORTED) extern PNG_EXPORT(png_uint_32,png_get_pHYs) PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 *res_x, png_uint_32 *res_y, int *unit_type)); #endif #if defined(PNG_pHYs_SUPPORTED) extern PNG_EXPORT(void,png_set_pHYs) PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 res_x, png_uint_32 res_y, int unit_type)); #endif extern PNG_EXPORT(png_uint_32,png_get_PLTE) PNGARG((png_structp png_ptr, png_infop info_ptr, png_colorp *palette, int *num_palette)); extern PNG_EXPORT(void,png_set_PLTE) PNGARG((png_structp png_ptr, png_infop info_ptr, png_colorp palette, int num_palette)); #if defined(PNG_sBIT_SUPPORTED) extern PNG_EXPORT(png_uint_32,png_get_sBIT) PNGARG((png_structp png_ptr, png_infop info_ptr, png_color_8p *sig_bit)); #endif #if defined(PNG_sBIT_SUPPORTED) extern PNG_EXPORT(void,png_set_sBIT) PNGARG((png_structp png_ptr, png_infop info_ptr, png_color_8p sig_bit)); #endif #if defined(PNG_sRGB_SUPPORTED) extern PNG_EXPORT(png_uint_32,png_get_sRGB) PNGARG((png_structp png_ptr, png_infop info_ptr, int *intent)); #endif #if defined(PNG_sRGB_SUPPORTED) extern PNG_EXPORT(void,png_set_sRGB) PNGARG((png_structp png_ptr, png_infop info_ptr, int intent)); extern PNG_EXPORT(void,png_set_sRGB_gAMA_and_cHRM) PNGARG((png_structp png_ptr, png_infop info_ptr, int intent)); #endif #if defined(PNG_iCCP_SUPPORTED) extern PNG_EXPORT(png_uint_32,png_get_iCCP) PNGARG((png_structp png_ptr, png_infop info_ptr, png_charpp name, int *compression_type, png_charpp profile, png_uint_32 *proflen)); /* Note to maintainer: profile should be png_bytepp */ #endif #if defined(PNG_iCCP_SUPPORTED) extern PNG_EXPORT(void,png_set_iCCP) PNGARG((png_structp png_ptr, png_infop info_ptr, png_charp name, int compression_type, png_charp profile, png_uint_32 proflen)); /* Note to maintainer: profile should be png_bytep */ #endif #if defined(PNG_sPLT_SUPPORTED) extern PNG_EXPORT(png_uint_32,png_get_sPLT) PNGARG((png_structp png_ptr, png_infop info_ptr, png_sPLT_tpp entries)); #endif #if defined(PNG_sPLT_SUPPORTED) extern PNG_EXPORT(void,png_set_sPLT) PNGARG((png_structp png_ptr, png_infop info_ptr, png_sPLT_tp entries, int nentries)); #endif #if defined(PNG_TEXT_SUPPORTED) /* png_get_text also returns the number of text chunks in *num_text */ extern PNG_EXPORT(png_uint_32,png_get_text) PNGARG((png_structp png_ptr, png_infop info_ptr, png_textp *text_ptr, int *num_text)); #endif /* * Note while png_set_text() will accept a structure whose text, * language, and translated keywords are NULL pointers, the structure * returned by png_get_text will always contain regular * zero-terminated C strings. They might be empty strings but * they will never be NULL pointers. */ #if defined(PNG_TEXT_SUPPORTED) extern PNG_EXPORT(void,png_set_text) PNGARG((png_structp png_ptr, png_infop info_ptr, png_textp text_ptr, int num_text)); #endif #if defined(PNG_tIME_SUPPORTED) extern PNG_EXPORT(png_uint_32,png_get_tIME) PNGARG((png_structp png_ptr, png_infop info_ptr, png_timep *mod_time)); #endif #if defined(PNG_tIME_SUPPORTED) extern PNG_EXPORT(void,png_set_tIME) PNGARG((png_structp png_ptr, png_infop info_ptr, png_timep mod_time)); #endif #if defined(PNG_tRNS_SUPPORTED) extern PNG_EXPORT(png_uint_32,png_get_tRNS) PNGARG((png_structp png_ptr, png_infop info_ptr, png_bytep *trans, int *num_trans, png_color_16p *trans_values)); #endif #if defined(PNG_tRNS_SUPPORTED) extern PNG_EXPORT(void,png_set_tRNS) PNGARG((png_structp png_ptr, png_infop info_ptr, png_bytep trans, int num_trans, png_color_16p trans_values)); #endif #if defined(PNG_tRNS_SUPPORTED) #endif #if defined(PNG_sCAL_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED extern PNG_EXPORT(png_uint_32,png_get_sCAL) PNGARG((png_structp png_ptr, png_infop info_ptr, int *unit, double *width, double *height)); #else #ifdef PNG_FIXED_POINT_SUPPORTED extern PNG_EXPORT(png_uint_32,png_get_sCAL_s) PNGARG((png_structp png_ptr, png_infop info_ptr, int *unit, png_charpp swidth, png_charpp sheight)); #endif #endif #endif /* PNG_sCAL_SUPPORTED */ #if defined(PNG_sCAL_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED extern PNG_EXPORT(void,png_set_sCAL) PNGARG((png_structp png_ptr, png_infop info_ptr, int unit, double width, double height)); #else #ifdef PNG_FIXED_POINT_SUPPORTED extern PNG_EXPORT(void,png_set_sCAL_s) PNGARG((png_structp png_ptr, png_infop info_ptr, int unit, png_charp swidth, png_charp sheight)); #endif #endif #endif /* PNG_sCAL_SUPPORTED || PNG_WRITE_sCAL_SUPPORTED */ #if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) /* provide a list of chunks and how they are to be handled, if the built-in handling or default unknown chunk handling is not desired. Any chunks not listed will be handled in the default manner. The IHDR and IEND chunks must not be listed. keep = 0: follow default behaviour = 1: do not keep = 2: keep only if safe-to-copy = 3: keep even if unsafe-to-copy */ extern PNG_EXPORT(void, png_set_keep_unknown_chunks) PNGARG((png_structp png_ptr, int keep, png_bytep chunk_list, int num_chunks)); extern PNG_EXPORT(void, png_set_unknown_chunks) PNGARG((png_structp png_ptr, png_infop info_ptr, png_unknown_chunkp unknowns, int num_unknowns)); extern PNG_EXPORT(void, png_set_unknown_chunk_location) PNGARG((png_structp png_ptr, png_infop info_ptr, int chunk, int location)); extern PNG_EXPORT(png_uint_32,png_get_unknown_chunks) PNGARG((png_structp png_ptr, png_infop info_ptr, png_unknown_chunkpp entries)); #endif #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED PNG_EXPORT(int,png_handle_as_unknown) PNGARG((png_structp png_ptr, png_bytep chunk_name)); #endif /* Png_free_data() will turn off the "valid" flag for anything it frees. If you need to turn it off for a chunk that your application has freed, you can use png_set_invalid(png_ptr, info_ptr, PNG_INFO_CHNK); */ extern PNG_EXPORT(void, png_set_invalid) PNGARG((png_structp png_ptr, png_infop info_ptr, int mask)); #if defined(PNG_INFO_IMAGE_SUPPORTED) /* The "params" pointer is currently not used and is for future expansion. */ extern PNG_EXPORT(void, png_read_png) PNGARG((png_structp png_ptr, png_infop info_ptr, int transforms, png_voidp params)); extern PNG_EXPORT(void, png_write_png) PNGARG((png_structp png_ptr, png_infop info_ptr, int transforms, png_voidp params)); #endif /* Define PNG_DEBUG at compile time for debugging information. Higher * numbers for PNG_DEBUG mean more debugging information. This has * only been added since version 0.95 so it is not implemented throughout * libpng yet, but more support will be added as needed. */ #ifdef PNG_DEBUG #if (PNG_DEBUG > 0) #if !defined(PNG_DEBUG_FILE) && defined(_MSC_VER) #include #if (PNG_DEBUG > 1) #define png_debug(l,m) _RPT0(_CRT_WARN,m) #define png_debug1(l,m,p1) _RPT1(_CRT_WARN,m,p1) #define png_debug2(l,m,p1,p2) _RPT2(_CRT_WARN,m,p1,p2) #endif #else /* PNG_DEBUG_FILE || !_MSC_VER */ #ifndef PNG_DEBUG_FILE #define PNG_DEBUG_FILE stderr #endif /* PNG_DEBUG_FILE */ #if (PNG_DEBUG > 1) #define png_debug(l,m) \ { \ int num_tabs=l; \ fprintf(PNG_DEBUG_FILE,"%s"m,(num_tabs==1 ? "\t" : \ (num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":"")))); \ } #define png_debug1(l,m,p1) \ { \ int num_tabs=l; \ fprintf(PNG_DEBUG_FILE,"%s"m,(num_tabs==1 ? "\t" : \ (num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))),p1); \ } #define png_debug2(l,m,p1,p2) \ { \ int num_tabs=l; \ fprintf(PNG_DEBUG_FILE,"%s"m,(num_tabs==1 ? "\t" : \ (num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))),p1,p2); \ } #endif /* (PNG_DEBUG > 1) */ #endif /* _MSC_VER */ #endif /* (PNG_DEBUG > 0) */ #endif /* PNG_DEBUG */ #ifndef png_debug #define png_debug(l, m) #endif #ifndef png_debug1 #define png_debug1(l, m, p1) #endif #ifndef png_debug2 #define png_debug2(l, m, p1, p2) #endif extern PNG_EXPORT(png_charp,png_get_copyright) PNGARG((png_structp png_ptr)); extern PNG_EXPORT(png_charp,png_get_header_ver) PNGARG((png_structp png_ptr)); extern PNG_EXPORT(png_charp,png_get_header_version) PNGARG((png_structp png_ptr)); extern PNG_EXPORT(png_charp,png_get_libpng_ver) PNGARG((png_structp png_ptr)); #ifdef PNG_MNG_FEATURES_SUPPORTED extern PNG_EXPORT(png_uint_32,png_permit_mng_features) PNGARG((png_structp png_ptr, png_uint_32 mng_features_permitted)); #endif /* For use in png_set_keep_unknown, added to version 1.2.6 */ #define PNG_HANDLE_CHUNK_AS_DEFAULT 0 #define PNG_HANDLE_CHUNK_NEVER 1 #define PNG_HANDLE_CHUNK_IF_SAFE 2 #define PNG_HANDLE_CHUNK_ALWAYS 3 /* Added to version 1.2.0 */ #if defined(PNG_ASSEMBLER_CODE_SUPPORTED) #if defined(PNG_MMX_CODE_SUPPORTED) #define PNG_ASM_FLAG_MMX_SUPPORT_COMPILED 0x01 /* not user-settable */ #define PNG_ASM_FLAG_MMX_SUPPORT_IN_CPU 0x02 /* not user-settable */ #define PNG_ASM_FLAG_MMX_READ_COMBINE_ROW 0x04 #define PNG_ASM_FLAG_MMX_READ_INTERLACE 0x08 #define PNG_ASM_FLAG_MMX_READ_FILTER_SUB 0x10 #define PNG_ASM_FLAG_MMX_READ_FILTER_UP 0x20 #define PNG_ASM_FLAG_MMX_READ_FILTER_AVG 0x40 #define PNG_ASM_FLAG_MMX_READ_FILTER_PAETH 0x80 #define PNG_ASM_FLAGS_INITIALIZED 0x80000000 /* not user-settable */ #define PNG_MMX_READ_FLAGS ( PNG_ASM_FLAG_MMX_READ_COMBINE_ROW \ | PNG_ASM_FLAG_MMX_READ_INTERLACE \ | PNG_ASM_FLAG_MMX_READ_FILTER_SUB \ | PNG_ASM_FLAG_MMX_READ_FILTER_UP \ | PNG_ASM_FLAG_MMX_READ_FILTER_AVG \ | PNG_ASM_FLAG_MMX_READ_FILTER_PAETH ) #define PNG_MMX_WRITE_FLAGS ( 0 ) #define PNG_MMX_FLAGS ( PNG_ASM_FLAG_MMX_SUPPORT_COMPILED \ | PNG_ASM_FLAG_MMX_SUPPORT_IN_CPU \ | PNG_MMX_READ_FLAGS \ | PNG_MMX_WRITE_FLAGS ) #define PNG_SELECT_READ 1 #define PNG_SELECT_WRITE 2 #endif /* PNG_MMX_CODE_SUPPORTED */ #if !defined(PNG_1_0_X) /* pngget.c */ extern PNG_EXPORT(png_uint_32,png_get_mmx_flagmask) PNGARG((int flag_select, int *compilerID)); /* pngget.c */ extern PNG_EXPORT(png_uint_32,png_get_asm_flagmask) PNGARG((int flag_select)); /* pngget.c */ extern PNG_EXPORT(png_uint_32,png_get_asm_flags) PNGARG((png_structp png_ptr)); /* pngget.c */ extern PNG_EXPORT(png_byte,png_get_mmx_bitdepth_threshold) PNGARG((png_structp png_ptr)); /* pngget.c */ extern PNG_EXPORT(png_uint_32,png_get_mmx_rowbytes_threshold) PNGARG((png_structp png_ptr)); /* pngset.c */ extern PNG_EXPORT(void,png_set_asm_flags) PNGARG((png_structp png_ptr, png_uint_32 asm_flags)); /* pngset.c */ extern PNG_EXPORT(void,png_set_mmx_thresholds) PNGARG((png_structp png_ptr, png_byte mmx_bitdepth_threshold, png_uint_32 mmx_rowbytes_threshold)); #endif /* PNG_1_0_X */ #if !defined(PNG_1_0_X) /* png.c, pnggccrd.c, or pngvcrd.c */ extern PNG_EXPORT(int,png_mmx_support) PNGARG((void)); #endif /* PNG_ASSEMBLER_CODE_SUPPORTED */ /* Strip the prepended error numbers ("#nnn ") from error and warning * messages before passing them to the error or warning handler. */ #ifdef PNG_ERROR_NUMBERS_SUPPORTED extern PNG_EXPORT(void,png_set_strip_error_numbers) PNGARG((png_structp png_ptr, png_uint_32 strip_mode)); #endif #endif /* PNG_1_0_X */ /* Added at libpng-1.2.6 */ #ifdef PNG_SET_USER_LIMITS_SUPPORTED extern PNG_EXPORT(void,png_set_user_limits) PNGARG((png_structp png_ptr, png_uint_32 user_width_max, png_uint_32 user_height_max)); extern PNG_EXPORT(png_uint_32,png_get_user_width_max) PNGARG((png_structp png_ptr)); extern PNG_EXPORT(png_uint_32,png_get_user_height_max) PNGARG((png_structp png_ptr)); #endif /* Maintainer: Put new public prototypes here ^, in libpng.3, and project defs */ #ifdef PNG_READ_COMPOSITE_NODIV_SUPPORTED /* With these routines we avoid an integer divide, which will be slower on * most machines. However, it does take more operations than the corresponding * divide method, so it may be slower on a few RISC systems. There are two * shifts (by 8 or 16 bits) and an addition, versus a single integer divide. * * Note that the rounding factors are NOT supposed to be the same! 128 and * 32768 are correct for the NODIV code; 127 and 32767 are correct for the * standard method. * * [Optimized code by Greg Roelofs and Mark Adler...blame us for bugs. :-) ] */ /* fg and bg should be in `gamma 1.0' space; alpha is the opacity */ # define png_composite(composite, fg, alpha, bg) \ { png_uint_16 temp = (png_uint_16)((png_uint_16)(fg) * (png_uint_16)(alpha) \ + (png_uint_16)(bg)*(png_uint_16)(255 - \ (png_uint_16)(alpha)) + (png_uint_16)128); \ (composite) = (png_byte)((temp + (temp >> 8)) >> 8); } # define png_composite_16(composite, fg, alpha, bg) \ { png_uint_32 temp = (png_uint_32)((png_uint_32)(fg) * (png_uint_32)(alpha) \ + (png_uint_32)(bg)*(png_uint_32)(65535L - \ (png_uint_32)(alpha)) + (png_uint_32)32768L); \ (composite) = (png_uint_16)((temp + (temp >> 16)) >> 16); } #else /* standard method using integer division */ # define png_composite(composite, fg, alpha, bg) \ (composite) = (png_byte)(((png_uint_16)(fg) * (png_uint_16)(alpha) + \ (png_uint_16)(bg) * (png_uint_16)(255 - (png_uint_16)(alpha)) + \ (png_uint_16)127) / 255) # define png_composite_16(composite, fg, alpha, bg) \ (composite) = (png_uint_16)(((png_uint_32)(fg) * (png_uint_32)(alpha) + \ (png_uint_32)(bg)*(png_uint_32)(65535L - (png_uint_32)(alpha)) + \ (png_uint_32)32767) / (png_uint_32)65535L) #endif /* PNG_READ_COMPOSITE_NODIV_SUPPORTED */ /* Inline macros to do direct reads of bytes from the input buffer. These * require that you are using an architecture that uses PNG byte ordering * (MSB first) and supports unaligned data storage. I think that PowerPC * in big-endian mode and 680x0 are the only ones that will support this. * The x86 line of processors definitely do not. The png_get_int_32() * routine also assumes we are using two's complement format for negative * values, which is almost certainly true. */ #if defined(PNG_READ_BIG_ENDIAN_SUPPORTED) # define png_get_uint_32(buf) ( *((png_uint_32p) (buf))) # define png_get_uint_16(buf) ( *((png_uint_16p) (buf))) # define png_get_int_32(buf) ( *((png_int_32p) (buf))) #else extern PNG_EXPORT(png_uint_32,png_get_uint_32) PNGARG((png_bytep buf)); extern PNG_EXPORT(png_uint_16,png_get_uint_16) PNGARG((png_bytep buf)); extern PNG_EXPORT(png_int_32,png_get_int_32) PNGARG((png_bytep buf)); #endif /* !PNG_READ_BIG_ENDIAN_SUPPORTED */ extern PNG_EXPORT(png_uint_32,png_get_uint_31) PNGARG((png_structp png_ptr, png_bytep buf)); /* No png_get_int_16 -- may be added if there's a real need for it. */ /* Place a 32-bit number into a buffer in PNG byte order (big-endian). */ extern PNG_EXPORT(void,png_save_uint_32) PNGARG((png_bytep buf, png_uint_32 i)); extern PNG_EXPORT(void,png_save_int_32) PNGARG((png_bytep buf, png_int_32 i)); /* Place a 16-bit number into a buffer in PNG byte order. * The parameter is declared unsigned int, not png_uint_16, * just to avoid potential problems on pre-ANSI C compilers. */ extern PNG_EXPORT(void,png_save_uint_16) PNGARG((png_bytep buf, unsigned int i)); /* No png_save_int_16 -- may be added if there's a real need for it. */ /* ************************************************************************* */ /* These next functions are used internally in the code. They generally * shouldn't be used unless you are writing code to add or replace some * functionality in libpng. More information about most functions can * be found in the files where the functions are located. */ /* Various modes of operation, that are visible to applications because * they are used for unknown chunk location. */ #define PNG_HAVE_IHDR 0x01 #define PNG_HAVE_PLTE 0x02 #define PNG_HAVE_IDAT 0x04 #define PNG_AFTER_IDAT 0x08 /* Have complete zlib datastream */ #define PNG_HAVE_IEND 0x10 #if defined(PNG_INTERNAL) /* More modes of operation. Note that after an init, mode is set to * zero automatically when the structure is created. */ #define PNG_HAVE_gAMA 0x20 #define PNG_HAVE_cHRM 0x40 #define PNG_HAVE_sRGB 0x80 #define PNG_HAVE_CHUNK_HEADER 0x100 #define PNG_WROTE_tIME 0x200 #define PNG_WROTE_INFO_BEFORE_PLTE 0x400 #define PNG_BACKGROUND_IS_GRAY 0x800 #define PNG_HAVE_PNG_SIGNATURE 0x1000 #define PNG_HAVE_CHUNK_AFTER_IDAT 0x2000 /* Have another chunk after IDAT */ /* flags for the transformations the PNG library does on the image data */ #define PNG_BGR 0x0001 #define PNG_INTERLACE 0x0002 #define PNG_PACK 0x0004 #define PNG_SHIFT 0x0008 #define PNG_SWAP_BYTES 0x0010 #define PNG_INVERT_MONO 0x0020 #define PNG_DITHER 0x0040 #define PNG_BACKGROUND 0x0080 #define PNG_BACKGROUND_EXPAND 0x0100 /* 0x0200 unused */ #define PNG_16_TO_8 0x0400 #define PNG_RGBA 0x0800 #define PNG_EXPAND 0x1000 #define PNG_GAMMA 0x2000 #define PNG_GRAY_TO_RGB 0x4000 #define PNG_FILLER 0x8000L #define PNG_PACKSWAP 0x10000L #define PNG_SWAP_ALPHA 0x20000L #define PNG_STRIP_ALPHA 0x40000L #define PNG_INVERT_ALPHA 0x80000L #define PNG_USER_TRANSFORM 0x100000L #define PNG_RGB_TO_GRAY_ERR 0x200000L #define PNG_RGB_TO_GRAY_WARN 0x400000L #define PNG_RGB_TO_GRAY 0x600000L /* two bits, RGB_TO_GRAY_ERR|WARN */ /* 0x800000L Unused */ #define PNG_ADD_ALPHA 0x1000000L /* Added to libpng-1.2.7 */ #define PNG_EXPAND_tRNS 0x2000000L /* Added to libpng-1.2.9 */ /* 0x4000000L unused */ /* 0x8000000L unused */ /* 0x10000000L unused */ /* 0x20000000L unused */ /* 0x40000000L unused */ /* flags for png_create_struct */ #define PNG_STRUCT_PNG 0x0001 #define PNG_STRUCT_INFO 0x0002 /* Scaling factor for filter heuristic weighting calculations */ #define PNG_WEIGHT_SHIFT 8 #define PNG_WEIGHT_FACTOR (1<<(PNG_WEIGHT_SHIFT)) #define PNG_COST_SHIFT 3 #define PNG_COST_FACTOR (1<<(PNG_COST_SHIFT)) /* flags for the png_ptr->flags rather than declaring a byte for each one */ #define PNG_FLAG_ZLIB_CUSTOM_STRATEGY 0x0001 #define PNG_FLAG_ZLIB_CUSTOM_LEVEL 0x0002 #define PNG_FLAG_ZLIB_CUSTOM_MEM_LEVEL 0x0004 #define PNG_FLAG_ZLIB_CUSTOM_WINDOW_BITS 0x0008 #define PNG_FLAG_ZLIB_CUSTOM_METHOD 0x0010 #define PNG_FLAG_ZLIB_FINISHED 0x0020 #define PNG_FLAG_ROW_INIT 0x0040 #define PNG_FLAG_FILLER_AFTER 0x0080 #define PNG_FLAG_CRC_ANCILLARY_USE 0x0100 #define PNG_FLAG_CRC_ANCILLARY_NOWARN 0x0200 #define PNG_FLAG_CRC_CRITICAL_USE 0x0400 #define PNG_FLAG_CRC_CRITICAL_IGNORE 0x0800 #define PNG_FLAG_FREE_PLTE 0x1000 #define PNG_FLAG_FREE_TRNS 0x2000 #define PNG_FLAG_FREE_HIST 0x4000 #define PNG_FLAG_KEEP_UNKNOWN_CHUNKS 0x8000L #define PNG_FLAG_KEEP_UNSAFE_CHUNKS 0x10000L #define PNG_FLAG_LIBRARY_MISMATCH 0x20000L #define PNG_FLAG_STRIP_ERROR_NUMBERS 0x40000L #define PNG_FLAG_STRIP_ERROR_TEXT 0x80000L #define PNG_FLAG_MALLOC_NULL_MEM_OK 0x100000L #define PNG_FLAG_ADD_ALPHA 0x200000L /* Added to libpng-1.2.8 */ #define PNG_FLAG_STRIP_ALPHA 0x400000L /* Added to libpng-1.2.8 */ /* 0x800000L unused */ /* 0x1000000L unused */ /* 0x2000000L unused */ /* 0x4000000L unused */ /* 0x8000000L unused */ /* 0x10000000L unused */ /* 0x20000000L unused */ /* 0x40000000L unused */ #define PNG_FLAG_CRC_ANCILLARY_MASK (PNG_FLAG_CRC_ANCILLARY_USE | \ PNG_FLAG_CRC_ANCILLARY_NOWARN) #define PNG_FLAG_CRC_CRITICAL_MASK (PNG_FLAG_CRC_CRITICAL_USE | \ PNG_FLAG_CRC_CRITICAL_IGNORE) #define PNG_FLAG_CRC_MASK (PNG_FLAG_CRC_ANCILLARY_MASK | \ PNG_FLAG_CRC_CRITICAL_MASK) /* save typing and make code easier to understand */ #define PNG_COLOR_DIST(c1, c2) (abs((int)((c1).red) - (int)((c2).red)) + \ abs((int)((c1).green) - (int)((c2).green)) + \ abs((int)((c1).blue) - (int)((c2).blue))) /* Added to libpng-1.2.6 JB */ #define PNG_ROWBYTES(pixel_bits, width) \ ((pixel_bits) >= 8 ? \ ((width) * (((png_uint_32)(pixel_bits)) >> 3)) : \ (( ((width) * ((png_uint_32)(pixel_bits))) + 7) >> 3) ) /* PNG_OUT_OF_RANGE returns true if value is outside the range ideal-delta..ideal+delta. Each argument is evaluated twice. "ideal" and "delta" should be constants, normally simple integers, "value" a variable. Added to libpng-1.2.6 JB */ #define PNG_OUT_OF_RANGE(value, ideal, delta) \ ( (value) < (ideal)-(delta) || (value) > (ideal)+(delta) ) /* variables declared in png.c - only it needs to define PNG_NO_EXTERN */ #if !defined(PNG_NO_EXTERN) || defined(PNG_ALWAYS_EXTERN) /* place to hold the signature string for a PNG file. */ #ifdef PNG_USE_GLOBAL_ARRAYS PNG_EXPORT_VAR (PNG_CONST png_byte FARDATA) png_sig[8]; #else #endif #endif /* PNG_NO_EXTERN */ /* Constant strings for known chunk types. If you need to add a chunk, * define the name here, and add an invocation of the macro in png.c and * wherever it's needed. */ #define PNG_IHDR png_byte png_IHDR[5] = { 73, 72, 68, 82, '\0'} #define PNG_IDAT png_byte png_IDAT[5] = { 73, 68, 65, 84, '\0'} #define PNG_IEND png_byte png_IEND[5] = { 73, 69, 78, 68, '\0'} #define PNG_PLTE png_byte png_PLTE[5] = { 80, 76, 84, 69, '\0'} #define PNG_bKGD png_byte png_bKGD[5] = { 98, 75, 71, 68, '\0'} #define PNG_cHRM png_byte png_cHRM[5] = { 99, 72, 82, 77, '\0'} #define PNG_gAMA png_byte png_gAMA[5] = {103, 65, 77, 65, '\0'} #define PNG_hIST png_byte png_hIST[5] = {104, 73, 83, 84, '\0'} #define PNG_iCCP png_byte png_iCCP[5] = {105, 67, 67, 80, '\0'} #define PNG_iTXt png_byte png_iTXt[5] = {105, 84, 88, 116, '\0'} #define PNG_oFFs png_byte png_oFFs[5] = {111, 70, 70, 115, '\0'} #define PNG_pCAL png_byte png_pCAL[5] = {112, 67, 65, 76, '\0'} #define PNG_sCAL png_byte png_sCAL[5] = {115, 67, 65, 76, '\0'} #define PNG_pHYs png_byte png_pHYs[5] = {112, 72, 89, 115, '\0'} #define PNG_sBIT png_byte png_sBIT[5] = {115, 66, 73, 84, '\0'} #define PNG_sPLT png_byte png_sPLT[5] = {115, 80, 76, 84, '\0'} #define PNG_sRGB png_byte png_sRGB[5] = {115, 82, 71, 66, '\0'} #define PNG_tEXt png_byte png_tEXt[5] = {116, 69, 88, 116, '\0'} #define PNG_tIME png_byte png_tIME[5] = {116, 73, 77, 69, '\0'} #define PNG_tRNS png_byte png_tRNS[5] = {116, 82, 78, 83, '\0'} #define PNG_zTXt png_byte png_zTXt[5] = {122, 84, 88, 116, '\0'} #ifdef PNG_USE_GLOBAL_ARRAYS PNG_EXPORT_VAR (png_byte FARDATA) png_IHDR[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_IDAT[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_IEND[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_PLTE[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_bKGD[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_cHRM[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_gAMA[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_hIST[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_iCCP[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_iTXt[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_oFFs[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_pCAL[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_sCAL[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_pHYs[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_sBIT[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_sPLT[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_sRGB[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_tEXt[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_tIME[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_tRNS[5]; PNG_EXPORT_VAR (png_byte FARDATA) png_zTXt[5]; #endif /* PNG_USE_GLOBAL_ARRAYS */ #if defined(PNG_1_0_X) || defined (PNG_1_2_X) /* Initialize png_ptr struct for reading, and allocate any other memory. * (old interface - DEPRECATED - use png_create_read_struct instead). */ extern PNG_EXPORT(void,png_read_init) PNGARG((png_structp png_ptr)); #undef png_read_init #define png_read_init(png_ptr) png_read_init_3(&png_ptr, \ PNG_LIBPNG_VER_STRING, png_sizeof(png_struct)); #endif extern PNG_EXPORT(void,png_read_init_3) PNGARG((png_structpp ptr_ptr, png_const_charp user_png_ver, png_size_t png_struct_size)); #if defined(PNG_1_0_X) || defined (PNG_1_2_X) extern PNG_EXPORT(void,png_read_init_2) PNGARG((png_structp png_ptr, png_const_charp user_png_ver, png_size_t png_struct_size, png_size_t png_info_size)); #endif #if defined(PNG_1_0_X) || defined (PNG_1_2_X) /* Initialize png_ptr struct for writing, and allocate any other memory. * (old interface - DEPRECATED - use png_create_write_struct instead). */ extern PNG_EXPORT(void,png_write_init) PNGARG((png_structp png_ptr)); #undef png_write_init #define png_write_init(png_ptr) png_write_init_3(&png_ptr, \ PNG_LIBPNG_VER_STRING, png_sizeof(png_struct)); #endif extern PNG_EXPORT(void,png_write_init_3) PNGARG((png_structpp ptr_ptr, png_const_charp user_png_ver, png_size_t png_struct_size)); extern PNG_EXPORT(void,png_write_init_2) PNGARG((png_structp png_ptr, png_const_charp user_png_ver, png_size_t png_struct_size, png_size_t png_info_size)); /* Allocate memory for an internal libpng struct */ PNG_EXTERN png_voidp png_create_struct PNGARG((int type)); /* Free memory from internal libpng struct */ PNG_EXTERN void png_destroy_struct PNGARG((png_voidp struct_ptr)); PNG_EXTERN png_voidp png_create_struct_2 PNGARG((int type, png_malloc_ptr malloc_fn, png_voidp mem_ptr)); PNG_EXTERN void png_destroy_struct_2 PNGARG((png_voidp struct_ptr, png_free_ptr free_fn, png_voidp mem_ptr)); /* Free any memory that info_ptr points to and reset struct. */ PNG_EXTERN void png_info_destroy PNGARG((png_structp png_ptr, png_infop info_ptr)); #ifndef PNG_1_0_X /* Function to allocate memory for zlib. */ PNG_EXTERN voidpf png_zalloc PNGARG((voidpf png_ptr, uInt items, uInt size)); /* Function to free memory for zlib */ PNG_EXTERN void png_zfree PNGARG((voidpf png_ptr, voidpf ptr)); #ifdef PNG_SIZE_T /* Function to convert a sizeof an item to png_sizeof item */ PNG_EXTERN png_size_t PNGAPI png_convert_size PNGARG((size_t size)); #endif /* Next four functions are used internally as callbacks. PNGAPI is required * but not PNG_EXPORT. PNGAPI added at libpng version 1.2.3. */ PNG_EXTERN void PNGAPI png_default_read_data PNGARG((png_structp png_ptr, png_bytep data, png_size_t length)); #ifdef PNG_PROGRESSIVE_READ_SUPPORTED PNG_EXTERN void PNGAPI png_push_fill_buffer PNGARG((png_structp png_ptr, png_bytep buffer, png_size_t length)); #endif PNG_EXTERN void PNGAPI png_default_write_data PNGARG((png_structp png_ptr, png_bytep data, png_size_t length)); #if defined(PNG_WRITE_FLUSH_SUPPORTED) #if !defined(PNG_NO_STDIO) PNG_EXTERN void PNGAPI png_default_flush PNGARG((png_structp png_ptr)); #endif #endif #else /* PNG_1_0_X */ #ifdef PNG_PROGRESSIVE_READ_SUPPORTED PNG_EXTERN void png_push_fill_buffer PNGARG((png_structp png_ptr, png_bytep buffer, png_size_t length)); #endif #endif /* PNG_1_0_X */ /* Reset the CRC variable */ PNG_EXTERN void png_reset_crc PNGARG((png_structp png_ptr)); /* Write the "data" buffer to whatever output you are using. */ PNG_EXTERN void png_write_data PNGARG((png_structp png_ptr, png_bytep data, png_size_t length)); /* Read data from whatever input you are using into the "data" buffer */ PNG_EXTERN void png_read_data PNGARG((png_structp png_ptr, png_bytep data, png_size_t length)); /* Read bytes into buf, and update png_ptr->crc */ PNG_EXTERN void png_crc_read PNGARG((png_structp png_ptr, png_bytep buf, png_size_t length)); /* Decompress data in a chunk that uses compression */ #if defined(PNG_zTXt_SUPPORTED) || defined(PNG_iTXt_SUPPORTED) || \ defined(PNG_iCCP_SUPPORTED) || defined(PNG_sPLT_SUPPORTED) PNG_EXTERN png_charp png_decompress_chunk PNGARG((png_structp png_ptr, int comp_type, png_charp chunkdata, png_size_t chunklength, png_size_t prefix_length, png_size_t *data_length)); #endif /* Read "skip" bytes, read the file crc, and (optionally) verify png_ptr->crc */ PNG_EXTERN int png_crc_finish PNGARG((png_structp png_ptr, png_uint_32 skip)); /* Read the CRC from the file and compare it to the libpng calculated CRC */ PNG_EXTERN int png_crc_error PNGARG((png_structp png_ptr)); /* Calculate the CRC over a section of data. Note that we are only * passing a maximum of 64K on systems that have this as a memory limit, * since this is the maximum buffer size we can specify. */ PNG_EXTERN void png_calculate_crc PNGARG((png_structp png_ptr, png_bytep ptr, png_size_t length)); #if defined(PNG_WRITE_FLUSH_SUPPORTED) PNG_EXTERN void png_flush PNGARG((png_structp png_ptr)); #endif /* simple function to write the signature */ PNG_EXTERN void png_write_sig PNGARG((png_structp png_ptr)); /* write various chunks */ /* Write the IHDR chunk, and update the png_struct with the necessary * information. */ PNG_EXTERN void png_write_IHDR PNGARG((png_structp png_ptr, png_uint_32 width, png_uint_32 height, int bit_depth, int color_type, int compression_method, int filter_method, int interlace_method)); PNG_EXTERN void png_write_PLTE PNGARG((png_structp png_ptr, png_colorp palette, png_uint_32 num_pal)); PNG_EXTERN void png_write_IDAT PNGARG((png_structp png_ptr, png_bytep data, png_size_t length)); PNG_EXTERN void png_write_IEND PNGARG((png_structp png_ptr)); #if defined(PNG_WRITE_gAMA_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED PNG_EXTERN void png_write_gAMA PNGARG((png_structp png_ptr, double file_gamma)); #endif #ifdef PNG_FIXED_POINT_SUPPORTED PNG_EXTERN void png_write_gAMA_fixed PNGARG((png_structp png_ptr, png_fixed_point file_gamma)); #endif #endif #if defined(PNG_WRITE_sBIT_SUPPORTED) PNG_EXTERN void png_write_sBIT PNGARG((png_structp png_ptr, png_color_8p sbit, int color_type)); #endif #if defined(PNG_WRITE_cHRM_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED PNG_EXTERN void png_write_cHRM PNGARG((png_structp png_ptr, double white_x, double white_y, double red_x, double red_y, double green_x, double green_y, double blue_x, double blue_y)); #endif #ifdef PNG_FIXED_POINT_SUPPORTED PNG_EXTERN void png_write_cHRM_fixed PNGARG((png_structp png_ptr, png_fixed_point int_white_x, png_fixed_point int_white_y, png_fixed_point int_red_x, png_fixed_point int_red_y, png_fixed_point int_green_x, png_fixed_point int_green_y, png_fixed_point int_blue_x, png_fixed_point int_blue_y)); #endif #endif #if defined(PNG_WRITE_sRGB_SUPPORTED) PNG_EXTERN void png_write_sRGB PNGARG((png_structp png_ptr, int intent)); #endif #if defined(PNG_WRITE_iCCP_SUPPORTED) PNG_EXTERN void png_write_iCCP PNGARG((png_structp png_ptr, png_charp name, int compression_type, png_charp profile, int proflen)); /* Note to maintainer: profile should be png_bytep */ #endif #if defined(PNG_WRITE_sPLT_SUPPORTED) PNG_EXTERN void png_write_sPLT PNGARG((png_structp png_ptr, png_sPLT_tp palette)); #endif #if defined(PNG_WRITE_tRNS_SUPPORTED) PNG_EXTERN void png_write_tRNS PNGARG((png_structp png_ptr, png_bytep trans, png_color_16p values, int number, int color_type)); #endif #if defined(PNG_WRITE_bKGD_SUPPORTED) PNG_EXTERN void png_write_bKGD PNGARG((png_structp png_ptr, png_color_16p values, int color_type)); #endif #if defined(PNG_WRITE_hIST_SUPPORTED) PNG_EXTERN void png_write_hIST PNGARG((png_structp png_ptr, png_uint_16p hist, int num_hist)); #endif #if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_pCAL_SUPPORTED) || \ defined(PNG_WRITE_iCCP_SUPPORTED) || defined(PNG_WRITE_sPLT_SUPPORTED) PNG_EXTERN png_size_t png_check_keyword PNGARG((png_structp png_ptr, png_charp key, png_charpp new_key)); #endif #if defined(PNG_WRITE_tEXt_SUPPORTED) PNG_EXTERN void png_write_tEXt PNGARG((png_structp png_ptr, png_charp key, png_charp text, png_size_t text_len)); #endif #if defined(PNG_WRITE_zTXt_SUPPORTED) PNG_EXTERN void png_write_zTXt PNGARG((png_structp png_ptr, png_charp key, png_charp text, png_size_t text_len, int compression)); #endif #if defined(PNG_WRITE_iTXt_SUPPORTED) PNG_EXTERN void png_write_iTXt PNGARG((png_structp png_ptr, int compression, png_charp key, png_charp lang, png_charp lang_key, png_charp text)); #endif #if defined(PNG_TEXT_SUPPORTED) /* Added at version 1.0.14 and 1.2.4 */ PNG_EXTERN int png_set_text_2 PNGARG((png_structp png_ptr, png_infop info_ptr, png_textp text_ptr, int num_text)); #endif #if defined(PNG_WRITE_oFFs_SUPPORTED) PNG_EXTERN void png_write_oFFs PNGARG((png_structp png_ptr, png_int_32 x_offset, png_int_32 y_offset, int unit_type)); #endif #if defined(PNG_WRITE_pCAL_SUPPORTED) PNG_EXTERN void png_write_pCAL PNGARG((png_structp png_ptr, png_charp purpose, png_int_32 X0, png_int_32 X1, int type, int nparams, png_charp units, png_charpp params)); #endif #if defined(PNG_WRITE_pHYs_SUPPORTED) PNG_EXTERN void png_write_pHYs PNGARG((png_structp png_ptr, png_uint_32 x_pixels_per_unit, png_uint_32 y_pixels_per_unit, int unit_type)); #endif #if defined(PNG_WRITE_tIME_SUPPORTED) PNG_EXTERN void png_write_tIME PNGARG((png_structp png_ptr, png_timep mod_time)); #endif #if defined(PNG_WRITE_sCAL_SUPPORTED) #if defined(PNG_FLOATING_POINT_SUPPORTED) && !defined(PNG_NO_STDIO) PNG_EXTERN void png_write_sCAL PNGARG((png_structp png_ptr, int unit, double width, double height)); #else #ifdef PNG_FIXED_POINT_SUPPORTED PNG_EXTERN void png_write_sCAL_s PNGARG((png_structp png_ptr, int unit, png_charp width, png_charp height)); #endif #endif #endif /* Called when finished processing a row of data */ PNG_EXTERN void png_write_finish_row PNGARG((png_structp png_ptr)); /* Internal use only. Called before first row of data */ PNG_EXTERN void png_write_start_row PNGARG((png_structp png_ptr)); #if defined(PNG_READ_GAMMA_SUPPORTED) PNG_EXTERN void png_build_gamma_table PNGARG((png_structp png_ptr)); #endif /* combine a row of data, dealing with alpha, etc. if requested */ PNG_EXTERN void png_combine_row PNGARG((png_structp png_ptr, png_bytep row, int mask)); #if defined(PNG_READ_INTERLACING_SUPPORTED) /* expand an interlaced row */ /* OLD pre-1.0.9 interface: PNG_EXTERN void png_do_read_interlace PNGARG((png_row_infop row_info, png_bytep row, int pass, png_uint_32 transformations)); */ PNG_EXTERN void png_do_read_interlace PNGARG((png_structp png_ptr)); #endif /* GRR TO DO (2.0 or whenever): simplify other internal calling interfaces */ #if defined(PNG_WRITE_INTERLACING_SUPPORTED) /* grab pixels out of a row for an interlaced pass */ PNG_EXTERN void png_do_write_interlace PNGARG((png_row_infop row_info, png_bytep row, int pass)); #endif /* unfilter a row */ PNG_EXTERN void png_read_filter_row PNGARG((png_structp png_ptr, png_row_infop row_info, png_bytep row, png_bytep prev_row, int filter)); /* Choose the best filter to use and filter the row data */ PNG_EXTERN void png_write_find_filter PNGARG((png_structp png_ptr, png_row_infop row_info)); /* Write out the filtered row. */ PNG_EXTERN void png_write_filtered_row PNGARG((png_structp png_ptr, png_bytep filtered_row)); /* finish a row while reading, dealing with interlacing passes, etc. */ PNG_EXTERN void png_read_finish_row PNGARG((png_structp png_ptr)); /* initialize the row buffers, etc. */ PNG_EXTERN void png_read_start_row PNGARG((png_structp png_ptr)); /* optional call to update the users info structure */ PNG_EXTERN void png_read_transform_info PNGARG((png_structp png_ptr, png_infop info_ptr)); /* these are the functions that do the transformations */ #if defined(PNG_READ_FILLER_SUPPORTED) PNG_EXTERN void png_do_read_filler PNGARG((png_row_infop row_info, png_bytep row, png_uint_32 filler, png_uint_32 flags)); #endif #if defined(PNG_READ_SWAP_ALPHA_SUPPORTED) PNG_EXTERN void png_do_read_swap_alpha PNGARG((png_row_infop row_info, png_bytep row)); #endif #if defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED) PNG_EXTERN void png_do_write_swap_alpha PNGARG((png_row_infop row_info, png_bytep row)); #endif #if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) PNG_EXTERN void png_do_read_invert_alpha PNGARG((png_row_infop row_info, png_bytep row)); #endif #if defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED) PNG_EXTERN void png_do_write_invert_alpha PNGARG((png_row_infop row_info, png_bytep row)); #endif #if defined(PNG_WRITE_FILLER_SUPPORTED) || \ defined(PNG_READ_STRIP_ALPHA_SUPPORTED) PNG_EXTERN void png_do_strip_filler PNGARG((png_row_infop row_info, png_bytep row, png_uint_32 flags)); #endif #if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED) PNG_EXTERN void png_do_swap PNGARG((png_row_infop row_info, png_bytep row)); #endif #if defined(PNG_READ_PACKSWAP_SUPPORTED) || defined(PNG_WRITE_PACKSWAP_SUPPORTED) PNG_EXTERN void png_do_packswap PNGARG((png_row_infop row_info, png_bytep row)); #endif #if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) PNG_EXTERN int png_do_rgb_to_gray PNGARG((png_structp png_ptr, png_row_infop row_info, png_bytep row)); #endif #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) PNG_EXTERN void png_do_gray_to_rgb PNGARG((png_row_infop row_info, png_bytep row)); #endif #if defined(PNG_READ_PACK_SUPPORTED) PNG_EXTERN void png_do_unpack PNGARG((png_row_infop row_info, png_bytep row)); #endif #if defined(PNG_READ_SHIFT_SUPPORTED) PNG_EXTERN void png_do_unshift PNGARG((png_row_infop row_info, png_bytep row, png_color_8p sig_bits)); #endif #if defined(PNG_READ_INVERT_SUPPORTED) || defined(PNG_WRITE_INVERT_SUPPORTED) PNG_EXTERN void png_do_invert PNGARG((png_row_infop row_info, png_bytep row)); #endif #if defined(PNG_READ_16_TO_8_SUPPORTED) PNG_EXTERN void png_do_chop PNGARG((png_row_infop row_info, png_bytep row)); #endif #if defined(PNG_READ_DITHER_SUPPORTED) PNG_EXTERN void png_do_dither PNGARG((png_row_infop row_info, png_bytep row, png_bytep palette_lookup, png_bytep dither_lookup)); # if defined(PNG_CORRECT_PALETTE_SUPPORTED) PNG_EXTERN void png_correct_palette PNGARG((png_structp png_ptr, png_colorp palette, int num_palette)); # endif #endif #if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED) PNG_EXTERN void png_do_bgr PNGARG((png_row_infop row_info, png_bytep row)); #endif #if defined(PNG_WRITE_PACK_SUPPORTED) PNG_EXTERN void png_do_pack PNGARG((png_row_infop row_info, png_bytep row, png_uint_32 bit_depth)); #endif #if defined(PNG_WRITE_SHIFT_SUPPORTED) PNG_EXTERN void png_do_shift PNGARG((png_row_infop row_info, png_bytep row, png_color_8p bit_depth)); #endif #if defined(PNG_READ_BACKGROUND_SUPPORTED) #if defined(PNG_READ_GAMMA_SUPPORTED) PNG_EXTERN void png_do_background PNGARG((png_row_infop row_info, png_bytep row, png_color_16p trans_values, png_color_16p background, png_color_16p background_1, png_bytep gamma_table, png_bytep gamma_from_1, png_bytep gamma_to_1, png_uint_16pp gamma_16, png_uint_16pp gamma_16_from_1, png_uint_16pp gamma_16_to_1, int gamma_shift)); #else PNG_EXTERN void png_do_background PNGARG((png_row_infop row_info, png_bytep row, png_color_16p trans_values, png_color_16p background)); #endif #endif #if defined(PNG_READ_GAMMA_SUPPORTED) PNG_EXTERN void png_do_gamma PNGARG((png_row_infop row_info, png_bytep row, png_bytep gamma_table, png_uint_16pp gamma_16_table, int gamma_shift)); #endif #if defined(PNG_READ_EXPAND_SUPPORTED) PNG_EXTERN void png_do_expand_palette PNGARG((png_row_infop row_info, png_bytep row, png_colorp palette, png_bytep trans, int num_trans)); PNG_EXTERN void png_do_expand PNGARG((png_row_infop row_info, png_bytep row, png_color_16p trans_value)); #endif /* The following decodes the appropriate chunks, and does error correction, * then calls the appropriate callback for the chunk if it is valid. */ /* decode the IHDR chunk */ PNG_EXTERN void png_handle_IHDR PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); PNG_EXTERN void png_handle_PLTE PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); PNG_EXTERN void png_handle_IEND PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #if defined(PNG_READ_bKGD_SUPPORTED) PNG_EXTERN void png_handle_bKGD PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_cHRM_SUPPORTED) PNG_EXTERN void png_handle_cHRM PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_gAMA_SUPPORTED) PNG_EXTERN void png_handle_gAMA PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_hIST_SUPPORTED) PNG_EXTERN void png_handle_hIST PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_iCCP_SUPPORTED) extern void png_handle_iCCP PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif /* PNG_READ_iCCP_SUPPORTED */ #if defined(PNG_READ_iTXt_SUPPORTED) PNG_EXTERN void png_handle_iTXt PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_oFFs_SUPPORTED) PNG_EXTERN void png_handle_oFFs PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_pCAL_SUPPORTED) PNG_EXTERN void png_handle_pCAL PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_pHYs_SUPPORTED) PNG_EXTERN void png_handle_pHYs PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_sBIT_SUPPORTED) PNG_EXTERN void png_handle_sBIT PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_sCAL_SUPPORTED) PNG_EXTERN void png_handle_sCAL PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_sPLT_SUPPORTED) extern void png_handle_sPLT PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif /* PNG_READ_sPLT_SUPPORTED */ #if defined(PNG_READ_sRGB_SUPPORTED) PNG_EXTERN void png_handle_sRGB PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_tEXt_SUPPORTED) PNG_EXTERN void png_handle_tEXt PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_tIME_SUPPORTED) PNG_EXTERN void png_handle_tIME PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_tRNS_SUPPORTED) PNG_EXTERN void png_handle_tRNS PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif #if defined(PNG_READ_zTXt_SUPPORTED) PNG_EXTERN void png_handle_zTXt PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); #endif PNG_EXTERN void png_handle_unknown PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); PNG_EXTERN void png_check_chunk_name PNGARG((png_structp png_ptr, png_bytep chunk_name)); /* handle the transformations for reading and writing */ PNG_EXTERN void png_do_read_transformations PNGARG((png_structp png_ptr)); PNG_EXTERN void png_do_write_transformations PNGARG((png_structp png_ptr)); PNG_EXTERN void png_init_read_transformations PNGARG((png_structp png_ptr)); #ifdef PNG_PROGRESSIVE_READ_SUPPORTED PNG_EXTERN void png_push_read_chunk PNGARG((png_structp png_ptr, png_infop info_ptr)); PNG_EXTERN void png_push_read_sig PNGARG((png_structp png_ptr, png_infop info_ptr)); PNG_EXTERN void png_push_check_crc PNGARG((png_structp png_ptr)); PNG_EXTERN void png_push_crc_skip PNGARG((png_structp png_ptr, png_uint_32 length)); PNG_EXTERN void png_push_crc_finish PNGARG((png_structp png_ptr)); PNG_EXTERN void png_push_save_buffer PNGARG((png_structp png_ptr)); PNG_EXTERN void png_push_restore_buffer PNGARG((png_structp png_ptr, png_bytep buffer, png_size_t buffer_length)); PNG_EXTERN void png_push_read_IDAT PNGARG((png_structp png_ptr)); PNG_EXTERN void png_process_IDAT_data PNGARG((png_structp png_ptr, png_bytep buffer, png_size_t buffer_length)); PNG_EXTERN void png_push_process_row PNGARG((png_structp png_ptr)); PNG_EXTERN void png_push_handle_unknown PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); PNG_EXTERN void png_push_have_info PNGARG((png_structp png_ptr, png_infop info_ptr)); PNG_EXTERN void png_push_have_end PNGARG((png_structp png_ptr, png_infop info_ptr)); PNG_EXTERN void png_push_have_row PNGARG((png_structp png_ptr, png_bytep row)); PNG_EXTERN void png_push_read_end PNGARG((png_structp png_ptr, png_infop info_ptr)); PNG_EXTERN void png_process_some_data PNGARG((png_structp png_ptr, png_infop info_ptr)); PNG_EXTERN void png_read_push_finish_row PNGARG((png_structp png_ptr)); #if defined(PNG_READ_tEXt_SUPPORTED) PNG_EXTERN void png_push_handle_tEXt PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); PNG_EXTERN void png_push_read_tEXt PNGARG((png_structp png_ptr, png_infop info_ptr)); #endif #if defined(PNG_READ_zTXt_SUPPORTED) PNG_EXTERN void png_push_handle_zTXt PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); PNG_EXTERN void png_push_read_zTXt PNGARG((png_structp png_ptr, png_infop info_ptr)); #endif #if defined(PNG_READ_iTXt_SUPPORTED) PNG_EXTERN void png_push_handle_iTXt PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 length)); PNG_EXTERN void png_push_read_iTXt PNGARG((png_structp png_ptr, png_infop info_ptr)); #endif #endif /* PNG_PROGRESSIVE_READ_SUPPORTED */ #ifdef PNG_MNG_FEATURES_SUPPORTED PNG_EXTERN void png_do_read_intrapixel PNGARG((png_row_infop row_info, png_bytep row)); PNG_EXTERN void png_do_write_intrapixel PNGARG((png_row_infop row_info, png_bytep row)); #endif #if defined(PNG_ASSEMBLER_CODE_SUPPORTED) #if defined(PNG_MMX_CODE_SUPPORTED) /* png.c */ /* PRIVATE */ PNG_EXTERN void png_init_mmx_flags PNGARG((png_structp png_ptr)); #endif #endif #if defined(PNG_INCH_CONVERSIONS) && defined(PNG_FLOATING_POINT_SUPPORTED) PNG_EXTERN png_uint_32 png_get_pixels_per_inch PNGARG((png_structp png_ptr, png_infop info_ptr)); PNG_EXTERN png_uint_32 png_get_x_pixels_per_inch PNGARG((png_structp png_ptr, png_infop info_ptr)); PNG_EXTERN png_uint_32 png_get_y_pixels_per_inch PNGARG((png_structp png_ptr, png_infop info_ptr)); PNG_EXTERN float png_get_x_offset_inches PNGARG((png_structp png_ptr, png_infop info_ptr)); PNG_EXTERN float png_get_y_offset_inches PNGARG((png_structp png_ptr, png_infop info_ptr)); #if defined(PNG_pHYs_SUPPORTED) PNG_EXTERN png_uint_32 png_get_pHYs_dpi PNGARG((png_structp png_ptr, png_infop info_ptr, png_uint_32 *res_x, png_uint_32 *res_y, int *unit_type)); #endif /* PNG_pHYs_SUPPORTED */ #endif /* PNG_INCH_CONVERSIONS && PNG_FLOATING_POINT_SUPPORTED */ /* Maintainer: Put new private prototypes here ^ and in libpngpf.3 */ #endif /* PNG_INTERNAL */ #ifdef __cplusplus } #endif #endif /* PNG_VERSION_INFO_ONLY */ /* do not put anything past this line */ #endif /* PNG_H */ /********* End of inlined file: png.h *********/ #define PNG_NO_EXTERN /********* Start of inlined file: png.c *********/ /* png.c - location for general purpose libpng functions * * Last changed in libpng 1.2.21 [October 4, 2007] * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2007 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) */ #define PNG_INTERNAL #define PNG_NO_EXTERN /* Generate a compiler error if there is an old png.h in the search path. */ typedef version_1_2_21 Your_png_h_is_not_version_1_2_21; /* Version information for C files. This had better match the version * string defined in png.h. */ #ifdef PNG_USE_GLOBAL_ARRAYS /* png_libpng_ver was changed to a function in version 1.0.5c */ PNG_CONST char png_libpng_ver[18] = PNG_LIBPNG_VER_STRING; #ifdef PNG_READ_SUPPORTED /* png_sig was changed to a function in version 1.0.5c */ /* Place to hold the signature string for a PNG file. */ PNG_CONST png_byte FARDATA png_sig[8] = {137, 80, 78, 71, 13, 10, 26, 10}; #endif /* PNG_READ_SUPPORTED */ /* Invoke global declarations for constant strings for known chunk types */ PNG_IHDR; PNG_IDAT; PNG_IEND; PNG_PLTE; PNG_bKGD; PNG_cHRM; PNG_gAMA; PNG_hIST; PNG_iCCP; PNG_iTXt; PNG_oFFs; PNG_pCAL; PNG_sCAL; PNG_pHYs; PNG_sBIT; PNG_sPLT; PNG_sRGB; PNG_tEXt; PNG_tIME; PNG_tRNS; PNG_zTXt; #ifdef PNG_READ_SUPPORTED /* arrays to facilitate easy interlacing - use pass (0 - 6) as index */ /* start of interlace block */ PNG_CONST int FARDATA png_pass_start[] = {0, 4, 0, 2, 0, 1, 0}; /* offset to next interlace block */ PNG_CONST int FARDATA png_pass_inc[] = {8, 8, 4, 4, 2, 2, 1}; /* start of interlace block in the y direction */ PNG_CONST int FARDATA png_pass_ystart[] = {0, 0, 4, 0, 2, 0, 1}; /* offset to next interlace block in the y direction */ PNG_CONST int FARDATA png_pass_yinc[] = {8, 8, 8, 4, 4, 2, 2}; /* Height of interlace block. This is not currently used - if you need * it, uncomment it here and in png.h PNG_CONST int FARDATA png_pass_height[] = {8, 8, 4, 4, 2, 2, 1}; */ /* Mask to determine which pixels are valid in a pass */ PNG_CONST int FARDATA png_pass_mask[] = {0x80, 0x08, 0x88, 0x22, 0xaa, 0x55, 0xff}; /* Mask to determine which pixels to overwrite while displaying */ PNG_CONST int FARDATA png_pass_dsp_mask[] = {0xff, 0x0f, 0xff, 0x33, 0xff, 0x55, 0xff}; #endif /* PNG_READ_SUPPORTED */ #endif /* PNG_USE_GLOBAL_ARRAYS */ /* Tells libpng that we have already handled the first "num_bytes" bytes * of the PNG file signature. If the PNG data is embedded into another * stream we can set num_bytes = 8 so that libpng will not attempt to read * or write any of the magic bytes before it starts on the IHDR. */ #ifdef PNG_READ_SUPPORTED void PNGAPI png_set_sig_bytes(png_structp png_ptr, int num_bytes) { if(png_ptr == NULL) return; png_debug(1, "in png_set_sig_bytes\n"); if (num_bytes > 8) png_error(png_ptr, "Too many bytes for PNG signature."); png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes); } /* Checks whether the supplied bytes match the PNG signature. We allow * checking less than the full 8-byte signature so that those apps that * already read the first few bytes of a file to determine the file type * can simply check the remaining bytes for extra assurance. Returns * an integer less than, equal to, or greater than zero if sig is found, * respectively, to be less than, to match, or be greater than the correct * PNG signature (this is the same behaviour as strcmp, memcmp, etc). */ int PNGAPI png_sig_cmp(png_bytep sig, png_size_t start, png_size_t num_to_check) { png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10}; if (num_to_check > 8) num_to_check = 8; else if (num_to_check < 1) return (-1); if (start > 7) return (-1); if (start + num_to_check > 8) num_to_check = 8 - start; return ((int)(png_memcmp(&sig[start], &png_signature[start], num_to_check))); } #if defined(PNG_1_0_X) || defined(PNG_1_2_X) /* (Obsolete) function to check signature bytes. It does not allow one * to check a partial signature. This function might be removed in the * future - use png_sig_cmp(). Returns true (nonzero) if the file is PNG. */ int PNGAPI png_check_sig(png_bytep sig, int num) { return ((int)!png_sig_cmp(sig, (png_size_t)0, (png_size_t)num)); } #endif #endif /* PNG_READ_SUPPORTED */ #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) /* Function to allocate memory for zlib and clear it to 0. */ #ifdef PNG_1_0_X voidpf PNGAPI #else voidpf /* private */ #endif png_zalloc(voidpf png_ptr, uInt items, uInt size) { png_voidp ptr; png_structp p=(png_structp)png_ptr; png_uint_32 save_flags=p->flags; png_uint_32 num_bytes; if(png_ptr == NULL) return (NULL); if (items > PNG_UINT_32_MAX/size) { png_warning (p, "Potential overflow in png_zalloc()"); return (NULL); } num_bytes = (png_uint_32)items * size; p->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK; ptr = (png_voidp)png_malloc((png_structp)png_ptr, num_bytes); p->flags=save_flags; #if defined(PNG_1_0_X) && !defined(PNG_NO_ZALLOC_ZERO) if (ptr == NULL) return ((voidpf)ptr); if (num_bytes > (png_uint_32)0x8000L) { png_memset(ptr, 0, (png_size_t)0x8000L); png_memset((png_bytep)ptr + (png_size_t)0x8000L, 0, (png_size_t)(num_bytes - (png_uint_32)0x8000L)); } else { png_memset(ptr, 0, (png_size_t)num_bytes); } #endif return ((voidpf)ptr); } /* function to free memory for zlib */ #ifdef PNG_1_0_X void PNGAPI #else void /* private */ #endif png_zfree(voidpf png_ptr, voidpf ptr) { png_free((png_structp)png_ptr, (png_voidp)ptr); } /* Reset the CRC variable to 32 bits of 1's. Care must be taken * in case CRC is > 32 bits to leave the top bits 0. */ void /* PRIVATE */ png_reset_crc(png_structp png_ptr) { png_ptr->crc = crc32(0, Z_NULL, 0); } /* Calculate the CRC over a section of data. We can only pass as * much data to this routine as the largest single buffer size. We * also check that this data will actually be used before going to the * trouble of calculating it. */ void /* PRIVATE */ png_calculate_crc(png_structp png_ptr, png_bytep ptr, png_size_t length) { int need_crc = 1; if (png_ptr->chunk_name[0] & 0x20) /* ancillary */ { if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) == (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN)) need_crc = 0; } else /* critical */ { if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) need_crc = 0; } if (need_crc) png_ptr->crc = crc32(png_ptr->crc, ptr, (uInt)length); } /* Allocate the memory for an info_struct for the application. We don't * really need the png_ptr, but it could potentially be useful in the * future. This should be used in favour of malloc(png_sizeof(png_info)) * and png_info_init() so that applications that want to use a shared * libpng don't have to be recompiled if png_info changes size. */ png_infop PNGAPI png_create_info_struct(png_structp png_ptr) { png_infop info_ptr; png_debug(1, "in png_create_info_struct\n"); if(png_ptr == NULL) return (NULL); #ifdef PNG_USER_MEM_SUPPORTED info_ptr = (png_infop)png_create_struct_2(PNG_STRUCT_INFO, png_ptr->malloc_fn, png_ptr->mem_ptr); #else info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO); #endif if (info_ptr != NULL) png_info_init_3(&info_ptr, png_sizeof(png_info)); return (info_ptr); } /* This function frees the memory associated with a single info struct. * Normally, one would use either png_destroy_read_struct() or * png_destroy_write_struct() to free an info struct, but this may be * useful for some applications. */ void PNGAPI png_destroy_info_struct(png_structp png_ptr, png_infopp info_ptr_ptr) { png_infop info_ptr = NULL; if(png_ptr == NULL) return; png_debug(1, "in png_destroy_info_struct\n"); if (info_ptr_ptr != NULL) info_ptr = *info_ptr_ptr; if (info_ptr != NULL) { png_info_destroy(png_ptr, info_ptr); #ifdef PNG_USER_MEM_SUPPORTED png_destroy_struct_2((png_voidp)info_ptr, png_ptr->free_fn, png_ptr->mem_ptr); #else png_destroy_struct((png_voidp)info_ptr); #endif *info_ptr_ptr = NULL; } } /* Initialize the info structure. This is now an internal function (0.89) * and applications using it are urged to use png_create_info_struct() * instead. */ #if defined(PNG_1_0_X) || defined(PNG_1_2_X) #undef png_info_init void PNGAPI png_info_init(png_infop info_ptr) { /* We only come here via pre-1.0.12-compiled applications */ png_info_init_3(&info_ptr, 0); } #endif void PNGAPI png_info_init_3(png_infopp ptr_ptr, png_size_t png_info_struct_size) { png_infop info_ptr = *ptr_ptr; if(info_ptr == NULL) return; png_debug(1, "in png_info_init_3\n"); if(png_sizeof(png_info) > png_info_struct_size) { png_destroy_struct(info_ptr); info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO); *ptr_ptr = info_ptr; } /* set everything to 0 */ png_memset(info_ptr, 0, png_sizeof (png_info)); } #ifdef PNG_FREE_ME_SUPPORTED void PNGAPI png_data_freer(png_structp png_ptr, png_infop info_ptr, int freer, png_uint_32 mask) { png_debug(1, "in png_data_freer\n"); if (png_ptr == NULL || info_ptr == NULL) return; if(freer == PNG_DESTROY_WILL_FREE_DATA) info_ptr->free_me |= mask; else if(freer == PNG_USER_WILL_FREE_DATA) info_ptr->free_me &= ~mask; else png_warning(png_ptr, "Unknown freer parameter in png_data_freer."); } #endif void PNGAPI png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask, int num) { png_debug(1, "in png_free_data\n"); if (png_ptr == NULL || info_ptr == NULL) return; #if defined(PNG_TEXT_SUPPORTED) /* free text item num or (if num == -1) all text items */ #ifdef PNG_FREE_ME_SUPPORTED if ((mask & PNG_FREE_TEXT) & info_ptr->free_me) #else if (mask & PNG_FREE_TEXT) #endif { if (num != -1) { if (info_ptr->text && info_ptr->text[num].key) { png_free(png_ptr, info_ptr->text[num].key); info_ptr->text[num].key = NULL; } } else { int i; for (i = 0; i < info_ptr->num_text; i++) png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i); png_free(png_ptr, info_ptr->text); info_ptr->text = NULL; info_ptr->num_text=0; } } #endif #if defined(PNG_tRNS_SUPPORTED) /* free any tRNS entry */ #ifdef PNG_FREE_ME_SUPPORTED if ((mask & PNG_FREE_TRNS) & info_ptr->free_me) #else if ((mask & PNG_FREE_TRNS) && (png_ptr->flags & PNG_FLAG_FREE_TRNS)) #endif { png_free(png_ptr, info_ptr->trans); info_ptr->valid &= ~PNG_INFO_tRNS; #ifndef PNG_FREE_ME_SUPPORTED png_ptr->flags &= ~PNG_FLAG_FREE_TRNS; #endif info_ptr->trans = NULL; } #endif #if defined(PNG_sCAL_SUPPORTED) /* free any sCAL entry */ #ifdef PNG_FREE_ME_SUPPORTED if ((mask & PNG_FREE_SCAL) & info_ptr->free_me) #else if (mask & PNG_FREE_SCAL) #endif { #if defined(PNG_FIXED_POINT_SUPPORTED) && !defined(PNG_FLOATING_POINT_SUPPORTED) png_free(png_ptr, info_ptr->scal_s_width); png_free(png_ptr, info_ptr->scal_s_height); info_ptr->scal_s_width = NULL; info_ptr->scal_s_height = NULL; #endif info_ptr->valid &= ~PNG_INFO_sCAL; } #endif #if defined(PNG_pCAL_SUPPORTED) /* free any pCAL entry */ #ifdef PNG_FREE_ME_SUPPORTED if ((mask & PNG_FREE_PCAL) & info_ptr->free_me) #else if (mask & PNG_FREE_PCAL) #endif { png_free(png_ptr, info_ptr->pcal_purpose); png_free(png_ptr, info_ptr->pcal_units); info_ptr->pcal_purpose = NULL; info_ptr->pcal_units = NULL; if (info_ptr->pcal_params != NULL) { int i; for (i = 0; i < (int)info_ptr->pcal_nparams; i++) { png_free(png_ptr, info_ptr->pcal_params[i]); info_ptr->pcal_params[i]=NULL; } png_free(png_ptr, info_ptr->pcal_params); info_ptr->pcal_params = NULL; } info_ptr->valid &= ~PNG_INFO_pCAL; } #endif #if defined(PNG_iCCP_SUPPORTED) /* free any iCCP entry */ #ifdef PNG_FREE_ME_SUPPORTED if ((mask & PNG_FREE_ICCP) & info_ptr->free_me) #else if (mask & PNG_FREE_ICCP) #endif { png_free(png_ptr, info_ptr->iccp_name); png_free(png_ptr, info_ptr->iccp_profile); info_ptr->iccp_name = NULL; info_ptr->iccp_profile = NULL; info_ptr->valid &= ~PNG_INFO_iCCP; } #endif #if defined(PNG_sPLT_SUPPORTED) /* free a given sPLT entry, or (if num == -1) all sPLT entries */ #ifdef PNG_FREE_ME_SUPPORTED if ((mask & PNG_FREE_SPLT) & info_ptr->free_me) #else if (mask & PNG_FREE_SPLT) #endif { if (num != -1) { if(info_ptr->splt_palettes) { png_free(png_ptr, info_ptr->splt_palettes[num].name); png_free(png_ptr, info_ptr->splt_palettes[num].entries); info_ptr->splt_palettes[num].name = NULL; info_ptr->splt_palettes[num].entries = NULL; } } else { if(info_ptr->splt_palettes_num) { int i; for (i = 0; i < (int)info_ptr->splt_palettes_num; i++) png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, i); png_free(png_ptr, info_ptr->splt_palettes); info_ptr->splt_palettes = NULL; info_ptr->splt_palettes_num = 0; } info_ptr->valid &= ~PNG_INFO_sPLT; } } #endif #if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) if(png_ptr->unknown_chunk.data) { png_free(png_ptr, png_ptr->unknown_chunk.data); png_ptr->unknown_chunk.data = NULL; } #ifdef PNG_FREE_ME_SUPPORTED if ((mask & PNG_FREE_UNKN) & info_ptr->free_me) #else if (mask & PNG_FREE_UNKN) #endif { if (num != -1) { if(info_ptr->unknown_chunks) { png_free(png_ptr, info_ptr->unknown_chunks[num].data); info_ptr->unknown_chunks[num].data = NULL; } } else { int i; if(info_ptr->unknown_chunks_num) { for (i = 0; i < (int)info_ptr->unknown_chunks_num; i++) png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, i); png_free(png_ptr, info_ptr->unknown_chunks); info_ptr->unknown_chunks = NULL; info_ptr->unknown_chunks_num = 0; } } } #endif #if defined(PNG_hIST_SUPPORTED) /* free any hIST entry */ #ifdef PNG_FREE_ME_SUPPORTED if ((mask & PNG_FREE_HIST) & info_ptr->free_me) #else if ((mask & PNG_FREE_HIST) && (png_ptr->flags & PNG_FLAG_FREE_HIST)) #endif { png_free(png_ptr, info_ptr->hist); info_ptr->hist = NULL; info_ptr->valid &= ~PNG_INFO_hIST; #ifndef PNG_FREE_ME_SUPPORTED png_ptr->flags &= ~PNG_FLAG_FREE_HIST; #endif } #endif /* free any PLTE entry that was internally allocated */ #ifdef PNG_FREE_ME_SUPPORTED if ((mask & PNG_FREE_PLTE) & info_ptr->free_me) #else if ((mask & PNG_FREE_PLTE) && (png_ptr->flags & PNG_FLAG_FREE_PLTE)) #endif { png_zfree(png_ptr, info_ptr->palette); info_ptr->palette = NULL; info_ptr->valid &= ~PNG_INFO_PLTE; #ifndef PNG_FREE_ME_SUPPORTED png_ptr->flags &= ~PNG_FLAG_FREE_PLTE; #endif info_ptr->num_palette = 0; } #if defined(PNG_INFO_IMAGE_SUPPORTED) /* free any image bits attached to the info structure */ #ifdef PNG_FREE_ME_SUPPORTED if ((mask & PNG_FREE_ROWS) & info_ptr->free_me) #else if (mask & PNG_FREE_ROWS) #endif { if(info_ptr->row_pointers) { int row; for (row = 0; row < (int)info_ptr->height; row++) { png_free(png_ptr, info_ptr->row_pointers[row]); info_ptr->row_pointers[row]=NULL; } png_free(png_ptr, info_ptr->row_pointers); info_ptr->row_pointers=NULL; } info_ptr->valid &= ~PNG_INFO_IDAT; } #endif #ifdef PNG_FREE_ME_SUPPORTED if(num == -1) info_ptr->free_me &= ~mask; else info_ptr->free_me &= ~(mask & ~PNG_FREE_MUL); #endif } /* This is an internal routine to free any memory that the info struct is * pointing to before re-using it or freeing the struct itself. Recall * that png_free() checks for NULL pointers for us. */ void /* PRIVATE */ png_info_destroy(png_structp png_ptr, png_infop info_ptr) { png_debug(1, "in png_info_destroy\n"); png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1); #if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) if (png_ptr->num_chunk_list) { png_free(png_ptr, png_ptr->chunk_list); png_ptr->chunk_list=NULL; png_ptr->num_chunk_list=0; } #endif png_info_init_3(&info_ptr, png_sizeof(png_info)); } #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ /* This function returns a pointer to the io_ptr associated with the user * functions. The application should free any memory associated with this * pointer before png_write_destroy() or png_read_destroy() are called. */ png_voidp PNGAPI png_get_io_ptr(png_structp png_ptr) { if(png_ptr == NULL) return (NULL); return (png_ptr->io_ptr); } #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) #if !defined(PNG_NO_STDIO) /* Initialize the default input/output functions for the PNG file. If you * use your own read or write routines, you can call either png_set_read_fn() * or png_set_write_fn() instead of png_init_io(). If you have defined * PNG_NO_STDIO, you must use a function of your own because "FILE *" isn't * necessarily available. */ void PNGAPI png_init_io(png_structp png_ptr, png_FILE_p fp) { png_debug(1, "in png_init_io\n"); if(png_ptr == NULL) return; png_ptr->io_ptr = (png_voidp)fp; } #endif #if defined(PNG_TIME_RFC1123_SUPPORTED) /* Convert the supplied time into an RFC 1123 string suitable for use in * a "Creation Time" or other text-based time string. */ png_charp PNGAPI png_convert_to_rfc1123(png_structp png_ptr, png_timep ptime) { static PNG_CONST char short_months[12][4] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}; if(png_ptr == NULL) return (NULL); if (png_ptr->time_buffer == NULL) { png_ptr->time_buffer = (png_charp)png_malloc(png_ptr, (png_uint_32)(29* png_sizeof(char))); } #if defined(_WIN32_WCE) { wchar_t time_buf[29]; wsprintf(time_buf, TEXT("%d %S %d %02d:%02d:%02d +0000"), ptime->day % 32, short_months[(ptime->month - 1) % 12], ptime->year, ptime->hour % 24, ptime->minute % 60, ptime->second % 61); WideCharToMultiByte(CP_ACP, 0, time_buf, -1, png_ptr->time_buffer, 29, NULL, NULL); } #else #ifdef USE_FAR_KEYWORD { char near_time_buf[29]; png_snprintf6(near_time_buf,29,"%d %s %d %02d:%02d:%02d +0000", ptime->day % 32, short_months[(ptime->month - 1) % 12], ptime->year, ptime->hour % 24, ptime->minute % 60, ptime->second % 61); png_memcpy(png_ptr->time_buffer, near_time_buf, 29*png_sizeof(char)); } #else png_snprintf6(png_ptr->time_buffer,29,"%d %s %d %02d:%02d:%02d +0000", ptime->day % 32, short_months[(ptime->month - 1) % 12], ptime->year, ptime->hour % 24, ptime->minute % 60, ptime->second % 61); #endif #endif /* _WIN32_WCE */ return ((png_charp)png_ptr->time_buffer); } #endif /* PNG_TIME_RFC1123_SUPPORTED */ #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ png_charp PNGAPI png_get_copyright(png_structp png_ptr) { png_ptr = png_ptr; /* silence compiler warning about unused png_ptr */ return ((png_charp) "\n libpng version 1.2.21 - October 4, 2007\n\ Copyright (c) 1998-2007 Glenn Randers-Pehrson\n\ Copyright (c) 1996-1997 Andreas Dilger\n\ Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.\n"); } /* The following return the library version as a short string in the * format 1.0.0 through 99.99.99zz. To get the version of *.h files * used with your application, print out PNG_LIBPNG_VER_STRING, which * is defined in png.h. * Note: now there is no difference between png_get_libpng_ver() and * png_get_header_ver(). Due to the version_nn_nn_nn typedef guard, * it is guaranteed that png.c uses the correct version of png.h. */ png_charp PNGAPI png_get_libpng_ver(png_structp png_ptr) { /* Version of *.c files used when building libpng */ png_ptr = png_ptr; /* silence compiler warning about unused png_ptr */ return ((png_charp) PNG_LIBPNG_VER_STRING); } png_charp PNGAPI png_get_header_ver(png_structp png_ptr) { /* Version of *.h files used when building libpng */ png_ptr = png_ptr; /* silence compiler warning about unused png_ptr */ return ((png_charp) PNG_LIBPNG_VER_STRING); } png_charp PNGAPI png_get_header_version(png_structp png_ptr) { /* Returns longer string containing both version and date */ png_ptr = png_ptr; /* silence compiler warning about unused png_ptr */ return ((png_charp) PNG_HEADER_VERSION_STRING #ifndef PNG_READ_SUPPORTED " (NO READ SUPPORT)" #endif "\n"); } #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED int PNGAPI png_handle_as_unknown(png_structp png_ptr, png_bytep chunk_name) { /* check chunk_name and return "keep" value if it's on the list, else 0 */ int i; png_bytep p; if(png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list<=0) return 0; p=png_ptr->chunk_list+png_ptr->num_chunk_list*5-5; for (i = png_ptr->num_chunk_list; i; i--, p-=5) if (!png_memcmp(chunk_name, p, 4)) return ((int)*(p+4)); return 0; } #endif /* This function, added to libpng-1.0.6g, is untested. */ int PNGAPI png_reset_zstream(png_structp png_ptr) { if (png_ptr == NULL) return Z_STREAM_ERROR; return (inflateReset(&png_ptr->zstream)); } #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ /* This function was added to libpng-1.0.7 */ png_uint_32 PNGAPI png_access_version_number(void) { /* Version of *.c files used when building libpng */ return((png_uint_32) PNG_LIBPNG_VER); } #if defined(PNG_READ_SUPPORTED) && defined(PNG_ASSEMBLER_CODE_SUPPORTED) #if !defined(PNG_1_0_X) /* this function was added to libpng 1.2.0 */ int PNGAPI png_mmx_support(void) { /* obsolete, to be removed from libpng-1.4.0 */ return -1; } #endif /* PNG_1_0_X */ #endif /* PNG_READ_SUPPORTED && PNG_ASSEMBLER_CODE_SUPPORTED */ #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) #ifdef PNG_SIZE_T /* Added at libpng version 1.2.6 */ PNG_EXTERN png_size_t PNGAPI png_convert_size PNGARG((size_t size)); png_size_t PNGAPI png_convert_size(size_t size) { if (size > (png_size_t)-1) PNG_ABORT(); /* We haven't got access to png_ptr, so no png_error() */ return ((png_size_t)size); } #endif /* PNG_SIZE_T */ #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ /********* End of inlined file: png.c *********/ /********* Start of inlined file: pngerror.c *********/ /* pngerror.c - stub functions for i/o and memory allocation * * Last changed in libpng 1.2.20 October 4, 2007 * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2007 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) * * This file provides a location for all error handling. Users who * need special error handling are expected to write replacement functions * and use png_set_error_fn() to use those functions. See the instructions * at each function. */ #define PNG_INTERNAL #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) static void /* PRIVATE */ png_default_error PNGARG((png_structp png_ptr, png_const_charp error_message)); #ifndef PNG_NO_WARNINGS static void /* PRIVATE */ png_default_warning PNGARG((png_structp png_ptr, png_const_charp warning_message)); #endif /* PNG_NO_WARNINGS */ /* This function is called whenever there is a fatal error. This function * should not be changed. If there is a need to handle errors differently, * you should supply a replacement error function and use png_set_error_fn() * to replace the error function at run-time. */ #ifndef PNG_NO_ERROR_TEXT void PNGAPI png_error(png_structp png_ptr, png_const_charp error_message) { #ifdef PNG_ERROR_NUMBERS_SUPPORTED char msg[16]; if (png_ptr != NULL) { if (png_ptr->flags& (PNG_FLAG_STRIP_ERROR_NUMBERS|PNG_FLAG_STRIP_ERROR_TEXT)) { if (*error_message == '#') { int offset; for (offset=1; offset<15; offset++) if (*(error_message+offset) == ' ') break; if (png_ptr->flags&PNG_FLAG_STRIP_ERROR_TEXT) { int i; for (i=0; iflags&PNG_FLAG_STRIP_ERROR_TEXT) { msg[0]='0'; msg[1]='\0'; error_message=msg; } } } } #endif if (png_ptr != NULL && png_ptr->error_fn != NULL) (*(png_ptr->error_fn))(png_ptr, error_message); /* If the custom handler doesn't exist, or if it returns, use the default handler, which will not return. */ png_default_error(png_ptr, error_message); } #else void PNGAPI png_err(png_structp png_ptr) { if (png_ptr != NULL && png_ptr->error_fn != NULL) (*(png_ptr->error_fn))(png_ptr, '\0'); /* If the custom handler doesn't exist, or if it returns, use the default handler, which will not return. */ png_default_error(png_ptr, '\0'); } #endif /* PNG_NO_ERROR_TEXT */ #ifndef PNG_NO_WARNINGS /* This function is called whenever there is a non-fatal error. This function * should not be changed. If there is a need to handle warnings differently, * you should supply a replacement warning function and use * png_set_error_fn() to replace the warning function at run-time. */ void PNGAPI png_warning(png_structp png_ptr, png_const_charp warning_message) { int offset = 0; if (png_ptr != NULL) { #ifdef PNG_ERROR_NUMBERS_SUPPORTED if (png_ptr->flags& (PNG_FLAG_STRIP_ERROR_NUMBERS|PNG_FLAG_STRIP_ERROR_TEXT)) #endif { if (*warning_message == '#') { for (offset=1; offset<15; offset++) if (*(warning_message+offset) == ' ') break; } } if (png_ptr != NULL && png_ptr->warning_fn != NULL) (*(png_ptr->warning_fn))(png_ptr, warning_message+offset); } else png_default_warning(png_ptr, warning_message+offset); } #endif /* PNG_NO_WARNINGS */ /* These utilities are used internally to build an error message that relates * to the current chunk. The chunk name comes from png_ptr->chunk_name, * this is used to prefix the message. The message is limited in length * to 63 bytes, the name characters are output as hex digits wrapped in [] * if the character is invalid. */ #define isnonalpha(c) ((c) < 65 || (c) > 122 || ((c) > 90 && (c) < 97)) /*static PNG_CONST char png_digit[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };*/ #if !defined(PNG_NO_WARNINGS) || !defined(PNG_NO_ERROR_TEXT) static void /* PRIVATE */ png_format_buffer(png_structp png_ptr, png_charp buffer, png_const_charp error_message) { int iout = 0, iin = 0; while (iin < 4) { int c = png_ptr->chunk_name[iin++]; if (isnonalpha(c)) { buffer[iout++] = '['; buffer[iout++] = png_digit[(c & 0xf0) >> 4]; buffer[iout++] = png_digit[c & 0x0f]; buffer[iout++] = ']'; } else { buffer[iout++] = (png_byte)c; } } if (error_message == NULL) buffer[iout] = 0; else { buffer[iout++] = ':'; buffer[iout++] = ' '; png_strncpy(buffer+iout, error_message, 63); buffer[iout+63] = 0; } } #ifdef PNG_READ_SUPPORTED void PNGAPI png_chunk_error(png_structp png_ptr, png_const_charp error_message) { char msg[18+64]; if (png_ptr == NULL) png_error(png_ptr, error_message); else { png_format_buffer(png_ptr, msg, error_message); png_error(png_ptr, msg); } } #endif /* PNG_READ_SUPPORTED */ #endif /* !defined(PNG_NO_WARNINGS) || !defined(PNG_NO_ERROR_TEXT) */ #ifndef PNG_NO_WARNINGS void PNGAPI png_chunk_warning(png_structp png_ptr, png_const_charp warning_message) { char msg[18+64]; if (png_ptr == NULL) png_warning(png_ptr, warning_message); else { png_format_buffer(png_ptr, msg, warning_message); png_warning(png_ptr, msg); } } #endif /* PNG_NO_WARNINGS */ /* This is the default error handling function. Note that replacements for * this function MUST NOT RETURN, or the program will likely crash. This * function is used by default, or if the program supplies NULL for the * error function pointer in png_set_error_fn(). */ static void /* PRIVATE */ png_default_error(png_structp png_ptr, png_const_charp error_message) { #ifndef PNG_NO_CONSOLE_IO #ifdef PNG_ERROR_NUMBERS_SUPPORTED if (*error_message == '#') { int offset; char error_number[16]; for (offset=0; offset<15; offset++) { error_number[offset] = *(error_message+offset+1); if (*(error_message+offset) == ' ') break; } if((offset > 1) && (offset < 15)) { error_number[offset-1]='\0'; fprintf(stderr, "libpng error no. %s: %s\n", error_number, error_message+offset); } else fprintf(stderr, "libpng error: %s, offset=%d\n", error_message,offset); } else #endif fprintf(stderr, "libpng error: %s\n", error_message); #endif #ifdef PNG_SETJMP_SUPPORTED if (png_ptr) { # ifdef USE_FAR_KEYWORD { jmp_buf jmpbuf; png_memcpy(jmpbuf, png_ptr->jmpbuf, png_sizeof(jmp_buf)); longjmp(jmpbuf, 1); } # else longjmp(png_ptr->jmpbuf, 1); # endif } #else PNG_ABORT(); #endif #ifdef PNG_NO_CONSOLE_IO error_message = error_message; /* make compiler happy */ #endif } #ifndef PNG_NO_WARNINGS /* This function is called when there is a warning, but the library thinks * it can continue anyway. Replacement functions don't have to do anything * here if you don't want them to. In the default configuration, png_ptr is * not used, but it is passed in case it may be useful. */ static void /* PRIVATE */ png_default_warning(png_structp png_ptr, png_const_charp warning_message) { #ifndef PNG_NO_CONSOLE_IO # ifdef PNG_ERROR_NUMBERS_SUPPORTED if (*warning_message == '#') { int offset; char warning_number[16]; for (offset=0; offset<15; offset++) { warning_number[offset]=*(warning_message+offset+1); if (*(warning_message+offset) == ' ') break; } if((offset > 1) && (offset < 15)) { warning_number[offset-1]='\0'; fprintf(stderr, "libpng warning no. %s: %s\n", warning_number, warning_message+offset); } else fprintf(stderr, "libpng warning: %s\n", warning_message); } else # endif fprintf(stderr, "libpng warning: %s\n", warning_message); #else warning_message = warning_message; /* make compiler happy */ #endif png_ptr = png_ptr; /* make compiler happy */ } #endif /* PNG_NO_WARNINGS */ /* This function is called when the application wants to use another method * of handling errors and warnings. Note that the error function MUST NOT * return to the calling routine or serious problems will occur. The return * method used in the default routine calls longjmp(png_ptr->jmpbuf, 1) */ void PNGAPI png_set_error_fn(png_structp png_ptr, png_voidp error_ptr, png_error_ptr error_fn, png_error_ptr warning_fn) { if (png_ptr == NULL) return; png_ptr->error_ptr = error_ptr; png_ptr->error_fn = error_fn; png_ptr->warning_fn = warning_fn; } /* This function returns a pointer to the error_ptr associated with the user * functions. The application should free any memory associated with this * pointer before png_write_destroy and png_read_destroy are called. */ png_voidp PNGAPI png_get_error_ptr(png_structp png_ptr) { if (png_ptr == NULL) return NULL; return ((png_voidp)png_ptr->error_ptr); } #ifdef PNG_ERROR_NUMBERS_SUPPORTED void PNGAPI png_set_strip_error_numbers(png_structp png_ptr, png_uint_32 strip_mode) { if(png_ptr != NULL) { png_ptr->flags &= ((~(PNG_FLAG_STRIP_ERROR_NUMBERS|PNG_FLAG_STRIP_ERROR_TEXT))&strip_mode); } } #endif #endif /* PNG_READ_SUPPORTED || PNG_WRITE_SUPPORTED */ /********* End of inlined file: pngerror.c *********/ /********* Start of inlined file: pngget.c *********/ /* pngget.c - retrieval of values from info struct * * Last changed in libpng 1.2.15 January 5, 2007 * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2007 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) */ #define PNG_INTERNAL #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) png_uint_32 PNGAPI png_get_valid(png_structp png_ptr, png_infop info_ptr, png_uint_32 flag) { if (png_ptr != NULL && info_ptr != NULL) return(info_ptr->valid & flag); else return(0); } png_uint_32 PNGAPI png_get_rowbytes(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) return(info_ptr->rowbytes); else return(0); } #if defined(PNG_INFO_IMAGE_SUPPORTED) png_bytepp PNGAPI png_get_rows(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) return(info_ptr->row_pointers); else return(0); } #endif #ifdef PNG_EASY_ACCESS_SUPPORTED /* easy access to info, added in libpng-0.99 */ png_uint_32 PNGAPI png_get_image_width(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) { return info_ptr->width; } return (0); } png_uint_32 PNGAPI png_get_image_height(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) { return info_ptr->height; } return (0); } png_byte PNGAPI png_get_bit_depth(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) { return info_ptr->bit_depth; } return (0); } png_byte PNGAPI png_get_color_type(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) { return info_ptr->color_type; } return (0); } png_byte PNGAPI png_get_filter_type(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) { return info_ptr->filter_type; } return (0); } png_byte PNGAPI png_get_interlace_type(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) { return info_ptr->interlace_type; } return (0); } png_byte PNGAPI png_get_compression_type(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) { return info_ptr->compression_type; } return (0); } png_uint_32 PNGAPI png_get_x_pixels_per_meter(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) #if defined(PNG_pHYs_SUPPORTED) if (info_ptr->valid & PNG_INFO_pHYs) { png_debug1(1, "in %s retrieval function\n", "png_get_x_pixels_per_meter"); if(info_ptr->phys_unit_type != PNG_RESOLUTION_METER) return (0); else return (info_ptr->x_pixels_per_unit); } #else return (0); #endif return (0); } png_uint_32 PNGAPI png_get_y_pixels_per_meter(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) #if defined(PNG_pHYs_SUPPORTED) if (info_ptr->valid & PNG_INFO_pHYs) { png_debug1(1, "in %s retrieval function\n", "png_get_y_pixels_per_meter"); if(info_ptr->phys_unit_type != PNG_RESOLUTION_METER) return (0); else return (info_ptr->y_pixels_per_unit); } #else return (0); #endif return (0); } png_uint_32 PNGAPI png_get_pixels_per_meter(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) #if defined(PNG_pHYs_SUPPORTED) if (info_ptr->valid & PNG_INFO_pHYs) { png_debug1(1, "in %s retrieval function\n", "png_get_pixels_per_meter"); if(info_ptr->phys_unit_type != PNG_RESOLUTION_METER || info_ptr->x_pixels_per_unit != info_ptr->y_pixels_per_unit) return (0); else return (info_ptr->x_pixels_per_unit); } #else return (0); #endif return (0); } #ifdef PNG_FLOATING_POINT_SUPPORTED float PNGAPI png_get_pixel_aspect_ratio(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) #if defined(PNG_pHYs_SUPPORTED) if (info_ptr->valid & PNG_INFO_pHYs) { png_debug1(1, "in %s retrieval function\n", "png_get_aspect_ratio"); if (info_ptr->x_pixels_per_unit == 0) return ((float)0.0); else return ((float)((float)info_ptr->y_pixels_per_unit /(float)info_ptr->x_pixels_per_unit)); } #else return (0.0); #endif return ((float)0.0); } #endif png_int_32 PNGAPI png_get_x_offset_microns(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) #if defined(PNG_oFFs_SUPPORTED) if (info_ptr->valid & PNG_INFO_oFFs) { png_debug1(1, "in %s retrieval function\n", "png_get_x_offset_microns"); if(info_ptr->offset_unit_type != PNG_OFFSET_MICROMETER) return (0); else return (info_ptr->x_offset); } #else return (0); #endif return (0); } png_int_32 PNGAPI png_get_y_offset_microns(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) #if defined(PNG_oFFs_SUPPORTED) if (info_ptr->valid & PNG_INFO_oFFs) { png_debug1(1, "in %s retrieval function\n", "png_get_y_offset_microns"); if(info_ptr->offset_unit_type != PNG_OFFSET_MICROMETER) return (0); else return (info_ptr->y_offset); } #else return (0); #endif return (0); } png_int_32 PNGAPI png_get_x_offset_pixels(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) #if defined(PNG_oFFs_SUPPORTED) if (info_ptr->valid & PNG_INFO_oFFs) { png_debug1(1, "in %s retrieval function\n", "png_get_x_offset_microns"); if(info_ptr->offset_unit_type != PNG_OFFSET_PIXEL) return (0); else return (info_ptr->x_offset); } #else return (0); #endif return (0); } png_int_32 PNGAPI png_get_y_offset_pixels(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) #if defined(PNG_oFFs_SUPPORTED) if (info_ptr->valid & PNG_INFO_oFFs) { png_debug1(1, "in %s retrieval function\n", "png_get_y_offset_microns"); if(info_ptr->offset_unit_type != PNG_OFFSET_PIXEL) return (0); else return (info_ptr->y_offset); } #else return (0); #endif return (0); } #if defined(PNG_INCH_CONVERSIONS) && defined(PNG_FLOATING_POINT_SUPPORTED) png_uint_32 PNGAPI png_get_pixels_per_inch(png_structp png_ptr, png_infop info_ptr) { return ((png_uint_32)((float)png_get_pixels_per_meter(png_ptr, info_ptr) *.0254 +.5)); } png_uint_32 PNGAPI png_get_x_pixels_per_inch(png_structp png_ptr, png_infop info_ptr) { return ((png_uint_32)((float)png_get_x_pixels_per_meter(png_ptr, info_ptr) *.0254 +.5)); } png_uint_32 PNGAPI png_get_y_pixels_per_inch(png_structp png_ptr, png_infop info_ptr) { return ((png_uint_32)((float)png_get_y_pixels_per_meter(png_ptr, info_ptr) *.0254 +.5)); } float PNGAPI png_get_x_offset_inches(png_structp png_ptr, png_infop info_ptr) { return ((float)png_get_x_offset_microns(png_ptr, info_ptr) *.00003937); } float PNGAPI png_get_y_offset_inches(png_structp png_ptr, png_infop info_ptr) { return ((float)png_get_y_offset_microns(png_ptr, info_ptr) *.00003937); } #if defined(PNG_pHYs_SUPPORTED) png_uint_32 PNGAPI png_get_pHYs_dpi(png_structp png_ptr, png_infop info_ptr, png_uint_32 *res_x, png_uint_32 *res_y, int *unit_type) { png_uint_32 retval = 0; if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs)) { png_debug1(1, "in %s retrieval function\n", "pHYs"); if (res_x != NULL) { *res_x = info_ptr->x_pixels_per_unit; retval |= PNG_INFO_pHYs; } if (res_y != NULL) { *res_y = info_ptr->y_pixels_per_unit; retval |= PNG_INFO_pHYs; } if (unit_type != NULL) { *unit_type = (int)info_ptr->phys_unit_type; retval |= PNG_INFO_pHYs; if(*unit_type == 1) { if (res_x != NULL) *res_x = (png_uint_32)(*res_x * .0254 + .50); if (res_y != NULL) *res_y = (png_uint_32)(*res_y * .0254 + .50); } } } return (retval); } #endif /* PNG_pHYs_SUPPORTED */ #endif /* PNG_INCH_CONVERSIONS && PNG_FLOATING_POINT_SUPPORTED */ /* png_get_channels really belongs in here, too, but it's been around longer */ #endif /* PNG_EASY_ACCESS_SUPPORTED */ png_byte PNGAPI png_get_channels(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) return(info_ptr->channels); else return (0); } png_bytep PNGAPI png_get_signature(png_structp png_ptr, png_infop info_ptr) { if (png_ptr != NULL && info_ptr != NULL) return(info_ptr->signature); else return (NULL); } #if defined(PNG_bKGD_SUPPORTED) png_uint_32 PNGAPI png_get_bKGD(png_structp png_ptr, png_infop info_ptr, png_color_16p *background) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_bKGD) && background != NULL) { png_debug1(1, "in %s retrieval function\n", "bKGD"); *background = &(info_ptr->background); return (PNG_INFO_bKGD); } return (0); } #endif #if defined(PNG_cHRM_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED png_uint_32 PNGAPI png_get_cHRM(png_structp png_ptr, png_infop info_ptr, double *white_x, double *white_y, double *red_x, double *red_y, double *green_x, double *green_y, double *blue_x, double *blue_y) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM)) { png_debug1(1, "in %s retrieval function\n", "cHRM"); if (white_x != NULL) *white_x = (double)info_ptr->x_white; if (white_y != NULL) *white_y = (double)info_ptr->y_white; if (red_x != NULL) *red_x = (double)info_ptr->x_red; if (red_y != NULL) *red_y = (double)info_ptr->y_red; if (green_x != NULL) *green_x = (double)info_ptr->x_green; if (green_y != NULL) *green_y = (double)info_ptr->y_green; if (blue_x != NULL) *blue_x = (double)info_ptr->x_blue; if (blue_y != NULL) *blue_y = (double)info_ptr->y_blue; return (PNG_INFO_cHRM); } return (0); } #endif #ifdef PNG_FIXED_POINT_SUPPORTED png_uint_32 PNGAPI png_get_cHRM_fixed(png_structp png_ptr, png_infop info_ptr, png_fixed_point *white_x, png_fixed_point *white_y, png_fixed_point *red_x, png_fixed_point *red_y, png_fixed_point *green_x, png_fixed_point *green_y, png_fixed_point *blue_x, png_fixed_point *blue_y) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM)) { png_debug1(1, "in %s retrieval function\n", "cHRM"); if (white_x != NULL) *white_x = info_ptr->int_x_white; if (white_y != NULL) *white_y = info_ptr->int_y_white; if (red_x != NULL) *red_x = info_ptr->int_x_red; if (red_y != NULL) *red_y = info_ptr->int_y_red; if (green_x != NULL) *green_x = info_ptr->int_x_green; if (green_y != NULL) *green_y = info_ptr->int_y_green; if (blue_x != NULL) *blue_x = info_ptr->int_x_blue; if (blue_y != NULL) *blue_y = info_ptr->int_y_blue; return (PNG_INFO_cHRM); } return (0); } #endif #endif #if defined(PNG_gAMA_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED png_uint_32 PNGAPI png_get_gAMA(png_structp png_ptr, png_infop info_ptr, double *file_gamma) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA) && file_gamma != NULL) { png_debug1(1, "in %s retrieval function\n", "gAMA"); *file_gamma = (double)info_ptr->gamma; return (PNG_INFO_gAMA); } return (0); } #endif #ifdef PNG_FIXED_POINT_SUPPORTED png_uint_32 PNGAPI png_get_gAMA_fixed(png_structp png_ptr, png_infop info_ptr, png_fixed_point *int_file_gamma) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA) && int_file_gamma != NULL) { png_debug1(1, "in %s retrieval function\n", "gAMA"); *int_file_gamma = info_ptr->int_gamma; return (PNG_INFO_gAMA); } return (0); } #endif #endif #if defined(PNG_sRGB_SUPPORTED) png_uint_32 PNGAPI png_get_sRGB(png_structp png_ptr, png_infop info_ptr, int *file_srgb_intent) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_sRGB) && file_srgb_intent != NULL) { png_debug1(1, "in %s retrieval function\n", "sRGB"); *file_srgb_intent = (int)info_ptr->srgb_intent; return (PNG_INFO_sRGB); } return (0); } #endif #if defined(PNG_iCCP_SUPPORTED) png_uint_32 PNGAPI png_get_iCCP(png_structp png_ptr, png_infop info_ptr, png_charpp name, int *compression_type, png_charpp profile, png_uint_32 *proflen) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_iCCP) && name != NULL && profile != NULL && proflen != NULL) { png_debug1(1, "in %s retrieval function\n", "iCCP"); *name = info_ptr->iccp_name; *profile = info_ptr->iccp_profile; /* compression_type is a dummy so the API won't have to change if we introduce multiple compression types later. */ *proflen = (int)info_ptr->iccp_proflen; *compression_type = (int)info_ptr->iccp_compression; return (PNG_INFO_iCCP); } return (0); } #endif #if defined(PNG_sPLT_SUPPORTED) png_uint_32 PNGAPI png_get_sPLT(png_structp png_ptr, png_infop info_ptr, png_sPLT_tpp spalettes) { if (png_ptr != NULL && info_ptr != NULL && spalettes != NULL) { *spalettes = info_ptr->splt_palettes; return ((png_uint_32)info_ptr->splt_palettes_num); } return (0); } #endif #if defined(PNG_hIST_SUPPORTED) png_uint_32 PNGAPI png_get_hIST(png_structp png_ptr, png_infop info_ptr, png_uint_16p *hist) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_hIST) && hist != NULL) { png_debug1(1, "in %s retrieval function\n", "hIST"); *hist = info_ptr->hist; return (PNG_INFO_hIST); } return (0); } #endif png_uint_32 PNGAPI png_get_IHDR(png_structp png_ptr, png_infop info_ptr, png_uint_32 *width, png_uint_32 *height, int *bit_depth, int *color_type, int *interlace_type, int *compression_type, int *filter_type) { if (png_ptr != NULL && info_ptr != NULL && width != NULL && height != NULL && bit_depth != NULL && color_type != NULL) { png_debug1(1, "in %s retrieval function\n", "IHDR"); *width = info_ptr->width; *height = info_ptr->height; *bit_depth = info_ptr->bit_depth; if (info_ptr->bit_depth < 1 || info_ptr->bit_depth > 16) png_error(png_ptr, "Invalid bit depth"); *color_type = info_ptr->color_type; if (info_ptr->color_type > 6) png_error(png_ptr, "Invalid color type"); if (compression_type != NULL) *compression_type = info_ptr->compression_type; if (filter_type != NULL) *filter_type = info_ptr->filter_type; if (interlace_type != NULL) *interlace_type = info_ptr->interlace_type; /* check for potential overflow of rowbytes */ if (*width == 0 || *width > PNG_UINT_31_MAX) png_error(png_ptr, "Invalid image width"); if (*height == 0 || *height > PNG_UINT_31_MAX) png_error(png_ptr, "Invalid image height"); if (info_ptr->width > (PNG_UINT_32_MAX >> 3) /* 8-byte RGBA pixels */ - 64 /* bigrowbuf hack */ - 1 /* filter byte */ - 7*8 /* rounding of width to multiple of 8 pixels */ - 8) /* extra max_pixel_depth pad */ { png_warning(png_ptr, "Width too large for libpng to process image data."); } return (1); } return (0); } #if defined(PNG_oFFs_SUPPORTED) png_uint_32 PNGAPI png_get_oFFs(png_structp png_ptr, png_infop info_ptr, png_int_32 *offset_x, png_int_32 *offset_y, int *unit_type) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_oFFs) && offset_x != NULL && offset_y != NULL && unit_type != NULL) { png_debug1(1, "in %s retrieval function\n", "oFFs"); *offset_x = info_ptr->x_offset; *offset_y = info_ptr->y_offset; *unit_type = (int)info_ptr->offset_unit_type; return (PNG_INFO_oFFs); } return (0); } #endif #if defined(PNG_pCAL_SUPPORTED) png_uint_32 PNGAPI png_get_pCAL(png_structp png_ptr, png_infop info_ptr, png_charp *purpose, png_int_32 *X0, png_int_32 *X1, int *type, int *nparams, png_charp *units, png_charpp *params) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_pCAL) && purpose != NULL && X0 != NULL && X1 != NULL && type != NULL && nparams != NULL && units != NULL && params != NULL) { png_debug1(1, "in %s retrieval function\n", "pCAL"); *purpose = info_ptr->pcal_purpose; *X0 = info_ptr->pcal_X0; *X1 = info_ptr->pcal_X1; *type = (int)info_ptr->pcal_type; *nparams = (int)info_ptr->pcal_nparams; *units = info_ptr->pcal_units; *params = info_ptr->pcal_params; return (PNG_INFO_pCAL); } return (0); } #endif #if defined(PNG_sCAL_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED png_uint_32 PNGAPI png_get_sCAL(png_structp png_ptr, png_infop info_ptr, int *unit, double *width, double *height) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_sCAL)) { *unit = info_ptr->scal_unit; *width = info_ptr->scal_pixel_width; *height = info_ptr->scal_pixel_height; return (PNG_INFO_sCAL); } return(0); } #else #ifdef PNG_FIXED_POINT_SUPPORTED png_uint_32 PNGAPI png_get_sCAL_s(png_structp png_ptr, png_infop info_ptr, int *unit, png_charpp width, png_charpp height) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_sCAL)) { *unit = info_ptr->scal_unit; *width = info_ptr->scal_s_width; *height = info_ptr->scal_s_height; return (PNG_INFO_sCAL); } return(0); } #endif #endif #endif #if defined(PNG_pHYs_SUPPORTED) png_uint_32 PNGAPI png_get_pHYs(png_structp png_ptr, png_infop info_ptr, png_uint_32 *res_x, png_uint_32 *res_y, int *unit_type) { png_uint_32 retval = 0; if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs)) { png_debug1(1, "in %s retrieval function\n", "pHYs"); if (res_x != NULL) { *res_x = info_ptr->x_pixels_per_unit; retval |= PNG_INFO_pHYs; } if (res_y != NULL) { *res_y = info_ptr->y_pixels_per_unit; retval |= PNG_INFO_pHYs; } if (unit_type != NULL) { *unit_type = (int)info_ptr->phys_unit_type; retval |= PNG_INFO_pHYs; } } return (retval); } #endif png_uint_32 PNGAPI png_get_PLTE(png_structp png_ptr, png_infop info_ptr, png_colorp *palette, int *num_palette) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_PLTE) && palette != NULL) { png_debug1(1, "in %s retrieval function\n", "PLTE"); *palette = info_ptr->palette; *num_palette = info_ptr->num_palette; png_debug1(3, "num_palette = %d\n", *num_palette); return (PNG_INFO_PLTE); } return (0); } #if defined(PNG_sBIT_SUPPORTED) png_uint_32 PNGAPI png_get_sBIT(png_structp png_ptr, png_infop info_ptr, png_color_8p *sig_bit) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_sBIT) && sig_bit != NULL) { png_debug1(1, "in %s retrieval function\n", "sBIT"); *sig_bit = &(info_ptr->sig_bit); return (PNG_INFO_sBIT); } return (0); } #endif #if defined(PNG_TEXT_SUPPORTED) png_uint_32 PNGAPI png_get_text(png_structp png_ptr, png_infop info_ptr, png_textp *text_ptr, int *num_text) { if (png_ptr != NULL && info_ptr != NULL && info_ptr->num_text > 0) { png_debug1(1, "in %s retrieval function\n", (png_ptr->chunk_name[0] == '\0' ? "text" : (png_const_charp)png_ptr->chunk_name)); if (text_ptr != NULL) *text_ptr = info_ptr->text; if (num_text != NULL) *num_text = info_ptr->num_text; return ((png_uint_32)info_ptr->num_text); } if (num_text != NULL) *num_text = 0; return(0); } #endif #if defined(PNG_tIME_SUPPORTED) png_uint_32 PNGAPI png_get_tIME(png_structp png_ptr, png_infop info_ptr, png_timep *mod_time) { if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_tIME) && mod_time != NULL) { png_debug1(1, "in %s retrieval function\n", "tIME"); *mod_time = &(info_ptr->mod_time); return (PNG_INFO_tIME); } return (0); } #endif #if defined(PNG_tRNS_SUPPORTED) png_uint_32 PNGAPI png_get_tRNS(png_structp png_ptr, png_infop info_ptr, png_bytep *trans, int *num_trans, png_color_16p *trans_values) { png_uint_32 retval = 0; if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS)) { png_debug1(1, "in %s retrieval function\n", "tRNS"); if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { if (trans != NULL) { *trans = info_ptr->trans; retval |= PNG_INFO_tRNS; } if (trans_values != NULL) *trans_values = &(info_ptr->trans_values); } else /* if (info_ptr->color_type != PNG_COLOR_TYPE_PALETTE) */ { if (trans_values != NULL) { *trans_values = &(info_ptr->trans_values); retval |= PNG_INFO_tRNS; } if(trans != NULL) *trans = NULL; } if(num_trans != NULL) { *num_trans = info_ptr->num_trans; retval |= PNG_INFO_tRNS; } } return (retval); } #endif #if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) png_uint_32 PNGAPI png_get_unknown_chunks(png_structp png_ptr, png_infop info_ptr, png_unknown_chunkpp unknowns) { if (png_ptr != NULL && info_ptr != NULL && unknowns != NULL) { *unknowns = info_ptr->unknown_chunks; return ((png_uint_32)info_ptr->unknown_chunks_num); } return (0); } #endif #if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) png_byte PNGAPI png_get_rgb_to_gray_status (png_structp png_ptr) { return (png_byte)(png_ptr? png_ptr->rgb_to_gray_status : 0); } #endif #if defined(PNG_USER_CHUNKS_SUPPORTED) png_voidp PNGAPI png_get_user_chunk_ptr(png_structp png_ptr) { return (png_ptr? png_ptr->user_chunk_ptr : NULL); } #endif #ifdef PNG_WRITE_SUPPORTED png_uint_32 PNGAPI png_get_compression_buffer_size(png_structp png_ptr) { return (png_uint_32)(png_ptr? png_ptr->zbuf_size : 0L); } #endif #ifdef PNG_ASSEMBLER_CODE_SUPPORTED #ifndef PNG_1_0_X /* this function was added to libpng 1.2.0 and should exist by default */ png_uint_32 PNGAPI png_get_asm_flags (png_structp png_ptr) { /* obsolete, to be removed from libpng-1.4.0 */ return (png_ptr? 0L: 0L); } /* this function was added to libpng 1.2.0 and should exist by default */ png_uint_32 PNGAPI png_get_asm_flagmask (int flag_select) { /* obsolete, to be removed from libpng-1.4.0 */ flag_select=flag_select; return 0L; } /* GRR: could add this: && defined(PNG_MMX_CODE_SUPPORTED) */ /* this function was added to libpng 1.2.0 */ png_uint_32 PNGAPI png_get_mmx_flagmask (int flag_select, int *compilerID) { /* obsolete, to be removed from libpng-1.4.0 */ flag_select=flag_select; *compilerID = -1; /* unknown (i.e., no asm/MMX code compiled) */ return 0L; } /* this function was added to libpng 1.2.0 */ png_byte PNGAPI png_get_mmx_bitdepth_threshold (png_structp png_ptr) { /* obsolete, to be removed from libpng-1.4.0 */ return (png_ptr? 0: 0); } /* this function was added to libpng 1.2.0 */ png_uint_32 PNGAPI png_get_mmx_rowbytes_threshold (png_structp png_ptr) { /* obsolete, to be removed from libpng-1.4.0 */ return (png_ptr? 0L: 0L); } #endif /* ?PNG_1_0_X */ #endif /* ?PNG_ASSEMBLER_CODE_SUPPORTED */ #ifdef PNG_SET_USER_LIMITS_SUPPORTED /* these functions were added to libpng 1.2.6 */ png_uint_32 PNGAPI png_get_user_width_max (png_structp png_ptr) { return (png_ptr? png_ptr->user_width_max : 0); } png_uint_32 PNGAPI png_get_user_height_max (png_structp png_ptr) { return (png_ptr? png_ptr->user_height_max : 0); } #endif /* ?PNG_SET_USER_LIMITS_SUPPORTED */ #endif /* PNG_READ_SUPPORTED || PNG_WRITE_SUPPORTED */ /********* End of inlined file: pngget.c *********/ /********* Start of inlined file: pngmem.c *********/ /* pngmem.c - stub functions for memory allocation * * Last changed in libpng 1.2.13 November 13, 2006 * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2006 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) * * This file provides a location for all memory allocation. Users who * need special memory handling are expected to supply replacement * functions for png_malloc() and png_free(), and to use * png_create_read_struct_2() and png_create_write_struct_2() to * identify the replacement functions. */ #define PNG_INTERNAL #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) /* Borland DOS special memory handler */ #if defined(__TURBOC__) && !defined(_Windows) && !defined(__FLAT__) /* if you change this, be sure to change the one in png.h also */ /* Allocate memory for a png_struct. The malloc and memset can be replaced by a single call to calloc() if this is thought to improve performance. */ png_voidp /* PRIVATE */ png_create_struct(int type) { #ifdef PNG_USER_MEM_SUPPORTED return (png_create_struct_2(type, png_malloc_ptr_NULL, png_voidp_NULL)); } /* Alternate version of png_create_struct, for use with user-defined malloc. */ png_voidp /* PRIVATE */ png_create_struct_2(int type, png_malloc_ptr malloc_fn, png_voidp mem_ptr) { #endif /* PNG_USER_MEM_SUPPORTED */ png_size_t size; png_voidp struct_ptr; if (type == PNG_STRUCT_INFO) size = png_sizeof(png_info); else if (type == PNG_STRUCT_PNG) size = png_sizeof(png_struct); else return (png_get_copyright(NULL)); #ifdef PNG_USER_MEM_SUPPORTED if(malloc_fn != NULL) { png_struct dummy_struct; png_structp png_ptr = &dummy_struct; png_ptr->mem_ptr=mem_ptr; struct_ptr = (*(malloc_fn))(png_ptr, (png_uint_32)size); } else #endif /* PNG_USER_MEM_SUPPORTED */ struct_ptr = (png_voidp)farmalloc(size); if (struct_ptr != NULL) png_memset(struct_ptr, 0, size); return (struct_ptr); } /* Free memory allocated by a png_create_struct() call */ void /* PRIVATE */ png_destroy_struct(png_voidp struct_ptr) { #ifdef PNG_USER_MEM_SUPPORTED png_destroy_struct_2(struct_ptr, png_free_ptr_NULL, png_voidp_NULL); } /* Free memory allocated by a png_create_struct() call */ void /* PRIVATE */ png_destroy_struct_2(png_voidp struct_ptr, png_free_ptr free_fn, png_voidp mem_ptr) { #endif if (struct_ptr != NULL) { #ifdef PNG_USER_MEM_SUPPORTED if(free_fn != NULL) { png_struct dummy_struct; png_structp png_ptr = &dummy_struct; png_ptr->mem_ptr=mem_ptr; (*(free_fn))(png_ptr, struct_ptr); return; } #endif /* PNG_USER_MEM_SUPPORTED */ farfree (struct_ptr); } } /* Allocate memory. For reasonable files, size should never exceed * 64K. However, zlib may allocate more then 64K if you don't tell * it not to. See zconf.h and png.h for more information. zlib does * need to allocate exactly 64K, so whatever you call here must * have the ability to do that. * * Borland seems to have a problem in DOS mode for exactly 64K. * It gives you a segment with an offset of 8 (perhaps to store its * memory stuff). zlib doesn't like this at all, so we have to * detect and deal with it. This code should not be needed in * Windows or OS/2 modes, and only in 16 bit mode. This code has * been updated by Alexander Lehmann for version 0.89 to waste less * memory. * * Note that we can't use png_size_t for the "size" declaration, * since on some systems a png_size_t is a 16-bit quantity, and as a * result, we would be truncating potentially larger memory requests * (which should cause a fatal error) and introducing major problems. */ png_voidp PNGAPI png_malloc(png_structp png_ptr, png_uint_32 size) { png_voidp ret; if (png_ptr == NULL || size == 0) return (NULL); #ifdef PNG_USER_MEM_SUPPORTED if(png_ptr->malloc_fn != NULL) ret = ((png_voidp)(*(png_ptr->malloc_fn))(png_ptr, (png_size_t)size)); else ret = (png_malloc_default(png_ptr, size)); if (ret == NULL && (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) png_error(png_ptr, "Out of memory!"); return (ret); } png_voidp PNGAPI png_malloc_default(png_structp png_ptr, png_uint_32 size) { png_voidp ret; #endif /* PNG_USER_MEM_SUPPORTED */ if (png_ptr == NULL || size == 0) return (NULL); #ifdef PNG_MAX_MALLOC_64K if (size > (png_uint_32)65536L) { png_warning(png_ptr, "Cannot Allocate > 64K"); ret = NULL; } else #endif if (size != (size_t)size) ret = NULL; else if (size == (png_uint_32)65536L) { if (png_ptr->offset_table == NULL) { /* try to see if we need to do any of this fancy stuff */ ret = farmalloc(size); if (ret == NULL || ((png_size_t)ret & 0xffff)) { int num_blocks; png_uint_32 total_size; png_bytep table; int i; png_byte huge * hptr; if (ret != NULL) { farfree(ret); ret = NULL; } if(png_ptr->zlib_window_bits > 14) num_blocks = (int)(1 << (png_ptr->zlib_window_bits - 14)); else num_blocks = 1; if (png_ptr->zlib_mem_level >= 7) num_blocks += (int)(1 << (png_ptr->zlib_mem_level - 7)); else num_blocks++; total_size = ((png_uint_32)65536L) * (png_uint_32)num_blocks+16; table = farmalloc(total_size); if (table == NULL) { #ifndef PNG_USER_MEM_SUPPORTED if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) png_error(png_ptr, "Out Of Memory."); /* Note "O" and "M" */ else png_warning(png_ptr, "Out Of Memory."); #endif return (NULL); } if ((png_size_t)table & 0xfff0) { #ifndef PNG_USER_MEM_SUPPORTED if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) png_error(png_ptr, "Farmalloc didn't return normalized pointer"); else png_warning(png_ptr, "Farmalloc didn't return normalized pointer"); #endif return (NULL); } png_ptr->offset_table = table; png_ptr->offset_table_ptr = farmalloc(num_blocks * png_sizeof (png_bytep)); if (png_ptr->offset_table_ptr == NULL) { #ifndef PNG_USER_MEM_SUPPORTED if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) png_error(png_ptr, "Out Of memory."); /* Note "O" and "M" */ else png_warning(png_ptr, "Out Of memory."); #endif return (NULL); } hptr = (png_byte huge *)table; if ((png_size_t)hptr & 0xf) { hptr = (png_byte huge *)((long)(hptr) & 0xfffffff0L); hptr = hptr + 16L; /* "hptr += 16L" fails on Turbo C++ 3.0 */ } for (i = 0; i < num_blocks; i++) { png_ptr->offset_table_ptr[i] = (png_bytep)hptr; hptr = hptr + (png_uint_32)65536L; /* "+=" fails on TC++3.0 */ } png_ptr->offset_table_number = num_blocks; png_ptr->offset_table_count = 0; png_ptr->offset_table_count_free = 0; } } if (png_ptr->offset_table_count >= png_ptr->offset_table_number) { #ifndef PNG_USER_MEM_SUPPORTED if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) png_error(png_ptr, "Out of Memory."); /* Note "o" and "M" */ else png_warning(png_ptr, "Out of Memory."); #endif return (NULL); } ret = png_ptr->offset_table_ptr[png_ptr->offset_table_count++]; } else ret = farmalloc(size); #ifndef PNG_USER_MEM_SUPPORTED if (ret == NULL) { if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) png_error(png_ptr, "Out of memory."); /* Note "o" and "m" */ else png_warning(png_ptr, "Out of memory."); /* Note "o" and "m" */ } #endif return (ret); } /* free a pointer allocated by png_malloc(). In the default configuration, png_ptr is not used, but is passed in case it is needed. If ptr is NULL, return without taking any action. */ void PNGAPI png_free(png_structp png_ptr, png_voidp ptr) { if (png_ptr == NULL || ptr == NULL) return; #ifdef PNG_USER_MEM_SUPPORTED if (png_ptr->free_fn != NULL) { (*(png_ptr->free_fn))(png_ptr, ptr); return; } else png_free_default(png_ptr, ptr); } void PNGAPI png_free_default(png_structp png_ptr, png_voidp ptr) { #endif /* PNG_USER_MEM_SUPPORTED */ if(png_ptr == NULL) return; if (png_ptr->offset_table != NULL) { int i; for (i = 0; i < png_ptr->offset_table_count; i++) { if (ptr == png_ptr->offset_table_ptr[i]) { ptr = NULL; png_ptr->offset_table_count_free++; break; } } if (png_ptr->offset_table_count_free == png_ptr->offset_table_count) { farfree(png_ptr->offset_table); farfree(png_ptr->offset_table_ptr); png_ptr->offset_table = NULL; png_ptr->offset_table_ptr = NULL; } } if (ptr != NULL) { farfree(ptr); } } #else /* Not the Borland DOS special memory handler */ /* Allocate memory for a png_struct or a png_info. The malloc and memset can be replaced by a single call to calloc() if this is thought to improve performance noticably. */ png_voidp /* PRIVATE */ png_create_struct(int type) { #ifdef PNG_USER_MEM_SUPPORTED return (png_create_struct_2(type, png_malloc_ptr_NULL, png_voidp_NULL)); } /* Allocate memory for a png_struct or a png_info. The malloc and memset can be replaced by a single call to calloc() if this is thought to improve performance noticably. */ png_voidp /* PRIVATE */ png_create_struct_2(int type, png_malloc_ptr malloc_fn, png_voidp mem_ptr) { #endif /* PNG_USER_MEM_SUPPORTED */ png_size_t size; png_voidp struct_ptr; if (type == PNG_STRUCT_INFO) size = png_sizeof(png_info); else if (type == PNG_STRUCT_PNG) size = png_sizeof(png_struct); else return (NULL); #ifdef PNG_USER_MEM_SUPPORTED if(malloc_fn != NULL) { png_struct dummy_struct; png_structp png_ptr = &dummy_struct; png_ptr->mem_ptr=mem_ptr; struct_ptr = (*(malloc_fn))(png_ptr, size); if (struct_ptr != NULL) png_memset(struct_ptr, 0, size); return (struct_ptr); } #endif /* PNG_USER_MEM_SUPPORTED */ #if defined(__TURBOC__) && !defined(__FLAT__) struct_ptr = (png_voidp)farmalloc(size); #else # if defined(_MSC_VER) && defined(MAXSEG_64K) struct_ptr = (png_voidp)halloc(size,1); # else struct_ptr = (png_voidp)malloc(size); # endif #endif if (struct_ptr != NULL) png_memset(struct_ptr, 0, size); return (struct_ptr); } /* Free memory allocated by a png_create_struct() call */ void /* PRIVATE */ png_destroy_struct(png_voidp struct_ptr) { #ifdef PNG_USER_MEM_SUPPORTED png_destroy_struct_2(struct_ptr, png_free_ptr_NULL, png_voidp_NULL); } /* Free memory allocated by a png_create_struct() call */ void /* PRIVATE */ png_destroy_struct_2(png_voidp struct_ptr, png_free_ptr free_fn, png_voidp mem_ptr) { #endif /* PNG_USER_MEM_SUPPORTED */ if (struct_ptr != NULL) { #ifdef PNG_USER_MEM_SUPPORTED if(free_fn != NULL) { png_struct dummy_struct; png_structp png_ptr = &dummy_struct; png_ptr->mem_ptr=mem_ptr; (*(free_fn))(png_ptr, struct_ptr); return; } #endif /* PNG_USER_MEM_SUPPORTED */ #if defined(__TURBOC__) && !defined(__FLAT__) farfree(struct_ptr); #else # if defined(_MSC_VER) && defined(MAXSEG_64K) hfree(struct_ptr); # else free(struct_ptr); # endif #endif } } /* Allocate memory. For reasonable files, size should never exceed 64K. However, zlib may allocate more then 64K if you don't tell it not to. See zconf.h and png.h for more information. zlib does need to allocate exactly 64K, so whatever you call here must have the ability to do that. */ png_voidp PNGAPI png_malloc(png_structp png_ptr, png_uint_32 size) { png_voidp ret; #ifdef PNG_USER_MEM_SUPPORTED if (png_ptr == NULL || size == 0) return (NULL); if(png_ptr->malloc_fn != NULL) ret = ((png_voidp)(*(png_ptr->malloc_fn))(png_ptr, (png_size_t)size)); else ret = (png_malloc_default(png_ptr, size)); if (ret == NULL && (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) png_error(png_ptr, "Out of Memory!"); return (ret); } png_voidp PNGAPI png_malloc_default(png_structp png_ptr, png_uint_32 size) { png_voidp ret; #endif /* PNG_USER_MEM_SUPPORTED */ if (png_ptr == NULL || size == 0) return (NULL); #ifdef PNG_MAX_MALLOC_64K if (size > (png_uint_32)65536L) { #ifndef PNG_USER_MEM_SUPPORTED if(png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) png_error(png_ptr, "Cannot Allocate > 64K"); else #endif return NULL; } #endif /* Check for overflow */ #if defined(__TURBOC__) && !defined(__FLAT__) if (size != (unsigned long)size) ret = NULL; else ret = farmalloc(size); #else # if defined(_MSC_VER) && defined(MAXSEG_64K) if (size != (unsigned long)size) ret = NULL; else ret = halloc(size, 1); # else if (size != (size_t)size) ret = NULL; else ret = malloc((size_t)size); # endif #endif #ifndef PNG_USER_MEM_SUPPORTED if (ret == NULL && (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) png_error(png_ptr, "Out of Memory"); #endif return (ret); } /* Free a pointer allocated by png_malloc(). If ptr is NULL, return without taking any action. */ void PNGAPI png_free(png_structp png_ptr, png_voidp ptr) { if (png_ptr == NULL || ptr == NULL) return; #ifdef PNG_USER_MEM_SUPPORTED if (png_ptr->free_fn != NULL) { (*(png_ptr->free_fn))(png_ptr, ptr); return; } else png_free_default(png_ptr, ptr); } void PNGAPI png_free_default(png_structp png_ptr, png_voidp ptr) { if (png_ptr == NULL || ptr == NULL) return; #endif /* PNG_USER_MEM_SUPPORTED */ #if defined(__TURBOC__) && !defined(__FLAT__) farfree(ptr); #else # if defined(_MSC_VER) && defined(MAXSEG_64K) hfree(ptr); # else free(ptr); # endif #endif } #endif /* Not Borland DOS special memory handler */ #if defined(PNG_1_0_X) # define png_malloc_warn png_malloc #else /* This function was added at libpng version 1.2.3. The png_malloc_warn() * function will set up png_malloc() to issue a png_warning and return NULL * instead of issuing a png_error, if it fails to allocate the requested * memory. */ png_voidp PNGAPI png_malloc_warn(png_structp png_ptr, png_uint_32 size) { png_voidp ptr; png_uint_32 save_flags; if(png_ptr == NULL) return (NULL); save_flags=png_ptr->flags; png_ptr->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK; ptr = (png_voidp)png_malloc((png_structp)png_ptr, size); png_ptr->flags=save_flags; return(ptr); } #endif png_voidp PNGAPI png_memcpy_check (png_structp png_ptr, png_voidp s1, png_voidp s2, png_uint_32 length) { png_size_t size; size = (png_size_t)length; if ((png_uint_32)size != length) png_error(png_ptr,"Overflow in png_memcpy_check."); return(png_memcpy (s1, s2, size)); } png_voidp PNGAPI png_memset_check (png_structp png_ptr, png_voidp s1, int value, png_uint_32 length) { png_size_t size; size = (png_size_t)length; if ((png_uint_32)size != length) png_error(png_ptr,"Overflow in png_memset_check."); return (png_memset (s1, value, size)); } #ifdef PNG_USER_MEM_SUPPORTED /* This function is called when the application wants to use another method * of allocating and freeing memory. */ void PNGAPI png_set_mem_fn(png_structp png_ptr, png_voidp mem_ptr, png_malloc_ptr malloc_fn, png_free_ptr free_fn) { if(png_ptr != NULL) { png_ptr->mem_ptr = mem_ptr; png_ptr->malloc_fn = malloc_fn; png_ptr->free_fn = free_fn; } } /* This function returns a pointer to the mem_ptr associated with the user * functions. The application should free any memory associated with this * pointer before png_write_destroy and png_read_destroy are called. */ png_voidp PNGAPI png_get_mem_ptr(png_structp png_ptr) { if(png_ptr == NULL) return (NULL); return ((png_voidp)png_ptr->mem_ptr); } #endif /* PNG_USER_MEM_SUPPORTED */ #endif /* PNG_READ_SUPPORTED || PNG_WRITE_SUPPORTED */ /********* End of inlined file: pngmem.c *********/ /********* Start of inlined file: pngread.c *********/ /* pngread.c - read a PNG file * * Last changed in libpng 1.2.20 September 7, 2007 * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2007 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) * * This file contains routines that an application calls directly to * read a PNG file or stream. */ #define PNG_INTERNAL #if defined(PNG_READ_SUPPORTED) /* Create a PNG structure for reading, and allocate any memory needed. */ png_structp PNGAPI png_create_read_struct(png_const_charp user_png_ver, png_voidp error_ptr, png_error_ptr error_fn, png_error_ptr warn_fn) { #ifdef PNG_USER_MEM_SUPPORTED return (png_create_read_struct_2(user_png_ver, error_ptr, error_fn, warn_fn, png_voidp_NULL, png_malloc_ptr_NULL, png_free_ptr_NULL)); } /* Alternate create PNG structure for reading, and allocate any memory needed. */ png_structp PNGAPI png_create_read_struct_2(png_const_charp user_png_ver, png_voidp error_ptr, png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr, png_malloc_ptr malloc_fn, png_free_ptr free_fn) { #endif /* PNG_USER_MEM_SUPPORTED */ png_structp png_ptr; #ifdef PNG_SETJMP_SUPPORTED #ifdef USE_FAR_KEYWORD jmp_buf jmpbuf; #endif #endif int i; png_debug(1, "in png_create_read_struct\n"); #ifdef PNG_USER_MEM_SUPPORTED png_ptr = (png_structp)png_create_struct_2(PNG_STRUCT_PNG, (png_malloc_ptr)malloc_fn, (png_voidp)mem_ptr); #else png_ptr = (png_structp)png_create_struct(PNG_STRUCT_PNG); #endif if (png_ptr == NULL) return (NULL); /* added at libpng-1.2.6 */ #ifdef PNG_SET_USER_LIMITS_SUPPORTED png_ptr->user_width_max=PNG_USER_WIDTH_MAX; png_ptr->user_height_max=PNG_USER_HEIGHT_MAX; #endif #ifdef PNG_SETJMP_SUPPORTED #ifdef USE_FAR_KEYWORD if (setjmp(jmpbuf)) #else if (setjmp(png_ptr->jmpbuf)) #endif { png_free(png_ptr, png_ptr->zbuf); png_ptr->zbuf=NULL; #ifdef PNG_USER_MEM_SUPPORTED png_destroy_struct_2((png_voidp)png_ptr, (png_free_ptr)free_fn, (png_voidp)mem_ptr); #else png_destroy_struct((png_voidp)png_ptr); #endif return (NULL); } #ifdef USE_FAR_KEYWORD png_memcpy(png_ptr->jmpbuf,jmpbuf,png_sizeof(jmp_buf)); #endif #endif #ifdef PNG_USER_MEM_SUPPORTED png_set_mem_fn(png_ptr, mem_ptr, malloc_fn, free_fn); #endif png_set_error_fn(png_ptr, error_ptr, error_fn, warn_fn); i=0; do { if(user_png_ver[i] != png_libpng_ver[i]) png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; } while (png_libpng_ver[i++]); if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) { /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so * we must recompile any applications that use any older library version. * For versions after libpng 1.0, we will be compatible, so we need * only check the first digit. */ if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] || (user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) || (user_png_ver[0] == '0' && user_png_ver[2] < '9')) { #if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE) char msg[80]; if (user_png_ver) { png_snprintf(msg, 80, "Application was compiled with png.h from libpng-%.20s", user_png_ver); png_warning(png_ptr, msg); } png_snprintf(msg, 80, "Application is running with png.c from libpng-%.20s", png_libpng_ver); png_warning(png_ptr, msg); #endif #ifdef PNG_ERROR_NUMBERS_SUPPORTED png_ptr->flags=0; #endif png_error(png_ptr, "Incompatible libpng version in application and library"); } } /* initialize zbuf - compression buffer */ png_ptr->zbuf_size = PNG_ZBUF_SIZE; png_ptr->zbuf = (png_bytep)png_malloc(png_ptr, (png_uint_32)png_ptr->zbuf_size); png_ptr->zstream.zalloc = png_zalloc; png_ptr->zstream.zfree = png_zfree; png_ptr->zstream.opaque = (voidpf)png_ptr; switch (inflateInit(&png_ptr->zstream)) { case Z_OK: /* Do nothing */ break; case Z_MEM_ERROR: case Z_STREAM_ERROR: png_error(png_ptr, "zlib memory error"); break; case Z_VERSION_ERROR: png_error(png_ptr, "zlib version error"); break; default: png_error(png_ptr, "Unknown zlib error"); } png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; png_set_read_fn(png_ptr, png_voidp_NULL, png_rw_ptr_NULL); #ifdef PNG_SETJMP_SUPPORTED /* Applications that neglect to set up their own setjmp() and then encounter a png_error() will longjmp here. Since the jmpbuf is then meaningless we abort instead of returning. */ #ifdef USE_FAR_KEYWORD if (setjmp(jmpbuf)) PNG_ABORT(); png_memcpy(png_ptr->jmpbuf,jmpbuf,png_sizeof(jmp_buf)); #else if (setjmp(png_ptr->jmpbuf)) PNG_ABORT(); #endif #endif return (png_ptr); } #if defined(PNG_1_0_X) || defined(PNG_1_2_X) /* Initialize PNG structure for reading, and allocate any memory needed. This interface is deprecated in favour of the png_create_read_struct(), and it will disappear as of libpng-1.3.0. */ #undef png_read_init void PNGAPI png_read_init(png_structp png_ptr) { /* We only come here via pre-1.0.7-compiled applications */ png_read_init_2(png_ptr, "1.0.6 or earlier", 0, 0); } void PNGAPI png_read_init_2(png_structp png_ptr, png_const_charp user_png_ver, png_size_t png_struct_size, png_size_t png_info_size) { /* We only come here via pre-1.0.12-compiled applications */ if(png_ptr == NULL) return; #if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE) if(png_sizeof(png_struct) > png_struct_size || png_sizeof(png_info) > png_info_size) { char msg[80]; png_ptr->warning_fn=NULL; if (user_png_ver) { png_snprintf(msg, 80, "Application was compiled with png.h from libpng-%.20s", user_png_ver); png_warning(png_ptr, msg); } png_snprintf(msg, 80, "Application is running with png.c from libpng-%.20s", png_libpng_ver); png_warning(png_ptr, msg); } #endif if(png_sizeof(png_struct) > png_struct_size) { png_ptr->error_fn=NULL; #ifdef PNG_ERROR_NUMBERS_SUPPORTED png_ptr->flags=0; #endif png_error(png_ptr, "The png struct allocated by the application for reading is too small."); } if(png_sizeof(png_info) > png_info_size) { png_ptr->error_fn=NULL; #ifdef PNG_ERROR_NUMBERS_SUPPORTED png_ptr->flags=0; #endif png_error(png_ptr, "The info struct allocated by application for reading is too small."); } png_read_init_3(&png_ptr, user_png_ver, png_struct_size); } #endif /* PNG_1_0_X || PNG_1_2_X */ void PNGAPI png_read_init_3(png_structpp ptr_ptr, png_const_charp user_png_ver, png_size_t png_struct_size) { #ifdef PNG_SETJMP_SUPPORTED jmp_buf tmp_jmp; /* to save current jump buffer */ #endif int i=0; png_structp png_ptr=*ptr_ptr; if(png_ptr == NULL) return; do { if(user_png_ver[i] != png_libpng_ver[i]) { #ifdef PNG_LEGACY_SUPPORTED png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; #else png_ptr->warning_fn=NULL; png_warning(png_ptr, "Application uses deprecated png_read_init() and should be recompiled."); break; #endif } } while (png_libpng_ver[i++]); png_debug(1, "in png_read_init_3\n"); #ifdef PNG_SETJMP_SUPPORTED /* save jump buffer and error functions */ png_memcpy(tmp_jmp, png_ptr->jmpbuf, png_sizeof (jmp_buf)); #endif if(png_sizeof(png_struct) > png_struct_size) { png_destroy_struct(png_ptr); *ptr_ptr = (png_structp)png_create_struct(PNG_STRUCT_PNG); png_ptr = *ptr_ptr; } /* reset all variables to 0 */ png_memset(png_ptr, 0, png_sizeof (png_struct)); #ifdef PNG_SETJMP_SUPPORTED /* restore jump buffer */ png_memcpy(png_ptr->jmpbuf, tmp_jmp, png_sizeof (jmp_buf)); #endif /* added at libpng-1.2.6 */ #ifdef PNG_SET_USER_LIMITS_SUPPORTED png_ptr->user_width_max=PNG_USER_WIDTH_MAX; png_ptr->user_height_max=PNG_USER_HEIGHT_MAX; #endif /* initialize zbuf - compression buffer */ png_ptr->zbuf_size = PNG_ZBUF_SIZE; png_ptr->zbuf = (png_bytep)png_malloc(png_ptr, (png_uint_32)png_ptr->zbuf_size); png_ptr->zstream.zalloc = png_zalloc; png_ptr->zstream.zfree = png_zfree; png_ptr->zstream.opaque = (voidpf)png_ptr; switch (inflateInit(&png_ptr->zstream)) { case Z_OK: /* Do nothing */ break; case Z_MEM_ERROR: case Z_STREAM_ERROR: png_error(png_ptr, "zlib memory"); break; case Z_VERSION_ERROR: png_error(png_ptr, "zlib version"); break; default: png_error(png_ptr, "Unknown zlib error"); } png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; png_set_read_fn(png_ptr, png_voidp_NULL, png_rw_ptr_NULL); } #ifndef PNG_NO_SEQUENTIAL_READ_SUPPORTED /* Read the information before the actual image data. This has been * changed in v0.90 to allow reading a file that already has the magic * bytes read from the stream. You can tell libpng how many bytes have * been read from the beginning of the stream (up to the maximum of 8) * via png_set_sig_bytes(), and we will only check the remaining bytes * here. The application can then have access to the signature bytes we * read if it is determined that this isn't a valid PNG file. */ void PNGAPI png_read_info(png_structp png_ptr, png_infop info_ptr) { if(png_ptr == NULL) return; png_debug(1, "in png_read_info\n"); /* If we haven't checked all of the PNG signature bytes, do so now. */ if (png_ptr->sig_bytes < 8) { png_size_t num_checked = png_ptr->sig_bytes, num_to_check = 8 - num_checked; png_read_data(png_ptr, &(info_ptr->signature[num_checked]), num_to_check); png_ptr->sig_bytes = 8; if (png_sig_cmp(info_ptr->signature, num_checked, num_to_check)) { if (num_checked < 4 && png_sig_cmp(info_ptr->signature, num_checked, num_to_check - 4)) png_error(png_ptr, "Not a PNG file"); else png_error(png_ptr, "PNG file corrupted by ASCII conversion"); } if (num_checked < 3) png_ptr->mode |= PNG_HAVE_PNG_SIGNATURE; } for(;;) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_CONST PNG_IHDR; PNG_CONST PNG_IDAT; PNG_CONST PNG_IEND; PNG_CONST PNG_PLTE; #if defined(PNG_READ_bKGD_SUPPORTED) PNG_CONST PNG_bKGD; #endif #if defined(PNG_READ_cHRM_SUPPORTED) PNG_CONST PNG_cHRM; #endif #if defined(PNG_READ_gAMA_SUPPORTED) PNG_CONST PNG_gAMA; #endif #if defined(PNG_READ_hIST_SUPPORTED) PNG_CONST PNG_hIST; #endif #if defined(PNG_READ_iCCP_SUPPORTED) PNG_CONST PNG_iCCP; #endif #if defined(PNG_READ_iTXt_SUPPORTED) PNG_CONST PNG_iTXt; #endif #if defined(PNG_READ_oFFs_SUPPORTED) PNG_CONST PNG_oFFs; #endif #if defined(PNG_READ_pCAL_SUPPORTED) PNG_CONST PNG_pCAL; #endif #if defined(PNG_READ_pHYs_SUPPORTED) PNG_CONST PNG_pHYs; #endif #if defined(PNG_READ_sBIT_SUPPORTED) PNG_CONST PNG_sBIT; #endif #if defined(PNG_READ_sCAL_SUPPORTED) PNG_CONST PNG_sCAL; #endif #if defined(PNG_READ_sPLT_SUPPORTED) PNG_CONST PNG_sPLT; #endif #if defined(PNG_READ_sRGB_SUPPORTED) PNG_CONST PNG_sRGB; #endif #if defined(PNG_READ_tEXt_SUPPORTED) PNG_CONST PNG_tEXt; #endif #if defined(PNG_READ_tIME_SUPPORTED) PNG_CONST PNG_tIME; #endif #if defined(PNG_READ_tRNS_SUPPORTED) PNG_CONST PNG_tRNS; #endif #if defined(PNG_READ_zTXt_SUPPORTED) PNG_CONST PNG_zTXt; #endif #endif /* PNG_USE_LOCAL_ARRAYS */ png_byte chunk_length[4]; png_uint_32 length; png_read_data(png_ptr, chunk_length, 4); length = png_get_uint_31(png_ptr,chunk_length); png_reset_crc(png_ptr); png_crc_read(png_ptr, png_ptr->chunk_name, 4); png_debug2(0, "Reading %s chunk, length=%lu.\n", png_ptr->chunk_name, length); /* This should be a binary subdivision search or a hash for * matching the chunk name rather than a linear search. */ if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) if(png_ptr->mode & PNG_AFTER_IDAT) png_ptr->mode |= PNG_HAVE_CHUNK_AFTER_IDAT; if (!png_memcmp(png_ptr->chunk_name, png_IHDR, 4)) png_handle_IHDR(png_ptr, info_ptr, length); else if (!png_memcmp(png_ptr->chunk_name, png_IEND, 4)) png_handle_IEND(png_ptr, info_ptr, length); #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED else if (png_handle_as_unknown(png_ptr, png_ptr->chunk_name)) { if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) png_ptr->mode |= PNG_HAVE_IDAT; png_handle_unknown(png_ptr, info_ptr, length); if (!png_memcmp(png_ptr->chunk_name, png_PLTE, 4)) png_ptr->mode |= PNG_HAVE_PLTE; else if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) { if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before IDAT"); else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE && !(png_ptr->mode & PNG_HAVE_PLTE)) png_error(png_ptr, "Missing PLTE before IDAT"); break; } } #endif else if (!png_memcmp(png_ptr->chunk_name, png_PLTE, 4)) png_handle_PLTE(png_ptr, info_ptr, length); else if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) { if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before IDAT"); else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE && !(png_ptr->mode & PNG_HAVE_PLTE)) png_error(png_ptr, "Missing PLTE before IDAT"); png_ptr->idat_size = length; png_ptr->mode |= PNG_HAVE_IDAT; break; } #if defined(PNG_READ_bKGD_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_bKGD, 4)) png_handle_bKGD(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_cHRM_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_cHRM, 4)) png_handle_cHRM(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_gAMA_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_gAMA, 4)) png_handle_gAMA(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_hIST_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_hIST, 4)) png_handle_hIST(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_oFFs_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_oFFs, 4)) png_handle_oFFs(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_pCAL_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_pCAL, 4)) png_handle_pCAL(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_sCAL_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_sCAL, 4)) png_handle_sCAL(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_pHYs_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_pHYs, 4)) png_handle_pHYs(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_sBIT_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_sBIT, 4)) png_handle_sBIT(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_sRGB_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_sRGB, 4)) png_handle_sRGB(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_iCCP_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_iCCP, 4)) png_handle_iCCP(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_sPLT_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_sPLT, 4)) png_handle_sPLT(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_tEXt_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_tEXt, 4)) png_handle_tEXt(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_tIME_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_tIME, 4)) png_handle_tIME(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_tRNS_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_tRNS, 4)) png_handle_tRNS(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_zTXt_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_zTXt, 4)) png_handle_zTXt(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_iTXt_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_iTXt, 4)) png_handle_iTXt(png_ptr, info_ptr, length); #endif else png_handle_unknown(png_ptr, info_ptr, length); } } #endif /* PNG_NO_SEQUENTIAL_READ_SUPPORTED */ /* optional call to update the users info_ptr structure */ void PNGAPI png_read_update_info(png_structp png_ptr, png_infop info_ptr) { png_debug(1, "in png_read_update_info\n"); if(png_ptr == NULL) return; if (!(png_ptr->flags & PNG_FLAG_ROW_INIT)) png_read_start_row(png_ptr); else png_warning(png_ptr, "Ignoring extra png_read_update_info() call; row buffer not reallocated"); png_read_transform_info(png_ptr, info_ptr); } #ifndef PNG_NO_SEQUENTIAL_READ_SUPPORTED /* Initialize palette, background, etc, after transformations * are set, but before any reading takes place. This allows * the user to obtain a gamma-corrected palette, for example. * If the user doesn't call this, we will do it ourselves. */ void PNGAPI png_start_read_image(png_structp png_ptr) { png_debug(1, "in png_start_read_image\n"); if(png_ptr == NULL) return; if (!(png_ptr->flags & PNG_FLAG_ROW_INIT)) png_read_start_row(png_ptr); } #endif /* PNG_NO_SEQUENTIAL_READ_SUPPORTED */ #ifndef PNG_NO_SEQUENTIAL_READ_SUPPORTED void PNGAPI png_read_row(png_structp png_ptr, png_bytep row, png_bytep dsp_row) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_CONST PNG_IDAT; PNG_CONST int png_pass_dsp_mask[7] = {0xff, 0x0f, 0xff, 0x33, 0xff, 0x55, 0xff}; PNG_CONST int png_pass_mask[7] = {0x80, 0x08, 0x88, 0x22, 0xaa, 0x55, 0xff}; #endif int ret; if(png_ptr == NULL) return; png_debug2(1, "in png_read_row (row %lu, pass %d)\n", png_ptr->row_number, png_ptr->pass); if (!(png_ptr->flags & PNG_FLAG_ROW_INIT)) png_read_start_row(png_ptr); if (png_ptr->row_number == 0 && png_ptr->pass == 0) { /* check for transforms that have been set but were defined out */ #if defined(PNG_WRITE_INVERT_SUPPORTED) && !defined(PNG_READ_INVERT_SUPPORTED) if (png_ptr->transformations & PNG_INVERT_MONO) png_warning(png_ptr, "PNG_READ_INVERT_SUPPORTED is not defined."); #endif #if defined(PNG_WRITE_FILLER_SUPPORTED) && !defined(PNG_READ_FILLER_SUPPORTED) if (png_ptr->transformations & PNG_FILLER) png_warning(png_ptr, "PNG_READ_FILLER_SUPPORTED is not defined."); #endif #if defined(PNG_WRITE_PACKSWAP_SUPPORTED) && !defined(PNG_READ_PACKSWAP_SUPPORTED) if (png_ptr->transformations & PNG_PACKSWAP) png_warning(png_ptr, "PNG_READ_PACKSWAP_SUPPORTED is not defined."); #endif #if defined(PNG_WRITE_PACK_SUPPORTED) && !defined(PNG_READ_PACK_SUPPORTED) if (png_ptr->transformations & PNG_PACK) png_warning(png_ptr, "PNG_READ_PACK_SUPPORTED is not defined."); #endif #if defined(PNG_WRITE_SHIFT_SUPPORTED) && !defined(PNG_READ_SHIFT_SUPPORTED) if (png_ptr->transformations & PNG_SHIFT) png_warning(png_ptr, "PNG_READ_SHIFT_SUPPORTED is not defined."); #endif #if defined(PNG_WRITE_BGR_SUPPORTED) && !defined(PNG_READ_BGR_SUPPORTED) if (png_ptr->transformations & PNG_BGR) png_warning(png_ptr, "PNG_READ_BGR_SUPPORTED is not defined."); #endif #if defined(PNG_WRITE_SWAP_SUPPORTED) && !defined(PNG_READ_SWAP_SUPPORTED) if (png_ptr->transformations & PNG_SWAP_BYTES) png_warning(png_ptr, "PNG_READ_SWAP_SUPPORTED is not defined."); #endif } #if defined(PNG_READ_INTERLACING_SUPPORTED) /* if interlaced and we do not need a new row, combine row and return */ if (png_ptr->interlaced && (png_ptr->transformations & PNG_INTERLACE)) { switch (png_ptr->pass) { case 0: if (png_ptr->row_number & 0x07) { if (dsp_row != NULL) png_combine_row(png_ptr, dsp_row, png_pass_dsp_mask[png_ptr->pass]); png_read_finish_row(png_ptr); return; } break; case 1: if ((png_ptr->row_number & 0x07) || png_ptr->width < 5) { if (dsp_row != NULL) png_combine_row(png_ptr, dsp_row, png_pass_dsp_mask[png_ptr->pass]); png_read_finish_row(png_ptr); return; } break; case 2: if ((png_ptr->row_number & 0x07) != 4) { if (dsp_row != NULL && (png_ptr->row_number & 4)) png_combine_row(png_ptr, dsp_row, png_pass_dsp_mask[png_ptr->pass]); png_read_finish_row(png_ptr); return; } break; case 3: if ((png_ptr->row_number & 3) || png_ptr->width < 3) { if (dsp_row != NULL) png_combine_row(png_ptr, dsp_row, png_pass_dsp_mask[png_ptr->pass]); png_read_finish_row(png_ptr); return; } break; case 4: if ((png_ptr->row_number & 3) != 2) { if (dsp_row != NULL && (png_ptr->row_number & 2)) png_combine_row(png_ptr, dsp_row, png_pass_dsp_mask[png_ptr->pass]); png_read_finish_row(png_ptr); return; } break; case 5: if ((png_ptr->row_number & 1) || png_ptr->width < 2) { if (dsp_row != NULL) png_combine_row(png_ptr, dsp_row, png_pass_dsp_mask[png_ptr->pass]); png_read_finish_row(png_ptr); return; } break; case 6: if (!(png_ptr->row_number & 1)) { png_read_finish_row(png_ptr); return; } break; } } #endif if (!(png_ptr->mode & PNG_HAVE_IDAT)) png_error(png_ptr, "Invalid attempt to read row data"); png_ptr->zstream.next_out = png_ptr->row_buf; png_ptr->zstream.avail_out = (uInt)png_ptr->irowbytes; do { if (!(png_ptr->zstream.avail_in)) { while (!png_ptr->idat_size) { png_byte chunk_length[4]; png_crc_finish(png_ptr, 0); png_read_data(png_ptr, chunk_length, 4); png_ptr->idat_size = png_get_uint_31(png_ptr,chunk_length); png_reset_crc(png_ptr); png_crc_read(png_ptr, png_ptr->chunk_name, 4); if (png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) png_error(png_ptr, "Not enough image data"); } png_ptr->zstream.avail_in = (uInt)png_ptr->zbuf_size; png_ptr->zstream.next_in = png_ptr->zbuf; if (png_ptr->zbuf_size > png_ptr->idat_size) png_ptr->zstream.avail_in = (uInt)png_ptr->idat_size; png_crc_read(png_ptr, png_ptr->zbuf, (png_size_t)png_ptr->zstream.avail_in); png_ptr->idat_size -= png_ptr->zstream.avail_in; } ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH); if (ret == Z_STREAM_END) { if (png_ptr->zstream.avail_out || png_ptr->zstream.avail_in || png_ptr->idat_size) png_error(png_ptr, "Extra compressed data"); png_ptr->mode |= PNG_AFTER_IDAT; png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED; break; } if (ret != Z_OK) png_error(png_ptr, png_ptr->zstream.msg ? png_ptr->zstream.msg : "Decompression error"); } while (png_ptr->zstream.avail_out); png_ptr->row_info.color_type = png_ptr->color_type; png_ptr->row_info.width = png_ptr->iwidth; png_ptr->row_info.channels = png_ptr->channels; png_ptr->row_info.bit_depth = png_ptr->bit_depth; png_ptr->row_info.pixel_depth = png_ptr->pixel_depth; png_ptr->row_info.rowbytes = PNG_ROWBYTES(png_ptr->row_info.pixel_depth, png_ptr->row_info.width); if(png_ptr->row_buf[0]) png_read_filter_row(png_ptr, &(png_ptr->row_info), png_ptr->row_buf + 1, png_ptr->prev_row + 1, (int)(png_ptr->row_buf[0])); png_memcpy_check(png_ptr, png_ptr->prev_row, png_ptr->row_buf, png_ptr->rowbytes + 1); #if defined(PNG_MNG_FEATURES_SUPPORTED) if((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) && (png_ptr->filter_type == PNG_INTRAPIXEL_DIFFERENCING)) { /* Intrapixel differencing */ png_do_read_intrapixel(&(png_ptr->row_info), png_ptr->row_buf + 1); } #endif if (png_ptr->transformations || (png_ptr->flags&PNG_FLAG_STRIP_ALPHA)) png_do_read_transformations(png_ptr); #if defined(PNG_READ_INTERLACING_SUPPORTED) /* blow up interlaced rows to full size */ if (png_ptr->interlaced && (png_ptr->transformations & PNG_INTERLACE)) { if (png_ptr->pass < 6) /* old interface (pre-1.0.9): png_do_read_interlace(&(png_ptr->row_info), png_ptr->row_buf + 1, png_ptr->pass, png_ptr->transformations); */ png_do_read_interlace(png_ptr); if (dsp_row != NULL) png_combine_row(png_ptr, dsp_row, png_pass_dsp_mask[png_ptr->pass]); if (row != NULL) png_combine_row(png_ptr, row, png_pass_mask[png_ptr->pass]); } else #endif { if (row != NULL) png_combine_row(png_ptr, row, 0xff); if (dsp_row != NULL) png_combine_row(png_ptr, dsp_row, 0xff); } png_read_finish_row(png_ptr); if (png_ptr->read_row_fn != NULL) (*(png_ptr->read_row_fn))(png_ptr, png_ptr->row_number, png_ptr->pass); } #endif /* PNG_NO_SEQUENTIAL_READ_SUPPORTED */ #ifndef PNG_NO_SEQUENTIAL_READ_SUPPORTED /* Read one or more rows of image data. If the image is interlaced, * and png_set_interlace_handling() has been called, the rows need to * contain the contents of the rows from the previous pass. If the * image has alpha or transparency, and png_handle_alpha()[*] has been * called, the rows contents must be initialized to the contents of the * screen. * * "row" holds the actual image, and pixels are placed in it * as they arrive. If the image is displayed after each pass, it will * appear to "sparkle" in. "display_row" can be used to display a * "chunky" progressive image, with finer detail added as it becomes * available. If you do not want this "chunky" display, you may pass * NULL for display_row. If you do not want the sparkle display, and * you have not called png_handle_alpha(), you may pass NULL for rows. * If you have called png_handle_alpha(), and the image has either an * alpha channel or a transparency chunk, you must provide a buffer for * rows. In this case, you do not have to provide a display_row buffer * also, but you may. If the image is not interlaced, or if you have * not called png_set_interlace_handling(), the display_row buffer will * be ignored, so pass NULL to it. * * [*] png_handle_alpha() does not exist yet, as of this version of libpng */ void PNGAPI png_read_rows(png_structp png_ptr, png_bytepp row, png_bytepp display_row, png_uint_32 num_rows) { png_uint_32 i; png_bytepp rp; png_bytepp dp; png_debug(1, "in png_read_rows\n"); if(png_ptr == NULL) return; rp = row; dp = display_row; if (rp != NULL && dp != NULL) for (i = 0; i < num_rows; i++) { png_bytep rptr = *rp++; png_bytep dptr = *dp++; png_read_row(png_ptr, rptr, dptr); } else if(rp != NULL) for (i = 0; i < num_rows; i++) { png_bytep rptr = *rp; png_read_row(png_ptr, rptr, png_bytep_NULL); rp++; } else if(dp != NULL) for (i = 0; i < num_rows; i++) { png_bytep dptr = *dp; png_read_row(png_ptr, png_bytep_NULL, dptr); dp++; } } #endif /* PNG_NO_SEQUENTIAL_READ_SUPPORTED */ #ifndef PNG_NO_SEQUENTIAL_READ_SUPPORTED /* Read the entire image. If the image has an alpha channel or a tRNS * chunk, and you have called png_handle_alpha()[*], you will need to * initialize the image to the current image that PNG will be overlaying. * We set the num_rows again here, in case it was incorrectly set in * png_read_start_row() by a call to png_read_update_info() or * png_start_read_image() if png_set_interlace_handling() wasn't called * prior to either of these functions like it should have been. You can * only call this function once. If you desire to have an image for * each pass of a interlaced image, use png_read_rows() instead. * * [*] png_handle_alpha() does not exist yet, as of this version of libpng */ void PNGAPI png_read_image(png_structp png_ptr, png_bytepp image) { png_uint_32 i,image_height; int pass, j; png_bytepp rp; png_debug(1, "in png_read_image\n"); if(png_ptr == NULL) return; #ifdef PNG_READ_INTERLACING_SUPPORTED pass = png_set_interlace_handling(png_ptr); #else if (png_ptr->interlaced) png_error(png_ptr, "Cannot read interlaced image -- interlace handler disabled."); pass = 1; #endif image_height=png_ptr->height; png_ptr->num_rows = image_height; /* Make sure this is set correctly */ for (j = 0; j < pass; j++) { rp = image; for (i = 0; i < image_height; i++) { png_read_row(png_ptr, *rp, png_bytep_NULL); rp++; } } } #endif /* PNG_NO_SEQUENTIAL_READ_SUPPORTED */ #ifndef PNG_NO_SEQUENTIAL_READ_SUPPORTED /* Read the end of the PNG file. Will not read past the end of the * file, will verify the end is accurate, and will read any comments * or time information at the end of the file, if info is not NULL. */ void PNGAPI png_read_end(png_structp png_ptr, png_infop info_ptr) { png_byte chunk_length[4]; png_uint_32 length; png_debug(1, "in png_read_end\n"); if(png_ptr == NULL) return; png_crc_finish(png_ptr, 0); /* Finish off CRC from last IDAT chunk */ do { #ifdef PNG_USE_LOCAL_ARRAYS PNG_CONST PNG_IHDR; PNG_CONST PNG_IDAT; PNG_CONST PNG_IEND; PNG_CONST PNG_PLTE; #if defined(PNG_READ_bKGD_SUPPORTED) PNG_CONST PNG_bKGD; #endif #if defined(PNG_READ_cHRM_SUPPORTED) PNG_CONST PNG_cHRM; #endif #if defined(PNG_READ_gAMA_SUPPORTED) PNG_CONST PNG_gAMA; #endif #if defined(PNG_READ_hIST_SUPPORTED) PNG_CONST PNG_hIST; #endif #if defined(PNG_READ_iCCP_SUPPORTED) PNG_CONST PNG_iCCP; #endif #if defined(PNG_READ_iTXt_SUPPORTED) PNG_CONST PNG_iTXt; #endif #if defined(PNG_READ_oFFs_SUPPORTED) PNG_CONST PNG_oFFs; #endif #if defined(PNG_READ_pCAL_SUPPORTED) PNG_CONST PNG_pCAL; #endif #if defined(PNG_READ_pHYs_SUPPORTED) PNG_CONST PNG_pHYs; #endif #if defined(PNG_READ_sBIT_SUPPORTED) PNG_CONST PNG_sBIT; #endif #if defined(PNG_READ_sCAL_SUPPORTED) PNG_CONST PNG_sCAL; #endif #if defined(PNG_READ_sPLT_SUPPORTED) PNG_CONST PNG_sPLT; #endif #if defined(PNG_READ_sRGB_SUPPORTED) PNG_CONST PNG_sRGB; #endif #if defined(PNG_READ_tEXt_SUPPORTED) PNG_CONST PNG_tEXt; #endif #if defined(PNG_READ_tIME_SUPPORTED) PNG_CONST PNG_tIME; #endif #if defined(PNG_READ_tRNS_SUPPORTED) PNG_CONST PNG_tRNS; #endif #if defined(PNG_READ_zTXt_SUPPORTED) PNG_CONST PNG_zTXt; #endif #endif /* PNG_USE_LOCAL_ARRAYS */ png_read_data(png_ptr, chunk_length, 4); length = png_get_uint_31(png_ptr,chunk_length); png_reset_crc(png_ptr); png_crc_read(png_ptr, png_ptr->chunk_name, 4); png_debug1(0, "Reading %s chunk.\n", png_ptr->chunk_name); if (!png_memcmp(png_ptr->chunk_name, png_IHDR, 4)) png_handle_IHDR(png_ptr, info_ptr, length); else if (!png_memcmp(png_ptr->chunk_name, png_IEND, 4)) png_handle_IEND(png_ptr, info_ptr, length); #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED else if (png_handle_as_unknown(png_ptr, png_ptr->chunk_name)) { if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) { if ((length > 0) || (png_ptr->mode & PNG_HAVE_CHUNK_AFTER_IDAT)) png_error(png_ptr, "Too many IDAT's found"); } png_handle_unknown(png_ptr, info_ptr, length); if (!png_memcmp(png_ptr->chunk_name, png_PLTE, 4)) png_ptr->mode |= PNG_HAVE_PLTE; } #endif else if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) { /* Zero length IDATs are legal after the last IDAT has been * read, but not after other chunks have been read. */ if ((length > 0) || (png_ptr->mode & PNG_HAVE_CHUNK_AFTER_IDAT)) png_error(png_ptr, "Too many IDAT's found"); png_crc_finish(png_ptr, length); } else if (!png_memcmp(png_ptr->chunk_name, png_PLTE, 4)) png_handle_PLTE(png_ptr, info_ptr, length); #if defined(PNG_READ_bKGD_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_bKGD, 4)) png_handle_bKGD(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_cHRM_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_cHRM, 4)) png_handle_cHRM(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_gAMA_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_gAMA, 4)) png_handle_gAMA(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_hIST_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_hIST, 4)) png_handle_hIST(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_oFFs_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_oFFs, 4)) png_handle_oFFs(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_pCAL_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_pCAL, 4)) png_handle_pCAL(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_sCAL_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_sCAL, 4)) png_handle_sCAL(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_pHYs_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_pHYs, 4)) png_handle_pHYs(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_sBIT_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_sBIT, 4)) png_handle_sBIT(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_sRGB_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_sRGB, 4)) png_handle_sRGB(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_iCCP_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_iCCP, 4)) png_handle_iCCP(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_sPLT_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_sPLT, 4)) png_handle_sPLT(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_tEXt_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_tEXt, 4)) png_handle_tEXt(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_tIME_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_tIME, 4)) png_handle_tIME(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_tRNS_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_tRNS, 4)) png_handle_tRNS(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_zTXt_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_zTXt, 4)) png_handle_zTXt(png_ptr, info_ptr, length); #endif #if defined(PNG_READ_iTXt_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_iTXt, 4)) png_handle_iTXt(png_ptr, info_ptr, length); #endif else png_handle_unknown(png_ptr, info_ptr, length); } while (!(png_ptr->mode & PNG_HAVE_IEND)); } #endif /* PNG_NO_SEQUENTIAL_READ_SUPPORTED */ /* free all memory used by the read */ void PNGAPI png_destroy_read_struct(png_structpp png_ptr_ptr, png_infopp info_ptr_ptr, png_infopp end_info_ptr_ptr) { png_structp png_ptr = NULL; png_infop info_ptr = NULL, end_info_ptr = NULL; #ifdef PNG_USER_MEM_SUPPORTED png_free_ptr free_fn; png_voidp mem_ptr; #endif png_debug(1, "in png_destroy_read_struct\n"); if (png_ptr_ptr != NULL) png_ptr = *png_ptr_ptr; if (info_ptr_ptr != NULL) info_ptr = *info_ptr_ptr; if (end_info_ptr_ptr != NULL) end_info_ptr = *end_info_ptr_ptr; #ifdef PNG_USER_MEM_SUPPORTED free_fn = png_ptr->free_fn; mem_ptr = png_ptr->mem_ptr; #endif png_read_destroy(png_ptr, info_ptr, end_info_ptr); if (info_ptr != NULL) { #if defined(PNG_TEXT_SUPPORTED) png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, -1); #endif #ifdef PNG_USER_MEM_SUPPORTED png_destroy_struct_2((png_voidp)info_ptr, (png_free_ptr)free_fn, (png_voidp)mem_ptr); #else png_destroy_struct((png_voidp)info_ptr); #endif *info_ptr_ptr = NULL; } if (end_info_ptr != NULL) { #if defined(PNG_READ_TEXT_SUPPORTED) png_free_data(png_ptr, end_info_ptr, PNG_FREE_TEXT, -1); #endif #ifdef PNG_USER_MEM_SUPPORTED png_destroy_struct_2((png_voidp)end_info_ptr, (png_free_ptr)free_fn, (png_voidp)mem_ptr); #else png_destroy_struct((png_voidp)end_info_ptr); #endif *end_info_ptr_ptr = NULL; } if (png_ptr != NULL) { #ifdef PNG_USER_MEM_SUPPORTED png_destroy_struct_2((png_voidp)png_ptr, (png_free_ptr)free_fn, (png_voidp)mem_ptr); #else png_destroy_struct((png_voidp)png_ptr); #endif *png_ptr_ptr = NULL; } } /* free all memory used by the read (old method) */ void /* PRIVATE */ png_read_destroy(png_structp png_ptr, png_infop info_ptr, png_infop end_info_ptr) { #ifdef PNG_SETJMP_SUPPORTED jmp_buf tmp_jmp; #endif png_error_ptr error_fn; png_error_ptr warning_fn; png_voidp error_ptr; #ifdef PNG_USER_MEM_SUPPORTED png_free_ptr free_fn; #endif png_debug(1, "in png_read_destroy\n"); if (info_ptr != NULL) png_info_destroy(png_ptr, info_ptr); if (end_info_ptr != NULL) png_info_destroy(png_ptr, end_info_ptr); png_free(png_ptr, png_ptr->zbuf); png_free(png_ptr, png_ptr->big_row_buf); png_free(png_ptr, png_ptr->prev_row); #if defined(PNG_READ_DITHER_SUPPORTED) png_free(png_ptr, png_ptr->palette_lookup); png_free(png_ptr, png_ptr->dither_index); #endif #if defined(PNG_READ_GAMMA_SUPPORTED) png_free(png_ptr, png_ptr->gamma_table); #endif #if defined(PNG_READ_BACKGROUND_SUPPORTED) png_free(png_ptr, png_ptr->gamma_from_1); png_free(png_ptr, png_ptr->gamma_to_1); #endif #ifdef PNG_FREE_ME_SUPPORTED if (png_ptr->free_me & PNG_FREE_PLTE) png_zfree(png_ptr, png_ptr->palette); png_ptr->free_me &= ~PNG_FREE_PLTE; #else if (png_ptr->flags & PNG_FLAG_FREE_PLTE) png_zfree(png_ptr, png_ptr->palette); png_ptr->flags &= ~PNG_FLAG_FREE_PLTE; #endif #if defined(PNG_tRNS_SUPPORTED) || \ defined(PNG_READ_EXPAND_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) #ifdef PNG_FREE_ME_SUPPORTED if (png_ptr->free_me & PNG_FREE_TRNS) png_free(png_ptr, png_ptr->trans); png_ptr->free_me &= ~PNG_FREE_TRNS; #else if (png_ptr->flags & PNG_FLAG_FREE_TRNS) png_free(png_ptr, png_ptr->trans); png_ptr->flags &= ~PNG_FLAG_FREE_TRNS; #endif #endif #if defined(PNG_READ_hIST_SUPPORTED) #ifdef PNG_FREE_ME_SUPPORTED if (png_ptr->free_me & PNG_FREE_HIST) png_free(png_ptr, png_ptr->hist); png_ptr->free_me &= ~PNG_FREE_HIST; #else if (png_ptr->flags & PNG_FLAG_FREE_HIST) png_free(png_ptr, png_ptr->hist); png_ptr->flags &= ~PNG_FLAG_FREE_HIST; #endif #endif #if defined(PNG_READ_GAMMA_SUPPORTED) if (png_ptr->gamma_16_table != NULL) { int i; int istop = (1 << (8 - png_ptr->gamma_shift)); for (i = 0; i < istop; i++) { png_free(png_ptr, png_ptr->gamma_16_table[i]); } png_free(png_ptr, png_ptr->gamma_16_table); } #if defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->gamma_16_from_1 != NULL) { int i; int istop = (1 << (8 - png_ptr->gamma_shift)); for (i = 0; i < istop; i++) { png_free(png_ptr, png_ptr->gamma_16_from_1[i]); } png_free(png_ptr, png_ptr->gamma_16_from_1); } if (png_ptr->gamma_16_to_1 != NULL) { int i; int istop = (1 << (8 - png_ptr->gamma_shift)); for (i = 0; i < istop; i++) { png_free(png_ptr, png_ptr->gamma_16_to_1[i]); } png_free(png_ptr, png_ptr->gamma_16_to_1); } #endif #endif #if defined(PNG_TIME_RFC1123_SUPPORTED) png_free(png_ptr, png_ptr->time_buffer); #endif inflateEnd(&png_ptr->zstream); #ifdef PNG_PROGRESSIVE_READ_SUPPORTED png_free(png_ptr, png_ptr->save_buffer); #endif #ifdef PNG_PROGRESSIVE_READ_SUPPORTED #ifdef PNG_TEXT_SUPPORTED png_free(png_ptr, png_ptr->current_text); #endif /* PNG_TEXT_SUPPORTED */ #endif /* PNG_PROGRESSIVE_READ_SUPPORTED */ /* Save the important info out of the png_struct, in case it is * being used again. */ #ifdef PNG_SETJMP_SUPPORTED png_memcpy(tmp_jmp, png_ptr->jmpbuf, png_sizeof (jmp_buf)); #endif error_fn = png_ptr->error_fn; warning_fn = png_ptr->warning_fn; error_ptr = png_ptr->error_ptr; #ifdef PNG_USER_MEM_SUPPORTED free_fn = png_ptr->free_fn; #endif png_memset(png_ptr, 0, png_sizeof (png_struct)); png_ptr->error_fn = error_fn; png_ptr->warning_fn = warning_fn; png_ptr->error_ptr = error_ptr; #ifdef PNG_USER_MEM_SUPPORTED png_ptr->free_fn = free_fn; #endif #ifdef PNG_SETJMP_SUPPORTED png_memcpy(png_ptr->jmpbuf, tmp_jmp, png_sizeof (jmp_buf)); #endif } void PNGAPI png_set_read_status_fn(png_structp png_ptr, png_read_status_ptr read_row_fn) { if(png_ptr == NULL) return; png_ptr->read_row_fn = read_row_fn; } #ifndef PNG_NO_SEQUENTIAL_READ_SUPPORTED #if defined(PNG_INFO_IMAGE_SUPPORTED) void PNGAPI png_read_png(png_structp png_ptr, png_infop info_ptr, int transforms, voidp params) { int row; if(png_ptr == NULL) return; #if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) /* invert the alpha channel from opacity to transparency */ if (transforms & PNG_TRANSFORM_INVERT_ALPHA) png_set_invert_alpha(png_ptr); #endif /* png_read_info() gives us all of the information from the * PNG file before the first IDAT (image data chunk). */ png_read_info(png_ptr, info_ptr); if (info_ptr->height > PNG_UINT_32_MAX/png_sizeof(png_bytep)) png_error(png_ptr,"Image is too high to process with png_read_png()"); /* -------------- image transformations start here ------------------- */ #if defined(PNG_READ_16_TO_8_SUPPORTED) /* tell libpng to strip 16 bit/color files down to 8 bits per color */ if (transforms & PNG_TRANSFORM_STRIP_16) png_set_strip_16(png_ptr); #endif #if defined(PNG_READ_STRIP_ALPHA_SUPPORTED) /* Strip alpha bytes from the input data without combining with * the background (not recommended). */ if (transforms & PNG_TRANSFORM_STRIP_ALPHA) png_set_strip_alpha(png_ptr); #endif #if defined(PNG_READ_PACK_SUPPORTED) && !defined(PNG_READ_EXPAND_SUPPORTED) /* Extract multiple pixels with bit depths of 1, 2, or 4 from a single * byte into separate bytes (useful for paletted and grayscale images). */ if (transforms & PNG_TRANSFORM_PACKING) png_set_packing(png_ptr); #endif #if defined(PNG_READ_PACKSWAP_SUPPORTED) /* Change the order of packed pixels to least significant bit first * (not useful if you are using png_set_packing). */ if (transforms & PNG_TRANSFORM_PACKSWAP) png_set_packswap(png_ptr); #endif #if defined(PNG_READ_EXPAND_SUPPORTED) /* Expand paletted colors into true RGB triplets * Expand grayscale images to full 8 bits from 1, 2, or 4 bits/pixel * Expand paletted or RGB images with transparency to full alpha * channels so the data will be available as RGBA quartets. */ if (transforms & PNG_TRANSFORM_EXPAND) if ((png_ptr->bit_depth < 8) || (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) || (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS))) png_set_expand(png_ptr); #endif /* We don't handle background color or gamma transformation or dithering. */ #if defined(PNG_READ_INVERT_SUPPORTED) /* invert monochrome files to have 0 as white and 1 as black */ if (transforms & PNG_TRANSFORM_INVERT_MONO) png_set_invert_mono(png_ptr); #endif #if defined(PNG_READ_SHIFT_SUPPORTED) /* If you want to shift the pixel values from the range [0,255] or * [0,65535] to the original [0,7] or [0,31], or whatever range the * colors were originally in: */ if ((transforms & PNG_TRANSFORM_SHIFT) && png_get_valid(png_ptr, info_ptr, PNG_INFO_sBIT)) { png_color_8p sig_bit; png_get_sBIT(png_ptr, info_ptr, &sig_bit); png_set_shift(png_ptr, sig_bit); } #endif #if defined(PNG_READ_BGR_SUPPORTED) /* flip the RGB pixels to BGR (or RGBA to BGRA) */ if (transforms & PNG_TRANSFORM_BGR) png_set_bgr(png_ptr); #endif #if defined(PNG_READ_SWAP_ALPHA_SUPPORTED) /* swap the RGBA or GA data to ARGB or AG (or BGRA to ABGR) */ if (transforms & PNG_TRANSFORM_SWAP_ALPHA) png_set_swap_alpha(png_ptr); #endif #if defined(PNG_READ_SWAP_SUPPORTED) /* swap bytes of 16 bit files to least significant byte first */ if (transforms & PNG_TRANSFORM_SWAP_ENDIAN) png_set_swap(png_ptr); #endif /* We don't handle adding filler bytes */ /* Optional call to gamma correct and add the background to the palette * and update info structure. REQUIRED if you are expecting libpng to * update the palette for you (i.e., you selected such a transform above). */ png_read_update_info(png_ptr, info_ptr); /* -------------- image transformations end here ------------------- */ #ifdef PNG_FREE_ME_SUPPORTED png_free_data(png_ptr, info_ptr, PNG_FREE_ROWS, 0); #endif if(info_ptr->row_pointers == NULL) { info_ptr->row_pointers = (png_bytepp)png_malloc(png_ptr, info_ptr->height * png_sizeof(png_bytep)); #ifdef PNG_FREE_ME_SUPPORTED info_ptr->free_me |= PNG_FREE_ROWS; #endif for (row = 0; row < (int)info_ptr->height; row++) { info_ptr->row_pointers[row] = (png_bytep)png_malloc(png_ptr, png_get_rowbytes(png_ptr, info_ptr)); } } png_read_image(png_ptr, info_ptr->row_pointers); info_ptr->valid |= PNG_INFO_IDAT; /* read rest of file, and get additional chunks in info_ptr - REQUIRED */ png_read_end(png_ptr, info_ptr); transforms = transforms; /* quiet compiler warnings */ params = params; } #endif /* PNG_INFO_IMAGE_SUPPORTED */ #endif /* PNG_NO_SEQUENTIAL_READ_SUPPORTED */ #endif /* PNG_READ_SUPPORTED */ /********* End of inlined file: pngread.c *********/ /********* Start of inlined file: pngpread.c *********/ /* pngpread.c - read a png file in push mode * * Last changed in libpng 1.2.21 October 4, 2007 * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2007 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) */ #define PNG_INTERNAL #ifdef PNG_PROGRESSIVE_READ_SUPPORTED /* push model modes */ #define PNG_READ_SIG_MODE 0 #define PNG_READ_CHUNK_MODE 1 #define PNG_READ_IDAT_MODE 2 #define PNG_SKIP_MODE 3 #define PNG_READ_tEXt_MODE 4 #define PNG_READ_zTXt_MODE 5 #define PNG_READ_DONE_MODE 6 #define PNG_READ_iTXt_MODE 7 #define PNG_ERROR_MODE 8 void PNGAPI png_process_data(png_structp png_ptr, png_infop info_ptr, png_bytep buffer, png_size_t buffer_size) { if(png_ptr == NULL) return; png_push_restore_buffer(png_ptr, buffer, buffer_size); while (png_ptr->buffer_size) { png_process_some_data(png_ptr, info_ptr); } } /* What we do with the incoming data depends on what we were previously * doing before we ran out of data... */ void /* PRIVATE */ png_process_some_data(png_structp png_ptr, png_infop info_ptr) { if(png_ptr == NULL) return; switch (png_ptr->process_mode) { case PNG_READ_SIG_MODE: { png_push_read_sig(png_ptr, info_ptr); break; } case PNG_READ_CHUNK_MODE: { png_push_read_chunk(png_ptr, info_ptr); break; } case PNG_READ_IDAT_MODE: { png_push_read_IDAT(png_ptr); break; } #if defined(PNG_READ_tEXt_SUPPORTED) case PNG_READ_tEXt_MODE: { png_push_read_tEXt(png_ptr, info_ptr); break; } #endif #if defined(PNG_READ_zTXt_SUPPORTED) case PNG_READ_zTXt_MODE: { png_push_read_zTXt(png_ptr, info_ptr); break; } #endif #if defined(PNG_READ_iTXt_SUPPORTED) case PNG_READ_iTXt_MODE: { png_push_read_iTXt(png_ptr, info_ptr); break; } #endif case PNG_SKIP_MODE: { png_push_crc_finish(png_ptr); break; } default: { png_ptr->buffer_size = 0; break; } } } /* Read any remaining signature bytes from the stream and compare them with * the correct PNG signature. It is possible that this routine is called * with bytes already read from the signature, either because they have been * checked by the calling application, or because of multiple calls to this * routine. */ void /* PRIVATE */ png_push_read_sig(png_structp png_ptr, png_infop info_ptr) { png_size_t num_checked = png_ptr->sig_bytes, num_to_check = 8 - num_checked; if (png_ptr->buffer_size < num_to_check) { num_to_check = png_ptr->buffer_size; } png_push_fill_buffer(png_ptr, &(info_ptr->signature[num_checked]), num_to_check); png_ptr->sig_bytes = (png_byte)(png_ptr->sig_bytes+num_to_check); if (png_sig_cmp(info_ptr->signature, num_checked, num_to_check)) { if (num_checked < 4 && png_sig_cmp(info_ptr->signature, num_checked, num_to_check - 4)) png_error(png_ptr, "Not a PNG file"); else png_error(png_ptr, "PNG file corrupted by ASCII conversion"); } else { if (png_ptr->sig_bytes >= 8) { png_ptr->process_mode = PNG_READ_CHUNK_MODE; } } } void /* PRIVATE */ png_push_read_chunk(png_structp png_ptr, png_infop info_ptr) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_CONST PNG_IHDR; PNG_CONST PNG_IDAT; PNG_CONST PNG_IEND; PNG_CONST PNG_PLTE; #if defined(PNG_READ_bKGD_SUPPORTED) PNG_CONST PNG_bKGD; #endif #if defined(PNG_READ_cHRM_SUPPORTED) PNG_CONST PNG_cHRM; #endif #if defined(PNG_READ_gAMA_SUPPORTED) PNG_CONST PNG_gAMA; #endif #if defined(PNG_READ_hIST_SUPPORTED) PNG_CONST PNG_hIST; #endif #if defined(PNG_READ_iCCP_SUPPORTED) PNG_CONST PNG_iCCP; #endif #if defined(PNG_READ_iTXt_SUPPORTED) PNG_CONST PNG_iTXt; #endif #if defined(PNG_READ_oFFs_SUPPORTED) PNG_CONST PNG_oFFs; #endif #if defined(PNG_READ_pCAL_SUPPORTED) PNG_CONST PNG_pCAL; #endif #if defined(PNG_READ_pHYs_SUPPORTED) PNG_CONST PNG_pHYs; #endif #if defined(PNG_READ_sBIT_SUPPORTED) PNG_CONST PNG_sBIT; #endif #if defined(PNG_READ_sCAL_SUPPORTED) PNG_CONST PNG_sCAL; #endif #if defined(PNG_READ_sRGB_SUPPORTED) PNG_CONST PNG_sRGB; #endif #if defined(PNG_READ_sPLT_SUPPORTED) PNG_CONST PNG_sPLT; #endif #if defined(PNG_READ_tEXt_SUPPORTED) PNG_CONST PNG_tEXt; #endif #if defined(PNG_READ_tIME_SUPPORTED) PNG_CONST PNG_tIME; #endif #if defined(PNG_READ_tRNS_SUPPORTED) PNG_CONST PNG_tRNS; #endif #if defined(PNG_READ_zTXt_SUPPORTED) PNG_CONST PNG_zTXt; #endif #endif /* PNG_USE_LOCAL_ARRAYS */ /* First we make sure we have enough data for the 4 byte chunk name * and the 4 byte chunk length before proceeding with decoding the * chunk data. To fully decode each of these chunks, we also make * sure we have enough data in the buffer for the 4 byte CRC at the * end of every chunk (except IDAT, which is handled separately). */ if (!(png_ptr->mode & PNG_HAVE_CHUNK_HEADER)) { png_byte chunk_length[4]; if (png_ptr->buffer_size < 8) { png_push_save_buffer(png_ptr); return; } png_push_fill_buffer(png_ptr, chunk_length, 4); png_ptr->push_length = png_get_uint_31(png_ptr,chunk_length); png_reset_crc(png_ptr); png_crc_read(png_ptr, png_ptr->chunk_name, 4); png_ptr->mode |= PNG_HAVE_CHUNK_HEADER; } if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) if(png_ptr->mode & PNG_AFTER_IDAT) png_ptr->mode |= PNG_HAVE_CHUNK_AFTER_IDAT; if (!png_memcmp(png_ptr->chunk_name, png_IHDR, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_IHDR(png_ptr, info_ptr, png_ptr->push_length); } else if (!png_memcmp(png_ptr->chunk_name, png_IEND, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_IEND(png_ptr, info_ptr, png_ptr->push_length); png_ptr->process_mode = PNG_READ_DONE_MODE; png_push_have_end(png_ptr, info_ptr); } #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED else if (png_handle_as_unknown(png_ptr, png_ptr->chunk_name)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) png_ptr->mode |= PNG_HAVE_IDAT; png_handle_unknown(png_ptr, info_ptr, png_ptr->push_length); if (!png_memcmp(png_ptr->chunk_name, png_PLTE, 4)) png_ptr->mode |= PNG_HAVE_PLTE; else if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) { if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before IDAT"); else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE && !(png_ptr->mode & PNG_HAVE_PLTE)) png_error(png_ptr, "Missing PLTE before IDAT"); } } #endif else if (!png_memcmp(png_ptr->chunk_name, png_PLTE, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_PLTE(png_ptr, info_ptr, png_ptr->push_length); } else if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) { /* If we reach an IDAT chunk, this means we have read all of the * header chunks, and we can start reading the image (or if this * is called after the image has been read - we have an error). */ if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before IDAT"); else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE && !(png_ptr->mode & PNG_HAVE_PLTE)) png_error(png_ptr, "Missing PLTE before IDAT"); if (png_ptr->mode & PNG_HAVE_IDAT) { if (!(png_ptr->mode & PNG_HAVE_CHUNK_AFTER_IDAT)) if (png_ptr->push_length == 0) return; if (png_ptr->mode & PNG_AFTER_IDAT) png_error(png_ptr, "Too many IDAT's found"); } png_ptr->idat_size = png_ptr->push_length; png_ptr->mode |= PNG_HAVE_IDAT; png_ptr->process_mode = PNG_READ_IDAT_MODE; png_push_have_info(png_ptr, info_ptr); png_ptr->zstream.avail_out = (uInt)png_ptr->irowbytes; png_ptr->zstream.next_out = png_ptr->row_buf; return; } #if defined(PNG_READ_gAMA_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_gAMA, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_gAMA(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_sBIT_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_sBIT, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_sBIT(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_cHRM_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_cHRM, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_cHRM(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_sRGB_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_sRGB, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_sRGB(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_iCCP_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_iCCP, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_iCCP(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_sPLT_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_sPLT, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_sPLT(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_tRNS_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_tRNS, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_tRNS(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_bKGD_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_bKGD, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_bKGD(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_hIST_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_hIST, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_hIST(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_pHYs_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_pHYs, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_pHYs(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_oFFs_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_oFFs, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_oFFs(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_pCAL_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_pCAL, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_pCAL(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_sCAL_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_sCAL, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_sCAL(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_tIME_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_tIME, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_handle_tIME(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_tEXt_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_tEXt, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_push_handle_tEXt(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_zTXt_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_zTXt, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_push_handle_zTXt(png_ptr, info_ptr, png_ptr->push_length); } #endif #if defined(PNG_READ_iTXt_SUPPORTED) else if (!png_memcmp(png_ptr->chunk_name, png_iTXt, 4)) { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_push_handle_iTXt(png_ptr, info_ptr, png_ptr->push_length); } #endif else { if (png_ptr->push_length + 4 > png_ptr->buffer_size) { png_push_save_buffer(png_ptr); return; } png_push_handle_unknown(png_ptr, info_ptr, png_ptr->push_length); } png_ptr->mode &= ~PNG_HAVE_CHUNK_HEADER; } void /* PRIVATE */ png_push_crc_skip(png_structp png_ptr, png_uint_32 skip) { png_ptr->process_mode = PNG_SKIP_MODE; png_ptr->skip_length = skip; } void /* PRIVATE */ png_push_crc_finish(png_structp png_ptr) { if (png_ptr->skip_length && png_ptr->save_buffer_size) { png_size_t save_size; if (png_ptr->skip_length < (png_uint_32)png_ptr->save_buffer_size) save_size = (png_size_t)png_ptr->skip_length; else save_size = png_ptr->save_buffer_size; png_calculate_crc(png_ptr, png_ptr->save_buffer_ptr, save_size); png_ptr->skip_length -= save_size; png_ptr->buffer_size -= save_size; png_ptr->save_buffer_size -= save_size; png_ptr->save_buffer_ptr += save_size; } if (png_ptr->skip_length && png_ptr->current_buffer_size) { png_size_t save_size; if (png_ptr->skip_length < (png_uint_32)png_ptr->current_buffer_size) save_size = (png_size_t)png_ptr->skip_length; else save_size = png_ptr->current_buffer_size; png_calculate_crc(png_ptr, png_ptr->current_buffer_ptr, save_size); png_ptr->skip_length -= save_size; png_ptr->buffer_size -= save_size; png_ptr->current_buffer_size -= save_size; png_ptr->current_buffer_ptr += save_size; } if (!png_ptr->skip_length) { if (png_ptr->buffer_size < 4) { png_push_save_buffer(png_ptr); return; } png_crc_finish(png_ptr, 0); png_ptr->process_mode = PNG_READ_CHUNK_MODE; } } void PNGAPI png_push_fill_buffer(png_structp png_ptr, png_bytep buffer, png_size_t length) { png_bytep ptr; if(png_ptr == NULL) return; ptr = buffer; if (png_ptr->save_buffer_size) { png_size_t save_size; if (length < png_ptr->save_buffer_size) save_size = length; else save_size = png_ptr->save_buffer_size; png_memcpy(ptr, png_ptr->save_buffer_ptr, save_size); length -= save_size; ptr += save_size; png_ptr->buffer_size -= save_size; png_ptr->save_buffer_size -= save_size; png_ptr->save_buffer_ptr += save_size; } if (length && png_ptr->current_buffer_size) { png_size_t save_size; if (length < png_ptr->current_buffer_size) save_size = length; else save_size = png_ptr->current_buffer_size; png_memcpy(ptr, png_ptr->current_buffer_ptr, save_size); png_ptr->buffer_size -= save_size; png_ptr->current_buffer_size -= save_size; png_ptr->current_buffer_ptr += save_size; } } void /* PRIVATE */ png_push_save_buffer(png_structp png_ptr) { if (png_ptr->save_buffer_size) { if (png_ptr->save_buffer_ptr != png_ptr->save_buffer) { png_size_t i,istop; png_bytep sp; png_bytep dp; istop = png_ptr->save_buffer_size; for (i = 0, sp = png_ptr->save_buffer_ptr, dp = png_ptr->save_buffer; i < istop; i++, sp++, dp++) { *dp = *sp; } } } if (png_ptr->save_buffer_size + png_ptr->current_buffer_size > png_ptr->save_buffer_max) { png_size_t new_max; png_bytep old_buffer; if (png_ptr->save_buffer_size > PNG_SIZE_MAX - (png_ptr->current_buffer_size + 256)) { png_error(png_ptr, "Potential overflow of save_buffer"); } new_max = png_ptr->save_buffer_size + png_ptr->current_buffer_size + 256; old_buffer = png_ptr->save_buffer; png_ptr->save_buffer = (png_bytep)png_malloc(png_ptr, (png_uint_32)new_max); png_memcpy(png_ptr->save_buffer, old_buffer, png_ptr->save_buffer_size); png_free(png_ptr, old_buffer); png_ptr->save_buffer_max = new_max; } if (png_ptr->current_buffer_size) { png_memcpy(png_ptr->save_buffer + png_ptr->save_buffer_size, png_ptr->current_buffer_ptr, png_ptr->current_buffer_size); png_ptr->save_buffer_size += png_ptr->current_buffer_size; png_ptr->current_buffer_size = 0; } png_ptr->save_buffer_ptr = png_ptr->save_buffer; png_ptr->buffer_size = 0; } void /* PRIVATE */ png_push_restore_buffer(png_structp png_ptr, png_bytep buffer, png_size_t buffer_length) { png_ptr->current_buffer = buffer; png_ptr->current_buffer_size = buffer_length; png_ptr->buffer_size = buffer_length + png_ptr->save_buffer_size; png_ptr->current_buffer_ptr = png_ptr->current_buffer; } void /* PRIVATE */ png_push_read_IDAT(png_structp png_ptr) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_CONST PNG_IDAT; #endif if (!(png_ptr->mode & PNG_HAVE_CHUNK_HEADER)) { png_byte chunk_length[4]; if (png_ptr->buffer_size < 8) { png_push_save_buffer(png_ptr); return; } png_push_fill_buffer(png_ptr, chunk_length, 4); png_ptr->push_length = png_get_uint_31(png_ptr,chunk_length); png_reset_crc(png_ptr); png_crc_read(png_ptr, png_ptr->chunk_name, 4); png_ptr->mode |= PNG_HAVE_CHUNK_HEADER; if (png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) { png_ptr->process_mode = PNG_READ_CHUNK_MODE; if (!(png_ptr->flags & PNG_FLAG_ZLIB_FINISHED)) png_error(png_ptr, "Not enough compressed data"); return; } png_ptr->idat_size = png_ptr->push_length; } if (png_ptr->idat_size && png_ptr->save_buffer_size) { png_size_t save_size; if (png_ptr->idat_size < (png_uint_32)png_ptr->save_buffer_size) { save_size = (png_size_t)png_ptr->idat_size; /* check for overflow */ if((png_uint_32)save_size != png_ptr->idat_size) png_error(png_ptr, "save_size overflowed in pngpread"); } else save_size = png_ptr->save_buffer_size; png_calculate_crc(png_ptr, png_ptr->save_buffer_ptr, save_size); if (!(png_ptr->flags & PNG_FLAG_ZLIB_FINISHED)) png_process_IDAT_data(png_ptr, png_ptr->save_buffer_ptr, save_size); png_ptr->idat_size -= save_size; png_ptr->buffer_size -= save_size; png_ptr->save_buffer_size -= save_size; png_ptr->save_buffer_ptr += save_size; } if (png_ptr->idat_size && png_ptr->current_buffer_size) { png_size_t save_size; if (png_ptr->idat_size < (png_uint_32)png_ptr->current_buffer_size) { save_size = (png_size_t)png_ptr->idat_size; /* check for overflow */ if((png_uint_32)save_size != png_ptr->idat_size) png_error(png_ptr, "save_size overflowed in pngpread"); } else save_size = png_ptr->current_buffer_size; png_calculate_crc(png_ptr, png_ptr->current_buffer_ptr, save_size); if (!(png_ptr->flags & PNG_FLAG_ZLIB_FINISHED)) png_process_IDAT_data(png_ptr, png_ptr->current_buffer_ptr, save_size); png_ptr->idat_size -= save_size; png_ptr->buffer_size -= save_size; png_ptr->current_buffer_size -= save_size; png_ptr->current_buffer_ptr += save_size; } if (!png_ptr->idat_size) { if (png_ptr->buffer_size < 4) { png_push_save_buffer(png_ptr); return; } png_crc_finish(png_ptr, 0); png_ptr->mode &= ~PNG_HAVE_CHUNK_HEADER; png_ptr->mode |= PNG_AFTER_IDAT; } } void /* PRIVATE */ png_process_IDAT_data(png_structp png_ptr, png_bytep buffer, png_size_t buffer_length) { int ret; if ((png_ptr->flags & PNG_FLAG_ZLIB_FINISHED) && buffer_length) png_error(png_ptr, "Extra compression data"); png_ptr->zstream.next_in = buffer; png_ptr->zstream.avail_in = (uInt)buffer_length; for(;;) { ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH); if (ret != Z_OK) { if (ret == Z_STREAM_END) { if (png_ptr->zstream.avail_in) png_error(png_ptr, "Extra compressed data"); if (!(png_ptr->zstream.avail_out)) { png_push_process_row(png_ptr); } png_ptr->mode |= PNG_AFTER_IDAT; png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED; break; } else if (ret == Z_BUF_ERROR) break; else png_error(png_ptr, "Decompression Error"); } if (!(png_ptr->zstream.avail_out)) { if (( #if defined(PNG_READ_INTERLACING_SUPPORTED) png_ptr->interlaced && png_ptr->pass > 6) || (!png_ptr->interlaced && #endif png_ptr->row_number == png_ptr->num_rows)) { if (png_ptr->zstream.avail_in) { png_warning(png_ptr, "Too much data in IDAT chunks"); } png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED; break; } png_push_process_row(png_ptr); png_ptr->zstream.avail_out = (uInt)png_ptr->irowbytes; png_ptr->zstream.next_out = png_ptr->row_buf; } else break; } } void /* PRIVATE */ png_push_process_row(png_structp png_ptr) { png_ptr->row_info.color_type = png_ptr->color_type; png_ptr->row_info.width = png_ptr->iwidth; png_ptr->row_info.channels = png_ptr->channels; png_ptr->row_info.bit_depth = png_ptr->bit_depth; png_ptr->row_info.pixel_depth = png_ptr->pixel_depth; png_ptr->row_info.rowbytes = PNG_ROWBYTES(png_ptr->row_info.pixel_depth, png_ptr->row_info.width); png_read_filter_row(png_ptr, &(png_ptr->row_info), png_ptr->row_buf + 1, png_ptr->prev_row + 1, (int)(png_ptr->row_buf[0])); png_memcpy_check(png_ptr, png_ptr->prev_row, png_ptr->row_buf, png_ptr->rowbytes + 1); if (png_ptr->transformations || (png_ptr->flags&PNG_FLAG_STRIP_ALPHA)) png_do_read_transformations(png_ptr); #if defined(PNG_READ_INTERLACING_SUPPORTED) /* blow up interlaced rows to full size */ if (png_ptr->interlaced && (png_ptr->transformations & PNG_INTERLACE)) { if (png_ptr->pass < 6) /* old interface (pre-1.0.9): png_do_read_interlace(&(png_ptr->row_info), png_ptr->row_buf + 1, png_ptr->pass, png_ptr->transformations); */ png_do_read_interlace(png_ptr); switch (png_ptr->pass) { case 0: { int i; for (i = 0; i < 8 && png_ptr->pass == 0; i++) { png_push_have_row(png_ptr, png_ptr->row_buf + 1); png_read_push_finish_row(png_ptr); /* updates png_ptr->pass */ } if (png_ptr->pass == 2) /* pass 1 might be empty */ { for (i = 0; i < 4 && png_ptr->pass == 2; i++) { png_push_have_row(png_ptr, png_bytep_NULL); png_read_push_finish_row(png_ptr); } } if (png_ptr->pass == 4 && png_ptr->height <= 4) { for (i = 0; i < 2 && png_ptr->pass == 4; i++) { png_push_have_row(png_ptr, png_bytep_NULL); png_read_push_finish_row(png_ptr); } } if (png_ptr->pass == 6 && png_ptr->height <= 4) { png_push_have_row(png_ptr, png_bytep_NULL); png_read_push_finish_row(png_ptr); } break; } case 1: { int i; for (i = 0; i < 8 && png_ptr->pass == 1; i++) { png_push_have_row(png_ptr, png_ptr->row_buf + 1); png_read_push_finish_row(png_ptr); } if (png_ptr->pass == 2) /* skip top 4 generated rows */ { for (i = 0; i < 4 && png_ptr->pass == 2; i++) { png_push_have_row(png_ptr, png_bytep_NULL); png_read_push_finish_row(png_ptr); } } break; } case 2: { int i; for (i = 0; i < 4 && png_ptr->pass == 2; i++) { png_push_have_row(png_ptr, png_ptr->row_buf + 1); png_read_push_finish_row(png_ptr); } for (i = 0; i < 4 && png_ptr->pass == 2; i++) { png_push_have_row(png_ptr, png_bytep_NULL); png_read_push_finish_row(png_ptr); } if (png_ptr->pass == 4) /* pass 3 might be empty */ { for (i = 0; i < 2 && png_ptr->pass == 4; i++) { png_push_have_row(png_ptr, png_bytep_NULL); png_read_push_finish_row(png_ptr); } } break; } case 3: { int i; for (i = 0; i < 4 && png_ptr->pass == 3; i++) { png_push_have_row(png_ptr, png_ptr->row_buf + 1); png_read_push_finish_row(png_ptr); } if (png_ptr->pass == 4) /* skip top two generated rows */ { for (i = 0; i < 2 && png_ptr->pass == 4; i++) { png_push_have_row(png_ptr, png_bytep_NULL); png_read_push_finish_row(png_ptr); } } break; } case 4: { int i; for (i = 0; i < 2 && png_ptr->pass == 4; i++) { png_push_have_row(png_ptr, png_ptr->row_buf + 1); png_read_push_finish_row(png_ptr); } for (i = 0; i < 2 && png_ptr->pass == 4; i++) { png_push_have_row(png_ptr, png_bytep_NULL); png_read_push_finish_row(png_ptr); } if (png_ptr->pass == 6) /* pass 5 might be empty */ { png_push_have_row(png_ptr, png_bytep_NULL); png_read_push_finish_row(png_ptr); } break; } case 5: { int i; for (i = 0; i < 2 && png_ptr->pass == 5; i++) { png_push_have_row(png_ptr, png_ptr->row_buf + 1); png_read_push_finish_row(png_ptr); } if (png_ptr->pass == 6) /* skip top generated row */ { png_push_have_row(png_ptr, png_bytep_NULL); png_read_push_finish_row(png_ptr); } break; } case 6: { png_push_have_row(png_ptr, png_ptr->row_buf + 1); png_read_push_finish_row(png_ptr); if (png_ptr->pass != 6) break; png_push_have_row(png_ptr, png_bytep_NULL); png_read_push_finish_row(png_ptr); } } } else #endif { png_push_have_row(png_ptr, png_ptr->row_buf + 1); png_read_push_finish_row(png_ptr); } } void /* PRIVATE */ png_read_push_finish_row(png_structp png_ptr) { #ifdef PNG_USE_LOCAL_ARRAYS /* arrays to facilitate easy interlacing - use pass (0 - 6) as index */ /* start of interlace block */ PNG_CONST int FARDATA png_pass_start[] = {0, 4, 0, 2, 0, 1, 0}; /* offset to next interlace block */ PNG_CONST int FARDATA png_pass_inc[] = {8, 8, 4, 4, 2, 2, 1}; /* start of interlace block in the y direction */ PNG_CONST int FARDATA png_pass_ystart[] = {0, 0, 4, 0, 2, 0, 1}; /* offset to next interlace block in the y direction */ PNG_CONST int FARDATA png_pass_yinc[] = {8, 8, 8, 4, 4, 2, 2}; /* Height of interlace block. This is not currently used - if you need * it, uncomment it here and in png.h PNG_CONST int FARDATA png_pass_height[] = {8, 8, 4, 4, 2, 2, 1}; */ #endif png_ptr->row_number++; if (png_ptr->row_number < png_ptr->num_rows) return; if (png_ptr->interlaced) { png_ptr->row_number = 0; png_memset_check(png_ptr, png_ptr->prev_row, 0, png_ptr->rowbytes + 1); do { png_ptr->pass++; if ((png_ptr->pass == 1 && png_ptr->width < 5) || (png_ptr->pass == 3 && png_ptr->width < 3) || (png_ptr->pass == 5 && png_ptr->width < 2)) png_ptr->pass++; if (png_ptr->pass > 7) png_ptr->pass--; if (png_ptr->pass >= 7) break; png_ptr->iwidth = (png_ptr->width + png_pass_inc[png_ptr->pass] - 1 - png_pass_start[png_ptr->pass]) / png_pass_inc[png_ptr->pass]; png_ptr->irowbytes = PNG_ROWBYTES(png_ptr->pixel_depth, png_ptr->iwidth) + 1; if (png_ptr->transformations & PNG_INTERLACE) break; png_ptr->num_rows = (png_ptr->height + png_pass_yinc[png_ptr->pass] - 1 - png_pass_ystart[png_ptr->pass]) / png_pass_yinc[png_ptr->pass]; } while (png_ptr->iwidth == 0 || png_ptr->num_rows == 0); } } #if defined(PNG_READ_tEXt_SUPPORTED) void /* PRIVATE */ png_push_handle_tEXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { if (!(png_ptr->mode & PNG_HAVE_IHDR) || (png_ptr->mode & PNG_HAVE_IEND)) { png_error(png_ptr, "Out of place tEXt"); info_ptr = info_ptr; /* to quiet some compiler warnings */ } #ifdef PNG_MAX_MALLOC_64K png_ptr->skip_length = 0; /* This may not be necessary */ if (length > (png_uint_32)65535L) /* Can't hold entire string in memory */ { png_warning(png_ptr, "tEXt chunk too large to fit in memory"); png_ptr->skip_length = length - (png_uint_32)65535L; length = (png_uint_32)65535L; } #endif png_ptr->current_text = (png_charp)png_malloc(png_ptr, (png_uint_32)(length+1)); png_ptr->current_text[length] = '\0'; png_ptr->current_text_ptr = png_ptr->current_text; png_ptr->current_text_size = (png_size_t)length; png_ptr->current_text_left = (png_size_t)length; png_ptr->process_mode = PNG_READ_tEXt_MODE; } void /* PRIVATE */ png_push_read_tEXt(png_structp png_ptr, png_infop info_ptr) { if (png_ptr->buffer_size && png_ptr->current_text_left) { png_size_t text_size; if (png_ptr->buffer_size < png_ptr->current_text_left) text_size = png_ptr->buffer_size; else text_size = png_ptr->current_text_left; png_crc_read(png_ptr, (png_bytep)png_ptr->current_text_ptr, text_size); png_ptr->current_text_left -= text_size; png_ptr->current_text_ptr += text_size; } if (!(png_ptr->current_text_left)) { png_textp text_ptr; png_charp text; png_charp key; int ret; if (png_ptr->buffer_size < 4) { png_push_save_buffer(png_ptr); return; } png_push_crc_finish(png_ptr); #if defined(PNG_MAX_MALLOC_64K) if (png_ptr->skip_length) return; #endif key = png_ptr->current_text; for (text = key; *text; text++) /* empty loop */ ; if (text < key + png_ptr->current_text_size) text++; text_ptr = (png_textp)png_malloc(png_ptr, (png_uint_32)png_sizeof(png_text)); text_ptr->compression = PNG_TEXT_COMPRESSION_NONE; text_ptr->key = key; #ifdef PNG_iTXt_SUPPORTED text_ptr->lang = NULL; text_ptr->lang_key = NULL; #endif text_ptr->text = text; ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1); png_free(png_ptr, key); png_free(png_ptr, text_ptr); png_ptr->current_text = NULL; if (ret) png_warning(png_ptr, "Insufficient memory to store text chunk."); } } #endif #if defined(PNG_READ_zTXt_SUPPORTED) void /* PRIVATE */ png_push_handle_zTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { if (!(png_ptr->mode & PNG_HAVE_IHDR) || (png_ptr->mode & PNG_HAVE_IEND)) { png_error(png_ptr, "Out of place zTXt"); info_ptr = info_ptr; /* to quiet some compiler warnings */ } #ifdef PNG_MAX_MALLOC_64K /* We can't handle zTXt chunks > 64K, since we don't have enough space * to be able to store the uncompressed data. Actually, the threshold * is probably around 32K, but it isn't as definite as 64K is. */ if (length > (png_uint_32)65535L) { png_warning(png_ptr, "zTXt chunk too large to fit in memory"); png_push_crc_skip(png_ptr, length); return; } #endif png_ptr->current_text = (png_charp)png_malloc(png_ptr, (png_uint_32)(length+1)); png_ptr->current_text[length] = '\0'; png_ptr->current_text_ptr = png_ptr->current_text; png_ptr->current_text_size = (png_size_t)length; png_ptr->current_text_left = (png_size_t)length; png_ptr->process_mode = PNG_READ_zTXt_MODE; } void /* PRIVATE */ png_push_read_zTXt(png_structp png_ptr, png_infop info_ptr) { if (png_ptr->buffer_size && png_ptr->current_text_left) { png_size_t text_size; if (png_ptr->buffer_size < (png_uint_32)png_ptr->current_text_left) text_size = png_ptr->buffer_size; else text_size = png_ptr->current_text_left; png_crc_read(png_ptr, (png_bytep)png_ptr->current_text_ptr, text_size); png_ptr->current_text_left -= text_size; png_ptr->current_text_ptr += text_size; } if (!(png_ptr->current_text_left)) { png_textp text_ptr; png_charp text; png_charp key; int ret; png_size_t text_size, key_size; if (png_ptr->buffer_size < 4) { png_push_save_buffer(png_ptr); return; } png_push_crc_finish(png_ptr); key = png_ptr->current_text; for (text = key; *text; text++) /* empty loop */ ; /* zTXt can't have zero text */ if (text >= key + png_ptr->current_text_size) { png_ptr->current_text = NULL; png_free(png_ptr, key); return; } text++; if (*text != PNG_TEXT_COMPRESSION_zTXt) /* check compression byte */ { png_ptr->current_text = NULL; png_free(png_ptr, key); return; } text++; png_ptr->zstream.next_in = (png_bytep )text; png_ptr->zstream.avail_in = (uInt)(png_ptr->current_text_size - (text - key)); png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; key_size = text - key; text_size = 0; text = NULL; ret = Z_STREAM_END; while (png_ptr->zstream.avail_in) { ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH); if (ret != Z_OK && ret != Z_STREAM_END) { inflateReset(&png_ptr->zstream); png_ptr->zstream.avail_in = 0; png_ptr->current_text = NULL; png_free(png_ptr, key); png_free(png_ptr, text); return; } if (!(png_ptr->zstream.avail_out) || ret == Z_STREAM_END) { if (text == NULL) { text = (png_charp)png_malloc(png_ptr, (png_uint_32)(png_ptr->zbuf_size - png_ptr->zstream.avail_out + key_size + 1)); png_memcpy(text + key_size, png_ptr->zbuf, png_ptr->zbuf_size - png_ptr->zstream.avail_out); png_memcpy(text, key, key_size); text_size = key_size + png_ptr->zbuf_size - png_ptr->zstream.avail_out; *(text + text_size) = '\0'; } else { png_charp tmp; tmp = text; text = (png_charp)png_malloc(png_ptr, text_size + (png_uint_32)(png_ptr->zbuf_size - png_ptr->zstream.avail_out + 1)); png_memcpy(text, tmp, text_size); png_free(png_ptr, tmp); png_memcpy(text + text_size, png_ptr->zbuf, png_ptr->zbuf_size - png_ptr->zstream.avail_out); text_size += png_ptr->zbuf_size - png_ptr->zstream.avail_out; *(text + text_size) = '\0'; } if (ret != Z_STREAM_END) { png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; } } else { break; } if (ret == Z_STREAM_END) break; } inflateReset(&png_ptr->zstream); png_ptr->zstream.avail_in = 0; if (ret != Z_STREAM_END) { png_ptr->current_text = NULL; png_free(png_ptr, key); png_free(png_ptr, text); return; } png_ptr->current_text = NULL; png_free(png_ptr, key); key = text; text += key_size; text_ptr = (png_textp)png_malloc(png_ptr, (png_uint_32)png_sizeof(png_text)); text_ptr->compression = PNG_TEXT_COMPRESSION_zTXt; text_ptr->key = key; #ifdef PNG_iTXt_SUPPORTED text_ptr->lang = NULL; text_ptr->lang_key = NULL; #endif text_ptr->text = text; ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1); png_free(png_ptr, key); png_free(png_ptr, text_ptr); if (ret) png_warning(png_ptr, "Insufficient memory to store text chunk."); } } #endif #if defined(PNG_READ_iTXt_SUPPORTED) void /* PRIVATE */ png_push_handle_iTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { if (!(png_ptr->mode & PNG_HAVE_IHDR) || (png_ptr->mode & PNG_HAVE_IEND)) { png_error(png_ptr, "Out of place iTXt"); info_ptr = info_ptr; /* to quiet some compiler warnings */ } #ifdef PNG_MAX_MALLOC_64K png_ptr->skip_length = 0; /* This may not be necessary */ if (length > (png_uint_32)65535L) /* Can't hold entire string in memory */ { png_warning(png_ptr, "iTXt chunk too large to fit in memory"); png_ptr->skip_length = length - (png_uint_32)65535L; length = (png_uint_32)65535L; } #endif png_ptr->current_text = (png_charp)png_malloc(png_ptr, (png_uint_32)(length+1)); png_ptr->current_text[length] = '\0'; png_ptr->current_text_ptr = png_ptr->current_text; png_ptr->current_text_size = (png_size_t)length; png_ptr->current_text_left = (png_size_t)length; png_ptr->process_mode = PNG_READ_iTXt_MODE; } void /* PRIVATE */ png_push_read_iTXt(png_structp png_ptr, png_infop info_ptr) { if (png_ptr->buffer_size && png_ptr->current_text_left) { png_size_t text_size; if (png_ptr->buffer_size < png_ptr->current_text_left) text_size = png_ptr->buffer_size; else text_size = png_ptr->current_text_left; png_crc_read(png_ptr, (png_bytep)png_ptr->current_text_ptr, text_size); png_ptr->current_text_left -= text_size; png_ptr->current_text_ptr += text_size; } if (!(png_ptr->current_text_left)) { png_textp text_ptr; png_charp key; int comp_flag; png_charp lang; png_charp lang_key; png_charp text; int ret; if (png_ptr->buffer_size < 4) { png_push_save_buffer(png_ptr); return; } png_push_crc_finish(png_ptr); #if defined(PNG_MAX_MALLOC_64K) if (png_ptr->skip_length) return; #endif key = png_ptr->current_text; for (lang = key; *lang; lang++) /* empty loop */ ; if (lang < key + png_ptr->current_text_size - 3) lang++; comp_flag = *lang++; lang++; /* skip comp_type, always zero */ for (lang_key = lang; *lang_key; lang_key++) /* empty loop */ ; lang_key++; /* skip NUL separator */ text=lang_key; if (lang_key < key + png_ptr->current_text_size - 1) { for (; *text; text++) /* empty loop */ ; } if (text < key + png_ptr->current_text_size) text++; text_ptr = (png_textp)png_malloc(png_ptr, (png_uint_32)png_sizeof(png_text)); text_ptr->compression = comp_flag + 2; text_ptr->key = key; text_ptr->lang = lang; text_ptr->lang_key = lang_key; text_ptr->text = text; text_ptr->text_length = 0; text_ptr->itxt_length = png_strlen(text); ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1); png_ptr->current_text = NULL; png_free(png_ptr, text_ptr); if (ret) png_warning(png_ptr, "Insufficient memory to store iTXt chunk."); } } #endif /* This function is called when we haven't found a handler for this * chunk. If there isn't a problem with the chunk itself (ie a bad chunk * name or a critical chunk), the chunk is (currently) silently ignored. */ void /* PRIVATE */ png_push_handle_unknown(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_uint_32 skip=0; png_check_chunk_name(png_ptr, png_ptr->chunk_name); if (!(png_ptr->chunk_name[0] & 0x20)) { #if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) if(png_handle_as_unknown(png_ptr, png_ptr->chunk_name) != PNG_HANDLE_CHUNK_ALWAYS #if defined(PNG_READ_USER_CHUNKS_SUPPORTED) && png_ptr->read_user_chunk_fn == NULL #endif ) #endif png_chunk_error(png_ptr, "unknown critical chunk"); info_ptr = info_ptr; /* to quiet some compiler warnings */ } #if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) if (png_ptr->flags & PNG_FLAG_KEEP_UNKNOWN_CHUNKS) { #ifdef PNG_MAX_MALLOC_64K if (length > (png_uint_32)65535L) { png_warning(png_ptr, "unknown chunk too large to fit in memory"); skip = length - (png_uint_32)65535L; length = (png_uint_32)65535L; } #endif png_strncpy((png_charp)png_ptr->unknown_chunk.name, (png_charp)png_ptr->chunk_name, 5); png_ptr->unknown_chunk.data = (png_bytep)png_malloc(png_ptr, length); png_ptr->unknown_chunk.size = (png_size_t)length; png_crc_read(png_ptr, (png_bytep)png_ptr->unknown_chunk.data, length); #if defined(PNG_READ_USER_CHUNKS_SUPPORTED) if(png_ptr->read_user_chunk_fn != NULL) { /* callback to user unknown chunk handler */ int ret; ret = (*(png_ptr->read_user_chunk_fn)) (png_ptr, &png_ptr->unknown_chunk); if (ret < 0) png_chunk_error(png_ptr, "error in user chunk"); if (ret == 0) { if (!(png_ptr->chunk_name[0] & 0x20)) if(png_handle_as_unknown(png_ptr, png_ptr->chunk_name) != PNG_HANDLE_CHUNK_ALWAYS) png_chunk_error(png_ptr, "unknown critical chunk"); png_set_unknown_chunks(png_ptr, info_ptr, &png_ptr->unknown_chunk, 1); } } #else png_set_unknown_chunks(png_ptr, info_ptr, &png_ptr->unknown_chunk, 1); #endif png_free(png_ptr, png_ptr->unknown_chunk.data); png_ptr->unknown_chunk.data = NULL; } else #endif skip=length; png_push_crc_skip(png_ptr, skip); } void /* PRIVATE */ png_push_have_info(png_structp png_ptr, png_infop info_ptr) { if (png_ptr->info_fn != NULL) (*(png_ptr->info_fn))(png_ptr, info_ptr); } void /* PRIVATE */ png_push_have_end(png_structp png_ptr, png_infop info_ptr) { if (png_ptr->end_fn != NULL) (*(png_ptr->end_fn))(png_ptr, info_ptr); } void /* PRIVATE */ png_push_have_row(png_structp png_ptr, png_bytep row) { if (png_ptr->row_fn != NULL) (*(png_ptr->row_fn))(png_ptr, row, png_ptr->row_number, (int)png_ptr->pass); } void PNGAPI png_progressive_combine_row (png_structp png_ptr, png_bytep old_row, png_bytep new_row) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_CONST int FARDATA png_pass_dsp_mask[7] = {0xff, 0x0f, 0xff, 0x33, 0xff, 0x55, 0xff}; #endif if(png_ptr == NULL) return; if (new_row != NULL) /* new_row must == png_ptr->row_buf here. */ png_combine_row(png_ptr, old_row, png_pass_dsp_mask[png_ptr->pass]); } void PNGAPI png_set_progressive_read_fn(png_structp png_ptr, png_voidp progressive_ptr, png_progressive_info_ptr info_fn, png_progressive_row_ptr row_fn, png_progressive_end_ptr end_fn) { if(png_ptr == NULL) return; png_ptr->info_fn = info_fn; png_ptr->row_fn = row_fn; png_ptr->end_fn = end_fn; png_set_read_fn(png_ptr, progressive_ptr, png_push_fill_buffer); } png_voidp PNGAPI png_get_progressive_ptr(png_structp png_ptr) { if(png_ptr == NULL) return (NULL); return png_ptr->io_ptr; } #endif /* PNG_PROGRESSIVE_READ_SUPPORTED */ /********* End of inlined file: pngpread.c *********/ /********* Start of inlined file: pngrio.c *********/ /* pngrio.c - functions for data input * * Last changed in libpng 1.2.13 November 13, 2006 * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2006 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) * * This file provides a location for all input. Users who need * special handling are expected to write a function that has the same * arguments as this and performs a similar function, but that possibly * has a different input method. Note that you shouldn't change this * function, but rather write a replacement function and then make * libpng use it at run time with png_set_read_fn(...). */ #define PNG_INTERNAL #if defined(PNG_READ_SUPPORTED) /* Read the data from whatever input you are using. The default routine reads from a file pointer. Note that this routine sometimes gets called with very small lengths, so you should implement some kind of simple buffering if you are using unbuffered reads. This should never be asked to read more then 64K on a 16 bit machine. */ void /* PRIVATE */ png_read_data(png_structp png_ptr, png_bytep data, png_size_t length) { png_debug1(4,"reading %d bytes\n", (int)length); if (png_ptr->read_data_fn != NULL) (*(png_ptr->read_data_fn))(png_ptr, data, length); else png_error(png_ptr, "Call to NULL read function"); } #if !defined(PNG_NO_STDIO) /* This is the function that does the actual reading of data. If you are not reading from a standard C stream, you should create a replacement read_data function and use it at run time with png_set_read_fn(), rather than changing the library. */ #ifndef USE_FAR_KEYWORD void PNGAPI png_default_read_data(png_structp png_ptr, png_bytep data, png_size_t length) { png_size_t check; if(png_ptr == NULL) return; /* fread() returns 0 on error, so it is OK to store this in a png_size_t * instead of an int, which is what fread() actually returns. */ #if defined(_WIN32_WCE) if ( !ReadFile((HANDLE)(png_ptr->io_ptr), data, length, &check, NULL) ) check = 0; #else check = (png_size_t)fread(data, (png_size_t)1, length, (png_FILE_p)png_ptr->io_ptr); #endif if (check != length) png_error(png_ptr, "Read Error"); } #else /* this is the model-independent version. Since the standard I/O library can't handle far buffers in the medium and small models, we have to copy the data. */ #define NEAR_BUF_SIZE 1024 #define MIN(a,b) (a <= b ? a : b) static void PNGAPI png_default_read_data(png_structp png_ptr, png_bytep data, png_size_t length) { int check; png_byte *n_data; png_FILE_p io_ptr; if(png_ptr == NULL) return; /* Check if data really is near. If so, use usual code. */ n_data = (png_byte *)CVT_PTR_NOCHECK(data); io_ptr = (png_FILE_p)CVT_PTR(png_ptr->io_ptr); if ((png_bytep)n_data == data) { #if defined(_WIN32_WCE) if ( !ReadFile((HANDLE)(png_ptr->io_ptr), data, length, &check, NULL) ) check = 0; #else check = fread(n_data, 1, length, io_ptr); #endif } else { png_byte buf[NEAR_BUF_SIZE]; png_size_t read, remaining, err; check = 0; remaining = length; do { read = MIN(NEAR_BUF_SIZE, remaining); #if defined(_WIN32_WCE) if ( !ReadFile((HANDLE)(io_ptr), buf, read, &err, NULL) ) err = 0; #else err = fread(buf, (png_size_t)1, read, io_ptr); #endif png_memcpy(data, buf, read); /* copy far buffer to near buffer */ if(err != read) break; else check += err; data += read; remaining -= read; } while (remaining != 0); } if ((png_uint_32)check != (png_uint_32)length) png_error(png_ptr, "read Error"); } #endif #endif /* This function allows the application to supply a new input function for libpng if standard C streams aren't being used. This function takes as its arguments: png_ptr - pointer to a png input data structure io_ptr - pointer to user supplied structure containing info about the input functions. May be NULL. read_data_fn - pointer to a new input function that takes as its arguments a pointer to a png_struct, a pointer to a location where input data can be stored, and a 32-bit unsigned int that is the number of bytes to be read. To exit and output any fatal error messages the new write function should call png_error(png_ptr, "Error msg"). */ void PNGAPI png_set_read_fn(png_structp png_ptr, png_voidp io_ptr, png_rw_ptr read_data_fn) { if(png_ptr == NULL) return; png_ptr->io_ptr = io_ptr; #if !defined(PNG_NO_STDIO) if (read_data_fn != NULL) png_ptr->read_data_fn = read_data_fn; else png_ptr->read_data_fn = png_default_read_data; #else png_ptr->read_data_fn = read_data_fn; #endif /* It is an error to write to a read device */ if (png_ptr->write_data_fn != NULL) { png_ptr->write_data_fn = NULL; png_warning(png_ptr, "It's an error to set both read_data_fn and write_data_fn in the "); png_warning(png_ptr, "same structure. Resetting write_data_fn to NULL."); } #if defined(PNG_WRITE_FLUSH_SUPPORTED) png_ptr->output_flush_fn = NULL; #endif } #endif /* PNG_READ_SUPPORTED */ /********* End of inlined file: pngrio.c *********/ /********* Start of inlined file: pngrtran.c *********/ /* pngrtran.c - transforms the data in a row for PNG readers * * Last changed in libpng 1.2.21 [October 4, 2007] * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2007 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) * * This file contains functions optionally called by an application * in order to tell libpng how to handle data when reading a PNG. * Transformations that are used in both reading and writing are * in pngtrans.c. */ #define PNG_INTERNAL #if defined(PNG_READ_SUPPORTED) /* Set the action on getting a CRC error for an ancillary or critical chunk. */ void PNGAPI png_set_crc_action(png_structp png_ptr, int crit_action, int ancil_action) { png_debug(1, "in png_set_crc_action\n"); /* Tell libpng how we react to CRC errors in critical chunks */ if(png_ptr == NULL) return; switch (crit_action) { case PNG_CRC_NO_CHANGE: /* leave setting as is */ break; case PNG_CRC_WARN_USE: /* warn/use data */ png_ptr->flags &= ~PNG_FLAG_CRC_CRITICAL_MASK; png_ptr->flags |= PNG_FLAG_CRC_CRITICAL_USE; break; case PNG_CRC_QUIET_USE: /* quiet/use data */ png_ptr->flags &= ~PNG_FLAG_CRC_CRITICAL_MASK; png_ptr->flags |= PNG_FLAG_CRC_CRITICAL_USE | PNG_FLAG_CRC_CRITICAL_IGNORE; break; case PNG_CRC_WARN_DISCARD: /* not a valid action for critical data */ png_warning(png_ptr, "Can't discard critical data on CRC error."); case PNG_CRC_ERROR_QUIT: /* error/quit */ case PNG_CRC_DEFAULT: default: png_ptr->flags &= ~PNG_FLAG_CRC_CRITICAL_MASK; break; } switch (ancil_action) { case PNG_CRC_NO_CHANGE: /* leave setting as is */ break; case PNG_CRC_WARN_USE: /* warn/use data */ png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK; png_ptr->flags |= PNG_FLAG_CRC_ANCILLARY_USE; break; case PNG_CRC_QUIET_USE: /* quiet/use data */ png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK; png_ptr->flags |= PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN; break; case PNG_CRC_ERROR_QUIT: /* error/quit */ png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK; png_ptr->flags |= PNG_FLAG_CRC_ANCILLARY_NOWARN; break; case PNG_CRC_WARN_DISCARD: /* warn/discard data */ case PNG_CRC_DEFAULT: default: png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK; break; } } #if defined(PNG_READ_BACKGROUND_SUPPORTED) && \ defined(PNG_FLOATING_POINT_SUPPORTED) /* handle alpha and tRNS via a background color */ void PNGAPI png_set_background(png_structp png_ptr, png_color_16p background_color, int background_gamma_code, int need_expand, double background_gamma) { png_debug(1, "in png_set_background\n"); if(png_ptr == NULL) return; if (background_gamma_code == PNG_BACKGROUND_GAMMA_UNKNOWN) { png_warning(png_ptr, "Application must supply a known background gamma"); return; } png_ptr->transformations |= PNG_BACKGROUND; png_memcpy(&(png_ptr->background), background_color, png_sizeof(png_color_16)); png_ptr->background_gamma = (float)background_gamma; png_ptr->background_gamma_type = (png_byte)(background_gamma_code); png_ptr->transformations |= (need_expand ? PNG_BACKGROUND_EXPAND : 0); } #endif #if defined(PNG_READ_16_TO_8_SUPPORTED) /* strip 16 bit depth files to 8 bit depth */ void PNGAPI png_set_strip_16(png_structp png_ptr) { png_debug(1, "in png_set_strip_16\n"); if(png_ptr == NULL) return; png_ptr->transformations |= PNG_16_TO_8; } #endif #if defined(PNG_READ_STRIP_ALPHA_SUPPORTED) void PNGAPI png_set_strip_alpha(png_structp png_ptr) { png_debug(1, "in png_set_strip_alpha\n"); if(png_ptr == NULL) return; png_ptr->flags |= PNG_FLAG_STRIP_ALPHA; } #endif #if defined(PNG_READ_DITHER_SUPPORTED) /* Dither file to 8 bit. Supply a palette, the current number * of elements in the palette, the maximum number of elements * allowed, and a histogram if possible. If the current number * of colors is greater then the maximum number, the palette will be * modified to fit in the maximum number. "full_dither" indicates * whether we need a dithering cube set up for RGB images, or if we * simply are reducing the number of colors in a paletted image. */ typedef struct png_dsort_struct { struct png_dsort_struct FAR * next; png_byte left; png_byte right; } png_dsort; typedef png_dsort FAR * png_dsortp; typedef png_dsort FAR * FAR * png_dsortpp; void PNGAPI png_set_dither(png_structp png_ptr, png_colorp palette, int num_palette, int maximum_colors, png_uint_16p histogram, int full_dither) { png_debug(1, "in png_set_dither\n"); if(png_ptr == NULL) return; png_ptr->transformations |= PNG_DITHER; if (!full_dither) { int i; png_ptr->dither_index = (png_bytep)png_malloc(png_ptr, (png_uint_32)(num_palette * png_sizeof (png_byte))); for (i = 0; i < num_palette; i++) png_ptr->dither_index[i] = (png_byte)i; } if (num_palette > maximum_colors) { if (histogram != NULL) { /* This is easy enough, just throw out the least used colors. Perhaps not the best solution, but good enough. */ int i; /* initialize an array to sort colors */ png_ptr->dither_sort = (png_bytep)png_malloc(png_ptr, (png_uint_32)(num_palette * png_sizeof (png_byte))); /* initialize the dither_sort array */ for (i = 0; i < num_palette; i++) png_ptr->dither_sort[i] = (png_byte)i; /* Find the least used palette entries by starting a bubble sort, and running it until we have sorted out enough colors. Note that we don't care about sorting all the colors, just finding which are least used. */ for (i = num_palette - 1; i >= maximum_colors; i--) { int done; /* to stop early if the list is pre-sorted */ int j; done = 1; for (j = 0; j < i; j++) { if (histogram[png_ptr->dither_sort[j]] < histogram[png_ptr->dither_sort[j + 1]]) { png_byte t; t = png_ptr->dither_sort[j]; png_ptr->dither_sort[j] = png_ptr->dither_sort[j + 1]; png_ptr->dither_sort[j + 1] = t; done = 0; } } if (done) break; } /* swap the palette around, and set up a table, if necessary */ if (full_dither) { int j = num_palette; /* put all the useful colors within the max, but don't move the others */ for (i = 0; i < maximum_colors; i++) { if ((int)png_ptr->dither_sort[i] >= maximum_colors) { do j--; while ((int)png_ptr->dither_sort[j] >= maximum_colors); palette[i] = palette[j]; } } } else { int j = num_palette; /* move all the used colors inside the max limit, and develop a translation table */ for (i = 0; i < maximum_colors; i++) { /* only move the colors we need to */ if ((int)png_ptr->dither_sort[i] >= maximum_colors) { png_color tmp_color; do j--; while ((int)png_ptr->dither_sort[j] >= maximum_colors); tmp_color = palette[j]; palette[j] = palette[i]; palette[i] = tmp_color; /* indicate where the color went */ png_ptr->dither_index[j] = (png_byte)i; png_ptr->dither_index[i] = (png_byte)j; } } /* find closest color for those colors we are not using */ for (i = 0; i < num_palette; i++) { if ((int)png_ptr->dither_index[i] >= maximum_colors) { int min_d, k, min_k, d_index; /* find the closest color to one we threw out */ d_index = png_ptr->dither_index[i]; min_d = PNG_COLOR_DIST(palette[d_index], palette[0]); for (k = 1, min_k = 0; k < maximum_colors; k++) { int d; d = PNG_COLOR_DIST(palette[d_index], palette[k]); if (d < min_d) { min_d = d; min_k = k; } } /* point to closest color */ png_ptr->dither_index[i] = (png_byte)min_k; } } } png_free(png_ptr, png_ptr->dither_sort); png_ptr->dither_sort=NULL; } else { /* This is much harder to do simply (and quickly). Perhaps we need to go through a median cut routine, but those don't always behave themselves with only a few colors as input. So we will just find the closest two colors, and throw out one of them (chosen somewhat randomly). [We don't understand this at all, so if someone wants to work on improving it, be our guest - AED, GRP] */ int i; int max_d; int num_new_palette; png_dsortp t; png_dsortpp hash; t=NULL; /* initialize palette index arrays */ png_ptr->index_to_palette = (png_bytep)png_malloc(png_ptr, (png_uint_32)(num_palette * png_sizeof (png_byte))); png_ptr->palette_to_index = (png_bytep)png_malloc(png_ptr, (png_uint_32)(num_palette * png_sizeof (png_byte))); /* initialize the sort array */ for (i = 0; i < num_palette; i++) { png_ptr->index_to_palette[i] = (png_byte)i; png_ptr->palette_to_index[i] = (png_byte)i; } hash = (png_dsortpp)png_malloc(png_ptr, (png_uint_32)(769 * png_sizeof (png_dsortp))); for (i = 0; i < 769; i++) hash[i] = NULL; /* png_memset(hash, 0, 769 * png_sizeof (png_dsortp)); */ num_new_palette = num_palette; /* initial wild guess at how far apart the farthest pixel pair we will be eliminating will be. Larger numbers mean more areas will be allocated, Smaller numbers run the risk of not saving enough data, and having to do this all over again. I have not done extensive checking on this number. */ max_d = 96; while (num_new_palette > maximum_colors) { for (i = 0; i < num_new_palette - 1; i++) { int j; for (j = i + 1; j < num_new_palette; j++) { int d; d = PNG_COLOR_DIST(palette[i], palette[j]); if (d <= max_d) { t = (png_dsortp)png_malloc_warn(png_ptr, (png_uint_32)(png_sizeof(png_dsort))); if (t == NULL) break; t->next = hash[d]; t->left = (png_byte)i; t->right = (png_byte)j; hash[d] = t; } } if (t == NULL) break; } if (t != NULL) for (i = 0; i <= max_d; i++) { if (hash[i] != NULL) { png_dsortp p; for (p = hash[i]; p; p = p->next) { if ((int)png_ptr->index_to_palette[p->left] < num_new_palette && (int)png_ptr->index_to_palette[p->right] < num_new_palette) { int j, next_j; if (num_new_palette & 0x01) { j = p->left; next_j = p->right; } else { j = p->right; next_j = p->left; } num_new_palette--; palette[png_ptr->index_to_palette[j]] = palette[num_new_palette]; if (!full_dither) { int k; for (k = 0; k < num_palette; k++) { if (png_ptr->dither_index[k] == png_ptr->index_to_palette[j]) png_ptr->dither_index[k] = png_ptr->index_to_palette[next_j]; if ((int)png_ptr->dither_index[k] == num_new_palette) png_ptr->dither_index[k] = png_ptr->index_to_palette[j]; } } png_ptr->index_to_palette[png_ptr->palette_to_index [num_new_palette]] = png_ptr->index_to_palette[j]; png_ptr->palette_to_index[png_ptr->index_to_palette[j]] = png_ptr->palette_to_index[num_new_palette]; png_ptr->index_to_palette[j] = (png_byte)num_new_palette; png_ptr->palette_to_index[num_new_palette] = (png_byte)j; } if (num_new_palette <= maximum_colors) break; } if (num_new_palette <= maximum_colors) break; } } for (i = 0; i < 769; i++) { if (hash[i] != NULL) { png_dsortp p = hash[i]; while (p) { t = p->next; png_free(png_ptr, p); p = t; } } hash[i] = 0; } max_d += 96; } png_free(png_ptr, hash); png_free(png_ptr, png_ptr->palette_to_index); png_free(png_ptr, png_ptr->index_to_palette); png_ptr->palette_to_index=NULL; png_ptr->index_to_palette=NULL; } num_palette = maximum_colors; } if (png_ptr->palette == NULL) { png_ptr->palette = palette; } png_ptr->num_palette = (png_uint_16)num_palette; if (full_dither) { int i; png_bytep distance; int total_bits = PNG_DITHER_RED_BITS + PNG_DITHER_GREEN_BITS + PNG_DITHER_BLUE_BITS; int num_red = (1 << PNG_DITHER_RED_BITS); int num_green = (1 << PNG_DITHER_GREEN_BITS); int num_blue = (1 << PNG_DITHER_BLUE_BITS); png_size_t num_entries = ((png_size_t)1 << total_bits); png_ptr->palette_lookup = (png_bytep )png_malloc(png_ptr, (png_uint_32)(num_entries * png_sizeof (png_byte))); png_memset(png_ptr->palette_lookup, 0, num_entries * png_sizeof (png_byte)); distance = (png_bytep)png_malloc(png_ptr, (png_uint_32)(num_entries * png_sizeof(png_byte))); png_memset(distance, 0xff, num_entries * png_sizeof(png_byte)); for (i = 0; i < num_palette; i++) { int ir, ig, ib; int r = (palette[i].red >> (8 - PNG_DITHER_RED_BITS)); int g = (palette[i].green >> (8 - PNG_DITHER_GREEN_BITS)); int b = (palette[i].blue >> (8 - PNG_DITHER_BLUE_BITS)); for (ir = 0; ir < num_red; ir++) { /* int dr = abs(ir - r); */ int dr = ((ir > r) ? ir - r : r - ir); int index_r = (ir << (PNG_DITHER_BLUE_BITS + PNG_DITHER_GREEN_BITS)); for (ig = 0; ig < num_green; ig++) { /* int dg = abs(ig - g); */ int dg = ((ig > g) ? ig - g : g - ig); int dt = dr + dg; int dm = ((dr > dg) ? dr : dg); int index_g = index_r | (ig << PNG_DITHER_BLUE_BITS); for (ib = 0; ib < num_blue; ib++) { int d_index = index_g | ib; /* int db = abs(ib - b); */ int db = ((ib > b) ? ib - b : b - ib); int dmax = ((dm > db) ? dm : db); int d = dmax + dt + db; if (d < (int)distance[d_index]) { distance[d_index] = (png_byte)d; png_ptr->palette_lookup[d_index] = (png_byte)i; } } } } } png_free(png_ptr, distance); } } #endif #if defined(PNG_READ_GAMMA_SUPPORTED) && defined(PNG_FLOATING_POINT_SUPPORTED) /* Transform the image from the file_gamma to the screen_gamma. We * only do transformations on images where the file_gamma and screen_gamma * are not close reciprocals, otherwise it slows things down slightly, and * also needlessly introduces small errors. * * We will turn off gamma transformation later if no semitransparent entries * are present in the tRNS array for palette images. We can't do it here * because we don't necessarily have the tRNS chunk yet. */ void PNGAPI png_set_gamma(png_structp png_ptr, double scrn_gamma, double file_gamma) { png_debug(1, "in png_set_gamma\n"); if(png_ptr == NULL) return; if ((fabs(scrn_gamma * file_gamma - 1.0) > PNG_GAMMA_THRESHOLD) || (png_ptr->color_type & PNG_COLOR_MASK_ALPHA) || (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)) png_ptr->transformations |= PNG_GAMMA; png_ptr->gamma = (float)file_gamma; png_ptr->screen_gamma = (float)scrn_gamma; } #endif #if defined(PNG_READ_EXPAND_SUPPORTED) /* Expand paletted images to RGB, expand grayscale images of * less than 8-bit depth to 8-bit depth, and expand tRNS chunks * to alpha channels. */ void PNGAPI png_set_expand(png_structp png_ptr) { png_debug(1, "in png_set_expand\n"); if(png_ptr == NULL) return; png_ptr->transformations |= (PNG_EXPAND | PNG_EXPAND_tRNS); #ifdef PNG_WARN_UNINITIALIZED_ROW png_ptr->flags &= ~PNG_FLAG_ROW_INIT; #endif } /* GRR 19990627: the following three functions currently are identical * to png_set_expand(). However, it is entirely reasonable that someone * might wish to expand an indexed image to RGB but *not* expand a single, * fully transparent palette entry to a full alpha channel--perhaps instead * convert tRNS to the grayscale/RGB format (16-bit RGB value), or replace * the transparent color with a particular RGB value, or drop tRNS entirely. * IOW, a future version of the library may make the transformations flag * a bit more fine-grained, with separate bits for each of these three * functions. * * More to the point, these functions make it obvious what libpng will be * doing, whereas "expand" can (and does) mean any number of things. * * GRP 20060307: In libpng-1.4.0, png_set_gray_1_2_4_to_8() was modified * to expand only the sample depth but not to expand the tRNS to alpha. */ /* Expand paletted images to RGB. */ void PNGAPI png_set_palette_to_rgb(png_structp png_ptr) { png_debug(1, "in png_set_palette_to_rgb\n"); if(png_ptr == NULL) return; png_ptr->transformations |= (PNG_EXPAND | PNG_EXPAND_tRNS); #ifdef PNG_WARN_UNINITIALIZED_ROW png_ptr->flags &= !(PNG_FLAG_ROW_INIT); png_ptr->flags &= ~PNG_FLAG_ROW_INIT; #endif } #if !defined(PNG_1_0_X) /* Expand grayscale images of less than 8-bit depth to 8 bits. */ void PNGAPI png_set_expand_gray_1_2_4_to_8(png_structp png_ptr) { png_debug(1, "in png_set_expand_gray_1_2_4_to_8\n"); if(png_ptr == NULL) return; png_ptr->transformations |= PNG_EXPAND; #ifdef PNG_WARN_UNINITIALIZED_ROW png_ptr->flags &= ~PNG_FLAG_ROW_INIT; #endif } #endif #if defined(PNG_1_0_X) || defined(PNG_1_2_X) /* Expand grayscale images of less than 8-bit depth to 8 bits. */ /* Deprecated as of libpng-1.2.9 */ void PNGAPI png_set_gray_1_2_4_to_8(png_structp png_ptr) { png_debug(1, "in png_set_gray_1_2_4_to_8\n"); if(png_ptr == NULL) return; png_ptr->transformations |= (PNG_EXPAND | PNG_EXPAND_tRNS); } #endif /* Expand tRNS chunks to alpha channels. */ void PNGAPI png_set_tRNS_to_alpha(png_structp png_ptr) { png_debug(1, "in png_set_tRNS_to_alpha\n"); png_ptr->transformations |= (PNG_EXPAND | PNG_EXPAND_tRNS); #ifdef PNG_WARN_UNINITIALIZED_ROW png_ptr->flags &= ~PNG_FLAG_ROW_INIT; #endif } #endif /* defined(PNG_READ_EXPAND_SUPPORTED) */ #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) void PNGAPI png_set_gray_to_rgb(png_structp png_ptr) { png_debug(1, "in png_set_gray_to_rgb\n"); png_ptr->transformations |= PNG_GRAY_TO_RGB; #ifdef PNG_WARN_UNINITIALIZED_ROW png_ptr->flags &= ~PNG_FLAG_ROW_INIT; #endif } #endif #if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) #if defined(PNG_FLOATING_POINT_SUPPORTED) /* Convert a RGB image to a grayscale of the same width. This allows us, * for example, to convert a 24 bpp RGB image into an 8 bpp grayscale image. */ void PNGAPI png_set_rgb_to_gray(png_structp png_ptr, int error_action, double red, double green) { int red_fixed = (int)((float)red*100000.0 + 0.5); int green_fixed = (int)((float)green*100000.0 + 0.5); if(png_ptr == NULL) return; png_set_rgb_to_gray_fixed(png_ptr, error_action, red_fixed, green_fixed); } #endif void PNGAPI png_set_rgb_to_gray_fixed(png_structp png_ptr, int error_action, png_fixed_point red, png_fixed_point green) { png_debug(1, "in png_set_rgb_to_gray\n"); if(png_ptr == NULL) return; switch(error_action) { case 1: png_ptr->transformations |= PNG_RGB_TO_GRAY; break; case 2: png_ptr->transformations |= PNG_RGB_TO_GRAY_WARN; break; case 3: png_ptr->transformations |= PNG_RGB_TO_GRAY_ERR; } if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) #if defined(PNG_READ_EXPAND_SUPPORTED) png_ptr->transformations |= PNG_EXPAND; #else { png_warning(png_ptr, "Cannot do RGB_TO_GRAY without EXPAND_SUPPORTED."); png_ptr->transformations &= ~PNG_RGB_TO_GRAY; } #endif { png_uint_16 red_int, green_int; if(red < 0 || green < 0) { red_int = 6968; /* .212671 * 32768 + .5 */ green_int = 23434; /* .715160 * 32768 + .5 */ } else if(red + green < 100000L) { red_int = (png_uint_16)(((png_uint_32)red*32768L)/100000L); green_int = (png_uint_16)(((png_uint_32)green*32768L)/100000L); } else { png_warning(png_ptr, "ignoring out of range rgb_to_gray coefficients"); red_int = 6968; green_int = 23434; } png_ptr->rgb_to_gray_red_coeff = red_int; png_ptr->rgb_to_gray_green_coeff = green_int; png_ptr->rgb_to_gray_blue_coeff = (png_uint_16)(32768-red_int-green_int); } } #endif #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_LEGACY_SUPPORTED) void PNGAPI png_set_read_user_transform_fn(png_structp png_ptr, png_user_transform_ptr read_user_transform_fn) { png_debug(1, "in png_set_read_user_transform_fn\n"); if(png_ptr == NULL) return; #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) png_ptr->transformations |= PNG_USER_TRANSFORM; png_ptr->read_user_transform_fn = read_user_transform_fn; #endif #ifdef PNG_LEGACY_SUPPORTED if(read_user_transform_fn) png_warning(png_ptr, "This version of libpng does not support user transforms"); #endif } #endif /* Initialize everything needed for the read. This includes modifying * the palette. */ void /* PRIVATE */ png_init_read_transformations(png_structp png_ptr) { png_debug(1, "in png_init_read_transformations\n"); #if defined(PNG_USELESS_TESTS_SUPPORTED) if(png_ptr != NULL) #endif { #if defined(PNG_READ_BACKGROUND_SUPPORTED) || defined(PNG_READ_SHIFT_SUPPORTED) \ || defined(PNG_READ_GAMMA_SUPPORTED) int color_type = png_ptr->color_type; #endif #if defined(PNG_READ_EXPAND_SUPPORTED) && defined(PNG_READ_BACKGROUND_SUPPORTED) #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) /* Detect gray background and attempt to enable optimization * for gray --> RGB case */ /* Note: if PNG_BACKGROUND_EXPAND is set and color_type is either RGB or * RGB_ALPHA (in which case need_expand is superfluous anyway), the * background color might actually be gray yet not be flagged as such. * This is not a problem for the current code, which uses * PNG_BACKGROUND_IS_GRAY only to decide when to do the * png_do_gray_to_rgb() transformation. */ if ((png_ptr->transformations & PNG_BACKGROUND_EXPAND) && !(color_type & PNG_COLOR_MASK_COLOR)) { png_ptr->mode |= PNG_BACKGROUND_IS_GRAY; } else if ((png_ptr->transformations & PNG_BACKGROUND) && !(png_ptr->transformations & PNG_BACKGROUND_EXPAND) && (png_ptr->transformations & PNG_GRAY_TO_RGB) && png_ptr->background.red == png_ptr->background.green && png_ptr->background.red == png_ptr->background.blue) { png_ptr->mode |= PNG_BACKGROUND_IS_GRAY; png_ptr->background.gray = png_ptr->background.red; } #endif if ((png_ptr->transformations & PNG_BACKGROUND_EXPAND) && (png_ptr->transformations & PNG_EXPAND)) { if (!(color_type & PNG_COLOR_MASK_COLOR)) /* i.e., GRAY or GRAY_ALPHA */ { /* expand background and tRNS chunks */ switch (png_ptr->bit_depth) { case 1: png_ptr->background.gray *= (png_uint_16)0xff; png_ptr->background.red = png_ptr->background.green = png_ptr->background.blue = png_ptr->background.gray; if (!(png_ptr->transformations & PNG_EXPAND_tRNS)) { png_ptr->trans_values.gray *= (png_uint_16)0xff; png_ptr->trans_values.red = png_ptr->trans_values.green = png_ptr->trans_values.blue = png_ptr->trans_values.gray; } break; case 2: png_ptr->background.gray *= (png_uint_16)0x55; png_ptr->background.red = png_ptr->background.green = png_ptr->background.blue = png_ptr->background.gray; if (!(png_ptr->transformations & PNG_EXPAND_tRNS)) { png_ptr->trans_values.gray *= (png_uint_16)0x55; png_ptr->trans_values.red = png_ptr->trans_values.green = png_ptr->trans_values.blue = png_ptr->trans_values.gray; } break; case 4: png_ptr->background.gray *= (png_uint_16)0x11; png_ptr->background.red = png_ptr->background.green = png_ptr->background.blue = png_ptr->background.gray; if (!(png_ptr->transformations & PNG_EXPAND_tRNS)) { png_ptr->trans_values.gray *= (png_uint_16)0x11; png_ptr->trans_values.red = png_ptr->trans_values.green = png_ptr->trans_values.blue = png_ptr->trans_values.gray; } break; case 8: case 16: png_ptr->background.red = png_ptr->background.green = png_ptr->background.blue = png_ptr->background.gray; break; } } else if (color_type == PNG_COLOR_TYPE_PALETTE) { png_ptr->background.red = png_ptr->palette[png_ptr->background.index].red; png_ptr->background.green = png_ptr->palette[png_ptr->background.index].green; png_ptr->background.blue = png_ptr->palette[png_ptr->background.index].blue; #if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) if (png_ptr->transformations & PNG_INVERT_ALPHA) { #if defined(PNG_READ_EXPAND_SUPPORTED) if (!(png_ptr->transformations & PNG_EXPAND_tRNS)) #endif { /* invert the alpha channel (in tRNS) unless the pixels are going to be expanded, in which case leave it for later */ int i,istop; istop=(int)png_ptr->num_trans; for (i=0; itrans[i] = (png_byte)(255 - png_ptr->trans[i]); } } #endif } } #endif #if defined(PNG_READ_BACKGROUND_SUPPORTED) && defined(PNG_READ_GAMMA_SUPPORTED) png_ptr->background_1 = png_ptr->background; #endif #if defined(PNG_READ_GAMMA_SUPPORTED) && defined(PNG_FLOATING_POINT_SUPPORTED) if ((color_type == PNG_COLOR_TYPE_PALETTE && png_ptr->num_trans != 0) && (fabs(png_ptr->screen_gamma * png_ptr->gamma - 1.0) < PNG_GAMMA_THRESHOLD)) { int i,k; k=0; for (i=0; inum_trans; i++) { if (png_ptr->trans[i] != 0 && png_ptr->trans[i] != 0xff) k=1; /* partial transparency is present */ } if (k == 0) png_ptr->transformations &= (~PNG_GAMMA); } if ((png_ptr->transformations & (PNG_GAMMA | PNG_RGB_TO_GRAY)) && png_ptr->gamma != 0.0) { png_build_gamma_table(png_ptr); #if defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->transformations & PNG_BACKGROUND) { if (color_type == PNG_COLOR_TYPE_PALETTE) { /* could skip if no transparency and */ png_color back, back_1; png_colorp palette = png_ptr->palette; int num_palette = png_ptr->num_palette; int i; if (png_ptr->background_gamma_type == PNG_BACKGROUND_GAMMA_FILE) { back.red = png_ptr->gamma_table[png_ptr->background.red]; back.green = png_ptr->gamma_table[png_ptr->background.green]; back.blue = png_ptr->gamma_table[png_ptr->background.blue]; back_1.red = png_ptr->gamma_to_1[png_ptr->background.red]; back_1.green = png_ptr->gamma_to_1[png_ptr->background.green]; back_1.blue = png_ptr->gamma_to_1[png_ptr->background.blue]; } else { double g, gs; switch (png_ptr->background_gamma_type) { case PNG_BACKGROUND_GAMMA_SCREEN: g = (png_ptr->screen_gamma); gs = 1.0; break; case PNG_BACKGROUND_GAMMA_FILE: g = 1.0 / (png_ptr->gamma); gs = 1.0 / (png_ptr->gamma * png_ptr->screen_gamma); break; case PNG_BACKGROUND_GAMMA_UNIQUE: g = 1.0 / (png_ptr->background_gamma); gs = 1.0 / (png_ptr->background_gamma * png_ptr->screen_gamma); break; default: g = 1.0; /* back_1 */ gs = 1.0; /* back */ } if ( fabs(gs - 1.0) < PNG_GAMMA_THRESHOLD) { back.red = (png_byte)png_ptr->background.red; back.green = (png_byte)png_ptr->background.green; back.blue = (png_byte)png_ptr->background.blue; } else { back.red = (png_byte)(pow( (double)png_ptr->background.red/255, gs) * 255.0 + .5); back.green = (png_byte)(pow( (double)png_ptr->background.green/255, gs) * 255.0 + .5); back.blue = (png_byte)(pow( (double)png_ptr->background.blue/255, gs) * 255.0 + .5); } back_1.red = (png_byte)(pow( (double)png_ptr->background.red/255, g) * 255.0 + .5); back_1.green = (png_byte)(pow( (double)png_ptr->background.green/255, g) * 255.0 + .5); back_1.blue = (png_byte)(pow( (double)png_ptr->background.blue/255, g) * 255.0 + .5); } for (i = 0; i < num_palette; i++) { if (i < (int)png_ptr->num_trans && png_ptr->trans[i] != 0xff) { if (png_ptr->trans[i] == 0) { palette[i] = back; } else /* if (png_ptr->trans[i] != 0xff) */ { png_byte v, w; v = png_ptr->gamma_to_1[palette[i].red]; png_composite(w, v, png_ptr->trans[i], back_1.red); palette[i].red = png_ptr->gamma_from_1[w]; v = png_ptr->gamma_to_1[palette[i].green]; png_composite(w, v, png_ptr->trans[i], back_1.green); palette[i].green = png_ptr->gamma_from_1[w]; v = png_ptr->gamma_to_1[palette[i].blue]; png_composite(w, v, png_ptr->trans[i], back_1.blue); palette[i].blue = png_ptr->gamma_from_1[w]; } } else { palette[i].red = png_ptr->gamma_table[palette[i].red]; palette[i].green = png_ptr->gamma_table[palette[i].green]; palette[i].blue = png_ptr->gamma_table[palette[i].blue]; } } } /* if (png_ptr->background_gamma_type!=PNG_BACKGROUND_GAMMA_UNKNOWN) */ else /* color_type != PNG_COLOR_TYPE_PALETTE */ { double m = (double)(((png_uint_32)1 << png_ptr->bit_depth) - 1); double g = 1.0; double gs = 1.0; switch (png_ptr->background_gamma_type) { case PNG_BACKGROUND_GAMMA_SCREEN: g = (png_ptr->screen_gamma); gs = 1.0; break; case PNG_BACKGROUND_GAMMA_FILE: g = 1.0 / (png_ptr->gamma); gs = 1.0 / (png_ptr->gamma * png_ptr->screen_gamma); break; case PNG_BACKGROUND_GAMMA_UNIQUE: g = 1.0 / (png_ptr->background_gamma); gs = 1.0 / (png_ptr->background_gamma * png_ptr->screen_gamma); break; } png_ptr->background_1.gray = (png_uint_16)(pow( (double)png_ptr->background.gray / m, g) * m + .5); png_ptr->background.gray = (png_uint_16)(pow( (double)png_ptr->background.gray / m, gs) * m + .5); if ((png_ptr->background.red != png_ptr->background.green) || (png_ptr->background.red != png_ptr->background.blue) || (png_ptr->background.red != png_ptr->background.gray)) { /* RGB or RGBA with color background */ png_ptr->background_1.red = (png_uint_16)(pow( (double)png_ptr->background.red / m, g) * m + .5); png_ptr->background_1.green = (png_uint_16)(pow( (double)png_ptr->background.green / m, g) * m + .5); png_ptr->background_1.blue = (png_uint_16)(pow( (double)png_ptr->background.blue / m, g) * m + .5); png_ptr->background.red = (png_uint_16)(pow( (double)png_ptr->background.red / m, gs) * m + .5); png_ptr->background.green = (png_uint_16)(pow( (double)png_ptr->background.green / m, gs) * m + .5); png_ptr->background.blue = (png_uint_16)(pow( (double)png_ptr->background.blue / m, gs) * m + .5); } else { /* GRAY, GRAY ALPHA, RGB, or RGBA with gray background */ png_ptr->background_1.red = png_ptr->background_1.green = png_ptr->background_1.blue = png_ptr->background_1.gray; png_ptr->background.red = png_ptr->background.green = png_ptr->background.blue = png_ptr->background.gray; } } } else /* transformation does not include PNG_BACKGROUND */ #endif /* PNG_READ_BACKGROUND_SUPPORTED */ if (color_type == PNG_COLOR_TYPE_PALETTE) { png_colorp palette = png_ptr->palette; int num_palette = png_ptr->num_palette; int i; for (i = 0; i < num_palette; i++) { palette[i].red = png_ptr->gamma_table[palette[i].red]; palette[i].green = png_ptr->gamma_table[palette[i].green]; palette[i].blue = png_ptr->gamma_table[palette[i].blue]; } } } #if defined(PNG_READ_BACKGROUND_SUPPORTED) else #endif #endif /* PNG_READ_GAMMA_SUPPORTED && PNG_FLOATING_POINT_SUPPORTED */ #if defined(PNG_READ_BACKGROUND_SUPPORTED) /* No GAMMA transformation */ if ((png_ptr->transformations & PNG_BACKGROUND) && (color_type == PNG_COLOR_TYPE_PALETTE)) { int i; int istop = (int)png_ptr->num_trans; png_color back; png_colorp palette = png_ptr->palette; back.red = (png_byte)png_ptr->background.red; back.green = (png_byte)png_ptr->background.green; back.blue = (png_byte)png_ptr->background.blue; for (i = 0; i < istop; i++) { if (png_ptr->trans[i] == 0) { palette[i] = back; } else if (png_ptr->trans[i] != 0xff) { /* The png_composite() macro is defined in png.h */ png_composite(palette[i].red, palette[i].red, png_ptr->trans[i], back.red); png_composite(palette[i].green, palette[i].green, png_ptr->trans[i], back.green); png_composite(palette[i].blue, palette[i].blue, png_ptr->trans[i], back.blue); } } } #endif /* PNG_READ_BACKGROUND_SUPPORTED */ #if defined(PNG_READ_SHIFT_SUPPORTED) if ((png_ptr->transformations & PNG_SHIFT) && (color_type == PNG_COLOR_TYPE_PALETTE)) { png_uint_16 i; png_uint_16 istop = png_ptr->num_palette; int sr = 8 - png_ptr->sig_bit.red; int sg = 8 - png_ptr->sig_bit.green; int sb = 8 - png_ptr->sig_bit.blue; if (sr < 0 || sr > 8) sr = 0; if (sg < 0 || sg > 8) sg = 0; if (sb < 0 || sb > 8) sb = 0; for (i = 0; i < istop; i++) { png_ptr->palette[i].red >>= sr; png_ptr->palette[i].green >>= sg; png_ptr->palette[i].blue >>= sb; } } #endif /* PNG_READ_SHIFT_SUPPORTED */ } #if !defined(PNG_READ_GAMMA_SUPPORTED) && !defined(PNG_READ_SHIFT_SUPPORTED) \ && !defined(PNG_READ_BACKGROUND_SUPPORTED) if(png_ptr) return; #endif } /* Modify the info structure to reflect the transformations. The * info should be updated so a PNG file could be written with it, * assuming the transformations result in valid PNG data. */ void /* PRIVATE */ png_read_transform_info(png_structp png_ptr, png_infop info_ptr) { png_debug(1, "in png_read_transform_info\n"); #if defined(PNG_READ_EXPAND_SUPPORTED) if (png_ptr->transformations & PNG_EXPAND) { if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { if (png_ptr->num_trans && (png_ptr->transformations & PNG_EXPAND_tRNS)) info_ptr->color_type = PNG_COLOR_TYPE_RGB_ALPHA; else info_ptr->color_type = PNG_COLOR_TYPE_RGB; info_ptr->bit_depth = 8; info_ptr->num_trans = 0; } else { if (png_ptr->num_trans) { if (png_ptr->transformations & PNG_EXPAND_tRNS) info_ptr->color_type |= PNG_COLOR_MASK_ALPHA; else info_ptr->color_type |= PNG_COLOR_MASK_COLOR; } if (info_ptr->bit_depth < 8) info_ptr->bit_depth = 8; info_ptr->num_trans = 0; } } #endif #if defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->transformations & PNG_BACKGROUND) { info_ptr->color_type &= ~PNG_COLOR_MASK_ALPHA; info_ptr->num_trans = 0; info_ptr->background = png_ptr->background; } #endif #if defined(PNG_READ_GAMMA_SUPPORTED) if (png_ptr->transformations & PNG_GAMMA) { #ifdef PNG_FLOATING_POINT_SUPPORTED info_ptr->gamma = png_ptr->gamma; #endif #ifdef PNG_FIXED_POINT_SUPPORTED info_ptr->int_gamma = png_ptr->int_gamma; #endif } #endif #if defined(PNG_READ_16_TO_8_SUPPORTED) if ((png_ptr->transformations & PNG_16_TO_8) && (info_ptr->bit_depth == 16)) info_ptr->bit_depth = 8; #endif #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) if (png_ptr->transformations & PNG_GRAY_TO_RGB) info_ptr->color_type |= PNG_COLOR_MASK_COLOR; #endif #if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) if (png_ptr->transformations & PNG_RGB_TO_GRAY) info_ptr->color_type &= ~PNG_COLOR_MASK_COLOR; #endif #if defined(PNG_READ_DITHER_SUPPORTED) if (png_ptr->transformations & PNG_DITHER) { if (((info_ptr->color_type == PNG_COLOR_TYPE_RGB) || (info_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA)) && png_ptr->palette_lookup && info_ptr->bit_depth == 8) { info_ptr->color_type = PNG_COLOR_TYPE_PALETTE; } } #endif #if defined(PNG_READ_PACK_SUPPORTED) if ((png_ptr->transformations & PNG_PACK) && (info_ptr->bit_depth < 8)) info_ptr->bit_depth = 8; #endif if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE) info_ptr->channels = 1; else if (info_ptr->color_type & PNG_COLOR_MASK_COLOR) info_ptr->channels = 3; else info_ptr->channels = 1; #if defined(PNG_READ_STRIP_ALPHA_SUPPORTED) if (png_ptr->flags & PNG_FLAG_STRIP_ALPHA) info_ptr->color_type &= ~PNG_COLOR_MASK_ALPHA; #endif if (info_ptr->color_type & PNG_COLOR_MASK_ALPHA) info_ptr->channels++; #if defined(PNG_READ_FILLER_SUPPORTED) /* STRIP_ALPHA and FILLER allowed: MASK_ALPHA bit stripped above */ if ((png_ptr->transformations & PNG_FILLER) && ((info_ptr->color_type == PNG_COLOR_TYPE_RGB) || (info_ptr->color_type == PNG_COLOR_TYPE_GRAY))) { info_ptr->channels++; /* if adding a true alpha channel not just filler */ #if !defined(PNG_1_0_X) if (png_ptr->transformations & PNG_ADD_ALPHA) info_ptr->color_type |= PNG_COLOR_MASK_ALPHA; #endif } #endif #if defined(PNG_USER_TRANSFORM_PTR_SUPPORTED) && \ defined(PNG_READ_USER_TRANSFORM_SUPPORTED) if(png_ptr->transformations & PNG_USER_TRANSFORM) { if(info_ptr->bit_depth < png_ptr->user_transform_depth) info_ptr->bit_depth = png_ptr->user_transform_depth; if(info_ptr->channels < png_ptr->user_transform_channels) info_ptr->channels = png_ptr->user_transform_channels; } #endif info_ptr->pixel_depth = (png_byte)(info_ptr->channels * info_ptr->bit_depth); info_ptr->rowbytes = PNG_ROWBYTES(info_ptr->pixel_depth,info_ptr->width); #if !defined(PNG_READ_EXPAND_SUPPORTED) if(png_ptr) return; #endif } /* Transform the row. The order of transformations is significant, * and is very touchy. If you add a transformation, take care to * decide how it fits in with the other transformations here. */ void /* PRIVATE */ png_do_read_transformations(png_structp png_ptr) { png_debug(1, "in png_do_read_transformations\n"); if (png_ptr->row_buf == NULL) { #if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE) char msg[50]; png_snprintf2(msg, 50, "NULL row buffer for row %ld, pass %d", png_ptr->row_number, png_ptr->pass); png_error(png_ptr, msg); #else png_error(png_ptr, "NULL row buffer"); #endif } #ifdef PNG_WARN_UNINITIALIZED_ROW if (!(png_ptr->flags & PNG_FLAG_ROW_INIT)) /* Application has failed to call either png_read_start_image() * or png_read_update_info() after setting transforms that expand * pixels. This check added to libpng-1.2.19 */ #if (PNG_WARN_UNINITIALIZED_ROW==1) png_error(png_ptr, "Uninitialized row"); #else png_warning(png_ptr, "Uninitialized row"); #endif #endif #if defined(PNG_READ_EXPAND_SUPPORTED) if (png_ptr->transformations & PNG_EXPAND) { if (png_ptr->row_info.color_type == PNG_COLOR_TYPE_PALETTE) { png_do_expand_palette(&(png_ptr->row_info), png_ptr->row_buf + 1, png_ptr->palette, png_ptr->trans, png_ptr->num_trans); } else { if (png_ptr->num_trans && (png_ptr->transformations & PNG_EXPAND_tRNS)) png_do_expand(&(png_ptr->row_info), png_ptr->row_buf + 1, &(png_ptr->trans_values)); else png_do_expand(&(png_ptr->row_info), png_ptr->row_buf + 1, NULL); } } #endif #if defined(PNG_READ_STRIP_ALPHA_SUPPORTED) if (png_ptr->flags & PNG_FLAG_STRIP_ALPHA) png_do_strip_filler(&(png_ptr->row_info), png_ptr->row_buf + 1, PNG_FLAG_FILLER_AFTER | (png_ptr->flags & PNG_FLAG_STRIP_ALPHA)); #endif #if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) if (png_ptr->transformations & PNG_RGB_TO_GRAY) { int rgb_error = png_do_rgb_to_gray(png_ptr, &(png_ptr->row_info), png_ptr->row_buf + 1); if(rgb_error) { png_ptr->rgb_to_gray_status=1; if((png_ptr->transformations & PNG_RGB_TO_GRAY) == PNG_RGB_TO_GRAY_WARN) png_warning(png_ptr, "png_do_rgb_to_gray found nongray pixel"); if((png_ptr->transformations & PNG_RGB_TO_GRAY) == PNG_RGB_TO_GRAY_ERR) png_error(png_ptr, "png_do_rgb_to_gray found nongray pixel"); } } #endif /* From Andreas Dilger e-mail to png-implement, 26 March 1998: In most cases, the "simple transparency" should be done prior to doing gray-to-RGB, or you will have to test 3x as many bytes to check if a pixel is transparent. You would also need to make sure that the transparency information is upgraded to RGB. To summarize, the current flow is: - Gray + simple transparency -> compare 1 or 2 gray bytes and composite with background "in place" if transparent, convert to RGB if necessary - Gray + alpha -> composite with gray background and remove alpha bytes, convert to RGB if necessary To support RGB backgrounds for gray images we need: - Gray + simple transparency -> convert to RGB + simple transparency, compare 3 or 6 bytes and composite with background "in place" if transparent (3x compare/pixel compared to doing composite with gray bkgrnd) - Gray + alpha -> convert to RGB + alpha, composite with background and remove alpha bytes (3x float operations/pixel compared with composite on gray background) Greg's change will do this. The reason it wasn't done before is for performance, as this increases the per-pixel operations. If we would check in advance if the background was gray or RGB, and position the gray-to-RGB transform appropriately, then it would save a lot of work/time. */ #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) /* if gray -> RGB, do so now only if background is non-gray; else do later * for performance reasons */ if ((png_ptr->transformations & PNG_GRAY_TO_RGB) && !(png_ptr->mode & PNG_BACKGROUND_IS_GRAY)) png_do_gray_to_rgb(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_BACKGROUND_SUPPORTED) if ((png_ptr->transformations & PNG_BACKGROUND) && ((png_ptr->num_trans != 0 ) || (png_ptr->color_type & PNG_COLOR_MASK_ALPHA))) png_do_background(&(png_ptr->row_info), png_ptr->row_buf + 1, &(png_ptr->trans_values), &(png_ptr->background) #if defined(PNG_READ_GAMMA_SUPPORTED) , &(png_ptr->background_1), png_ptr->gamma_table, png_ptr->gamma_from_1, png_ptr->gamma_to_1, png_ptr->gamma_16_table, png_ptr->gamma_16_from_1, png_ptr->gamma_16_to_1, png_ptr->gamma_shift #endif ); #endif #if defined(PNG_READ_GAMMA_SUPPORTED) if ((png_ptr->transformations & PNG_GAMMA) && #if defined(PNG_READ_BACKGROUND_SUPPORTED) !((png_ptr->transformations & PNG_BACKGROUND) && ((png_ptr->num_trans != 0) || (png_ptr->color_type & PNG_COLOR_MASK_ALPHA))) && #endif (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE)) png_do_gamma(&(png_ptr->row_info), png_ptr->row_buf + 1, png_ptr->gamma_table, png_ptr->gamma_16_table, png_ptr->gamma_shift); #endif #if defined(PNG_READ_16_TO_8_SUPPORTED) if (png_ptr->transformations & PNG_16_TO_8) png_do_chop(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_DITHER_SUPPORTED) if (png_ptr->transformations & PNG_DITHER) { png_do_dither((png_row_infop)&(png_ptr->row_info), png_ptr->row_buf + 1, png_ptr->palette_lookup, png_ptr->dither_index); if(png_ptr->row_info.rowbytes == (png_uint_32)0) png_error(png_ptr, "png_do_dither returned rowbytes=0"); } #endif #if defined(PNG_READ_INVERT_SUPPORTED) if (png_ptr->transformations & PNG_INVERT_MONO) png_do_invert(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_SHIFT_SUPPORTED) if (png_ptr->transformations & PNG_SHIFT) png_do_unshift(&(png_ptr->row_info), png_ptr->row_buf + 1, &(png_ptr->shift)); #endif #if defined(PNG_READ_PACK_SUPPORTED) if (png_ptr->transformations & PNG_PACK) png_do_unpack(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_BGR_SUPPORTED) if (png_ptr->transformations & PNG_BGR) png_do_bgr(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_PACKSWAP_SUPPORTED) if (png_ptr->transformations & PNG_PACKSWAP) png_do_packswap(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) /* if gray -> RGB, do so now only if we did not do so above */ if ((png_ptr->transformations & PNG_GRAY_TO_RGB) && (png_ptr->mode & PNG_BACKGROUND_IS_GRAY)) png_do_gray_to_rgb(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_FILLER_SUPPORTED) if (png_ptr->transformations & PNG_FILLER) png_do_read_filler(&(png_ptr->row_info), png_ptr->row_buf + 1, (png_uint_32)png_ptr->filler, png_ptr->flags); #endif #if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) if (png_ptr->transformations & PNG_INVERT_ALPHA) png_do_read_invert_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_SWAP_ALPHA_SUPPORTED) if (png_ptr->transformations & PNG_SWAP_ALPHA) png_do_read_swap_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_SWAP_SUPPORTED) if (png_ptr->transformations & PNG_SWAP_BYTES) png_do_swap(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) if (png_ptr->transformations & PNG_USER_TRANSFORM) { if(png_ptr->read_user_transform_fn != NULL) (*(png_ptr->read_user_transform_fn)) /* user read transform function */ (png_ptr, /* png_ptr */ &(png_ptr->row_info), /* row_info: */ /* png_uint_32 width; width of row */ /* png_uint_32 rowbytes; number of bytes in row */ /* png_byte color_type; color type of pixels */ /* png_byte bit_depth; bit depth of samples */ /* png_byte channels; number of channels (1-4) */ /* png_byte pixel_depth; bits per pixel (depth*channels) */ png_ptr->row_buf + 1); /* start of pixel data for row */ #if defined(PNG_USER_TRANSFORM_PTR_SUPPORTED) if(png_ptr->user_transform_depth) png_ptr->row_info.bit_depth = png_ptr->user_transform_depth; if(png_ptr->user_transform_channels) png_ptr->row_info.channels = png_ptr->user_transform_channels; #endif png_ptr->row_info.pixel_depth = (png_byte)(png_ptr->row_info.bit_depth * png_ptr->row_info.channels); png_ptr->row_info.rowbytes = PNG_ROWBYTES(png_ptr->row_info.pixel_depth, png_ptr->row_info.width); } #endif } #if defined(PNG_READ_PACK_SUPPORTED) /* Unpack pixels of 1, 2, or 4 bits per pixel into 1 byte per pixel, * without changing the actual values. Thus, if you had a row with * a bit depth of 1, you would end up with bytes that only contained * the numbers 0 or 1. If you would rather they contain 0 and 255, use * png_do_shift() after this. */ void /* PRIVATE */ png_do_unpack(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_unpack\n"); #if defined(PNG_USELESS_TESTS_SUPPORTED) if (row != NULL && row_info != NULL && row_info->bit_depth < 8) #else if (row_info->bit_depth < 8) #endif { png_uint_32 i; png_uint_32 row_width=row_info->width; switch (row_info->bit_depth) { case 1: { png_bytep sp = row + (png_size_t)((row_width - 1) >> 3); png_bytep dp = row + (png_size_t)row_width - 1; png_uint_32 shift = 7 - (int)((row_width + 7) & 0x07); for (i = 0; i < row_width; i++) { *dp = (png_byte)((*sp >> shift) & 0x01); if (shift == 7) { shift = 0; sp--; } else shift++; dp--; } break; } case 2: { png_bytep sp = row + (png_size_t)((row_width - 1) >> 2); png_bytep dp = row + (png_size_t)row_width - 1; png_uint_32 shift = (int)((3 - ((row_width + 3) & 0x03)) << 1); for (i = 0; i < row_width; i++) { *dp = (png_byte)((*sp >> shift) & 0x03); if (shift == 6) { shift = 0; sp--; } else shift += 2; dp--; } break; } case 4: { png_bytep sp = row + (png_size_t)((row_width - 1) >> 1); png_bytep dp = row + (png_size_t)row_width - 1; png_uint_32 shift = (int)((1 - ((row_width + 1) & 0x01)) << 2); for (i = 0; i < row_width; i++) { *dp = (png_byte)((*sp >> shift) & 0x0f); if (shift == 4) { shift = 0; sp--; } else shift = 4; dp--; } break; } } row_info->bit_depth = 8; row_info->pixel_depth = (png_byte)(8 * row_info->channels); row_info->rowbytes = row_width * row_info->channels; } } #endif #if defined(PNG_READ_SHIFT_SUPPORTED) /* Reverse the effects of png_do_shift. This routine merely shifts the * pixels back to their significant bits values. Thus, if you have * a row of bit depth 8, but only 5 are significant, this will shift * the values back to 0 through 31. */ void /* PRIVATE */ png_do_unshift(png_row_infop row_info, png_bytep row, png_color_8p sig_bits) { png_debug(1, "in png_do_unshift\n"); if ( #if defined(PNG_USELESS_TESTS_SUPPORTED) row != NULL && row_info != NULL && sig_bits != NULL && #endif row_info->color_type != PNG_COLOR_TYPE_PALETTE) { int shift[4]; int channels = 0; int c; png_uint_16 value = 0; png_uint_32 row_width = row_info->width; if (row_info->color_type & PNG_COLOR_MASK_COLOR) { shift[channels++] = row_info->bit_depth - sig_bits->red; shift[channels++] = row_info->bit_depth - sig_bits->green; shift[channels++] = row_info->bit_depth - sig_bits->blue; } else { shift[channels++] = row_info->bit_depth - sig_bits->gray; } if (row_info->color_type & PNG_COLOR_MASK_ALPHA) { shift[channels++] = row_info->bit_depth - sig_bits->alpha; } for (c = 0; c < channels; c++) { if (shift[c] <= 0) shift[c] = 0; else value = 1; } if (!value) return; switch (row_info->bit_depth) { case 2: { png_bytep bp; png_uint_32 i; png_uint_32 istop = row_info->rowbytes; for (bp = row, i = 0; i < istop; i++) { *bp >>= 1; *bp++ &= 0x55; } break; } case 4: { png_bytep bp = row; png_uint_32 i; png_uint_32 istop = row_info->rowbytes; png_byte mask = (png_byte)((((int)0xf0 >> shift[0]) & (int)0xf0) | (png_byte)((int)0xf >> shift[0])); for (i = 0; i < istop; i++) { *bp >>= shift[0]; *bp++ &= mask; } break; } case 8: { png_bytep bp = row; png_uint_32 i; png_uint_32 istop = row_width * channels; for (i = 0; i < istop; i++) { *bp++ >>= shift[i%channels]; } break; } case 16: { png_bytep bp = row; png_uint_32 i; png_uint_32 istop = channels * row_width; for (i = 0; i < istop; i++) { value = (png_uint_16)((*bp << 8) + *(bp + 1)); value >>= shift[i%channels]; *bp++ = (png_byte)(value >> 8); *bp++ = (png_byte)(value & 0xff); } break; } } } } #endif #if defined(PNG_READ_16_TO_8_SUPPORTED) /* chop rows of bit depth 16 down to 8 */ void /* PRIVATE */ png_do_chop(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_chop\n"); #if defined(PNG_USELESS_TESTS_SUPPORTED) if (row != NULL && row_info != NULL && row_info->bit_depth == 16) #else if (row_info->bit_depth == 16) #endif { png_bytep sp = row; png_bytep dp = row; png_uint_32 i; png_uint_32 istop = row_info->width * row_info->channels; for (i = 0; i> 8)) >> 8; * * Approximate calculation with shift/add instead of multiply/divide: * *dp = ((((png_uint_32)(*sp) << 8) | * (png_uint_32)((int)(*(sp + 1)) - *sp)) + 128) >> 8; * * What we actually do to avoid extra shifting and conversion: */ *dp = *sp + ((((int)(*(sp + 1)) - *sp) > 128) ? 1 : 0); #else /* Simply discard the low order byte */ *dp = *sp; #endif } row_info->bit_depth = 8; row_info->pixel_depth = (png_byte)(8 * row_info->channels); row_info->rowbytes = row_info->width * row_info->channels; } } #endif #if defined(PNG_READ_SWAP_ALPHA_SUPPORTED) void /* PRIVATE */ png_do_read_swap_alpha(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_read_swap_alpha\n"); #if defined(PNG_USELESS_TESTS_SUPPORTED) if (row != NULL && row_info != NULL) #endif { png_uint_32 row_width = row_info->width; if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) { /* This converts from RGBA to ARGB */ if (row_info->bit_depth == 8) { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_byte save; png_uint_32 i; for (i = 0; i < row_width; i++) { save = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = save; } } /* This converts from RRGGBBAA to AARRGGBB */ else { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_byte save[2]; png_uint_32 i; for (i = 0; i < row_width; i++) { save[0] = *(--sp); save[1] = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = save[0]; *(--dp) = save[1]; } } } else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { /* This converts from GA to AG */ if (row_info->bit_depth == 8) { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_byte save; png_uint_32 i; for (i = 0; i < row_width; i++) { save = *(--sp); *(--dp) = *(--sp); *(--dp) = save; } } /* This converts from GGAA to AAGG */ else { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_byte save[2]; png_uint_32 i; for (i = 0; i < row_width; i++) { save[0] = *(--sp); save[1] = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = save[0]; *(--dp) = save[1]; } } } } } #endif #if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) void /* PRIVATE */ png_do_read_invert_alpha(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_read_invert_alpha\n"); #if defined(PNG_USELESS_TESTS_SUPPORTED) if (row != NULL && row_info != NULL) #endif { png_uint_32 row_width = row_info->width; if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) { /* This inverts the alpha channel in RGBA */ if (row_info->bit_depth == 8) { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_uint_32 i; for (i = 0; i < row_width; i++) { *(--dp) = (png_byte)(255 - *(--sp)); /* This does nothing: *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); We can replace it with: */ sp-=3; dp=sp; } } /* This inverts the alpha channel in RRGGBBAA */ else { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_uint_32 i; for (i = 0; i < row_width; i++) { *(--dp) = (png_byte)(255 - *(--sp)); *(--dp) = (png_byte)(255 - *(--sp)); /* This does nothing: *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); We can replace it with: */ sp-=6; dp=sp; } } } else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { /* This inverts the alpha channel in GA */ if (row_info->bit_depth == 8) { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_uint_32 i; for (i = 0; i < row_width; i++) { *(--dp) = (png_byte)(255 - *(--sp)); *(--dp) = *(--sp); } } /* This inverts the alpha channel in GGAA */ else { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_uint_32 i; for (i = 0; i < row_width; i++) { *(--dp) = (png_byte)(255 - *(--sp)); *(--dp) = (png_byte)(255 - *(--sp)); /* *(--dp) = *(--sp); *(--dp) = *(--sp); */ sp-=2; dp=sp; } } } } } #endif #if defined(PNG_READ_FILLER_SUPPORTED) /* Add filler channel if we have RGB color */ void /* PRIVATE */ png_do_read_filler(png_row_infop row_info, png_bytep row, png_uint_32 filler, png_uint_32 flags) { png_uint_32 i; png_uint_32 row_width = row_info->width; png_byte hi_filler = (png_byte)((filler>>8) & 0xff); png_byte lo_filler = (png_byte)(filler & 0xff); png_debug(1, "in png_do_read_filler\n"); if ( #if defined(PNG_USELESS_TESTS_SUPPORTED) row != NULL && row_info != NULL && #endif row_info->color_type == PNG_COLOR_TYPE_GRAY) { if(row_info->bit_depth == 8) { /* This changes the data from G to GX */ if (flags & PNG_FLAG_FILLER_AFTER) { png_bytep sp = row + (png_size_t)row_width; png_bytep dp = sp + (png_size_t)row_width; for (i = 1; i < row_width; i++) { *(--dp) = lo_filler; *(--dp) = *(--sp); } *(--dp) = lo_filler; row_info->channels = 2; row_info->pixel_depth = 16; row_info->rowbytes = row_width * 2; } /* This changes the data from G to XG */ else { png_bytep sp = row + (png_size_t)row_width; png_bytep dp = sp + (png_size_t)row_width; for (i = 0; i < row_width; i++) { *(--dp) = *(--sp); *(--dp) = lo_filler; } row_info->channels = 2; row_info->pixel_depth = 16; row_info->rowbytes = row_width * 2; } } else if(row_info->bit_depth == 16) { /* This changes the data from GG to GGXX */ if (flags & PNG_FLAG_FILLER_AFTER) { png_bytep sp = row + (png_size_t)row_width * 2; png_bytep dp = sp + (png_size_t)row_width * 2; for (i = 1; i < row_width; i++) { *(--dp) = hi_filler; *(--dp) = lo_filler; *(--dp) = *(--sp); *(--dp) = *(--sp); } *(--dp) = hi_filler; *(--dp) = lo_filler; row_info->channels = 2; row_info->pixel_depth = 32; row_info->rowbytes = row_width * 4; } /* This changes the data from GG to XXGG */ else { png_bytep sp = row + (png_size_t)row_width * 2; png_bytep dp = sp + (png_size_t)row_width * 2; for (i = 0; i < row_width; i++) { *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = hi_filler; *(--dp) = lo_filler; } row_info->channels = 2; row_info->pixel_depth = 32; row_info->rowbytes = row_width * 4; } } } /* COLOR_TYPE == GRAY */ else if (row_info->color_type == PNG_COLOR_TYPE_RGB) { if(row_info->bit_depth == 8) { /* This changes the data from RGB to RGBX */ if (flags & PNG_FLAG_FILLER_AFTER) { png_bytep sp = row + (png_size_t)row_width * 3; png_bytep dp = sp + (png_size_t)row_width; for (i = 1; i < row_width; i++) { *(--dp) = lo_filler; *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); } *(--dp) = lo_filler; row_info->channels = 4; row_info->pixel_depth = 32; row_info->rowbytes = row_width * 4; } /* This changes the data from RGB to XRGB */ else { png_bytep sp = row + (png_size_t)row_width * 3; png_bytep dp = sp + (png_size_t)row_width; for (i = 0; i < row_width; i++) { *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = lo_filler; } row_info->channels = 4; row_info->pixel_depth = 32; row_info->rowbytes = row_width * 4; } } else if(row_info->bit_depth == 16) { /* This changes the data from RRGGBB to RRGGBBXX */ if (flags & PNG_FLAG_FILLER_AFTER) { png_bytep sp = row + (png_size_t)row_width * 6; png_bytep dp = sp + (png_size_t)row_width * 2; for (i = 1; i < row_width; i++) { *(--dp) = hi_filler; *(--dp) = lo_filler; *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); } *(--dp) = hi_filler; *(--dp) = lo_filler; row_info->channels = 4; row_info->pixel_depth = 64; row_info->rowbytes = row_width * 8; } /* This changes the data from RRGGBB to XXRRGGBB */ else { png_bytep sp = row + (png_size_t)row_width * 6; png_bytep dp = sp + (png_size_t)row_width * 2; for (i = 0; i < row_width; i++) { *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = hi_filler; *(--dp) = lo_filler; } row_info->channels = 4; row_info->pixel_depth = 64; row_info->rowbytes = row_width * 8; } } } /* COLOR_TYPE == RGB */ } #endif #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) /* expand grayscale files to RGB, with or without alpha */ void /* PRIVATE */ png_do_gray_to_rgb(png_row_infop row_info, png_bytep row) { png_uint_32 i; png_uint_32 row_width = row_info->width; png_debug(1, "in png_do_gray_to_rgb\n"); if (row_info->bit_depth >= 8 && #if defined(PNG_USELESS_TESTS_SUPPORTED) row != NULL && row_info != NULL && #endif !(row_info->color_type & PNG_COLOR_MASK_COLOR)) { if (row_info->color_type == PNG_COLOR_TYPE_GRAY) { if (row_info->bit_depth == 8) { png_bytep sp = row + (png_size_t)row_width - 1; png_bytep dp = sp + (png_size_t)row_width * 2; for (i = 0; i < row_width; i++) { *(dp--) = *sp; *(dp--) = *sp; *(dp--) = *(sp--); } } else { png_bytep sp = row + (png_size_t)row_width * 2 - 1; png_bytep dp = sp + (png_size_t)row_width * 4; for (i = 0; i < row_width; i++) { *(dp--) = *sp; *(dp--) = *(sp - 1); *(dp--) = *sp; *(dp--) = *(sp - 1); *(dp--) = *(sp--); *(dp--) = *(sp--); } } } else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { if (row_info->bit_depth == 8) { png_bytep sp = row + (png_size_t)row_width * 2 - 1; png_bytep dp = sp + (png_size_t)row_width * 2; for (i = 0; i < row_width; i++) { *(dp--) = *(sp--); *(dp--) = *sp; *(dp--) = *sp; *(dp--) = *(sp--); } } else { png_bytep sp = row + (png_size_t)row_width * 4 - 1; png_bytep dp = sp + (png_size_t)row_width * 4; for (i = 0; i < row_width; i++) { *(dp--) = *(sp--); *(dp--) = *(sp--); *(dp--) = *sp; *(dp--) = *(sp - 1); *(dp--) = *sp; *(dp--) = *(sp - 1); *(dp--) = *(sp--); *(dp--) = *(sp--); } } } row_info->channels += (png_byte)2; row_info->color_type |= PNG_COLOR_MASK_COLOR; row_info->pixel_depth = (png_byte)(row_info->channels * row_info->bit_depth); row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth,row_width); } } #endif #if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) /* reduce RGB files to grayscale, with or without alpha * using the equation given in Poynton's ColorFAQ at * * Copyright (c) 1998-01-04 Charles Poynton poynton at inforamp.net * * Y = 0.212671 * R + 0.715160 * G + 0.072169 * B * * We approximate this with * * Y = 0.21268 * R + 0.7151 * G + 0.07217 * B * * which can be expressed with integers as * * Y = (6969 * R + 23434 * G + 2365 * B)/32768 * * The calculation is to be done in a linear colorspace. * * Other integer coefficents can be used via png_set_rgb_to_gray(). */ int /* PRIVATE */ png_do_rgb_to_gray(png_structp png_ptr, png_row_infop row_info, png_bytep row) { png_uint_32 i; png_uint_32 row_width = row_info->width; int rgb_error = 0; png_debug(1, "in png_do_rgb_to_gray\n"); if ( #if defined(PNG_USELESS_TESTS_SUPPORTED) row != NULL && row_info != NULL && #endif (row_info->color_type & PNG_COLOR_MASK_COLOR)) { png_uint_32 rc = png_ptr->rgb_to_gray_red_coeff; png_uint_32 gc = png_ptr->rgb_to_gray_green_coeff; png_uint_32 bc = png_ptr->rgb_to_gray_blue_coeff; if (row_info->color_type == PNG_COLOR_TYPE_RGB) { if (row_info->bit_depth == 8) { #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->gamma_from_1 != NULL && png_ptr->gamma_to_1 != NULL) { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_byte red = png_ptr->gamma_to_1[*(sp++)]; png_byte green = png_ptr->gamma_to_1[*(sp++)]; png_byte blue = png_ptr->gamma_to_1[*(sp++)]; if(red != green || red != blue) { rgb_error |= 1; *(dp++) = png_ptr->gamma_from_1[ (rc*red+gc*green+bc*blue)>>15]; } else *(dp++) = *(sp-1); } } else #endif { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_byte red = *(sp++); png_byte green = *(sp++); png_byte blue = *(sp++); if(red != green || red != blue) { rgb_error |= 1; *(dp++) = (png_byte)((rc*red+gc*green+bc*blue)>>15); } else *(dp++) = *(sp-1); } } } else /* RGB bit_depth == 16 */ { #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->gamma_16_to_1 != NULL && png_ptr->gamma_16_from_1 != NULL) { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_uint_16 red, green, blue, w; red = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; green = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; blue = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; if(red == green && red == blue) w = red; else { png_uint_16 red_1 = png_ptr->gamma_16_to_1[(red&0xff) >> png_ptr->gamma_shift][red>>8]; png_uint_16 green_1 = png_ptr->gamma_16_to_1[(green&0xff) >> png_ptr->gamma_shift][green>>8]; png_uint_16 blue_1 = png_ptr->gamma_16_to_1[(blue&0xff) >> png_ptr->gamma_shift][blue>>8]; png_uint_16 gray16 = (png_uint_16)((rc*red_1 + gc*green_1 + bc*blue_1)>>15); w = png_ptr->gamma_16_from_1[(gray16&0xff) >> png_ptr->gamma_shift][gray16 >> 8]; rgb_error |= 1; } *(dp++) = (png_byte)((w>>8) & 0xff); *(dp++) = (png_byte)(w & 0xff); } } else #endif { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_uint_16 red, green, blue, gray16; red = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; green = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; blue = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; if(red != green || red != blue) rgb_error |= 1; gray16 = (png_uint_16)((rc*red + gc*green + bc*blue)>>15); *(dp++) = (png_byte)((gray16>>8) & 0xff); *(dp++) = (png_byte)(gray16 & 0xff); } } } } if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) { if (row_info->bit_depth == 8) { #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->gamma_from_1 != NULL && png_ptr->gamma_to_1 != NULL) { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_byte red = png_ptr->gamma_to_1[*(sp++)]; png_byte green = png_ptr->gamma_to_1[*(sp++)]; png_byte blue = png_ptr->gamma_to_1[*(sp++)]; if(red != green || red != blue) rgb_error |= 1; *(dp++) = png_ptr->gamma_from_1 [(rc*red + gc*green + bc*blue)>>15]; *(dp++) = *(sp++); /* alpha */ } } else #endif { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_byte red = *(sp++); png_byte green = *(sp++); png_byte blue = *(sp++); if(red != green || red != blue) rgb_error |= 1; *(dp++) = (png_byte)((rc*red + gc*green + bc*blue)>>15); *(dp++) = *(sp++); /* alpha */ } } } else /* RGBA bit_depth == 16 */ { #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->gamma_16_to_1 != NULL && png_ptr->gamma_16_from_1 != NULL) { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_uint_16 red, green, blue, w; red = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; green = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; blue = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; if(red == green && red == blue) w = red; else { png_uint_16 red_1 = png_ptr->gamma_16_to_1[(red&0xff) >> png_ptr->gamma_shift][red>>8]; png_uint_16 green_1 = png_ptr->gamma_16_to_1[(green&0xff) >> png_ptr->gamma_shift][green>>8]; png_uint_16 blue_1 = png_ptr->gamma_16_to_1[(blue&0xff) >> png_ptr->gamma_shift][blue>>8]; png_uint_16 gray16 = (png_uint_16)((rc * red_1 + gc * green_1 + bc * blue_1)>>15); w = png_ptr->gamma_16_from_1[(gray16&0xff) >> png_ptr->gamma_shift][gray16 >> 8]; rgb_error |= 1; } *(dp++) = (png_byte)((w>>8) & 0xff); *(dp++) = (png_byte)(w & 0xff); *(dp++) = *(sp++); /* alpha */ *(dp++) = *(sp++); } } else #endif { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_uint_16 red, green, blue, gray16; red = (png_uint_16)((*(sp)<<8) | *(sp+1)); sp+=2; green = (png_uint_16)((*(sp)<<8) | *(sp+1)); sp+=2; blue = (png_uint_16)((*(sp)<<8) | *(sp+1)); sp+=2; if(red != green || red != blue) rgb_error |= 1; gray16 = (png_uint_16)((rc*red + gc*green + bc*blue)>>15); *(dp++) = (png_byte)((gray16>>8) & 0xff); *(dp++) = (png_byte)(gray16 & 0xff); *(dp++) = *(sp++); /* alpha */ *(dp++) = *(sp++); } } } } row_info->channels -= (png_byte)2; row_info->color_type &= ~PNG_COLOR_MASK_COLOR; row_info->pixel_depth = (png_byte)(row_info->channels * row_info->bit_depth); row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth,row_width); } return rgb_error; } #endif /* Build a grayscale palette. Palette is assumed to be 1 << bit_depth * large of png_color. This lets grayscale images be treated as * paletted. Most useful for gamma correction and simplification * of code. */ void PNGAPI png_build_grayscale_palette(int bit_depth, png_colorp palette) { int num_palette; int color_inc; int i; int v; png_debug(1, "in png_do_build_grayscale_palette\n"); if (palette == NULL) return; switch (bit_depth) { case 1: num_palette = 2; color_inc = 0xff; break; case 2: num_palette = 4; color_inc = 0x55; break; case 4: num_palette = 16; color_inc = 0x11; break; case 8: num_palette = 256; color_inc = 1; break; default: num_palette = 0; color_inc = 0; break; } for (i = 0, v = 0; i < num_palette; i++, v += color_inc) { palette[i].red = (png_byte)v; palette[i].green = (png_byte)v; palette[i].blue = (png_byte)v; } } /* This function is currently unused. Do we really need it? */ #if defined(PNG_READ_DITHER_SUPPORTED) && defined(PNG_CORRECT_PALETTE_SUPPORTED) void /* PRIVATE */ png_correct_palette(png_structp png_ptr, png_colorp palette, int num_palette) { png_debug(1, "in png_correct_palette\n"); #if defined(PNG_READ_BACKGROUND_SUPPORTED) && \ defined(PNG_READ_GAMMA_SUPPORTED) && defined(PNG_FLOATING_POINT_SUPPORTED) if (png_ptr->transformations & (PNG_GAMMA | PNG_BACKGROUND)) { png_color back, back_1; if (png_ptr->background_gamma_type == PNG_BACKGROUND_GAMMA_FILE) { back.red = png_ptr->gamma_table[png_ptr->background.red]; back.green = png_ptr->gamma_table[png_ptr->background.green]; back.blue = png_ptr->gamma_table[png_ptr->background.blue]; back_1.red = png_ptr->gamma_to_1[png_ptr->background.red]; back_1.green = png_ptr->gamma_to_1[png_ptr->background.green]; back_1.blue = png_ptr->gamma_to_1[png_ptr->background.blue]; } else { double g; g = 1.0 / (png_ptr->background_gamma * png_ptr->screen_gamma); if (png_ptr->background_gamma_type == PNG_BACKGROUND_GAMMA_SCREEN || fabs(g - 1.0) < PNG_GAMMA_THRESHOLD) { back.red = png_ptr->background.red; back.green = png_ptr->background.green; back.blue = png_ptr->background.blue; } else { back.red = (png_byte)(pow((double)png_ptr->background.red/255, g) * 255.0 + 0.5); back.green = (png_byte)(pow((double)png_ptr->background.green/255, g) * 255.0 + 0.5); back.blue = (png_byte)(pow((double)png_ptr->background.blue/255, g) * 255.0 + 0.5); } g = 1.0 / png_ptr->background_gamma; back_1.red = (png_byte)(pow((double)png_ptr->background.red/255, g) * 255.0 + 0.5); back_1.green = (png_byte)(pow((double)png_ptr->background.green/255, g) * 255.0 + 0.5); back_1.blue = (png_byte)(pow((double)png_ptr->background.blue/255, g) * 255.0 + 0.5); } if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { png_uint_32 i; for (i = 0; i < (png_uint_32)num_palette; i++) { if (i < png_ptr->num_trans && png_ptr->trans[i] == 0) { palette[i] = back; } else if (i < png_ptr->num_trans && png_ptr->trans[i] != 0xff) { png_byte v, w; v = png_ptr->gamma_to_1[png_ptr->palette[i].red]; png_composite(w, v, png_ptr->trans[i], back_1.red); palette[i].red = png_ptr->gamma_from_1[w]; v = png_ptr->gamma_to_1[png_ptr->palette[i].green]; png_composite(w, v, png_ptr->trans[i], back_1.green); palette[i].green = png_ptr->gamma_from_1[w]; v = png_ptr->gamma_to_1[png_ptr->palette[i].blue]; png_composite(w, v, png_ptr->trans[i], back_1.blue); palette[i].blue = png_ptr->gamma_from_1[w]; } else { palette[i].red = png_ptr->gamma_table[palette[i].red]; palette[i].green = png_ptr->gamma_table[palette[i].green]; palette[i].blue = png_ptr->gamma_table[palette[i].blue]; } } } else { int i; for (i = 0; i < num_palette; i++) { if (palette[i].red == (png_byte)png_ptr->trans_values.gray) { palette[i] = back; } else { palette[i].red = png_ptr->gamma_table[palette[i].red]; palette[i].green = png_ptr->gamma_table[palette[i].green]; palette[i].blue = png_ptr->gamma_table[palette[i].blue]; } } } } else #endif #if defined(PNG_READ_GAMMA_SUPPORTED) if (png_ptr->transformations & PNG_GAMMA) { int i; for (i = 0; i < num_palette; i++) { palette[i].red = png_ptr->gamma_table[palette[i].red]; palette[i].green = png_ptr->gamma_table[palette[i].green]; palette[i].blue = png_ptr->gamma_table[palette[i].blue]; } } #if defined(PNG_READ_BACKGROUND_SUPPORTED) else #endif #endif #if defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->transformations & PNG_BACKGROUND) { if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { png_color back; back.red = (png_byte)png_ptr->background.red; back.green = (png_byte)png_ptr->background.green; back.blue = (png_byte)png_ptr->background.blue; for (i = 0; i < (int)png_ptr->num_trans; i++) { if (png_ptr->trans[i] == 0) { palette[i].red = back.red; palette[i].green = back.green; palette[i].blue = back.blue; } else if (png_ptr->trans[i] != 0xff) { png_composite(palette[i].red, png_ptr->palette[i].red, png_ptr->trans[i], back.red); png_composite(palette[i].green, png_ptr->palette[i].green, png_ptr->trans[i], back.green); png_composite(palette[i].blue, png_ptr->palette[i].blue, png_ptr->trans[i], back.blue); } } } else /* assume grayscale palette (what else could it be?) */ { int i; for (i = 0; i < num_palette; i++) { if (i == (png_byte)png_ptr->trans_values.gray) { palette[i].red = (png_byte)png_ptr->background.red; palette[i].green = (png_byte)png_ptr->background.green; palette[i].blue = (png_byte)png_ptr->background.blue; } } } } #endif } #endif #if defined(PNG_READ_BACKGROUND_SUPPORTED) /* Replace any alpha or transparency with the supplied background color. * "background" is already in the screen gamma, while "background_1" is * at a gamma of 1.0. Paletted files have already been taken care of. */ void /* PRIVATE */ png_do_background(png_row_infop row_info, png_bytep row, png_color_16p trans_values, png_color_16p background #if defined(PNG_READ_GAMMA_SUPPORTED) , png_color_16p background_1, png_bytep gamma_table, png_bytep gamma_from_1, png_bytep gamma_to_1, png_uint_16pp gamma_16, png_uint_16pp gamma_16_from_1, png_uint_16pp gamma_16_to_1, int gamma_shift #endif ) { png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width=row_info->width; int shift; png_debug(1, "in png_do_background\n"); if (background != NULL && #if defined(PNG_USELESS_TESTS_SUPPORTED) row != NULL && row_info != NULL && #endif (!(row_info->color_type & PNG_COLOR_MASK_ALPHA) || (row_info->color_type != PNG_COLOR_TYPE_PALETTE && trans_values))) { switch (row_info->color_type) { case PNG_COLOR_TYPE_GRAY: { switch (row_info->bit_depth) { case 1: { sp = row; shift = 7; for (i = 0; i < row_width; i++) { if ((png_uint_16)((*sp >> shift) & 0x01) == trans_values->gray) { *sp &= (png_byte)((0x7f7f >> (7 - shift)) & 0xff); *sp |= (png_byte)(background->gray << shift); } if (!shift) { shift = 7; sp++; } else shift--; } break; } case 2: { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_table != NULL) { sp = row; shift = 6; for (i = 0; i < row_width; i++) { if ((png_uint_16)((*sp >> shift) & 0x03) == trans_values->gray) { *sp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff); *sp |= (png_byte)(background->gray << shift); } else { png_byte p = (png_byte)((*sp >> shift) & 0x03); png_byte g = (png_byte)((gamma_table [p | (p << 2) | (p << 4) | (p << 6)] >> 6) & 0x03); *sp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff); *sp |= (png_byte)(g << shift); } if (!shift) { shift = 6; sp++; } else shift -= 2; } } else #endif { sp = row; shift = 6; for (i = 0; i < row_width; i++) { if ((png_uint_16)((*sp >> shift) & 0x03) == trans_values->gray) { *sp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff); *sp |= (png_byte)(background->gray << shift); } if (!shift) { shift = 6; sp++; } else shift -= 2; } } break; } case 4: { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_table != NULL) { sp = row; shift = 4; for (i = 0; i < row_width; i++) { if ((png_uint_16)((*sp >> shift) & 0x0f) == trans_values->gray) { *sp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff); *sp |= (png_byte)(background->gray << shift); } else { png_byte p = (png_byte)((*sp >> shift) & 0x0f); png_byte g = (png_byte)((gamma_table[p | (p << 4)] >> 4) & 0x0f); *sp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff); *sp |= (png_byte)(g << shift); } if (!shift) { shift = 4; sp++; } else shift -= 4; } } else #endif { sp = row; shift = 4; for (i = 0; i < row_width; i++) { if ((png_uint_16)((*sp >> shift) & 0x0f) == trans_values->gray) { *sp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff); *sp |= (png_byte)(background->gray << shift); } if (!shift) { shift = 4; sp++; } else shift -= 4; } } break; } case 8: { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_table != NULL) { sp = row; for (i = 0; i < row_width; i++, sp++) { if (*sp == trans_values->gray) { *sp = (png_byte)background->gray; } else { *sp = gamma_table[*sp]; } } } else #endif { sp = row; for (i = 0; i < row_width; i++, sp++) { if (*sp == trans_values->gray) { *sp = (png_byte)background->gray; } } } break; } case 16: { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_16 != NULL) { sp = row; for (i = 0; i < row_width; i++, sp += 2) { png_uint_16 v; v = (png_uint_16)(((*sp) << 8) + *(sp + 1)); if (v == trans_values->gray) { /* background is already in screen gamma */ *sp = (png_byte)((background->gray >> 8) & 0xff); *(sp + 1) = (png_byte)(background->gray & 0xff); } else { v = gamma_16[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); } } } else #endif { sp = row; for (i = 0; i < row_width; i++, sp += 2) { png_uint_16 v; v = (png_uint_16)(((*sp) << 8) + *(sp + 1)); if (v == trans_values->gray) { *sp = (png_byte)((background->gray >> 8) & 0xff); *(sp + 1) = (png_byte)(background->gray & 0xff); } } } break; } } break; } case PNG_COLOR_TYPE_RGB: { if (row_info->bit_depth == 8) { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_table != NULL) { sp = row; for (i = 0; i < row_width; i++, sp += 3) { if (*sp == trans_values->red && *(sp + 1) == trans_values->green && *(sp + 2) == trans_values->blue) { *sp = (png_byte)background->red; *(sp + 1) = (png_byte)background->green; *(sp + 2) = (png_byte)background->blue; } else { *sp = gamma_table[*sp]; *(sp + 1) = gamma_table[*(sp + 1)]; *(sp + 2) = gamma_table[*(sp + 2)]; } } } else #endif { sp = row; for (i = 0; i < row_width; i++, sp += 3) { if (*sp == trans_values->red && *(sp + 1) == trans_values->green && *(sp + 2) == trans_values->blue) { *sp = (png_byte)background->red; *(sp + 1) = (png_byte)background->green; *(sp + 2) = (png_byte)background->blue; } } } } else /* if (row_info->bit_depth == 16) */ { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_16 != NULL) { sp = row; for (i = 0; i < row_width; i++, sp += 6) { png_uint_16 r = (png_uint_16)(((*sp) << 8) + *(sp + 1)); png_uint_16 g = (png_uint_16)(((*(sp+2)) << 8) + *(sp+3)); png_uint_16 b = (png_uint_16)(((*(sp+4)) << 8) + *(sp+5)); if (r == trans_values->red && g == trans_values->green && b == trans_values->blue) { /* background is already in screen gamma */ *sp = (png_byte)((background->red >> 8) & 0xff); *(sp + 1) = (png_byte)(background->red & 0xff); *(sp + 2) = (png_byte)((background->green >> 8) & 0xff); *(sp + 3) = (png_byte)(background->green & 0xff); *(sp + 4) = (png_byte)((background->blue >> 8) & 0xff); *(sp + 5) = (png_byte)(background->blue & 0xff); } else { png_uint_16 v = gamma_16[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); v = gamma_16[*(sp + 3) >> gamma_shift][*(sp + 2)]; *(sp + 2) = (png_byte)((v >> 8) & 0xff); *(sp + 3) = (png_byte)(v & 0xff); v = gamma_16[*(sp + 5) >> gamma_shift][*(sp + 4)]; *(sp + 4) = (png_byte)((v >> 8) & 0xff); *(sp + 5) = (png_byte)(v & 0xff); } } } else #endif { sp = row; for (i = 0; i < row_width; i++, sp += 6) { png_uint_16 r = (png_uint_16)(((*sp) << 8) + *(sp+1)); png_uint_16 g = (png_uint_16)(((*(sp+2)) << 8) + *(sp+3)); png_uint_16 b = (png_uint_16)(((*(sp+4)) << 8) + *(sp+5)); if (r == trans_values->red && g == trans_values->green && b == trans_values->blue) { *sp = (png_byte)((background->red >> 8) & 0xff); *(sp + 1) = (png_byte)(background->red & 0xff); *(sp + 2) = (png_byte)((background->green >> 8) & 0xff); *(sp + 3) = (png_byte)(background->green & 0xff); *(sp + 4) = (png_byte)((background->blue >> 8) & 0xff); *(sp + 5) = (png_byte)(background->blue & 0xff); } } } } break; } case PNG_COLOR_TYPE_GRAY_ALPHA: { if (row_info->bit_depth == 8) { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_to_1 != NULL && gamma_from_1 != NULL && gamma_table != NULL) { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 2, dp++) { png_uint_16 a = *(sp + 1); if (a == 0xff) { *dp = gamma_table[*sp]; } else if (a == 0) { /* background is already in screen gamma */ *dp = (png_byte)background->gray; } else { png_byte v, w; v = gamma_to_1[*sp]; png_composite(w, v, a, background_1->gray); *dp = gamma_from_1[w]; } } } else #endif { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 2, dp++) { png_byte a = *(sp + 1); if (a == 0xff) { *dp = *sp; } #if defined(PNG_READ_GAMMA_SUPPORTED) else if (a == 0) { *dp = (png_byte)background->gray; } else { png_composite(*dp, *sp, a, background_1->gray); } #else *dp = (png_byte)background->gray; #endif } } } else /* if (png_ptr->bit_depth == 16) */ { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_16 != NULL && gamma_16_from_1 != NULL && gamma_16_to_1 != NULL) { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 4, dp += 2) { png_uint_16 a = (png_uint_16)(((*(sp+2)) << 8) + *(sp+3)); if (a == (png_uint_16)0xffff) { png_uint_16 v; v = gamma_16[*(sp + 1) >> gamma_shift][*sp]; *dp = (png_byte)((v >> 8) & 0xff); *(dp + 1) = (png_byte)(v & 0xff); } #if defined(PNG_READ_GAMMA_SUPPORTED) else if (a == 0) #else else #endif { /* background is already in screen gamma */ *dp = (png_byte)((background->gray >> 8) & 0xff); *(dp + 1) = (png_byte)(background->gray & 0xff); } #if defined(PNG_READ_GAMMA_SUPPORTED) else { png_uint_16 g, v, w; g = gamma_16_to_1[*(sp + 1) >> gamma_shift][*sp]; png_composite_16(v, g, a, background_1->gray); w = gamma_16_from_1[(v&0xff) >> gamma_shift][v >> 8]; *dp = (png_byte)((w >> 8) & 0xff); *(dp + 1) = (png_byte)(w & 0xff); } #endif } } else #endif { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 4, dp += 2) { png_uint_16 a = (png_uint_16)(((*(sp+2)) << 8) + *(sp+3)); if (a == (png_uint_16)0xffff) { png_memcpy(dp, sp, 2); } #if defined(PNG_READ_GAMMA_SUPPORTED) else if (a == 0) #else else #endif { *dp = (png_byte)((background->gray >> 8) & 0xff); *(dp + 1) = (png_byte)(background->gray & 0xff); } #if defined(PNG_READ_GAMMA_SUPPORTED) else { png_uint_16 g, v; g = (png_uint_16)(((*sp) << 8) + *(sp + 1)); png_composite_16(v, g, a, background_1->gray); *dp = (png_byte)((v >> 8) & 0xff); *(dp + 1) = (png_byte)(v & 0xff); } #endif } } } break; } case PNG_COLOR_TYPE_RGB_ALPHA: { if (row_info->bit_depth == 8) { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_to_1 != NULL && gamma_from_1 != NULL && gamma_table != NULL) { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 4, dp += 3) { png_byte a = *(sp + 3); if (a == 0xff) { *dp = gamma_table[*sp]; *(dp + 1) = gamma_table[*(sp + 1)]; *(dp + 2) = gamma_table[*(sp + 2)]; } else if (a == 0) { /* background is already in screen gamma */ *dp = (png_byte)background->red; *(dp + 1) = (png_byte)background->green; *(dp + 2) = (png_byte)background->blue; } else { png_byte v, w; v = gamma_to_1[*sp]; png_composite(w, v, a, background_1->red); *dp = gamma_from_1[w]; v = gamma_to_1[*(sp + 1)]; png_composite(w, v, a, background_1->green); *(dp + 1) = gamma_from_1[w]; v = gamma_to_1[*(sp + 2)]; png_composite(w, v, a, background_1->blue); *(dp + 2) = gamma_from_1[w]; } } } else #endif { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 4, dp += 3) { png_byte a = *(sp + 3); if (a == 0xff) { *dp = *sp; *(dp + 1) = *(sp + 1); *(dp + 2) = *(sp + 2); } else if (a == 0) { *dp = (png_byte)background->red; *(dp + 1) = (png_byte)background->green; *(dp + 2) = (png_byte)background->blue; } else { png_composite(*dp, *sp, a, background->red); png_composite(*(dp + 1), *(sp + 1), a, background->green); png_composite(*(dp + 2), *(sp + 2), a, background->blue); } } } } else /* if (row_info->bit_depth == 16) */ { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_16 != NULL && gamma_16_from_1 != NULL && gamma_16_to_1 != NULL) { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 8, dp += 6) { png_uint_16 a = (png_uint_16)(((png_uint_16)(*(sp + 6)) << 8) + (png_uint_16)(*(sp + 7))); if (a == (png_uint_16)0xffff) { png_uint_16 v; v = gamma_16[*(sp + 1) >> gamma_shift][*sp]; *dp = (png_byte)((v >> 8) & 0xff); *(dp + 1) = (png_byte)(v & 0xff); v = gamma_16[*(sp + 3) >> gamma_shift][*(sp + 2)]; *(dp + 2) = (png_byte)((v >> 8) & 0xff); *(dp + 3) = (png_byte)(v & 0xff); v = gamma_16[*(sp + 5) >> gamma_shift][*(sp + 4)]; *(dp + 4) = (png_byte)((v >> 8) & 0xff); *(dp + 5) = (png_byte)(v & 0xff); } else if (a == 0) { /* background is already in screen gamma */ *dp = (png_byte)((background->red >> 8) & 0xff); *(dp + 1) = (png_byte)(background->red & 0xff); *(dp + 2) = (png_byte)((background->green >> 8) & 0xff); *(dp + 3) = (png_byte)(background->green & 0xff); *(dp + 4) = (png_byte)((background->blue >> 8) & 0xff); *(dp + 5) = (png_byte)(background->blue & 0xff); } else { png_uint_16 v, w, x; v = gamma_16_to_1[*(sp + 1) >> gamma_shift][*sp]; png_composite_16(w, v, a, background_1->red); x = gamma_16_from_1[((w&0xff) >> gamma_shift)][w >> 8]; *dp = (png_byte)((x >> 8) & 0xff); *(dp + 1) = (png_byte)(x & 0xff); v = gamma_16_to_1[*(sp + 3) >> gamma_shift][*(sp + 2)]; png_composite_16(w, v, a, background_1->green); x = gamma_16_from_1[((w&0xff) >> gamma_shift)][w >> 8]; *(dp + 2) = (png_byte)((x >> 8) & 0xff); *(dp + 3) = (png_byte)(x & 0xff); v = gamma_16_to_1[*(sp + 5) >> gamma_shift][*(sp + 4)]; png_composite_16(w, v, a, background_1->blue); x = gamma_16_from_1[(w & 0xff) >> gamma_shift][w >> 8]; *(dp + 4) = (png_byte)((x >> 8) & 0xff); *(dp + 5) = (png_byte)(x & 0xff); } } } else #endif { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 8, dp += 6) { png_uint_16 a = (png_uint_16)(((png_uint_16)(*(sp + 6)) << 8) + (png_uint_16)(*(sp + 7))); if (a == (png_uint_16)0xffff) { png_memcpy(dp, sp, 6); } else if (a == 0) { *dp = (png_byte)((background->red >> 8) & 0xff); *(dp + 1) = (png_byte)(background->red & 0xff); *(dp + 2) = (png_byte)((background->green >> 8) & 0xff); *(dp + 3) = (png_byte)(background->green & 0xff); *(dp + 4) = (png_byte)((background->blue >> 8) & 0xff); *(dp + 5) = (png_byte)(background->blue & 0xff); } else { png_uint_16 v; png_uint_16 r = (png_uint_16)(((*sp) << 8) + *(sp + 1)); png_uint_16 g = (png_uint_16)(((*(sp + 2)) << 8) + *(sp + 3)); png_uint_16 b = (png_uint_16)(((*(sp + 4)) << 8) + *(sp + 5)); png_composite_16(v, r, a, background->red); *dp = (png_byte)((v >> 8) & 0xff); *(dp + 1) = (png_byte)(v & 0xff); png_composite_16(v, g, a, background->green); *(dp + 2) = (png_byte)((v >> 8) & 0xff); *(dp + 3) = (png_byte)(v & 0xff); png_composite_16(v, b, a, background->blue); *(dp + 4) = (png_byte)((v >> 8) & 0xff); *(dp + 5) = (png_byte)(v & 0xff); } } } } break; } } if (row_info->color_type & PNG_COLOR_MASK_ALPHA) { row_info->color_type &= ~PNG_COLOR_MASK_ALPHA; row_info->channels--; row_info->pixel_depth = (png_byte)(row_info->channels * row_info->bit_depth); row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth,row_width); } } } #endif #if defined(PNG_READ_GAMMA_SUPPORTED) /* Gamma correct the image, avoiding the alpha channel. Make sure * you do this after you deal with the transparency issue on grayscale * or RGB images. If your bit depth is 8, use gamma_table, if it * is 16, use gamma_16_table and gamma_shift. Build these with * build_gamma_table(). */ void /* PRIVATE */ png_do_gamma(png_row_infop row_info, png_bytep row, png_bytep gamma_table, png_uint_16pp gamma_16_table, int gamma_shift) { png_bytep sp; png_uint_32 i; png_uint_32 row_width=row_info->width; png_debug(1, "in png_do_gamma\n"); if ( #if defined(PNG_USELESS_TESTS_SUPPORTED) row != NULL && row_info != NULL && #endif ((row_info->bit_depth <= 8 && gamma_table != NULL) || (row_info->bit_depth == 16 && gamma_16_table != NULL))) { switch (row_info->color_type) { case PNG_COLOR_TYPE_RGB: { if (row_info->bit_depth == 8) { sp = row; for (i = 0; i < row_width; i++) { *sp = gamma_table[*sp]; sp++; *sp = gamma_table[*sp]; sp++; *sp = gamma_table[*sp]; sp++; } } else /* if (row_info->bit_depth == 16) */ { sp = row; for (i = 0; i < row_width; i++) { png_uint_16 v; v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 2; v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 2; v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 2; } } break; } case PNG_COLOR_TYPE_RGB_ALPHA: { if (row_info->bit_depth == 8) { sp = row; for (i = 0; i < row_width; i++) { *sp = gamma_table[*sp]; sp++; *sp = gamma_table[*sp]; sp++; *sp = gamma_table[*sp]; sp++; sp++; } } else /* if (row_info->bit_depth == 16) */ { sp = row; for (i = 0; i < row_width; i++) { png_uint_16 v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 2; v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 2; v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 4; } } break; } case PNG_COLOR_TYPE_GRAY_ALPHA: { if (row_info->bit_depth == 8) { sp = row; for (i = 0; i < row_width; i++) { *sp = gamma_table[*sp]; sp += 2; } } else /* if (row_info->bit_depth == 16) */ { sp = row; for (i = 0; i < row_width; i++) { png_uint_16 v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 4; } } break; } case PNG_COLOR_TYPE_GRAY: { if (row_info->bit_depth == 2) { sp = row; for (i = 0; i < row_width; i += 4) { int a = *sp & 0xc0; int b = *sp & 0x30; int c = *sp & 0x0c; int d = *sp & 0x03; *sp = (png_byte)( ((((int)gamma_table[a|(a>>2)|(a>>4)|(a>>6)]) ) & 0xc0)| ((((int)gamma_table[(b<<2)|b|(b>>2)|(b>>4)])>>2) & 0x30)| ((((int)gamma_table[(c<<4)|(c<<2)|c|(c>>2)])>>4) & 0x0c)| ((((int)gamma_table[(d<<6)|(d<<4)|(d<<2)|d])>>6) )); sp++; } } if (row_info->bit_depth == 4) { sp = row; for (i = 0; i < row_width; i += 2) { int msb = *sp & 0xf0; int lsb = *sp & 0x0f; *sp = (png_byte)((((int)gamma_table[msb | (msb >> 4)]) & 0xf0) | (((int)gamma_table[(lsb << 4) | lsb]) >> 4)); sp++; } } else if (row_info->bit_depth == 8) { sp = row; for (i = 0; i < row_width; i++) { *sp = gamma_table[*sp]; sp++; } } else if (row_info->bit_depth == 16) { sp = row; for (i = 0; i < row_width; i++) { png_uint_16 v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 2; } } break; } } } } #endif #if defined(PNG_READ_EXPAND_SUPPORTED) /* Expands a palette row to an RGB or RGBA row depending * upon whether you supply trans and num_trans. */ void /* PRIVATE */ png_do_expand_palette(png_row_infop row_info, png_bytep row, png_colorp palette, png_bytep trans, int num_trans) { int shift, value; png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width=row_info->width; png_debug(1, "in png_do_expand_palette\n"); if ( #if defined(PNG_USELESS_TESTS_SUPPORTED) row != NULL && row_info != NULL && #endif row_info->color_type == PNG_COLOR_TYPE_PALETTE) { if (row_info->bit_depth < 8) { switch (row_info->bit_depth) { case 1: { sp = row + (png_size_t)((row_width - 1) >> 3); dp = row + (png_size_t)row_width - 1; shift = 7 - (int)((row_width + 7) & 0x07); for (i = 0; i < row_width; i++) { if ((*sp >> shift) & 0x01) *dp = 1; else *dp = 0; if (shift == 7) { shift = 0; sp--; } else shift++; dp--; } break; } case 2: { sp = row + (png_size_t)((row_width - 1) >> 2); dp = row + (png_size_t)row_width - 1; shift = (int)((3 - ((row_width + 3) & 0x03)) << 1); for (i = 0; i < row_width; i++) { value = (*sp >> shift) & 0x03; *dp = (png_byte)value; if (shift == 6) { shift = 0; sp--; } else shift += 2; dp--; } break; } case 4: { sp = row + (png_size_t)((row_width - 1) >> 1); dp = row + (png_size_t)row_width - 1; shift = (int)((row_width & 0x01) << 2); for (i = 0; i < row_width; i++) { value = (*sp >> shift) & 0x0f; *dp = (png_byte)value; if (shift == 4) { shift = 0; sp--; } else shift += 4; dp--; } break; } } row_info->bit_depth = 8; row_info->pixel_depth = 8; row_info->rowbytes = row_width; } switch (row_info->bit_depth) { case 8: { if (trans != NULL) { sp = row + (png_size_t)row_width - 1; dp = row + (png_size_t)(row_width << 2) - 1; for (i = 0; i < row_width; i++) { if ((int)(*sp) >= num_trans) *dp-- = 0xff; else *dp-- = trans[*sp]; *dp-- = palette[*sp].blue; *dp-- = palette[*sp].green; *dp-- = palette[*sp].red; sp--; } row_info->bit_depth = 8; row_info->pixel_depth = 32; row_info->rowbytes = row_width * 4; row_info->color_type = 6; row_info->channels = 4; } else { sp = row + (png_size_t)row_width - 1; dp = row + (png_size_t)(row_width * 3) - 1; for (i = 0; i < row_width; i++) { *dp-- = palette[*sp].blue; *dp-- = palette[*sp].green; *dp-- = palette[*sp].red; sp--; } row_info->bit_depth = 8; row_info->pixel_depth = 24; row_info->rowbytes = row_width * 3; row_info->color_type = 2; row_info->channels = 3; } break; } } } } /* If the bit depth < 8, it is expanded to 8. Also, if the already * expanded transparency value is supplied, an alpha channel is built. */ void /* PRIVATE */ png_do_expand(png_row_infop row_info, png_bytep row, png_color_16p trans_value) { int shift, value; png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width=row_info->width; png_debug(1, "in png_do_expand\n"); #if defined(PNG_USELESS_TESTS_SUPPORTED) if (row != NULL && row_info != NULL) #endif { if (row_info->color_type == PNG_COLOR_TYPE_GRAY) { png_uint_16 gray = (png_uint_16)(trans_value ? trans_value->gray : 0); if (row_info->bit_depth < 8) { switch (row_info->bit_depth) { case 1: { gray = (png_uint_16)((gray&0x01)*0xff); sp = row + (png_size_t)((row_width - 1) >> 3); dp = row + (png_size_t)row_width - 1; shift = 7 - (int)((row_width + 7) & 0x07); for (i = 0; i < row_width; i++) { if ((*sp >> shift) & 0x01) *dp = 0xff; else *dp = 0; if (shift == 7) { shift = 0; sp--; } else shift++; dp--; } break; } case 2: { gray = (png_uint_16)((gray&0x03)*0x55); sp = row + (png_size_t)((row_width - 1) >> 2); dp = row + (png_size_t)row_width - 1; shift = (int)((3 - ((row_width + 3) & 0x03)) << 1); for (i = 0; i < row_width; i++) { value = (*sp >> shift) & 0x03; *dp = (png_byte)(value | (value << 2) | (value << 4) | (value << 6)); if (shift == 6) { shift = 0; sp--; } else shift += 2; dp--; } break; } case 4: { gray = (png_uint_16)((gray&0x0f)*0x11); sp = row + (png_size_t)((row_width - 1) >> 1); dp = row + (png_size_t)row_width - 1; shift = (int)((1 - ((row_width + 1) & 0x01)) << 2); for (i = 0; i < row_width; i++) { value = (*sp >> shift) & 0x0f; *dp = (png_byte)(value | (value << 4)); if (shift == 4) { shift = 0; sp--; } else shift = 4; dp--; } break; } } row_info->bit_depth = 8; row_info->pixel_depth = 8; row_info->rowbytes = row_width; } if (trans_value != NULL) { if (row_info->bit_depth == 8) { gray = gray & 0xff; sp = row + (png_size_t)row_width - 1; dp = row + (png_size_t)(row_width << 1) - 1; for (i = 0; i < row_width; i++) { if (*sp == gray) *dp-- = 0; else *dp-- = 0xff; *dp-- = *sp--; } } else if (row_info->bit_depth == 16) { png_byte gray_high = (gray >> 8) & 0xff; png_byte gray_low = gray & 0xff; sp = row + row_info->rowbytes - 1; dp = row + (row_info->rowbytes << 1) - 1; for (i = 0; i < row_width; i++) { if (*(sp-1) == gray_high && *(sp) == gray_low) { *dp-- = 0; *dp-- = 0; } else { *dp-- = 0xff; *dp-- = 0xff; } *dp-- = *sp--; *dp-- = *sp--; } } row_info->color_type = PNG_COLOR_TYPE_GRAY_ALPHA; row_info->channels = 2; row_info->pixel_depth = (png_byte)(row_info->bit_depth << 1); row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width); } } else if (row_info->color_type == PNG_COLOR_TYPE_RGB && trans_value) { if (row_info->bit_depth == 8) { png_byte red = trans_value->red & 0xff; png_byte green = trans_value->green & 0xff; png_byte blue = trans_value->blue & 0xff; sp = row + (png_size_t)row_info->rowbytes - 1; dp = row + (png_size_t)(row_width << 2) - 1; for (i = 0; i < row_width; i++) { if (*(sp - 2) == red && *(sp - 1) == green && *(sp) == blue) *dp-- = 0; else *dp-- = 0xff; *dp-- = *sp--; *dp-- = *sp--; *dp-- = *sp--; } } else if (row_info->bit_depth == 16) { png_byte red_high = (trans_value->red >> 8) & 0xff; png_byte green_high = (trans_value->green >> 8) & 0xff; png_byte blue_high = (trans_value->blue >> 8) & 0xff; png_byte red_low = trans_value->red & 0xff; png_byte green_low = trans_value->green & 0xff; png_byte blue_low = trans_value->blue & 0xff; sp = row + row_info->rowbytes - 1; dp = row + (png_size_t)(row_width << 3) - 1; for (i = 0; i < row_width; i++) { if (*(sp - 5) == red_high && *(sp - 4) == red_low && *(sp - 3) == green_high && *(sp - 2) == green_low && *(sp - 1) == blue_high && *(sp ) == blue_low) { *dp-- = 0; *dp-- = 0; } else { *dp-- = 0xff; *dp-- = 0xff; } *dp-- = *sp--; *dp-- = *sp--; *dp-- = *sp--; *dp-- = *sp--; *dp-- = *sp--; *dp-- = *sp--; } } row_info->color_type = PNG_COLOR_TYPE_RGB_ALPHA; row_info->channels = 4; row_info->pixel_depth = (png_byte)(row_info->bit_depth << 2); row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth,row_width); } } } #endif #if defined(PNG_READ_DITHER_SUPPORTED) void /* PRIVATE */ png_do_dither(png_row_infop row_info, png_bytep row, png_bytep palette_lookup, png_bytep dither_lookup) { png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width=row_info->width; png_debug(1, "in png_do_dither\n"); #if defined(PNG_USELESS_TESTS_SUPPORTED) if (row != NULL && row_info != NULL) #endif { if (row_info->color_type == PNG_COLOR_TYPE_RGB && palette_lookup && row_info->bit_depth == 8) { int r, g, b, p; sp = row; dp = row; for (i = 0; i < row_width; i++) { r = *sp++; g = *sp++; b = *sp++; /* this looks real messy, but the compiler will reduce it down to a reasonable formula. For example, with 5 bits per color, we get: p = (((r >> 3) & 0x1f) << 10) | (((g >> 3) & 0x1f) << 5) | ((b >> 3) & 0x1f); */ p = (((r >> (8 - PNG_DITHER_RED_BITS)) & ((1 << PNG_DITHER_RED_BITS) - 1)) << (PNG_DITHER_GREEN_BITS + PNG_DITHER_BLUE_BITS)) | (((g >> (8 - PNG_DITHER_GREEN_BITS)) & ((1 << PNG_DITHER_GREEN_BITS) - 1)) << (PNG_DITHER_BLUE_BITS)) | ((b >> (8 - PNG_DITHER_BLUE_BITS)) & ((1 << PNG_DITHER_BLUE_BITS) - 1)); *dp++ = palette_lookup[p]; } row_info->color_type = PNG_COLOR_TYPE_PALETTE; row_info->channels = 1; row_info->pixel_depth = row_info->bit_depth; row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth,row_width); } else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA && palette_lookup != NULL && row_info->bit_depth == 8) { int r, g, b, p; sp = row; dp = row; for (i = 0; i < row_width; i++) { r = *sp++; g = *sp++; b = *sp++; sp++; p = (((r >> (8 - PNG_DITHER_RED_BITS)) & ((1 << PNG_DITHER_RED_BITS) - 1)) << (PNG_DITHER_GREEN_BITS + PNG_DITHER_BLUE_BITS)) | (((g >> (8 - PNG_DITHER_GREEN_BITS)) & ((1 << PNG_DITHER_GREEN_BITS) - 1)) << (PNG_DITHER_BLUE_BITS)) | ((b >> (8 - PNG_DITHER_BLUE_BITS)) & ((1 << PNG_DITHER_BLUE_BITS) - 1)); *dp++ = palette_lookup[p]; } row_info->color_type = PNG_COLOR_TYPE_PALETTE; row_info->channels = 1; row_info->pixel_depth = row_info->bit_depth; row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth,row_width); } else if (row_info->color_type == PNG_COLOR_TYPE_PALETTE && dither_lookup && row_info->bit_depth == 8) { sp = row; for (i = 0; i < row_width; i++, sp++) { *sp = dither_lookup[*sp]; } } } } #endif #ifdef PNG_FLOATING_POINT_SUPPORTED #if defined(PNG_READ_GAMMA_SUPPORTED) static PNG_CONST int png_gamma_shift[] = {0x10, 0x21, 0x42, 0x84, 0x110, 0x248, 0x550, 0xff0, 0x00}; /* We build the 8- or 16-bit gamma tables here. Note that for 16-bit * tables, we don't make a full table if we are reducing to 8-bit in * the future. Note also how the gamma_16 tables are segmented so that * we don't need to allocate > 64K chunks for a full 16-bit table. */ void /* PRIVATE */ png_build_gamma_table(png_structp png_ptr) { png_debug(1, "in png_build_gamma_table\n"); if (png_ptr->bit_depth <= 8) { int i; double g; if (png_ptr->screen_gamma > .000001) g = 1.0 / (png_ptr->gamma * png_ptr->screen_gamma); else g = 1.0; png_ptr->gamma_table = (png_bytep)png_malloc(png_ptr, (png_uint_32)256); for (i = 0; i < 256; i++) { png_ptr->gamma_table[i] = (png_byte)(pow((double)i / 255.0, g) * 255.0 + .5); } #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) if (png_ptr->transformations & ((PNG_BACKGROUND) | PNG_RGB_TO_GRAY)) { g = 1.0 / (png_ptr->gamma); png_ptr->gamma_to_1 = (png_bytep)png_malloc(png_ptr, (png_uint_32)256); for (i = 0; i < 256; i++) { png_ptr->gamma_to_1[i] = (png_byte)(pow((double)i / 255.0, g) * 255.0 + .5); } png_ptr->gamma_from_1 = (png_bytep)png_malloc(png_ptr, (png_uint_32)256); if(png_ptr->screen_gamma > 0.000001) g = 1.0 / png_ptr->screen_gamma; else g = png_ptr->gamma; /* probably doing rgb_to_gray */ for (i = 0; i < 256; i++) { png_ptr->gamma_from_1[i] = (png_byte)(pow((double)i / 255.0, g) * 255.0 + .5); } } #endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */ } else { double g; int i, j, shift, num; int sig_bit; png_uint_32 ig; if (png_ptr->color_type & PNG_COLOR_MASK_COLOR) { sig_bit = (int)png_ptr->sig_bit.red; if ((int)png_ptr->sig_bit.green > sig_bit) sig_bit = png_ptr->sig_bit.green; if ((int)png_ptr->sig_bit.blue > sig_bit) sig_bit = png_ptr->sig_bit.blue; } else { sig_bit = (int)png_ptr->sig_bit.gray; } if (sig_bit > 0) shift = 16 - sig_bit; else shift = 0; if (png_ptr->transformations & PNG_16_TO_8) { if (shift < (16 - PNG_MAX_GAMMA_8)) shift = (16 - PNG_MAX_GAMMA_8); } if (shift > 8) shift = 8; if (shift < 0) shift = 0; png_ptr->gamma_shift = (png_byte)shift; num = (1 << (8 - shift)); if (png_ptr->screen_gamma > .000001) g = 1.0 / (png_ptr->gamma * png_ptr->screen_gamma); else g = 1.0; png_ptr->gamma_16_table = (png_uint_16pp)png_malloc(png_ptr, (png_uint_32)(num * png_sizeof (png_uint_16p))); if (png_ptr->transformations & (PNG_16_TO_8 | PNG_BACKGROUND)) { double fin, fout; png_uint_32 last, max; for (i = 0; i < num; i++) { png_ptr->gamma_16_table[i] = (png_uint_16p)png_malloc(png_ptr, (png_uint_32)(256 * png_sizeof (png_uint_16))); } g = 1.0 / g; last = 0; for (i = 0; i < 256; i++) { fout = ((double)i + 0.5) / 256.0; fin = pow(fout, g); max = (png_uint_32)(fin * (double)((png_uint_32)num << 8)); while (last <= max) { png_ptr->gamma_16_table[(int)(last & (0xff >> shift))] [(int)(last >> (8 - shift))] = (png_uint_16)( (png_uint_16)i | ((png_uint_16)i << 8)); last++; } } while (last < ((png_uint_32)num << 8)) { png_ptr->gamma_16_table[(int)(last & (0xff >> shift))] [(int)(last >> (8 - shift))] = (png_uint_16)65535L; last++; } } else { for (i = 0; i < num; i++) { png_ptr->gamma_16_table[i] = (png_uint_16p)png_malloc(png_ptr, (png_uint_32)(256 * png_sizeof (png_uint_16))); ig = (((png_uint_32)i * (png_uint_32)png_gamma_shift[shift]) >> 4); for (j = 0; j < 256; j++) { png_ptr->gamma_16_table[i][j] = (png_uint_16)(pow((double)(ig + ((png_uint_32)j << 8)) / 65535.0, g) * 65535.0 + .5); } } } #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) if (png_ptr->transformations & (PNG_BACKGROUND | PNG_RGB_TO_GRAY)) { g = 1.0 / (png_ptr->gamma); png_ptr->gamma_16_to_1 = (png_uint_16pp)png_malloc(png_ptr, (png_uint_32)(num * png_sizeof (png_uint_16p ))); for (i = 0; i < num; i++) { png_ptr->gamma_16_to_1[i] = (png_uint_16p)png_malloc(png_ptr, (png_uint_32)(256 * png_sizeof (png_uint_16))); ig = (((png_uint_32)i * (png_uint_32)png_gamma_shift[shift]) >> 4); for (j = 0; j < 256; j++) { png_ptr->gamma_16_to_1[i][j] = (png_uint_16)(pow((double)(ig + ((png_uint_32)j << 8)) / 65535.0, g) * 65535.0 + .5); } } if(png_ptr->screen_gamma > 0.000001) g = 1.0 / png_ptr->screen_gamma; else g = png_ptr->gamma; /* probably doing rgb_to_gray */ png_ptr->gamma_16_from_1 = (png_uint_16pp)png_malloc(png_ptr, (png_uint_32)(num * png_sizeof (png_uint_16p))); for (i = 0; i < num; i++) { png_ptr->gamma_16_from_1[i] = (png_uint_16p)png_malloc(png_ptr, (png_uint_32)(256 * png_sizeof (png_uint_16))); ig = (((png_uint_32)i * (png_uint_32)png_gamma_shift[shift]) >> 4); for (j = 0; j < 256; j++) { png_ptr->gamma_16_from_1[i][j] = (png_uint_16)(pow((double)(ig + ((png_uint_32)j << 8)) / 65535.0, g) * 65535.0 + .5); } } } #endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */ } } #endif /* To do: install integer version of png_build_gamma_table here */ #endif #if defined(PNG_MNG_FEATURES_SUPPORTED) /* undoes intrapixel differencing */ void /* PRIVATE */ png_do_read_intrapixel(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_read_intrapixel\n"); if ( #if defined(PNG_USELESS_TESTS_SUPPORTED) row != NULL && row_info != NULL && #endif (row_info->color_type & PNG_COLOR_MASK_COLOR)) { int bytes_per_pixel; png_uint_32 row_width = row_info->width; if (row_info->bit_depth == 8) { png_bytep rp; png_uint_32 i; if (row_info->color_type == PNG_COLOR_TYPE_RGB) bytes_per_pixel = 3; else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) bytes_per_pixel = 4; else return; for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel) { *(rp) = (png_byte)((256 + *rp + *(rp+1))&0xff); *(rp+2) = (png_byte)((256 + *(rp+2) + *(rp+1))&0xff); } } else if (row_info->bit_depth == 16) { png_bytep rp; png_uint_32 i; if (row_info->color_type == PNG_COLOR_TYPE_RGB) bytes_per_pixel = 6; else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) bytes_per_pixel = 8; else return; for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel) { png_uint_32 s0 = (*(rp ) << 8) | *(rp+1); png_uint_32 s1 = (*(rp+2) << 8) | *(rp+3); png_uint_32 s2 = (*(rp+4) << 8) | *(rp+5); png_uint_32 red = (png_uint_32)((s0+s1+65536L) & 0xffffL); png_uint_32 blue = (png_uint_32)((s2+s1+65536L) & 0xffffL); *(rp ) = (png_byte)((red >> 8) & 0xff); *(rp+1) = (png_byte)(red & 0xff); *(rp+4) = (png_byte)((blue >> 8) & 0xff); *(rp+5) = (png_byte)(blue & 0xff); } } } } #endif /* PNG_MNG_FEATURES_SUPPORTED */ #endif /* PNG_READ_SUPPORTED */ /********* End of inlined file: pngrtran.c *********/ /********* Start of inlined file: pngrutil.c *********/ /* pngrutil.c - utilities to read a PNG file * * Last changed in libpng 1.2.21 [October 4, 2007] * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2007 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) * * This file contains routines that are only called from within * libpng itself during the course of reading an image. */ #define PNG_INTERNAL #if defined(PNG_READ_SUPPORTED) #if defined(_WIN32_WCE) && (_WIN32_WCE<0x500) # define WIN32_WCE_OLD #endif #ifdef PNG_FLOATING_POINT_SUPPORTED # if defined(WIN32_WCE_OLD) /* strtod() function is not supported on WindowsCE */ __inline double png_strtod(png_structp png_ptr, PNG_CONST char *nptr, char **endptr) { double result = 0; int len; wchar_t *str, *end; len = MultiByteToWideChar(CP_ACP, 0, nptr, -1, NULL, 0); str = (wchar_t *)png_malloc(png_ptr, len * sizeof(wchar_t)); if ( NULL != str ) { MultiByteToWideChar(CP_ACP, 0, nptr, -1, str, len); result = wcstod(str, &end); len = WideCharToMultiByte(CP_ACP, 0, end, -1, NULL, 0, NULL, NULL); *endptr = (char *)nptr + (png_strlen(nptr) - len + 1); png_free(png_ptr, str); } return result; } # else # define png_strtod(p,a,b) strtod(a,b) # endif #endif png_uint_32 PNGAPI png_get_uint_31(png_structp png_ptr, png_bytep buf) { png_uint_32 i = png_get_uint_32(buf); if (i > PNG_UINT_31_MAX) png_error(png_ptr, "PNG unsigned integer out of range."); return (i); } #ifndef PNG_READ_BIG_ENDIAN_SUPPORTED /* Grab an unsigned 32-bit integer from a buffer in big-endian format. */ png_uint_32 PNGAPI png_get_uint_32(png_bytep buf) { png_uint_32 i = ((png_uint_32)(*buf) << 24) + ((png_uint_32)(*(buf + 1)) << 16) + ((png_uint_32)(*(buf + 2)) << 8) + (png_uint_32)(*(buf + 3)); return (i); } /* Grab a signed 32-bit integer from a buffer in big-endian format. The * data is stored in the PNG file in two's complement format, and it is * assumed that the machine format for signed integers is the same. */ png_int_32 PNGAPI png_get_int_32(png_bytep buf) { png_int_32 i = ((png_int_32)(*buf) << 24) + ((png_int_32)(*(buf + 1)) << 16) + ((png_int_32)(*(buf + 2)) << 8) + (png_int_32)(*(buf + 3)); return (i); } /* Grab an unsigned 16-bit integer from a buffer in big-endian format. */ png_uint_16 PNGAPI png_get_uint_16(png_bytep buf) { png_uint_16 i = (png_uint_16)(((png_uint_16)(*buf) << 8) + (png_uint_16)(*(buf + 1))); return (i); } #endif /* PNG_READ_BIG_ENDIAN_SUPPORTED */ /* Read data, and (optionally) run it through the CRC. */ void /* PRIVATE */ png_crc_read(png_structp png_ptr, png_bytep buf, png_size_t length) { if(png_ptr == NULL) return; png_read_data(png_ptr, buf, length); png_calculate_crc(png_ptr, buf, length); } /* Optionally skip data and then check the CRC. Depending on whether we are reading a ancillary or critical chunk, and how the program has set things up, we may calculate the CRC on the data and print a message. Returns '1' if there was a CRC error, '0' otherwise. */ int /* PRIVATE */ png_crc_finish(png_structp png_ptr, png_uint_32 skip) { png_size_t i; png_size_t istop = png_ptr->zbuf_size; for (i = (png_size_t)skip; i > istop; i -= istop) { png_crc_read(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size); } if (i) { png_crc_read(png_ptr, png_ptr->zbuf, i); } if (png_crc_error(png_ptr)) { if (((png_ptr->chunk_name[0] & 0x20) && /* Ancillary */ !(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN)) || (!(png_ptr->chunk_name[0] & 0x20) && /* Critical */ (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_USE))) { png_chunk_warning(png_ptr, "CRC error"); } else { png_chunk_error(png_ptr, "CRC error"); } return (1); } return (0); } /* Compare the CRC stored in the PNG file with that calculated by libpng from the data it has read thus far. */ int /* PRIVATE */ png_crc_error(png_structp png_ptr) { png_byte crc_bytes[4]; png_uint_32 crc; int need_crc = 1; if (png_ptr->chunk_name[0] & 0x20) /* ancillary */ { if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) == (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN)) need_crc = 0; } else /* critical */ { if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) need_crc = 0; } png_read_data(png_ptr, crc_bytes, 4); if (need_crc) { crc = png_get_uint_32(crc_bytes); return ((int)(crc != png_ptr->crc)); } else return (0); } #if defined(PNG_READ_zTXt_SUPPORTED) || defined(PNG_READ_iTXt_SUPPORTED) || \ defined(PNG_READ_iCCP_SUPPORTED) /* * Decompress trailing data in a chunk. The assumption is that chunkdata * points at an allocated area holding the contents of a chunk with a * trailing compressed part. What we get back is an allocated area * holding the original prefix part and an uncompressed version of the * trailing part (the malloc area passed in is freed). */ png_charp /* PRIVATE */ png_decompress_chunk(png_structp png_ptr, int comp_type, png_charp chunkdata, png_size_t chunklength, png_size_t prefix_size, png_size_t *newlength) { static PNG_CONST char msg[] = "Error decoding compressed text"; png_charp text; png_size_t text_size; if (comp_type == PNG_COMPRESSION_TYPE_BASE) { int ret = Z_OK; png_ptr->zstream.next_in = (png_bytep)(chunkdata + prefix_size); png_ptr->zstream.avail_in = (uInt)(chunklength - prefix_size); png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; text_size = 0; text = NULL; while (png_ptr->zstream.avail_in) { ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH); if (ret != Z_OK && ret != Z_STREAM_END) { if (png_ptr->zstream.msg != NULL) png_warning(png_ptr, png_ptr->zstream.msg); else png_warning(png_ptr, msg); inflateReset(&png_ptr->zstream); png_ptr->zstream.avail_in = 0; if (text == NULL) { text_size = prefix_size + png_sizeof(msg) + 1; text = (png_charp)png_malloc_warn(png_ptr, text_size); if (text == NULL) { png_free(png_ptr,chunkdata); png_error(png_ptr,"Not enough memory to decompress chunk"); } png_memcpy(text, chunkdata, prefix_size); } text[text_size - 1] = 0x00; /* Copy what we can of the error message into the text chunk */ text_size = (png_size_t)(chunklength - (text - chunkdata) - 1); text_size = png_sizeof(msg) > text_size ? text_size : png_sizeof(msg); png_memcpy(text + prefix_size, msg, text_size + 1); break; } if (!png_ptr->zstream.avail_out || ret == Z_STREAM_END) { if (text == NULL) { text_size = prefix_size + png_ptr->zbuf_size - png_ptr->zstream.avail_out; text = (png_charp)png_malloc_warn(png_ptr, text_size + 1); if (text == NULL) { png_free(png_ptr,chunkdata); png_error(png_ptr,"Not enough memory to decompress chunk."); } png_memcpy(text + prefix_size, png_ptr->zbuf, text_size - prefix_size); png_memcpy(text, chunkdata, prefix_size); *(text + text_size) = 0x00; } else { png_charp tmp; tmp = text; text = (png_charp)png_malloc_warn(png_ptr, (png_uint_32)(text_size + png_ptr->zbuf_size - png_ptr->zstream.avail_out + 1)); if (text == NULL) { png_free(png_ptr, tmp); png_free(png_ptr, chunkdata); png_error(png_ptr,"Not enough memory to decompress chunk.."); } png_memcpy(text, tmp, text_size); png_free(png_ptr, tmp); png_memcpy(text + text_size, png_ptr->zbuf, (png_ptr->zbuf_size - png_ptr->zstream.avail_out)); text_size += png_ptr->zbuf_size - png_ptr->zstream.avail_out; *(text + text_size) = 0x00; } if (ret == Z_STREAM_END) break; else { png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; } } } if (ret != Z_STREAM_END) { #if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE) char umsg[52]; if (ret == Z_BUF_ERROR) png_snprintf(umsg, 52, "Buffer error in compressed datastream in %s chunk", png_ptr->chunk_name); else if (ret == Z_DATA_ERROR) png_snprintf(umsg, 52, "Data error in compressed datastream in %s chunk", png_ptr->chunk_name); else png_snprintf(umsg, 52, "Incomplete compressed datastream in %s chunk", png_ptr->chunk_name); png_warning(png_ptr, umsg); #else png_warning(png_ptr, "Incomplete compressed datastream in chunk other than IDAT"); #endif text_size=prefix_size; if (text == NULL) { text = (png_charp)png_malloc_warn(png_ptr, text_size+1); if (text == NULL) { png_free(png_ptr, chunkdata); png_error(png_ptr,"Not enough memory for text."); } png_memcpy(text, chunkdata, prefix_size); } *(text + text_size) = 0x00; } inflateReset(&png_ptr->zstream); png_ptr->zstream.avail_in = 0; png_free(png_ptr, chunkdata); chunkdata = text; *newlength=text_size; } else /* if (comp_type != PNG_COMPRESSION_TYPE_BASE) */ { #if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE) char umsg[50]; png_snprintf(umsg, 50, "Unknown zTXt compression type %d", comp_type); png_warning(png_ptr, umsg); #else png_warning(png_ptr, "Unknown zTXt compression type"); #endif *(chunkdata + prefix_size) = 0x00; *newlength=prefix_size; } return chunkdata; } #endif /* read and check the IDHR chunk */ void /* PRIVATE */ png_handle_IHDR(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_byte buf[13]; png_uint_32 width, height; int bit_depth, color_type, compression_type, filter_type; int interlace_type; png_debug(1, "in png_handle_IHDR\n"); if (png_ptr->mode & PNG_HAVE_IHDR) png_error(png_ptr, "Out of place IHDR"); /* check the length */ if (length != 13) png_error(png_ptr, "Invalid IHDR chunk"); png_ptr->mode |= PNG_HAVE_IHDR; png_crc_read(png_ptr, buf, 13); png_crc_finish(png_ptr, 0); width = png_get_uint_31(png_ptr, buf); height = png_get_uint_31(png_ptr, buf + 4); bit_depth = buf[8]; color_type = buf[9]; compression_type = buf[10]; filter_type = buf[11]; interlace_type = buf[12]; /* set internal variables */ png_ptr->width = width; png_ptr->height = height; png_ptr->bit_depth = (png_byte)bit_depth; png_ptr->interlaced = (png_byte)interlace_type; png_ptr->color_type = (png_byte)color_type; #if defined(PNG_MNG_FEATURES_SUPPORTED) png_ptr->filter_type = (png_byte)filter_type; #endif png_ptr->compression_type = (png_byte)compression_type; /* find number of channels */ switch (png_ptr->color_type) { case PNG_COLOR_TYPE_GRAY: case PNG_COLOR_TYPE_PALETTE: png_ptr->channels = 1; break; case PNG_COLOR_TYPE_RGB: png_ptr->channels = 3; break; case PNG_COLOR_TYPE_GRAY_ALPHA: png_ptr->channels = 2; break; case PNG_COLOR_TYPE_RGB_ALPHA: png_ptr->channels = 4; break; } /* set up other useful info */ png_ptr->pixel_depth = (png_byte)(png_ptr->bit_depth * png_ptr->channels); png_ptr->rowbytes = PNG_ROWBYTES(png_ptr->pixel_depth,png_ptr->width); png_debug1(3,"bit_depth = %d\n", png_ptr->bit_depth); png_debug1(3,"channels = %d\n", png_ptr->channels); png_debug1(3,"rowbytes = %lu\n", png_ptr->rowbytes); png_set_IHDR(png_ptr, info_ptr, width, height, bit_depth, color_type, interlace_type, compression_type, filter_type); } /* read and check the palette */ void /* PRIVATE */ png_handle_PLTE(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_color palette[PNG_MAX_PALETTE_LENGTH]; int num, i; #ifndef PNG_NO_POINTER_INDEXING png_colorp pal_ptr; #endif png_debug(1, "in png_handle_PLTE\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before PLTE"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid PLTE after IDAT"); png_crc_finish(png_ptr, length); return; } else if (png_ptr->mode & PNG_HAVE_PLTE) png_error(png_ptr, "Duplicate PLTE chunk"); png_ptr->mode |= PNG_HAVE_PLTE; if (!(png_ptr->color_type&PNG_COLOR_MASK_COLOR)) { png_warning(png_ptr, "Ignoring PLTE chunk in grayscale PNG"); png_crc_finish(png_ptr, length); return; } #if !defined(PNG_READ_OPT_PLTE_SUPPORTED) if (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE) { png_crc_finish(png_ptr, length); return; } #endif if (length > 3*PNG_MAX_PALETTE_LENGTH || length % 3) { if (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE) { png_warning(png_ptr, "Invalid palette chunk"); png_crc_finish(png_ptr, length); return; } else { png_error(png_ptr, "Invalid palette chunk"); } } num = (int)length / 3; #ifndef PNG_NO_POINTER_INDEXING for (i = 0, pal_ptr = palette; i < num; i++, pal_ptr++) { png_byte buf[3]; png_crc_read(png_ptr, buf, 3); pal_ptr->red = buf[0]; pal_ptr->green = buf[1]; pal_ptr->blue = buf[2]; } #else for (i = 0; i < num; i++) { png_byte buf[3]; png_crc_read(png_ptr, buf, 3); /* don't depend upon png_color being any order */ palette[i].red = buf[0]; palette[i].green = buf[1]; palette[i].blue = buf[2]; } #endif /* If we actually NEED the PLTE chunk (ie for a paletted image), we do whatever the normal CRC configuration tells us. However, if we have an RGB image, the PLTE can be considered ancillary, so we will act as though it is. */ #if !defined(PNG_READ_OPT_PLTE_SUPPORTED) if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) #endif { png_crc_finish(png_ptr, 0); } #if !defined(PNG_READ_OPT_PLTE_SUPPORTED) else if (png_crc_error(png_ptr)) /* Only if we have a CRC error */ { /* If we don't want to use the data from an ancillary chunk, we have two options: an error abort, or a warning and we ignore the data in this chunk (which should be OK, since it's considered ancillary for a RGB or RGBA image). */ if (!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_USE)) { if (png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN) { png_chunk_error(png_ptr, "CRC error"); } else { png_chunk_warning(png_ptr, "CRC error"); return; } } /* Otherwise, we (optionally) emit a warning and use the chunk. */ else if (!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN)) { png_chunk_warning(png_ptr, "CRC error"); } } #endif png_set_PLTE(png_ptr, info_ptr, palette, num); #if defined(PNG_READ_tRNS_SUPPORTED) if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS)) { if (png_ptr->num_trans > (png_uint_16)num) { png_warning(png_ptr, "Truncating incorrect tRNS chunk length"); png_ptr->num_trans = (png_uint_16)num; } if (info_ptr->num_trans > (png_uint_16)num) { png_warning(png_ptr, "Truncating incorrect info tRNS chunk length"); info_ptr->num_trans = (png_uint_16)num; } } } #endif } void /* PRIVATE */ png_handle_IEND(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_debug(1, "in png_handle_IEND\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR) || !(png_ptr->mode & PNG_HAVE_IDAT)) { png_error(png_ptr, "No image in file"); } png_ptr->mode |= (PNG_AFTER_IDAT | PNG_HAVE_IEND); if (length != 0) { png_warning(png_ptr, "Incorrect IEND chunk length"); } png_crc_finish(png_ptr, length); info_ptr =info_ptr; /* quiet compiler warnings about unused info_ptr */ } #if defined(PNG_READ_gAMA_SUPPORTED) void /* PRIVATE */ png_handle_gAMA(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_fixed_point igamma; #ifdef PNG_FLOATING_POINT_SUPPORTED float file_gamma; #endif png_byte buf[4]; png_debug(1, "in png_handle_gAMA\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before gAMA"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid gAMA after IDAT"); png_crc_finish(png_ptr, length); return; } else if (png_ptr->mode & PNG_HAVE_PLTE) /* Should be an error, but we can cope with it */ png_warning(png_ptr, "Out of place gAMA chunk"); if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA) #if defined(PNG_READ_sRGB_SUPPORTED) && !(info_ptr->valid & PNG_INFO_sRGB) #endif ) { png_warning(png_ptr, "Duplicate gAMA chunk"); png_crc_finish(png_ptr, length); return; } if (length != 4) { png_warning(png_ptr, "Incorrect gAMA chunk length"); png_crc_finish(png_ptr, length); return; } png_crc_read(png_ptr, buf, 4); if (png_crc_finish(png_ptr, 0)) return; igamma = (png_fixed_point)png_get_uint_32(buf); /* check for zero gamma */ if (igamma == 0) { png_warning(png_ptr, "Ignoring gAMA chunk with gamma=0"); return; } #if defined(PNG_READ_sRGB_SUPPORTED) if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sRGB)) if (PNG_OUT_OF_RANGE(igamma, 45500L, 500)) { png_warning(png_ptr, "Ignoring incorrect gAMA value when sRGB is also present"); #ifndef PNG_NO_CONSOLE_IO fprintf(stderr, "gamma = (%d/100000)\n", (int)igamma); #endif return; } #endif /* PNG_READ_sRGB_SUPPORTED */ #ifdef PNG_FLOATING_POINT_SUPPORTED file_gamma = (float)igamma / (float)100000.0; # ifdef PNG_READ_GAMMA_SUPPORTED png_ptr->gamma = file_gamma; # endif png_set_gAMA(png_ptr, info_ptr, file_gamma); #endif #ifdef PNG_FIXED_POINT_SUPPORTED png_set_gAMA_fixed(png_ptr, info_ptr, igamma); #endif } #endif #if defined(PNG_READ_sBIT_SUPPORTED) void /* PRIVATE */ png_handle_sBIT(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_size_t truelen; png_byte buf[4]; png_debug(1, "in png_handle_sBIT\n"); buf[0] = buf[1] = buf[2] = buf[3] = 0; if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before sBIT"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid sBIT after IDAT"); png_crc_finish(png_ptr, length); return; } else if (png_ptr->mode & PNG_HAVE_PLTE) { /* Should be an error, but we can cope with it */ png_warning(png_ptr, "Out of place sBIT chunk"); } if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sBIT)) { png_warning(png_ptr, "Duplicate sBIT chunk"); png_crc_finish(png_ptr, length); return; } if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) truelen = 3; else truelen = (png_size_t)png_ptr->channels; if (length != truelen || length > 4) { png_warning(png_ptr, "Incorrect sBIT chunk length"); png_crc_finish(png_ptr, length); return; } png_crc_read(png_ptr, buf, truelen); if (png_crc_finish(png_ptr, 0)) return; if (png_ptr->color_type & PNG_COLOR_MASK_COLOR) { png_ptr->sig_bit.red = buf[0]; png_ptr->sig_bit.green = buf[1]; png_ptr->sig_bit.blue = buf[2]; png_ptr->sig_bit.alpha = buf[3]; } else { png_ptr->sig_bit.gray = buf[0]; png_ptr->sig_bit.red = buf[0]; png_ptr->sig_bit.green = buf[0]; png_ptr->sig_bit.blue = buf[0]; png_ptr->sig_bit.alpha = buf[1]; } png_set_sBIT(png_ptr, info_ptr, &(png_ptr->sig_bit)); } #endif #if defined(PNG_READ_cHRM_SUPPORTED) void /* PRIVATE */ png_handle_cHRM(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_byte buf[4]; #ifdef PNG_FLOATING_POINT_SUPPORTED float white_x, white_y, red_x, red_y, green_x, green_y, blue_x, blue_y; #endif png_fixed_point int_x_white, int_y_white, int_x_red, int_y_red, int_x_green, int_y_green, int_x_blue, int_y_blue; png_uint_32 uint_x, uint_y; png_debug(1, "in png_handle_cHRM\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before cHRM"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid cHRM after IDAT"); png_crc_finish(png_ptr, length); return; } else if (png_ptr->mode & PNG_HAVE_PLTE) /* Should be an error, but we can cope with it */ png_warning(png_ptr, "Missing PLTE before cHRM"); if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM) #if defined(PNG_READ_sRGB_SUPPORTED) && !(info_ptr->valid & PNG_INFO_sRGB) #endif ) { png_warning(png_ptr, "Duplicate cHRM chunk"); png_crc_finish(png_ptr, length); return; } if (length != 32) { png_warning(png_ptr, "Incorrect cHRM chunk length"); png_crc_finish(png_ptr, length); return; } png_crc_read(png_ptr, buf, 4); uint_x = png_get_uint_32(buf); png_crc_read(png_ptr, buf, 4); uint_y = png_get_uint_32(buf); if (uint_x > 80000L || uint_y > 80000L || uint_x + uint_y > 100000L) { png_warning(png_ptr, "Invalid cHRM white point"); png_crc_finish(png_ptr, 24); return; } int_x_white = (png_fixed_point)uint_x; int_y_white = (png_fixed_point)uint_y; png_crc_read(png_ptr, buf, 4); uint_x = png_get_uint_32(buf); png_crc_read(png_ptr, buf, 4); uint_y = png_get_uint_32(buf); if (uint_x + uint_y > 100000L) { png_warning(png_ptr, "Invalid cHRM red point"); png_crc_finish(png_ptr, 16); return; } int_x_red = (png_fixed_point)uint_x; int_y_red = (png_fixed_point)uint_y; png_crc_read(png_ptr, buf, 4); uint_x = png_get_uint_32(buf); png_crc_read(png_ptr, buf, 4); uint_y = png_get_uint_32(buf); if (uint_x + uint_y > 100000L) { png_warning(png_ptr, "Invalid cHRM green point"); png_crc_finish(png_ptr, 8); return; } int_x_green = (png_fixed_point)uint_x; int_y_green = (png_fixed_point)uint_y; png_crc_read(png_ptr, buf, 4); uint_x = png_get_uint_32(buf); png_crc_read(png_ptr, buf, 4); uint_y = png_get_uint_32(buf); if (uint_x + uint_y > 100000L) { png_warning(png_ptr, "Invalid cHRM blue point"); png_crc_finish(png_ptr, 0); return; } int_x_blue = (png_fixed_point)uint_x; int_y_blue = (png_fixed_point)uint_y; #ifdef PNG_FLOATING_POINT_SUPPORTED white_x = (float)int_x_white / (float)100000.0; white_y = (float)int_y_white / (float)100000.0; red_x = (float)int_x_red / (float)100000.0; red_y = (float)int_y_red / (float)100000.0; green_x = (float)int_x_green / (float)100000.0; green_y = (float)int_y_green / (float)100000.0; blue_x = (float)int_x_blue / (float)100000.0; blue_y = (float)int_y_blue / (float)100000.0; #endif #if defined(PNG_READ_sRGB_SUPPORTED) if ((info_ptr != NULL) && (info_ptr->valid & PNG_INFO_sRGB)) { if (PNG_OUT_OF_RANGE(int_x_white, 31270, 1000) || PNG_OUT_OF_RANGE(int_y_white, 32900, 1000) || PNG_OUT_OF_RANGE(int_x_red, 64000L, 1000) || PNG_OUT_OF_RANGE(int_y_red, 33000, 1000) || PNG_OUT_OF_RANGE(int_x_green, 30000, 1000) || PNG_OUT_OF_RANGE(int_y_green, 60000L, 1000) || PNG_OUT_OF_RANGE(int_x_blue, 15000, 1000) || PNG_OUT_OF_RANGE(int_y_blue, 6000, 1000)) { png_warning(png_ptr, "Ignoring incorrect cHRM value when sRGB is also present"); #ifndef PNG_NO_CONSOLE_IO #ifdef PNG_FLOATING_POINT_SUPPORTED fprintf(stderr,"wx=%f, wy=%f, rx=%f, ry=%f\n", white_x, white_y, red_x, red_y); fprintf(stderr,"gx=%f, gy=%f, bx=%f, by=%f\n", green_x, green_y, blue_x, blue_y); #else fprintf(stderr,"wx=%ld, wy=%ld, rx=%ld, ry=%ld\n", int_x_white, int_y_white, int_x_red, int_y_red); fprintf(stderr,"gx=%ld, gy=%ld, bx=%ld, by=%ld\n", int_x_green, int_y_green, int_x_blue, int_y_blue); #endif #endif /* PNG_NO_CONSOLE_IO */ } png_crc_finish(png_ptr, 0); return; } #endif /* PNG_READ_sRGB_SUPPORTED */ #ifdef PNG_FLOATING_POINT_SUPPORTED png_set_cHRM(png_ptr, info_ptr, white_x, white_y, red_x, red_y, green_x, green_y, blue_x, blue_y); #endif #ifdef PNG_FIXED_POINT_SUPPORTED png_set_cHRM_fixed(png_ptr, info_ptr, int_x_white, int_y_white, int_x_red, int_y_red, int_x_green, int_y_green, int_x_blue, int_y_blue); #endif if (png_crc_finish(png_ptr, 0)) return; } #endif #if defined(PNG_READ_sRGB_SUPPORTED) void /* PRIVATE */ png_handle_sRGB(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { int intent; png_byte buf[1]; png_debug(1, "in png_handle_sRGB\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before sRGB"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid sRGB after IDAT"); png_crc_finish(png_ptr, length); return; } else if (png_ptr->mode & PNG_HAVE_PLTE) /* Should be an error, but we can cope with it */ png_warning(png_ptr, "Out of place sRGB chunk"); if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sRGB)) { png_warning(png_ptr, "Duplicate sRGB chunk"); png_crc_finish(png_ptr, length); return; } if (length != 1) { png_warning(png_ptr, "Incorrect sRGB chunk length"); png_crc_finish(png_ptr, length); return; } png_crc_read(png_ptr, buf, 1); if (png_crc_finish(png_ptr, 0)) return; intent = buf[0]; /* check for bad intent */ if (intent >= PNG_sRGB_INTENT_LAST) { png_warning(png_ptr, "Unknown sRGB intent"); return; } #if defined(PNG_READ_gAMA_SUPPORTED) && defined(PNG_READ_GAMMA_SUPPORTED) if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA)) { png_fixed_point igamma; #ifdef PNG_FIXED_POINT_SUPPORTED igamma=info_ptr->int_gamma; #else # ifdef PNG_FLOATING_POINT_SUPPORTED igamma=(png_fixed_point)(info_ptr->gamma * 100000.); # endif #endif if (PNG_OUT_OF_RANGE(igamma, 45500L, 500)) { png_warning(png_ptr, "Ignoring incorrect gAMA value when sRGB is also present"); #ifndef PNG_NO_CONSOLE_IO # ifdef PNG_FIXED_POINT_SUPPORTED fprintf(stderr,"incorrect gamma=(%d/100000)\n",(int)png_ptr->int_gamma); # else # ifdef PNG_FLOATING_POINT_SUPPORTED fprintf(stderr,"incorrect gamma=%f\n",png_ptr->gamma); # endif # endif #endif } } #endif /* PNG_READ_gAMA_SUPPORTED */ #ifdef PNG_READ_cHRM_SUPPORTED #ifdef PNG_FIXED_POINT_SUPPORTED if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM)) if (PNG_OUT_OF_RANGE(info_ptr->int_x_white, 31270, 1000) || PNG_OUT_OF_RANGE(info_ptr->int_y_white, 32900, 1000) || PNG_OUT_OF_RANGE(info_ptr->int_x_red, 64000L, 1000) || PNG_OUT_OF_RANGE(info_ptr->int_y_red, 33000, 1000) || PNG_OUT_OF_RANGE(info_ptr->int_x_green, 30000, 1000) || PNG_OUT_OF_RANGE(info_ptr->int_y_green, 60000L, 1000) || PNG_OUT_OF_RANGE(info_ptr->int_x_blue, 15000, 1000) || PNG_OUT_OF_RANGE(info_ptr->int_y_blue, 6000, 1000)) { png_warning(png_ptr, "Ignoring incorrect cHRM value when sRGB is also present"); } #endif /* PNG_FIXED_POINT_SUPPORTED */ #endif /* PNG_READ_cHRM_SUPPORTED */ png_set_sRGB_gAMA_and_cHRM(png_ptr, info_ptr, intent); } #endif /* PNG_READ_sRGB_SUPPORTED */ #if defined(PNG_READ_iCCP_SUPPORTED) void /* PRIVATE */ png_handle_iCCP(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) /* Note: this does not properly handle chunks that are > 64K under DOS */ { png_charp chunkdata; png_byte compression_type; png_bytep pC; png_charp profile; png_uint_32 skip = 0; png_uint_32 profile_size, profile_length; png_size_t slength, prefix_length, data_length; png_debug(1, "in png_handle_iCCP\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before iCCP"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid iCCP after IDAT"); png_crc_finish(png_ptr, length); return; } else if (png_ptr->mode & PNG_HAVE_PLTE) /* Should be an error, but we can cope with it */ png_warning(png_ptr, "Out of place iCCP chunk"); if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_iCCP)) { png_warning(png_ptr, "Duplicate iCCP chunk"); png_crc_finish(png_ptr, length); return; } #ifdef PNG_MAX_MALLOC_64K if (length > (png_uint_32)65535L) { png_warning(png_ptr, "iCCP chunk too large to fit in memory"); skip = length - (png_uint_32)65535L; length = (png_uint_32)65535L; } #endif chunkdata = (png_charp)png_malloc(png_ptr, length + 1); slength = (png_size_t)length; png_crc_read(png_ptr, (png_bytep)chunkdata, slength); if (png_crc_finish(png_ptr, skip)) { png_free(png_ptr, chunkdata); return; } chunkdata[slength] = 0x00; for (profile = chunkdata; *profile; profile++) /* empty loop to find end of name */ ; ++profile; /* there should be at least one zero (the compression type byte) following the separator, and we should be on it */ if ( profile >= chunkdata + slength - 1) { png_free(png_ptr, chunkdata); png_warning(png_ptr, "Malformed iCCP chunk"); return; } /* compression_type should always be zero */ compression_type = *profile++; if (compression_type) { png_warning(png_ptr, "Ignoring nonzero compression type in iCCP chunk"); compression_type=0x00; /* Reset it to zero (libpng-1.0.6 through 1.0.8 wrote nonzero) */ } prefix_length = profile - chunkdata; chunkdata = png_decompress_chunk(png_ptr, compression_type, chunkdata, slength, prefix_length, &data_length); profile_length = data_length - prefix_length; if ( prefix_length > data_length || profile_length < 4) { png_free(png_ptr, chunkdata); png_warning(png_ptr, "Profile size field missing from iCCP chunk"); return; } /* Check the profile_size recorded in the first 32 bits of the ICC profile */ pC = (png_bytep)(chunkdata+prefix_length); profile_size = ((*(pC ))<<24) | ((*(pC+1))<<16) | ((*(pC+2))<< 8) | ((*(pC+3)) ); if(profile_size < profile_length) profile_length = profile_size; if(profile_size > profile_length) { png_free(png_ptr, chunkdata); png_warning(png_ptr, "Ignoring truncated iCCP profile."); return; } png_set_iCCP(png_ptr, info_ptr, chunkdata, compression_type, chunkdata + prefix_length, profile_length); png_free(png_ptr, chunkdata); } #endif /* PNG_READ_iCCP_SUPPORTED */ #if defined(PNG_READ_sPLT_SUPPORTED) void /* PRIVATE */ png_handle_sPLT(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) /* Note: this does not properly handle chunks that are > 64K under DOS */ { png_bytep chunkdata; png_bytep entry_start; png_sPLT_t new_palette; #ifdef PNG_NO_POINTER_INDEXING png_sPLT_entryp pp; #endif int data_length, entry_size, i; png_uint_32 skip = 0; png_size_t slength; png_debug(1, "in png_handle_sPLT\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before sPLT"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid sPLT after IDAT"); png_crc_finish(png_ptr, length); return; } #ifdef PNG_MAX_MALLOC_64K if (length > (png_uint_32)65535L) { png_warning(png_ptr, "sPLT chunk too large to fit in memory"); skip = length - (png_uint_32)65535L; length = (png_uint_32)65535L; } #endif chunkdata = (png_bytep)png_malloc(png_ptr, length + 1); slength = (png_size_t)length; png_crc_read(png_ptr, (png_bytep)chunkdata, slength); if (png_crc_finish(png_ptr, skip)) { png_free(png_ptr, chunkdata); return; } chunkdata[slength] = 0x00; for (entry_start = chunkdata; *entry_start; entry_start++) /* empty loop to find end of name */ ; ++entry_start; /* a sample depth should follow the separator, and we should be on it */ if (entry_start > chunkdata + slength - 2) { png_free(png_ptr, chunkdata); png_warning(png_ptr, "malformed sPLT chunk"); return; } new_palette.depth = *entry_start++; entry_size = (new_palette.depth == 8 ? 6 : 10); data_length = (slength - (entry_start - chunkdata)); /* integrity-check the data length */ if (data_length % entry_size) { png_free(png_ptr, chunkdata); png_warning(png_ptr, "sPLT chunk has bad length"); return; } new_palette.nentries = (png_int_32) ( data_length / entry_size); if ((png_uint_32) new_palette.nentries > (png_uint_32) (PNG_SIZE_MAX / png_sizeof(png_sPLT_entry))) { png_warning(png_ptr, "sPLT chunk too long"); return; } new_palette.entries = (png_sPLT_entryp)png_malloc_warn( png_ptr, new_palette.nentries * png_sizeof(png_sPLT_entry)); if (new_palette.entries == NULL) { png_warning(png_ptr, "sPLT chunk requires too much memory"); return; } #ifndef PNG_NO_POINTER_INDEXING for (i = 0; i < new_palette.nentries; i++) { png_sPLT_entryp pp = new_palette.entries + i; if (new_palette.depth == 8) { pp->red = *entry_start++; pp->green = *entry_start++; pp->blue = *entry_start++; pp->alpha = *entry_start++; } else { pp->red = png_get_uint_16(entry_start); entry_start += 2; pp->green = png_get_uint_16(entry_start); entry_start += 2; pp->blue = png_get_uint_16(entry_start); entry_start += 2; pp->alpha = png_get_uint_16(entry_start); entry_start += 2; } pp->frequency = png_get_uint_16(entry_start); entry_start += 2; } #else pp = new_palette.entries; for (i = 0; i < new_palette.nentries; i++) { if (new_palette.depth == 8) { pp[i].red = *entry_start++; pp[i].green = *entry_start++; pp[i].blue = *entry_start++; pp[i].alpha = *entry_start++; } else { pp[i].red = png_get_uint_16(entry_start); entry_start += 2; pp[i].green = png_get_uint_16(entry_start); entry_start += 2; pp[i].blue = png_get_uint_16(entry_start); entry_start += 2; pp[i].alpha = png_get_uint_16(entry_start); entry_start += 2; } pp->frequency = png_get_uint_16(entry_start); entry_start += 2; } #endif /* discard all chunk data except the name and stash that */ new_palette.name = (png_charp)chunkdata; png_set_sPLT(png_ptr, info_ptr, &new_palette, 1); png_free(png_ptr, chunkdata); png_free(png_ptr, new_palette.entries); } #endif /* PNG_READ_sPLT_SUPPORTED */ #if defined(PNG_READ_tRNS_SUPPORTED) void /* PRIVATE */ png_handle_tRNS(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_byte readbuf[PNG_MAX_PALETTE_LENGTH]; int bit_mask; png_debug(1, "in png_handle_tRNS\n"); /* For non-indexed color, mask off any bits in the tRNS value that * exceed the bit depth. Some creators were writing extra bits there. * This is not needed for indexed color. */ bit_mask = (1 << png_ptr->bit_depth) - 1; if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before tRNS"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid tRNS after IDAT"); png_crc_finish(png_ptr, length); return; } else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS)) { png_warning(png_ptr, "Duplicate tRNS chunk"); png_crc_finish(png_ptr, length); return; } if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY) { png_byte buf[2]; if (length != 2) { png_warning(png_ptr, "Incorrect tRNS chunk length"); png_crc_finish(png_ptr, length); return; } png_crc_read(png_ptr, buf, 2); png_ptr->num_trans = 1; png_ptr->trans_values.gray = png_get_uint_16(buf) & bit_mask; } else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB) { png_byte buf[6]; if (length != 6) { png_warning(png_ptr, "Incorrect tRNS chunk length"); png_crc_finish(png_ptr, length); return; } png_crc_read(png_ptr, buf, (png_size_t)length); png_ptr->num_trans = 1; png_ptr->trans_values.red = png_get_uint_16(buf) & bit_mask; png_ptr->trans_values.green = png_get_uint_16(buf + 2) & bit_mask; png_ptr->trans_values.blue = png_get_uint_16(buf + 4) & bit_mask; } else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { if (!(png_ptr->mode & PNG_HAVE_PLTE)) { /* Should be an error, but we can cope with it. */ png_warning(png_ptr, "Missing PLTE before tRNS"); } if (length > (png_uint_32)png_ptr->num_palette || length > PNG_MAX_PALETTE_LENGTH) { png_warning(png_ptr, "Incorrect tRNS chunk length"); png_crc_finish(png_ptr, length); return; } if (length == 0) { png_warning(png_ptr, "Zero length tRNS chunk"); png_crc_finish(png_ptr, length); return; } png_crc_read(png_ptr, readbuf, (png_size_t)length); png_ptr->num_trans = (png_uint_16)length; } else { png_warning(png_ptr, "tRNS chunk not allowed with alpha channel"); png_crc_finish(png_ptr, length); return; } if (png_crc_finish(png_ptr, 0)) { png_ptr->num_trans = 0; return; } png_set_tRNS(png_ptr, info_ptr, readbuf, png_ptr->num_trans, &(png_ptr->trans_values)); } #endif #if defined(PNG_READ_bKGD_SUPPORTED) void /* PRIVATE */ png_handle_bKGD(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_size_t truelen; png_byte buf[6]; png_debug(1, "in png_handle_bKGD\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before bKGD"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid bKGD after IDAT"); png_crc_finish(png_ptr, length); return; } else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE && !(png_ptr->mode & PNG_HAVE_PLTE)) { png_warning(png_ptr, "Missing PLTE before bKGD"); png_crc_finish(png_ptr, length); return; } else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_bKGD)) { png_warning(png_ptr, "Duplicate bKGD chunk"); png_crc_finish(png_ptr, length); return; } if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) truelen = 1; else if (png_ptr->color_type & PNG_COLOR_MASK_COLOR) truelen = 6; else truelen = 2; if (length != truelen) { png_warning(png_ptr, "Incorrect bKGD chunk length"); png_crc_finish(png_ptr, length); return; } png_crc_read(png_ptr, buf, truelen); if (png_crc_finish(png_ptr, 0)) return; /* We convert the index value into RGB components so that we can allow * arbitrary RGB values for background when we have transparency, and * so it is easy to determine the RGB values of the background color * from the info_ptr struct. */ if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { png_ptr->background.index = buf[0]; if(info_ptr->num_palette) { if(buf[0] > info_ptr->num_palette) { png_warning(png_ptr, "Incorrect bKGD chunk index value"); return; } png_ptr->background.red = (png_uint_16)png_ptr->palette[buf[0]].red; png_ptr->background.green = (png_uint_16)png_ptr->palette[buf[0]].green; png_ptr->background.blue = (png_uint_16)png_ptr->palette[buf[0]].blue; } } else if (!(png_ptr->color_type & PNG_COLOR_MASK_COLOR)) /* GRAY */ { png_ptr->background.red = png_ptr->background.green = png_ptr->background.blue = png_ptr->background.gray = png_get_uint_16(buf); } else { png_ptr->background.red = png_get_uint_16(buf); png_ptr->background.green = png_get_uint_16(buf + 2); png_ptr->background.blue = png_get_uint_16(buf + 4); } png_set_bKGD(png_ptr, info_ptr, &(png_ptr->background)); } #endif #if defined(PNG_READ_hIST_SUPPORTED) void /* PRIVATE */ png_handle_hIST(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { unsigned int num, i; png_uint_16 readbuf[PNG_MAX_PALETTE_LENGTH]; png_debug(1, "in png_handle_hIST\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before hIST"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid hIST after IDAT"); png_crc_finish(png_ptr, length); return; } else if (!(png_ptr->mode & PNG_HAVE_PLTE)) { png_warning(png_ptr, "Missing PLTE before hIST"); png_crc_finish(png_ptr, length); return; } else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_hIST)) { png_warning(png_ptr, "Duplicate hIST chunk"); png_crc_finish(png_ptr, length); return; } num = length / 2 ; if (num != (unsigned int) png_ptr->num_palette || num > (unsigned int) PNG_MAX_PALETTE_LENGTH) { png_warning(png_ptr, "Incorrect hIST chunk length"); png_crc_finish(png_ptr, length); return; } for (i = 0; i < num; i++) { png_byte buf[2]; png_crc_read(png_ptr, buf, 2); readbuf[i] = png_get_uint_16(buf); } if (png_crc_finish(png_ptr, 0)) return; png_set_hIST(png_ptr, info_ptr, readbuf); } #endif #if defined(PNG_READ_pHYs_SUPPORTED) void /* PRIVATE */ png_handle_pHYs(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_byte buf[9]; png_uint_32 res_x, res_y; int unit_type; png_debug(1, "in png_handle_pHYs\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before pHYs"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid pHYs after IDAT"); png_crc_finish(png_ptr, length); return; } else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs)) { png_warning(png_ptr, "Duplicate pHYs chunk"); png_crc_finish(png_ptr, length); return; } if (length != 9) { png_warning(png_ptr, "Incorrect pHYs chunk length"); png_crc_finish(png_ptr, length); return; } png_crc_read(png_ptr, buf, 9); if (png_crc_finish(png_ptr, 0)) return; res_x = png_get_uint_32(buf); res_y = png_get_uint_32(buf + 4); unit_type = buf[8]; png_set_pHYs(png_ptr, info_ptr, res_x, res_y, unit_type); } #endif #if defined(PNG_READ_oFFs_SUPPORTED) void /* PRIVATE */ png_handle_oFFs(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_byte buf[9]; png_int_32 offset_x, offset_y; int unit_type; png_debug(1, "in png_handle_oFFs\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before oFFs"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid oFFs after IDAT"); png_crc_finish(png_ptr, length); return; } else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_oFFs)) { png_warning(png_ptr, "Duplicate oFFs chunk"); png_crc_finish(png_ptr, length); return; } if (length != 9) { png_warning(png_ptr, "Incorrect oFFs chunk length"); png_crc_finish(png_ptr, length); return; } png_crc_read(png_ptr, buf, 9); if (png_crc_finish(png_ptr, 0)) return; offset_x = png_get_int_32(buf); offset_y = png_get_int_32(buf + 4); unit_type = buf[8]; png_set_oFFs(png_ptr, info_ptr, offset_x, offset_y, unit_type); } #endif #if defined(PNG_READ_pCAL_SUPPORTED) /* read the pCAL chunk (described in the PNG Extensions document) */ void /* PRIVATE */ png_handle_pCAL(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_charp purpose; png_int_32 X0, X1; png_byte type, nparams; png_charp buf, units, endptr; png_charpp params; png_size_t slength; int i; png_debug(1, "in png_handle_pCAL\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before pCAL"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid pCAL after IDAT"); png_crc_finish(png_ptr, length); return; } else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_pCAL)) { png_warning(png_ptr, "Duplicate pCAL chunk"); png_crc_finish(png_ptr, length); return; } png_debug1(2, "Allocating and reading pCAL chunk data (%lu bytes)\n", length + 1); purpose = (png_charp)png_malloc_warn(png_ptr, length + 1); if (purpose == NULL) { png_warning(png_ptr, "No memory for pCAL purpose."); return; } slength = (png_size_t)length; png_crc_read(png_ptr, (png_bytep)purpose, slength); if (png_crc_finish(png_ptr, 0)) { png_free(png_ptr, purpose); return; } purpose[slength] = 0x00; /* null terminate the last string */ png_debug(3, "Finding end of pCAL purpose string\n"); for (buf = purpose; *buf; buf++) /* empty loop */ ; endptr = purpose + slength; /* We need to have at least 12 bytes after the purpose string in order to get the parameter information. */ if (endptr <= buf + 12) { png_warning(png_ptr, "Invalid pCAL data"); png_free(png_ptr, purpose); return; } png_debug(3, "Reading pCAL X0, X1, type, nparams, and units\n"); X0 = png_get_int_32((png_bytep)buf+1); X1 = png_get_int_32((png_bytep)buf+5); type = buf[9]; nparams = buf[10]; units = buf + 11; png_debug(3, "Checking pCAL equation type and number of parameters\n"); /* Check that we have the right number of parameters for known equation types. */ if ((type == PNG_EQUATION_LINEAR && nparams != 2) || (type == PNG_EQUATION_BASE_E && nparams != 3) || (type == PNG_EQUATION_ARBITRARY && nparams != 3) || (type == PNG_EQUATION_HYPERBOLIC && nparams != 4)) { png_warning(png_ptr, "Invalid pCAL parameters for equation type"); png_free(png_ptr, purpose); return; } else if (type >= PNG_EQUATION_LAST) { png_warning(png_ptr, "Unrecognized equation type for pCAL chunk"); } for (buf = units; *buf; buf++) /* Empty loop to move past the units string. */ ; png_debug(3, "Allocating pCAL parameters array\n"); params = (png_charpp)png_malloc_warn(png_ptr, (png_uint_32)(nparams *png_sizeof(png_charp))) ; if (params == NULL) { png_free(png_ptr, purpose); png_warning(png_ptr, "No memory for pCAL params."); return; } /* Get pointers to the start of each parameter string. */ for (i = 0; i < (int)nparams; i++) { buf++; /* Skip the null string terminator from previous parameter. */ png_debug1(3, "Reading pCAL parameter %d\n", i); for (params[i] = buf; buf <= endptr && *buf != 0x00; buf++) /* Empty loop to move past each parameter string */ ; /* Make sure we haven't run out of data yet */ if (buf > endptr) { png_warning(png_ptr, "Invalid pCAL data"); png_free(png_ptr, purpose); png_free(png_ptr, params); return; } } png_set_pCAL(png_ptr, info_ptr, purpose, X0, X1, type, nparams, units, params); png_free(png_ptr, purpose); png_free(png_ptr, params); } #endif #if defined(PNG_READ_sCAL_SUPPORTED) /* read the sCAL chunk */ void /* PRIVATE */ png_handle_sCAL(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_charp buffer, ep; #ifdef PNG_FLOATING_POINT_SUPPORTED double width, height; png_charp vp; #else #ifdef PNG_FIXED_POINT_SUPPORTED png_charp swidth, sheight; #endif #endif png_size_t slength; png_debug(1, "in png_handle_sCAL\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before sCAL"); else if (png_ptr->mode & PNG_HAVE_IDAT) { png_warning(png_ptr, "Invalid sCAL after IDAT"); png_crc_finish(png_ptr, length); return; } else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sCAL)) { png_warning(png_ptr, "Duplicate sCAL chunk"); png_crc_finish(png_ptr, length); return; } png_debug1(2, "Allocating and reading sCAL chunk data (%lu bytes)\n", length + 1); buffer = (png_charp)png_malloc_warn(png_ptr, length + 1); if (buffer == NULL) { png_warning(png_ptr, "Out of memory while processing sCAL chunk"); return; } slength = (png_size_t)length; png_crc_read(png_ptr, (png_bytep)buffer, slength); if (png_crc_finish(png_ptr, 0)) { png_free(png_ptr, buffer); return; } buffer[slength] = 0x00; /* null terminate the last string */ ep = buffer + 1; /* skip unit byte */ #ifdef PNG_FLOATING_POINT_SUPPORTED width = png_strtod(png_ptr, ep, &vp); if (*vp) { png_warning(png_ptr, "malformed width string in sCAL chunk"); return; } #else #ifdef PNG_FIXED_POINT_SUPPORTED swidth = (png_charp)png_malloc_warn(png_ptr, png_strlen(ep) + 1); if (swidth == NULL) { png_warning(png_ptr, "Out of memory while processing sCAL chunk width"); return; } png_memcpy(swidth, ep, (png_size_t)png_strlen(ep)); #endif #endif for (ep = buffer; *ep; ep++) /* empty loop */ ; ep++; if (buffer + slength < ep) { png_warning(png_ptr, "Truncated sCAL chunk"); #if defined(PNG_FIXED_POINT_SUPPORTED) && \ !defined(PNG_FLOATING_POINT_SUPPORTED) png_free(png_ptr, swidth); #endif png_free(png_ptr, buffer); return; } #ifdef PNG_FLOATING_POINT_SUPPORTED height = png_strtod(png_ptr, ep, &vp); if (*vp) { png_warning(png_ptr, "malformed height string in sCAL chunk"); return; } #else #ifdef PNG_FIXED_POINT_SUPPORTED sheight = (png_charp)png_malloc_warn(png_ptr, png_strlen(ep) + 1); if (swidth == NULL) { png_warning(png_ptr, "Out of memory while processing sCAL chunk height"); return; } png_memcpy(sheight, ep, (png_size_t)png_strlen(ep)); #endif #endif if (buffer + slength < ep #ifdef PNG_FLOATING_POINT_SUPPORTED || width <= 0. || height <= 0. #endif ) { png_warning(png_ptr, "Invalid sCAL data"); png_free(png_ptr, buffer); #if defined(PNG_FIXED_POINT_SUPPORTED) && !defined(PNG_FLOATING_POINT_SUPPORTED) png_free(png_ptr, swidth); png_free(png_ptr, sheight); #endif return; } #ifdef PNG_FLOATING_POINT_SUPPORTED png_set_sCAL(png_ptr, info_ptr, buffer[0], width, height); #else #ifdef PNG_FIXED_POINT_SUPPORTED png_set_sCAL_s(png_ptr, info_ptr, buffer[0], swidth, sheight); #endif #endif png_free(png_ptr, buffer); #if defined(PNG_FIXED_POINT_SUPPORTED) && !defined(PNG_FLOATING_POINT_SUPPORTED) png_free(png_ptr, swidth); png_free(png_ptr, sheight); #endif } #endif #if defined(PNG_READ_tIME_SUPPORTED) void /* PRIVATE */ png_handle_tIME(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_byte buf[7]; png_time mod_time; png_debug(1, "in png_handle_tIME\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Out of place tIME chunk"); else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tIME)) { png_warning(png_ptr, "Duplicate tIME chunk"); png_crc_finish(png_ptr, length); return; } if (png_ptr->mode & PNG_HAVE_IDAT) png_ptr->mode |= PNG_AFTER_IDAT; if (length != 7) { png_warning(png_ptr, "Incorrect tIME chunk length"); png_crc_finish(png_ptr, length); return; } png_crc_read(png_ptr, buf, 7); if (png_crc_finish(png_ptr, 0)) return; mod_time.second = buf[6]; mod_time.minute = buf[5]; mod_time.hour = buf[4]; mod_time.day = buf[3]; mod_time.month = buf[2]; mod_time.year = png_get_uint_16(buf); png_set_tIME(png_ptr, info_ptr, &mod_time); } #endif #if defined(PNG_READ_tEXt_SUPPORTED) /* Note: this does not properly handle chunks that are > 64K under DOS */ void /* PRIVATE */ png_handle_tEXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_textp text_ptr; png_charp key; png_charp text; png_uint_32 skip = 0; png_size_t slength; int ret; png_debug(1, "in png_handle_tEXt\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before tEXt"); if (png_ptr->mode & PNG_HAVE_IDAT) png_ptr->mode |= PNG_AFTER_IDAT; #ifdef PNG_MAX_MALLOC_64K if (length > (png_uint_32)65535L) { png_warning(png_ptr, "tEXt chunk too large to fit in memory"); skip = length - (png_uint_32)65535L; length = (png_uint_32)65535L; } #endif key = (png_charp)png_malloc_warn(png_ptr, length + 1); if (key == NULL) { png_warning(png_ptr, "No memory to process text chunk."); return; } slength = (png_size_t)length; png_crc_read(png_ptr, (png_bytep)key, slength); if (png_crc_finish(png_ptr, skip)) { png_free(png_ptr, key); return; } key[slength] = 0x00; for (text = key; *text; text++) /* empty loop to find end of key */ ; if (text != key + slength) text++; text_ptr = (png_textp)png_malloc_warn(png_ptr, (png_uint_32)png_sizeof(png_text)); if (text_ptr == NULL) { png_warning(png_ptr, "Not enough memory to process text chunk."); png_free(png_ptr, key); return; } text_ptr->compression = PNG_TEXT_COMPRESSION_NONE; text_ptr->key = key; #ifdef PNG_iTXt_SUPPORTED text_ptr->lang = NULL; text_ptr->lang_key = NULL; text_ptr->itxt_length = 0; #endif text_ptr->text = text; text_ptr->text_length = png_strlen(text); ret=png_set_text_2(png_ptr, info_ptr, text_ptr, 1); png_free(png_ptr, key); png_free(png_ptr, text_ptr); if (ret) png_warning(png_ptr, "Insufficient memory to process text chunk."); } #endif #if defined(PNG_READ_zTXt_SUPPORTED) /* note: this does not correctly handle chunks that are > 64K under DOS */ void /* PRIVATE */ png_handle_zTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_textp text_ptr; png_charp chunkdata; png_charp text; int comp_type; int ret; png_size_t slength, prefix_len, data_len; png_debug(1, "in png_handle_zTXt\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before zTXt"); if (png_ptr->mode & PNG_HAVE_IDAT) png_ptr->mode |= PNG_AFTER_IDAT; #ifdef PNG_MAX_MALLOC_64K /* We will no doubt have problems with chunks even half this size, but there is no hard and fast rule to tell us where to stop. */ if (length > (png_uint_32)65535L) { png_warning(png_ptr,"zTXt chunk too large to fit in memory"); png_crc_finish(png_ptr, length); return; } #endif chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1); if (chunkdata == NULL) { png_warning(png_ptr,"Out of memory processing zTXt chunk."); return; } slength = (png_size_t)length; png_crc_read(png_ptr, (png_bytep)chunkdata, slength); if (png_crc_finish(png_ptr, 0)) { png_free(png_ptr, chunkdata); return; } chunkdata[slength] = 0x00; for (text = chunkdata; *text; text++) /* empty loop */ ; /* zTXt must have some text after the chunkdataword */ if (text >= chunkdata + slength - 2) { png_warning(png_ptr, "Truncated zTXt chunk"); png_free(png_ptr, chunkdata); return; } else { comp_type = *(++text); if (comp_type != PNG_TEXT_COMPRESSION_zTXt) { png_warning(png_ptr, "Unknown compression type in zTXt chunk"); comp_type = PNG_TEXT_COMPRESSION_zTXt; } text++; /* skip the compression_method byte */ } prefix_len = text - chunkdata; chunkdata = (png_charp)png_decompress_chunk(png_ptr, comp_type, chunkdata, (png_size_t)length, prefix_len, &data_len); text_ptr = (png_textp)png_malloc_warn(png_ptr, (png_uint_32)png_sizeof(png_text)); if (text_ptr == NULL) { png_warning(png_ptr,"Not enough memory to process zTXt chunk."); png_free(png_ptr, chunkdata); return; } text_ptr->compression = comp_type; text_ptr->key = chunkdata; #ifdef PNG_iTXt_SUPPORTED text_ptr->lang = NULL; text_ptr->lang_key = NULL; text_ptr->itxt_length = 0; #endif text_ptr->text = chunkdata + prefix_len; text_ptr->text_length = data_len; ret=png_set_text_2(png_ptr, info_ptr, text_ptr, 1); png_free(png_ptr, text_ptr); png_free(png_ptr, chunkdata); if (ret) png_error(png_ptr, "Insufficient memory to store zTXt chunk."); } #endif #if defined(PNG_READ_iTXt_SUPPORTED) /* note: this does not correctly handle chunks that are > 64K under DOS */ void /* PRIVATE */ png_handle_iTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_textp text_ptr; png_charp chunkdata; png_charp key, lang, text, lang_key; int comp_flag; int comp_type = 0; int ret; png_size_t slength, prefix_len, data_len; png_debug(1, "in png_handle_iTXt\n"); if (!(png_ptr->mode & PNG_HAVE_IHDR)) png_error(png_ptr, "Missing IHDR before iTXt"); if (png_ptr->mode & PNG_HAVE_IDAT) png_ptr->mode |= PNG_AFTER_IDAT; #ifdef PNG_MAX_MALLOC_64K /* We will no doubt have problems with chunks even half this size, but there is no hard and fast rule to tell us where to stop. */ if (length > (png_uint_32)65535L) { png_warning(png_ptr,"iTXt chunk too large to fit in memory"); png_crc_finish(png_ptr, length); return; } #endif chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1); if (chunkdata == NULL) { png_warning(png_ptr, "No memory to process iTXt chunk."); return; } slength = (png_size_t)length; png_crc_read(png_ptr, (png_bytep)chunkdata, slength); if (png_crc_finish(png_ptr, 0)) { png_free(png_ptr, chunkdata); return; } chunkdata[slength] = 0x00; for (lang = chunkdata; *lang; lang++) /* empty loop */ ; lang++; /* skip NUL separator */ /* iTXt must have a language tag (possibly empty), two compression bytes, translated keyword (possibly empty), and possibly some text after the keyword */ if (lang >= chunkdata + slength - 3) { png_warning(png_ptr, "Truncated iTXt chunk"); png_free(png_ptr, chunkdata); return; } else { comp_flag = *lang++; comp_type = *lang++; } for (lang_key = lang; *lang_key; lang_key++) /* empty loop */ ; lang_key++; /* skip NUL separator */ if (lang_key >= chunkdata + slength) { png_warning(png_ptr, "Truncated iTXt chunk"); png_free(png_ptr, chunkdata); return; } for (text = lang_key; *text; text++) /* empty loop */ ; text++; /* skip NUL separator */ if (text >= chunkdata + slength) { png_warning(png_ptr, "Malformed iTXt chunk"); png_free(png_ptr, chunkdata); return; } prefix_len = text - chunkdata; key=chunkdata; if (comp_flag) chunkdata = png_decompress_chunk(png_ptr, comp_type, chunkdata, (size_t)length, prefix_len, &data_len); else data_len=png_strlen(chunkdata + prefix_len); text_ptr = (png_textp)png_malloc_warn(png_ptr, (png_uint_32)png_sizeof(png_text)); if (text_ptr == NULL) { png_warning(png_ptr,"Not enough memory to process iTXt chunk."); png_free(png_ptr, chunkdata); return; } text_ptr->compression = (int)comp_flag + 1; text_ptr->lang_key = chunkdata+(lang_key-key); text_ptr->lang = chunkdata+(lang-key); text_ptr->itxt_length = data_len; text_ptr->text_length = 0; text_ptr->key = chunkdata; text_ptr->text = chunkdata + prefix_len; ret=png_set_text_2(png_ptr, info_ptr, text_ptr, 1); png_free(png_ptr, text_ptr); png_free(png_ptr, chunkdata); if (ret) png_error(png_ptr, "Insufficient memory to store iTXt chunk."); } #endif /* This function is called when we haven't found a handler for a chunk. If there isn't a problem with the chunk itself (ie bad chunk name, CRC, or a critical chunk), the chunk is silently ignored -- unless the PNG_FLAG_UNKNOWN_CHUNKS_SUPPORTED flag is on in which case it will be saved away to be written out later. */ void /* PRIVATE */ png_handle_unknown(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) { png_uint_32 skip = 0; png_debug(1, "in png_handle_unknown\n"); if (png_ptr->mode & PNG_HAVE_IDAT) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_CONST PNG_IDAT; #endif if (png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) /* not an IDAT */ png_ptr->mode |= PNG_AFTER_IDAT; } png_check_chunk_name(png_ptr, png_ptr->chunk_name); if (!(png_ptr->chunk_name[0] & 0x20)) { #if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) if(png_handle_as_unknown(png_ptr, png_ptr->chunk_name) != PNG_HANDLE_CHUNK_ALWAYS #if defined(PNG_READ_USER_CHUNKS_SUPPORTED) && png_ptr->read_user_chunk_fn == NULL #endif ) #endif png_chunk_error(png_ptr, "unknown critical chunk"); } #if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) if ((png_ptr->flags & PNG_FLAG_KEEP_UNKNOWN_CHUNKS) || (png_ptr->read_user_chunk_fn != NULL)) { #ifdef PNG_MAX_MALLOC_64K if (length > (png_uint_32)65535L) { png_warning(png_ptr, "unknown chunk too large to fit in memory"); skip = length - (png_uint_32)65535L; length = (png_uint_32)65535L; } #endif png_strncpy((png_charp)png_ptr->unknown_chunk.name, (png_charp)png_ptr->chunk_name, 5); png_ptr->unknown_chunk.data = (png_bytep)png_malloc(png_ptr, length); png_ptr->unknown_chunk.size = (png_size_t)length; png_crc_read(png_ptr, (png_bytep)png_ptr->unknown_chunk.data, length); #if defined(PNG_READ_USER_CHUNKS_SUPPORTED) if(png_ptr->read_user_chunk_fn != NULL) { /* callback to user unknown chunk handler */ int ret; ret = (*(png_ptr->read_user_chunk_fn)) (png_ptr, &png_ptr->unknown_chunk); if (ret < 0) png_chunk_error(png_ptr, "error in user chunk"); if (ret == 0) { if (!(png_ptr->chunk_name[0] & 0x20)) if(png_handle_as_unknown(png_ptr, png_ptr->chunk_name) != PNG_HANDLE_CHUNK_ALWAYS) png_chunk_error(png_ptr, "unknown critical chunk"); png_set_unknown_chunks(png_ptr, info_ptr, &png_ptr->unknown_chunk, 1); } } #else png_set_unknown_chunks(png_ptr, info_ptr, &png_ptr->unknown_chunk, 1); #endif png_free(png_ptr, png_ptr->unknown_chunk.data); png_ptr->unknown_chunk.data = NULL; } else #endif skip = length; png_crc_finish(png_ptr, skip); #if !defined(PNG_READ_USER_CHUNKS_SUPPORTED) info_ptr = info_ptr; /* quiet compiler warnings about unused info_ptr */ #endif } /* This function is called to verify that a chunk name is valid. This function can't have the "critical chunk check" incorporated into it, since in the future we will need to be able to call user functions to handle unknown critical chunks after we check that the chunk name itself is valid. */ #define isnonalpha(c) ((c) < 65 || (c) > 122 || ((c) > 90 && (c) < 97)) void /* PRIVATE */ png_check_chunk_name(png_structp png_ptr, png_bytep chunk_name) { png_debug(1, "in png_check_chunk_name\n"); if (isnonalpha(chunk_name[0]) || isnonalpha(chunk_name[1]) || isnonalpha(chunk_name[2]) || isnonalpha(chunk_name[3])) { png_chunk_error(png_ptr, "invalid chunk type"); } } /* Combines the row recently read in with the existing pixels in the row. This routine takes care of alpha and transparency if requested. This routine also handles the two methods of progressive display of interlaced images, depending on the mask value. The mask value describes which pixels are to be combined with the row. The pattern always repeats every 8 pixels, so just 8 bits are needed. A one indicates the pixel is to be combined, a zero indicates the pixel is to be skipped. This is in addition to any alpha or transparency value associated with the pixel. If you want all pixels to be combined, pass 0xff (255) in mask. */ void /* PRIVATE */ png_combine_row(png_structp png_ptr, png_bytep row, int mask) { png_debug(1,"in png_combine_row\n"); if (mask == 0xff) { png_memcpy(row, png_ptr->row_buf + 1, PNG_ROWBYTES(png_ptr->row_info.pixel_depth, png_ptr->width)); } else { switch (png_ptr->row_info.pixel_depth) { case 1: { png_bytep sp = png_ptr->row_buf + 1; png_bytep dp = row; int s_inc, s_start, s_end; int m = 0x80; int shift; png_uint_32 i; png_uint_32 row_width = png_ptr->width; #if defined(PNG_READ_PACKSWAP_SUPPORTED) if (png_ptr->transformations & PNG_PACKSWAP) { s_start = 0; s_end = 7; s_inc = 1; } else #endif { s_start = 7; s_end = 0; s_inc = -1; } shift = s_start; for (i = 0; i < row_width; i++) { if (m & mask) { int value; value = (*sp >> shift) & 0x01; *dp &= (png_byte)((0x7f7f >> (7 - shift)) & 0xff); *dp |= (png_byte)(value << shift); } if (shift == s_end) { shift = s_start; sp++; dp++; } else shift += s_inc; if (m == 1) m = 0x80; else m >>= 1; } break; } case 2: { png_bytep sp = png_ptr->row_buf + 1; png_bytep dp = row; int s_start, s_end, s_inc; int m = 0x80; int shift; png_uint_32 i; png_uint_32 row_width = png_ptr->width; int value; #if defined(PNG_READ_PACKSWAP_SUPPORTED) if (png_ptr->transformations & PNG_PACKSWAP) { s_start = 0; s_end = 6; s_inc = 2; } else #endif { s_start = 6; s_end = 0; s_inc = -2; } shift = s_start; for (i = 0; i < row_width; i++) { if (m & mask) { value = (*sp >> shift) & 0x03; *dp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff); *dp |= (png_byte)(value << shift); } if (shift == s_end) { shift = s_start; sp++; dp++; } else shift += s_inc; if (m == 1) m = 0x80; else m >>= 1; } break; } case 4: { png_bytep sp = png_ptr->row_buf + 1; png_bytep dp = row; int s_start, s_end, s_inc; int m = 0x80; int shift; png_uint_32 i; png_uint_32 row_width = png_ptr->width; int value; #if defined(PNG_READ_PACKSWAP_SUPPORTED) if (png_ptr->transformations & PNG_PACKSWAP) { s_start = 0; s_end = 4; s_inc = 4; } else #endif { s_start = 4; s_end = 0; s_inc = -4; } shift = s_start; for (i = 0; i < row_width; i++) { if (m & mask) { value = (*sp >> shift) & 0xf; *dp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff); *dp |= (png_byte)(value << shift); } if (shift == s_end) { shift = s_start; sp++; dp++; } else shift += s_inc; if (m == 1) m = 0x80; else m >>= 1; } break; } default: { png_bytep sp = png_ptr->row_buf + 1; png_bytep dp = row; png_size_t pixel_bytes = (png_ptr->row_info.pixel_depth >> 3); png_uint_32 i; png_uint_32 row_width = png_ptr->width; png_byte m = 0x80; for (i = 0; i < row_width; i++) { if (m & mask) { png_memcpy(dp, sp, pixel_bytes); } sp += pixel_bytes; dp += pixel_bytes; if (m == 1) m = 0x80; else m >>= 1; } break; } } } } #ifdef PNG_READ_INTERLACING_SUPPORTED /* OLD pre-1.0.9 interface: void png_do_read_interlace(png_row_infop row_info, png_bytep row, int pass, png_uint_32 transformations) */ void /* PRIVATE */ png_do_read_interlace(png_structp png_ptr) { png_row_infop row_info = &(png_ptr->row_info); png_bytep row = png_ptr->row_buf + 1; int pass = png_ptr->pass; png_uint_32 transformations = png_ptr->transformations; #ifdef PNG_USE_LOCAL_ARRAYS /* arrays to facilitate easy interlacing - use pass (0 - 6) as index */ /* offset to next interlace block */ PNG_CONST int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1}; #endif png_debug(1,"in png_do_read_interlace\n"); if (row != NULL && row_info != NULL) { png_uint_32 final_width; final_width = row_info->width * png_pass_inc[pass]; switch (row_info->pixel_depth) { case 1: { png_bytep sp = row + (png_size_t)((row_info->width - 1) >> 3); png_bytep dp = row + (png_size_t)((final_width - 1) >> 3); int sshift, dshift; int s_start, s_end, s_inc; int jstop = png_pass_inc[pass]; png_byte v; png_uint_32 i; int j; #if defined(PNG_READ_PACKSWAP_SUPPORTED) if (transformations & PNG_PACKSWAP) { sshift = (int)((row_info->width + 7) & 0x07); dshift = (int)((final_width + 7) & 0x07); s_start = 7; s_end = 0; s_inc = -1; } else #endif { sshift = 7 - (int)((row_info->width + 7) & 0x07); dshift = 7 - (int)((final_width + 7) & 0x07); s_start = 0; s_end = 7; s_inc = 1; } for (i = 0; i < row_info->width; i++) { v = (png_byte)((*sp >> sshift) & 0x01); for (j = 0; j < jstop; j++) { *dp &= (png_byte)((0x7f7f >> (7 - dshift)) & 0xff); *dp |= (png_byte)(v << dshift); if (dshift == s_end) { dshift = s_start; dp--; } else dshift += s_inc; } if (sshift == s_end) { sshift = s_start; sp--; } else sshift += s_inc; } break; } case 2: { png_bytep sp = row + (png_uint_32)((row_info->width - 1) >> 2); png_bytep dp = row + (png_uint_32)((final_width - 1) >> 2); int sshift, dshift; int s_start, s_end, s_inc; int jstop = png_pass_inc[pass]; png_uint_32 i; #if defined(PNG_READ_PACKSWAP_SUPPORTED) if (transformations & PNG_PACKSWAP) { sshift = (int)(((row_info->width + 3) & 0x03) << 1); dshift = (int)(((final_width + 3) & 0x03) << 1); s_start = 6; s_end = 0; s_inc = -2; } else #endif { sshift = (int)((3 - ((row_info->width + 3) & 0x03)) << 1); dshift = (int)((3 - ((final_width + 3) & 0x03)) << 1); s_start = 0; s_end = 6; s_inc = 2; } for (i = 0; i < row_info->width; i++) { png_byte v; int j; v = (png_byte)((*sp >> sshift) & 0x03); for (j = 0; j < jstop; j++) { *dp &= (png_byte)((0x3f3f >> (6 - dshift)) & 0xff); *dp |= (png_byte)(v << dshift); if (dshift == s_end) { dshift = s_start; dp--; } else dshift += s_inc; } if (sshift == s_end) { sshift = s_start; sp--; } else sshift += s_inc; } break; } case 4: { png_bytep sp = row + (png_size_t)((row_info->width - 1) >> 1); png_bytep dp = row + (png_size_t)((final_width - 1) >> 1); int sshift, dshift; int s_start, s_end, s_inc; png_uint_32 i; int jstop = png_pass_inc[pass]; #if defined(PNG_READ_PACKSWAP_SUPPORTED) if (transformations & PNG_PACKSWAP) { sshift = (int)(((row_info->width + 1) & 0x01) << 2); dshift = (int)(((final_width + 1) & 0x01) << 2); s_start = 4; s_end = 0; s_inc = -4; } else #endif { sshift = (int)((1 - ((row_info->width + 1) & 0x01)) << 2); dshift = (int)((1 - ((final_width + 1) & 0x01)) << 2); s_start = 0; s_end = 4; s_inc = 4; } for (i = 0; i < row_info->width; i++) { png_byte v = (png_byte)((*sp >> sshift) & 0xf); int j; for (j = 0; j < jstop; j++) { *dp &= (png_byte)((0xf0f >> (4 - dshift)) & 0xff); *dp |= (png_byte)(v << dshift); if (dshift == s_end) { dshift = s_start; dp--; } else dshift += s_inc; } if (sshift == s_end) { sshift = s_start; sp--; } else sshift += s_inc; } break; } default: { png_size_t pixel_bytes = (row_info->pixel_depth >> 3); png_bytep sp = row + (png_size_t)(row_info->width - 1) * pixel_bytes; png_bytep dp = row + (png_size_t)(final_width - 1) * pixel_bytes; int jstop = png_pass_inc[pass]; png_uint_32 i; for (i = 0; i < row_info->width; i++) { png_byte v[8]; int j; png_memcpy(v, sp, pixel_bytes); for (j = 0; j < jstop; j++) { png_memcpy(dp, v, pixel_bytes); dp -= pixel_bytes; } sp -= pixel_bytes; } break; } } row_info->width = final_width; row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth,final_width); } #if !defined(PNG_READ_PACKSWAP_SUPPORTED) transformations = transformations; /* silence compiler warning */ #endif } #endif /* PNG_READ_INTERLACING_SUPPORTED */ void /* PRIVATE */ png_read_filter_row(png_structp png_ptr, png_row_infop row_info, png_bytep row, png_bytep prev_row, int filter) { png_debug(1, "in png_read_filter_row\n"); png_debug2(2,"row = %lu, filter = %d\n", png_ptr->row_number, filter); switch (filter) { case PNG_FILTER_VALUE_NONE: break; case PNG_FILTER_VALUE_SUB: { png_uint_32 i; png_uint_32 istop = row_info->rowbytes; png_uint_32 bpp = (row_info->pixel_depth + 7) >> 3; png_bytep rp = row + bpp; png_bytep lp = row; for (i = bpp; i < istop; i++) { *rp = (png_byte)(((int)(*rp) + (int)(*lp++)) & 0xff); rp++; } break; } case PNG_FILTER_VALUE_UP: { png_uint_32 i; png_uint_32 istop = row_info->rowbytes; png_bytep rp = row; png_bytep pp = prev_row; for (i = 0; i < istop; i++) { *rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff); rp++; } break; } case PNG_FILTER_VALUE_AVG: { png_uint_32 i; png_bytep rp = row; png_bytep pp = prev_row; png_bytep lp = row; png_uint_32 bpp = (row_info->pixel_depth + 7) >> 3; png_uint_32 istop = row_info->rowbytes - bpp; for (i = 0; i < bpp; i++) { *rp = (png_byte)(((int)(*rp) + ((int)(*pp++) / 2 )) & 0xff); rp++; } for (i = 0; i < istop; i++) { *rp = (png_byte)(((int)(*rp) + (int)(*pp++ + *lp++) / 2 ) & 0xff); rp++; } break; } case PNG_FILTER_VALUE_PAETH: { png_uint_32 i; png_bytep rp = row; png_bytep pp = prev_row; png_bytep lp = row; png_bytep cp = prev_row; png_uint_32 bpp = (row_info->pixel_depth + 7) >> 3; png_uint_32 istop=row_info->rowbytes - bpp; for (i = 0; i < bpp; i++) { *rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff); rp++; } for (i = 0; i < istop; i++) /* use leftover rp,pp */ { int a, b, c, pa, pb, pc, p; a = *lp++; b = *pp++; c = *cp++; p = b - c; pc = a - c; #ifdef PNG_USE_ABS pa = abs(p); pb = abs(pc); pc = abs(p + pc); #else pa = p < 0 ? -p : p; pb = pc < 0 ? -pc : pc; pc = (p + pc) < 0 ? -(p + pc) : p + pc; #endif /* if (pa <= pb && pa <= pc) p = a; else if (pb <= pc) p = b; else p = c; */ p = (pa <= pb && pa <=pc) ? a : (pb <= pc) ? b : c; *rp = (png_byte)(((int)(*rp) + p) & 0xff); rp++; } break; } default: png_warning(png_ptr, "Ignoring bad adaptive filter type"); *row=0; break; } } void /* PRIVATE */ png_read_finish_row(png_structp png_ptr) { #ifdef PNG_USE_LOCAL_ARRAYS /* arrays to facilitate easy interlacing - use pass (0 - 6) as index */ /* start of interlace block */ PNG_CONST int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0}; /* offset to next interlace block */ PNG_CONST int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1}; /* start of interlace block in the y direction */ PNG_CONST int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1}; /* offset to next interlace block in the y direction */ PNG_CONST int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2}; #endif png_debug(1, "in png_read_finish_row\n"); png_ptr->row_number++; if (png_ptr->row_number < png_ptr->num_rows) return; if (png_ptr->interlaced) { png_ptr->row_number = 0; png_memset_check(png_ptr, png_ptr->prev_row, 0, png_ptr->rowbytes + 1); do { png_ptr->pass++; if (png_ptr->pass >= 7) break; png_ptr->iwidth = (png_ptr->width + png_pass_inc[png_ptr->pass] - 1 - png_pass_start[png_ptr->pass]) / png_pass_inc[png_ptr->pass]; png_ptr->irowbytes = PNG_ROWBYTES(png_ptr->pixel_depth, png_ptr->iwidth) + 1; if (!(png_ptr->transformations & PNG_INTERLACE)) { png_ptr->num_rows = (png_ptr->height + png_pass_yinc[png_ptr->pass] - 1 - png_pass_ystart[png_ptr->pass]) / png_pass_yinc[png_ptr->pass]; if (!(png_ptr->num_rows)) continue; } else /* if (png_ptr->transformations & PNG_INTERLACE) */ break; } while (png_ptr->iwidth == 0); if (png_ptr->pass < 7) return; } if (!(png_ptr->flags & PNG_FLAG_ZLIB_FINISHED)) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_CONST PNG_IDAT; #endif char extra; int ret; png_ptr->zstream.next_out = (Bytef *)&extra; png_ptr->zstream.avail_out = (uInt)1; for(;;) { if (!(png_ptr->zstream.avail_in)) { while (!png_ptr->idat_size) { png_byte chunk_length[4]; png_crc_finish(png_ptr, 0); png_read_data(png_ptr, chunk_length, 4); png_ptr->idat_size = png_get_uint_31(png_ptr, chunk_length); png_reset_crc(png_ptr); png_crc_read(png_ptr, png_ptr->chunk_name, 4); if (png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) png_error(png_ptr, "Not enough image data"); } png_ptr->zstream.avail_in = (uInt)png_ptr->zbuf_size; png_ptr->zstream.next_in = png_ptr->zbuf; if (png_ptr->zbuf_size > png_ptr->idat_size) png_ptr->zstream.avail_in = (uInt)png_ptr->idat_size; png_crc_read(png_ptr, png_ptr->zbuf, png_ptr->zstream.avail_in); png_ptr->idat_size -= png_ptr->zstream.avail_in; } ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH); if (ret == Z_STREAM_END) { if (!(png_ptr->zstream.avail_out) || png_ptr->zstream.avail_in || png_ptr->idat_size) png_warning(png_ptr, "Extra compressed data"); png_ptr->mode |= PNG_AFTER_IDAT; png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED; break; } if (ret != Z_OK) png_error(png_ptr, png_ptr->zstream.msg ? png_ptr->zstream.msg : "Decompression Error"); if (!(png_ptr->zstream.avail_out)) { png_warning(png_ptr, "Extra compressed data."); png_ptr->mode |= PNG_AFTER_IDAT; png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED; break; } } png_ptr->zstream.avail_out = 0; } if (png_ptr->idat_size || png_ptr->zstream.avail_in) png_warning(png_ptr, "Extra compression data"); inflateReset(&png_ptr->zstream); png_ptr->mode |= PNG_AFTER_IDAT; } void /* PRIVATE */ png_read_start_row(png_structp png_ptr) { #ifdef PNG_USE_LOCAL_ARRAYS /* arrays to facilitate easy interlacing - use pass (0 - 6) as index */ /* start of interlace block */ PNG_CONST int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0}; /* offset to next interlace block */ PNG_CONST int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1}; /* start of interlace block in the y direction */ PNG_CONST int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1}; /* offset to next interlace block in the y direction */ PNG_CONST int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2}; #endif int max_pixel_depth; png_uint_32 row_bytes; png_debug(1, "in png_read_start_row\n"); png_ptr->zstream.avail_in = 0; png_init_read_transformations(png_ptr); if (png_ptr->interlaced) { if (!(png_ptr->transformations & PNG_INTERLACE)) png_ptr->num_rows = (png_ptr->height + png_pass_yinc[0] - 1 - png_pass_ystart[0]) / png_pass_yinc[0]; else png_ptr->num_rows = png_ptr->height; png_ptr->iwidth = (png_ptr->width + png_pass_inc[png_ptr->pass] - 1 - png_pass_start[png_ptr->pass]) / png_pass_inc[png_ptr->pass]; row_bytes = PNG_ROWBYTES(png_ptr->pixel_depth,png_ptr->iwidth) + 1; png_ptr->irowbytes = (png_size_t)row_bytes; if((png_uint_32)png_ptr->irowbytes != row_bytes) png_error(png_ptr, "Rowbytes overflow in png_read_start_row"); } else { png_ptr->num_rows = png_ptr->height; png_ptr->iwidth = png_ptr->width; png_ptr->irowbytes = png_ptr->rowbytes + 1; } max_pixel_depth = png_ptr->pixel_depth; #if defined(PNG_READ_PACK_SUPPORTED) if ((png_ptr->transformations & PNG_PACK) && png_ptr->bit_depth < 8) max_pixel_depth = 8; #endif #if defined(PNG_READ_EXPAND_SUPPORTED) if (png_ptr->transformations & PNG_EXPAND) { if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { if (png_ptr->num_trans) max_pixel_depth = 32; else max_pixel_depth = 24; } else if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY) { if (max_pixel_depth < 8) max_pixel_depth = 8; if (png_ptr->num_trans) max_pixel_depth *= 2; } else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB) { if (png_ptr->num_trans) { max_pixel_depth *= 4; max_pixel_depth /= 3; } } } #endif #if defined(PNG_READ_FILLER_SUPPORTED) if (png_ptr->transformations & (PNG_FILLER)) { if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) max_pixel_depth = 32; else if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY) { if (max_pixel_depth <= 8) max_pixel_depth = 16; else max_pixel_depth = 32; } else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB) { if (max_pixel_depth <= 32) max_pixel_depth = 32; else max_pixel_depth = 64; } } #endif #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) if (png_ptr->transformations & PNG_GRAY_TO_RGB) { if ( #if defined(PNG_READ_EXPAND_SUPPORTED) (png_ptr->num_trans && (png_ptr->transformations & PNG_EXPAND)) || #endif #if defined(PNG_READ_FILLER_SUPPORTED) (png_ptr->transformations & (PNG_FILLER)) || #endif png_ptr->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { if (max_pixel_depth <= 16) max_pixel_depth = 32; else max_pixel_depth = 64; } else { if (max_pixel_depth <= 8) { if (png_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA) max_pixel_depth = 32; else max_pixel_depth = 24; } else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA) max_pixel_depth = 64; else max_pixel_depth = 48; } } #endif #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) && \ defined(PNG_USER_TRANSFORM_PTR_SUPPORTED) if(png_ptr->transformations & PNG_USER_TRANSFORM) { int user_pixel_depth=png_ptr->user_transform_depth* png_ptr->user_transform_channels; if(user_pixel_depth > max_pixel_depth) max_pixel_depth=user_pixel_depth; } #endif /* align the width on the next larger 8 pixels. Mainly used for interlacing */ row_bytes = ((png_ptr->width + 7) & ~((png_uint_32)7)); /* calculate the maximum bytes needed, adding a byte and a pixel for safety's sake */ row_bytes = PNG_ROWBYTES(max_pixel_depth,row_bytes) + 1 + ((max_pixel_depth + 7) >> 3); #ifdef PNG_MAX_MALLOC_64K if (row_bytes > (png_uint_32)65536L) png_error(png_ptr, "This image requires a row greater than 64KB"); #endif png_ptr->big_row_buf = (png_bytep)png_malloc(png_ptr, row_bytes+64); png_ptr->row_buf = png_ptr->big_row_buf+32; #ifdef PNG_MAX_MALLOC_64K if ((png_uint_32)png_ptr->rowbytes + 1 > (png_uint_32)65536L) png_error(png_ptr, "This image requires a row greater than 64KB"); #endif if ((png_uint_32)png_ptr->rowbytes > (png_uint_32)(PNG_SIZE_MAX - 1)) png_error(png_ptr, "Row has too many bytes to allocate in memory."); png_ptr->prev_row = (png_bytep)png_malloc(png_ptr, (png_uint_32)( png_ptr->rowbytes + 1)); png_memset_check(png_ptr, png_ptr->prev_row, 0, png_ptr->rowbytes + 1); png_debug1(3, "width = %lu,\n", png_ptr->width); png_debug1(3, "height = %lu,\n", png_ptr->height); png_debug1(3, "iwidth = %lu,\n", png_ptr->iwidth); png_debug1(3, "num_rows = %lu\n", png_ptr->num_rows); png_debug1(3, "rowbytes = %lu,\n", png_ptr->rowbytes); png_debug1(3, "irowbytes = %lu,\n", png_ptr->irowbytes); png_ptr->flags |= PNG_FLAG_ROW_INIT; } #endif /* PNG_READ_SUPPORTED */ /********* End of inlined file: pngrutil.c *********/ /********* Start of inlined file: pngset.c *********/ /* pngset.c - storage of image information into info struct * * Last changed in libpng 1.2.21 [October 4, 2007] * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2007 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) * * The functions here are used during reads to store data from the file * into the info struct, and during writes to store application data * into the info struct for writing into the file. This abstracts the * info struct and allows us to change the structure in the future. */ #define PNG_INTERNAL #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) #if defined(PNG_bKGD_SUPPORTED) void PNGAPI png_set_bKGD(png_structp png_ptr, png_infop info_ptr, png_color_16p background) { png_debug1(1, "in %s storage function\n", "bKGD"); if (png_ptr == NULL || info_ptr == NULL) return; png_memcpy(&(info_ptr->background), background, png_sizeof(png_color_16)); info_ptr->valid |= PNG_INFO_bKGD; } #endif #if defined(PNG_cHRM_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED void PNGAPI png_set_cHRM(png_structp png_ptr, png_infop info_ptr, double white_x, double white_y, double red_x, double red_y, double green_x, double green_y, double blue_x, double blue_y) { png_debug1(1, "in %s storage function\n", "cHRM"); if (png_ptr == NULL || info_ptr == NULL) return; if (white_x < 0.0 || white_y < 0.0 || red_x < 0.0 || red_y < 0.0 || green_x < 0.0 || green_y < 0.0 || blue_x < 0.0 || blue_y < 0.0) { png_warning(png_ptr, "Ignoring attempt to set negative chromaticity value"); return; } if (white_x > 21474.83 || white_y > 21474.83 || red_x > 21474.83 || red_y > 21474.83 || green_x > 21474.83 || green_y > 21474.83 || blue_x > 21474.83 || blue_y > 21474.83) { png_warning(png_ptr, "Ignoring attempt to set chromaticity value exceeding 21474.83"); return; } info_ptr->x_white = (float)white_x; info_ptr->y_white = (float)white_y; info_ptr->x_red = (float)red_x; info_ptr->y_red = (float)red_y; info_ptr->x_green = (float)green_x; info_ptr->y_green = (float)green_y; info_ptr->x_blue = (float)blue_x; info_ptr->y_blue = (float)blue_y; #ifdef PNG_FIXED_POINT_SUPPORTED info_ptr->int_x_white = (png_fixed_point)(white_x*100000.+0.5); info_ptr->int_y_white = (png_fixed_point)(white_y*100000.+0.5); info_ptr->int_x_red = (png_fixed_point)( red_x*100000.+0.5); info_ptr->int_y_red = (png_fixed_point)( red_y*100000.+0.5); info_ptr->int_x_green = (png_fixed_point)(green_x*100000.+0.5); info_ptr->int_y_green = (png_fixed_point)(green_y*100000.+0.5); info_ptr->int_x_blue = (png_fixed_point)( blue_x*100000.+0.5); info_ptr->int_y_blue = (png_fixed_point)( blue_y*100000.+0.5); #endif info_ptr->valid |= PNG_INFO_cHRM; } #endif #ifdef PNG_FIXED_POINT_SUPPORTED void PNGAPI png_set_cHRM_fixed(png_structp png_ptr, png_infop info_ptr, png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x, png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y, png_fixed_point blue_x, png_fixed_point blue_y) { png_debug1(1, "in %s storage function\n", "cHRM"); if (png_ptr == NULL || info_ptr == NULL) return; if (white_x < 0 || white_y < 0 || red_x < 0 || red_y < 0 || green_x < 0 || green_y < 0 || blue_x < 0 || blue_y < 0) { png_warning(png_ptr, "Ignoring attempt to set negative chromaticity value"); return; } #ifdef PNG_FLOATING_POINT_SUPPORTED if (white_x > (double) PNG_UINT_31_MAX || white_y > (double) PNG_UINT_31_MAX || red_x > (double) PNG_UINT_31_MAX || red_y > (double) PNG_UINT_31_MAX || green_x > (double) PNG_UINT_31_MAX || green_y > (double) PNG_UINT_31_MAX || blue_x > (double) PNG_UINT_31_MAX || blue_y > (double) PNG_UINT_31_MAX) #else if (white_x > (png_fixed_point) PNG_UINT_31_MAX/100000L || white_y > (png_fixed_point) PNG_UINT_31_MAX/100000L || red_x > (png_fixed_point) PNG_UINT_31_MAX/100000L || red_y > (png_fixed_point) PNG_UINT_31_MAX/100000L || green_x > (png_fixed_point) PNG_UINT_31_MAX/100000L || green_y > (png_fixed_point) PNG_UINT_31_MAX/100000L || blue_x > (png_fixed_point) PNG_UINT_31_MAX/100000L || blue_y > (png_fixed_point) PNG_UINT_31_MAX/100000L) #endif { png_warning(png_ptr, "Ignoring attempt to set chromaticity value exceeding 21474.83"); return; } info_ptr->int_x_white = white_x; info_ptr->int_y_white = white_y; info_ptr->int_x_red = red_x; info_ptr->int_y_red = red_y; info_ptr->int_x_green = green_x; info_ptr->int_y_green = green_y; info_ptr->int_x_blue = blue_x; info_ptr->int_y_blue = blue_y; #ifdef PNG_FLOATING_POINT_SUPPORTED info_ptr->x_white = (float)(white_x/100000.); info_ptr->y_white = (float)(white_y/100000.); info_ptr->x_red = (float)( red_x/100000.); info_ptr->y_red = (float)( red_y/100000.); info_ptr->x_green = (float)(green_x/100000.); info_ptr->y_green = (float)(green_y/100000.); info_ptr->x_blue = (float)( blue_x/100000.); info_ptr->y_blue = (float)( blue_y/100000.); #endif info_ptr->valid |= PNG_INFO_cHRM; } #endif #endif #if defined(PNG_gAMA_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED void PNGAPI png_set_gAMA(png_structp png_ptr, png_infop info_ptr, double file_gamma) { double gamma; png_debug1(1, "in %s storage function\n", "gAMA"); if (png_ptr == NULL || info_ptr == NULL) return; /* Check for overflow */ if (file_gamma > 21474.83) { png_warning(png_ptr, "Limiting gamma to 21474.83"); gamma=21474.83; } else gamma=file_gamma; info_ptr->gamma = (float)gamma; #ifdef PNG_FIXED_POINT_SUPPORTED info_ptr->int_gamma = (int)(gamma*100000.+.5); #endif info_ptr->valid |= PNG_INFO_gAMA; if(gamma == 0.0) png_warning(png_ptr, "Setting gamma=0"); } #endif void PNGAPI png_set_gAMA_fixed(png_structp png_ptr, png_infop info_ptr, png_fixed_point int_gamma) { png_fixed_point gamma; png_debug1(1, "in %s storage function\n", "gAMA"); if (png_ptr == NULL || info_ptr == NULL) return; if (int_gamma > (png_fixed_point) PNG_UINT_31_MAX) { png_warning(png_ptr, "Limiting gamma to 21474.83"); gamma=PNG_UINT_31_MAX; } else { if (int_gamma < 0) { png_warning(png_ptr, "Setting negative gamma to zero"); gamma=0; } else gamma=int_gamma; } #ifdef PNG_FLOATING_POINT_SUPPORTED info_ptr->gamma = (float)(gamma/100000.); #endif #ifdef PNG_FIXED_POINT_SUPPORTED info_ptr->int_gamma = gamma; #endif info_ptr->valid |= PNG_INFO_gAMA; if(gamma == 0) png_warning(png_ptr, "Setting gamma=0"); } #endif #if defined(PNG_hIST_SUPPORTED) void PNGAPI png_set_hIST(png_structp png_ptr, png_infop info_ptr, png_uint_16p hist) { int i; png_debug1(1, "in %s storage function\n", "hIST"); if (png_ptr == NULL || info_ptr == NULL) return; if (info_ptr->num_palette == 0 || info_ptr->num_palette > PNG_MAX_PALETTE_LENGTH) { png_warning(png_ptr, "Invalid palette size, hIST allocation skipped."); return; } #ifdef PNG_FREE_ME_SUPPORTED png_free_data(png_ptr, info_ptr, PNG_FREE_HIST, 0); #endif /* Changed from info->num_palette to PNG_MAX_PALETTE_LENGTH in version 1.2.1 */ png_ptr->hist = (png_uint_16p)png_malloc_warn(png_ptr, (png_uint_32)(PNG_MAX_PALETTE_LENGTH * png_sizeof (png_uint_16))); if (png_ptr->hist == NULL) { png_warning(png_ptr, "Insufficient memory for hIST chunk data."); return; } for (i = 0; i < info_ptr->num_palette; i++) png_ptr->hist[i] = hist[i]; info_ptr->hist = png_ptr->hist; info_ptr->valid |= PNG_INFO_hIST; #ifdef PNG_FREE_ME_SUPPORTED info_ptr->free_me |= PNG_FREE_HIST; #else png_ptr->flags |= PNG_FLAG_FREE_HIST; #endif } #endif void PNGAPI png_set_IHDR(png_structp png_ptr, png_infop info_ptr, png_uint_32 width, png_uint_32 height, int bit_depth, int color_type, int interlace_type, int compression_type, int filter_type) { png_debug1(1, "in %s storage function\n", "IHDR"); if (png_ptr == NULL || info_ptr == NULL) return; /* check for width and height valid values */ if (width == 0 || height == 0) png_error(png_ptr, "Image width or height is zero in IHDR"); #ifdef PNG_SET_USER_LIMITS_SUPPORTED if (width > png_ptr->user_width_max || height > png_ptr->user_height_max) png_error(png_ptr, "image size exceeds user limits in IHDR"); #else if (width > PNG_USER_WIDTH_MAX || height > PNG_USER_HEIGHT_MAX) png_error(png_ptr, "image size exceeds user limits in IHDR"); #endif if (width > PNG_UINT_31_MAX || height > PNG_UINT_31_MAX) png_error(png_ptr, "Invalid image size in IHDR"); if ( width > (PNG_UINT_32_MAX >> 3) /* 8-byte RGBA pixels */ - 64 /* bigrowbuf hack */ - 1 /* filter byte */ - 7*8 /* rounding of width to multiple of 8 pixels */ - 8) /* extra max_pixel_depth pad */ png_warning(png_ptr, "Width is too large for libpng to process pixels"); /* check other values */ if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 && bit_depth != 8 && bit_depth != 16) png_error(png_ptr, "Invalid bit depth in IHDR"); if (color_type < 0 || color_type == 1 || color_type == 5 || color_type > 6) png_error(png_ptr, "Invalid color type in IHDR"); if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) || ((color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_GRAY_ALPHA || color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8)) png_error(png_ptr, "Invalid color type/bit depth combination in IHDR"); if (interlace_type >= PNG_INTERLACE_LAST) png_error(png_ptr, "Unknown interlace method in IHDR"); if (compression_type != PNG_COMPRESSION_TYPE_BASE) png_error(png_ptr, "Unknown compression method in IHDR"); #if defined(PNG_MNG_FEATURES_SUPPORTED) /* Accept filter_method 64 (intrapixel differencing) only if * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and * 2. Libpng did not read a PNG signature (this filter_method is only * used in PNG datastreams that are embedded in MNG datastreams) and * 3. The application called png_permit_mng_features with a mask that * included PNG_FLAG_MNG_FILTER_64 and * 4. The filter_method is 64 and * 5. The color_type is RGB or RGBA */ if((png_ptr->mode&PNG_HAVE_PNG_SIGNATURE)&&png_ptr->mng_features_permitted) png_warning(png_ptr,"MNG features are not allowed in a PNG datastream"); if(filter_type != PNG_FILTER_TYPE_BASE) { if(!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) && (filter_type == PNG_INTRAPIXEL_DIFFERENCING) && ((png_ptr->mode&PNG_HAVE_PNG_SIGNATURE) == 0) && (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA))) png_error(png_ptr, "Unknown filter method in IHDR"); if(png_ptr->mode&PNG_HAVE_PNG_SIGNATURE) png_warning(png_ptr, "Invalid filter method in IHDR"); } #else if(filter_type != PNG_FILTER_TYPE_BASE) png_error(png_ptr, "Unknown filter method in IHDR"); #endif info_ptr->width = width; info_ptr->height = height; info_ptr->bit_depth = (png_byte)bit_depth; info_ptr->color_type =(png_byte) color_type; info_ptr->compression_type = (png_byte)compression_type; info_ptr->filter_type = (png_byte)filter_type; info_ptr->interlace_type = (png_byte)interlace_type; if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE) info_ptr->channels = 1; else if (info_ptr->color_type & PNG_COLOR_MASK_COLOR) info_ptr->channels = 3; else info_ptr->channels = 1; if (info_ptr->color_type & PNG_COLOR_MASK_ALPHA) info_ptr->channels++; info_ptr->pixel_depth = (png_byte)(info_ptr->channels * info_ptr->bit_depth); /* check for potential overflow */ if (width > (PNG_UINT_32_MAX >> 3) /* 8-byte RGBA pixels */ - 64 /* bigrowbuf hack */ - 1 /* filter byte */ - 7*8 /* rounding of width to multiple of 8 pixels */ - 8) /* extra max_pixel_depth pad */ info_ptr->rowbytes = (png_size_t)0; else info_ptr->rowbytes = PNG_ROWBYTES(info_ptr->pixel_depth,width); } #if defined(PNG_oFFs_SUPPORTED) void PNGAPI png_set_oFFs(png_structp png_ptr, png_infop info_ptr, png_int_32 offset_x, png_int_32 offset_y, int unit_type) { png_debug1(1, "in %s storage function\n", "oFFs"); if (png_ptr == NULL || info_ptr == NULL) return; info_ptr->x_offset = offset_x; info_ptr->y_offset = offset_y; info_ptr->offset_unit_type = (png_byte)unit_type; info_ptr->valid |= PNG_INFO_oFFs; } #endif #if defined(PNG_pCAL_SUPPORTED) void PNGAPI png_set_pCAL(png_structp png_ptr, png_infop info_ptr, png_charp purpose, png_int_32 X0, png_int_32 X1, int type, int nparams, png_charp units, png_charpp params) { png_uint_32 length; int i; png_debug1(1, "in %s storage function\n", "pCAL"); if (png_ptr == NULL || info_ptr == NULL) return; length = png_strlen(purpose) + 1; png_debug1(3, "allocating purpose for info (%lu bytes)\n", length); info_ptr->pcal_purpose = (png_charp)png_malloc_warn(png_ptr, length); if (info_ptr->pcal_purpose == NULL) { png_warning(png_ptr, "Insufficient memory for pCAL purpose."); return; } png_memcpy(info_ptr->pcal_purpose, purpose, (png_size_t)length); png_debug(3, "storing X0, X1, type, and nparams in info\n"); info_ptr->pcal_X0 = X0; info_ptr->pcal_X1 = X1; info_ptr->pcal_type = (png_byte)type; info_ptr->pcal_nparams = (png_byte)nparams; length = png_strlen(units) + 1; png_debug1(3, "allocating units for info (%lu bytes)\n", length); info_ptr->pcal_units = (png_charp)png_malloc_warn(png_ptr, length); if (info_ptr->pcal_units == NULL) { png_warning(png_ptr, "Insufficient memory for pCAL units."); return; } png_memcpy(info_ptr->pcal_units, units, (png_size_t)length); info_ptr->pcal_params = (png_charpp)png_malloc_warn(png_ptr, (png_uint_32)((nparams + 1) * png_sizeof(png_charp))); if (info_ptr->pcal_params == NULL) { png_warning(png_ptr, "Insufficient memory for pCAL params."); return; } info_ptr->pcal_params[nparams] = NULL; for (i = 0; i < nparams; i++) { length = png_strlen(params[i]) + 1; png_debug2(3, "allocating parameter %d for info (%lu bytes)\n", i, length); info_ptr->pcal_params[i] = (png_charp)png_malloc_warn(png_ptr, length); if (info_ptr->pcal_params[i] == NULL) { png_warning(png_ptr, "Insufficient memory for pCAL parameter."); return; } png_memcpy(info_ptr->pcal_params[i], params[i], (png_size_t)length); } info_ptr->valid |= PNG_INFO_pCAL; #ifdef PNG_FREE_ME_SUPPORTED info_ptr->free_me |= PNG_FREE_PCAL; #endif } #endif #if defined(PNG_READ_sCAL_SUPPORTED) || defined(PNG_WRITE_sCAL_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED void PNGAPI png_set_sCAL(png_structp png_ptr, png_infop info_ptr, int unit, double width, double height) { png_debug1(1, "in %s storage function\n", "sCAL"); if (png_ptr == NULL || info_ptr == NULL) return; info_ptr->scal_unit = (png_byte)unit; info_ptr->scal_pixel_width = width; info_ptr->scal_pixel_height = height; info_ptr->valid |= PNG_INFO_sCAL; } #else #ifdef PNG_FIXED_POINT_SUPPORTED void PNGAPI png_set_sCAL_s(png_structp png_ptr, png_infop info_ptr, int unit, png_charp swidth, png_charp sheight) { png_uint_32 length; png_debug1(1, "in %s storage function\n", "sCAL"); if (png_ptr == NULL || info_ptr == NULL) return; info_ptr->scal_unit = (png_byte)unit; length = png_strlen(swidth) + 1; png_debug1(3, "allocating unit for info (%d bytes)\n", length); info_ptr->scal_s_width = (png_charp)png_malloc_warn(png_ptr, length); if (info_ptr->scal_s_width == NULL) { png_warning(png_ptr, "Memory allocation failed while processing sCAL."); } png_memcpy(info_ptr->scal_s_width, swidth, (png_size_t)length); length = png_strlen(sheight) + 1; png_debug1(3, "allocating unit for info (%d bytes)\n", length); info_ptr->scal_s_height = (png_charp)png_malloc_warn(png_ptr, length); if (info_ptr->scal_s_height == NULL) { png_free (png_ptr, info_ptr->scal_s_width); png_warning(png_ptr, "Memory allocation failed while processing sCAL."); } png_memcpy(info_ptr->scal_s_height, sheight, (png_size_t)length); info_ptr->valid |= PNG_INFO_sCAL; #ifdef PNG_FREE_ME_SUPPORTED info_ptr->free_me |= PNG_FREE_SCAL; #endif } #endif #endif #endif #if defined(PNG_pHYs_SUPPORTED) void PNGAPI png_set_pHYs(png_structp png_ptr, png_infop info_ptr, png_uint_32 res_x, png_uint_32 res_y, int unit_type) { png_debug1(1, "in %s storage function\n", "pHYs"); if (png_ptr == NULL || info_ptr == NULL) return; info_ptr->x_pixels_per_unit = res_x; info_ptr->y_pixels_per_unit = res_y; info_ptr->phys_unit_type = (png_byte)unit_type; info_ptr->valid |= PNG_INFO_pHYs; } #endif void PNGAPI png_set_PLTE(png_structp png_ptr, png_infop info_ptr, png_colorp palette, int num_palette) { png_debug1(1, "in %s storage function\n", "PLTE"); if (png_ptr == NULL || info_ptr == NULL) return; if (num_palette < 0 || num_palette > PNG_MAX_PALETTE_LENGTH) { if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE) png_error(png_ptr, "Invalid palette length"); else { png_warning(png_ptr, "Invalid palette length"); return; } } /* * It may not actually be necessary to set png_ptr->palette here; * we do it for backward compatibility with the way the png_handle_tRNS * function used to do the allocation. */ #ifdef PNG_FREE_ME_SUPPORTED png_free_data(png_ptr, info_ptr, PNG_FREE_PLTE, 0); #endif /* Changed in libpng-1.2.1 to allocate PNG_MAX_PALETTE_LENGTH instead of num_palette entries, in case of an invalid PNG file that has too-large sample values. */ png_ptr->palette = (png_colorp)png_malloc(png_ptr, PNG_MAX_PALETTE_LENGTH * png_sizeof(png_color)); png_memset(png_ptr->palette, 0, PNG_MAX_PALETTE_LENGTH * png_sizeof(png_color)); png_memcpy(png_ptr->palette, palette, num_palette * png_sizeof (png_color)); info_ptr->palette = png_ptr->palette; info_ptr->num_palette = png_ptr->num_palette = (png_uint_16)num_palette; #ifdef PNG_FREE_ME_SUPPORTED info_ptr->free_me |= PNG_FREE_PLTE; #else png_ptr->flags |= PNG_FLAG_FREE_PLTE; #endif info_ptr->valid |= PNG_INFO_PLTE; } #if defined(PNG_sBIT_SUPPORTED) void PNGAPI png_set_sBIT(png_structp png_ptr, png_infop info_ptr, png_color_8p sig_bit) { png_debug1(1, "in %s storage function\n", "sBIT"); if (png_ptr == NULL || info_ptr == NULL) return; png_memcpy(&(info_ptr->sig_bit), sig_bit, png_sizeof (png_color_8)); info_ptr->valid |= PNG_INFO_sBIT; } #endif #if defined(PNG_sRGB_SUPPORTED) void PNGAPI png_set_sRGB(png_structp png_ptr, png_infop info_ptr, int intent) { png_debug1(1, "in %s storage function\n", "sRGB"); if (png_ptr == NULL || info_ptr == NULL) return; info_ptr->srgb_intent = (png_byte)intent; info_ptr->valid |= PNG_INFO_sRGB; } void PNGAPI png_set_sRGB_gAMA_and_cHRM(png_structp png_ptr, png_infop info_ptr, int intent) { #if defined(PNG_gAMA_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED float file_gamma; #endif #ifdef PNG_FIXED_POINT_SUPPORTED png_fixed_point int_file_gamma; #endif #endif #if defined(PNG_cHRM_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED float white_x, white_y, red_x, red_y, green_x, green_y, blue_x, blue_y; #endif #ifdef PNG_FIXED_POINT_SUPPORTED png_fixed_point int_white_x, int_white_y, int_red_x, int_red_y, int_green_x, int_green_y, int_blue_x, int_blue_y; #endif #endif png_debug1(1, "in %s storage function\n", "sRGB_gAMA_and_cHRM"); if (png_ptr == NULL || info_ptr == NULL) return; png_set_sRGB(png_ptr, info_ptr, intent); #if defined(PNG_gAMA_SUPPORTED) #ifdef PNG_FLOATING_POINT_SUPPORTED file_gamma = (float).45455; png_set_gAMA(png_ptr, info_ptr, file_gamma); #endif #ifdef PNG_FIXED_POINT_SUPPORTED int_file_gamma = 45455L; png_set_gAMA_fixed(png_ptr, info_ptr, int_file_gamma); #endif #endif #if defined(PNG_cHRM_SUPPORTED) #ifdef PNG_FIXED_POINT_SUPPORTED int_white_x = 31270L; int_white_y = 32900L; int_red_x = 64000L; int_red_y = 33000L; int_green_x = 30000L; int_green_y = 60000L; int_blue_x = 15000L; int_blue_y = 6000L; png_set_cHRM_fixed(png_ptr, info_ptr, int_white_x, int_white_y, int_red_x, int_red_y, int_green_x, int_green_y, int_blue_x, int_blue_y); #endif #ifdef PNG_FLOATING_POINT_SUPPORTED white_x = (float).3127; white_y = (float).3290; red_x = (float).64; red_y = (float).33; green_x = (float).30; green_y = (float).60; blue_x = (float).15; blue_y = (float).06; png_set_cHRM(png_ptr, info_ptr, white_x, white_y, red_x, red_y, green_x, green_y, blue_x, blue_y); #endif #endif } #endif #if defined(PNG_iCCP_SUPPORTED) void PNGAPI png_set_iCCP(png_structp png_ptr, png_infop info_ptr, png_charp name, int compression_type, png_charp profile, png_uint_32 proflen) { png_charp new_iccp_name; png_charp new_iccp_profile; png_debug1(1, "in %s storage function\n", "iCCP"); if (png_ptr == NULL || info_ptr == NULL || name == NULL || profile == NULL) return; new_iccp_name = (png_charp)png_malloc_warn(png_ptr, png_strlen(name)+1); if (new_iccp_name == NULL) { png_warning(png_ptr, "Insufficient memory to process iCCP chunk."); return; } png_strncpy(new_iccp_name, name, png_strlen(name)+1); new_iccp_profile = (png_charp)png_malloc_warn(png_ptr, proflen); if (new_iccp_profile == NULL) { png_free (png_ptr, new_iccp_name); png_warning(png_ptr, "Insufficient memory to process iCCP profile."); return; } png_memcpy(new_iccp_profile, profile, (png_size_t)proflen); png_free_data(png_ptr, info_ptr, PNG_FREE_ICCP, 0); info_ptr->iccp_proflen = proflen; info_ptr->iccp_name = new_iccp_name; info_ptr->iccp_profile = new_iccp_profile; /* Compression is always zero but is here so the API and info structure * does not have to change if we introduce multiple compression types */ info_ptr->iccp_compression = (png_byte)compression_type; #ifdef PNG_FREE_ME_SUPPORTED info_ptr->free_me |= PNG_FREE_ICCP; #endif info_ptr->valid |= PNG_INFO_iCCP; } #endif #if defined(PNG_TEXT_SUPPORTED) void PNGAPI png_set_text(png_structp png_ptr, png_infop info_ptr, png_textp text_ptr, int num_text) { int ret; ret=png_set_text_2(png_ptr, info_ptr, text_ptr, num_text); if (ret) png_error(png_ptr, "Insufficient memory to store text"); } int /* PRIVATE */ png_set_text_2(png_structp png_ptr, png_infop info_ptr, png_textp text_ptr, int num_text) { int i; png_debug1(1, "in %s storage function\n", (png_ptr->chunk_name[0] == '\0' ? "text" : (png_const_charp)png_ptr->chunk_name)); if (png_ptr == NULL || info_ptr == NULL || num_text == 0) return(0); /* Make sure we have enough space in the "text" array in info_struct * to hold all of the incoming text_ptr objects. */ if (info_ptr->num_text + num_text > info_ptr->max_text) { if (info_ptr->text != NULL) { png_textp old_text; int old_max; old_max = info_ptr->max_text; info_ptr->max_text = info_ptr->num_text + num_text + 8; old_text = info_ptr->text; info_ptr->text = (png_textp)png_malloc_warn(png_ptr, (png_uint_32)(info_ptr->max_text * png_sizeof (png_text))); if (info_ptr->text == NULL) { png_free(png_ptr, old_text); return(1); } png_memcpy(info_ptr->text, old_text, (png_size_t)(old_max * png_sizeof(png_text))); png_free(png_ptr, old_text); } else { info_ptr->max_text = num_text + 8; info_ptr->num_text = 0; info_ptr->text = (png_textp)png_malloc_warn(png_ptr, (png_uint_32)(info_ptr->max_text * png_sizeof (png_text))); if (info_ptr->text == NULL) return(1); #ifdef PNG_FREE_ME_SUPPORTED info_ptr->free_me |= PNG_FREE_TEXT; #endif } png_debug1(3, "allocated %d entries for info_ptr->text\n", info_ptr->max_text); } for (i = 0; i < num_text; i++) { png_size_t text_length,key_len; png_size_t lang_len,lang_key_len; png_textp textp = &(info_ptr->text[info_ptr->num_text]); if (text_ptr[i].key == NULL) continue; key_len = png_strlen(text_ptr[i].key); if(text_ptr[i].compression <= 0) { lang_len = 0; lang_key_len = 0; } else #ifdef PNG_iTXt_SUPPORTED { /* set iTXt data */ if (text_ptr[i].lang != NULL) lang_len = png_strlen(text_ptr[i].lang); else lang_len = 0; if (text_ptr[i].lang_key != NULL) lang_key_len = png_strlen(text_ptr[i].lang_key); else lang_key_len = 0; } #else { png_warning(png_ptr, "iTXt chunk not supported."); continue; } #endif if (text_ptr[i].text == NULL || text_ptr[i].text[0] == '\0') { text_length = 0; #ifdef PNG_iTXt_SUPPORTED if(text_ptr[i].compression > 0) textp->compression = PNG_ITXT_COMPRESSION_NONE; else #endif textp->compression = PNG_TEXT_COMPRESSION_NONE; } else { text_length = png_strlen(text_ptr[i].text); textp->compression = text_ptr[i].compression; } textp->key = (png_charp)png_malloc_warn(png_ptr, (png_uint_32)(key_len + text_length + lang_len + lang_key_len + 4)); if (textp->key == NULL) return(1); png_debug2(2, "Allocated %lu bytes at %x in png_set_text\n", (png_uint_32)(key_len + lang_len + lang_key_len + text_length + 4), (int)textp->key); png_memcpy(textp->key, text_ptr[i].key, (png_size_t)(key_len)); *(textp->key+key_len) = '\0'; #ifdef PNG_iTXt_SUPPORTED if (text_ptr[i].compression > 0) { textp->lang=textp->key + key_len + 1; png_memcpy(textp->lang, text_ptr[i].lang, lang_len); *(textp->lang+lang_len) = '\0'; textp->lang_key=textp->lang + lang_len + 1; png_memcpy(textp->lang_key, text_ptr[i].lang_key, lang_key_len); *(textp->lang_key+lang_key_len) = '\0'; textp->text=textp->lang_key + lang_key_len + 1; } else #endif { #ifdef PNG_iTXt_SUPPORTED textp->lang=NULL; textp->lang_key=NULL; #endif textp->text=textp->key + key_len + 1; } if(text_length) png_memcpy(textp->text, text_ptr[i].text, (png_size_t)(text_length)); *(textp->text+text_length) = '\0'; #ifdef PNG_iTXt_SUPPORTED if(textp->compression > 0) { textp->text_length = 0; textp->itxt_length = text_length; } else #endif { textp->text_length = text_length; #ifdef PNG_iTXt_SUPPORTED textp->itxt_length = 0; #endif } info_ptr->num_text++; png_debug1(3, "transferred text chunk %d\n", info_ptr->num_text); } return(0); } #endif #if defined(PNG_tIME_SUPPORTED) void PNGAPI png_set_tIME(png_structp png_ptr, png_infop info_ptr, png_timep mod_time) { png_debug1(1, "in %s storage function\n", "tIME"); if (png_ptr == NULL || info_ptr == NULL || (png_ptr->mode & PNG_WROTE_tIME)) return; png_memcpy(&(info_ptr->mod_time), mod_time, png_sizeof (png_time)); info_ptr->valid |= PNG_INFO_tIME; } #endif #if defined(PNG_tRNS_SUPPORTED) void PNGAPI png_set_tRNS(png_structp png_ptr, png_infop info_ptr, png_bytep trans, int num_trans, png_color_16p trans_values) { png_debug1(1, "in %s storage function\n", "tRNS"); if (png_ptr == NULL || info_ptr == NULL) return; if (trans != NULL) { /* * It may not actually be necessary to set png_ptr->trans here; * we do it for backward compatibility with the way the png_handle_tRNS * function used to do the allocation. */ #ifdef PNG_FREE_ME_SUPPORTED png_free_data(png_ptr, info_ptr, PNG_FREE_TRNS, 0); #endif /* Changed from num_trans to PNG_MAX_PALETTE_LENGTH in version 1.2.1 */ png_ptr->trans = info_ptr->trans = (png_bytep)png_malloc(png_ptr, (png_uint_32)PNG_MAX_PALETTE_LENGTH); if (num_trans <= PNG_MAX_PALETTE_LENGTH) png_memcpy(info_ptr->trans, trans, (png_size_t)num_trans); #ifdef PNG_FREE_ME_SUPPORTED info_ptr->free_me |= PNG_FREE_TRNS; #else png_ptr->flags |= PNG_FLAG_FREE_TRNS; #endif } if (trans_values != NULL) { png_memcpy(&(info_ptr->trans_values), trans_values, png_sizeof(png_color_16)); if (num_trans == 0) num_trans = 1; } info_ptr->num_trans = (png_uint_16)num_trans; info_ptr->valid |= PNG_INFO_tRNS; } #endif #if defined(PNG_sPLT_SUPPORTED) void PNGAPI png_set_sPLT(png_structp png_ptr, png_infop info_ptr, png_sPLT_tp entries, int nentries) { png_sPLT_tp np; int i; if (png_ptr == NULL || info_ptr == NULL) return; np = (png_sPLT_tp)png_malloc_warn(png_ptr, (info_ptr->splt_palettes_num + nentries) * png_sizeof(png_sPLT_t)); if (np == NULL) { png_warning(png_ptr, "No memory for sPLT palettes."); return; } png_memcpy(np, info_ptr->splt_palettes, info_ptr->splt_palettes_num * png_sizeof(png_sPLT_t)); png_free(png_ptr, info_ptr->splt_palettes); info_ptr->splt_palettes=NULL; for (i = 0; i < nentries; i++) { png_sPLT_tp to = np + info_ptr->splt_palettes_num + i; png_sPLT_tp from = entries + i; to->name = (png_charp)png_malloc_warn(png_ptr, png_strlen(from->name) + 1); if (to->name == NULL) { png_warning(png_ptr, "Out of memory while processing sPLT chunk"); } /* TODO: use png_malloc_warn */ png_strncpy(to->name, from->name, png_strlen(from->name)+1); to->entries = (png_sPLT_entryp)png_malloc_warn(png_ptr, from->nentries * png_sizeof(png_sPLT_entry)); /* TODO: use png_malloc_warn */ png_memcpy(to->entries, from->entries, from->nentries * png_sizeof(png_sPLT_entry)); if (to->entries == NULL) { png_warning(png_ptr, "Out of memory while processing sPLT chunk"); png_free(png_ptr,to->name); to->name = NULL; } to->nentries = from->nentries; to->depth = from->depth; } info_ptr->splt_palettes = np; info_ptr->splt_palettes_num += nentries; info_ptr->valid |= PNG_INFO_sPLT; #ifdef PNG_FREE_ME_SUPPORTED info_ptr->free_me |= PNG_FREE_SPLT; #endif } #endif /* PNG_sPLT_SUPPORTED */ #if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) void PNGAPI png_set_unknown_chunks(png_structp png_ptr, png_infop info_ptr, png_unknown_chunkp unknowns, int num_unknowns) { png_unknown_chunkp np; int i; if (png_ptr == NULL || info_ptr == NULL || num_unknowns == 0) return; np = (png_unknown_chunkp)png_malloc_warn(png_ptr, (info_ptr->unknown_chunks_num + num_unknowns) * png_sizeof(png_unknown_chunk)); if (np == NULL) { png_warning(png_ptr, "Out of memory while processing unknown chunk."); return; } png_memcpy(np, info_ptr->unknown_chunks, info_ptr->unknown_chunks_num * png_sizeof(png_unknown_chunk)); png_free(png_ptr, info_ptr->unknown_chunks); info_ptr->unknown_chunks=NULL; for (i = 0; i < num_unknowns; i++) { png_unknown_chunkp to = np + info_ptr->unknown_chunks_num + i; png_unknown_chunkp from = unknowns + i; png_strncpy((png_charp)to->name, (png_charp)from->name, 5); to->data = (png_bytep)png_malloc_warn(png_ptr, from->size); if (to->data == NULL) { png_warning(png_ptr, "Out of memory while processing unknown chunk."); } else { png_memcpy(to->data, from->data, from->size); to->size = from->size; /* note our location in the read or write sequence */ to->location = (png_byte)(png_ptr->mode & 0xff); } } info_ptr->unknown_chunks = np; info_ptr->unknown_chunks_num += num_unknowns; #ifdef PNG_FREE_ME_SUPPORTED info_ptr->free_me |= PNG_FREE_UNKN; #endif } void PNGAPI png_set_unknown_chunk_location(png_structp png_ptr, png_infop info_ptr, int chunk, int location) { if(png_ptr != NULL && info_ptr != NULL && chunk >= 0 && chunk < (int)info_ptr->unknown_chunks_num) info_ptr->unknown_chunks[chunk].location = (png_byte)location; } #endif #if defined(PNG_1_0_X) || defined(PNG_1_2_X) #if defined(PNG_READ_EMPTY_PLTE_SUPPORTED) || \ defined(PNG_WRITE_EMPTY_PLTE_SUPPORTED) void PNGAPI png_permit_empty_plte (png_structp png_ptr, int empty_plte_permitted) { /* This function is deprecated in favor of png_permit_mng_features() and will be removed from libpng-1.3.0 */ png_debug(1, "in png_permit_empty_plte, DEPRECATED.\n"); if (png_ptr == NULL) return; png_ptr->mng_features_permitted = (png_byte) ((png_ptr->mng_features_permitted & (~(PNG_FLAG_MNG_EMPTY_PLTE))) | ((empty_plte_permitted & PNG_FLAG_MNG_EMPTY_PLTE))); } #endif #endif #if defined(PNG_MNG_FEATURES_SUPPORTED) png_uint_32 PNGAPI png_permit_mng_features (png_structp png_ptr, png_uint_32 mng_features) { png_debug(1, "in png_permit_mng_features\n"); if (png_ptr == NULL) return (png_uint_32)0; png_ptr->mng_features_permitted = (png_byte)(mng_features & PNG_ALL_MNG_FEATURES); return (png_uint_32)png_ptr->mng_features_permitted; } #endif #if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) void PNGAPI png_set_keep_unknown_chunks(png_structp png_ptr, int keep, png_bytep chunk_list, int num_chunks) { png_bytep new_list, p; int i, old_num_chunks; if (png_ptr == NULL) return; if (num_chunks == 0) { if(keep == PNG_HANDLE_CHUNK_ALWAYS || keep == PNG_HANDLE_CHUNK_IF_SAFE) png_ptr->flags |= PNG_FLAG_KEEP_UNKNOWN_CHUNKS; else png_ptr->flags &= ~PNG_FLAG_KEEP_UNKNOWN_CHUNKS; if(keep == PNG_HANDLE_CHUNK_ALWAYS) png_ptr->flags |= PNG_FLAG_KEEP_UNSAFE_CHUNKS; else png_ptr->flags &= ~PNG_FLAG_KEEP_UNSAFE_CHUNKS; return; } if (chunk_list == NULL) return; old_num_chunks=png_ptr->num_chunk_list; new_list=(png_bytep)png_malloc(png_ptr, (png_uint_32)(5*(num_chunks+old_num_chunks))); if(png_ptr->chunk_list != NULL) { png_memcpy(new_list, png_ptr->chunk_list, (png_size_t)(5*old_num_chunks)); png_free(png_ptr, png_ptr->chunk_list); png_ptr->chunk_list=NULL; } png_memcpy(new_list+5*old_num_chunks, chunk_list, (png_size_t)(5*num_chunks)); for (p=new_list+5*old_num_chunks+4, i=0; inum_chunk_list=old_num_chunks+num_chunks; png_ptr->chunk_list=new_list; #ifdef PNG_FREE_ME_SUPPORTED png_ptr->free_me |= PNG_FREE_LIST; #endif } #endif #if defined(PNG_READ_USER_CHUNKS_SUPPORTED) void PNGAPI png_set_read_user_chunk_fn(png_structp png_ptr, png_voidp user_chunk_ptr, png_user_chunk_ptr read_user_chunk_fn) { png_debug(1, "in png_set_read_user_chunk_fn\n"); if (png_ptr == NULL) return; png_ptr->read_user_chunk_fn = read_user_chunk_fn; png_ptr->user_chunk_ptr = user_chunk_ptr; } #endif #if defined(PNG_INFO_IMAGE_SUPPORTED) void PNGAPI png_set_rows(png_structp png_ptr, png_infop info_ptr, png_bytepp row_pointers) { png_debug1(1, "in %s storage function\n", "rows"); if (png_ptr == NULL || info_ptr == NULL) return; if(info_ptr->row_pointers && (info_ptr->row_pointers != row_pointers)) png_free_data(png_ptr, info_ptr, PNG_FREE_ROWS, 0); info_ptr->row_pointers = row_pointers; if(row_pointers) info_ptr->valid |= PNG_INFO_IDAT; } #endif #ifdef PNG_WRITE_SUPPORTED void PNGAPI png_set_compression_buffer_size(png_structp png_ptr, png_uint_32 size) { if (png_ptr == NULL) return; if(png_ptr->zbuf) png_free(png_ptr, png_ptr->zbuf); png_ptr->zbuf_size = (png_size_t)size; png_ptr->zbuf = (png_bytep)png_malloc(png_ptr, size); png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; } #endif void PNGAPI png_set_invalid(png_structp png_ptr, png_infop info_ptr, int mask) { if (png_ptr && info_ptr) info_ptr->valid &= ~(mask); } #ifndef PNG_1_0_X #ifdef PNG_ASSEMBLER_CODE_SUPPORTED /* function was added to libpng 1.2.0 and should always exist by default */ void PNGAPI png_set_asm_flags (png_structp png_ptr, png_uint_32 asm_flags) { /* Obsolete as of libpng-1.2.20 and will be removed from libpng-1.4.0 */ if (png_ptr != NULL) png_ptr->asm_flags = 0; } /* this function was added to libpng 1.2.0 */ void PNGAPI png_set_mmx_thresholds (png_structp png_ptr, png_byte mmx_bitdepth_threshold, png_uint_32 mmx_rowbytes_threshold) { /* Obsolete as of libpng-1.2.20 and will be removed from libpng-1.4.0 */ if (png_ptr == NULL) return; } #endif /* ?PNG_ASSEMBLER_CODE_SUPPORTED */ #ifdef PNG_SET_USER_LIMITS_SUPPORTED /* this function was added to libpng 1.2.6 */ void PNGAPI png_set_user_limits (png_structp png_ptr, png_uint_32 user_width_max, png_uint_32 user_height_max) { /* Images with dimensions larger than these limits will be * rejected by png_set_IHDR(). To accept any PNG datastream * regardless of dimensions, set both limits to 0x7ffffffL. */ if(png_ptr == NULL) return; png_ptr->user_width_max = user_width_max; png_ptr->user_height_max = user_height_max; } #endif /* ?PNG_SET_USER_LIMITS_SUPPORTED */ #endif /* ?PNG_1_0_X */ #endif /* PNG_READ_SUPPORTED || PNG_WRITE_SUPPORTED */ /********* End of inlined file: pngset.c *********/ /********* Start of inlined file: pngtrans.c *********/ /* pngtrans.c - transforms the data in a row (used by both readers and writers) * * Last changed in libpng 1.2.17 May 15, 2007 * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2007 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) */ #define PNG_INTERNAL #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) #if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED) /* turn on BGR-to-RGB mapping */ void PNGAPI png_set_bgr(png_structp png_ptr) { png_debug(1, "in png_set_bgr\n"); if(png_ptr == NULL) return; png_ptr->transformations |= PNG_BGR; } #endif #if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED) /* turn on 16 bit byte swapping */ void PNGAPI png_set_swap(png_structp png_ptr) { png_debug(1, "in png_set_swap\n"); if(png_ptr == NULL) return; if (png_ptr->bit_depth == 16) png_ptr->transformations |= PNG_SWAP_BYTES; } #endif #if defined(PNG_READ_PACK_SUPPORTED) || defined(PNG_WRITE_PACK_SUPPORTED) /* turn on pixel packing */ void PNGAPI png_set_packing(png_structp png_ptr) { png_debug(1, "in png_set_packing\n"); if(png_ptr == NULL) return; if (png_ptr->bit_depth < 8) { png_ptr->transformations |= PNG_PACK; png_ptr->usr_bit_depth = 8; } } #endif #if defined(PNG_READ_PACKSWAP_SUPPORTED)||defined(PNG_WRITE_PACKSWAP_SUPPORTED) /* turn on packed pixel swapping */ void PNGAPI png_set_packswap(png_structp png_ptr) { png_debug(1, "in png_set_packswap\n"); if(png_ptr == NULL) return; if (png_ptr->bit_depth < 8) png_ptr->transformations |= PNG_PACKSWAP; } #endif #if defined(PNG_READ_SHIFT_SUPPORTED) || defined(PNG_WRITE_SHIFT_SUPPORTED) void PNGAPI png_set_shift(png_structp png_ptr, png_color_8p true_bits) { png_debug(1, "in png_set_shift\n"); if(png_ptr == NULL) return; png_ptr->transformations |= PNG_SHIFT; png_ptr->shift = *true_bits; } #endif #if defined(PNG_READ_INTERLACING_SUPPORTED) || \ defined(PNG_WRITE_INTERLACING_SUPPORTED) int PNGAPI png_set_interlace_handling(png_structp png_ptr) { png_debug(1, "in png_set_interlace handling\n"); if (png_ptr && png_ptr->interlaced) { png_ptr->transformations |= PNG_INTERLACE; return (7); } return (1); } #endif #if defined(PNG_READ_FILLER_SUPPORTED) || defined(PNG_WRITE_FILLER_SUPPORTED) /* Add a filler byte on read, or remove a filler or alpha byte on write. * The filler type has changed in v0.95 to allow future 2-byte fillers * for 48-bit input data, as well as to avoid problems with some compilers * that don't like bytes as parameters. */ void PNGAPI png_set_filler(png_structp png_ptr, png_uint_32 filler, int filler_loc) { png_debug(1, "in png_set_filler\n"); if(png_ptr == NULL) return; png_ptr->transformations |= PNG_FILLER; png_ptr->filler = (png_byte)filler; if (filler_loc == PNG_FILLER_AFTER) png_ptr->flags |= PNG_FLAG_FILLER_AFTER; else png_ptr->flags &= ~PNG_FLAG_FILLER_AFTER; /* This should probably go in the "do_read_filler" routine. * I attempted to do that in libpng-1.0.1a but that caused problems * so I restored it in libpng-1.0.2a */ if (png_ptr->color_type == PNG_COLOR_TYPE_RGB) { png_ptr->usr_channels = 4; } /* Also I added this in libpng-1.0.2a (what happens when we expand * a less-than-8-bit grayscale to GA? */ if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY && png_ptr->bit_depth >= 8) { png_ptr->usr_channels = 2; } } #if !defined(PNG_1_0_X) /* Added to libpng-1.2.7 */ void PNGAPI png_set_add_alpha(png_structp png_ptr, png_uint_32 filler, int filler_loc) { png_debug(1, "in png_set_add_alpha\n"); if(png_ptr == NULL) return; png_set_filler(png_ptr, filler, filler_loc); png_ptr->transformations |= PNG_ADD_ALPHA; } #endif #endif #if defined(PNG_READ_SWAP_ALPHA_SUPPORTED) || \ defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED) void PNGAPI png_set_swap_alpha(png_structp png_ptr) { png_debug(1, "in png_set_swap_alpha\n"); if(png_ptr == NULL) return; png_ptr->transformations |= PNG_SWAP_ALPHA; } #endif #if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) || \ defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED) void PNGAPI png_set_invert_alpha(png_structp png_ptr) { png_debug(1, "in png_set_invert_alpha\n"); if(png_ptr == NULL) return; png_ptr->transformations |= PNG_INVERT_ALPHA; } #endif #if defined(PNG_READ_INVERT_SUPPORTED) || defined(PNG_WRITE_INVERT_SUPPORTED) void PNGAPI png_set_invert_mono(png_structp png_ptr) { png_debug(1, "in png_set_invert_mono\n"); if(png_ptr == NULL) return; png_ptr->transformations |= PNG_INVERT_MONO; } /* invert monochrome grayscale data */ void /* PRIVATE */ png_do_invert(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_invert\n"); /* This test removed from libpng version 1.0.13 and 1.2.0: * if (row_info->bit_depth == 1 && */ #if defined(PNG_USELESS_TESTS_SUPPORTED) if (row == NULL || row_info == NULL) return; #endif if (row_info->color_type == PNG_COLOR_TYPE_GRAY) { png_bytep rp = row; png_uint_32 i; png_uint_32 istop = row_info->rowbytes; for (i = 0; i < istop; i++) { *rp = (png_byte)(~(*rp)); rp++; } } else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA && row_info->bit_depth == 8) { png_bytep rp = row; png_uint_32 i; png_uint_32 istop = row_info->rowbytes; for (i = 0; i < istop; i+=2) { *rp = (png_byte)(~(*rp)); rp+=2; } } else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA && row_info->bit_depth == 16) { png_bytep rp = row; png_uint_32 i; png_uint_32 istop = row_info->rowbytes; for (i = 0; i < istop; i+=4) { *rp = (png_byte)(~(*rp)); *(rp+1) = (png_byte)(~(*(rp+1))); rp+=4; } } } #endif #if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED) /* swaps byte order on 16 bit depth images */ void /* PRIVATE */ png_do_swap(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_swap\n"); if ( #if defined(PNG_USELESS_TESTS_SUPPORTED) row != NULL && row_info != NULL && #endif row_info->bit_depth == 16) { png_bytep rp = row; png_uint_32 i; png_uint_32 istop= row_info->width * row_info->channels; for (i = 0; i < istop; i++, rp += 2) { png_byte t = *rp; *rp = *(rp + 1); *(rp + 1) = t; } } } #endif #if defined(PNG_READ_PACKSWAP_SUPPORTED)||defined(PNG_WRITE_PACKSWAP_SUPPORTED) static PNG_CONST png_byte onebppswaptable[256] = { 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF }; static PNG_CONST png_byte twobppswaptable[256] = { 0x00, 0x40, 0x80, 0xC0, 0x10, 0x50, 0x90, 0xD0, 0x20, 0x60, 0xA0, 0xE0, 0x30, 0x70, 0xB0, 0xF0, 0x04, 0x44, 0x84, 0xC4, 0x14, 0x54, 0x94, 0xD4, 0x24, 0x64, 0xA4, 0xE4, 0x34, 0x74, 0xB4, 0xF4, 0x08, 0x48, 0x88, 0xC8, 0x18, 0x58, 0x98, 0xD8, 0x28, 0x68, 0xA8, 0xE8, 0x38, 0x78, 0xB8, 0xF8, 0x0C, 0x4C, 0x8C, 0xCC, 0x1C, 0x5C, 0x9C, 0xDC, 0x2C, 0x6C, 0xAC, 0xEC, 0x3C, 0x7C, 0xBC, 0xFC, 0x01, 0x41, 0x81, 0xC1, 0x11, 0x51, 0x91, 0xD1, 0x21, 0x61, 0xA1, 0xE1, 0x31, 0x71, 0xB1, 0xF1, 0x05, 0x45, 0x85, 0xC5, 0x15, 0x55, 0x95, 0xD5, 0x25, 0x65, 0xA5, 0xE5, 0x35, 0x75, 0xB5, 0xF5, 0x09, 0x49, 0x89, 0xC9, 0x19, 0x59, 0x99, 0xD9, 0x29, 0x69, 0xA9, 0xE9, 0x39, 0x79, 0xB9, 0xF9, 0x0D, 0x4D, 0x8D, 0xCD, 0x1D, 0x5D, 0x9D, 0xDD, 0x2D, 0x6D, 0xAD, 0xED, 0x3D, 0x7D, 0xBD, 0xFD, 0x02, 0x42, 0x82, 0xC2, 0x12, 0x52, 0x92, 0xD2, 0x22, 0x62, 0xA2, 0xE2, 0x32, 0x72, 0xB2, 0xF2, 0x06, 0x46, 0x86, 0xC6, 0x16, 0x56, 0x96, 0xD6, 0x26, 0x66, 0xA6, 0xE6, 0x36, 0x76, 0xB6, 0xF6, 0x0A, 0x4A, 0x8A, 0xCA, 0x1A, 0x5A, 0x9A, 0xDA, 0x2A, 0x6A, 0xAA, 0xEA, 0x3A, 0x7A, 0xBA, 0xFA, 0x0E, 0x4E, 0x8E, 0xCE, 0x1E, 0x5E, 0x9E, 0xDE, 0x2E, 0x6E, 0xAE, 0xEE, 0x3E, 0x7E, 0xBE, 0xFE, 0x03, 0x43, 0x83, 0xC3, 0x13, 0x53, 0x93, 0xD3, 0x23, 0x63, 0xA3, 0xE3, 0x33, 0x73, 0xB3, 0xF3, 0x07, 0x47, 0x87, 0xC7, 0x17, 0x57, 0x97, 0xD7, 0x27, 0x67, 0xA7, 0xE7, 0x37, 0x77, 0xB7, 0xF7, 0x0B, 0x4B, 0x8B, 0xCB, 0x1B, 0x5B, 0x9B, 0xDB, 0x2B, 0x6B, 0xAB, 0xEB, 0x3B, 0x7B, 0xBB, 0xFB, 0x0F, 0x4F, 0x8F, 0xCF, 0x1F, 0x5F, 0x9F, 0xDF, 0x2F, 0x6F, 0xAF, 0xEF, 0x3F, 0x7F, 0xBF, 0xFF }; static PNG_CONST png_byte fourbppswaptable[256] = { 0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, 0x90, 0xA0, 0xB0, 0xC0, 0xD0, 0xE0, 0xF0, 0x01, 0x11, 0x21, 0x31, 0x41, 0x51, 0x61, 0x71, 0x81, 0x91, 0xA1, 0xB1, 0xC1, 0xD1, 0xE1, 0xF1, 0x02, 0x12, 0x22, 0x32, 0x42, 0x52, 0x62, 0x72, 0x82, 0x92, 0xA2, 0xB2, 0xC2, 0xD2, 0xE2, 0xF2, 0x03, 0x13, 0x23, 0x33, 0x43, 0x53, 0x63, 0x73, 0x83, 0x93, 0xA3, 0xB3, 0xC3, 0xD3, 0xE3, 0xF3, 0x04, 0x14, 0x24, 0x34, 0x44, 0x54, 0x64, 0x74, 0x84, 0x94, 0xA4, 0xB4, 0xC4, 0xD4, 0xE4, 0xF4, 0x05, 0x15, 0x25, 0x35, 0x45, 0x55, 0x65, 0x75, 0x85, 0x95, 0xA5, 0xB5, 0xC5, 0xD5, 0xE5, 0xF5, 0x06, 0x16, 0x26, 0x36, 0x46, 0x56, 0x66, 0x76, 0x86, 0x96, 0xA6, 0xB6, 0xC6, 0xD6, 0xE6, 0xF6, 0x07, 0x17, 0x27, 0x37, 0x47, 0x57, 0x67, 0x77, 0x87, 0x97, 0xA7, 0xB7, 0xC7, 0xD7, 0xE7, 0xF7, 0x08, 0x18, 0x28, 0x38, 0x48, 0x58, 0x68, 0x78, 0x88, 0x98, 0xA8, 0xB8, 0xC8, 0xD8, 0xE8, 0xF8, 0x09, 0x19, 0x29, 0x39, 0x49, 0x59, 0x69, 0x79, 0x89, 0x99, 0xA9, 0xB9, 0xC9, 0xD9, 0xE9, 0xF9, 0x0A, 0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A, 0x7A, 0x8A, 0x9A, 0xAA, 0xBA, 0xCA, 0xDA, 0xEA, 0xFA, 0x0B, 0x1B, 0x2B, 0x3B, 0x4B, 0x5B, 0x6B, 0x7B, 0x8B, 0x9B, 0xAB, 0xBB, 0xCB, 0xDB, 0xEB, 0xFB, 0x0C, 0x1C, 0x2C, 0x3C, 0x4C, 0x5C, 0x6C, 0x7C, 0x8C, 0x9C, 0xAC, 0xBC, 0xCC, 0xDC, 0xEC, 0xFC, 0x0D, 0x1D, 0x2D, 0x3D, 0x4D, 0x5D, 0x6D, 0x7D, 0x8D, 0x9D, 0xAD, 0xBD, 0xCD, 0xDD, 0xED, 0xFD, 0x0E, 0x1E, 0x2E, 0x3E, 0x4E, 0x5E, 0x6E, 0x7E, 0x8E, 0x9E, 0xAE, 0xBE, 0xCE, 0xDE, 0xEE, 0xFE, 0x0F, 0x1F, 0x2F, 0x3F, 0x4F, 0x5F, 0x6F, 0x7F, 0x8F, 0x9F, 0xAF, 0xBF, 0xCF, 0xDF, 0xEF, 0xFF }; /* swaps pixel packing order within bytes */ void /* PRIVATE */ png_do_packswap(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_packswap\n"); if ( #if defined(PNG_USELESS_TESTS_SUPPORTED) row != NULL && row_info != NULL && #endif row_info->bit_depth < 8) { png_bytep rp, end, table; end = row + row_info->rowbytes; if (row_info->bit_depth == 1) table = (png_bytep)onebppswaptable; else if (row_info->bit_depth == 2) table = (png_bytep)twobppswaptable; else if (row_info->bit_depth == 4) table = (png_bytep)fourbppswaptable; else return; for (rp = row; rp < end; rp++) *rp = table[*rp]; } } #endif /* PNG_READ_PACKSWAP_SUPPORTED or PNG_WRITE_PACKSWAP_SUPPORTED */ #if defined(PNG_WRITE_FILLER_SUPPORTED) || \ defined(PNG_READ_STRIP_ALPHA_SUPPORTED) /* remove filler or alpha byte(s) */ void /* PRIVATE */ png_do_strip_filler(png_row_infop row_info, png_bytep row, png_uint_32 flags) { png_debug(1, "in png_do_strip_filler\n"); #if defined(PNG_USELESS_TESTS_SUPPORTED) if (row != NULL && row_info != NULL) #endif { png_bytep sp=row; png_bytep dp=row; png_uint_32 row_width=row_info->width; png_uint_32 i; if ((row_info->color_type == PNG_COLOR_TYPE_RGB || (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA && (flags & PNG_FLAG_STRIP_ALPHA))) && row_info->channels == 4) { if (row_info->bit_depth == 8) { /* This converts from RGBX or RGBA to RGB */ if (flags & PNG_FLAG_FILLER_AFTER) { dp+=3; sp+=4; for (i = 1; i < row_width; i++) { *dp++ = *sp++; *dp++ = *sp++; *dp++ = *sp++; sp++; } } /* This converts from XRGB or ARGB to RGB */ else { for (i = 0; i < row_width; i++) { sp++; *dp++ = *sp++; *dp++ = *sp++; *dp++ = *sp++; } } row_info->pixel_depth = 24; row_info->rowbytes = row_width * 3; } else /* if (row_info->bit_depth == 16) */ { if (flags & PNG_FLAG_FILLER_AFTER) { /* This converts from RRGGBBXX or RRGGBBAA to RRGGBB */ sp += 8; dp += 6; for (i = 1; i < row_width; i++) { /* This could be (although png_memcpy is probably slower): png_memcpy(dp, sp, 6); sp += 8; dp += 6; */ *dp++ = *sp++; *dp++ = *sp++; *dp++ = *sp++; *dp++ = *sp++; *dp++ = *sp++; *dp++ = *sp++; sp += 2; } } else { /* This converts from XXRRGGBB or AARRGGBB to RRGGBB */ for (i = 0; i < row_width; i++) { /* This could be (although png_memcpy is probably slower): png_memcpy(dp, sp, 6); sp += 8; dp += 6; */ sp+=2; *dp++ = *sp++; *dp++ = *sp++; *dp++ = *sp++; *dp++ = *sp++; *dp++ = *sp++; *dp++ = *sp++; } } row_info->pixel_depth = 48; row_info->rowbytes = row_width * 6; } row_info->channels = 3; } else if ((row_info->color_type == PNG_COLOR_TYPE_GRAY || (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA && (flags & PNG_FLAG_STRIP_ALPHA))) && row_info->channels == 2) { if (row_info->bit_depth == 8) { /* This converts from GX or GA to G */ if (flags & PNG_FLAG_FILLER_AFTER) { for (i = 0; i < row_width; i++) { *dp++ = *sp++; sp++; } } /* This converts from XG or AG to G */ else { for (i = 0; i < row_width; i++) { sp++; *dp++ = *sp++; } } row_info->pixel_depth = 8; row_info->rowbytes = row_width; } else /* if (row_info->bit_depth == 16) */ { if (flags & PNG_FLAG_FILLER_AFTER) { /* This converts from GGXX or GGAA to GG */ sp += 4; dp += 2; for (i = 1; i < row_width; i++) { *dp++ = *sp++; *dp++ = *sp++; sp += 2; } } else { /* This converts from XXGG or AAGG to GG */ for (i = 0; i < row_width; i++) { sp += 2; *dp++ = *sp++; *dp++ = *sp++; } } row_info->pixel_depth = 16; row_info->rowbytes = row_width * 2; } row_info->channels = 1; } if (flags & PNG_FLAG_STRIP_ALPHA) row_info->color_type &= ~PNG_COLOR_MASK_ALPHA; } } #endif #if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED) /* swaps red and blue bytes within a pixel */ void /* PRIVATE */ png_do_bgr(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_bgr\n"); if ( #if defined(PNG_USELESS_TESTS_SUPPORTED) row != NULL && row_info != NULL && #endif (row_info->color_type & PNG_COLOR_MASK_COLOR)) { png_uint_32 row_width = row_info->width; if (row_info->bit_depth == 8) { if (row_info->color_type == PNG_COLOR_TYPE_RGB) { png_bytep rp; png_uint_32 i; for (i = 0, rp = row; i < row_width; i++, rp += 3) { png_byte save = *rp; *rp = *(rp + 2); *(rp + 2) = save; } } else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) { png_bytep rp; png_uint_32 i; for (i = 0, rp = row; i < row_width; i++, rp += 4) { png_byte save = *rp; *rp = *(rp + 2); *(rp + 2) = save; } } } else if (row_info->bit_depth == 16) { if (row_info->color_type == PNG_COLOR_TYPE_RGB) { png_bytep rp; png_uint_32 i; for (i = 0, rp = row; i < row_width; i++, rp += 6) { png_byte save = *rp; *rp = *(rp + 4); *(rp + 4) = save; save = *(rp + 1); *(rp + 1) = *(rp + 5); *(rp + 5) = save; } } else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) { png_bytep rp; png_uint_32 i; for (i = 0, rp = row; i < row_width; i++, rp += 8) { png_byte save = *rp; *rp = *(rp + 4); *(rp + 4) = save; save = *(rp + 1); *(rp + 1) = *(rp + 5); *(rp + 5) = save; } } } } } #endif /* PNG_READ_BGR_SUPPORTED or PNG_WRITE_BGR_SUPPORTED */ #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_LEGACY_SUPPORTED) void PNGAPI png_set_user_transform_info(png_structp png_ptr, png_voidp user_transform_ptr, int user_transform_depth, int user_transform_channels) { png_debug(1, "in png_set_user_transform_info\n"); if(png_ptr == NULL) return; #if defined(PNG_USER_TRANSFORM_PTR_SUPPORTED) png_ptr->user_transform_ptr = user_transform_ptr; png_ptr->user_transform_depth = (png_byte)user_transform_depth; png_ptr->user_transform_channels = (png_byte)user_transform_channels; #else if(user_transform_ptr || user_transform_depth || user_transform_channels) png_warning(png_ptr, "This version of libpng does not support user transform info"); #endif } #endif /* This function returns a pointer to the user_transform_ptr associated with * the user transform functions. The application should free any memory * associated with this pointer before png_write_destroy and png_read_destroy * are called. */ png_voidp PNGAPI png_get_user_transform_ptr(png_structp png_ptr) { #if defined(PNG_USER_TRANSFORM_PTR_SUPPORTED) if (png_ptr == NULL) return (NULL); return ((png_voidp)png_ptr->user_transform_ptr); #else return (NULL); #endif } #endif /* PNG_READ_SUPPORTED || PNG_WRITE_SUPPORTED */ /********* End of inlined file: pngtrans.c *********/ /********* Start of inlined file: pngwio.c *********/ /* pngwio.c - functions for data output * * Last changed in libpng 1.2.13 November 13, 2006 * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2006 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) * * This file provides a location for all output. Users who need * special handling are expected to write functions that have the same * arguments as these and perform similar functions, but that possibly * use different output methods. Note that you shouldn't change these * functions, but rather write replacement functions and then change * them at run time with png_set_write_fn(...). */ #define PNG_INTERNAL #ifdef PNG_WRITE_SUPPORTED /* Write the data to whatever output you are using. The default routine writes to a file pointer. Note that this routine sometimes gets called with very small lengths, so you should implement some kind of simple buffering if you are using unbuffered writes. This should never be asked to write more than 64K on a 16 bit machine. */ void /* PRIVATE */ png_write_data(png_structp png_ptr, png_bytep data, png_size_t length) { if (png_ptr->write_data_fn != NULL ) (*(png_ptr->write_data_fn))(png_ptr, data, length); else png_error(png_ptr, "Call to NULL write function"); } #if !defined(PNG_NO_STDIO) /* This is the function that does the actual writing of data. If you are not writing to a standard C stream, you should create a replacement write_data function and use it at run time with png_set_write_fn(), rather than changing the library. */ #ifndef USE_FAR_KEYWORD void PNGAPI png_default_write_data(png_structp png_ptr, png_bytep data, png_size_t length) { png_uint_32 check; if(png_ptr == NULL) return; #if defined(_WIN32_WCE) if ( !WriteFile((HANDLE)(png_ptr->io_ptr), data, length, &check, NULL) ) check = 0; #else check = fwrite(data, 1, length, (png_FILE_p)(png_ptr->io_ptr)); #endif if (check != length) png_error(png_ptr, "Write Error"); } #else /* this is the model-independent version. Since the standard I/O library can't handle far buffers in the medium and small models, we have to copy the data. */ #define NEAR_BUF_SIZE 1024 #define MIN(a,b) (a <= b ? a : b) void PNGAPI png_default_write_data(png_structp png_ptr, png_bytep data, png_size_t length) { png_uint_32 check; png_byte *near_data; /* Needs to be "png_byte *" instead of "png_bytep" */ png_FILE_p io_ptr; if(png_ptr == NULL) return; /* Check if data really is near. If so, use usual code. */ near_data = (png_byte *)CVT_PTR_NOCHECK(data); io_ptr = (png_FILE_p)CVT_PTR(png_ptr->io_ptr); if ((png_bytep)near_data == data) { #if defined(_WIN32_WCE) if ( !WriteFile(io_ptr, near_data, length, &check, NULL) ) check = 0; #else check = fwrite(near_data, 1, length, io_ptr); #endif } else { png_byte buf[NEAR_BUF_SIZE]; png_size_t written, remaining, err; check = 0; remaining = length; do { written = MIN(NEAR_BUF_SIZE, remaining); png_memcpy(buf, data, written); /* copy far buffer to near buffer */ #if defined(_WIN32_WCE) if ( !WriteFile(io_ptr, buf, written, &err, NULL) ) err = 0; #else err = fwrite(buf, 1, written, io_ptr); #endif if (err != written) break; else check += err; data += written; remaining -= written; } while (remaining != 0); } if (check != length) png_error(png_ptr, "Write Error"); } #endif #endif /* This function is called to output any data pending writing (normally to disk). After png_flush is called, there should be no data pending writing in any buffers. */ #if defined(PNG_WRITE_FLUSH_SUPPORTED) void /* PRIVATE */ png_flush(png_structp png_ptr) { if (png_ptr->output_flush_fn != NULL) (*(png_ptr->output_flush_fn))(png_ptr); } #if !defined(PNG_NO_STDIO) void PNGAPI png_default_flush(png_structp png_ptr) { #if !defined(_WIN32_WCE) png_FILE_p io_ptr; #endif if(png_ptr == NULL) return; #if !defined(_WIN32_WCE) io_ptr = (png_FILE_p)CVT_PTR((png_ptr->io_ptr)); if (io_ptr != NULL) fflush(io_ptr); #endif } #endif #endif /* This function allows the application to supply new output functions for libpng if standard C streams aren't being used. This function takes as its arguments: png_ptr - pointer to a png output data structure io_ptr - pointer to user supplied structure containing info about the output functions. May be NULL. write_data_fn - pointer to a new output function that takes as its arguments a pointer to a png_struct, a pointer to data to be written, and a 32-bit unsigned int that is the number of bytes to be written. The new write function should call png_error(png_ptr, "Error msg") to exit and output any fatal error messages. flush_data_fn - pointer to a new flush function that takes as its arguments a pointer to a png_struct. After a call to the flush function, there should be no data in any buffers or pending transmission. If the output method doesn't do any buffering of ouput, a function prototype must still be supplied although it doesn't have to do anything. If PNG_WRITE_FLUSH_SUPPORTED is not defined at libpng compile time, output_flush_fn will be ignored, although it must be supplied for compatibility. */ void PNGAPI png_set_write_fn(png_structp png_ptr, png_voidp io_ptr, png_rw_ptr write_data_fn, png_flush_ptr output_flush_fn) { if(png_ptr == NULL) return; png_ptr->io_ptr = io_ptr; #if !defined(PNG_NO_STDIO) if (write_data_fn != NULL) png_ptr->write_data_fn = write_data_fn; else png_ptr->write_data_fn = png_default_write_data; #else png_ptr->write_data_fn = write_data_fn; #endif #if defined(PNG_WRITE_FLUSH_SUPPORTED) #if !defined(PNG_NO_STDIO) if (output_flush_fn != NULL) png_ptr->output_flush_fn = output_flush_fn; else png_ptr->output_flush_fn = png_default_flush; #else png_ptr->output_flush_fn = output_flush_fn; #endif #endif /* PNG_WRITE_FLUSH_SUPPORTED */ /* It is an error to read while writing a png file */ if (png_ptr->read_data_fn != NULL) { png_ptr->read_data_fn = NULL; png_warning(png_ptr, "Attempted to set both read_data_fn and write_data_fn in"); png_warning(png_ptr, "the same structure. Resetting read_data_fn to NULL."); } } #if defined(USE_FAR_KEYWORD) #if defined(_MSC_VER) void *png_far_to_near(png_structp png_ptr,png_voidp ptr, int check) { void *near_ptr; void FAR *far_ptr; FP_OFF(near_ptr) = FP_OFF(ptr); far_ptr = (void FAR *)near_ptr; if(check != 0) if(FP_SEG(ptr) != FP_SEG(far_ptr)) png_error(png_ptr,"segment lost in conversion"); return(near_ptr); } # else void *png_far_to_near(png_structp png_ptr,png_voidp ptr, int check) { void *near_ptr; void FAR *far_ptr; near_ptr = (void FAR *)ptr; far_ptr = (void FAR *)near_ptr; if(check != 0) if(far_ptr != ptr) png_error(png_ptr,"segment lost in conversion"); return(near_ptr); } # endif # endif #endif /* PNG_WRITE_SUPPORTED */ /********* End of inlined file: pngwio.c *********/ /********* Start of inlined file: pngwrite.c *********/ /* pngwrite.c - general routines to write a PNG file * * Last changed in libpng 1.2.15 January 5, 2007 * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2007 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) */ /* get internal access to png.h */ #define PNG_INTERNAL #ifdef PNG_WRITE_SUPPORTED /* Writes all the PNG information. This is the suggested way to use the * library. If you have a new chunk to add, make a function to write it, * and put it in the correct location here. If you want the chunk written * after the image data, put it in png_write_end(). I strongly encourage * you to supply a PNG_INFO_ flag, and check info_ptr->valid before writing * the chunk, as that will keep the code from breaking if you want to just * write a plain PNG file. If you have long comments, I suggest writing * them in png_write_end(), and compressing them. */ void PNGAPI png_write_info_before_PLTE(png_structp png_ptr, png_infop info_ptr) { png_debug(1, "in png_write_info_before_PLTE\n"); if (png_ptr == NULL || info_ptr == NULL) return; if (!(png_ptr->mode & PNG_WROTE_INFO_BEFORE_PLTE)) { png_write_sig(png_ptr); /* write PNG signature */ #if defined(PNG_MNG_FEATURES_SUPPORTED) if((png_ptr->mode&PNG_HAVE_PNG_SIGNATURE)&&(png_ptr->mng_features_permitted)) { png_warning(png_ptr,"MNG features are not allowed in a PNG datastream"); png_ptr->mng_features_permitted=0; } #endif /* write IHDR information. */ png_write_IHDR(png_ptr, info_ptr->width, info_ptr->height, info_ptr->bit_depth, info_ptr->color_type, info_ptr->compression_type, info_ptr->filter_type, #if defined(PNG_WRITE_INTERLACING_SUPPORTED) info_ptr->interlace_type); #else 0); #endif /* the rest of these check to see if the valid field has the appropriate flag set, and if it does, writes the chunk. */ #if defined(PNG_WRITE_gAMA_SUPPORTED) if (info_ptr->valid & PNG_INFO_gAMA) { # ifdef PNG_FLOATING_POINT_SUPPORTED png_write_gAMA(png_ptr, info_ptr->gamma); #else #ifdef PNG_FIXED_POINT_SUPPORTED png_write_gAMA_fixed(png_ptr, info_ptr->int_gamma); # endif #endif } #endif #if defined(PNG_WRITE_sRGB_SUPPORTED) if (info_ptr->valid & PNG_INFO_sRGB) png_write_sRGB(png_ptr, (int)info_ptr->srgb_intent); #endif #if defined(PNG_WRITE_iCCP_SUPPORTED) if (info_ptr->valid & PNG_INFO_iCCP) png_write_iCCP(png_ptr, info_ptr->iccp_name, PNG_COMPRESSION_TYPE_BASE, info_ptr->iccp_profile, (int)info_ptr->iccp_proflen); #endif #if defined(PNG_WRITE_sBIT_SUPPORTED) if (info_ptr->valid & PNG_INFO_sBIT) png_write_sBIT(png_ptr, &(info_ptr->sig_bit), info_ptr->color_type); #endif #if defined(PNG_WRITE_cHRM_SUPPORTED) if (info_ptr->valid & PNG_INFO_cHRM) { #ifdef PNG_FLOATING_POINT_SUPPORTED png_write_cHRM(png_ptr, info_ptr->x_white, info_ptr->y_white, info_ptr->x_red, info_ptr->y_red, info_ptr->x_green, info_ptr->y_green, info_ptr->x_blue, info_ptr->y_blue); #else # ifdef PNG_FIXED_POINT_SUPPORTED png_write_cHRM_fixed(png_ptr, info_ptr->int_x_white, info_ptr->int_y_white, info_ptr->int_x_red, info_ptr->int_y_red, info_ptr->int_x_green, info_ptr->int_y_green, info_ptr->int_x_blue, info_ptr->int_y_blue); # endif #endif } #endif #if defined(PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED) if (info_ptr->unknown_chunks_num) { png_unknown_chunk *up; png_debug(5, "writing extra chunks\n"); for (up = info_ptr->unknown_chunks; up < info_ptr->unknown_chunks + info_ptr->unknown_chunks_num; up++) { int keep=png_handle_as_unknown(png_ptr, up->name); if (keep != PNG_HANDLE_CHUNK_NEVER && up->location && !(up->location & PNG_HAVE_PLTE) && !(up->location & PNG_HAVE_IDAT) && ((up->name[3] & 0x20) || keep == PNG_HANDLE_CHUNK_ALWAYS || (png_ptr->flags & PNG_FLAG_KEEP_UNSAFE_CHUNKS))) { png_write_chunk(png_ptr, up->name, up->data, up->size); } } } #endif png_ptr->mode |= PNG_WROTE_INFO_BEFORE_PLTE; } } void PNGAPI png_write_info(png_structp png_ptr, png_infop info_ptr) { #if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_sPLT_SUPPORTED) int i; #endif png_debug(1, "in png_write_info\n"); if (png_ptr == NULL || info_ptr == NULL) return; png_write_info_before_PLTE(png_ptr, info_ptr); if (info_ptr->valid & PNG_INFO_PLTE) png_write_PLTE(png_ptr, info_ptr->palette, (png_uint_32)info_ptr->num_palette); else if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE) png_error(png_ptr, "Valid palette required for paletted images"); #if defined(PNG_WRITE_tRNS_SUPPORTED) if (info_ptr->valid & PNG_INFO_tRNS) { #if defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED) /* invert the alpha channel (in tRNS) */ if ((png_ptr->transformations & PNG_INVERT_ALPHA) && info_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { int j; for (j=0; j<(int)info_ptr->num_trans; j++) info_ptr->trans[j] = (png_byte)(255 - info_ptr->trans[j]); } #endif png_write_tRNS(png_ptr, info_ptr->trans, &(info_ptr->trans_values), info_ptr->num_trans, info_ptr->color_type); } #endif #if defined(PNG_WRITE_bKGD_SUPPORTED) if (info_ptr->valid & PNG_INFO_bKGD) png_write_bKGD(png_ptr, &(info_ptr->background), info_ptr->color_type); #endif #if defined(PNG_WRITE_hIST_SUPPORTED) if (info_ptr->valid & PNG_INFO_hIST) png_write_hIST(png_ptr, info_ptr->hist, info_ptr->num_palette); #endif #if defined(PNG_WRITE_oFFs_SUPPORTED) if (info_ptr->valid & PNG_INFO_oFFs) png_write_oFFs(png_ptr, info_ptr->x_offset, info_ptr->y_offset, info_ptr->offset_unit_type); #endif #if defined(PNG_WRITE_pCAL_SUPPORTED) if (info_ptr->valid & PNG_INFO_pCAL) png_write_pCAL(png_ptr, info_ptr->pcal_purpose, info_ptr->pcal_X0, info_ptr->pcal_X1, info_ptr->pcal_type, info_ptr->pcal_nparams, info_ptr->pcal_units, info_ptr->pcal_params); #endif #if defined(PNG_WRITE_sCAL_SUPPORTED) if (info_ptr->valid & PNG_INFO_sCAL) #if defined(PNG_FLOATING_POINT_SUPPORTED) && !defined(PNG_NO_STDIO) png_write_sCAL(png_ptr, (int)info_ptr->scal_unit, info_ptr->scal_pixel_width, info_ptr->scal_pixel_height); #else #ifdef PNG_FIXED_POINT_SUPPORTED png_write_sCAL_s(png_ptr, (int)info_ptr->scal_unit, info_ptr->scal_s_width, info_ptr->scal_s_height); #else png_warning(png_ptr, "png_write_sCAL not supported; sCAL chunk not written."); #endif #endif #endif #if defined(PNG_WRITE_pHYs_SUPPORTED) if (info_ptr->valid & PNG_INFO_pHYs) png_write_pHYs(png_ptr, info_ptr->x_pixels_per_unit, info_ptr->y_pixels_per_unit, info_ptr->phys_unit_type); #endif #if defined(PNG_WRITE_tIME_SUPPORTED) if (info_ptr->valid & PNG_INFO_tIME) { png_write_tIME(png_ptr, &(info_ptr->mod_time)); png_ptr->mode |= PNG_WROTE_tIME; } #endif #if defined(PNG_WRITE_sPLT_SUPPORTED) if (info_ptr->valid & PNG_INFO_sPLT) for (i = 0; i < (int)info_ptr->splt_palettes_num; i++) png_write_sPLT(png_ptr, info_ptr->splt_palettes + i); #endif #if defined(PNG_WRITE_TEXT_SUPPORTED) /* Check to see if we need to write text chunks */ for (i = 0; i < info_ptr->num_text; i++) { png_debug2(2, "Writing header text chunk %d, type %d\n", i, info_ptr->text[i].compression); /* an internationalized chunk? */ if (info_ptr->text[i].compression > 0) { #if defined(PNG_WRITE_iTXt_SUPPORTED) /* write international chunk */ png_write_iTXt(png_ptr, info_ptr->text[i].compression, info_ptr->text[i].key, info_ptr->text[i].lang, info_ptr->text[i].lang_key, info_ptr->text[i].text); #else png_warning(png_ptr, "Unable to write international text"); #endif /* Mark this chunk as written */ info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_NONE_WR; } /* If we want a compressed text chunk */ else if (info_ptr->text[i].compression == PNG_TEXT_COMPRESSION_zTXt) { #if defined(PNG_WRITE_zTXt_SUPPORTED) /* write compressed chunk */ png_write_zTXt(png_ptr, info_ptr->text[i].key, info_ptr->text[i].text, 0, info_ptr->text[i].compression); #else png_warning(png_ptr, "Unable to write compressed text"); #endif /* Mark this chunk as written */ info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_zTXt_WR; } else if (info_ptr->text[i].compression == PNG_TEXT_COMPRESSION_NONE) { #if defined(PNG_WRITE_tEXt_SUPPORTED) /* write uncompressed chunk */ png_write_tEXt(png_ptr, info_ptr->text[i].key, info_ptr->text[i].text, 0); #else png_warning(png_ptr, "Unable to write uncompressed text"); #endif /* Mark this chunk as written */ info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_NONE_WR; } } #endif #if defined(PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED) if (info_ptr->unknown_chunks_num) { png_unknown_chunk *up; png_debug(5, "writing extra chunks\n"); for (up = info_ptr->unknown_chunks; up < info_ptr->unknown_chunks + info_ptr->unknown_chunks_num; up++) { int keep=png_handle_as_unknown(png_ptr, up->name); if (keep != PNG_HANDLE_CHUNK_NEVER && up->location && (up->location & PNG_HAVE_PLTE) && !(up->location & PNG_HAVE_IDAT) && ((up->name[3] & 0x20) || keep == PNG_HANDLE_CHUNK_ALWAYS || (png_ptr->flags & PNG_FLAG_KEEP_UNSAFE_CHUNKS))) { png_write_chunk(png_ptr, up->name, up->data, up->size); } } } #endif } /* Writes the end of the PNG file. If you don't want to write comments or * time information, you can pass NULL for info. If you already wrote these * in png_write_info(), do not write them again here. If you have long * comments, I suggest writing them here, and compressing them. */ void PNGAPI png_write_end(png_structp png_ptr, png_infop info_ptr) { png_debug(1, "in png_write_end\n"); if (png_ptr == NULL) return; if (!(png_ptr->mode & PNG_HAVE_IDAT)) png_error(png_ptr, "No IDATs written into file"); /* see if user wants us to write information chunks */ if (info_ptr != NULL) { #if defined(PNG_WRITE_TEXT_SUPPORTED) int i; /* local index variable */ #endif #if defined(PNG_WRITE_tIME_SUPPORTED) /* check to see if user has supplied a time chunk */ if ((info_ptr->valid & PNG_INFO_tIME) && !(png_ptr->mode & PNG_WROTE_tIME)) png_write_tIME(png_ptr, &(info_ptr->mod_time)); #endif #if defined(PNG_WRITE_TEXT_SUPPORTED) /* loop through comment chunks */ for (i = 0; i < info_ptr->num_text; i++) { png_debug2(2, "Writing trailer text chunk %d, type %d\n", i, info_ptr->text[i].compression); /* an internationalized chunk? */ if (info_ptr->text[i].compression > 0) { #if defined(PNG_WRITE_iTXt_SUPPORTED) /* write international chunk */ png_write_iTXt(png_ptr, info_ptr->text[i].compression, info_ptr->text[i].key, info_ptr->text[i].lang, info_ptr->text[i].lang_key, info_ptr->text[i].text); #else png_warning(png_ptr, "Unable to write international text"); #endif /* Mark this chunk as written */ info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_NONE_WR; } else if (info_ptr->text[i].compression >= PNG_TEXT_COMPRESSION_zTXt) { #if defined(PNG_WRITE_zTXt_SUPPORTED) /* write compressed chunk */ png_write_zTXt(png_ptr, info_ptr->text[i].key, info_ptr->text[i].text, 0, info_ptr->text[i].compression); #else png_warning(png_ptr, "Unable to write compressed text"); #endif /* Mark this chunk as written */ info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_zTXt_WR; } else if (info_ptr->text[i].compression == PNG_TEXT_COMPRESSION_NONE) { #if defined(PNG_WRITE_tEXt_SUPPORTED) /* write uncompressed chunk */ png_write_tEXt(png_ptr, info_ptr->text[i].key, info_ptr->text[i].text, 0); #else png_warning(png_ptr, "Unable to write uncompressed text"); #endif /* Mark this chunk as written */ info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_NONE_WR; } } #endif #if defined(PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED) if (info_ptr->unknown_chunks_num) { png_unknown_chunk *up; png_debug(5, "writing extra chunks\n"); for (up = info_ptr->unknown_chunks; up < info_ptr->unknown_chunks + info_ptr->unknown_chunks_num; up++) { int keep=png_handle_as_unknown(png_ptr, up->name); if (keep != PNG_HANDLE_CHUNK_NEVER && up->location && (up->location & PNG_AFTER_IDAT) && ((up->name[3] & 0x20) || keep == PNG_HANDLE_CHUNK_ALWAYS || (png_ptr->flags & PNG_FLAG_KEEP_UNSAFE_CHUNKS))) { png_write_chunk(png_ptr, up->name, up->data, up->size); } } } #endif } png_ptr->mode |= PNG_AFTER_IDAT; /* write end of PNG file */ png_write_IEND(png_ptr); } #if defined(PNG_WRITE_tIME_SUPPORTED) #if !defined(_WIN32_WCE) /* "time.h" functions are not supported on WindowsCE */ void PNGAPI png_convert_from_struct_tm(png_timep ptime, struct tm FAR * ttime) { png_debug(1, "in png_convert_from_struct_tm\n"); ptime->year = (png_uint_16)(1900 + ttime->tm_year); ptime->month = (png_byte)(ttime->tm_mon + 1); ptime->day = (png_byte)ttime->tm_mday; ptime->hour = (png_byte)ttime->tm_hour; ptime->minute = (png_byte)ttime->tm_min; ptime->second = (png_byte)ttime->tm_sec; } void PNGAPI png_convert_from_time_t(png_timep ptime, time_t ttime) { struct tm *tbuf; png_debug(1, "in png_convert_from_time_t\n"); tbuf = gmtime(&ttime); png_convert_from_struct_tm(ptime, tbuf); } #endif #endif /* Initialize png_ptr structure, and allocate any memory needed */ png_structp PNGAPI png_create_write_struct(png_const_charp user_png_ver, png_voidp error_ptr, png_error_ptr error_fn, png_error_ptr warn_fn) { #ifdef PNG_USER_MEM_SUPPORTED return (png_create_write_struct_2(user_png_ver, error_ptr, error_fn, warn_fn, png_voidp_NULL, png_malloc_ptr_NULL, png_free_ptr_NULL)); } /* Alternate initialize png_ptr structure, and allocate any memory needed */ png_structp PNGAPI png_create_write_struct_2(png_const_charp user_png_ver, png_voidp error_ptr, png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr, png_malloc_ptr malloc_fn, png_free_ptr free_fn) { #endif /* PNG_USER_MEM_SUPPORTED */ png_structp png_ptr; #ifdef PNG_SETJMP_SUPPORTED #ifdef USE_FAR_KEYWORD jmp_buf jmpbuf; #endif #endif int i; png_debug(1, "in png_create_write_struct\n"); #ifdef PNG_USER_MEM_SUPPORTED png_ptr = (png_structp)png_create_struct_2(PNG_STRUCT_PNG, (png_malloc_ptr)malloc_fn, (png_voidp)mem_ptr); #else png_ptr = (png_structp)png_create_struct(PNG_STRUCT_PNG); #endif /* PNG_USER_MEM_SUPPORTED */ if (png_ptr == NULL) return (NULL); /* added at libpng-1.2.6 */ #ifdef PNG_SET_USER_LIMITS_SUPPORTED png_ptr->user_width_max=PNG_USER_WIDTH_MAX; png_ptr->user_height_max=PNG_USER_HEIGHT_MAX; #endif #ifdef PNG_SETJMP_SUPPORTED #ifdef USE_FAR_KEYWORD if (setjmp(jmpbuf)) #else if (setjmp(png_ptr->jmpbuf)) #endif { png_free(png_ptr, png_ptr->zbuf); png_ptr->zbuf=NULL; png_destroy_struct(png_ptr); return (NULL); } #ifdef USE_FAR_KEYWORD png_memcpy(png_ptr->jmpbuf,jmpbuf,png_sizeof(jmp_buf)); #endif #endif #ifdef PNG_USER_MEM_SUPPORTED png_set_mem_fn(png_ptr, mem_ptr, malloc_fn, free_fn); #endif /* PNG_USER_MEM_SUPPORTED */ png_set_error_fn(png_ptr, error_ptr, error_fn, warn_fn); i=0; do { if(user_png_ver[i] != png_libpng_ver[i]) png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; } while (png_libpng_ver[i++]); if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) { /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so * we must recompile any applications that use any older library version. * For versions after libpng 1.0, we will be compatible, so we need * only check the first digit. */ if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] || (user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) || (user_png_ver[0] == '0' && user_png_ver[2] < '9')) { #if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE) char msg[80]; if (user_png_ver) { png_snprintf(msg, 80, "Application was compiled with png.h from libpng-%.20s", user_png_ver); png_warning(png_ptr, msg); } png_snprintf(msg, 80, "Application is running with png.c from libpng-%.20s", png_libpng_ver); png_warning(png_ptr, msg); #endif #ifdef PNG_ERROR_NUMBERS_SUPPORTED png_ptr->flags=0; #endif png_error(png_ptr, "Incompatible libpng version in application and library"); } } /* initialize zbuf - compression buffer */ png_ptr->zbuf_size = PNG_ZBUF_SIZE; png_ptr->zbuf = (png_bytep)png_malloc(png_ptr, (png_uint_32)png_ptr->zbuf_size); png_set_write_fn(png_ptr, png_voidp_NULL, png_rw_ptr_NULL, png_flush_ptr_NULL); #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) png_set_filter_heuristics(png_ptr, PNG_FILTER_HEURISTIC_DEFAULT, 1, png_doublep_NULL, png_doublep_NULL); #endif #ifdef PNG_SETJMP_SUPPORTED /* Applications that neglect to set up their own setjmp() and then encounter a png_error() will longjmp here. Since the jmpbuf is then meaningless we abort instead of returning. */ #ifdef USE_FAR_KEYWORD if (setjmp(jmpbuf)) PNG_ABORT(); png_memcpy(png_ptr->jmpbuf,jmpbuf,png_sizeof(jmp_buf)); #else if (setjmp(png_ptr->jmpbuf)) PNG_ABORT(); #endif #endif return (png_ptr); } /* Initialize png_ptr structure, and allocate any memory needed */ #if defined(PNG_1_0_X) || defined(PNG_1_2_X) /* Deprecated. */ #undef png_write_init void PNGAPI png_write_init(png_structp png_ptr) { /* We only come here via pre-1.0.7-compiled applications */ png_write_init_2(png_ptr, "1.0.6 or earlier", 0, 0); } void PNGAPI png_write_init_2(png_structp png_ptr, png_const_charp user_png_ver, png_size_t png_struct_size, png_size_t png_info_size) { /* We only come here via pre-1.0.12-compiled applications */ if(png_ptr == NULL) return; #if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE) if(png_sizeof(png_struct) > png_struct_size || png_sizeof(png_info) > png_info_size) { char msg[80]; png_ptr->warning_fn=NULL; if (user_png_ver) { png_snprintf(msg, 80, "Application was compiled with png.h from libpng-%.20s", user_png_ver); png_warning(png_ptr, msg); } png_snprintf(msg, 80, "Application is running with png.c from libpng-%.20s", png_libpng_ver); png_warning(png_ptr, msg); } #endif if(png_sizeof(png_struct) > png_struct_size) { png_ptr->error_fn=NULL; #ifdef PNG_ERROR_NUMBERS_SUPPORTED png_ptr->flags=0; #endif png_error(png_ptr, "The png struct allocated by the application for writing is too small."); } if(png_sizeof(png_info) > png_info_size) { png_ptr->error_fn=NULL; #ifdef PNG_ERROR_NUMBERS_SUPPORTED png_ptr->flags=0; #endif png_error(png_ptr, "The info struct allocated by the application for writing is too small."); } png_write_init_3(&png_ptr, user_png_ver, png_struct_size); } #endif /* PNG_1_0_X || PNG_1_2_X */ void PNGAPI png_write_init_3(png_structpp ptr_ptr, png_const_charp user_png_ver, png_size_t png_struct_size) { png_structp png_ptr=*ptr_ptr; #ifdef PNG_SETJMP_SUPPORTED jmp_buf tmp_jmp; /* to save current jump buffer */ #endif int i = 0; if (png_ptr == NULL) return; do { if (user_png_ver[i] != png_libpng_ver[i]) { #ifdef PNG_LEGACY_SUPPORTED png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; #else png_ptr->warning_fn=NULL; png_warning(png_ptr, "Application uses deprecated png_write_init() and should be recompiled."); break; #endif } } while (png_libpng_ver[i++]); png_debug(1, "in png_write_init_3\n"); #ifdef PNG_SETJMP_SUPPORTED /* save jump buffer and error functions */ png_memcpy(tmp_jmp, png_ptr->jmpbuf, png_sizeof (jmp_buf)); #endif if (png_sizeof(png_struct) > png_struct_size) { png_destroy_struct(png_ptr); png_ptr = (png_structp)png_create_struct(PNG_STRUCT_PNG); *ptr_ptr = png_ptr; } /* reset all variables to 0 */ png_memset(png_ptr, 0, png_sizeof (png_struct)); /* added at libpng-1.2.6 */ #ifdef PNG_SET_USER_LIMITS_SUPPORTED png_ptr->user_width_max=PNG_USER_WIDTH_MAX; png_ptr->user_height_max=PNG_USER_HEIGHT_MAX; #endif #ifdef PNG_SETJMP_SUPPORTED /* restore jump buffer */ png_memcpy(png_ptr->jmpbuf, tmp_jmp, png_sizeof (jmp_buf)); #endif png_set_write_fn(png_ptr, png_voidp_NULL, png_rw_ptr_NULL, png_flush_ptr_NULL); /* initialize zbuf - compression buffer */ png_ptr->zbuf_size = PNG_ZBUF_SIZE; png_ptr->zbuf = (png_bytep)png_malloc(png_ptr, (png_uint_32)png_ptr->zbuf_size); #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) png_set_filter_heuristics(png_ptr, PNG_FILTER_HEURISTIC_DEFAULT, 1, png_doublep_NULL, png_doublep_NULL); #endif } /* Write a few rows of image data. If the image is interlaced, * either you will have to write the 7 sub images, or, if you * have called png_set_interlace_handling(), you will have to * "write" the image seven times. */ void PNGAPI png_write_rows(png_structp png_ptr, png_bytepp row, png_uint_32 num_rows) { png_uint_32 i; /* row counter */ png_bytepp rp; /* row pointer */ png_debug(1, "in png_write_rows\n"); if (png_ptr == NULL) return; /* loop through the rows */ for (i = 0, rp = row; i < num_rows; i++, rp++) { png_write_row(png_ptr, *rp); } } /* Write the image. You only need to call this function once, even * if you are writing an interlaced image. */ void PNGAPI png_write_image(png_structp png_ptr, png_bytepp image) { png_uint_32 i; /* row index */ int pass, num_pass; /* pass variables */ png_bytepp rp; /* points to current row */ if (png_ptr == NULL) return; png_debug(1, "in png_write_image\n"); #if defined(PNG_WRITE_INTERLACING_SUPPORTED) /* intialize interlace handling. If image is not interlaced, this will set pass to 1 */ num_pass = png_set_interlace_handling(png_ptr); #else num_pass = 1; #endif /* loop through passes */ for (pass = 0; pass < num_pass; pass++) { /* loop through image */ for (i = 0, rp = image; i < png_ptr->height; i++, rp++) { png_write_row(png_ptr, *rp); } } } /* called by user to write a row of image data */ void PNGAPI png_write_row(png_structp png_ptr, png_bytep row) { if (png_ptr == NULL) return; png_debug2(1, "in png_write_row (row %ld, pass %d)\n", png_ptr->row_number, png_ptr->pass); /* initialize transformations and other stuff if first time */ if (png_ptr->row_number == 0 && png_ptr->pass == 0) { /* make sure we wrote the header info */ if (!(png_ptr->mode & PNG_WROTE_INFO_BEFORE_PLTE)) png_error(png_ptr, "png_write_info was never called before png_write_row."); /* check for transforms that have been set but were defined out */ #if !defined(PNG_WRITE_INVERT_SUPPORTED) && defined(PNG_READ_INVERT_SUPPORTED) if (png_ptr->transformations & PNG_INVERT_MONO) png_warning(png_ptr, "PNG_WRITE_INVERT_SUPPORTED is not defined."); #endif #if !defined(PNG_WRITE_FILLER_SUPPORTED) && defined(PNG_READ_FILLER_SUPPORTED) if (png_ptr->transformations & PNG_FILLER) png_warning(png_ptr, "PNG_WRITE_FILLER_SUPPORTED is not defined."); #endif #if !defined(PNG_WRITE_PACKSWAP_SUPPORTED) && defined(PNG_READ_PACKSWAP_SUPPORTED) if (png_ptr->transformations & PNG_PACKSWAP) png_warning(png_ptr, "PNG_WRITE_PACKSWAP_SUPPORTED is not defined."); #endif #if !defined(PNG_WRITE_PACK_SUPPORTED) && defined(PNG_READ_PACK_SUPPORTED) if (png_ptr->transformations & PNG_PACK) png_warning(png_ptr, "PNG_WRITE_PACK_SUPPORTED is not defined."); #endif #if !defined(PNG_WRITE_SHIFT_SUPPORTED) && defined(PNG_READ_SHIFT_SUPPORTED) if (png_ptr->transformations & PNG_SHIFT) png_warning(png_ptr, "PNG_WRITE_SHIFT_SUPPORTED is not defined."); #endif #if !defined(PNG_WRITE_BGR_SUPPORTED) && defined(PNG_READ_BGR_SUPPORTED) if (png_ptr->transformations & PNG_BGR) png_warning(png_ptr, "PNG_WRITE_BGR_SUPPORTED is not defined."); #endif #if !defined(PNG_WRITE_SWAP_SUPPORTED) && defined(PNG_READ_SWAP_SUPPORTED) if (png_ptr->transformations & PNG_SWAP_BYTES) png_warning(png_ptr, "PNG_WRITE_SWAP_SUPPORTED is not defined."); #endif png_write_start_row(png_ptr); } #if defined(PNG_WRITE_INTERLACING_SUPPORTED) /* if interlaced and not interested in row, return */ if (png_ptr->interlaced && (png_ptr->transformations & PNG_INTERLACE)) { switch (png_ptr->pass) { case 0: if (png_ptr->row_number & 0x07) { png_write_finish_row(png_ptr); return; } break; case 1: if ((png_ptr->row_number & 0x07) || png_ptr->width < 5) { png_write_finish_row(png_ptr); return; } break; case 2: if ((png_ptr->row_number & 0x07) != 4) { png_write_finish_row(png_ptr); return; } break; case 3: if ((png_ptr->row_number & 0x03) || png_ptr->width < 3) { png_write_finish_row(png_ptr); return; } break; case 4: if ((png_ptr->row_number & 0x03) != 2) { png_write_finish_row(png_ptr); return; } break; case 5: if ((png_ptr->row_number & 0x01) || png_ptr->width < 2) { png_write_finish_row(png_ptr); return; } break; case 6: if (!(png_ptr->row_number & 0x01)) { png_write_finish_row(png_ptr); return; } break; } } #endif /* set up row info for transformations */ png_ptr->row_info.color_type = png_ptr->color_type; png_ptr->row_info.width = png_ptr->usr_width; png_ptr->row_info.channels = png_ptr->usr_channels; png_ptr->row_info.bit_depth = png_ptr->usr_bit_depth; png_ptr->row_info.pixel_depth = (png_byte)(png_ptr->row_info.bit_depth * png_ptr->row_info.channels); png_ptr->row_info.rowbytes = PNG_ROWBYTES(png_ptr->row_info.pixel_depth, png_ptr->row_info.width); png_debug1(3, "row_info->color_type = %d\n", png_ptr->row_info.color_type); png_debug1(3, "row_info->width = %lu\n", png_ptr->row_info.width); png_debug1(3, "row_info->channels = %d\n", png_ptr->row_info.channels); png_debug1(3, "row_info->bit_depth = %d\n", png_ptr->row_info.bit_depth); png_debug1(3, "row_info->pixel_depth = %d\n", png_ptr->row_info.pixel_depth); png_debug1(3, "row_info->rowbytes = %lu\n", png_ptr->row_info.rowbytes); /* Copy user's row into buffer, leaving room for filter byte. */ png_memcpy_check(png_ptr, png_ptr->row_buf + 1, row, png_ptr->row_info.rowbytes); #if defined(PNG_WRITE_INTERLACING_SUPPORTED) /* handle interlacing */ if (png_ptr->interlaced && png_ptr->pass < 6 && (png_ptr->transformations & PNG_INTERLACE)) { png_do_write_interlace(&(png_ptr->row_info), png_ptr->row_buf + 1, png_ptr->pass); /* this should always get caught above, but still ... */ if (!(png_ptr->row_info.width)) { png_write_finish_row(png_ptr); return; } } #endif /* handle other transformations */ if (png_ptr->transformations) png_do_write_transformations(png_ptr); #if defined(PNG_MNG_FEATURES_SUPPORTED) /* Write filter_method 64 (intrapixel differencing) only if * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and * 2. Libpng did not write a PNG signature (this filter_method is only * used in PNG datastreams that are embedded in MNG datastreams) and * 3. The application called png_permit_mng_features with a mask that * included PNG_FLAG_MNG_FILTER_64 and * 4. The filter_method is 64 and * 5. The color_type is RGB or RGBA */ if((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) && (png_ptr->filter_type == PNG_INTRAPIXEL_DIFFERENCING)) { /* Intrapixel differencing */ png_do_write_intrapixel(&(png_ptr->row_info), png_ptr->row_buf + 1); } #endif /* Find a filter if necessary, filter the row and write it out. */ png_write_find_filter(png_ptr, &(png_ptr->row_info)); if (png_ptr->write_row_fn != NULL) (*(png_ptr->write_row_fn))(png_ptr, png_ptr->row_number, png_ptr->pass); } #if defined(PNG_WRITE_FLUSH_SUPPORTED) /* Set the automatic flush interval or 0 to turn flushing off */ void PNGAPI png_set_flush(png_structp png_ptr, int nrows) { png_debug(1, "in png_set_flush\n"); if (png_ptr == NULL) return; png_ptr->flush_dist = (nrows < 0 ? 0 : nrows); } /* flush the current output buffers now */ void PNGAPI png_write_flush(png_structp png_ptr) { int wrote_IDAT; png_debug(1, "in png_write_flush\n"); if (png_ptr == NULL) return; /* We have already written out all of the data */ if (png_ptr->row_number >= png_ptr->num_rows) return; do { int ret; /* compress the data */ ret = deflate(&png_ptr->zstream, Z_SYNC_FLUSH); wrote_IDAT = 0; /* check for compression errors */ if (ret != Z_OK) { if (png_ptr->zstream.msg != NULL) png_error(png_ptr, png_ptr->zstream.msg); else png_error(png_ptr, "zlib error"); } if (!(png_ptr->zstream.avail_out)) { /* write the IDAT and reset the zlib output buffer */ png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size); png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; wrote_IDAT = 1; } } while(wrote_IDAT == 1); /* If there is any data left to be output, write it into a new IDAT */ if (png_ptr->zbuf_size != png_ptr->zstream.avail_out) { /* write the IDAT and reset the zlib output buffer */ png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size - png_ptr->zstream.avail_out); png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; } png_ptr->flush_rows = 0; png_flush(png_ptr); } #endif /* PNG_WRITE_FLUSH_SUPPORTED */ /* free all memory used by the write */ void PNGAPI png_destroy_write_struct(png_structpp png_ptr_ptr, png_infopp info_ptr_ptr) { png_structp png_ptr = NULL; png_infop info_ptr = NULL; #ifdef PNG_USER_MEM_SUPPORTED png_free_ptr free_fn = NULL; png_voidp mem_ptr = NULL; #endif png_debug(1, "in png_destroy_write_struct\n"); if (png_ptr_ptr != NULL) { png_ptr = *png_ptr_ptr; #ifdef PNG_USER_MEM_SUPPORTED free_fn = png_ptr->free_fn; mem_ptr = png_ptr->mem_ptr; #endif } if (info_ptr_ptr != NULL) info_ptr = *info_ptr_ptr; if (info_ptr != NULL) { png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1); #if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) if (png_ptr->num_chunk_list) { png_free(png_ptr, png_ptr->chunk_list); png_ptr->chunk_list=NULL; png_ptr->num_chunk_list=0; } #endif #ifdef PNG_USER_MEM_SUPPORTED png_destroy_struct_2((png_voidp)info_ptr, (png_free_ptr)free_fn, (png_voidp)mem_ptr); #else png_destroy_struct((png_voidp)info_ptr); #endif *info_ptr_ptr = NULL; } if (png_ptr != NULL) { png_write_destroy(png_ptr); #ifdef PNG_USER_MEM_SUPPORTED png_destroy_struct_2((png_voidp)png_ptr, (png_free_ptr)free_fn, (png_voidp)mem_ptr); #else png_destroy_struct((png_voidp)png_ptr); #endif *png_ptr_ptr = NULL; } } /* Free any memory used in png_ptr struct (old method) */ void /* PRIVATE */ png_write_destroy(png_structp png_ptr) { #ifdef PNG_SETJMP_SUPPORTED jmp_buf tmp_jmp; /* save jump buffer */ #endif png_error_ptr error_fn; png_error_ptr warning_fn; png_voidp error_ptr; #ifdef PNG_USER_MEM_SUPPORTED png_free_ptr free_fn; #endif png_debug(1, "in png_write_destroy\n"); /* free any memory zlib uses */ deflateEnd(&png_ptr->zstream); /* free our memory. png_free checks NULL for us. */ png_free(png_ptr, png_ptr->zbuf); png_free(png_ptr, png_ptr->row_buf); png_free(png_ptr, png_ptr->prev_row); png_free(png_ptr, png_ptr->sub_row); png_free(png_ptr, png_ptr->up_row); png_free(png_ptr, png_ptr->avg_row); png_free(png_ptr, png_ptr->paeth_row); #if defined(PNG_TIME_RFC1123_SUPPORTED) png_free(png_ptr, png_ptr->time_buffer); #endif #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) png_free(png_ptr, png_ptr->prev_filters); png_free(png_ptr, png_ptr->filter_weights); png_free(png_ptr, png_ptr->inv_filter_weights); png_free(png_ptr, png_ptr->filter_costs); png_free(png_ptr, png_ptr->inv_filter_costs); #endif #ifdef PNG_SETJMP_SUPPORTED /* reset structure */ png_memcpy(tmp_jmp, png_ptr->jmpbuf, png_sizeof (jmp_buf)); #endif error_fn = png_ptr->error_fn; warning_fn = png_ptr->warning_fn; error_ptr = png_ptr->error_ptr; #ifdef PNG_USER_MEM_SUPPORTED free_fn = png_ptr->free_fn; #endif png_memset(png_ptr, 0, png_sizeof (png_struct)); png_ptr->error_fn = error_fn; png_ptr->warning_fn = warning_fn; png_ptr->error_ptr = error_ptr; #ifdef PNG_USER_MEM_SUPPORTED png_ptr->free_fn = free_fn; #endif #ifdef PNG_SETJMP_SUPPORTED png_memcpy(png_ptr->jmpbuf, tmp_jmp, png_sizeof (jmp_buf)); #endif } /* Allow the application to select one or more row filters to use. */ void PNGAPI png_set_filter(png_structp png_ptr, int method, int filters) { png_debug(1, "in png_set_filter\n"); if (png_ptr == NULL) return; #if defined(PNG_MNG_FEATURES_SUPPORTED) if((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) && (method == PNG_INTRAPIXEL_DIFFERENCING)) method = PNG_FILTER_TYPE_BASE; #endif if (method == PNG_FILTER_TYPE_BASE) { switch (filters & (PNG_ALL_FILTERS | 0x07)) { #ifndef PNG_NO_WRITE_FILTER case 5: case 6: case 7: png_warning(png_ptr, "Unknown row filter for method 0"); #endif /* PNG_NO_WRITE_FILTER */ case PNG_FILTER_VALUE_NONE: png_ptr->do_filter=PNG_FILTER_NONE; break; #ifndef PNG_NO_WRITE_FILTER case PNG_FILTER_VALUE_SUB: png_ptr->do_filter=PNG_FILTER_SUB; break; case PNG_FILTER_VALUE_UP: png_ptr->do_filter=PNG_FILTER_UP; break; case PNG_FILTER_VALUE_AVG: png_ptr->do_filter=PNG_FILTER_AVG; break; case PNG_FILTER_VALUE_PAETH: png_ptr->do_filter=PNG_FILTER_PAETH; break; default: png_ptr->do_filter = (png_byte)filters; break; #else default: png_warning(png_ptr, "Unknown row filter for method 0"); #endif /* PNG_NO_WRITE_FILTER */ } /* If we have allocated the row_buf, this means we have already started * with the image and we should have allocated all of the filter buffers * that have been selected. If prev_row isn't already allocated, then * it is too late to start using the filters that need it, since we * will be missing the data in the previous row. If an application * wants to start and stop using particular filters during compression, * it should start out with all of the filters, and then add and * remove them after the start of compression. */ if (png_ptr->row_buf != NULL) { #ifndef PNG_NO_WRITE_FILTER if ((png_ptr->do_filter & PNG_FILTER_SUB) && png_ptr->sub_row == NULL) { png_ptr->sub_row = (png_bytep)png_malloc(png_ptr, (png_ptr->rowbytes + 1)); png_ptr->sub_row[0] = PNG_FILTER_VALUE_SUB; } if ((png_ptr->do_filter & PNG_FILTER_UP) && png_ptr->up_row == NULL) { if (png_ptr->prev_row == NULL) { png_warning(png_ptr, "Can't add Up filter after starting"); png_ptr->do_filter &= ~PNG_FILTER_UP; } else { png_ptr->up_row = (png_bytep)png_malloc(png_ptr, (png_ptr->rowbytes + 1)); png_ptr->up_row[0] = PNG_FILTER_VALUE_UP; } } if ((png_ptr->do_filter & PNG_FILTER_AVG) && png_ptr->avg_row == NULL) { if (png_ptr->prev_row == NULL) { png_warning(png_ptr, "Can't add Average filter after starting"); png_ptr->do_filter &= ~PNG_FILTER_AVG; } else { png_ptr->avg_row = (png_bytep)png_malloc(png_ptr, (png_ptr->rowbytes + 1)); png_ptr->avg_row[0] = PNG_FILTER_VALUE_AVG; } } if ((png_ptr->do_filter & PNG_FILTER_PAETH) && png_ptr->paeth_row == NULL) { if (png_ptr->prev_row == NULL) { png_warning(png_ptr, "Can't add Paeth filter after starting"); png_ptr->do_filter &= (png_byte)(~PNG_FILTER_PAETH); } else { png_ptr->paeth_row = (png_bytep)png_malloc(png_ptr, (png_ptr->rowbytes + 1)); png_ptr->paeth_row[0] = PNG_FILTER_VALUE_PAETH; } } if (png_ptr->do_filter == PNG_NO_FILTERS) #endif /* PNG_NO_WRITE_FILTER */ png_ptr->do_filter = PNG_FILTER_NONE; } } else png_error(png_ptr, "Unknown custom filter method"); } /* This allows us to influence the way in which libpng chooses the "best" * filter for the current scanline. While the "minimum-sum-of-absolute- * differences metric is relatively fast and effective, there is some * question as to whether it can be improved upon by trying to keep the * filtered data going to zlib more consistent, hopefully resulting in * better compression. */ #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) /* GRR 970116 */ void PNGAPI png_set_filter_heuristics(png_structp png_ptr, int heuristic_method, int num_weights, png_doublep filter_weights, png_doublep filter_costs) { int i; png_debug(1, "in png_set_filter_heuristics\n"); if (png_ptr == NULL) return; if (heuristic_method >= PNG_FILTER_HEURISTIC_LAST) { png_warning(png_ptr, "Unknown filter heuristic method"); return; } if (heuristic_method == PNG_FILTER_HEURISTIC_DEFAULT) { heuristic_method = PNG_FILTER_HEURISTIC_UNWEIGHTED; } if (num_weights < 0 || filter_weights == NULL || heuristic_method == PNG_FILTER_HEURISTIC_UNWEIGHTED) { num_weights = 0; } png_ptr->num_prev_filters = (png_byte)num_weights; png_ptr->heuristic_method = (png_byte)heuristic_method; if (num_weights > 0) { if (png_ptr->prev_filters == NULL) { png_ptr->prev_filters = (png_bytep)png_malloc(png_ptr, (png_uint_32)(png_sizeof(png_byte) * num_weights)); /* To make sure that the weighting starts out fairly */ for (i = 0; i < num_weights; i++) { png_ptr->prev_filters[i] = 255; } } if (png_ptr->filter_weights == NULL) { png_ptr->filter_weights = (png_uint_16p)png_malloc(png_ptr, (png_uint_32)(png_sizeof(png_uint_16) * num_weights)); png_ptr->inv_filter_weights = (png_uint_16p)png_malloc(png_ptr, (png_uint_32)(png_sizeof(png_uint_16) * num_weights)); for (i = 0; i < num_weights; i++) { png_ptr->inv_filter_weights[i] = png_ptr->filter_weights[i] = PNG_WEIGHT_FACTOR; } } for (i = 0; i < num_weights; i++) { if (filter_weights[i] < 0.0) { png_ptr->inv_filter_weights[i] = png_ptr->filter_weights[i] = PNG_WEIGHT_FACTOR; } else { png_ptr->inv_filter_weights[i] = (png_uint_16)((double)PNG_WEIGHT_FACTOR*filter_weights[i]+0.5); png_ptr->filter_weights[i] = (png_uint_16)((double)PNG_WEIGHT_FACTOR/filter_weights[i]+0.5); } } } /* If, in the future, there are other filter methods, this would * need to be based on png_ptr->filter. */ if (png_ptr->filter_costs == NULL) { png_ptr->filter_costs = (png_uint_16p)png_malloc(png_ptr, (png_uint_32)(png_sizeof(png_uint_16) * PNG_FILTER_VALUE_LAST)); png_ptr->inv_filter_costs = (png_uint_16p)png_malloc(png_ptr, (png_uint_32)(png_sizeof(png_uint_16) * PNG_FILTER_VALUE_LAST)); for (i = 0; i < PNG_FILTER_VALUE_LAST; i++) { png_ptr->inv_filter_costs[i] = png_ptr->filter_costs[i] = PNG_COST_FACTOR; } } /* Here is where we set the relative costs of the different filters. We * should take the desired compression level into account when setting * the costs, so that Paeth, for instance, has a high relative cost at low * compression levels, while it has a lower relative cost at higher * compression settings. The filter types are in order of increasing * relative cost, so it would be possible to do this with an algorithm. */ for (i = 0; i < PNG_FILTER_VALUE_LAST; i++) { if (filter_costs == NULL || filter_costs[i] < 0.0) { png_ptr->inv_filter_costs[i] = png_ptr->filter_costs[i] = PNG_COST_FACTOR; } else if (filter_costs[i] >= 1.0) { png_ptr->inv_filter_costs[i] = (png_uint_16)((double)PNG_COST_FACTOR / filter_costs[i] + 0.5); png_ptr->filter_costs[i] = (png_uint_16)((double)PNG_COST_FACTOR * filter_costs[i] + 0.5); } } } #endif /* PNG_WRITE_WEIGHTED_FILTER_SUPPORTED */ void PNGAPI png_set_compression_level(png_structp png_ptr, int level) { png_debug(1, "in png_set_compression_level\n"); if (png_ptr == NULL) return; png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_LEVEL; png_ptr->zlib_level = level; } void PNGAPI png_set_compression_mem_level(png_structp png_ptr, int mem_level) { png_debug(1, "in png_set_compression_mem_level\n"); if (png_ptr == NULL) return; png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_MEM_LEVEL; png_ptr->zlib_mem_level = mem_level; } void PNGAPI png_set_compression_strategy(png_structp png_ptr, int strategy) { png_debug(1, "in png_set_compression_strategy\n"); if (png_ptr == NULL) return; png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_STRATEGY; png_ptr->zlib_strategy = strategy; } void PNGAPI png_set_compression_window_bits(png_structp png_ptr, int window_bits) { if (png_ptr == NULL) return; if (window_bits > 15) png_warning(png_ptr, "Only compression windows <= 32k supported by PNG"); else if (window_bits < 8) png_warning(png_ptr, "Only compression windows >= 256 supported by PNG"); #ifndef WBITS_8_OK /* avoid libpng bug with 256-byte windows */ if (window_bits == 8) { png_warning(png_ptr, "Compression window is being reset to 512"); window_bits=9; } #endif png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_WINDOW_BITS; png_ptr->zlib_window_bits = window_bits; } void PNGAPI png_set_compression_method(png_structp png_ptr, int method) { png_debug(1, "in png_set_compression_method\n"); if (png_ptr == NULL) return; if (method != 8) png_warning(png_ptr, "Only compression method 8 is supported by PNG"); png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_METHOD; png_ptr->zlib_method = method; } void PNGAPI png_set_write_status_fn(png_structp png_ptr, png_write_status_ptr write_row_fn) { if (png_ptr == NULL) return; png_ptr->write_row_fn = write_row_fn; } #if defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) void PNGAPI png_set_write_user_transform_fn(png_structp png_ptr, png_user_transform_ptr write_user_transform_fn) { png_debug(1, "in png_set_write_user_transform_fn\n"); if (png_ptr == NULL) return; png_ptr->transformations |= PNG_USER_TRANSFORM; png_ptr->write_user_transform_fn = write_user_transform_fn; } #endif #if defined(PNG_INFO_IMAGE_SUPPORTED) void PNGAPI png_write_png(png_structp png_ptr, png_infop info_ptr, int transforms, voidp params) { if (png_ptr == NULL || info_ptr == NULL) return; #if defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED) /* invert the alpha channel from opacity to transparency */ if (transforms & PNG_TRANSFORM_INVERT_ALPHA) png_set_invert_alpha(png_ptr); #endif /* Write the file header information. */ png_write_info(png_ptr, info_ptr); /* ------ these transformations don't touch the info structure ------- */ #if defined(PNG_WRITE_INVERT_SUPPORTED) /* invert monochrome pixels */ if (transforms & PNG_TRANSFORM_INVERT_MONO) png_set_invert_mono(png_ptr); #endif #if defined(PNG_WRITE_SHIFT_SUPPORTED) /* Shift the pixels up to a legal bit depth and fill in * as appropriate to correctly scale the image. */ if ((transforms & PNG_TRANSFORM_SHIFT) && (info_ptr->valid & PNG_INFO_sBIT)) png_set_shift(png_ptr, &info_ptr->sig_bit); #endif #if defined(PNG_WRITE_PACK_SUPPORTED) /* pack pixels into bytes */ if (transforms & PNG_TRANSFORM_PACKING) png_set_packing(png_ptr); #endif #if defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED) /* swap location of alpha bytes from ARGB to RGBA */ if (transforms & PNG_TRANSFORM_SWAP_ALPHA) png_set_swap_alpha(png_ptr); #endif #if defined(PNG_WRITE_FILLER_SUPPORTED) /* Get rid of filler (OR ALPHA) bytes, pack XRGB/RGBX/ARGB/RGBA into * RGB (4 channels -> 3 channels). The second parameter is not used. */ if (transforms & PNG_TRANSFORM_STRIP_FILLER) png_set_filler(png_ptr, 0, PNG_FILLER_BEFORE); #endif #if defined(PNG_WRITE_BGR_SUPPORTED) /* flip BGR pixels to RGB */ if (transforms & PNG_TRANSFORM_BGR) png_set_bgr(png_ptr); #endif #if defined(PNG_WRITE_SWAP_SUPPORTED) /* swap bytes of 16-bit files to most significant byte first */ if (transforms & PNG_TRANSFORM_SWAP_ENDIAN) png_set_swap(png_ptr); #endif #if defined(PNG_WRITE_PACKSWAP_SUPPORTED) /* swap bits of 1, 2, 4 bit packed pixel formats */ if (transforms & PNG_TRANSFORM_PACKSWAP) png_set_packswap(png_ptr); #endif /* ----------------------- end of transformations ------------------- */ /* write the bits */ if (info_ptr->valid & PNG_INFO_IDAT) png_write_image(png_ptr, info_ptr->row_pointers); /* It is REQUIRED to call this to finish writing the rest of the file */ png_write_end(png_ptr, info_ptr); transforms = transforms; /* quiet compiler warnings */ params = params; } #endif #endif /* PNG_WRITE_SUPPORTED */ /********* End of inlined file: pngwrite.c *********/ /********* Start of inlined file: pngwtran.c *********/ /* pngwtran.c - transforms the data in a row for PNG writers * * Last changed in libpng 1.2.9 April 14, 2006 * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2006 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) */ #define PNG_INTERNAL #ifdef PNG_WRITE_SUPPORTED /* Transform the data according to the user's wishes. The order of * transformations is significant. */ void /* PRIVATE */ png_do_write_transformations(png_structp png_ptr) { png_debug(1, "in png_do_write_transformations\n"); if (png_ptr == NULL) return; #if defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) if (png_ptr->transformations & PNG_USER_TRANSFORM) if(png_ptr->write_user_transform_fn != NULL) (*(png_ptr->write_user_transform_fn)) /* user write transform function */ (png_ptr, /* png_ptr */ &(png_ptr->row_info), /* row_info: */ /* png_uint_32 width; width of row */ /* png_uint_32 rowbytes; number of bytes in row */ /* png_byte color_type; color type of pixels */ /* png_byte bit_depth; bit depth of samples */ /* png_byte channels; number of channels (1-4) */ /* png_byte pixel_depth; bits per pixel (depth*channels) */ png_ptr->row_buf + 1); /* start of pixel data for row */ #endif #if defined(PNG_WRITE_FILLER_SUPPORTED) if (png_ptr->transformations & PNG_FILLER) png_do_strip_filler(&(png_ptr->row_info), png_ptr->row_buf + 1, png_ptr->flags); #endif #if defined(PNG_WRITE_PACKSWAP_SUPPORTED) if (png_ptr->transformations & PNG_PACKSWAP) png_do_packswap(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_WRITE_PACK_SUPPORTED) if (png_ptr->transformations & PNG_PACK) png_do_pack(&(png_ptr->row_info), png_ptr->row_buf + 1, (png_uint_32)png_ptr->bit_depth); #endif #if defined(PNG_WRITE_SWAP_SUPPORTED) if (png_ptr->transformations & PNG_SWAP_BYTES) png_do_swap(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_WRITE_SHIFT_SUPPORTED) if (png_ptr->transformations & PNG_SHIFT) png_do_shift(&(png_ptr->row_info), png_ptr->row_buf + 1, &(png_ptr->shift)); #endif #if defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED) if (png_ptr->transformations & PNG_SWAP_ALPHA) png_do_write_swap_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED) if (png_ptr->transformations & PNG_INVERT_ALPHA) png_do_write_invert_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_WRITE_BGR_SUPPORTED) if (png_ptr->transformations & PNG_BGR) png_do_bgr(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_WRITE_INVERT_SUPPORTED) if (png_ptr->transformations & PNG_INVERT_MONO) png_do_invert(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif } #if defined(PNG_WRITE_PACK_SUPPORTED) /* Pack pixels into bytes. Pass the true bit depth in bit_depth. The * row_info bit depth should be 8 (one pixel per byte). The channels * should be 1 (this only happens on grayscale and paletted images). */ void /* PRIVATE */ png_do_pack(png_row_infop row_info, png_bytep row, png_uint_32 bit_depth) { png_debug(1, "in png_do_pack\n"); if (row_info->bit_depth == 8 && #if defined(PNG_USELESS_TESTS_SUPPORTED) row != NULL && row_info != NULL && #endif row_info->channels == 1) { switch ((int)bit_depth) { case 1: { png_bytep sp, dp; int mask, v; png_uint_32 i; png_uint_32 row_width = row_info->width; sp = row; dp = row; mask = 0x80; v = 0; for (i = 0; i < row_width; i++) { if (*sp != 0) v |= mask; sp++; if (mask > 1) mask >>= 1; else { mask = 0x80; *dp = (png_byte)v; dp++; v = 0; } } if (mask != 0x80) *dp = (png_byte)v; break; } case 2: { png_bytep sp, dp; int shift, v; png_uint_32 i; png_uint_32 row_width = row_info->width; sp = row; dp = row; shift = 6; v = 0; for (i = 0; i < row_width; i++) { png_byte value; value = (png_byte)(*sp & 0x03); v |= (value << shift); if (shift == 0) { shift = 6; *dp = (png_byte)v; dp++; v = 0; } else shift -= 2; sp++; } if (shift != 6) *dp = (png_byte)v; break; } case 4: { png_bytep sp, dp; int shift, v; png_uint_32 i; png_uint_32 row_width = row_info->width; sp = row; dp = row; shift = 4; v = 0; for (i = 0; i < row_width; i++) { png_byte value; value = (png_byte)(*sp & 0x0f); v |= (value << shift); if (shift == 0) { shift = 4; *dp = (png_byte)v; dp++; v = 0; } else shift -= 4; sp++; } if (shift != 4) *dp = (png_byte)v; break; } } row_info->bit_depth = (png_byte)bit_depth; row_info->pixel_depth = (png_byte)(bit_depth * row_info->channels); row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_info->width); } } #endif #if defined(PNG_WRITE_SHIFT_SUPPORTED) /* Shift pixel values to take advantage of whole range. Pass the * true number of bits in bit_depth. The row should be packed * according to row_info->bit_depth. Thus, if you had a row of * bit depth 4, but the pixels only had values from 0 to 7, you * would pass 3 as bit_depth, and this routine would translate the * data to 0 to 15. */ void /* PRIVATE */ png_do_shift(png_row_infop row_info, png_bytep row, png_color_8p bit_depth) { png_debug(1, "in png_do_shift\n"); #if defined(PNG_USELESS_TESTS_SUPPORTED) if (row != NULL && row_info != NULL && #else if ( #endif row_info->color_type != PNG_COLOR_TYPE_PALETTE) { int shift_start[4], shift_dec[4]; int channels = 0; if (row_info->color_type & PNG_COLOR_MASK_COLOR) { shift_start[channels] = row_info->bit_depth - bit_depth->red; shift_dec[channels] = bit_depth->red; channels++; shift_start[channels] = row_info->bit_depth - bit_depth->green; shift_dec[channels] = bit_depth->green; channels++; shift_start[channels] = row_info->bit_depth - bit_depth->blue; shift_dec[channels] = bit_depth->blue; channels++; } else { shift_start[channels] = row_info->bit_depth - bit_depth->gray; shift_dec[channels] = bit_depth->gray; channels++; } if (row_info->color_type & PNG_COLOR_MASK_ALPHA) { shift_start[channels] = row_info->bit_depth - bit_depth->alpha; shift_dec[channels] = bit_depth->alpha; channels++; } /* with low row depths, could only be grayscale, so one channel */ if (row_info->bit_depth < 8) { png_bytep bp = row; png_uint_32 i; png_byte mask; png_uint_32 row_bytes = row_info->rowbytes; if (bit_depth->gray == 1 && row_info->bit_depth == 2) mask = 0x55; else if (row_info->bit_depth == 4 && bit_depth->gray == 3) mask = 0x11; else mask = 0xff; for (i = 0; i < row_bytes; i++, bp++) { png_uint_16 v; int j; v = *bp; *bp = 0; for (j = shift_start[0]; j > -shift_dec[0]; j -= shift_dec[0]) { if (j > 0) *bp |= (png_byte)((v << j) & 0xff); else *bp |= (png_byte)((v >> (-j)) & mask); } } } else if (row_info->bit_depth == 8) { png_bytep bp = row; png_uint_32 i; png_uint_32 istop = channels * row_info->width; for (i = 0; i < istop; i++, bp++) { png_uint_16 v; int j; int c = (int)(i%channels); v = *bp; *bp = 0; for (j = shift_start[c]; j > -shift_dec[c]; j -= shift_dec[c]) { if (j > 0) *bp |= (png_byte)((v << j) & 0xff); else *bp |= (png_byte)((v >> (-j)) & 0xff); } } } else { png_bytep bp; png_uint_32 i; png_uint_32 istop = channels * row_info->width; for (bp = row, i = 0; i < istop; i++) { int c = (int)(i%channels); png_uint_16 value, v; int j; v = (png_uint_16)(((png_uint_16)(*bp) << 8) + *(bp + 1)); value = 0; for (j = shift_start[c]; j > -shift_dec[c]; j -= shift_dec[c]) { if (j > 0) value |= (png_uint_16)((v << j) & (png_uint_16)0xffff); else value |= (png_uint_16)((v >> (-j)) & (png_uint_16)0xffff); } *bp++ = (png_byte)(value >> 8); *bp++ = (png_byte)(value & 0xff); } } } } #endif #if defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED) void /* PRIVATE */ png_do_write_swap_alpha(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_write_swap_alpha\n"); #if defined(PNG_USELESS_TESTS_SUPPORTED) if (row != NULL && row_info != NULL) #endif { if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) { /* This converts from ARGB to RGBA */ if (row_info->bit_depth == 8) { png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width = row_info->width; for (i = 0, sp = dp = row; i < row_width; i++) { png_byte save = *(sp++); *(dp++) = *(sp++); *(dp++) = *(sp++); *(dp++) = *(sp++); *(dp++) = save; } } /* This converts from AARRGGBB to RRGGBBAA */ else { png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width = row_info->width; for (i = 0, sp = dp = row; i < row_width; i++) { png_byte save[2]; save[0] = *(sp++); save[1] = *(sp++); *(dp++) = *(sp++); *(dp++) = *(sp++); *(dp++) = *(sp++); *(dp++) = *(sp++); *(dp++) = *(sp++); *(dp++) = *(sp++); *(dp++) = save[0]; *(dp++) = save[1]; } } } else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { /* This converts from AG to GA */ if (row_info->bit_depth == 8) { png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width = row_info->width; for (i = 0, sp = dp = row; i < row_width; i++) { png_byte save = *(sp++); *(dp++) = *(sp++); *(dp++) = save; } } /* This converts from AAGG to GGAA */ else { png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width = row_info->width; for (i = 0, sp = dp = row; i < row_width; i++) { png_byte save[2]; save[0] = *(sp++); save[1] = *(sp++); *(dp++) = *(sp++); *(dp++) = *(sp++); *(dp++) = save[0]; *(dp++) = save[1]; } } } } } #endif #if defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED) void /* PRIVATE */ png_do_write_invert_alpha(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_write_invert_alpha\n"); #if defined(PNG_USELESS_TESTS_SUPPORTED) if (row != NULL && row_info != NULL) #endif { if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) { /* This inverts the alpha channel in RGBA */ if (row_info->bit_depth == 8) { png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width = row_info->width; for (i = 0, sp = dp = row; i < row_width; i++) { /* does nothing *(dp++) = *(sp++); *(dp++) = *(sp++); *(dp++) = *(sp++); */ sp+=3; dp = sp; *(dp++) = (png_byte)(255 - *(sp++)); } } /* This inverts the alpha channel in RRGGBBAA */ else { png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width = row_info->width; for (i = 0, sp = dp = row; i < row_width; i++) { /* does nothing *(dp++) = *(sp++); *(dp++) = *(sp++); *(dp++) = *(sp++); *(dp++) = *(sp++); *(dp++) = *(sp++); *(dp++) = *(sp++); */ sp+=6; dp = sp; *(dp++) = (png_byte)(255 - *(sp++)); *(dp++) = (png_byte)(255 - *(sp++)); } } } else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { /* This inverts the alpha channel in GA */ if (row_info->bit_depth == 8) { png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width = row_info->width; for (i = 0, sp = dp = row; i < row_width; i++) { *(dp++) = *(sp++); *(dp++) = (png_byte)(255 - *(sp++)); } } /* This inverts the alpha channel in GGAA */ else { png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width = row_info->width; for (i = 0, sp = dp = row; i < row_width; i++) { /* does nothing *(dp++) = *(sp++); *(dp++) = *(sp++); */ sp+=2; dp = sp; *(dp++) = (png_byte)(255 - *(sp++)); *(dp++) = (png_byte)(255 - *(sp++)); } } } } } #endif #if defined(PNG_MNG_FEATURES_SUPPORTED) /* undoes intrapixel differencing */ void /* PRIVATE */ png_do_write_intrapixel(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_write_intrapixel\n"); if ( #if defined(PNG_USELESS_TESTS_SUPPORTED) row != NULL && row_info != NULL && #endif (row_info->color_type & PNG_COLOR_MASK_COLOR)) { int bytes_per_pixel; png_uint_32 row_width = row_info->width; if (row_info->bit_depth == 8) { png_bytep rp; png_uint_32 i; if (row_info->color_type == PNG_COLOR_TYPE_RGB) bytes_per_pixel = 3; else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) bytes_per_pixel = 4; else return; for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel) { *(rp) = (png_byte)((*rp - *(rp+1))&0xff); *(rp+2) = (png_byte)((*(rp+2) - *(rp+1))&0xff); } } else if (row_info->bit_depth == 16) { png_bytep rp; png_uint_32 i; if (row_info->color_type == PNG_COLOR_TYPE_RGB) bytes_per_pixel = 6; else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) bytes_per_pixel = 8; else return; for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel) { png_uint_32 s0 = (*(rp ) << 8) | *(rp+1); png_uint_32 s1 = (*(rp+2) << 8) | *(rp+3); png_uint_32 s2 = (*(rp+4) << 8) | *(rp+5); png_uint_32 red = (png_uint_32)((s0-s1) & 0xffffL); png_uint_32 blue = (png_uint_32)((s2-s1) & 0xffffL); *(rp ) = (png_byte)((red >> 8) & 0xff); *(rp+1) = (png_byte)(red & 0xff); *(rp+4) = (png_byte)((blue >> 8) & 0xff); *(rp+5) = (png_byte)(blue & 0xff); } } } } #endif /* PNG_MNG_FEATURES_SUPPORTED */ #endif /* PNG_WRITE_SUPPORTED */ /********* End of inlined file: pngwtran.c *********/ /********* Start of inlined file: pngwutil.c *********/ /* pngwutil.c - utilities to write a PNG file * * Last changed in libpng 1.2.20 Septhember 3, 2007 * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2007 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) */ #define PNG_INTERNAL #ifdef PNG_WRITE_SUPPORTED /* Place a 32-bit number into a buffer in PNG byte order. We work * with unsigned numbers for convenience, although one supported * ancillary chunk uses signed (two's complement) numbers. */ void PNGAPI png_save_uint_32(png_bytep buf, png_uint_32 i) { buf[0] = (png_byte)((i >> 24) & 0xff); buf[1] = (png_byte)((i >> 16) & 0xff); buf[2] = (png_byte)((i >> 8) & 0xff); buf[3] = (png_byte)(i & 0xff); } /* The png_save_int_32 function assumes integers are stored in two's * complement format. If this isn't the case, then this routine needs to * be modified to write data in two's complement format. */ void PNGAPI png_save_int_32(png_bytep buf, png_int_32 i) { buf[0] = (png_byte)((i >> 24) & 0xff); buf[1] = (png_byte)((i >> 16) & 0xff); buf[2] = (png_byte)((i >> 8) & 0xff); buf[3] = (png_byte)(i & 0xff); } /* Place a 16-bit number into a buffer in PNG byte order. * The parameter is declared unsigned int, not png_uint_16, * just to avoid potential problems on pre-ANSI C compilers. */ void PNGAPI png_save_uint_16(png_bytep buf, unsigned int i) { buf[0] = (png_byte)((i >> 8) & 0xff); buf[1] = (png_byte)(i & 0xff); } /* Write a PNG chunk all at once. The type is an array of ASCII characters * representing the chunk name. The array must be at least 4 bytes in * length, and does not need to be null terminated. To be safe, pass the * pre-defined chunk names here, and if you need a new one, define it * where the others are defined. The length is the length of the data. * All the data must be present. If that is not possible, use the * png_write_chunk_start(), png_write_chunk_data(), and png_write_chunk_end() * functions instead. */ void PNGAPI png_write_chunk(png_structp png_ptr, png_bytep chunk_name, png_bytep data, png_size_t length) { if(png_ptr == NULL) return; png_write_chunk_start(png_ptr, chunk_name, (png_uint_32)length); png_write_chunk_data(png_ptr, data, length); png_write_chunk_end(png_ptr); } /* Write the start of a PNG chunk. The type is the chunk type. * The total_length is the sum of the lengths of all the data you will be * passing in png_write_chunk_data(). */ void PNGAPI png_write_chunk_start(png_structp png_ptr, png_bytep chunk_name, png_uint_32 length) { png_byte buf[4]; png_debug2(0, "Writing %s chunk (%lu bytes)\n", chunk_name, length); if(png_ptr == NULL) return; /* write the length */ png_save_uint_32(buf, length); png_write_data(png_ptr, buf, (png_size_t)4); /* write the chunk name */ png_write_data(png_ptr, chunk_name, (png_size_t)4); /* reset the crc and run it over the chunk name */ png_reset_crc(png_ptr); png_calculate_crc(png_ptr, chunk_name, (png_size_t)4); } /* Write the data of a PNG chunk started with png_write_chunk_start(). * Note that multiple calls to this function are allowed, and that the * sum of the lengths from these calls *must* add up to the total_length * given to png_write_chunk_start(). */ void PNGAPI png_write_chunk_data(png_structp png_ptr, png_bytep data, png_size_t length) { /* write the data, and run the CRC over it */ if(png_ptr == NULL) return; if (data != NULL && length > 0) { png_calculate_crc(png_ptr, data, length); png_write_data(png_ptr, data, length); } } /* Finish a chunk started with png_write_chunk_start(). */ void PNGAPI png_write_chunk_end(png_structp png_ptr) { png_byte buf[4]; if(png_ptr == NULL) return; /* write the crc */ png_save_uint_32(buf, png_ptr->crc); png_write_data(png_ptr, buf, (png_size_t)4); } /* Simple function to write the signature. If we have already written * the magic bytes of the signature, or more likely, the PNG stream is * being embedded into another stream and doesn't need its own signature, * we should call png_set_sig_bytes() to tell libpng how many of the * bytes have already been written. */ void /* PRIVATE */ png_write_sig(png_structp png_ptr) { png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10}; /* write the rest of the 8 byte signature */ png_write_data(png_ptr, &png_signature[png_ptr->sig_bytes], (png_size_t)8 - png_ptr->sig_bytes); if(png_ptr->sig_bytes < 3) png_ptr->mode |= PNG_HAVE_PNG_SIGNATURE; } #if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_iCCP_SUPPORTED) /* * This pair of functions encapsulates the operation of (a) compressing a * text string, and (b) issuing it later as a series of chunk data writes. * The compression_state structure is shared context for these functions * set up by the caller in order to make the whole mess thread-safe. */ typedef struct { char *input; /* the uncompressed input data */ int input_len; /* its length */ int num_output_ptr; /* number of output pointers used */ int max_output_ptr; /* size of output_ptr */ png_charpp output_ptr; /* array of pointers to output */ } compression_state; /* compress given text into storage in the png_ptr structure */ static int /* PRIVATE */ png_text_compress(png_structp png_ptr, png_charp text, png_size_t text_len, int compression, compression_state *comp) { int ret; comp->num_output_ptr = 0; comp->max_output_ptr = 0; comp->output_ptr = NULL; comp->input = NULL; comp->input_len = 0; /* we may just want to pass the text right through */ if (compression == PNG_TEXT_COMPRESSION_NONE) { comp->input = text; comp->input_len = text_len; return((int)text_len); } if (compression >= PNG_TEXT_COMPRESSION_LAST) { #if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE) char msg[50]; png_snprintf(msg, 50, "Unknown compression type %d", compression); png_warning(png_ptr, msg); #else png_warning(png_ptr, "Unknown compression type"); #endif } /* We can't write the chunk until we find out how much data we have, * which means we need to run the compressor first and save the * output. This shouldn't be a problem, as the vast majority of * comments should be reasonable, but we will set up an array of * malloc'd pointers to be sure. * * If we knew the application was well behaved, we could simplify this * greatly by assuming we can always malloc an output buffer large * enough to hold the compressed text ((1001 * text_len / 1000) + 12) * and malloc this directly. The only time this would be a bad idea is * if we can't malloc more than 64K and we have 64K of random input * data, or if the input string is incredibly large (although this * wouldn't cause a failure, just a slowdown due to swapping). */ /* set up the compression buffers */ png_ptr->zstream.avail_in = (uInt)text_len; png_ptr->zstream.next_in = (Bytef *)text; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; png_ptr->zstream.next_out = (Bytef *)png_ptr->zbuf; /* this is the same compression loop as in png_write_row() */ do { /* compress the data */ ret = deflate(&png_ptr->zstream, Z_NO_FLUSH); if (ret != Z_OK) { /* error */ if (png_ptr->zstream.msg != NULL) png_error(png_ptr, png_ptr->zstream.msg); else png_error(png_ptr, "zlib error"); } /* check to see if we need more room */ if (!(png_ptr->zstream.avail_out)) { /* make sure the output array has room */ if (comp->num_output_ptr >= comp->max_output_ptr) { int old_max; old_max = comp->max_output_ptr; comp->max_output_ptr = comp->num_output_ptr + 4; if (comp->output_ptr != NULL) { png_charpp old_ptr; old_ptr = comp->output_ptr; comp->output_ptr = (png_charpp)png_malloc(png_ptr, (png_uint_32)(comp->max_output_ptr * png_sizeof (png_charpp))); png_memcpy(comp->output_ptr, old_ptr, old_max * png_sizeof (png_charp)); png_free(png_ptr, old_ptr); } else comp->output_ptr = (png_charpp)png_malloc(png_ptr, (png_uint_32)(comp->max_output_ptr * png_sizeof (png_charp))); } /* save the data */ comp->output_ptr[comp->num_output_ptr] = (png_charp)png_malloc(png_ptr, (png_uint_32)png_ptr->zbuf_size); png_memcpy(comp->output_ptr[comp->num_output_ptr], png_ptr->zbuf, png_ptr->zbuf_size); comp->num_output_ptr++; /* and reset the buffer */ png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; png_ptr->zstream.next_out = png_ptr->zbuf; } /* continue until we don't have any more to compress */ } while (png_ptr->zstream.avail_in); /* finish the compression */ do { /* tell zlib we are finished */ ret = deflate(&png_ptr->zstream, Z_FINISH); if (ret == Z_OK) { /* check to see if we need more room */ if (!(png_ptr->zstream.avail_out)) { /* check to make sure our output array has room */ if (comp->num_output_ptr >= comp->max_output_ptr) { int old_max; old_max = comp->max_output_ptr; comp->max_output_ptr = comp->num_output_ptr + 4; if (comp->output_ptr != NULL) { png_charpp old_ptr; old_ptr = comp->output_ptr; /* This could be optimized to realloc() */ comp->output_ptr = (png_charpp)png_malloc(png_ptr, (png_uint_32)(comp->max_output_ptr * png_sizeof (png_charpp))); png_memcpy(comp->output_ptr, old_ptr, old_max * png_sizeof (png_charp)); png_free(png_ptr, old_ptr); } else comp->output_ptr = (png_charpp)png_malloc(png_ptr, (png_uint_32)(comp->max_output_ptr * png_sizeof (png_charp))); } /* save off the data */ comp->output_ptr[comp->num_output_ptr] = (png_charp)png_malloc(png_ptr, (png_uint_32)png_ptr->zbuf_size); png_memcpy(comp->output_ptr[comp->num_output_ptr], png_ptr->zbuf, png_ptr->zbuf_size); comp->num_output_ptr++; /* and reset the buffer pointers */ png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; png_ptr->zstream.next_out = png_ptr->zbuf; } } else if (ret != Z_STREAM_END) { /* we got an error */ if (png_ptr->zstream.msg != NULL) png_error(png_ptr, png_ptr->zstream.msg); else png_error(png_ptr, "zlib error"); } } while (ret != Z_STREAM_END); /* text length is number of buffers plus last buffer */ text_len = png_ptr->zbuf_size * comp->num_output_ptr; if (png_ptr->zstream.avail_out < png_ptr->zbuf_size) text_len += png_ptr->zbuf_size - (png_size_t)png_ptr->zstream.avail_out; return((int)text_len); } /* ship the compressed text out via chunk writes */ static void /* PRIVATE */ png_write_compressed_data_out(png_structp png_ptr, compression_state *comp) { int i; /* handle the no-compression case */ if (comp->input) { png_write_chunk_data(png_ptr, (png_bytep)comp->input, (png_size_t)comp->input_len); return; } /* write saved output buffers, if any */ for (i = 0; i < comp->num_output_ptr; i++) { png_write_chunk_data(png_ptr,(png_bytep)comp->output_ptr[i], png_ptr->zbuf_size); png_free(png_ptr, comp->output_ptr[i]); comp->output_ptr[i]=NULL; } if (comp->max_output_ptr != 0) png_free(png_ptr, comp->output_ptr); comp->output_ptr=NULL; /* write anything left in zbuf */ if (png_ptr->zstream.avail_out < (png_uint_32)png_ptr->zbuf_size) png_write_chunk_data(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size - png_ptr->zstream.avail_out); /* reset zlib for another zTXt/iTXt or image data */ deflateReset(&png_ptr->zstream); png_ptr->zstream.data_type = Z_BINARY; } #endif /* Write the IHDR chunk, and update the png_struct with the necessary * information. Note that the rest of this code depends upon this * information being correct. */ void /* PRIVATE */ png_write_IHDR(png_structp png_ptr, png_uint_32 width, png_uint_32 height, int bit_depth, int color_type, int compression_type, int filter_type, int interlace_type) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_IHDR; #endif png_byte buf[13]; /* buffer to store the IHDR info */ png_debug(1, "in png_write_IHDR\n"); /* Check that we have valid input data from the application info */ switch (color_type) { case PNG_COLOR_TYPE_GRAY: switch (bit_depth) { case 1: case 2: case 4: case 8: case 16: png_ptr->channels = 1; break; default: png_error(png_ptr,"Invalid bit depth for grayscale image"); } break; case PNG_COLOR_TYPE_RGB: if (bit_depth != 8 && bit_depth != 16) png_error(png_ptr, "Invalid bit depth for RGB image"); png_ptr->channels = 3; break; case PNG_COLOR_TYPE_PALETTE: switch (bit_depth) { case 1: case 2: case 4: case 8: png_ptr->channels = 1; break; default: png_error(png_ptr, "Invalid bit depth for paletted image"); } break; case PNG_COLOR_TYPE_GRAY_ALPHA: if (bit_depth != 8 && bit_depth != 16) png_error(png_ptr, "Invalid bit depth for grayscale+alpha image"); png_ptr->channels = 2; break; case PNG_COLOR_TYPE_RGB_ALPHA: if (bit_depth != 8 && bit_depth != 16) png_error(png_ptr, "Invalid bit depth for RGBA image"); png_ptr->channels = 4; break; default: png_error(png_ptr, "Invalid image color type specified"); } if (compression_type != PNG_COMPRESSION_TYPE_BASE) { png_warning(png_ptr, "Invalid compression type specified"); compression_type = PNG_COMPRESSION_TYPE_BASE; } /* Write filter_method 64 (intrapixel differencing) only if * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and * 2. Libpng did not write a PNG signature (this filter_method is only * used in PNG datastreams that are embedded in MNG datastreams) and * 3. The application called png_permit_mng_features with a mask that * included PNG_FLAG_MNG_FILTER_64 and * 4. The filter_method is 64 and * 5. The color_type is RGB or RGBA */ if ( #if defined(PNG_MNG_FEATURES_SUPPORTED) !((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) && ((png_ptr->mode&PNG_HAVE_PNG_SIGNATURE) == 0) && (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) && (filter_type == PNG_INTRAPIXEL_DIFFERENCING)) && #endif filter_type != PNG_FILTER_TYPE_BASE) { png_warning(png_ptr, "Invalid filter type specified"); filter_type = PNG_FILTER_TYPE_BASE; } #ifdef PNG_WRITE_INTERLACING_SUPPORTED if (interlace_type != PNG_INTERLACE_NONE && interlace_type != PNG_INTERLACE_ADAM7) { png_warning(png_ptr, "Invalid interlace type specified"); interlace_type = PNG_INTERLACE_ADAM7; } #else interlace_type=PNG_INTERLACE_NONE; #endif /* save off the relevent information */ png_ptr->bit_depth = (png_byte)bit_depth; png_ptr->color_type = (png_byte)color_type; png_ptr->interlaced = (png_byte)interlace_type; #if defined(PNG_MNG_FEATURES_SUPPORTED) png_ptr->filter_type = (png_byte)filter_type; #endif png_ptr->compression_type = (png_byte)compression_type; png_ptr->width = width; png_ptr->height = height; png_ptr->pixel_depth = (png_byte)(bit_depth * png_ptr->channels); png_ptr->rowbytes = PNG_ROWBYTES(png_ptr->pixel_depth, width); /* set the usr info, so any transformations can modify it */ png_ptr->usr_width = png_ptr->width; png_ptr->usr_bit_depth = png_ptr->bit_depth; png_ptr->usr_channels = png_ptr->channels; /* pack the header information into the buffer */ png_save_uint_32(buf, width); png_save_uint_32(buf + 4, height); buf[8] = (png_byte)bit_depth; buf[9] = (png_byte)color_type; buf[10] = (png_byte)compression_type; buf[11] = (png_byte)filter_type; buf[12] = (png_byte)interlace_type; /* write the chunk */ png_write_chunk(png_ptr, png_IHDR, buf, (png_size_t)13); /* initialize zlib with PNG info */ png_ptr->zstream.zalloc = png_zalloc; png_ptr->zstream.zfree = png_zfree; png_ptr->zstream.opaque = (voidpf)png_ptr; if (!(png_ptr->do_filter)) { if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE || png_ptr->bit_depth < 8) png_ptr->do_filter = PNG_FILTER_NONE; else png_ptr->do_filter = PNG_ALL_FILTERS; } if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_STRATEGY)) { if (png_ptr->do_filter != PNG_FILTER_NONE) png_ptr->zlib_strategy = Z_FILTERED; else png_ptr->zlib_strategy = Z_DEFAULT_STRATEGY; } if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_LEVEL)) png_ptr->zlib_level = Z_DEFAULT_COMPRESSION; if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_MEM_LEVEL)) png_ptr->zlib_mem_level = 8; if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_WINDOW_BITS)) png_ptr->zlib_window_bits = 15; if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_METHOD)) png_ptr->zlib_method = 8; if (deflateInit2(&png_ptr->zstream, png_ptr->zlib_level, png_ptr->zlib_method, png_ptr->zlib_window_bits, png_ptr->zlib_mem_level, png_ptr->zlib_strategy) != Z_OK) png_error(png_ptr, "zlib failed to initialize compressor"); png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; /* libpng is not interested in zstream.data_type */ /* set it to a predefined value, to avoid its evaluation inside zlib */ png_ptr->zstream.data_type = Z_BINARY; png_ptr->mode = PNG_HAVE_IHDR; } /* write the palette. We are careful not to trust png_color to be in the * correct order for PNG, so people can redefine it to any convenient * structure. */ void /* PRIVATE */ png_write_PLTE(png_structp png_ptr, png_colorp palette, png_uint_32 num_pal) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_PLTE; #endif png_uint_32 i; png_colorp pal_ptr; png_byte buf[3]; png_debug(1, "in png_write_PLTE\n"); if (( #if defined(PNG_MNG_FEATURES_SUPPORTED) !(png_ptr->mng_features_permitted & PNG_FLAG_MNG_EMPTY_PLTE) && #endif num_pal == 0) || num_pal > 256) { if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { png_error(png_ptr, "Invalid number of colors in palette"); } else { png_warning(png_ptr, "Invalid number of colors in palette"); return; } } if (!(png_ptr->color_type&PNG_COLOR_MASK_COLOR)) { png_warning(png_ptr, "Ignoring request to write a PLTE chunk in grayscale PNG"); return; } png_ptr->num_palette = (png_uint_16)num_pal; png_debug1(3, "num_palette = %d\n", png_ptr->num_palette); png_write_chunk_start(png_ptr, png_PLTE, num_pal * 3); #ifndef PNG_NO_POINTER_INDEXING for (i = 0, pal_ptr = palette; i < num_pal; i++, pal_ptr++) { buf[0] = pal_ptr->red; buf[1] = pal_ptr->green; buf[2] = pal_ptr->blue; png_write_chunk_data(png_ptr, buf, (png_size_t)3); } #else /* This is a little slower but some buggy compilers need to do this instead */ pal_ptr=palette; for (i = 0; i < num_pal; i++) { buf[0] = pal_ptr[i].red; buf[1] = pal_ptr[i].green; buf[2] = pal_ptr[i].blue; png_write_chunk_data(png_ptr, buf, (png_size_t)3); } #endif png_write_chunk_end(png_ptr); png_ptr->mode |= PNG_HAVE_PLTE; } /* write an IDAT chunk */ void /* PRIVATE */ png_write_IDAT(png_structp png_ptr, png_bytep data, png_size_t length) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_IDAT; #endif png_debug(1, "in png_write_IDAT\n"); /* Optimize the CMF field in the zlib stream. */ /* This hack of the zlib stream is compliant to the stream specification. */ if (!(png_ptr->mode & PNG_HAVE_IDAT) && png_ptr->compression_type == PNG_COMPRESSION_TYPE_BASE) { unsigned int z_cmf = data[0]; /* zlib compression method and flags */ if ((z_cmf & 0x0f) == 8 && (z_cmf & 0xf0) <= 0x70) { /* Avoid memory underflows and multiplication overflows. */ /* The conditions below are practically always satisfied; however, they still must be checked. */ if (length >= 2 && png_ptr->height < 16384 && png_ptr->width < 16384) { png_uint_32 uncompressed_idat_size = png_ptr->height * ((png_ptr->width * png_ptr->channels * png_ptr->bit_depth + 15) >> 3); unsigned int z_cinfo = z_cmf >> 4; unsigned int half_z_window_size = 1 << (z_cinfo + 7); while (uncompressed_idat_size <= half_z_window_size && half_z_window_size >= 256) { z_cinfo--; half_z_window_size >>= 1; } z_cmf = (z_cmf & 0x0f) | (z_cinfo << 4); if (data[0] != (png_byte)z_cmf) { data[0] = (png_byte)z_cmf; data[1] &= 0xe0; data[1] += (png_byte)(0x1f - ((z_cmf << 8) + data[1]) % 0x1f); } } } else png_error(png_ptr, "Invalid zlib compression method or flags in IDAT"); } png_write_chunk(png_ptr, png_IDAT, data, length); png_ptr->mode |= PNG_HAVE_IDAT; } /* write an IEND chunk */ void /* PRIVATE */ png_write_IEND(png_structp png_ptr) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_IEND; #endif png_debug(1, "in png_write_IEND\n"); png_write_chunk(png_ptr, png_IEND, png_bytep_NULL, (png_size_t)0); png_ptr->mode |= PNG_HAVE_IEND; } #if defined(PNG_WRITE_gAMA_SUPPORTED) /* write a gAMA chunk */ #ifdef PNG_FLOATING_POINT_SUPPORTED void /* PRIVATE */ png_write_gAMA(png_structp png_ptr, double file_gamma) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_gAMA; #endif png_uint_32 igamma; png_byte buf[4]; png_debug(1, "in png_write_gAMA\n"); /* file_gamma is saved in 1/100,000ths */ igamma = (png_uint_32)(file_gamma * 100000.0 + 0.5); png_save_uint_32(buf, igamma); png_write_chunk(png_ptr, png_gAMA, buf, (png_size_t)4); } #endif #ifdef PNG_FIXED_POINT_SUPPORTED void /* PRIVATE */ png_write_gAMA_fixed(png_structp png_ptr, png_fixed_point file_gamma) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_gAMA; #endif png_byte buf[4]; png_debug(1, "in png_write_gAMA\n"); /* file_gamma is saved in 1/100,000ths */ png_save_uint_32(buf, (png_uint_32)file_gamma); png_write_chunk(png_ptr, png_gAMA, buf, (png_size_t)4); } #endif #endif #if defined(PNG_WRITE_sRGB_SUPPORTED) /* write a sRGB chunk */ void /* PRIVATE */ png_write_sRGB(png_structp png_ptr, int srgb_intent) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_sRGB; #endif png_byte buf[1]; png_debug(1, "in png_write_sRGB\n"); if(srgb_intent >= PNG_sRGB_INTENT_LAST) png_warning(png_ptr, "Invalid sRGB rendering intent specified"); buf[0]=(png_byte)srgb_intent; png_write_chunk(png_ptr, png_sRGB, buf, (png_size_t)1); } #endif #if defined(PNG_WRITE_iCCP_SUPPORTED) /* write an iCCP chunk */ void /* PRIVATE */ png_write_iCCP(png_structp png_ptr, png_charp name, int compression_type, png_charp profile, int profile_len) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_iCCP; #endif png_size_t name_len; png_charp new_name; compression_state comp; int embedded_profile_len = 0; png_debug(1, "in png_write_iCCP\n"); comp.num_output_ptr = 0; comp.max_output_ptr = 0; comp.output_ptr = NULL; comp.input = NULL; comp.input_len = 0; if (name == NULL || (name_len = png_check_keyword(png_ptr, name, &new_name)) == 0) { png_warning(png_ptr, "Empty keyword in iCCP chunk"); return; } if (compression_type != PNG_COMPRESSION_TYPE_BASE) png_warning(png_ptr, "Unknown compression type in iCCP chunk"); if (profile == NULL) profile_len = 0; if (profile_len > 3) embedded_profile_len = ((*( (png_bytep)profile ))<<24) | ((*( (png_bytep)profile+1))<<16) | ((*( (png_bytep)profile+2))<< 8) | ((*( (png_bytep)profile+3)) ); if (profile_len < embedded_profile_len) { png_warning(png_ptr, "Embedded profile length too large in iCCP chunk"); return; } if (profile_len > embedded_profile_len) { png_warning(png_ptr, "Truncating profile to actual length in iCCP chunk"); profile_len = embedded_profile_len; } if (profile_len) profile_len = png_text_compress(png_ptr, profile, (png_size_t)profile_len, PNG_COMPRESSION_TYPE_BASE, &comp); /* make sure we include the NULL after the name and the compression type */ png_write_chunk_start(png_ptr, png_iCCP, (png_uint_32)name_len+profile_len+2); new_name[name_len+1]=0x00; png_write_chunk_data(png_ptr, (png_bytep)new_name, name_len + 2); if (profile_len) png_write_compressed_data_out(png_ptr, &comp); png_write_chunk_end(png_ptr); png_free(png_ptr, new_name); } #endif #if defined(PNG_WRITE_sPLT_SUPPORTED) /* write a sPLT chunk */ void /* PRIVATE */ png_write_sPLT(png_structp png_ptr, png_sPLT_tp spalette) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_sPLT; #endif png_size_t name_len; png_charp new_name; png_byte entrybuf[10]; int entry_size = (spalette->depth == 8 ? 6 : 10); int palette_size = entry_size * spalette->nentries; png_sPLT_entryp ep; #ifdef PNG_NO_POINTER_INDEXING int i; #endif png_debug(1, "in png_write_sPLT\n"); if (spalette->name == NULL || (name_len = png_check_keyword(png_ptr, spalette->name, &new_name))==0) { png_warning(png_ptr, "Empty keyword in sPLT chunk"); return; } /* make sure we include the NULL after the name */ png_write_chunk_start(png_ptr, png_sPLT, (png_uint_32)(name_len + 2 + palette_size)); png_write_chunk_data(png_ptr, (png_bytep)new_name, name_len + 1); png_write_chunk_data(png_ptr, (png_bytep)&spalette->depth, 1); /* loop through each palette entry, writing appropriately */ #ifndef PNG_NO_POINTER_INDEXING for (ep = spalette->entries; epentries+spalette->nentries; ep++) { if (spalette->depth == 8) { entrybuf[0] = (png_byte)ep->red; entrybuf[1] = (png_byte)ep->green; entrybuf[2] = (png_byte)ep->blue; entrybuf[3] = (png_byte)ep->alpha; png_save_uint_16(entrybuf + 4, ep->frequency); } else { png_save_uint_16(entrybuf + 0, ep->red); png_save_uint_16(entrybuf + 2, ep->green); png_save_uint_16(entrybuf + 4, ep->blue); png_save_uint_16(entrybuf + 6, ep->alpha); png_save_uint_16(entrybuf + 8, ep->frequency); } png_write_chunk_data(png_ptr, entrybuf, (png_size_t)entry_size); } #else ep=spalette->entries; for (i=0; i>spalette->nentries; i++) { if (spalette->depth == 8) { entrybuf[0] = (png_byte)ep[i].red; entrybuf[1] = (png_byte)ep[i].green; entrybuf[2] = (png_byte)ep[i].blue; entrybuf[3] = (png_byte)ep[i].alpha; png_save_uint_16(entrybuf + 4, ep[i].frequency); } else { png_save_uint_16(entrybuf + 0, ep[i].red); png_save_uint_16(entrybuf + 2, ep[i].green); png_save_uint_16(entrybuf + 4, ep[i].blue); png_save_uint_16(entrybuf + 6, ep[i].alpha); png_save_uint_16(entrybuf + 8, ep[i].frequency); } png_write_chunk_data(png_ptr, entrybuf, entry_size); } #endif png_write_chunk_end(png_ptr); png_free(png_ptr, new_name); } #endif #if defined(PNG_WRITE_sBIT_SUPPORTED) /* write the sBIT chunk */ void /* PRIVATE */ png_write_sBIT(png_structp png_ptr, png_color_8p sbit, int color_type) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_sBIT; #endif png_byte buf[4]; png_size_t size; png_debug(1, "in png_write_sBIT\n"); /* make sure we don't depend upon the order of PNG_COLOR_8 */ if (color_type & PNG_COLOR_MASK_COLOR) { png_byte maxbits; maxbits = (png_byte)(color_type==PNG_COLOR_TYPE_PALETTE ? 8 : png_ptr->usr_bit_depth); if (sbit->red == 0 || sbit->red > maxbits || sbit->green == 0 || sbit->green > maxbits || sbit->blue == 0 || sbit->blue > maxbits) { png_warning(png_ptr, "Invalid sBIT depth specified"); return; } buf[0] = sbit->red; buf[1] = sbit->green; buf[2] = sbit->blue; size = 3; } else { if (sbit->gray == 0 || sbit->gray > png_ptr->usr_bit_depth) { png_warning(png_ptr, "Invalid sBIT depth specified"); return; } buf[0] = sbit->gray; size = 1; } if (color_type & PNG_COLOR_MASK_ALPHA) { if (sbit->alpha == 0 || sbit->alpha > png_ptr->usr_bit_depth) { png_warning(png_ptr, "Invalid sBIT depth specified"); return; } buf[size++] = sbit->alpha; } png_write_chunk(png_ptr, png_sBIT, buf, size); } #endif #if defined(PNG_WRITE_cHRM_SUPPORTED) /* write the cHRM chunk */ #ifdef PNG_FLOATING_POINT_SUPPORTED void /* PRIVATE */ png_write_cHRM(png_structp png_ptr, double white_x, double white_y, double red_x, double red_y, double green_x, double green_y, double blue_x, double blue_y) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_cHRM; #endif png_byte buf[32]; png_uint_32 itemp; png_debug(1, "in png_write_cHRM\n"); /* each value is saved in 1/100,000ths */ if (white_x < 0 || white_x > 0.8 || white_y < 0 || white_y > 0.8 || white_x + white_y > 1.0) { png_warning(png_ptr, "Invalid cHRM white point specified"); #if !defined(PNG_NO_CONSOLE_IO) fprintf(stderr,"white_x=%f, white_y=%f\n",white_x, white_y); #endif return; } itemp = (png_uint_32)(white_x * 100000.0 + 0.5); png_save_uint_32(buf, itemp); itemp = (png_uint_32)(white_y * 100000.0 + 0.5); png_save_uint_32(buf + 4, itemp); if (red_x < 0 || red_y < 0 || red_x + red_y > 1.0) { png_warning(png_ptr, "Invalid cHRM red point specified"); return; } itemp = (png_uint_32)(red_x * 100000.0 + 0.5); png_save_uint_32(buf + 8, itemp); itemp = (png_uint_32)(red_y * 100000.0 + 0.5); png_save_uint_32(buf + 12, itemp); if (green_x < 0 || green_y < 0 || green_x + green_y > 1.0) { png_warning(png_ptr, "Invalid cHRM green point specified"); return; } itemp = (png_uint_32)(green_x * 100000.0 + 0.5); png_save_uint_32(buf + 16, itemp); itemp = (png_uint_32)(green_y * 100000.0 + 0.5); png_save_uint_32(buf + 20, itemp); if (blue_x < 0 || blue_y < 0 || blue_x + blue_y > 1.0) { png_warning(png_ptr, "Invalid cHRM blue point specified"); return; } itemp = (png_uint_32)(blue_x * 100000.0 + 0.5); png_save_uint_32(buf + 24, itemp); itemp = (png_uint_32)(blue_y * 100000.0 + 0.5); png_save_uint_32(buf + 28, itemp); png_write_chunk(png_ptr, png_cHRM, buf, (png_size_t)32); } #endif #ifdef PNG_FIXED_POINT_SUPPORTED void /* PRIVATE */ png_write_cHRM_fixed(png_structp png_ptr, png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x, png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y, png_fixed_point blue_x, png_fixed_point blue_y) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_cHRM; #endif png_byte buf[32]; png_debug(1, "in png_write_cHRM\n"); /* each value is saved in 1/100,000ths */ if (white_x > 80000L || white_y > 80000L || white_x + white_y > 100000L) { png_warning(png_ptr, "Invalid fixed cHRM white point specified"); #if !defined(PNG_NO_CONSOLE_IO) fprintf(stderr,"white_x=%ld, white_y=%ld\n",white_x, white_y); #endif return; } png_save_uint_32(buf, (png_uint_32)white_x); png_save_uint_32(buf + 4, (png_uint_32)white_y); if (red_x + red_y > 100000L) { png_warning(png_ptr, "Invalid cHRM fixed red point specified"); return; } png_save_uint_32(buf + 8, (png_uint_32)red_x); png_save_uint_32(buf + 12, (png_uint_32)red_y); if (green_x + green_y > 100000L) { png_warning(png_ptr, "Invalid fixed cHRM green point specified"); return; } png_save_uint_32(buf + 16, (png_uint_32)green_x); png_save_uint_32(buf + 20, (png_uint_32)green_y); if (blue_x + blue_y > 100000L) { png_warning(png_ptr, "Invalid fixed cHRM blue point specified"); return; } png_save_uint_32(buf + 24, (png_uint_32)blue_x); png_save_uint_32(buf + 28, (png_uint_32)blue_y); png_write_chunk(png_ptr, png_cHRM, buf, (png_size_t)32); } #endif #endif #if defined(PNG_WRITE_tRNS_SUPPORTED) /* write the tRNS chunk */ void /* PRIVATE */ png_write_tRNS(png_structp png_ptr, png_bytep trans, png_color_16p tran, int num_trans, int color_type) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_tRNS; #endif png_byte buf[6]; png_debug(1, "in png_write_tRNS\n"); if (color_type == PNG_COLOR_TYPE_PALETTE) { if (num_trans <= 0 || num_trans > (int)png_ptr->num_palette) { png_warning(png_ptr,"Invalid number of transparent colors specified"); return; } /* write the chunk out as it is */ png_write_chunk(png_ptr, png_tRNS, trans, (png_size_t)num_trans); } else if (color_type == PNG_COLOR_TYPE_GRAY) { /* one 16 bit value */ if(tran->gray >= (1 << png_ptr->bit_depth)) { png_warning(png_ptr, "Ignoring attempt to write tRNS chunk out-of-range for bit_depth"); return; } png_save_uint_16(buf, tran->gray); png_write_chunk(png_ptr, png_tRNS, buf, (png_size_t)2); } else if (color_type == PNG_COLOR_TYPE_RGB) { /* three 16 bit values */ png_save_uint_16(buf, tran->red); png_save_uint_16(buf + 2, tran->green); png_save_uint_16(buf + 4, tran->blue); if(png_ptr->bit_depth == 8 && (buf[0] | buf[2] | buf[4])) { png_warning(png_ptr, "Ignoring attempt to write 16-bit tRNS chunk when bit_depth is 8"); return; } png_write_chunk(png_ptr, png_tRNS, buf, (png_size_t)6); } else { png_warning(png_ptr, "Can't write tRNS with an alpha channel"); } } #endif #if defined(PNG_WRITE_bKGD_SUPPORTED) /* write the background chunk */ void /* PRIVATE */ png_write_bKGD(png_structp png_ptr, png_color_16p back, int color_type) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_bKGD; #endif png_byte buf[6]; png_debug(1, "in png_write_bKGD\n"); if (color_type == PNG_COLOR_TYPE_PALETTE) { if ( #if defined(PNG_MNG_FEATURES_SUPPORTED) (png_ptr->num_palette || (!(png_ptr->mng_features_permitted & PNG_FLAG_MNG_EMPTY_PLTE))) && #endif back->index > png_ptr->num_palette) { png_warning(png_ptr, "Invalid background palette index"); return; } buf[0] = back->index; png_write_chunk(png_ptr, png_bKGD, buf, (png_size_t)1); } else if (color_type & PNG_COLOR_MASK_COLOR) { png_save_uint_16(buf, back->red); png_save_uint_16(buf + 2, back->green); png_save_uint_16(buf + 4, back->blue); if(png_ptr->bit_depth == 8 && (buf[0] | buf[2] | buf[4])) { png_warning(png_ptr, "Ignoring attempt to write 16-bit bKGD chunk when bit_depth is 8"); return; } png_write_chunk(png_ptr, png_bKGD, buf, (png_size_t)6); } else { if(back->gray >= (1 << png_ptr->bit_depth)) { png_warning(png_ptr, "Ignoring attempt to write bKGD chunk out-of-range for bit_depth"); return; } png_save_uint_16(buf, back->gray); png_write_chunk(png_ptr, png_bKGD, buf, (png_size_t)2); } } #endif #if defined(PNG_WRITE_hIST_SUPPORTED) /* write the histogram */ void /* PRIVATE */ png_write_hIST(png_structp png_ptr, png_uint_16p hist, int num_hist) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_hIST; #endif int i; png_byte buf[3]; png_debug(1, "in png_write_hIST\n"); if (num_hist > (int)png_ptr->num_palette) { png_debug2(3, "num_hist = %d, num_palette = %d\n", num_hist, png_ptr->num_palette); png_warning(png_ptr, "Invalid number of histogram entries specified"); return; } png_write_chunk_start(png_ptr, png_hIST, (png_uint_32)(num_hist * 2)); for (i = 0; i < num_hist; i++) { png_save_uint_16(buf, hist[i]); png_write_chunk_data(png_ptr, buf, (png_size_t)2); } png_write_chunk_end(png_ptr); } #endif #if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_pCAL_SUPPORTED) || \ defined(PNG_WRITE_iCCP_SUPPORTED) || defined(PNG_WRITE_sPLT_SUPPORTED) /* Check that the tEXt or zTXt keyword is valid per PNG 1.0 specification, * and if invalid, correct the keyword rather than discarding the entire * chunk. The PNG 1.0 specification requires keywords 1-79 characters in * length, forbids leading or trailing whitespace, multiple internal spaces, * and the non-break space (0x80) from ISO 8859-1. Returns keyword length. * * The new_key is allocated to hold the corrected keyword and must be freed * by the calling routine. This avoids problems with trying to write to * static keywords without having to have duplicate copies of the strings. */ png_size_t /* PRIVATE */ png_check_keyword(png_structp png_ptr, png_charp key, png_charpp new_key) { png_size_t key_len; png_charp kp, dp; int kflag; int kwarn=0; png_debug(1, "in png_check_keyword\n"); *new_key = NULL; if (key == NULL || (key_len = png_strlen(key)) == 0) { png_warning(png_ptr, "zero length keyword"); return ((png_size_t)0); } png_debug1(2, "Keyword to be checked is '%s'\n", key); *new_key = (png_charp)png_malloc_warn(png_ptr, (png_uint_32)(key_len + 2)); if (*new_key == NULL) { png_warning(png_ptr, "Out of memory while procesing keyword"); return ((png_size_t)0); } /* Replace non-printing characters with a blank and print a warning */ for (kp = key, dp = *new_key; *kp != '\0'; kp++, dp++) { if ((png_byte)*kp < 0x20 || ((png_byte)*kp > 0x7E && (png_byte)*kp < 0xA1)) { #if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE) char msg[40]; png_snprintf(msg, 40, "invalid keyword character 0x%02X", (png_byte)*kp); png_warning(png_ptr, msg); #else png_warning(png_ptr, "invalid character in keyword"); #endif *dp = ' '; } else { *dp = *kp; } } *dp = '\0'; /* Remove any trailing white space. */ kp = *new_key + key_len - 1; if (*kp == ' ') { png_warning(png_ptr, "trailing spaces removed from keyword"); while (*kp == ' ') { *(kp--) = '\0'; key_len--; } } /* Remove any leading white space. */ kp = *new_key; if (*kp == ' ') { png_warning(png_ptr, "leading spaces removed from keyword"); while (*kp == ' ') { kp++; key_len--; } } png_debug1(2, "Checking for multiple internal spaces in '%s'\n", kp); /* Remove multiple internal spaces. */ for (kflag = 0, dp = *new_key; *kp != '\0'; kp++) { if (*kp == ' ' && kflag == 0) { *(dp++) = *kp; kflag = 1; } else if (*kp == ' ') { key_len--; kwarn=1; } else { *(dp++) = *kp; kflag = 0; } } *dp = '\0'; if(kwarn) png_warning(png_ptr, "extra interior spaces removed from keyword"); if (key_len == 0) { png_free(png_ptr, *new_key); *new_key=NULL; png_warning(png_ptr, "Zero length keyword"); } if (key_len > 79) { png_warning(png_ptr, "keyword length must be 1 - 79 characters"); new_key[79] = '\0'; key_len = 79; } return (key_len); } #endif #if defined(PNG_WRITE_tEXt_SUPPORTED) /* write a tEXt chunk */ void /* PRIVATE */ png_write_tEXt(png_structp png_ptr, png_charp key, png_charp text, png_size_t text_len) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_tEXt; #endif png_size_t key_len; png_charp new_key; png_debug(1, "in png_write_tEXt\n"); if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key))==0) { png_warning(png_ptr, "Empty keyword in tEXt chunk"); return; } if (text == NULL || *text == '\0') text_len = 0; else text_len = png_strlen(text); /* make sure we include the 0 after the key */ png_write_chunk_start(png_ptr, png_tEXt, (png_uint_32)key_len+text_len+1); /* * We leave it to the application to meet PNG-1.0 requirements on the * contents of the text. PNG-1.0 through PNG-1.2 discourage the use of * any non-Latin-1 characters except for NEWLINE. ISO PNG will forbid them. * The NUL character is forbidden by PNG-1.0 through PNG-1.2 and ISO PNG. */ png_write_chunk_data(png_ptr, (png_bytep)new_key, key_len + 1); if (text_len) png_write_chunk_data(png_ptr, (png_bytep)text, text_len); png_write_chunk_end(png_ptr); png_free(png_ptr, new_key); } #endif #if defined(PNG_WRITE_zTXt_SUPPORTED) /* write a compressed text chunk */ void /* PRIVATE */ png_write_zTXt(png_structp png_ptr, png_charp key, png_charp text, png_size_t text_len, int compression) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_zTXt; #endif png_size_t key_len; char buf[1]; png_charp new_key; compression_state comp; png_debug(1, "in png_write_zTXt\n"); comp.num_output_ptr = 0; comp.max_output_ptr = 0; comp.output_ptr = NULL; comp.input = NULL; comp.input_len = 0; if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key))==0) { png_warning(png_ptr, "Empty keyword in zTXt chunk"); return; } if (text == NULL || *text == '\0' || compression==PNG_TEXT_COMPRESSION_NONE) { png_write_tEXt(png_ptr, new_key, text, (png_size_t)0); png_free(png_ptr, new_key); return; } text_len = png_strlen(text); /* compute the compressed data; do it now for the length */ text_len = png_text_compress(png_ptr, text, text_len, compression, &comp); /* write start of chunk */ png_write_chunk_start(png_ptr, png_zTXt, (png_uint_32) (key_len+text_len+2)); /* write key */ png_write_chunk_data(png_ptr, (png_bytep)new_key, key_len + 1); png_free(png_ptr, new_key); buf[0] = (png_byte)compression; /* write compression */ png_write_chunk_data(png_ptr, (png_bytep)buf, (png_size_t)1); /* write the compressed data */ png_write_compressed_data_out(png_ptr, &comp); /* close the chunk */ png_write_chunk_end(png_ptr); } #endif #if defined(PNG_WRITE_iTXt_SUPPORTED) /* write an iTXt chunk */ void /* PRIVATE */ png_write_iTXt(png_structp png_ptr, int compression, png_charp key, png_charp lang, png_charp lang_key, png_charp text) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_iTXt; #endif png_size_t lang_len, key_len, lang_key_len, text_len; png_charp new_lang, new_key; png_byte cbuf[2]; compression_state comp; png_debug(1, "in png_write_iTXt\n"); comp.num_output_ptr = 0; comp.max_output_ptr = 0; comp.output_ptr = NULL; comp.input = NULL; if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key))==0) { png_warning(png_ptr, "Empty keyword in iTXt chunk"); return; } if (lang == NULL || (lang_len = png_check_keyword(png_ptr, lang, &new_lang))==0) { png_warning(png_ptr, "Empty language field in iTXt chunk"); new_lang = NULL; lang_len = 0; } if (lang_key == NULL) lang_key_len = 0; else lang_key_len = png_strlen(lang_key); if (text == NULL) text_len = 0; else text_len = png_strlen(text); /* compute the compressed data; do it now for the length */ text_len = png_text_compress(png_ptr, text, text_len, compression-2, &comp); /* make sure we include the compression flag, the compression byte, * and the NULs after the key, lang, and lang_key parts */ png_write_chunk_start(png_ptr, png_iTXt, (png_uint_32)( 5 /* comp byte, comp flag, terminators for key, lang and lang_key */ + key_len + lang_len + lang_key_len + text_len)); /* * We leave it to the application to meet PNG-1.0 requirements on the * contents of the text. PNG-1.0 through PNG-1.2 discourage the use of * any non-Latin-1 characters except for NEWLINE. ISO PNG will forbid them. * The NUL character is forbidden by PNG-1.0 through PNG-1.2 and ISO PNG. */ png_write_chunk_data(png_ptr, (png_bytep)new_key, key_len + 1); /* set the compression flag */ if (compression == PNG_ITXT_COMPRESSION_NONE || \ compression == PNG_TEXT_COMPRESSION_NONE) cbuf[0] = 0; else /* compression == PNG_ITXT_COMPRESSION_zTXt */ cbuf[0] = 1; /* set the compression method */ cbuf[1] = 0; png_write_chunk_data(png_ptr, cbuf, 2); cbuf[0] = 0; png_write_chunk_data(png_ptr, (new_lang ? (png_bytep)new_lang : cbuf), lang_len + 1); png_write_chunk_data(png_ptr, (lang_key ? (png_bytep)lang_key : cbuf), lang_key_len + 1); png_write_compressed_data_out(png_ptr, &comp); png_write_chunk_end(png_ptr); png_free(png_ptr, new_key); if (new_lang) png_free(png_ptr, new_lang); } #endif #if defined(PNG_WRITE_oFFs_SUPPORTED) /* write the oFFs chunk */ void /* PRIVATE */ png_write_oFFs(png_structp png_ptr, png_int_32 x_offset, png_int_32 y_offset, int unit_type) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_oFFs; #endif png_byte buf[9]; png_debug(1, "in png_write_oFFs\n"); if (unit_type >= PNG_OFFSET_LAST) png_warning(png_ptr, "Unrecognized unit type for oFFs chunk"); png_save_int_32(buf, x_offset); png_save_int_32(buf + 4, y_offset); buf[8] = (png_byte)unit_type; png_write_chunk(png_ptr, png_oFFs, buf, (png_size_t)9); } #endif #if defined(PNG_WRITE_pCAL_SUPPORTED) /* write the pCAL chunk (described in the PNG extensions document) */ void /* PRIVATE */ png_write_pCAL(png_structp png_ptr, png_charp purpose, png_int_32 X0, png_int_32 X1, int type, int nparams, png_charp units, png_charpp params) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_pCAL; #endif png_size_t purpose_len, units_len, total_len; png_uint_32p params_len; png_byte buf[10]; png_charp new_purpose; int i; png_debug1(1, "in png_write_pCAL (%d parameters)\n", nparams); if (type >= PNG_EQUATION_LAST) png_warning(png_ptr, "Unrecognized equation type for pCAL chunk"); purpose_len = png_check_keyword(png_ptr, purpose, &new_purpose) + 1; png_debug1(3, "pCAL purpose length = %d\n", (int)purpose_len); units_len = png_strlen(units) + (nparams == 0 ? 0 : 1); png_debug1(3, "pCAL units length = %d\n", (int)units_len); total_len = purpose_len + units_len + 10; params_len = (png_uint_32p)png_malloc(png_ptr, (png_uint_32)(nparams *png_sizeof(png_uint_32))); /* Find the length of each parameter, making sure we don't count the null terminator for the last parameter. */ for (i = 0; i < nparams; i++) { params_len[i] = png_strlen(params[i]) + (i == nparams - 1 ? 0 : 1); png_debug2(3, "pCAL parameter %d length = %lu\n", i, params_len[i]); total_len += (png_size_t)params_len[i]; } png_debug1(3, "pCAL total length = %d\n", (int)total_len); png_write_chunk_start(png_ptr, png_pCAL, (png_uint_32)total_len); png_write_chunk_data(png_ptr, (png_bytep)new_purpose, purpose_len); png_save_int_32(buf, X0); png_save_int_32(buf + 4, X1); buf[8] = (png_byte)type; buf[9] = (png_byte)nparams; png_write_chunk_data(png_ptr, buf, (png_size_t)10); png_write_chunk_data(png_ptr, (png_bytep)units, (png_size_t)units_len); png_free(png_ptr, new_purpose); for (i = 0; i < nparams; i++) { png_write_chunk_data(png_ptr, (png_bytep)params[i], (png_size_t)params_len[i]); } png_free(png_ptr, params_len); png_write_chunk_end(png_ptr); } #endif #if defined(PNG_WRITE_sCAL_SUPPORTED) /* write the sCAL chunk */ #if defined(PNG_FLOATING_POINT_SUPPORTED) && !defined(PNG_NO_STDIO) void /* PRIVATE */ png_write_sCAL(png_structp png_ptr, int unit, double width, double height) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_sCAL; #endif char buf[64]; png_size_t total_len; png_debug(1, "in png_write_sCAL\n"); buf[0] = (char)unit; #if defined(_WIN32_WCE) /* sprintf() function is not supported on WindowsCE */ { wchar_t wc_buf[32]; size_t wc_len; swprintf(wc_buf, TEXT("%12.12e"), width); wc_len = wcslen(wc_buf); WideCharToMultiByte(CP_ACP, 0, wc_buf, -1, buf + 1, wc_len, NULL, NULL); total_len = wc_len + 2; swprintf(wc_buf, TEXT("%12.12e"), height); wc_len = wcslen(wc_buf); WideCharToMultiByte(CP_ACP, 0, wc_buf, -1, buf + total_len, wc_len, NULL, NULL); total_len += wc_len; } #else png_snprintf(buf + 1, 63, "%12.12e", width); total_len = 1 + png_strlen(buf + 1) + 1; png_snprintf(buf + total_len, 64-total_len, "%12.12e", height); total_len += png_strlen(buf + total_len); #endif png_debug1(3, "sCAL total length = %u\n", (unsigned int)total_len); png_write_chunk(png_ptr, png_sCAL, (png_bytep)buf, total_len); } #else #ifdef PNG_FIXED_POINT_SUPPORTED void /* PRIVATE */ png_write_sCAL_s(png_structp png_ptr, int unit, png_charp width, png_charp height) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_sCAL; #endif png_byte buf[64]; png_size_t wlen, hlen, total_len; png_debug(1, "in png_write_sCAL_s\n"); wlen = png_strlen(width); hlen = png_strlen(height); total_len = wlen + hlen + 2; if (total_len > 64) { png_warning(png_ptr, "Can't write sCAL (buffer too small)"); return; } buf[0] = (png_byte)unit; png_memcpy(buf + 1, width, wlen + 1); /* append the '\0' here */ png_memcpy(buf + wlen + 2, height, hlen); /* do NOT append the '\0' here */ png_debug1(3, "sCAL total length = %u\n", (unsigned int)total_len); png_write_chunk(png_ptr, png_sCAL, buf, total_len); } #endif #endif #endif #if defined(PNG_WRITE_pHYs_SUPPORTED) /* write the pHYs chunk */ void /* PRIVATE */ png_write_pHYs(png_structp png_ptr, png_uint_32 x_pixels_per_unit, png_uint_32 y_pixels_per_unit, int unit_type) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_pHYs; #endif png_byte buf[9]; png_debug(1, "in png_write_pHYs\n"); if (unit_type >= PNG_RESOLUTION_LAST) png_warning(png_ptr, "Unrecognized unit type for pHYs chunk"); png_save_uint_32(buf, x_pixels_per_unit); png_save_uint_32(buf + 4, y_pixels_per_unit); buf[8] = (png_byte)unit_type; png_write_chunk(png_ptr, png_pHYs, buf, (png_size_t)9); } #endif #if defined(PNG_WRITE_tIME_SUPPORTED) /* Write the tIME chunk. Use either png_convert_from_struct_tm() * or png_convert_from_time_t(), or fill in the structure yourself. */ void /* PRIVATE */ png_write_tIME(png_structp png_ptr, png_timep mod_time) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_tIME; #endif png_byte buf[7]; png_debug(1, "in png_write_tIME\n"); if (mod_time->month > 12 || mod_time->month < 1 || mod_time->day > 31 || mod_time->day < 1 || mod_time->hour > 23 || mod_time->second > 60) { png_warning(png_ptr, "Invalid time specified for tIME chunk"); return; } png_save_uint_16(buf, mod_time->year); buf[2] = mod_time->month; buf[3] = mod_time->day; buf[4] = mod_time->hour; buf[5] = mod_time->minute; buf[6] = mod_time->second; png_write_chunk(png_ptr, png_tIME, buf, (png_size_t)7); } #endif /* initializes the row writing capability of libpng */ void /* PRIVATE */ png_write_start_row(png_structp png_ptr) { #ifdef PNG_WRITE_INTERLACING_SUPPORTED #ifdef PNG_USE_LOCAL_ARRAYS /* arrays to facilitate easy interlacing - use pass (0 - 6) as index */ /* start of interlace block */ int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0}; /* offset to next interlace block */ int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1}; /* start of interlace block in the y direction */ int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1}; /* offset to next interlace block in the y direction */ int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2}; #endif #endif png_size_t buf_size; png_debug(1, "in png_write_start_row\n"); buf_size = (png_size_t)(PNG_ROWBYTES( png_ptr->usr_channels*png_ptr->usr_bit_depth,png_ptr->width)+1); /* set up row buffer */ png_ptr->row_buf = (png_bytep)png_malloc(png_ptr, (png_uint_32)buf_size); png_ptr->row_buf[0] = PNG_FILTER_VALUE_NONE; #ifndef PNG_NO_WRITE_FILTERING /* set up filtering buffer, if using this filter */ if (png_ptr->do_filter & PNG_FILTER_SUB) { png_ptr->sub_row = (png_bytep)png_malloc(png_ptr, (png_ptr->rowbytes + 1)); png_ptr->sub_row[0] = PNG_FILTER_VALUE_SUB; } /* We only need to keep the previous row if we are using one of these. */ if (png_ptr->do_filter & (PNG_FILTER_AVG | PNG_FILTER_UP | PNG_FILTER_PAETH)) { /* set up previous row buffer */ png_ptr->prev_row = (png_bytep)png_malloc(png_ptr, (png_uint_32)buf_size); png_memset(png_ptr->prev_row, 0, buf_size); if (png_ptr->do_filter & PNG_FILTER_UP) { png_ptr->up_row = (png_bytep)png_malloc(png_ptr, (png_ptr->rowbytes + 1)); png_ptr->up_row[0] = PNG_FILTER_VALUE_UP; } if (png_ptr->do_filter & PNG_FILTER_AVG) { png_ptr->avg_row = (png_bytep)png_malloc(png_ptr, (png_ptr->rowbytes + 1)); png_ptr->avg_row[0] = PNG_FILTER_VALUE_AVG; } if (png_ptr->do_filter & PNG_FILTER_PAETH) { png_ptr->paeth_row = (png_bytep)png_malloc(png_ptr, (png_ptr->rowbytes + 1)); png_ptr->paeth_row[0] = PNG_FILTER_VALUE_PAETH; } #endif /* PNG_NO_WRITE_FILTERING */ } #ifdef PNG_WRITE_INTERLACING_SUPPORTED /* if interlaced, we need to set up width and height of pass */ if (png_ptr->interlaced) { if (!(png_ptr->transformations & PNG_INTERLACE)) { png_ptr->num_rows = (png_ptr->height + png_pass_yinc[0] - 1 - png_pass_ystart[0]) / png_pass_yinc[0]; png_ptr->usr_width = (png_ptr->width + png_pass_inc[0] - 1 - png_pass_start[0]) / png_pass_inc[0]; } else { png_ptr->num_rows = png_ptr->height; png_ptr->usr_width = png_ptr->width; } } else #endif { png_ptr->num_rows = png_ptr->height; png_ptr->usr_width = png_ptr->width; } png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; png_ptr->zstream.next_out = png_ptr->zbuf; } /* Internal use only. Called when finished processing a row of data. */ void /* PRIVATE */ png_write_finish_row(png_structp png_ptr) { #ifdef PNG_WRITE_INTERLACING_SUPPORTED #ifdef PNG_USE_LOCAL_ARRAYS /* arrays to facilitate easy interlacing - use pass (0 - 6) as index */ /* start of interlace block */ int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0}; /* offset to next interlace block */ int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1}; /* start of interlace block in the y direction */ int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1}; /* offset to next interlace block in the y direction */ int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2}; #endif #endif int ret; png_debug(1, "in png_write_finish_row\n"); /* next row */ png_ptr->row_number++; /* see if we are done */ if (png_ptr->row_number < png_ptr->num_rows) return; #ifdef PNG_WRITE_INTERLACING_SUPPORTED /* if interlaced, go to next pass */ if (png_ptr->interlaced) { png_ptr->row_number = 0; if (png_ptr->transformations & PNG_INTERLACE) { png_ptr->pass++; } else { /* loop until we find a non-zero width or height pass */ do { png_ptr->pass++; if (png_ptr->pass >= 7) break; png_ptr->usr_width = (png_ptr->width + png_pass_inc[png_ptr->pass] - 1 - png_pass_start[png_ptr->pass]) / png_pass_inc[png_ptr->pass]; png_ptr->num_rows = (png_ptr->height + png_pass_yinc[png_ptr->pass] - 1 - png_pass_ystart[png_ptr->pass]) / png_pass_yinc[png_ptr->pass]; if (png_ptr->transformations & PNG_INTERLACE) break; } while (png_ptr->usr_width == 0 || png_ptr->num_rows == 0); } /* reset the row above the image for the next pass */ if (png_ptr->pass < 7) { if (png_ptr->prev_row != NULL) png_memset(png_ptr->prev_row, 0, (png_size_t)(PNG_ROWBYTES(png_ptr->usr_channels* png_ptr->usr_bit_depth,png_ptr->width))+1); return; } } #endif /* if we get here, we've just written the last row, so we need to flush the compressor */ do { /* tell the compressor we are done */ ret = deflate(&png_ptr->zstream, Z_FINISH); /* check for an error */ if (ret == Z_OK) { /* check to see if we need more room */ if (!(png_ptr->zstream.avail_out)) { png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size); png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; } } else if (ret != Z_STREAM_END) { if (png_ptr->zstream.msg != NULL) png_error(png_ptr, png_ptr->zstream.msg); else png_error(png_ptr, "zlib error"); } } while (ret != Z_STREAM_END); /* write any extra space */ if (png_ptr->zstream.avail_out < png_ptr->zbuf_size) { png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size - png_ptr->zstream.avail_out); } deflateReset(&png_ptr->zstream); png_ptr->zstream.data_type = Z_BINARY; } #if defined(PNG_WRITE_INTERLACING_SUPPORTED) /* Pick out the correct pixels for the interlace pass. * The basic idea here is to go through the row with a source * pointer and a destination pointer (sp and dp), and copy the * correct pixels for the pass. As the row gets compacted, * sp will always be >= dp, so we should never overwrite anything. * See the default: case for the easiest code to understand. */ void /* PRIVATE */ png_do_write_interlace(png_row_infop row_info, png_bytep row, int pass) { #ifdef PNG_USE_LOCAL_ARRAYS /* arrays to facilitate easy interlacing - use pass (0 - 6) as index */ /* start of interlace block */ int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0}; /* offset to next interlace block */ int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1}; #endif png_debug(1, "in png_do_write_interlace\n"); /* we don't have to do anything on the last pass (6) */ #if defined(PNG_USELESS_TESTS_SUPPORTED) if (row != NULL && row_info != NULL && pass < 6) #else if (pass < 6) #endif { /* each pixel depth is handled separately */ switch (row_info->pixel_depth) { case 1: { png_bytep sp; png_bytep dp; int shift; int d; int value; png_uint_32 i; png_uint_32 row_width = row_info->width; dp = row; d = 0; shift = 7; for (i = png_pass_start[pass]; i < row_width; i += png_pass_inc[pass]) { sp = row + (png_size_t)(i >> 3); value = (int)(*sp >> (7 - (int)(i & 0x07))) & 0x01; d |= (value << shift); if (shift == 0) { shift = 7; *dp++ = (png_byte)d; d = 0; } else shift--; } if (shift != 7) *dp = (png_byte)d; break; } case 2: { png_bytep sp; png_bytep dp; int shift; int d; int value; png_uint_32 i; png_uint_32 row_width = row_info->width; dp = row; shift = 6; d = 0; for (i = png_pass_start[pass]; i < row_width; i += png_pass_inc[pass]) { sp = row + (png_size_t)(i >> 2); value = (*sp >> ((3 - (int)(i & 0x03)) << 1)) & 0x03; d |= (value << shift); if (shift == 0) { shift = 6; *dp++ = (png_byte)d; d = 0; } else shift -= 2; } if (shift != 6) *dp = (png_byte)d; break; } case 4: { png_bytep sp; png_bytep dp; int shift; int d; int value; png_uint_32 i; png_uint_32 row_width = row_info->width; dp = row; shift = 4; d = 0; for (i = png_pass_start[pass]; i < row_width; i += png_pass_inc[pass]) { sp = row + (png_size_t)(i >> 1); value = (*sp >> ((1 - (int)(i & 0x01)) << 2)) & 0x0f; d |= (value << shift); if (shift == 0) { shift = 4; *dp++ = (png_byte)d; d = 0; } else shift -= 4; } if (shift != 4) *dp = (png_byte)d; break; } default: { png_bytep sp; png_bytep dp; png_uint_32 i; png_uint_32 row_width = row_info->width; png_size_t pixel_bytes; /* start at the beginning */ dp = row; /* find out how many bytes each pixel takes up */ pixel_bytes = (row_info->pixel_depth >> 3); /* loop through the row, only looking at the pixels that matter */ for (i = png_pass_start[pass]; i < row_width; i += png_pass_inc[pass]) { /* find out where the original pixel is */ sp = row + (png_size_t)i * pixel_bytes; /* move the pixel */ if (dp != sp) png_memcpy(dp, sp, pixel_bytes); /* next pixel */ dp += pixel_bytes; } break; } } /* set new row width */ row_info->width = (row_info->width + png_pass_inc[pass] - 1 - png_pass_start[pass]) / png_pass_inc[pass]; row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_info->width); } } #endif /* This filters the row, chooses which filter to use, if it has not already * been specified by the application, and then writes the row out with the * chosen filter. */ #define PNG_MAXSUM (((png_uint_32)(-1)) >> 1) #define PNG_HISHIFT 10 #define PNG_LOMASK ((png_uint_32)0xffffL) #define PNG_HIMASK ((png_uint_32)(~PNG_LOMASK >> PNG_HISHIFT)) void /* PRIVATE */ png_write_find_filter(png_structp png_ptr, png_row_infop row_info) { png_bytep best_row; #ifndef PNG_NO_WRITE_FILTER png_bytep prev_row, row_buf; png_uint_32 mins, bpp; png_byte filter_to_do = png_ptr->do_filter; png_uint_32 row_bytes = row_info->rowbytes; #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) int num_p_filters = (int)png_ptr->num_prev_filters; #endif png_debug(1, "in png_write_find_filter\n"); /* find out how many bytes offset each pixel is */ bpp = (row_info->pixel_depth + 7) >> 3; prev_row = png_ptr->prev_row; #endif best_row = png_ptr->row_buf; #ifndef PNG_NO_WRITE_FILTER row_buf = best_row; mins = PNG_MAXSUM; /* The prediction method we use is to find which method provides the * smallest value when summing the absolute values of the distances * from zero, using anything >= 128 as negative numbers. This is known * as the "minimum sum of absolute differences" heuristic. Other * heuristics are the "weighted minimum sum of absolute differences" * (experimental and can in theory improve compression), and the "zlib * predictive" method (not implemented yet), which does test compressions * of lines using different filter methods, and then chooses the * (series of) filter(s) that give minimum compressed data size (VERY * computationally expensive). * * GRR 980525: consider also * (1) minimum sum of absolute differences from running average (i.e., * keep running sum of non-absolute differences & count of bytes) * [track dispersion, too? restart average if dispersion too large?] * (1b) minimum sum of absolute differences from sliding average, probably * with window size <= deflate window (usually 32K) * (2) minimum sum of squared differences from zero or running average * (i.e., ~ root-mean-square approach) */ /* We don't need to test the 'no filter' case if this is the only filter * that has been chosen, as it doesn't actually do anything to the data. */ if ((filter_to_do & PNG_FILTER_NONE) && filter_to_do != PNG_FILTER_NONE) { png_bytep rp; png_uint_32 sum = 0; png_uint_32 i; int v; for (i = 0, rp = row_buf + 1; i < row_bytes; i++, rp++) { v = *rp; sum += (v < 128) ? v : 256 - v; } #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { png_uint_32 sumhi, sumlo; int j; sumlo = sum & PNG_LOMASK; sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; /* Gives us some footroom */ /* Reduce the sum if we match any of the previous rows */ for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_NONE) { sumlo = (sumlo * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; sumhi = (sumhi * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } /* Factor in the cost of this filter (this is here for completeness, * but it makes no sense to have a "cost" for the NONE filter, as * it has the minimum possible computational cost - none). */ sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_NONE]) >> PNG_COST_SHIFT; sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_NONE]) >> PNG_COST_SHIFT; if (sumhi > PNG_HIMASK) sum = PNG_MAXSUM; else sum = (sumhi << PNG_HISHIFT) + sumlo; } #endif mins = sum; } /* sub filter */ if (filter_to_do == PNG_FILTER_SUB) /* it's the only filter so no testing is needed */ { png_bytep rp, lp, dp; png_uint_32 i; for (i = 0, rp = row_buf + 1, dp = png_ptr->sub_row + 1; i < bpp; i++, rp++, dp++) { *dp = *rp; } for (lp = row_buf + 1; i < row_bytes; i++, rp++, lp++, dp++) { *dp = (png_byte)(((int)*rp - (int)*lp) & 0xff); } best_row = png_ptr->sub_row; } else if (filter_to_do & PNG_FILTER_SUB) { png_bytep rp, dp, lp; png_uint_32 sum = 0, lmins = mins; png_uint_32 i; int v; #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) /* We temporarily increase the "minimum sum" by the factor we * would reduce the sum of this filter, so that we can do the * early exit comparison without scaling the sum each time. */ if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 lmhi, lmlo; lmlo = lmins & PNG_LOMASK; lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_SUB) { lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >> PNG_COST_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >> PNG_COST_SHIFT; if (lmhi > PNG_HIMASK) lmins = PNG_MAXSUM; else lmins = (lmhi << PNG_HISHIFT) + lmlo; } #endif for (i = 0, rp = row_buf + 1, dp = png_ptr->sub_row + 1; i < bpp; i++, rp++, dp++) { v = *dp = *rp; sum += (v < 128) ? v : 256 - v; } for (lp = row_buf + 1; i < row_bytes; i++, rp++, lp++, dp++) { v = *dp = (png_byte)(((int)*rp - (int)*lp) & 0xff); sum += (v < 128) ? v : 256 - v; if (sum > lmins) /* We are already worse, don't continue. */ break; } #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 sumhi, sumlo; sumlo = sum & PNG_LOMASK; sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_SUB) { sumlo = (sumlo * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; sumhi = (sumhi * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } sumlo = (sumlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >> PNG_COST_SHIFT; sumhi = (sumhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >> PNG_COST_SHIFT; if (sumhi > PNG_HIMASK) sum = PNG_MAXSUM; else sum = (sumhi << PNG_HISHIFT) + sumlo; } #endif if (sum < mins) { mins = sum; best_row = png_ptr->sub_row; } } /* up filter */ if (filter_to_do == PNG_FILTER_UP) { png_bytep rp, dp, pp; png_uint_32 i; for (i = 0, rp = row_buf + 1, dp = png_ptr->up_row + 1, pp = prev_row + 1; i < row_bytes; i++, rp++, pp++, dp++) { *dp = (png_byte)(((int)*rp - (int)*pp) & 0xff); } best_row = png_ptr->up_row; } else if (filter_to_do & PNG_FILTER_UP) { png_bytep rp, dp, pp; png_uint_32 sum = 0, lmins = mins; png_uint_32 i; int v; #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 lmhi, lmlo; lmlo = lmins & PNG_LOMASK; lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_UP) { lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_UP]) >> PNG_COST_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_UP]) >> PNG_COST_SHIFT; if (lmhi > PNG_HIMASK) lmins = PNG_MAXSUM; else lmins = (lmhi << PNG_HISHIFT) + lmlo; } #endif for (i = 0, rp = row_buf + 1, dp = png_ptr->up_row + 1, pp = prev_row + 1; i < row_bytes; i++) { v = *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff); sum += (v < 128) ? v : 256 - v; if (sum > lmins) /* We are already worse, don't continue. */ break; } #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 sumhi, sumlo; sumlo = sum & PNG_LOMASK; sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_UP) { sumlo = (sumlo * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; sumhi = (sumhi * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_UP]) >> PNG_COST_SHIFT; sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_UP]) >> PNG_COST_SHIFT; if (sumhi > PNG_HIMASK) sum = PNG_MAXSUM; else sum = (sumhi << PNG_HISHIFT) + sumlo; } #endif if (sum < mins) { mins = sum; best_row = png_ptr->up_row; } } /* avg filter */ if (filter_to_do == PNG_FILTER_AVG) { png_bytep rp, dp, pp, lp; png_uint_32 i; for (i = 0, rp = row_buf + 1, dp = png_ptr->avg_row + 1, pp = prev_row + 1; i < bpp; i++) { *dp++ = (png_byte)(((int)*rp++ - ((int)*pp++ / 2)) & 0xff); } for (lp = row_buf + 1; i < row_bytes; i++) { *dp++ = (png_byte)(((int)*rp++ - (((int)*pp++ + (int)*lp++) / 2)) & 0xff); } best_row = png_ptr->avg_row; } else if (filter_to_do & PNG_FILTER_AVG) { png_bytep rp, dp, pp, lp; png_uint_32 sum = 0, lmins = mins; png_uint_32 i; int v; #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 lmhi, lmlo; lmlo = lmins & PNG_LOMASK; lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_AVG) { lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_AVG]) >> PNG_COST_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_AVG]) >> PNG_COST_SHIFT; if (lmhi > PNG_HIMASK) lmins = PNG_MAXSUM; else lmins = (lmhi << PNG_HISHIFT) + lmlo; } #endif for (i = 0, rp = row_buf + 1, dp = png_ptr->avg_row + 1, pp = prev_row + 1; i < bpp; i++) { v = *dp++ = (png_byte)(((int)*rp++ - ((int)*pp++ / 2)) & 0xff); sum += (v < 128) ? v : 256 - v; } for (lp = row_buf + 1; i < row_bytes; i++) { v = *dp++ = (png_byte)(((int)*rp++ - (((int)*pp++ + (int)*lp++) / 2)) & 0xff); sum += (v < 128) ? v : 256 - v; if (sum > lmins) /* We are already worse, don't continue. */ break; } #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 sumhi, sumlo; sumlo = sum & PNG_LOMASK; sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_NONE) { sumlo = (sumlo * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; sumhi = (sumhi * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_AVG]) >> PNG_COST_SHIFT; sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_AVG]) >> PNG_COST_SHIFT; if (sumhi > PNG_HIMASK) sum = PNG_MAXSUM; else sum = (sumhi << PNG_HISHIFT) + sumlo; } #endif if (sum < mins) { mins = sum; best_row = png_ptr->avg_row; } } /* Paeth filter */ if (filter_to_do == PNG_FILTER_PAETH) { png_bytep rp, dp, pp, cp, lp; png_uint_32 i; for (i = 0, rp = row_buf + 1, dp = png_ptr->paeth_row + 1, pp = prev_row + 1; i < bpp; i++) { *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff); } for (lp = row_buf + 1, cp = prev_row + 1; i < row_bytes; i++) { int a, b, c, pa, pb, pc, p; b = *pp++; c = *cp++; a = *lp++; p = b - c; pc = a - c; #ifdef PNG_USE_ABS pa = abs(p); pb = abs(pc); pc = abs(p + pc); #else pa = p < 0 ? -p : p; pb = pc < 0 ? -pc : pc; pc = (p + pc) < 0 ? -(p + pc) : p + pc; #endif p = (pa <= pb && pa <=pc) ? a : (pb <= pc) ? b : c; *dp++ = (png_byte)(((int)*rp++ - p) & 0xff); } best_row = png_ptr->paeth_row; } else if (filter_to_do & PNG_FILTER_PAETH) { png_bytep rp, dp, pp, cp, lp; png_uint_32 sum = 0, lmins = mins; png_uint_32 i; int v; #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 lmhi, lmlo; lmlo = lmins & PNG_LOMASK; lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_PAETH) { lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_PAETH]) >> PNG_COST_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_PAETH]) >> PNG_COST_SHIFT; if (lmhi > PNG_HIMASK) lmins = PNG_MAXSUM; else lmins = (lmhi << PNG_HISHIFT) + lmlo; } #endif for (i = 0, rp = row_buf + 1, dp = png_ptr->paeth_row + 1, pp = prev_row + 1; i < bpp; i++) { v = *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff); sum += (v < 128) ? v : 256 - v; } for (lp = row_buf + 1, cp = prev_row + 1; i < row_bytes; i++) { int a, b, c, pa, pb, pc, p; b = *pp++; c = *cp++; a = *lp++; #ifndef PNG_SLOW_PAETH p = b - c; pc = a - c; #ifdef PNG_USE_ABS pa = abs(p); pb = abs(pc); pc = abs(p + pc); #else pa = p < 0 ? -p : p; pb = pc < 0 ? -pc : pc; pc = (p + pc) < 0 ? -(p + pc) : p + pc; #endif p = (pa <= pb && pa <=pc) ? a : (pb <= pc) ? b : c; #else /* PNG_SLOW_PAETH */ p = a + b - c; pa = abs(p - a); pb = abs(p - b); pc = abs(p - c); if (pa <= pb && pa <= pc) p = a; else if (pb <= pc) p = b; else p = c; #endif /* PNG_SLOW_PAETH */ v = *dp++ = (png_byte)(((int)*rp++ - p) & 0xff); sum += (v < 128) ? v : 256 - v; if (sum > lmins) /* We are already worse, don't continue. */ break; } #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 sumhi, sumlo; sumlo = sum & PNG_LOMASK; sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_PAETH) { sumlo = (sumlo * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; sumhi = (sumhi * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_PAETH]) >> PNG_COST_SHIFT; sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_PAETH]) >> PNG_COST_SHIFT; if (sumhi > PNG_HIMASK) sum = PNG_MAXSUM; else sum = (sumhi << PNG_HISHIFT) + sumlo; } #endif if (sum < mins) { best_row = png_ptr->paeth_row; } } #endif /* PNG_NO_WRITE_FILTER */ /* Do the actual writing of the filtered row data from the chosen filter. */ png_write_filtered_row(png_ptr, best_row); #ifndef PNG_NO_WRITE_FILTER #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) /* Save the type of filter we picked this time for future calculations */ if (png_ptr->num_prev_filters > 0) { int j; for (j = 1; j < num_p_filters; j++) { png_ptr->prev_filters[j] = png_ptr->prev_filters[j - 1]; } png_ptr->prev_filters[j] = best_row[0]; } #endif #endif /* PNG_NO_WRITE_FILTER */ } /* Do the actual writing of a previously filtered row. */ void /* PRIVATE */ png_write_filtered_row(png_structp png_ptr, png_bytep filtered_row) { png_debug(1, "in png_write_filtered_row\n"); png_debug1(2, "filter = %d\n", filtered_row[0]); /* set up the zlib input buffer */ png_ptr->zstream.next_in = filtered_row; png_ptr->zstream.avail_in = (uInt)png_ptr->row_info.rowbytes + 1; /* repeat until we have compressed all the data */ do { int ret; /* return of zlib */ /* compress the data */ ret = deflate(&png_ptr->zstream, Z_NO_FLUSH); /* check for compression errors */ if (ret != Z_OK) { if (png_ptr->zstream.msg != NULL) png_error(png_ptr, png_ptr->zstream.msg); else png_error(png_ptr, "zlib error"); } /* see if it is time to write another IDAT */ if (!(png_ptr->zstream.avail_out)) { /* write the IDAT and reset the zlib output buffer */ png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size); png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; } /* repeat until all data has been compressed */ } while (png_ptr->zstream.avail_in); /* swap the current and previous rows */ if (png_ptr->prev_row != NULL) { png_bytep tptr; tptr = png_ptr->prev_row; png_ptr->prev_row = png_ptr->row_buf; png_ptr->row_buf = tptr; } /* finish row - updates counters and flushes zlib if last row */ png_write_finish_row(png_ptr); #if defined(PNG_WRITE_FLUSH_SUPPORTED) png_ptr->flush_rows++; if (png_ptr->flush_dist > 0 && png_ptr->flush_rows >= png_ptr->flush_dist) { png_write_flush(png_ptr); } #endif } #endif /* PNG_WRITE_SUPPORTED */ /********* End of inlined file: pngwutil.c *********/ } #else #define PNG_INTERNAL #define PNG_SETJMP_NOT_SUPPORTED #include #include #endif } #ifdef _MSC_VER #pragma warning (pop) #endif BEGIN_JUCE_NAMESPACE using namespace pnglibNamespace; using ::calloc; using ::malloc; using ::free; static void pngReadCallback (png_structp pngReadStruct, png_bytep data, png_size_t length) throw() { InputStream* const in = (InputStream*) png_get_io_ptr (pngReadStruct); in->read (data, (int) length); } struct PNGErrorStruct {}; static void pngErrorCallback (png_structp, png_const_charp) { throw PNGErrorStruct(); } Image* juce_loadPNGImageFromStream (InputStream& in) throw() { Image* image = 0; png_structp pngReadStruct; png_infop pngInfoStruct; pngReadStruct = png_create_read_struct (PNG_LIBPNG_VER_STRING, 0, 0, 0); if (pngReadStruct != 0) { pngInfoStruct = png_create_info_struct (pngReadStruct); if (pngInfoStruct == 0) { png_destroy_read_struct (&pngReadStruct, 0, 0); return 0; } png_set_error_fn (pngReadStruct, 0, pngErrorCallback, pngErrorCallback); // read the header.. png_set_read_fn (pngReadStruct, &in, pngReadCallback); png_uint_32 width, height; int bitDepth, colorType, interlaceType; png_read_info (pngReadStruct, pngInfoStruct); png_get_IHDR (pngReadStruct, pngInfoStruct, &width, &height, &bitDepth, &colorType, &interlaceType, 0, 0); if (bitDepth == 16) png_set_strip_16 (pngReadStruct); if (colorType == PNG_COLOR_TYPE_PALETTE) png_set_expand (pngReadStruct); if (bitDepth < 8) png_set_expand (pngReadStruct); if (png_get_valid (pngReadStruct, pngInfoStruct, PNG_INFO_tRNS)) png_set_expand (pngReadStruct); if (colorType == PNG_COLOR_TYPE_GRAY || colorType == PNG_COLOR_TYPE_GRAY_ALPHA) png_set_gray_to_rgb (pngReadStruct); png_set_add_alpha (pngReadStruct, 0xff, PNG_FILLER_AFTER); const bool hasAlphaChan = (colorType & PNG_COLOR_MASK_ALPHA) != 0 || pngInfoStruct->num_trans > 0; // Load the image into a temp buffer in the pnglib format.. uint8* const tempBuffer = (uint8*) juce_malloc (height * (width << 2)); png_bytepp rows = (png_bytepp) juce_malloc (sizeof (png_bytep) * height); int y; for (y = (int) height; --y >= 0;) rows[y] = (png_bytep) (tempBuffer + (width << 2) * y); png_read_image (pngReadStruct, rows); png_read_end (pngReadStruct, pngInfoStruct); juce_free (rows); png_destroy_read_struct (&pngReadStruct, &pngInfoStruct, 0); // now convert the data to a juce image format.. image = new Image (hasAlphaChan ? Image::ARGB : Image::RGB, width, height, hasAlphaChan); int stride, pixelStride; uint8* const pixels = image->lockPixelDataReadWrite (0, 0, width, height, stride, pixelStride); uint8* srcRow = tempBuffer; uint8* destRow = pixels; for (y = 0; y < (int) height; ++y) { const uint8* src = srcRow; srcRow += (width << 2); uint8* dest = destRow; destRow += stride; if (hasAlphaChan) { for (int i = width; --i >= 0;) { ((PixelARGB*) dest)->setARGB (src[3], src[0], src[1], src[2]); ((PixelARGB*) dest)->premultiply(); dest += pixelStride; src += 4; } } else { for (int i = width; --i >= 0;) { ((PixelRGB*) dest)->setARGB (0, src[0], src[1], src[2]); dest += pixelStride; src += 4; } } } image->releasePixelDataReadWrite (pixels); juce_free (tempBuffer); } return image; } static void pngWriteDataCallback (png_structp png_ptr, png_bytep data, png_size_t length) throw() { OutputStream* const out = (OutputStream*) png_ptr->io_ptr; const bool ok = out->write (data, length); (void) ok; jassert (ok); } bool juce_writePNGImageToStream (const Image& image, OutputStream& out) throw() { const int width = image.getWidth(); const int height = image.getHeight(); png_structp pngWriteStruct = png_create_write_struct (PNG_LIBPNG_VER_STRING, 0, 0, 0); if (pngWriteStruct == 0) return false; png_infop pngInfoStruct = png_create_info_struct (pngWriteStruct); if (pngInfoStruct == 0) { png_destroy_write_struct (&pngWriteStruct, (png_infopp) 0); return false; } png_set_write_fn (pngWriteStruct, &out, pngWriteDataCallback, 0); png_set_IHDR (pngWriteStruct, pngInfoStruct, width, height, 8, image.hasAlphaChannel() ? PNG_COLOR_TYPE_RGB_ALPHA : PNG_COLOR_TYPE_RGB, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE); png_bytep rowData = (png_bytep) juce_malloc (width * 4 * sizeof (png_byte)); png_color_8 sig_bit; sig_bit.red = 8; sig_bit.green = 8; sig_bit.blue = 8; sig_bit.alpha = 8; png_set_sBIT (pngWriteStruct, pngInfoStruct, &sig_bit); png_write_info (pngWriteStruct, pngInfoStruct); png_set_shift (pngWriteStruct, &sig_bit); png_set_packing (pngWriteStruct); for (int y = 0; y < height; ++y) { uint8* dst = (uint8*) rowData; int stride, pixelStride; const uint8* pixels = image.lockPixelDataReadOnly (0, y, width, 1, stride, pixelStride); const uint8* src = pixels; if (image.hasAlphaChannel()) { for (int i = width; --i >= 0;) { PixelARGB p (*(const PixelARGB*) src); p.unpremultiply(); *dst++ = p.getRed(); *dst++ = p.getGreen(); *dst++ = p.getBlue(); *dst++ = p.getAlpha(); src += pixelStride; } } else { for (int i = width; --i >= 0;) { *dst++ = ((const PixelRGB*) src)->getRed(); *dst++ = ((const PixelRGB*) src)->getGreen(); *dst++ = ((const PixelRGB*) src)->getBlue(); src += pixelStride; } } png_write_rows (pngWriteStruct, &rowData, 1); image.releasePixelDataReadOnly (pixels); } juce_free (rowData); png_write_end (pngWriteStruct, pngInfoStruct); png_destroy_write_struct (&pngWriteStruct, &pngInfoStruct); out.flush(); return true; } END_JUCE_NAMESPACE /********* End of inlined file: juce_PNGLoader.cpp *********/ #endif //============================================================================== #if JUCE_WINDOWS /********* Start of inlined file: juce_win32_NativeCode.cpp *********/ /* This file wraps together all the win32-specific code, so that we can include all the native headers just once, and compile all our platform-specific stuff in one big lump, keeping it out of the way of the rest of the codebase. */ BEGIN_JUCE_NAMESPACE #define JUCE_INCLUDED_FILE 1 // Now include the actual code files.. /********* Start of inlined file: juce_win32_DynamicLibraryLoader.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE /********* Start of inlined file: juce_win32_DynamicLibraryLoader.h *********/ #ifndef __JUCE_WIN32_DYNAMICLIBRARYLOADER_JUCEHEADER__ #define __JUCE_WIN32_DYNAMICLIBRARYLOADER_JUCEHEADER__ #ifndef DOXYGEN // use with DynamicLibraryLoader to simplify importing functions // // functionName: function to import // localFunctionName: name you want to use to actually call it (must be different) // returnType: the return type // object: the DynamicLibraryLoader to use // params: list of params (bracketed) // #define DynamicLibraryImport(functionName, localFunctionName, returnType, object, params) \ typedef returnType (WINAPI *type##localFunctionName) params; \ type##localFunctionName localFunctionName \ = (type##localFunctionName)object.findProcAddress (#functionName); // loads and unloads a DLL automatically class JUCE_API DynamicLibraryLoader { public: DynamicLibraryLoader (const String& name); ~DynamicLibraryLoader(); void* findProcAddress (const String& functionName); private: void* libHandle; }; #endif #endif // __JUCE_WIN32_DYNAMICLIBRARYLOADER_JUCEHEADER__ /********* End of inlined file: juce_win32_DynamicLibraryLoader.h *********/ DynamicLibraryLoader::DynamicLibraryLoader (const String& name) { libHandle = LoadLibrary (name); } DynamicLibraryLoader::~DynamicLibraryLoader() { FreeLibrary ((HMODULE) libHandle); } void* DynamicLibraryLoader::findProcAddress (const String& functionName) { return (void*) GetProcAddress ((HMODULE) libHandle, functionName); } #endif /********* End of inlined file: juce_win32_DynamicLibraryLoader.cpp *********/ /********* Start of inlined file: juce_win32_SystemStats.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE extern void juce_updateMultiMonitorInfo() throw(); extern void juce_initialiseThreadEvents() throw(); void Logger::outputDebugString (const String& text) throw() { OutputDebugString (text + T("\n")); } void Logger::outputDebugPrintf (const tchar* format, ...) throw() { String text; va_list args; va_start (args, format); text.vprintf(format, args); outputDebugString (text); } static int64 hiResTicksPerSecond; static double hiResTicksScaleFactor; #if JUCE_USE_INTRINSICS // CPU info functions using intrinsics... #pragma intrinsic (__cpuid) #pragma intrinsic (__rdtsc) /*static unsigned int getCPUIDWord (int* familyModel = 0, int* extFeatures = 0) throw() { int info [4]; __cpuid (info, 1); if (familyModel != 0) *familyModel = info [0]; if (extFeatures != 0) *extFeatures = info[1]; return info[3]; }*/ const String SystemStats::getCpuVendor() throw() { int info [4]; __cpuid (info, 0); char v [12]; memcpy (v, info + 1, 4); memcpy (v + 4, info + 3, 4); memcpy (v + 8, info + 2, 4); return String (v, 12); } #else // CPU info functions using old fashioned inline asm... /*static juce_noinline unsigned int getCPUIDWord (int* familyModel = 0, int* extFeatures = 0) { unsigned int cpu = 0; unsigned int ext = 0; unsigned int family = 0; #if JUCE_GCC unsigned int dummy = 0; #endif #ifndef __MINGW32__ __try #endif { #if JUCE_GCC __asm__ ("cpuid" : "=a" (family), "=b" (ext), "=c" (dummy),"=d" (cpu) : "a" (1)); #else __asm { mov eax, 1 cpuid mov cpu, edx mov family, eax mov ext, ebx } #endif } #ifndef __MINGW32__ __except (EXCEPTION_EXECUTE_HANDLER) { return 0; } #endif if (familyModel != 0) *familyModel = family; if (extFeatures != 0) *extFeatures = ext; return cpu; }*/ static void juce_getCpuVendor (char* const v) { int vendor[4]; zeromem (vendor, 16); #ifdef JUCE_64BIT #else #ifndef __MINGW32__ __try #endif { #if JUCE_GCC unsigned int dummy = 0; __asm__ ("cpuid" : "=a" (dummy), "=b" (vendor[0]), "=c" (vendor[2]),"=d" (vendor[1]) : "a" (0)); #else __asm { mov eax, 0 cpuid mov [vendor], ebx mov [vendor + 4], edx mov [vendor + 8], ecx } #endif } #ifndef __MINGW32__ __except (EXCEPTION_EXECUTE_HANDLER) { *v = 0; } #endif #endif memcpy (v, vendor, 16); } const String SystemStats::getCpuVendor() throw() { char v [16]; juce_getCpuVendor (v); return String (v, 16); } #endif struct CPUFlags { bool hasMMX : 1; bool hasSSE : 1; bool hasSSE2 : 1; bool has3DNow : 1; }; static CPUFlags cpuFlags; bool SystemStats::hasMMX() throw() { return cpuFlags.hasMMX; } bool SystemStats::hasSSE() throw() { return cpuFlags.hasSSE; } bool SystemStats::hasSSE2() throw() { return cpuFlags.hasSSE2; } bool SystemStats::has3DNow() throw() { return cpuFlags.has3DNow; } void SystemStats::initialiseStats() throw() { juce_initialiseThreadEvents(); cpuFlags.hasMMX = IsProcessorFeaturePresent (PF_MMX_INSTRUCTIONS_AVAILABLE) != 0; cpuFlags.hasSSE = IsProcessorFeaturePresent (PF_XMMI_INSTRUCTIONS_AVAILABLE) != 0; cpuFlags.hasSSE2 = IsProcessorFeaturePresent (PF_XMMI64_INSTRUCTIONS_AVAILABLE) != 0; #ifdef PF_AMD3D_INSTRUCTIONS_AVAILABLE cpuFlags.has3DNow = IsProcessorFeaturePresent (PF_AMD3D_INSTRUCTIONS_AVAILABLE) != 0; #else cpuFlags.has3DNow = IsProcessorFeaturePresent (PF_3DNOW_INSTRUCTIONS_AVAILABLE) != 0; #endif LARGE_INTEGER f; QueryPerformanceFrequency (&f); hiResTicksPerSecond = f.QuadPart; hiResTicksScaleFactor = 1000.0 / hiResTicksPerSecond; String s (SystemStats::getJUCEVersion()); #ifdef JUCE_DEBUG const MMRESULT res = timeBeginPeriod (1); jassert (res == TIMERR_NOERROR); #else timeBeginPeriod (1); #endif #if defined (JUCE_DEBUG) && JUCE_MSVC && JUCE_CHECK_MEMORY_LEAKS _CrtSetDbgFlag (_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF); #endif } SystemStats::OperatingSystemType SystemStats::getOperatingSystemType() throw() { OSVERSIONINFO info; info.dwOSVersionInfoSize = sizeof (info); GetVersionEx (&info); if (info.dwPlatformId == VER_PLATFORM_WIN32_NT) { switch (info.dwMajorVersion) { case 5: return (info.dwMinorVersion == 0) ? Win2000 : WinXP; case 6: return (info.dwMinorVersion == 0) ? WinVista : Windows7; default: jassertfalse; break; // !! not a supported OS! } } else if (info.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS) { jassert (info.dwMinorVersion != 0); // !! still running on Windows 95?? return Win98; } return UnknownOS; } const String SystemStats::getOperatingSystemName() throw() { const char* name = "Unknown OS"; switch (getOperatingSystemType()) { case Windows7: name = "Windows 7"; break; case WinVista: name = "Windows Vista"; break; case WinXP: name = "Windows XP"; break; case Win2000: name = "Windows 2000"; break; case Win98: name = "Windows 98"; break; default: jassertfalse; break; // !! new type of OS? } return name; } bool SystemStats::isOperatingSystem64Bit() throw() { #ifdef _WIN64 return true; #else typedef BOOL (WINAPI* LPFN_ISWOW64PROCESS) (HANDLE, PBOOL); LPFN_ISWOW64PROCESS fnIsWow64Process = (LPFN_ISWOW64PROCESS) GetProcAddress (GetModuleHandle (L"kernel32"), "IsWow64Process"); BOOL isWow64 = FALSE; return (fnIsWow64Process != 0) && fnIsWow64Process (GetCurrentProcess(), &isWow64) && (isWow64 != FALSE); #endif } int SystemStats::getMemorySizeInMegabytes() throw() { MEMORYSTATUSEX mem; mem.dwLength = sizeof (mem); GlobalMemoryStatusEx (&mem); return (int) (mem.ullTotalPhys / (1024 * 1024)) + 1; } int SystemStats::getNumCpus() throw() { SYSTEM_INFO systemInfo; GetSystemInfo (&systemInfo); return systemInfo.dwNumberOfProcessors; } uint32 juce_millisecondsSinceStartup() throw() { return (uint32) GetTickCount(); } int64 Time::getHighResolutionTicks() throw() { LARGE_INTEGER ticks; QueryPerformanceCounter (&ticks); const int64 mainCounterAsHiResTicks = (GetTickCount() * hiResTicksPerSecond) / 1000; const int64 newOffset = mainCounterAsHiResTicks - ticks.QuadPart; // fix for a very obscure PCI hardware bug that can make the counter // sometimes jump forwards by a few seconds.. static int64 hiResTicksOffset = 0; const int64 offsetDrift = abs64 (newOffset - hiResTicksOffset); if (offsetDrift > (hiResTicksPerSecond >> 1)) hiResTicksOffset = newOffset; return ticks.QuadPart + hiResTicksOffset; } double Time::getMillisecondCounterHiRes() throw() { return getHighResolutionTicks() * hiResTicksScaleFactor; } int64 Time::getHighResolutionTicksPerSecond() throw() { return hiResTicksPerSecond; } int64 SystemStats::getClockCycleCounter() throw() { #if JUCE_USE_INTRINSICS // MS intrinsics version... return __rdtsc(); #elif JUCE_GCC // GNU inline asm version... unsigned int hi = 0, lo = 0; __asm__ __volatile__ ( "xor %%eax, %%eax \n\ xor %%edx, %%edx \n\ rdtsc \n\ movl %%eax, %[lo] \n\ movl %%edx, %[hi]" : : [hi] "m" (hi), [lo] "m" (lo) : "cc", "eax", "ebx", "ecx", "edx", "memory"); return (int64) ((((uint64) hi) << 32) | lo); #else // MSVC inline asm version... unsigned int hi = 0, lo = 0; __asm { xor eax, eax xor edx, edx rdtsc mov lo, eax mov hi, edx } return (int64) ((((uint64) hi) << 32) | lo); #endif } int SystemStats::getCpuSpeedInMegaherz() throw() { const int64 cycles = SystemStats::getClockCycleCounter(); const uint32 millis = Time::getMillisecondCounter(); int lastResult = 0; for (;;) { int n = 1000000; while (--n > 0) {} const uint32 millisElapsed = Time::getMillisecondCounter() - millis; const int64 cyclesNow = SystemStats::getClockCycleCounter(); if (millisElapsed > 80) { const int newResult = (int) (((cyclesNow - cycles) / millisElapsed) / 1000); if (millisElapsed > 500 || (lastResult == newResult && newResult > 100)) return newResult; lastResult = newResult; } } } bool Time::setSystemTimeToThisTime() const throw() { SYSTEMTIME st; st.wDayOfWeek = 0; st.wYear = (WORD) getYear(); st.wMonth = (WORD) (getMonth() + 1); st.wDay = (WORD) getDayOfMonth(); st.wHour = (WORD) getHours(); st.wMinute = (WORD) getMinutes(); st.wSecond = (WORD) getSeconds(); st.wMilliseconds = (WORD) (millisSinceEpoch % 1000); // do this twice because of daylight saving conversion problems - the // first one sets it up, the second one kicks it in. return SetLocalTime (&st) != 0 && SetLocalTime (&st) != 0; } int SystemStats::getPageSize() throw() { SYSTEM_INFO systemInfo; GetSystemInfo (&systemInfo); return systemInfo.dwPageSize; } #endif /********* End of inlined file: juce_win32_SystemStats.cpp *********/ /********* Start of inlined file: juce_win32_Threads.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE #if ! JUCE_ONLY_BUILD_CORE_LIBRARY extern HWND juce_messageWindowHandle; #endif CriticalSection::CriticalSection() throw() { // (just to check the MS haven't changed this structure and broken things...) #if _MSC_VER >= 1400 static_jassert (sizeof (CRITICAL_SECTION) <= sizeof (internal)); #else static_jassert (sizeof (CRITICAL_SECTION) <= 24); #endif InitializeCriticalSection ((CRITICAL_SECTION*) internal); } CriticalSection::~CriticalSection() throw() { DeleteCriticalSection ((CRITICAL_SECTION*) internal); } void CriticalSection::enter() const throw() { EnterCriticalSection ((CRITICAL_SECTION*) internal); } bool CriticalSection::tryEnter() const throw() { return TryEnterCriticalSection ((CRITICAL_SECTION*) internal) != FALSE; } void CriticalSection::exit() const throw() { LeaveCriticalSection ((CRITICAL_SECTION*) internal); } WaitableEvent::WaitableEvent() throw() : internal (CreateEvent (0, FALSE, FALSE, 0)) { } WaitableEvent::~WaitableEvent() throw() { CloseHandle (internal); } bool WaitableEvent::wait (const int timeOutMillisecs) const throw() { return WaitForSingleObject (internal, timeOutMillisecs) == WAIT_OBJECT_0; } void WaitableEvent::signal() const throw() { SetEvent (internal); } void WaitableEvent::reset() const throw() { ResetEvent (internal); } void JUCE_API juce_threadEntryPoint (void*); static unsigned int __stdcall threadEntryProc (void* userData) throw() { #if ! JUCE_ONLY_BUILD_CORE_LIBRARY AttachThreadInput (GetWindowThreadProcessId (juce_messageWindowHandle, 0), GetCurrentThreadId(), TRUE); #endif juce_threadEntryPoint (userData); _endthreadex (0); return 0; } void juce_CloseThreadHandle (void* handle) throw() { CloseHandle ((HANDLE) handle); } void* juce_createThread (void* userData) throw() { unsigned int threadId; return (void*) _beginthreadex (0, 0, &threadEntryProc, userData, 0, &threadId); } void juce_killThread (void* handle) throw() { if (handle != 0) { #ifdef JUCE_DEBUG OutputDebugString (_T("** Warning - Forced thread termination **\n")); #endif TerminateThread (handle, 0); } } void juce_setCurrentThreadName (const String& name) throw() { #if defined (JUCE_DEBUG) && JUCE_MSVC struct { DWORD dwType; LPCSTR szName; DWORD dwThreadID; DWORD dwFlags; } info; info.dwType = 0x1000; info.szName = name; info.dwThreadID = GetCurrentThreadId(); info.dwFlags = 0; #define MS_VC_EXCEPTION 0x406d1388 __try { RaiseException (MS_VC_EXCEPTION, 0, sizeof (info) / sizeof (ULONG_PTR), (ULONG_PTR*) &info); } __except (EXCEPTION_CONTINUE_EXECUTION) {} #else (void) name; #endif } Thread::ThreadID Thread::getCurrentThreadId() throw() { return (ThreadID) (pointer_sized_int) GetCurrentThreadId(); } // priority 1 to 10 where 5=normal, 1=low bool juce_setThreadPriority (void* threadHandle, int priority) throw() { int pri = THREAD_PRIORITY_TIME_CRITICAL; if (priority < 1) pri = THREAD_PRIORITY_IDLE; else if (priority < 2) pri = THREAD_PRIORITY_LOWEST; else if (priority < 5) pri = THREAD_PRIORITY_BELOW_NORMAL; else if (priority < 7) pri = THREAD_PRIORITY_NORMAL; else if (priority < 9) pri = THREAD_PRIORITY_ABOVE_NORMAL; else if (priority < 10) pri = THREAD_PRIORITY_HIGHEST; if (threadHandle == 0) threadHandle = GetCurrentThread(); return SetThreadPriority (threadHandle, pri) != FALSE; } void Thread::setCurrentThreadAffinityMask (const uint32 affinityMask) throw() { SetThreadAffinityMask (GetCurrentThread(), affinityMask); } static HANDLE sleepEvent = 0; void juce_initialiseThreadEvents() throw() { if (sleepEvent == 0) #ifdef JUCE_DEBUG sleepEvent = CreateEvent (0, 0, 0, _T("Juce Sleep Event")); #else sleepEvent = CreateEvent (0, 0, 0, 0); #endif } void Thread::yield() throw() { Sleep (0); } void JUCE_CALLTYPE Thread::sleep (const int millisecs) throw() { if (millisecs >= 10) { Sleep (millisecs); } else { jassert (sleepEvent != 0); // unlike Sleep() this is guaranteed to return to the current thread after // the time expires, so we'll use this for short waits, which are more likely // to need to be accurate WaitForSingleObject (sleepEvent, millisecs); } } static int lastProcessPriority = -1; // called by WindowDriver because Windows does wierd things to process priority // when you swap apps, and this forces an update when the app is brought to the front. void juce_repeatLastProcessPriority() throw() { if (lastProcessPriority >= 0) // (avoid changing this if it's not been explicitly set by the app..) { DWORD p; switch (lastProcessPriority) { case Process::LowPriority: p = IDLE_PRIORITY_CLASS; break; case Process::NormalPriority: p = NORMAL_PRIORITY_CLASS; break; case Process::HighPriority: p = HIGH_PRIORITY_CLASS; break; case Process::RealtimePriority: p = REALTIME_PRIORITY_CLASS; break; default: jassertfalse // bad priority value return; } SetPriorityClass (GetCurrentProcess(), p); } } void Process::setPriority (ProcessPriority prior) { if (lastProcessPriority != (int) prior) { lastProcessPriority = (int) prior; juce_repeatLastProcessPriority(); } } bool JUCE_API JUCE_CALLTYPE juce_isRunningUnderDebugger() throw() { return IsDebuggerPresent() != FALSE; } bool JUCE_CALLTYPE Process::isRunningUnderDebugger() throw() { return juce_isRunningUnderDebugger(); } void Process::raisePrivilege() { jassertfalse // xxx not implemented } void Process::lowerPrivilege() { jassertfalse // xxx not implemented } void Process::terminate() { #if defined (JUCE_DEBUG) && JUCE_MSVC && JUCE_CHECK_MEMORY_LEAKS _CrtDumpMemoryLeaks(); #endif // bullet in the head in case there's a problem shutting down.. ExitProcess (0); } void* PlatformUtilities::loadDynamicLibrary (const String& name) { void* result = 0; JUCE_TRY { result = (void*) LoadLibrary (name); } JUCE_CATCH_ALL return result; } void PlatformUtilities::freeDynamicLibrary (void* h) { JUCE_TRY { if (h != 0) FreeLibrary ((HMODULE) h); } JUCE_CATCH_ALL } void* PlatformUtilities::getProcedureEntryPoint (void* h, const String& name) { return (h != 0) ? (void*) GetProcAddress ((HMODULE) h, name) : 0; } InterProcessLock::InterProcessLock (const String& name_) throw() : internal (0), name (name_), reentrancyLevel (0) { } InterProcessLock::~InterProcessLock() throw() { exit(); } bool InterProcessLock::enter (const int timeOutMillisecs) throw() { if (reentrancyLevel++ == 0) { internal = CreateMutex (0, TRUE, name); if (internal != 0 && GetLastError() == ERROR_ALREADY_EXISTS) { if (timeOutMillisecs == 0 || WaitForSingleObject (internal, (timeOutMillisecs < 0) ? INFINITE : timeOutMillisecs) == WAIT_TIMEOUT) { ReleaseMutex (internal); CloseHandle (internal); internal = 0; } } } return (internal != 0); } void InterProcessLock::exit() throw() { if (--reentrancyLevel == 0 && internal != 0) { ReleaseMutex (internal); CloseHandle (internal); internal = 0; } } #endif /********* End of inlined file: juce_win32_Threads.cpp *********/ /********* Start of inlined file: juce_win32_Files.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE #ifndef CSIDL_MYMUSIC #define CSIDL_MYMUSIC 0x000d #endif #ifndef CSIDL_MYVIDEO #define CSIDL_MYVIDEO 0x000e #endif const tchar File::separator = T('\\'); const tchar* File::separatorString = T("\\"); bool juce_fileExists (const String& fileName, const bool dontCountDirectories) throw() { if (fileName.isEmpty()) return false; const DWORD attr = GetFileAttributes (fileName); return dontCountDirectories ? ((attr & FILE_ATTRIBUTE_DIRECTORY) == 0) : (attr != 0xffffffff); } bool juce_isDirectory (const String& fileName) throw() { const DWORD attr = GetFileAttributes (fileName); return (attr != 0xffffffff) && ((attr & FILE_ATTRIBUTE_DIRECTORY) != 0); } bool juce_canWriteToFile (const String& fileName) throw() { const DWORD attr = GetFileAttributes (fileName); return ((attr & FILE_ATTRIBUTE_READONLY) == 0); } bool juce_setFileReadOnly (const String& fileName, bool isReadOnly) throw() { DWORD attr = GetFileAttributes (fileName); if (attr == 0xffffffff) return false; if (isReadOnly != juce_canWriteToFile (fileName)) return true; if (isReadOnly) attr |= FILE_ATTRIBUTE_READONLY; else attr &= ~FILE_ATTRIBUTE_READONLY; return SetFileAttributes (fileName, attr) != FALSE; } bool File::isHidden() const throw() { return (GetFileAttributes (getFullPathName()) & FILE_ATTRIBUTE_HIDDEN) != 0; } bool juce_deleteFile (const String& fileName) throw() { if (juce_isDirectory (fileName)) return RemoveDirectory (fileName) != 0; return DeleteFile (fileName) != 0; } bool File::moveToTrash() const throw() { if (! exists()) return true; SHFILEOPSTRUCT fos; zerostruct (fos); // The string we pass in must be double null terminated.. String doubleNullTermPath (getFullPathName() + " "); TCHAR* p = (TCHAR*) (const TCHAR*) doubleNullTermPath; p [getFullPathName().length()] = 0; fos.wFunc = FO_DELETE; fos.hwnd = (HWND) 0; fos.pFrom = p; fos.pTo = NULL; fos.fFlags = FOF_ALLOWUNDO | FOF_NOERRORUI | FOF_SILENT | FOF_NOCONFIRMATION | FOF_NOCONFIRMMKDIR | FOF_RENAMEONCOLLISION; return SHFileOperation (&fos) == 0; } bool juce_moveFile (const String& source, const String& dest) throw() { return MoveFile (source, dest) != 0; } bool juce_copyFile (const String& source, const String& dest) throw() { return CopyFile (source, dest, false) != 0; } void juce_createDirectory (const String& fileName) throw() { if (! juce_fileExists (fileName, true)) { CreateDirectory (fileName, 0); } } // return 0 if not possible void* juce_fileOpen (const String& fileName, bool forWriting) throw() { HANDLE h; if (forWriting) { h = CreateFile (fileName, GENERIC_WRITE, FILE_SHARE_READ, 0, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0); if (h != INVALID_HANDLE_VALUE) SetFilePointer (h, 0, 0, FILE_END); else h = 0; } else { h = CreateFile (fileName, GENERIC_READ, FILE_SHARE_READ | FILE_SHARE_WRITE, 0, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN, 0); if (h == INVALID_HANDLE_VALUE) h = 0; } return (void*) h; } void juce_fileClose (void* handle) throw() { CloseHandle (handle); } int juce_fileRead (void* handle, void* buffer, int size) throw() { DWORD num = 0; ReadFile ((HANDLE) handle, buffer, size, &num, 0); return num; } int juce_fileWrite (void* handle, const void* buffer, int size) throw() { DWORD num; WriteFile ((HANDLE) handle, buffer, size, &num, 0); return num; } int64 juce_fileSetPosition (void* handle, int64 pos) throw() { LARGE_INTEGER li; li.QuadPart = pos; li.LowPart = SetFilePointer ((HANDLE) handle, li.LowPart, &li.HighPart, FILE_BEGIN); // (returns -1 if it fails) return li.QuadPart; } int64 juce_fileGetPosition (void* handle) throw() { LARGE_INTEGER li; li.QuadPart = 0; li.LowPart = SetFilePointer ((HANDLE) handle, 0, &li.HighPart, FILE_CURRENT); // (returns -1 if it fails) return jmax ((int64) 0, li.QuadPart); } void juce_fileFlush (void* handle) throw() { FlushFileBuffers ((HANDLE) handle); } int64 juce_getFileSize (const String& fileName) throw() { WIN32_FILE_ATTRIBUTE_DATA attributes; if (GetFileAttributesEx (fileName, GetFileExInfoStandard, &attributes)) { return (((int64) attributes.nFileSizeHigh) << 32) | attributes.nFileSizeLow; } return 0; } static int64 fileTimeToTime (const FILETIME* const ft) throw() { // tell me if this fails! static_jassert (sizeof (ULARGE_INTEGER) == sizeof (FILETIME)); #if JUCE_GCC return (((const ULARGE_INTEGER*) ft)->QuadPart - 116444736000000000LL) / 10000; #else return (((const ULARGE_INTEGER*) ft)->QuadPart - 116444736000000000) / 10000; #endif } static void timeToFileTime (const int64 time, FILETIME* const ft) throw() { #if JUCE_GCC ((ULARGE_INTEGER*) ft)->QuadPart = time * 10000 + 116444736000000000LL; #else ((ULARGE_INTEGER*) ft)->QuadPart = time * 10000 + 116444736000000000; #endif } void juce_getFileTimes (const String& fileName, int64& modificationTime, int64& accessTime, int64& creationTime) throw() { WIN32_FILE_ATTRIBUTE_DATA attributes; if (GetFileAttributesEx (fileName, GetFileExInfoStandard, &attributes)) { modificationTime = fileTimeToTime (&attributes.ftLastWriteTime); creationTime = fileTimeToTime (&attributes.ftCreationTime); accessTime = fileTimeToTime (&attributes.ftLastAccessTime); } else { creationTime = accessTime = modificationTime = 0; } } bool juce_setFileTimes (const String& fileName, int64 modificationTime, int64 accessTime, int64 creationTime) throw() { FILETIME m, a, c; if (modificationTime > 0) timeToFileTime (modificationTime, &m); if (accessTime > 0) timeToFileTime (accessTime, &a); if (creationTime > 0) timeToFileTime (creationTime, &c); void* const h = juce_fileOpen (fileName, true); bool ok = false; if (h != 0) { ok = SetFileTime ((HANDLE) h, (creationTime > 0) ? &c : 0, (accessTime > 0) ? &a : 0, (modificationTime > 0) ? &m : 0) != 0; juce_fileClose (h); } return ok; } // return '\0' separated list of strings const StringArray juce_getFileSystemRoots() throw() { TCHAR buffer [2048]; buffer[0] = 0; buffer[1] = 0; GetLogicalDriveStrings (2048, buffer); TCHAR* n = buffer; StringArray roots; while (*n != 0) { roots.add (String (n)); while (*n++ != 0) { } } roots.sort (true); return roots; } const String juce_getVolumeLabel (const String& filenameOnVolume, int& volumeSerialNumber) throw() { TCHAR n [4]; n[0] = *(const TCHAR*) filenameOnVolume; n[1] = L':'; n[2] = L'\\'; n[3] = 0; TCHAR dest [64]; DWORD serialNum; if (! GetVolumeInformation (n, dest, 64, (DWORD*) &serialNum, 0, 0, 0, 0)) { dest[0] = 0; serialNum = 0; } volumeSerialNumber = serialNum; return String (dest); } static int64 getDiskSpaceInfo (String fn, const bool total) throw() { if (fn[1] == T(':')) fn = fn.substring (0, 2) + T("\\"); ULARGE_INTEGER spc, tot, totFree; if (GetDiskFreeSpaceEx (fn, &spc, &tot, &totFree)) return (int64) (total ? tot.QuadPart : spc.QuadPart); return 0; } int64 File::getBytesFreeOnVolume() const throw() { return getDiskSpaceInfo (getFullPathName(), false); } int64 File::getVolumeTotalSize() const throw() { return getDiskSpaceInfo (getFullPathName(), true); } static unsigned int getWindowsDriveType (const String& fileName) throw() { TCHAR n[4]; n[0] = *(const TCHAR*) fileName; n[1] = L':'; n[2] = L'\\'; n[3] = 0; return GetDriveType (n); } bool File::isOnCDRomDrive() const throw() { return getWindowsDriveType (getFullPathName()) == DRIVE_CDROM; } bool File::isOnHardDisk() const throw() { if (fullPath.isEmpty()) return false; const unsigned int n = getWindowsDriveType (getFullPathName()); if (fullPath.toLowerCase()[0] <= 'b' && fullPath[1] == T(':')) { return n != DRIVE_REMOVABLE; } else { return n != DRIVE_CDROM && n != DRIVE_REMOTE; } } bool File::isOnRemovableDrive() const throw() { if (fullPath.isEmpty()) return false; const unsigned int n = getWindowsDriveType (getFullPathName()); return n == DRIVE_CDROM || n == DRIVE_REMOTE || n == DRIVE_REMOVABLE || n == DRIVE_RAMDISK; } #define MAX_PATH_CHARS (MAX_PATH + 256) static const File juce_getSpecialFolderPath (int type) throw() { WCHAR path [MAX_PATH_CHARS]; if (SHGetSpecialFolderPath (0, path, type, 0)) return File (String (path)); return File::nonexistent; } const File JUCE_CALLTYPE File::getSpecialLocation (const SpecialLocationType type) { int csidlType = 0; switch (type) { case userHomeDirectory: csidlType = CSIDL_PROFILE; break; case userDocumentsDirectory: csidlType = CSIDL_PERSONAL; break; case userDesktopDirectory: csidlType = CSIDL_DESKTOP; break; case userApplicationDataDirectory: csidlType = CSIDL_APPDATA; break; case commonApplicationDataDirectory: csidlType = CSIDL_COMMON_APPDATA; break; case globalApplicationsDirectory: csidlType = CSIDL_PROGRAM_FILES; break; case userMusicDirectory: csidlType = CSIDL_MYMUSIC; break; case userMoviesDirectory: csidlType = CSIDL_MYVIDEO; break; case tempDirectory: { WCHAR dest [2048]; dest[0] = 0; GetTempPath (2048, dest); return File (String (dest)); } case currentExecutableFile: case currentApplicationFile: { HINSTANCE moduleHandle = (HINSTANCE) PlatformUtilities::getCurrentModuleInstanceHandle(); WCHAR dest [MAX_PATH_CHARS]; dest[0] = 0; GetModuleFileName (moduleHandle, dest, MAX_PATH_CHARS); return File (String (dest)); } break; default: jassertfalse // unknown type? return File::nonexistent; } return juce_getSpecialFolderPath (csidlType); } const File File::getCurrentWorkingDirectory() throw() { WCHAR dest [MAX_PATH_CHARS]; dest[0] = 0; GetCurrentDirectory (MAX_PATH_CHARS, dest); return File (String (dest)); } bool File::setAsCurrentWorkingDirectory() const throw() { return SetCurrentDirectory (getFullPathName()) != FALSE; } const String File::getVersion() const throw() { String result; DWORD handle = 0; DWORD bufferSize = GetFileVersionInfoSize (getFullPathName(), &handle); void* buffer = juce_calloc (bufferSize); if (GetFileVersionInfo (getFullPathName(), 0, bufferSize, buffer)) { VS_FIXEDFILEINFO* vffi; UINT len = 0; if (VerQueryValue (buffer, _T("\\"), (LPVOID*) &vffi, &len)) { result.printf (T("%d.%d.%d.%d"), HIWORD (vffi->dwFileVersionMS), LOWORD (vffi->dwFileVersionMS), HIWORD (vffi->dwFileVersionLS), LOWORD (vffi->dwFileVersionLS)); } } juce_free (buffer); return result; } const File File::getLinkedTarget() const throw() { File result (*this); String p (getFullPathName()); if (! exists()) p += T(".lnk"); else if (getFileExtension() != T(".lnk")) return result; ComSmartPtr shellLink; if (SUCCEEDED (shellLink.CoCreateInstance (CLSID_ShellLink, CLSCTX_INPROC_SERVER))) { ComSmartPtr persistFile; if (SUCCEEDED (shellLink->QueryInterface (IID_IPersistFile, (LPVOID*) &persistFile))) { if (SUCCEEDED (persistFile->Load ((const WCHAR*) p, STGM_READ)) && SUCCEEDED (shellLink->Resolve (0, SLR_ANY_MATCH | SLR_NO_UI))) { WIN32_FIND_DATA winFindData; WCHAR resolvedPath [MAX_PATH]; if (SUCCEEDED (shellLink->GetPath (resolvedPath, MAX_PATH, &winFindData, SLGP_UNCPRIORITY))) result = File (resolvedPath); } } } return result; } template static void getFindFileInfo (FindDataType& findData, String& filename, bool* const isDir, bool* const isHidden, int64* const fileSize, Time* const modTime, Time* const creationTime, bool* const isReadOnly) throw() { filename = findData.cFileName; if (isDir != 0) *isDir = ((findData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0); if (isHidden != 0) *isHidden = ((findData.dwFileAttributes & FILE_ATTRIBUTE_HIDDEN) != 0); if (fileSize != 0) *fileSize = findData.nFileSizeLow + (((int64) findData.nFileSizeHigh) << 32); if (modTime != 0) *modTime = fileTimeToTime (&findData.ftLastWriteTime); if (creationTime != 0) *creationTime = fileTimeToTime (&findData.ftCreationTime); if (isReadOnly != 0) *isReadOnly = ((findData.dwFileAttributes & FILE_ATTRIBUTE_READONLY) != 0); } void* juce_findFileStart (const String& directory, const String& wildCard, String& firstResult, bool* isDir, bool* isHidden, int64* fileSize, Time* modTime, Time* creationTime, bool* isReadOnly) throw() { String wc (directory); if (! wc.endsWithChar (File::separator)) wc += File::separator; wc += wildCard; WIN32_FIND_DATA findData; HANDLE h = FindFirstFile (wc, &findData); if (h != INVALID_HANDLE_VALUE) { getFindFileInfo (findData, firstResult, isDir, isHidden, fileSize, modTime, creationTime, isReadOnly); return h; } firstResult = String::empty; return 0; } bool juce_findFileNext (void* handle, String& resultFile, bool* isDir, bool* isHidden, int64* fileSize, Time* modTime, Time* creationTime, bool* isReadOnly) throw() { WIN32_FIND_DATA findData; if (handle != 0 && FindNextFile ((HANDLE) handle, &findData) != 0) { getFindFileInfo (findData, resultFile, isDir, isHidden, fileSize, modTime, creationTime, isReadOnly); return true; } resultFile = String::empty; return false; } void juce_findFileClose (void* handle) throw() { FindClose (handle); } bool juce_launchFile (const String& fileName, const String& parameters) throw() { HINSTANCE hInstance = 0; JUCE_TRY { hInstance = ShellExecute (0, 0, fileName, parameters, 0, SW_SHOWDEFAULT); } JUCE_CATCH_ALL return hInstance > (HINSTANCE) 32; } struct NamedPipeInternal { HANDLE pipeH; HANDLE cancelEvent; bool connected, createdPipe; NamedPipeInternal() : pipeH (0), cancelEvent (0), connected (false), createdPipe (false) { cancelEvent = CreateEvent (0, FALSE, FALSE, 0); } ~NamedPipeInternal() { disconnect(); if (pipeH != 0) CloseHandle (pipeH); CloseHandle (cancelEvent); } bool connect (const int timeOutMs) { if (! createdPipe) return true; if (! connected) { OVERLAPPED over; zerostruct (over); over.hEvent = CreateEvent (0, TRUE, FALSE, 0); if (ConnectNamedPipe (pipeH, &over)) { connected = false; // yes, you read that right. In overlapped mode it should always return 0. } else { const int err = GetLastError(); if (err == ERROR_IO_PENDING || err == ERROR_PIPE_LISTENING) { HANDLE handles[] = { over.hEvent, cancelEvent }; if (WaitForMultipleObjects (2, handles, FALSE, timeOutMs >= 0 ? timeOutMs : INFINITE) == WAIT_OBJECT_0) connected = true; } else if (err == ERROR_PIPE_CONNECTED) { connected = true; } } CloseHandle (over.hEvent); } return connected; } void disconnect() { if (connected) { DisconnectNamedPipe (pipeH); connected = false; } } }; void NamedPipe::close() { NamedPipeInternal* const intern = (NamedPipeInternal*) internal; delete intern; internal = 0; } bool NamedPipe::openInternal (const String& pipeName, const bool createPipe) { close(); NamedPipeInternal* const intern = new NamedPipeInternal(); String file ("\\\\.\\pipe\\"); file += pipeName; intern->createdPipe = createPipe; if (createPipe) { intern->pipeH = CreateNamedPipe (file, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED, 0, PIPE_UNLIMITED_INSTANCES, 4096, 4096, 0, NULL); } else { intern->pipeH = CreateFile (file, GENERIC_READ | GENERIC_WRITE, 0, 0, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0); } if (intern->pipeH != INVALID_HANDLE_VALUE) { internal = intern; return true; } delete intern; return false; } int NamedPipe::read (void* destBuffer, int maxBytesToRead, int timeOutMilliseconds) { int bytesRead = -1; bool waitAgain = true; while (waitAgain && internal != 0) { NamedPipeInternal* const intern = (NamedPipeInternal*) internal; waitAgain = false; if (! intern->connect (timeOutMilliseconds)) break; if (maxBytesToRead <= 0) return 0; OVERLAPPED over; zerostruct (over); over.hEvent = CreateEvent (0, TRUE, FALSE, 0); unsigned long numRead; if (ReadFile (intern->pipeH, destBuffer, maxBytesToRead, &numRead, &over)) { bytesRead = (int) numRead; } else if (GetLastError() == ERROR_IO_PENDING) { HANDLE handles[] = { over.hEvent, intern->cancelEvent }; DWORD waitResult = WaitForMultipleObjects (2, handles, FALSE, timeOutMilliseconds >= 0 ? timeOutMilliseconds : INFINITE); if (waitResult != WAIT_OBJECT_0) { // if the operation timed out, let's cancel it... CancelIo (intern->pipeH); WaitForSingleObject (over.hEvent, INFINITE); // makes sure cancel is complete } if (GetOverlappedResult (intern->pipeH, &over, &numRead, FALSE)) { bytesRead = (int) numRead; } else if (GetLastError() == ERROR_BROKEN_PIPE && intern->createdPipe) { intern->disconnect(); waitAgain = true; } } else { waitAgain = internal != 0; Sleep (5); } CloseHandle (over.hEvent); } return bytesRead; } int NamedPipe::write (const void* sourceBuffer, int numBytesToWrite, int timeOutMilliseconds) { int bytesWritten = -1; NamedPipeInternal* const intern = (NamedPipeInternal*) internal; if (intern != 0 && intern->connect (timeOutMilliseconds)) { if (numBytesToWrite <= 0) return 0; OVERLAPPED over; zerostruct (over); over.hEvent = CreateEvent (0, TRUE, FALSE, 0); unsigned long numWritten; if (WriteFile (intern->pipeH, sourceBuffer, numBytesToWrite, &numWritten, &over)) { bytesWritten = (int) numWritten; } else if (GetLastError() == ERROR_IO_PENDING) { HANDLE handles[] = { over.hEvent, intern->cancelEvent }; DWORD waitResult; waitResult = WaitForMultipleObjects (2, handles, FALSE, timeOutMilliseconds >= 0 ? timeOutMilliseconds : INFINITE); if (waitResult != WAIT_OBJECT_0) { CancelIo (intern->pipeH); WaitForSingleObject (over.hEvent, INFINITE); } if (GetOverlappedResult (intern->pipeH, &over, &numWritten, FALSE)) { bytesWritten = (int) numWritten; } else if (GetLastError() == ERROR_BROKEN_PIPE && intern->createdPipe) { intern->disconnect(); } } CloseHandle (over.hEvent); } return bytesWritten; } void NamedPipe::cancelPendingReads() { NamedPipeInternal* const intern = (NamedPipeInternal*) internal; if (intern != 0) SetEvent (intern->cancelEvent); } #endif /********* End of inlined file: juce_win32_Files.cpp *********/ /********* Start of inlined file: juce_win32_Network.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE #ifndef INTERNET_FLAG_NEED_FILE #define INTERNET_FLAG_NEED_FILE 0x00000010 #endif bool juce_isOnLine() { DWORD connectionType; return InternetGetConnectedState (&connectionType, 0) != 0 || (connectionType & (INTERNET_CONNECTION_LAN | INTERNET_CONNECTION_PROXY)) != 0; } struct ConnectionAndRequestStruct { HINTERNET connection, request; }; static HINTERNET sessionHandle = 0; void* juce_openInternetFile (const String& url, const String& headers, const MemoryBlock& postData, const bool isPost, URL::OpenStreamProgressCallback* callback, void* callbackContext, int timeOutMs) { if (sessionHandle == 0) sessionHandle = InternetOpen (_T("juce"), INTERNET_OPEN_TYPE_PRECONFIG, 0, 0, 0); if (sessionHandle != 0) { // break up the url.. TCHAR file[1024], server[1024]; URL_COMPONENTS uc; zerostruct (uc); uc.dwStructSize = sizeof (uc); uc.dwUrlPathLength = sizeof (file); uc.dwHostNameLength = sizeof (server); uc.lpszUrlPath = file; uc.lpszHostName = server; if (InternetCrackUrl (url, 0, 0, &uc)) { if (timeOutMs == 0) timeOutMs = 30000; else if (timeOutMs < 0) timeOutMs = -1; InternetSetOption (sessionHandle, INTERNET_OPTION_CONNECT_TIMEOUT, &timeOutMs, sizeof (timeOutMs)); const bool isFtp = url.startsWithIgnoreCase (T("ftp:")); HINTERNET connection = InternetConnect (sessionHandle, uc.lpszHostName, uc.nPort, _T(""), _T(""), isFtp ? INTERNET_SERVICE_FTP : INTERNET_SERVICE_HTTP, 0, 0); if (connection != 0) { if (isFtp) { HINTERNET request = FtpOpenFile (connection, uc.lpszUrlPath, GENERIC_READ, FTP_TRANSFER_TYPE_BINARY | INTERNET_FLAG_NEED_FILE, 0); ConnectionAndRequestStruct* const result = new ConnectionAndRequestStruct(); result->connection = connection; result->request = request; return result; } else { const TCHAR* mimeTypes[] = { _T("*/*"), 0 }; DWORD flags = INTERNET_FLAG_RELOAD | INTERNET_FLAG_NO_CACHE_WRITE; if (url.startsWithIgnoreCase (T("https:"))) flags |= INTERNET_FLAG_SECURE; // (this flag only seems necessary if the OS is running IE6 - // IE7 seems to automatically work out when it's https) HINTERNET request = HttpOpenRequest (connection, isPost ? _T("POST") : _T("GET"), uc.lpszUrlPath, 0, 0, mimeTypes, flags, 0); if (request != 0) { INTERNET_BUFFERS buffers; zerostruct (buffers); buffers.dwStructSize = sizeof (INTERNET_BUFFERS); buffers.lpcszHeader = (LPCTSTR) headers; buffers.dwHeadersLength = headers.length(); buffers.dwBufferTotal = (DWORD) postData.getSize(); ConnectionAndRequestStruct* result = 0; if (HttpSendRequestEx (request, &buffers, 0, HSR_INITIATE, 0)) { int bytesSent = 0; for (;;) { const int bytesToDo = jmin (1024, postData.getSize() - bytesSent); DWORD bytesDone = 0; if (bytesToDo > 0 && ! InternetWriteFile (request, ((const char*) postData.getData()) + bytesSent, bytesToDo, &bytesDone)) { break; } if (bytesToDo == 0 || (int) bytesDone < bytesToDo) { result = new ConnectionAndRequestStruct(); result->connection = connection; result->request = request; HttpEndRequest (request, 0, 0, 0); return result; } bytesSent += bytesDone; if (callback != 0 && ! callback (callbackContext, bytesSent, postData.getSize())) break; } } InternetCloseHandle (request); } InternetCloseHandle (connection); } } } } return 0; } int juce_readFromInternetFile (void* handle, void* buffer, int bytesToRead) { DWORD bytesRead = 0; const ConnectionAndRequestStruct* const crs = (const ConnectionAndRequestStruct*) handle; if (crs != 0) InternetReadFile (crs->request, buffer, bytesToRead, &bytesRead); return bytesRead; } int juce_seekInInternetFile (void* handle, int newPosition) { if (handle != 0) { const ConnectionAndRequestStruct* const crs = (const ConnectionAndRequestStruct*) handle; return InternetSetFilePointer (crs->request, newPosition, 0, FILE_BEGIN, 0); } else { return -1; } } int64 juce_getInternetFileContentLength (void* handle) { const ConnectionAndRequestStruct* const crs = (const ConnectionAndRequestStruct*) handle; if (crs != 0) { DWORD index = 0; DWORD result = 0; DWORD size = sizeof (result); if (HttpQueryInfo (crs->request, HTTP_QUERY_CONTENT_LENGTH | HTTP_QUERY_FLAG_NUMBER, &result, &size, &index)) { return (int64) result; } } return -1; } void juce_closeInternetFile (void* handle) { if (handle != 0) { ConnectionAndRequestStruct* const crs = (ConnectionAndRequestStruct*) handle; InternetCloseHandle (crs->request); InternetCloseHandle (crs->connection); delete crs; } } static int getMACAddressViaGetAdaptersInfo (int64* addresses, int maxNum, const bool littleEndian) throw() { int numFound = 0; DynamicLibraryLoader dll ("iphlpapi.dll"); DynamicLibraryImport (GetAdaptersInfo, getAdaptersInfo, DWORD, dll, (PIP_ADAPTER_INFO, PULONG)) if (getAdaptersInfo != 0) { ULONG len = sizeof (IP_ADAPTER_INFO); MemoryBlock mb; PIP_ADAPTER_INFO adapterInfo = (PIP_ADAPTER_INFO) mb.getData(); if (getAdaptersInfo (adapterInfo, &len) == ERROR_BUFFER_OVERFLOW) { mb.setSize (len); adapterInfo = (PIP_ADAPTER_INFO) mb.getData(); } if (getAdaptersInfo (adapterInfo, &len) == NO_ERROR) { PIP_ADAPTER_INFO adapter = adapterInfo; while (adapter != 0) { int64 mac = 0; for (unsigned int i = 0; i < adapter->AddressLength; ++i) mac = (mac << 8) | adapter->Address[i]; if (littleEndian) mac = (int64) swapByteOrder ((uint64) mac); if (numFound < maxNum && mac != 0) addresses [numFound++] = mac; adapter = adapter->Next; } } } return numFound; } static int getMACAddressesViaNetBios (int64* addresses, int maxNum, const bool littleEndian) throw() { int numFound = 0; DynamicLibraryLoader dll ("netapi32.dll"); DynamicLibraryImport (Netbios, NetbiosCall, UCHAR, dll, (PNCB)) if (NetbiosCall != 0) { NCB ncb; zerostruct (ncb); typedef struct _ASTAT_ { ADAPTER_STATUS adapt; NAME_BUFFER NameBuff [30]; } ASTAT; ASTAT astat; zerostruct (astat); LANA_ENUM enums; zerostruct (enums); ncb.ncb_command = NCBENUM; ncb.ncb_buffer = (unsigned char*) &enums; ncb.ncb_length = sizeof (LANA_ENUM); NetbiosCall (&ncb); for (int i = 0; i < enums.length; ++i) { zerostruct (ncb); ncb.ncb_command = NCBRESET; ncb.ncb_lana_num = enums.lana[i]; if (NetbiosCall (&ncb) == 0) { zerostruct (ncb); memcpy (ncb.ncb_callname, "* ", NCBNAMSZ); ncb.ncb_command = NCBASTAT; ncb.ncb_lana_num = enums.lana[i]; ncb.ncb_buffer = (unsigned char*) &astat; ncb.ncb_length = sizeof (ASTAT); if (NetbiosCall (&ncb) == 0) { if (astat.adapt.adapter_type == 0xfe) { uint64 mac = 0; for (int i = 6; --i >= 0;) mac = (mac << 8) | astat.adapt.adapter_address [littleEndian ? i : (5 - i)]; if (numFound < maxNum && mac != 0) addresses [numFound++] = mac; } } } } } return numFound; } int SystemStats::getMACAddresses (int64* addresses, int maxNum, const bool littleEndian) throw() { int numFound = getMACAddressViaGetAdaptersInfo (addresses, maxNum, littleEndian); if (numFound == 0) numFound = getMACAddressesViaNetBios (addresses, maxNum, littleEndian); return numFound; } typedef ULONG (WINAPI *MAPISendMailType) (LHANDLE, ULONG, lpMapiMessage, ::FLAGS, ULONG); bool PlatformUtilities::launchEmailWithAttachments (const String& targetEmailAddress, const String& emailSubject, const String& bodyText, const StringArray& filesToAttach) { HMODULE h = LoadLibraryA ("MAPI32.dll"); MAPISendMailType mapiSendMail = (MAPISendMailType) GetProcAddress (h, "MAPISendMail"); bool ok = false; if (mapiSendMail != 0) { MapiMessage message; zerostruct (message); message.lpszSubject = (LPSTR) (LPCSTR) emailSubject; message.lpszNoteText = (LPSTR) (LPCSTR) bodyText; MapiRecipDesc recip; zerostruct (recip); recip.ulRecipClass = MAPI_TO; String targetEmailAddress_ (targetEmailAddress); if (targetEmailAddress_.isEmpty()) targetEmailAddress_ = " "; // (Windows Mail can't deal with a blank address) recip.lpszName = (LPSTR) (LPCSTR) targetEmailAddress_; message.nRecipCount = 1; message.lpRecips = &recip; MemoryBlock mb (sizeof (MapiFileDesc) * filesToAttach.size()); mb.fillWith (0); MapiFileDesc* files = (MapiFileDesc*) mb.getData(); message.nFileCount = filesToAttach.size(); message.lpFiles = files; for (int i = 0; i < filesToAttach.size(); ++i) { files[i].nPosition = (ULONG) -1; files[i].lpszPathName = (LPSTR) (LPCSTR) filesToAttach [i]; } ok = (mapiSendMail (0, 0, &message, MAPI_DIALOG | MAPI_LOGON_UI, 0) == SUCCESS_SUCCESS); } FreeLibrary (h); return ok; } #endif /********* End of inlined file: juce_win32_Network.cpp *********/ /********* Start of inlined file: juce_win32_PlatformUtils.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE static HKEY findKeyForPath (String name, const bool createForWriting, String& valueName) throw() { HKEY rootKey = 0; if (name.startsWithIgnoreCase (T("HKEY_CURRENT_USER\\"))) rootKey = HKEY_CURRENT_USER; else if (name.startsWithIgnoreCase (T("HKEY_LOCAL_MACHINE\\"))) rootKey = HKEY_LOCAL_MACHINE; else if (name.startsWithIgnoreCase (T("HKEY_CLASSES_ROOT\\"))) rootKey = HKEY_CLASSES_ROOT; if (rootKey != 0) { name = name.substring (name.indexOfChar (T('\\')) + 1); const int lastSlash = name.lastIndexOfChar (T('\\')); valueName = name.substring (lastSlash + 1); name = name.substring (0, lastSlash); HKEY key; DWORD result; if (createForWriting) { if (RegCreateKeyEx (rootKey, name, 0, L"", REG_OPTION_NON_VOLATILE, (KEY_WRITE | KEY_QUERY_VALUE), 0, &key, &result) == ERROR_SUCCESS) return key; } else { if (RegOpenKeyEx (rootKey, name, 0, KEY_READ, &key) == ERROR_SUCCESS) return key; } } return 0; } const String PlatformUtilities::getRegistryValue (const String& regValuePath, const String& defaultValue) { String valueName, s; HKEY k = findKeyForPath (regValuePath, false, valueName); if (k != 0) { WCHAR buffer [2048]; unsigned long bufferSize = sizeof (buffer); DWORD type = REG_SZ; if (RegQueryValueEx (k, valueName, 0, &type, (LPBYTE) buffer, &bufferSize) == ERROR_SUCCESS) s = buffer; else s = defaultValue; RegCloseKey (k); } return s; } void PlatformUtilities::setRegistryValue (const String& regValuePath, const String& value) { String valueName; HKEY k = findKeyForPath (regValuePath, true, valueName); if (k != 0) { RegSetValueEx (k, valueName, 0, REG_SZ, (const BYTE*) (const WCHAR*) value, sizeof (WCHAR) * (value.length() + 1)); RegCloseKey (k); } } bool PlatformUtilities::registryValueExists (const String& regValuePath) { bool exists = false; String valueName; HKEY k = findKeyForPath (regValuePath, false, valueName); if (k != 0) { unsigned char buffer [2048]; unsigned long bufferSize = sizeof (buffer); DWORD type = 0; if (RegQueryValueEx (k, valueName, 0, &type, buffer, &bufferSize) == ERROR_SUCCESS) exists = true; RegCloseKey (k); } return exists; } void PlatformUtilities::deleteRegistryValue (const String& regValuePath) { String valueName; HKEY k = findKeyForPath (regValuePath, true, valueName); if (k != 0) { RegDeleteValue (k, valueName); RegCloseKey (k); } } void PlatformUtilities::deleteRegistryKey (const String& regKeyPath) { String valueName; HKEY k = findKeyForPath (regKeyPath, true, valueName); if (k != 0) { RegDeleteKey (k, valueName); RegCloseKey (k); } } void PlatformUtilities::registerFileAssociation (const String& fileExtension, const String& symbolicDescription, const String& fullDescription, const File& targetExecutable, int iconResourceNumber) { setRegistryValue ("HKEY_CLASSES_ROOT\\" + fileExtension + "\\", symbolicDescription); const String key ("HKEY_CLASSES_ROOT\\" + symbolicDescription); if (iconResourceNumber != 0) setRegistryValue (key + "\\DefaultIcon\\", targetExecutable.getFullPathName() + "," + String (-iconResourceNumber)); setRegistryValue (key + "\\", fullDescription); setRegistryValue (key + "\\shell\\open\\command\\", targetExecutable.getFullPathName() + " %1"); } bool juce_IsRunningInWine() throw() { HKEY key; if (RegOpenKeyEx (HKEY_CURRENT_USER, _T("Software\\Wine"), 0, KEY_READ, &key) == ERROR_SUCCESS) { RegCloseKey (key); return true; } return false; } const String JUCE_CALLTYPE PlatformUtilities::getCurrentCommandLineParams() throw() { String s (::GetCommandLineW()); StringArray tokens; tokens.addTokens (s, true); // tokenise so that we can remove the initial filename argument return tokens.joinIntoString (T(" "), 1); } static void* currentModuleHandle = 0; void* PlatformUtilities::getCurrentModuleInstanceHandle() throw() { if (currentModuleHandle == 0) currentModuleHandle = GetModuleHandle (0); return currentModuleHandle; } void PlatformUtilities::setCurrentModuleInstanceHandle (void* const newHandle) throw() { currentModuleHandle = newHandle; } void PlatformUtilities::fpuReset() { #if JUCE_MSVC _clearfp(); #endif } void PlatformUtilities::beep() { MessageBeep (MB_OK); } #endif /********* End of inlined file: juce_win32_PlatformUtils.cpp *********/ #if ! JUCE_ONLY_BUILD_CORE_LIBRARY /********* Start of inlined file: juce_win32_Messaging.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE static const unsigned int specialId = WM_APP + 0x4400; static const unsigned int broadcastId = WM_APP + 0x4403; static const unsigned int specialCallbackId = WM_APP + 0x4402; static const TCHAR* const messageWindowName = _T("JUCEWindow"); HWND juce_messageWindowHandle = 0; extern long improbableWindowNumber; // defined in windowing.cpp static LRESULT CALLBACK juce_MessageWndProc (HWND h, const UINT message, const WPARAM wParam, const LPARAM lParam) throw() { JUCE_TRY { if (h == juce_messageWindowHandle) { if (message == specialCallbackId) { MessageCallbackFunction* const func = (MessageCallbackFunction*) wParam; return (LRESULT) (*func) ((void*) lParam); } else if (message == specialId) { // these are trapped early in the dispatch call, but must also be checked // here in case there are windows modal dialog boxes doing their own // dispatch loop and not calling our version MessageManager::getInstance()->deliverMessage ((void*) lParam); return 0; } else if (message == broadcastId) { String* const messageString = (String*) lParam; MessageManager::getInstance()->deliverBroadcastMessage (*messageString); delete messageString; return 0; } else if (message == WM_COPYDATA && ((const COPYDATASTRUCT*) lParam)->dwData == broadcastId) { const String messageString ((const juce_wchar*) ((const COPYDATASTRUCT*) lParam)->lpData, ((const COPYDATASTRUCT*) lParam)->cbData / sizeof (juce_wchar)); PostMessage (juce_messageWindowHandle, broadcastId, 0, (LPARAM) new String (messageString)); return 0; } } } JUCE_CATCH_EXCEPTION return DefWindowProc (h, message, wParam, lParam); } static bool isEventBlockedByModalComps (MSG& m) { if (Component::getNumCurrentlyModalComponents() == 0 || GetWindowLong (m.hwnd, GWLP_USERDATA) == improbableWindowNumber) return false; switch (m.message) { case WM_MOUSEMOVE: case WM_NCMOUSEMOVE: case 0x020A: /* WM_MOUSEWHEEL */ case 0x020E: /* WM_MOUSEHWHEEL */ case WM_KEYUP: case WM_SYSKEYUP: case WM_CHAR: case WM_APPCOMMAND: case WM_LBUTTONUP: case WM_MBUTTONUP: case WM_RBUTTONUP: case WM_MOUSEACTIVATE: case WM_NCMOUSEHOVER: case WM_MOUSEHOVER: return true; case WM_NCLBUTTONDOWN: case WM_NCLBUTTONDBLCLK: case WM_NCRBUTTONDOWN: case WM_NCRBUTTONDBLCLK: case WM_NCMBUTTONDOWN: case WM_NCMBUTTONDBLCLK: case WM_LBUTTONDOWN: case WM_LBUTTONDBLCLK: case WM_MBUTTONDOWN: case WM_MBUTTONDBLCLK: case WM_RBUTTONDOWN: case WM_RBUTTONDBLCLK: case WM_KEYDOWN: case WM_SYSKEYDOWN: { Component* const modal = Component::getCurrentlyModalComponent (0); if (modal != 0) modal->inputAttemptWhenModal(); return true; } default: break; } return false; } bool juce_dispatchNextMessageOnSystemQueue (const bool returnIfNoPendingMessages) { MSG m; if (returnIfNoPendingMessages && ! PeekMessage (&m, (HWND) 0, 0, 0, 0)) return false; if (GetMessage (&m, (HWND) 0, 0, 0) > 0) { if (m.message == specialId && m.hwnd == juce_messageWindowHandle) { MessageManager::getInstance()->deliverMessage ((void*) m.lParam); } else if (! isEventBlockedByModalComps (m)) { if (GetWindowLong (m.hwnd, GWLP_USERDATA) != improbableWindowNumber && (m.message == WM_LBUTTONDOWN || m.message == WM_RBUTTONDOWN)) { // if it's someone else's window being clicked on, and the focus is // currently on a juce window, pass the kb focus over.. HWND currentFocus = GetFocus(); if (currentFocus == 0 || GetWindowLong (currentFocus, GWLP_USERDATA) == improbableWindowNumber) SetFocus (m.hwnd); } TranslateMessage (&m); DispatchMessage (&m); } } return true; } bool juce_postMessageToSystemQueue (void* message) { return PostMessage (juce_messageWindowHandle, specialId, 0, (LPARAM) message) != 0; } void* MessageManager::callFunctionOnMessageThread (MessageCallbackFunction* callback, void* userData) { if (MessageManager::getInstance()->isThisTheMessageThread()) { return (*callback) (userData); } else { // If a thread has a MessageManagerLock and then tries to call this method, it'll // deadlock because the message manager is blocked from running, and can't // call your function.. jassert (! MessageManager::getInstance()->currentThreadHasLockedMessageManager()); return (void*) SendMessage (juce_messageWindowHandle, specialCallbackId, (WPARAM) callback, (LPARAM) userData); } } static BOOL CALLBACK BroadcastEnumWindowProc (HWND hwnd, LPARAM lParam) { if (hwnd != juce_messageWindowHandle) (reinterpret_cast (lParam))->add ((void*) hwnd); return TRUE; } void MessageManager::broadcastMessage (const String& value) throw() { VoidArray windows; EnumWindows (&BroadcastEnumWindowProc, (LPARAM) &windows); const String localCopy (value); COPYDATASTRUCT data; data.dwData = broadcastId; data.cbData = (localCopy.length() + 1) * sizeof (juce_wchar); data.lpData = (void*) (const juce_wchar*) localCopy; for (int i = windows.size(); --i >= 0;) { HWND hwnd = (HWND) windows.getUnchecked(i); TCHAR windowName [64]; // no need to read longer strings than this GetWindowText (hwnd, windowName, 64); windowName [63] = 0; if (String (windowName) == String (messageWindowName)) { DWORD_PTR result; SendMessageTimeout (hwnd, WM_COPYDATA, (WPARAM) juce_messageWindowHandle, (LPARAM) &data, SMTO_BLOCK | SMTO_ABORTIFHUNG, 8000, &result); } } } static const String getMessageWindowClassName() { // this name has to be different for each app/dll instance because otherwise // poor old Win32 can get a bit confused (even despite it not being a process-global // window class). static int number = 0; if (number == 0) number = 0x7fffffff & (int) Time::getHighResolutionTicks(); return T("JUCEcs_") + String (number); } void MessageManager::doPlatformSpecificInitialisation() { OleInitialize (0); const String className (getMessageWindowClassName()); HMODULE hmod = (HMODULE) PlatformUtilities::getCurrentModuleInstanceHandle(); WNDCLASSEX wc; zerostruct (wc); wc.cbSize = sizeof (wc); wc.lpfnWndProc = (WNDPROC) juce_MessageWndProc; wc.cbWndExtra = 4; wc.hInstance = hmod; wc.lpszClassName = className; RegisterClassEx (&wc); juce_messageWindowHandle = CreateWindow (wc.lpszClassName, messageWindowName, 0, 0, 0, 0, 0, 0, 0, hmod, 0); } void MessageManager::doPlatformSpecificShutdown() { DestroyWindow (juce_messageWindowHandle); UnregisterClass (getMessageWindowClassName(), 0); OleUninitialize(); } #endif /********* End of inlined file: juce_win32_Messaging.cpp *********/ /********* Start of inlined file: juce_win32_Windowing.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE #undef GetSystemMetrics // multimon overrides this for some reason and causes a mess.. // these are in the windows SDK, but need to be repeated here for GCC.. #ifndef GET_APPCOMMAND_LPARAM #define FAPPCOMMAND_MASK 0xF000 #define GET_APPCOMMAND_LPARAM(lParam) ((short) (HIWORD (lParam) & ~FAPPCOMMAND_MASK)) #define APPCOMMAND_MEDIA_NEXTTRACK 11 #define APPCOMMAND_MEDIA_PREVIOUSTRACK 12 #define APPCOMMAND_MEDIA_STOP 13 #define APPCOMMAND_MEDIA_PLAY_PAUSE 14 #define WM_APPCOMMAND 0x0319 #endif extern void juce_repeatLastProcessPriority() throw(); // in juce_win32_Threads.cpp extern void juce_CheckCurrentlyFocusedTopLevelWindow() throw(); // in juce_TopLevelWindow.cpp extern bool juce_IsRunningInWine() throw(); #ifndef ULW_ALPHA #define ULW_ALPHA 0x00000002 #endif #ifndef AC_SRC_ALPHA #define AC_SRC_ALPHA 0x01 #endif #define DEBUG_REPAINT_TIMES 0 static HPALETTE palette = 0; static bool createPaletteIfNeeded = true; static bool shouldDeactivateTitleBar = true; static HICON createHICONFromImage (const Image& image, const BOOL isIcon, int hotspotX, int hotspotY) throw(); #define WM_TRAYNOTIFY WM_USER + 100 using ::abs; typedef BOOL (WINAPI* UpdateLayeredWinFunc) (HWND, HDC, POINT*, SIZE*, HDC, POINT*, COLORREF, BLENDFUNCTION*, DWORD); static UpdateLayeredWinFunc updateLayeredWindow = 0; bool Desktop::canUseSemiTransparentWindows() throw() { if (updateLayeredWindow == 0) { if (! juce_IsRunningInWine()) { HMODULE user32Mod = GetModuleHandle (_T("user32.dll")); updateLayeredWindow = (UpdateLayeredWinFunc) GetProcAddress (user32Mod, "UpdateLayeredWindow"); } } return updateLayeredWindow != 0; } #undef DefWindowProc #define DefWindowProc DefWindowProcW const int extendedKeyModifier = 0x10000; const int KeyPress::spaceKey = VK_SPACE; const int KeyPress::returnKey = VK_RETURN; const int KeyPress::escapeKey = VK_ESCAPE; const int KeyPress::backspaceKey = VK_BACK; const int KeyPress::deleteKey = VK_DELETE | extendedKeyModifier; const int KeyPress::insertKey = VK_INSERT | extendedKeyModifier; const int KeyPress::tabKey = VK_TAB; const int KeyPress::leftKey = VK_LEFT | extendedKeyModifier; const int KeyPress::rightKey = VK_RIGHT | extendedKeyModifier; const int KeyPress::upKey = VK_UP | extendedKeyModifier; const int KeyPress::downKey = VK_DOWN | extendedKeyModifier; const int KeyPress::homeKey = VK_HOME | extendedKeyModifier; const int KeyPress::endKey = VK_END | extendedKeyModifier; const int KeyPress::pageUpKey = VK_PRIOR | extendedKeyModifier; const int KeyPress::pageDownKey = VK_NEXT | extendedKeyModifier; const int KeyPress::F1Key = VK_F1 | extendedKeyModifier; const int KeyPress::F2Key = VK_F2 | extendedKeyModifier; const int KeyPress::F3Key = VK_F3 | extendedKeyModifier; const int KeyPress::F4Key = VK_F4 | extendedKeyModifier; const int KeyPress::F5Key = VK_F5 | extendedKeyModifier; const int KeyPress::F6Key = VK_F6 | extendedKeyModifier; const int KeyPress::F7Key = VK_F7 | extendedKeyModifier; const int KeyPress::F8Key = VK_F8 | extendedKeyModifier; const int KeyPress::F9Key = VK_F9 | extendedKeyModifier; const int KeyPress::F10Key = VK_F10 | extendedKeyModifier; const int KeyPress::F11Key = VK_F11 | extendedKeyModifier; const int KeyPress::F12Key = VK_F12 | extendedKeyModifier; const int KeyPress::F13Key = VK_F13 | extendedKeyModifier; const int KeyPress::F14Key = VK_F14 | extendedKeyModifier; const int KeyPress::F15Key = VK_F15 | extendedKeyModifier; const int KeyPress::F16Key = VK_F16 | extendedKeyModifier; const int KeyPress::numberPad0 = VK_NUMPAD0 | extendedKeyModifier; const int KeyPress::numberPad1 = VK_NUMPAD1 | extendedKeyModifier; const int KeyPress::numberPad2 = VK_NUMPAD2 | extendedKeyModifier; const int KeyPress::numberPad3 = VK_NUMPAD3 | extendedKeyModifier; const int KeyPress::numberPad4 = VK_NUMPAD4 | extendedKeyModifier; const int KeyPress::numberPad5 = VK_NUMPAD5 | extendedKeyModifier; const int KeyPress::numberPad6 = VK_NUMPAD6 | extendedKeyModifier; const int KeyPress::numberPad7 = VK_NUMPAD7 | extendedKeyModifier; const int KeyPress::numberPad8 = VK_NUMPAD8 | extendedKeyModifier; const int KeyPress::numberPad9 = VK_NUMPAD9 | extendedKeyModifier; const int KeyPress::numberPadAdd = VK_ADD | extendedKeyModifier; const int KeyPress::numberPadSubtract = VK_SUBTRACT | extendedKeyModifier; const int KeyPress::numberPadMultiply = VK_MULTIPLY | extendedKeyModifier; const int KeyPress::numberPadDivide = VK_DIVIDE | extendedKeyModifier; const int KeyPress::numberPadSeparator = VK_SEPARATOR | extendedKeyModifier; const int KeyPress::numberPadDecimalPoint = VK_DECIMAL | extendedKeyModifier; const int KeyPress::numberPadEquals = 0x92 /*VK_OEM_NEC_EQUAL*/ | extendedKeyModifier; const int KeyPress::numberPadDelete = VK_DELETE | extendedKeyModifier; const int KeyPress::playKey = 0x30000; const int KeyPress::stopKey = 0x30001; const int KeyPress::fastForwardKey = 0x30002; const int KeyPress::rewindKey = 0x30003; class WindowsBitmapImage : public Image { public: HBITMAP hBitmap; BITMAPV4HEADER bitmapInfo; HDC hdc; unsigned char* bitmapData; WindowsBitmapImage (const PixelFormat format_, const int w, const int h, const bool clearImage) : Image (format_, w, h) { jassert (format_ == RGB || format_ == ARGB); pixelStride = (format_ == RGB) ? 3 : 4; zerostruct (bitmapInfo); bitmapInfo.bV4Size = sizeof (BITMAPV4HEADER); bitmapInfo.bV4Width = w; bitmapInfo.bV4Height = h; bitmapInfo.bV4Planes = 1; bitmapInfo.bV4CSType = 1; bitmapInfo.bV4BitCount = (unsigned short) (pixelStride * 8); if (format_ == ARGB) { bitmapInfo.bV4AlphaMask = 0xff000000; bitmapInfo.bV4RedMask = 0xff0000; bitmapInfo.bV4GreenMask = 0xff00; bitmapInfo.bV4BlueMask = 0xff; bitmapInfo.bV4V4Compression = BI_BITFIELDS; } else { bitmapInfo.bV4V4Compression = BI_RGB; } lineStride = -((w * pixelStride + 3) & ~3); HDC dc = GetDC (0); hdc = CreateCompatibleDC (dc); ReleaseDC (0, dc); SetMapMode (hdc, MM_TEXT); hBitmap = CreateDIBSection (hdc, (BITMAPINFO*) &(bitmapInfo), DIB_RGB_COLORS, (void**) &bitmapData, 0, 0); SelectObject (hdc, hBitmap); if (format_ == ARGB && clearImage) zeromem (bitmapData, abs (h * lineStride)); imageData = bitmapData - (lineStride * (h - 1)); } ~WindowsBitmapImage() { DeleteDC (hdc); DeleteObject (hBitmap); imageData = 0; // to stop the base class freeing this } void blitToWindow (HWND hwnd, HDC dc, const bool transparent, const int x, const int y, const RectangleList& maskedRegion) throw() { static HDRAWDIB hdd = 0; static bool needToCreateDrawDib = true; if (needToCreateDrawDib) { needToCreateDrawDib = false; HDC dc = GetDC (0); const int n = GetDeviceCaps (dc, BITSPIXEL); ReleaseDC (0, dc); // only open if we're not palettised if (n > 8) hdd = DrawDibOpen(); } if (createPaletteIfNeeded) { HDC dc = GetDC (0); const int n = GetDeviceCaps (dc, BITSPIXEL); ReleaseDC (0, dc); if (n <= 8) palette = CreateHalftonePalette (dc); createPaletteIfNeeded = false; } if (palette != 0) { SelectPalette (dc, palette, FALSE); RealizePalette (dc); SetStretchBltMode (dc, HALFTONE); } SetMapMode (dc, MM_TEXT); if (transparent) { POINT p, pos; SIZE size; RECT windowBounds; GetWindowRect (hwnd, &windowBounds); p.x = -x; p.y = -y; pos.x = windowBounds.left; pos.y = windowBounds.top; size.cx = windowBounds.right - windowBounds.left; size.cy = windowBounds.bottom - windowBounds.top; BLENDFUNCTION bf; bf.AlphaFormat = AC_SRC_ALPHA; bf.BlendFlags = 0; bf.BlendOp = AC_SRC_OVER; bf.SourceConstantAlpha = 0xff; if (! maskedRegion.isEmpty()) { for (RectangleList::Iterator i (maskedRegion); i.next();) { const Rectangle& r = *i.getRectangle(); ExcludeClipRect (hdc, r.getX(), r.getY(), r.getRight(), r.getBottom()); } } updateLayeredWindow (hwnd, 0, &pos, &size, hdc, &p, 0, &bf, ULW_ALPHA); } else { int savedDC = 0; if (! maskedRegion.isEmpty()) { savedDC = SaveDC (dc); for (RectangleList::Iterator i (maskedRegion); i.next();) { const Rectangle& r = *i.getRectangle(); ExcludeClipRect (dc, r.getX(), r.getY(), r.getRight(), r.getBottom()); } } const int w = getWidth(); const int h = getHeight(); if (hdd == 0) { StretchDIBits (dc, x, y, w, h, 0, 0, w, h, bitmapData, (const BITMAPINFO*) &bitmapInfo, DIB_RGB_COLORS, SRCCOPY); } else { DrawDibDraw (hdd, dc, x, y, -1, -1, (BITMAPINFOHEADER*) &bitmapInfo, bitmapData, 0, 0, w, h, 0); } if (! maskedRegion.isEmpty()) RestoreDC (dc, savedDC); } } juce_UseDebuggingNewOperator private: WindowsBitmapImage (const WindowsBitmapImage&); const WindowsBitmapImage& operator= (const WindowsBitmapImage&); }; long improbableWindowNumber = 0xf965aa01; // also referenced by messaging.cpp static int currentModifiers = 0; static int modifiersAtLastCallback = 0; static void updateKeyModifiers() throw() { currentModifiers &= ~(ModifierKeys::shiftModifier | ModifierKeys::ctrlModifier | ModifierKeys::altModifier); if ((GetKeyState (VK_SHIFT) & 0x8000) != 0) currentModifiers |= ModifierKeys::shiftModifier; if ((GetKeyState (VK_CONTROL) & 0x8000) != 0) currentModifiers |= ModifierKeys::ctrlModifier; if ((GetKeyState (VK_MENU) & 0x8000) != 0) currentModifiers |= ModifierKeys::altModifier; if ((GetKeyState (VK_RMENU) & 0x8000) != 0) currentModifiers &= ~(ModifierKeys::ctrlModifier | ModifierKeys::altModifier); } void ModifierKeys::updateCurrentModifiers() throw() { currentModifierFlags = currentModifiers; } bool KeyPress::isKeyCurrentlyDown (const int keyCode) throw() { SHORT k = (SHORT) keyCode; if ((keyCode & extendedKeyModifier) == 0 && (k >= (SHORT) T('a') && k <= (SHORT) T('z'))) k += (SHORT) T('A') - (SHORT) T('a'); const SHORT translatedValues[] = { (SHORT) ',', VK_OEM_COMMA, (SHORT) '+', VK_OEM_PLUS, (SHORT) '-', VK_OEM_MINUS, (SHORT) '.', VK_OEM_PERIOD, (SHORT) ';', VK_OEM_1, (SHORT) ':', VK_OEM_1, (SHORT) '/', VK_OEM_2, (SHORT) '?', VK_OEM_2, (SHORT) '[', VK_OEM_4, (SHORT) ']', VK_OEM_6 }; for (int i = 0; i < numElementsInArray (translatedValues); i += 2) if (k == translatedValues [i]) k = translatedValues [i + 1]; return (GetKeyState (k) & 0x8000) != 0; } const ModifierKeys ModifierKeys::getCurrentModifiersRealtime() throw() { updateKeyModifiers(); currentModifiers &= ~ModifierKeys::allMouseButtonModifiers; if ((GetKeyState (VK_LBUTTON) & 0x8000) != 0) currentModifiers |= ModifierKeys::leftButtonModifier; if ((GetKeyState (VK_RBUTTON) & 0x8000) != 0) currentModifiers |= ModifierKeys::rightButtonModifier; if ((GetKeyState (VK_MBUTTON) & 0x8000) != 0) currentModifiers |= ModifierKeys::middleButtonModifier; return ModifierKeys (currentModifiers); } static int64 getMouseEventTime() throw() { static int64 eventTimeOffset = 0; static DWORD lastMessageTime = 0; const DWORD thisMessageTime = GetMessageTime(); if (thisMessageTime < lastMessageTime || lastMessageTime == 0) { lastMessageTime = thisMessageTime; eventTimeOffset = Time::currentTimeMillis() - thisMessageTime; } return eventTimeOffset + thisMessageTime; } static void* callFunctionIfNotLocked (MessageCallbackFunction* callback, void* userData) { if (MessageManager::getInstance()->currentThreadHasLockedMessageManager()) return callback (userData); else return MessageManager::getInstance()->callFunctionOnMessageThread (callback, userData); } class Win32ComponentPeer : public ComponentPeer { public: Win32ComponentPeer (Component* const component, const int windowStyleFlags) : ComponentPeer (component, windowStyleFlags), dontRepaint (false), fullScreen (false), isDragging (false), isMouseOver (false), hasCreatedCaret (false), currentWindowIcon (0), taskBarIcon (0), dropTarget (0) { callFunctionIfNotLocked (&createWindowCallback, (void*) this); setTitle (component->getName()); if ((windowStyleFlags & windowHasDropShadow) != 0 && Desktop::canUseSemiTransparentWindows()) { shadower = component->getLookAndFeel().createDropShadowerForComponent (component); if (shadower != 0) shadower->setOwner (component); } else { shadower = 0; } } ~Win32ComponentPeer() { setTaskBarIcon (0); deleteAndZero (shadower); // do this before the next bit to avoid messages arriving for this window // before it's destroyed SetWindowLongPtr (hwnd, GWLP_USERDATA, 0); callFunctionIfNotLocked (&destroyWindowCallback, (void*) hwnd); if (currentWindowIcon != 0) DestroyIcon (currentWindowIcon); if (dropTarget != 0) { dropTarget->Release(); dropTarget = 0; } } void* getNativeHandle() const { return (void*) hwnd; } void setVisible (bool shouldBeVisible) { ShowWindow (hwnd, shouldBeVisible ? SW_SHOWNA : SW_HIDE); if (shouldBeVisible) InvalidateRect (hwnd, 0, 0); else lastPaintTime = 0; } void setTitle (const String& title) { SetWindowText (hwnd, title); } void setPosition (int x, int y) { offsetWithinParent (x, y); SetWindowPos (hwnd, 0, x - windowBorder.getLeft(), y - windowBorder.getTop(), 0, 0, SWP_NOACTIVATE | SWP_NOSIZE | SWP_NOZORDER | SWP_NOOWNERZORDER); } void repaintNowIfTransparent() { if (isTransparent() && lastPaintTime > 0 && Time::getMillisecondCounter() > lastPaintTime + 30) handlePaintMessage(); } void updateBorderSize() { WINDOWINFO info; info.cbSize = sizeof (info); if (GetWindowInfo (hwnd, &info)) { windowBorder = BorderSize (info.rcClient.top - info.rcWindow.top, info.rcClient.left - info.rcWindow.left, info.rcWindow.bottom - info.rcClient.bottom, info.rcWindow.right - info.rcClient.right); } } void setSize (int w, int h) { SetWindowPos (hwnd, 0, 0, 0, w + windowBorder.getLeftAndRight(), h + windowBorder.getTopAndBottom(), SWP_NOACTIVATE | SWP_NOMOVE | SWP_NOZORDER | SWP_NOOWNERZORDER); updateBorderSize(); repaintNowIfTransparent(); } void setBounds (int x, int y, int w, int h, const bool isNowFullScreen) { fullScreen = isNowFullScreen; offsetWithinParent (x, y); SetWindowPos (hwnd, 0, x - windowBorder.getLeft(), y - windowBorder.getTop(), w + windowBorder.getLeftAndRight(), h + windowBorder.getTopAndBottom(), SWP_NOACTIVATE | SWP_NOZORDER | SWP_NOOWNERZORDER); updateBorderSize(); repaintNowIfTransparent(); } void getBounds (int& x, int& y, int& w, int& h) const { RECT r; GetWindowRect (hwnd, &r); x = r.left; y = r.top; w = r.right - x; h = r.bottom - y; HWND parentH = GetParent (hwnd); if (parentH != 0) { GetWindowRect (parentH, &r); x -= r.left; y -= r.top; } x += windowBorder.getLeft(); y += windowBorder.getTop(); w -= windowBorder.getLeftAndRight(); h -= windowBorder.getTopAndBottom(); } int getScreenX() const { RECT r; GetWindowRect (hwnd, &r); return r.left + windowBorder.getLeft(); } int getScreenY() const { RECT r; GetWindowRect (hwnd, &r); return r.top + windowBorder.getTop(); } void relativePositionToGlobal (int& x, int& y) { RECT r; GetWindowRect (hwnd, &r); x += r.left + windowBorder.getLeft(); y += r.top + windowBorder.getTop(); } void globalPositionToRelative (int& x, int& y) { RECT r; GetWindowRect (hwnd, &r); x -= r.left + windowBorder.getLeft(); y -= r.top + windowBorder.getTop(); } void setMinimised (bool shouldBeMinimised) { if (shouldBeMinimised != isMinimised()) ShowWindow (hwnd, shouldBeMinimised ? SW_MINIMIZE : SW_SHOWNORMAL); } bool isMinimised() const { WINDOWPLACEMENT wp; wp.length = sizeof (WINDOWPLACEMENT); GetWindowPlacement (hwnd, &wp); return wp.showCmd == SW_SHOWMINIMIZED; } void setFullScreen (bool shouldBeFullScreen) { setMinimised (false); if (fullScreen != shouldBeFullScreen) { fullScreen = shouldBeFullScreen; const ComponentDeletionWatcher deletionChecker (component); if (! fullScreen) { const Rectangle boundsCopy (lastNonFullscreenBounds); if (hasTitleBar()) ShowWindow (hwnd, SW_SHOWNORMAL); if (! boundsCopy.isEmpty()) { setBounds (boundsCopy.getX(), boundsCopy.getY(), boundsCopy.getWidth(), boundsCopy.getHeight(), false); } } else { if (hasTitleBar()) ShowWindow (hwnd, SW_SHOWMAXIMIZED); else SendMessageW (hwnd, WM_SETTINGCHANGE, 0, 0); } if (! deletionChecker.hasBeenDeleted()) handleMovedOrResized(); } } bool isFullScreen() const { if (! hasTitleBar()) return fullScreen; WINDOWPLACEMENT wp; wp.length = sizeof (wp); GetWindowPlacement (hwnd, &wp); return wp.showCmd == SW_SHOWMAXIMIZED; } bool contains (int x, int y, bool trueIfInAChildWindow) const { RECT r; GetWindowRect (hwnd, &r); POINT p; p.x = x + r.left + windowBorder.getLeft(); p.y = y + r.top + windowBorder.getTop(); HWND w = WindowFromPoint (p); return w == hwnd || (trueIfInAChildWindow && (IsChild (hwnd, w) != 0)); } const BorderSize getFrameSize() const { return windowBorder; } bool setAlwaysOnTop (bool alwaysOnTop) { const bool oldDeactivate = shouldDeactivateTitleBar; shouldDeactivateTitleBar = ((styleFlags & windowIsTemporary) == 0); SetWindowPos (hwnd, alwaysOnTop ? HWND_TOPMOST : HWND_NOTOPMOST, 0, 0, 0, 0, SWP_NOMOVE | SWP_NOSIZE | SWP_NOACTIVATE | SWP_NOSENDCHANGING); shouldDeactivateTitleBar = oldDeactivate; if (shadower != 0) shadower->componentBroughtToFront (*component); return true; } void toFront (bool makeActive) { setMinimised (false); const bool oldDeactivate = shouldDeactivateTitleBar; shouldDeactivateTitleBar = ((styleFlags & windowIsTemporary) == 0); callFunctionIfNotLocked (makeActive ? &toFrontCallback1 : &toFrontCallback2, (void*) hwnd); shouldDeactivateTitleBar = oldDeactivate; if (! makeActive) { // in this case a broughttofront call won't have occured, so do it now.. handleBroughtToFront(); } } void toBehind (ComponentPeer* other) { Win32ComponentPeer* const otherPeer = dynamic_cast (other); jassert (otherPeer != 0); // wrong type of window? if (otherPeer != 0) { setMinimised (false); // must be careful not to try to put a topmost window behind a normal one, or win32 // promotes the normal one to be topmost! if (getComponent()->isAlwaysOnTop() == otherPeer->getComponent()->isAlwaysOnTop()) SetWindowPos (hwnd, otherPeer->hwnd, 0, 0, 0, 0, SWP_NOMOVE | SWP_NOSIZE | SWP_NOACTIVATE | SWP_NOSENDCHANGING); else if (otherPeer->getComponent()->isAlwaysOnTop()) SetWindowPos (hwnd, HWND_TOP, 0, 0, 0, 0, SWP_NOMOVE | SWP_NOSIZE | SWP_NOACTIVATE | SWP_NOSENDCHANGING); } } bool isFocused() const { return callFunctionIfNotLocked (&getFocusCallback, 0) == (void*) hwnd; } void grabFocus() { const bool oldDeactivate = shouldDeactivateTitleBar; shouldDeactivateTitleBar = ((styleFlags & windowIsTemporary) == 0); callFunctionIfNotLocked (&setFocusCallback, (void*) hwnd); shouldDeactivateTitleBar = oldDeactivate; } void textInputRequired (int /*x*/, int /*y*/) { if (! hasCreatedCaret) { hasCreatedCaret = true; CreateCaret (hwnd, (HBITMAP) 1, 0, 0); } ShowCaret (hwnd); SetCaretPos (0, 0); } void repaint (int x, int y, int w, int h) { const RECT r = { x, y, x + w, y + h }; InvalidateRect (hwnd, &r, FALSE); } void performAnyPendingRepaintsNow() { MSG m; if (component->isVisible() && PeekMessage (&m, hwnd, WM_PAINT, WM_PAINT, PM_REMOVE)) DispatchMessage (&m); } static Win32ComponentPeer* getOwnerOfWindow (HWND h) throw() { if (h != 0 && GetWindowLongPtr (h, GWLP_USERDATA) == improbableWindowNumber) return (Win32ComponentPeer*) (pointer_sized_int) GetWindowLongPtr (h, 8); return 0; } void setTaskBarIcon (const Image* const image) { if (image != 0) { HICON hicon = createHICONFromImage (*image, TRUE, 0, 0); if (taskBarIcon == 0) { taskBarIcon = new NOTIFYICONDATA(); taskBarIcon->cbSize = sizeof (NOTIFYICONDATA); taskBarIcon->hWnd = (HWND) hwnd; taskBarIcon->uID = (int) (pointer_sized_int) hwnd; taskBarIcon->uFlags = NIF_ICON | NIF_MESSAGE | NIF_TIP; taskBarIcon->uCallbackMessage = WM_TRAYNOTIFY; taskBarIcon->hIcon = hicon; taskBarIcon->szTip[0] = 0; Shell_NotifyIcon (NIM_ADD, taskBarIcon); } else { HICON oldIcon = taskBarIcon->hIcon; taskBarIcon->hIcon = hicon; taskBarIcon->uFlags = NIF_ICON; Shell_NotifyIcon (NIM_MODIFY, taskBarIcon); DestroyIcon (oldIcon); } DestroyIcon (hicon); } else if (taskBarIcon != 0) { taskBarIcon->uFlags = 0; Shell_NotifyIcon (NIM_DELETE, taskBarIcon); DestroyIcon (taskBarIcon->hIcon); deleteAndZero (taskBarIcon); } } void setTaskBarIconToolTip (const String& toolTip) const { if (taskBarIcon != 0) { taskBarIcon->uFlags = NIF_TIP; toolTip.copyToBuffer (taskBarIcon->szTip, sizeof (taskBarIcon->szTip) - 1); Shell_NotifyIcon (NIM_MODIFY, taskBarIcon); } } bool isInside (HWND h) const { return GetAncestor (hwnd, GA_ROOT) == h; } juce_UseDebuggingNewOperator bool dontRepaint; private: HWND hwnd; DropShadower* shadower; bool fullScreen, isDragging, isMouseOver, hasCreatedCaret; BorderSize windowBorder; HICON currentWindowIcon; NOTIFYICONDATA* taskBarIcon; IDropTarget* dropTarget; class TemporaryImage : public Timer { public: TemporaryImage() : image (0) { } ~TemporaryImage() { delete image; } WindowsBitmapImage* getImage (const bool transparent, const int w, const int h) throw() { const Image::PixelFormat format = transparent ? Image::ARGB : Image::RGB; if (image == 0 || image->getWidth() < w || image->getHeight() < h || image->getFormat() != format) { delete image; image = new WindowsBitmapImage (format, (w + 31) & ~31, (h + 31) & ~31, false); } startTimer (3000); return image; } void timerCallback() { stopTimer(); deleteAndZero (image); } private: WindowsBitmapImage* image; TemporaryImage (const TemporaryImage&); const TemporaryImage& operator= (const TemporaryImage&); }; TemporaryImage offscreenImageGenerator; class WindowClassHolder : public DeletedAtShutdown { public: WindowClassHolder() : windowClassName ("JUCE_") { // this name has to be different for each app/dll instance because otherwise // poor old Win32 can get a bit confused (even despite it not being a process-global // window class). windowClassName << (int) (Time::currentTimeMillis() & 0x7fffffff); HINSTANCE moduleHandle = (HINSTANCE) PlatformUtilities::getCurrentModuleInstanceHandle(); TCHAR moduleFile [1024]; moduleFile[0] = 0; GetModuleFileName (moduleHandle, moduleFile, 1024); WORD iconNum = 0; WNDCLASSEX wcex; wcex.cbSize = sizeof (wcex); wcex.style = CS_OWNDC; wcex.lpfnWndProc = (WNDPROC) windowProc; wcex.lpszClassName = windowClassName; wcex.cbClsExtra = 0; wcex.cbWndExtra = 32; wcex.hInstance = moduleHandle; wcex.hIcon = ExtractAssociatedIcon (moduleHandle, moduleFile, &iconNum); iconNum = 1; wcex.hIconSm = ExtractAssociatedIcon (moduleHandle, moduleFile, &iconNum); wcex.hCursor = 0; wcex.hbrBackground = 0; wcex.lpszMenuName = 0; RegisterClassEx (&wcex); } ~WindowClassHolder() { if (ComponentPeer::getNumPeers() == 0) UnregisterClass (windowClassName, (HINSTANCE) PlatformUtilities::getCurrentModuleInstanceHandle()); clearSingletonInstance(); } String windowClassName; juce_DeclareSingleton_SingleThreaded_Minimal (WindowClassHolder); }; static void* createWindowCallback (void* userData) { ((Win32ComponentPeer*) userData)->createWindow(); return 0; } void createWindow() { DWORD exstyle = WS_EX_ACCEPTFILES; DWORD type = WS_CLIPSIBLINGS | WS_CLIPCHILDREN; if (hasTitleBar()) { type |= WS_OVERLAPPED; exstyle |= WS_EX_APPWINDOW; if ((styleFlags & windowHasCloseButton) != 0) { type |= WS_SYSMENU; } else { // annoyingly, windows won't let you have a min/max button without a close button jassert ((styleFlags & (windowHasMinimiseButton | windowHasMaximiseButton)) == 0); } if ((styleFlags & windowIsResizable) != 0) type |= WS_THICKFRAME; } else { type |= WS_POPUP | WS_SYSMENU; if ((styleFlags & windowAppearsOnTaskbar) == 0) exstyle |= WS_EX_TOOLWINDOW; else exstyle |= WS_EX_APPWINDOW; } if ((styleFlags & windowHasMinimiseButton) != 0) type |= WS_MINIMIZEBOX; if ((styleFlags & windowHasMaximiseButton) != 0) type |= WS_MAXIMIZEBOX; if ((styleFlags & windowIgnoresMouseClicks) != 0) exstyle |= WS_EX_TRANSPARENT; if ((styleFlags & windowIsSemiTransparent) != 0 && Desktop::canUseSemiTransparentWindows()) exstyle |= WS_EX_LAYERED; hwnd = CreateWindowEx (exstyle, WindowClassHolder::getInstance()->windowClassName, L"", type, 0, 0, 0, 0, 0, 0, 0, 0); if (hwnd != 0) { SetWindowLongPtr (hwnd, 0, 0); SetWindowLongPtr (hwnd, 8, (LONG_PTR) this); SetWindowLongPtr (hwnd, GWLP_USERDATA, improbableWindowNumber); if (dropTarget == 0) dropTarget = new JuceDropTarget (this); RegisterDragDrop (hwnd, dropTarget); updateBorderSize(); // Calling this function here is (for some reason) necessary to make Windows // correctly enable the menu items that we specify in the wm_initmenu message. GetSystemMenu (hwnd, false); } else { jassertfalse } } static void* destroyWindowCallback (void* handle) { RevokeDragDrop ((HWND) handle); DestroyWindow ((HWND) handle); return 0; } static void* toFrontCallback1 (void* h) { SetForegroundWindow ((HWND) h); return 0; } static void* toFrontCallback2 (void* h) { SetWindowPos ((HWND) h, HWND_TOP, 0, 0, 0, 0, SWP_NOMOVE | SWP_NOSIZE | SWP_NOACTIVATE | SWP_NOSENDCHANGING); return 0; } static void* setFocusCallback (void* h) { SetFocus ((HWND) h); return 0; } static void* getFocusCallback (void*) { return (void*) GetFocus(); } void offsetWithinParent (int& x, int& y) const { if (isTransparent()) { HWND parentHwnd = GetParent (hwnd); if (parentHwnd != 0) { RECT parentRect; GetWindowRect (parentHwnd, &parentRect); x += parentRect.left; y += parentRect.top; } } } bool isTransparent() const { return (GetWindowLong (hwnd, GWL_EXSTYLE) & WS_EX_LAYERED) != 0; } inline bool hasTitleBar() const throw() { return (styleFlags & windowHasTitleBar) != 0; } void setIcon (const Image& newIcon) { HICON hicon = createHICONFromImage (newIcon, TRUE, 0, 0); if (hicon != 0) { SendMessage (hwnd, WM_SETICON, ICON_BIG, (LPARAM) hicon); SendMessage (hwnd, WM_SETICON, ICON_SMALL, (LPARAM) hicon); if (currentWindowIcon != 0) DestroyIcon (currentWindowIcon); currentWindowIcon = hicon; } } void handlePaintMessage() { #if DEBUG_REPAINT_TIMES const double paintStart = Time::getMillisecondCounterHiRes(); #endif HRGN rgn = CreateRectRgn (0, 0, 0, 0); const int regionType = GetUpdateRgn (hwnd, rgn, false); PAINTSTRUCT paintStruct; HDC dc = BeginPaint (hwnd, &paintStruct); // Note this can immediately generate a WM_NCPAINT // message and become re-entrant, but that's OK // if something in a paint handler calls, e.g. a message box, this can become reentrant and // corrupt the image it's using to paint into, so do a check here. static bool reentrant = false; if (reentrant) { DeleteObject (rgn); EndPaint (hwnd, &paintStruct); return; } reentrant = true; // this is the rectangle to update.. int x = paintStruct.rcPaint.left; int y = paintStruct.rcPaint.top; int w = paintStruct.rcPaint.right - x; int h = paintStruct.rcPaint.bottom - y; const bool transparent = isTransparent(); if (transparent) { // it's not possible to have a transparent window with a title bar at the moment! jassert (! hasTitleBar()); RECT r; GetWindowRect (hwnd, &r); x = y = 0; w = r.right - r.left; h = r.bottom - r.top; } if (w > 0 && h > 0) { clearMaskedRegion(); WindowsBitmapImage* const offscreenImage = offscreenImageGenerator.getImage (transparent, w, h); LowLevelGraphicsSoftwareRenderer context (*offscreenImage); RectangleList* const contextClip = context.getRawClipRegion(); contextClip->clear(); context.setOrigin (-x, -y); bool needToPaintAll = true; if (regionType == COMPLEXREGION && ! transparent) { HRGN clipRgn = CreateRectRgnIndirect (&paintStruct.rcPaint); CombineRgn (rgn, rgn, clipRgn, RGN_AND); DeleteObject (clipRgn); char rgnData [8192]; const DWORD res = GetRegionData (rgn, sizeof (rgnData), (RGNDATA*) rgnData); if (res > 0 && res <= sizeof (rgnData)) { const RGNDATAHEADER* const hdr = &(((const RGNDATA*) rgnData)->rdh); if (hdr->iType == RDH_RECTANGLES && hdr->rcBound.right - hdr->rcBound.left >= w && hdr->rcBound.bottom - hdr->rcBound.top >= h) { needToPaintAll = false; const RECT* rects = (const RECT*) (rgnData + sizeof (RGNDATAHEADER)); int num = ((RGNDATA*) rgnData)->rdh.nCount; while (--num >= 0) { // (need to move this one pixel to the left because of a win32 bug) const int cx = jmax (x, rects->left - 1); const int cy = rects->top; const int cw = rects->right - cx; const int ch = rects->bottom - rects->top; if (cx + cw - x <= w && cy + ch - y <= h) { contextClip->addWithoutMerging (Rectangle (cx - x, cy - y, cw, ch)); } else { needToPaintAll = true; break; } ++rects; } } } } if (needToPaintAll) { contextClip->clear(); contextClip->addWithoutMerging (Rectangle (0, 0, w, h)); } if (transparent) { RectangleList::Iterator i (*contextClip); while (i.next()) { const Rectangle& r = *i.getRectangle(); offscreenImage->clear (r.getX(), r.getY(), r.getWidth(), r.getHeight()); } } // if the component's not opaque, this won't draw properly unless the platform can support this jassert (Desktop::canUseSemiTransparentWindows() || component->isOpaque()); updateCurrentModifiers(); handlePaint (context); if (! dontRepaint) offscreenImage->blitToWindow (hwnd, dc, transparent, x, y, maskedRegion); } DeleteObject (rgn); EndPaint (hwnd, &paintStruct); reentrant = false; #ifndef JUCE_GCC //xxx should add this fn for gcc.. _fpreset(); // because some graphics cards can unmask FP exceptions #endif lastPaintTime = Time::getMillisecondCounter(); #if DEBUG_REPAINT_TIMES const double elapsed = Time::getMillisecondCounterHiRes() - paintStart; Logger::outputDebugString (T("repaint time: ") + String (elapsed, 2)); #endif } void doMouseMove (const int x, const int y) { static uint32 lastMouseTime = 0; // this can be set to throttle the mouse-messages to less than a // certain number per second, as things can get unresponsive // if each drag or move callback has to do a lot of work. const int maxMouseMovesPerSecond = 60; const int64 mouseEventTime = getMouseEventTime(); if (! isMouseOver) { isMouseOver = true; TRACKMOUSEEVENT tme; tme.cbSize = sizeof (tme); tme.dwFlags = TME_LEAVE; tme.hwndTrack = hwnd; tme.dwHoverTime = 0; if (! TrackMouseEvent (&tme)) { jassertfalse; } updateKeyModifiers(); handleMouseEnter (x, y, mouseEventTime); } else if (! isDragging) { if (((unsigned int) x) < (unsigned int) component->getWidth() && ((unsigned int) y) < (unsigned int) component->getHeight()) { RECT r; GetWindowRect (hwnd, &r); POINT p; p.x = x + r.left + windowBorder.getLeft(); p.y = y + r.top + windowBorder.getTop(); if (WindowFromPoint (p) == hwnd) { const uint32 now = Time::getMillisecondCounter(); if (now > lastMouseTime + 1000 / maxMouseMovesPerSecond) { lastMouseTime = now; handleMouseMove (x, y, mouseEventTime); } } } } else { const uint32 now = Time::getMillisecondCounter(); if (now > lastMouseTime + 1000 / maxMouseMovesPerSecond) { lastMouseTime = now; handleMouseDrag (x, y, mouseEventTime); } } } void doMouseDown (const int x, const int y, const WPARAM wParam) { if (GetCapture() != hwnd) SetCapture (hwnd); doMouseMove (x, y); currentModifiers &= ~ModifierKeys::allMouseButtonModifiers; if ((wParam & MK_LBUTTON) != 0) currentModifiers |= ModifierKeys::leftButtonModifier; if ((wParam & MK_RBUTTON) != 0) currentModifiers |= ModifierKeys::rightButtonModifier; if ((wParam & MK_MBUTTON) != 0) currentModifiers |= ModifierKeys::middleButtonModifier; updateKeyModifiers(); isDragging = true; handleMouseDown (x, y, getMouseEventTime()); } void doMouseUp (const int x, const int y, const WPARAM wParam) { int numButtons = 0; if ((wParam & MK_LBUTTON) != 0) ++numButtons; if ((wParam & MK_RBUTTON) != 0) ++numButtons; if ((wParam & MK_MBUTTON) != 0) ++numButtons; const int oldModifiers = currentModifiers; // update the currentmodifiers only after the callback, so the callback // knows which button was released. currentModifiers &= ~ModifierKeys::allMouseButtonModifiers; if ((wParam & MK_LBUTTON) != 0) currentModifiers |= ModifierKeys::leftButtonModifier; if ((wParam & MK_RBUTTON) != 0) currentModifiers |= ModifierKeys::rightButtonModifier; if ((wParam & MK_MBUTTON) != 0) currentModifiers |= ModifierKeys::middleButtonModifier; updateKeyModifiers(); isDragging = false; // release the mouse capture if the user's not still got a button down if (numButtons == 0 && hwnd == GetCapture()) ReleaseCapture(); handleMouseUp (oldModifiers, x, y, getMouseEventTime()); } void doCaptureChanged() { if (isDragging) { RECT wr; GetWindowRect (hwnd, &wr); const DWORD mp = GetMessagePos(); doMouseUp (GET_X_LPARAM (mp) - wr.left - windowBorder.getLeft(), GET_Y_LPARAM (mp) - wr.top - windowBorder.getTop(), (WPARAM) getMouseEventTime()); } } void doMouseExit() { if (isMouseOver) { isMouseOver = false; RECT wr; GetWindowRect (hwnd, &wr); const DWORD mp = GetMessagePos(); handleMouseExit (GET_X_LPARAM (mp) - wr.left - windowBorder.getLeft(), GET_Y_LPARAM (mp) - wr.top - windowBorder.getTop(), getMouseEventTime()); } } void doMouseWheel (const WPARAM wParam, const bool isVertical) { updateKeyModifiers(); const int amount = jlimit (-1000, 1000, (int) (0.75f * (short) HIWORD (wParam))); handleMouseWheel (isVertical ? 0 : amount, isVertical ? amount : 0, getMouseEventTime()); } void sendModifierKeyChangeIfNeeded() { if (modifiersAtLastCallback != currentModifiers) { modifiersAtLastCallback = currentModifiers; handleModifierKeysChange(); } } bool doKeyUp (const WPARAM key) { updateKeyModifiers(); switch (key) { case VK_SHIFT: case VK_CONTROL: case VK_MENU: case VK_CAPITAL: case VK_LWIN: case VK_RWIN: case VK_APPS: case VK_NUMLOCK: case VK_SCROLL: case VK_LSHIFT: case VK_RSHIFT: case VK_LCONTROL: case VK_LMENU: case VK_RCONTROL: case VK_RMENU: sendModifierKeyChangeIfNeeded(); } return handleKeyUpOrDown (false) || Component::getCurrentlyModalComponent() != 0; } bool doKeyDown (const WPARAM key) { updateKeyModifiers(); bool used = false; switch (key) { case VK_SHIFT: case VK_LSHIFT: case VK_RSHIFT: case VK_CONTROL: case VK_LCONTROL: case VK_RCONTROL: case VK_MENU: case VK_LMENU: case VK_RMENU: case VK_LWIN: case VK_RWIN: case VK_CAPITAL: case VK_NUMLOCK: case VK_SCROLL: case VK_APPS: sendModifierKeyChangeIfNeeded(); break; case VK_LEFT: case VK_RIGHT: case VK_UP: case VK_DOWN: case VK_PRIOR: case VK_NEXT: case VK_HOME: case VK_END: case VK_DELETE: case VK_INSERT: case VK_F1: case VK_F2: case VK_F3: case VK_F4: case VK_F5: case VK_F6: case VK_F7: case VK_F8: case VK_F9: case VK_F10: case VK_F11: case VK_F12: case VK_F13: case VK_F14: case VK_F15: case VK_F16: used = handleKeyUpOrDown (true); used = handleKeyPress (extendedKeyModifier | (int) key, 0) || used; break; case VK_ADD: case VK_SUBTRACT: case VK_MULTIPLY: case VK_DIVIDE: case VK_SEPARATOR: case VK_DECIMAL: used = handleKeyUpOrDown (true); break; default: used = handleKeyUpOrDown (true); { MSG msg; if (! PeekMessage (&msg, hwnd, WM_CHAR, WM_DEADCHAR, PM_NOREMOVE)) { // if there isn't a WM_CHAR or WM_DEADCHAR message pending, we need to // manually generate the key-press event that matches this key-down. const UINT keyChar = MapVirtualKey (key, 2); used = handleKeyPress ((int) LOWORD (keyChar), 0) || used; } } break; } if (Component::getCurrentlyModalComponent() != 0) used = true; return used; } bool doKeyChar (int key, const LPARAM flags) { updateKeyModifiers(); juce_wchar textChar = (juce_wchar) key; const int virtualScanCode = (flags >> 16) & 0xff; if (key >= '0' && key <= '9') { switch (virtualScanCode) // check for a numeric keypad scan-code { case 0x52: case 0x4f: case 0x50: case 0x51: case 0x4b: case 0x4c: case 0x4d: case 0x47: case 0x48: case 0x49: key = (key - '0') + KeyPress::numberPad0; break; default: break; } } else { // convert the scan code to an unmodified character code.. const UINT virtualKey = MapVirtualKey (virtualScanCode, 1); UINT keyChar = MapVirtualKey (virtualKey, 2); keyChar = LOWORD (keyChar); if (keyChar != 0) key = (int) keyChar; // avoid sending junk text characters for some control-key combinations if (textChar < ' ' && (currentModifiers & (ModifierKeys::ctrlModifier | ModifierKeys::altModifier)) != 0) textChar = 0; } return handleKeyPress (key, textChar); } bool doAppCommand (const LPARAM lParam) { int key = 0; switch (GET_APPCOMMAND_LPARAM (lParam)) { case APPCOMMAND_MEDIA_PLAY_PAUSE: key = KeyPress::playKey; break; case APPCOMMAND_MEDIA_STOP: key = KeyPress::stopKey; break; case APPCOMMAND_MEDIA_NEXTTRACK: key = KeyPress::fastForwardKey; break; case APPCOMMAND_MEDIA_PREVIOUSTRACK: key = KeyPress::rewindKey; break; } if (key != 0) { updateKeyModifiers(); if (hwnd == GetActiveWindow()) { handleKeyPress (key, 0); return true; } } return false; } class JuceDropTarget : public IDropTarget { public: JuceDropTarget (Win32ComponentPeer* const owner_) : owner (owner_), refCount (1) { } virtual ~JuceDropTarget() { jassert (refCount == 0); } HRESULT __stdcall QueryInterface (REFIID id, void __RPC_FAR* __RPC_FAR* result) { if (id == IID_IUnknown || id == IID_IDropTarget) { AddRef(); *result = this; return S_OK; } *result = 0; return E_NOINTERFACE; } ULONG __stdcall AddRef() { return ++refCount; } ULONG __stdcall Release() { jassert (refCount > 0); const int r = --refCount; if (r == 0) delete this; return r; } HRESULT __stdcall DragEnter (IDataObject* pDataObject, DWORD /*grfKeyState*/, POINTL mousePos, DWORD* pdwEffect) { updateFileList (pDataObject); int x = mousePos.x, y = mousePos.y; owner->globalPositionToRelative (x, y); owner->handleFileDragMove (files, x, y); *pdwEffect = DROPEFFECT_COPY; return S_OK; } HRESULT __stdcall DragLeave() { owner->handleFileDragExit (files); return S_OK; } HRESULT __stdcall DragOver (DWORD /*grfKeyState*/, POINTL mousePos, DWORD* pdwEffect) { int x = mousePos.x, y = mousePos.y; owner->globalPositionToRelative (x, y); owner->handleFileDragMove (files, x, y); *pdwEffect = DROPEFFECT_COPY; return S_OK; } HRESULT __stdcall Drop (IDataObject* pDataObject, DWORD /*grfKeyState*/, POINTL mousePos, DWORD* pdwEffect) { updateFileList (pDataObject); int x = mousePos.x, y = mousePos.y; owner->globalPositionToRelative (x, y); owner->handleFileDragDrop (files, x, y); *pdwEffect = DROPEFFECT_COPY; return S_OK; } private: Win32ComponentPeer* const owner; int refCount; StringArray files; void updateFileList (IDataObject* const pDataObject) { files.clear(); FORMATETC format = { CF_HDROP, 0, DVASPECT_CONTENT, -1, TYMED_HGLOBAL }; STGMEDIUM medium = { TYMED_HGLOBAL, { 0 }, 0 }; if (pDataObject->GetData (&format, &medium) == S_OK) { const SIZE_T totalLen = GlobalSize (medium.hGlobal); const LPDROPFILES pDropFiles = (const LPDROPFILES) GlobalLock (medium.hGlobal); unsigned int i = 0; if (pDropFiles->fWide) { const WCHAR* const fname = (WCHAR*) (((const char*) pDropFiles) + sizeof (DROPFILES)); for (;;) { unsigned int len = 0; while (i + len < totalLen && fname [i + len] != 0) ++len; if (len == 0) break; files.add (String (fname + i, len)); i += len + 1; } } else { const char* const fname = ((const char*) pDropFiles) + sizeof (DROPFILES); for (;;) { unsigned int len = 0; while (i + len < totalLen && fname [i + len] != 0) ++len; if (len == 0) break; files.add (String (fname + i, len)); i += len + 1; } } GlobalUnlock (medium.hGlobal); } } JuceDropTarget (const JuceDropTarget&); const JuceDropTarget& operator= (const JuceDropTarget&); }; void doSettingChange() { Desktop::getInstance().refreshMonitorSizes(); if (fullScreen && ! isMinimised()) { const Rectangle r (component->getParentMonitorArea()); SetWindowPos (hwnd, 0, r.getX(), r.getY(), r.getWidth(), r.getHeight(), SWP_NOACTIVATE | SWP_NOOWNERZORDER | SWP_NOZORDER | SWP_NOSENDCHANGING); } } public: static LRESULT CALLBACK windowProc (HWND h, UINT message, WPARAM wParam, LPARAM lParam) { Win32ComponentPeer* const peer = getOwnerOfWindow (h); if (peer != 0) return peer->peerWindowProc (h, message, wParam, lParam); return DefWindowProc (h, message, wParam, lParam); } private: LRESULT peerWindowProc (HWND h, UINT message, WPARAM wParam, LPARAM lParam) { { if (isValidPeer (this)) { switch (message) { case WM_NCHITTEST: if (hasTitleBar()) break; return HTCLIENT; case WM_PAINT: handlePaintMessage(); return 0; case WM_NCPAINT: if (wParam != 1) handlePaintMessage(); if (hasTitleBar()) break; return 0; case WM_ERASEBKGND: case WM_NCCALCSIZE: if (hasTitleBar()) break; return 1; case WM_MOUSEMOVE: doMouseMove (GET_X_LPARAM (lParam), GET_Y_LPARAM (lParam)); return 0; case WM_MOUSELEAVE: doMouseExit(); return 0; case WM_LBUTTONDOWN: case WM_MBUTTONDOWN: case WM_RBUTTONDOWN: doMouseDown (GET_X_LPARAM (lParam), GET_Y_LPARAM (lParam), wParam); return 0; case WM_LBUTTONUP: case WM_MBUTTONUP: case WM_RBUTTONUP: doMouseUp (GET_X_LPARAM (lParam), GET_Y_LPARAM (lParam), wParam); return 0; case WM_CAPTURECHANGED: doCaptureChanged(); return 0; case WM_NCMOUSEMOVE: if (hasTitleBar()) break; return 0; case 0x020A: /* WM_MOUSEWHEEL */ doMouseWheel (wParam, true); return 0; case 0x020E: /* WM_MOUSEHWHEEL */ doMouseWheel (wParam, false); return 0; case WM_WINDOWPOSCHANGING: if ((styleFlags & (windowHasTitleBar | windowIsResizable)) == (windowHasTitleBar | windowIsResizable)) { WINDOWPOS* const wp = (WINDOWPOS*) lParam; if ((wp->flags & (SWP_NOMOVE | SWP_NOSIZE)) != (SWP_NOMOVE | SWP_NOSIZE)) { if (constrainer != 0) { const Rectangle current (component->getX() - windowBorder.getLeft(), component->getY() - windowBorder.getTop(), component->getWidth() + windowBorder.getLeftAndRight(), component->getHeight() + windowBorder.getTopAndBottom()); constrainer->checkBounds (wp->x, wp->y, wp->cx, wp->cy, current, Desktop::getInstance().getAllMonitorDisplayAreas().getBounds(), wp->y != current.getY() && wp->y + wp->cy == current.getBottom(), wp->x != current.getX() && wp->x + wp->cx == current.getRight(), wp->y == current.getY() && wp->y + wp->cy != current.getBottom(), wp->x == current.getX() && wp->x + wp->cx != current.getRight()); } } } return 0; case WM_WINDOWPOSCHANGED: handleMovedOrResized(); if (dontRepaint) break; // needed for non-accelerated openGL windows to draw themselves correctly.. else return 0; case WM_KEYDOWN: case WM_SYSKEYDOWN: if (doKeyDown (wParam)) return 0; break; case WM_KEYUP: case WM_SYSKEYUP: if (doKeyUp (wParam)) return 0; break; case WM_CHAR: if (doKeyChar ((int) wParam, lParam)) return 0; break; case WM_APPCOMMAND: if (doAppCommand (lParam)) return TRUE; break; case WM_SETFOCUS: updateKeyModifiers(); handleFocusGain(); break; case WM_KILLFOCUS: if (hasCreatedCaret) { hasCreatedCaret = false; DestroyCaret(); } handleFocusLoss(); break; case WM_ACTIVATEAPP: // Windows does weird things to process priority when you swap apps, // so this forces an update when the app is brought to the front if (wParam != FALSE) juce_repeatLastProcessPriority(); else Desktop::getInstance().setKioskModeComponent (0); // turn kiosk mode off if we lose focus juce_CheckCurrentlyFocusedTopLevelWindow(); modifiersAtLastCallback = -1; return 0; case WM_ACTIVATE: if (LOWORD (wParam) == WA_ACTIVE || LOWORD (wParam) == WA_CLICKACTIVE) { modifiersAtLastCallback = -1; updateKeyModifiers(); if (isMinimised()) { component->repaint(); handleMovedOrResized(); if (! isValidMessageListener()) return 0; } if (LOWORD (wParam) == WA_CLICKACTIVE && component->isCurrentlyBlockedByAnotherModalComponent()) { int mx, my; component->getMouseXYRelative (mx, my); Component* const underMouse = component->getComponentAt (mx, my); if (underMouse != 0 && underMouse->isCurrentlyBlockedByAnotherModalComponent()) Component::getCurrentlyModalComponent()->inputAttemptWhenModal(); return 0; } handleBroughtToFront(); if (component->isCurrentlyBlockedByAnotherModalComponent()) Component::getCurrentlyModalComponent()->toFront (true); return 0; } break; case WM_NCACTIVATE: // while a temporary window is being shown, prevent Windows from deactivating the // title bars of our main windows. if (wParam == 0 && ! shouldDeactivateTitleBar) wParam = TRUE; // change this and let it get passed to the DefWindowProc. break; case WM_MOUSEACTIVATE: if (! component->getMouseClickGrabsKeyboardFocus()) return MA_NOACTIVATE; break; case WM_SHOWWINDOW: if (wParam != 0) handleBroughtToFront(); break; case WM_CLOSE: if (! component->isCurrentlyBlockedByAnotherModalComponent()) handleUserClosingWindow(); return 0; case WM_QUIT: if (JUCEApplication::getInstance() != 0) JUCEApplication::getInstance()->systemRequestedQuit(); return 0; case WM_QUERYENDSESSION: if (JUCEApplication::getInstance() != 0) { JUCEApplication::getInstance()->systemRequestedQuit(); return MessageManager::getInstance()->hasStopMessageBeenSent(); } return TRUE; case WM_TRAYNOTIFY: if (component->isCurrentlyBlockedByAnotherModalComponent()) { if (lParam == WM_LBUTTONDOWN || lParam == WM_RBUTTONDOWN || lParam == WM_LBUTTONDBLCLK || lParam == WM_LBUTTONDBLCLK) { Component* const current = Component::getCurrentlyModalComponent(); if (current != 0) current->inputAttemptWhenModal(); } } else { const int oldModifiers = currentModifiers; MouseEvent e (0, 0, ModifierKeys::getCurrentModifiersRealtime(), component, getMouseEventTime(), 0, 0, getMouseEventTime(), 1, false); if (lParam == WM_LBUTTONDOWN || lParam == WM_LBUTTONDBLCLK) e.mods = ModifierKeys (e.mods.getRawFlags() | ModifierKeys::leftButtonModifier); else if (lParam == WM_RBUTTONDOWN || lParam == WM_RBUTTONDBLCLK) e.mods = ModifierKeys (e.mods.getRawFlags() | ModifierKeys::rightButtonModifier); if (lParam == WM_LBUTTONDOWN || lParam == WM_RBUTTONDOWN) { SetFocus (hwnd); SetForegroundWindow (hwnd); component->mouseDown (e); } else if (lParam == WM_LBUTTONUP || lParam == WM_RBUTTONUP) { e.mods = ModifierKeys (oldModifiers); component->mouseUp (e); } else if (lParam == WM_LBUTTONDBLCLK || lParam == WM_LBUTTONDBLCLK) { e.mods = ModifierKeys (oldModifiers); component->mouseDoubleClick (e); } else if (lParam == WM_MOUSEMOVE) { component->mouseMove (e); } } break; case WM_SYNCPAINT: return 0; case WM_PALETTECHANGED: InvalidateRect (h, 0, 0); break; case WM_DISPLAYCHANGE: InvalidateRect (h, 0, 0); createPaletteIfNeeded = true; // intentional fall-through... case WM_SETTINGCHANGE: // note the fall-through in the previous case! doSettingChange(); break; case WM_INITMENU: if (! hasTitleBar()) { if (isFullScreen()) { EnableMenuItem ((HMENU) wParam, SC_RESTORE, MF_BYCOMMAND | MF_ENABLED); EnableMenuItem ((HMENU) wParam, SC_MOVE, MF_BYCOMMAND | MF_GRAYED); } else if (! isMinimised()) { EnableMenuItem ((HMENU) wParam, SC_MAXIMIZE, MF_BYCOMMAND | MF_GRAYED); } } break; case WM_SYSCOMMAND: switch (wParam & 0xfff0) { case SC_CLOSE: if (sendInputAttemptWhenModalMessage()) return 0; if (hasTitleBar()) { PostMessage (h, WM_CLOSE, 0, 0); return 0; } break; case SC_KEYMENU: // (NB mustn't call sendInputAttemptWhenModalMessage() here because of very // obscure situations that can arise if a modal loop is started from an alt-key // keypress). if (hasTitleBar() && h == GetCapture()) ReleaseCapture(); break; case SC_MAXIMIZE: if (sendInputAttemptWhenModalMessage()) return 0; setFullScreen (true); return 0; case SC_MINIMIZE: if (sendInputAttemptWhenModalMessage()) return 0; if (! hasTitleBar()) { setMinimised (true); return 0; } break; case SC_RESTORE: if (sendInputAttemptWhenModalMessage()) return 0; if (hasTitleBar()) { if (isFullScreen()) { setFullScreen (false); return 0; } } else { if (isMinimised()) setMinimised (false); else if (isFullScreen()) setFullScreen (false); return 0; } break; } break; case WM_NCLBUTTONDOWN: case WM_NCRBUTTONDOWN: case WM_NCMBUTTONDOWN: sendInputAttemptWhenModalMessage(); break; //case WM_IME_STARTCOMPOSITION; // return 0; case WM_GETDLGCODE: return DLGC_WANTALLKEYS; default: break; } } } // (the message manager lock exits before calling this, to avoid deadlocks if // this calls into non-juce windows) return DefWindowProc (h, message, wParam, lParam); } bool sendInputAttemptWhenModalMessage() { if (component->isCurrentlyBlockedByAnotherModalComponent()) { Component* const current = Component::getCurrentlyModalComponent(); if (current != 0) current->inputAttemptWhenModal(); return true; } return false; } Win32ComponentPeer (const Win32ComponentPeer&); const Win32ComponentPeer& operator= (const Win32ComponentPeer&); }; ComponentPeer* Component::createNewPeer (int styleFlags, void* /*nativeWindowToAttachTo*/) { return new Win32ComponentPeer (this, styleFlags); } juce_ImplementSingleton_SingleThreaded (Win32ComponentPeer::WindowClassHolder); void SystemTrayIconComponent::setIconImage (const Image& newImage) { Win32ComponentPeer* const wp = dynamic_cast (getPeer()); if (wp != 0) wp->setTaskBarIcon (&newImage); } void SystemTrayIconComponent::setIconTooltip (const String& tooltip) { Win32ComponentPeer* const wp = dynamic_cast (getPeer()); if (wp != 0) wp->setTaskBarIconToolTip (tooltip); } void juce_setWindowStyleBit (HWND h, const int styleType, const int feature, const bool bitIsSet) throw() { DWORD val = GetWindowLong (h, styleType); if (bitIsSet) val |= feature; else val &= ~feature; SetWindowLongPtr (h, styleType, val); SetWindowPos (h, 0, 0, 0, 0, 0, SWP_NOACTIVATE | SWP_NOMOVE | SWP_NOSIZE | SWP_NOZORDER | SWP_NOOWNERZORDER | SWP_FRAMECHANGED | SWP_NOSENDCHANGING); } bool Process::isForegroundProcess() throw() { HWND fg = GetForegroundWindow(); if (fg == 0) return true; // when running as a plugin in IE8, the browser UI runs in a different process to the plugin, so // process ID isn't a reliable way to check if the foreground window belongs to us - instead, we // have to see if any of our windows are children of the foreground window fg = GetAncestor (fg, GA_ROOT); for (int i = ComponentPeer::getNumPeers(); --i >= 0;) { Win32ComponentPeer* const wp = dynamic_cast (ComponentPeer::getPeer (i)); if (wp != 0 && wp->isInside (fg)) return true; } return false; } bool AlertWindow::showNativeDialogBox (const String& title, const String& bodyText, bool isOkCancel) { return MessageBox (0, bodyText, title, MB_SETFOREGROUND | (isOkCancel ? MB_OKCANCEL : MB_OK)) == IDOK; } void Desktop::getMousePosition (int& x, int& y) throw() { POINT mousePos; GetCursorPos (&mousePos); x = mousePos.x; y = mousePos.y; } void Desktop::setMousePosition (int x, int y) throw() { SetCursorPos (x, y); } class ScreenSaverDefeater : public Timer, public DeletedAtShutdown { public: ScreenSaverDefeater() throw() { startTimer (10000); timerCallback(); } ~ScreenSaverDefeater() {} void timerCallback() { if (Process::isForegroundProcess()) { // simulate a shift key getting pressed.. INPUT input[2]; input[0].type = INPUT_KEYBOARD; input[0].ki.wVk = VK_SHIFT; input[0].ki.dwFlags = 0; input[0].ki.dwExtraInfo = 0; input[1].type = INPUT_KEYBOARD; input[1].ki.wVk = VK_SHIFT; input[1].ki.dwFlags = KEYEVENTF_KEYUP; input[1].ki.dwExtraInfo = 0; SendInput (2, input, sizeof (INPUT)); } } }; static ScreenSaverDefeater* screenSaverDefeater = 0; void Desktop::setScreenSaverEnabled (const bool isEnabled) throw() { if (isEnabled) { deleteAndZero (screenSaverDefeater); } else if (screenSaverDefeater == 0) { screenSaverDefeater = new ScreenSaverDefeater(); } } bool Desktop::isScreenSaverEnabled() throw() { return screenSaverDefeater == 0; } /* (The code below is the "correct" way to disable the screen saver, but it completely fails on winXP when the saver is password-protected...) static bool juce_screenSaverEnabled = true; void Desktop::setScreenSaverEnabled (const bool isEnabled) throw() { juce_screenSaverEnabled = isEnabled; SetThreadExecutionState (isEnabled ? ES_CONTINUOUS : (ES_DISPLAY_REQUIRED | ES_CONTINUOUS)); } bool Desktop::isScreenSaverEnabled() throw() { return juce_screenSaverEnabled; } */ void juce_setKioskComponent (Component* kioskModeComponent, bool enableOrDisable, bool /*allowMenusAndBars*/) { if (enableOrDisable) kioskModeComponent->setBounds (Desktop::getInstance().getMainMonitorArea (false)); } static BOOL CALLBACK enumMonitorsProc (HMONITOR, HDC, LPRECT r, LPARAM userInfo) { Array * const monitorCoords = (Array *) userInfo; monitorCoords->add (Rectangle (r->left, r->top, r->right - r->left, r->bottom - r->top)); return TRUE; } void juce_updateMultiMonitorInfo (Array & monitorCoords, const bool clipToWorkArea) throw() { EnumDisplayMonitors (0, 0, &enumMonitorsProc, (LPARAM) &monitorCoords); // make sure the first in the list is the main monitor for (int i = 1; i < monitorCoords.size(); ++i) if (monitorCoords[i].getX() == 0 && monitorCoords[i].getY() == 0) monitorCoords.swap (i, 0); if (monitorCoords.size() == 0) { RECT r; GetWindowRect (GetDesktopWindow(), &r); monitorCoords.add (Rectangle (r.left, r.top, r.right - r.left, r.bottom - r.top)); } if (clipToWorkArea) { // clip the main monitor to the active non-taskbar area RECT r; SystemParametersInfo (SPI_GETWORKAREA, 0, &r, 0); Rectangle& screen = monitorCoords.getReference (0); screen.setPosition (jmax (screen.getX(), r.left), jmax (screen.getY(), r.top)); screen.setSize (jmin (screen.getRight(), r.right) - screen.getX(), jmin (screen.getBottom(), r.bottom) - screen.getY()); } } static Image* createImageFromHBITMAP (HBITMAP bitmap) throw() { Image* im = 0; if (bitmap != 0) { BITMAP bm; if (GetObject (bitmap, sizeof (BITMAP), &bm) && bm.bmWidth > 0 && bm.bmHeight > 0) { HDC tempDC = GetDC (0); HDC dc = CreateCompatibleDC (tempDC); ReleaseDC (0, tempDC); SelectObject (dc, bitmap); im = new Image (Image::ARGB, bm.bmWidth, bm.bmHeight, true); for (int y = bm.bmHeight; --y >= 0;) { for (int x = bm.bmWidth; --x >= 0;) { COLORREF col = GetPixel (dc, x, y); im->setPixelAt (x, y, Colour ((uint8) GetRValue (col), (uint8) GetGValue (col), (uint8) GetBValue (col))); } } DeleteDC (dc); } } return im; } static Image* createImageFromHICON (HICON icon) throw() { ICONINFO info; if (GetIconInfo (icon, &info)) { Image* const mask = createImageFromHBITMAP (info.hbmMask); if (mask == 0) return 0; Image* const image = createImageFromHBITMAP (info.hbmColor); if (image == 0) return mask; for (int y = image->getHeight(); --y >= 0;) { for (int x = image->getWidth(); --x >= 0;) { const float brightness = mask->getPixelAt (x, y).getBrightness(); if (brightness > 0.0f) image->multiplyAlphaAt (x, y, 1.0f - brightness); } } delete mask; return image; } return 0; } static HICON createHICONFromImage (const Image& image, const BOOL isIcon, int hotspotX, int hotspotY) throw() { HBITMAP mask = CreateBitmap (image.getWidth(), image.getHeight(), 1, 1, 0); ICONINFO info; info.fIcon = isIcon; info.xHotspot = hotspotX; info.yHotspot = hotspotY; info.hbmMask = mask; HICON hi = 0; if (SystemStats::getOperatingSystemType() >= SystemStats::WinXP) { WindowsBitmapImage bitmap (Image::ARGB, image.getWidth(), image.getHeight(), true); Graphics g (bitmap); g.drawImageAt (&image, 0, 0); info.hbmColor = bitmap.hBitmap; hi = CreateIconIndirect (&info); } else { HBITMAP colour = CreateCompatibleBitmap (GetDC (0), image.getWidth(), image.getHeight()); HDC colDC = CreateCompatibleDC (GetDC (0)); HDC alphaDC = CreateCompatibleDC (GetDC (0)); SelectObject (colDC, colour); SelectObject (alphaDC, mask); for (int y = image.getHeight(); --y >= 0;) { for (int x = image.getWidth(); --x >= 0;) { const Colour c (image.getPixelAt (x, y)); SetPixel (colDC, x, y, COLORREF (c.getRed() | (c.getGreen() << 8) | (c.getBlue() << 16))); SetPixel (alphaDC, x, y, COLORREF (0xffffff - (c.getAlpha() | (c.getAlpha() << 8) | (c.getAlpha() << 16)))); } } DeleteDC (colDC); DeleteDC (alphaDC); info.hbmColor = colour; hi = CreateIconIndirect (&info); DeleteObject (colour); } DeleteObject (mask); return hi; } Image* juce_createIconForFile (const File& file) { Image* image = 0; TCHAR filename [1024]; file.getFullPathName().copyToBuffer (filename, 1023); WORD iconNum = 0; HICON icon = ExtractAssociatedIcon ((HINSTANCE) PlatformUtilities::getCurrentModuleInstanceHandle(), filename, &iconNum); if (icon != 0) { image = createImageFromHICON (icon); DestroyIcon (icon); } return image; } void* juce_createMouseCursorFromImage (const Image& image, int hotspotX, int hotspotY) throw() { const int maxW = GetSystemMetrics (SM_CXCURSOR); const int maxH = GetSystemMetrics (SM_CYCURSOR); const Image* im = ℑ Image* newIm = 0; if (image.getWidth() > maxW || image.getHeight() > maxH) { im = newIm = image.createCopy (maxW, maxH); hotspotX = (hotspotX * maxW) / image.getWidth(); hotspotY = (hotspotY * maxH) / image.getHeight(); } void* cursorH = 0; const SystemStats::OperatingSystemType os = SystemStats::getOperatingSystemType(); if (os == SystemStats::WinXP) { cursorH = (void*) createHICONFromImage (*im, FALSE, hotspotX, hotspotY); } else { const int stride = (maxW + 7) >> 3; uint8* const andPlane = (uint8*) juce_calloc (stride * maxH); uint8* const xorPlane = (uint8*) juce_calloc (stride * maxH); int index = 0; for (int y = 0; y < maxH; ++y) { for (int x = 0; x < maxW; ++x) { const unsigned char bit = (unsigned char) (1 << (7 - (x & 7))); const Colour pixelColour (im->getPixelAt (x, y)); if (pixelColour.getAlpha() < 127) andPlane [index + (x >> 3)] |= bit; else if (pixelColour.getBrightness() >= 0.5f) xorPlane [index + (x >> 3)] |= bit; } index += stride; } cursorH = CreateCursor (0, hotspotX, hotspotY, maxW, maxH, andPlane, xorPlane); juce_free (andPlane); juce_free (xorPlane); } delete newIm; return cursorH; } void juce_deleteMouseCursor (void* const cursorHandle, const bool isStandard) throw() { if (cursorHandle != 0 && ! isStandard) DestroyCursor ((HCURSOR) cursorHandle); } void* juce_createStandardMouseCursor (MouseCursor::StandardCursorType type) throw() { LPCTSTR cursorName = IDC_ARROW; switch (type) { case MouseCursor::NormalCursor: cursorName = IDC_ARROW; break; case MouseCursor::NoCursor: return 0; case MouseCursor::DraggingHandCursor: { static void* dragHandCursor = 0; if (dragHandCursor == 0) { static const unsigned char dragHandData[] = { 71,73,70,56,57,97,16,0,16,0,145,2,0,0,0,0,255,255,255,0,0,0,0,0,0,33,249,4,1,0,0,2,0,44,0,0,0,0,16,0, 16,0,0,2,52,148,47,0,200,185,16,130,90,12,74,139,107,84,123,39, 132,117,151,116,132,146,248,60,209,138, 98,22,203,114,34,236,37,52,77,217,247,154,191,119,110,240,193,128,193,95,163,56,60,234,98,135,2,0,59 }; Image* const image = ImageFileFormat::loadFrom ((const char*) dragHandData, sizeof (dragHandData)); dragHandCursor = juce_createMouseCursorFromImage (*image, 8, 7); delete image; } return dragHandCursor; } case MouseCursor::WaitCursor: cursorName = IDC_WAIT; break; case MouseCursor::IBeamCursor: cursorName = IDC_IBEAM; break; case MouseCursor::PointingHandCursor: cursorName = MAKEINTRESOURCE(32649); break; case MouseCursor::LeftRightResizeCursor: case MouseCursor::LeftEdgeResizeCursor: case MouseCursor::RightEdgeResizeCursor: cursorName = IDC_SIZEWE; break; case MouseCursor::UpDownResizeCursor: case MouseCursor::TopEdgeResizeCursor: case MouseCursor::BottomEdgeResizeCursor: cursorName = IDC_SIZENS; break; case MouseCursor::TopLeftCornerResizeCursor: case MouseCursor::BottomRightCornerResizeCursor: cursorName = IDC_SIZENWSE; break; case MouseCursor::TopRightCornerResizeCursor: case MouseCursor::BottomLeftCornerResizeCursor: cursorName = IDC_SIZENESW; break; case MouseCursor::UpDownLeftRightResizeCursor: cursorName = IDC_SIZEALL; break; case MouseCursor::CrosshairCursor: cursorName = IDC_CROSS; break; case MouseCursor::CopyingCursor: // can't seem to find one of these in the win32 list.. break; } HCURSOR cursorH = LoadCursor (0, cursorName); if (cursorH == 0) cursorH = LoadCursor (0, IDC_ARROW); return (void*) cursorH; } void MouseCursor::showInWindow (ComponentPeer*) const throw() { SetCursor ((HCURSOR) getHandle()); } void MouseCursor::showInAllWindows() const throw() { showInWindow (0); } class JuceDropSource : public IDropSource { int refCount; public: JuceDropSource() : refCount (1) { } virtual ~JuceDropSource() { jassert (refCount == 0); } HRESULT __stdcall QueryInterface (REFIID id, void __RPC_FAR* __RPC_FAR* result) { if (id == IID_IUnknown || id == IID_IDropSource) { AddRef(); *result = this; return S_OK; } *result = 0; return E_NOINTERFACE; } ULONG __stdcall AddRef() { return ++refCount; } ULONG __stdcall Release() { jassert (refCount > 0); const int r = --refCount; if (r == 0) delete this; return r; } HRESULT __stdcall QueryContinueDrag (BOOL escapePressed, DWORD keys) { if (escapePressed) return DRAGDROP_S_CANCEL; if ((keys & (MK_LBUTTON | MK_RBUTTON)) == 0) return DRAGDROP_S_DROP; return S_OK; } HRESULT __stdcall GiveFeedback (DWORD) { return DRAGDROP_S_USEDEFAULTCURSORS; } }; class JuceEnumFormatEtc : public IEnumFORMATETC { public: JuceEnumFormatEtc (const FORMATETC* const format_) : refCount (1), format (format_), index (0) { } virtual ~JuceEnumFormatEtc() { jassert (refCount == 0); } HRESULT __stdcall QueryInterface (REFIID id, void __RPC_FAR* __RPC_FAR* result) { if (id == IID_IUnknown || id == IID_IEnumFORMATETC) { AddRef(); *result = this; return S_OK; } *result = 0; return E_NOINTERFACE; } ULONG __stdcall AddRef() { return ++refCount; } ULONG __stdcall Release() { jassert (refCount > 0); const int r = --refCount; if (r == 0) delete this; return r; } HRESULT __stdcall Clone (IEnumFORMATETC** result) { if (result == 0) return E_POINTER; JuceEnumFormatEtc* const newOne = new JuceEnumFormatEtc (format); newOne->index = index; *result = newOne; return S_OK; } HRESULT __stdcall Next (ULONG celt, LPFORMATETC lpFormatEtc, ULONG* pceltFetched) { if (pceltFetched != 0) *pceltFetched = 0; else if (celt != 1) return S_FALSE; if (index == 0 && celt > 0 && lpFormatEtc != 0) { copyFormatEtc (lpFormatEtc [0], *format); ++index; if (pceltFetched != 0) *pceltFetched = 1; return S_OK; } return S_FALSE; } HRESULT __stdcall Skip (ULONG celt) { if (index + (int) celt >= 1) return S_FALSE; index += celt; return S_OK; } HRESULT __stdcall Reset() { index = 0; return S_OK; } private: int refCount; const FORMATETC* const format; int index; static void copyFormatEtc (FORMATETC& dest, const FORMATETC& source) { dest = source; if (source.ptd != 0) { dest.ptd = (DVTARGETDEVICE*) CoTaskMemAlloc (sizeof (DVTARGETDEVICE)); *(dest.ptd) = *(source.ptd); } } JuceEnumFormatEtc (const JuceEnumFormatEtc&); const JuceEnumFormatEtc& operator= (const JuceEnumFormatEtc&); }; class JuceDataObject : public IDataObject { JuceDropSource* const dropSource; const FORMATETC* const format; const STGMEDIUM* const medium; int refCount; JuceDataObject (const JuceDataObject&); const JuceDataObject& operator= (const JuceDataObject&); public: JuceDataObject (JuceDropSource* const dropSource_, const FORMATETC* const format_, const STGMEDIUM* const medium_) : dropSource (dropSource_), format (format_), medium (medium_), refCount (1) { } virtual ~JuceDataObject() { jassert (refCount == 0); } HRESULT __stdcall QueryInterface (REFIID id, void __RPC_FAR* __RPC_FAR* result) { if (id == IID_IUnknown || id == IID_IDataObject) { AddRef(); *result = this; return S_OK; } *result = 0; return E_NOINTERFACE; } ULONG __stdcall AddRef() { return ++refCount; } ULONG __stdcall Release() { jassert (refCount > 0); const int r = --refCount; if (r == 0) delete this; return r; } HRESULT __stdcall GetData (FORMATETC __RPC_FAR* pFormatEtc, STGMEDIUM __RPC_FAR* pMedium) { if (pFormatEtc->tymed == format->tymed && pFormatEtc->cfFormat == format->cfFormat && pFormatEtc->dwAspect == format->dwAspect) { pMedium->tymed = format->tymed; pMedium->pUnkForRelease = 0; if (format->tymed == TYMED_HGLOBAL) { const SIZE_T len = GlobalSize (medium->hGlobal); void* const src = GlobalLock (medium->hGlobal); void* const dst = GlobalAlloc (GMEM_FIXED, len); memcpy (dst, src, len); GlobalUnlock (medium->hGlobal); pMedium->hGlobal = dst; return S_OK; } } return DV_E_FORMATETC; } HRESULT __stdcall QueryGetData (FORMATETC __RPC_FAR* f) { if (f == 0) return E_INVALIDARG; if (f->tymed == format->tymed && f->cfFormat == format->cfFormat && f->dwAspect == format->dwAspect) return S_OK; return DV_E_FORMATETC; } HRESULT __stdcall GetCanonicalFormatEtc (FORMATETC __RPC_FAR*, FORMATETC __RPC_FAR* pFormatEtcOut) { pFormatEtcOut->ptd = 0; return E_NOTIMPL; } HRESULT __stdcall EnumFormatEtc (DWORD direction, IEnumFORMATETC __RPC_FAR *__RPC_FAR *result) { if (result == 0) return E_POINTER; if (direction == DATADIR_GET) { *result = new JuceEnumFormatEtc (format); return S_OK; } *result = 0; return E_NOTIMPL; } HRESULT __stdcall GetDataHere (FORMATETC __RPC_FAR*, STGMEDIUM __RPC_FAR*) { return DATA_E_FORMATETC; } HRESULT __stdcall SetData (FORMATETC __RPC_FAR*, STGMEDIUM __RPC_FAR*, BOOL) { return E_NOTIMPL; } HRESULT __stdcall DAdvise (FORMATETC __RPC_FAR*, DWORD, IAdviseSink __RPC_FAR*, DWORD __RPC_FAR*) { return OLE_E_ADVISENOTSUPPORTED; } HRESULT __stdcall DUnadvise (DWORD) { return E_NOTIMPL; } HRESULT __stdcall EnumDAdvise (IEnumSTATDATA __RPC_FAR *__RPC_FAR *) { return OLE_E_ADVISENOTSUPPORTED; } }; static HDROP createHDrop (const StringArray& fileNames) throw() { int totalChars = 0; for (int i = fileNames.size(); --i >= 0;) totalChars += fileNames[i].length() + 1; HDROP hDrop = (HDROP) GlobalAlloc (GMEM_MOVEABLE | GMEM_ZEROINIT, sizeof (DROPFILES) + sizeof (WCHAR) * (totalChars + 2)); if (hDrop != 0) { LPDROPFILES pDropFiles = (LPDROPFILES) GlobalLock (hDrop); pDropFiles->pFiles = sizeof (DROPFILES); pDropFiles->fWide = true; WCHAR* fname = (WCHAR*) (((char*) pDropFiles) + sizeof (DROPFILES)); for (int i = 0; i < fileNames.size(); ++i) { fileNames[i].copyToBuffer (fname, 2048); fname += fileNames[i].length() + 1; } *fname = 0; GlobalUnlock (hDrop); } return hDrop; } static bool performDragDrop (FORMATETC* const format, STGMEDIUM* const medium, const DWORD whatToDo) throw() { JuceDropSource* const source = new JuceDropSource(); JuceDataObject* const data = new JuceDataObject (source, format, medium); DWORD effect; const HRESULT res = DoDragDrop (data, source, whatToDo, &effect); data->Release(); source->Release(); return res == DRAGDROP_S_DROP; } bool DragAndDropContainer::performExternalDragDropOfFiles (const StringArray& files, const bool canMove) { FORMATETC format = { CF_HDROP, 0, DVASPECT_CONTENT, -1, TYMED_HGLOBAL }; STGMEDIUM medium = { TYMED_HGLOBAL, { 0 }, 0 }; medium.hGlobal = createHDrop (files); return performDragDrop (&format, &medium, canMove ? (DROPEFFECT_COPY | DROPEFFECT_MOVE) : DROPEFFECT_COPY); } bool DragAndDropContainer::performExternalDragDropOfText (const String& text) { FORMATETC format = { CF_TEXT, 0, DVASPECT_CONTENT, -1, TYMED_HGLOBAL }; STGMEDIUM medium = { TYMED_HGLOBAL, { 0 }, 0 }; const int numChars = text.length(); medium.hGlobal = GlobalAlloc (GMEM_MOVEABLE | GMEM_ZEROINIT, (numChars + 2) * sizeof (WCHAR)); char* d = (char*) GlobalLock (medium.hGlobal); text.copyToBuffer ((WCHAR*) d, numChars + 1); format.cfFormat = CF_UNICODETEXT; GlobalUnlock (medium.hGlobal); return performDragDrop (&format, &medium, DROPEFFECT_COPY | DROPEFFECT_MOVE); } #endif /********* End of inlined file: juce_win32_Windowing.cpp *********/ /********* Start of inlined file: juce_win32_Fonts.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE static int CALLBACK wfontEnum2 (ENUMLOGFONTEXW* lpelfe, NEWTEXTMETRICEXW*, int type, LPARAM lParam) { if (lpelfe != 0 && (type & RASTER_FONTTYPE) == 0) { const String fontName (lpelfe->elfLogFont.lfFaceName); ((StringArray*) lParam)->addIfNotAlreadyThere (fontName.removeCharacters (T("@"))); } return 1; } static int CALLBACK wfontEnum1 (ENUMLOGFONTEXW* lpelfe, NEWTEXTMETRICEXW*, int type, LPARAM lParam) { if (lpelfe != 0 && (type & RASTER_FONTTYPE) == 0) { LOGFONTW lf; zerostruct (lf); lf.lfWeight = FW_DONTCARE; lf.lfOutPrecision = OUT_OUTLINE_PRECIS; lf.lfQuality = DEFAULT_QUALITY; lf.lfCharSet = DEFAULT_CHARSET; lf.lfClipPrecision = CLIP_DEFAULT_PRECIS; lf.lfPitchAndFamily = FF_DONTCARE; const String fontName (lpelfe->elfLogFont.lfFaceName); fontName.copyToBuffer (lf.lfFaceName, LF_FACESIZE - 1); HDC dc = CreateCompatibleDC (0); EnumFontFamiliesEx (dc, &lf, (FONTENUMPROCW) &wfontEnum2, lParam, 0); DeleteDC (dc); } return 1; } const StringArray Font::findAllTypefaceNames() throw() { StringArray results; HDC dc = CreateCompatibleDC (0); { LOGFONTW lf; zerostruct (lf); lf.lfWeight = FW_DONTCARE; lf.lfOutPrecision = OUT_OUTLINE_PRECIS; lf.lfQuality = DEFAULT_QUALITY; lf.lfCharSet = DEFAULT_CHARSET; lf.lfClipPrecision = CLIP_DEFAULT_PRECIS; lf.lfPitchAndFamily = FF_DONTCARE; lf.lfFaceName[0] = 0; EnumFontFamiliesEx (dc, &lf, (FONTENUMPROCW) &wfontEnum1, (LPARAM) &results, 0); } DeleteDC (dc); results.sort (true); return results; } extern bool juce_IsRunningInWine() throw(); void Typeface::getDefaultFontNames (String& defaultSans, String& defaultSerif, String& defaultFixed) throw() { if (juce_IsRunningInWine()) { // If we're running in Wine, then use fonts that might be available on Linux.. defaultSans = "Bitstream Vera Sans"; defaultSerif = "Bitstream Vera Serif"; defaultFixed = "Bitstream Vera Sans Mono"; } else { defaultSans = "Verdana"; defaultSerif = "Times"; defaultFixed = "Lucida Console"; } } class FontDCHolder : private DeletedAtShutdown { HDC dc; String fontName; KERNINGPAIR* kps; int numKPs; bool bold, italic; int size; FontDCHolder (const FontDCHolder&); const FontDCHolder& operator= (const FontDCHolder&); public: HFONT fontH; FontDCHolder() throw() : dc (0), kps (0), numKPs (0), bold (false), italic (false), size (0) { } ~FontDCHolder() throw() { if (dc != 0) { DeleteDC (dc); DeleteObject (fontH); juce_free (kps); } clearSingletonInstance(); } juce_DeclareSingleton_SingleThreaded_Minimal (FontDCHolder); HDC loadFont (const String& fontName_, const bool bold_, const bool italic_, const int size_) throw() { if (fontName != fontName_ || bold != bold_ || italic != italic_ || size != size_) { fontName = fontName_; bold = bold_; italic = italic_; size = size_; if (dc != 0) { DeleteDC (dc); DeleteObject (fontH); juce_free (kps); kps = 0; } fontH = 0; dc = CreateCompatibleDC (0); SetMapperFlags (dc, 0); SetMapMode (dc, MM_TEXT); LOGFONTW lfw; zerostruct (lfw); lfw.lfCharSet = DEFAULT_CHARSET; lfw.lfClipPrecision = CLIP_DEFAULT_PRECIS; lfw.lfOutPrecision = OUT_OUTLINE_PRECIS; lfw.lfPitchAndFamily = DEFAULT_PITCH | FF_DONTCARE; lfw.lfQuality = PROOF_QUALITY; lfw.lfItalic = (BYTE) (italic ? TRUE : FALSE); lfw.lfWeight = bold ? FW_BOLD : FW_NORMAL; fontName.copyToBuffer (lfw.lfFaceName, LF_FACESIZE - 1); lfw.lfHeight = size > 0 ? size : -256; HFONT standardSizedFont = CreateFontIndirect (&lfw); if (standardSizedFont != 0) { if (SelectObject (dc, standardSizedFont) != 0) { fontH = standardSizedFont; if (size == 0) { OUTLINETEXTMETRIC otm; if (GetOutlineTextMetrics (dc, sizeof (otm), &otm) != 0) { lfw.lfHeight = -(int) otm.otmEMSquare; fontH = CreateFontIndirect (&lfw); SelectObject (dc, fontH); DeleteObject (standardSizedFont); } } } else { jassertfalse } } else { jassertfalse } } return dc; } KERNINGPAIR* getKerningPairs (int& numKPs_) throw() { if (kps == 0) { numKPs = GetKerningPairs (dc, 0, 0); kps = (KERNINGPAIR*) juce_calloc (sizeof (KERNINGPAIR) * numKPs); GetKerningPairs (dc, numKPs, kps); } numKPs_ = numKPs; return kps; } }; juce_ImplementSingleton_SingleThreaded (FontDCHolder); static bool addGlyphToTypeface (HDC dc, juce_wchar character, Typeface& dest, bool addKerning) { Path destShape; GLYPHMETRICS gm; float height; BOOL ok = false; { const WCHAR charToTest[] = { (WCHAR) character, 0 }; WORD index = 0; if (GetGlyphIndices (dc, charToTest, 1, &index, GGI_MARK_NONEXISTING_GLYPHS) != GDI_ERROR && index == 0xffff) { return false; } } TEXTMETRIC tm; ok = GetTextMetrics (dc, &tm); height = (float) tm.tmHeight; if (! ok) { dest.addGlyph (character, destShape, 0); return true; } const float scaleX = 1.0f / height; const float scaleY = -1.0f / height; static const MAT2 identityMatrix = { { 0, 1 }, { 0, 0 }, { 0, 0 }, { 0, 1 } }; const int bufSize = GetGlyphOutline (dc, character, GGO_NATIVE, &gm, 0, 0, &identityMatrix); if (bufSize > 0) { char* const data = (char*) juce_malloc (bufSize); GetGlyphOutline (dc, character, GGO_NATIVE, &gm, bufSize, data, &identityMatrix); const TTPOLYGONHEADER* pheader = (TTPOLYGONHEADER*) data; while ((char*) pheader < data + bufSize) { #define remapX(v) (scaleX * (v).x.value) #define remapY(v) (scaleY * (v).y.value) float x = remapX (pheader->pfxStart); float y = remapY (pheader->pfxStart); destShape.startNewSubPath (x, y); const TTPOLYCURVE* curve = (const TTPOLYCURVE*) ((const char*) pheader + sizeof (TTPOLYGONHEADER)); const char* const curveEnd = ((const char*) pheader) + pheader->cb; while ((const char*) curve < curveEnd) { if (curve->wType == TT_PRIM_LINE) { for (int i = 0; i < curve->cpfx; ++i) { x = remapX (curve->apfx [i]); y = remapY (curve->apfx [i]); destShape.lineTo (x, y); } } else if (curve->wType == TT_PRIM_QSPLINE) { for (int i = 0; i < curve->cpfx - 1; ++i) { const float x2 = remapX (curve->apfx [i]); const float y2 = remapY (curve->apfx [i]); float x3, y3; if (i < curve->cpfx - 2) { x3 = 0.5f * (x2 + remapX (curve->apfx [i + 1])); y3 = 0.5f * (y2 + remapY (curve->apfx [i + 1])); } else { x3 = remapX (curve->apfx [i + 1]); y3 = remapY (curve->apfx [i + 1]); } destShape.quadraticTo (x2, y2, x3, y3); x = x3; y = y3; } } curve = (const TTPOLYCURVE*) &(curve->apfx [curve->cpfx]); } pheader = (const TTPOLYGONHEADER*) curve; destShape.closeSubPath(); } juce_free (data); } dest.addGlyph (character, destShape, gm.gmCellIncX / height); if (addKerning) { int numKPs; const KERNINGPAIR* const kps = FontDCHolder::getInstance()->getKerningPairs (numKPs); for (int i = 0; i < numKPs; ++i) { if (kps[i].wFirst == character) { dest.addKerningPair (kps[i].wFirst, kps[i].wSecond, kps[i].iKernAmount / height); } } } return true; } bool Typeface::findAndAddSystemGlyph (juce_wchar character) throw() { HDC dc = FontDCHolder::getInstance()->loadFont (getName(), isBold(), isItalic(), 0); return addGlyphToTypeface (dc, character, *this, true); } /*Image* Typeface::renderGlyphToImage (juce_wchar character, float& topLeftX, float& topLeftY) { HDC dc = FontDCHolder::getInstance()->loadFont (getName(), isBold(), isItalic(), hintingSize); int bufSize; GLYPHMETRICS gm; const UINT format = GGO_GRAY2_BITMAP; const int shift = 6; if (wGetGlyphOutlineW != 0) bufSize = wGetGlyphOutlineW (dc, character, format, &gm, 0, 0, &identityMatrix); else bufSize = GetGlyphOutline (dc, character, format, &gm, 0, 0, &identityMatrix); Image* im = new Image (Image::SingleChannel, jmax (1, gm.gmBlackBoxX), jmax (1, gm.gmBlackBoxY), true); if (bufSize > 0) { topLeftX = (float) gm.gmptGlyphOrigin.x; topLeftY = (float) -gm.gmptGlyphOrigin.y; uint8* const data = (uint8*) juce_calloc (bufSize); if (wGetGlyphOutlineW != 0) wGetGlyphOutlineW (dc, character, format, &gm, bufSize, data, &identityMatrix); else GetGlyphOutline (dc, character, format, &gm, bufSize, data, &identityMatrix); const int stride = ((gm.gmBlackBoxX + 3) & ~3); for (int y = gm.gmBlackBoxY; --y >= 0;) { for (int x = gm.gmBlackBoxX; --x >= 0;) { const int level = data [x + y * stride] << shift; if (level > 0) im->setPixelAt (x, y, Colour ((uint8) 0xff, (uint8) 0xff, (uint8) 0xff, (uint8) jmin (0xff, level))); } } juce_free (data); } return im; }*/ void Typeface::initialiseTypefaceCharacteristics (const String& fontName, bool bold, bool italic, bool addAllGlyphsToFont) throw() { clear(); HDC dc = FontDCHolder::getInstance()->loadFont (fontName, bold, italic, 0); float height; int firstChar, lastChar; { TEXTMETRIC tm; GetTextMetrics (dc, &tm); height = (float) tm.tmHeight; firstChar = tm.tmFirstChar; lastChar = tm.tmLastChar; setAscent (tm.tmAscent / height); setDefaultCharacter (tm.tmDefaultChar); } setName (fontName); setBold (bold); setItalic (italic); if (addAllGlyphsToFont) { for (int character = firstChar; character <= lastChar; ++character) addGlyphToTypeface (dc, (juce_wchar) character, *this, false); int numKPs; const KERNINGPAIR* const kps = FontDCHolder::getInstance()->getKerningPairs (numKPs); for (int i = 0; i < numKPs; ++i) { addKerningPair (kps[i].wFirst, kps[i].wSecond, kps[i].iKernAmount / height); } } } #endif /********* End of inlined file: juce_win32_Fonts.cpp *********/ /********* Start of inlined file: juce_win32_FileChooser.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE static const void* defaultDirPath = 0; static String returnedString; // need this to get non-existent pathnames from the directory chooser static Component* currentExtraFileWin = 0; static bool areThereAnyAlwaysOnTopWindows() { for (int i = Desktop::getInstance().getNumComponents(); --i >= 0;) { Component* c = Desktop::getInstance().getComponent (i); if (c != 0 && c->isAlwaysOnTop() && c->isShowing()) return true; } return false; } static int CALLBACK browseCallbackProc (HWND hWnd, UINT msg, LPARAM lParam, LPARAM /*lpData*/) { if (msg == BFFM_INITIALIZED) { SendMessage (hWnd, BFFM_SETSELECTIONW, TRUE, (LPARAM) defaultDirPath); } else if (msg == BFFM_VALIDATEFAILEDW) { returnedString = (LPCWSTR) lParam; } else if (msg == BFFM_VALIDATEFAILEDA) { returnedString = (const char*) lParam; } return 0; } void juce_setWindowStyleBit (HWND h, const int styleType, const int feature, const bool bitIsSet) throw(); static UINT_PTR CALLBACK openCallback (HWND hdlg, UINT uiMsg, WPARAM /*wParam*/, LPARAM lParam) { if (currentExtraFileWin != 0) { if (uiMsg == WM_INITDIALOG) { HWND dialogH = GetParent (hdlg); jassert (dialogH != 0); if (dialogH == 0) dialogH = hdlg; RECT r, cr; GetWindowRect (dialogH, &r); GetClientRect (dialogH, &cr); SetWindowPos (dialogH, 0, r.left, r.top, currentExtraFileWin->getWidth() + jmax (150, r.right - r.left), jmax (150, r.bottom - r.top), SWP_NOACTIVATE | SWP_NOOWNERZORDER | SWP_NOZORDER); currentExtraFileWin->setBounds (cr.right, cr.top, currentExtraFileWin->getWidth(), cr.bottom - cr.top); currentExtraFileWin->getChildComponent(0)->setBounds (0, 0, currentExtraFileWin->getWidth(), currentExtraFileWin->getHeight()); SetParent ((HWND) currentExtraFileWin->getWindowHandle(), (HWND) dialogH); juce_setWindowStyleBit ((HWND)currentExtraFileWin->getWindowHandle(), GWL_STYLE, WS_CHILD, (dialogH != 0)); juce_setWindowStyleBit ((HWND)currentExtraFileWin->getWindowHandle(), GWL_STYLE, WS_POPUP, (dialogH == 0)); } else if (uiMsg == WM_NOTIFY) { LPOFNOTIFY ofn = (LPOFNOTIFY) lParam; if (ofn->hdr.code == CDN_SELCHANGE) { FilePreviewComponent* comp = (FilePreviewComponent*) currentExtraFileWin->getChildComponent(0); if (comp != 0) { TCHAR path [MAX_PATH * 2]; path[0] = 0; CommDlg_OpenSave_GetFilePath (GetParent (hdlg), (LPARAM) &path, MAX_PATH); const String fn ((const WCHAR*) path); comp->selectedFileChanged (File (fn)); } } } } return 0; } class FPComponentHolder : public Component { public: FPComponentHolder() { setVisible (true); setOpaque (true); } ~FPComponentHolder() { } void paint (Graphics& g) { g.fillAll (Colours::lightgrey); } private: FPComponentHolder (const FPComponentHolder&); const FPComponentHolder& operator= (const FPComponentHolder&); }; void FileChooser::showPlatformDialog (OwnedArray& results, const String& title, const File& currentFileOrDirectory, const String& filter, bool selectsDirectory, bool isSaveDialogue, bool warnAboutOverwritingExistingFiles, bool selectMultipleFiles, FilePreviewComponent* extraInfoComponent) { const int numCharsAvailable = 32768; MemoryBlock filenameSpace ((numCharsAvailable + 1) * sizeof (WCHAR), true); WCHAR* const fname = (WCHAR*) filenameSpace.getData(); int fnameIdx = 0; JUCE_TRY { // use a modal window as the parent for this dialog box // to block input from other app windows const Rectangle mainMon (Desktop::getInstance().getMainMonitorArea()); Component w (String::empty); w.setBounds (mainMon.getX() + mainMon.getWidth() / 4, mainMon.getY() + mainMon.getHeight() / 4, 0, 0); w.setOpaque (true); w.setAlwaysOnTop (areThereAnyAlwaysOnTopWindows()); w.addToDesktop (0); if (extraInfoComponent == 0) w.enterModalState(); String initialDir; if (currentFileOrDirectory.isDirectory()) { initialDir = currentFileOrDirectory.getFullPathName(); } else { currentFileOrDirectory.getFileName().copyToBuffer (fname, numCharsAvailable); initialDir = currentFileOrDirectory.getParentDirectory().getFullPathName(); } if (currentExtraFileWin->isValidComponent()) { jassertfalse return; } if (selectsDirectory) { LPITEMIDLIST list = 0; filenameSpace.fillWith (0); { BROWSEINFO bi; zerostruct (bi); bi.hwndOwner = (HWND) w.getWindowHandle(); bi.pszDisplayName = fname; bi.lpszTitle = title; bi.lpfn = browseCallbackProc; #ifdef BIF_USENEWUI bi.ulFlags = BIF_USENEWUI | BIF_VALIDATE; #else bi.ulFlags = 0x50; #endif defaultDirPath = (const WCHAR*) initialDir; list = SHBrowseForFolder (&bi); if (! SHGetPathFromIDListW (list, fname)) { fname[0] = 0; returnedString = String::empty; } } LPMALLOC al; if (list != 0 && SUCCEEDED (SHGetMalloc (&al))) al->Free (list); defaultDirPath = 0; if (returnedString.isNotEmpty()) { const String stringFName (fname); results.add (new File (File (stringFName).getSiblingFile (returnedString))); returnedString = String::empty; return; } } else { DWORD flags = OFN_EXPLORER | OFN_PATHMUSTEXIST | OFN_NOCHANGEDIR | OFN_HIDEREADONLY; if (warnAboutOverwritingExistingFiles) flags |= OFN_OVERWRITEPROMPT; if (selectMultipleFiles) flags |= OFN_ALLOWMULTISELECT; if (extraInfoComponent != 0) { flags |= OFN_ENABLEHOOK; currentExtraFileWin = new FPComponentHolder(); currentExtraFileWin->addAndMakeVisible (extraInfoComponent); currentExtraFileWin->setSize (jlimit (20, 800, extraInfoComponent->getWidth()), extraInfoComponent->getHeight()); currentExtraFileWin->addToDesktop (0); currentExtraFileWin->enterModalState(); } { WCHAR filters [1024]; zeromem (filters, sizeof (filters)); filter.copyToBuffer (filters, 1024); filter.copyToBuffer (filters + filter.length() + 1, 1022 - filter.length()); OPENFILENAMEW of; zerostruct (of); #ifdef OPENFILENAME_SIZE_VERSION_400W of.lStructSize = OPENFILENAME_SIZE_VERSION_400W; #else of.lStructSize = sizeof (of); #endif of.hwndOwner = (HWND) w.getWindowHandle(); of.lpstrFilter = filters; of.nFilterIndex = 1; of.lpstrFile = fname; of.nMaxFile = numCharsAvailable; of.lpstrInitialDir = initialDir; of.lpstrTitle = title; of.Flags = flags; if (extraInfoComponent != 0) of.lpfnHook = &openCallback; if (isSaveDialogue) { if (! GetSaveFileName (&of)) fname[0] = 0; else fnameIdx = of.nFileOffset; } else { if (! GetOpenFileName (&of)) fname[0] = 0; else fnameIdx = of.nFileOffset; } } } } #if JUCE_CATCH_UNHANDLED_EXCEPTIONS catch (...) { fname[0] = 0; } #endif deleteAndZero (currentExtraFileWin); const WCHAR* const files = fname; if (selectMultipleFiles && fnameIdx > 0 && files [fnameIdx - 1] == 0) { const WCHAR* filename = files + fnameIdx; while (*filename != 0) { const String filepath (String (files) + T("\\") + String (filename)); results.add (new File (filepath)); filename += CharacterFunctions::length (filename) + 1; } } else if (files[0] != 0) { results.add (new File (files)); } } #endif /********* End of inlined file: juce_win32_FileChooser.cpp *********/ /********* Start of inlined file: juce_win32_Misc.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE void SystemClipboard::copyTextToClipboard (const String& text) throw() { if (OpenClipboard (0) != 0) { if (EmptyClipboard() != 0) { const int len = text.length(); if (len > 0) { HGLOBAL bufH = GlobalAlloc (GMEM_MOVEABLE | GMEM_DDESHARE, (len + 1) * sizeof (wchar_t)); if (bufH != 0) { wchar_t* const data = (wchar_t*) GlobalLock (bufH); text.copyToBuffer (data, len); GlobalUnlock (bufH); SetClipboardData (CF_UNICODETEXT, bufH); } } } CloseClipboard(); } } const String SystemClipboard::getTextFromClipboard() throw() { String result; if (OpenClipboard (0) != 0) { HANDLE bufH = GetClipboardData (CF_UNICODETEXT); if (bufH != 0) { const wchar_t* const data = (const wchar_t*) GlobalLock (bufH); if (data != 0) { result = String (data, (int) (GlobalSize (bufH) / sizeof (tchar))); GlobalUnlock (bufH); } } CloseClipboard(); } return result; } #endif /********* End of inlined file: juce_win32_Misc.cpp *********/ /********* Start of inlined file: juce_win32_ActiveXComponent.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE class JuceIStorage : public IStorage { int refCount; public: JuceIStorage() : refCount (1) {} virtual ~JuceIStorage() { jassert (refCount == 0); } HRESULT __stdcall QueryInterface (REFIID id, void __RPC_FAR* __RPC_FAR* result) { if (id == IID_IUnknown || id == IID_IStorage) { AddRef(); *result = this; return S_OK; } *result = 0; return E_NOINTERFACE; } ULONG __stdcall AddRef() { return ++refCount; } ULONG __stdcall Release() { const int r = --refCount; if (r == 0) delete this; return r; } HRESULT __stdcall CreateStream (const WCHAR*, DWORD, DWORD, DWORD, IStream**) { return E_NOTIMPL; } HRESULT __stdcall OpenStream (const WCHAR*, void*, DWORD, DWORD, IStream**) { return E_NOTIMPL; } HRESULT __stdcall CreateStorage (const WCHAR*, DWORD, DWORD, DWORD, IStorage**) { return E_NOTIMPL; } HRESULT __stdcall OpenStorage (const WCHAR*, IStorage*, DWORD, SNB, DWORD, IStorage**) { return E_NOTIMPL; } HRESULT __stdcall CopyTo (DWORD, IID const*, SNB, IStorage*) { return E_NOTIMPL; } HRESULT __stdcall MoveElementTo (const OLECHAR*,IStorage*, const OLECHAR*, DWORD) { return E_NOTIMPL; } HRESULT __stdcall Commit (DWORD) { return E_NOTIMPL; } HRESULT __stdcall Revert() { return E_NOTIMPL; } HRESULT __stdcall EnumElements (DWORD, void*, DWORD, IEnumSTATSTG**) { return E_NOTIMPL; } HRESULT __stdcall DestroyElement (const OLECHAR*) { return E_NOTIMPL; } HRESULT __stdcall RenameElement (const WCHAR*, const WCHAR*) { return E_NOTIMPL; } HRESULT __stdcall SetElementTimes (const WCHAR*, FILETIME const*, FILETIME const*, FILETIME const*) { return E_NOTIMPL; } HRESULT __stdcall SetClass (REFCLSID) { return S_OK; } HRESULT __stdcall SetStateBits (DWORD, DWORD) { return E_NOTIMPL; } HRESULT __stdcall Stat (STATSTG*, DWORD) { return E_NOTIMPL; } juce_UseDebuggingNewOperator }; class JuceOleInPlaceFrame : public IOleInPlaceFrame { int refCount; HWND window; public: JuceOleInPlaceFrame (HWND window_) : refCount (1), window (window_) { } virtual ~JuceOleInPlaceFrame() { jassert (refCount == 0); } HRESULT __stdcall QueryInterface (REFIID id, void __RPC_FAR* __RPC_FAR* result) { if (id == IID_IUnknown || id == IID_IOleInPlaceFrame) { AddRef(); *result = this; return S_OK; } *result = 0; return E_NOINTERFACE; } ULONG __stdcall AddRef() { return ++refCount; } ULONG __stdcall Release() { const int r = --refCount; if (r == 0) delete this; return r; } HRESULT __stdcall GetWindow (HWND* lphwnd) { *lphwnd = window; return S_OK; } HRESULT __stdcall ContextSensitiveHelp (BOOL) { return E_NOTIMPL; } HRESULT __stdcall GetBorder (LPRECT) { return E_NOTIMPL; } HRESULT __stdcall RequestBorderSpace (LPCBORDERWIDTHS) { return E_NOTIMPL; } HRESULT __stdcall SetBorderSpace (LPCBORDERWIDTHS) { return E_NOTIMPL; } HRESULT __stdcall SetActiveObject (IOleInPlaceActiveObject*, LPCOLESTR) { return S_OK; } HRESULT __stdcall InsertMenus (HMENU, LPOLEMENUGROUPWIDTHS) { return E_NOTIMPL; } HRESULT __stdcall SetMenu (HMENU, HOLEMENU, HWND) { return S_OK; } HRESULT __stdcall RemoveMenus (HMENU) { return E_NOTIMPL; } HRESULT __stdcall SetStatusText (LPCOLESTR) { return S_OK; } HRESULT __stdcall EnableModeless (BOOL) { return S_OK; } HRESULT __stdcall TranslateAccelerator(LPMSG, WORD) { return E_NOTIMPL; } juce_UseDebuggingNewOperator }; class JuceIOleInPlaceSite : public IOleInPlaceSite { int refCount; HWND window; JuceOleInPlaceFrame* frame; public: JuceIOleInPlaceSite (HWND window_) : refCount (1), window (window_) { frame = new JuceOleInPlaceFrame (window); } virtual ~JuceIOleInPlaceSite() { jassert (refCount == 0); frame->Release(); } HRESULT __stdcall QueryInterface (REFIID id, void __RPC_FAR* __RPC_FAR* result) { if (id == IID_IUnknown || id == IID_IOleInPlaceSite) { AddRef(); *result = this; return S_OK; } *result = 0; return E_NOINTERFACE; } ULONG __stdcall AddRef() { return ++refCount; } ULONG __stdcall Release() { const int r = --refCount; if (r == 0) delete this; return r; } HRESULT __stdcall GetWindow (HWND* lphwnd) { *lphwnd = window; return S_OK; } HRESULT __stdcall ContextSensitiveHelp (BOOL) { return E_NOTIMPL; } HRESULT __stdcall CanInPlaceActivate() { return S_OK; } HRESULT __stdcall OnInPlaceActivate() { return S_OK; } HRESULT __stdcall OnUIActivate() { return S_OK; } HRESULT __stdcall GetWindowContext (LPOLEINPLACEFRAME* lplpFrame, LPOLEINPLACEUIWINDOW* lplpDoc, LPRECT, LPRECT, LPOLEINPLACEFRAMEINFO lpFrameInfo) { frame->AddRef(); *lplpFrame = frame; *lplpDoc = 0; lpFrameInfo->fMDIApp = FALSE; lpFrameInfo->hwndFrame = window; lpFrameInfo->haccel = 0; lpFrameInfo->cAccelEntries = 0; return S_OK; } HRESULT __stdcall Scroll (SIZE) { return E_NOTIMPL; } HRESULT __stdcall OnUIDeactivate (BOOL) { return S_OK; } HRESULT __stdcall OnInPlaceDeactivate() { return S_OK; } HRESULT __stdcall DiscardUndoState() { return E_NOTIMPL; } HRESULT __stdcall DeactivateAndUndo() { return E_NOTIMPL; } HRESULT __stdcall OnPosRectChange (LPCRECT) { return S_OK; } juce_UseDebuggingNewOperator }; class JuceIOleClientSite : public IOleClientSite { int refCount; JuceIOleInPlaceSite* inplaceSite; public: JuceIOleClientSite (HWND window) : refCount (1) { inplaceSite = new JuceIOleInPlaceSite (window); } virtual ~JuceIOleClientSite() { jassert (refCount == 0); inplaceSite->Release(); } HRESULT __stdcall QueryInterface (REFIID id, void __RPC_FAR* __RPC_FAR* result) { if (id == IID_IUnknown || id == IID_IOleClientSite) { AddRef(); *result = this; return S_OK; } else if (id == IID_IOleInPlaceSite) { inplaceSite->AddRef(); *result = inplaceSite; return S_OK; } *result = 0; return E_NOINTERFACE; } ULONG __stdcall AddRef() { return ++refCount; } ULONG __stdcall Release() { const int r = --refCount; if (r == 0) delete this; return r; } HRESULT __stdcall SaveObject() { return E_NOTIMPL; } HRESULT __stdcall GetMoniker (DWORD, DWORD, IMoniker**) { return E_NOTIMPL; } HRESULT __stdcall GetContainer (LPOLECONTAINER* ppContainer) { *ppContainer = 0; return E_NOINTERFACE; } HRESULT __stdcall ShowObject() { return S_OK; } HRESULT __stdcall OnShowWindow (BOOL) { return E_NOTIMPL; } HRESULT __stdcall RequestNewObjectLayout() { return E_NOTIMPL; } juce_UseDebuggingNewOperator }; class ActiveXControlData : public ComponentMovementWatcher { ActiveXControlComponent* const owner; bool wasShowing; public: HWND controlHWND; IStorage* storage; IOleClientSite* clientSite; IOleObject* control; ActiveXControlData (HWND hwnd, ActiveXControlComponent* const owner_) : ComponentMovementWatcher (owner_), owner (owner_), wasShowing (owner_ != 0 && owner_->isShowing()), controlHWND (0), storage (new JuceIStorage()), clientSite (new JuceIOleClientSite (hwnd)), control (0) { } ~ActiveXControlData() { if (control != 0) { control->Close (OLECLOSE_NOSAVE); control->Release(); } clientSite->Release(); storage->Release(); } void componentMovedOrResized (bool /*wasMoved*/, bool /*wasResized*/) { Component* const topComp = owner->getTopLevelComponent(); if (topComp->getPeer() != 0) { int x = 0, y = 0; owner->relativePositionToOtherComponent (topComp, x, y); owner->setControlBounds (Rectangle (x, y, owner->getWidth(), owner->getHeight())); } } void componentPeerChanged() { const bool isShowingNow = owner->isShowing(); if (wasShowing != isShowingNow) { wasShowing = isShowingNow; owner->setControlVisible (isShowingNow); } componentMovedOrResized (true, true); } void componentVisibilityChanged (Component&) { componentPeerChanged(); } static bool doesWindowMatch (const ActiveXControlComponent* const ax, HWND hwnd) { return ((ActiveXControlData*) ax->control) != 0 && ((ActiveXControlData*) ax->control)->controlHWND == hwnd; } }; static VoidArray activeXComps; static HWND getHWND (const ActiveXControlComponent* const component) { HWND hwnd = 0; const IID iid = IID_IOleWindow; IOleWindow* const window = (IOleWindow*) component->queryInterface (&iid); if (window != 0) { window->GetWindow (&hwnd); window->Release(); } return hwnd; } static void offerActiveXMouseEventToPeer (ComponentPeer* const peer, HWND hwnd, UINT message, LPARAM lParam) { RECT activeXRect, peerRect; GetWindowRect (hwnd, &activeXRect); GetWindowRect ((HWND) peer->getNativeHandle(), &peerRect); const int mx = GET_X_LPARAM (lParam) + activeXRect.left - peerRect.left; const int my = GET_Y_LPARAM (lParam) + activeXRect.top - peerRect.top; const int64 mouseEventTime = getMouseEventTime(); const int oldModifiers = currentModifiers; ModifierKeys::getCurrentModifiersRealtime(); // to update the mouse button flags switch (message) { case WM_MOUSEMOVE: if (ModifierKeys (currentModifiers).isAnyMouseButtonDown()) peer->handleMouseDrag (mx, my, mouseEventTime); else peer->handleMouseMove (mx, my, mouseEventTime); break; case WM_LBUTTONDOWN: case WM_MBUTTONDOWN: case WM_RBUTTONDOWN: peer->handleMouseDown (mx, my, mouseEventTime); break; case WM_LBUTTONUP: case WM_MBUTTONUP: case WM_RBUTTONUP: peer->handleMouseUp (oldModifiers, mx, my, mouseEventTime); break; default: break; } } // intercepts events going to an activeX control, so we can sneakily use the mouse events static LRESULT CALLBACK activeXHookWndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam) { for (int i = activeXComps.size(); --i >= 0;) { const ActiveXControlComponent* const ax = (const ActiveXControlComponent*) activeXComps.getUnchecked(i); if (ActiveXControlData::doesWindowMatch (ax, hwnd)) { switch (message) { case WM_MOUSEMOVE: case WM_LBUTTONDOWN: case WM_MBUTTONDOWN: case WM_RBUTTONDOWN: case WM_LBUTTONUP: case WM_MBUTTONUP: case WM_RBUTTONUP: case WM_LBUTTONDBLCLK: case WM_MBUTTONDBLCLK: case WM_RBUTTONDBLCLK: if (ax->isShowing()) { ComponentPeer* const peer = ax->getPeer(); if (peer != 0) { offerActiveXMouseEventToPeer (peer, hwnd, message, lParam); if (! ax->areMouseEventsAllowed()) return 0; } } break; default: break; } return CallWindowProc ((WNDPROC) (ax->originalWndProc), hwnd, message, wParam, lParam); } } return DefWindowProc (hwnd, message, wParam, lParam); } ActiveXControlComponent::ActiveXControlComponent() : originalWndProc (0), control (0), mouseEventsAllowed (true) { activeXComps.add (this); } ActiveXControlComponent::~ActiveXControlComponent() { deleteControl(); activeXComps.removeValue (this); } void ActiveXControlComponent::paint (Graphics& g) { if (control == 0) g.fillAll (Colours::lightgrey); } bool ActiveXControlComponent::createControl (const void* controlIID) { deleteControl(); ComponentPeer* const peer = getPeer(); // the component must have already been added to a real window when you call this! jassert (dynamic_cast (peer) != 0); if (dynamic_cast (peer) != 0) { int x = 0, y = 0; relativePositionToOtherComponent (getTopLevelComponent(), x, y); HWND hwnd = (HWND) peer->getNativeHandle(); ActiveXControlData* const info = new ActiveXControlData (hwnd, this); HRESULT hr; if ((hr = OleCreate (*(const IID*) controlIID, IID_IOleObject, 1 /*OLERENDER_DRAW*/, 0, info->clientSite, info->storage, (void**) &(info->control))) == S_OK) { info->control->SetHostNames (L"Juce", 0); if (OleSetContainedObject (info->control, TRUE) == S_OK) { RECT rect; rect.left = x; rect.top = y; rect.right = x + getWidth(); rect.bottom = y + getHeight(); if (info->control->DoVerb (OLEIVERB_SHOW, 0, info->clientSite, 0, hwnd, &rect) == S_OK) { control = info; setControlBounds (Rectangle (x, y, getWidth(), getHeight())); info->controlHWND = getHWND (this); if (info->controlHWND != 0) { originalWndProc = (void*) (pointer_sized_int) GetWindowLongPtr ((HWND) info->controlHWND, GWLP_WNDPROC); SetWindowLongPtr ((HWND) info->controlHWND, GWLP_WNDPROC, (LONG_PTR) activeXHookWndProc); } return true; } } } delete info; } return false; } void ActiveXControlComponent::deleteControl() { ActiveXControlData* const info = (ActiveXControlData*) control; if (info != 0) { delete info; control = 0; originalWndProc = 0; } } void* ActiveXControlComponent::queryInterface (const void* iid) const { ActiveXControlData* const info = (ActiveXControlData*) control; void* result = 0; if (info != 0 && info->control != 0 && info->control->QueryInterface (*(const IID*) iid, &result) == S_OK) return result; return 0; } void ActiveXControlComponent::setControlBounds (const Rectangle& newBounds) const { HWND hwnd = ((ActiveXControlData*) control)->controlHWND; if (hwnd != 0) MoveWindow (hwnd, newBounds.getX(), newBounds.getY(), newBounds.getWidth(), newBounds.getHeight(), TRUE); } void ActiveXControlComponent::setControlVisible (const bool shouldBeVisible) const { HWND hwnd = ((ActiveXControlData*) control)->controlHWND; if (hwnd != 0) ShowWindow (hwnd, shouldBeVisible ? SW_SHOWNA : SW_HIDE); } void ActiveXControlComponent::setMouseEventsAllowed (const bool eventsCanReachControl) { mouseEventsAllowed = eventsCanReachControl; } #endif /********* End of inlined file: juce_win32_ActiveXComponent.cpp *********/ /********* Start of inlined file: juce_win32_QuickTimeMovieComponent.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_QUICKTIME using namespace QTOLibrary; using namespace QTOControlLib; bool juce_OpenQuickTimeMovieFromStream (InputStream* input, Movie& movie, Handle& dataHandle); static bool isQTAvailable = false; struct QTMovieCompInternal { QTMovieCompInternal() : dataHandle (0) { } ~QTMovieCompInternal() { clearHandle(); } IQTControlPtr qtControlInternal; IQTMoviePtr qtMovieInternal; Handle dataHandle; void clearHandle() { if (dataHandle != 0) { DisposeHandle (dataHandle); dataHandle = 0; } } }; #define qtControl (((QTMovieCompInternal*) internal)->qtControlInternal) #define qtMovie (((QTMovieCompInternal*) internal)->qtMovieInternal) QuickTimeMovieComponent::QuickTimeMovieComponent() : movieLoaded (false), controllerVisible (true) { internal = new QTMovieCompInternal(); setMouseEventsAllowed (false); } QuickTimeMovieComponent::~QuickTimeMovieComponent() { closeMovie(); qtControl = 0; deleteControl(); delete internal; internal = 0; } bool QuickTimeMovieComponent::isQuickTimeAvailable() throw() { if (! isQTAvailable) { isQTAvailable = (InitializeQTML (0) == noErr) && (EnterMovies() == noErr); } return isQTAvailable; } void QuickTimeMovieComponent::createControlIfNeeded() { if (isShowing() && ! isControlCreated()) { const IID qtIID = __uuidof (QTControl); if (createControl (&qtIID)) { const IID qtInterfaceIID = __uuidof (IQTControl); qtControl = (IQTControl*) queryInterface (&qtInterfaceIID); if (qtControl != 0) { qtControl->Release(); // it has one ref too many at this point qtControl->QuickTimeInitialize(); qtControl->PutSizing (qtMovieFitsControl); if (movieFile != File::nonexistent) loadMovie (movieFile, controllerVisible); } } } } bool QuickTimeMovieComponent::isControlCreated() const { return isControlOpen(); } bool QuickTimeMovieComponent::loadMovie (InputStream* movieStream, const bool isControllerVisible) { movieFile = File::nonexistent; movieLoaded = false; qtMovie = 0; controllerVisible = isControllerVisible; createControlIfNeeded(); if (isControlCreated()) { if (qtControl != 0) { qtControl->Put_MovieHandle (0); ((QTMovieCompInternal*) internal)->clearHandle(); Movie movie; if (juce_OpenQuickTimeMovieFromStream (movieStream, movie, ((QTMovieCompInternal*) internal)->dataHandle)) { qtControl->Put_MovieHandle ((long) (pointer_sized_int) movie); qtMovie = qtControl->GetMovie(); if (qtMovie != 0) qtMovie->PutMovieControllerType (isControllerVisible ? qtMovieControllerTypeStandard : qtMovieControllerTypeNone); } if (movie == 0) ((QTMovieCompInternal*) internal)->clearHandle(); } movieLoaded = (qtMovie != 0); } else { // You're trying to open a movie when the control hasn't yet been created, probably because // you've not yet added this component to a Window and made the whole component hierarchy visible. jassertfalse } delete movieStream; return movieLoaded; } void QuickTimeMovieComponent::closeMovie() { stop(); movieFile = File::nonexistent; movieLoaded = false; qtMovie = 0; if (qtControl != 0) qtControl->Put_MovieHandle (0); ((QTMovieCompInternal*) internal)->clearHandle(); } const File QuickTimeMovieComponent::getCurrentMovieFile() const { return movieFile; } bool QuickTimeMovieComponent::isMovieOpen() const { return movieLoaded; } double QuickTimeMovieComponent::getMovieDuration() const { if (qtMovie != 0) return qtMovie->GetDuration() / (double) qtMovie->GetTimeScale(); return 0.0; } void QuickTimeMovieComponent::getMovieNormalSize (int& width, int& height) const { if (qtMovie != 0) { struct QTRECT r = qtMovie->GetNaturalRect(); width = r.right - r.left; height = r.bottom - r.top; } else { width = height = 0; } } void QuickTimeMovieComponent::play() { if (qtMovie != 0) qtMovie->Play(); } void QuickTimeMovieComponent::stop() { if (qtMovie != 0) qtMovie->Stop(); } bool QuickTimeMovieComponent::isPlaying() const { return qtMovie != 0 && qtMovie->GetRate() != 0.0f; } void QuickTimeMovieComponent::setPosition (const double seconds) { if (qtMovie != 0) qtMovie->PutTime ((long) (seconds * qtMovie->GetTimeScale())); } double QuickTimeMovieComponent::getPosition() const { if (qtMovie != 0) return qtMovie->GetTime() / (double) qtMovie->GetTimeScale(); return 0.0; } void QuickTimeMovieComponent::setSpeed (const float newSpeed) { if (qtMovie != 0) qtMovie->PutRate (newSpeed); } void QuickTimeMovieComponent::setMovieVolume (const float newVolume) { if (qtMovie != 0) { qtMovie->PutAudioVolume (newVolume); qtMovie->PutAudioMute (newVolume <= 0); } } float QuickTimeMovieComponent::getMovieVolume() const { if (qtMovie != 0) return qtMovie->GetAudioVolume(); return 0.0f; } void QuickTimeMovieComponent::setLooping (const bool shouldLoop) { if (qtMovie != 0) qtMovie->PutLoop (shouldLoop); } bool QuickTimeMovieComponent::isLooping() const { return qtMovie != 0 && qtMovie->GetLoop(); } bool QuickTimeMovieComponent::isControllerVisible() const { return controllerVisible; } void QuickTimeMovieComponent::parentHierarchyChanged() { createControlIfNeeded(); QTCompBaseClass::parentHierarchyChanged(); } void QuickTimeMovieComponent::visibilityChanged() { createControlIfNeeded(); QTCompBaseClass::visibilityChanged(); } void QuickTimeMovieComponent::paint (Graphics& g) { if (! isControlCreated()) g.fillAll (Colours::black); } static Handle createHandleDataRef (Handle dataHandle, const char* fileName) { Handle dataRef = 0; OSStatus err = PtrToHand (&dataHandle, &dataRef, sizeof (Handle)); if (err == noErr) { Str255 suffix; CharacterFunctions::copy ((char*) suffix, fileName, 128); StringPtr name = suffix; err = PtrAndHand (name, dataRef, name[0] + 1); if (err == noErr) { long atoms[3]; atoms[0] = EndianU32_NtoB (3 * sizeof (long)); atoms[1] = EndianU32_NtoB (kDataRefExtensionMacOSFileType); atoms[2] = EndianU32_NtoB (MovieFileType); err = PtrAndHand (atoms, dataRef, 3 * sizeof (long)); if (err == noErr) return dataRef; } DisposeHandle (dataRef); } return 0; } static CFStringRef juceStringToCFString (const String& s) { const int len = s.length(); const juce_wchar* const t = (const juce_wchar*) s; UniChar* temp = (UniChar*) juce_malloc (sizeof (UniChar) * len + 4); for (int i = 0; i <= len; ++i) temp[i] = t[i]; CFStringRef result = CFStringCreateWithCharacters (kCFAllocatorDefault, temp, len); juce_free (temp); return result; } static bool openMovie (QTNewMoviePropertyElement* props, int prop, Movie& movie) { Boolean trueBool = true; props[prop].propClass = kQTPropertyClass_MovieInstantiation; props[prop].propID = kQTMovieInstantiationPropertyID_DontResolveDataRefs; props[prop].propValueSize = sizeof (trueBool); props[prop].propValueAddress = &trueBool; ++prop; props[prop].propClass = kQTPropertyClass_MovieInstantiation; props[prop].propID = kQTMovieInstantiationPropertyID_AsyncOK; props[prop].propValueSize = sizeof (trueBool); props[prop].propValueAddress = &trueBool; ++prop; Boolean isActive = true; props[prop].propClass = kQTPropertyClass_NewMovieProperty; props[prop].propID = kQTNewMoviePropertyID_Active; props[prop].propValueSize = sizeof (isActive); props[prop].propValueAddress = &isActive; ++prop; MacSetPort (0); jassert (prop <= 5); OSStatus err = NewMovieFromProperties (prop, props, 0, 0, &movie); return err == noErr; } bool juce_OpenQuickTimeMovieFromStream (InputStream* input, Movie& movie, Handle& dataHandle) { if (input == 0) return false; dataHandle = 0; bool ok = false; QTNewMoviePropertyElement props[5]; zeromem (props, sizeof (props)); int prop = 0; DataReferenceRecord dr; props[prop].propClass = kQTPropertyClass_DataLocation; props[prop].propID = kQTDataLocationPropertyID_DataReference; props[prop].propValueSize = sizeof (dr); props[prop].propValueAddress = (void*) &dr; ++prop; FileInputStream* const fin = dynamic_cast (input); if (fin != 0) { CFStringRef filePath = juceStringToCFString (fin->getFile().getFullPathName()); QTNewDataReferenceFromFullPathCFString (filePath, (QTPathStyle) kQTNativeDefaultPathStyle, 0, &dr.dataRef, &dr.dataRefType); ok = openMovie (props, prop, movie); DisposeHandle (dr.dataRef); CFRelease (filePath); } else { // sanity-check because this currently needs to load the whole stream into memory.. jassert (input->getTotalLength() < 50 * 1024 * 1024); dataHandle = NewHandle ((Size) input->getTotalLength()); HLock (dataHandle); // read the entire stream into memory - this is a pain, but can't get it to work // properly using a custom callback to supply the data. input->read (*dataHandle, (int) input->getTotalLength()); HUnlock (dataHandle); // different types to get QT to try. (We should really be a bit smarter here by // working out in advance which one the stream contains, rather than just trying // each one) const char* const suffixesToTry[] = { "\04.mov", "\04.mp3", "\04.avi", "\04.m4a" }; for (int i = 0; i < numElementsInArray (suffixesToTry) && ! ok; ++i) { /* // this fails for some bizarre reason - it can be bodged to work with // movies, but can't seem to do it for other file types.. QTNewMovieUserProcRecord procInfo; procInfo.getMovieUserProc = NewGetMovieUPP (readMovieStreamProc); procInfo.getMovieUserProcRefcon = this; procInfo.defaultDataRef.dataRef = dataRef; procInfo.defaultDataRef.dataRefType = HandleDataHandlerSubType; props[prop].propClass = kQTPropertyClass_DataLocation; props[prop].propID = kQTDataLocationPropertyID_MovieUserProc; props[prop].propValueSize = sizeof (procInfo); props[prop].propValueAddress = (void*) &procInfo; ++prop; */ dr.dataRef = createHandleDataRef (dataHandle, suffixesToTry [i]); dr.dataRefType = HandleDataHandlerSubType; ok = openMovie (props, prop, movie); DisposeHandle (dr.dataRef); } } return ok; } bool QuickTimeMovieComponent::loadMovie (const File& movieFile_, const bool isControllerVisible) { const bool ok = loadMovie ((InputStream*) movieFile_.createInputStream(), isControllerVisible); movieFile = movieFile_; return ok; } void QuickTimeMovieComponent::goToStart() { setPosition (0.0); } void QuickTimeMovieComponent::setBoundsWithCorrectAspectRatio (const Rectangle& spaceToFitWithin, const RectanglePlacement& placement) { int normalWidth, normalHeight; getMovieNormalSize (normalWidth, normalHeight); if (normalWidth > 0 && normalHeight > 0 && ! spaceToFitWithin.isEmpty()) { double x = 0.0, y = 0.0, w = normalWidth, h = normalHeight; placement.applyTo (x, y, w, h, spaceToFitWithin.getX(), spaceToFitWithin.getY(), spaceToFitWithin.getWidth(), spaceToFitWithin.getHeight()); if (w > 0 && h > 0) { setBounds (roundDoubleToInt (x), roundDoubleToInt (y), roundDoubleToInt (w), roundDoubleToInt (h)); } } else { setBounds (spaceToFitWithin); } } #endif /********* End of inlined file: juce_win32_QuickTimeMovieComponent.cpp *********/ /********* Start of inlined file: juce_win32_WebBrowserComponent.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_WEB_BROWSER class WebBrowserComponentInternal : public ActiveXControlComponent { public: WebBrowserComponentInternal() : browser (0), connectionPoint (0), adviseCookie (0) { } ~WebBrowserComponentInternal() { if (connectionPoint != 0) connectionPoint->Unadvise (adviseCookie); if (browser != 0) browser->Release(); } void createBrowser() { createControl (&CLSID_WebBrowser); browser = (IWebBrowser2*) queryInterface (&IID_IWebBrowser2); IConnectionPointContainer* connectionPointContainer = (IConnectionPointContainer*) queryInterface (&IID_IConnectionPointContainer); if (connectionPointContainer != 0) { connectionPointContainer->FindConnectionPoint (DIID_DWebBrowserEvents2, &connectionPoint); if (connectionPoint != 0) { WebBrowserComponent* const owner = dynamic_cast (getParentComponent()); jassert (owner != 0); EventHandler* handler = new EventHandler (owner); connectionPoint->Advise (handler, &adviseCookie); } } } void goToURL (const String& url, const StringArray* headers, const MemoryBlock* postData) { if (browser != 0) { LPSAFEARRAY sa = 0; _variant_t flags, frame, postDataVar, headersVar; if (headers != 0) headersVar = (const tchar*) headers->joinIntoString ("\r\n"); if (postData != 0 && postData->getSize() > 0) { LPSAFEARRAY sa = SafeArrayCreateVector (VT_UI1, 0, postData->getSize()); if (sa != 0) { void* data = 0; SafeArrayAccessData (sa, &data); jassert (data != 0); if (data != 0) { postData->copyTo (data, 0, postData->getSize()); SafeArrayUnaccessData (sa); VARIANT postDataVar2; VariantInit (&postDataVar2); V_VT (&postDataVar2) = VT_ARRAY | VT_UI1; V_ARRAY (&postDataVar2) = sa; postDataVar = postDataVar2; } } } browser->Navigate ((BSTR) (const OLECHAR*) url, &flags, &frame, &postDataVar, &headersVar); if (sa != 0) SafeArrayDestroy (sa); } } IWebBrowser2* browser; juce_UseDebuggingNewOperator private: IConnectionPoint* connectionPoint; DWORD adviseCookie; class EventHandler : public IDispatch, public ComponentMovementWatcher { public: EventHandler (WebBrowserComponent* owner_) : ComponentMovementWatcher (owner_), owner (owner_), refCount (0) { } ~EventHandler() { } HRESULT __stdcall QueryInterface (REFIID id, void __RPC_FAR* __RPC_FAR* result) { if (id == IID_IUnknown || id == IID_IDispatch || id == DIID_DWebBrowserEvents2) { AddRef(); *result = this; return S_OK; } *result = 0; return E_NOINTERFACE; } ULONG __stdcall AddRef() { return ++refCount; } ULONG __stdcall Release() { jassert (refCount > 0); const int r = --refCount; if (r == 0) delete this; return r; } HRESULT __stdcall GetTypeInfoCount (UINT __RPC_FAR*) { return E_NOTIMPL; } HRESULT __stdcall GetTypeInfo (UINT, LCID, ITypeInfo __RPC_FAR *__RPC_FAR*) { return E_NOTIMPL; } HRESULT __stdcall GetIDsOfNames (REFIID, LPOLESTR __RPC_FAR*, UINT, LCID, DISPID __RPC_FAR*) { return E_NOTIMPL; } HRESULT __stdcall Invoke (DISPID dispIdMember, REFIID /*riid*/, LCID /*lcid*/, WORD /*wFlags*/, DISPPARAMS __RPC_FAR* pDispParams, VARIANT __RPC_FAR* /*pVarResult*/, EXCEPINFO __RPC_FAR* /*pExcepInfo*/, UINT __RPC_FAR* /*puArgErr*/) { switch (dispIdMember) { case DISPID_BEFORENAVIGATE2: { VARIANT* const vurl = pDispParams->rgvarg[5].pvarVal; String url; if ((vurl->vt & VT_BYREF) != 0) url = *vurl->pbstrVal; else url = vurl->bstrVal; *pDispParams->rgvarg->pboolVal = owner->pageAboutToLoad (url) ? VARIANT_FALSE : VARIANT_TRUE; return S_OK; } default: break; } return E_NOTIMPL; } void componentMovedOrResized (bool /*wasMoved*/, bool /*wasResized*/) {} void componentPeerChanged() {} void componentVisibilityChanged (Component&) { owner->visibilityChanged(); } juce_UseDebuggingNewOperator private: WebBrowserComponent* const owner; int refCount; EventHandler (const EventHandler&); const EventHandler& operator= (const EventHandler&); }; }; WebBrowserComponent::WebBrowserComponent (const bool unloadPageWhenBrowserIsHidden_) : browser (0), blankPageShown (false), unloadPageWhenBrowserIsHidden (unloadPageWhenBrowserIsHidden_) { setOpaque (true); addAndMakeVisible (browser = new WebBrowserComponentInternal()); } WebBrowserComponent::~WebBrowserComponent() { delete browser; } void WebBrowserComponent::goToURL (const String& url, const StringArray* headers, const MemoryBlock* postData) { lastURL = url; lastHeaders.clear(); if (headers != 0) lastHeaders = *headers; lastPostData.setSize (0); if (postData != 0) lastPostData = *postData; blankPageShown = false; browser->goToURL (url, headers, postData); } void WebBrowserComponent::stop() { if (browser->browser != 0) browser->browser->Stop(); } void WebBrowserComponent::goBack() { lastURL = String::empty; blankPageShown = false; if (browser->browser != 0) browser->browser->GoBack(); } void WebBrowserComponent::goForward() { lastURL = String::empty; if (browser->browser != 0) browser->browser->GoForward(); } void WebBrowserComponent::refresh() { if (browser->browser != 0) browser->browser->Refresh(); } void WebBrowserComponent::paint (Graphics& g) { if (browser->browser == 0) g.fillAll (Colours::white); } void WebBrowserComponent::checkWindowAssociation() { if (isShowing()) { if (browser->browser == 0 && getPeer() != 0) { browser->createBrowser(); reloadLastURL(); } else { if (blankPageShown) goBack(); } } else { if (browser != 0 && unloadPageWhenBrowserIsHidden && ! blankPageShown) { // when the component becomes invisible, some stuff like flash // carries on playing audio, so we need to force it onto a blank // page to avoid this.. blankPageShown = true; browser->goToURL ("about:blank", 0, 0); } } } void WebBrowserComponent::reloadLastURL() { if (lastURL.isNotEmpty()) { goToURL (lastURL, &lastHeaders, &lastPostData); lastURL = String::empty; } } void WebBrowserComponent::parentHierarchyChanged() { checkWindowAssociation(); } void WebBrowserComponent::resized() { browser->setSize (getWidth(), getHeight()); } void WebBrowserComponent::visibilityChanged() { checkWindowAssociation(); } bool WebBrowserComponent::pageAboutToLoad (const String&) { return true; } #endif /********* End of inlined file: juce_win32_WebBrowserComponent.cpp *********/ /********* Start of inlined file: juce_win32_OpenGLComponent.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_OPENGL #define WGL_EXT_FUNCTION_INIT(extType, extFunc) \ ((extFunc = (extType) wglGetProcAddress (#extFunc)) != 0) typedef const char* (WINAPI* PFNWGLGETEXTENSIONSSTRINGARBPROC) (HDC hdc); typedef BOOL (WINAPI * PFNWGLGETPIXELFORMATATTRIBIVARBPROC) (HDC hdc, int iPixelFormat, int iLayerPlane, UINT nAttributes, const int *piAttributes, int *piValues); typedef BOOL (WINAPI * PFNWGLCHOOSEPIXELFORMATARBPROC) (HDC hdc, const int* piAttribIList, const FLOAT *pfAttribFList, UINT nMaxFormats, int *piFormats, UINT *nNumFormats); typedef BOOL (WINAPI * PFNWGLSWAPINTERVALEXTPROC) (int interval); typedef int (WINAPI * PFNWGLGETSWAPINTERVALEXTPROC) (void); #define WGL_NUMBER_PIXEL_FORMATS_ARB 0x2000 #define WGL_DRAW_TO_WINDOW_ARB 0x2001 #define WGL_ACCELERATION_ARB 0x2003 #define WGL_SWAP_METHOD_ARB 0x2007 #define WGL_SUPPORT_OPENGL_ARB 0x2010 #define WGL_PIXEL_TYPE_ARB 0x2013 #define WGL_DOUBLE_BUFFER_ARB 0x2011 #define WGL_COLOR_BITS_ARB 0x2014 #define WGL_RED_BITS_ARB 0x2015 #define WGL_GREEN_BITS_ARB 0x2017 #define WGL_BLUE_BITS_ARB 0x2019 #define WGL_ALPHA_BITS_ARB 0x201B #define WGL_DEPTH_BITS_ARB 0x2022 #define WGL_STENCIL_BITS_ARB 0x2023 #define WGL_FULL_ACCELERATION_ARB 0x2027 #define WGL_ACCUM_RED_BITS_ARB 0x201E #define WGL_ACCUM_GREEN_BITS_ARB 0x201F #define WGL_ACCUM_BLUE_BITS_ARB 0x2020 #define WGL_ACCUM_ALPHA_BITS_ARB 0x2021 #define WGL_STEREO_ARB 0x2012 #define WGL_SAMPLE_BUFFERS_ARB 0x2041 #define WGL_SAMPLES_ARB 0x2042 #define WGL_TYPE_RGBA_ARB 0x202B static void getWglExtensions (HDC dc, StringArray& result) throw() { PFNWGLGETEXTENSIONSSTRINGARBPROC wglGetExtensionsStringARB = 0; if (WGL_EXT_FUNCTION_INIT (PFNWGLGETEXTENSIONSSTRINGARBPROC, wglGetExtensionsStringARB)) result.addTokens (String (wglGetExtensionsStringARB (dc)), false); else jassertfalse // If this fails, it may be because you didn't activate the openGL context } class WindowedGLContext : public OpenGLContext { public: WindowedGLContext (Component* const component_, HGLRC contextToShareWith, const OpenGLPixelFormat& pixelFormat) : renderContext (0), nativeWindow (0), dc (0), component (component_) { jassert (component != 0); createNativeWindow(); // Use a default pixel format that should be supported everywhere PIXELFORMATDESCRIPTOR pfd; zerostruct (pfd); pfd.nSize = sizeof (pfd); pfd.nVersion = 1; pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER; pfd.iPixelType = PFD_TYPE_RGBA; pfd.cColorBits = 24; pfd.cDepthBits = 16; const int format = ChoosePixelFormat (dc, &pfd); if (format != 0) SetPixelFormat (dc, format, &pfd); renderContext = wglCreateContext (dc); makeActive(); setPixelFormat (pixelFormat); if (contextToShareWith != 0 && renderContext != 0) wglShareLists (contextToShareWith, renderContext); } ~WindowedGLContext() { makeInactive(); wglDeleteContext (renderContext); ReleaseDC ((HWND) nativeWindow->getNativeHandle(), dc); delete nativeWindow; } bool makeActive() const throw() { jassert (renderContext != 0); return wglMakeCurrent (dc, renderContext) != 0; } bool makeInactive() const throw() { return (! isActive()) || (wglMakeCurrent (0, 0) != 0); } bool isActive() const throw() { return wglGetCurrentContext() == renderContext; } const OpenGLPixelFormat getPixelFormat() const { OpenGLPixelFormat pf; makeActive(); StringArray availableExtensions; getWglExtensions (dc, availableExtensions); fillInPixelFormatDetails (GetPixelFormat (dc), pf, availableExtensions); return pf; } void* getRawContext() const throw() { return renderContext; } bool setPixelFormat (const OpenGLPixelFormat& pixelFormat) { makeActive(); PIXELFORMATDESCRIPTOR pfd; zerostruct (pfd); pfd.nSize = sizeof (pfd); pfd.nVersion = 1; pfd.dwFlags = PFD_SUPPORT_OPENGL | PFD_DRAW_TO_WINDOW | PFD_DOUBLEBUFFER; pfd.iPixelType = PFD_TYPE_RGBA; pfd.iLayerType = PFD_MAIN_PLANE; pfd.cColorBits = (BYTE) (pixelFormat.redBits + pixelFormat.greenBits + pixelFormat.blueBits); pfd.cRedBits = (BYTE) pixelFormat.redBits; pfd.cGreenBits = (BYTE) pixelFormat.greenBits; pfd.cBlueBits = (BYTE) pixelFormat.blueBits; pfd.cAlphaBits = (BYTE) pixelFormat.alphaBits; pfd.cDepthBits = (BYTE) pixelFormat.depthBufferBits; pfd.cStencilBits = (BYTE) pixelFormat.stencilBufferBits; pfd.cAccumBits = (BYTE) (pixelFormat.accumulationBufferRedBits + pixelFormat.accumulationBufferGreenBits + pixelFormat.accumulationBufferBlueBits + pixelFormat.accumulationBufferAlphaBits); pfd.cAccumRedBits = (BYTE) pixelFormat.accumulationBufferRedBits; pfd.cAccumGreenBits = (BYTE) pixelFormat.accumulationBufferGreenBits; pfd.cAccumBlueBits = (BYTE) pixelFormat.accumulationBufferBlueBits; pfd.cAccumAlphaBits = (BYTE) pixelFormat.accumulationBufferAlphaBits; int format = 0; PFNWGLCHOOSEPIXELFORMATARBPROC wglChoosePixelFormatARB = 0; StringArray availableExtensions; getWglExtensions (dc, availableExtensions); if (availableExtensions.contains ("WGL_ARB_pixel_format") && WGL_EXT_FUNCTION_INIT (PFNWGLCHOOSEPIXELFORMATARBPROC, wglChoosePixelFormatARB)) { int attributes[64]; int n = 0; attributes[n++] = WGL_DRAW_TO_WINDOW_ARB; attributes[n++] = GL_TRUE; attributes[n++] = WGL_SUPPORT_OPENGL_ARB; attributes[n++] = GL_TRUE; attributes[n++] = WGL_ACCELERATION_ARB; attributes[n++] = WGL_FULL_ACCELERATION_ARB; attributes[n++] = WGL_DOUBLE_BUFFER_ARB; attributes[n++] = GL_TRUE; attributes[n++] = WGL_PIXEL_TYPE_ARB; attributes[n++] = WGL_TYPE_RGBA_ARB; attributes[n++] = WGL_COLOR_BITS_ARB; attributes[n++] = pfd.cColorBits; attributes[n++] = WGL_RED_BITS_ARB; attributes[n++] = pixelFormat.redBits; attributes[n++] = WGL_GREEN_BITS_ARB; attributes[n++] = pixelFormat.greenBits; attributes[n++] = WGL_BLUE_BITS_ARB; attributes[n++] = pixelFormat.blueBits; attributes[n++] = WGL_ALPHA_BITS_ARB; attributes[n++] = pixelFormat.alphaBits; attributes[n++] = WGL_DEPTH_BITS_ARB; attributes[n++] = pixelFormat.depthBufferBits; if (pixelFormat.stencilBufferBits > 0) { attributes[n++] = WGL_STENCIL_BITS_ARB; attributes[n++] = pixelFormat.stencilBufferBits; } attributes[n++] = WGL_ACCUM_RED_BITS_ARB; attributes[n++] = pixelFormat.accumulationBufferRedBits; attributes[n++] = WGL_ACCUM_GREEN_BITS_ARB; attributes[n++] = pixelFormat.accumulationBufferGreenBits; attributes[n++] = WGL_ACCUM_BLUE_BITS_ARB; attributes[n++] = pixelFormat.accumulationBufferBlueBits; attributes[n++] = WGL_ACCUM_ALPHA_BITS_ARB; attributes[n++] = pixelFormat.accumulationBufferAlphaBits; if (availableExtensions.contains ("WGL_ARB_multisample") && pixelFormat.fullSceneAntiAliasingNumSamples > 0) { attributes[n++] = WGL_SAMPLE_BUFFERS_ARB; attributes[n++] = 1; attributes[n++] = WGL_SAMPLES_ARB; attributes[n++] = pixelFormat.fullSceneAntiAliasingNumSamples; } attributes[n++] = 0; UINT formatsCount; const BOOL ok = wglChoosePixelFormatARB (dc, attributes, 0, 1, &format, &formatsCount); (void) ok; jassert (ok); } else { format = ChoosePixelFormat (dc, &pfd); } if (format != 0) { makeInactive(); // win32 can't change the pixel format of a window, so need to delete the // old one and create a new one.. jassert (nativeWindow != 0); ReleaseDC ((HWND) nativeWindow->getNativeHandle(), dc); delete nativeWindow; createNativeWindow(); if (SetPixelFormat (dc, format, &pfd)) { wglDeleteContext (renderContext); renderContext = wglCreateContext (dc); jassert (renderContext != 0); return renderContext != 0; } } return false; } void updateWindowPosition (int x, int y, int w, int h, int) { SetWindowPos ((HWND) nativeWindow->getNativeHandle(), 0, x, y, w, h, SWP_NOACTIVATE | SWP_NOZORDER | SWP_NOOWNERZORDER); } void repaint() { int x, y, w, h; nativeWindow->getBounds (x, y, w, h); nativeWindow->repaint (0, 0, w, h); } void swapBuffers() { SwapBuffers (dc); } bool setSwapInterval (const int numFramesPerSwap) { makeActive(); StringArray availableExtensions; getWglExtensions (dc, availableExtensions); PFNWGLSWAPINTERVALEXTPROC wglSwapIntervalEXT = 0; return availableExtensions.contains ("WGL_EXT_swap_control") && WGL_EXT_FUNCTION_INIT (PFNWGLSWAPINTERVALEXTPROC, wglSwapIntervalEXT) && wglSwapIntervalEXT (numFramesPerSwap) != FALSE; } int getSwapInterval() const { makeActive(); StringArray availableExtensions; getWglExtensions (dc, availableExtensions); PFNWGLGETSWAPINTERVALEXTPROC wglGetSwapIntervalEXT = 0; if (availableExtensions.contains ("WGL_EXT_swap_control") && WGL_EXT_FUNCTION_INIT (PFNWGLGETSWAPINTERVALEXTPROC, wglGetSwapIntervalEXT)) return wglGetSwapIntervalEXT(); return 0; } void findAlternativeOpenGLPixelFormats (OwnedArray & results) { jassert (isActive()); StringArray availableExtensions; getWglExtensions (dc, availableExtensions); PFNWGLGETPIXELFORMATATTRIBIVARBPROC wglGetPixelFormatAttribivARB = 0; int numTypes = 0; if (availableExtensions.contains("WGL_ARB_pixel_format") && WGL_EXT_FUNCTION_INIT (PFNWGLGETPIXELFORMATATTRIBIVARBPROC, wglGetPixelFormatAttribivARB)) { int attributes = WGL_NUMBER_PIXEL_FORMATS_ARB; if (! wglGetPixelFormatAttribivARB (dc, 1, 0, 1, &attributes, &numTypes)) jassertfalse } else { numTypes = DescribePixelFormat (dc, 0, 0, 0); } OpenGLPixelFormat pf; for (int i = 0; i < numTypes; ++i) { if (fillInPixelFormatDetails (i + 1, pf, availableExtensions)) { bool alreadyListed = false; for (int j = results.size(); --j >= 0;) if (pf == *results.getUnchecked(j)) alreadyListed = true; if (! alreadyListed) results.add (new OpenGLPixelFormat (pf)); } } } void* getNativeWindowHandle() const { return nativeWindow != 0 ? nativeWindow->getNativeHandle() : 0; } juce_UseDebuggingNewOperator HGLRC renderContext; private: Win32ComponentPeer* nativeWindow; Component* const component; HDC dc; void createNativeWindow() { nativeWindow = new Win32ComponentPeer (component, 0); nativeWindow->dontRepaint = true; nativeWindow->setVisible (true); HWND hwnd = (HWND) nativeWindow->getNativeHandle(); Win32ComponentPeer* const peer = dynamic_cast (component->getTopLevelComponent()->getPeer()); if (peer != 0) { SetParent (hwnd, (HWND) peer->getNativeHandle()); juce_setWindowStyleBit (hwnd, GWL_STYLE, WS_CHILD, true); juce_setWindowStyleBit (hwnd, GWL_STYLE, WS_POPUP, false); } dc = GetDC (hwnd); } bool fillInPixelFormatDetails (const int pixelFormatIndex, OpenGLPixelFormat& result, const StringArray& availableExtensions) const throw() { PFNWGLGETPIXELFORMATATTRIBIVARBPROC wglGetPixelFormatAttribivARB = 0; if (availableExtensions.contains ("WGL_ARB_pixel_format") && WGL_EXT_FUNCTION_INIT (PFNWGLGETPIXELFORMATATTRIBIVARBPROC, wglGetPixelFormatAttribivARB)) { int attributes[32]; int numAttributes = 0; attributes[numAttributes++] = WGL_DRAW_TO_WINDOW_ARB; attributes[numAttributes++] = WGL_SUPPORT_OPENGL_ARB; attributes[numAttributes++] = WGL_ACCELERATION_ARB; attributes[numAttributes++] = WGL_DOUBLE_BUFFER_ARB; attributes[numAttributes++] = WGL_PIXEL_TYPE_ARB; attributes[numAttributes++] = WGL_RED_BITS_ARB; attributes[numAttributes++] = WGL_GREEN_BITS_ARB; attributes[numAttributes++] = WGL_BLUE_BITS_ARB; attributes[numAttributes++] = WGL_ALPHA_BITS_ARB; attributes[numAttributes++] = WGL_DEPTH_BITS_ARB; attributes[numAttributes++] = WGL_STENCIL_BITS_ARB; attributes[numAttributes++] = WGL_ACCUM_RED_BITS_ARB; attributes[numAttributes++] = WGL_ACCUM_GREEN_BITS_ARB; attributes[numAttributes++] = WGL_ACCUM_BLUE_BITS_ARB; attributes[numAttributes++] = WGL_ACCUM_ALPHA_BITS_ARB; if (availableExtensions.contains ("WGL_ARB_multisample")) attributes[numAttributes++] = WGL_SAMPLES_ARB; int values[32]; zeromem (values, sizeof (values)); if (wglGetPixelFormatAttribivARB (dc, pixelFormatIndex, 0, numAttributes, attributes, values)) { int n = 0; bool isValidFormat = (values[n++] == GL_TRUE); // WGL_DRAW_TO_WINDOW_ARB isValidFormat = (values[n++] == GL_TRUE) && isValidFormat; // WGL_SUPPORT_OPENGL_ARB isValidFormat = (values[n++] == WGL_FULL_ACCELERATION_ARB) && isValidFormat; // WGL_ACCELERATION_ARB isValidFormat = (values[n++] == GL_TRUE) && isValidFormat; // WGL_DOUBLE_BUFFER_ARB: isValidFormat = (values[n++] == WGL_TYPE_RGBA_ARB) && isValidFormat; // WGL_PIXEL_TYPE_ARB result.redBits = values[n++]; // WGL_RED_BITS_ARB result.greenBits = values[n++]; // WGL_GREEN_BITS_ARB result.blueBits = values[n++]; // WGL_BLUE_BITS_ARB result.alphaBits = values[n++]; // WGL_ALPHA_BITS_ARB result.depthBufferBits = values[n++]; // WGL_DEPTH_BITS_ARB result.stencilBufferBits = values[n++]; // WGL_STENCIL_BITS_ARB result.accumulationBufferRedBits = values[n++]; // WGL_ACCUM_RED_BITS_ARB result.accumulationBufferGreenBits = values[n++]; // WGL_ACCUM_GREEN_BITS_ARB result.accumulationBufferBlueBits = values[n++]; // WGL_ACCUM_BLUE_BITS_ARB result.accumulationBufferAlphaBits = values[n++]; // WGL_ACCUM_ALPHA_BITS_ARB result.fullSceneAntiAliasingNumSamples = (uint8) values[n++]; // WGL_SAMPLES_ARB return isValidFormat; } else { jassertfalse } } else { PIXELFORMATDESCRIPTOR pfd; if (DescribePixelFormat (dc, pixelFormatIndex, sizeof (pfd), &pfd)) { result.redBits = pfd.cRedBits; result.greenBits = pfd.cGreenBits; result.blueBits = pfd.cBlueBits; result.alphaBits = pfd.cAlphaBits; result.depthBufferBits = pfd.cDepthBits; result.stencilBufferBits = pfd.cStencilBits; result.accumulationBufferRedBits = pfd.cAccumRedBits; result.accumulationBufferGreenBits = pfd.cAccumGreenBits; result.accumulationBufferBlueBits = pfd.cAccumBlueBits; result.accumulationBufferAlphaBits = pfd.cAccumAlphaBits; result.fullSceneAntiAliasingNumSamples = 0; return true; } else { jassertfalse } } return false; } WindowedGLContext (const WindowedGLContext&); const WindowedGLContext& operator= (const WindowedGLContext&); }; OpenGLContext* OpenGLContext::createContextForWindow (Component* const component, const OpenGLPixelFormat& pixelFormat, const OpenGLContext* const contextToShareWith) { WindowedGLContext* c = new WindowedGLContext (component, contextToShareWith != 0 ? (HGLRC) contextToShareWith->getRawContext() : 0, pixelFormat); if (c->renderContext == 0) deleteAndZero (c); return c; } void* OpenGLComponent::getNativeWindowHandle() const { return context != 0 ? ((WindowedGLContext*) context)->getNativeWindowHandle() : 0; } void juce_glViewport (const int w, const int h) { glViewport (0, 0, w, h); } void OpenGLPixelFormat::getAvailablePixelFormats (Component* component, OwnedArray & results) { Component tempComp; { WindowedGLContext wc (component, 0, OpenGLPixelFormat (8, 8, 16, 0)); wc.makeActive(); wc.findAlternativeOpenGLPixelFormats (results); } } #endif /********* End of inlined file: juce_win32_OpenGLComponent.cpp *********/ /********* Start of inlined file: juce_win32_AudioCDReader.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_USE_CDBURNER //*************************************************************************** // %%% TARGET STATUS VALUES %%% //*************************************************************************** #define STATUS_GOOD 0x00 // Status Good #define STATUS_CHKCOND 0x02 // Check Condition #define STATUS_CONDMET 0x04 // Condition Met #define STATUS_BUSY 0x08 // Busy #define STATUS_INTERM 0x10 // Intermediate #define STATUS_INTCDMET 0x14 // Intermediate-condition met #define STATUS_RESCONF 0x18 // Reservation conflict #define STATUS_COMTERM 0x22 // Command Terminated #define STATUS_QFULL 0x28 // Queue full //*************************************************************************** // %%% SCSI MISCELLANEOUS EQUATES %%% //*************************************************************************** #define MAXLUN 7 // Maximum Logical Unit Id #define MAXTARG 7 // Maximum Target Id #define MAX_SCSI_LUNS 64 // Maximum Number of SCSI LUNs #define MAX_NUM_HA 8 // Maximum Number of SCSI HA's //*************************************************************************** // %%% Commands for all Device Types %%% //*************************************************************************** #define SCSI_CHANGE_DEF 0x40 // Change Definition (Optional) #define SCSI_COMPARE 0x39 // Compare (O) #define SCSI_COPY 0x18 // Copy (O) #define SCSI_COP_VERIFY 0x3A // Copy and Verify (O) #define SCSI_INQUIRY 0x12 // Inquiry (MANDATORY) #define SCSI_LOG_SELECT 0x4C // Log Select (O) #define SCSI_LOG_SENSE 0x4D // Log Sense (O) #define SCSI_MODE_SEL6 0x15 // Mode Select 6-byte (Device Specific) #define SCSI_MODE_SEL10 0x55 // Mode Select 10-byte (Device Specific) #define SCSI_MODE_SEN6 0x1A // Mode Sense 6-byte (Device Specific) #define SCSI_MODE_SEN10 0x5A // Mode Sense 10-byte (Device Specific) #define SCSI_READ_BUFF 0x3C // Read Buffer (O) #define SCSI_REQ_SENSE 0x03 // Request Sense (MANDATORY) #define SCSI_SEND_DIAG 0x1D // Send Diagnostic (O) #define SCSI_TST_U_RDY 0x00 // Test Unit Ready (MANDATORY) #define SCSI_WRITE_BUFF 0x3B // Write Buffer (O) //*************************************************************************** // %%% Commands Unique to Direct Access Devices %%% //*************************************************************************** #define SCSI_COMPARE 0x39 // Compare (O) #define SCSI_FORMAT 0x04 // Format Unit (MANDATORY) #define SCSI_LCK_UN_CAC 0x36 // Lock Unlock Cache (O) #define SCSI_PREFETCH 0x34 // Prefetch (O) #define SCSI_MED_REMOVL 0x1E // Prevent/Allow medium Removal (O) #define SCSI_READ6 0x08 // Read 6-byte (MANDATORY) #define SCSI_READ10 0x28 // Read 10-byte (MANDATORY) #define SCSI_RD_CAPAC 0x25 // Read Capacity (MANDATORY) #define SCSI_RD_DEFECT 0x37 // Read Defect Data (O) #define SCSI_READ_LONG 0x3E // Read Long (O) #define SCSI_REASS_BLK 0x07 // Reassign Blocks (O) #define SCSI_RCV_DIAG 0x1C // Receive Diagnostic Results (O) #define SCSI_RELEASE 0x17 // Release Unit (MANDATORY) #define SCSI_REZERO 0x01 // Rezero Unit (O) #define SCSI_SRCH_DAT_E 0x31 // Search Data Equal (O) #define SCSI_SRCH_DAT_H 0x30 // Search Data High (O) #define SCSI_SRCH_DAT_L 0x32 // Search Data Low (O) #define SCSI_SEEK6 0x0B // Seek 6-Byte (O) #define SCSI_SEEK10 0x2B // Seek 10-Byte (O) #define SCSI_SEND_DIAG 0x1D // Send Diagnostics (MANDATORY) #define SCSI_SET_LIMIT 0x33 // Set Limits (O) #define SCSI_START_STP 0x1B // Start/Stop Unit (O) #define SCSI_SYNC_CACHE 0x35 // Synchronize Cache (O) #define SCSI_VERIFY 0x2F // Verify (O) #define SCSI_WRITE6 0x0A // Write 6-Byte (MANDATORY) #define SCSI_WRITE10 0x2A // Write 10-Byte (MANDATORY) #define SCSI_WRT_VERIFY 0x2E // Write and Verify (O) #define SCSI_WRITE_LONG 0x3F // Write Long (O) #define SCSI_WRITE_SAME 0x41 // Write Same (O) //*************************************************************************** // %%% Commands Unique to Sequential Access Devices %%% //*************************************************************************** #define SCSI_ERASE 0x19 // Erase (MANDATORY) #define SCSI_LOAD_UN 0x1b // Load/Unload (O) #define SCSI_LOCATE 0x2B // Locate (O) #define SCSI_RD_BLK_LIM 0x05 // Read Block Limits (MANDATORY) #define SCSI_READ_POS 0x34 // Read Position (O) #define SCSI_READ_REV 0x0F // Read Reverse (O) #define SCSI_REC_BF_DAT 0x14 // Recover Buffer Data (O) #define SCSI_RESERVE 0x16 // Reserve Unit (MANDATORY) #define SCSI_REWIND 0x01 // Rewind (MANDATORY) #define SCSI_SPACE 0x11 // Space (MANDATORY) #define SCSI_VERIFY_T 0x13 // Verify (Tape) (O) #define SCSI_WRT_FILE 0x10 // Write Filemarks (MANDATORY) //*************************************************************************** // %%% Commands Unique to Printer Devices %%% //*************************************************************************** #define SCSI_PRINT 0x0A // Print (MANDATORY) #define SCSI_SLEW_PNT 0x0B // Slew and Print (O) #define SCSI_STOP_PNT 0x1B // Stop Print (O) #define SCSI_SYNC_BUFF 0x10 // Synchronize Buffer (O) //*************************************************************************** // %%% Commands Unique to Processor Devices %%% //*************************************************************************** #define SCSI_RECEIVE 0x08 // Receive (O) #define SCSI_SEND 0x0A // Send (O) //*************************************************************************** // %%% Commands Unique to Write-Once Devices %%% //*************************************************************************** #define SCSI_MEDIUM_SCN 0x38 // Medium Scan (O) #define SCSI_SRCHDATE10 0x31 // Search Data Equal 10-Byte (O) #define SCSI_SRCHDATE12 0xB1 // Search Data Equal 12-Byte (O) #define SCSI_SRCHDATH10 0x30 // Search Data High 10-Byte (O) #define SCSI_SRCHDATH12 0xB0 // Search Data High 12-Byte (O) #define SCSI_SRCHDATL10 0x32 // Search Data Low 10-Byte (O) #define SCSI_SRCHDATL12 0xB2 // Search Data Low 12-Byte (O) #define SCSI_SET_LIM_10 0x33 // Set Limits 10-Byte (O) #define SCSI_SET_LIM_12 0xB3 // Set Limits 10-Byte (O) #define SCSI_VERIFY10 0x2F // Verify 10-Byte (O) #define SCSI_VERIFY12 0xAF // Verify 12-Byte (O) #define SCSI_WRITE12 0xAA // Write 12-Byte (O) #define SCSI_WRT_VER10 0x2E // Write and Verify 10-Byte (O) #define SCSI_WRT_VER12 0xAE // Write and Verify 12-Byte (O) //*************************************************************************** // %%% Commands Unique to CD-ROM Devices %%% //*************************************************************************** #define SCSI_PLAYAUD_10 0x45 // Play Audio 10-Byte (O) #define SCSI_PLAYAUD_12 0xA5 // Play Audio 12-Byte 12-Byte (O) #define SCSI_PLAYAUDMSF 0x47 // Play Audio MSF (O) #define SCSI_PLAYA_TKIN 0x48 // Play Audio Track/Index (O) #define SCSI_PLYTKREL10 0x49 // Play Track Relative 10-Byte (O) #define SCSI_PLYTKREL12 0xA9 // Play Track Relative 12-Byte (O) #define SCSI_READCDCAP 0x25 // Read CD-ROM Capacity (MANDATORY) #define SCSI_READHEADER 0x44 // Read Header (O) #define SCSI_SUBCHANNEL 0x42 // Read Subchannel (O) #define SCSI_READ_TOC 0x43 // Read TOC (O) //*************************************************************************** // %%% Commands Unique to Scanner Devices %%% //*************************************************************************** #define SCSI_GETDBSTAT 0x34 // Get Data Buffer Status (O) #define SCSI_GETWINDOW 0x25 // Get Window (O) #define SCSI_OBJECTPOS 0x31 // Object Postion (O) #define SCSI_SCAN 0x1B // Scan (O) #define SCSI_SETWINDOW 0x24 // Set Window (MANDATORY) //*************************************************************************** // %%% Commands Unique to Optical Memory Devices %%% //*************************************************************************** #define SCSI_UpdateBlk 0x3D // Update Block (O) //*************************************************************************** // %%% Commands Unique to Medium Changer Devices %%% //*************************************************************************** #define SCSI_EXCHMEDIUM 0xA6 // Exchange Medium (O) #define SCSI_INITELSTAT 0x07 // Initialize Element Status (O) #define SCSI_POSTOELEM 0x2B // Position to Element (O) #define SCSI_REQ_VE_ADD 0xB5 // Request Volume Element Address (O) #define SCSI_SENDVOLTAG 0xB6 // Send Volume Tag (O) //*************************************************************************** // %%% Commands Unique to Communication Devices %%% //*************************************************************************** #define SCSI_GET_MSG_6 0x08 // Get Message 6-Byte (MANDATORY) #define SCSI_GET_MSG_10 0x28 // Get Message 10-Byte (O) #define SCSI_GET_MSG_12 0xA8 // Get Message 12-Byte (O) #define SCSI_SND_MSG_6 0x0A // Send Message 6-Byte (MANDATORY) #define SCSI_SND_MSG_10 0x2A // Send Message 10-Byte (O) #define SCSI_SND_MSG_12 0xAA // Send Message 12-Byte (O) //*************************************************************************** // %%% Request Sense Data Format %%% //*************************************************************************** typedef struct { BYTE ErrorCode; // Error Code (70H or 71H) BYTE SegmentNum; // Number of current segment descriptor BYTE SenseKey; // Sense Key(See bit definitions too) BYTE InfoByte0; // Information MSB BYTE InfoByte1; // Information MID BYTE InfoByte2; // Information MID BYTE InfoByte3; // Information LSB BYTE AddSenLen; // Additional Sense Length BYTE ComSpecInf0; // Command Specific Information MSB BYTE ComSpecInf1; // Command Specific Information MID BYTE ComSpecInf2; // Command Specific Information MID BYTE ComSpecInf3; // Command Specific Information LSB BYTE AddSenseCode; // Additional Sense Code BYTE AddSenQual; // Additional Sense Code Qualifier BYTE FieldRepUCode; // Field Replaceable Unit Code BYTE SenKeySpec15; // Sense Key Specific 15th byte BYTE SenKeySpec16; // Sense Key Specific 16th byte BYTE SenKeySpec17; // Sense Key Specific 17th byte BYTE AddSenseBytes; // Additional Sense Bytes } SENSE_DATA_FMT; //*************************************************************************** // %%% REQUEST SENSE ERROR CODE %%% //*************************************************************************** #define SERROR_CURRENT 0x70 // Current Errors #define SERROR_DEFERED 0x71 // Deferred Errors //*************************************************************************** // %%% REQUEST SENSE BIT DEFINITIONS %%% //*************************************************************************** #define SENSE_VALID 0x80 // Byte 0 Bit 7 #define SENSE_FILEMRK 0x80 // Byte 2 Bit 7 #define SENSE_EOM 0x40 // Byte 2 Bit 6 #define SENSE_ILI 0x20 // Byte 2 Bit 5 //*************************************************************************** // %%% REQUEST SENSE SENSE KEY DEFINITIONS %%% //*************************************************************************** #define KEY_NOSENSE 0x00 // No Sense #define KEY_RECERROR 0x01 // Recovered Error #define KEY_NOTREADY 0x02 // Not Ready #define KEY_MEDIUMERR 0x03 // Medium Error #define KEY_HARDERROR 0x04 // Hardware Error #define KEY_ILLGLREQ 0x05 // Illegal Request #define KEY_UNITATT 0x06 // Unit Attention #define KEY_DATAPROT 0x07 // Data Protect #define KEY_BLANKCHK 0x08 // Blank Check #define KEY_VENDSPEC 0x09 // Vendor Specific #define KEY_COPYABORT 0x0A // Copy Abort #define KEY_EQUAL 0x0C // Equal (Search) #define KEY_VOLOVRFLW 0x0D // Volume Overflow #define KEY_MISCOMP 0x0E // Miscompare (Search) #define KEY_RESERVED 0x0F // Reserved //*************************************************************************** // %%% PERIPHERAL DEVICE TYPE DEFINITIONS %%% //*************************************************************************** #define DTYPE_DASD 0x00 // Disk Device #define DTYPE_SEQD 0x01 // Tape Device #define DTYPE_PRNT 0x02 // Printer #define DTYPE_PROC 0x03 // Processor #define DTYPE_WORM 0x04 // Write-once read-multiple #define DTYPE_CROM 0x05 // CD-ROM device #define DTYPE_SCAN 0x06 // Scanner device #define DTYPE_OPTI 0x07 // Optical memory device #define DTYPE_JUKE 0x08 // Medium Changer device #define DTYPE_COMM 0x09 // Communications device #define DTYPE_RESL 0x0A // Reserved (low) #define DTYPE_RESH 0x1E // Reserved (high) #define DTYPE_UNKNOWN 0x1F // Unknown or no device type //*************************************************************************** // %%% ANSI APPROVED VERSION DEFINITIONS %%% //*************************************************************************** #define ANSI_MAYBE 0x0 // Device may or may not be ANSI approved stand #define ANSI_SCSI1 0x1 // Device complies to ANSI X3.131-1986 (SCSI-1) #define ANSI_SCSI2 0x2 // Device complies to SCSI-2 #define ANSI_RESLO 0x3 // Reserved (low) #define ANSI_RESHI 0x7 // Reserved (high) typedef struct { USHORT Length; UCHAR ScsiStatus; UCHAR PathId; UCHAR TargetId; UCHAR Lun; UCHAR CdbLength; UCHAR SenseInfoLength; UCHAR DataIn; ULONG DataTransferLength; ULONG TimeOutValue; ULONG DataBufferOffset; ULONG SenseInfoOffset; UCHAR Cdb[16]; } SCSI_PASS_THROUGH, *PSCSI_PASS_THROUGH; typedef struct { USHORT Length; UCHAR ScsiStatus; UCHAR PathId; UCHAR TargetId; UCHAR Lun; UCHAR CdbLength; UCHAR SenseInfoLength; UCHAR DataIn; ULONG DataTransferLength; ULONG TimeOutValue; PVOID DataBuffer; ULONG SenseInfoOffset; UCHAR Cdb[16]; } SCSI_PASS_THROUGH_DIRECT, *PSCSI_PASS_THROUGH_DIRECT; typedef struct { SCSI_PASS_THROUGH_DIRECT spt; ULONG Filler; UCHAR ucSenseBuf[32]; } SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER, *PSCSI_PASS_THROUGH_DIRECT_WITH_BUFFER; typedef struct { ULONG Length; UCHAR PortNumber; UCHAR PathId; UCHAR TargetId; UCHAR Lun; } SCSI_ADDRESS, *PSCSI_ADDRESS; #define METHOD_BUFFERED 0 #define METHOD_IN_DIRECT 1 #define METHOD_OUT_DIRECT 2 #define METHOD_NEITHER 3 #define FILE_ANY_ACCESS 0 #ifndef FILE_READ_ACCESS #define FILE_READ_ACCESS (0x0001) #endif #ifndef FILE_WRITE_ACCESS #define FILE_WRITE_ACCESS (0x0002) #endif #define IOCTL_SCSI_BASE 0x00000004 #define SCSI_IOCTL_DATA_OUT 0 #define SCSI_IOCTL_DATA_IN 1 #define SCSI_IOCTL_DATA_UNSPECIFIED 2 #define CTL_CODE2( DevType, Function, Method, Access ) ( \ ((DevType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method) \ ) #define IOCTL_SCSI_PASS_THROUGH CTL_CODE2( IOCTL_SCSI_BASE, 0x0401, METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS ) #define IOCTL_SCSI_GET_CAPABILITIES CTL_CODE2( IOCTL_SCSI_BASE, 0x0404, METHOD_BUFFERED, FILE_ANY_ACCESS) #define IOCTL_SCSI_PASS_THROUGH_DIRECT CTL_CODE2( IOCTL_SCSI_BASE, 0x0405, METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS ) #define IOCTL_SCSI_GET_ADDRESS CTL_CODE2( IOCTL_SCSI_BASE, 0x0406, METHOD_BUFFERED, FILE_ANY_ACCESS ) #define SENSE_LEN 14 #define SRB_DIR_SCSI 0x00 #define SRB_POSTING 0x01 #define SRB_ENABLE_RESIDUAL_COUNT 0x04 #define SRB_DIR_IN 0x08 #define SRB_DIR_OUT 0x10 #define SRB_EVENT_NOTIFY 0x40 #define RESIDUAL_COUNT_SUPPORTED 0x02 #define MAX_SRB_TIMEOUT 1080001u #define DEFAULT_SRB_TIMEOUT 1080001u #define SC_HA_INQUIRY 0x00 #define SC_GET_DEV_TYPE 0x01 #define SC_EXEC_SCSI_CMD 0x02 #define SC_ABORT_SRB 0x03 #define SC_RESET_DEV 0x04 #define SC_SET_HA_PARMS 0x05 #define SC_GET_DISK_INFO 0x06 #define SC_RESCAN_SCSI_BUS 0x07 #define SC_GETSET_TIMEOUTS 0x08 #define SS_PENDING 0x00 #define SS_COMP 0x01 #define SS_ABORTED 0x02 #define SS_ABORT_FAIL 0x03 #define SS_ERR 0x04 #define SS_INVALID_CMD 0x80 #define SS_INVALID_HA 0x81 #define SS_NO_DEVICE 0x82 #define SS_INVALID_SRB 0xE0 #define SS_OLD_MANAGER 0xE1 #define SS_BUFFER_ALIGN 0xE1 #define SS_ILLEGAL_MODE 0xE2 #define SS_NO_ASPI 0xE3 #define SS_FAILED_INIT 0xE4 #define SS_ASPI_IS_BUSY 0xE5 #define SS_BUFFER_TO_BIG 0xE6 #define SS_BUFFER_TOO_BIG 0xE6 #define SS_MISMATCHED_COMPONENTS 0xE7 #define SS_NO_ADAPTERS 0xE8 #define SS_INSUFFICIENT_RESOURCES 0xE9 #define SS_ASPI_IS_SHUTDOWN 0xEA #define SS_BAD_INSTALL 0xEB #define HASTAT_OK 0x00 #define HASTAT_SEL_TO 0x11 #define HASTAT_DO_DU 0x12 #define HASTAT_BUS_FREE 0x13 #define HASTAT_PHASE_ERR 0x14 #define HASTAT_TIMEOUT 0x09 #define HASTAT_COMMAND_TIMEOUT 0x0B #define HASTAT_MESSAGE_REJECT 0x0D #define HASTAT_BUS_RESET 0x0E #define HASTAT_PARITY_ERROR 0x0F #define HASTAT_REQUEST_SENSE_FAILED 0x10 #define PACKED #pragma pack(1) typedef struct { BYTE SRB_Cmd; BYTE SRB_Status; BYTE SRB_HaID; BYTE SRB_Flags; DWORD SRB_Hdr_Rsvd; BYTE HA_Count; BYTE HA_SCSI_ID; BYTE HA_ManagerId[16]; BYTE HA_Identifier[16]; BYTE HA_Unique[16]; WORD HA_Rsvd1; BYTE pad[20]; } PACKED SRB_HAInquiry, *PSRB_HAInquiry, FAR *LPSRB_HAInquiry; typedef struct { BYTE SRB_Cmd; BYTE SRB_Status; BYTE SRB_HaID; BYTE SRB_Flags; DWORD SRB_Hdr_Rsvd; BYTE SRB_Target; BYTE SRB_Lun; BYTE SRB_DeviceType; BYTE SRB_Rsvd1; BYTE pad[68]; } PACKED SRB_GDEVBlock, *PSRB_GDEVBlock, FAR *LPSRB_GDEVBlock; typedef struct { BYTE SRB_Cmd; BYTE SRB_Status; BYTE SRB_HaID; BYTE SRB_Flags; DWORD SRB_Hdr_Rsvd; BYTE SRB_Target; BYTE SRB_Lun; WORD SRB_Rsvd1; DWORD SRB_BufLen; BYTE FAR *SRB_BufPointer; BYTE SRB_SenseLen; BYTE SRB_CDBLen; BYTE SRB_HaStat; BYTE SRB_TargStat; VOID FAR *SRB_PostProc; BYTE SRB_Rsvd2[20]; BYTE CDBByte[16]; BYTE SenseArea[SENSE_LEN+2]; } PACKED SRB_ExecSCSICmd, *PSRB_ExecSCSICmd, FAR *LPSRB_ExecSCSICmd; typedef struct { BYTE SRB_Cmd; BYTE SRB_Status; BYTE SRB_HaId; BYTE SRB_Flags; DWORD SRB_Hdr_Rsvd; } PACKED SRB, *PSRB, FAR *LPSRB; #pragma pack() struct CDDeviceInfo { char vendor[9]; char productId[17]; char rev[5]; char vendorSpec[21]; BYTE ha; BYTE tgt; BYTE lun; char scsiDriveLetter; // will be 0 if not using scsi }; class CDReadBuffer { public: int startFrame; int numFrames; int dataStartOffset; int dataLength; BYTE* buffer; int bufferSize; int index; bool wantsIndex; CDReadBuffer (const int numberOfFrames) : startFrame (0), numFrames (0), dataStartOffset (0), dataLength (0), index (0), wantsIndex (false) { bufferSize = 2352 * numberOfFrames; buffer = (BYTE*) malloc (bufferSize); } ~CDReadBuffer() { free (buffer); } bool isZero() const { BYTE* p = buffer + dataStartOffset; for (int i = dataLength; --i >= 0;) if (*p++ != 0) return false; return true; } }; class CDDeviceHandle; class CDController { public: CDController(); virtual ~CDController(); virtual bool read (CDReadBuffer* t) = 0; virtual void shutDown(); bool readAudio (CDReadBuffer* t, CDReadBuffer* overlapBuffer = 0); int getLastIndex(); public: bool initialised; CDDeviceHandle* deviceInfo; int framesToCheck, framesOverlap; void prepare (SRB_ExecSCSICmd& s); void perform (SRB_ExecSCSICmd& s); void setPaused (bool paused); }; #pragma pack(1) struct TOCTRACK { BYTE rsvd; BYTE ADR; BYTE trackNumber; BYTE rsvd2; BYTE addr[4]; }; struct TOC { WORD tocLen; BYTE firstTrack; BYTE lastTrack; TOCTRACK tracks[100]; }; #pragma pack() enum { READTYPE_ANY = 0, READTYPE_ATAPI1 = 1, READTYPE_ATAPI2 = 2, READTYPE_READ6 = 3, READTYPE_READ10 = 4, READTYPE_READ_D8 = 5, READTYPE_READ_D4 = 6, READTYPE_READ_D4_1 = 7, READTYPE_READ10_2 = 8 }; class CDDeviceHandle { public: CDDeviceHandle (const CDDeviceInfo* const device) : scsiHandle (0), readType (READTYPE_ANY), controller (0) { memcpy (&info, device, sizeof (info)); } ~CDDeviceHandle() { if (controller != 0) { controller->shutDown(); delete controller; } if (scsiHandle != 0) CloseHandle (scsiHandle); } bool readTOC (TOC* lpToc, bool useMSF); bool readAudio (CDReadBuffer* buffer, CDReadBuffer* overlapBuffer = 0); void openDrawer (bool shouldBeOpen); CDDeviceInfo info; HANDLE scsiHandle; BYTE readType; private: CDController* controller; bool testController (const int readType, CDController* const newController, CDReadBuffer* const bufferToUse); }; DWORD (*fGetASPI32SupportInfo)(void); DWORD (*fSendASPI32Command)(LPSRB); static HINSTANCE winAspiLib = 0; static bool usingScsi = false; static bool initialised = false; static bool InitialiseCDRipper() { if (! initialised) { initialised = true; OSVERSIONINFO info; info.dwOSVersionInfoSize = sizeof (info); GetVersionEx (&info); usingScsi = (info.dwPlatformId == VER_PLATFORM_WIN32_NT) && (info.dwMajorVersion > 4); if (! usingScsi) { fGetASPI32SupportInfo = 0; fSendASPI32Command = 0; winAspiLib = LoadLibrary (_T("WNASPI32.DLL")); if (winAspiLib != 0) { fGetASPI32SupportInfo = (DWORD(*)(void)) GetProcAddress (winAspiLib, "GetASPI32SupportInfo"); fSendASPI32Command = (DWORD(*)(LPSRB)) GetProcAddress (winAspiLib, "SendASPI32Command"); if (fGetASPI32SupportInfo == 0 || fSendASPI32Command == 0) return false; } else { usingScsi = true; } } } return true; } static void DeinitialiseCDRipper() { if (winAspiLib != 0) { fGetASPI32SupportInfo = 0; fSendASPI32Command = 0; FreeLibrary (winAspiLib); winAspiLib = 0; } initialised = false; } static HANDLE CreateSCSIDeviceHandle (char driveLetter) { TCHAR devicePath[8]; devicePath[0] = '\\'; devicePath[1] = '\\'; devicePath[2] = '.'; devicePath[3] = '\\'; devicePath[4] = driveLetter; devicePath[5] = ':'; devicePath[6] = 0; OSVERSIONINFO info; info.dwOSVersionInfoSize = sizeof (info); GetVersionEx (&info); DWORD flags = GENERIC_READ; if ((info.dwPlatformId == VER_PLATFORM_WIN32_NT) && (info.dwMajorVersion > 4)) flags = GENERIC_READ | GENERIC_WRITE; HANDLE h = CreateFile (devicePath, flags, FILE_SHARE_WRITE | FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0); if (h == INVALID_HANDLE_VALUE) { flags ^= GENERIC_WRITE; h = CreateFile (devicePath, flags, FILE_SHARE_WRITE | FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0); } return h; } static DWORD performScsiPassThroughCommand (const LPSRB_ExecSCSICmd srb, const char driveLetter, HANDLE& deviceHandle, const bool retryOnFailure = true) { SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER s; zerostruct (s); s.spt.Length = sizeof (SCSI_PASS_THROUGH); s.spt.CdbLength = srb->SRB_CDBLen; s.spt.DataIn = (BYTE) ((srb->SRB_Flags & SRB_DIR_IN) ? SCSI_IOCTL_DATA_IN : ((srb->SRB_Flags & SRB_DIR_OUT) ? SCSI_IOCTL_DATA_OUT : SCSI_IOCTL_DATA_UNSPECIFIED)); s.spt.DataTransferLength = srb->SRB_BufLen; s.spt.TimeOutValue = 5; s.spt.DataBuffer = srb->SRB_BufPointer; s.spt.SenseInfoOffset = offsetof (SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER, ucSenseBuf); memcpy (s.spt.Cdb, srb->CDBByte, srb->SRB_CDBLen); srb->SRB_Status = SS_ERR; srb->SRB_TargStat = 0x0004; DWORD bytesReturned = 0; if (DeviceIoControl (deviceHandle, IOCTL_SCSI_PASS_THROUGH_DIRECT, &s, sizeof (s), &s, sizeof (s), &bytesReturned, 0) != 0) { srb->SRB_Status = SS_COMP; } else if (retryOnFailure) { const DWORD error = GetLastError(); if ((error == ERROR_MEDIA_CHANGED) || (error == ERROR_INVALID_HANDLE)) { if (error != ERROR_INVALID_HANDLE) CloseHandle (deviceHandle); deviceHandle = CreateSCSIDeviceHandle (driveLetter); return performScsiPassThroughCommand (srb, driveLetter, deviceHandle, false); } } return srb->SRB_Status; } // Controller types.. class ControllerType1 : public CDController { public: ControllerType1() {} ~ControllerType1() {} bool read (CDReadBuffer* rb) { if (rb->numFrames * 2352 > rb->bufferSize) return false; SRB_ExecSCSICmd s; prepare (s); s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY; s.SRB_BufLen = rb->bufferSize; s.SRB_BufPointer = rb->buffer; s.SRB_CDBLen = 12; s.CDBByte[0] = 0xBE; s.CDBByte[3] = (BYTE)((rb->startFrame >> 16) & 0xFF); s.CDBByte[4] = (BYTE)((rb->startFrame >> 8) & 0xFF); s.CDBByte[5] = (BYTE)(rb->startFrame & 0xFF); s.CDBByte[8] = (BYTE)(rb->numFrames & 0xFF); s.CDBByte[9] = (BYTE)((deviceInfo->readType == READTYPE_ATAPI1) ? 0x10 : 0xF0); perform (s); if (s.SRB_Status != SS_COMP) return false; rb->dataLength = rb->numFrames * 2352; rb->dataStartOffset = 0; return true; } }; class ControllerType2 : public CDController { public: ControllerType2() {} ~ControllerType2() {} void shutDown() { if (initialised) { BYTE bufPointer[] = { 0, 0, 0, 8, 83, 0, 0, 0, 0, 0, 8, 0 }; SRB_ExecSCSICmd s; prepare (s); s.SRB_Flags = SRB_EVENT_NOTIFY | SRB_ENABLE_RESIDUAL_COUNT; s.SRB_BufLen = 0x0C; s.SRB_BufPointer = bufPointer; s.SRB_CDBLen = 6; s.CDBByte[0] = 0x15; s.CDBByte[4] = 0x0C; perform (s); } } bool init() { SRB_ExecSCSICmd s; s.SRB_Status = SS_ERR; if (deviceInfo->readType == READTYPE_READ10_2) { BYTE bufPointer1[] = { 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 9, 48, 35, 6, 0, 0, 0, 0, 0, 128 }; BYTE bufPointer2[] = { 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 9, 48, 1, 6, 32, 7, 0, 0, 0, 0 }; for (int i = 0; i < 2; ++i) { prepare (s); s.SRB_Flags = SRB_EVENT_NOTIFY; s.SRB_BufLen = 0x14; s.SRB_BufPointer = (i == 0) ? bufPointer1 : bufPointer2; s.SRB_CDBLen = 6; s.CDBByte[0] = 0x15; s.CDBByte[1] = 0x10; s.CDBByte[4] = 0x14; perform (s); if (s.SRB_Status != SS_COMP) return false; } } else { BYTE bufPointer[] = { 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 9, 48 }; prepare (s); s.SRB_Flags = SRB_EVENT_NOTIFY; s.SRB_BufLen = 0x0C; s.SRB_BufPointer = bufPointer; s.SRB_CDBLen = 6; s.CDBByte[0] = 0x15; s.CDBByte[4] = 0x0C; perform (s); } return s.SRB_Status == SS_COMP; } bool read (CDReadBuffer* rb) { if (rb->numFrames * 2352 > rb->bufferSize) return false; if (!initialised) { initialised = init(); if (!initialised) return false; } SRB_ExecSCSICmd s; prepare (s); s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY; s.SRB_BufLen = rb->bufferSize; s.SRB_BufPointer = rb->buffer; s.SRB_CDBLen = 10; s.CDBByte[0] = 0x28; s.CDBByte[1] = (BYTE)(deviceInfo->info.lun << 5); s.CDBByte[3] = (BYTE)((rb->startFrame >> 16) & 0xFF); s.CDBByte[4] = (BYTE)((rb->startFrame >> 8) & 0xFF); s.CDBByte[5] = (BYTE)(rb->startFrame & 0xFF); s.CDBByte[8] = (BYTE)(rb->numFrames & 0xFF); perform (s); if (s.SRB_Status != SS_COMP) return false; rb->dataLength = rb->numFrames * 2352; rb->dataStartOffset = 0; return true; } }; class ControllerType3 : public CDController { public: ControllerType3() {} ~ControllerType3() {} bool read (CDReadBuffer* rb) { if (rb->numFrames * 2352 > rb->bufferSize) return false; if (!initialised) { setPaused (false); initialised = true; } SRB_ExecSCSICmd s; prepare (s); s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY; s.SRB_BufLen = rb->numFrames * 2352; s.SRB_BufPointer = rb->buffer; s.SRB_CDBLen = 12; s.CDBByte[0] = 0xD8; s.CDBByte[3] = (BYTE)((rb->startFrame >> 16) & 0xFF); s.CDBByte[4] = (BYTE)((rb->startFrame >> 8) & 0xFF); s.CDBByte[5] = (BYTE)(rb->startFrame & 0xFF); s.CDBByte[9] = (BYTE)(rb->numFrames & 0xFF); perform (s); if (s.SRB_Status != SS_COMP) return false; rb->dataLength = rb->numFrames * 2352; rb->dataStartOffset = 0; return true; } }; class ControllerType4 : public CDController { public: ControllerType4() {} ~ControllerType4() {} bool selectD4Mode() { BYTE bufPointer[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 48 }; SRB_ExecSCSICmd s; prepare (s); s.SRB_Flags = SRB_EVENT_NOTIFY; s.SRB_CDBLen = 6; s.SRB_BufLen = 12; s.SRB_BufPointer = bufPointer; s.CDBByte[0] = 0x15; s.CDBByte[1] = 0x10; s.CDBByte[4] = 0x08; perform (s); return s.SRB_Status == SS_COMP; } bool read (CDReadBuffer* rb) { if (rb->numFrames * 2352 > rb->bufferSize) return false; if (!initialised) { setPaused (true); if (deviceInfo->readType == READTYPE_READ_D4_1) selectD4Mode(); initialised = true; } SRB_ExecSCSICmd s; prepare (s); s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY; s.SRB_BufLen = rb->bufferSize; s.SRB_BufPointer = rb->buffer; s.SRB_CDBLen = 10; s.CDBByte[0] = 0xD4; s.CDBByte[3] = (BYTE)((rb->startFrame >> 16) & 0xFF); s.CDBByte[4] = (BYTE)((rb->startFrame >> 8) & 0xFF); s.CDBByte[5] = (BYTE)(rb->startFrame & 0xFF); s.CDBByte[8] = (BYTE)(rb->numFrames & 0xFF); perform (s); if (s.SRB_Status != SS_COMP) return false; rb->dataLength = rb->numFrames * 2352; rb->dataStartOffset = 0; return true; } }; CDController::CDController() : initialised (false) { } CDController::~CDController() { } void CDController::prepare (SRB_ExecSCSICmd& s) { zerostruct (s); s.SRB_Cmd = SC_EXEC_SCSI_CMD; s.SRB_HaID = deviceInfo->info.ha; s.SRB_Target = deviceInfo->info.tgt; s.SRB_Lun = deviceInfo->info.lun; s.SRB_SenseLen = SENSE_LEN; } void CDController::perform (SRB_ExecSCSICmd& s) { HANDLE event = CreateEvent (0, TRUE, FALSE, 0); s.SRB_PostProc = (void*)event; ResetEvent (event); DWORD status = (usingScsi) ? performScsiPassThroughCommand ((LPSRB_ExecSCSICmd)&s, deviceInfo->info.scsiDriveLetter, deviceInfo->scsiHandle) : fSendASPI32Command ((LPSRB)&s); if (status == SS_PENDING) WaitForSingleObject (event, 4000); CloseHandle (event); } void CDController::setPaused (bool paused) { SRB_ExecSCSICmd s; prepare (s); s.SRB_Flags = SRB_EVENT_NOTIFY; s.SRB_CDBLen = 10; s.CDBByte[0] = 0x4B; s.CDBByte[8] = (BYTE) (paused ? 0 : 1); perform (s); } void CDController::shutDown() { } bool CDController::readAudio (CDReadBuffer* rb, CDReadBuffer* overlapBuffer) { if (overlapBuffer != 0) { const bool canDoJitter = (overlapBuffer->bufferSize >= 2352 * framesToCheck); const bool doJitter = canDoJitter && ! overlapBuffer->isZero(); if (doJitter && overlapBuffer->startFrame > 0 && overlapBuffer->numFrames > 0 && overlapBuffer->dataLength > 0) { const int numFrames = rb->numFrames; if (overlapBuffer->startFrame == (rb->startFrame - framesToCheck)) { rb->startFrame -= framesOverlap; if (framesToCheck < framesOverlap && numFrames + framesOverlap <= rb->bufferSize / 2352) rb->numFrames += framesOverlap; } else { overlapBuffer->dataLength = 0; overlapBuffer->startFrame = 0; overlapBuffer->numFrames = 0; } } if (! read (rb)) return false; if (doJitter) { const int checkLen = framesToCheck * 2352; const int maxToCheck = rb->dataLength - checkLen; if (overlapBuffer->dataLength == 0 || overlapBuffer->isZero()) return true; BYTE* const p = overlapBuffer->buffer + overlapBuffer->dataStartOffset; bool found = false; for (int i = 0; i < maxToCheck; ++i) { if (!memcmp (p, rb->buffer + i, checkLen)) { i += checkLen; rb->dataStartOffset = i; rb->dataLength -= i; rb->startFrame = overlapBuffer->startFrame + framesToCheck; found = true; break; } } rb->numFrames = rb->dataLength / 2352; rb->dataLength = 2352 * rb->numFrames; if (!found) return false; } if (canDoJitter) { memcpy (overlapBuffer->buffer, rb->buffer + rb->dataStartOffset + 2352 * (rb->numFrames - framesToCheck), 2352 * framesToCheck); overlapBuffer->startFrame = rb->startFrame + rb->numFrames - framesToCheck; overlapBuffer->numFrames = framesToCheck; overlapBuffer->dataLength = 2352 * framesToCheck; overlapBuffer->dataStartOffset = 0; } else { overlapBuffer->startFrame = 0; overlapBuffer->numFrames = 0; overlapBuffer->dataLength = 0; } return true; } else { return read (rb); } } int CDController::getLastIndex() { char qdata[100]; SRB_ExecSCSICmd s; prepare (s); s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY; s.SRB_BufLen = sizeof (qdata); s.SRB_BufPointer = (BYTE*)qdata; s.SRB_CDBLen = 12; s.CDBByte[0] = 0x42; s.CDBByte[1] = (BYTE)(deviceInfo->info.lun << 5); s.CDBByte[2] = 64; s.CDBByte[3] = 1; // get current position s.CDBByte[7] = 0; s.CDBByte[8] = (BYTE)sizeof (qdata); perform (s); if (s.SRB_Status == SS_COMP) return qdata[7]; return 0; } bool CDDeviceHandle::readTOC (TOC* lpToc, bool useMSF) { HANDLE event = CreateEvent (0, TRUE, FALSE, 0); SRB_ExecSCSICmd s; zerostruct (s); s.SRB_Cmd = SC_EXEC_SCSI_CMD; s.SRB_HaID = info.ha; s.SRB_Target = info.tgt; s.SRB_Lun = info.lun; s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY; s.SRB_BufLen = 0x324; s.SRB_BufPointer = (BYTE*)lpToc; s.SRB_SenseLen = 0x0E; s.SRB_CDBLen = 0x0A; s.SRB_PostProc = (void*)event; s.CDBByte[0] = 0x43; s.CDBByte[1] = (BYTE)(useMSF ? 0x02 : 0x00); s.CDBByte[7] = 0x03; s.CDBByte[8] = 0x24; ResetEvent (event); DWORD status = (usingScsi) ? performScsiPassThroughCommand ((LPSRB_ExecSCSICmd)&s, info.scsiDriveLetter, scsiHandle) : fSendASPI32Command ((LPSRB)&s); if (status == SS_PENDING) WaitForSingleObject (event, 4000); CloseHandle (event); return (s.SRB_Status == SS_COMP); } bool CDDeviceHandle::readAudio (CDReadBuffer* const buffer, CDReadBuffer* const overlapBuffer) { if (controller == 0) { testController (READTYPE_ATAPI2, new ControllerType1(), buffer) || testController (READTYPE_ATAPI1, new ControllerType1(), buffer) || testController (READTYPE_READ10_2, new ControllerType2(), buffer) || testController (READTYPE_READ10, new ControllerType2(), buffer) || testController (READTYPE_READ_D8, new ControllerType3(), buffer) || testController (READTYPE_READ_D4, new ControllerType4(), buffer) || testController (READTYPE_READ_D4_1, new ControllerType4(), buffer); } buffer->index = 0; if ((controller != 0) && controller->readAudio (buffer, overlapBuffer)) { if (buffer->wantsIndex) buffer->index = controller->getLastIndex(); return true; } return false; } void CDDeviceHandle::openDrawer (bool shouldBeOpen) { if (shouldBeOpen) { if (controller != 0) { controller->shutDown(); delete controller; controller = 0; } if (scsiHandle != 0) { CloseHandle (scsiHandle); scsiHandle = 0; } } SRB_ExecSCSICmd s; zerostruct (s); s.SRB_Cmd = SC_EXEC_SCSI_CMD; s.SRB_HaID = info.ha; s.SRB_Target = info.tgt; s.SRB_Lun = info.lun; s.SRB_SenseLen = SENSE_LEN; s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY; s.SRB_BufLen = 0; s.SRB_BufPointer = 0; s.SRB_CDBLen = 12; s.CDBByte[0] = 0x1b; s.CDBByte[1] = (BYTE)(info.lun << 5); s.CDBByte[4] = (BYTE)((shouldBeOpen) ? 2 : 3); HANDLE event = CreateEvent (0, TRUE, FALSE, 0); s.SRB_PostProc = (void*)event; ResetEvent (event); DWORD status = (usingScsi) ? performScsiPassThroughCommand ((LPSRB_ExecSCSICmd)&s, info.scsiDriveLetter, scsiHandle) : fSendASPI32Command ((LPSRB)&s); if (status == SS_PENDING) WaitForSingleObject (event, 4000); CloseHandle (event); } bool CDDeviceHandle::testController (const int type, CDController* const newController, CDReadBuffer* const rb) { controller = newController; readType = (BYTE)type; controller->deviceInfo = this; controller->framesToCheck = 1; controller->framesOverlap = 3; bool passed = false; memset (rb->buffer, 0xcd, rb->bufferSize); if (controller->read (rb)) { passed = true; int* p = (int*) (rb->buffer + rb->dataStartOffset); int wrong = 0; for (int i = rb->dataLength / 4; --i >= 0;) { if (*p++ == (int) 0xcdcdcdcd) { if (++wrong == 4) { passed = false; break; } } else { wrong = 0; } } } if (! passed) { controller->shutDown(); delete controller; controller = 0; } return passed; } static void GetAspiDeviceInfo (CDDeviceInfo* dev, BYTE ha, BYTE tgt, BYTE lun) { HANDLE event = CreateEvent (0, TRUE, FALSE, 0); const int bufSize = 128; BYTE buffer[bufSize]; zeromem (buffer, bufSize); SRB_ExecSCSICmd s; zerostruct (s); s.SRB_Cmd = SC_EXEC_SCSI_CMD; s.SRB_HaID = ha; s.SRB_Target = tgt; s.SRB_Lun = lun; s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY; s.SRB_BufLen = bufSize; s.SRB_BufPointer = buffer; s.SRB_SenseLen = SENSE_LEN; s.SRB_CDBLen = 6; s.SRB_PostProc = (void*)event; s.CDBByte[0] = SCSI_INQUIRY; s.CDBByte[4] = 100; ResetEvent (event); if (fSendASPI32Command ((LPSRB)&s) == SS_PENDING) WaitForSingleObject (event, 4000); CloseHandle (event); if (s.SRB_Status == SS_COMP) { memcpy (dev->vendor, &buffer[8], 8); memcpy (dev->productId, &buffer[16], 16); memcpy (dev->rev, &buffer[32], 4); memcpy (dev->vendorSpec, &buffer[36], 20); } } static int FindCDDevices (CDDeviceInfo* const list, int maxItems) { int count = 0; if (usingScsi) { for (char driveLetter = 'b'; driveLetter <= 'z'; ++driveLetter) { TCHAR drivePath[8]; drivePath[0] = driveLetter; drivePath[1] = ':'; drivePath[2] = '\\'; drivePath[3] = 0; if (GetDriveType (drivePath) == DRIVE_CDROM) { HANDLE h = CreateSCSIDeviceHandle (driveLetter); if (h != INVALID_HANDLE_VALUE) { BYTE buffer[100], passThroughStruct[1024]; zeromem (buffer, sizeof (buffer)); zeromem (passThroughStruct, sizeof (passThroughStruct)); PSCSI_PASS_THROUGH_DIRECT_WITH_BUFFER p = (PSCSI_PASS_THROUGH_DIRECT_WITH_BUFFER)passThroughStruct; p->spt.Length = sizeof (SCSI_PASS_THROUGH); p->spt.CdbLength = 6; p->spt.SenseInfoLength = 24; p->spt.DataIn = SCSI_IOCTL_DATA_IN; p->spt.DataTransferLength = 100; p->spt.TimeOutValue = 2; p->spt.DataBuffer = buffer; p->spt.SenseInfoOffset = offsetof (SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER, ucSenseBuf); p->spt.Cdb[0] = 0x12; p->spt.Cdb[4] = 100; DWORD bytesReturned = 0; if (DeviceIoControl (h, IOCTL_SCSI_PASS_THROUGH_DIRECT, p, sizeof (SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER), p, sizeof (SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER), &bytesReturned, 0) != 0) { zeromem (&list[count], sizeof (CDDeviceInfo)); list[count].scsiDriveLetter = driveLetter; memcpy (list[count].vendor, &buffer[8], 8); memcpy (list[count].productId, &buffer[16], 16); memcpy (list[count].rev, &buffer[32], 4); memcpy (list[count].vendorSpec, &buffer[36], 20); zeromem (passThroughStruct, sizeof (passThroughStruct)); PSCSI_ADDRESS scsiAddr = (PSCSI_ADDRESS)passThroughStruct; scsiAddr->Length = sizeof (SCSI_ADDRESS); if (DeviceIoControl (h, IOCTL_SCSI_GET_ADDRESS, 0, 0, scsiAddr, sizeof (SCSI_ADDRESS), &bytesReturned, 0) != 0) { list[count].ha = scsiAddr->PortNumber; list[count].tgt = scsiAddr->TargetId; list[count].lun = scsiAddr->Lun; ++count; } } CloseHandle (h); } } } } else { const DWORD d = fGetASPI32SupportInfo(); BYTE status = HIBYTE (LOWORD (d)); if (status != SS_COMP || status == SS_NO_ADAPTERS) return 0; const int numAdapters = LOBYTE (LOWORD (d)); for (BYTE ha = 0; ha < numAdapters; ++ha) { SRB_HAInquiry s; zerostruct (s); s.SRB_Cmd = SC_HA_INQUIRY; s.SRB_HaID = ha; fSendASPI32Command ((LPSRB)&s); if (s.SRB_Status == SS_COMP) { maxItems = (int)s.HA_Unique[3]; if (maxItems == 0) maxItems = 8; for (BYTE tgt = 0; tgt < maxItems; ++tgt) { for (BYTE lun = 0; lun < 8; ++lun) { SRB_GDEVBlock sb; zerostruct (sb); sb.SRB_Cmd = SC_GET_DEV_TYPE; sb.SRB_HaID = ha; sb.SRB_Target = tgt; sb.SRB_Lun = lun; fSendASPI32Command ((LPSRB) &sb); if (sb.SRB_Status == SS_COMP && sb.SRB_DeviceType == DTYPE_CROM) { zeromem (&list[count], sizeof (CDDeviceInfo)); list[count].ha = ha; list[count].tgt = tgt; list[count].lun = lun; GetAspiDeviceInfo (&(list[count]), ha, tgt, lun); ++count; } } } } } } return count; } static int ripperUsers = 0; static bool initialisedOk = false; class DeinitialiseTimer : private Timer, private DeletedAtShutdown { DeinitialiseTimer (const DeinitialiseTimer&); const DeinitialiseTimer& operator= (const DeinitialiseTimer&); public: DeinitialiseTimer() { startTimer (4000); } ~DeinitialiseTimer() { if (--ripperUsers == 0) DeinitialiseCDRipper(); } void timerCallback() { delete this; } juce_UseDebuggingNewOperator }; static void incUserCount() { if (ripperUsers++ == 0) initialisedOk = InitialiseCDRipper(); } static void decUserCount() { new DeinitialiseTimer(); } struct CDDeviceWrapper { CDDeviceHandle* cdH; CDReadBuffer* overlapBuffer; bool jitter; }; static int getAddressOf (const TOCTRACK* const t) { return (((DWORD)t->addr[0]) << 24) + (((DWORD)t->addr[1]) << 16) + (((DWORD)t->addr[2]) << 8) + ((DWORD)t->addr[3]); } static int getMSFAddressOf (const TOCTRACK* const t) { return 60 * t->addr[1] + t->addr[2]; } static const int samplesPerFrame = 44100 / 75; static const int bytesPerFrame = samplesPerFrame * 4; const StringArray AudioCDReader::getAvailableCDNames() { StringArray results; incUserCount(); if (initialisedOk) { CDDeviceInfo list[8]; const int num = FindCDDevices (list, 8); decUserCount(); for (int i = 0; i < num; ++i) { String s; if (list[i].scsiDriveLetter > 0) s << String::charToString (list[i].scsiDriveLetter).toUpperCase() << T(": "); s << String (list[i].vendor).trim() << T(" ") << String (list[i].productId).trim() << T(" ") << String (list[i].rev).trim(); results.add (s); } } return results; } static CDDeviceHandle* openHandle (const CDDeviceInfo* const device) { SRB_GDEVBlock s; zerostruct (s); s.SRB_Cmd = SC_GET_DEV_TYPE; s.SRB_HaID = device->ha; s.SRB_Target = device->tgt; s.SRB_Lun = device->lun; if (usingScsi) { HANDLE h = CreateSCSIDeviceHandle (device->scsiDriveLetter); if (h != INVALID_HANDLE_VALUE) { CDDeviceHandle* cdh = new CDDeviceHandle (device); cdh->scsiHandle = h; return cdh; } } else { if (fSendASPI32Command ((LPSRB)&s) == SS_COMP && s.SRB_DeviceType == DTYPE_CROM) { return new CDDeviceHandle (device); } } return 0; } AudioCDReader* AudioCDReader::createReaderForCD (const int deviceIndex) { incUserCount(); if (initialisedOk) { CDDeviceInfo list[8]; const int num = FindCDDevices (list, 8); if (((unsigned int) deviceIndex) < (unsigned int) num) { CDDeviceHandle* const handle = openHandle (&(list[deviceIndex])); if (handle != 0) { CDDeviceWrapper* const d = new CDDeviceWrapper(); d->cdH = handle; d->overlapBuffer = new CDReadBuffer(3); return new AudioCDReader (d); } } } decUserCount(); return 0; } AudioCDReader::AudioCDReader (void* handle_) : AudioFormatReader (0, T("CD Audio")), handle (handle_), indexingEnabled (false), lastIndex (0), firstFrameInBuffer (0), samplesInBuffer (0) { jassert (handle_ != 0); refreshTrackLengths(); sampleRate = 44100.0; bitsPerSample = 16; lengthInSamples = getPositionOfTrackStart (numTracks); numChannels = 2; usesFloatingPointData = false; buffer.setSize (4 * bytesPerFrame, true); } AudioCDReader::~AudioCDReader() { CDDeviceWrapper* const device = (CDDeviceWrapper*)handle; delete device->cdH; delete device->overlapBuffer; delete device; decUserCount(); } bool AudioCDReader::readSamples (int** destSamples, int numDestChannels, int startOffsetInDestBuffer, int64 startSampleInFile, int numSamples) { CDDeviceWrapper* const device = (CDDeviceWrapper*) handle; bool ok = true; while (numSamples > 0) { const int bufferStartSample = firstFrameInBuffer * samplesPerFrame; const int bufferEndSample = bufferStartSample + samplesInBuffer; if (startSampleInFile >= bufferStartSample && startSampleInFile < bufferEndSample) { const int toDo = (int) jmin ((int64) numSamples, bufferEndSample - startSampleInFile); int* const l = destSamples[0] + startOffsetInDestBuffer; int* const r = numDestChannels > 1 ? (destSamples[1] + startOffsetInDestBuffer) : 0; const short* src = (const short*) buffer.getData(); src += 2 * (startSampleInFile - bufferStartSample); for (int i = 0; i < toDo; ++i) { l[i] = src [i << 1] << 16; if (r != 0) r[i] = src [(i << 1) + 1] << 16; } startOffsetInDestBuffer += toDo; startSampleInFile += toDo; numSamples -= toDo; } else { const int framesInBuffer = buffer.getSize() / bytesPerFrame; const int frameNeeded = (int) (startSampleInFile / samplesPerFrame); if (firstFrameInBuffer + framesInBuffer != frameNeeded) { device->overlapBuffer->dataLength = 0; device->overlapBuffer->startFrame = 0; device->overlapBuffer->numFrames = 0; device->jitter = false; } firstFrameInBuffer = frameNeeded; lastIndex = 0; CDReadBuffer readBuffer (framesInBuffer + 4); readBuffer.wantsIndex = indexingEnabled; int i; for (i = 5; --i >= 0;) { readBuffer.startFrame = frameNeeded; readBuffer.numFrames = framesInBuffer; if (device->cdH->readAudio (&readBuffer, (device->jitter) ? device->overlapBuffer : 0)) break; else device->overlapBuffer->dataLength = 0; } if (i >= 0) { memcpy ((char*) buffer.getData(), readBuffer.buffer + readBuffer.dataStartOffset, readBuffer.dataLength); samplesInBuffer = readBuffer.dataLength >> 2; lastIndex = readBuffer.index; } else { int* l = destSamples[0] + startOffsetInDestBuffer; int* r = numDestChannels > 1 ? (destSamples[1] + startOffsetInDestBuffer) : 0; while (--numSamples >= 0) { *l++ = 0; if (r != 0) *r++ = 0; } // sometimes the read fails for just the very last couple of blocks, so // we'll ignore and errors in the last half-second of the disk.. ok = startSampleInFile > (trackStarts [numTracks] - 20000); break; } } } return ok; } bool AudioCDReader::isCDStillPresent() const { TOC toc; zerostruct (toc); return ((CDDeviceWrapper*)handle)->cdH->readTOC (&toc, false); } int AudioCDReader::getNumTracks() const { return numTracks; } int AudioCDReader::getPositionOfTrackStart (int trackNum) const { return (trackNum >= 0 && trackNum <= numTracks) ? trackStarts [trackNum] * samplesPerFrame : 0; } void AudioCDReader::refreshTrackLengths() { zeromem (trackStarts, sizeof (trackStarts)); zeromem (audioTracks, sizeof (audioTracks)); TOC toc; zerostruct (toc); if (((CDDeviceWrapper*)handle)->cdH->readTOC (&toc, false)) { numTracks = 1 + toc.lastTrack - toc.firstTrack; for (int i = 0; i <= numTracks; ++i) { trackStarts[i] = getAddressOf (&toc.tracks[i]); audioTracks[i] = ((toc.tracks[i].ADR & 4) == 0); } } else { numTracks = 0; } } bool AudioCDReader::isTrackAudio (int trackNum) const { return (trackNum >= 0 && trackNum <= numTracks) ? audioTracks [trackNum] : false; } void AudioCDReader::enableIndexScanning (bool b) { indexingEnabled = b; } int AudioCDReader::getLastIndex() const { return lastIndex; } const int framesPerIndexRead = 4; int AudioCDReader::getIndexAt (int samplePos) { CDDeviceWrapper* const device = (CDDeviceWrapper*) handle; const int frameNeeded = samplePos / samplesPerFrame; device->overlapBuffer->dataLength = 0; device->overlapBuffer->startFrame = 0; device->overlapBuffer->numFrames = 0; device->jitter = false; firstFrameInBuffer = 0; lastIndex = 0; CDReadBuffer readBuffer (4 + framesPerIndexRead); readBuffer.wantsIndex = true; int i; for (i = 5; --i >= 0;) { readBuffer.startFrame = frameNeeded; readBuffer.numFrames = framesPerIndexRead; if (device->cdH->readAudio (&readBuffer, (false) ? device->overlapBuffer : 0)) break; } if (i >= 0) return readBuffer.index; return -1; } const Array AudioCDReader::findIndexesInTrack (const int trackNumber) { Array indexes; const int trackStart = getPositionOfTrackStart (trackNumber); const int trackEnd = getPositionOfTrackStart (trackNumber + 1); bool needToScan = true; if (trackEnd - trackStart > 20 * 44100) { // check the end of the track for indexes before scanning the whole thing needToScan = false; int pos = jmax (trackStart, trackEnd - 44100 * 5); bool seenAnIndex = false; while (pos <= trackEnd - samplesPerFrame) { const int index = getIndexAt (pos); if (index == 0) { // lead-out, so skip back a bit if we've not found any indexes yet.. if (seenAnIndex) break; pos -= 44100 * 5; if (pos < trackStart) break; } else { if (index > 0) seenAnIndex = true; if (index > 1) { needToScan = true; break; } pos += samplesPerFrame * framesPerIndexRead; } } } if (needToScan) { CDDeviceWrapper* const device = (CDDeviceWrapper*) handle; int pos = trackStart; int last = -1; while (pos < trackEnd - samplesPerFrame * 10) { const int frameNeeded = pos / samplesPerFrame; device->overlapBuffer->dataLength = 0; device->overlapBuffer->startFrame = 0; device->overlapBuffer->numFrames = 0; device->jitter = false; firstFrameInBuffer = 0; CDReadBuffer readBuffer (4); readBuffer.wantsIndex = true; int i; for (i = 5; --i >= 0;) { readBuffer.startFrame = frameNeeded; readBuffer.numFrames = framesPerIndexRead; if (device->cdH->readAudio (&readBuffer, (false) ? device->overlapBuffer : 0)) break; } if (i < 0) break; if (readBuffer.index > last && readBuffer.index > 1) { last = readBuffer.index; indexes.add (pos); } pos += samplesPerFrame * framesPerIndexRead; } indexes.removeValue (trackStart); } return indexes; } int AudioCDReader::getCDDBId() { refreshTrackLengths(); if (numTracks > 0) { TOC toc; zerostruct (toc); if (((CDDeviceWrapper*) handle)->cdH->readTOC (&toc, true)) { int n = 0; for (int i = numTracks; --i >= 0;) { int j = getMSFAddressOf (&toc.tracks[i]); while (j > 0) { n += (j % 10); j /= 10; } } if (n != 0) { const int t = getMSFAddressOf (&toc.tracks[numTracks]) - getMSFAddressOf (&toc.tracks[0]); return ((n % 0xff) << 24) | (t << 8) | numTracks; } } } return 0; } void AudioCDReader::ejectDisk() { ((CDDeviceWrapper*) handle)->cdH->openDrawer (true); } static IDiscRecorder* enumCDBurners (StringArray* list, int indexToOpen, IDiscMaster** master) { CoInitialize (0); IDiscMaster* dm; IDiscRecorder* result = 0; if (SUCCEEDED (CoCreateInstance (CLSID_MSDiscMasterObj, 0, CLSCTX_INPROC_SERVER | CLSCTX_LOCAL_SERVER, IID_IDiscMaster, (void**) &dm))) { if (SUCCEEDED (dm->Open())) { IEnumDiscRecorders* drEnum = 0; if (SUCCEEDED (dm->EnumDiscRecorders (&drEnum))) { IDiscRecorder* dr = 0; DWORD dummy; int index = 0; while (drEnum->Next (1, &dr, &dummy) == S_OK) { if (indexToOpen == index) { result = dr; break; } else if (list != 0) { BSTR path; if (SUCCEEDED (dr->GetPath (&path))) list->add ((const WCHAR*) path); } ++index; dr->Release(); } drEnum->Release(); } /*if (redbookFormat != 0) { IEnumDiscMasterFormats* mfEnum; if (SUCCEEDED (dm->EnumDiscMasterFormats (&mfEnum))) { IID formatIID; DWORD dummy; while (mfEnum->Next (1, &formatIID, &dummy) == S_OK) { } mfEnum->Release(); } redbookFormat }*/ if (master == 0) dm->Close(); } if (master != 0) *master = dm; else dm->Release(); } return result; } const StringArray AudioCDBurner::findAvailableDevices() { StringArray devs; enumCDBurners (&devs, -1, 0); return devs; } AudioCDBurner* AudioCDBurner::openDevice (const int deviceIndex) { AudioCDBurner* b = new AudioCDBurner (deviceIndex); if (b->internal == 0) deleteAndZero (b); return b; } class CDBurnerInfo : public IDiscMasterProgressEvents { public: CDBurnerInfo() : refCount (1), progress (0), shouldCancel (false), listener (0) { } ~CDBurnerInfo() { } HRESULT __stdcall QueryInterface (REFIID id, void __RPC_FAR* __RPC_FAR* result) { if (result == 0) return E_POINTER; if (id == IID_IUnknown || id == IID_IDiscMasterProgressEvents) { AddRef(); *result = this; return S_OK; } *result = 0; return E_NOINTERFACE; } ULONG __stdcall AddRef() { return ++refCount; } ULONG __stdcall Release() { jassert (refCount > 0); const int r = --refCount; if (r == 0) delete this; return r; } HRESULT __stdcall QueryCancel (boolean* pbCancel) { if (listener != 0 && ! shouldCancel) shouldCancel = listener->audioCDBurnProgress (progress); *pbCancel = shouldCancel; return S_OK; } HRESULT __stdcall NotifyBlockProgress (long nCompleted, long nTotal) { progress = nCompleted / (float) nTotal; shouldCancel = listener != 0 && listener->audioCDBurnProgress (progress); return E_NOTIMPL; } HRESULT __stdcall NotifyPnPActivity (void) { return E_NOTIMPL; } HRESULT __stdcall NotifyAddProgress (long /*nCompletedSteps*/, long /*nTotalSteps*/) { return E_NOTIMPL; } HRESULT __stdcall NotifyTrackProgress (long /*nCurrentTrack*/, long /*nTotalTracks*/) { return E_NOTIMPL; } HRESULT __stdcall NotifyPreparingBurn (long /*nEstimatedSeconds*/) { return E_NOTIMPL; } HRESULT __stdcall NotifyClosingDisc (long /*nEstimatedSeconds*/) { return E_NOTIMPL; } HRESULT __stdcall NotifyBurnComplete (HRESULT /*status*/) { return E_NOTIMPL; } HRESULT __stdcall NotifyEraseComplete (HRESULT /*status*/) { return E_NOTIMPL; } IDiscMaster* discMaster; IDiscRecorder* discRecorder; IRedbookDiscMaster* redbook; AudioCDBurner::BurnProgressListener* listener; float progress; bool shouldCancel; private: int refCount; }; AudioCDBurner::AudioCDBurner (const int deviceIndex) : internal (0) { IDiscMaster* discMaster; IDiscRecorder* dr = enumCDBurners (0, deviceIndex, &discMaster); if (dr != 0) { IRedbookDiscMaster* redbook; HRESULT hr = discMaster->SetActiveDiscMasterFormat (IID_IRedbookDiscMaster, (void**) &redbook); hr = discMaster->SetActiveDiscRecorder (dr); CDBurnerInfo* const info = new CDBurnerInfo(); internal = info; info->discMaster = discMaster; info->discRecorder = dr; info->redbook = redbook; } } AudioCDBurner::~AudioCDBurner() { CDBurnerInfo* const info = (CDBurnerInfo*) internal; if (info != 0) { info->discRecorder->Close(); info->redbook->Release(); info->discRecorder->Release(); info->discMaster->Release(); info->Release(); } } bool AudioCDBurner::isDiskPresent() const { CDBurnerInfo* const info = (CDBurnerInfo*) internal; HRESULT hr = info->discRecorder->OpenExclusive(); long type, flags; hr = info->discRecorder->QueryMediaType (&type, &flags); info->discRecorder->Close(); return hr == S_OK && type != 0 && (flags & MEDIA_WRITABLE) != 0; } int AudioCDBurner::getNumAvailableAudioBlocks() const { CDBurnerInfo* const info = (CDBurnerInfo*) internal; long blocksFree = 0; info->redbook->GetAvailableAudioTrackBlocks (&blocksFree); return blocksFree; } const String AudioCDBurner::burn (AudioCDBurner::BurnProgressListener* listener, const bool ejectDiscAfterwards, const bool performFakeBurnForTesting) { CDBurnerInfo* const info = (CDBurnerInfo*) internal; info->listener = listener; info->progress = 0; info->shouldCancel = false; UINT_PTR cookie; HRESULT hr = info->discMaster->ProgressAdvise (info, &cookie); hr = info->discMaster->RecordDisc (performFakeBurnForTesting, ejectDiscAfterwards); String error; if (hr != S_OK) { const char* e = "Couldn't open or write to the CD device"; if (hr == IMAPI_E_USERABORT) e = "User cancelled the write operation"; else if (hr == IMAPI_E_MEDIUM_NOTPRESENT || hr == IMAPI_E_TRACKOPEN) e = "No Disk present"; error = e; } info->discMaster->ProgressUnadvise (cookie); info->listener = 0; return error; } bool AudioCDBurner::addAudioTrack (AudioSource* source, int numSamples) { if (source == 0) return false; CDBurnerInfo* const info = (CDBurnerInfo*) internal; long bytesPerBlock; HRESULT hr = info->redbook->GetAudioBlockSize (&bytesPerBlock); const int samplesPerBlock = bytesPerBlock / 4; bool ok = true; hr = info->redbook->CreateAudioTrack ((long) numSamples / (bytesPerBlock * 4)); byte* const buffer = (byte*) juce_malloc (bytesPerBlock); AudioSampleBuffer sourceBuffer (2, samplesPerBlock); int samplesDone = 0; source->prepareToPlay (samplesPerBlock, 44100.0); while (ok) { { AudioSourceChannelInfo info; info.buffer = &sourceBuffer; info.numSamples = samplesPerBlock; info.startSample = 0; sourceBuffer.clear(); source->getNextAudioBlock (info); } zeromem (buffer, bytesPerBlock); AudioDataConverters::convertFloatToInt16LE (sourceBuffer.getSampleData (0, 0), buffer, samplesPerBlock, 4); AudioDataConverters::convertFloatToInt16LE (sourceBuffer.getSampleData (1, 0), buffer + 2, samplesPerBlock, 4); hr = info->redbook->AddAudioTrackBlocks (buffer, bytesPerBlock); if (hr != S_OK) ok = false; samplesDone += samplesPerBlock; if (samplesDone >= numSamples) break; } juce_free (buffer); hr = info->redbook->CloseAudioTrack(); delete source; return ok && hr == S_OK; } #endif /********* End of inlined file: juce_win32_AudioCDReader.cpp *********/ /********* Start of inlined file: juce_win32_Midi.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE static const int midiBufferSize = 1024 * 10; static const int numInHeaders = 32; static const int inBufferSize = 256; static Array activeMidiThreads; using ::free; class MidiInThread : public Thread { public: MidiInThread (MidiInput* const input_, MidiInputCallback* const callback_) : Thread ("Juce Midi"), hIn (0), input (input_), callback (callback_), isStarted (false), startTime (0), pendingLength(0) { for (int i = numInHeaders; --i >= 0;) { zeromem (&hdr[i], sizeof (MIDIHDR)); hdr[i].lpData = inData[i]; hdr[i].dwBufferLength = inBufferSize; } }; ~MidiInThread() { stop(); if (hIn != 0) { int count = 5; while (--count >= 0) { if (midiInClose (hIn) == MMSYSERR_NOERROR) break; Sleep (20); } } } void handle (const uint32 message, const uint32 timeStamp) throw() { const int byte = message & 0xff; if (byte < 0x80) return; const int numBytes = MidiMessage::getMessageLengthFromFirstByte ((uint8) byte); const double time = timeStampToTime (timeStamp); lock.enter(); if (pendingLength < midiBufferSize - 12) { char* const p = pending + pendingLength; *(double*) p = time; *(uint32*) (p + 8) = numBytes; *(uint32*) (p + 12) = message; pendingLength += 12 + numBytes; } else { jassertfalse // midi buffer overflow! You might need to increase the size.. } lock.exit(); notify(); } void handleSysEx (MIDIHDR* const hdr, const uint32 timeStamp) throw() { const int num = hdr->dwBytesRecorded; if (num > 0) { const double time = timeStampToTime (timeStamp); lock.enter(); if (pendingLength < midiBufferSize - (8 + num)) { char* const p = pending + pendingLength; *(double*) p = time; *(uint32*) (p + 8) = num; memcpy (p + 12, hdr->lpData, num); pendingLength += 12 + num; } else { jassertfalse // midi buffer overflow! You might need to increase the size.. } lock.exit(); notify(); } } void writeBlock (const int i) throw() { hdr[i].dwBytesRecorded = 0; MMRESULT res = midiInPrepareHeader (hIn, &hdr[i], sizeof (MIDIHDR)); jassert (res == MMSYSERR_NOERROR); res = midiInAddBuffer (hIn, &hdr[i], sizeof (MIDIHDR)); jassert (res == MMSYSERR_NOERROR); } void run() { MemoryBlock pendingCopy (64); while (! threadShouldExit()) { for (int i = 0; i < numInHeaders; ++i) { if ((hdr[i].dwFlags & WHDR_DONE) != 0) { MMRESULT res = midiInUnprepareHeader (hIn, &hdr[i], sizeof (MIDIHDR)); (void) res; jassert (res == MMSYSERR_NOERROR); writeBlock (i); } } lock.enter(); int len = pendingLength; if (len > 0) { pendingCopy.ensureSize (len); pendingCopy.copyFrom (pending, 0, len); pendingLength = 0; } lock.exit(); //xxx needs to figure out if blocks are broken up or not if (len == 0) { wait (500); } else { const char* p = (const char*) pendingCopy.getData(); while (len > 0) { const double time = *(const double*) p; const int messageLen = *(const int*) (p + 8); const MidiMessage message ((const uint8*) (p + 12), messageLen, time); callback->handleIncomingMidiMessage (input, message); p += 12 + messageLen; len -= 12 + messageLen; } } } } void start() throw() { jassert (hIn != 0); if (hIn != 0 && ! isStarted) { stop(); activeMidiThreads.addIfNotAlreadyThere (this); int i; for (i = 0; i < numInHeaders; ++i) writeBlock (i); startTime = Time::getMillisecondCounter(); MMRESULT res = midiInStart (hIn); jassert (res == MMSYSERR_NOERROR); if (res == MMSYSERR_NOERROR) { isStarted = true; pendingLength = 0; startThread (6); } } } void stop() throw() { if (isStarted) { stopThread (5000); midiInReset (hIn); midiInStop (hIn); activeMidiThreads.removeValue (this); lock.enter(); lock.exit(); for (int i = numInHeaders; --i >= 0;) { if ((hdr[i].dwFlags & WHDR_DONE) != 0) { int c = 10; while (--c >= 0 && midiInUnprepareHeader (hIn, &hdr[i], sizeof (MIDIHDR)) == MIDIERR_STILLPLAYING) Sleep (20); jassert (c >= 0); } } isStarted = false; pendingLength = 0; } } juce_UseDebuggingNewOperator HMIDIIN hIn; private: MidiInput* input; MidiInputCallback* callback; bool isStarted; uint32 startTime; CriticalSection lock; MIDIHDR hdr [numInHeaders]; char inData [numInHeaders] [inBufferSize]; int pendingLength; char pending [midiBufferSize]; double timeStampToTime (uint32 timeStamp) throw() { timeStamp += startTime; const uint32 now = Time::getMillisecondCounter(); if (timeStamp > now) { if (timeStamp > now + 2) --startTime; timeStamp = now; } return 0.001 * timeStamp; } MidiInThread (const MidiInThread&); const MidiInThread& operator= (const MidiInThread&); }; static void CALLBACK midiInCallback (HMIDIIN, UINT uMsg, DWORD_PTR dwInstance, DWORD_PTR midiMessage, DWORD_PTR timeStamp) { MidiInThread* const thread = (MidiInThread*) dwInstance; if (thread != 0 && activeMidiThreads.contains (thread)) { if (uMsg == MIM_DATA) thread->handle ((uint32) midiMessage, (uint32) timeStamp); else if (uMsg == MIM_LONGDATA) thread->handleSysEx ((MIDIHDR*) midiMessage, (uint32) timeStamp); } } const StringArray MidiInput::getDevices() { StringArray s; const int num = midiInGetNumDevs(); for (int i = 0; i < num; ++i) { MIDIINCAPS mc; zerostruct (mc); if (midiInGetDevCaps (i, &mc, sizeof (mc)) == MMSYSERR_NOERROR) s.add (String (mc.szPname, sizeof (mc.szPname))); } return s; } int MidiInput::getDefaultDeviceIndex() { return 0; } MidiInput* MidiInput::openDevice (const int index, MidiInputCallback* const callback) { if (callback == 0) return 0; UINT deviceId = MIDI_MAPPER; int n = 0; String name; const int num = midiInGetNumDevs(); for (int i = 0; i < num; ++i) { MIDIINCAPS mc; zerostruct (mc); if (midiInGetDevCaps (i, &mc, sizeof (mc)) == MMSYSERR_NOERROR) { if (index == n) { deviceId = i; name = String (mc.szPname, sizeof (mc.szPname)); break; } ++n; } } MidiInput* const in = new MidiInput (name); MidiInThread* const thread = new MidiInThread (in, callback); HMIDIIN h; HRESULT err = midiInOpen (&h, deviceId, (DWORD_PTR) &midiInCallback, (DWORD_PTR) thread, CALLBACK_FUNCTION); if (err == MMSYSERR_NOERROR) { thread->hIn = h; in->internal = (void*) thread; return in; } else { delete in; delete thread; return 0; } } MidiInput::MidiInput (const String& name_) : name (name_), internal (0) { } MidiInput::~MidiInput() { if (internal != 0) { MidiInThread* const thread = (MidiInThread*) internal; delete thread; } } void MidiInput::start() { ((MidiInThread*) internal)->start(); } void MidiInput::stop() { ((MidiInThread*) internal)->stop(); } struct MidiOutHandle { int refCount; UINT deviceId; HMIDIOUT handle; juce_UseDebuggingNewOperator }; static VoidArray handles (4); const StringArray MidiOutput::getDevices() { StringArray s; const int num = midiOutGetNumDevs(); for (int i = 0; i < num; ++i) { MIDIOUTCAPS mc; zerostruct (mc); if (midiOutGetDevCaps (i, &mc, sizeof (mc)) == MMSYSERR_NOERROR) s.add (String (mc.szPname, sizeof (mc.szPname))); } return s; } int MidiOutput::getDefaultDeviceIndex() { const int num = midiOutGetNumDevs(); int n = 0; for (int i = 0; i < num; ++i) { MIDIOUTCAPS mc; zerostruct (mc); if (midiOutGetDevCaps (i, &mc, sizeof (mc)) == MMSYSERR_NOERROR) { if ((mc.wTechnology & MOD_MAPPER) != 0) return n; ++n; } } return 0; } MidiOutput* MidiOutput::openDevice (int index) { UINT deviceId = MIDI_MAPPER; const int num = midiOutGetNumDevs(); int i, n = 0; for (i = 0; i < num; ++i) { MIDIOUTCAPS mc; zerostruct (mc); if (midiOutGetDevCaps (i, &mc, sizeof (mc)) == MMSYSERR_NOERROR) { // use the microsoft sw synth as a default - best not to allow deviceId // to be MIDI_MAPPER, or else device sharing breaks if (String (mc.szPname, sizeof (mc.szPname)).containsIgnoreCase (T("microsoft"))) deviceId = i; if (index == n) { deviceId = i; break; } ++n; } } for (i = handles.size(); --i >= 0;) { MidiOutHandle* const han = (MidiOutHandle*) handles.getUnchecked(i); if (han != 0 && han->deviceId == deviceId) { han->refCount++; MidiOutput* const out = new MidiOutput(); out->internal = (void*) han; return out; } } for (i = 4; --i >= 0;) { HMIDIOUT h = 0; MMRESULT res = midiOutOpen (&h, deviceId, 0, 0, CALLBACK_NULL); if (res == MMSYSERR_NOERROR) { MidiOutHandle* const han = new MidiOutHandle(); han->deviceId = deviceId; han->refCount = 1; han->handle = h; handles.add (han); MidiOutput* const out = new MidiOutput(); out->internal = (void*) han; return out; } else if (res == MMSYSERR_ALLOCATED) { Sleep (100); } else { break; } } return 0; } MidiOutput::~MidiOutput() { MidiOutHandle* const h = (MidiOutHandle*) internal; if (handles.contains ((void*) h) && --(h->refCount) == 0) { midiOutClose (h->handle); handles.removeValue ((void*) h); delete h; } } void MidiOutput::reset() { const MidiOutHandle* const h = (MidiOutHandle*) internal; midiOutReset (h->handle); } bool MidiOutput::getVolume (float& leftVol, float& rightVol) { const MidiOutHandle* const handle = (const MidiOutHandle*) internal; DWORD n; if (midiOutGetVolume (handle->handle, &n) == MMSYSERR_NOERROR) { const unsigned short* const nn = (const unsigned short*) &n; rightVol = nn[0] / (float) 0xffff; leftVol = nn[1] / (float) 0xffff; return true; } else { rightVol = leftVol = 1.0f; return false; } } void MidiOutput::setVolume (float leftVol, float rightVol) { const MidiOutHandle* const handle = (MidiOutHandle*) internal; DWORD n; unsigned short* const nn = (unsigned short*) &n; nn[0] = (unsigned short) jlimit (0, 0xffff, (int)(rightVol * 0xffff)); nn[1] = (unsigned short) jlimit (0, 0xffff, (int)(leftVol * 0xffff)); midiOutSetVolume (handle->handle, n); } void MidiOutput::sendMessageNow (const MidiMessage& message) { const MidiOutHandle* const handle = (const MidiOutHandle*) internal; if (message.getRawDataSize() > 3 || message.isSysEx()) { MIDIHDR h; zerostruct (h); h.lpData = (char*) message.getRawData(); h.dwBufferLength = message.getRawDataSize(); h.dwBytesRecorded = message.getRawDataSize(); if (midiOutPrepareHeader (handle->handle, &h, sizeof (MIDIHDR)) == MMSYSERR_NOERROR) { MMRESULT res = midiOutLongMsg (handle->handle, &h, sizeof (MIDIHDR)); if (res == MMSYSERR_NOERROR) { while ((h.dwFlags & MHDR_DONE) == 0) Sleep (1); int count = 500; // 1 sec timeout while (--count >= 0) { res = midiOutUnprepareHeader (handle->handle, &h, sizeof (MIDIHDR)); if (res == MIDIERR_STILLPLAYING) Sleep (2); else break; } } } } else { midiOutShortMsg (handle->handle, *(unsigned int*) message.getRawData()); } } #endif /********* End of inlined file: juce_win32_Midi.cpp *********/ /********* Start of inlined file: juce_win32_ASIO.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_ASIO #undef WINDOWS // #define ASIO_DEBUGGING #ifdef ASIO_DEBUGGING #define log(a) { Logger::writeToLog (a); DBG (a) } #else #define log(a) {} #endif #ifdef ASIO_DEBUGGING static void logError (const String& context, long error) { String err ("unknown error"); if (error == ASE_NotPresent) err = "Not Present"; else if (error == ASE_HWMalfunction) err = "Hardware Malfunction"; else if (error == ASE_InvalidParameter) err = "Invalid Parameter"; else if (error == ASE_InvalidMode) err = "Invalid Mode"; else if (error == ASE_SPNotAdvancing) err = "Sample position not advancing"; else if (error == ASE_NoClock) err = "No Clock"; else if (error == ASE_NoMemory) err = "Out of memory"; log (T("!!error: ") + context + T(" - ") + err); } #else #define logError(a, b) {} #endif class ASIOAudioIODevice; static ASIOAudioIODevice* volatile currentASIODev[3] = { 0, 0, 0 }; static const int maxASIOChannels = 160; class JUCE_API ASIOAudioIODevice : public AudioIODevice, private Timer { public: Component ourWindow; ASIOAudioIODevice (const String& name_, const CLSID classId_, const int slotNumber, const String& optionalDllForDirectLoading_) : AudioIODevice (name_, T("ASIO")), asioObject (0), classId (classId_), optionalDllForDirectLoading (optionalDllForDirectLoading_), currentBitDepth (16), currentSampleRate (0), tempBuffer (0), isOpen_ (false), isStarted (false), postOutput (true), insideControlPanelModalLoop (false), shouldUsePreferredSize (false) { name = name_; ourWindow.addToDesktop (0); windowHandle = ourWindow.getWindowHandle(); jassert (currentASIODev [slotNumber] == 0); currentASIODev [slotNumber] = this; openDevice(); } ~ASIOAudioIODevice() { for (int i = 0; i < numElementsInArray (currentASIODev); ++i) if (currentASIODev[i] == this) currentASIODev[i] = 0; close(); log ("ASIO - exiting"); removeCurrentDriver(); juce_free (tempBuffer); } void updateSampleRates() { // find a list of sample rates.. const double possibleSampleRates[] = { 44100.0, 48000.0, 88200.0, 96000.0, 176400.0, 192000.0 }; sampleRates.clear(); if (asioObject != 0) { for (int index = 0; index < numElementsInArray (possibleSampleRates); ++index) { const long err = asioObject->canSampleRate (possibleSampleRates[index]); if (err == 0) { sampleRates.add ((int) possibleSampleRates[index]); log (T("rate: ") + String ((int) possibleSampleRates[index])); } else if (err != ASE_NoClock) { logError (T("CanSampleRate"), err); } } if (sampleRates.size() == 0) { double cr = 0; const long err = asioObject->getSampleRate (&cr); log (T("No sample rates supported - current rate: ") + String ((int) cr)); if (err == 0) sampleRates.add ((int) cr); } } } const StringArray getOutputChannelNames() { return outputChannelNames; } const StringArray getInputChannelNames() { return inputChannelNames; } int getNumSampleRates() { return sampleRates.size(); } double getSampleRate (int index) { return sampleRates [index]; } int getNumBufferSizesAvailable() { return bufferSizes.size(); } int getBufferSizeSamples (int index) { return bufferSizes [index]; } int getDefaultBufferSize() { return preferredSize; } const String open (const BitArray& inputChannels, const BitArray& outputChannels, double sr, int bufferSizeSamples) { close(); currentCallback = 0; if (bufferSizeSamples <= 0) shouldUsePreferredSize = true; if (asioObject == 0 || ! isASIOOpen) { log ("Warning: device not open"); const String err (openDevice()); if (asioObject == 0 || ! isASIOOpen) return err; } isStarted = false; bufferIndex = -1; long err = 0; long newPreferredSize = 0; // if the preferred size has just changed, assume it's a control panel thing and use it as the new value. minSize = 0; maxSize = 0; newPreferredSize = 0; granularity = 0; if (asioObject->getBufferSize (&minSize, &maxSize, &newPreferredSize, &granularity) == 0) { if (preferredSize != 0 && newPreferredSize != 0 && newPreferredSize != preferredSize) shouldUsePreferredSize = true; preferredSize = newPreferredSize; } // unfortunate workaround for certain manufacturers whose drivers crash horribly if you make // dynamic changes to the buffer size... shouldUsePreferredSize = shouldUsePreferredSize || getName().containsIgnoreCase (T("Digidesign")); if (shouldUsePreferredSize) { log ("Using preferred size for buffer.."); if ((err = asioObject->getBufferSize (&minSize, &maxSize, &preferredSize, &granularity)) == 0) { bufferSizeSamples = preferredSize; } else { bufferSizeSamples = 1024; logError ("GetBufferSize1", err); } shouldUsePreferredSize = false; } int sampleRate = roundDoubleToInt (sr); currentSampleRate = sampleRate; currentBlockSizeSamples = bufferSizeSamples; currentChansOut.clear(); currentChansIn.clear(); zeromem (inBuffers, sizeof (inBuffers)); zeromem (outBuffers, sizeof (outBuffers)); updateSampleRates(); if (sampleRate == 0 || (sampleRates.size() > 0 && ! sampleRates.contains (sampleRate))) sampleRate = sampleRates[0]; jassert (sampleRate != 0); if (sampleRate == 0) sampleRate = 44100; long numSources = 32; ASIOClockSource clocks[32]; zeromem (clocks, sizeof (clocks)); asioObject->getClockSources (clocks, &numSources); bool isSourceSet = false; // careful not to remove this loop because it does more than just logging! int i; for (i = 0; i < numSources; ++i) { String s ("clock: "); s += clocks[i].name; if (clocks[i].isCurrentSource) { isSourceSet = true; s << " (cur)"; } log (s); } if (numSources > 1 && ! isSourceSet) { log ("setting clock source"); asioObject->setClockSource (clocks[0].index); Thread::sleep (20); } else { if (numSources == 0) { log ("ASIO - no clock sources!"); } } double cr = 0; err = asioObject->getSampleRate (&cr); if (err == 0) { currentSampleRate = cr; } else { logError ("GetSampleRate", err); currentSampleRate = 0; } error = String::empty; needToReset = false; isReSync = false; err = 0; bool buffersCreated = false; if (currentSampleRate != sampleRate) { log (T("ASIO samplerate: ") + String (currentSampleRate) + T(" to ") + String (sampleRate)); err = asioObject->setSampleRate (sampleRate); if (err == ASE_NoClock && numSources > 0) { log ("trying to set a clock source.."); Thread::sleep (10); err = asioObject->setClockSource (clocks[0].index); if (err != 0) { logError ("SetClock", err); } Thread::sleep (10); err = asioObject->setSampleRate (sampleRate); } } if (err == 0) { currentSampleRate = sampleRate; if (needToReset) { if (isReSync) { log ("Resync request"); } log ("! Resetting ASIO after sample rate change"); removeCurrentDriver(); loadDriver(); const String error (initDriver()); if (error.isNotEmpty()) { log (T("ASIOInit: ") + error); } needToReset = false; isReSync = false; } numActiveInputChans = 0; numActiveOutputChans = 0; ASIOBufferInfo* info = bufferInfos; int i; for (i = 0; i < totalNumInputChans; ++i) { if (inputChannels[i]) { currentChansIn.setBit (i); info->isInput = 1; info->channelNum = i; info->buffers[0] = info->buffers[1] = 0; ++info; ++numActiveInputChans; } } for (i = 0; i < totalNumOutputChans; ++i) { if (outputChannels[i]) { currentChansOut.setBit (i); info->isInput = 0; info->channelNum = i; info->buffers[0] = info->buffers[1] = 0; ++info; ++numActiveOutputChans; } } const int totalBuffers = numActiveInputChans + numActiveOutputChans; callbacks.sampleRateDidChange = &sampleRateChangedCallback; if (currentASIODev[0] == this) { callbacks.bufferSwitch = &bufferSwitchCallback0; callbacks.asioMessage = &asioMessagesCallback0; callbacks.bufferSwitchTimeInfo = &bufferSwitchTimeInfoCallback0; } else if (currentASIODev[1] == this) { callbacks.bufferSwitch = &bufferSwitchCallback1; callbacks.asioMessage = &asioMessagesCallback1; callbacks.bufferSwitchTimeInfo = &bufferSwitchTimeInfoCallback1; } else if (currentASIODev[2] == this) { callbacks.bufferSwitch = &bufferSwitchCallback2; callbacks.asioMessage = &asioMessagesCallback2; callbacks.bufferSwitchTimeInfo = &bufferSwitchTimeInfoCallback2; } else { jassertfalse } log ("disposing buffers"); err = asioObject->disposeBuffers(); log (T("creating buffers: ") + String (totalBuffers) + T(", ") + String (currentBlockSizeSamples)); err = asioObject->createBuffers (bufferInfos, totalBuffers, currentBlockSizeSamples, &callbacks); if (err != 0) { currentBlockSizeSamples = preferredSize; logError ("create buffers 2", err); asioObject->disposeBuffers(); err = asioObject->createBuffers (bufferInfos, totalBuffers, currentBlockSizeSamples, &callbacks); } if (err == 0) { buffersCreated = true; juce_free (tempBuffer); tempBuffer = (float*) juce_calloc (totalBuffers * currentBlockSizeSamples * sizeof (float) + 128); int n = 0; Array types; currentBitDepth = 16; for (i = 0; i < jmin (totalNumInputChans, maxASIOChannels); ++i) { if (inputChannels[i]) { inBuffers[n] = tempBuffer + (currentBlockSizeSamples * n); ASIOChannelInfo channelInfo; zerostruct (channelInfo); channelInfo.channel = i; channelInfo.isInput = 1; asioObject->getChannelInfo (&channelInfo); types.addIfNotAlreadyThere (channelInfo.type); typeToFormatParameters (channelInfo.type, inputChannelBitDepths[n], inputChannelBytesPerSample[n], inputChannelIsFloat[n], inputChannelLittleEndian[n]); currentBitDepth = jmax (currentBitDepth, inputChannelBitDepths[n]); ++n; } } jassert (numActiveInputChans == n); n = 0; for (i = 0; i < jmin (totalNumOutputChans, maxASIOChannels); ++i) { if (outputChannels[i]) { outBuffers[n] = tempBuffer + (currentBlockSizeSamples * (numActiveInputChans + n)); ASIOChannelInfo channelInfo; zerostruct (channelInfo); channelInfo.channel = i; channelInfo.isInput = 0; asioObject->getChannelInfo (&channelInfo); types.addIfNotAlreadyThere (channelInfo.type); typeToFormatParameters (channelInfo.type, outputChannelBitDepths[n], outputChannelBytesPerSample[n], outputChannelIsFloat[n], outputChannelLittleEndian[n]); currentBitDepth = jmax (currentBitDepth, outputChannelBitDepths[n]); ++n; } } jassert (numActiveOutputChans == n); for (i = types.size(); --i >= 0;) { log (T("channel format: ") + String (types[i])); } jassert (n <= totalBuffers); for (i = 0; i < numActiveOutputChans; ++i) { const int size = currentBlockSizeSamples * (outputChannelBitDepths[i] >> 3); if (bufferInfos [numActiveInputChans + i].buffers[0] == 0 || bufferInfos [numActiveInputChans + i].buffers[1] == 0) { log ("!! Null buffers"); } else { zeromem (bufferInfos[numActiveInputChans + i].buffers[0], size); zeromem (bufferInfos[numActiveInputChans + i].buffers[1], size); } } inputLatency = outputLatency = 0; if (asioObject->getLatencies (&inputLatency, &outputLatency) != 0) { log ("ASIO - no latencies"); } else { log (T("ASIO latencies: ") + String ((int) outputLatency) + T(", ") + String ((int) inputLatency)); } isOpen_ = true; log ("starting ASIO"); calledback = false; err = asioObject->start(); if (err != 0) { isOpen_ = false; log ("ASIO - stop on failure"); Thread::sleep (10); asioObject->stop(); error = "Can't start device"; Thread::sleep (10); } else { int count = 300; while (--count > 0 && ! calledback) Thread::sleep (10); isStarted = true; if (! calledback) { error = "Device didn't start correctly"; log ("ASIO didn't callback - stopping.."); asioObject->stop(); } } } else { error = "Can't create i/o buffers"; } } else { error = "Can't set sample rate: "; error << sampleRate; } if (error.isNotEmpty()) { logError (error, err); if (asioObject != 0 && buffersCreated) asioObject->disposeBuffers(); Thread::sleep (20); isStarted = false; isOpen_ = false; close(); } needToReset = false; isReSync = false; return error; } void close() { error = String::empty; stopTimer(); stop(); if (isASIOOpen && isOpen_) { const ScopedLock sl (callbackLock); isOpen_ = false; isStarted = false; needToReset = false; isReSync = false; log ("ASIO - stopping"); if (asioObject != 0) { Thread::sleep (20); asioObject->stop(); Thread::sleep (10); asioObject->disposeBuffers(); } Thread::sleep (10); } } bool isOpen() { return isOpen_ || insideControlPanelModalLoop; } int getCurrentBufferSizeSamples() { return currentBlockSizeSamples; } double getCurrentSampleRate() { return currentSampleRate; } const BitArray getActiveOutputChannels() const { return currentChansOut; } const BitArray getActiveInputChannels() const { return currentChansIn; } int getCurrentBitDepth() { return currentBitDepth; } int getOutputLatencyInSamples() { return outputLatency + currentBlockSizeSamples / 4; } int getInputLatencyInSamples() { return inputLatency + currentBlockSizeSamples / 4; } void start (AudioIODeviceCallback* callback) { if (callback != 0) { callback->audioDeviceAboutToStart (this); const ScopedLock sl (callbackLock); currentCallback = callback; } } void stop() { AudioIODeviceCallback* const lastCallback = currentCallback; { const ScopedLock sl (callbackLock); currentCallback = 0; } if (lastCallback != 0) lastCallback->audioDeviceStopped(); } bool isPlaying() { return isASIOOpen && (currentCallback != 0); } const String getLastError() { return error; } bool hasControlPanel() const { return true; } bool showControlPanel() { log ("ASIO - showing control panel"); Component modalWindow (String::empty); modalWindow.setOpaque (true); modalWindow.addToDesktop (0); modalWindow.enterModalState(); bool done = false; JUCE_TRY { // are there are devices that need to be closed before showing their control panel? // close(); insideControlPanelModalLoop = true; const uint32 started = Time::getMillisecondCounter(); if (asioObject != 0) { asioObject->controlPanel(); const int spent = (int) Time::getMillisecondCounter() - (int) started; log (T("spent: ") + String (spent)); if (spent > 300) { shouldUsePreferredSize = true; done = true; } } } JUCE_CATCH_ALL insideControlPanelModalLoop = false; return done; } void resetRequest() throw() { needToReset = true; } void resyncRequest() throw() { needToReset = true; isReSync = true; } void timerCallback() { if (! insideControlPanelModalLoop) { stopTimer(); // used to cause a reset log ("! ASIO restart request!"); if (isOpen_) { AudioIODeviceCallback* const oldCallback = currentCallback; close(); open (BitArray (currentChansIn), BitArray (currentChansOut), currentSampleRate, currentBlockSizeSamples); if (oldCallback != 0) start (oldCallback); } } else { startTimer (100); } } juce_UseDebuggingNewOperator private: IASIO* volatile asioObject; ASIOCallbacks callbacks; void* windowHandle; CLSID classId; const String optionalDllForDirectLoading; String error; long totalNumInputChans, totalNumOutputChans; StringArray inputChannelNames, outputChannelNames; Array sampleRates, bufferSizes; long inputLatency, outputLatency; long minSize, maxSize, preferredSize, granularity; int volatile currentBlockSizeSamples; int volatile currentBitDepth; double volatile currentSampleRate; BitArray currentChansOut, currentChansIn; AudioIODeviceCallback* volatile currentCallback; CriticalSection callbackLock; ASIOBufferInfo bufferInfos [maxASIOChannels]; float* inBuffers [maxASIOChannels]; float* outBuffers [maxASIOChannels]; int inputChannelBitDepths [maxASIOChannels]; int outputChannelBitDepths [maxASIOChannels]; int inputChannelBytesPerSample [maxASIOChannels]; int outputChannelBytesPerSample [maxASIOChannels]; bool inputChannelIsFloat [maxASIOChannels]; bool outputChannelIsFloat [maxASIOChannels]; bool inputChannelLittleEndian [maxASIOChannels]; bool outputChannelLittleEndian [maxASIOChannels]; WaitableEvent event1; float* tempBuffer; int volatile bufferIndex, numActiveInputChans, numActiveOutputChans; bool isOpen_, isStarted; bool volatile isASIOOpen; bool volatile calledback; bool volatile littleEndian, postOutput, needToReset, isReSync; bool volatile insideControlPanelModalLoop; bool volatile shouldUsePreferredSize; void removeCurrentDriver() { if (asioObject != 0) { asioObject->Release(); asioObject = 0; } } bool loadDriver() { removeCurrentDriver(); JUCE_TRY { if (CoCreateInstance (classId, 0, CLSCTX_INPROC_SERVER, classId, (void**) &asioObject) == S_OK) { return true; } // If a class isn't registered but we have a path for it, we can fallback to // doing a direct load of the COM object (only available via the juce_createASIOAudioIODeviceForGUID function). if (optionalDllForDirectLoading.isNotEmpty()) { HMODULE h = LoadLibrary (optionalDllForDirectLoading); if (h != 0) { typedef HRESULT (CALLBACK* DllGetClassObjectFunc) (REFCLSID clsid, REFIID iid, LPVOID* ppv); DllGetClassObjectFunc dllGetClassObject = (DllGetClassObjectFunc) GetProcAddress (h, "DllGetClassObject"); if (dllGetClassObject != 0) { IClassFactory* classFactory = 0; HRESULT hr = dllGetClassObject (classId, IID_IClassFactory, (void**) &classFactory); if (classFactory != 0) { hr = classFactory->CreateInstance (0, classId, (void**) &asioObject); classFactory->Release(); } return asioObject != 0; } } } } JUCE_CATCH_ALL asioObject = 0; return false; } const String initDriver() { if (asioObject != 0) { char buffer [256]; zeromem (buffer, sizeof (buffer)); if (! asioObject->init (windowHandle)) { asioObject->getErrorMessage (buffer); return String (buffer, sizeof (buffer) - 1); } // just in case any daft drivers expect this to be called.. asioObject->getDriverName (buffer); return String::empty; } return "No Driver"; } const String openDevice() { // use this in case the driver starts opening dialog boxes.. Component modalWindow (String::empty); modalWindow.setOpaque (true); modalWindow.addToDesktop (0); modalWindow.enterModalState(); // open the device and get its info.. log (T("opening ASIO device: ") + getName()); needToReset = false; isReSync = false; outputChannelNames.clear(); inputChannelNames.clear(); bufferSizes.clear(); sampleRates.clear(); isASIOOpen = false; isOpen_ = false; totalNumInputChans = 0; totalNumOutputChans = 0; numActiveInputChans = 0; numActiveOutputChans = 0; currentCallback = 0; error = String::empty; if (getName().isEmpty()) return error; long err = 0; if (loadDriver()) { if ((error = initDriver()).isEmpty()) { numActiveInputChans = 0; numActiveOutputChans = 0; totalNumInputChans = 0; totalNumOutputChans = 0; if (asioObject != 0 && (err = asioObject->getChannels (&totalNumInputChans, &totalNumOutputChans)) == 0) { log (String ((int) totalNumInputChans) + T(" in, ") + String ((int) totalNumOutputChans) + T(" out")); if ((err = asioObject->getBufferSize (&minSize, &maxSize, &preferredSize, &granularity)) == 0) { // find a list of buffer sizes.. log (String ((int) minSize) + T(" ") + String ((int) maxSize) + T(" ") + String ((int)preferredSize) + T(" ") + String ((int)granularity)); if (granularity >= 0) { granularity = jmax (1, (int) granularity); for (int i = jmax (minSize, (int) granularity); i < jmin (6400, maxSize); i += granularity) bufferSizes.addIfNotAlreadyThere (granularity * (i / granularity)); } else if (granularity < 0) { for (int i = 0; i < 18; ++i) { const int s = (1 << i); if (s >= minSize && s <= maxSize) bufferSizes.add (s); } } if (! bufferSizes.contains (preferredSize)) bufferSizes.insert (0, preferredSize); double currentRate = 0; asioObject->getSampleRate (¤tRate); if (currentRate <= 0.0 || currentRate > 192001.0) { log ("setting sample rate"); err = asioObject->setSampleRate (44100.0); if (err != 0) { logError ("setting sample rate", err); } asioObject->getSampleRate (¤tRate); } currentSampleRate = currentRate; postOutput = (asioObject->outputReady() == 0); if (postOutput) { log ("ASIO outputReady = ok"); } updateSampleRates(); // ..because cubase does it at this point inputLatency = outputLatency = 0; if (asioObject->getLatencies (&inputLatency, &outputLatency) != 0) { log ("ASIO - no latencies"); } log (String ("latencies: ") + String ((int) inputLatency) + T(", ") + String ((int) outputLatency)); // create some dummy buffers now.. because cubase does.. numActiveInputChans = 0; numActiveOutputChans = 0; ASIOBufferInfo* info = bufferInfos; int i, numChans = 0; for (i = 0; i < jmin (2, totalNumInputChans); ++i) { info->isInput = 1; info->channelNum = i; info->buffers[0] = info->buffers[1] = 0; ++info; ++numChans; } const int outputBufferIndex = numChans; for (i = 0; i < jmin (2, totalNumOutputChans); ++i) { info->isInput = 0; info->channelNum = i; info->buffers[0] = info->buffers[1] = 0; ++info; ++numChans; } callbacks.sampleRateDidChange = &sampleRateChangedCallback; if (currentASIODev[0] == this) { callbacks.bufferSwitch = &bufferSwitchCallback0; callbacks.asioMessage = &asioMessagesCallback0; callbacks.bufferSwitchTimeInfo = &bufferSwitchTimeInfoCallback0; } else if (currentASIODev[1] == this) { callbacks.bufferSwitch = &bufferSwitchCallback1; callbacks.asioMessage = &asioMessagesCallback1; callbacks.bufferSwitchTimeInfo = &bufferSwitchTimeInfoCallback1; } else if (currentASIODev[2] == this) { callbacks.bufferSwitch = &bufferSwitchCallback2; callbacks.asioMessage = &asioMessagesCallback2; callbacks.bufferSwitchTimeInfo = &bufferSwitchTimeInfoCallback2; } else { jassertfalse } log (T("creating buffers (dummy): ") + String (numChans) + T(", ") + String ((int) preferredSize)); if (preferredSize > 0) { err = asioObject->createBuffers (bufferInfos, numChans, preferredSize, &callbacks); if (err != 0) { logError ("dummy buffers", err); } } long newInps = 0, newOuts = 0; asioObject->getChannels (&newInps, &newOuts); if (totalNumInputChans != newInps || totalNumOutputChans != newOuts) { totalNumInputChans = newInps; totalNumOutputChans = newOuts; log (String ((int) totalNumInputChans) + T(" in; ") + String ((int) totalNumOutputChans) + T(" out")); } updateSampleRates(); ASIOChannelInfo channelInfo; channelInfo.type = 0; for (i = 0; i < totalNumInputChans; ++i) { zerostruct (channelInfo); channelInfo.channel = i; channelInfo.isInput = 1; asioObject->getChannelInfo (&channelInfo); inputChannelNames.add (String (channelInfo.name)); } for (i = 0; i < totalNumOutputChans; ++i) { zerostruct (channelInfo); channelInfo.channel = i; channelInfo.isInput = 0; asioObject->getChannelInfo (&channelInfo); outputChannelNames.add (String (channelInfo.name)); typeToFormatParameters (channelInfo.type, outputChannelBitDepths[i], outputChannelBytesPerSample[i], outputChannelIsFloat[i], outputChannelLittleEndian[i]); if (i < 2) { // clear the channels that are used with the dummy stuff const int bytesPerBuffer = preferredSize * (outputChannelBitDepths[i] >> 3); zeromem (bufferInfos [outputBufferIndex + i].buffers[0], bytesPerBuffer); zeromem (bufferInfos [outputBufferIndex + i].buffers[1], bytesPerBuffer); } } outputChannelNames.trim(); inputChannelNames.trim(); outputChannelNames.appendNumbersToDuplicates (false, true); inputChannelNames.appendNumbersToDuplicates (false, true); // start and stop because cubase does it.. asioObject->getLatencies (&inputLatency, &outputLatency); if ((err = asioObject->start()) != 0) { // ignore an error here, as it might start later after setting other stuff up logError ("ASIO start", err); } Thread::sleep (100); asioObject->stop(); } else { error = "Can't detect buffer sizes"; } } else { error = "Can't detect asio channels"; } } } else { error = "No such device"; } if (error.isNotEmpty()) { logError (error, err); if (asioObject != 0) asioObject->disposeBuffers(); removeCurrentDriver(); isASIOOpen = false; } else { isASIOOpen = true; log ("ASIO device open"); } isOpen_ = false; needToReset = false; isReSync = false; return error; } void callback (const long index) throw() { if (isStarted) { bufferIndex = index; processBuffer(); } else { if (postOutput && (asioObject != 0)) asioObject->outputReady(); } calledback = true; } void processBuffer() throw() { const ASIOBufferInfo* const infos = bufferInfos; const int bi = bufferIndex; const ScopedLock sl (callbackLock); if (needToReset) { needToReset = false; if (isReSync) { log ("! ASIO resync"); isReSync = false; } else { startTimer (20); } } if (bi >= 0) { const int samps = currentBlockSizeSamples; if (currentCallback != 0) { int i; for (i = 0; i < numActiveInputChans; ++i) { float* const dst = inBuffers[i]; jassert (dst != 0); const char* const src = (const char*) (infos[i].buffers[bi]); if (inputChannelIsFloat[i]) { memcpy (dst, src, samps * sizeof (float)); } else { jassert (dst == tempBuffer + (samps * i)); switch (inputChannelBitDepths[i]) { case 16: convertInt16ToFloat (src, dst, inputChannelBytesPerSample[i], samps, inputChannelLittleEndian[i]); break; case 24: convertInt24ToFloat (src, dst, inputChannelBytesPerSample[i], samps, inputChannelLittleEndian[i]); break; case 32: convertInt32ToFloat (src, dst, inputChannelBytesPerSample[i], samps, inputChannelLittleEndian[i]); break; case 64: jassertfalse break; } } } currentCallback->audioDeviceIOCallback ((const float**) inBuffers, numActiveInputChans, outBuffers, numActiveOutputChans, samps); for (i = 0; i < numActiveOutputChans; ++i) { float* const src = outBuffers[i]; jassert (src != 0); char* const dst = (char*) (infos [numActiveInputChans + i].buffers[bi]); if (outputChannelIsFloat[i]) { memcpy (dst, src, samps * sizeof (float)); } else { jassert (src == tempBuffer + (samps * (numActiveInputChans + i))); switch (outputChannelBitDepths[i]) { case 16: convertFloatToInt16 (src, dst, outputChannelBytesPerSample[i], samps, outputChannelLittleEndian[i]); break; case 24: convertFloatToInt24 (src, dst, outputChannelBytesPerSample[i], samps, outputChannelLittleEndian[i]); break; case 32: convertFloatToInt32 (src, dst, outputChannelBytesPerSample[i], samps, outputChannelLittleEndian[i]); break; case 64: jassertfalse break; } } } } else { for (int i = 0; i < numActiveOutputChans; ++i) { const int bytesPerBuffer = samps * (outputChannelBitDepths[i] >> 3); zeromem (infos[numActiveInputChans + i].buffers[bi], bytesPerBuffer); } } } if (postOutput) asioObject->outputReady(); } static ASIOTime* bufferSwitchTimeInfoCallback0 (ASIOTime*, long index, long) throw() { if (currentASIODev[0] != 0) currentASIODev[0]->callback (index); return 0; } static ASIOTime* bufferSwitchTimeInfoCallback1 (ASIOTime*, long index, long) throw() { if (currentASIODev[1] != 0) currentASIODev[1]->callback (index); return 0; } static ASIOTime* bufferSwitchTimeInfoCallback2 (ASIOTime*, long index, long) throw() { if (currentASIODev[2] != 0) currentASIODev[2]->callback (index); return 0; } static void bufferSwitchCallback0 (long index, long) throw() { if (currentASIODev[0] != 0) currentASIODev[0]->callback (index); } static void bufferSwitchCallback1 (long index, long) throw() { if (currentASIODev[1] != 0) currentASIODev[1]->callback (index); } static void bufferSwitchCallback2 (long index, long) throw() { if (currentASIODev[2] != 0) currentASIODev[2]->callback (index); } static long asioMessagesCallback0 (long selector, long value, void*, double*) throw() { return asioMessagesCallback (selector, value, 0); } static long asioMessagesCallback1 (long selector, long value, void*, double*) throw() { return asioMessagesCallback (selector, value, 1); } static long asioMessagesCallback2 (long selector, long value, void*, double*) throw() { return asioMessagesCallback (selector, value, 2); } static long asioMessagesCallback (long selector, long value, const int deviceIndex) throw() { switch (selector) { case kAsioSelectorSupported: if (value == kAsioResetRequest || value == kAsioEngineVersion || value == kAsioResyncRequest || value == kAsioLatenciesChanged || value == kAsioSupportsInputMonitor) return 1; break; case kAsioBufferSizeChange: break; case kAsioResetRequest: if (currentASIODev[deviceIndex] != 0) currentASIODev[deviceIndex]->resetRequest(); return 1; case kAsioResyncRequest: if (currentASIODev[deviceIndex] != 0) currentASIODev[deviceIndex]->resyncRequest(); return 1; case kAsioLatenciesChanged: return 1; case kAsioEngineVersion: return 2; case kAsioSupportsTimeInfo: case kAsioSupportsTimeCode: return 0; } return 0; } static void sampleRateChangedCallback (ASIOSampleRate) throw() { } static void convertInt16ToFloat (const char* src, float* dest, const int srcStrideBytes, int numSamples, const bool littleEndian) throw() { const double g = 1.0 / 32768.0; if (littleEndian) { while (--numSamples >= 0) { *dest++ = (float) (g * (short) littleEndianShort (src)); src += srcStrideBytes; } } else { while (--numSamples >= 0) { *dest++ = (float) (g * (short) bigEndianShort (src)); src += srcStrideBytes; } } } static void convertFloatToInt16 (const float* src, char* dest, const int dstStrideBytes, int numSamples, const bool littleEndian) throw() { const double maxVal = (double) 0x7fff; if (littleEndian) { while (--numSamples >= 0) { *(uint16*) dest = swapIfBigEndian ((uint16) (short) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * *src++))); dest += dstStrideBytes; } } else { while (--numSamples >= 0) { *(uint16*) dest = swapIfLittleEndian ((uint16) (short) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * *src++))); dest += dstStrideBytes; } } } static void convertInt24ToFloat (const char* src, float* dest, const int srcStrideBytes, int numSamples, const bool littleEndian) throw() { const double g = 1.0 / 0x7fffff; if (littleEndian) { while (--numSamples >= 0) { *dest++ = (float) (g * littleEndian24Bit (src)); src += srcStrideBytes; } } else { while (--numSamples >= 0) { *dest++ = (float) (g * bigEndian24Bit (src)); src += srcStrideBytes; } } } static void convertFloatToInt24 (const float* src, char* dest, const int dstStrideBytes, int numSamples, const bool littleEndian) throw() { const double maxVal = (double) 0x7fffff; if (littleEndian) { while (--numSamples >= 0) { littleEndian24BitToChars ((uint32) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * *src++)), dest); dest += dstStrideBytes; } } else { while (--numSamples >= 0) { bigEndian24BitToChars ((uint32) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * *src++)), dest); dest += dstStrideBytes; } } } static void convertInt32ToFloat (const char* src, float* dest, const int srcStrideBytes, int numSamples, const bool littleEndian) throw() { const double g = 1.0 / 0x7fffffff; if (littleEndian) { while (--numSamples >= 0) { *dest++ = (float) (g * (int) littleEndianInt (src)); src += srcStrideBytes; } } else { while (--numSamples >= 0) { *dest++ = (float) (g * (int) bigEndianInt (src)); src += srcStrideBytes; } } } static void convertFloatToInt32 (const float* src, char* dest, const int dstStrideBytes, int numSamples, const bool littleEndian) throw() { const double maxVal = (double) 0x7fffffff; if (littleEndian) { while (--numSamples >= 0) { *(uint32*) dest = swapIfBigEndian ((uint32) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * *src++))); dest += dstStrideBytes; } } else { while (--numSamples >= 0) { *(uint32*) dest = swapIfLittleEndian ((uint32) roundDoubleToInt (jlimit (-maxVal, maxVal, maxVal * *src++))); dest += dstStrideBytes; } } } static void typeToFormatParameters (const long type, int& bitDepth, int& byteStride, bool& formatIsFloat, bool& littleEndian) throw() { bitDepth = 0; littleEndian = false; formatIsFloat = false; switch (type) { case ASIOSTInt16MSB: case ASIOSTInt16LSB: case ASIOSTInt32MSB16: case ASIOSTInt32LSB16: bitDepth = 16; break; case ASIOSTFloat32MSB: case ASIOSTFloat32LSB: formatIsFloat = true; bitDepth = 32; break; case ASIOSTInt32MSB: case ASIOSTInt32LSB: bitDepth = 32; break; case ASIOSTInt24MSB: case ASIOSTInt24LSB: case ASIOSTInt32MSB24: case ASIOSTInt32LSB24: case ASIOSTInt32MSB18: case ASIOSTInt32MSB20: case ASIOSTInt32LSB18: case ASIOSTInt32LSB20: bitDepth = 24; break; case ASIOSTFloat64MSB: case ASIOSTFloat64LSB: default: bitDepth = 64; break; } switch (type) { case ASIOSTInt16MSB: case ASIOSTInt32MSB16: case ASIOSTFloat32MSB: case ASIOSTFloat64MSB: case ASIOSTInt32MSB: case ASIOSTInt32MSB18: case ASIOSTInt32MSB20: case ASIOSTInt32MSB24: case ASIOSTInt24MSB: littleEndian = false; break; case ASIOSTInt16LSB: case ASIOSTInt32LSB16: case ASIOSTFloat32LSB: case ASIOSTFloat64LSB: case ASIOSTInt32LSB: case ASIOSTInt32LSB18: case ASIOSTInt32LSB20: case ASIOSTInt32LSB24: case ASIOSTInt24LSB: littleEndian = true; break; default: break; } switch (type) { case ASIOSTInt16LSB: case ASIOSTInt16MSB: byteStride = 2; break; case ASIOSTInt24LSB: case ASIOSTInt24MSB: byteStride = 3; break; case ASIOSTInt32MSB16: case ASIOSTInt32LSB16: case ASIOSTInt32MSB: case ASIOSTInt32MSB18: case ASIOSTInt32MSB20: case ASIOSTInt32MSB24: case ASIOSTInt32LSB: case ASIOSTInt32LSB18: case ASIOSTInt32LSB20: case ASIOSTInt32LSB24: case ASIOSTFloat32LSB: case ASIOSTFloat32MSB: byteStride = 4; break; case ASIOSTFloat64MSB: case ASIOSTFloat64LSB: byteStride = 8; break; default: break; } } }; class ASIOAudioIODeviceType : public AudioIODeviceType { public: ASIOAudioIODeviceType() : AudioIODeviceType (T("ASIO")), classIds (2), hasScanned (false) { CoInitialize (0); } ~ASIOAudioIODeviceType() { } void scanForDevices() { hasScanned = true; deviceNames.clear(); classIds.clear(); HKEY hk = 0; int index = 0; if (RegOpenKeyA (HKEY_LOCAL_MACHINE, "software\\asio", &hk) == ERROR_SUCCESS) { for (;;) { char name [256]; if (RegEnumKeyA (hk, index++, name, 256) == ERROR_SUCCESS) { addDriverInfo (name, hk); } else { break; } } RegCloseKey (hk); } } const StringArray getDeviceNames (const bool /*wantInputNames*/) const { jassert (hasScanned); // need to call scanForDevices() before doing this return deviceNames; } int getDefaultDeviceIndex (const bool) const { jassert (hasScanned); // need to call scanForDevices() before doing this for (int i = deviceNames.size(); --i >= 0;) if (deviceNames[i].containsIgnoreCase (T("asio4all"))) return i; // asio4all is a safe choice for a default.. #if JUCE_DEBUG if (deviceNames.size() > 1 && deviceNames[0].containsIgnoreCase (T("digidesign"))) return 1; // (the digi m-box driver crashes the app when you run // it in the debugger, which can be a bit annoying) #endif return 0; } static int findFreeSlot() { for (int i = 0; i < numElementsInArray (currentASIODev); ++i) if (currentASIODev[i] == 0) return i; jassertfalse; // unfortunately you can only have a finite number // of ASIO devices open at the same time.. return -1; } int getIndexOfDevice (AudioIODevice* d, const bool /*asInput*/) const { jassert (hasScanned); // need to call scanForDevices() before doing this return d == 0 ? -1 : deviceNames.indexOf (d->getName()); } bool hasSeparateInputsAndOutputs() const { return false; } AudioIODevice* createDevice (const String& outputDeviceName, const String& inputDeviceName) { jassert (inputDeviceName == outputDeviceName || outputDeviceName.isEmpty() || inputDeviceName.isEmpty()); (void) inputDeviceName; jassert (hasScanned); // need to call scanForDevices() before doing this const int index = deviceNames.indexOf (outputDeviceName); if (index >= 0) { const int freeSlot = findFreeSlot(); if (freeSlot >= 0) return new ASIOAudioIODevice (outputDeviceName, *(classIds [index]), freeSlot, String::empty); } return 0; } juce_UseDebuggingNewOperator private: StringArray deviceNames; OwnedArray classIds; bool hasScanned; static bool checkClassIsOk (const String& classId) { HKEY hk = 0; bool ok = false; if (RegOpenKeyA (HKEY_CLASSES_ROOT, "clsid", &hk) == ERROR_SUCCESS) { int index = 0; for (;;) { char buf [512]; if (RegEnumKeyA (hk, index++, buf, 512) == ERROR_SUCCESS) { if (classId.equalsIgnoreCase (buf)) { HKEY subKey, pathKey; if (RegOpenKeyExA (hk, buf, 0, KEY_READ, &subKey) == ERROR_SUCCESS) { if (RegOpenKeyExA (subKey, "InprocServer32", 0, KEY_READ, &pathKey) == ERROR_SUCCESS) { char pathName [600]; DWORD dtype = REG_SZ; DWORD dsize = sizeof (pathName); if (RegQueryValueExA (pathKey, 0, 0, &dtype, (LPBYTE) pathName, &dsize) == ERROR_SUCCESS) { OFSTRUCT of; zerostruct (of); of.cBytes = sizeof (of); ok = (OpenFile (String (pathName), &of, OF_EXIST) != 0); } RegCloseKey (pathKey); } RegCloseKey (subKey); } break; } } else { break; } } RegCloseKey (hk); } return ok; } void addDriverInfo (const String& keyName, HKEY hk) { HKEY subKey; if (RegOpenKeyExA (hk, keyName, 0, KEY_READ, &subKey) == ERROR_SUCCESS) { char buf [256]; DWORD dtype = REG_SZ; DWORD dsize = sizeof (buf); zeromem (buf, dsize); if (RegQueryValueExA (subKey, "clsid", 0, &dtype, (LPBYTE) buf, &dsize) == ERROR_SUCCESS) { if (dsize > 0 && checkClassIsOk (buf)) { wchar_t classIdStr [130]; MultiByteToWideChar (CP_ACP, 0, buf, -1, classIdStr, 128); String deviceName; CLSID classId; if (CLSIDFromString ((LPOLESTR) classIdStr, &classId) == S_OK) { dtype = REG_SZ; dsize = sizeof (buf); if (RegQueryValueExA (subKey, "description", 0, &dtype, (LPBYTE) buf, &dsize) == ERROR_SUCCESS) deviceName = buf; else deviceName = keyName; log (T("found ") + deviceName); deviceNames.add (deviceName); classIds.add (new CLSID (classId)); } } RegCloseKey (subKey); } } } ASIOAudioIODeviceType (const ASIOAudioIODeviceType&); const ASIOAudioIODeviceType& operator= (const ASIOAudioIODeviceType&); }; AudioIODeviceType* juce_createAudioIODeviceType_ASIO() { return new ASIOAudioIODeviceType(); } AudioIODevice* juce_createASIOAudioIODeviceForGUID (const String& name, void* guid, const String& optionalDllForDirectLoading) { const int freeSlot = ASIOAudioIODeviceType::findFreeSlot(); if (freeSlot < 0) return 0; return new ASIOAudioIODevice (name, *(CLSID*) guid, freeSlot, optionalDllForDirectLoading); } #undef log #endif /********* End of inlined file: juce_win32_ASIO.cpp *********/ /********* Start of inlined file: juce_win32_DirectSound.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_DIRECTSOUND END_JUCE_NAMESPACE extern "C" { // Declare just the minimum number of interfaces for the DSound objects that we need.. typedef struct typeDSBUFFERDESC { DWORD dwSize; DWORD dwFlags; DWORD dwBufferBytes; DWORD dwReserved; LPWAVEFORMATEX lpwfxFormat; GUID guid3DAlgorithm; } DSBUFFERDESC; struct IDirectSoundBuffer; #undef INTERFACE #define INTERFACE IDirectSound DECLARE_INTERFACE_(IDirectSound, IUnknown) { STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID*) PURE; STDMETHOD_(ULONG,AddRef) (THIS) PURE; STDMETHOD_(ULONG,Release) (THIS) PURE; STDMETHOD(CreateSoundBuffer) (THIS_ DSBUFFERDESC*, IDirectSoundBuffer**, LPUNKNOWN) PURE; STDMETHOD(GetCaps) (THIS_ void*) PURE; STDMETHOD(DuplicateSoundBuffer) (THIS_ IDirectSoundBuffer*, IDirectSoundBuffer**) PURE; STDMETHOD(SetCooperativeLevel) (THIS_ HWND, DWORD) PURE; STDMETHOD(Compact) (THIS) PURE; STDMETHOD(GetSpeakerConfig) (THIS_ LPDWORD) PURE; STDMETHOD(SetSpeakerConfig) (THIS_ DWORD) PURE; STDMETHOD(Initialize) (THIS_ const GUID*) PURE; }; #undef INTERFACE #define INTERFACE IDirectSoundBuffer DECLARE_INTERFACE_(IDirectSoundBuffer, IUnknown) { STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID*) PURE; STDMETHOD_(ULONG,AddRef) (THIS) PURE; STDMETHOD_(ULONG,Release) (THIS) PURE; STDMETHOD(GetCaps) (THIS_ void*) PURE; STDMETHOD(GetCurrentPosition) (THIS_ LPDWORD, LPDWORD) PURE; STDMETHOD(GetFormat) (THIS_ LPWAVEFORMATEX, DWORD, LPDWORD) PURE; STDMETHOD(GetVolume) (THIS_ LPLONG) PURE; STDMETHOD(GetPan) (THIS_ LPLONG) PURE; STDMETHOD(GetFrequency) (THIS_ LPDWORD) PURE; STDMETHOD(GetStatus) (THIS_ LPDWORD) PURE; STDMETHOD(Initialize) (THIS_ IDirectSound*, DSBUFFERDESC*) PURE; STDMETHOD(Lock) (THIS_ DWORD, DWORD, LPVOID*, LPDWORD, LPVOID*, LPDWORD, DWORD) PURE; STDMETHOD(Play) (THIS_ DWORD, DWORD, DWORD) PURE; STDMETHOD(SetCurrentPosition) (THIS_ DWORD) PURE; STDMETHOD(SetFormat) (THIS_ const WAVEFORMATEX*) PURE; STDMETHOD(SetVolume) (THIS_ LONG) PURE; STDMETHOD(SetPan) (THIS_ LONG) PURE; STDMETHOD(SetFrequency) (THIS_ DWORD) PURE; STDMETHOD(Stop) (THIS) PURE; STDMETHOD(Unlock) (THIS_ LPVOID, DWORD, LPVOID, DWORD) PURE; STDMETHOD(Restore) (THIS) PURE; }; typedef struct typeDSCBUFFERDESC { DWORD dwSize; DWORD dwFlags; DWORD dwBufferBytes; DWORD dwReserved; LPWAVEFORMATEX lpwfxFormat; } DSCBUFFERDESC; struct IDirectSoundCaptureBuffer; #undef INTERFACE #define INTERFACE IDirectSoundCapture DECLARE_INTERFACE_(IDirectSoundCapture, IUnknown) { STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID*) PURE; STDMETHOD_(ULONG,AddRef) (THIS) PURE; STDMETHOD_(ULONG,Release) (THIS) PURE; STDMETHOD(CreateCaptureBuffer) (THIS_ DSCBUFFERDESC*, IDirectSoundCaptureBuffer**, LPUNKNOWN) PURE; STDMETHOD(GetCaps) (THIS_ void*) PURE; STDMETHOD(Initialize) (THIS_ const GUID*) PURE; }; #undef INTERFACE #define INTERFACE IDirectSoundCaptureBuffer DECLARE_INTERFACE_(IDirectSoundCaptureBuffer, IUnknown) { STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID*) PURE; STDMETHOD_(ULONG,AddRef) (THIS) PURE; STDMETHOD_(ULONG,Release) (THIS) PURE; STDMETHOD(GetCaps) (THIS_ void*) PURE; STDMETHOD(GetCurrentPosition) (THIS_ LPDWORD, LPDWORD) PURE; STDMETHOD(GetFormat) (THIS_ LPWAVEFORMATEX, DWORD, LPDWORD) PURE; STDMETHOD(GetStatus) (THIS_ LPDWORD) PURE; STDMETHOD(Initialize) (THIS_ IDirectSoundCapture*, DSCBUFFERDESC*) PURE; STDMETHOD(Lock) (THIS_ DWORD, DWORD, LPVOID*, LPDWORD, LPVOID*, LPDWORD, DWORD) PURE; STDMETHOD(Start) (THIS_ DWORD) PURE; STDMETHOD(Stop) (THIS) PURE; STDMETHOD(Unlock) (THIS_ LPVOID, DWORD, LPVOID, DWORD) PURE; }; }; BEGIN_JUCE_NAMESPACE static const String getDSErrorMessage (HRESULT hr) { const char* result = 0; switch (hr) { case MAKE_HRESULT(1, 0x878, 10): result = "Device already allocated"; break; case MAKE_HRESULT(1, 0x878, 30): result = "Control unavailable"; break; case E_INVALIDARG: result = "Invalid parameter"; break; case MAKE_HRESULT(1, 0x878, 50): result = "Invalid call"; break; case E_FAIL: result = "Generic error"; break; case MAKE_HRESULT(1, 0x878, 70): result = "Priority level error"; break; case E_OUTOFMEMORY: result = "Out of memory"; break; case MAKE_HRESULT(1, 0x878, 100): result = "Bad format"; break; case E_NOTIMPL: result = "Unsupported function"; break; case MAKE_HRESULT(1, 0x878, 120): result = "No driver"; break; case MAKE_HRESULT(1, 0x878, 130): result = "Already initialised"; break; case CLASS_E_NOAGGREGATION: result = "No aggregation"; break; case MAKE_HRESULT(1, 0x878, 150): result = "Buffer lost"; break; case MAKE_HRESULT(1, 0x878, 160): result = "Another app has priority"; break; case MAKE_HRESULT(1, 0x878, 170): result = "Uninitialised"; break; case E_NOINTERFACE: result = "No interface"; break; case S_OK: result = "No error"; break; default: return "Unknown error: " + String ((int) hr); } return result; } #define DS_DEBUGGING 1 #ifdef DS_DEBUGGING #define CATCH JUCE_CATCH_EXCEPTION #undef log #define log(a) Logger::writeToLog(a); #undef logError #define logError(a) logDSError(a, __LINE__); static void logDSError (HRESULT hr, int lineNum) { if (hr != S_OK) { String error ("DS error at line "); error << lineNum << T(" - ") << getDSErrorMessage (hr); log (error); } } #else #define CATCH JUCE_CATCH_ALL #define log(a) #define logError(a) #endif #define DSOUND_FUNCTION(functionName, params) \ typedef HRESULT (WINAPI *type##functionName) params; \ static type##functionName ds##functionName = 0; #define DSOUND_FUNCTION_LOAD(functionName) \ ds##functionName = (type##functionName) GetProcAddress (h, #functionName); \ jassert (ds##functionName != 0); typedef BOOL (CALLBACK *LPDSENUMCALLBACKW) (LPGUID, LPCWSTR, LPCWSTR, LPVOID); typedef BOOL (CALLBACK *LPDSENUMCALLBACKA) (LPGUID, LPCSTR, LPCSTR, LPVOID); DSOUND_FUNCTION (DirectSoundCreate, (const GUID*, IDirectSound**, LPUNKNOWN)) DSOUND_FUNCTION (DirectSoundCaptureCreate, (const GUID*, IDirectSoundCapture**, LPUNKNOWN)) DSOUND_FUNCTION (DirectSoundEnumerateW, (LPDSENUMCALLBACKW, LPVOID)) DSOUND_FUNCTION (DirectSoundCaptureEnumerateW, (LPDSENUMCALLBACKW, LPVOID)) static void initialiseDSoundFunctions() { if (dsDirectSoundCreate == 0) { HMODULE h = LoadLibraryA ("dsound.dll"); DSOUND_FUNCTION_LOAD (DirectSoundCreate) DSOUND_FUNCTION_LOAD (DirectSoundCaptureCreate) DSOUND_FUNCTION_LOAD (DirectSoundEnumerateW) DSOUND_FUNCTION_LOAD (DirectSoundCaptureEnumerateW) } } class DSoundInternalOutChannel { String name; LPGUID guid; int sampleRate, bufferSizeSamples; float* leftBuffer; float* rightBuffer; IDirectSound* pDirectSound; IDirectSoundBuffer* pOutputBuffer; DWORD writeOffset; int totalBytesPerBuffer; int bytesPerBuffer; unsigned int lastPlayCursor; public: int bitDepth; bool doneFlag; DSoundInternalOutChannel (const String& name_, LPGUID guid_, int rate, int bufferSize, float* left, float* right) : name (name_), guid (guid_), sampleRate (rate), bufferSizeSamples (bufferSize), leftBuffer (left), rightBuffer (right), pDirectSound (0), pOutputBuffer (0), bitDepth (16) { } ~DSoundInternalOutChannel() { close(); } void close() { HRESULT hr; if (pOutputBuffer != 0) { JUCE_TRY { log (T("closing dsound out: ") + name); hr = pOutputBuffer->Stop(); logError (hr); } CATCH JUCE_TRY { hr = pOutputBuffer->Release(); logError (hr); } CATCH pOutputBuffer = 0; } if (pDirectSound != 0) { JUCE_TRY { hr = pDirectSound->Release(); logError (hr); } CATCH pDirectSound = 0; } } const String open() { log (T("opening dsound out device: ") + name + T(" rate=") + String (sampleRate) + T(" bits=") + String (bitDepth) + T(" buf=") + String (bufferSizeSamples)); pDirectSound = 0; pOutputBuffer = 0; writeOffset = 0; String error; HRESULT hr = E_NOINTERFACE; if (dsDirectSoundCreate != 0) hr = dsDirectSoundCreate (guid, &pDirectSound, 0); if (hr == S_OK) { bytesPerBuffer = (bufferSizeSamples * (bitDepth >> 2)) & ~15; totalBytesPerBuffer = (3 * bytesPerBuffer) & ~15; const int numChannels = 2; hr = pDirectSound->SetCooperativeLevel (GetDesktopWindow(), 2 /* DSSCL_PRIORITY */); logError (hr); if (hr == S_OK) { IDirectSoundBuffer* pPrimaryBuffer; DSBUFFERDESC primaryDesc; zerostruct (primaryDesc); primaryDesc.dwSize = sizeof (DSBUFFERDESC); primaryDesc.dwFlags = 1 /* DSBCAPS_PRIMARYBUFFER */; primaryDesc.dwBufferBytes = 0; primaryDesc.lpwfxFormat = 0; log ("opening dsound out step 2"); hr = pDirectSound->CreateSoundBuffer (&primaryDesc, &pPrimaryBuffer, 0); logError (hr); if (hr == S_OK) { WAVEFORMATEX wfFormat; wfFormat.wFormatTag = WAVE_FORMAT_PCM; wfFormat.nChannels = (unsigned short) numChannels; wfFormat.nSamplesPerSec = sampleRate; wfFormat.wBitsPerSample = (unsigned short) bitDepth; wfFormat.nBlockAlign = (unsigned short) (wfFormat.nChannels * wfFormat.wBitsPerSample / 8); wfFormat.nAvgBytesPerSec = wfFormat.nSamplesPerSec * wfFormat.nBlockAlign; wfFormat.cbSize = 0; hr = pPrimaryBuffer->SetFormat (&wfFormat); logError (hr); if (hr == S_OK) { DSBUFFERDESC secondaryDesc; zerostruct (secondaryDesc); secondaryDesc.dwSize = sizeof (DSBUFFERDESC); secondaryDesc.dwFlags = 0x8000 /* DSBCAPS_GLOBALFOCUS */ | 0x10000 /* DSBCAPS_GETCURRENTPOSITION2 */; secondaryDesc.dwBufferBytes = totalBytesPerBuffer; secondaryDesc.lpwfxFormat = &wfFormat; hr = pDirectSound->CreateSoundBuffer (&secondaryDesc, &pOutputBuffer, 0); logError (hr); if (hr == S_OK) { log ("opening dsound out step 3"); DWORD dwDataLen; unsigned char* pDSBuffData; hr = pOutputBuffer->Lock (0, totalBytesPerBuffer, (LPVOID*) &pDSBuffData, &dwDataLen, 0, 0, 0); logError (hr); if (hr == S_OK) { zeromem (pDSBuffData, dwDataLen); hr = pOutputBuffer->Unlock (pDSBuffData, dwDataLen, 0, 0); if (hr == S_OK) { hr = pOutputBuffer->SetCurrentPosition (0); if (hr == S_OK) { hr = pOutputBuffer->Play (0, 0, 1 /* DSBPLAY_LOOPING */); if (hr == S_OK) return String::empty; } } } } } } } } error = getDSErrorMessage (hr); close(); return error; } void synchronisePosition() { if (pOutputBuffer != 0) { DWORD playCursor; pOutputBuffer->GetCurrentPosition (&playCursor, &writeOffset); } } bool service() { if (pOutputBuffer == 0) return true; DWORD playCursor, writeCursor; HRESULT hr = pOutputBuffer->GetCurrentPosition (&playCursor, &writeCursor); if (hr != S_OK) { logError (hr); jassertfalse return true; } int playWriteGap = writeCursor - playCursor; if (playWriteGap < 0) playWriteGap += totalBytesPerBuffer; int bytesEmpty = playCursor - writeOffset; if (bytesEmpty < 0) bytesEmpty += totalBytesPerBuffer; if (bytesEmpty > (totalBytesPerBuffer - playWriteGap)) { writeOffset = writeCursor; bytesEmpty = totalBytesPerBuffer - playWriteGap; } if (bytesEmpty >= bytesPerBuffer) { LPBYTE lpbuf1 = 0; LPBYTE lpbuf2 = 0; DWORD dwSize1 = 0; DWORD dwSize2 = 0; HRESULT hr = pOutputBuffer->Lock (writeOffset, bytesPerBuffer, (void**) &lpbuf1, &dwSize1, (void**) &lpbuf2, &dwSize2, 0); if (hr == MAKE_HRESULT (1, 0x878, 150)) // DSERR_BUFFERLOST { pOutputBuffer->Restore(); hr = pOutputBuffer->Lock (writeOffset, bytesPerBuffer, (void**) &lpbuf1, &dwSize1, (void**) &lpbuf2, &dwSize2, 0); } if (hr == S_OK) { if (bitDepth == 16) { const float gainL = 32767.0f; const float gainR = 32767.0f; int* dest = (int*)lpbuf1; const float* left = leftBuffer; const float* right = rightBuffer; int samples1 = dwSize1 >> 2; int samples2 = dwSize2 >> 2; if (left == 0) { while (--samples1 >= 0) { int r = roundFloatToInt (gainR * *right++); if (r < -32768) r = -32768; else if (r > 32767) r = 32767; *dest++ = (r << 16); } dest = (int*)lpbuf2; while (--samples2 >= 0) { int r = roundFloatToInt (gainR * *right++); if (r < -32768) r = -32768; else if (r > 32767) r = 32767; *dest++ = (r << 16); } } else if (right == 0) { while (--samples1 >= 0) { int l = roundFloatToInt (gainL * *left++); if (l < -32768) l = -32768; else if (l > 32767) l = 32767; l &= 0xffff; *dest++ = l; } dest = (int*)lpbuf2; while (--samples2 >= 0) { int l = roundFloatToInt (gainL * *left++); if (l < -32768) l = -32768; else if (l > 32767) l = 32767; l &= 0xffff; *dest++ = l; } } else { while (--samples1 >= 0) { int l = roundFloatToInt (gainL * *left++); if (l < -32768) l = -32768; else if (l > 32767) l = 32767; l &= 0xffff; int r = roundFloatToInt (gainR * *right++); if (r < -32768) r = -32768; else if (r > 32767) r = 32767; *dest++ = (r << 16) | l; } dest = (int*)lpbuf2; while (--samples2 >= 0) { int l = roundFloatToInt (gainL * *left++); if (l < -32768) l = -32768; else if (l > 32767) l = 32767; l &= 0xffff; int r = roundFloatToInt (gainR * *right++); if (r < -32768) r = -32768; else if (r > 32767) r = 32767; *dest++ = (r << 16) | l; } } } else { jassertfalse } writeOffset = (writeOffset + dwSize1 + dwSize2) % totalBytesPerBuffer; pOutputBuffer->Unlock (lpbuf1, dwSize1, lpbuf2, dwSize2); } else { jassertfalse logError (hr); } bytesEmpty -= bytesPerBuffer; return true; } else { return false; } } }; struct DSoundInternalInChannel { String name; LPGUID guid; int sampleRate, bufferSizeSamples; float* leftBuffer; float* rightBuffer; IDirectSound* pDirectSound; IDirectSoundCapture* pDirectSoundCapture; IDirectSoundCaptureBuffer* pInputBuffer; public: unsigned int readOffset; int bytesPerBuffer, totalBytesPerBuffer; int bitDepth; bool doneFlag; DSoundInternalInChannel (const String& name_, LPGUID guid_, int rate, int bufferSize, float* left, float* right) : name (name_), guid (guid_), sampleRate (rate), bufferSizeSamples (bufferSize), leftBuffer (left), rightBuffer (right), pDirectSound (0), pDirectSoundCapture (0), pInputBuffer (0), bitDepth (16) { } ~DSoundInternalInChannel() { close(); } void close() { HRESULT hr; if (pInputBuffer != 0) { JUCE_TRY { log (T("closing dsound in: ") + name); hr = pInputBuffer->Stop(); logError (hr); } CATCH JUCE_TRY { hr = pInputBuffer->Release(); logError (hr); } CATCH pInputBuffer = 0; } if (pDirectSoundCapture != 0) { JUCE_TRY { hr = pDirectSoundCapture->Release(); logError (hr); } CATCH pDirectSoundCapture = 0; } if (pDirectSound != 0) { JUCE_TRY { hr = pDirectSound->Release(); logError (hr); } CATCH pDirectSound = 0; } } const String open() { log (T("opening dsound in device: ") + name + T(" rate=") + String (sampleRate) + T(" bits=") + String (bitDepth) + T(" buf=") + String (bufferSizeSamples)); pDirectSound = 0; pDirectSoundCapture = 0; pInputBuffer = 0; readOffset = 0; totalBytesPerBuffer = 0; String error; HRESULT hr = E_NOINTERFACE; if (dsDirectSoundCaptureCreate != 0) hr = dsDirectSoundCaptureCreate (guid, &pDirectSoundCapture, 0); logError (hr); if (hr == S_OK) { const int numChannels = 2; bytesPerBuffer = (bufferSizeSamples * (bitDepth >> 2)) & ~15; totalBytesPerBuffer = (3 * bytesPerBuffer) & ~15; WAVEFORMATEX wfFormat; wfFormat.wFormatTag = WAVE_FORMAT_PCM; wfFormat.nChannels = (unsigned short)numChannels; wfFormat.nSamplesPerSec = sampleRate; wfFormat.wBitsPerSample = (unsigned short)bitDepth; wfFormat.nBlockAlign = (unsigned short)(wfFormat.nChannels * (wfFormat.wBitsPerSample / 8)); wfFormat.nAvgBytesPerSec = wfFormat.nSamplesPerSec * wfFormat.nBlockAlign; wfFormat.cbSize = 0; DSCBUFFERDESC captureDesc; zerostruct (captureDesc); captureDesc.dwSize = sizeof (DSCBUFFERDESC); captureDesc.dwFlags = 0; captureDesc.dwBufferBytes = totalBytesPerBuffer; captureDesc.lpwfxFormat = &wfFormat; log (T("opening dsound in step 2")); hr = pDirectSoundCapture->CreateCaptureBuffer (&captureDesc, &pInputBuffer, 0); logError (hr); if (hr == S_OK) { hr = pInputBuffer->Start (1 /* DSCBSTART_LOOPING */); logError (hr); if (hr == S_OK) return String::empty; } } error = getDSErrorMessage (hr); close(); return error; } void synchronisePosition() { if (pInputBuffer != 0) { DWORD capturePos; pInputBuffer->GetCurrentPosition (&capturePos, (DWORD*)&readOffset); } } bool service() { if (pInputBuffer == 0) return true; DWORD capturePos, readPos; HRESULT hr = pInputBuffer->GetCurrentPosition (&capturePos, &readPos); logError (hr); if (hr != S_OK) return true; int bytesFilled = readPos - readOffset; if (bytesFilled < 0) bytesFilled += totalBytesPerBuffer; if (bytesFilled >= bytesPerBuffer) { LPBYTE lpbuf1 = 0; LPBYTE lpbuf2 = 0; DWORD dwsize1 = 0; DWORD dwsize2 = 0; HRESULT hr = pInputBuffer->Lock (readOffset, bytesPerBuffer, (void**) &lpbuf1, &dwsize1, (void**) &lpbuf2, &dwsize2, 0); if (hr == S_OK) { if (bitDepth == 16) { const float g = 1.0f / 32768.0f; float* destL = leftBuffer; float* destR = rightBuffer; int samples1 = dwsize1 >> 2; int samples2 = dwsize2 >> 2; const short* src = (const short*)lpbuf1; if (destL == 0) { while (--samples1 >= 0) { ++src; *destR++ = *src++ * g; } src = (const short*)lpbuf2; while (--samples2 >= 0) { ++src; *destR++ = *src++ * g; } } else if (destR == 0) { while (--samples1 >= 0) { *destL++ = *src++ * g; ++src; } src = (const short*)lpbuf2; while (--samples2 >= 0) { *destL++ = *src++ * g; ++src; } } else { while (--samples1 >= 0) { *destL++ = *src++ * g; *destR++ = *src++ * g; } src = (const short*)lpbuf2; while (--samples2 >= 0) { *destL++ = *src++ * g; *destR++ = *src++ * g; } } } else { jassertfalse } readOffset = (readOffset + dwsize1 + dwsize2) % totalBytesPerBuffer; pInputBuffer->Unlock (lpbuf1, dwsize1, lpbuf2, dwsize2); } else { logError (hr); jassertfalse } bytesFilled -= bytesPerBuffer; return true; } else { return false; } } }; class DSoundAudioIODevice : public AudioIODevice, public Thread { public: DSoundAudioIODevice (const String& deviceName, const int outputDeviceIndex_, const int inputDeviceIndex_) : AudioIODevice (deviceName, "DirectSound"), Thread ("Juce DSound"), isOpen_ (false), isStarted (false), outputDeviceIndex (outputDeviceIndex_), inputDeviceIndex (inputDeviceIndex_), inChans (4), outChans (4), numInputBuffers (0), numOutputBuffers (0), totalSamplesOut (0), sampleRate (0.0), inputBuffers (0), outputBuffers (0), callback (0), bufferSizeSamples (0) { if (outputDeviceIndex_ >= 0) { outChannels.add (TRANS("Left")); outChannels.add (TRANS("Right")); } if (inputDeviceIndex_ >= 0) { inChannels.add (TRANS("Left")); inChannels.add (TRANS("Right")); } } ~DSoundAudioIODevice() { close(); } const StringArray getOutputChannelNames() { return outChannels; } const StringArray getInputChannelNames() { return inChannels; } int getNumSampleRates() { return 4; } double getSampleRate (int index) { const double samps[] = { 44100.0, 48000.0, 88200.0, 96000.0 }; return samps [jlimit (0, 3, index)]; } int getNumBufferSizesAvailable() { return 50; } int getBufferSizeSamples (int index) { int n = 64; for (int i = 0; i < index; ++i) n += (n < 512) ? 32 : ((n < 1024) ? 64 : ((n < 2048) ? 128 : 256)); return n; } int getDefaultBufferSize() { return 2560; } const String open (const BitArray& inputChannels, const BitArray& outputChannels, double sampleRate, int bufferSizeSamples) { lastError = openDevice (inputChannels, outputChannels, sampleRate, bufferSizeSamples); isOpen_ = lastError.isEmpty(); return lastError; } void close() { stop(); if (isOpen_) { closeDevice(); isOpen_ = false; } } bool isOpen() { return isOpen_ && isThreadRunning(); } int getCurrentBufferSizeSamples() { return bufferSizeSamples; } double getCurrentSampleRate() { return sampleRate; } int getCurrentBitDepth() { int i, bits = 256; for (i = inChans.size(); --i >= 0;) bits = jmin (bits, inChans[i]->bitDepth); for (i = outChans.size(); --i >= 0;) bits = jmin (bits, outChans[i]->bitDepth); if (bits > 32) bits = 16; return bits; } const BitArray getActiveOutputChannels() const { return enabledOutputs; } const BitArray getActiveInputChannels() const { return enabledInputs; } int getOutputLatencyInSamples() { return (int) (getCurrentBufferSizeSamples() * 1.5); } int getInputLatencyInSamples() { return getOutputLatencyInSamples(); } void start (AudioIODeviceCallback* call) { if (isOpen_ && call != 0 && ! isStarted) { if (! isThreadRunning()) { // something gone wrong and the thread's stopped.. isOpen_ = false; return; } call->audioDeviceAboutToStart (this); const ScopedLock sl (startStopLock); callback = call; isStarted = true; } } void stop() { if (isStarted) { AudioIODeviceCallback* const callbackLocal = callback; { const ScopedLock sl (startStopLock); isStarted = false; } if (callbackLocal != 0) callbackLocal->audioDeviceStopped(); } } bool isPlaying() { return isStarted && isOpen_ && isThreadRunning(); } const String getLastError() { return lastError; } juce_UseDebuggingNewOperator StringArray inChannels, outChannels; int outputDeviceIndex, inputDeviceIndex; private: bool isOpen_; bool isStarted; String lastError; OwnedArray inChans; OwnedArray outChans; WaitableEvent startEvent; int numInputBuffers, numOutputBuffers, bufferSizeSamples; int volatile totalSamplesOut; int64 volatile lastBlockTime; double sampleRate; BitArray enabledInputs, enabledOutputs; float** inputBuffers; float** outputBuffers; AudioIODeviceCallback* callback; CriticalSection startStopLock; DSoundAudioIODevice (const DSoundAudioIODevice&); const DSoundAudioIODevice& operator= (const DSoundAudioIODevice&); const String openDevice (const BitArray& inputChannels, const BitArray& outputChannels, double sampleRate_, int bufferSizeSamples_); void closeDevice() { isStarted = false; stopThread (5000); inChans.clear(); outChans.clear(); int i; for (i = 0; i < numInputBuffers; ++i) juce_free (inputBuffers[i]); delete[] inputBuffers; inputBuffers = 0; numInputBuffers = 0; for (i = 0; i < numOutputBuffers; ++i) juce_free (outputBuffers[i]); delete[] outputBuffers; outputBuffers = 0; numOutputBuffers = 0; } void resync() { if (! threadShouldExit()) { sleep (5); int i; for (i = 0; i < outChans.size(); ++i) outChans.getUnchecked(i)->synchronisePosition(); for (i = 0; i < inChans.size(); ++i) inChans.getUnchecked(i)->synchronisePosition(); } } public: void run() { while (! threadShouldExit()) { if (wait (100)) break; } const int latencyMs = (int) (bufferSizeSamples * 1000.0 / sampleRate); const int maxTimeMS = jmax (5, 3 * latencyMs); while (! threadShouldExit()) { int numToDo = 0; uint32 startTime = Time::getMillisecondCounter(); int i; for (i = inChans.size(); --i >= 0;) { inChans.getUnchecked(i)->doneFlag = false; ++numToDo; } for (i = outChans.size(); --i >= 0;) { outChans.getUnchecked(i)->doneFlag = false; ++numToDo; } if (numToDo > 0) { const int maxCount = 3; int count = maxCount; for (;;) { for (i = inChans.size(); --i >= 0;) { DSoundInternalInChannel* const in = inChans.getUnchecked(i); if ((! in->doneFlag) && in->service()) { in->doneFlag = true; --numToDo; } } for (i = outChans.size(); --i >= 0;) { DSoundInternalOutChannel* const out = outChans.getUnchecked(i); if ((! out->doneFlag) && out->service()) { out->doneFlag = true; --numToDo; } } if (numToDo <= 0) break; if (Time::getMillisecondCounter() > startTime + maxTimeMS) { resync(); break; } if (--count <= 0) { Sleep (1); count = maxCount; } if (threadShouldExit()) return; } } else { sleep (1); } const ScopedLock sl (startStopLock); if (isStarted) { JUCE_TRY { callback->audioDeviceIOCallback ((const float**) inputBuffers, numInputBuffers, outputBuffers, numOutputBuffers, bufferSizeSamples); } JUCE_CATCH_EXCEPTION totalSamplesOut += bufferSizeSamples; } else { for (i = 0; i < numOutputBuffers; ++i) if (outputBuffers[i] != 0) zeromem (outputBuffers[i], bufferSizeSamples * sizeof (float)); totalSamplesOut = 0; sleep (1); } } } }; class DSoundAudioIODeviceType : public AudioIODeviceType { public: DSoundAudioIODeviceType() : AudioIODeviceType (T("DirectSound")), hasScanned (false) { initialiseDSoundFunctions(); } ~DSoundAudioIODeviceType() { } void scanForDevices() { hasScanned = true; outputDeviceNames.clear(); outputGuids.clear(); inputDeviceNames.clear(); inputGuids.clear(); if (dsDirectSoundEnumerateW != 0) { dsDirectSoundEnumerateW (outputEnumProcW, this); dsDirectSoundCaptureEnumerateW (inputEnumProcW, this); } } const StringArray getDeviceNames (const bool wantInputNames) const { jassert (hasScanned); // need to call scanForDevices() before doing this return wantInputNames ? inputDeviceNames : outputDeviceNames; } int getDefaultDeviceIndex (const bool /*forInput*/) const { jassert (hasScanned); // need to call scanForDevices() before doing this return 0; } int getIndexOfDevice (AudioIODevice* device, const bool asInput) const { jassert (hasScanned); // need to call scanForDevices() before doing this DSoundAudioIODevice* const d = dynamic_cast (device); if (d == 0) return -1; return asInput ? d->inputDeviceIndex : d->outputDeviceIndex; } bool hasSeparateInputsAndOutputs() const { return true; } AudioIODevice* createDevice (const String& outputDeviceName, const String& inputDeviceName) { jassert (hasScanned); // need to call scanForDevices() before doing this const int outputIndex = outputDeviceNames.indexOf (outputDeviceName); const int inputIndex = inputDeviceNames.indexOf (inputDeviceName); if (outputIndex >= 0 || inputIndex >= 0) return new DSoundAudioIODevice (outputDeviceName.isNotEmpty() ? outputDeviceName : inputDeviceName, outputIndex, inputIndex); return 0; } juce_UseDebuggingNewOperator StringArray outputDeviceNames; OwnedArray outputGuids; StringArray inputDeviceNames; OwnedArray inputGuids; private: bool hasScanned; BOOL outputEnumProc (LPGUID lpGUID, String desc) { desc = desc.trim(); if (desc.isNotEmpty()) { const String origDesc (desc); int n = 2; while (outputDeviceNames.contains (desc)) desc = origDesc + T(" (") + String (n++) + T(")"); outputDeviceNames.add (desc); if (lpGUID != 0) outputGuids.add (new GUID (*lpGUID)); else outputGuids.add (0); } return TRUE; } static BOOL CALLBACK outputEnumProcW (LPGUID lpGUID, LPCWSTR description, LPCWSTR, LPVOID object) { return ((DSoundAudioIODeviceType*) object) ->outputEnumProc (lpGUID, String (description)); } static BOOL CALLBACK outputEnumProcA (LPGUID lpGUID, LPCTSTR description, LPCTSTR, LPVOID object) { return ((DSoundAudioIODeviceType*) object) ->outputEnumProc (lpGUID, String (description)); } BOOL CALLBACK inputEnumProc (LPGUID lpGUID, String desc) { desc = desc.trim(); if (desc.isNotEmpty()) { const String origDesc (desc); int n = 2; while (inputDeviceNames.contains (desc)) desc = origDesc + T(" (") + String (n++) + T(")"); inputDeviceNames.add (desc); if (lpGUID != 0) inputGuids.add (new GUID (*lpGUID)); else inputGuids.add (0); } return TRUE; } static BOOL CALLBACK inputEnumProcW (LPGUID lpGUID, LPCWSTR description, LPCWSTR, LPVOID object) { return ((DSoundAudioIODeviceType*) object) ->inputEnumProc (lpGUID, String (description)); } static BOOL CALLBACK inputEnumProcA (LPGUID lpGUID, LPCTSTR description, LPCTSTR, LPVOID object) { return ((DSoundAudioIODeviceType*) object) ->inputEnumProc (lpGUID, String (description)); } DSoundAudioIODeviceType (const DSoundAudioIODeviceType&); const DSoundAudioIODeviceType& operator= (const DSoundAudioIODeviceType&); }; const String DSoundAudioIODevice::openDevice (const BitArray& inputChannels, const BitArray& outputChannels, double sampleRate_, int bufferSizeSamples_) { closeDevice(); totalSamplesOut = 0; sampleRate = sampleRate_; if (bufferSizeSamples_ <= 0) bufferSizeSamples_ = 960; // use as a default size if none is set. bufferSizeSamples = bufferSizeSamples_ & ~7; DSoundAudioIODeviceType dlh; dlh.scanForDevices(); enabledInputs = inputChannels; enabledInputs.setRange (inChannels.size(), enabledInputs.getHighestBit() + 1 - inChannels.size(), false); numInputBuffers = enabledInputs.countNumberOfSetBits(); inputBuffers = new float* [numInputBuffers + 2]; zeromem (inputBuffers, sizeof (float*) * numInputBuffers + 2); int i, numIns = 0; for (i = 0; i <= enabledInputs.getHighestBit(); i += 2) { float* left = 0; float* right = 0; if (enabledInputs[i]) left = inputBuffers[numIns++] = (float*) juce_calloc ((bufferSizeSamples + 16) * sizeof (float)); if (enabledInputs[i + 1]) right = inputBuffers[numIns++] = (float*) juce_calloc ((bufferSizeSamples + 16) * sizeof (float)); if (left != 0 || right != 0) inChans.add (new DSoundInternalInChannel (dlh.inputDeviceNames [inputDeviceIndex], dlh.inputGuids [inputDeviceIndex], (int) sampleRate, bufferSizeSamples, left, right)); } enabledOutputs = outputChannels; enabledOutputs.setRange (outChannels.size(), enabledOutputs.getHighestBit() + 1 - outChannels.size(), false); numOutputBuffers = enabledOutputs.countNumberOfSetBits(); outputBuffers = new float* [numOutputBuffers + 2]; zeromem (outputBuffers, sizeof (float*) * numOutputBuffers + 2); int numOuts = 0; for (i = 0; i <= enabledOutputs.getHighestBit(); i += 2) { float* left = 0; float* right = 0; if (enabledOutputs[i]) left = outputBuffers[numOuts++] = (float*) juce_calloc ((bufferSizeSamples + 16) * sizeof (float)); if (enabledOutputs[i + 1]) right = outputBuffers[numOuts++] = (float*) juce_calloc ((bufferSizeSamples + 16) * sizeof (float)); if (left != 0 || right != 0) outChans.add (new DSoundInternalOutChannel (dlh.outputDeviceNames[outputDeviceIndex], dlh.outputGuids [outputDeviceIndex], (int) sampleRate, bufferSizeSamples, left, right)); } String error; // boost our priority while opening the devices to try to get better sync between them const int oldThreadPri = GetThreadPriority (GetCurrentThread()); const int oldProcPri = GetPriorityClass (GetCurrentProcess()); SetThreadPriority (GetCurrentThread(), THREAD_PRIORITY_TIME_CRITICAL); SetPriorityClass (GetCurrentProcess(), REALTIME_PRIORITY_CLASS); for (i = 0; i < outChans.size(); ++i) { error = outChans[i]->open(); if (error.isNotEmpty()) { error = T("Error opening ") + dlh.outputDeviceNames[i] + T(": \"") + error + T("\""); break; } } if (error.isEmpty()) { for (i = 0; i < inChans.size(); ++i) { error = inChans[i]->open(); if (error.isNotEmpty()) { error = T("Error opening ") + dlh.inputDeviceNames[i] + T(": \"") + error + T("\""); break; } } } if (error.isEmpty()) { totalSamplesOut = 0; for (i = 0; i < outChans.size(); ++i) outChans.getUnchecked(i)->synchronisePosition(); for (i = 0; i < inChans.size(); ++i) inChans.getUnchecked(i)->synchronisePosition(); startThread (9); sleep (10); notify(); } else { log (error); } SetThreadPriority (GetCurrentThread(), oldThreadPri); SetPriorityClass (GetCurrentProcess(), oldProcPri); return error; } AudioIODeviceType* juce_createAudioIODeviceType_DirectSound() { return new DSoundAudioIODeviceType(); } #undef log #endif /********* End of inlined file: juce_win32_DirectSound.cpp *********/ /********* Start of inlined file: juce_win32_WASAPI.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_WASAPI #if 1 const String getAudioErrorDesc (HRESULT hr) { const char* e = 0; switch (hr) { case E_POINTER: e = "E_POINTER"; break; case E_INVALIDARG: e = "E_INVALIDARG"; break; case AUDCLNT_E_NOT_INITIALIZED: e = "AUDCLNT_E_NOT_INITIALIZED"; break; case AUDCLNT_E_ALREADY_INITIALIZED: e = "AUDCLNT_E_ALREADY_INITIALIZED"; break; case AUDCLNT_E_WRONG_ENDPOINT_TYPE: e = "AUDCLNT_E_WRONG_ENDPOINT_TYPE"; break; case AUDCLNT_E_DEVICE_INVALIDATED: e = "AUDCLNT_E_DEVICE_INVALIDATED"; break; case AUDCLNT_E_NOT_STOPPED: e = "AUDCLNT_E_NOT_STOPPED"; break; case AUDCLNT_E_BUFFER_TOO_LARGE: e = "AUDCLNT_E_BUFFER_TOO_LARGE"; break; case AUDCLNT_E_OUT_OF_ORDER: e = "AUDCLNT_E_OUT_OF_ORDER"; break; case AUDCLNT_E_UNSUPPORTED_FORMAT: e = "AUDCLNT_E_UNSUPPORTED_FORMAT"; break; case AUDCLNT_E_INVALID_SIZE: e = "AUDCLNT_E_INVALID_SIZE"; break; case AUDCLNT_E_DEVICE_IN_USE: e = "AUDCLNT_E_DEVICE_IN_USE"; break; case AUDCLNT_E_BUFFER_OPERATION_PENDING: e = "AUDCLNT_E_BUFFER_OPERATION_PENDING"; break; case AUDCLNT_E_THREAD_NOT_REGISTERED: e = "AUDCLNT_E_THREAD_NOT_REGISTERED"; break; case AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED: e = "AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED"; break; case AUDCLNT_E_ENDPOINT_CREATE_FAILED: e = "AUDCLNT_E_ENDPOINT_CREATE_FAILED"; break; case AUDCLNT_E_SERVICE_NOT_RUNNING: e = "AUDCLNT_E_SERVICE_NOT_RUNNING"; break; case AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED: e = "AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED"; break; case AUDCLNT_E_EXCLUSIVE_MODE_ONLY: e = "AUDCLNT_E_EXCLUSIVE_MODE_ONLY"; break; case AUDCLNT_E_BUFDURATION_PERIOD_NOT_EQUAL: e = "AUDCLNT_E_BUFDURATION_PERIOD_NOT_EQUAL"; break; case AUDCLNT_E_EVENTHANDLE_NOT_SET: e = "AUDCLNT_E_EVENTHANDLE_NOT_SET"; break; case AUDCLNT_E_INCORRECT_BUFFER_SIZE: e = "AUDCLNT_E_INCORRECT_BUFFER_SIZE"; break; case AUDCLNT_E_BUFFER_SIZE_ERROR: e = "AUDCLNT_E_BUFFER_SIZE_ERROR"; break; case AUDCLNT_S_BUFFER_EMPTY: e = "AUDCLNT_S_BUFFER_EMPTY"; break; case AUDCLNT_S_THREAD_ALREADY_REGISTERED: e = "AUDCLNT_S_THREAD_ALREADY_REGISTERED"; break; default: return String::toHexString ((int) hr); } return e; } #define logFailure(hr) { if (FAILED (hr)) { DBG ("WASAPI FAIL! " + getAudioErrorDesc (hr)); jassertfalse } } #define OK(a) wasapi_checkResult(a) static bool wasapi_checkResult (HRESULT hr) { logFailure (hr); return SUCCEEDED (hr); } #else #define logFailure(hr) {} #define OK(a) SUCCEEDED(a) #endif static const String wasapi_getDeviceID (IMMDevice* const device) { String s; WCHAR* deviceId = 0; if (OK (device->GetId (&deviceId))) { s = String (deviceId); CoTaskMemFree (deviceId); } return s; } static EDataFlow wasapi_getDataFlow (IMMDevice* const device) { EDataFlow flow = eRender; ComSmartPtr endPoint; if (OK (device->QueryInterface (__uuidof (IMMEndpoint), (void**) &endPoint))) (void) OK (endPoint->GetDataFlow (&flow)); return flow; } static int wasapi_refTimeToSamples (const REFERENCE_TIME& t, const double sampleRate) throw() { return roundDoubleToInt (sampleRate * ((double) t) * 0.0000001); } static void wasapi_copyWavFormat (WAVEFORMATEXTENSIBLE& dest, const WAVEFORMATEX* const src) throw() { memcpy (&dest, src, src->wFormatTag == WAVE_FORMAT_EXTENSIBLE ? sizeof (WAVEFORMATEXTENSIBLE) : sizeof (WAVEFORMATEX)); } class WASAPIDeviceBase { public: WASAPIDeviceBase (const ComSmartPtr & device_) : device (device_), sampleRate (0), numChannels (0), actualNumChannels (0), defaultSampleRate (0), minBufferSize (0), defaultBufferSize (0), latencySamples (0) { clientEvent = CreateEvent (0, false, false, _T("JuceWASAPI")); ComSmartPtr tempClient (createClient()); if (tempClient == 0) return; REFERENCE_TIME defaultPeriod, minPeriod; if (! OK (tempClient->GetDevicePeriod (&defaultPeriod, &minPeriod))) return; WAVEFORMATEX* mixFormat = 0; if (! OK (tempClient->GetMixFormat (&mixFormat))) return; WAVEFORMATEXTENSIBLE format; wasapi_copyWavFormat (format, mixFormat); CoTaskMemFree (mixFormat); actualNumChannels = numChannels = format.Format.nChannels; defaultSampleRate = format.Format.nSamplesPerSec; minBufferSize = wasapi_refTimeToSamples (minPeriod, defaultSampleRate); defaultBufferSize = wasapi_refTimeToSamples (defaultPeriod, defaultSampleRate); FloatElementComparator comparator; rates.addSorted (comparator, defaultSampleRate); static const double ratesToTest[] = { 44100.0, 48000.0, 88200.0, 96000.0 }; for (int i = 0; i < numElementsInArray (ratesToTest); ++i) { if (ratesToTest[i] == defaultSampleRate) continue; format.Format.nSamplesPerSec = roundDoubleToInt (ratesToTest[i]); if (SUCCEEDED (tempClient->IsFormatSupported (AUDCLNT_SHAREMODE_SHARED, (WAVEFORMATEX*) &format, 0))) if (! rates.contains (ratesToTest[i])) rates.addSorted (comparator, ratesToTest[i]); } } ~WASAPIDeviceBase() { device = 0; CloseHandle (clientEvent); } bool isOk() const throw() { return defaultBufferSize > 0 && defaultSampleRate > 0; } bool openClient (const double newSampleRate, const BitArray& newChannels) { sampleRate = newSampleRate; channels = newChannels; channels.setRange (actualNumChannels, channels.getHighestBit() + 1 - actualNumChannels, false); numChannels = channels.getHighestBit() + 1; if (numChannels == 0) return true; client = createClient(); if (client != 0 && (tryInitialisingWithFormat (true, 4) || tryInitialisingWithFormat (false, 4) || tryInitialisingWithFormat (false, 3) || tryInitialisingWithFormat (false, 2))) { channelMaps.clear(); for (int i = 0; i <= channels.getHighestBit(); ++i) if (channels[i]) channelMaps.add (i); REFERENCE_TIME latency; if (OK (client->GetStreamLatency (&latency))) latencySamples = wasapi_refTimeToSamples (latency, sampleRate); (void) OK (client->GetBufferSize (&actualBufferSize)); return OK (client->SetEventHandle (clientEvent)); } return false; } void closeClient() { if (client != 0) client->Stop(); client = 0; ResetEvent (clientEvent); } ComSmartPtr device; ComSmartPtr client; double sampleRate, defaultSampleRate; int numChannels, actualNumChannels; int minBufferSize, defaultBufferSize, latencySamples; Array rates; HANDLE clientEvent; BitArray channels; AudioDataConverters::DataFormat dataFormat; Array channelMaps; UINT32 actualBufferSize; int bytesPerSample; private: const ComSmartPtr createClient() { ComSmartPtr client; if (device != 0) { HRESULT hr = device->Activate (__uuidof (IAudioClient), CLSCTX_INPROC_SERVER, 0, (void**) &client); logFailure (hr); } return client; } bool tryInitialisingWithFormat (const bool useFloat, const int bytesPerSampleToTry) { WAVEFORMATEXTENSIBLE format; zerostruct (format); if (numChannels <= 2 && bytesPerSampleToTry <= 2) { format.Format.wFormatTag = WAVE_FORMAT_PCM; } else { format.Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE; format.Format.cbSize = sizeof (WAVEFORMATEXTENSIBLE) - sizeof (WAVEFORMATEX); } format.Format.nSamplesPerSec = roundDoubleToInt (sampleRate); format.Format.nChannels = (WORD) numChannels; format.Format.wBitsPerSample = (WORD) (8 * bytesPerSampleToTry); format.Format.nAvgBytesPerSec = (DWORD) (format.Format.nSamplesPerSec * numChannels * bytesPerSampleToTry); format.Format.nBlockAlign = (WORD) (numChannels * bytesPerSampleToTry); format.SubFormat = useFloat ? KSDATAFORMAT_SUBTYPE_IEEE_FLOAT : KSDATAFORMAT_SUBTYPE_PCM; format.Samples.wValidBitsPerSample = format.Format.wBitsPerSample; switch (numChannels) { case 1: format.dwChannelMask = SPEAKER_FRONT_CENTER; break; case 2: format.dwChannelMask = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT; break; case 4: format.dwChannelMask = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT; break; case 6: format.dwChannelMask = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_FRONT_CENTER | SPEAKER_LOW_FREQUENCY | SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT; break; case 8: format.dwChannelMask = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_FRONT_CENTER | SPEAKER_LOW_FREQUENCY | SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT | SPEAKER_FRONT_LEFT_OF_CENTER | SPEAKER_FRONT_RIGHT_OF_CENTER; break; default: break; } WAVEFORMATEXTENSIBLE* nearestFormat = 0; HRESULT hr = client->IsFormatSupported (AUDCLNT_SHAREMODE_SHARED, (WAVEFORMATEX*) &format, (WAVEFORMATEX**) &nearestFormat); logFailure (hr); if (hr == S_FALSE && format.Format.nSamplesPerSec == nearestFormat->Format.nSamplesPerSec) { wasapi_copyWavFormat (format, (WAVEFORMATEX*) nearestFormat); hr = S_OK; } CoTaskMemFree (nearestFormat); GUID session; if (hr == S_OK && OK (client->Initialize (AUDCLNT_SHAREMODE_SHARED, AUDCLNT_STREAMFLAGS_EVENTCALLBACK, 0, 0, (WAVEFORMATEX*) &format, &session))) { actualNumChannels = format.Format.nChannels; const bool isFloat = format.Format.wFormatTag == WAVE_FORMAT_EXTENSIBLE && format.SubFormat == KSDATAFORMAT_SUBTYPE_IEEE_FLOAT; bytesPerSample = format.Format.wBitsPerSample / 8; dataFormat = isFloat ? AudioDataConverters::float32LE : (bytesPerSample == 4 ? AudioDataConverters::int32LE : ((bytesPerSample == 3 ? AudioDataConverters::int24LE : AudioDataConverters::int16LE))); return true; } return false; } }; class WASAPIInputDevice : public WASAPIDeviceBase { public: WASAPIInputDevice (const ComSmartPtr & device_) : WASAPIDeviceBase (device_), reservoir (1, 1) { } ~WASAPIInputDevice() { close(); } bool open (const double newSampleRate, const BitArray& newChannels) { reservoirSize = 0; reservoirCapacity = 16384; reservoir.setSize (actualNumChannels * reservoirCapacity * sizeof (float)); return openClient (newSampleRate, newChannels) && (numChannels == 0 || OK (client->GetService (__uuidof (IAudioCaptureClient), (void**) &captureClient))); } void close() { closeClient(); captureClient = 0; reservoir.setSize (0); } void copyBuffers (float** destBuffers, int numDestBuffers, int bufferSize, Thread& thread) { if (numChannels <= 0) return; int offset = 0; while (bufferSize > 0) { if (reservoirSize > 0) // There's stuff in the reservoir, so use that... { const int samplesToDo = jmin (bufferSize, (int) reservoirSize); for (int i = 0; i < numDestBuffers; ++i) { float* const dest = destBuffers[i] + offset; const int srcChan = channelMaps.getUnchecked(i); switch (dataFormat) { case AudioDataConverters::float32LE: AudioDataConverters::convertFloat32LEToFloat (((uint8*) reservoir.getData()) + 4 * srcChan, dest, samplesToDo, 4 * actualNumChannels); break; case AudioDataConverters::int32LE: AudioDataConverters::convertInt32LEToFloat (((uint8*) reservoir.getData()) + 4 * srcChan, dest, samplesToDo, 4 * actualNumChannels); break; case AudioDataConverters::int24LE: AudioDataConverters::convertInt24LEToFloat (((uint8*) reservoir.getData()) + 3 * srcChan, dest, samplesToDo, 3 * actualNumChannels); break; case AudioDataConverters::int16LE: AudioDataConverters::convertInt16LEToFloat (((uint8*) reservoir.getData()) + 2 * srcChan, dest, samplesToDo, 2 * actualNumChannels); break; default: jassertfalse; break; } } bufferSize -= samplesToDo; offset += samplesToDo; reservoirSize -= samplesToDo; } else { UINT32 packetLength = 0; if (! OK (captureClient->GetNextPacketSize (&packetLength))) break; if (packetLength == 0) { if (thread.threadShouldExit()) break; Thread::sleep (1); continue; } uint8* inputData = 0; UINT32 numSamplesAvailable; DWORD flags; if (OK (captureClient->GetBuffer (&inputData, &numSamplesAvailable, &flags, 0, 0))) { const int samplesToDo = jmin (bufferSize, (int) numSamplesAvailable); for (int i = 0; i < numDestBuffers; ++i) { float* const dest = destBuffers[i] + offset; const int srcChan = channelMaps.getUnchecked(i); switch (dataFormat) { case AudioDataConverters::float32LE: AudioDataConverters::convertFloat32LEToFloat (inputData + 4 * srcChan, dest, samplesToDo, 4 * actualNumChannels); break; case AudioDataConverters::int32LE: AudioDataConverters::convertInt32LEToFloat (inputData + 4 * srcChan, dest, samplesToDo, 4 * actualNumChannels); break; case AudioDataConverters::int24LE: AudioDataConverters::convertInt24LEToFloat (inputData + 3 * srcChan, dest, samplesToDo, 3 * actualNumChannels); break; case AudioDataConverters::int16LE: AudioDataConverters::convertInt16LEToFloat (inputData + 2 * srcChan, dest, samplesToDo, 2 * actualNumChannels); break; default: jassertfalse; break; } } bufferSize -= samplesToDo; offset += samplesToDo; if (samplesToDo < numSamplesAvailable) { reservoirSize = jmin (numSamplesAvailable - samplesToDo, reservoirCapacity); memcpy ((uint8*) reservoir.getData(), inputData + bytesPerSample * actualNumChannels * samplesToDo, bytesPerSample * actualNumChannels * reservoirSize); } captureClient->ReleaseBuffer (numSamplesAvailable); } } } } ComSmartPtr captureClient; MemoryBlock reservoir; int reservoirSize, reservoirCapacity; }; class WASAPIOutputDevice : public WASAPIDeviceBase { public: WASAPIOutputDevice (const ComSmartPtr & device_) : WASAPIDeviceBase (device_) { } ~WASAPIOutputDevice() { close(); } bool open (const double newSampleRate, const BitArray& newChannels) { return openClient (newSampleRate, newChannels) && (numChannels == 0 || OK (client->GetService (__uuidof (IAudioRenderClient), (void**) &renderClient))); } void close() { closeClient(); renderClient = 0; } void copyBuffers (const float** const srcBuffers, const int numSrcBuffers, int bufferSize, Thread& thread) { if (numChannels <= 0) return; int offset = 0; while (bufferSize > 0) { UINT32 padding = 0; if (! OK (client->GetCurrentPadding (&padding))) return; const int samplesToDo = jmin ((int) (actualBufferSize - padding), bufferSize); if (samplesToDo <= 0) { if (thread.threadShouldExit()) break; Thread::sleep (0); continue; } uint8* outputData = 0; if (OK (renderClient->GetBuffer (samplesToDo, &outputData))) { for (int i = 0; i < numSrcBuffers; ++i) { const float* const source = srcBuffers[i] + offset; const int destChan = channelMaps.getUnchecked(i); switch (dataFormat) { case AudioDataConverters::float32LE: AudioDataConverters::convertFloatToFloat32LE (source, outputData + 4 * destChan, samplesToDo, 4 * actualNumChannels); break; case AudioDataConverters::int32LE: AudioDataConverters::convertFloatToInt32LE (source, outputData + 4 * destChan, samplesToDo, 4 * actualNumChannels); break; case AudioDataConverters::int24LE: AudioDataConverters::convertFloatToInt24LE (source, outputData + 3 * destChan, samplesToDo, 3 * actualNumChannels); break; case AudioDataConverters::int16LE: AudioDataConverters::convertFloatToInt16LE (source, outputData + 2 * destChan, samplesToDo, 2 * actualNumChannels); break; default: jassertfalse; break; } } renderClient->ReleaseBuffer (samplesToDo, 0); offset += samplesToDo; bufferSize -= samplesToDo; } } } ComSmartPtr renderClient; }; class WASAPIAudioIODevice : public AudioIODevice, public Thread { public: WASAPIAudioIODevice (const String& deviceName, const String& outputDeviceId_, const String& inputDeviceId_) : AudioIODevice (deviceName, "Windows Audio"), Thread ("Juce WASAPI"), isOpen_ (false), isStarted (false), outputDevice (0), outputDeviceId (outputDeviceId_), inputDevice (0), inputDeviceId (inputDeviceId_), currentBufferSizeSamples (0), currentSampleRate (0), callback (0) { } ~WASAPIAudioIODevice() { close(); deleteAndZero (inputDevice); deleteAndZero (outputDevice); } bool initialise() { double defaultSampleRateIn = 0, defaultSampleRateOut = 0; int minBufferSizeIn = 0, defaultBufferSizeIn = 0, minBufferSizeOut = 0, defaultBufferSizeOut = 0; latencyIn = latencyOut = 0; Array ratesIn, ratesOut; if (createDevices()) { jassert (inputDevice != 0 || outputDevice != 0); if (inputDevice != 0 && outputDevice != 0) { defaultSampleRate = jmin (inputDevice->defaultSampleRate, outputDevice->defaultSampleRate); minBufferSize = jmin (inputDevice->minBufferSize, outputDevice->minBufferSize); defaultBufferSize = jmax (inputDevice->defaultBufferSize, outputDevice->defaultBufferSize); sampleRates = inputDevice->rates; sampleRates.removeValuesNotIn (outputDevice->rates); } else { WASAPIDeviceBase* const d = inputDevice != 0 ? (WASAPIDeviceBase*) inputDevice : (WASAPIDeviceBase*) outputDevice; defaultSampleRate = d->defaultSampleRate; minBufferSize = d->minBufferSize; defaultBufferSize = d->defaultBufferSize; sampleRates = d->rates; } IntegerElementComparator comparator; bufferSizes.addSorted (comparator, defaultBufferSize); if (minBufferSize != defaultBufferSize) bufferSizes.addSorted (comparator, minBufferSize); int n = 64; for (int i = 0; i < 40; ++i) { if (n >= minBufferSize && n <= 2048 && ! bufferSizes.contains (n)) bufferSizes.addSorted (comparator, n); n += (n < 512) ? 32 : (n < 1024 ? 64 : 128); } return true; } return false; } const StringArray getOutputChannelNames() { StringArray outChannels; if (outputDevice != 0) for (int i = 1; i <= outputDevice->actualNumChannels; ++i) outChannels.add ("Output channel " + String (i)); return outChannels; } const StringArray getInputChannelNames() { StringArray inChannels; if (inputDevice != 0) for (int i = 1; i <= inputDevice->actualNumChannels; ++i) inChannels.add ("Input channel " + String (i)); return inChannels; } int getNumSampleRates() { return sampleRates.size(); } double getSampleRate (int index) { return sampleRates [index]; } int getNumBufferSizesAvailable() { return bufferSizes.size(); } int getBufferSizeSamples (int index) { return bufferSizes [index]; } int getDefaultBufferSize() { return defaultBufferSize; } int getCurrentBufferSizeSamples() { return currentBufferSizeSamples; } double getCurrentSampleRate() { return currentSampleRate; } int getCurrentBitDepth() { return 32; } int getOutputLatencyInSamples() { return latencyOut; } int getInputLatencyInSamples() { return latencyIn; } const BitArray getActiveOutputChannels() const { return outputDevice != 0 ? outputDevice->channels : BitArray(); } const BitArray getActiveInputChannels() const { return inputDevice != 0 ? inputDevice->channels : BitArray(); } const String getLastError() { return lastError; } const String open (const BitArray& inputChannels, const BitArray& outputChannels, double sampleRate, int bufferSizeSamples) { close(); lastError = String::empty; if (sampleRates.size() == 0 && inputDevice != 0 && outputDevice != 0) { lastError = "The input and output devices don't share a common sample rate!"; return lastError; } currentBufferSizeSamples = bufferSizeSamples <= 0 ? defaultBufferSize : jmax (bufferSizeSamples, minBufferSize); currentSampleRate = sampleRate > 0 ? sampleRate : defaultSampleRate; if (inputDevice != 0 && ! inputDevice->open (currentSampleRate, inputChannels)) { lastError = "Couldn't open the input device!"; return lastError; } if (outputDevice != 0 && ! outputDevice->open (currentSampleRate, outputChannels)) { close(); lastError = "Couldn't open the output device!"; return lastError; } if (inputDevice != 0) ResetEvent (inputDevice->clientEvent); if (outputDevice != 0) ResetEvent (outputDevice->clientEvent); startThread (8); Thread::sleep (5); if (inputDevice != 0 && inputDevice->client != 0) { latencyIn = inputDevice->latencySamples + inputDevice->actualBufferSize + inputDevice->minBufferSize; HRESULT hr = inputDevice->client->Start(); logFailure (hr); //xxx handle this } if (outputDevice != 0 && outputDevice->client != 0) { latencyOut = outputDevice->latencySamples + outputDevice->actualBufferSize + outputDevice->minBufferSize; HRESULT hr = outputDevice->client->Start(); logFailure (hr); //xxx handle this } isOpen_ = true; return lastError; } void close() { stop(); if (inputDevice != 0) SetEvent (inputDevice->clientEvent); if (outputDevice != 0) SetEvent (outputDevice->clientEvent); stopThread (5000); if (inputDevice != 0) inputDevice->close(); if (outputDevice != 0) outputDevice->close(); isOpen_ = false; } bool isOpen() { return isOpen_ && isThreadRunning(); } bool isPlaying() { return isStarted && isOpen_ && isThreadRunning(); } void start (AudioIODeviceCallback* call) { if (isOpen_ && call != 0 && ! isStarted) { if (! isThreadRunning()) { // something's gone wrong and the thread's stopped.. isOpen_ = false; return; } call->audioDeviceAboutToStart (this); const ScopedLock sl (startStopLock); callback = call; isStarted = true; } } void stop() { if (isStarted) { AudioIODeviceCallback* const callbackLocal = callback; { const ScopedLock sl (startStopLock); isStarted = false; } if (callbackLocal != 0) callbackLocal->audioDeviceStopped(); } } void run() { const int bufferSize = currentBufferSizeSamples; HANDLE events[2]; int numEvents = 0; if (inputDevice != 0) events [numEvents++] = inputDevice->clientEvent; if (outputDevice != 0) events [numEvents++] = outputDevice->clientEvent; const int numInputBuffers = getActiveInputChannels().countNumberOfSetBits(); const int numOutputBuffers = getActiveOutputChannels().countNumberOfSetBits(); AudioSampleBuffer ins (jmax (1, numInputBuffers), bufferSize + 32); AudioSampleBuffer outs (jmax (1, numOutputBuffers), bufferSize + 32); float** const inputBuffers = ins.getArrayOfChannels(); float** const outputBuffers = outs.getArrayOfChannels(); ins.clear(); while (! threadShouldExit()) { const DWORD result = WaitForMultipleObjects (numEvents, events, true, 1000); if (result == WAIT_TIMEOUT) continue; if (threadShouldExit()) break; if (inputDevice != 0) inputDevice->copyBuffers (inputBuffers, numInputBuffers, bufferSize, *this); // Make the callback.. { const ScopedLock sl (startStopLock); if (isStarted) { JUCE_TRY { callback->audioDeviceIOCallback ((const float**) inputBuffers, numInputBuffers, outputBuffers, numOutputBuffers, bufferSize); } JUCE_CATCH_EXCEPTION } else { outs.clear(); } } if (outputDevice != 0) outputDevice->copyBuffers ((const float**) outputBuffers, numOutputBuffers, bufferSize, *this); } } juce_UseDebuggingNewOperator String outputDeviceId, inputDeviceId; String lastError; private: // Device stats... WASAPIInputDevice* inputDevice; WASAPIOutputDevice* outputDevice; double defaultSampleRate; int minBufferSize, defaultBufferSize; int latencyIn, latencyOut; Array sampleRates; Array bufferSizes; // Active state... bool isOpen_, isStarted; int currentBufferSizeSamples; double currentSampleRate; AudioIODeviceCallback* callback; CriticalSection startStopLock; bool createDevices() { ComSmartPtr enumerator; if (! OK (enumerator.CoCreateInstance (__uuidof (MMDeviceEnumerator), CLSCTX_INPROC_SERVER))) return false; ComSmartPtr deviceCollection; if (! OK (enumerator->EnumAudioEndpoints (eAll, DEVICE_STATE_ACTIVE, &deviceCollection))) return false; UINT32 numDevices = 0; if (! OK (deviceCollection->GetCount (&numDevices))) return false; for (UINT32 i = 0; i < numDevices; ++i) { ComSmartPtr device; if (! OK (deviceCollection->Item (i, &device))) continue; const String deviceId (wasapi_getDeviceID (device)); if (deviceId.isEmpty()) continue; const EDataFlow flow = wasapi_getDataFlow (device); if (deviceId == inputDeviceId && flow == eCapture) inputDevice = new WASAPIInputDevice (device); else if (deviceId == outputDeviceId && flow == eRender) outputDevice = new WASAPIOutputDevice (device); } return (outputDeviceId.isEmpty() || (outputDevice != 0 && outputDevice->isOk())) && (inputDeviceId.isEmpty() || (inputDevice != 0 && inputDevice->isOk())); } WASAPIAudioIODevice (const WASAPIAudioIODevice&); const WASAPIAudioIODevice& operator= (const WASAPIAudioIODevice&); }; class WASAPIAudioIODeviceType : public AudioIODeviceType { public: WASAPIAudioIODeviceType() : AudioIODeviceType (T("Windows Audio")), hasScanned (false) { } ~WASAPIAudioIODeviceType() { } void scanForDevices() { hasScanned = true; outputDeviceNames.clear(); inputDeviceNames.clear(); outputDeviceIds.clear(); inputDeviceIds.clear(); ComSmartPtr enumerator; if (! OK (enumerator.CoCreateInstance (__uuidof (MMDeviceEnumerator), CLSCTX_INPROC_SERVER))) return; const String defaultRenderer = getDefaultEndpoint (enumerator, false); const String defaultCapture = getDefaultEndpoint (enumerator, true); ComSmartPtr deviceCollection; UINT32 numDevices = 0; if (! (OK (enumerator->EnumAudioEndpoints (eAll, DEVICE_STATE_ACTIVE, &deviceCollection)) && OK (deviceCollection->GetCount (&numDevices)))) return; for (UINT32 i = 0; i < numDevices; ++i) { ComSmartPtr device; if (! OK (deviceCollection->Item (i, &device))) continue; const String deviceId (wasapi_getDeviceID (device)); DWORD state = 0; if (! OK (device->GetState (&state))) continue; if (state != DEVICE_STATE_ACTIVE) continue; String name; { ComSmartPtr properties; if (! OK (device->OpenPropertyStore (STGM_READ, &properties))) continue; PROPVARIANT value; PropVariantInit (&value); if (OK (properties->GetValue (PKEY_Device_FriendlyName, &value))) name = value.pwszVal; PropVariantClear (&value); } const EDataFlow flow = wasapi_getDataFlow (device); if (flow == eRender) { const int index = (deviceId == defaultRenderer) ? 0 : -1; outputDeviceIds.insert (index, deviceId); outputDeviceNames.insert (index, name); } else if (flow == eCapture) { const int index = (deviceId == defaultCapture) ? 0 : -1; inputDeviceIds.insert (index, deviceId); inputDeviceNames.insert (index, name); } } inputDeviceNames.appendNumbersToDuplicates (false, false); outputDeviceNames.appendNumbersToDuplicates (false, false); } const StringArray getDeviceNames (const bool wantInputNames) const { jassert (hasScanned); // need to call scanForDevices() before doing this return wantInputNames ? inputDeviceNames : outputDeviceNames; } int getDefaultDeviceIndex (const bool /*forInput*/) const { jassert (hasScanned); // need to call scanForDevices() before doing this return 0; } int getIndexOfDevice (AudioIODevice* device, const bool asInput) const { jassert (hasScanned); // need to call scanForDevices() before doing this WASAPIAudioIODevice* const d = dynamic_cast (device); return d == 0 ? -1 : (asInput ? inputDeviceIds.indexOf (d->inputDeviceId) : outputDeviceIds.indexOf (d->outputDeviceId)); } bool hasSeparateInputsAndOutputs() const { return true; } AudioIODevice* createDevice (const String& outputDeviceName, const String& inputDeviceName) { jassert (hasScanned); // need to call scanForDevices() before doing this WASAPIAudioIODevice* d = 0; const int outputIndex = outputDeviceNames.indexOf (outputDeviceName); const int inputIndex = inputDeviceNames.indexOf (inputDeviceName); if (outputIndex >= 0 || inputIndex >= 0) { d = new WASAPIAudioIODevice (outputDeviceName.isNotEmpty() ? outputDeviceName : inputDeviceName, outputDeviceIds [outputIndex], inputDeviceIds [inputIndex]); if (! d->initialise()) deleteAndZero (d); } return d; } juce_UseDebuggingNewOperator StringArray outputDeviceNames, outputDeviceIds; StringArray inputDeviceNames, inputDeviceIds; private: bool hasScanned; static const String getDefaultEndpoint (IMMDeviceEnumerator* const enumerator, const bool forCapture) { String s; IMMDevice* dev = 0; if (OK (enumerator->GetDefaultAudioEndpoint (forCapture ? eCapture : eRender, eMultimedia, &dev))) { WCHAR* deviceId = 0; if (OK (dev->GetId (&deviceId))) { s = String (deviceId); CoTaskMemFree (deviceId); } dev->Release(); } return s; } WASAPIAudioIODeviceType (const WASAPIAudioIODeviceType&); const WASAPIAudioIODeviceType& operator= (const WASAPIAudioIODeviceType&); }; AudioIODeviceType* juce_createAudioIODeviceType_WASAPI() { return new WASAPIAudioIODeviceType(); } #undef logFailure #undef OK #endif /********* End of inlined file: juce_win32_WASAPI.cpp *********/ /********* Start of inlined file: juce_win32_CameraDevice.cpp *********/ // (This file gets included by juce_win32_NativeCode.cpp, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_USE_CAMERA class DShowCameraDeviceInteral : public ChangeBroadcaster { public: DShowCameraDeviceInteral (CameraDevice* const owner_, const ComSmartPtr & captureGraphBuilder_, const ComSmartPtr & filter_, int minWidth, int minHeight, int maxWidth, int maxHeight) : owner (owner_), captureGraphBuilder (captureGraphBuilder_), filter (filter_), ok (false), imageNeedsFlipping (false), width (0), height (0), activeUsers (0), recordNextFrameTime (false) { HRESULT hr = graphBuilder.CoCreateInstance (CLSID_FilterGraph, CLSCTX_INPROC); if (FAILED (hr)) return; hr = captureGraphBuilder->SetFiltergraph (graphBuilder); if (FAILED (hr)) return; hr = graphBuilder->QueryInterface (IID_IMediaControl, (void**) &mediaControl); if (FAILED (hr)) return; { ComSmartPtr streamConfig; hr = captureGraphBuilder->FindInterface (&PIN_CATEGORY_CAPTURE, 0, filter, IID_IAMStreamConfig, (void**) &streamConfig); if (streamConfig != 0) { getVideoSizes (streamConfig); if (! selectVideoSize (streamConfig, minWidth, minHeight, maxWidth, maxHeight)) return; } } hr = graphBuilder->AddFilter (filter, _T("Video Capture")); if (FAILED (hr)) return; hr = smartTee.CoCreateInstance (CLSID_SmartTee, CLSCTX_INPROC_SERVER); if (FAILED (hr)) return; hr = graphBuilder->AddFilter (smartTee, _T("Smart Tee")); if (FAILED (hr)) return; if (! connectFilters (filter, smartTee)) return; ComSmartPtr sampleGrabberBase; hr = sampleGrabberBase.CoCreateInstance (CLSID_SampleGrabber, CLSCTX_INPROC_SERVER); if (FAILED (hr)) return; hr = sampleGrabberBase->QueryInterface (IID_ISampleGrabber, (void**) &sampleGrabber); if (FAILED (hr)) return; AM_MEDIA_TYPE mt; zerostruct (mt); mt.majortype = MEDIATYPE_Video; mt.subtype = MEDIASUBTYPE_RGB24; mt.formattype = FORMAT_VideoInfo; sampleGrabber->SetMediaType (&mt); callback = new GrabberCallback (*this); sampleGrabber->SetCallback (callback, 1); hr = graphBuilder->AddFilter (sampleGrabberBase, _T("Sample Grabber")); if (FAILED (hr)) return; ComSmartPtr grabberInputPin; if (! (getPin (smartTee, PINDIR_OUTPUT, &smartTeeCaptureOutputPin, "capture") && getPin (smartTee, PINDIR_OUTPUT, &smartTeePreviewOutputPin, "preview") && getPin (sampleGrabberBase, PINDIR_INPUT, &grabberInputPin))) return; hr = graphBuilder->Connect (smartTeePreviewOutputPin, grabberInputPin); if (FAILED (hr)) return; zerostruct (mt); hr = sampleGrabber->GetConnectedMediaType (&mt); VIDEOINFOHEADER* pVih = (VIDEOINFOHEADER*) (mt.pbFormat); width = pVih->bmiHeader.biWidth; height = pVih->bmiHeader.biHeight; ComSmartPtr nullFilter; hr = nullFilter.CoCreateInstance (CLSID_NullRenderer, CLSCTX_INPROC_SERVER); hr = graphBuilder->AddFilter (nullFilter, _T("Null Renderer")); if (connectFilters (sampleGrabberBase, nullFilter) && addGraphToRot()) { activeImage = new Image (Image::RGB, width, height, true); loadingImage = new Image (Image::RGB, width, height, true); ok = true; } } ~DShowCameraDeviceInteral() { mediaControl->Stop(); removeGraphFromRot(); for (int i = viewerComps.size(); --i >= 0;) ((DShowCaptureViewerComp*) viewerComps.getUnchecked(i))->ownerDeleted(); callback = 0; graphBuilder = 0; sampleGrabber = 0; mediaControl = 0; filter = 0; captureGraphBuilder = 0; smartTee = 0; smartTeePreviewOutputPin = 0; smartTeeCaptureOutputPin = 0; mux = 0; fileWriter = 0; delete activeImage; delete loadingImage; } void addUser() { if (ok && activeUsers++ == 0) mediaControl->Run(); } void removeUser() { if (ok && --activeUsers == 0) mediaControl->Stop(); } void handleFrame (double /*time*/, BYTE* buffer, long /*bufferSize*/) { if (recordNextFrameTime) { firstRecordedTime = Time::getCurrentTime(); recordNextFrameTime = false; } imageSwapLock.enter(); int ls, ps; const int lineStride = width * 3; uint8* const dest = loadingImage->lockPixelDataReadWrite (0, 0, width, height, ls, ps); for (int i = 0; i < height; ++i) memcpy (dest + ls * ((height - 1) - i), buffer + lineStride * i, lineStride); loadingImage->releasePixelDataReadWrite (dest); imageNeedsFlipping = true; imageSwapLock.exit(); callListeners (*loadingImage); sendChangeMessage (this); } void drawCurrentImage (Graphics& g, int x, int y, int w, int h) { if (imageNeedsFlipping) { imageSwapLock.enter(); swapVariables (loadingImage, activeImage); imageNeedsFlipping = false; imageSwapLock.exit(); } RectanglePlacement rp (RectanglePlacement::centred); double dx = 0, dy = 0, dw = width, dh = height; rp.applyTo (dx, dy, dw, dh, x, y, w, h); const int rx = roundDoubleToInt (dx), ry = roundDoubleToInt (dy); const int rw = roundDoubleToInt (dw), rh = roundDoubleToInt (dh); g.saveState(); g.excludeClipRegion (rx, ry, rw, rh); g.fillAll (Colours::black); g.restoreState(); g.drawImage (activeImage, rx, ry, rw, rh, 0, 0, width, height); } bool createFileCaptureFilter (const File& file) { removeFileCaptureFilter(); file.deleteFile(); mediaControl->Stop(); firstRecordedTime = Time(); recordNextFrameTime = true; HRESULT hr = mux.CoCreateInstance (CLSID_AviDest, CLSCTX_INPROC_SERVER); if (SUCCEEDED (hr)) { hr = graphBuilder->AddFilter (mux, _T("AVI Mux")); if (SUCCEEDED (hr)) { fileWriter.CoCreateInstance (CLSID_FileWriter, CLSCTX_INPROC_SERVER); if (SUCCEEDED (hr)) { ComSmartPtr fileSink; hr = fileWriter->QueryInterface (IID_IFileSinkFilter, (void**) &fileSink); if (SUCCEEDED (hr)) { AM_MEDIA_TYPE mt; zerostruct (mt); mt.majortype = MEDIATYPE_Stream; mt.subtype = MEDIASUBTYPE_Avi; mt.formattype = FORMAT_VideoInfo; hr = fileSink->SetFileName (file.getFullPathName(), &mt); if (SUCCEEDED (hr)) { hr = graphBuilder->AddFilter (fileWriter, _T("File Writer")); if (SUCCEEDED (hr)) { ComSmartPtr muxInputPin, muxOutputPin, writerInput; if (getPin (mux, PINDIR_INPUT, &muxInputPin) && getPin (mux, PINDIR_OUTPUT, &muxOutputPin) && getPin (fileWriter, PINDIR_INPUT, &writerInput)) { hr = graphBuilder->Connect (smartTeeCaptureOutputPin, muxInputPin); if (SUCCEEDED (hr)) { hr = graphBuilder->Connect (muxOutputPin, writerInput); if (SUCCEEDED (hr)) { if (ok && activeUsers > 0) mediaControl->Run(); return true; } } } } } } } } } removeFileCaptureFilter(); if (ok && activeUsers > 0) mediaControl->Run(); return false; } void removeFileCaptureFilter() { mediaControl->Stop(); if (mux != 0) { graphBuilder->RemoveFilter (mux); mux = 0; } if (fileWriter != 0) { graphBuilder->RemoveFilter (fileWriter); fileWriter = 0; } if (ok && activeUsers > 0) mediaControl->Run(); } void addListener (CameraImageListener* listenerToAdd) { const ScopedLock sl (listenerLock); if (listeners.size() == 0) addUser(); listeners.addIfNotAlreadyThere (listenerToAdd); } void removeListener (CameraImageListener* listenerToRemove) { const ScopedLock sl (listenerLock); listeners.removeValue (listenerToRemove); if (listeners.size() == 0) removeUser(); } void callListeners (Image& image) { const ScopedLock sl (listenerLock); for (int i = listeners.size(); --i >= 0;) { CameraImageListener* l = (CameraImageListener*) listeners[i]; if (l != 0) l->imageReceived (image); } } class DShowCaptureViewerComp : public Component, public ChangeListener { public: DShowCaptureViewerComp (DShowCameraDeviceInteral* const owner_) : owner (owner_) { setOpaque (true); owner->addChangeListener (this); owner->addUser(); owner->viewerComps.add (this); setSize (owner_->width, owner_->height); } ~DShowCaptureViewerComp() { if (owner != 0) { owner->viewerComps.removeValue (this); owner->removeUser(); owner->removeChangeListener (this); } } void ownerDeleted() { owner = 0; } void paint (Graphics& g) { g.setColour (Colours::black); g.setImageResamplingQuality (Graphics::lowResamplingQuality); if (owner != 0) owner->drawCurrentImage (g, 0, 0, getWidth(), getHeight()); else g.fillAll (Colours::black); } void changeListenerCallback (void*) { repaint(); } private: DShowCameraDeviceInteral* owner; }; bool ok; int width, height; Time firstRecordedTime; VoidArray viewerComps; private: CameraDevice* const owner; ComSmartPtr captureGraphBuilder; ComSmartPtr filter; ComSmartPtr smartTee; ComSmartPtr graphBuilder; ComSmartPtr sampleGrabber; ComSmartPtr mediaControl; ComSmartPtr smartTeePreviewOutputPin; ComSmartPtr smartTeeCaptureOutputPin; ComSmartPtr mux, fileWriter; int activeUsers; Array widths, heights; DWORD graphRegistrationID; CriticalSection imageSwapLock; bool imageNeedsFlipping; Image* loadingImage; Image* activeImage; bool recordNextFrameTime; void getVideoSizes (IAMStreamConfig* const streamConfig) { widths.clear(); heights.clear(); int count = 0, size = 0; streamConfig->GetNumberOfCapabilities (&count, &size); if (size == sizeof (VIDEO_STREAM_CONFIG_CAPS)) { for (int i = 0; i < count; ++i) { VIDEO_STREAM_CONFIG_CAPS scc; AM_MEDIA_TYPE* config; HRESULT hr = streamConfig->GetStreamCaps (i, &config, (BYTE*) &scc); if (SUCCEEDED (hr)) { const int w = scc.InputSize.cx; const int h = scc.InputSize.cy; bool duplicate = false; for (int j = widths.size(); --j >= 0;) { if (w == widths.getUnchecked (j) && h == heights.getUnchecked (j)) { duplicate = true; break; } } if (! duplicate) { DBG ("Camera capture size: " + String (w) + ", " + String (h)); widths.add (w); heights.add (h); } deleteMediaType (config); } } } } bool selectVideoSize (IAMStreamConfig* const streamConfig, const int minWidth, const int minHeight, const int maxWidth, const int maxHeight) { int count = 0, size = 0; streamConfig->GetNumberOfCapabilities (&count, &size); if (size == sizeof (VIDEO_STREAM_CONFIG_CAPS)) { for (int i = 0; i < count; ++i) { VIDEO_STREAM_CONFIG_CAPS scc; AM_MEDIA_TYPE* config; HRESULT hr = streamConfig->GetStreamCaps (i, &config, (BYTE*) &scc); if (SUCCEEDED (hr)) { if (scc.InputSize.cx >= minWidth && scc.InputSize.cy >= minHeight && scc.InputSize.cx <= maxWidth && scc.InputSize.cy <= maxHeight) { hr = streamConfig->SetFormat (config); deleteMediaType (config); return SUCCEEDED (hr); } deleteMediaType (config); } } } return false; } static bool getPin (IBaseFilter* filter, const PIN_DIRECTION wantedDirection, IPin** result, const char* pinName = 0) { ComSmartPtr enumerator; ComSmartPtr pin; filter->EnumPins (&enumerator); while (enumerator->Next (1, &pin, 0) == S_OK) { PIN_DIRECTION dir; pin->QueryDirection (&dir); if (wantedDirection == dir) { PIN_INFO info; zerostruct (info); pin->QueryPinInfo (&info); if (pinName == 0 || String (pinName).equalsIgnoreCase (String (info.achName))) { pin.p->AddRef(); *result = pin; return true; } } } return false; } bool connectFilters (IBaseFilter* const first, IBaseFilter* const second) const { ComSmartPtr in, out; return getPin (first, PINDIR_OUTPUT, &out) && getPin (second, PINDIR_INPUT, &in) && SUCCEEDED (graphBuilder->Connect (out, in)); } bool addGraphToRot() { ComSmartPtr rot; if (FAILED (GetRunningObjectTable (0, &rot))) return false; ComSmartPtr moniker; WCHAR buffer[128]; HRESULT hr = CreateItemMoniker (_T("!"), buffer, &moniker); if (FAILED (hr)) return false; graphRegistrationID = 0; return SUCCEEDED (rot->Register (0, graphBuilder, moniker, &graphRegistrationID)); } void removeGraphFromRot() { ComSmartPtr rot; if (SUCCEEDED (GetRunningObjectTable (0, &rot))) rot->Revoke (graphRegistrationID); } static void deleteMediaType (AM_MEDIA_TYPE* const pmt) { if (pmt->cbFormat != 0) CoTaskMemFree ((PVOID) pmt->pbFormat); if (pmt->pUnk != 0) pmt->pUnk->Release(); CoTaskMemFree (pmt); } class GrabberCallback : public ISampleGrabberCB { public: GrabberCallback (DShowCameraDeviceInteral& owner_) : owner (owner_) { } HRESULT __stdcall QueryInterface (REFIID id, void** result) { if (id == IID_IUnknown) *result = dynamic_cast (this); else if (id == IID_ISampleGrabberCB) *result = dynamic_cast (this); else { *result = 0; return E_NOINTERFACE; } AddRef(); return S_OK; } ULONG __stdcall AddRef() { return ++refCount; } ULONG __stdcall Release() { const int r = --refCount; if (r == 0) delete this; return r; } STDMETHODIMP SampleCB (double /*SampleTime*/, IMediaSample* /*pSample*/) { return E_FAIL; } STDMETHODIMP BufferCB (double time, BYTE* buffer, long bufferSize) { owner.handleFrame (time, buffer, bufferSize); return S_OK; } private: int refCount; DShowCameraDeviceInteral& owner; GrabberCallback (const GrabberCallback&); const GrabberCallback& operator= (const GrabberCallback&); }; ComSmartPtr callback; VoidArray listeners; CriticalSection listenerLock; DShowCameraDeviceInteral (const DShowCameraDeviceInteral&); const DShowCameraDeviceInteral& operator= (const DShowCameraDeviceInteral&); }; CameraDevice::CameraDevice (const String& name_, int /*index*/) : name (name_) { isRecording = false; } CameraDevice::~CameraDevice() { stopRecording(); delete (DShowCameraDeviceInteral*) internal; internal = 0; } Component* CameraDevice::createViewerComponent() { return new DShowCameraDeviceInteral::DShowCaptureViewerComp ((DShowCameraDeviceInteral*) internal); } const String CameraDevice::getFileExtension() { return ".avi"; } void CameraDevice::startRecordingToFile (const File& file) { stopRecording(); DShowCameraDeviceInteral* const d = (DShowCameraDeviceInteral*) internal; d->addUser(); isRecording = d->createFileCaptureFilter (file); } const Time CameraDevice::getTimeOfFirstRecordedFrame() const { DShowCameraDeviceInteral* const d = (DShowCameraDeviceInteral*) internal; return d->firstRecordedTime; } void CameraDevice::stopRecording() { if (isRecording) { DShowCameraDeviceInteral* const d = (DShowCameraDeviceInteral*) internal; d->removeFileCaptureFilter(); d->removeUser(); isRecording = false; } } void CameraDevice::addListener (CameraImageListener* listenerToAdd) { DShowCameraDeviceInteral* const d = (DShowCameraDeviceInteral*) internal; if (listenerToAdd != 0) d->addListener (listenerToAdd); } void CameraDevice::removeListener (CameraImageListener* listenerToRemove) { DShowCameraDeviceInteral* const d = (DShowCameraDeviceInteral*) internal; if (listenerToRemove != 0) d->removeListener (listenerToRemove); } static ComSmartPtr enumerateCameras (StringArray* const names, const int deviceIndexToOpen, String& name) { int index = 0; ComSmartPtr result; ComSmartPtr pDevEnum; HRESULT hr = pDevEnum.CoCreateInstance (CLSID_SystemDeviceEnum, CLSCTX_INPROC); if (SUCCEEDED (hr)) { ComSmartPtr enumerator; hr = pDevEnum->CreateClassEnumerator (CLSID_VideoInputDeviceCategory, &enumerator, 0); if (SUCCEEDED (hr) && enumerator != 0) { ComSmartPtr captureFilter; ComSmartPtr moniker; ULONG fetched; while (enumerator->Next (1, &moniker, &fetched) == S_OK) { hr = moniker->BindToObject (0, 0, IID_IBaseFilter, (void**) &captureFilter); if (SUCCEEDED (hr)) { ComSmartPtr propertyBag; hr = moniker->BindToStorage (0, 0, IID_IPropertyBag, (void**) &propertyBag); if (SUCCEEDED (hr)) { VARIANT var; var.vt = VT_BSTR; hr = propertyBag->Read (_T("FriendlyName"), &var, 0); propertyBag = 0; if (SUCCEEDED (hr)) { if (names != 0) names->add (var.bstrVal); if (index == deviceIndexToOpen) { name = var.bstrVal; result = captureFilter; captureFilter = 0; break; } ++index; } moniker = 0; } captureFilter = 0; } } } } return result; } const StringArray CameraDevice::getAvailableDevices() { StringArray devs; String dummy; enumerateCameras (&devs, -1, dummy); return devs; } CameraDevice* CameraDevice::openDevice (int index, int minWidth, int minHeight, int maxWidth, int maxHeight) { ComSmartPtr captureGraphBuilder; HRESULT hr = captureGraphBuilder.CoCreateInstance (CLSID_CaptureGraphBuilder2, CLSCTX_INPROC); if (SUCCEEDED (hr)) { String name; const ComSmartPtr filter (enumerateCameras (0, index, name)); if (filter != 0) { CameraDevice* const cam = new CameraDevice (name, index); DShowCameraDeviceInteral* const intern = new DShowCameraDeviceInteral (cam, captureGraphBuilder, filter, minWidth, minHeight, maxWidth, maxHeight); cam->internal = intern; if (intern->ok) return cam; else delete cam; } } return 0; } #endif /********* End of inlined file: juce_win32_CameraDevice.cpp *********/ #endif // Auto-link the other win32 libs that are needed by library calls.. #if (JUCE_AMALGAMATED_TEMPLATE || defined (JUCE_DLL_BUILD)) && JUCE_MSVC && ! DONT_AUTOLINK_TO_WIN32_LIBRARIES /********* Start of inlined file: juce_win32_AutoLinkLibraries.h *********/ // Auto-links to various win32 libs that are needed by library calls.. #pragma comment(lib, "kernel32.lib") #pragma comment(lib, "user32.lib") #pragma comment(lib, "shell32.lib") #pragma comment(lib, "gdi32.lib") #pragma comment(lib, "vfw32.lib") #pragma comment(lib, "comdlg32.lib") #pragma comment(lib, "winmm.lib") #pragma comment(lib, "wininet.lib") #pragma comment(lib, "ole32.lib") #pragma comment(lib, "advapi32.lib") #pragma comment(lib, "ws2_32.lib") #pragma comment(lib, "comsupp.lib") #pragma comment(lib, "version.lib") #if JUCE_OPENGL #pragma comment(lib, "OpenGL32.Lib") #pragma comment(lib, "GlU32.Lib") #endif #if JUCE_QUICKTIME #pragma comment (lib, "QTMLClient.lib") #endif #if JUCE_USE_CAMERA #pragma comment (lib, "Strmiids.lib") #endif /********* End of inlined file: juce_win32_AutoLinkLibraries.h *********/ #endif END_JUCE_NAMESPACE /********* End of inlined file: juce_win32_NativeCode.cpp *********/ #endif #if JUCE_LINUX /********* Start of inlined file: juce_linux_NativeCode.cpp *********/ /* This file wraps together all the mac-specific code, so that we can include all the native headers just once, and compile all our platform-specific stuff in one big lump, keeping it out of the way of the rest of the codebase. */ BEGIN_JUCE_NAMESPACE /* Remove this macro if you're having problems compiling the cpu affinity calls (the API for these has changed about quite a bit in various Linux versions, and a lot of distros seem to ship with obsolete versions) */ #if defined (CPU_ISSET) && ! defined (SUPPORT_AFFINITIES) #define SUPPORT_AFFINITIES 1 #endif #define JUCE_INCLUDED_FILE 1 // Now include the actual code files.. /********* Start of inlined file: juce_posix_SharedCode.h *********/ /* This file contains posix routines that are common to both the Linux and Mac builds. It gets included directly in the cpp files for these platforms. */ CriticalSection::CriticalSection() throw() { pthread_mutexattr_t atts; pthread_mutexattr_init (&atts); pthread_mutexattr_settype (&atts, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init (&internal, &atts); } CriticalSection::~CriticalSection() throw() { pthread_mutex_destroy (&internal); } void CriticalSection::enter() const throw() { pthread_mutex_lock (&internal); } bool CriticalSection::tryEnter() const throw() { return pthread_mutex_trylock (&internal) == 0; } void CriticalSection::exit() const throw() { pthread_mutex_unlock (&internal); } struct EventStruct { pthread_cond_t condition; pthread_mutex_t mutex; bool triggered; }; WaitableEvent::WaitableEvent() throw() { EventStruct* const es = new EventStruct(); es->triggered = false; pthread_cond_init (&es->condition, 0); pthread_mutex_init (&es->mutex, 0); internal = es; } WaitableEvent::~WaitableEvent() throw() { EventStruct* const es = (EventStruct*) internal; pthread_cond_destroy (&es->condition); pthread_mutex_destroy (&es->mutex); delete es; } bool WaitableEvent::wait (const int timeOutMillisecs) const throw() { EventStruct* const es = (EventStruct*) internal; bool ok = true; pthread_mutex_lock (&es->mutex); if (timeOutMillisecs < 0) { while (! es->triggered) pthread_cond_wait (&es->condition, &es->mutex); } else { while (! es->triggered) { struct timeval t; gettimeofday (&t, 0); struct timespec time; time.tv_sec = t.tv_sec + (timeOutMillisecs / 1000); time.tv_nsec = (t.tv_usec + ((timeOutMillisecs % 1000) * 1000)) * 1000; if (time.tv_nsec >= 1000000000) { time.tv_nsec -= 1000000000; time.tv_sec++; } if (pthread_cond_timedwait (&es->condition, &es->mutex, &time) == ETIMEDOUT) { ok = false; break; } } } es->triggered = false; pthread_mutex_unlock (&es->mutex); return ok; } void WaitableEvent::signal() const throw() { EventStruct* const es = (EventStruct*) internal; pthread_mutex_lock (&es->mutex); es->triggered = true; pthread_cond_broadcast (&es->condition); pthread_mutex_unlock (&es->mutex); } void WaitableEvent::reset() const throw() { EventStruct* const es = (EventStruct*) internal; pthread_mutex_lock (&es->mutex); es->triggered = false; pthread_mutex_unlock (&es->mutex); } void JUCE_CALLTYPE Thread::sleep (int millisecs) throw() { struct timespec time; time.tv_sec = millisecs / 1000; time.tv_nsec = (millisecs % 1000) * 1000000; nanosleep (&time, 0); } const tchar File::separator = T('/'); const tchar* File::separatorString = T("/"); bool juce_copyFile (const String& s, const String& d) throw(); static bool juce_stat (const String& fileName, struct stat& info) throw() { return fileName.isNotEmpty() && (stat (fileName.toUTF8(), &info) == 0); } bool juce_isDirectory (const String& fileName) throw() { struct stat info; return fileName.isEmpty() || (juce_stat (fileName, info) && ((info.st_mode & S_IFDIR) != 0)); } bool juce_fileExists (const String& fileName, const bool dontCountDirectories) throw() { if (fileName.isEmpty()) return false; const char* const fileNameUTF8 = fileName.toUTF8(); bool exists = access (fileNameUTF8, F_OK) == 0; if (exists && dontCountDirectories) { struct stat info; const int res = stat (fileNameUTF8, &info); if (res == 0 && (info.st_mode & S_IFDIR) != 0) exists = false; } return exists; } int64 juce_getFileSize (const String& fileName) throw() { struct stat info; return juce_stat (fileName, info) ? info.st_size : 0; } bool juce_canWriteToFile (const String& fileName) throw() { return access (fileName.toUTF8(), W_OK) == 0; } bool juce_deleteFile (const String& fileName) throw() { if (juce_isDirectory (fileName)) return rmdir ((const char*) fileName.toUTF8()) == 0; else return remove ((const char*) fileName.toUTF8()) == 0; } bool juce_moveFile (const String& source, const String& dest) throw() { if (rename (source.toUTF8(), dest.toUTF8()) == 0) return true; if (juce_canWriteToFile (source) && juce_copyFile (source, dest)) { if (juce_deleteFile (source)) return true; juce_deleteFile (dest); } return false; } void juce_createDirectory (const String& fileName) throw() { mkdir (fileName.toUTF8(), 0777); } void* juce_fileOpen (const String& fileName, bool forWriting) throw() { int flags = O_RDONLY; if (forWriting) { if (juce_fileExists (fileName, false)) { const int f = open ((const char*) fileName.toUTF8(), O_RDWR, 00644); if (f != -1) lseek (f, 0, SEEK_END); return (void*) f; } else { flags = O_RDWR + O_CREAT; } } return (void*) open ((const char*) fileName.toUTF8(), flags, 00644); } void juce_fileClose (void* handle) throw() { if (handle != 0) close ((int) (pointer_sized_int) handle); } int juce_fileRead (void* handle, void* buffer, int size) throw() { if (handle != 0) return read ((int) (pointer_sized_int) handle, buffer, size); return 0; } int juce_fileWrite (void* handle, const void* buffer, int size) throw() { if (handle != 0) return write ((int) (pointer_sized_int) handle, buffer, size); return 0; } int64 juce_fileSetPosition (void* handle, int64 pos) throw() { if (handle != 0 && lseek ((int) (pointer_sized_int) handle, pos, SEEK_SET) == pos) return pos; return -1; } int64 juce_fileGetPosition (void* handle) throw() { if (handle != 0) return lseek ((int) (pointer_sized_int) handle, 0, SEEK_CUR); else return -1; } void juce_fileFlush (void* handle) throw() { if (handle != 0) fsync ((int) (pointer_sized_int) handle); } const File juce_getExecutableFile() { Dl_info exeInfo; dladdr ((const void*) juce_getExecutableFile, &exeInfo); return File (exeInfo.dli_fname); } // if this file doesn't exist, find a parent of it that does.. static bool doStatFS (const File* file, struct statfs& result) throw() { File f (*file); for (int i = 5; --i >= 0;) { if (f.exists()) break; f = f.getParentDirectory(); } return statfs (f.getFullPathName().toUTF8(), &result) == 0; } int64 File::getBytesFreeOnVolume() const throw() { struct statfs buf; if (doStatFS (this, buf)) return (int64) buf.f_bsize * (int64) buf.f_bavail; // Note: this returns space available to non-super user return 0; } int64 File::getVolumeTotalSize() const throw() { struct statfs buf; if (doStatFS (this, buf)) return (int64) buf.f_bsize * (int64) buf.f_blocks; return 0; } const String juce_getVolumeLabel (const String& filenameOnVolume, int& volumeSerialNumber) throw() { volumeSerialNumber = 0; #if JUCE_MAC struct VolAttrBuf { u_int32_t length; attrreference_t mountPointRef; char mountPointSpace [MAXPATHLEN]; } attrBuf; struct attrlist attrList; zerostruct (attrList); attrList.bitmapcount = ATTR_BIT_MAP_COUNT; attrList.volattr = ATTR_VOL_INFO | ATTR_VOL_NAME; File f (filenameOnVolume); for (;;) { if (getattrlist ((const char*) f.getFullPathName().toUTF8(), &attrList, &attrBuf, sizeof(attrBuf), 0) == 0) { return String::fromUTF8 (((const uint8*) &attrBuf.mountPointRef) + attrBuf.mountPointRef.attr_dataoffset, (int) attrBuf.mountPointRef.attr_length); } const File parent (f.getParentDirectory()); if (f == parent) break; f = parent; } #endif return String::empty; } void juce_runSystemCommand (const String& command) { int result = system ((const char*) command.toUTF8()); (void) result; } const String juce_getOutputFromCommand (const String& command) { // slight bodge here, as we just pipe the output into a temp file and read it... const File tempFile (File::getSpecialLocation (File::tempDirectory) .getNonexistentChildFile (String::toHexString (Random::getSystemRandom().nextInt()), ".tmp", false)); juce_runSystemCommand (command + " > " + tempFile.getFullPathName()); String result (tempFile.loadFileAsString()); tempFile.deleteFile(); return result; } #if JUCE_64BIT #define filedesc ((long long) internal) #else #define filedesc ((int) internal) #endif InterProcessLock::InterProcessLock (const String& name_) throw() : internal (0), name (name_), reentrancyLevel (0) { #if JUCE_MAC // (don't use getSpecialLocation() to avoid the temp folder being different for each app) const File temp (File (T("~/Library/Caches/Juce")).getChildFile (name)); #else const File temp (File::getSpecialLocation (File::tempDirectory).getChildFile (name)); #endif temp.create(); internal = (void*) open (temp.getFullPathName().toUTF8(), O_RDWR); } InterProcessLock::~InterProcessLock() throw() { while (reentrancyLevel > 0) this->exit(); close (filedesc); } bool InterProcessLock::enter (const int timeOutMillisecs) throw() { if (internal == 0) return false; if (reentrancyLevel != 0) return true; const int64 endTime = Time::currentTimeMillis() + timeOutMillisecs; struct flock fl; zerostruct (fl); fl.l_whence = SEEK_SET; fl.l_type = F_WRLCK; for (;;) { const int result = fcntl (filedesc, F_SETLK, &fl); if (result >= 0) { ++reentrancyLevel; return true; } if (errno != EINTR) { if (timeOutMillisecs == 0 || (timeOutMillisecs > 0 && Time::currentTimeMillis() >= endTime)) break; Thread::sleep (10); } } return false; } void InterProcessLock::exit() throw() { if (reentrancyLevel > 0 && internal != 0) { --reentrancyLevel; struct flock fl; zerostruct (fl); fl.l_whence = SEEK_SET; fl.l_type = F_UNLCK; for (;;) { const int result = fcntl (filedesc, F_SETLKW, &fl); if (result >= 0 || errno != EINTR) break; } } } /********* End of inlined file: juce_posix_SharedCode.h *********/ /********* Start of inlined file: juce_linux_Files.cpp *********/ // (This file gets included by juce_linux_NativeCode.cpp, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE #define U_ISOFS_SUPER_MAGIC (short) 0x9660 // linux/iso_fs.h #define U_MSDOS_SUPER_MAGIC (short) 0x4d44 // linux/msdos_fs.h #define U_NFS_SUPER_MAGIC (short) 0x6969 // linux/nfs_fs.h #define U_SMB_SUPER_MAGIC (short) 0x517B // linux/smb_fs.h void juce_getFileTimes (const String& fileName, int64& modificationTime, int64& accessTime, int64& creationTime) throw() { modificationTime = 0; accessTime = 0; creationTime = 0; struct stat info; const int res = stat (fileName.toUTF8(), &info); if (res == 0) { modificationTime = (int64) info.st_mtime * 1000; accessTime = (int64) info.st_atime * 1000; creationTime = (int64) info.st_ctime * 1000; } } bool juce_setFileTimes (const String& fileName, int64 modificationTime, int64 accessTime, int64 creationTime) throw() { struct utimbuf times; times.actime = (time_t) (accessTime / 1000); times.modtime = (time_t) (modificationTime / 1000); return utime (fileName.toUTF8(), ×) == 0; } bool juce_setFileReadOnly (const String& fileName, bool isReadOnly) throw() { struct stat info; const int res = stat (fileName.toUTF8(), &info); if (res != 0) return false; info.st_mode &= 0777; // Just permissions if( isReadOnly ) info.st_mode &= ~(S_IWUSR | S_IWGRP | S_IWOTH); else // Give everybody write permission? info.st_mode |= S_IWUSR | S_IWGRP | S_IWOTH; return chmod (fileName.toUTF8(), info.st_mode) == 0; } bool juce_copyFile (const String& s, const String& d) throw() { const File source (s), dest (d); FileInputStream* in = source.createInputStream(); bool ok = false; if (in != 0) { if (dest.deleteFile()) { FileOutputStream* const out = dest.createOutputStream(); if (out != 0) { const int bytesCopied = out->writeFromInputStream (*in, -1); delete out; ok = (bytesCopied == source.getSize()); if (! ok) dest.deleteFile(); } } delete in; } return ok; } const StringArray juce_getFileSystemRoots() throw() { StringArray s; s.add (T("/")); return s; } bool File::isOnCDRomDrive() const throw() { struct statfs buf; if (statfs (getFullPathName().toUTF8(), &buf) == 0) return (buf.f_type == U_ISOFS_SUPER_MAGIC); // Assume not if this fails for some reason return false; } bool File::isOnHardDisk() const throw() { struct statfs buf; if (statfs (getFullPathName().toUTF8(), &buf) == 0) { switch (buf.f_type) { case U_ISOFS_SUPER_MAGIC: // CD-ROM case U_MSDOS_SUPER_MAGIC: // Probably floppy (but could be mounted FAT filesystem) case U_NFS_SUPER_MAGIC: // Network NFS case U_SMB_SUPER_MAGIC: // Network Samba return false; default: // Assume anything else is a hard-disk (but note it could // be a RAM disk. There isn't a good way of determining // this for sure) return true; } } // Assume so if this fails for some reason return true; } bool File::isOnRemovableDrive() const throw() { jassertfalse // xxx not implemented for linux! return false; } bool File::isHidden() const throw() { return getFileName().startsWithChar (T('.')); } const File File::getSpecialLocation (const SpecialLocationType type) { switch (type) { case userHomeDirectory: { const char* homeDir = getenv ("HOME"); if (homeDir == 0) { struct passwd* const pw = getpwuid (getuid()); if (pw != 0) homeDir = pw->pw_dir; } return File (String::fromUTF8 ((const uint8*) homeDir)); } case userDocumentsDirectory: case userMusicDirectory: case userMoviesDirectory: case userApplicationDataDirectory: return File ("~"); case userDesktopDirectory: return File ("~/Desktop"); case commonApplicationDataDirectory: return File ("/var"); case globalApplicationsDirectory: return File ("/usr"); case tempDirectory: { File tmp ("/var/tmp"); if (! tmp.isDirectory()) { tmp = T("/tmp"); if (! tmp.isDirectory()) tmp = File::getCurrentWorkingDirectory(); } return tmp; } case currentExecutableFile: case currentApplicationFile: return juce_getExecutableFile(); default: jassertfalse // unknown type? break; } return File::nonexistent; } const File File::getCurrentWorkingDirectory() throw() { char buf [2048]; return File (String::fromUTF8 ((const uint8*) getcwd (buf, sizeof (buf)))); } bool File::setAsCurrentWorkingDirectory() const throw() { return chdir (getFullPathName().toUTF8()) == 0; } const String File::getVersion() const throw() { return String::empty; // xxx not yet implemented } const File File::getLinkedTarget() const throw() { char buffer [4096]; size_t numChars = readlink ((const char*) getFullPathName().toUTF8(), buffer, sizeof (buffer)); if (numChars > 0 && numChars <= sizeof (buffer)) return File (String::fromUTF8 ((const uint8*) buffer, (int) numChars)); return *this; } bool File::moveToTrash() const throw() { if (! exists()) return true; File trashCan (T("~/.Trash")); if (! trashCan.isDirectory()) trashCan = T("~/.local/share/Trash/files"); if (! trashCan.isDirectory()) return false; return moveFileTo (trashCan.getNonexistentChildFile (getFileNameWithoutExtension(), getFileExtension())); } struct FindFileStruct { String parentDir, wildCard; DIR* dir; bool getNextMatch (String& result, bool* const isDir, bool* const isHidden, int64* const fileSize, Time* const modTime, Time* const creationTime, bool* const isReadOnly) throw() { const char* const wildcardUTF8 = wildCard.toUTF8(); for (;;) { struct dirent* const de = readdir (dir); if (de == 0) break; if (fnmatch (wildcardUTF8, de->d_name, FNM_CASEFOLD) == 0) { result = String::fromUTF8 ((const uint8*) de->d_name); const String path (parentDir + result); if (isDir != 0 || fileSize != 0) { struct stat info; const bool statOk = (stat (path.toUTF8(), &info) == 0); if (isDir != 0) *isDir = path.isEmpty() || (statOk && ((info.st_mode & S_IFDIR) != 0)); if (isHidden != 0) *isHidden = (de->d_name[0] == '.'); if (fileSize != 0) *fileSize = statOk ? info.st_size : 0; } if (modTime != 0 || creationTime != 0) { int64 m, a, c; juce_getFileTimes (path, m, a, c); if (modTime != 0) *modTime = m; if (creationTime != 0) *creationTime = c; } if (isReadOnly != 0) *isReadOnly = ! juce_canWriteToFile (path); return true; } } return false; } }; // returns 0 on failure void* juce_findFileStart (const String& directory, const String& wildCard, String& firstResultFile, bool* isDir, bool* isHidden, int64* fileSize, Time* modTime, Time* creationTime, bool* isReadOnly) throw() { DIR* d = opendir (directory.toUTF8()); if (d != 0) { FindFileStruct* ff = new FindFileStruct(); ff->parentDir = directory; if (!ff->parentDir.endsWithChar (File::separator)) ff->parentDir += File::separator; ff->wildCard = wildCard; if (wildCard == T("*.*")) ff->wildCard = T("*"); ff->dir = d; if (ff->getNextMatch (firstResultFile, isDir, isHidden, fileSize, modTime, creationTime, isReadOnly)) { return ff; } else { firstResultFile = String::empty; isDir = false; isHidden = false; closedir (d); delete ff; } } return 0; } bool juce_findFileNext (void* handle, String& resultFile, bool* isDir, bool* isHidden, int64* fileSize, Time* modTime, Time* creationTime, bool* isReadOnly) throw() { FindFileStruct* const ff = (FindFileStruct*) handle; if (ff != 0) return ff->getNextMatch (resultFile, isDir, isHidden, fileSize, modTime, creationTime, isReadOnly); return false; } void juce_findFileClose (void* handle) throw() { FindFileStruct* const ff = (FindFileStruct*) handle; if (ff != 0) { closedir (ff->dir); delete ff; } } bool juce_launchFile (const String& fileName, const String& parameters) throw() { String cmdString (fileName); cmdString << " " << parameters; if (URL::isProbablyAWebsiteURL (fileName) || URL::isProbablyAnEmailAddress (fileName)) { // create a command that tries to launch a bunch of likely browsers const char* const browserNames[] = { "/etc/alternatives/x-www-browser", "firefox", "mozilla", "konqueror", "opera" }; StringArray cmdLines; for (int i = 0; i < numElementsInArray (browserNames); ++i) cmdLines.add (String (browserNames[i]) + T(" ") + cmdString.trim().quoted()); cmdString = cmdLines.joinIntoString (T(" || ")); } if (cmdString.startsWithIgnoreCase (T("file:"))) cmdString = cmdString.substring (5); const char* const argv[4] = { "/bin/sh", "-c", (const char*) cmdString.toUTF8(), 0 }; const int cpid = fork(); if (cpid == 0) { setsid(); // Child process execve (argv[0], (char**) argv, environ); exit (0); } return cpid >= 0; } #endif /********* End of inlined file: juce_linux_Files.cpp *********/ /********* Start of inlined file: juce_posix_NamedPipe.cpp *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE struct NamedPipeInternal { String pipeInName, pipeOutName; int pipeIn, pipeOut; bool volatile createdPipe, blocked, stopReadOperation; static void signalHandler (int) {} }; void NamedPipe::cancelPendingReads() { while (internal != 0 && ((NamedPipeInternal*) internal)->blocked) { NamedPipeInternal* const intern = (NamedPipeInternal*) internal; intern->stopReadOperation = true; char buffer [1] = { 0 }; int bytesWritten = ::write (intern->pipeIn, buffer, 1); (void) bytesWritten; int timeout = 2000; while (intern->blocked && --timeout >= 0) Thread::sleep (2); intern->stopReadOperation = false; } } void NamedPipe::close() { NamedPipeInternal* const intern = (NamedPipeInternal*) internal; if (intern != 0) { internal = 0; if (intern->pipeIn != -1) ::close (intern->pipeIn); if (intern->pipeOut != -1) ::close (intern->pipeOut); if (intern->createdPipe) { unlink (intern->pipeInName); unlink (intern->pipeOutName); } delete intern; } } bool NamedPipe::openInternal (const String& pipeName, const bool createPipe) { close(); NamedPipeInternal* const intern = new NamedPipeInternal(); internal = intern; intern->createdPipe = createPipe; intern->blocked = false; intern->stopReadOperation = false; signal (SIGPIPE, NamedPipeInternal::signalHandler); siginterrupt (SIGPIPE, 1); const String pipePath (T("/tmp/") + File::createLegalFileName (pipeName)); intern->pipeInName = pipePath + T("_in"); intern->pipeOutName = pipePath + T("_out"); intern->pipeIn = -1; intern->pipeOut = -1; if (createPipe) { if ((mkfifo (intern->pipeInName, 0666) && errno != EEXIST) || (mkfifo (intern->pipeOutName, 0666) && errno != EEXIST)) { delete intern; internal = 0; return false; } } return true; } int NamedPipe::read (void* destBuffer, int maxBytesToRead, int /*timeOutMilliseconds*/) { int bytesRead = -1; NamedPipeInternal* const intern = (NamedPipeInternal*) internal; if (intern != 0) { intern->blocked = true; if (intern->pipeIn == -1) { if (intern->createdPipe) intern->pipeIn = ::open (intern->pipeInName, O_RDWR); else intern->pipeIn = ::open (intern->pipeOutName, O_RDWR); if (intern->pipeIn == -1) { intern->blocked = false; return -1; } } bytesRead = 0; char* p = (char*) destBuffer; while (bytesRead < maxBytesToRead) { const int bytesThisTime = maxBytesToRead - bytesRead; const int numRead = ::read (intern->pipeIn, p, bytesThisTime); if (numRead <= 0 || intern->stopReadOperation) { bytesRead = -1; break; } bytesRead += numRead; p += bytesRead; } intern->blocked = false; } return bytesRead; } int NamedPipe::write (const void* sourceBuffer, int numBytesToWrite, int timeOutMilliseconds) { int bytesWritten = -1; NamedPipeInternal* const intern = (NamedPipeInternal*) internal; if (intern != 0) { if (intern->pipeOut == -1) { if (intern->createdPipe) intern->pipeOut = ::open (intern->pipeOutName, O_WRONLY); else intern->pipeOut = ::open (intern->pipeInName, O_WRONLY); if (intern->pipeOut == -1) { return -1; } } const char* p = (const char*) sourceBuffer; bytesWritten = 0; const uint32 timeOutTime = Time::getMillisecondCounter() + timeOutMilliseconds; while (bytesWritten < numBytesToWrite && (timeOutMilliseconds < 0 || Time::getMillisecondCounter() < timeOutTime)) { const int bytesThisTime = numBytesToWrite - bytesWritten; const int numWritten = ::write (intern->pipeOut, p, bytesThisTime); if (numWritten <= 0) { bytesWritten = -1; break; } bytesWritten += numWritten; p += bytesWritten; } } return bytesWritten; } #endif /********* End of inlined file: juce_posix_NamedPipe.cpp *********/ /********* Start of inlined file: juce_linux_Network.cpp *********/ // (This file gets included by juce_linux_NativeCode.cpp, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE int SystemStats::getMACAddresses (int64* addresses, int maxNum, const bool littleEndian) throw() { int numResults = 0; const int s = socket (AF_INET, SOCK_DGRAM, 0); if (s != -1) { char buf [1024]; struct ifconf ifc; ifc.ifc_len = sizeof (buf); ifc.ifc_buf = buf; ioctl (s, SIOCGIFCONF, &ifc); for (unsigned int i = 0; i < ifc.ifc_len / sizeof (struct ifreq); ++i) { struct ifreq ifr; strcpy (ifr.ifr_name, ifc.ifc_req[i].ifr_name); if (ioctl (s, SIOCGIFFLAGS, &ifr) == 0 && (ifr.ifr_flags & IFF_LOOPBACK) == 0 && ioctl (s, SIOCGIFHWADDR, &ifr) == 0 && numResults < maxNum) { int64 a = 0; for (int j = 6; --j >= 0;) a = (a << 8) | (uint8) ifr.ifr_hwaddr.sa_data [littleEndian ? j : (5 - j)]; *addresses++ = a; ++numResults; } } close (s); } return numResults; } bool PlatformUtilities::launchEmailWithAttachments (const String& targetEmailAddress, const String& emailSubject, const String& bodyText, const StringArray& filesToAttach) { jassertfalse // xxx todo return false; } /** A HTTP input stream that uses sockets. */ class JUCE_HTTPSocketStream { public: JUCE_HTTPSocketStream() : readPosition (0), socketHandle (-1), levelsOfRedirection (0), timeoutSeconds (15) { } ~JUCE_HTTPSocketStream() { closeSocket(); } bool open (const String& url, const String& headers, const MemoryBlock& postData, const bool isPost, URL::OpenStreamProgressCallback* callback, void* callbackContext, int timeOutMs) { closeSocket(); uint32 timeOutTime = Time::getMillisecondCounter(); if (timeOutMs == 0) timeOutTime += 60000; else if (timeOutMs < 0) timeOutTime = 0xffffffff; else timeOutTime += timeOutMs; String hostName, hostPath; int hostPort; if (! decomposeURL (url, hostName, hostPath, hostPort)) return false; const struct hostent* host = 0; int port = 0; String proxyName, proxyPath; int proxyPort = 0; String proxyURL (getenv ("http_proxy")); if (proxyURL.startsWithIgnoreCase (T("http://"))) { if (! decomposeURL (proxyURL, proxyName, proxyPath, proxyPort)) return false; host = gethostbyname ((const char*) proxyName.toUTF8()); port = proxyPort; } else { host = gethostbyname ((const char*) hostName.toUTF8()); port = hostPort; } if (host == 0) return false; struct sockaddr_in address; zerostruct (address); memcpy ((void*) &address.sin_addr, (const void*) host->h_addr, host->h_length); address.sin_family = host->h_addrtype; address.sin_port = htons (port); socketHandle = socket (host->h_addrtype, SOCK_STREAM, 0); if (socketHandle == -1) return false; int receiveBufferSize = 16384; setsockopt (socketHandle, SOL_SOCKET, SO_RCVBUF, (char*) &receiveBufferSize, sizeof (receiveBufferSize)); setsockopt (socketHandle, SOL_SOCKET, SO_KEEPALIVE, 0, 0); #if JUCE_MAC setsockopt (socketHandle, SOL_SOCKET, SO_NOSIGPIPE, 0, 0); #endif if (connect (socketHandle, (struct sockaddr*) &address, sizeof (address)) == -1) { closeSocket(); return false; } const MemoryBlock requestHeader (createRequestHeader (hostName, hostPort, proxyName, proxyPort, hostPath, url, headers, postData, isPost)); int totalHeaderSent = 0; while (totalHeaderSent < requestHeader.getSize()) { if (Time::getMillisecondCounter() > timeOutTime) { closeSocket(); return false; } const int numToSend = jmin (1024, requestHeader.getSize() - totalHeaderSent); if (send (socketHandle, ((const char*) requestHeader.getData()) + totalHeaderSent, numToSend, 0) != numToSend) { closeSocket(); return false; } totalHeaderSent += numToSend; if (callback != 0 && ! callback (callbackContext, totalHeaderSent, requestHeader.getSize())) { closeSocket(); return false; } } const String responseHeader (readResponse (timeOutTime)); if (responseHeader.isNotEmpty()) { //DBG (responseHeader); StringArray lines; lines.addLines (responseHeader); // NB - using charToString() here instead of just T(" "), because that was // causing a mysterious gcc internal compiler error... const int statusCode = responseHeader.fromFirstOccurrenceOf (String::charToString (T(' ')), false, false) .substring (0, 3).getIntValue(); //int contentLength = findHeaderItem (lines, T("Content-Length:")).getIntValue(); //bool isChunked = findHeaderItem (lines, T("Transfer-Encoding:")).equalsIgnoreCase ("chunked"); String location (findHeaderItem (lines, T("Location:"))); if (statusCode >= 300 && statusCode < 400 && location.isNotEmpty()) { if (! location.startsWithIgnoreCase (T("http://"))) location = T("http://") + location; if (levelsOfRedirection++ < 3) return open (location, headers, postData, isPost, callback, callbackContext, timeOutMs); } else { levelsOfRedirection = 0; return true; } } closeSocket(); return false; } int read (void* buffer, int bytesToRead) { fd_set readbits; FD_ZERO (&readbits); FD_SET (socketHandle, &readbits); struct timeval tv; tv.tv_sec = timeoutSeconds; tv.tv_usec = 0; if (select (socketHandle + 1, &readbits, 0, 0, &tv) <= 0) return 0; // (timeout) const int bytesRead = jmax (0, recv (socketHandle, buffer, bytesToRead, MSG_WAITALL)); readPosition += bytesRead; return bytesRead; } int readPosition; juce_UseDebuggingNewOperator private: int socketHandle, levelsOfRedirection; const int timeoutSeconds; void closeSocket() { if (socketHandle >= 0) close (socketHandle); socketHandle = -1; } const MemoryBlock createRequestHeader (const String& hostName, const int hostPort, const String& proxyName, const int proxyPort, const String& hostPath, const String& originalURL, const String& headers, const MemoryBlock& postData, const bool isPost) { String header (isPost ? "POST " : "GET "); if (proxyName.isEmpty()) { header << hostPath << " HTTP/1.0\r\nHost: " << hostName << ':' << hostPort; } else { header << originalURL << " HTTP/1.0\r\nHost: " << proxyName << ':' << proxyPort; } header << "\r\nUser-Agent: JUCE/" << JUCE_MAJOR_VERSION << '.' << JUCE_MINOR_VERSION << "\r\nConnection: Close\r\nContent-Length: " << postData.getSize() << "\r\n" << headers << "\r\n"; MemoryBlock mb; mb.append (header.toUTF8(), (int) strlen (header.toUTF8())); mb.append (postData.getData(), postData.getSize()); return mb; } const String readResponse (const uint32 timeOutTime) { int bytesRead = 0, numConsecutiveLFs = 0; MemoryBlock buffer (1024, true); while (numConsecutiveLFs < 2 && bytesRead < 32768 && Time::getMillisecondCounter() <= timeOutTime) { fd_set readbits; FD_ZERO (&readbits); FD_SET (socketHandle, &readbits); struct timeval tv; tv.tv_sec = timeoutSeconds; tv.tv_usec = 0; if (select (socketHandle + 1, &readbits, 0, 0, &tv) <= 0) return String::empty; // (timeout) buffer.ensureSize (bytesRead + 8, true); char* const dest = (char*) buffer.getData() + bytesRead; if (recv (socketHandle, dest, 1, 0) == -1) return String::empty; const char lastByte = *dest; ++bytesRead; if (lastByte == '\n') ++numConsecutiveLFs; else if (lastByte != '\r') numConsecutiveLFs = 0; } const String header (String::fromUTF8 ((const uint8*) buffer.getData())); if (header.startsWithIgnoreCase (T("HTTP/"))) return header.trimEnd(); return String::empty; } static bool decomposeURL (const String& url, String& host, String& path, int& port) { if (! url.startsWithIgnoreCase (T("http://"))) return false; const int nextSlash = url.indexOfChar (7, '/'); int nextColon = url.indexOfChar (7, ':'); if (nextColon > nextSlash && nextSlash > 0) nextColon = -1; if (nextColon >= 0) { host = url.substring (7, nextColon); if (nextSlash >= 0) port = url.substring (nextColon + 1, nextSlash).getIntValue(); else port = url.substring (nextColon + 1).getIntValue(); } else { port = 80; if (nextSlash >= 0) host = url.substring (7, nextSlash); else host = url.substring (7); } if (nextSlash >= 0) path = url.substring (nextSlash); else path = T("/"); return true; } static const String findHeaderItem (const StringArray& lines, const String& itemName) { for (int i = 0; i < lines.size(); ++i) if (lines[i].startsWithIgnoreCase (itemName)) return lines[i].substring (itemName.length()).trim(); return String::empty; } }; bool juce_isOnLine() { return true; } void* juce_openInternetFile (const String& url, const String& headers, const MemoryBlock& postData, const bool isPost, URL::OpenStreamProgressCallback* callback, void* callbackContext, int timeOutMs) { JUCE_HTTPSocketStream* const s = new JUCE_HTTPSocketStream(); if (s->open (url, headers, postData, isPost, callback, callbackContext, timeOutMs)) return s; delete s; return 0; } void juce_closeInternetFile (void* handle) { JUCE_HTTPSocketStream* const s = (JUCE_HTTPSocketStream*) handle; if (s != 0) delete s; } int juce_readFromInternetFile (void* handle, void* buffer, int bytesToRead) { JUCE_HTTPSocketStream* const s = (JUCE_HTTPSocketStream*) handle; if (s != 0) return s->read (buffer, bytesToRead); return 0; } int64 juce_getInternetFileContentLength (void* handle) { JUCE_HTTPSocketStream* const s = (JUCE_HTTPSocketStream*) handle; if (s != 0) { //xxx todo jassertfalse } return -1; } int juce_seekInInternetFile (void* handle, int newPosition) { JUCE_HTTPSocketStream* const s = (JUCE_HTTPSocketStream*) handle; if (s != 0) return s->readPosition; return 0; } #endif /********* End of inlined file: juce_linux_Network.cpp *********/ /********* Start of inlined file: juce_linux_SystemStats.cpp *********/ // (This file gets included by juce_linux_NativeCode.cpp, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE /*static juce_noinline unsigned int getCPUIDWord (int* familyModel, int* extFeatures) throw() { unsigned int cpu = 0; unsigned int ext = 0; unsigned int family = 0; unsigned int dummy = 0; #if JUCE_64BIT __asm__ ("cpuid" : "=a" (family), "=b" (ext), "=c" (dummy), "=d" (cpu) : "a" (1)); #else __asm__ ("push %%ebx; cpuid; mov %%ebx, %%edi; pop %%ebx" : "=a" (family), "=D" (ext), "=c" (dummy), "=d" (cpu) : "a" (1)); #endif if (familyModel != 0) *familyModel = family; if (extFeatures != 0) *extFeatures = ext; return cpu; }*/ void Logger::outputDebugString (const String& text) throw() { fputs (text.toUTF8(), stdout); fputs ("\n", stdout); } void Logger::outputDebugPrintf (const tchar* format, ...) throw() { String text; va_list args; va_start (args, format); text.vprintf(format, args); outputDebugString(text); } SystemStats::OperatingSystemType SystemStats::getOperatingSystemType() throw() { return Linux; } const String SystemStats::getOperatingSystemName() throw() { return T("Linux"); } bool SystemStats::isOperatingSystem64Bit() throw() { #if JUCE_64BIT return true; #else //xxx not sure how to find this out?.. return false; #endif } static const String getCpuInfo (const char* key, bool lastOne = false) throw() { String info; char buf [256]; FILE* f = fopen ("/proc/cpuinfo", "r"); while (f != 0 && fgets (buf, sizeof(buf), f)) { if (strncmp (buf, key, strlen (key)) == 0) { char* p = buf; while (*p && *p != '\n') ++p; if (*p != 0) *p = 0; p = buf; while (*p != 0 && *p != ':') ++p; if (*p != 0 && *(p + 1) != 0) info = p + 2; if (! lastOne) break; } } fclose (f); return info; } bool SystemStats::hasMMX() throw() { return getCpuInfo ("flags").contains (T("mmx")); } bool SystemStats::hasSSE() throw() { return getCpuInfo ("flags").contains (T("sse")); } bool SystemStats::hasSSE2() throw() { return getCpuInfo ("flags").contains (T("sse2")); } bool SystemStats::has3DNow() throw() { return getCpuInfo ("flags").contains (T("3dnow")); } const String SystemStats::getCpuVendor() throw() { return getCpuInfo ("vendor_id"); } int SystemStats::getCpuSpeedInMegaherz() throw() { const String speed (getCpuInfo ("cpu MHz")); return (int) (speed.getFloatValue() + 0.5f); } int SystemStats::getMemorySizeInMegabytes() throw() { struct sysinfo sysi; if (sysinfo (&sysi) == 0) return (sysi.totalram * sysi.mem_unit / (1024 * 1024)); return 0; } uint32 juce_millisecondsSinceStartup() throw() { static unsigned int calibrate = 0; static bool calibrated = false; timeval t; unsigned int ret = 0; if (! gettimeofday (&t, 0)) { if (! calibrated) { struct sysinfo sysi; if (sysinfo (&sysi) == 0) // Safe to assume system was not brought up earlier than 1970! calibrate = t.tv_sec - sysi.uptime; calibrated = true; } ret = 1000 * (t.tv_sec - calibrate) + (t.tv_usec / 1000); } return ret; } double Time::getMillisecondCounterHiRes() throw() { return getHighResolutionTicks() * 0.001; } int64 Time::getHighResolutionTicks() throw() { timeval t; if (gettimeofday (&t, 0)) return 0; return ((int64) t.tv_sec * (int64) 1000000) + (int64) t.tv_usec; } int64 Time::getHighResolutionTicksPerSecond() throw() { // Microseconds return 1000000; } bool Time::setSystemTimeToThisTime() const throw() { timeval t; t.tv_sec = millisSinceEpoch % 1000000; t.tv_usec = millisSinceEpoch - t.tv_sec; return settimeofday (&t, NULL) ? false : true; } int SystemStats::getPageSize() throw() { static int systemPageSize = 0; if (systemPageSize == 0) systemPageSize = sysconf (_SC_PAGESIZE); return systemPageSize; } int SystemStats::getNumCpus() throw() { const int lastCpu = getCpuInfo ("processor", true).getIntValue(); return lastCpu + 1; } void SystemStats::initialiseStats() throw() { // Process starts off as root when running suid Process::lowerPrivilege(); String s (SystemStats::getJUCEVersion()); } void PlatformUtilities::fpuReset() { } #endif /********* End of inlined file: juce_linux_SystemStats.cpp *********/ /********* Start of inlined file: juce_linux_Threads.cpp *********/ // (This file gets included by juce_linux_NativeCode.cpp, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE /* Note that a lot of methods that you'd expect to find in this file actually live in juce_posix_SharedCode.h! */ void JUCE_API juce_threadEntryPoint (void*); void* threadEntryProc (void* value) throw() { // New threads start off as root when running suid Process::lowerPrivilege(); juce_threadEntryPoint (value); return 0; } void* juce_createThread (void* userData) throw() { pthread_t handle = 0; if (pthread_create (&handle, 0, threadEntryProc, userData) == 0) { pthread_detach (handle); return (void*)handle; } return 0; } void juce_killThread (void* handle) throw() { if (handle != 0) pthread_cancel ((pthread_t)handle); } void juce_setCurrentThreadName (const String& /*name*/) throw() { } Thread::ThreadID Thread::getCurrentThreadId() throw() { return (ThreadID) pthread_self(); } /* * This is all a bit non-ideal... the trouble is that on Linux you * need to call setpriority to affect the dynamic priority for * non-realtime processes, but this requires the pid, which is not * accessible from the pthread_t. We could get it by calling getpid * once each thread has started, but then we would need a list of * running threads etc etc. * Also there is no such thing as IDLE priority on Linux. * For the moment, map idle, low and normal process priorities to * SCHED_OTHER, with the thread priority ignored for these classes. * Map high priority processes to the lower half of the SCHED_RR * range, and realtime to the upper half */ // priority 1 to 10 where 5=normal, 1=low. If the handle is 0, sets the // priority of the current thread bool juce_setThreadPriority (void* handle, int priority) throw() { struct sched_param param; int policy, maxp, minp, pri; if (handle == 0) handle = (void*) pthread_self(); if (pthread_getschedparam ((pthread_t) handle, &policy, ¶m) == 0 && policy != SCHED_OTHER) { minp = sched_get_priority_min(policy); maxp = sched_get_priority_max(policy); pri = ((maxp - minp) / 2) * (priority - 1) / 9; if (param.__sched_priority >= (minp + (maxp - minp) / 2)) // Realtime process priority param.__sched_priority = minp + ((maxp - minp) / 2) + pri; else // High process priority param.__sched_priority = minp + pri; param.sched_priority = jlimit (1, 127, 1 + (priority * 126) / 11); return pthread_setschedparam ((pthread_t) handle, policy, ¶m) == 0; } return false; } void Thread::setCurrentThreadAffinityMask (const uint32 affinityMask) throw() { #if SUPPORT_AFFINITIES cpu_set_t affinity; CPU_ZERO (&affinity); for (int i = 0; i < 32; ++i) if ((affinityMask & (1 << i)) != 0) CPU_SET (i, &affinity); /* N.B. If this line causes a compile error, then you've probably not got the latest version of glibc installed. If you don't want to update your copy of glibc and don't care about cpu affinities, then you can just disable all this stuff by removing the SUPPORT_AFFINITIES macro from the linuxincludes.h file. */ sched_setaffinity (getpid(), sizeof (cpu_set_t), &affinity); sched_yield(); #else /* affinities aren't supported because either the appropriate header files weren't found, or the SUPPORT_AFFINITIES macro was turned off in linuxheaders.h */ jassertfalse #endif } void Thread::yield() throw() { sched_yield(); } // sets the process to 0=low priority, 1=normal, 2=high, 3=realtime void Process::setPriority (ProcessPriority prior) { struct sched_param param; int policy, maxp, minp; const int p = (int) prior; if (p <= 1) policy = SCHED_OTHER; else policy = SCHED_RR; minp = sched_get_priority_min (policy); maxp = sched_get_priority_max (policy); if (p < 2) param.__sched_priority = 0; else if (p == 2 ) // Set to middle of lower realtime priority range param.__sched_priority = minp + (maxp - minp) / 4; else // Set to middle of higher realtime priority range param.__sched_priority = minp + (3 * (maxp - minp) / 4); pthread_setschedparam (pthread_self(), policy, ¶m); } void Process::terminate() { exit (0); } bool JUCE_CALLTYPE juce_isRunningUnderDebugger() throw() { static char testResult = 0; if (testResult == 0) { testResult = (char) ptrace (PT_TRACE_ME, 0, 0, 0); if (testResult >= 0) { ptrace (PT_DETACH, 0, (caddr_t) 1, 0); testResult = 1; } } return testResult < 0; } bool JUCE_CALLTYPE Process::isRunningUnderDebugger() throw() { return juce_isRunningUnderDebugger(); } void Process::raisePrivilege() { // If running suid root, change effective user // to root if (geteuid() != 0 && getuid() == 0) { setreuid (geteuid(), getuid()); setregid (getegid(), getgid()); } } void Process::lowerPrivilege() { // If runing suid root, change effective user // back to real user if (geteuid() == 0 && getuid() != 0) { setreuid (geteuid(), getuid()); setregid (getegid(), getgid()); } } #if ! JUCE_ONLY_BUILD_CORE_LIBRARY void* PlatformUtilities::loadDynamicLibrary (const String& name) { return dlopen ((const char*) name.toUTF8(), RTLD_LOCAL | RTLD_NOW); } void PlatformUtilities::freeDynamicLibrary (void* handle) { dlclose(handle); } void* PlatformUtilities::getProcedureEntryPoint (void* libraryHandle, const String& procedureName) { return dlsym (libraryHandle, (const char*) procedureName); } #endif #endif /********* End of inlined file: juce_linux_Threads.cpp *********/ #if ! JUCE_ONLY_BUILD_CORE_LIBRARY /********* Start of inlined file: juce_linux_Messaging.cpp *********/ // (This file gets included by juce_linux_NativeCode.cpp, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE #ifdef JUCE_DEBUG #define JUCE_DEBUG_XERRORS 1 #endif Display* display = 0; // This is also referenced from WindowDriver.cpp static Window juce_messageWindowHandle = None; #define SpecialAtom "JUCESpecialAtom" #define BroadcastAtom "JUCEBroadcastAtom" #define SpecialCallbackAtom "JUCESpecialCallbackAtom" static Atom specialId; static Atom broadcastId; static Atom specialCallbackId; // This is referenced from WindowDriver.cpp XContext improbableNumber; // Defined in WindowDriver.cpp extern void juce_windowMessageReceive (XEvent* event); struct MessageThreadFuncCall { MessageCallbackFunction* func; void* parameter; void* result; CriticalSection lock; WaitableEvent event; }; static bool errorCondition = false; static XErrorHandler oldErrorHandler = (XErrorHandler) 0; static XIOErrorHandler oldIOErrorHandler = (XIOErrorHandler) 0; // (defined in another file to avoid problems including certain headers in this one) extern bool juce_isRunningAsApplication(); // Usually happens when client-server connection is broken static int ioErrorHandler (Display* display) { DBG (T("ERROR: connection to X server broken.. terminating.")); errorCondition = true; if (juce_isRunningAsApplication()) Process::terminate(); return 0; } // A protocol error has occurred static int errorHandler (Display* display, XErrorEvent* event) { #ifdef JUCE_DEBUG_XERRORS char errorStr[64] = { 0 }; char requestStr[64] = { 0 }; XGetErrorText (display, event->error_code, errorStr, 64); XGetErrorDatabaseText (display, "XRequest", (const char*) String (event->request_code), "Unknown", requestStr, 64); DBG (T("ERROR: X returned ") + String (errorStr) + T(" for operation ") + String (requestStr)); #endif return 0; } static bool breakIn = false; // Breakin from keyboard static void sig_handler (int sig) { if (sig == SIGINT) { breakIn = true; return; } static bool reentrant = false; if (reentrant == false) { reentrant = true; // Illegal instruction fflush (stdout); Logger::outputDebugString ("ERROR: Program executed illegal instruction.. terminating"); errorCondition = true; if (juce_isRunningAsApplication()) Process::terminate(); } else { if (juce_isRunningAsApplication()) exit(0); } } void MessageManager::doPlatformSpecificInitialisation() { // Initialise xlib for multiple thread support static bool initThreadCalled = false; if (! initThreadCalled) { if (! XInitThreads()) { // This is fatal! Print error and closedown Logger::outputDebugString ("Failed to initialise xlib thread support."); if (juce_isRunningAsApplication()) Process::terminate(); return; } initThreadCalled = true; } // This is called if the client/server connection is broken oldIOErrorHandler = XSetIOErrorHandler (ioErrorHandler); // This is called if a protocol error occurs oldErrorHandler = XSetErrorHandler (errorHandler); // Install signal handler for break-in struct sigaction saction; sigset_t maskSet; sigemptyset (&maskSet); saction.sa_handler = sig_handler; saction.sa_mask = maskSet; saction.sa_flags = 0; sigaction (SIGINT, &saction, NULL); #ifndef _DEBUG // Setup signal handlers for various fatal errors sigaction (SIGILL, &saction, NULL); sigaction (SIGBUS, &saction, NULL); sigaction (SIGFPE, &saction, NULL); sigaction (SIGSEGV, &saction, NULL); sigaction (SIGSYS, &saction, NULL); #endif String displayName (getenv ("DISPLAY")); if (displayName.isEmpty()) displayName = T(":0.0"); display = XOpenDisplay (displayName); if (display == 0) { // This is fatal! Print error and closedown Logger::outputDebugString ("Failed to open the X display."); if (juce_isRunningAsApplication()) Process::terminate(); return; } // Get defaults for various properties int screen = DefaultScreen (display); Window root = RootWindow (display, screen); Visual* visual = DefaultVisual (display, screen); // Create atoms for our ClientMessages (these cannot be deleted) specialId = XInternAtom (display, SpecialAtom, false); broadcastId = XInternAtom (display, BroadcastAtom, false); specialCallbackId = XInternAtom (display, SpecialCallbackAtom, false); // Create a context to store user data associated with Windows we // create in WindowDriver improbableNumber = XUniqueContext(); // We're only interested in client messages for this window // which are always sent XSetWindowAttributes swa; swa.event_mask = NoEventMask; // Create our message window (this will never be mapped) juce_messageWindowHandle = XCreateWindow (display, root, 0, 0, 1, 1, 0, 0, InputOnly, visual, CWEventMask, &swa); } void MessageManager::doPlatformSpecificShutdown() { if (errorCondition == false) { XDestroyWindow (display, juce_messageWindowHandle); XCloseDisplay (display); // reset pointers juce_messageWindowHandle = 0; display = 0; // Restore original error handlers XSetIOErrorHandler (oldIOErrorHandler); oldIOErrorHandler = 0; XSetErrorHandler (oldErrorHandler); oldErrorHandler = 0; } } bool juce_postMessageToSystemQueue (void* message) { if (errorCondition) return false; XClientMessageEvent clientMsg; clientMsg.display = display; clientMsg.window = juce_messageWindowHandle; clientMsg.type = ClientMessage; clientMsg.format = 32; clientMsg.message_type = specialId; #if JUCE_64BIT clientMsg.data.l[0] = (long) (0x00000000ffffffff & (((uint64) message) >> 32)); clientMsg.data.l[1] = (long) (0x00000000ffffffff & (long) message); #else clientMsg.data.l[0] = (long) message; #endif XSendEvent (display, juce_messageWindowHandle, false, NoEventMask, (XEvent*) &clientMsg); XFlush (display); // This is necessary to ensure the event is delivered return true; } void MessageManager::broadcastMessage (const String& value) throw() { } void* MessageManager::callFunctionOnMessageThread (MessageCallbackFunction* func, void* parameter) { void* retVal = 0; if (! errorCondition) { if (! isThisTheMessageThread()) { static MessageThreadFuncCall messageFuncCallContext; const ScopedLock sl (messageFuncCallContext.lock); XClientMessageEvent clientMsg; clientMsg.display = display; clientMsg.window = juce_messageWindowHandle; clientMsg.type = ClientMessage; clientMsg.format = 32; clientMsg.message_type = specialCallbackId; #if JUCE_64BIT clientMsg.data.l[0] = (long) (0x00000000ffffffff & (((uint64) &messageFuncCallContext) >> 32)); clientMsg.data.l[1] = (long) (0x00000000ffffffff & (uint64) &messageFuncCallContext); #else clientMsg.data.l[0] = (long) &messageFuncCallContext; #endif messageFuncCallContext.func = func; messageFuncCallContext.parameter = parameter; if (XSendEvent (display, juce_messageWindowHandle, false, NoEventMask, (XEvent*) &clientMsg) == 0) return 0; XFlush (display); // This is necessary to ensure the event is delivered // Wait for it to complete before continuing messageFuncCallContext.event.wait(); retVal = messageFuncCallContext.result; } else { // Just call the function directly retVal = func (parameter); } } return retVal; } bool juce_dispatchNextMessageOnSystemQueue (bool returnIfNoPendingMessages) { if (errorCondition) return false; if (breakIn) { errorCondition = true; if (juce_isRunningAsApplication()) Process::terminate(); return false; } if (returnIfNoPendingMessages && ! XPending (display)) return false; XEvent evt; XNextEvent (display, &evt); if (evt.type == ClientMessage && evt.xany.window == juce_messageWindowHandle) { XClientMessageEvent* const clientMsg = (XClientMessageEvent*) &evt; if (clientMsg->format != 32) { jassertfalse DBG ("Error: juce_dispatchNextMessageOnSystemQueue received malformed client message."); } else { JUCE_TRY { #if JUCE_64BIT void* const messagePtr = (void*) ((0xffffffff00000000 & (((uint64) clientMsg->data.l[0]) << 32)) | (clientMsg->data.l[1] & 0x00000000ffffffff)); #else void* const messagePtr = (void*) (clientMsg->data.l[0]); #endif if (clientMsg->message_type == specialId) { MessageManager::getInstance()->deliverMessage (messagePtr); } else if (clientMsg->message_type == specialCallbackId) { MessageThreadFuncCall* const call = (MessageThreadFuncCall*) messagePtr; MessageCallbackFunction* func = call->func; call->result = (*func) (call->parameter); call->event.signal(); } else if (clientMsg->message_type == broadcastId) { #if 0 TCHAR buffer[8192]; zeromem (buffer, sizeof (buffer)); if (GlobalGetAtomName ((ATOM) lParam, buffer, 8192) != 0) mq->deliverBroadcastMessage (String (buffer)); #endif } else { DBG ("Error: juce_dispatchNextMessageOnSystemQueue received unknown client message."); } } JUCE_CATCH_ALL } } else if (evt.xany.window != juce_messageWindowHandle) { juce_windowMessageReceive (&evt); } return true; } #endif /********* End of inlined file: juce_linux_Messaging.cpp *********/ /********* Start of inlined file: juce_linux_Fonts.cpp *********/ // (This file gets included by juce_linux_NativeCode.cpp, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE class FreeTypeFontFace { public: enum FontStyle { Plain = 0, Bold = 1, Italic = 2 }; struct FontNameIndex { String fileName; int faceIndex; }; FreeTypeFontFace (const String& familyName) : hasSerif (false), monospaced (false) { family = familyName; } void setFileName (const String& name, const int faceIndex, FontStyle style) { if (names[(int) style].fileName.isEmpty()) { names[(int) style].fileName = name; names[(int) style].faceIndex = faceIndex; } } const String& getFamilyName() const throw() { return family; } const String& getFileName (int style, int* faceIndex) const throw() { *faceIndex = names [style].faceIndex; return names[style].fileName; } void setMonospaced (bool mono) { monospaced = mono; } bool getMonospaced () const throw() { return monospaced; } void setSerif (const bool serif) { hasSerif = serif; } bool getSerif () const throw() { return hasSerif; } private: String family; FontNameIndex names[4]; bool hasSerif, monospaced; }; class FreeTypeInterface : public DeletedAtShutdown { public: FreeTypeInterface() throw() : lastFace (0), lastBold (false), lastItalic (false) { if (FT_Init_FreeType (&ftLib) != 0) { ftLib = 0; DBG (T("Failed to initialize FreeType")); } StringArray fontDirs; fontDirs.addTokens (String (getenv ("JUCE_FONT_PATH")), T(";,"), 0); fontDirs.removeEmptyStrings (true); if (fontDirs.size() == 0) { XmlDocument fontsConfig (File ("/etc/fonts/fonts.conf")); XmlElement* const fontsInfo = fontsConfig.getDocumentElement(); if (fontsInfo != 0) { forEachXmlChildElementWithTagName (*fontsInfo, e, T("dir")) { fontDirs.add (e->getAllSubText().trim()); } delete fontsInfo; } } if (fontDirs.size() == 0) fontDirs.add ("/usr/X11R6/lib/X11/fonts"); for (int i = 0; i < fontDirs.size(); ++i) enumerateFaces (fontDirs[i]); } ~FreeTypeInterface() throw() { if (lastFace != 0) FT_Done_Face (lastFace); if (ftLib != 0) FT_Done_FreeType (ftLib); clearSingletonInstance(); } FreeTypeFontFace* findOrCreate (const String& familyName, const bool create = false) throw() { for (int i = 0; i < faces.size(); i++) if (faces[i]->getFamilyName() == familyName) return faces[i]; if (! create) return NULL; FreeTypeFontFace* newFace = new FreeTypeFontFace (familyName); faces.add (newFace); return newFace; } // Enumerate all font faces available in a given directory void enumerateFaces (const String& path) throw() { File dirPath (path); if (path.isEmpty() || ! dirPath.isDirectory()) return; DirectoryIterator di (dirPath, true); while (di.next()) { File possible (di.getFile()); if (possible.hasFileExtension (T("ttf")) || possible.hasFileExtension (T("pfb")) || possible.hasFileExtension (T("pcf"))) { FT_Face face; int faceIndex = 0; int numFaces = 0; do { if (FT_New_Face (ftLib, possible.getFullPathName(), faceIndex, &face) == 0) { if (faceIndex == 0) numFaces = face->num_faces; if ((face->face_flags & FT_FACE_FLAG_SCALABLE) != 0) { FreeTypeFontFace* const newFace = findOrCreate (face->family_name, true); int style = (int) FreeTypeFontFace::Plain; if ((face->style_flags & FT_STYLE_FLAG_BOLD) != 0) style |= (int) FreeTypeFontFace::Bold; if ((face->style_flags & FT_STYLE_FLAG_ITALIC) != 0) style |= (int) FreeTypeFontFace::Italic; newFace->setFileName (possible.getFullPathName(), faceIndex, (FreeTypeFontFace::FontStyle) style); if ((face->face_flags & FT_FACE_FLAG_FIXED_WIDTH) != 0) newFace->setMonospaced (true); else newFace->setMonospaced (false); // Surely there must be a better way to do this? if (String (face->family_name).containsIgnoreCase (T("Sans")) || String (face->family_name).containsIgnoreCase (T("Verdana")) || String (face->family_name).containsIgnoreCase (T("Arial"))) { newFace->setSerif (false); } else { newFace->setSerif (true); } } FT_Done_Face (face); } ++faceIndex; } while (faceIndex < numFaces); } } } // Create a FreeType face object for a given font FT_Face createFT_Face (const String& fontName, const bool bold, const bool italic) throw() { FT_Face face = NULL; if (fontName == lastFontName && bold == lastBold && italic == lastItalic) { face = lastFace; } else { if (lastFace) { FT_Done_Face (lastFace); lastFace = NULL; } lastFontName = fontName; lastBold = bold; lastItalic = italic; FreeTypeFontFace* const ftFace = findOrCreate (fontName); if (ftFace != 0) { int style = (int) FreeTypeFontFace::Plain; if (bold) style |= (int) FreeTypeFontFace::Bold; if (italic) style |= (int) FreeTypeFontFace::Italic; int faceIndex; String fileName (ftFace->getFileName (style, &faceIndex)); if (fileName.isEmpty()) { style ^= (int) FreeTypeFontFace::Bold; fileName = ftFace->getFileName (style, &faceIndex); if (fileName.isEmpty()) { style ^= (int) FreeTypeFontFace::Bold; style ^= (int) FreeTypeFontFace::Italic; fileName = ftFace->getFileName (style, &faceIndex); if (! fileName.length()) { style ^= (int) FreeTypeFontFace::Bold; fileName = ftFace->getFileName (style, &faceIndex); } } } if (! FT_New_Face (ftLib, (const char*) fileName, faceIndex, &lastFace)) { face = lastFace; // If there isn't a unicode charmap then select the first one. if (FT_Select_Charmap (face, ft_encoding_unicode)) FT_Set_Charmap (face, face->charmaps[0]); } } } return face; } bool addGlyph (FT_Face face, Typeface& dest, uint32 character) throw() { const unsigned int glyphIndex = FT_Get_Char_Index (face, character); const float height = (float) (face->ascender - face->descender); const float scaleX = 1.0f / height; const float scaleY = -1.0f / height; Path destShape; #define CONVERTX(val) (scaleX * (val).x) #define CONVERTY(val) (scaleY * (val).y) if (FT_Load_Glyph (face, glyphIndex, FT_LOAD_NO_SCALE | FT_LOAD_NO_BITMAP | FT_LOAD_IGNORE_TRANSFORM) != 0 || face->glyph->format != ft_glyph_format_outline) { return false; } const FT_Outline* const outline = &face->glyph->outline; const short* const contours = outline->contours; const char* const tags = outline->tags; FT_Vector* const points = outline->points; for (int c = 0; c < outline->n_contours; c++) { const int startPoint = (c == 0) ? 0 : contours [c - 1] + 1; const int endPoint = contours[c]; for (int p = startPoint; p <= endPoint; p++) { const float x = CONVERTX (points[p]); const float y = CONVERTY (points[p]); if (p == startPoint) { if (FT_CURVE_TAG (tags[p]) == FT_Curve_Tag_Conic) { float x2 = CONVERTX (points [endPoint]); float y2 = CONVERTY (points [endPoint]); if (FT_CURVE_TAG (tags[endPoint]) != FT_Curve_Tag_On) { x2 = (x + x2) * 0.5f; y2 = (y + y2) * 0.5f; } destShape.startNewSubPath (x2, y2); } else { destShape.startNewSubPath (x, y); } } if (FT_CURVE_TAG (tags[p]) == FT_Curve_Tag_On) { if (p != startPoint) destShape.lineTo (x, y); } else if (FT_CURVE_TAG (tags[p]) == FT_Curve_Tag_Conic) { const int nextIndex = (p == endPoint) ? startPoint : p + 1; float x2 = CONVERTX (points [nextIndex]); float y2 = CONVERTY (points [nextIndex]); if (FT_CURVE_TAG (tags [nextIndex]) == FT_Curve_Tag_Conic) { x2 = (x + x2) * 0.5f; y2 = (y + y2) * 0.5f; } else { ++p; } destShape.quadraticTo (x, y, x2, y2); } else if (FT_CURVE_TAG (tags[p]) == FT_Curve_Tag_Cubic) { if (p >= endPoint) return false; const int next1 = p + 1; const int next2 = (p == (endPoint - 1)) ? startPoint : p + 2; const float x2 = CONVERTX (points [next1]); const float y2 = CONVERTY (points [next1]); const float x3 = CONVERTX (points [next2]); const float y3 = CONVERTY (points [next2]); if (FT_CURVE_TAG (tags[next1]) != FT_Curve_Tag_Cubic || FT_CURVE_TAG (tags[next2]) != FT_Curve_Tag_On) return false; destShape.cubicTo (x, y, x2, y2, x3, y3); p += 2; } } destShape.closeSubPath(); } dest.addGlyph (character, destShape, face->glyph->metrics.horiAdvance/height); if ((face->face_flags & FT_FACE_FLAG_KERNING) != 0) addKerning (face, dest, character, glyphIndex); return true; } void addKerning (FT_Face face, Typeface& dest, const uint32 character, const uint32 glyphIndex) throw() { const float height = (float) (face->ascender - face->descender); uint32 rightGlyphIndex; uint32 rightCharCode = FT_Get_First_Char (face, &rightGlyphIndex); while (rightGlyphIndex != 0) { FT_Vector kerning; if (FT_Get_Kerning (face, glyphIndex, rightGlyphIndex, ft_kerning_unscaled, &kerning) == 0) { if (kerning.x != 0) dest.addKerningPair (character, rightCharCode, kerning.x / height); } rightCharCode = FT_Get_Next_Char (face, rightCharCode, &rightGlyphIndex); } } // Add a glyph to a font bool addGlyphToFont (const uint32 character, const tchar* fontName, bool bold, bool italic, Typeface& dest) throw() { FT_Face face = createFT_Face (fontName, bold, italic); if (face != 0) return addGlyph (face, dest, character); return false; } // Create a Typeface object for given name/style bool createTypeface (const String& fontName, const bool bold, const bool italic, Typeface& dest, const bool addAllGlyphs) throw() { dest.clear(); dest.setName (fontName); dest.setBold (bold); dest.setItalic (italic); FT_Face face = createFT_Face (fontName, bold, italic); if (face == 0) { #ifdef JUCE_DEBUG String msg (T("Failed to create typeface: ")); msg << fontName << " " << (bold ? 'B' : ' ') << (italic ? 'I' : ' '); DBG (msg); #endif return face; } const float height = (float) (face->ascender - face->descender); dest.setAscent (face->ascender / height); dest.setDefaultCharacter (L' '); if (addAllGlyphs) { uint32 glyphIndex; uint32 charCode = FT_Get_First_Char (face, &glyphIndex); while (glyphIndex != 0) { addGlyph (face, dest, charCode); charCode = FT_Get_Next_Char (face, charCode, &glyphIndex); } } return true; } void getFamilyNames (StringArray& familyNames) const throw() { for (int i = 0; i < faces.size(); i++) familyNames.add (faces[i]->getFamilyName()); } void getMonospacedNames (StringArray& monoSpaced) const throw() { for (int i = 0; i < faces.size(); i++) if (faces[i]->getMonospaced()) monoSpaced.add (faces[i]->getFamilyName()); } void getSerifNames (StringArray& serif) const throw() { for (int i = 0; i < faces.size(); i++) if (faces[i]->getSerif()) serif.add (faces[i]->getFamilyName()); } void getSansSerifNames (StringArray& sansSerif) const throw() { for (int i = 0; i < faces.size(); i++) if (! faces[i]->getSerif()) sansSerif.add (faces[i]->getFamilyName()); } juce_DeclareSingleton_SingleThreaded_Minimal (FreeTypeInterface) private: FT_Library ftLib; FT_Face lastFace; String lastFontName; bool lastBold, lastItalic; OwnedArray faces; }; juce_ImplementSingleton_SingleThreaded (FreeTypeInterface) void Typeface::initialiseTypefaceCharacteristics (const String& fontName, bool bold, bool italic, bool addAllGlyphsToFont) throw() { FreeTypeInterface::getInstance() ->createTypeface (fontName, bold, italic, *this, addAllGlyphsToFont); } bool Typeface::findAndAddSystemGlyph (juce_wchar character) throw() { return FreeTypeInterface::getInstance() ->addGlyphToFont (character, getName(), isBold(), isItalic(), *this); } const StringArray Font::findAllTypefaceNames() throw() { StringArray s; FreeTypeInterface::getInstance()->getFamilyNames (s); s.sort (true); return s; } static const String pickBestFont (const StringArray& names, const char* const choicesString) { StringArray choices; choices.addTokens (String (choicesString), T(","), 0); choices.trim(); choices.removeEmptyStrings(); int i, j; for (j = 0; j < choices.size(); ++j) if (names.contains (choices[j], true)) return choices[j]; for (j = 0; j < choices.size(); ++j) for (i = 0; i < names.size(); i++) if (names[i].startsWithIgnoreCase (choices[j])) return names[i]; for (j = 0; j < choices.size(); ++j) for (i = 0; i < names.size(); i++) if (names[i].containsIgnoreCase (choices[j])) return names[i]; return names[0]; } static const String linux_getDefaultSansSerifFontName() { StringArray allFonts; FreeTypeInterface::getInstance()->getSansSerifNames (allFonts); return pickBestFont (allFonts, "Verdana, Bitstream Vera Sans, Luxi Sans, Sans"); } static const String linux_getDefaultSerifFontName() { StringArray allFonts; FreeTypeInterface::getInstance()->getSerifNames (allFonts); return pickBestFont (allFonts, "Bitstream Vera Serif, Times, Nimbus Roman, Serif"); } static const String linux_getDefaultMonospacedFontName() { StringArray allFonts; FreeTypeInterface::getInstance()->getMonospacedNames (allFonts); return pickBestFont (allFonts, "Bitstream Vera Sans Mono, Courier, Sans Mono, Mono"); } void Typeface::getDefaultFontNames (String& defaultSans, String& defaultSerif, String& defaultFixed) throw() { defaultSans = linux_getDefaultSansSerifFontName(); defaultSerif = linux_getDefaultSerifFontName(); defaultFixed = linux_getDefaultMonospacedFontName(); } #endif /********* End of inlined file: juce_linux_Fonts.cpp *********/ /********* Start of inlined file: juce_linux_Windowing.cpp *********/ // (This file gets included by juce_linux_NativeCode.cpp, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE #define TAKE_FOCUS 0 #define DELETE_WINDOW 1 #define SYSTEM_TRAY_REQUEST_DOCK 0 #define SYSTEM_TRAY_BEGIN_MESSAGE 1 #define SYSTEM_TRAY_CANCEL_MESSAGE 2 static const int repaintTimerPeriod = 1000 / 100; // 100 fps maximum static Atom wm_ChangeState = None; static Atom wm_State = None; static Atom wm_Protocols = None; static Atom wm_ProtocolList [2] = { None, None }; static Atom wm_ActiveWin = None; #define ourDndVersion 3 static Atom XA_XdndAware = None; static Atom XA_XdndEnter = None; static Atom XA_XdndLeave = None; static Atom XA_XdndPosition = None; static Atom XA_XdndStatus = None; static Atom XA_XdndDrop = None; static Atom XA_XdndFinished = None; static Atom XA_XdndSelection = None; static Atom XA_XdndProxy = None; static Atom XA_XdndTypeList = None; static Atom XA_XdndActionList = None; static Atom XA_XdndActionDescription = None; static Atom XA_XdndActionCopy = None; static Atom XA_XdndActionMove = None; static Atom XA_XdndActionLink = None; static Atom XA_XdndActionAsk = None; static Atom XA_XdndActionPrivate = None; static Atom XA_JXSelectionWindowProperty = None; static Atom XA_MimeTextPlain = None; static Atom XA_MimeTextUriList = None; static Atom XA_MimeRootDrop = None; static XErrorHandler oldHandler = 0; static int trappedErrorCode = 0; extern "C" int errorTrapHandler (Display* dpy, XErrorEvent* err) { trappedErrorCode = err->error_code; return 0; } static void trapErrors() { trappedErrorCode = 0; oldHandler = XSetErrorHandler (errorTrapHandler); } static bool untrapErrors() { XSetErrorHandler (oldHandler); return (trappedErrorCode == 0); } static bool isActiveApplication = false; bool Process::isForegroundProcess() throw() { return isActiveApplication; } // (used in the messaging code, declared here for build reasons) bool juce_isRunningAsApplication() { return JUCEApplication::getInstance() != 0; } // These are defined in juce_linux_Messaging.cpp extern Display* display; extern XContext improbableNumber; static const int eventMask = NoEventMask | KeyPressMask | KeyReleaseMask | ButtonPressMask | ButtonReleaseMask | EnterWindowMask | LeaveWindowMask | PointerMotionMask | KeymapStateMask | ExposureMask | StructureNotifyMask | FocusChangeMask; static int pointerMap[5]; static int lastMousePosX = 0, lastMousePosY = 0; enum MouseButtons { NoButton = 0, LeftButton = 1, MiddleButton = 2, RightButton = 3, WheelUp = 4, WheelDown = 5 }; static void getMousePos (int& x, int& y, int& mouseMods) throw() { Window root, child; int winx, winy; unsigned int mask; mouseMods = 0; if (XQueryPointer (display, RootWindow (display, DefaultScreen (display)), &root, &child, &x, &y, &winx, &winy, &mask) == False) { // Pointer not on the default screen x = y = -1; } else { if ((mask & Button1Mask) != 0) mouseMods |= ModifierKeys::leftButtonModifier; if ((mask & Button2Mask) != 0) mouseMods |= ModifierKeys::middleButtonModifier; if ((mask & Button3Mask) != 0) mouseMods |= ModifierKeys::rightButtonModifier; } } static int AltMask = 0; static int NumLockMask = 0; static bool numLock = 0; static bool capsLock = 0; static char keyStates [32]; static void updateKeyStates (const int keycode, const bool press) throw() { const int keybyte = keycode >> 3; const int keybit = (1 << (keycode & 7)); if (press) keyStates [keybyte] |= keybit; else keyStates [keybyte] &= ~keybit; } static bool keyDown (const int keycode) throw() { const int keybyte = keycode >> 3; const int keybit = (1 << (keycode & 7)); return (keyStates [keybyte] & keybit) != 0; } static const int extendedKeyModifier = 0x10000000; bool KeyPress::isKeyCurrentlyDown (const int keyCode) throw() { int keysym; if (keyCode & extendedKeyModifier) { keysym = 0xff00 | (keyCode & 0xff); } else { keysym = keyCode; if (keysym == (XK_Tab & 0xff) || keysym == (XK_Return & 0xff) || keysym == (XK_Escape & 0xff) || keysym == (XK_BackSpace & 0xff)) { keysym |= 0xff00; } } return keyDown (XKeysymToKeycode (display, keysym)); } // Alt and Num lock are not defined by standard X // modifier constants: check what they're mapped to static void getModifierMapping() throw() { const int altLeftCode = XKeysymToKeycode (display, XK_Alt_L); const int numLockCode = XKeysymToKeycode (display, XK_Num_Lock); AltMask = 0; NumLockMask = 0; XModifierKeymap* mapping = XGetModifierMapping (display); if (mapping) { for (int i = 0; i < 8; i++) { if (mapping->modifiermap [i << 1] == altLeftCode) AltMask = 1 << i; else if (mapping->modifiermap [i << 1] == numLockCode) NumLockMask = 1 << i; } XFreeModifiermap (mapping); } } static int currentModifiers = 0; void ModifierKeys::updateCurrentModifiers() throw() { currentModifierFlags = currentModifiers; } const ModifierKeys ModifierKeys::getCurrentModifiersRealtime() throw() { int x, y, mouseMods; getMousePos (x, y, mouseMods); currentModifiers &= ~ModifierKeys::allMouseButtonModifiers; currentModifiers |= mouseMods; return ModifierKeys (currentModifiers); } static void updateKeyModifiers (const int status) throw() { currentModifiers &= ~(ModifierKeys::shiftModifier | ModifierKeys::ctrlModifier | ModifierKeys::altModifier); if (status & ShiftMask) currentModifiers |= ModifierKeys::shiftModifier; if (status & ControlMask) currentModifiers |= ModifierKeys::ctrlModifier; if (status & AltMask) currentModifiers |= ModifierKeys::altModifier; numLock = ((status & NumLockMask) != 0); capsLock = ((status & LockMask) != 0); } static bool updateKeyModifiersFromSym (KeySym sym, const bool press) throw() { int modifier = 0; bool isModifier = true; switch (sym) { case XK_Shift_L: case XK_Shift_R: modifier = ModifierKeys::shiftModifier; break; case XK_Control_L: case XK_Control_R: modifier = ModifierKeys::ctrlModifier; break; case XK_Alt_L: case XK_Alt_R: modifier = ModifierKeys::altModifier; break; case XK_Num_Lock: if (press) numLock = ! numLock; break; case XK_Caps_Lock: if (press) capsLock = ! capsLock; break; case XK_Scroll_Lock: break; default: isModifier = false; break; } if (modifier != 0) { if (press) currentModifiers |= modifier; else currentModifiers &= ~modifier; } return isModifier; } #if JUCE_USE_XSHM static bool isShmAvailable() throw() { static bool isChecked = false; static bool isAvailable = false; if (! isChecked) { isChecked = true; int major, minor; Bool pixmaps; if (XShmQueryVersion (display, &major, &minor, &pixmaps)) { trapErrors(); XShmSegmentInfo segmentInfo; zerostruct (segmentInfo); XImage* xImage = XShmCreateImage (display, DefaultVisual (display, DefaultScreen (display)), 24, ZPixmap, 0, &segmentInfo, 50, 50); if ((segmentInfo.shmid = shmget (IPC_PRIVATE, xImage->bytes_per_line * xImage->height, IPC_CREAT | 0777)) >= 0) { segmentInfo.shmaddr = (char*) shmat (segmentInfo.shmid, 0, 0); if (segmentInfo.shmaddr != (void*) -1) { segmentInfo.readOnly = False; xImage->data = segmentInfo.shmaddr; XSync (display, False); if (XShmAttach (display, &segmentInfo) != 0) { XSync (display, False); XShmDetach (display, &segmentInfo); isAvailable = true; } } XFlush (display); XDestroyImage (xImage); shmdt (segmentInfo.shmaddr); } shmctl (segmentInfo.shmid, IPC_RMID, 0); isAvailable &= untrapErrors(); } } return isAvailable; } #endif static Pixmap juce_createColourPixmapFromImage (Display* display, const Image& image) { const int width = image.getWidth(); const int height = image.getHeight(); uint32* const colour = (uint32*) juce_malloc (width * height * sizeof (uint32)); int index = 0; for (int y = 0; y < height; ++y) for (int x = 0; x < width; ++x) colour[index++] = image.getPixelAt (x, y).getARGB(); XImage* ximage = XCreateImage (display, CopyFromParent, 24, ZPixmap, 0, (char*) colour, width, height, 32, 0); Pixmap pixmap = XCreatePixmap (display, DefaultRootWindow (display), width, height, 24); GC gc = XCreateGC (display, pixmap, 0, 0); XPutImage (display, pixmap, gc, ximage, 0, 0, 0, 0, width, height); XFreeGC (display, gc); juce_free (colour); return pixmap; } static Pixmap juce_createMaskPixmapFromImage (Display* display, const Image& image) { const int width = image.getWidth(); const int height = image.getHeight(); const int stride = (width + 7) >> 3; uint8* const mask = (uint8*) juce_calloc (stride * height); const bool msbfirst = (BitmapBitOrder (display) == MSBFirst); for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { const uint8 bit = (uint8) (1 << (msbfirst ? (7 - (x & 7)) : (x & 7))); const int offset = y * stride + (x >> 3); if (image.getPixelAt (x, y).getAlpha() >= 128) mask[offset] |= bit; } } Pixmap pixmap = XCreatePixmapFromBitmapData (display, DefaultRootWindow (display), (char*) mask, width, height, 1, 0, 1); juce_free (mask); return pixmap; } class XBitmapImage : public Image { public: XBitmapImage (const PixelFormat format_, const int w, const int h, const bool clearImage, const bool is16Bit_) : Image (format_, w, h), is16Bit (is16Bit_) { jassert (format_ == RGB || format_ == ARGB); pixelStride = (format_ == RGB) ? 3 : 4; lineStride = ((w * pixelStride + 3) & ~3); Visual* const visual = DefaultVisual (display, DefaultScreen (display)); #if JUCE_USE_XSHM usingXShm = false; if ((! is16Bit) && isShmAvailable()) { zerostruct (segmentInfo); xImage = XShmCreateImage (display, visual, 24, ZPixmap, 0, &segmentInfo, w, h); if (xImage != 0) { if ((segmentInfo.shmid = shmget (IPC_PRIVATE, xImage->bytes_per_line * xImage->height, IPC_CREAT | 0777)) >= 0) { segmentInfo.shmaddr = (char*) shmat (segmentInfo.shmid, 0, 0); if (segmentInfo.shmaddr != (void*) -1) { segmentInfo.readOnly = False; xImage->data = segmentInfo.shmaddr; imageData = (uint8*) segmentInfo.shmaddr; XSync (display, False); if (XShmAttach (display, &segmentInfo) != 0) { XSync (display, False); usingXShm = true; } else { jassertfalse } } else { shmctl (segmentInfo.shmid, IPC_RMID, 0); } } } } if (! usingXShm) #endif { imageData = (uint8*) juce_malloc (lineStride * h); if (format_ == ARGB && clearImage) zeromem (imageData, h * lineStride); xImage = (XImage*) juce_calloc (sizeof (XImage)); xImage->width = w; xImage->height = h; xImage->xoffset = 0; xImage->format = ZPixmap; xImage->data = (char*) imageData; xImage->byte_order = ImageByteOrder (display); xImage->bitmap_unit = BitmapUnit (display); xImage->bitmap_bit_order = BitmapBitOrder (display); xImage->bitmap_pad = 32; xImage->depth = pixelStride * 8; xImage->bytes_per_line = lineStride; xImage->bits_per_pixel = pixelStride * 8; xImage->red_mask = 0x00FF0000; xImage->green_mask = 0x0000FF00; xImage->blue_mask = 0x000000FF; if (is16Bit) { const int pixelStride = 2; const int lineStride = ((w * pixelStride + 3) & ~3); xImage->data = (char*) juce_malloc (lineStride * h); xImage->bitmap_pad = 16; xImage->depth = pixelStride * 8; xImage->bytes_per_line = lineStride; xImage->bits_per_pixel = pixelStride * 8; xImage->red_mask = visual->red_mask; xImage->green_mask = visual->green_mask; xImage->blue_mask = visual->blue_mask; } if (! XInitImage (xImage)) { jassertfalse } } } ~XBitmapImage() { #if JUCE_USE_XSHM if (usingXShm) { XShmDetach (display, &segmentInfo); XFlush (display); XDestroyImage (xImage); shmdt (segmentInfo.shmaddr); shmctl (segmentInfo.shmid, IPC_RMID, 0); } else #endif { juce_free (xImage->data); xImage->data = 0; XDestroyImage (xImage); } if (! is16Bit) imageData = 0; // to stop the base class freeing this (for the 16-bit version we want it to free it) } void blitToWindow (Window window, int dx, int dy, int dw, int dh, int sx, int sy) { static GC gc = 0; if (gc == 0) gc = DefaultGC (display, DefaultScreen (display)); if (is16Bit) { const uint32 rMask = xImage->red_mask; const uint32 rShiftL = jmax (0, getShiftNeeded (rMask)); const uint32 rShiftR = jmax (0, -getShiftNeeded (rMask)); const uint32 gMask = xImage->green_mask; const uint32 gShiftL = jmax (0, getShiftNeeded (gMask)); const uint32 gShiftR = jmax (0, -getShiftNeeded (gMask)); const uint32 bMask = xImage->blue_mask; const uint32 bShiftL = jmax (0, getShiftNeeded (bMask)); const uint32 bShiftR = jmax (0, -getShiftNeeded (bMask)); int ls, ps; const uint8* const pixels = lockPixelDataReadOnly (0, 0, getWidth(), getHeight(), ls, ps); for (int y = sy; y < sy + dh; ++y) { const uint8* p = pixels + y * ls + sx * ps; for (int x = sx; x < sx + dw; ++x) { const PixelRGB* const pixel = (const PixelRGB*) p; p += ps; XPutPixel (xImage, x, y, (((((uint32) pixel->getRed()) << rShiftL) >> rShiftR) & rMask) | (((((uint32) pixel->getGreen()) << gShiftL) >> gShiftR) & gMask) | (((((uint32) pixel->getBlue()) << bShiftL) >> bShiftR) & bMask)); } } releasePixelDataReadOnly (pixels); } // blit results to screen. #if JUCE_USE_XSHM if (usingXShm) XShmPutImage (display, (::Drawable) window, gc, xImage, sx, sy, dx, dy, dw, dh, False); else #endif XPutImage (display, (::Drawable) window, gc, xImage, sx, sy, dx, dy, dw, dh); } juce_UseDebuggingNewOperator private: XImage* xImage; const bool is16Bit; #if JUCE_USE_XSHM XShmSegmentInfo segmentInfo; bool usingXShm; #endif static int getShiftNeeded (const uint32 mask) throw() { for (int i = 32; --i >= 0;) if (((mask >> i) & 1) != 0) return i - 7; jassertfalse return 0; } }; #define checkMessageManagerIsLocked jassert (MessageManager::getInstance()->currentThreadHasLockedMessageManager()); class LinuxComponentPeer : public ComponentPeer { public: LinuxComponentPeer (Component* const component, const int windowStyleFlags) : ComponentPeer (component, windowStyleFlags), windowH (0), parentWindow (0), wx (0), wy (0), ww (0), wh (0), taskbarImage (0), fullScreen (false), entered (false), mapped (false) { // it's dangerous to create a window on a thread other than the message thread.. checkMessageManagerIsLocked repainter = new LinuxRepaintManager (this); createWindow(); setTitle (component->getName()); } ~LinuxComponentPeer() { // it's dangerous to delete a window on a thread other than the message thread.. checkMessageManagerIsLocked deleteTaskBarIcon(); deleteIconPixmaps(); destroyWindow(); windowH = 0; delete repainter; } void* getNativeHandle() const { return (void*) windowH; } static LinuxComponentPeer* getPeerFor (Window windowHandle) throw() { XPointer peer = 0; if (! XFindContext (display, (XID) windowHandle, improbableNumber, &peer)) { if (peer != 0 && ! ((LinuxComponentPeer*) peer)->isValidMessageListener()) peer = 0; } return (LinuxComponentPeer*) peer; } void setVisible (bool shouldBeVisible) { if (shouldBeVisible) XMapWindow (display, windowH); else XUnmapWindow (display, windowH); } void setTitle (const String& title) { setWindowTitle (windowH, title); } void setPosition (int x, int y) { setBounds (x, y, ww, wh, false); } void setSize (int w, int h) { setBounds (wx, wy, w, h, false); } void setBounds (int x, int y, int w, int h, const bool isNowFullScreen) { fullScreen = isNowFullScreen; if (windowH != 0) { const ComponentDeletionWatcher deletionChecker (component); wx = x; wy = y; ww = jmax (1, w); wh = jmax (1, h); // Make sure the Window manager does what we want XSizeHints* hints = XAllocSizeHints(); hints->flags = USSize | USPosition; hints->width = ww; hints->height = wh; hints->x = wx; hints->y = wy; if ((getStyleFlags() & (windowHasTitleBar | windowIsResizable)) == windowHasTitleBar) { hints->min_width = hints->max_width = hints->width; hints->min_height = hints->max_height = hints->height; hints->flags |= PMinSize | PMaxSize; } XSetWMNormalHints (display, windowH, hints); XFree (hints); XMoveResizeWindow (display, windowH, wx - windowBorder.getLeft(), wy - windowBorder.getTop(), ww, wh); if (! deletionChecker.hasBeenDeleted()) { updateBorderSize(); handleMovedOrResized(); } } } void getBounds (int& x, int& y, int& w, int& h) const { x = wx; y = wy; w = ww; h = wh; } int getScreenX() const { return wx; } int getScreenY() const { return wy; } void relativePositionToGlobal (int& x, int& y) { x += wx; y += wy; } void globalPositionToRelative (int& x, int& y) { x -= wx; y -= wy; } void setMinimised (bool shouldBeMinimised) { if (shouldBeMinimised) { Window root = RootWindow (display, DefaultScreen (display)); XClientMessageEvent clientMsg; clientMsg.display = display; clientMsg.window = windowH; clientMsg.type = ClientMessage; clientMsg.format = 32; clientMsg.message_type = wm_ChangeState; clientMsg.data.l[0] = IconicState; XSendEvent (display, root, false, SubstructureRedirectMask | SubstructureNotifyMask, (XEvent*) &clientMsg); } else { setVisible (true); } } bool isMinimised() const { bool minimised = false; unsigned char* stateProp; unsigned long nitems, bytesLeft; Atom actualType; int actualFormat; if (XGetWindowProperty (display, windowH, wm_State, 0, 64, False, wm_State, &actualType, &actualFormat, &nitems, &bytesLeft, &stateProp) == Success && actualType == wm_State && actualFormat == 32 && nitems > 0) { if (((unsigned long*) stateProp)[0] == IconicState) minimised = true; XFree (stateProp); } return minimised; } void setFullScreen (const bool shouldBeFullScreen) { Rectangle r (lastNonFullscreenBounds); // (get a copy of this before de-minimising) setMinimised (false); if (fullScreen != shouldBeFullScreen) { if (shouldBeFullScreen) r = Desktop::getInstance().getMainMonitorArea(); if (! r.isEmpty()) setBounds (r.getX(), r.getY(), r.getWidth(), r.getHeight(), shouldBeFullScreen); getComponent()->repaint(); } } bool isFullScreen() const { return fullScreen; } bool isChildWindowOf (Window possibleParent) const { Window* windowList = 0; uint32 windowListSize = 0; Window parent, root; if (XQueryTree (display, windowH, &root, &parent, &windowList, &windowListSize) != 0) { if (windowList != 0) XFree (windowList); return parent == possibleParent; } return false; } bool isFrontWindow() const { Window* windowList = 0; uint32 windowListSize = 0; bool result = false; Window parent, root = RootWindow (display, DefaultScreen (display)); if (XQueryTree (display, root, &root, &parent, &windowList, &windowListSize) != 0) { for (int i = windowListSize; --i >= 0;) { LinuxComponentPeer* const peer = LinuxComponentPeer::getPeerFor (windowList[i]); if (peer != 0) { result = (peer == this); break; } } } if (windowList != 0) XFree (windowList); return result; } bool contains (int x, int y, bool trueIfInAChildWindow) const { jassert (x >= 0 && y >= 0 && x < ww && y < wh); // should only be called for points that are actually inside the bounds if (((unsigned int) x) >= (unsigned int) ww || ((unsigned int) y) >= (unsigned int) wh) return false; bool inFront = false; for (int i = 0; i < Desktop::getInstance().getNumComponents(); ++i) { Component* const c = Desktop::getInstance().getComponent (i); if (inFront) { if (c->contains (x + wx - c->getScreenX(), y + wy - c->getScreenY())) { return false; } } else if (c == getComponent()) { inFront = true; } } if (trueIfInAChildWindow) return true; ::Window root, child; unsigned int bw, depth; int wx, wy, w, h; if (! XGetGeometry (display, (::Drawable) windowH, &root, &wx, &wy, (unsigned int*) &w, (unsigned int*) &h, &bw, &depth)) { return false; } if (! XTranslateCoordinates (display, windowH, windowH, x, y, &wx, &wy, &child)) return false; return child == None; } const BorderSize getFrameSize() const { return BorderSize(); } bool setAlwaysOnTop (bool alwaysOnTop) { if (windowH != 0) { const bool wasVisible = component->isVisible(); if (wasVisible) setVisible (false); // doesn't always seem to work if the window is visible when this is done.. XSetWindowAttributes swa; swa.override_redirect = alwaysOnTop ? True : False; XChangeWindowAttributes (display, windowH, CWOverrideRedirect, &swa); if (wasVisible) setVisible (true); } return true; } void toFront (bool makeActive) { if (makeActive) { setVisible (true); grabFocus(); } XEvent ev; ev.xclient.type = ClientMessage; ev.xclient.serial = 0; ev.xclient.send_event = True; ev.xclient.message_type = wm_ActiveWin; ev.xclient.window = windowH; ev.xclient.format = 32; ev.xclient.data.l[0] = 2; ev.xclient.data.l[1] = CurrentTime; ev.xclient.data.l[2] = 0; ev.xclient.data.l[3] = 0; ev.xclient.data.l[4] = 0; XSendEvent (display, RootWindow (display, DefaultScreen (display)), False, SubstructureRedirectMask | SubstructureNotifyMask, &ev); XWindowAttributes attr; XGetWindowAttributes (display, windowH, &attr); if (attr.override_redirect) XRaiseWindow (display, windowH); XSync (display, False); handleBroughtToFront(); } void toBehind (ComponentPeer* other) { LinuxComponentPeer* const otherPeer = dynamic_cast (other); jassert (otherPeer != 0); // wrong type of window? if (otherPeer != 0) { setMinimised (false); Window newStack[] = { otherPeer->windowH, windowH }; XRestackWindows (display, newStack, 2); } } bool isFocused() const { int revert; Window focusedWindow = 0; XGetInputFocus (display, &focusedWindow, &revert); return focusedWindow == windowH; } void grabFocus() { XWindowAttributes atts; if (windowH != 0 && XGetWindowAttributes (display, windowH, &atts) && atts.map_state == IsViewable && ! isFocused()) { XSetInputFocus (display, windowH, RevertToParent, CurrentTime); isActiveApplication = true; } } void textInputRequired (int /*x*/, int /*y*/) { } void repaint (int x, int y, int w, int h) { if (Rectangle::intersectRectangles (x, y, w, h, 0, 0, getComponent()->getWidth(), getComponent()->getHeight())) { repainter->repaint (x, y, w, h); } } void performAnyPendingRepaintsNow() { repainter->performAnyPendingRepaintsNow(); } void setIcon (const Image& newIcon) { const int dataSize = newIcon.getWidth() * newIcon.getHeight() + 2; unsigned long* const data = (unsigned long*) juce_malloc (dataSize * sizeof (uint32)); int index = 0; data[index++] = newIcon.getWidth(); data[index++] = newIcon.getHeight(); for (int y = 0; y < newIcon.getHeight(); ++y) for (int x = 0; x < newIcon.getWidth(); ++x) data[index++] = newIcon.getPixelAt (x, y).getARGB(); XChangeProperty (display, windowH, XInternAtom (display, "_NET_WM_ICON", False), XA_CARDINAL, 32, PropModeReplace, (unsigned char*) data, dataSize); juce_free (data); deleteIconPixmaps(); XWMHints* wmHints = XGetWMHints (display, windowH); if (wmHints == 0) wmHints = XAllocWMHints(); wmHints->flags |= IconPixmapHint | IconMaskHint; wmHints->icon_pixmap = juce_createColourPixmapFromImage (display, newIcon); wmHints->icon_mask = juce_createMaskPixmapFromImage (display, newIcon); XSetWMHints (display, windowH, wmHints); XFree (wmHints); XSync (display, False); } void deleteIconPixmaps() { XWMHints* wmHints = XGetWMHints (display, windowH); if (wmHints != 0) { if ((wmHints->flags & IconPixmapHint) != 0) { wmHints->flags &= ~IconPixmapHint; XFreePixmap (display, wmHints->icon_pixmap); } if ((wmHints->flags & IconMaskHint) != 0) { wmHints->flags &= ~IconMaskHint; XFreePixmap (display, wmHints->icon_mask); } XSetWMHints (display, windowH, wmHints); XFree (wmHints); } } void handleWindowMessage (XEvent* event) { switch (event->xany.type) { case 2: // 'KeyPress' { XKeyEvent* const keyEvent = (XKeyEvent*) &event->xkey; updateKeyStates (keyEvent->keycode, true); char utf8 [64]; zeromem (utf8, sizeof (utf8)); KeySym sym; XLookupString (keyEvent, utf8, sizeof (utf8), &sym, 0); const juce_wchar unicodeChar = *(const juce_wchar*) String::fromUTF8 ((const uint8*) utf8, sizeof (utf8) - 1); int keyCode = (int) unicodeChar; if (keyCode < 0x20) keyCode = XKeycodeToKeysym (display, keyEvent->keycode, (currentModifiers & ModifierKeys::shiftModifier) != 0 ? 1 : 0); const int oldMods = currentModifiers; bool keyPressed = false; const bool keyDownChange = (sym != NoSymbol) && ! updateKeyModifiersFromSym (sym, true); if ((sym & 0xff00) == 0xff00) { // Translate keypad if (sym == XK_KP_Divide) keyCode = XK_slash; else if (sym == XK_KP_Multiply) keyCode = XK_asterisk; else if (sym == XK_KP_Subtract) keyCode = XK_hyphen; else if (sym == XK_KP_Add) keyCode = XK_plus; else if (sym == XK_KP_Enter) keyCode = XK_Return; else if (sym == XK_KP_Decimal) keyCode = numLock ? XK_period : XK_Delete; else if (sym == XK_KP_0) keyCode = numLock ? XK_0 : XK_Insert; else if (sym == XK_KP_1) keyCode = numLock ? XK_1 : XK_End; else if (sym == XK_KP_2) keyCode = numLock ? XK_2 : XK_Down; else if (sym == XK_KP_3) keyCode = numLock ? XK_3 : XK_Page_Down; else if (sym == XK_KP_4) keyCode = numLock ? XK_4 : XK_Left; else if (sym == XK_KP_5) keyCode = XK_5; else if (sym == XK_KP_6) keyCode = numLock ? XK_6 : XK_Right; else if (sym == XK_KP_7) keyCode = numLock ? XK_7 : XK_Home; else if (sym == XK_KP_8) keyCode = numLock ? XK_8 : XK_Up; else if (sym == XK_KP_9) keyCode = numLock ? XK_9 : XK_Page_Up; switch (sym) { case XK_Left: case XK_Right: case XK_Up: case XK_Down: case XK_Page_Up: case XK_Page_Down: case XK_End: case XK_Home: case XK_Delete: case XK_Insert: keyPressed = true; keyCode = (sym & 0xff) | extendedKeyModifier; break; case XK_Tab: case XK_Return: case XK_Escape: case XK_BackSpace: keyPressed = true; keyCode &= 0xff; break; default: { if (sym >= XK_F1 && sym <= XK_F16) { keyPressed = true; keyCode = (sym & 0xff) | extendedKeyModifier; } break; } } } if (utf8[0] != 0 || ((sym & 0xff00) == 0 && sym >= 8)) keyPressed = true; if (oldMods != currentModifiers) handleModifierKeysChange(); if (keyDownChange) handleKeyUpOrDown (true); if (keyPressed) handleKeyPress (keyCode, unicodeChar); break; } case KeyRelease: { const XKeyEvent* const keyEvent = (const XKeyEvent*) &event->xkey; updateKeyStates (keyEvent->keycode, false); KeySym sym = XKeycodeToKeysym (display, keyEvent->keycode, 0); const int oldMods = currentModifiers; const bool keyDownChange = (sym != NoSymbol) && ! updateKeyModifiersFromSym (sym, false); if (oldMods != currentModifiers) handleModifierKeysChange(); if (keyDownChange) handleKeyUpOrDown (false); break; } case ButtonPress: { const XButtonPressedEvent* const buttonPressEvent = (const XButtonPressedEvent*) &event->xbutton; bool buttonMsg = false; bool wheelUpMsg = false; bool wheelDownMsg = false; const int map = pointerMap [buttonPressEvent->button - Button1]; if (map == LeftButton) { currentModifiers |= ModifierKeys::leftButtonModifier; buttonMsg = true; } else if (map == RightButton) { currentModifiers |= ModifierKeys::rightButtonModifier; buttonMsg = true; } else if (map == MiddleButton) { currentModifiers |= ModifierKeys::middleButtonModifier; buttonMsg = true; } else if (map == WheelUp) { wheelUpMsg = true; } else if (map == WheelDown) { wheelDownMsg = true; } updateKeyModifiers (buttonPressEvent->state); if (buttonMsg) { toFront (true); handleMouseDown (buttonPressEvent->x, buttonPressEvent->y, getEventTime (buttonPressEvent->time)); } else if (wheelUpMsg || wheelDownMsg) { handleMouseWheel (0, wheelDownMsg ? -84 : 84, getEventTime (buttonPressEvent->time)); } lastMousePosX = lastMousePosY = 0x100000; break; } case ButtonRelease: { const XButtonReleasedEvent* const buttonRelEvent = (const XButtonReleasedEvent*) &event->xbutton; const int oldModifiers = currentModifiers; const int map = pointerMap [buttonRelEvent->button - Button1]; if (map == LeftButton) currentModifiers &= ~ModifierKeys::leftButtonModifier; else if (map == RightButton) currentModifiers &= ~ModifierKeys::rightButtonModifier; else if (map == MiddleButton) currentModifiers &= ~ModifierKeys::middleButtonModifier; updateKeyModifiers (buttonRelEvent->state); handleMouseUp (oldModifiers, buttonRelEvent->x, buttonRelEvent->y, getEventTime (buttonRelEvent->time)); lastMousePosX = lastMousePosY = 0x100000; break; } case MotionNotify: { const XPointerMovedEvent* const movedEvent = (const XPointerMovedEvent*) &event->xmotion; updateKeyModifiers (movedEvent->state); int x, y, mouseMods; getMousePos (x, y, mouseMods); if (lastMousePosX != x || lastMousePosY != y) { lastMousePosX = x; lastMousePosY = y; if (parentWindow != 0 && (styleFlags & windowHasTitleBar) == 0) { Window wRoot = 0, wParent = 0; Window* wChild = 0; unsigned int numChildren; XQueryTree (display, windowH, &wRoot, &wParent, &wChild, &numChildren); if (wParent != 0 && wParent != windowH && wParent != wRoot) { parentWindow = wParent; updateBounds(); x -= getScreenX(); y -= getScreenY(); } else { parentWindow = 0; x -= getScreenX(); y -= getScreenY(); } } else { x -= getScreenX(); y -= getScreenY(); } if ((currentModifiers & ModifierKeys::allMouseButtonModifiers) == 0) handleMouseMove (x, y, getEventTime (movedEvent->time)); else handleMouseDrag (x, y, getEventTime (movedEvent->time)); } break; } case EnterNotify: { lastMousePosX = lastMousePosY = 0x100000; const XEnterWindowEvent* const enterEvent = (const XEnterWindowEvent*) &event->xcrossing; if ((currentModifiers & ModifierKeys::allMouseButtonModifiers) == 0 && ! entered) { updateKeyModifiers (enterEvent->state); handleMouseEnter (enterEvent->x, enterEvent->y, getEventTime (enterEvent->time)); entered = true; } break; } case LeaveNotify: { const XLeaveWindowEvent* const leaveEvent = (const XLeaveWindowEvent*) &event->xcrossing; // Suppress the normal leave if we've got a pointer grab, or if // it's a bogus one caused by clicking a mouse button when running // in a Window manager if (((currentModifiers & ModifierKeys::allMouseButtonModifiers) == 0 && leaveEvent->mode == NotifyNormal) || leaveEvent->mode == NotifyUngrab) { updateKeyModifiers (leaveEvent->state); handleMouseExit (leaveEvent->x, leaveEvent->y, getEventTime (leaveEvent->time)); entered = false; } break; } case FocusIn: { isActiveApplication = true; if (isFocused()) handleFocusGain(); break; } case FocusOut: { isActiveApplication = false; if (! isFocused()) handleFocusLoss(); break; } case Expose: { // Batch together all pending expose events XExposeEvent* exposeEvent = (XExposeEvent*) &event->xexpose; XEvent nextEvent; if (exposeEvent->window != windowH) { Window child; XTranslateCoordinates (display, exposeEvent->window, windowH, exposeEvent->x, exposeEvent->y, &exposeEvent->x, &exposeEvent->y, &child); } repaint (exposeEvent->x, exposeEvent->y, exposeEvent->width, exposeEvent->height); while (XEventsQueued (display, QueuedAfterFlush) > 0) { XPeekEvent (display, (XEvent*) &nextEvent); if (nextEvent.type != Expose || nextEvent.xany.window != event->xany.window) break; XNextEvent (display, (XEvent*) &nextEvent); XExposeEvent* nextExposeEvent = (XExposeEvent*) &nextEvent.xexpose; repaint (nextExposeEvent->x, nextExposeEvent->y, nextExposeEvent->width, nextExposeEvent->height); } break; } case CirculateNotify: case CreateNotify: case DestroyNotify: // Think we can ignore these break; case ConfigureNotify: { updateBounds(); updateBorderSize(); handleMovedOrResized(); // if the native title bar is dragged, need to tell any active menus, etc. if ((styleFlags & windowHasTitleBar) != 0 && component->isCurrentlyBlockedByAnotherModalComponent()) { Component* const currentModalComp = Component::getCurrentlyModalComponent(); if (currentModalComp != 0) currentModalComp->inputAttemptWhenModal(); } XConfigureEvent* const confEvent = (XConfigureEvent*) &event->xconfigure; if (confEvent->window == windowH && confEvent->above != 0 && isFrontWindow()) { handleBroughtToFront(); } break; } case ReparentNotify: case GravityNotify: { parentWindow = 0; Window wRoot = 0; Window* wChild = 0; unsigned int numChildren; XQueryTree (display, windowH, &wRoot, &parentWindow, &wChild, &numChildren); if (parentWindow == windowH || parentWindow == wRoot) parentWindow = 0; updateBounds(); updateBorderSize(); handleMovedOrResized(); break; } case MapNotify: mapped = true; handleBroughtToFront(); break; case UnmapNotify: mapped = false; break; case MappingNotify: { XMappingEvent* mappingEvent = (XMappingEvent*) &event->xmapping; if (mappingEvent->request != MappingPointer) { // Deal with modifier/keyboard mapping XRefreshKeyboardMapping (mappingEvent); getModifierMapping(); } break; } case ClientMessage: { const XClientMessageEvent* const clientMsg = (const XClientMessageEvent*) &event->xclient; if (clientMsg->message_type == wm_Protocols && clientMsg->format == 32) { const Atom atom = (Atom) clientMsg->data.l[0]; if (atom == wm_ProtocolList [TAKE_FOCUS]) { XWindowAttributes atts; if (clientMsg->window != 0 && XGetWindowAttributes (display, clientMsg->window, &atts)) { if (atts.map_state == IsViewable) XSetInputFocus (display, clientMsg->window, RevertToParent, clientMsg->data.l[1]); } } else if (atom == wm_ProtocolList [DELETE_WINDOW]) { handleUserClosingWindow(); } } else if (clientMsg->message_type == XA_XdndEnter) { handleDragAndDropEnter (clientMsg); } else if (clientMsg->message_type == XA_XdndLeave) { resetDragAndDrop(); } else if (clientMsg->message_type == XA_XdndPosition) { handleDragAndDropPosition (clientMsg); } else if (clientMsg->message_type == XA_XdndDrop) { handleDragAndDropDrop (clientMsg); } else if (clientMsg->message_type == XA_XdndStatus) { handleDragAndDropStatus (clientMsg); } else if (clientMsg->message_type == XA_XdndFinished) { resetDragAndDrop(); } break; } case SelectionNotify: handleDragAndDropSelection (event); break; case SelectionClear: case SelectionRequest: break; default: break; } } void showMouseCursor (Cursor cursor) throw() { XDefineCursor (display, windowH, cursor); } void setTaskBarIcon (const Image& image) { deleteTaskBarIcon(); taskbarImage = image.createCopy(); Screen* const screen = XDefaultScreenOfDisplay (display); const int screenNumber = XScreenNumberOfScreen (screen); char screenAtom[32]; snprintf (screenAtom, sizeof (screenAtom), "_NET_SYSTEM_TRAY_S%d", screenNumber); Atom selectionAtom = XInternAtom (display, screenAtom, false); XGrabServer (display); Window managerWin = XGetSelectionOwner (display, selectionAtom); if (managerWin != None) XSelectInput (display, managerWin, StructureNotifyMask); XUngrabServer (display); XFlush (display); if (managerWin != None) { XEvent ev; zerostruct (ev); ev.xclient.type = ClientMessage; ev.xclient.window = managerWin; ev.xclient.message_type = XInternAtom (display, "_NET_SYSTEM_TRAY_OPCODE", False); ev.xclient.format = 32; ev.xclient.data.l[0] = CurrentTime; ev.xclient.data.l[1] = SYSTEM_TRAY_REQUEST_DOCK; ev.xclient.data.l[2] = windowH; ev.xclient.data.l[3] = 0; ev.xclient.data.l[4] = 0; XSendEvent (display, managerWin, False, NoEventMask, &ev); XSync (display, False); } // For older KDE's ... long atomData = 1; Atom trayAtom = XInternAtom (display, "KWM_DOCKWINDOW", false); XChangeProperty (display, windowH, trayAtom, trayAtom, 32, PropModeReplace, (unsigned char*) &atomData, 1); // For more recent KDE's... trayAtom = XInternAtom (display, "_KDE_NET_WM_SYSTEM_TRAY_WINDOW_FOR", false); XChangeProperty (display, windowH, trayAtom, XA_WINDOW, 32, PropModeReplace, (unsigned char*) &windowH, 1); // a minimum size must be specified for GNOME and Xfce, otherwise the icon is displayed with a width of 1 XSizeHints* hints = XAllocSizeHints(); hints->flags = PMinSize; hints->min_width = 22; hints->min_height = 22; XSetWMNormalHints (display, windowH, hints); XFree (hints); } void deleteTaskBarIcon() { deleteAndZero (taskbarImage); } const Image* getTaskbarIcon() const throw() { return taskbarImage; } juce_UseDebuggingNewOperator bool dontRepaint; private: class LinuxRepaintManager : public Timer { public: LinuxRepaintManager (LinuxComponentPeer* const peer_) : peer (peer_), image (0), lastTimeImageUsed (0) { #if JUCE_USE_XSHM useARGBImagesForRendering = isShmAvailable(); if (useARGBImagesForRendering) { XShmSegmentInfo segmentinfo; XImage* const testImage = XShmCreateImage (display, DefaultVisual (display, DefaultScreen (display)), 24, ZPixmap, 0, &segmentinfo, 64, 64); useARGBImagesForRendering = (testImage->bits_per_pixel == 32); XDestroyImage (testImage); } #endif } ~LinuxRepaintManager() { delete image; } void timerCallback() { if (! regionsNeedingRepaint.isEmpty()) { stopTimer(); performAnyPendingRepaintsNow(); } else if (Time::getApproximateMillisecondCounter() > lastTimeImageUsed + 3000) { stopTimer(); deleteAndZero (image); } } void repaint (int x, int y, int w, int h) { if (! isTimerRunning()) startTimer (repaintTimerPeriod); regionsNeedingRepaint.add (x, y, w, h); } void performAnyPendingRepaintsNow() { peer->clearMaskedRegion(); const Rectangle totalArea (regionsNeedingRepaint.getBounds()); if (! totalArea.isEmpty()) { if (image == 0 || image->getWidth() < totalArea.getWidth() || image->getHeight() < totalArea.getHeight()) { delete image; #if JUCE_USE_XSHM image = new XBitmapImage (useARGBImagesForRendering ? Image::ARGB : Image::RGB, #else image = new XBitmapImage (Image::RGB, #endif (totalArea.getWidth() + 31) & ~31, (totalArea.getHeight() + 31) & ~31, false, peer->depthIs16Bit); } startTimer (repaintTimerPeriod); LowLevelGraphicsSoftwareRenderer context (*image); context.setOrigin (-totalArea.getX(), -totalArea.getY()); if (context.reduceClipRegion (regionsNeedingRepaint)) peer->handlePaint (context); if (! peer->maskedRegion.isEmpty()) regionsNeedingRepaint.subtract (peer->maskedRegion); for (RectangleList::Iterator i (regionsNeedingRepaint); i.next();) { const Rectangle& r = *i.getRectangle(); image->blitToWindow (peer->windowH, r.getX(), r.getY(), r.getWidth(), r.getHeight(), r.getX() - totalArea.getX(), r.getY() - totalArea.getY()); } } regionsNeedingRepaint.clear(); lastTimeImageUsed = Time::getApproximateMillisecondCounter(); startTimer (repaintTimerPeriod); } private: LinuxComponentPeer* const peer; XBitmapImage* image; uint32 lastTimeImageUsed; RectangleList regionsNeedingRepaint; #if JUCE_USE_XSHM bool useARGBImagesForRendering; #endif LinuxRepaintManager (const LinuxRepaintManager&); const LinuxRepaintManager& operator= (const LinuxRepaintManager&); }; LinuxRepaintManager* repainter; friend class LinuxRepaintManager; Window windowH, parentWindow; int wx, wy, ww, wh; Image* taskbarImage; bool fullScreen, entered, mapped, depthIs16Bit; BorderSize windowBorder; void removeWindowDecorations (Window wndH) { Atom hints = XInternAtom (display, "_MOTIF_WM_HINTS", True); if (hints != None) { typedef struct { unsigned long flags; unsigned long functions; unsigned long decorations; long input_mode; unsigned long status; } MotifWmHints; MotifWmHints motifHints; zerostruct (motifHints); motifHints.flags = 2; /* MWM_HINTS_DECORATIONS */ motifHints.decorations = 0; XChangeProperty (display, wndH, hints, hints, 32, PropModeReplace, (unsigned char*) &motifHints, 4); } hints = XInternAtom (display, "_WIN_HINTS", True); if (hints != None) { long gnomeHints = 0; XChangeProperty (display, wndH, hints, hints, 32, PropModeReplace, (unsigned char*) &gnomeHints, 1); } hints = XInternAtom (display, "KWM_WIN_DECORATION", True); if (hints != None) { long kwmHints = 2; /*KDE_tinyDecoration*/ XChangeProperty (display, wndH, hints, hints, 32, PropModeReplace, (unsigned char*) &kwmHints, 1); } hints = XInternAtom (display, "_NET_WM_WINDOW_TYPE", True); if (hints != None) { int netHints [2]; int numHints = 0; if ((styleFlags & windowIsTemporary) != 0) netHints [numHints] = XInternAtom (display, "_NET_WM_WINDOW_TYPE_MENU", True); else netHints [numHints] = XInternAtom (display, "_NET_WM_WINDOW_TYPE_NORMAL", True); if (netHints [numHints] != 0) ++numHints; netHints[numHints] = XInternAtom (display, "_KDE_NET_WM_WINDOW_TYPE_OVERRIDE", True); if (netHints [numHints] != 0) ++numHints; XChangeProperty (display, wndH, hints, XA_ATOM, 32, PropModeReplace, (unsigned char*) &netHints, numHints); } } void addWindowButtons (Window wndH) { Atom hints = XInternAtom (display, "_MOTIF_WM_HINTS", True); if (hints != None) { typedef struct { unsigned long flags; unsigned long functions; unsigned long decorations; long input_mode; unsigned long status; } MotifWmHints; MotifWmHints motifHints; zerostruct (motifHints); motifHints.flags = 1 | 2; /* MWM_HINTS_FUNCTIONS | MWM_HINTS_DECORATIONS */ motifHints.decorations = 2 /* MWM_DECOR_BORDER */ | 8 /* MWM_DECOR_TITLE */ | 16; /* MWM_DECOR_MENU */ motifHints.functions = 4 /* MWM_FUNC_MOVE */; if ((styleFlags & windowHasCloseButton) != 0) motifHints.functions |= 32; /* MWM_FUNC_CLOSE */ if ((styleFlags & windowHasMinimiseButton) != 0) { motifHints.functions |= 8; /* MWM_FUNC_MINIMIZE */ motifHints.decorations |= 0x20; /* MWM_DECOR_MINIMIZE */ } if ((styleFlags & windowHasMaximiseButton) != 0) { motifHints.functions |= 0x10; /* MWM_FUNC_MAXIMIZE */ motifHints.decorations |= 0x40; /* MWM_DECOR_MAXIMIZE */ } if ((styleFlags & windowIsResizable) != 0) { motifHints.functions |= 2; /* MWM_FUNC_RESIZE */ motifHints.decorations |= 0x4; /* MWM_DECOR_RESIZEH */ } XChangeProperty (display, wndH, hints, hints, 32, 0, (unsigned char*) &motifHints, 5); } hints = XInternAtom (display, "_NET_WM_ALLOWED_ACTIONS", True); if (hints != None) { int netHints [6]; int num = 0; netHints [num++] = XInternAtom (display, "_NET_WM_ACTION_RESIZE", (styleFlags & windowIsResizable) ? True : False); netHints [num++] = XInternAtom (display, "_NET_WM_ACTION_FULLSCREEN", (styleFlags & windowHasMaximiseButton) ? True : False); netHints [num++] = XInternAtom (display, "_NET_WM_ACTION_MINIMIZE", (styleFlags & windowHasMinimiseButton) ? True : False); netHints [num++] = XInternAtom (display, "_NET_WM_ACTION_CLOSE", (styleFlags & windowHasCloseButton) ? True : False); XChangeProperty (display, wndH, hints, XA_ATOM, 32, PropModeReplace, (unsigned char*) &netHints, num); } } void createWindow() { static bool atomsInitialised = false; if (! atomsInitialised) { atomsInitialised = true; wm_Protocols = XInternAtom (display, "WM_PROTOCOLS", 1); wm_ProtocolList [TAKE_FOCUS] = XInternAtom (display, "WM_TAKE_FOCUS", 1); wm_ProtocolList [DELETE_WINDOW] = XInternAtom (display, "WM_DELETE_WINDOW", 1); wm_ChangeState = XInternAtom (display, "WM_CHANGE_STATE", 1); wm_State = XInternAtom (display, "WM_STATE", 1); wm_ActiveWin = XInternAtom (display, "_NET_ACTIVE_WINDOW", False); XA_XdndAware = XInternAtom (display, "XdndAware", 0); XA_XdndEnter = XInternAtom (display, "XdndEnter", 0); XA_XdndLeave = XInternAtom (display, "XdndLeave", 0); XA_XdndPosition = XInternAtom (display, "XdndPosition", 0); XA_XdndStatus = XInternAtom (display, "XdndStatus", 0); XA_XdndDrop = XInternAtom (display, "XdndDrop", 0); XA_XdndFinished = XInternAtom (display, "XdndFinished", 0); XA_XdndSelection = XInternAtom (display, "XdndSelection", 0); XA_XdndProxy = XInternAtom (display, "XdndProxy", 0); XA_XdndTypeList = XInternAtom (display, "XdndTypeList", 0); XA_XdndActionList = XInternAtom (display, "XdndActionList", 0); XA_XdndActionCopy = XInternAtom (display, "XdndActionCopy", 0); XA_XdndActionMove = XInternAtom (display, "XdndActionMove", 0); XA_XdndActionLink = XInternAtom (display, "XdndActionLink", 0); XA_XdndActionAsk = XInternAtom (display, "XdndActionAsk", 0); XA_XdndActionPrivate = XInternAtom (display, "XdndActionPrivate", 0); XA_XdndActionDescription = XInternAtom (display, "XdndActionDescription", 0); XA_JXSelectionWindowProperty = XInternAtom (display, "JXSelectionWindowProperty", 0); XA_MimeTextPlain = XInternAtom (display, "text/plain", 0); XA_MimeTextUriList = XInternAtom (display, "text/uri-list", 0); XA_MimeRootDrop = XInternAtom (display, "application/x-rootwindow-drop", 0); } resetDragAndDrop(); XA_OtherMime = XA_MimeTextPlain; // xxx why?? allowedMimeTypeAtoms [0] = XA_MimeTextPlain; allowedMimeTypeAtoms [1] = XA_OtherMime; allowedMimeTypeAtoms [2] = XA_MimeTextUriList; allowedActions [0] = XA_XdndActionMove; allowedActions [1] = XA_XdndActionCopy; allowedActions [2] = XA_XdndActionLink; allowedActions [3] = XA_XdndActionAsk; allowedActions [4] = XA_XdndActionPrivate; // Get defaults for various properties const int screen = DefaultScreen (display); Window root = RootWindow (display, screen); // Attempt to create a 24-bit window on the default screen. If this is not // possible then exit XVisualInfo desiredVisual; desiredVisual.screen = screen; desiredVisual.depth = 24; depthIs16Bit = false; int numVisuals; XVisualInfo* visuals = XGetVisualInfo (display, VisualScreenMask | VisualDepthMask, &desiredVisual, &numVisuals); if (numVisuals < 1 || visuals == 0) { XFree (visuals); desiredVisual.depth = 16; visuals = XGetVisualInfo (display, VisualScreenMask | VisualDepthMask, &desiredVisual, &numVisuals); if (numVisuals < 1 || visuals == 0) { Logger::outputDebugString ("ERROR: System doesn't support 24 or 16 bit RGB display.\n"); Process::terminate(); } depthIs16Bit = true; } XFree (visuals); // Set up the window attributes XSetWindowAttributes swa; swa.border_pixel = 0; swa.background_pixmap = None; swa.colormap = DefaultColormap (display, screen); swa.override_redirect = getComponent()->isAlwaysOnTop() ? True : False; swa.event_mask = eventMask; Window wndH = XCreateWindow (display, root, 0, 0, 1, 1, 0, 0, InputOutput, (Visual*) CopyFromParent, CWBorderPixel | CWColormap | CWBackPixmap | CWEventMask | CWOverrideRedirect, &swa); XGrabButton (display, AnyButton, AnyModifier, wndH, False, ButtonPressMask | ButtonReleaseMask | EnterWindowMask | LeaveWindowMask | PointerMotionMask, GrabModeAsync, GrabModeAsync, None, None); // Set the window context to identify the window handle object if (XSaveContext (display, (XID) wndH, improbableNumber, (XPointer) this)) { // Failed jassertfalse Logger::outputDebugString ("Failed to create context information for window.\n"); XDestroyWindow (display, wndH); wndH = 0; } // Set window manager hints XWMHints* wmHints = XAllocWMHints(); wmHints->flags = InputHint | StateHint; wmHints->input = True; // Locally active input model wmHints->initial_state = NormalState; XSetWMHints (display, wndH, wmHints); XFree (wmHints); if ((styleFlags & windowIsSemiTransparent) != 0) { //xxx } if ((styleFlags & windowAppearsOnTaskbar) != 0) { //xxx } //XSetTransientForHint (display, wndH, RootWindow (display, DefaultScreen (display))); if ((styleFlags & windowHasTitleBar) == 0) removeWindowDecorations (wndH); else addWindowButtons (wndH); // Set window manager protocols XChangeProperty (display, wndH, wm_Protocols, XA_ATOM, 32, PropModeReplace, (unsigned char*) wm_ProtocolList, 2); // Set drag and drop flags XChangeProperty (display, wndH, XA_XdndTypeList, XA_ATOM, 32, PropModeReplace, (const unsigned char*) allowedMimeTypeAtoms, numElementsInArray (allowedMimeTypeAtoms)); XChangeProperty (display, wndH, XA_XdndActionList, XA_ATOM, 32, PropModeReplace, (const unsigned char*) allowedActions, numElementsInArray (allowedActions)); XChangeProperty (display, wndH, XA_XdndActionDescription, XA_STRING, 8, PropModeReplace, (const unsigned char*) "", 0); unsigned long dndVersion = ourDndVersion; XChangeProperty (display, wndH, XA_XdndAware, XA_ATOM, 32, PropModeReplace, (const unsigned char*) &dndVersion, 1); // Set window name setWindowTitle (wndH, getComponent()->getName()); // Initialise the pointer and keyboard mapping // This is not the same as the logical pointer mapping the X server uses: // we don't mess with this. static bool mappingInitialised = false; if (! mappingInitialised) { mappingInitialised = true; const int numButtons = XGetPointerMapping (display, 0, 0); if (numButtons == 2) { pointerMap[0] = LeftButton; pointerMap[1] = RightButton; pointerMap[2] = pointerMap[3] = pointerMap[4] = NoButton; } else if (numButtons >= 3) { pointerMap[0] = LeftButton; pointerMap[1] = MiddleButton; pointerMap[2] = RightButton; if (numButtons >= 5) { pointerMap[3] = WheelUp; pointerMap[4] = WheelDown; } } getModifierMapping(); } windowH = wndH; } void destroyWindow() { XPointer handlePointer; if (! XFindContext (display, (XID) windowH, improbableNumber, &handlePointer)) XDeleteContext (display, (XID) windowH, improbableNumber); XDestroyWindow (display, windowH); // Wait for it to complete and then remove any events for this // window from the event queue. XSync (display, false); XEvent event; while (XCheckWindowEvent (display, windowH, eventMask, &event) == True) {} } static int64 getEventTime (::Time t) throw() { static int64 eventTimeOffset = 0x12345678; const int64 thisMessageTime = t; if (eventTimeOffset == 0x12345678) eventTimeOffset = Time::currentTimeMillis() - thisMessageTime; return eventTimeOffset + thisMessageTime; } static void setWindowTitle (Window xwin, const char* const title) throw() { XTextProperty nameProperty; char* strings[] = { (char*) title }; if (XStringListToTextProperty (strings, 1, &nameProperty)) { XSetWMName (display, xwin, &nameProperty); XSetWMIconName (display, xwin, &nameProperty); XFree (nameProperty.value); } } void updateBorderSize() { if ((styleFlags & windowHasTitleBar) == 0) { windowBorder = BorderSize (0); } else if (windowBorder.getTopAndBottom() == 0 && windowBorder.getLeftAndRight() == 0) { Atom hints = XInternAtom (display, "_NET_FRAME_EXTENTS", True); if (hints != None) { unsigned char* data = 0; unsigned long nitems, bytesLeft; Atom actualType; int actualFormat; if (XGetWindowProperty (display, windowH, hints, 0, 4, False, XA_CARDINAL, &actualType, &actualFormat, &nitems, &bytesLeft, &data) == Success) { const unsigned long* const sizes = (const unsigned long*) data; if (actualFormat == 32) windowBorder = BorderSize ((int) sizes[2], (int) sizes[0], (int) sizes[3], (int) sizes[1]); XFree (data); } } } } void updateBounds() { jassert (windowH != 0); if (windowH != 0) { Window root, child; unsigned int bw, depth; if (! XGetGeometry (display, (::Drawable) windowH, &root, &wx, &wy, (unsigned int*) &ww, (unsigned int*) &wh, &bw, &depth)) { wx = wy = ww = wh = 0; } else if (! XTranslateCoordinates (display, windowH, root, 0, 0, &wx, &wy, &child)) { wx = wy = 0; } } } void resetDragAndDrop() { dragAndDropFiles.clear(); lastDropX = lastDropY = -1; dragAndDropCurrentMimeType = 0; dragAndDropSourceWindow = 0; srcMimeTypeAtomList.clear(); } void sendDragAndDropMessage (XClientMessageEvent& msg) { msg.type = ClientMessage; msg.display = display; msg.window = dragAndDropSourceWindow; msg.format = 32; msg.data.l[0] = windowH; XSendEvent (display, dragAndDropSourceWindow, False, 0, (XEvent*) &msg); } void sendDragAndDropStatus (const bool acceptDrop, Atom dropAction) { XClientMessageEvent msg; zerostruct (msg); msg.message_type = XA_XdndStatus; msg.data.l[1] = (acceptDrop ? 1 : 0) | 2; // 2 indicates that we want to receive position messages msg.data.l[4] = dropAction; sendDragAndDropMessage (msg); } void sendDragAndDropLeave() { XClientMessageEvent msg; zerostruct (msg); msg.message_type = XA_XdndLeave; sendDragAndDropMessage (msg); } void sendDragAndDropFinish() { XClientMessageEvent msg; zerostruct (msg); msg.message_type = XA_XdndFinished; sendDragAndDropMessage (msg); } void handleDragAndDropStatus (const XClientMessageEvent* const clientMsg) { if ((clientMsg->data.l[1] & 1) == 0) { sendDragAndDropLeave(); if (dragAndDropFiles.size() > 0) handleFileDragExit (dragAndDropFiles); dragAndDropFiles.clear(); } } void handleDragAndDropPosition (const XClientMessageEvent* const clientMsg) { if (dragAndDropSourceWindow == 0) return; dragAndDropSourceWindow = clientMsg->data.l[0]; const int dropX = ((int) clientMsg->data.l[2] >> 16) - getScreenX(); const int dropY = ((int) clientMsg->data.l[2] & 0xffff) - getScreenY(); if (lastDropX != dropX || lastDropY != dropY) { lastDropX = dropX; lastDropY = dropY; dragAndDropTimestamp = clientMsg->data.l[3]; Atom targetAction = XA_XdndActionCopy; for (int i = numElementsInArray (allowedActions); --i >= 0;) { if ((Atom) clientMsg->data.l[4] == allowedActions[i]) { targetAction = allowedActions[i]; break; } } sendDragAndDropStatus (true, targetAction); if (dragAndDropFiles.size() == 0) updateDraggedFileList (clientMsg); if (dragAndDropFiles.size() > 0) handleFileDragMove (dragAndDropFiles, dropX, dropY); } } void handleDragAndDropDrop (const XClientMessageEvent* const clientMsg) { if (dragAndDropFiles.size() == 0) updateDraggedFileList (clientMsg); const StringArray files (dragAndDropFiles); const int lastX = lastDropX, lastY = lastDropY; sendDragAndDropFinish(); resetDragAndDrop(); if (files.size() > 0) handleFileDragDrop (files, lastX, lastY); } void handleDragAndDropEnter (const XClientMessageEvent* const clientMsg) { dragAndDropFiles.clear(); srcMimeTypeAtomList.clear(); dragAndDropCurrentMimeType = 0; const int dndCurrentVersion = (int) (clientMsg->data.l[1] & 0xff000000) >> 24; if (dndCurrentVersion < 3 || dndCurrentVersion > ourDndVersion) { dragAndDropSourceWindow = 0; return; } dragAndDropSourceWindow = clientMsg->data.l[0]; if ((clientMsg->data.l[1] & 1) != 0) { Atom actual; int format; unsigned long count = 0, remaining = 0; unsigned char* data = 0; XGetWindowProperty (display, dragAndDropSourceWindow, XA_XdndTypeList, 0, 0x8000000L, False, XA_ATOM, &actual, &format, &count, &remaining, &data); if (data != 0) { if (actual == XA_ATOM && format == 32 && count != 0) { const unsigned long* const types = (const unsigned long*) data; for (unsigned int i = 0; i < count; ++i) if (types[i] != None) srcMimeTypeAtomList.add (types[i]); } XFree (data); } } if (srcMimeTypeAtomList.size() == 0) { for (int i = 2; i < 5; ++i) if (clientMsg->data.l[i] != None) srcMimeTypeAtomList.add (clientMsg->data.l[i]); if (srcMimeTypeAtomList.size() == 0) { dragAndDropSourceWindow = 0; return; } } for (int i = 0; i < srcMimeTypeAtomList.size() && dragAndDropCurrentMimeType == 0; ++i) for (int j = 0; j < numElementsInArray (allowedMimeTypeAtoms); ++j) if (srcMimeTypeAtomList[i] == allowedMimeTypeAtoms[j]) dragAndDropCurrentMimeType = allowedMimeTypeAtoms[j]; handleDragAndDropPosition (clientMsg); } void handleDragAndDropSelection (const XEvent* const evt) { dragAndDropFiles.clear(); if (evt->xselection.property != 0) { StringArray lines; { MemoryBlock dropData; for (;;) { Atom actual; uint8* data = 0; unsigned long count = 0, remaining = 0; int format = 0; if (XGetWindowProperty (display, evt->xany.window, evt->xselection.property, dropData.getSize() / 4, 65536, 1, AnyPropertyType, &actual, &format, &count, &remaining, &data) == Success) { dropData.append (data, count * format / 8); XFree (data); if (remaining == 0) break; } else { XFree (data); break; } } lines.addLines (dropData.toString()); } for (int i = 0; i < lines.size(); ++i) dragAndDropFiles.add (URL::removeEscapeChars (lines[i].fromFirstOccurrenceOf (T("file://"), false, true))); dragAndDropFiles.trim(); dragAndDropFiles.removeEmptyStrings(); } } void updateDraggedFileList (const XClientMessageEvent* const clientMsg) { dragAndDropFiles.clear(); if (dragAndDropSourceWindow != None && dragAndDropCurrentMimeType != 0) { dragAndDropTimestamp = clientMsg->data.l[2]; XConvertSelection (display, XA_XdndSelection, dragAndDropCurrentMimeType, XA_JXSelectionWindowProperty, windowH, dragAndDropTimestamp); } } StringArray dragAndDropFiles; int dragAndDropTimestamp, lastDropX, lastDropY; Atom XA_OtherMime, dragAndDropCurrentMimeType; Window dragAndDropSourceWindow; unsigned int allowedActions [5]; unsigned int allowedMimeTypeAtoms [3]; Array srcMimeTypeAtomList; }; void juce_setKioskComponent (Component* kioskModeComponent, bool enableOrDisable, bool allowMenusAndBars) { if (enableOrDisable) kioskModeComponent->setBounds (Desktop::getInstance().getMainMonitorArea (false)); } ComponentPeer* Component::createNewPeer (int styleFlags, void* /*nativeWindowToAttachTo*/) { return new LinuxComponentPeer (this, styleFlags); } // (this callback is hooked up in the messaging code) void juce_windowMessageReceive (XEvent* event) { if (event->xany.window != None) { LinuxComponentPeer* const peer = LinuxComponentPeer::getPeerFor (event->xany.window); if (ComponentPeer::isValidPeer (peer)) peer->handleWindowMessage (event); } else { switch (event->xany.type) { case KeymapNotify: { const XKeymapEvent* const keymapEvent = (const XKeymapEvent*) &event->xkeymap; memcpy (keyStates, keymapEvent->key_vector, 32); break; } default: break; } } } void juce_updateMultiMonitorInfo (Array & monitorCoords, const bool /*clipToWorkArea*/) throw() { #if JUCE_USE_XINERAMA int major_opcode, first_event, first_error; if (XQueryExtension (display, "XINERAMA", &major_opcode, &first_event, &first_error) && XineramaIsActive (display)) { int numMonitors = 0; XineramaScreenInfo* const screens = XineramaQueryScreens (display, &numMonitors); if (screens != 0) { for (int i = numMonitors; --i >= 0;) { int index = screens[i].screen_number; if (index >= 0) { while (monitorCoords.size() < index) monitorCoords.add (Rectangle (0, 0, 0, 0)); monitorCoords.set (index, Rectangle (screens[i].x_org, screens[i].y_org, screens[i].width, screens[i].height)); } } XFree (screens); } } if (monitorCoords.size() == 0) #endif { Atom hints = XInternAtom (display, "_NET_WORKAREA", True); if (hints != None) { const int numMonitors = ScreenCount (display); for (int i = 0; i < numMonitors; ++i) { Window root = RootWindow (display, i); unsigned long nitems, bytesLeft; Atom actualType; int actualFormat; unsigned char* data = 0; if (XGetWindowProperty (display, root, hints, 0, 4, False, XA_CARDINAL, &actualType, &actualFormat, &nitems, &bytesLeft, &data) == Success) { const long* const position = (const long*) data; if (actualType == XA_CARDINAL && actualFormat == 32 && nitems == 4) monitorCoords.add (Rectangle (position[0], position[1], position[2], position[3])); XFree (data); } } } if (monitorCoords.size() == 0) { monitorCoords.add (Rectangle (0, 0, DisplayWidth (display, DefaultScreen (display)), DisplayHeight (display, DefaultScreen (display)))); } } } bool Desktop::canUseSemiTransparentWindows() throw() { return false; } void Desktop::getMousePosition (int& x, int& y) throw() { int mouseMods; getMousePos (x, y, mouseMods); } void Desktop::setMousePosition (int x, int y) throw() { Window root = RootWindow (display, DefaultScreen (display)); XWarpPointer (display, None, root, 0, 0, 0, 0, x, y); } static bool screenSaverAllowed = true; void Desktop::setScreenSaverEnabled (const bool isEnabled) throw() { if (screenSaverAllowed != isEnabled) { screenSaverAllowed = isEnabled; typedef void (*tXScreenSaverSuspend) (Display*, Bool); static tXScreenSaverSuspend xScreenSaverSuspend = 0; if (xScreenSaverSuspend == 0) { void* h = dlopen ("libXss.so", RTLD_GLOBAL | RTLD_NOW); if (h != 0) xScreenSaverSuspend = (tXScreenSaverSuspend) dlsym (h, "XScreenSaverSuspend"); } if (xScreenSaverSuspend != 0) xScreenSaverSuspend (display, ! isEnabled); } } bool Desktop::isScreenSaverEnabled() throw() { return screenSaverAllowed; } void* juce_createMouseCursorFromImage (const Image& image, int hotspotX, int hotspotY) throw() { Window root = RootWindow (display, DefaultScreen (display)); const unsigned int imageW = image.getWidth(); const unsigned int imageH = image.getHeight(); unsigned int cursorW, cursorH; if (! XQueryBestCursor (display, root, imageW, imageH, &cursorW, &cursorH)) return 0; Image im (Image::ARGB, cursorW, cursorH, true); Graphics g (im); if (imageW > cursorW || imageH > cursorH) { hotspotX = (hotspotX * cursorW) / imageW; hotspotY = (hotspotY * cursorH) / imageH; g.drawImageWithin (&image, 0, 0, imageW, imageH, RectanglePlacement::xLeft | RectanglePlacement::yTop | RectanglePlacement::onlyReduceInSize, false); } else { g.drawImageAt (&image, 0, 0); } const int stride = (cursorW + 7) >> 3; uint8* const maskPlane = (uint8*) juce_calloc (stride * cursorH); uint8* const sourcePlane = (uint8*) juce_calloc (stride * cursorH); const bool msbfirst = (BitmapBitOrder (display) == MSBFirst); for (int y = cursorH; --y >= 0;) { for (int x = cursorW; --x >= 0;) { const uint8 mask = (uint8) (1 << (msbfirst ? (7 - (x & 7)) : (x & 7))); const int offset = y * stride + (x >> 3); const Colour c (im.getPixelAt (x, y)); if (c.getAlpha() >= 128) maskPlane[offset] |= mask; if (c.getBrightness() >= 0.5f) sourcePlane[offset] |= mask; } } Pixmap sourcePixmap = XCreatePixmapFromBitmapData (display, root, (char*) sourcePlane, cursorW, cursorH, 0xffff, 0, 1); Pixmap maskPixmap = XCreatePixmapFromBitmapData (display, root, (char*) maskPlane, cursorW, cursorH, 0xffff, 0, 1); juce_free (maskPlane); juce_free (sourcePlane); XColor white, black; black.red = black.green = black.blue = 0; white.red = white.green = white.blue = 0xffff; void* result = (void*) XCreatePixmapCursor (display, sourcePixmap, maskPixmap, &white, &black, hotspotX, hotspotY); XFreePixmap (display, sourcePixmap); XFreePixmap (display, maskPixmap); return result; } void juce_deleteMouseCursor (void* const cursorHandle, const bool) throw() { if (cursorHandle != None) XFreeCursor (display, (Cursor) cursorHandle); } void* juce_createStandardMouseCursor (MouseCursor::StandardCursorType type) throw() { unsigned int shape; switch (type) { case MouseCursor::NoCursor: { const Image im (Image::ARGB, 16, 16, true); return juce_createMouseCursorFromImage (im, 0, 0); } case MouseCursor::NormalCursor: return (void*) None; // Use parent cursor case MouseCursor::DraggingHandCursor: { static unsigned char dragHandData[] = {71,73,70,56,57,97,16,0,16,0,145,2,0,0,0,0,255,255,255,0, 0,0,0,0,0,33,249,4,1,0,0,2,0,44,0,0,0,0,16,0, 16,0,0,2,52,148,47,0,200,185,16,130,90,12,74,139,107,84,123,39, 132,117,151,116,132,146,248,60,209,138,98,22,203,114,34,236,37,52,77,217, 247,154,191,119,110,240,193,128,193,95,163,56,60,234,98,135,2,0,59 }; const int dragHandDataSize = 99; Image* const im = ImageFileFormat::loadFrom ((const char*) dragHandData, dragHandDataSize); void* const dragHandCursor = juce_createMouseCursorFromImage (*im, 8, 7); delete im; return dragHandCursor; } case MouseCursor::CopyingCursor: { static unsigned char copyCursorData[] = {71,73,70,56,57,97,21,0,21,0,145,0,0,0,0,0,255,255,255,0, 128,128,255,255,255,33,249,4,1,0,0,3,0,44,0,0,0,0,21,0, 21,0,0,2,72,4,134,169,171,16,199,98,11,79,90,71,161,93,56,111, 78,133,218,215,137,31,82,154,100,200,86,91,202,142,12,108,212,87,235,174, 15,54,214,126,237,226,37,96,59,141,16,37,18,201,142,157,230,204,51,112, 252,114,147,74,83,5,50,68,147,208,217,16,71,149,252,124,5,0,59,0,0 }; const int copyCursorSize = 119; Image* const im = ImageFileFormat::loadFrom ((const char*) copyCursorData, copyCursorSize); void* const copyCursor = juce_createMouseCursorFromImage (*im, 1, 3); delete im; return copyCursor; } case MouseCursor::WaitCursor: shape = XC_watch; break; case MouseCursor::IBeamCursor: shape = XC_xterm; break; case MouseCursor::PointingHandCursor: shape = XC_hand2; break; case MouseCursor::LeftRightResizeCursor: shape = XC_sb_h_double_arrow; break; case MouseCursor::UpDownResizeCursor: shape = XC_sb_v_double_arrow; break; case MouseCursor::UpDownLeftRightResizeCursor: shape = XC_fleur; break; case MouseCursor::TopEdgeResizeCursor: shape = XC_top_side; break; case MouseCursor::BottomEdgeResizeCursor: shape = XC_bottom_side; break; case MouseCursor::LeftEdgeResizeCursor: shape = XC_left_side; break; case MouseCursor::RightEdgeResizeCursor: shape = XC_right_side; break; case MouseCursor::TopLeftCornerResizeCursor: shape = XC_top_left_corner; break; case MouseCursor::TopRightCornerResizeCursor: shape = XC_top_right_corner; break; case MouseCursor::BottomLeftCornerResizeCursor: shape = XC_bottom_left_corner; break; case MouseCursor::BottomRightCornerResizeCursor: shape = XC_bottom_right_corner; break; case MouseCursor::CrosshairCursor: shape = XC_crosshair; break; default: return (void*) None; // Use parent cursor } return (void*) XCreateFontCursor (display, shape); } void MouseCursor::showInWindow (ComponentPeer* peer) const throw() { LinuxComponentPeer* const lp = dynamic_cast (peer); if (lp != 0) lp->showMouseCursor ((Cursor) getHandle()); } void MouseCursor::showInAllWindows() const throw() { for (int i = ComponentPeer::getNumPeers(); --i >= 0;) showInWindow (ComponentPeer::getPeer (i)); } Image* juce_createIconForFile (const File& file) { return 0; } #if JUCE_OPENGL class WindowedGLContext : public OpenGLContext { public: WindowedGLContext (Component* const component, const OpenGLPixelFormat& pixelFormat_, GLXContext sharedContext) : renderContext (0), embeddedWindow (0), pixelFormat (pixelFormat_) { jassert (component != 0); LinuxComponentPeer* const peer = dynamic_cast (component->getTopLevelComponent()->getPeer()); if (peer == 0) return; XSync (display, False); GLint attribs [64]; int n = 0; attribs[n++] = GLX_RGBA; attribs[n++] = GLX_DOUBLEBUFFER; attribs[n++] = GLX_RED_SIZE; attribs[n++] = pixelFormat.redBits; attribs[n++] = GLX_GREEN_SIZE; attribs[n++] = pixelFormat.greenBits; attribs[n++] = GLX_BLUE_SIZE; attribs[n++] = pixelFormat.blueBits; attribs[n++] = GLX_ALPHA_SIZE; attribs[n++] = pixelFormat.alphaBits; attribs[n++] = GLX_DEPTH_SIZE; attribs[n++] = pixelFormat.depthBufferBits; attribs[n++] = GLX_STENCIL_SIZE; attribs[n++] = pixelFormat.stencilBufferBits; attribs[n++] = GLX_ACCUM_RED_SIZE; attribs[n++] = pixelFormat.accumulationBufferRedBits; attribs[n++] = GLX_ACCUM_GREEN_SIZE; attribs[n++] = pixelFormat.accumulationBufferGreenBits; attribs[n++] = GLX_ACCUM_BLUE_SIZE; attribs[n++] = pixelFormat.accumulationBufferBlueBits; attribs[n++] = GLX_ACCUM_ALPHA_SIZE; attribs[n++] = pixelFormat.accumulationBufferAlphaBits; // xxx not sure how to do fullSceneAntiAliasingNumSamples on linux.. attribs[n++] = None; XVisualInfo* const bestVisual = glXChooseVisual (display, DefaultScreen (display), attribs); if (bestVisual == 0) return; renderContext = glXCreateContext (display, bestVisual, sharedContext, GL_TRUE); Window windowH = (Window) peer->getNativeHandle(); Colormap colourMap = XCreateColormap (display, windowH, bestVisual->visual, AllocNone); XSetWindowAttributes swa; swa.colormap = colourMap; swa.border_pixel = 0; swa.event_mask = ExposureMask | StructureNotifyMask; embeddedWindow = XCreateWindow (display, windowH, 0, 0, 1, 1, 0, bestVisual->depth, InputOutput, bestVisual->visual, CWBorderPixel | CWColormap | CWEventMask, &swa); XSaveContext (display, (XID) embeddedWindow, improbableNumber, (XPointer) peer); XMapWindow (display, embeddedWindow); XFreeColormap (display, colourMap); XFree (bestVisual); XSync (display, False); } ~WindowedGLContext() { makeInactive(); glXDestroyContext (display, renderContext); XUnmapWindow (display, embeddedWindow); XDestroyWindow (display, embeddedWindow); } bool makeActive() const throw() { jassert (renderContext != 0); return glXMakeCurrent (display, embeddedWindow, renderContext) && XSync (display, False); } bool makeInactive() const throw() { return (! isActive()) || glXMakeCurrent (display, None, 0); } bool isActive() const throw() { return glXGetCurrentContext() == renderContext; } const OpenGLPixelFormat getPixelFormat() const { return pixelFormat; } void* getRawContext() const throw() { return renderContext; } void updateWindowPosition (int x, int y, int w, int h, int) { XMoveResizeWindow (display, embeddedWindow, x, y, jmax (1, w), jmax (1, h)); } void swapBuffers() { glXSwapBuffers (display, embeddedWindow); } bool setSwapInterval (const int numFramesPerSwap) { // xxx needs doing.. return false; } int getSwapInterval() const { // xxx needs doing.. return 0; } void repaint() { } juce_UseDebuggingNewOperator GLXContext renderContext; private: Window embeddedWindow; OpenGLPixelFormat pixelFormat; WindowedGLContext (const WindowedGLContext&); const WindowedGLContext& operator= (const WindowedGLContext&); }; OpenGLContext* OpenGLContext::createContextForWindow (Component* const component, const OpenGLPixelFormat& pixelFormat, const OpenGLContext* const contextToShareWith) { WindowedGLContext* c = new WindowedGLContext (component, pixelFormat, contextToShareWith != 0 ? (GLXContext) contextToShareWith->getRawContext() : 0); if (c->renderContext == 0) deleteAndZero (c); return c; } void juce_glViewport (const int w, const int h) { glViewport (0, 0, w, h); } void OpenGLPixelFormat::getAvailablePixelFormats (Component* component, OwnedArray & results) { results.add (new OpenGLPixelFormat()); // xxx } #endif static void initClipboard (Window root, Atom* cutBuffers) throw() { static bool init = false; if (! init) { init = true; // Make sure all cut buffers exist before use for (int i = 0; i < 8; i++) { XChangeProperty (display, root, cutBuffers[i], XA_STRING, 8, PropModeAppend, NULL, 0); } } } // Clipboard implemented currently using cut buffers // rather than the more powerful selection method void SystemClipboard::copyTextToClipboard (const String& clipText) throw() { Window root = RootWindow (display, DefaultScreen (display)); Atom cutBuffers[8] = { XA_CUT_BUFFER0, XA_CUT_BUFFER1, XA_CUT_BUFFER2, XA_CUT_BUFFER3, XA_CUT_BUFFER4, XA_CUT_BUFFER5, XA_CUT_BUFFER6, XA_CUT_BUFFER7 }; initClipboard (root, cutBuffers); XRotateWindowProperties (display, root, cutBuffers, 8, 1); XChangeProperty (display, root, cutBuffers[0], XA_STRING, 8, PropModeReplace, (const unsigned char*) (const char*) clipText, clipText.length()); } const String SystemClipboard::getTextFromClipboard() throw() { const int bufSize = 64; // in words String returnData; int byteOffset = 0; Window root = RootWindow (display, DefaultScreen (display)); Atom cutBuffers[8] = { XA_CUT_BUFFER0, XA_CUT_BUFFER1, XA_CUT_BUFFER2, XA_CUT_BUFFER3, XA_CUT_BUFFER4, XA_CUT_BUFFER5, XA_CUT_BUFFER6, XA_CUT_BUFFER7 }; initClipboard (root, cutBuffers); for (;;) { unsigned long bytesLeft = 0, nitems = 0; unsigned char* clipData = 0; int actualFormat = 0; Atom actualType; if (XGetWindowProperty (display, root, cutBuffers[0], byteOffset >> 2, bufSize, False, XA_STRING, &actualType, &actualFormat, &nitems, &bytesLeft, &clipData) == Success) { if (actualType == XA_STRING && actualFormat == 8) { byteOffset += nitems; returnData += String ((const char*) clipData, nitems); } else { bytesLeft = 0; } if (clipData != 0) XFree (clipData); } if (bytesLeft == 0) break; } return returnData; } bool DragAndDropContainer::performExternalDragDropOfFiles (const StringArray& files, const bool canMoveFiles) { jassertfalse // not implemented! return false; } bool DragAndDropContainer::performExternalDragDropOfText (const String& text) { jassertfalse // not implemented! return false; } void SystemTrayIconComponent::setIconImage (const Image& newImage) { if (! isOnDesktop ()) addToDesktop (0); LinuxComponentPeer* const wp = dynamic_cast (getPeer()); if (wp != 0) { wp->setTaskBarIcon (newImage); setVisible (true); toFront (false); repaint(); } } void SystemTrayIconComponent::paint (Graphics& g) { LinuxComponentPeer* const wp = dynamic_cast (getPeer()); if (wp != 0) { const Image* const image = wp->getTaskbarIcon(); if (image != 0) { g.drawImageWithin (image, 0, 0, getWidth(), getHeight(), RectanglePlacement::xLeft | RectanglePlacement::yTop | RectanglePlacement::onlyReduceInSize, false); } } } void SystemTrayIconComponent::setIconTooltip (const String& tooltip) { // xxx not yet implemented! } void PlatformUtilities::beep() { fprintf (stdout, "\a"); fflush (stdout); } bool AlertWindow::showNativeDialogBox (const String& title, const String& bodyText, bool isOkCancel) { // xxx this is supposed to pop up an alert! Logger::outputDebugString (title + ": " + bodyText); // use a non-native one for the time being.. if (isOkCancel) return AlertWindow::showOkCancelBox (AlertWindow::NoIcon, title, bodyText); else AlertWindow::showMessageBox (AlertWindow::NoIcon, title, bodyText); return true; } const int KeyPress::spaceKey = XK_space & 0xff; const int KeyPress::returnKey = XK_Return & 0xff; const int KeyPress::escapeKey = XK_Escape & 0xff; const int KeyPress::backspaceKey = XK_BackSpace & 0xff; const int KeyPress::leftKey = (XK_Left & 0xff) | extendedKeyModifier; const int KeyPress::rightKey = (XK_Right & 0xff) | extendedKeyModifier; const int KeyPress::upKey = (XK_Up & 0xff) | extendedKeyModifier; const int KeyPress::downKey = (XK_Down & 0xff) | extendedKeyModifier; const int KeyPress::pageUpKey = (XK_Page_Up & 0xff) | extendedKeyModifier; const int KeyPress::pageDownKey = (XK_Page_Down & 0xff) | extendedKeyModifier; const int KeyPress::endKey = (XK_End & 0xff) | extendedKeyModifier; const int KeyPress::homeKey = (XK_Home & 0xff) | extendedKeyModifier; const int KeyPress::insertKey = (XK_Insert & 0xff) | extendedKeyModifier; const int KeyPress::deleteKey = (XK_Delete & 0xff) | extendedKeyModifier; const int KeyPress::tabKey = XK_Tab & 0xff; const int KeyPress::F1Key = (XK_F1 & 0xff) | extendedKeyModifier; const int KeyPress::F2Key = (XK_F2 & 0xff) | extendedKeyModifier; const int KeyPress::F3Key = (XK_F3 & 0xff) | extendedKeyModifier; const int KeyPress::F4Key = (XK_F4 & 0xff) | extendedKeyModifier; const int KeyPress::F5Key = (XK_F5 & 0xff) | extendedKeyModifier; const int KeyPress::F6Key = (XK_F6 & 0xff) | extendedKeyModifier; const int KeyPress::F7Key = (XK_F7 & 0xff) | extendedKeyModifier; const int KeyPress::F8Key = (XK_F8 & 0xff) | extendedKeyModifier; const int KeyPress::F9Key = (XK_F9 & 0xff) | extendedKeyModifier; const int KeyPress::F10Key = (XK_F10 & 0xff) | extendedKeyModifier; const int KeyPress::F11Key = (XK_F11 & 0xff) | extendedKeyModifier; const int KeyPress::F12Key = (XK_F12 & 0xff) | extendedKeyModifier; const int KeyPress::F13Key = (XK_F13 & 0xff) | extendedKeyModifier; const int KeyPress::F14Key = (XK_F14 & 0xff) | extendedKeyModifier; const int KeyPress::F15Key = (XK_F15 & 0xff) | extendedKeyModifier; const int KeyPress::F16Key = (XK_F16 & 0xff) | extendedKeyModifier; const int KeyPress::numberPad0 = (XK_KP_0 & 0xff) | extendedKeyModifier; const int KeyPress::numberPad1 = (XK_KP_1 & 0xff) | extendedKeyModifier; const int KeyPress::numberPad2 = (XK_KP_2 & 0xff) | extendedKeyModifier; const int KeyPress::numberPad3 = (XK_KP_3 & 0xff) | extendedKeyModifier; const int KeyPress::numberPad4 = (XK_KP_4 & 0xff) | extendedKeyModifier; const int KeyPress::numberPad5 = (XK_KP_5 & 0xff) | extendedKeyModifier; const int KeyPress::numberPad6 = (XK_KP_6 & 0xff) | extendedKeyModifier; const int KeyPress::numberPad7 = (XK_KP_7 & 0xff)| extendedKeyModifier; const int KeyPress::numberPad8 = (XK_KP_8 & 0xff)| extendedKeyModifier; const int KeyPress::numberPad9 = (XK_KP_9 & 0xff)| extendedKeyModifier; const int KeyPress::numberPadAdd = (XK_KP_Add & 0xff)| extendedKeyModifier; const int KeyPress::numberPadSubtract = (XK_KP_Subtract & 0xff)| extendedKeyModifier; const int KeyPress::numberPadMultiply = (XK_KP_Multiply & 0xff)| extendedKeyModifier; const int KeyPress::numberPadDivide = (XK_KP_Divide & 0xff)| extendedKeyModifier; const int KeyPress::numberPadSeparator = (XK_KP_Separator & 0xff)| extendedKeyModifier; const int KeyPress::numberPadDecimalPoint = (XK_KP_Decimal & 0xff)| extendedKeyModifier; const int KeyPress::numberPadEquals = (XK_KP_Equal & 0xff)| extendedKeyModifier; const int KeyPress::numberPadDelete = (XK_KP_Delete & 0xff)| extendedKeyModifier; const int KeyPress::playKey = (0xffeeff00) | extendedKeyModifier; const int KeyPress::stopKey = (0xffeeff01) | extendedKeyModifier; const int KeyPress::fastForwardKey = (0xffeeff02) | extendedKeyModifier; const int KeyPress::rewindKey = (0xffeeff03) | extendedKeyModifier; #endif /********* End of inlined file: juce_linux_Windowing.cpp *********/ /********* Start of inlined file: juce_linux_Audio.cpp *********/ // (This file gets included by juce_linux_NativeCode.cpp, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE && JUCE_ALSA static const int maxNumChans = 64; static void getDeviceSampleRates (snd_pcm_t* handle, Array & rates) { const int ratesToTry[] = { 22050, 32000, 44100, 48000, 88200, 96000, 176400, 192000, 0 }; snd_pcm_hw_params_t* hwParams; snd_pcm_hw_params_alloca (&hwParams); for (int i = 0; ratesToTry[i] != 0; ++i) { if (snd_pcm_hw_params_any (handle, hwParams) >= 0 && snd_pcm_hw_params_test_rate (handle, hwParams, ratesToTry[i], 0) == 0) { rates.addIfNotAlreadyThere (ratesToTry[i]); } } } static void getDeviceNumChannels (snd_pcm_t* handle, unsigned int* minChans, unsigned int* maxChans) { snd_pcm_hw_params_t *params; snd_pcm_hw_params_alloca (¶ms); if (snd_pcm_hw_params_any (handle, params) >= 0) { snd_pcm_hw_params_get_channels_min (params, minChans); snd_pcm_hw_params_get_channels_max (params, maxChans); } } static void getDeviceProperties (const String& id, unsigned int& minChansOut, unsigned int& maxChansOut, unsigned int& minChansIn, unsigned int& maxChansIn, Array & rates) { if (id.isEmpty()) return; snd_ctl_t* handle; if (snd_ctl_open (&handle, id.upToLastOccurrenceOf (T(","), false, false), SND_CTL_NONBLOCK) >= 0) { snd_pcm_info_t* info; snd_pcm_info_alloca (&info); snd_pcm_info_set_stream (info, SND_PCM_STREAM_PLAYBACK); snd_pcm_info_set_device (info, id.fromLastOccurrenceOf (T(","), false, false).getIntValue()); snd_pcm_info_set_subdevice (info, 0); if (snd_ctl_pcm_info (handle, info) >= 0) { snd_pcm_t* pcmHandle; if (snd_pcm_open (&pcmHandle, id, SND_PCM_STREAM_PLAYBACK, SND_PCM_ASYNC | SND_PCM_NONBLOCK ) >= 0) { getDeviceNumChannels (pcmHandle, &minChansOut, &maxChansOut); getDeviceSampleRates (pcmHandle, rates); snd_pcm_close (pcmHandle); } } snd_pcm_info_set_stream (info, SND_PCM_STREAM_CAPTURE); if (snd_ctl_pcm_info (handle, info) >= 0) { snd_pcm_t* pcmHandle; if (snd_pcm_open (&pcmHandle, id, SND_PCM_STREAM_CAPTURE, SND_PCM_ASYNC | SND_PCM_NONBLOCK ) >= 0) { getDeviceNumChannels (pcmHandle, &minChansIn, &maxChansIn); if (rates.size() == 0) getDeviceSampleRates (pcmHandle, rates); snd_pcm_close (pcmHandle); } } snd_ctl_close (handle); } } class ALSADevice { public: ALSADevice (const String& id, const bool forInput) : handle (0), bitDepth (16), numChannelsRunning (0), isInput (forInput), sampleFormat (AudioDataConverters::int16LE) { failed (snd_pcm_open (&handle, id, forInput ? SND_PCM_STREAM_CAPTURE : SND_PCM_STREAM_PLAYBACK, SND_PCM_ASYNC)); } ~ALSADevice() { if (handle != 0) snd_pcm_close (handle); } bool setParameters (unsigned int sampleRate, int numChannels, int bufferSize) { if (handle == 0) return false; snd_pcm_hw_params_t* hwParams; snd_pcm_hw_params_alloca (&hwParams); if (failed (snd_pcm_hw_params_any (handle, hwParams))) return false; if (snd_pcm_hw_params_set_access (handle, hwParams, SND_PCM_ACCESS_RW_NONINTERLEAVED) >= 0) isInterleaved = false; else if (snd_pcm_hw_params_set_access (handle, hwParams, SND_PCM_ACCESS_RW_INTERLEAVED) >= 0) isInterleaved = true; else { jassertfalse return false; } const int formatsToTry[] = { SND_PCM_FORMAT_FLOAT_LE, 32, AudioDataConverters::float32LE, SND_PCM_FORMAT_FLOAT_BE, 32, AudioDataConverters::float32BE, SND_PCM_FORMAT_S32_LE, 32, AudioDataConverters::int32LE, SND_PCM_FORMAT_S32_BE, 32, AudioDataConverters::int32BE, SND_PCM_FORMAT_S24_3LE, 24, AudioDataConverters::int24LE, SND_PCM_FORMAT_S24_3BE, 24, AudioDataConverters::int24BE, SND_PCM_FORMAT_S16_LE, 16, AudioDataConverters::int16LE, SND_PCM_FORMAT_S16_BE, 16, AudioDataConverters::int16BE }; bitDepth = 0; for (int i = 0; i < numElementsInArray (formatsToTry); i += 3) { if (snd_pcm_hw_params_set_format (handle, hwParams, (_snd_pcm_format) formatsToTry [i]) >= 0) { bitDepth = formatsToTry [i + 1]; sampleFormat = (AudioDataConverters::DataFormat) formatsToTry [i + 2]; break; } } if (bitDepth == 0) { error = "device doesn't support a compatible PCM format"; DBG (T("ALSA error: ") + error + T("\n")); return false; } int dir = 0; unsigned int periods = 4; snd_pcm_uframes_t samplesPerPeriod = bufferSize; if (failed (snd_pcm_hw_params_set_rate_near (handle, hwParams, &sampleRate, 0)) || failed (snd_pcm_hw_params_set_channels (handle, hwParams, numChannels)) || failed (snd_pcm_hw_params_set_periods_near (handle, hwParams, &periods, &dir)) || failed (snd_pcm_hw_params_set_period_size_near (handle, hwParams, &samplesPerPeriod, &dir)) || failed (snd_pcm_hw_params (handle, hwParams))) { return false; } snd_pcm_sw_params_t* swParams; snd_pcm_sw_params_alloca (&swParams); snd_pcm_uframes_t boundary; if (failed (snd_pcm_sw_params_current (handle, swParams)) || failed (snd_pcm_sw_params_get_boundary (swParams, &boundary)) || failed (snd_pcm_sw_params_set_silence_threshold (handle, swParams, 0)) || failed (snd_pcm_sw_params_set_silence_size (handle, swParams, boundary)) || failed (snd_pcm_sw_params_set_start_threshold (handle, swParams, samplesPerPeriod)) || failed (snd_pcm_sw_params_set_stop_threshold (handle, swParams, boundary)) || failed (snd_pcm_sw_params (handle, swParams))) { return false; } /* #ifdef JUCE_DEBUG // enable this to dump the config of the devices that get opened snd_output_t* out; snd_output_stdio_attach (&out, stderr, 0); snd_pcm_hw_params_dump (hwParams, out); snd_pcm_sw_params_dump (swParams, out); #endif */ numChannelsRunning = numChannels; return true; } bool write (float** const data, const int numSamples) { if (isInterleaved) { scratch.ensureSize (sizeof (float) * numSamples * numChannelsRunning, false); float* interleaved = (float*) scratch; AudioDataConverters::interleaveSamples ((const float**) data, interleaved, numSamples, numChannelsRunning); AudioDataConverters::convertFloatToFormat (sampleFormat, interleaved, interleaved, numSamples * numChannelsRunning); snd_pcm_sframes_t num = snd_pcm_writei (handle, (void*) interleaved, numSamples); if (failed (num) && num != -EPIPE && num != -ESTRPIPE) return false; } else { for (int i = 0; i < numChannelsRunning; ++i) if (data[i] != 0) AudioDataConverters::convertFloatToFormat (sampleFormat, data[i], data[i], numSamples); snd_pcm_sframes_t num = snd_pcm_writen (handle, (void**) data, numSamples); if (failed (num)) { if (num == -EPIPE) { if (failed (snd_pcm_prepare (handle))) return false; } else if (num != -ESTRPIPE) return false; } } return true; } bool read (float** const data, const int numSamples) { if (isInterleaved) { scratch.ensureSize (sizeof (float) * numSamples * numChannelsRunning, false); float* interleaved = (float*) scratch; snd_pcm_sframes_t num = snd_pcm_readi (handle, (void*) interleaved, numSamples); if (failed (num)) { if (num == -EPIPE) { if (failed (snd_pcm_prepare (handle))) return false; } else if (num != -ESTRPIPE) return false; } AudioDataConverters::convertFormatToFloat (sampleFormat, interleaved, interleaved, numSamples * numChannelsRunning); AudioDataConverters::deinterleaveSamples (interleaved, data, numSamples, numChannelsRunning); } else { snd_pcm_sframes_t num = snd_pcm_readn (handle, (void**) data, numSamples); if (failed (num) && num != -EPIPE && num != -ESTRPIPE) return false; for (int i = 0; i < numChannelsRunning; ++i) if (data[i] != 0) AudioDataConverters::convertFormatToFloat (sampleFormat, data[i], data[i], numSamples); } return true; } juce_UseDebuggingNewOperator snd_pcm_t* handle; String error; int bitDepth, numChannelsRunning; private: const bool isInput; bool isInterleaved; MemoryBlock scratch; AudioDataConverters::DataFormat sampleFormat; bool failed (const int errorNum) { if (errorNum >= 0) return false; error = snd_strerror (errorNum); DBG (T("ALSA error: ") + error + T("\n")); return true; } }; class ALSAThread : public Thread { public: ALSAThread (const String& inputId_, const String& outputId_) : Thread ("Juce ALSA"), sampleRate (0), bufferSize (0), callback (0), inputId (inputId_), outputId (outputId_), outputDevice (0), inputDevice (0), numCallbacks (0), totalNumInputChannels (0), totalNumOutputChannels (0) { zeromem (outputChannelData, sizeof (outputChannelData)); zeromem (outputChannelDataForCallback, sizeof (outputChannelDataForCallback)); zeromem (inputChannelData, sizeof (inputChannelData)); zeromem (inputChannelDataForCallback, sizeof (inputChannelDataForCallback)); initialiseRatesAndChannels(); } ~ALSAThread() { close(); } void open (BitArray inputChannels, BitArray outputChannels, const double sampleRate_, const int bufferSize_) { close(); error = String::empty; sampleRate = sampleRate_; bufferSize = bufferSize_; currentInputChans.clear(); currentOutputChans.clear(); if (inputChannels.getHighestBit() >= 0) { for (int i = 0; i <= jmax (inputChannels.getHighestBit(), minChansIn); ++i) { inputChannelData [i] = (float*) juce_calloc (sizeof (float) * bufferSize); if (inputChannels[i]) { inputChannelDataForCallback [totalNumInputChannels++] = inputChannelData [i]; currentInputChans.setBit (i); } } } if (outputChannels.getHighestBit() >= 0) { for (int i = 0; i <= jmax (outputChannels.getHighestBit(), minChansOut); ++i) { outputChannelData [i] = (float*) juce_calloc (sizeof (float) * bufferSize); if (outputChannels[i]) { outputChannelDataForCallback [totalNumOutputChannels++] = outputChannelData [i]; currentOutputChans.setBit (i); } } } if (totalNumOutputChannels > 0 && outputId.isNotEmpty()) { outputDevice = new ALSADevice (outputId, false); if (outputDevice->error.isNotEmpty()) { error = outputDevice->error; deleteAndZero (outputDevice); return; } currentOutputChans.setRange (0, minChansOut, true); if (! outputDevice->setParameters ((unsigned int) sampleRate, jlimit ((int) minChansOut, (int) maxChansOut, currentOutputChans.getHighestBit() + 1), bufferSize)) { error = outputDevice->error; deleteAndZero (outputDevice); return; } } if (totalNumInputChannels > 0 && inputId.isNotEmpty()) { inputDevice = new ALSADevice (inputId, true); if (inputDevice->error.isNotEmpty()) { error = inputDevice->error; deleteAndZero (inputDevice); return; } currentInputChans.setRange (0, minChansIn, true); if (! inputDevice->setParameters ((unsigned int) sampleRate, jlimit ((int) minChansIn, (int) maxChansIn, currentInputChans.getHighestBit() + 1), bufferSize)) { error = inputDevice->error; deleteAndZero (inputDevice); return; } } if (outputDevice == 0 && inputDevice == 0) { error = "no channels"; return; } if (outputDevice != 0 && inputDevice != 0) { snd_pcm_link (outputDevice->handle, inputDevice->handle); } if (inputDevice != 0 && failed (snd_pcm_prepare (inputDevice->handle))) return; if (outputDevice != 0 && failed (snd_pcm_prepare (outputDevice->handle))) return; startThread (9); int count = 1000; while (numCallbacks == 0) { sleep (5); if (--count < 0 || ! isThreadRunning()) { error = "device didn't start"; break; } } } void close() { stopThread (6000); deleteAndZero (inputDevice); deleteAndZero (outputDevice); for (int i = 0; i < maxNumChans; ++i) { juce_free (inputChannelData [i]); juce_free (outputChannelData [i]); } zeromem (outputChannelData, sizeof (outputChannelData)); zeromem (outputChannelDataForCallback, sizeof (outputChannelDataForCallback)); zeromem (inputChannelData, sizeof (inputChannelData)); zeromem (inputChannelDataForCallback, sizeof (inputChannelDataForCallback)); totalNumOutputChannels = 0; totalNumInputChannels = 0; numCallbacks = 0; } void setCallback (AudioIODeviceCallback* const newCallback) throw() { const ScopedLock sl (callbackLock); callback = newCallback; } void run() { while (! threadShouldExit()) { if (inputDevice != 0) { if (! inputDevice->read (inputChannelData, bufferSize)) { DBG ("ALSA: read failure"); break; } } if (threadShouldExit()) break; { const ScopedLock sl (callbackLock); ++numCallbacks; if (callback != 0) { callback->audioDeviceIOCallback ((const float**) inputChannelDataForCallback, totalNumInputChannels, outputChannelDataForCallback, totalNumOutputChannels, bufferSize); } else { for (int i = 0; i < totalNumOutputChannels; ++i) zeromem (outputChannelDataForCallback[i], sizeof (float) * bufferSize); } } if (outputDevice != 0) { failed (snd_pcm_wait (outputDevice->handle, 2000)); if (threadShouldExit()) break; failed (snd_pcm_avail_update (outputDevice->handle)); if (! outputDevice->write (outputChannelData, bufferSize)) { DBG ("ALSA: write failure"); break; } } } } int getBitDepth() const throw() { if (outputDevice != 0) return outputDevice->bitDepth; if (inputDevice != 0) return inputDevice->bitDepth; return 16; } juce_UseDebuggingNewOperator String error; double sampleRate; int bufferSize; BitArray currentInputChans, currentOutputChans; Array sampleRates; StringArray channelNamesOut, channelNamesIn; AudioIODeviceCallback* callback; private: const String inputId, outputId; ALSADevice* outputDevice; ALSADevice* inputDevice; int numCallbacks; CriticalSection callbackLock; float* outputChannelData [maxNumChans]; float* outputChannelDataForCallback [maxNumChans]; int totalNumInputChannels; float* inputChannelData [maxNumChans]; float* inputChannelDataForCallback [maxNumChans]; int totalNumOutputChannels; unsigned int minChansOut, maxChansOut; unsigned int minChansIn, maxChansIn; bool failed (const int errorNum) throw() { if (errorNum >= 0) return false; error = snd_strerror (errorNum); DBG (T("ALSA error: ") + error + T("\n")); return true; } void initialiseRatesAndChannels() throw() { sampleRates.clear(); channelNamesOut.clear(); channelNamesIn.clear(); minChansOut = 0; maxChansOut = 0; minChansIn = 0; maxChansIn = 0; unsigned int dummy = 0; getDeviceProperties (inputId, dummy, dummy, minChansIn, maxChansIn, sampleRates); getDeviceProperties (outputId, minChansOut, maxChansOut, dummy, dummy, sampleRates); unsigned int i; for (i = 0; i < maxChansOut; ++i) channelNamesOut.add (T("channel ") + String ((int) i + 1)); for (i = 0; i < maxChansIn; ++i) channelNamesIn.add (T("channel ") + String ((int) i + 1)); } }; class ALSAAudioIODevice : public AudioIODevice { public: ALSAAudioIODevice (const String& deviceName, const String& inputId_, const String& outputId_) : AudioIODevice (deviceName, T("ALSA")), inputId (inputId_), outputId (outputId_), isOpen_ (false), isStarted (false), internal (0) { internal = new ALSAThread (inputId, outputId); } ~ALSAAudioIODevice() { delete internal; } const StringArray getOutputChannelNames() { return internal->channelNamesOut; } const StringArray getInputChannelNames() { return internal->channelNamesIn; } int getNumSampleRates() { return internal->sampleRates.size(); } double getSampleRate (int index) { return internal->sampleRates [index]; } int getNumBufferSizesAvailable() { return 50; } int getBufferSizeSamples (int index) { int n = 16; for (int i = 0; i < index; ++i) n += n < 64 ? 16 : (n < 512 ? 32 : (n < 1024 ? 64 : (n < 2048 ? 128 : 256))); return n; } int getDefaultBufferSize() { return 512; } const String open (const BitArray& inputChannels, const BitArray& outputChannels, double sampleRate, int bufferSizeSamples) { close(); if (bufferSizeSamples <= 0) bufferSizeSamples = getDefaultBufferSize(); if (sampleRate <= 0) { for (int i = 0; i < getNumSampleRates(); ++i) { if (getSampleRate (i) >= 44100) { sampleRate = getSampleRate (i); break; } } } internal->open (inputChannels, outputChannels, sampleRate, bufferSizeSamples); isOpen_ = internal->error.isEmpty(); return internal->error; } void close() { stop(); internal->close(); isOpen_ = false; } bool isOpen() { return isOpen_; } int getCurrentBufferSizeSamples() { return internal->bufferSize; } double getCurrentSampleRate() { return internal->sampleRate; } int getCurrentBitDepth() { return internal->getBitDepth(); } const BitArray getActiveOutputChannels() const { return internal->currentOutputChans; } const BitArray getActiveInputChannels() const { return internal->currentInputChans; } int getOutputLatencyInSamples() { return 0; } int getInputLatencyInSamples() { return 0; } void start (AudioIODeviceCallback* callback) { if (! isOpen_) callback = 0; internal->setCallback (callback); if (callback != 0) callback->audioDeviceAboutToStart (this); isStarted = (callback != 0); } void stop() { AudioIODeviceCallback* const oldCallback = internal->callback; start (0); if (oldCallback != 0) oldCallback->audioDeviceStopped(); } bool isPlaying() { return isStarted && internal->error.isEmpty(); } const String getLastError() { return internal->error; } String inputId, outputId; private: bool isOpen_, isStarted; ALSAThread* internal; }; class ALSAAudioIODeviceType : public AudioIODeviceType { public: ALSAAudioIODeviceType() : AudioIODeviceType (T("ALSA")), hasScanned (false) { } ~ALSAAudioIODeviceType() { } void scanForDevices() { if (hasScanned) return; hasScanned = true; inputNames.clear(); inputIds.clear(); outputNames.clear(); outputIds.clear(); snd_ctl_t* handle; snd_ctl_card_info_t* info; snd_ctl_card_info_alloca (&info); int cardNum = -1; while (outputIds.size() + inputIds.size() <= 32) { snd_card_next (&cardNum); if (cardNum < 0) break; if (snd_ctl_open (&handle, T("hw:") + String (cardNum), SND_CTL_NONBLOCK) >= 0) { if (snd_ctl_card_info (handle, info) >= 0) { String cardId (snd_ctl_card_info_get_id (info)); if (cardId.removeCharacters (T("0123456789")).isEmpty()) cardId = String (cardNum); int device = -1; for (;;) { if (snd_ctl_pcm_next_device (handle, &device) < 0 || device < 0) break; String id, name; id << "hw:" << cardId << ',' << device; bool isInput, isOutput; if (testDevice (id, isInput, isOutput)) { name << snd_ctl_card_info_get_name (info); if (name.isEmpty()) name = id; if (isInput) { inputNames.add (name); inputIds.add (id); } if (isOutput) { outputNames.add (name); outputIds.add (id); } } } } snd_ctl_close (handle); } } inputNames.appendNumbersToDuplicates (false, true); outputNames.appendNumbersToDuplicates (false, true); } const StringArray getDeviceNames (const bool wantInputNames) const { jassert (hasScanned); // need to call scanForDevices() before doing this return wantInputNames ? inputNames : outputNames; } int getDefaultDeviceIndex (const bool forInput) const { jassert (hasScanned); // need to call scanForDevices() before doing this return 0; } bool hasSeparateInputsAndOutputs() const { return true; } int getIndexOfDevice (AudioIODevice* device, const bool asInput) const { jassert (hasScanned); // need to call scanForDevices() before doing this ALSAAudioIODevice* const d = dynamic_cast (device); if (d == 0) return -1; return asInput ? inputIds.indexOf (d->inputId) : outputIds.indexOf (d->outputId); } AudioIODevice* createDevice (const String& outputDeviceName, const String& inputDeviceName) { jassert (hasScanned); // need to call scanForDevices() before doing this const int inputIndex = inputNames.indexOf (inputDeviceName); const int outputIndex = outputNames.indexOf (outputDeviceName); String deviceName (outputDeviceName); if (deviceName.isEmpty()) deviceName = inputDeviceName; if (index >= 0) return new ALSAAudioIODevice (deviceName, inputIds [inputIndex], outputIds [outputIndex]); return 0; } juce_UseDebuggingNewOperator private: StringArray inputNames, outputNames, inputIds, outputIds; bool hasScanned; static bool testDevice (const String& id, bool& isInput, bool& isOutput) { unsigned int minChansOut = 0, maxChansOut = 0; unsigned int minChansIn = 0, maxChansIn = 0; Array rates; getDeviceProperties (id, minChansOut, maxChansOut, minChansIn, maxChansIn, rates); DBG (T("ALSA device: ") + id + T(" outs=") + String ((int) minChansOut) + T("-") + String ((int) maxChansOut) + T(" ins=") + String ((int) minChansIn) + T("-") + String ((int) maxChansIn) + T(" rates=") + String (rates.size())); isInput = maxChansIn > 0; isOutput = maxChansOut > 0; return (isInput || isOutput) && rates.size() > 0; } ALSAAudioIODeviceType (const ALSAAudioIODeviceType&); const ALSAAudioIODeviceType& operator= (const ALSAAudioIODeviceType&); }; AudioIODeviceType* juce_createAudioIODeviceType_ALSA() { return new ALSAAudioIODeviceType(); } #endif /********* End of inlined file: juce_linux_Audio.cpp *********/ /********* Start of inlined file: juce_linux_Midi.cpp *********/ // (This file gets included by juce_linux_NativeCode.cpp, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE #if JUCE_ALSA static snd_seq_t* iterateDevices (const bool forInput, StringArray& deviceNamesFound, const int deviceIndexToOpen) { snd_seq_t* returnedHandle = 0; snd_seq_t* seqHandle; if (snd_seq_open (&seqHandle, "default", forInput ? SND_SEQ_OPEN_INPUT : SND_SEQ_OPEN_OUTPUT, 0) == 0) { snd_seq_system_info_t* systemInfo; snd_seq_client_info_t* clientInfo; if (snd_seq_system_info_malloc (&systemInfo) == 0) { if (snd_seq_system_info (seqHandle, systemInfo) == 0 && snd_seq_client_info_malloc (&clientInfo) == 0) { int numClients = snd_seq_system_info_get_cur_clients (systemInfo); while (--numClients >= 0 && returnedHandle == 0) { if (snd_seq_query_next_client (seqHandle, clientInfo) == 0) { snd_seq_port_info_t* portInfo; if (snd_seq_port_info_malloc (&portInfo) == 0) { int numPorts = snd_seq_client_info_get_num_ports (clientInfo); const int client = snd_seq_client_info_get_client (clientInfo); snd_seq_port_info_set_client (portInfo, client); snd_seq_port_info_set_port (portInfo, -1); while (--numPorts >= 0) { if (snd_seq_query_next_port (seqHandle, portInfo) == 0 && (snd_seq_port_info_get_capability (portInfo) & (forInput ? SND_SEQ_PORT_CAP_READ : SND_SEQ_PORT_CAP_WRITE)) != 0) { deviceNamesFound.add (snd_seq_client_info_get_name (clientInfo)); if (deviceNamesFound.size() == deviceIndexToOpen + 1) { const int sourcePort = snd_seq_port_info_get_port (portInfo); const int sourceClient = snd_seq_client_info_get_client (clientInfo); if (sourcePort != -1) { snd_seq_set_client_name (seqHandle, forInput ? "Juce Midi Input" : "Juce Midi Output"); const int portId = snd_seq_create_simple_port (seqHandle, forInput ? "Juce Midi In Port" : "Juce Midi Out Port", forInput ? (SND_SEQ_PORT_CAP_WRITE | SND_SEQ_PORT_CAP_SUBS_WRITE) : (SND_SEQ_PORT_CAP_READ | SND_SEQ_PORT_CAP_SUBS_READ), SND_SEQ_PORT_TYPE_MIDI_GENERIC); snd_seq_connect_from (seqHandle, portId, sourceClient, sourcePort); returnedHandle = seqHandle; } } } } snd_seq_port_info_free (portInfo); } } } snd_seq_client_info_free (clientInfo); } snd_seq_system_info_free (systemInfo); } if (returnedHandle == 0) snd_seq_close (seqHandle); } deviceNamesFound.appendNumbersToDuplicates (true, true); return returnedHandle; } static snd_seq_t* createDevice (const bool forInput, const String& deviceNameToOpen) { snd_seq_t* seqHandle = 0; if (snd_seq_open (&seqHandle, "default", forInput ? SND_SEQ_OPEN_INPUT : SND_SEQ_OPEN_OUTPUT, 0) == 0) { snd_seq_set_client_name (seqHandle, (const char*) (forInput ? (deviceNameToOpen + T(" Input")) : (deviceNameToOpen + T(" Output")))); const int portId = snd_seq_create_simple_port (seqHandle, forInput ? "in" : "out", forInput ? (SND_SEQ_PORT_CAP_WRITE | SND_SEQ_PORT_CAP_SUBS_WRITE) : (SND_SEQ_PORT_CAP_READ | SND_SEQ_PORT_CAP_SUBS_READ), forInput ? SND_SEQ_PORT_TYPE_APPLICATION : SND_SEQ_PORT_TYPE_MIDI_GENERIC); if (portId < 0) { snd_seq_close (seqHandle); seqHandle = 0; } } return seqHandle; } class MidiOutputDevice { public: MidiOutputDevice (MidiOutput* const midiOutput_, snd_seq_t* const seqHandle_) : midiOutput (midiOutput_), seqHandle (seqHandle_), maxEventSize (16 * 1024) { jassert (seqHandle != 0 && midiOutput != 0); snd_midi_event_new (maxEventSize, &midiParser); } ~MidiOutputDevice() { snd_midi_event_free (midiParser); snd_seq_close (seqHandle); } void sendMessageNow (const MidiMessage& message) { if (message.getRawDataSize() > maxEventSize) { maxEventSize = message.getRawDataSize(); snd_midi_event_free (midiParser); snd_midi_event_new (maxEventSize, &midiParser); } snd_seq_event_t event; snd_seq_ev_clear (&event); snd_midi_event_encode (midiParser, message.getRawData(), message.getRawDataSize(), &event); snd_midi_event_reset_encode (midiParser); snd_seq_ev_set_source (&event, 0); snd_seq_ev_set_subs (&event); snd_seq_ev_set_direct (&event); snd_seq_event_output (seqHandle, &event); snd_seq_drain_output (seqHandle); } juce_UseDebuggingNewOperator private: MidiOutput* const midiOutput; snd_seq_t* const seqHandle; snd_midi_event_t* midiParser; int maxEventSize; }; const StringArray MidiOutput::getDevices() { StringArray devices; iterateDevices (false, devices, -1); return devices; } int MidiOutput::getDefaultDeviceIndex() { return 0; } MidiOutput* MidiOutput::openDevice (int deviceIndex) { MidiOutput* newDevice = 0; StringArray devices; snd_seq_t* const handle = iterateDevices (false, devices, deviceIndex); if (handle != 0) { newDevice = new MidiOutput(); newDevice->internal = new MidiOutputDevice (newDevice, handle); } return newDevice; } MidiOutput* MidiOutput::createNewDevice (const String& deviceName) { MidiOutput* newDevice = 0; snd_seq_t* const handle = createDevice (false, deviceName); if (handle != 0) { newDevice = new MidiOutput(); newDevice->internal = new MidiOutputDevice (newDevice, handle); } return newDevice; } MidiOutput::~MidiOutput() { MidiOutputDevice* const device = (MidiOutputDevice*) internal; delete device; } void MidiOutput::reset() { } bool MidiOutput::getVolume (float& leftVol, float& rightVol) { return false; } void MidiOutput::setVolume (float leftVol, float rightVol) { } void MidiOutput::sendMessageNow (const MidiMessage& message) { ((MidiOutputDevice*) internal)->sendMessageNow (message); } class MidiInputThread : public Thread { public: MidiInputThread (MidiInput* const midiInput_, snd_seq_t* const seqHandle_, MidiInputCallback* const callback_) : Thread (T("Juce MIDI Input")), midiInput (midiInput_), seqHandle (seqHandle_), callback (callback_) { jassert (seqHandle != 0 && callback != 0 && midiInput != 0); } ~MidiInputThread() { snd_seq_close (seqHandle); } void run() { const int maxEventSize = 16 * 1024; snd_midi_event_t* midiParser; if (snd_midi_event_new (maxEventSize, &midiParser) >= 0) { uint8* const buffer = (uint8*) juce_malloc (maxEventSize); const int numPfds = snd_seq_poll_descriptors_count (seqHandle, POLLIN); struct pollfd* const pfd = (struct pollfd*) alloca (numPfds * sizeof (struct pollfd)); snd_seq_poll_descriptors (seqHandle, pfd, numPfds, POLLIN); while (! threadShouldExit()) { if (poll (pfd, numPfds, 500) > 0) { snd_seq_event_t* inputEvent = 0; snd_seq_nonblock (seqHandle, 1); do { if (snd_seq_event_input (seqHandle, &inputEvent) >= 0) { // xxx what about SYSEXes that are too big for the buffer? const int numBytes = snd_midi_event_decode (midiParser, buffer, maxEventSize, inputEvent); snd_midi_event_reset_decode (midiParser); if (numBytes > 0) { const MidiMessage message ((const uint8*) buffer, numBytes, Time::getMillisecondCounter() * 0.001); callback->handleIncomingMidiMessage (midiInput, message); } snd_seq_free_event (inputEvent); } } while (snd_seq_event_input_pending (seqHandle, 0) > 0); snd_seq_free_event (inputEvent); } } snd_midi_event_free (midiParser); juce_free (buffer); } }; juce_UseDebuggingNewOperator private: MidiInput* const midiInput; snd_seq_t* const seqHandle; MidiInputCallback* const callback; }; MidiInput::MidiInput (const String& name_) : name (name_), internal (0) { } MidiInput::~MidiInput() { stop(); MidiInputThread* const thread = (MidiInputThread*) internal; delete thread; } void MidiInput::start() { ((MidiInputThread*) internal)->startThread(); } void MidiInput::stop() { ((MidiInputThread*) internal)->stopThread (3000); } int MidiInput::getDefaultDeviceIndex() { return 0; } const StringArray MidiInput::getDevices() { StringArray devices; iterateDevices (true, devices, -1); return devices; } MidiInput* MidiInput::openDevice (int deviceIndex, MidiInputCallback* callback) { MidiInput* newDevice = 0; StringArray devices; snd_seq_t* const handle = iterateDevices (true, devices, deviceIndex); if (handle != 0) { newDevice = new MidiInput (devices [deviceIndex]); newDevice->internal = new MidiInputThread (newDevice, handle, callback); } return newDevice; } MidiInput* MidiInput::createNewDevice (const String& deviceName, MidiInputCallback* callback) { MidiInput* newDevice = 0; snd_seq_t* const handle = createDevice (true, deviceName); if (handle != 0) { newDevice = new MidiInput (deviceName); newDevice->internal = new MidiInputThread (newDevice, handle, callback); } return newDevice; } #else // (These are just stub functions if ALSA is unavailable...) const StringArray MidiOutput::getDevices() { return StringArray(); } int MidiOutput::getDefaultDeviceIndex() { return 0; } MidiOutput* MidiOutput::openDevice (int) { return 0; } MidiOutput* MidiOutput::createNewDevice (const String&) { return 0; } MidiOutput::~MidiOutput() {} void MidiOutput::reset() {} bool MidiOutput::getVolume (float&, float&) { return false; } void MidiOutput::setVolume (float, float) {} void MidiOutput::sendMessageNow (const MidiMessage&) {} MidiInput::MidiInput (const String& name_) : name (name_), internal (0) {} MidiInput::~MidiInput() {} void MidiInput::start() {} void MidiInput::stop() {} int MidiInput::getDefaultDeviceIndex() { return 0; } const StringArray MidiInput::getDevices() { return StringArray(); } MidiInput* MidiInput::openDevice (int, MidiInputCallback*) { return 0; } MidiInput* MidiInput::createNewDevice (const String&, MidiInputCallback*) { return 0; } #endif #endif /********* End of inlined file: juce_linux_Midi.cpp *********/ /********* Start of inlined file: juce_linux_AudioCDReader.cpp *********/ // (This file gets included by juce_linux_NativeCode.cpp, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE AudioCDReader::AudioCDReader() : AudioFormatReader (0, T("CD Audio")) { } const StringArray AudioCDReader::getAvailableCDNames() { StringArray names; return names; } AudioCDReader* AudioCDReader::createReaderForCD (const int index) { return 0; } AudioCDReader::~AudioCDReader() { } void AudioCDReader::refreshTrackLengths() { } bool AudioCDReader::readSamples (int** destSamples, int numDestChannels, int startOffsetInDestBuffer, int64 startSampleInFile, int numSamples) { return false; } bool AudioCDReader::isCDStillPresent() const { return false; } int AudioCDReader::getNumTracks() const { return 0; } int AudioCDReader::getPositionOfTrackStart (int trackNum) const { return 0; } bool AudioCDReader::isTrackAudio (int trackNum) const { return false; } void AudioCDReader::enableIndexScanning (bool b) { } int AudioCDReader::getLastIndex() const { return 0; } const Array AudioCDReader::findIndexesInTrack (const int trackNumber) { return Array(); } int AudioCDReader::getCDDBId() { return 0; } #endif /********* End of inlined file: juce_linux_AudioCDReader.cpp *********/ /********* Start of inlined file: juce_linux_FileChooser.cpp *********/ // (This file gets included by juce_linux_NativeCode.cpp, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE void FileChooser::showPlatformDialog (OwnedArray& results, const String& title, const File& file, const String& filters, bool isDirectory, bool isSave, bool warnAboutOverwritingExistingFiles, bool selectMultipleFiles, FilePreviewComponent* previewComponent) { //xxx ain't got one! jassertfalse } #endif /********* End of inlined file: juce_linux_FileChooser.cpp *********/ /********* Start of inlined file: juce_linux_WebBrowserComponent.cpp *********/ // (This file gets included by juce_linux_NativeCode.cpp, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE #if JUCE_WEB_BROWSER /* Sorry.. This class isn't implemented on Linux! */ WebBrowserComponent::WebBrowserComponent (const bool unloadPageWhenBrowserIsHidden_) : browser (0), blankPageShown (false), unloadPageWhenBrowserIsHidden (unloadPageWhenBrowserIsHidden_) { setOpaque (true); } WebBrowserComponent::~WebBrowserComponent() { } void WebBrowserComponent::goToURL (const String& url, const StringArray* headers, const MemoryBlock* postData) { lastURL = url; lastHeaders.clear(); if (headers != 0) lastHeaders = *headers; lastPostData.setSize (0); if (postData != 0) lastPostData = *postData; blankPageShown = false; } void WebBrowserComponent::stop() { } void WebBrowserComponent::goBack() { lastURL = String::empty; blankPageShown = false; } void WebBrowserComponent::goForward() { lastURL = String::empty; } void WebBrowserComponent::refresh() { } void WebBrowserComponent::paint (Graphics& g) { g.fillAll (Colours::white); } void WebBrowserComponent::checkWindowAssociation() { } void WebBrowserComponent::reloadLastURL() { if (lastURL.isNotEmpty()) { goToURL (lastURL, &lastHeaders, &lastPostData); lastURL = String::empty; } } void WebBrowserComponent::parentHierarchyChanged() { checkWindowAssociation(); } void WebBrowserComponent::resized() { } void WebBrowserComponent::visibilityChanged() { checkWindowAssociation(); } bool WebBrowserComponent::pageAboutToLoad (const String& url) { return true; } #endif #endif /********* End of inlined file: juce_linux_WebBrowserComponent.cpp *********/ #endif END_JUCE_NAMESPACE /********* End of inlined file: juce_linux_NativeCode.cpp *********/ #endif #if JUCE_MAC || JUCE_IPHONE /********* Start of inlined file: juce_mac_NativeCode.mm *********/ /* This file wraps together all the mac-specific code, so that we can include all the native headers just once, and compile all our platform-specific stuff in one big lump, keeping it out of the way of the rest of the codebase. */ BEGIN_JUCE_NAMESPACE #undef Point #define JUCE_INCLUDED_FILE 1 // Now include the actual code files.. /********* Start of inlined file: juce_mac_ObjCSuffix.h *********/ /** This suffix is used for naming all Obj-C classes that are used inside juce. Because of the flat naming structure used by Obj-C, you can get horrible situations where two DLLs are loaded into a host, each of which uses classes with the same names, and these get cross-linked so that when you make a call to a class that you thought was private, it ends up actually calling into a similarly named class in the other module's address space. By changing this macro to a unique value, you ensure that all the obj-C classes in your app have unique names, and should avoid this problem. If you're using the amalgamated version, you can just set this macro to something unique before you include juce_amalgamated.cpp. */ #ifndef JUCE_ObjCExtraSuffix #define JUCE_ObjCExtraSuffix 3 #endif #define appendMacro1(a, b, c, d) a ## _ ## b ## _ ## c ## _ ## d #define appendMacro2(a, b, c, d) appendMacro1(a, b, c, d) #define MakeObjCClassName(rootName) appendMacro2 (rootName, JUCE_MAJOR_VERSION, JUCE_MINOR_VERSION, JUCE_ObjCExtraSuffix) /********* End of inlined file: juce_mac_ObjCSuffix.h *********/ /********* Start of inlined file: juce_mac_Strings.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE static const String nsStringToJuce (NSString* s) { return String::fromUTF8 ((uint8*) [s UTF8String]); } static NSString* juceStringToNS (const String& s) { return [NSString stringWithUTF8String: (const char*) s.toUTF8()]; } static const String convertUTF16ToString (const UniChar* utf16) { String s; while (*utf16 != 0) s += (juce_wchar) *utf16++; return s; } const String PlatformUtilities::cfStringToJuceString (CFStringRef cfString) { String result; if (cfString != 0) { #if JUCE_STRINGS_ARE_UNICODE CFRange range = { 0, CFStringGetLength (cfString) }; UniChar* const u = (UniChar*) juce_malloc (sizeof (UniChar) * (range.length + 1)); CFStringGetCharacters (cfString, range, u); u[range.length] = 0; result = convertUTF16ToString (u); juce_free (u); #else const int len = CFStringGetLength (cfString); char* buffer = (char*) juce_malloc (len + 1); CFStringGetCString (cfString, buffer, len + 1, CFStringGetSystemEncoding()); result = buffer; juce_free (buffer); #endif } return result; } CFStringRef PlatformUtilities::juceStringToCFString (const String& s) { #if JUCE_STRINGS_ARE_UNICODE const int len = s.length(); const juce_wchar* t = (const juce_wchar*) s; UniChar* temp = (UniChar*) juce_malloc (sizeof (UniChar) * len + 4); for (int i = 0; i <= len; ++i) temp[i] = t[i]; CFStringRef result = CFStringCreateWithCharacters (kCFAllocatorDefault, temp, len); juce_free (temp); return result; #else return CFStringCreateWithCString (kCFAllocatorDefault, (const char*) s, CFStringGetSystemEncoding()); #endif } const String PlatformUtilities::convertToPrecomposedUnicode (const String& s) { #if JUCE_IPHONE const ScopedAutoReleasePool pool; return nsStringToJuce ([juceStringToNS (s) precomposedStringWithCanonicalMapping]); #else UnicodeMapping map; map.unicodeEncoding = CreateTextEncoding (kTextEncodingUnicodeDefault, kUnicodeNoSubset, kTextEncodingDefaultFormat); map.otherEncoding = CreateTextEncoding (kTextEncodingUnicodeDefault, kUnicodeCanonicalCompVariant, kTextEncodingDefaultFormat); map.mappingVersion = kUnicodeUseLatestMapping; UnicodeToTextInfo conversionInfo = 0; String result; if (CreateUnicodeToTextInfo (&map, &conversionInfo) == noErr) { const int len = s.length(); UniChar* const tempIn = (UniChar*) juce_calloc (sizeof (UniChar) * len + 4); UniChar* const tempOut = (UniChar*) juce_calloc (sizeof (UniChar) * len + 4); for (int i = 0; i <= len; ++i) tempIn[i] = s[i]; ByteCount bytesRead = 0; ByteCount outputBufferSize = 0; if (ConvertFromUnicodeToText (conversionInfo, len * sizeof (UniChar), tempIn, kUnicodeDefaultDirectionMask, 0, 0, 0, 0, len * sizeof (UniChar), &bytesRead, &outputBufferSize, tempOut) == noErr) { result.preallocateStorage (bytesRead / sizeof (UniChar) + 2); tchar* t = const_cast ((const tchar*) result); unsigned int i; for (i = 0; i < bytesRead / sizeof (UniChar); ++i) t[i] = (tchar) tempOut[i]; t[i] = 0; } juce_free (tempIn); juce_free (tempOut); DisposeUnicodeToTextInfo (&conversionInfo); } return result; #endif } #if ! JUCE_ONLY_BUILD_CORE_LIBRARY void SystemClipboard::copyTextToClipboard (const String& text) throw() { #if JUCE_IPHONE [[UIPasteboard generalPasteboard] setValue: juceStringToNS (text) forPasteboardType: @"public.text"]; #else [[NSPasteboard generalPasteboard] declareTypes: [NSArray arrayWithObject: NSStringPboardType] owner: nil]; [[NSPasteboard generalPasteboard] setString: juceStringToNS (text) forType: NSStringPboardType]; #endif } const String SystemClipboard::getTextFromClipboard() throw() { #if JUCE_IPHONE NSString* text = [[UIPasteboard generalPasteboard] valueForPasteboardType: @"public.text"]; #else NSString* text = [[NSPasteboard generalPasteboard] stringForType: NSStringPboardType]; #endif return text == 0 ? String::empty : nsStringToJuce (text); } #endif #endif /********* End of inlined file: juce_mac_Strings.mm *********/ /********* Start of inlined file: juce_mac_SystemStats.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE static int64 highResTimerFrequency = 0; static double highResTimerToMillisecRatio = 0; #if JUCE_INTEL static void juce_getCpuVendor (char* const v) throw() { int vendor[4]; zerostruct (vendor); int dummy = 0; asm ("mov %%ebx, %%esi \n\t" "cpuid \n\t" "xchg %%esi, %%ebx" : "=a" (dummy), "=S" (vendor[0]), "=c" (vendor[2]), "=d" (vendor[1]) : "a" (0)); memcpy (v, vendor, 16); } static unsigned int getCPUIDWord (unsigned int& familyModel, unsigned int& extFeatures) throw() { unsigned int cpu = 0; unsigned int ext = 0; unsigned int family = 0; unsigned int dummy = 0; asm ("mov %%ebx, %%esi \n\t" "cpuid \n\t" "xchg %%esi, %%ebx" : "=a" (family), "=S" (ext), "=c" (dummy), "=d" (cpu) : "a" (1)); familyModel = family; extFeatures = ext; return cpu; } struct CPUFlags { bool hasMMX : 1; bool hasSSE : 1; bool hasSSE2 : 1; bool has3DNow : 1; }; static CPUFlags cpuFlags; #endif void SystemStats::initialiseStats() throw() { static bool initialised = false; if (! initialised) { initialised = true; #if JUCE_MAC // extremely annoying: adding this line stops the apple menu items from working. Of // course, not adding it means that carbon windows (e.g. in plugins) won't get // any events. //NSApplicationLoad(); [NSApplication sharedApplication]; #endif #if JUCE_INTEL { unsigned int familyModel, extFeatures; const unsigned int features = getCPUIDWord (familyModel, extFeatures); cpuFlags.hasMMX = ((features & (1 << 23)) != 0); cpuFlags.hasSSE = ((features & (1 << 25)) != 0); cpuFlags.hasSSE2 = ((features & (1 << 26)) != 0); cpuFlags.has3DNow = ((extFeatures & (1 << 31)) != 0); } #endif mach_timebase_info_data_t timebase; (void) mach_timebase_info (&timebase); highResTimerFrequency = (int64) (1.0e9 * timebase.denom / timebase.numer); highResTimerToMillisecRatio = timebase.numer / (1.0e6 * timebase.denom); String s (SystemStats::getJUCEVersion()); rlimit lim; getrlimit (RLIMIT_NOFILE, &lim); lim.rlim_cur = lim.rlim_max = RLIM_INFINITY; setrlimit (RLIMIT_NOFILE, &lim); } } SystemStats::OperatingSystemType SystemStats::getOperatingSystemType() throw() { return MacOSX; } const String SystemStats::getOperatingSystemName() throw() { return T("Mac OS X"); } bool SystemStats::isOperatingSystem64Bit() throw() { #if JUCE_64BIT return true; #else //xxx not sure how to find this out?.. return false; #endif } int SystemStats::getMemorySizeInMegabytes() throw() { uint64 mem = 0; size_t memSize = sizeof (mem); int mib[] = { CTL_HW, HW_MEMSIZE }; sysctl (mib, 2, &mem, &memSize, 0, 0); return mem / (1024 * 1024); } bool SystemStats::hasMMX() throw() { #if JUCE_INTEL return cpuFlags.hasMMX; #else return false; #endif } bool SystemStats::hasSSE() throw() { #if JUCE_INTEL return cpuFlags.hasSSE; #else return false; #endif } bool SystemStats::hasSSE2() throw() { #if JUCE_INTEL return cpuFlags.hasSSE2; #else return false; #endif } bool SystemStats::has3DNow() throw() { #if JUCE_INTEL return cpuFlags.has3DNow; #else return false; #endif } const String SystemStats::getCpuVendor() throw() { #if JUCE_INTEL char v [16]; juce_getCpuVendor (v); return String (v, 16); #else return String::empty; #endif } int SystemStats::getCpuSpeedInMegaherz() throw() { uint64 speedHz = 0; size_t speedSize = sizeof (speedHz); int mib[] = { CTL_HW, HW_CPU_FREQ }; sysctl (mib, 2, &speedHz, &speedSize, 0, 0); #if JUCE_BIG_ENDIAN if (speedSize == 4) speedHz >>= 32; #endif return speedHz / 1000000; } int SystemStats::getNumCpus() throw() { #if MACOS_10_4_OR_EARLIER return MPProcessors(); #else return [[NSProcessInfo processInfo] activeProcessorCount]; #endif } uint32 juce_millisecondsSinceStartup() throw() { return (uint32) (mach_absolute_time() * highResTimerToMillisecRatio); } double Time::getMillisecondCounterHiRes() throw() { return mach_absolute_time() * highResTimerToMillisecRatio; } int64 Time::getHighResolutionTicks() throw() { return (int64) mach_absolute_time(); } int64 Time::getHighResolutionTicksPerSecond() throw() { return highResTimerFrequency; } int64 SystemStats::getClockCycleCounter() throw() { return (int64) mach_absolute_time(); } bool Time::setSystemTimeToThisTime() const throw() { jassertfalse return false; } int SystemStats::getPageSize() throw() { return NSPageSize(); } void PlatformUtilities::fpuReset() { } #endif /********* End of inlined file: juce_mac_SystemStats.mm *********/ /********* Start of inlined file: juce_mac_Network.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE int SystemStats::getMACAddresses (int64* addresses, int maxNum, const bool littleEndian) throw() { #ifndef IFT_ETHER #define IFT_ETHER 6 #endif ifaddrs* addrs = 0; int numResults = 0; if (getifaddrs (&addrs) == 0) { const ifaddrs* cursor = addrs; while (cursor != 0 && numResults < maxNum) { if (cursor->ifa_addr->sa_family == AF_LINK) { const sockaddr_dl* const sadd = (const sockaddr_dl*) cursor->ifa_addr; if (sadd->sdl_type == IFT_ETHER) { const uint8* const addr = ((const uint8*) sadd->sdl_data) + sadd->sdl_nlen; uint64 a = 0; for (int i = 6; --i >= 0;) a = (a << 8) | addr [littleEndian ? i : (5 - i)]; *addresses++ = (int64) a; ++numResults; } } cursor = cursor->ifa_next; } freeifaddrs (addrs); } return numResults; } bool PlatformUtilities::launchEmailWithAttachments (const String& targetEmailAddress, const String& emailSubject, const String& bodyText, const StringArray& filesToAttach) { #if JUCE_IPHONE //xxx probably need to use MFMailComposeViewController jassertfalse return false; #else const ScopedAutoReleasePool pool; String script; script << "tell application \"Mail\"\r\n" "set newMessage to make new outgoing message with properties {subject:\"" << emailSubject.replace (T("\""), T("\\\"")) << "\", content:\"" << bodyText.replace (T("\""), T("\\\"")) << "\" & return & return}\r\n" "tell newMessage\r\n" "set visible to true\r\n" "set sender to \"sdfsdfsdfewf\"\r\n" "make new to recipient at end of to recipients with properties {address:\"" << targetEmailAddress << "\"}\r\n"; for (int i = 0; i < filesToAttach.size(); ++i) { script << "tell content\r\n" "make new attachment with properties {file name:\"" << filesToAttach[i].replace (T("\""), T("\\\"")) << "\"} at after the last paragraph\r\n" "end tell\r\n"; } script << "end tell\r\n" "end tell\r\n"; NSAppleScript* s = [[NSAppleScript alloc] initWithSource: juceStringToNS (script)]; NSDictionary* error = 0; const bool ok = [s executeAndReturnError: &error] != nil; [s release]; return ok; #endif } END_JUCE_NAMESPACE using namespace JUCE_NAMESPACE; #define JuceURLConnection MakeObjCClassName(JuceURLConnection) @interface JuceURLConnection : NSObject { @public NSURLRequest* request; NSURLConnection* connection; NSMutableData* data; Thread* runLoopThread; bool initialised, hasFailed, hasFinished; int position; int64 contentLength; NSLock* dataLock; } - (JuceURLConnection*) initWithRequest: (NSURLRequest*) req withCallback: (URL::OpenStreamProgressCallback*) callback withContext: (void*) context; - (void) dealloc; - (void) connection: (NSURLConnection*) connection didReceiveResponse: (NSURLResponse*) response; - (void) connection: (NSURLConnection*) connection didFailWithError: (NSError*) error; - (void) connection: (NSURLConnection*) connection didReceiveData: (NSData*) data; - (void) connectionDidFinishLoading: (NSURLConnection*) connection; - (BOOL) isOpen; - (int) read: (char*) dest numBytes: (int) num; - (int) readPosition; - (void) stop; - (void) createConnection; @end class JuceURLConnectionMessageThread : public Thread { JuceURLConnection* owner; public: JuceURLConnectionMessageThread (JuceURLConnection* owner_) : Thread (T("http connection")), owner (owner_) { } ~JuceURLConnectionMessageThread() { stopThread (10000); } void run() { [owner createConnection]; while (! threadShouldExit()) { const ScopedAutoReleasePool pool; [[NSRunLoop currentRunLoop] runUntilDate: [NSDate dateWithTimeIntervalSinceNow: 0.01]]; } } }; @implementation JuceURLConnection - (JuceURLConnection*) initWithRequest: (NSURLRequest*) req withCallback: (URL::OpenStreamProgressCallback*) callback withContext: (void*) context; { [super init]; request = req; [request retain]; data = [[NSMutableData data] retain]; dataLock = [[NSLock alloc] init]; connection = 0; initialised = false; hasFailed = false; hasFinished = false; contentLength = -1; runLoopThread = new JuceURLConnectionMessageThread (self); runLoopThread->startThread(); while (runLoopThread->isThreadRunning() && ! initialised) { if (callback != 0) callback (context, -1, [[request HTTPBody] length]); Thread::sleep (1); } return self; } - (void) dealloc { [self stop]; delete runLoopThread; [connection release]; [data release]; [dataLock release]; [request release]; [super dealloc]; } - (void) createConnection { connection = [[NSURLConnection alloc] initWithRequest: request delegate: [self retain]]; if (connection == nil) runLoopThread->signalThreadShouldExit(); } - (void) connection: (NSURLConnection*) connection didReceiveResponse: (NSURLResponse*) response { [dataLock lock]; [data setLength: 0]; [dataLock unlock]; initialised = true; contentLength = [response expectedContentLength]; } - (void) connection: (NSURLConnection*) connection didFailWithError: (NSError*) error { DBG (nsStringToJuce ([error description])); hasFailed = true; initialised = true; runLoopThread->signalThreadShouldExit(); } - (void) connection: (NSURLConnection*) connection didReceiveData: (NSData*) newData { [dataLock lock]; [data appendData: newData]; [dataLock unlock]; initialised = true; } - (void) connectionDidFinishLoading: (NSURLConnection*) connection { hasFinished = true; initialised = true; runLoopThread->signalThreadShouldExit(); } - (BOOL) isOpen { return connection != 0 && ! hasFailed; } - (int) readPosition { return position; } - (int) read: (char*) dest numBytes: (int) numNeeded { int numDone = 0; while (numNeeded > 0) { int available = jmin (numNeeded, [data length]); if (available > 0) { [dataLock lock]; [data getBytes: dest length: available]; [data replaceBytesInRange: NSMakeRange (0, available) withBytes: nil length: 0]; [dataLock unlock]; numDone += available; numNeeded -= available; dest += available; } else { if (hasFailed || hasFinished) break; Thread::sleep (1); } } position += numDone; return numDone; } - (void) stop { [connection cancel]; runLoopThread->stopThread (10000); } @end BEGIN_JUCE_NAMESPACE bool juce_isOnLine() { return true; } void* juce_openInternetFile (const String& url, const String& headers, const MemoryBlock& postData, const bool isPost, URL::OpenStreamProgressCallback* callback, void* callbackContext, int timeOutMs) { const ScopedAutoReleasePool pool; NSMutableURLRequest* req = [NSMutableURLRequest requestWithURL: [NSURL URLWithString: juceStringToNS (url)] cachePolicy: NSURLRequestUseProtocolCachePolicy timeoutInterval: timeOutMs <= 0 ? 60.0 : (timeOutMs / 1000.0)]; if (req == nil) return 0; [req setHTTPMethod: isPost ? @"POST" : @"GET"]; //[req setCachePolicy: NSURLRequestReloadIgnoringLocalAndRemoteCacheData]; StringArray headerLines; headerLines.addLines (headers); headerLines.removeEmptyStrings (true); for (int i = 0; i < headerLines.size(); ++i) { const String key (headerLines[i].upToFirstOccurrenceOf (T(":"), false, false).trim()); const String value (headerLines[i].fromFirstOccurrenceOf (T(":"), false, false).trim()); if (key.isNotEmpty() && value.isNotEmpty()) [req addValue: juceStringToNS (value) forHTTPHeaderField: juceStringToNS (key)]; } if (isPost && postData.getSize() > 0) { [req setHTTPBody: [NSData dataWithBytes: postData.getData() length: postData.getSize()]]; } JuceURLConnection* const s = [[JuceURLConnection alloc] initWithRequest: req withCallback: callback withContext: callbackContext]; if ([s isOpen]) return s; [s release]; return 0; } void juce_closeInternetFile (void* handle) { JuceURLConnection* const s = (JuceURLConnection*) handle; if (s != 0) { const ScopedAutoReleasePool pool; [s stop]; [s release]; } } int juce_readFromInternetFile (void* handle, void* buffer, int bytesToRead) { JuceURLConnection* const s = (JuceURLConnection*) handle; if (s != 0) { const ScopedAutoReleasePool pool; return [s read: (char*) buffer numBytes: bytesToRead]; } return 0; } int64 juce_getInternetFileContentLength (void* handle) { JuceURLConnection* const s = (JuceURLConnection*) handle; if (s != 0) return s->contentLength; return -1; } int juce_seekInInternetFile (void* handle, int newPosition) { JuceURLConnection* const s = (JuceURLConnection*) handle; if (s != 0) return [s readPosition]; return 0; } #endif /********* End of inlined file: juce_mac_Network.mm *********/ /********* Start of inlined file: juce_posix_NamedPipe.cpp *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE struct NamedPipeInternal { String pipeInName, pipeOutName; int pipeIn, pipeOut; bool volatile createdPipe, blocked, stopReadOperation; static void signalHandler (int) {} }; void NamedPipe::cancelPendingReads() { while (internal != 0 && ((NamedPipeInternal*) internal)->blocked) { NamedPipeInternal* const intern = (NamedPipeInternal*) internal; intern->stopReadOperation = true; char buffer [1] = { 0 }; int bytesWritten = ::write (intern->pipeIn, buffer, 1); (void) bytesWritten; int timeout = 2000; while (intern->blocked && --timeout >= 0) Thread::sleep (2); intern->stopReadOperation = false; } } void NamedPipe::close() { NamedPipeInternal* const intern = (NamedPipeInternal*) internal; if (intern != 0) { internal = 0; if (intern->pipeIn != -1) ::close (intern->pipeIn); if (intern->pipeOut != -1) ::close (intern->pipeOut); if (intern->createdPipe) { unlink (intern->pipeInName); unlink (intern->pipeOutName); } delete intern; } } bool NamedPipe::openInternal (const String& pipeName, const bool createPipe) { close(); NamedPipeInternal* const intern = new NamedPipeInternal(); internal = intern; intern->createdPipe = createPipe; intern->blocked = false; intern->stopReadOperation = false; signal (SIGPIPE, NamedPipeInternal::signalHandler); siginterrupt (SIGPIPE, 1); const String pipePath (T("/tmp/") + File::createLegalFileName (pipeName)); intern->pipeInName = pipePath + T("_in"); intern->pipeOutName = pipePath + T("_out"); intern->pipeIn = -1; intern->pipeOut = -1; if (createPipe) { if ((mkfifo (intern->pipeInName, 0666) && errno != EEXIST) || (mkfifo (intern->pipeOutName, 0666) && errno != EEXIST)) { delete intern; internal = 0; return false; } } return true; } int NamedPipe::read (void* destBuffer, int maxBytesToRead, int /*timeOutMilliseconds*/) { int bytesRead = -1; NamedPipeInternal* const intern = (NamedPipeInternal*) internal; if (intern != 0) { intern->blocked = true; if (intern->pipeIn == -1) { if (intern->createdPipe) intern->pipeIn = ::open (intern->pipeInName, O_RDWR); else intern->pipeIn = ::open (intern->pipeOutName, O_RDWR); if (intern->pipeIn == -1) { intern->blocked = false; return -1; } } bytesRead = 0; char* p = (char*) destBuffer; while (bytesRead < maxBytesToRead) { const int bytesThisTime = maxBytesToRead - bytesRead; const int numRead = ::read (intern->pipeIn, p, bytesThisTime); if (numRead <= 0 || intern->stopReadOperation) { bytesRead = -1; break; } bytesRead += numRead; p += bytesRead; } intern->blocked = false; } return bytesRead; } int NamedPipe::write (const void* sourceBuffer, int numBytesToWrite, int timeOutMilliseconds) { int bytesWritten = -1; NamedPipeInternal* const intern = (NamedPipeInternal*) internal; if (intern != 0) { if (intern->pipeOut == -1) { if (intern->createdPipe) intern->pipeOut = ::open (intern->pipeOutName, O_WRONLY); else intern->pipeOut = ::open (intern->pipeInName, O_WRONLY); if (intern->pipeOut == -1) { return -1; } } const char* p = (const char*) sourceBuffer; bytesWritten = 0; const uint32 timeOutTime = Time::getMillisecondCounter() + timeOutMilliseconds; while (bytesWritten < numBytesToWrite && (timeOutMilliseconds < 0 || Time::getMillisecondCounter() < timeOutTime)) { const int bytesThisTime = numBytesToWrite - bytesWritten; const int numWritten = ::write (intern->pipeOut, p, bytesThisTime); if (numWritten <= 0) { bytesWritten = -1; break; } bytesWritten += numWritten; p += bytesWritten; } } return bytesWritten; } #endif /********* End of inlined file: juce_posix_NamedPipe.cpp *********/ /********* Start of inlined file: juce_mac_Threads.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE /* Note that a lot of methods that you'd expect to find in this file actually live in juce_posix_SharedCode.h! */ void JUCE_API juce_threadEntryPoint (void*); void* threadEntryProc (void* userData) throw() { const ScopedAutoReleasePool pool; juce_threadEntryPoint (userData); return 0; } void* juce_createThread (void* userData) throw() { pthread_t handle = 0; if (pthread_create (&handle, 0, threadEntryProc, userData) == 0) { pthread_detach (handle); return (void*) handle; } return 0; } void juce_killThread (void* handle) throw() { if (handle != 0) pthread_cancel ((pthread_t) handle); } void juce_setCurrentThreadName (const String& /*name*/) throw() { } Thread::ThreadID Thread::getCurrentThreadId() throw() { return (ThreadID) pthread_self(); } bool juce_setThreadPriority (void* handle, int priority) throw() { if (handle == 0) handle = (void*) pthread_self(); struct sched_param param; int policy; pthread_getschedparam ((pthread_t) handle, &policy, ¶m); param.sched_priority = jlimit (1, 127, 1 + (priority * 126) / 11); return pthread_setschedparam ((pthread_t) handle, policy, ¶m) == 0; } void Thread::yield() throw() { sched_yield(); } void Thread::setCurrentThreadAffinityMask (const uint32 affinityMask) throw() { // xxx jassertfalse } bool Process::isForegroundProcess() throw() { #if JUCE_MAC return [NSApp isActive]; #else return true; // xxx change this if more than one app is ever possible on the iPhone! #endif } void Process::raisePrivilege() { jassertfalse } void Process::lowerPrivilege() { jassertfalse } void Process::terminate() { exit (0); } void Process::setPriority (ProcessPriority p) { // xxx } #endif /********* End of inlined file: juce_mac_Threads.mm *********/ /********* Start of inlined file: juce_posix_SharedCode.h *********/ /* This file contains posix routines that are common to both the Linux and Mac builds. It gets included directly in the cpp files for these platforms. */ CriticalSection::CriticalSection() throw() { pthread_mutexattr_t atts; pthread_mutexattr_init (&atts); pthread_mutexattr_settype (&atts, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init (&internal, &atts); } CriticalSection::~CriticalSection() throw() { pthread_mutex_destroy (&internal); } void CriticalSection::enter() const throw() { pthread_mutex_lock (&internal); } bool CriticalSection::tryEnter() const throw() { return pthread_mutex_trylock (&internal) == 0; } void CriticalSection::exit() const throw() { pthread_mutex_unlock (&internal); } struct EventStruct { pthread_cond_t condition; pthread_mutex_t mutex; bool triggered; }; WaitableEvent::WaitableEvent() throw() { EventStruct* const es = new EventStruct(); es->triggered = false; pthread_cond_init (&es->condition, 0); pthread_mutex_init (&es->mutex, 0); internal = es; } WaitableEvent::~WaitableEvent() throw() { EventStruct* const es = (EventStruct*) internal; pthread_cond_destroy (&es->condition); pthread_mutex_destroy (&es->mutex); delete es; } bool WaitableEvent::wait (const int timeOutMillisecs) const throw() { EventStruct* const es = (EventStruct*) internal; bool ok = true; pthread_mutex_lock (&es->mutex); if (timeOutMillisecs < 0) { while (! es->triggered) pthread_cond_wait (&es->condition, &es->mutex); } else { while (! es->triggered) { struct timeval t; gettimeofday (&t, 0); struct timespec time; time.tv_sec = t.tv_sec + (timeOutMillisecs / 1000); time.tv_nsec = (t.tv_usec + ((timeOutMillisecs % 1000) * 1000)) * 1000; if (time.tv_nsec >= 1000000000) { time.tv_nsec -= 1000000000; time.tv_sec++; } if (pthread_cond_timedwait (&es->condition, &es->mutex, &time) == ETIMEDOUT) { ok = false; break; } } } es->triggered = false; pthread_mutex_unlock (&es->mutex); return ok; } void WaitableEvent::signal() const throw() { EventStruct* const es = (EventStruct*) internal; pthread_mutex_lock (&es->mutex); es->triggered = true; pthread_cond_broadcast (&es->condition); pthread_mutex_unlock (&es->mutex); } void WaitableEvent::reset() const throw() { EventStruct* const es = (EventStruct*) internal; pthread_mutex_lock (&es->mutex); es->triggered = false; pthread_mutex_unlock (&es->mutex); } void JUCE_CALLTYPE Thread::sleep (int millisecs) throw() { struct timespec time; time.tv_sec = millisecs / 1000; time.tv_nsec = (millisecs % 1000) * 1000000; nanosleep (&time, 0); } const tchar File::separator = T('/'); const tchar* File::separatorString = T("/"); bool juce_copyFile (const String& s, const String& d) throw(); static bool juce_stat (const String& fileName, struct stat& info) throw() { return fileName.isNotEmpty() && (stat (fileName.toUTF8(), &info) == 0); } bool juce_isDirectory (const String& fileName) throw() { struct stat info; return fileName.isEmpty() || (juce_stat (fileName, info) && ((info.st_mode & S_IFDIR) != 0)); } bool juce_fileExists (const String& fileName, const bool dontCountDirectories) throw() { if (fileName.isEmpty()) return false; const char* const fileNameUTF8 = fileName.toUTF8(); bool exists = access (fileNameUTF8, F_OK) == 0; if (exists && dontCountDirectories) { struct stat info; const int res = stat (fileNameUTF8, &info); if (res == 0 && (info.st_mode & S_IFDIR) != 0) exists = false; } return exists; } int64 juce_getFileSize (const String& fileName) throw() { struct stat info; return juce_stat (fileName, info) ? info.st_size : 0; } bool juce_canWriteToFile (const String& fileName) throw() { return access (fileName.toUTF8(), W_OK) == 0; } bool juce_deleteFile (const String& fileName) throw() { if (juce_isDirectory (fileName)) return rmdir ((const char*) fileName.toUTF8()) == 0; else return remove ((const char*) fileName.toUTF8()) == 0; } bool juce_moveFile (const String& source, const String& dest) throw() { if (rename (source.toUTF8(), dest.toUTF8()) == 0) return true; if (juce_canWriteToFile (source) && juce_copyFile (source, dest)) { if (juce_deleteFile (source)) return true; juce_deleteFile (dest); } return false; } void juce_createDirectory (const String& fileName) throw() { mkdir (fileName.toUTF8(), 0777); } void* juce_fileOpen (const String& fileName, bool forWriting) throw() { int flags = O_RDONLY; if (forWriting) { if (juce_fileExists (fileName, false)) { const int f = open ((const char*) fileName.toUTF8(), O_RDWR, 00644); if (f != -1) lseek (f, 0, SEEK_END); return (void*) f; } else { flags = O_RDWR + O_CREAT; } } return (void*) open ((const char*) fileName.toUTF8(), flags, 00644); } void juce_fileClose (void* handle) throw() { if (handle != 0) close ((int) (pointer_sized_int) handle); } int juce_fileRead (void* handle, void* buffer, int size) throw() { if (handle != 0) return read ((int) (pointer_sized_int) handle, buffer, size); return 0; } int juce_fileWrite (void* handle, const void* buffer, int size) throw() { if (handle != 0) return write ((int) (pointer_sized_int) handle, buffer, size); return 0; } int64 juce_fileSetPosition (void* handle, int64 pos) throw() { if (handle != 0 && lseek ((int) (pointer_sized_int) handle, pos, SEEK_SET) == pos) return pos; return -1; } int64 juce_fileGetPosition (void* handle) throw() { if (handle != 0) return lseek ((int) (pointer_sized_int) handle, 0, SEEK_CUR); else return -1; } void juce_fileFlush (void* handle) throw() { if (handle != 0) fsync ((int) (pointer_sized_int) handle); } const File juce_getExecutableFile() { Dl_info exeInfo; dladdr ((const void*) juce_getExecutableFile, &exeInfo); return File (exeInfo.dli_fname); } // if this file doesn't exist, find a parent of it that does.. static bool doStatFS (const File* file, struct statfs& result) throw() { File f (*file); for (int i = 5; --i >= 0;) { if (f.exists()) break; f = f.getParentDirectory(); } return statfs (f.getFullPathName().toUTF8(), &result) == 0; } int64 File::getBytesFreeOnVolume() const throw() { struct statfs buf; if (doStatFS (this, buf)) return (int64) buf.f_bsize * (int64) buf.f_bavail; // Note: this returns space available to non-super user return 0; } int64 File::getVolumeTotalSize() const throw() { struct statfs buf; if (doStatFS (this, buf)) return (int64) buf.f_bsize * (int64) buf.f_blocks; return 0; } const String juce_getVolumeLabel (const String& filenameOnVolume, int& volumeSerialNumber) throw() { volumeSerialNumber = 0; #if JUCE_MAC struct VolAttrBuf { u_int32_t length; attrreference_t mountPointRef; char mountPointSpace [MAXPATHLEN]; } attrBuf; struct attrlist attrList; zerostruct (attrList); attrList.bitmapcount = ATTR_BIT_MAP_COUNT; attrList.volattr = ATTR_VOL_INFO | ATTR_VOL_NAME; File f (filenameOnVolume); for (;;) { if (getattrlist ((const char*) f.getFullPathName().toUTF8(), &attrList, &attrBuf, sizeof(attrBuf), 0) == 0) { return String::fromUTF8 (((const uint8*) &attrBuf.mountPointRef) + attrBuf.mountPointRef.attr_dataoffset, (int) attrBuf.mountPointRef.attr_length); } const File parent (f.getParentDirectory()); if (f == parent) break; f = parent; } #endif return String::empty; } void juce_runSystemCommand (const String& command) { int result = system ((const char*) command.toUTF8()); (void) result; } const String juce_getOutputFromCommand (const String& command) { // slight bodge here, as we just pipe the output into a temp file and read it... const File tempFile (File::getSpecialLocation (File::tempDirectory) .getNonexistentChildFile (String::toHexString (Random::getSystemRandom().nextInt()), ".tmp", false)); juce_runSystemCommand (command + " > " + tempFile.getFullPathName()); String result (tempFile.loadFileAsString()); tempFile.deleteFile(); return result; } #if JUCE_64BIT #define filedesc ((long long) internal) #else #define filedesc ((int) internal) #endif InterProcessLock::InterProcessLock (const String& name_) throw() : internal (0), name (name_), reentrancyLevel (0) { #if JUCE_MAC // (don't use getSpecialLocation() to avoid the temp folder being different for each app) const File temp (File (T("~/Library/Caches/Juce")).getChildFile (name)); #else const File temp (File::getSpecialLocation (File::tempDirectory).getChildFile (name)); #endif temp.create(); internal = (void*) open (temp.getFullPathName().toUTF8(), O_RDWR); } InterProcessLock::~InterProcessLock() throw() { while (reentrancyLevel > 0) this->exit(); close (filedesc); } bool InterProcessLock::enter (const int timeOutMillisecs) throw() { if (internal == 0) return false; if (reentrancyLevel != 0) return true; const int64 endTime = Time::currentTimeMillis() + timeOutMillisecs; struct flock fl; zerostruct (fl); fl.l_whence = SEEK_SET; fl.l_type = F_WRLCK; for (;;) { const int result = fcntl (filedesc, F_SETLK, &fl); if (result >= 0) { ++reentrancyLevel; return true; } if (errno != EINTR) { if (timeOutMillisecs == 0 || (timeOutMillisecs > 0 && Time::currentTimeMillis() >= endTime)) break; Thread::sleep (10); } } return false; } void InterProcessLock::exit() throw() { if (reentrancyLevel > 0 && internal != 0) { --reentrancyLevel; struct flock fl; zerostruct (fl); fl.l_whence = SEEK_SET; fl.l_type = F_UNLCK; for (;;) { const int result = fcntl (filedesc, F_SETLKW, &fl); if (result >= 0 || errno != EINTR) break; } } } /********* End of inlined file: juce_posix_SharedCode.h *********/ /********* Start of inlined file: juce_mac_Files.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE /* Note that a lot of methods that you'd expect to find in this file actually live in juce_posix_SharedCode.h! */ void juce_getFileTimes (const String& fileName, int64& modificationTime, int64& accessTime, int64& creationTime) throw() { modificationTime = 0; accessTime = 0; creationTime = 0; struct stat info; const int res = stat (fileName.toUTF8(), &info); if (res == 0) { modificationTime = (int64) info.st_mtime * 1000; accessTime = (int64) info.st_atime * 1000; creationTime = (int64) info.st_ctime * 1000; } } bool juce_setFileTimes (const String& fileName, int64 modificationTime, int64 accessTime, int64 creationTime) throw() { struct utimbuf times; times.actime = (time_t) (accessTime / 1000); times.modtime = (time_t) (modificationTime / 1000); return utime (fileName.toUTF8(), ×) == 0; } bool juce_setFileReadOnly (const String& fileName, bool isReadOnly) throw() { struct stat info; const int res = stat (fileName.toUTF8(), &info); if (res != 0) return false; info.st_mode &= 0777; // Just permissions if (isReadOnly) info.st_mode &= ~(S_IWUSR | S_IWGRP | S_IWOTH); else // Give everybody write permission? info.st_mode |= S_IWUSR | S_IWGRP | S_IWOTH; return chmod (fileName.toUTF8(), info.st_mode) == 0; } bool juce_copyFile (const String& src, const String& dst) throw() { const ScopedAutoReleasePool pool; NSFileManager* fm = [NSFileManager defaultManager]; return [fm fileExistsAtPath: juceStringToNS (src)] #if defined (MAC_OS_X_VERSION_10_6) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6 && [fm copyItemAtPath: juceStringToNS (src) toPath: juceStringToNS (dst) error: nil]; #else && [fm copyPath: juceStringToNS (src) toPath: juceStringToNS (dst) handler: nil]; #endif } const StringArray juce_getFileSystemRoots() throw() { StringArray s; s.add (T("/")); return s; } static bool isFileOnDriveType (const File* const f, const char** types) throw() { struct statfs buf; if (doStatFS (f, buf)) { const String type (buf.f_fstypename); while (*types != 0) if (type.equalsIgnoreCase (*types++)) return true; } return false; } bool File::isOnCDRomDrive() const throw() { static const char* const cdTypes[] = { "cd9660", "cdfs", "cddafs", "udf", 0 }; return isFileOnDriveType (this, (const char**) cdTypes); } bool File::isOnHardDisk() const throw() { static const char* const nonHDTypes[] = { "nfs", "smbfs", "ramfs", 0 }; return ! (isOnCDRomDrive() || isFileOnDriveType (this, (const char**) nonHDTypes)); } bool File::isOnRemovableDrive() const throw() { #if JUCE_IPHONE return false; // xxx is this possible? #else const ScopedAutoReleasePool pool; BOOL removable = false; [[NSWorkspace sharedWorkspace] getFileSystemInfoForPath: juceStringToNS (getFullPathName()) isRemovable: &removable isWritable: nil isUnmountable: nil description: nil type: nil]; return removable; #endif } static bool juce_isHiddenFile (const String& path) throw() { #if JUCE_IPHONE return File (path).getFileName().startsWithChar (T('.')); #else FSRef ref; if (! PlatformUtilities::makeFSRefFromPath (&ref, path)) return false; FSCatalogInfo info; FSGetCatalogInfo (&ref, kFSCatInfoNodeFlags | kFSCatInfoFinderInfo, &info, 0, 0, 0); if ((info.nodeFlags & kFSNodeIsDirectoryBit) != 0) return (((FolderInfo*) &info.finderInfo)->finderFlags & kIsInvisible) != 0; return (((FileInfo*) &info.finderInfo)->finderFlags & kIsInvisible) != 0; #endif } bool File::isHidden() const throw() { return juce_isHiddenFile (getFullPathName()); } const File File::getSpecialLocation (const SpecialLocationType type) { const ScopedAutoReleasePool pool; String resultPath; switch (type) { case userHomeDirectory: resultPath = nsStringToJuce (NSHomeDirectory()); break; case userDocumentsDirectory: resultPath = "~/Documents"; break; case userDesktopDirectory: resultPath = "~/Desktop"; break; case userApplicationDataDirectory: resultPath = "~/Library"; break; case commonApplicationDataDirectory: resultPath = "/Library"; break; case globalApplicationsDirectory: resultPath = "/Applications"; break; case userMusicDirectory: resultPath = "~/Music"; break; case userMoviesDirectory: resultPath = "~/Movies"; break; case tempDirectory: { File tmp (T("~/Library/Caches/") + juce_getExecutableFile().getFileNameWithoutExtension()); tmp.createDirectory(); return tmp.getFullPathName(); } case currentExecutableFile: return juce_getExecutableFile(); case currentApplicationFile: { const File exe (juce_getExecutableFile()); const File parent (exe.getParentDirectory()); return parent.getFullPathName().endsWithIgnoreCase (T("Contents/MacOS")) ? parent.getParentDirectory().getParentDirectory() : exe; } default: jassertfalse // unknown type? break; } if (resultPath != 0) return File (PlatformUtilities::convertToPrecomposedUnicode (resultPath)); return File::nonexistent; } const File File::getCurrentWorkingDirectory() throw() { char buf [2048]; getcwd (buf, sizeof(buf)); return File (PlatformUtilities::convertToPrecomposedUnicode (buf)); } bool File::setAsCurrentWorkingDirectory() const throw() { return chdir (getFullPathName().toUTF8()) == 0; } const String File::getVersion() const throw() { const ScopedAutoReleasePool pool; String result; NSBundle* bundle = [NSBundle bundleWithPath: juceStringToNS (getFullPathName())]; if (bundle != 0) { NSDictionary* info = [bundle infoDictionary]; if (info != 0) { NSString* name = [info valueForKey: @"CFBundleShortVersionString"]; if (name != nil) result = nsStringToJuce (name); } } return result; } const File File::getLinkedTarget() const throw() { #if JUCE_IPHONE || (defined (MAC_OS_X_VERSION_10_5) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5) NSString* dest = [[NSFileManager defaultManager] destinationOfSymbolicLinkAtPath: juceStringToNS (getFullPathName()) error: nil]; #else NSString* dest = [[NSFileManager defaultManager] pathContentOfSymbolicLinkAtPath: juceStringToNS (getFullPathName())]; #endif if (dest != nil) return File (nsStringToJuce (dest)); return *this; } bool File::moveToTrash() const throw() { if (! exists()) return true; #if JUCE_IPHONE return deleteFile(); //xxx is there a trashcan on the iPhone? #else const ScopedAutoReleasePool pool; NSString* p = juceStringToNS (getFullPathName()); return [[NSWorkspace sharedWorkspace] performFileOperation: NSWorkspaceRecycleOperation source: [p stringByDeletingLastPathComponent] destination: @"" files: [NSArray arrayWithObject: [p lastPathComponent]] tag: nil ]; #endif } struct FindFileStruct { NSDirectoryEnumerator* enumerator; String parentDir, wildCard; }; bool juce_findFileNext (void* handle, String& resultFile, bool* isDir, bool* isHidden, int64* fileSize, Time* modTime, Time* creationTime, bool* isReadOnly) throw() { FindFileStruct* ff = (FindFileStruct*) handle; NSString* file; const char* const wildcardUTF8 = ff->wildCard.toUTF8(); for (;;) { if (ff == 0 || (file = [ff->enumerator nextObject]) == 0) return false; [ff->enumerator skipDescendents]; resultFile = nsStringToJuce (file); if (fnmatch (wildcardUTF8, resultFile.toUTF8(), FNM_CASEFOLD) != 0) continue; const String path (ff->parentDir + resultFile); if (isDir != 0 || fileSize != 0) { struct stat info; const bool statOk = juce_stat (path, info); if (isDir != 0) *isDir = statOk && ((info.st_mode & S_IFDIR) != 0); if (isHidden != 0) *isHidden = juce_isHiddenFile (path); if (fileSize != 0) *fileSize = statOk ? info.st_size : 0; } if (modTime != 0 || creationTime != 0) { int64 m, a, c; juce_getFileTimes (path, m, a, c); if (modTime != 0) *modTime = m; if (creationTime != 0) *creationTime = c; } if (isReadOnly != 0) *isReadOnly = ! juce_canWriteToFile (path); return true; } } void* juce_findFileStart (const String& directory, const String& wildCard, String& firstResultFile, bool* isDir, bool* isHidden, int64* fileSize, Time* modTime, Time* creationTime, bool* isReadOnly) throw() { NSDirectoryEnumerator* e = [[NSFileManager defaultManager] enumeratorAtPath: juceStringToNS (directory)]; if (e != 0) { FindFileStruct* ff = new FindFileStruct(); ff->enumerator = [e retain]; ff->parentDir = directory; ff->wildCard = wildCard; if (! ff->parentDir.endsWithChar (File::separator)) ff->parentDir += File::separator; if (juce_findFileNext (ff, firstResultFile, isDir, isHidden, fileSize, modTime, creationTime, isReadOnly)) return ff; [e release]; delete ff; } return 0; } void juce_findFileClose (void* handle) throw() { FindFileStruct* ff = (FindFileStruct*) handle; [ff->enumerator release]; delete ff; } bool juce_launchExecutable (const String& pathAndArguments) throw() { const char* const argv[4] = { "/bin/sh", "-c", (const char*) pathAndArguments, 0 }; const int cpid = fork(); if (cpid == 0) { // Child process if (execve (argv[0], (char**) argv, 0) < 0) exit (0); } else { if (cpid < 0) return false; } return true; } bool juce_launchFile (const String& fileName, const String& parameters) throw() { #if JUCE_IPHONE return [[UIApplication sharedApplication] openURL: [NSURL fileURLWithPath: juceStringToNS (fileName)]]; #else const ScopedAutoReleasePool pool; if (parameters.isEmpty()) { return [[NSWorkspace sharedWorkspace] openFile: juceStringToNS (fileName)] || [[NSWorkspace sharedWorkspace] openURL: [NSURL URLWithString: juceStringToNS (fileName)]]; } bool ok = false; FSRef ref; if (PlatformUtilities::makeFSRefFromPath (&ref, fileName)) { if (PlatformUtilities::isBundle (fileName)) { NSMutableArray* urls = [NSMutableArray array]; StringArray docs; docs.addTokens (parameters, true); for (int i = 0; i < docs.size(); ++i) [urls addObject: juceStringToNS (docs[i])]; ok = [[NSWorkspace sharedWorkspace] openURLs: urls withAppBundleIdentifier: [[NSBundle bundleWithPath: juceStringToNS (fileName)] bundleIdentifier] options: nil additionalEventParamDescriptor: nil launchIdentifiers: nil]; } else { ok = juce_launchExecutable (T("\"") + fileName + T("\" ") + parameters); } } return ok; #endif } #if ! JUCE_IPHONE bool PlatformUtilities::makeFSRefFromPath (FSRef* destFSRef, const String& path) { return FSPathMakeRef ((const UInt8*) path.toUTF8(), destFSRef, 0) == noErr; } const String PlatformUtilities::makePathFromFSRef (FSRef* file) { uint8 path [2048]; zeromem (path, sizeof (path)); String result; if (FSRefMakePath (file, (UInt8*) path, sizeof (path) - 1) == noErr) result = String::fromUTF8 (path); return PlatformUtilities::convertToPrecomposedUnicode (result); } #endif OSType PlatformUtilities::getTypeOfFile (const String& filename) { const ScopedAutoReleasePool pool; #if JUCE_IPHONE || (defined (MAC_OS_X_VERSION_10_5) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5) NSDictionary* fileDict = [[NSFileManager defaultManager] attributesOfItemAtPath: juceStringToNS (filename) error: nil]; #else NSDictionary* fileDict = [[NSFileManager defaultManager] fileAttributesAtPath: juceStringToNS (filename) traverseLink: NO]; #endif return (OSType) [fileDict objectForKey: NSFileHFSTypeCode]; } bool PlatformUtilities::isBundle (const String& filename) { #if JUCE_IPHONE return false; // xxx can't find a sensible way to do this without trying to open the bundle.. #else const ScopedAutoReleasePool pool; return [[NSWorkspace sharedWorkspace] isFilePackageAtPath: juceStringToNS (filename)]; #endif } #endif /********* End of inlined file: juce_mac_Files.mm *********/ #if JUCE_IPHONE /********* Start of inlined file: juce_iphone_MiscUtilities.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE static JUCEApplication* juce_intialisingApp; END_JUCE_NAMESPACE @interface JuceAppStartupDelegate : NSObject { } - (void) applicationDidFinishLaunching: (UIApplication*) application; - (void) applicationWillResignActive: (UIApplication*) application; @end @implementation JuceAppStartupDelegate - (void) applicationDidFinishLaunching: (UIApplication*) application { String dummy; if (! juce_intialisingApp->initialiseApp (dummy)) { // (should quit) } } - (void) applicationWillResignActive: (UIApplication*) application { JUCEApplication::shutdownAppAndClearUp(); } @end BEGIN_JUCE_NAMESPACE int juce_IPhoneMain (int argc, char* argv[], JUCEApplication* app) { juce_intialisingApp = app; return UIApplicationMain (argc, argv, nil, @"JuceAppStartupDelegate"); } ScopedAutoReleasePool::ScopedAutoReleasePool() { pool = [[NSAutoreleasePool alloc] init]; } ScopedAutoReleasePool::~ScopedAutoReleasePool() { [((NSAutoreleasePool*) pool) release]; } void PlatformUtilities::beep() { //xxx //AudioServicesPlaySystemSound (); } void PlatformUtilities::addItemToDock (const File& file) { } #if ! JUCE_ONLY_BUILD_CORE_LIBRARY bool AlertWindow::showNativeDialogBox (const String& title, const String& bodyText, bool isOkCancel) { const ScopedAutoReleasePool pool; UIAlertView *alert = [[[UIAlertView alloc] initWithTitle: juceStringToNS (title) message: juceStringToNS (title) delegate: nil cancelButtonTitle: @"OK" otherButtonTitles: (isOkCancel ? @"Cancel" : nil), nil] autorelease]; alert.cancelButtonIndex = alert.firstOtherButtonIndex; [alert show]; // xxx need to use a delegate to find which button was clicked return false; } bool DragAndDropContainer::performExternalDragDropOfFiles (const StringArray& files, const bool canMoveFiles) { jassertfalse // not implemented! return false; } bool DragAndDropContainer::performExternalDragDropOfText (const String& text) { jassertfalse // not implemented! return false; } bool Desktop::canUseSemiTransparentWindows() throw() { return true; } void Desktop::getMousePosition (int& x, int& y) throw() { x = 0; y = 0; } void Desktop::setMousePosition (int x, int y) throw() { } void Desktop::setScreenSaverEnabled (const bool isEnabled) throw() { [[UIApplication sharedApplication] setIdleTimerDisabled: ! isEnabled]; } bool Desktop::isScreenSaverEnabled() throw() { return ! [[UIApplication sharedApplication] isIdleTimerDisabled]; } void juce_updateMultiMonitorInfo (Array & monitorCoords, const bool clipToWorkArea) throw() { const ScopedAutoReleasePool pool; monitorCoords.clear(); CGRect r = clipToWorkArea ? [[UIScreen mainScreen] applicationFrame] : [[UIScreen mainScreen] bounds]; monitorCoords.add (Rectangle ((int) r.origin.x, (int) r.origin.y, (int) r.size.width, (int) r.size.height)); } #endif #endif /********* End of inlined file: juce_iphone_MiscUtilities.mm *********/ #else /********* Start of inlined file: juce_mac_MiscUtilities.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE ScopedAutoReleasePool::ScopedAutoReleasePool() { pool = [[NSAutoreleasePool alloc] init]; } ScopedAutoReleasePool::~ScopedAutoReleasePool() { [((NSAutoreleasePool*) pool) release]; } void PlatformUtilities::beep() { NSBeep(); } void PlatformUtilities::addItemToDock (const File& file) { // check that it's not already there... if (! juce_getOutputFromCommand ("defaults read com.apple.dock persistent-apps") .containsIgnoreCase (file.getFullPathName())) { juce_runSystemCommand ("defaults write com.apple.dock persistent-apps -array-add \"tile-datafile-data_CFURLString" + file.getFullPathName() + "_CFURLStringType0\""); juce_runSystemCommand ("osascript -e \"tell application \\\"Dock\\\" to quit\""); } } #if ! JUCE_ONLY_BUILD_CORE_LIBRARY bool AlertWindow::showNativeDialogBox (const String& title, const String& bodyText, bool isOkCancel) { const ScopedAutoReleasePool pool; return NSRunAlertPanel (juceStringToNS (title), juceStringToNS (bodyText), @"Ok", isOkCancel ? @"Cancel" : nil, nil) == NSAlertDefaultReturn; } bool DragAndDropContainer::performExternalDragDropOfFiles (const StringArray& files, const bool canMoveFiles) { if (files.size() == 0) return false; Component* sourceComp = Component::getComponentUnderMouse(); if (sourceComp == 0) { jassertfalse // this method must be called in response to a // component's mouseDrag event! return false; } const ScopedAutoReleasePool pool; NSView* view = (NSView*) sourceComp->getWindowHandle(); if (view == 0) return false; NSPasteboard* pboard = [NSPasteboard pasteboardWithName: NSDragPboard]; [pboard declareTypes: [NSArray arrayWithObject: NSFilenamesPboardType] owner: nil]; NSMutableArray* filesArray = [NSMutableArray arrayWithCapacity: 4]; for (int i = 0; i < files.size(); ++i) [filesArray addObject: juceStringToNS (files[i])]; [pboard setPropertyList: filesArray forType: NSFilenamesPboardType]; NSPoint dragPosition = [view convertPoint: [[[view window] currentEvent] locationInWindow] fromView: nil]; dragPosition.x -= 16; dragPosition.y -= 16; [view dragImage: [[NSWorkspace sharedWorkspace] iconForFile: juceStringToNS (files[0])] at: dragPosition offset: NSMakeSize (0, 0) event: [[view window] currentEvent] pasteboard: pboard source: view slideBack: YES]; return true; } bool DragAndDropContainer::performExternalDragDropOfText (const String& text) { jassertfalse // not implemented! return false; } bool Desktop::canUseSemiTransparentWindows() throw() { return true; } void Desktop::getMousePosition (int& x, int& y) throw() { const ScopedAutoReleasePool pool; const NSPoint p ([NSEvent mouseLocation]); x = roundFloatToInt (p.x); y = roundFloatToInt ([[[NSScreen screens] objectAtIndex: 0] frame].size.height - p.y); } void Desktop::setMousePosition (int x, int y) throw() { // this rubbish needs to be done around the warp call, to avoid causing a // bizarre glitch.. CGAssociateMouseAndMouseCursorPosition (false); #if (! defined (MAC_OS_X_VERSION_10_6)) || MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_6 CGSetLocalEventsSuppressionInterval (0); #endif CGPoint pos = { x, y }; CGWarpMouseCursorPosition (pos); CGAssociateMouseAndMouseCursorPosition (true); } #if MACOS_10_4_OR_EARLIER class ScreenSaverDefeater : public Timer, public DeletedAtShutdown { public: ScreenSaverDefeater() throw() { startTimer (10000); timerCallback(); } ~ScreenSaverDefeater() {} void timerCallback() { if (Process::isForegroundProcess()) UpdateSystemActivity (UsrActivity); } }; static ScreenSaverDefeater* screenSaverDefeater = 0; void Desktop::setScreenSaverEnabled (const bool isEnabled) throw() { if (isEnabled) { deleteAndZero (screenSaverDefeater); } else if (screenSaverDefeater == 0) { screenSaverDefeater = new ScreenSaverDefeater(); } } bool Desktop::isScreenSaverEnabled() throw() { return screenSaverDefeater == 0; } #else static IOPMAssertionID screenSaverDisablerID = 0; void Desktop::setScreenSaverEnabled (const bool isEnabled) throw() { if (isEnabled) { if (screenSaverDisablerID != 0) { IOPMAssertionRelease (screenSaverDisablerID); screenSaverDisablerID = 0; } } else { if (screenSaverDisablerID == 0) { #if defined (MAC_OS_X_VERSION_10_6) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6 IOPMAssertionCreateWithName (kIOPMAssertionTypeNoIdleSleep, kIOPMAssertionLevelOn, CFSTR ("Juce"), &screenSaverDisablerID); #else IOPMAssertionCreate (kIOPMAssertionTypeNoIdleSleep, kIOPMAssertionLevelOn, &screenSaverDisablerID); #endif } } } bool Desktop::isScreenSaverEnabled() throw() { return screenSaverDisablerID == 0; } #endif void juce_updateMultiMonitorInfo (Array & monitorCoords, const bool clipToWorkArea) throw() { const ScopedAutoReleasePool pool; monitorCoords.clear(); NSArray* screens = [NSScreen screens]; const float mainScreenBottom = [[[NSScreen screens] objectAtIndex: 0] frame].size.height; for (unsigned int i = 0; i < [screens count]; ++i) { NSScreen* s = (NSScreen*) [screens objectAtIndex: i]; NSRect r = clipToWorkArea ? [s visibleFrame] : [s frame]; monitorCoords.add (Rectangle ((int) r.origin.x, (int) (mainScreenBottom - (r.origin.y + r.size.height)), (int) r.size.width, (int) r.size.height)); } jassert (monitorCoords.size() > 0); } #endif #endif /********* End of inlined file: juce_mac_MiscUtilities.mm *********/ #endif /********* Start of inlined file: juce_mac_Debugging.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE void Logger::outputDebugString (const String& text) throw() { fputs (text.toUTF8(), stderr); fputs ("\n", stderr); } void Logger::outputDebugPrintf (const tchar* format, ...) throw() { String text; va_list args; va_start (args, format); text.vprintf (format, args); outputDebugString (text); } bool JUCE_CALLTYPE juce_isRunningUnderDebugger() throw() { static char testResult = 0; if (testResult == 0) { struct kinfo_proc info; int m[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, getpid() }; size_t sz = sizeof (info); sysctl (m, 4, &info, &sz, 0, 0); testResult = ((info.kp_proc.p_flag & P_TRACED) != 0) ? 1 : -1; } return testResult > 0; } bool JUCE_CALLTYPE Process::isRunningUnderDebugger() throw() { return juce_isRunningUnderDebugger(); } #endif /********* End of inlined file: juce_mac_Debugging.mm *********/ #if ! JUCE_ONLY_BUILD_CORE_LIBRARY #if JUCE_IPHONE /********* Start of inlined file: juce_iphone_UIViewComponentPeer.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE class UIViewComponentPeer; END_JUCE_NAMESPACE #define JuceUIView MakeObjCClassName(JuceUIView) @interface JuceUIView : UIView { @public UIViewComponentPeer* owner; } - (JuceUIView*) initWithOwner: (UIViewComponentPeer*) owner withFrame: (CGRect) frame; - (void) dealloc; - (void) drawRect: (CGRect) r; - (void) touchesBegan: (NSSet*) touches withEvent: (UIEvent*) event; - (void) touchesMoved: (NSSet*) touches withEvent: (UIEvent*) event; - (void) touchesEnded: (NSSet*) touches withEvent: (UIEvent*) event; - (void) touchesCancelled: (NSSet*) touches withEvent: (UIEvent*) event; - (BOOL) becomeFirstResponder; - (BOOL) resignFirstResponder; - (BOOL) canBecomeFirstResponder; @end #define JuceUIWindow MakeObjCClassName(JuceUIWindow) @interface JuceUIWindow : UIWindow { @private UIViewComponentPeer* owner; bool isZooming; } - (void) setOwner: (UIViewComponentPeer*) owner; - (void) becomeKeyWindow; @end BEGIN_JUCE_NAMESPACE class UIViewComponentPeer : public ComponentPeer { public: UIViewComponentPeer (Component* const component, const int windowStyleFlags, UIView* viewToAttachTo); ~UIViewComponentPeer(); void* getNativeHandle() const; void setVisible (bool shouldBeVisible); void setTitle (const String& title); void setPosition (int x, int y); void setSize (int w, int h); void setBounds (int x, int y, int w, int h, const bool isNowFullScreen); void getBounds (int& x, int& y, int& w, int& h, const bool global) const; void getBounds (int& x, int& y, int& w, int& h) const; int getScreenX() const; int getScreenY() const; void relativePositionToGlobal (int& x, int& y); void globalPositionToRelative (int& x, int& y); void setMinimised (bool shouldBeMinimised); bool isMinimised() const; void setFullScreen (bool shouldBeFullScreen); bool isFullScreen() const; bool contains (int x, int y, bool trueIfInAChildWindow) const; const BorderSize getFrameSize() const; bool setAlwaysOnTop (bool alwaysOnTop); void toFront (bool makeActiveWindow); void toBehind (ComponentPeer* other); void setIcon (const Image& newIcon); virtual void drawRect (CGRect r); virtual bool canBecomeKeyWindow(); virtual bool windowShouldClose(); virtual void redirectMovedOrResized(); virtual CGRect constrainRect (CGRect r); virtual void viewFocusGain(); virtual void viewFocusLoss(); bool isFocused() const; void grabFocus(); void textInputRequired (int x, int y); void repaint (int x, int y, int w, int h); void performAnyPendingRepaintsNow(); juce_UseDebuggingNewOperator UIWindow* window; JuceUIView* view; bool isSharedWindow, fullScreen; }; END_JUCE_NAMESPACE @implementation JuceUIView - (JuceUIView*) initWithOwner: (UIViewComponentPeer*) owner_ withFrame: (CGRect) frame { [super initWithFrame: frame]; owner = owner_; return self; } - (void) dealloc { [super dealloc]; } - (void) drawRect: (CGRect) r { if (owner != 0) owner->drawRect (r); } bool KeyPress::isKeyCurrentlyDown (const int keyCode) throw() { return false; } static int currentModifiers = 0; const ModifierKeys ModifierKeys::getCurrentModifiersRealtime() throw() { return ModifierKeys (currentModifiers); } void ModifierKeys::updateCurrentModifiers() throw() { currentModifierFlags = currentModifiers; } static int getModifierForButtonNumber (const int num) throw() { return num == 0 ? ModifierKeys::leftButtonModifier : (num == 1 ? ModifierKeys::rightButtonModifier : (num == 2 ? ModifierKeys::middleButtonModifier : 0)); } static int64 getMouseTime (UIEvent* e) { return (int64) [e timestamp] * 1000.0; } - (void) touchesBegan: (NSSet*) touches withEvent: (UIEvent*) event { NSArray* const t = [[event touchesForView: self] allObjects]; switch ([t count]) { case 1: // One finger.. { CGPoint p = [[t objectAtIndex: 0] locationInView: self]; currentModifiers |= getModifierForButtonNumber (0); owner->handleMouseDown (p.x, p.y, getMouseTime (event)); } default: //xxx multi-touch.. break; } } - (void) touchesMoved: (NSSet*) touches withEvent: (UIEvent*) event { NSArray* const t = [[event touchesForView: self] allObjects]; switch ([t count]) { case 1: // One finger.. { CGPoint p = [[t objectAtIndex: 0] locationInView: self]; owner->handleMouseDrag (p.x, p.y, getMouseTime (event)); } default: //xxx multi-touch.. break; } } - (void) touchesEnded: (NSSet*) touches withEvent: (UIEvent*) event { NSArray* const t = [[event touchesForView: self] allObjects]; switch ([t count]) { case 1: // One finger.. { CGPoint p = [[t objectAtIndex: 0] locationInView: self]; const int oldMods = currentModifiers; currentModifiers &= ~getModifierForButtonNumber (0); owner->handleMouseUp (oldMods, p.x, p.y, getMouseTime (event)); } default: //xxx multi-touch.. break; } } - (void) touchesCancelled: (NSSet*) touches withEvent: (UIEvent*) event { [self touchesEnded: touches withEvent: event]; } - (BOOL) becomeFirstResponder { if (owner != 0) owner->viewFocusGain(); return true; } - (BOOL) resignFirstResponder { if (owner != 0) owner->viewFocusLoss(); return true; } - (BOOL) canBecomeFirstResponder { return owner != 0 && owner->canBecomeKeyWindow(); } @end @implementation JuceUIWindow - (void) setOwner: (UIViewComponentPeer*) owner_ { owner = owner_; isZooming = false; } - (void) becomeKeyWindow { [super becomeKeyWindow]; if (owner != 0) owner->grabFocus(); } @end BEGIN_JUCE_NAMESPACE class JuceUIImage { public: JuceUIImage (const int width, const int height, const bool hasAlpha) : juceImage (hasAlpha ? Image::ARGB : Image::RGB, width, height, hasAlpha) { lineStride = 0; pixelStride = 0; imageData = juceImage.lockPixelDataReadWrite (0, 0, width, height, lineStride, pixelStride); CGDataProviderRef provider = CGDataProviderCreateWithData (0, imageData, lineStride * pixelStride, 0); imageRef = CGImageCreate (width, height, 8, pixelStride * 8, lineStride, CGColorSpaceCreateDeviceRGB(), hasAlpha ? (kCGImageAlphaFirst | kCGBitmapByteOrder32Little) : kCGBitmapByteOrderDefault, provider, 0, true, kCGRenderingIntentDefault); juceImage.releasePixelDataReadWrite (imageData); uiImage = [[UIImage imageWithCGImage: imageRef] retain]; } ~JuceUIImage() { [uiImage release]; CFRelease (imageRef); } Image& getJuceImage() throw() { return juceImage; } void draw (const float x, const float y) const { [uiImage drawAtPoint: CGPointMake (x, y) blendMode: kCGBlendModeCopy alpha: 1.0f]; } void drawUIImage (UIImage* imageToDraw) { const ScopedAutoReleasePool pool; jassertfalse /*[NSGraphicsContext saveGraphicsState]; [NSGraphicsContext setCurrentContext: [NSGraphicsContext graphicsContextWithBitmapImageRep: imageRep]]; [imageToDraw drawAtPoint: NSZeroPoint fromRect: NSMakeRect (0, 0, [imageToDraw size].width, [imageToDraw size].height) operation: NSCompositeSourceOver fraction: 1.0f]; [[NSGraphicsContext currentContext] flushGraphics]; [NSGraphicsContext restoreGraphicsState]; if (juceImage.hasAlphaChannel()) swapRGBOrder (0, 0, juceImage.getWidth(), juceImage.getHeight());*/ } private: Image juceImage; CGImageRef imageRef; CGDataProviderRef provider; UIImage* uiImage; uint8* imageData; int pixelStride, lineStride; /* void swapRGBOrder (const int x, const int y, const int w, int h) const { #if JUCE_BIG_ENDIAN jassert (pixelStride == 4); #endif jassert (Rectangle (0, 0, juceImage.getWidth(), juceImage.getHeight()) .contains (Rectangle (x, y, w, h))); uint8* start = imageData + x * pixelStride + y * lineStride; while (--h >= 0) { uint8* p = start; start += lineStride; for (int i = w; --i >= 0;) { #if JUCE_BIG_ENDIAN const uint8 oldp3 = p[3]; const uint8 oldp1 = p[1]; p[3] = p[0]; p[0] = oldp1; p[1] = p[2]; p[2] = oldp3; #else const uint8 oldp0 = p[0]; p[0] = p[2]; p[2] = oldp0; #endif p += pixelStride; } } }*/ }; UIViewComponentPeer::UIViewComponentPeer (Component* const component, const int windowStyleFlags, UIView* viewToAttachTo) : ComponentPeer (component, windowStyleFlags), window (0), view (0), isSharedWindow (viewToAttachTo != 0), fullScreen (false) { CGRect r; r.origin.x = 0; r.origin.y = 0; r.size.width = (float) component->getWidth(); r.size.height = (float) component->getHeight(); view = [[JuceUIView alloc] initWithOwner: this withFrame: r]; if (isSharedWindow) { window = [viewToAttachTo window]; [viewToAttachTo addSubview: view]; setVisible (component->isVisible()); } else { r.origin.x = (float) component->getX(); r.origin.y = (float) component->getY(); r.origin.y = [[UIScreen mainScreen] bounds].size.height - (r.origin.y + r.size.height); window = [[JuceUIWindow alloc] init]; window.frame = r; [((JuceUIWindow*) window) setOwner: this]; if (component->isAlwaysOnTop()) window.windowLevel = UIWindowLevelAlert; [window addSubview: view]; view.frame = CGRectMake (0, 0, r.size.width, r.size.height); } setTitle (component->getName()); } UIViewComponentPeer::~UIViewComponentPeer() { view->owner = 0; [view removeFromSuperview]; [view release]; if (! isSharedWindow) { [((JuceUIWindow*) window) setOwner: 0]; [window release]; } } void* UIViewComponentPeer::getNativeHandle() const { return view; } void UIViewComponentPeer::setVisible (bool shouldBeVisible) { view.hidden = ! shouldBeVisible; } void UIViewComponentPeer::setTitle (const String& title) { // xxx is this possible? } void UIViewComponentPeer::setPosition (int x, int y) { setBounds (x, y, component->getWidth(), component->getHeight(), false); } void UIViewComponentPeer::setSize (int w, int h) { setBounds (component->getX(), component->getY(), w, h, false); } void UIViewComponentPeer::setBounds (int x, int y, int w, int h, const bool isNowFullScreen) { fullScreen = isNowFullScreen; w = jmax (0, w); h = jmax (0, h); CGRect r; r.origin.x = (float) x; r.origin.y = (float) y; r.size.width = (float) w; r.size.height = (float) h; if (isSharedWindow) { //r.origin.y = [[view superview] frame].size.height - (r.origin.y + r.size.height); if ([view frame].size.width != r.size.width || [view frame].size.height != r.size.height) [view setNeedsDisplay]; view.frame = r; } else { //r.origin.y = [[UIScreen mainScreen] bounds].size.height - (r.origin.y + r.size.height); window.frame = r; view.frame = CGRectMake (0, 0, r.size.width, r.size.height); } } void UIViewComponentPeer::getBounds (int& x, int& y, int& w, int& h, const bool global) const { CGRect r = [view frame]; if (global && [view window] != 0) { r = [view convertRect: r toView: nil]; CGRect wr = [[view window] frame]; r.origin.x += wr.origin.x; r.origin.y += wr.origin.y; y = (int) ([[UIScreen mainScreen] bounds].size.height - r.origin.y - r.size.height); } else { y = (int) ([[view superview] frame].size.height - r.origin.y - r.size.height); } x = (int) r.origin.x; w = (int) r.size.width; h = (int) r.size.height; } void UIViewComponentPeer::getBounds (int& x, int& y, int& w, int& h) const { getBounds (x, y, w, h, ! isSharedWindow); } int UIViewComponentPeer::getScreenX() const { int x, y, w, h; getBounds (x, y, w, h, true); return x; } int UIViewComponentPeer::getScreenY() const { int x, y, w, h; getBounds (x, y, w, h, true); return y; } void UIViewComponentPeer::relativePositionToGlobal (int& x, int& y) { int wx, wy, ww, wh; getBounds (wx, wy, ww, wh, true); x += wx; y += wy; } void UIViewComponentPeer::globalPositionToRelative (int& x, int& y) { int wx, wy, ww, wh; getBounds (wx, wy, ww, wh, true); x -= wx; y -= wy; } CGRect UIViewComponentPeer::constrainRect (CGRect r) { if (constrainer != 0) { CGRect current = [window frame]; current.origin.y = [[UIScreen mainScreen] bounds].size.height - current.origin.y - current.size.height; r.origin.y = [[UIScreen mainScreen] bounds].size.height - r.origin.y - r.size.height; int x = (int) r.origin.x; int y = (int) r.origin.y; int w = (int) r.size.width; int h = (int) r.size.height; Rectangle original ((int) current.origin.x, (int) current.origin.y, (int) current.size.width, (int) current.size.height); constrainer->checkBounds (x, y, w, h, original, Desktop::getInstance().getAllMonitorDisplayAreas().getBounds(), y != original.getY() && y + h == original.getBottom(), x != original.getX() && x + w == original.getRight(), y == original.getY() && y + h != original.getBottom(), x == original.getX() && x + w != original.getRight()); r.origin.x = x; r.origin.y = [[UIScreen mainScreen] bounds].size.height - r.size.height - y; r.size.width = w; r.size.height = h; } return r; } void UIViewComponentPeer::setMinimised (bool shouldBeMinimised) { // xxx } bool UIViewComponentPeer::isMinimised() const { return false; } void UIViewComponentPeer::setFullScreen (bool shouldBeFullScreen) { if (! isSharedWindow) { Rectangle r (lastNonFullscreenBounds); setMinimised (false); if (fullScreen != shouldBeFullScreen) { if (shouldBeFullScreen) r = Desktop::getInstance().getMainMonitorArea(); // (can't call the component's setBounds method because that'll reset our fullscreen flag) if (r != getComponent()->getBounds() && ! r.isEmpty()) setBounds (r.getX(), r.getY(), r.getWidth(), r.getHeight(), shouldBeFullScreen); } } } bool UIViewComponentPeer::isFullScreen() const { return fullScreen; } bool UIViewComponentPeer::contains (int x, int y, bool trueIfInAChildWindow) const { if (((unsigned int) x) >= (unsigned int) component->getWidth() || ((unsigned int) y) >= (unsigned int) component->getHeight()) return false; CGPoint p; p.x = (float) x; p.y = (float) y; UIView* v = [view hitTest: p withEvent: nil]; if (trueIfInAChildWindow) return v != nil; return v == view; } const BorderSize UIViewComponentPeer::getFrameSize() const { BorderSize b; if (! isSharedWindow) { CGRect v = [view convertRect: [view frame] toView: nil]; CGRect w = [window frame]; b.setTop ((int) (w.size.height - (v.origin.y + v.size.height))); b.setBottom ((int) v.origin.y); b.setLeft ((int) v.origin.x); b.setRight ((int) (w.size.width - (v.origin.x + v.size.width))); } return b; } bool UIViewComponentPeer::setAlwaysOnTop (bool alwaysOnTop) { if (! isSharedWindow) window.windowLevel = alwaysOnTop ? UIWindowLevelAlert : UIWindowLevelNormal; return true; } void UIViewComponentPeer::toFront (bool makeActiveWindow) { if (isSharedWindow) [[view superview] bringSubviewToFront: view]; if (window != 0 && component->isVisible()) [window makeKeyAndVisible]; } void UIViewComponentPeer::toBehind (ComponentPeer* other) { UIViewComponentPeer* o = (UIViewComponentPeer*) other; if (isSharedWindow) { [[view superview] insertSubview: view belowSubview: o->view]; } else { jassertfalse // don't know how to do this } } void UIViewComponentPeer::setIcon (const Image& /*newIcon*/) { // to do.. } static UIViewComponentPeer* currentlyFocusedPeer = 0; void UIViewComponentPeer::viewFocusGain() { if (currentlyFocusedPeer != this) { if (ComponentPeer::isValidPeer (currentlyFocusedPeer)) currentlyFocusedPeer->handleFocusLoss(); currentlyFocusedPeer = this; handleFocusGain(); } } void UIViewComponentPeer::viewFocusLoss() { if (currentlyFocusedPeer == this) { currentlyFocusedPeer = 0; handleFocusLoss(); } } void juce_HandleProcessFocusChange() { if (UIViewComponentPeer::isValidPeer (currentlyFocusedPeer)) { if (Process::isForegroundProcess()) { currentlyFocusedPeer->handleFocusGain(); ComponentPeer::bringModalComponentToFront(); } else { currentlyFocusedPeer->handleFocusLoss(); // turn kiosk mode off if we lose focus.. Desktop::getInstance().setKioskModeComponent (0); } } } bool UIViewComponentPeer::isFocused() const { return isSharedWindow ? this == currentlyFocusedPeer : (window != 0 && [window isKeyWindow]); } void UIViewComponentPeer::grabFocus() { if (window != 0) { [window makeKeyWindow]; viewFocusGain(); } } void UIViewComponentPeer::textInputRequired (int /*x*/, int /*y*/) { } void UIViewComponentPeer::drawRect (CGRect r) { if (r.size.width < 1.0f || r.size.height < 1.0f) return; DBG (Rectangle (r.origin.x, r.origin.y, r.size.width, r.size.height).toString()); const float y = r.origin.y;//[view frame].size.height - (r.origin.y + r.size.height); JuceUIImage temp ((int) (r.size.width + 0.5f), (int) (r.size.height + 0.5f), true);//! getComponent()->isOpaque()); LowLevelGraphicsSoftwareRenderer context (temp.getJuceImage()); const int originX = -roundFloatToInt (r.origin.x); const int originY = -roundFloatToInt (y); context.setOrigin (originX, originY); handlePaint (context); //CGContextClipToRect (UIGraphicsGetCurrentContext(), r); temp.draw (r.origin.x, r.origin.y); } bool UIViewComponentPeer::canBecomeKeyWindow() { return (getStyleFlags() & juce::ComponentPeer::windowIgnoresKeyPresses) == 0; } bool UIViewComponentPeer::windowShouldClose() { if (! isValidPeer (this)) return YES; handleUserClosingWindow(); return NO; } void UIViewComponentPeer::redirectMovedOrResized() { handleMovedOrResized(); } void juce_setKioskComponent (Component* kioskModeComponent, bool enableOrDisable, bool allowMenusAndBars) { } void UIViewComponentPeer::repaint (int x, int y, int w, int h) { [view setNeedsDisplayInRect: CGRectMake ((float) x, (float) y,//([view frame].size.height - (y + h)), (float) w, (float) h)]; } void UIViewComponentPeer::performAnyPendingRepaintsNow() { } ComponentPeer* Component::createNewPeer (int styleFlags, void* windowToAttachTo) { return new UIViewComponentPeer (this, styleFlags, (UIView*) windowToAttachTo); } static Image* UIImageToJuceImage (UIImage* image) { JuceUIImage juceIm ((int) [image size].width, (int) [image size].height, true); juceIm.drawUIImage (image); return juceIm.getJuceImage().createCopy(); } Image* juce_createIconForFile (const File& file) { return 0; } const int KeyPress::spaceKey = ' '; const int KeyPress::returnKey = 0x0d; const int KeyPress::escapeKey = 0x1b; const int KeyPress::backspaceKey = 0x7f; const int KeyPress::leftKey = 0x1000; const int KeyPress::rightKey = 0x1001; const int KeyPress::upKey = 0x1002; const int KeyPress::downKey = 0x1003; const int KeyPress::pageUpKey = 0x1004; const int KeyPress::pageDownKey = 0x1005; const int KeyPress::endKey = 0x1006; const int KeyPress::homeKey = 0x1007; const int KeyPress::deleteKey = 0x1008; const int KeyPress::insertKey = -1; const int KeyPress::tabKey = 9; const int KeyPress::F1Key = 0x2001; const int KeyPress::F2Key = 0x2002; const int KeyPress::F3Key = 0x2003; const int KeyPress::F4Key = 0x2004; const int KeyPress::F5Key = 0x2005; const int KeyPress::F6Key = 0x2006; const int KeyPress::F7Key = 0x2007; const int KeyPress::F8Key = 0x2008; const int KeyPress::F9Key = 0x2009; const int KeyPress::F10Key = 0x200a; const int KeyPress::F11Key = 0x200b; const int KeyPress::F12Key = 0x200c; const int KeyPress::F13Key = 0x200d; const int KeyPress::F14Key = 0x200e; const int KeyPress::F15Key = 0x200f; const int KeyPress::F16Key = 0x2010; const int KeyPress::numberPad0 = 0x30020; const int KeyPress::numberPad1 = 0x30021; const int KeyPress::numberPad2 = 0x30022; const int KeyPress::numberPad3 = 0x30023; const int KeyPress::numberPad4 = 0x30024; const int KeyPress::numberPad5 = 0x30025; const int KeyPress::numberPad6 = 0x30026; const int KeyPress::numberPad7 = 0x30027; const int KeyPress::numberPad8 = 0x30028; const int KeyPress::numberPad9 = 0x30029; const int KeyPress::numberPadAdd = 0x3002a; const int KeyPress::numberPadSubtract = 0x3002b; const int KeyPress::numberPadMultiply = 0x3002c; const int KeyPress::numberPadDivide = 0x3002d; const int KeyPress::numberPadSeparator = 0x3002e; const int KeyPress::numberPadDecimalPoint = 0x3002f; const int KeyPress::numberPadEquals = 0x30030; const int KeyPress::numberPadDelete = 0x30031; const int KeyPress::playKey = 0x30000; const int KeyPress::stopKey = 0x30001; const int KeyPress::fastForwardKey = 0x30002; const int KeyPress::rewindKey = 0x30003; #endif /********* End of inlined file: juce_iphone_UIViewComponentPeer.mm *********/ /********* Start of inlined file: juce_iphone_Fonts.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE class FontHelper { UIFont* font; public: String name; bool isBold, isItalic, needsItalicTransform; float fontSize, totalSize, ascent; int refCount; FontHelper (const String& name_, const bool bold_, const bool italic_, const float size_) : font (0), name (name_), isBold (bold_), isItalic (italic_), needsItalicTransform (false), fontSize (size_), refCount (1) { //attributes = [[NSMutableDictionary dictionaryWithObject: [NSNumber numberWithInt: 0] // forKey: NSLigatureAttributeName] retain]; font = [UIFont fontWithName: juceStringToNS (name_) size: size_]; if (italic_) { /* NSFont* newFont = [[NSFontManager sharedFontManager] convertFont: font toHaveTrait: NSItalicFontMask]; if (newFont == font) needsItalicTransform = true; // couldn't find a proper italic version, so fake it with a transform.. font = newFont;*/ } // if (bold_) // font = [[NSFontManager sharedFontManager] convertFont: font toHaveTrait: NSBoldFontMask]; [font retain]; ascent = fabsf (font.ascender); totalSize = ascent + fabsf (font.descender); } ~FontHelper() { [font release]; } bool getPathAndKerning (const juce_wchar char1, const juce_wchar char2, Path* path, float& kerning, float* ascent, float* descent) { const ScopedAutoReleasePool pool; return false; /* if (font == 0 || ! [[font coveredCharacterSet] longCharacterIsMember: (UTF32Char) char1]) return false; String chars; chars << ' ' << char1 << char2; NSTextStorage* textStorage = [[[NSTextStorage alloc] initWithString: juceStringToNS (chars) attributes: attributes] autorelease]; NSLayoutManager* layoutManager = [[[NSLayoutManager alloc] init] autorelease]; NSTextContainer* textContainer = [[[NSTextContainer alloc] init] autorelease]; [layoutManager addTextContainer: textContainer]; [textStorage addLayoutManager: layoutManager]; [textStorage setFont: font]; unsigned int glyphIndex = [layoutManager glyphRangeForCharacterRange: NSMakeRange (1, 1) actualCharacterRange: 0].location; NSPoint p1 = [layoutManager locationForGlyphAtIndex: glyphIndex]; NSPoint p2 = [layoutManager locationForGlyphAtIndex: glyphIndex + 1]; kerning = p2.x - p1.x; if (ascent != 0) *ascent = this->ascent; if (descent != 0) *descent = fabsf ([font descender]); if (path != 0) { NSBezierPath* bez = [NSBezierPath bezierPath]; [bez moveToPoint: NSMakePoint (0, 0)]; [bez appendBezierPathWithGlyph: [layoutManager glyphAtIndex: glyphIndex] inFont: font]; for (int i = 0; i < [bez elementCount]; ++i) { NSPoint p[3]; switch ([bez elementAtIndex: i associatedPoints: p]) { case NSMoveToBezierPathElement: path->startNewSubPath (p[0].x, -p[0].y); break; case NSLineToBezierPathElement: path->lineTo (p[0].x, -p[0].y); break; case NSCurveToBezierPathElement: path->cubicTo (p[0].x, -p[0].y, p[1].x, -p[1].y, p[2].x, -p[2].y); break; case NSClosePathBezierPathElement: path->closeSubPath(); break; default: jassertfalse break; } } if (needsItalicTransform) path->applyTransform (AffineTransform::identity.sheared (-0.15, 0)); } return kerning != 0;*/ } juce_wchar getDefaultChar() { return 0; } }; class FontHelperCache : public Timer, public DeletedAtShutdown { VoidArray cache; public: FontHelperCache() { } ~FontHelperCache() { for (int i = cache.size(); --i >= 0;) { FontHelper* const f = (FontHelper*) cache.getUnchecked(i); delete f; } clearSingletonInstance(); } FontHelper* getFont (const String& name, const bool bold, const bool italic, const float size = 1024) { for (int i = cache.size(); --i >= 0;) { FontHelper* const f = (FontHelper*) cache.getUnchecked(i); if (f->name == name && f->isBold == bold && f->isItalic == italic && f->fontSize == size) { f->refCount++; return f; } } FontHelper* const f = new FontHelper (name, bold, italic, size); cache.add (f); return f; } void releaseFont (FontHelper* f) { for (int i = cache.size(); --i >= 0;) { FontHelper* const f2 = (FontHelper*) cache.getUnchecked(i); if (f == f2) { f->refCount--; if (f->refCount == 0) startTimer (5000); break; } } } void timerCallback() { stopTimer(); for (int i = cache.size(); --i >= 0;) { FontHelper* const f = (FontHelper*) cache.getUnchecked(i); if (f->refCount == 0) { cache.remove (i); delete f; } } if (cache.size() == 0) delete this; } juce_DeclareSingleton_SingleThreaded_Minimal (FontHelperCache) }; juce_ImplementSingleton_SingleThreaded (FontHelperCache) void Typeface::initialiseTypefaceCharacteristics (const String& fontName, bool bold, bool italic, bool addAllGlyphsToFont) throw() { // This method is only safe to be called from the normal UI thread.. jassert (MessageManager::getInstance()->isThisTheMessageThread()); FontHelper* const helper = FontHelperCache::getInstance() ->getFont (fontName, bold, italic); clear(); setAscent (helper->ascent / helper->totalSize); setName (fontName); setDefaultCharacter (helper->getDefaultChar()); setBold (bold); setItalic (italic); if (addAllGlyphsToFont) { //xxx jassertfalse } FontHelperCache::getInstance()->releaseFont (helper); } bool Typeface::findAndAddSystemGlyph (juce_wchar character) throw() { // This method is only safe to be called from the normal UI thread.. jassert (MessageManager::getInstance()->isThisTheMessageThread()); if (character == 0) return false; FontHelper* const helper = FontHelperCache::getInstance() ->getFont (getName(), isBold(), isItalic()); Path path; float width; bool foundOne = false; if (helper->getPathAndKerning (character, T('I'), &path, width, 0, 0)) { path.applyTransform (AffineTransform::scale (1.0f / helper->totalSize, 1.0f / helper->totalSize)); addGlyph (character, path, width / helper->totalSize); for (int i = 0; i < glyphs.size(); ++i) { const TypefaceGlyphInfo* const g = (const TypefaceGlyphInfo*) glyphs.getUnchecked(i); float kerning; if (helper->getPathAndKerning (character, g->getCharacter(), 0, kerning, 0, 0)) { kerning = (kerning - width) / helper->totalSize; if (kerning != 0) addKerningPair (character, g->getCharacter(), kerning); } if (helper->getPathAndKerning (g->getCharacter(), character, 0, kerning, 0, 0)) { kerning = kerning / helper->totalSize - g->width; if (kerning != 0) addKerningPair (g->getCharacter(), character, kerning); } } foundOne = true; } FontHelperCache::getInstance()->releaseFont (helper); return foundOne; } const StringArray Font::findAllTypefaceNames() throw() { StringArray names; const ScopedAutoReleasePool pool; NSArray* fonts = [UIFont familyNames]; for (unsigned int i = 0; i < [fonts count]; ++i) names.add (nsStringToJuce ((NSString*) [fonts objectAtIndex: i])); names.sort (true); return names; } void Typeface::getDefaultFontNames (String& defaultSans, String& defaultSerif, String& defaultFixed) throw() { defaultSans = "Lucida Grande"; defaultSerif = "Times New Roman"; defaultFixed = "Monaco"; } #endif /********* End of inlined file: juce_iphone_Fonts.mm *********/ /********* Start of inlined file: juce_iphone_MessageManager.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE struct CallbackMessagePayload { MessageCallbackFunction* function; void* parameter; void* volatile result; bool volatile hasBeenExecuted; }; /* When you use multiple DLLs which share similarly-named obj-c classes - like for example having more than one juce plugin loaded into a host, then when a method is called, the actual code that runs might actually be in a different module than the one you expect... So any calls to library functions or statics that are made inside obj-c methods will probably end up getting executed in a different DLL's memory space. Not a great thing to happen - this obviously leads to bizarre crashes. To work around this insanity, I'm only allowing obj-c methods to make calls to virtual methods of an object that's known to live inside the right module's space. */ class AppDelegateRedirector { public: AppDelegateRedirector() {} virtual ~AppDelegateRedirector() {} virtual BOOL openFile (const NSString* filename) { if (JUCEApplication::getInstance() != 0) { JUCEApplication::getInstance()->anotherInstanceStarted (nsStringToJuce (filename)); return YES; } return NO; } virtual void openFiles (NSArray* filenames) { StringArray files; for (unsigned int i = 0; i < [filenames count]; ++i) files.add (nsStringToJuce ((NSString*) [filenames objectAtIndex: i])); if (files.size() > 0 && JUCEApplication::getInstance() != 0) { JUCEApplication::getInstance()->anotherInstanceStarted (files.joinIntoString (T(" "))); } } virtual void focusChanged() { juce_HandleProcessFocusChange(); } virtual void deliverMessage (void* message) { // no need for an mm lock here - deliverMessage locks it MessageManager::getInstance()->deliverMessage (message); } virtual void performCallback (CallbackMessagePayload* pl) { pl->result = (*pl->function) (pl->parameter); pl->hasBeenExecuted = true; } virtual void deleteSelf() { delete this; } }; END_JUCE_NAMESPACE using namespace JUCE_NAMESPACE; #define JuceAppDelegate MakeObjCClassName(JuceAppDelegate) static int numPendingMessages = 0; @interface JuceAppDelegate : NSObject { @private id oldDelegate; AppDelegateRedirector* redirector; @public bool flushingMessages; } - (JuceAppDelegate*) init; - (void) dealloc; - (BOOL) application: (UIApplication*) application handleOpenURL: (NSURL*) url; - (void) applicationDidBecomeActive: (NSNotification*) aNotification; - (void) applicationDidResignActive: (NSNotification*) aNotification; - (void) applicationWillUnhide: (NSNotification*) aNotification; - (void) customEvent: (id) data; - (void) performCallback: (id) info; - (void) dummyMethod; @end @implementation JuceAppDelegate - (JuceAppDelegate*) init { [super init]; redirector = new AppDelegateRedirector(); numPendingMessages = 0; flushingMessages = false; oldDelegate = [[UIApplication sharedApplication] delegate]; [[UIApplication sharedApplication] setDelegate: self]; return self; } - (void) dealloc { if (oldDelegate != 0) [[UIApplication sharedApplication] setDelegate: oldDelegate]; redirector->deleteSelf(); [super dealloc]; } - (BOOL) application: (UIApplication*) application handleOpenURL: (NSURL*) url { return redirector->openFile ([url absoluteString]); } - (void) applicationDidBecomeActive: (NSNotification*) aNotification { redirector->focusChanged(); } - (void) applicationDidResignActive: (NSNotification*) aNotification { redirector->focusChanged(); } - (void) applicationWillUnhide: (NSNotification*) aNotification { redirector->focusChanged(); } - (void) customEvent: (id) n { atomicDecrement (numPendingMessages); NSData* data = (NSData*) n; void* message = 0; [data getBytes: &message length: sizeof (message)]; [data release]; if (message != 0 && ! flushingMessages) redirector->deliverMessage (message); } - (void) performCallback: (id) info { if ([info isKindOfClass: [NSData class]]) { CallbackMessagePayload* pl = (CallbackMessagePayload*) [((NSData*) info) bytes]; if (pl != 0) redirector->performCallback (pl); } else { jassertfalse // should never get here! } } - (void) dummyMethod {} // (used as a way of running a dummy thread) @end BEGIN_JUCE_NAMESPACE static JuceAppDelegate* juceAppDelegate = 0; void MessageManager::runDispatchLoop() { jassert (isThisTheMessageThread()); // must only be called by the message thread runDispatchLoopUntil (-1); } static const int quitMessageId = 0xfffff321; void MessageManager::stopDispatchLoop() { Message* const m = new Message (quitMessageId, 0, 0, 0); m->messageRecipient = 0; postMessageToQueue (m); quitMessagePosted = true; } bool MessageManager::runDispatchLoopUntil (int millisecondsToRunFor) { const ScopedAutoReleasePool pool; jassert (isThisTheMessageThread()); // must only be called by the message thread uint32 endTime = Time::getMillisecondCounter() + millisecondsToRunFor; NSDate* endDate = [NSDate dateWithTimeIntervalSinceNow: millisecondsToRunFor * 0.001]; while (! quitMessagePosted) { const ScopedAutoReleasePool pool; [[NSRunLoop currentRunLoop] runMode: NSDefaultRunLoopMode beforeDate: endDate]; if (millisecondsToRunFor >= 0 && Time::getMillisecondCounter() >= endTime) break; } return ! quitMessagePosted; } void MessageManager::doPlatformSpecificInitialisation() { if (juceAppDelegate == 0) juceAppDelegate = [[JuceAppDelegate alloc] init]; } void MessageManager::doPlatformSpecificShutdown() { if (juceAppDelegate != 0) { [[NSRunLoop currentRunLoop] cancelPerformSelectorsWithTarget: juceAppDelegate]; [[NSNotificationCenter defaultCenter] removeObserver: juceAppDelegate]; // Annoyingly, cancelPerformSelectorsWithTarget can't actually cancel the messages // sent by performSelectorOnMainThread, so need to manually flush these before quitting.. juceAppDelegate->flushingMessages = true; for (int i = 100; --i >= 0 && numPendingMessages > 0;) { const ScopedAutoReleasePool pool; [[NSRunLoop currentRunLoop] runMode: NSDefaultRunLoopMode beforeDate: [NSDate dateWithTimeIntervalSinceNow: 5 * 0.001]]; } [juceAppDelegate release]; juceAppDelegate = 0; } } bool juce_postMessageToSystemQueue (void* message) { atomicIncrement (numPendingMessages); [juceAppDelegate performSelectorOnMainThread: @selector (customEvent:) withObject: (id) [[NSData alloc] initWithBytes: &message length: (int) sizeof (message)] waitUntilDone: NO]; return true; } void MessageManager::broadcastMessage (const String& value) throw() { } void* MessageManager::callFunctionOnMessageThread (MessageCallbackFunction* callback, void* data) { if (isThisTheMessageThread()) { return (*callback) (data); } else { // If a thread has a MessageManagerLock and then tries to call this method, it'll // deadlock because the message manager is blocked from running, so can never // call your function.. jassert (! MessageManager::getInstance()->currentThreadHasLockedMessageManager()); const ScopedAutoReleasePool pool; CallbackMessagePayload cmp; cmp.function = callback; cmp.parameter = data; cmp.result = 0; cmp.hasBeenExecuted = false; [juceAppDelegate performSelectorOnMainThread: @selector (performCallback:) withObject: [NSData dataWithBytesNoCopy: &cmp length: sizeof (cmp) freeWhenDone: NO] waitUntilDone: YES]; return cmp.result; } } #endif /********* End of inlined file: juce_iphone_MessageManager.mm *********/ /********* Start of inlined file: juce_mac_FileChooser.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE #if JUCE_MAC END_JUCE_NAMESPACE using namespace JUCE_NAMESPACE; #define JuceFileChooserDelegate MakeObjCClassName(JuceFileChooserDelegate) #if defined (MAC_OS_X_VERSION_10_6) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6 @interface JuceFileChooserDelegate : NSObject #else @interface JuceFileChooserDelegate : NSObject #endif { StringArray* filters; } - (JuceFileChooserDelegate*) initWithFilters: (StringArray*) filters_; - (void) dealloc; - (BOOL) panel: (id) sender shouldShowFilename: (NSString*) filename; @end @implementation JuceFileChooserDelegate - (JuceFileChooserDelegate*) initWithFilters: (StringArray*) filters_ { [super init]; filters = filters_; return self; } - (void) dealloc { delete filters; [super dealloc]; } - (BOOL) panel: (id) sender shouldShowFilename: (NSString*) filename { const String fname (nsStringToJuce (filename)); for (int i = filters->size(); --i >= 0;) if (fname.matchesWildcard ((*filters)[i], true)) return true; return File (fname).isDirectory(); } @end BEGIN_JUCE_NAMESPACE void FileChooser::showPlatformDialog (OwnedArray& results, const String& title, const File& currentFileOrDirectory, const String& filter, bool selectsDirectory, bool isSaveDialogue, bool warnAboutOverwritingExistingFiles, bool selectMultipleFiles, FilePreviewComponent* extraInfoComponent) { const ScopedAutoReleasePool pool; StringArray* filters = new StringArray(); filters->addTokens (filter.replaceCharacters (T(",:"), T(";;")), T(";"), 0); filters->trim(); filters->removeEmptyStrings(); JuceFileChooserDelegate* delegate = [[JuceFileChooserDelegate alloc] initWithFilters: filters]; [delegate autorelease]; NSSavePanel* panel = isSaveDialogue ? [NSSavePanel savePanel] : [NSOpenPanel openPanel]; [panel setTitle: juceStringToNS (title)]; if (! isSaveDialogue) { NSOpenPanel* openPanel = (NSOpenPanel*) panel; [openPanel setCanChooseDirectories: selectsDirectory]; [openPanel setCanChooseFiles: ! selectsDirectory]; [openPanel setAllowsMultipleSelection: selectMultipleFiles]; } [panel setDelegate: delegate]; String directory, filename; if (currentFileOrDirectory.isDirectory()) { directory = currentFileOrDirectory.getFullPathName(); } else { directory = currentFileOrDirectory.getParentDirectory().getFullPathName(); filename = currentFileOrDirectory.getFileName(); } if ([panel runModalForDirectory: juceStringToNS (directory) file: juceStringToNS (filename)] == NSOKButton) { if (isSaveDialogue) { results.add (new File (nsStringToJuce ([panel filename]))); } else { NSOpenPanel* openPanel = (NSOpenPanel*) panel; NSArray* urls = [openPanel filenames]; for (unsigned int i = 0; i < [urls count]; ++i) { NSString* f = [urls objectAtIndex: i]; results.add (new File (nsStringToJuce (f))); } } } [panel setDelegate: nil]; } #else void FileChooser::showPlatformDialog (OwnedArray& results, const String& title, const File& currentFileOrDirectory, const String& filter, bool selectsDirectory, bool isSaveDialogue, bool warnAboutOverwritingExistingFiles, bool selectMultipleFiles, FilePreviewComponent* extraInfoComponent) { const ScopedAutoReleasePool pool; jassertfalse //xxx to do } #endif #endif /********* End of inlined file: juce_mac_FileChooser.mm *********/ /********* Start of inlined file: juce_mac_OpenGLComponent.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_OPENGL #if JUCE_MAC END_JUCE_NAMESPACE #define ThreadSafeNSOpenGLView MakeObjCClassName(ThreadSafeNSOpenGLView) @interface ThreadSafeNSOpenGLView : NSOpenGLView { CriticalSection* contextLock; bool needsUpdate; } - (id) initWithFrame: (NSRect) frameRect pixelFormat: (NSOpenGLPixelFormat*) format; - (bool) makeActive; - (void) makeInactive; - (void) reshape; @end @implementation ThreadSafeNSOpenGLView - (id) initWithFrame: (NSRect) frameRect pixelFormat: (NSOpenGLPixelFormat*) format { contextLock = new CriticalSection(); self = [super initWithFrame: frameRect pixelFormat: format]; if (self != nil) [[NSNotificationCenter defaultCenter] addObserver: self selector: @selector (_surfaceNeedsUpdate:) name: NSViewGlobalFrameDidChangeNotification object: self]; return self; } - (void) dealloc { [[NSNotificationCenter defaultCenter] removeObserver: self]; delete contextLock; [super dealloc]; } - (bool) makeActive { const ScopedLock sl (*contextLock); if ([self openGLContext] == 0) return false; [[self openGLContext] makeCurrentContext]; if (needsUpdate) { [super update]; needsUpdate = false; } return true; } - (void) makeInactive { const ScopedLock sl (*contextLock); [NSOpenGLContext clearCurrentContext]; } - (void) _surfaceNeedsUpdate: (NSNotification*) notification { const ScopedLock sl (*contextLock); needsUpdate = true; } - (void) update { const ScopedLock sl (*contextLock); needsUpdate = true; } - (void) reshape { const ScopedLock sl (*contextLock); needsUpdate = true; } @end BEGIN_JUCE_NAMESPACE class WindowedGLContext : public OpenGLContext { public: WindowedGLContext (Component* const component, const OpenGLPixelFormat& pixelFormat_, NSOpenGLContext* sharedContext) : renderContext (0), pixelFormat (pixelFormat_) { jassert (component != 0); NSOpenGLPixelFormatAttribute attribs [64]; int n = 0; attribs[n++] = NSOpenGLPFADoubleBuffer; attribs[n++] = NSOpenGLPFAAccelerated; attribs[n++] = NSOpenGLPFAMPSafe; // NSOpenGLPFAAccelerated, NSOpenGLPFAMultiScreen, NSOpenGLPFASingleRenderer attribs[n++] = NSOpenGLPFAColorSize; attribs[n++] = (NSOpenGLPixelFormatAttribute) jmax (pixelFormat.redBits, pixelFormat.greenBits, pixelFormat.blueBits); attribs[n++] = NSOpenGLPFAAlphaSize; attribs[n++] = (NSOpenGLPixelFormatAttribute) pixelFormat.alphaBits; attribs[n++] = NSOpenGLPFADepthSize; attribs[n++] = (NSOpenGLPixelFormatAttribute) pixelFormat.depthBufferBits; attribs[n++] = NSOpenGLPFAStencilSize; attribs[n++] = (NSOpenGLPixelFormatAttribute) pixelFormat.stencilBufferBits; attribs[n++] = NSOpenGLPFAAccumSize; attribs[n++] = (NSOpenGLPixelFormatAttribute) jmax (pixelFormat.accumulationBufferRedBits, pixelFormat.accumulationBufferGreenBits, pixelFormat.accumulationBufferBlueBits, pixelFormat.accumulationBufferAlphaBits); // xxx not sure how to do fullSceneAntiAliasingNumSamples.. attribs[n++] = NSOpenGLPFASampleBuffers; attribs[n++] = (NSOpenGLPixelFormatAttribute) 1; attribs[n++] = NSOpenGLPFAClosestPolicy; attribs[n++] = NSOpenGLPFANoRecovery; attribs[n++] = (NSOpenGLPixelFormatAttribute) 0; NSOpenGLPixelFormat* format = [[NSOpenGLPixelFormat alloc] initWithAttributes: attribs]; view = [[ThreadSafeNSOpenGLView alloc] initWithFrame: NSMakeRect (0, 0, 100.0f, 100.0f) pixelFormat: format]; renderContext = [[[NSOpenGLContext alloc] initWithFormat: format shareContext: sharedContext] autorelease]; const GLint swapInterval = 1; [renderContext setValues: &swapInterval forParameter: NSOpenGLCPSwapInterval]; [view setOpenGLContext: renderContext]; [renderContext setView: view]; [format release]; viewHolder = new NSViewComponentInternal (view, component); } ~WindowedGLContext() { makeInactive(); [renderContext setView: nil]; delete viewHolder; } bool makeActive() const throw() { jassert (renderContext != 0); [view makeActive]; return isActive(); } bool makeInactive() const throw() { [view makeInactive]; return true; } bool isActive() const throw() { return [NSOpenGLContext currentContext] == renderContext; } const OpenGLPixelFormat getPixelFormat() const { return pixelFormat; } void* getRawContext() const throw() { return renderContext; } void updateWindowPosition (int x, int y, int w, int h, int outerWindowHeight) { } void swapBuffers() { [renderContext flushBuffer]; } bool setSwapInterval (const int numFramesPerSwap) { [renderContext setValues: (const GLint*) &numFramesPerSwap forParameter: NSOpenGLCPSwapInterval]; return true; } int getSwapInterval() const { GLint numFrames = 0; [renderContext getValues: &numFrames forParameter: NSOpenGLCPSwapInterval]; return numFrames; } void repaint() { // we need to invalidate the juce view that holds this gl view, to make it // cause a repaint callback NSView* v = (NSView*) viewHolder->view; NSRect r = [v frame]; // bit of a bodge here.. if we only invalidate the area of the gl component, // it's completely covered by the NSOpenGLView, so the OS throws away the // repaint message, thus never causing our paint() callback, and never repainting // the comp. So invalidating just a little bit around the edge helps.. [[v superview] setNeedsDisplayInRect: NSInsetRect (r, -2.0f, -2.0f)]; } void* getNativeWindowHandle() const { return viewHolder->view; } juce_UseDebuggingNewOperator NSOpenGLContext* renderContext; ThreadSafeNSOpenGLView* view; private: OpenGLPixelFormat pixelFormat; NSViewComponentInternal* viewHolder; WindowedGLContext (const WindowedGLContext&); const WindowedGLContext& operator= (const WindowedGLContext&); }; OpenGLContext* OpenGLContext::createContextForWindow (Component* const component, const OpenGLPixelFormat& pixelFormat, const OpenGLContext* const contextToShareWith) { WindowedGLContext* c = new WindowedGLContext (component, pixelFormat, contextToShareWith != 0 ? (NSOpenGLContext*) contextToShareWith->getRawContext() : 0); if (c->renderContext == 0) deleteAndZero (c); return c; } void* OpenGLComponent::getNativeWindowHandle() const { return context != 0 ? ((WindowedGLContext*) context)->getNativeWindowHandle() : 0; } void juce_glViewport (const int w, const int h) { glViewport (0, 0, w, h); } void OpenGLPixelFormat::getAvailablePixelFormats (Component* /*component*/, OwnedArray & results) { /* GLint attribs [64]; int n = 0; attribs[n++] = AGL_RGBA; attribs[n++] = AGL_DOUBLEBUFFER; attribs[n++] = AGL_ACCELERATED; attribs[n++] = AGL_NO_RECOVERY; attribs[n++] = AGL_NONE; AGLPixelFormat p = aglChoosePixelFormat (0, 0, attribs); while (p != 0) { OpenGLPixelFormat* const pf = new OpenGLPixelFormat(); pf->redBits = getAGLAttribute (p, AGL_RED_SIZE); pf->greenBits = getAGLAttribute (p, AGL_GREEN_SIZE); pf->blueBits = getAGLAttribute (p, AGL_BLUE_SIZE); pf->alphaBits = getAGLAttribute (p, AGL_ALPHA_SIZE); pf->depthBufferBits = getAGLAttribute (p, AGL_DEPTH_SIZE); pf->stencilBufferBits = getAGLAttribute (p, AGL_STENCIL_SIZE); pf->accumulationBufferRedBits = getAGLAttribute (p, AGL_ACCUM_RED_SIZE); pf->accumulationBufferGreenBits = getAGLAttribute (p, AGL_ACCUM_GREEN_SIZE); pf->accumulationBufferBlueBits = getAGLAttribute (p, AGL_ACCUM_BLUE_SIZE); pf->accumulationBufferAlphaBits = getAGLAttribute (p, AGL_ACCUM_ALPHA_SIZE); results.add (pf); p = aglNextPixelFormat (p); }*/ //jassertfalse //xxx can't see how you do this in cocoa! } #else OpenGLContext* OpenGLContext::createContextForWindow (Component* const component, const OpenGLPixelFormat& pixelFormat, const OpenGLContext* const contextToShareWith) { return 0; } void juce_glViewport (const int w, const int h) { //glViewport (0, 0, w, h); } #endif #endif /********* End of inlined file: juce_mac_OpenGLComponent.mm *********/ /********* Start of inlined file: juce_mac_MouseCursor.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE #if JUCE_MAC static NSImage* juceImageToNSImage (const Image& image) { const ScopedAutoReleasePool pool; int lineStride, pixelStride; const uint8* pixels = image.lockPixelDataReadOnly (0, 0, image.getWidth(), image.getHeight(), lineStride, pixelStride); NSBitmapImageRep* rep = [[NSBitmapImageRep alloc] initWithBitmapDataPlanes: NULL pixelsWide: image.getWidth() pixelsHigh: image.getHeight() bitsPerSample: 8 samplesPerPixel: image.hasAlphaChannel() ? 4 : 3 hasAlpha: image.hasAlphaChannel() isPlanar: NO colorSpaceName: NSCalibratedRGBColorSpace bitmapFormat: (NSBitmapFormat) 0 bytesPerRow: lineStride bitsPerPixel: pixelStride * 8]; unsigned char* newData = [rep bitmapData]; memcpy (newData, pixels, lineStride * image.getHeight()); image.releasePixelDataReadOnly (pixels); NSImage* im = [[NSImage alloc] init]; [im addRepresentation: rep]; [rep release]; return im; } void* juce_createMouseCursorFromImage (const Image& image, int hotspotX, int hotspotY) throw() { NSImage* im = juceImageToNSImage (image); NSCursor* c = [[NSCursor alloc] initWithImage: im hotSpot: NSMakePoint (hotspotX, hotspotY)]; [im release]; return (void*) c; } static void* juce_cursorFromData (const unsigned char* data, const int size, float hx, float hy) throw() { Image* const im = ImageFileFormat::loadFrom ((const char*) data, size); jassert (im != 0); if (im == 0) return 0; void* const curs = juce_createMouseCursorFromImage (*im, (int) (hx * im->getWidth()), (int) (hy * im->getHeight())); delete im; return curs; } static void* juce_cursorFromWebKitFile (const char* filename, float hx, float hy) { File f ("/System/Library/Frameworks/WebKit.framework/Frameworks/WebCore.framework/Resources"); MemoryBlock mb; if (f.getChildFile (filename).loadFileAsData (mb)) return juce_cursorFromData ((const unsigned char*) mb.getData(), mb.getSize(), hx, hy); return 0; } void* juce_createStandardMouseCursor (MouseCursor::StandardCursorType type) throw() { const ScopedAutoReleasePool pool; NSCursor* c = 0; switch (type) { case MouseCursor::NormalCursor: c = [NSCursor arrowCursor]; break; case MouseCursor::NoCursor: { Image blank (Image::ARGB, 8, 8, true); return juce_createMouseCursorFromImage (blank, 0, 0); } case MouseCursor::DraggingHandCursor: c = [NSCursor openHandCursor]; break; case MouseCursor::CopyingCursor: return juce_cursorFromWebKitFile ("copyCursor.png", 0, 0); case MouseCursor::WaitCursor: c = [NSCursor arrowCursor]; // avoid this on the mac, let the OS provide the beachball break; //return juce_cursorFromWebKitFile ("waitCursor.png", 0.5f, 0.5f); case MouseCursor::IBeamCursor: c = [NSCursor IBeamCursor]; break; case MouseCursor::PointingHandCursor: c = [NSCursor pointingHandCursor]; break; case MouseCursor::LeftRightResizeCursor: c = [NSCursor resizeLeftRightCursor]; break; case MouseCursor::LeftEdgeResizeCursor: c = [NSCursor resizeLeftCursor]; break; case MouseCursor::RightEdgeResizeCursor: c = [NSCursor resizeRightCursor]; break; case MouseCursor::UpDownResizeCursor: case MouseCursor::TopEdgeResizeCursor: case MouseCursor::BottomEdgeResizeCursor: return juce_cursorFromWebKitFile ("northSouthResizeCursor.png", 0.5f, 0.5f); case MouseCursor::TopLeftCornerResizeCursor: case MouseCursor::BottomRightCornerResizeCursor: return juce_cursorFromWebKitFile ("northWestSouthEastResizeCursor.png", 0.5f, 0.5f); case MouseCursor::TopRightCornerResizeCursor: case MouseCursor::BottomLeftCornerResizeCursor: return juce_cursorFromWebKitFile ("northEastSouthWestResizeCursor.png", 0.5f, 0.5f); case MouseCursor::UpDownLeftRightResizeCursor: return juce_cursorFromWebKitFile ("moveCursor.png", 0.5f, 0.5f); case MouseCursor::CrosshairCursor: c = [NSCursor crosshairCursor]; break; } [c retain]; return (void*) c; } void juce_deleteMouseCursor (void* const cursorHandle, const bool isStandard) throw() { NSCursor* c = (NSCursor*) cursorHandle; [c release]; } void MouseCursor::showInAllWindows() const throw() { showInWindow (0); } void MouseCursor::showInWindow (ComponentPeer*) const throw() { NSCursor* const c = (NSCursor*) getHandle(); [c set]; } #else void* juce_createMouseCursorFromImage (const Image& image, int hotspotX, int hotspotY) throw() { return 0; } void* juce_createStandardMouseCursor (MouseCursor::StandardCursorType type) throw() { return 0; } void juce_deleteMouseCursor (void* const cursorHandle, const bool isStandard) throw() {} void MouseCursor::showInAllWindows() const throw() {} void MouseCursor::showInWindow (ComponentPeer*) const throw() {} #endif #endif /********* End of inlined file: juce_mac_MouseCursor.mm *********/ /********* Start of inlined file: juce_mac_WebBrowserComponent.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_WEB_BROWSER #if JUCE_MAC END_JUCE_NAMESPACE #define DownloadClickDetector MakeObjCClassName(DownloadClickDetector) @interface DownloadClickDetector : NSObject { JUCE_NAMESPACE::WebBrowserComponent* ownerComponent; } - (DownloadClickDetector*) initWithWebBrowserOwner: (JUCE_NAMESPACE::WebBrowserComponent*) ownerComponent; - (void) webView: (WebView*) webView decidePolicyForNavigationAction: (NSDictionary*) actionInformation request: (NSURLRequest*) request frame: (WebFrame*) frame decisionListener: (id) listener; @end @implementation DownloadClickDetector - (DownloadClickDetector*) initWithWebBrowserOwner: (JUCE_NAMESPACE::WebBrowserComponent*) ownerComponent_ { [super init]; ownerComponent = ownerComponent_; return self; } - (void) webView: (WebView*) sender decidePolicyForNavigationAction: (NSDictionary*) actionInformation request: (NSURLRequest*) request frame: (WebFrame*) frame decisionListener: (id ) listener { NSURL* url = [actionInformation valueForKey: @"WebActionOriginalURLKey"]; if (ownerComponent->pageAboutToLoad (nsStringToJuce ([url absoluteString]))) [listener use]; else [listener ignore]; } @end BEGIN_JUCE_NAMESPACE class WebBrowserComponentInternal : public NSViewComponent { public: WebBrowserComponentInternal (WebBrowserComponent* owner) { webView = [[WebView alloc] initWithFrame: NSMakeRect (0, 0, 100.0f, 100.0f) frameName: @"" groupName: @""]; setView (webView); clickListener = [[DownloadClickDetector alloc] initWithWebBrowserOwner: owner]; [webView setPolicyDelegate: clickListener]; } ~WebBrowserComponentInternal() { [webView setPolicyDelegate: nil]; [clickListener release]; setView (0); } void goToURL (const String& url, const StringArray* headers, const MemoryBlock* postData) { NSMutableURLRequest* r = [NSMutableURLRequest requestWithURL: [NSURL URLWithString: juceStringToNS (url)] cachePolicy: NSURLRequestUseProtocolCachePolicy timeoutInterval: 30.0]; if (postData != 0 && postData->getSize() > 0) { [r setHTTPMethod: @"POST"]; [r setHTTPBody: [NSData dataWithBytes: postData->getData() length: postData->getSize()]]; } if (headers != 0) { for (int i = 0; i < headers->size(); ++i) { const String headerName ((*headers)[i].upToFirstOccurrenceOf (T(":"), false, false).trim()); const String headerValue ((*headers)[i].fromFirstOccurrenceOf (T(":"), false, false).trim()); [r setValue: juceStringToNS (headerValue) forHTTPHeaderField: juceStringToNS (headerName)]; } } stop(); [[webView mainFrame] loadRequest: r]; } void goBack() { [webView goBack]; } void goForward() { [webView goForward]; } void stop() { [webView stopLoading: nil]; } void refresh() { [webView reload: nil]; } private: WebView* webView; DownloadClickDetector* clickListener; }; WebBrowserComponent::WebBrowserComponent (const bool unloadPageWhenBrowserIsHidden_) : browser (0), blankPageShown (false), unloadPageWhenBrowserIsHidden (unloadPageWhenBrowserIsHidden_) { setOpaque (true); addAndMakeVisible (browser = new WebBrowserComponentInternal (this)); } WebBrowserComponent::~WebBrowserComponent() { deleteAndZero (browser); } void WebBrowserComponent::goToURL (const String& url, const StringArray* headers, const MemoryBlock* postData) { lastURL = url; lastHeaders.clear(); if (headers != 0) lastHeaders = *headers; lastPostData.setSize (0); if (postData != 0) lastPostData = *postData; blankPageShown = false; browser->goToURL (url, headers, postData); } void WebBrowserComponent::stop() { browser->stop(); } void WebBrowserComponent::goBack() { lastURL = String::empty; blankPageShown = false; browser->goBack(); } void WebBrowserComponent::goForward() { lastURL = String::empty; browser->goForward(); } void WebBrowserComponent::refresh() { browser->refresh(); } void WebBrowserComponent::paint (Graphics& g) { } void WebBrowserComponent::checkWindowAssociation() { if (isShowing()) { if (blankPageShown) goBack(); } else { if (unloadPageWhenBrowserIsHidden && ! blankPageShown) { // when the component becomes invisible, some stuff like flash // carries on playing audio, so we need to force it onto a blank // page to avoid this, (and send it back when it's made visible again). blankPageShown = true; browser->goToURL ("about:blank", 0, 0); } } } void WebBrowserComponent::reloadLastURL() { if (lastURL.isNotEmpty()) { goToURL (lastURL, &lastHeaders, &lastPostData); lastURL = String::empty; } } void WebBrowserComponent::parentHierarchyChanged() { checkWindowAssociation(); } void WebBrowserComponent::resized() { browser->setSize (getWidth(), getHeight()); } void WebBrowserComponent::visibilityChanged() { checkWindowAssociation(); } bool WebBrowserComponent::pageAboutToLoad (const String& url) { return true; } #else WebBrowserComponent::WebBrowserComponent (const bool unloadPageWhenBrowserIsHidden_) { } WebBrowserComponent::~WebBrowserComponent() { } void WebBrowserComponent::goToURL (const String& url, const StringArray* headers, const MemoryBlock* postData) { } void WebBrowserComponent::stop() { } void WebBrowserComponent::goBack() { } void WebBrowserComponent::goForward() { } void WebBrowserComponent::refresh() { } void WebBrowserComponent::paint (Graphics& g) { } void WebBrowserComponent::checkWindowAssociation() { } void WebBrowserComponent::reloadLastURL() { } void WebBrowserComponent::parentHierarchyChanged() { } void WebBrowserComponent::resized() { } void WebBrowserComponent::visibilityChanged() { } bool WebBrowserComponent::pageAboutToLoad (const String& url) { return true; } #endif #endif /********* End of inlined file: juce_mac_WebBrowserComponent.mm *********/ /********* Start of inlined file: juce_iphone_Audio.cpp *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE #endif /********* End of inlined file: juce_iphone_Audio.cpp *********/ /********* Start of inlined file: juce_mac_CoreMidi.cpp *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE #if JUCE_MAC #undef log #define log(a) Logger::writeToLog(a) static bool logAnyErrorsMidi (const OSStatus err, const int lineNum) { if (err == noErr) return true; log (T("CoreMidi error: ") + String (lineNum) + T(" - ") + String::toHexString ((int)err)); jassertfalse return false; } #undef OK #define OK(a) logAnyErrorsMidi(a, __LINE__) static const String getEndpointName (MIDIEndpointRef endpoint, bool isExternal) { String result; CFStringRef str = 0; MIDIObjectGetStringProperty (endpoint, kMIDIPropertyName, &str); if (str != 0) { result = PlatformUtilities::cfStringToJuceString (str); CFRelease (str); str = 0; } MIDIEntityRef entity = 0; MIDIEndpointGetEntity (endpoint, &entity); if (entity == 0) return result; // probably virtual if (result.isEmpty()) { // endpoint name has zero length - try the entity MIDIObjectGetStringProperty (entity, kMIDIPropertyName, &str); if (str != 0) { result += PlatformUtilities::cfStringToJuceString (str); CFRelease (str); str = 0; } } // now consider the device's name MIDIDeviceRef device = 0; MIDIEntityGetDevice (entity, &device); if (device == 0) return result; MIDIObjectGetStringProperty (device, kMIDIPropertyName, &str); if (str != 0) { const String s (PlatformUtilities::cfStringToJuceString (str)); CFRelease (str); // if an external device has only one entity, throw away // the endpoint name and just use the device name if (isExternal && MIDIDeviceGetNumberOfEntities (device) < 2) { result = s; } else if (! result.startsWithIgnoreCase (s)) { // prepend the device name to the entity name result = (s + T(" ") + result).trimEnd(); } } return result; } static const String getConnectedEndpointName (MIDIEndpointRef endpoint) { String result; // Does the endpoint have connections? CFDataRef connections = 0; int numConnections = 0; MIDIObjectGetDataProperty (endpoint, kMIDIPropertyConnectionUniqueID, &connections); if (connections != 0) { numConnections = CFDataGetLength (connections) / sizeof (MIDIUniqueID); if (numConnections > 0) { const SInt32* pid = reinterpret_cast (CFDataGetBytePtr (connections)); for (int i = 0; i < numConnections; ++i, ++pid) { MIDIUniqueID uid = EndianS32_BtoN (*pid); MIDIObjectRef connObject; MIDIObjectType connObjectType; OSStatus err = MIDIObjectFindByUniqueID (uid, &connObject, &connObjectType); if (err == noErr) { String s; if (connObjectType == kMIDIObjectType_ExternalSource || connObjectType == kMIDIObjectType_ExternalDestination) { // Connected to an external device's endpoint (10.3 and later). s = getEndpointName (static_cast (connObject), true); } else { // Connected to an external device (10.2) (or something else, catch-all) CFStringRef str = 0; MIDIObjectGetStringProperty (connObject, kMIDIPropertyName, &str); if (str != 0) { s = PlatformUtilities::cfStringToJuceString (str); CFRelease (str); } } if (s.isNotEmpty()) { if (result.isNotEmpty()) result += (", "); result += s; } } } } CFRelease (connections); } if (result.isNotEmpty()) return result; // Here, either the endpoint had no connections, or we failed to obtain names for any of them. return getEndpointName (endpoint, false); } const StringArray MidiOutput::getDevices() { StringArray s; const ItemCount num = MIDIGetNumberOfDestinations(); for (ItemCount i = 0; i < num; ++i) { MIDIEndpointRef dest = MIDIGetDestination (i); if (dest != 0) { String name (getConnectedEndpointName (dest)); if (name.isEmpty()) name = ""; s.add (name); } else { s.add (""); } } return s; } int MidiOutput::getDefaultDeviceIndex() { return 0; } static MIDIClientRef globalMidiClient; static bool hasGlobalClientBeenCreated = false; static bool makeSureClientExists() { if (! hasGlobalClientBeenCreated) { String name (T("JUCE")); if (JUCEApplication::getInstance() != 0) name = JUCEApplication::getInstance()->getApplicationName(); CFStringRef appName = PlatformUtilities::juceStringToCFString (name); hasGlobalClientBeenCreated = OK (MIDIClientCreate (appName, 0, 0, &globalMidiClient)); CFRelease (appName); } return hasGlobalClientBeenCreated; } struct MidiPortAndEndpoint { MIDIPortRef port; MIDIEndpointRef endPoint; }; MidiOutput* MidiOutput::openDevice (int index) { MidiOutput* mo = 0; if (((unsigned int) index) < (unsigned int) MIDIGetNumberOfDestinations()) { MIDIEndpointRef endPoint = MIDIGetDestination (index); CFStringRef pname; if (OK (MIDIObjectGetStringProperty (endPoint, kMIDIPropertyName, &pname))) { log (T("CoreMidi - opening out: ") + PlatformUtilities::cfStringToJuceString (pname)); if (makeSureClientExists()) { MIDIPortRef port; if (OK (MIDIOutputPortCreate (globalMidiClient, pname, &port))) { MidiPortAndEndpoint* mpe = new MidiPortAndEndpoint(); mpe->port = port; mpe->endPoint = endPoint; mo = new MidiOutput(); mo->internal = (void*)mpe; } } CFRelease (pname); } } return mo; } MidiOutput::~MidiOutput() { MidiPortAndEndpoint* const mpe = (MidiPortAndEndpoint*)internal; MIDIPortDispose (mpe->port); delete mpe; } void MidiOutput::reset() { } bool MidiOutput::getVolume (float& leftVol, float& rightVol) { return false; } void MidiOutput::setVolume (float leftVol, float rightVol) { } void MidiOutput::sendMessageNow (const MidiMessage& message) { MidiPortAndEndpoint* const mpe = (MidiPortAndEndpoint*)internal; if (message.isSysEx()) { const int maxPacketSize = 256; int pos = 0, bytesLeft = message.getRawDataSize(); const int numPackets = (bytesLeft + maxPacketSize - 1) / maxPacketSize; MIDIPacketList* const packets = (MIDIPacketList*) juce_malloc (32 * numPackets + message.getRawDataSize()); packets->numPackets = numPackets; MIDIPacket* p = packets->packet; for (int i = 0; i < numPackets; ++i) { p->timeStamp = 0; p->length = jmin (maxPacketSize, bytesLeft); memcpy (p->data, message.getRawData() + pos, p->length); pos += p->length; bytesLeft -= p->length; p = MIDIPacketNext (p); } MIDISend (mpe->port, mpe->endPoint, packets); juce_free (packets); } else { MIDIPacketList packets; packets.numPackets = 1; packets.packet[0].timeStamp = 0; packets.packet[0].length = message.getRawDataSize(); *(int*) (packets.packet[0].data) = *(const int*) message.getRawData(); MIDISend (mpe->port, mpe->endPoint, &packets); } } const StringArray MidiInput::getDevices() { StringArray s; const ItemCount num = MIDIGetNumberOfSources(); for (ItemCount i = 0; i < num; ++i) { MIDIEndpointRef source = MIDIGetSource (i); if (source != 0) { String name (getConnectedEndpointName (source)); if (name.isEmpty()) name = ""; s.add (name); } else { s.add (""); } } return s; } int MidiInput::getDefaultDeviceIndex() { return 0; } struct MidiPortAndCallback { MidiInput* input; MIDIPortRef port; MIDIEndpointRef endPoint; MidiInputCallback* callback; MemoryBlock pendingData; int pendingBytes; double pendingDataTime; bool active; }; static CriticalSection callbackLock; static VoidArray activeCallbacks; static void processSysex (MidiPortAndCallback* const mpe, const uint8*& d, int& size, const double time) { if (*d == 0xf0) { mpe->pendingBytes = 0; mpe->pendingDataTime = time; } mpe->pendingData.ensureSize (mpe->pendingBytes + size, false); uint8* totalMessage = (uint8*) mpe->pendingData.getData(); uint8* dest = totalMessage + mpe->pendingBytes; while (size > 0) { if (mpe->pendingBytes > 0 && *d >= 0x80) { if (*d >= 0xfa || *d == 0xf8) { mpe->callback->handleIncomingMidiMessage (mpe->input, MidiMessage (*d, time)); ++d; --size; } else { if (*d == 0xf7) { *dest++ = *d++; mpe->pendingBytes++; --size; } break; } } else { *dest++ = *d++; mpe->pendingBytes++; --size; } } if (totalMessage [mpe->pendingBytes - 1] == 0xf7) { mpe->callback->handleIncomingMidiMessage (mpe->input, MidiMessage (totalMessage, mpe->pendingBytes, mpe->pendingDataTime)); mpe->pendingBytes = 0; } else { mpe->callback->handlePartialSysexMessage (mpe->input, totalMessage, mpe->pendingBytes, mpe->pendingDataTime); } } static void midiInputProc (const MIDIPacketList* pktlist, void* readProcRefCon, void* srcConnRefCon) { double time = Time::getMillisecondCounterHiRes() * 0.001; const double originalTime = time; MidiPortAndCallback* const mpe = (MidiPortAndCallback*) readProcRefCon; const ScopedLock sl (callbackLock); if (activeCallbacks.contains (mpe) && mpe->active) { const MIDIPacket* packet = &pktlist->packet[0]; for (unsigned int i = 0; i < pktlist->numPackets; ++i) { const uint8* d = (const uint8*) (packet->data); int size = packet->length; while (size > 0) { time = originalTime; if (mpe->pendingBytes > 0 || d[0] == 0xf0) { processSysex (mpe, d, size, time); } else { int used = 0; const MidiMessage m (d, size, used, 0, time); if (used <= 0) { jassertfalse // malformed midi message break; } else { mpe->callback->handleIncomingMidiMessage (mpe->input, m); } size -= used; d += used; } } packet = MIDIPacketNext (packet); } } } MidiInput* MidiInput::openDevice (int index, MidiInputCallback* callback) { MidiInput* mi = 0; if (((unsigned int) index) < (unsigned int) MIDIGetNumberOfSources()) { MIDIEndpointRef endPoint = MIDIGetSource (index); if (endPoint != 0) { CFStringRef pname; if (OK (MIDIObjectGetStringProperty (endPoint, kMIDIPropertyName, &pname))) { log (T("CoreMidi - opening inp: ") + PlatformUtilities::cfStringToJuceString (pname)); if (makeSureClientExists()) { MIDIPortRef port; MidiPortAndCallback* const mpe = new MidiPortAndCallback(); mpe->active = false; if (OK (MIDIInputPortCreate (globalMidiClient, pname, midiInputProc, mpe, &port))) { if (OK (MIDIPortConnectSource (port, endPoint, 0))) { mpe->port = port; mpe->endPoint = endPoint; mpe->callback = callback; mpe->pendingBytes = 0; mpe->pendingData.ensureSize (128); mi = new MidiInput (getDevices() [index]); mpe->input = mi; mi->internal = (void*) mpe; const ScopedLock sl (callbackLock); activeCallbacks.add (mpe); } else { OK (MIDIPortDispose (port)); delete mpe; } } else { delete mpe; } } } CFRelease (pname); } } return mi; } MidiInput::MidiInput (const String& name_) : name (name_) { } MidiInput::~MidiInput() { MidiPortAndCallback* const mpe = (MidiPortAndCallback*) internal; mpe->active = false; callbackLock.enter(); activeCallbacks.removeValue (mpe); callbackLock.exit(); OK (MIDIPortDisconnectSource (mpe->port, mpe->endPoint)); OK (MIDIPortDispose (mpe->port)); delete mpe; } void MidiInput::start() { MidiPortAndCallback* const mpe = (MidiPortAndCallback*) internal; const ScopedLock sl (callbackLock); mpe->active = true; } void MidiInput::stop() { MidiPortAndCallback* const mpe = (MidiPortAndCallback*) internal; const ScopedLock sl (callbackLock); mpe->active = false; } #undef log #else MidiOutput::~MidiOutput() { } void MidiOutput::reset() { } bool MidiOutput::getVolume (float& leftVol, float& rightVol) { return false; } void MidiOutput::setVolume (float leftVol, float rightVol) { } void MidiOutput::sendMessageNow (const MidiMessage& message) { } const StringArray MidiOutput::getDevices() { return StringArray(); } MidiOutput* MidiOutput::openDevice (int index) { return 0; } const StringArray MidiInput::getDevices() { return StringArray(); } MidiInput* MidiInput::openDevice (int index, MidiInputCallback* callback) { return 0; } #endif #endif /********* End of inlined file: juce_mac_CoreMidi.cpp *********/ #else /********* Start of inlined file: juce_mac_NSViewComponentPeer.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE class NSViewComponentPeer; END_JUCE_NAMESPACE #define JuceNSView MakeObjCClassName(JuceNSView) @interface JuceNSView : NSView { @public NSViewComponentPeer* owner; NSNotificationCenter* notificationCenter; } - (JuceNSView*) initWithOwner: (NSViewComponentPeer*) owner withFrame: (NSRect) frame; - (void) dealloc; - (BOOL) isOpaque; - (void) drawRect: (NSRect) r; - (void) mouseDown: (NSEvent*) ev; - (void) asyncMouseDown: (NSEvent*) ev; - (void) mouseUp: (NSEvent*) ev; - (void) asyncMouseUp: (NSEvent*) ev; - (void) mouseDragged: (NSEvent*) ev; - (void) mouseMoved: (NSEvent*) ev; - (void) mouseEntered: (NSEvent*) ev; - (void) mouseExited: (NSEvent*) ev; - (void) rightMouseDown: (NSEvent*) ev; - (void) rightMouseDragged: (NSEvent*) ev; - (void) rightMouseUp: (NSEvent*) ev; - (void) otherMouseDown: (NSEvent*) ev; - (void) otherMouseDragged: (NSEvent*) ev; - (void) otherMouseUp: (NSEvent*) ev; - (void) scrollWheel: (NSEvent*) ev; - (BOOL) acceptsFirstMouse: (NSEvent*) ev; - (void) frameChanged: (NSNotification*) n; - (void) keyDown: (NSEvent*) ev; - (void) keyUp: (NSEvent*) ev; - (void) flagsChanged: (NSEvent*) ev; #if MACOS_10_4_OR_EARLIER - (BOOL) performKeyEquivalent: (NSEvent*) ev; #endif - (BOOL) becomeFirstResponder; - (BOOL) resignFirstResponder; - (BOOL) acceptsFirstResponder; - (NSArray*) getSupportedDragTypes; - (BOOL) sendDragCallback: (int) type sender: (id ) sender; - (NSDragOperation) draggingEntered: (id ) sender; - (NSDragOperation) draggingUpdated: (id ) sender; - (void) draggingEnded: (id ) sender; - (void) draggingExited: (id ) sender; - (BOOL) prepareForDragOperation: (id ) sender; - (BOOL) performDragOperation: (id ) sender; - (void) concludeDragOperation: (id ) sender; @end #define JuceNSWindow MakeObjCClassName(JuceNSWindow) #if defined (MAC_OS_X_VERSION_10_6) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6 @interface JuceNSWindow : NSWindow #else @interface JuceNSWindow : NSWindow #endif { @private NSViewComponentPeer* owner; bool isZooming; } - (void) setOwner: (NSViewComponentPeer*) owner; - (BOOL) canBecomeKeyWindow; - (void) becomeKeyWindow; - (BOOL) windowShouldClose: (id) window; - (NSRect) constrainFrameRect: (NSRect) frameRect toScreen: (NSScreen*) screen; - (NSSize) windowWillResize: (NSWindow*) window toSize: (NSSize) proposedFrameSize; - (void) zoom: (id) sender; @end BEGIN_JUCE_NAMESPACE class NSViewComponentPeer : public ComponentPeer { public: NSViewComponentPeer (Component* const component, const int windowStyleFlags, NSView* viewToAttachTo); ~NSViewComponentPeer(); void* getNativeHandle() const; void setVisible (bool shouldBeVisible); void setTitle (const String& title); void setPosition (int x, int y); void setSize (int w, int h); void setBounds (int x, int y, int w, int h, const bool isNowFullScreen); void getBounds (int& x, int& y, int& w, int& h, const bool global) const; void getBounds (int& x, int& y, int& w, int& h) const; int getScreenX() const; int getScreenY() const; void relativePositionToGlobal (int& x, int& y); void globalPositionToRelative (int& x, int& y); void setMinimised (bool shouldBeMinimised); bool isMinimised() const; void setFullScreen (bool shouldBeFullScreen); bool isFullScreen() const; bool contains (int x, int y, bool trueIfInAChildWindow) const; const BorderSize getFrameSize() const; bool setAlwaysOnTop (bool alwaysOnTop); void toFront (bool makeActiveWindow); void toBehind (ComponentPeer* other); void setIcon (const Image& newIcon); /* When you use multiple DLLs which share similarly-named obj-c classes - like for example having more than one juce plugin loaded into a host, then when a method is called, the actual code that runs might actually be in a different module than the one you expect... So any calls to library functions or statics that are made inside obj-c methods will probably end up getting executed in a different DLL's memory space. Not a great thing to happen - this obviously leads to bizarre crashes. To work around this insanity, I'm only allowing obj-c methods to make calls to virtual methods of an object that's known to live inside the right module's space. */ virtual void redirectMouseDown (NSEvent* ev); virtual void redirectMouseUp (NSEvent* ev); virtual void redirectMouseDrag (NSEvent* ev); virtual void redirectMouseMove (NSEvent* ev); virtual void redirectMouseEnter (NSEvent* ev); virtual void redirectMouseExit (NSEvent* ev); virtual void redirectMouseWheel (NSEvent* ev); bool handleKeyEvent (NSEvent* ev, bool isKeyDown); virtual bool redirectKeyDown (NSEvent* ev); virtual bool redirectKeyUp (NSEvent* ev); virtual void redirectModKeyChange (NSEvent* ev); #if MACOS_10_4_OR_EARLIER virtual bool redirectPerformKeyEquivalent (NSEvent* ev); #endif virtual BOOL sendDragCallback (int type, id sender); virtual bool isOpaque(); virtual void drawRect (NSRect r); virtual bool canBecomeKeyWindow(); virtual bool windowShouldClose(); virtual void redirectMovedOrResized(); virtual NSRect constrainRect (NSRect r); static void showArrowCursorIfNeeded(); virtual void viewFocusGain(); virtual void viewFocusLoss(); bool isFocused() const; void grabFocus(); void textInputRequired (int x, int y); void repaint (int x, int y, int w, int h); void performAnyPendingRepaintsNow(); juce_UseDebuggingNewOperator NSWindow* window; JuceNSView* view; bool isSharedWindow, fullScreen; }; END_JUCE_NAMESPACE @implementation JuceNSView - (JuceNSView*) initWithOwner: (NSViewComponentPeer*) owner_ withFrame: (NSRect) frame { [super initWithFrame: frame]; owner = owner_; notificationCenter = [NSNotificationCenter defaultCenter]; [notificationCenter addObserver: self selector: @selector (frameChanged:) name: NSViewFrameDidChangeNotification object: self]; if (! owner_->isSharedWindow) { [notificationCenter addObserver: self selector: @selector (frameChanged:) name: NSWindowDidMoveNotification object: owner_->window]; } [self registerForDraggedTypes: [self getSupportedDragTypes]]; return self; } - (void) dealloc { [notificationCenter removeObserver: self]; [super dealloc]; } - (void) drawRect: (NSRect) r { if (owner != 0) owner->drawRect (r); } - (BOOL) isOpaque { return owner == 0 || owner->isOpaque(); } - (void) mouseDown: (NSEvent*) ev { // In some host situations, the host will stop modal loops from working // correctly if they're called from a mouse event, so we'll trigger // the event asynchronously.. if (JUCEApplication::getInstance() == 0) [self performSelectorOnMainThread: @selector (asyncMouseDown:) withObject: ev waitUntilDone: NO]; else [self asyncMouseDown: ev]; } - (void) asyncMouseDown: (NSEvent*) ev { if (owner != 0) owner->redirectMouseDown (ev); } - (void) mouseUp: (NSEvent*) ev { // In some host situations, the host will stop modal loops from working // correctly if they're called from a mouse event, so we'll trigger // the event asynchronously.. if (JUCEApplication::getInstance() == 0) [self performSelectorOnMainThread: @selector (asyncMouseUp:) withObject: ev waitUntilDone: NO]; else [self asyncMouseUp: ev]; } - (void) asyncMouseUp: (NSEvent*) ev { if (owner != 0) owner->redirectMouseUp (ev); } - (void) mouseDragged: (NSEvent*) ev { if (owner != 0) owner->redirectMouseDrag (ev); } - (void) mouseMoved: (NSEvent*) ev { if (owner != 0) owner->redirectMouseMove (ev); } - (void) mouseEntered: (NSEvent*) ev { if (owner != 0) owner->redirectMouseEnter (ev); } - (void) mouseExited: (NSEvent*) ev { if (owner != 0) owner->redirectMouseExit (ev); } - (void) rightMouseDown: (NSEvent*) ev { [self mouseDown: ev]; } - (void) rightMouseDragged: (NSEvent*) ev { [self mouseDragged: ev]; } - (void) rightMouseUp: (NSEvent*) ev { [self mouseUp: ev]; } - (void) otherMouseDown: (NSEvent*) ev { [self mouseDown: ev]; } - (void) otherMouseDragged: (NSEvent*) ev { [self mouseDragged: ev]; } - (void) otherMouseUp: (NSEvent*) ev { [self mouseUp: ev]; } - (void) scrollWheel: (NSEvent*) ev { if (owner != 0) owner->redirectMouseWheel (ev); } - (BOOL) acceptsFirstMouse: (NSEvent*) ev { return YES; } - (void) frameChanged: (NSNotification*) n { if (owner != 0) owner->redirectMovedOrResized(); } - (void) keyDown: (NSEvent*) ev { if (owner == 0 || ! owner->redirectKeyDown (ev)) [super keyDown: ev]; } - (void) keyUp: (NSEvent*) ev { if (owner == 0 || ! owner->redirectKeyUp (ev)) [super keyUp: ev]; } - (void) flagsChanged: (NSEvent*) ev { if (owner != 0) owner->redirectModKeyChange (ev); } #if MACOS_10_4_OR_EARLIER - (BOOL) performKeyEquivalent: (NSEvent*) ev { if (owner != 0 && owner->redirectPerformKeyEquivalent (ev)) return true; return [super performKeyEquivalent: ev]; } #endif - (BOOL) becomeFirstResponder { if (owner != 0) owner->viewFocusGain(); return true; } - (BOOL) resignFirstResponder { if (owner != 0) owner->viewFocusLoss(); return true; } - (BOOL) acceptsFirstResponder { return owner != 0 && owner->canBecomeKeyWindow(); } - (NSArray*) getSupportedDragTypes { return [NSArray arrayWithObjects: NSFilenamesPboardType, /*NSFilesPromisePboardType, NSStringPboardType,*/ nil]; } - (BOOL) sendDragCallback: (int) type sender: (id ) sender { return owner != 0 && owner->sendDragCallback (type, sender); } - (NSDragOperation) draggingEntered: (id ) sender { if ([self sendDragCallback: 0 sender: sender]) return NSDragOperationCopy | NSDragOperationMove | NSDragOperationGeneric; else return NSDragOperationNone; } - (NSDragOperation) draggingUpdated: (id ) sender { if ([self sendDragCallback: 0 sender: sender]) return NSDragOperationCopy | NSDragOperationMove | NSDragOperationGeneric; else return NSDragOperationNone; } - (void) draggingEnded: (id ) sender { [self sendDragCallback: 1 sender: sender]; } - (void) draggingExited: (id ) sender { [self sendDragCallback: 1 sender: sender]; } - (BOOL) prepareForDragOperation: (id ) sender { return YES; } - (BOOL) performDragOperation: (id ) sender { return [self sendDragCallback: 2 sender: sender]; } - (void) concludeDragOperation: (id ) sender { } @end @implementation JuceNSWindow - (void) setOwner: (NSViewComponentPeer*) owner_ { owner = owner_; isZooming = false; } - (BOOL) canBecomeKeyWindow { return owner != 0 && owner->canBecomeKeyWindow(); } - (void) becomeKeyWindow { [super becomeKeyWindow]; if (owner != 0) owner->grabFocus(); } - (BOOL) windowShouldClose: (id) window { return owner == 0 || owner->windowShouldClose(); } - (NSRect) constrainFrameRect: (NSRect) frameRect toScreen: (NSScreen*) screen { if (owner != 0) frameRect = owner->constrainRect (frameRect); return frameRect; } - (NSSize) windowWillResize: (NSWindow*) window toSize: (NSSize) proposedFrameSize { if (isZooming) return proposedFrameSize; NSRect frameRect = [self frame]; frameRect.origin.y -= proposedFrameSize.height - frameRect.size.height; frameRect.size = proposedFrameSize; if (owner != 0) frameRect = owner->constrainRect (frameRect); return frameRect.size; } - (void) zoom: (id) sender { isZooming = true; [super zoom: sender]; isZooming = false; } - (void) windowWillMove: (NSNotification*) notification { if (juce::Component::getCurrentlyModalComponent() != 0 && owner->getComponent()->isCurrentlyBlockedByAnotherModalComponent() && (owner->getStyleFlags() & juce::ComponentPeer::windowHasTitleBar) != 0) juce::Component::getCurrentlyModalComponent()->inputAttemptWhenModal(); } @end BEGIN_JUCE_NAMESPACE class JuceNSImage { public: JuceNSImage (const int width, const int height, const bool hasAlpha) : juceImage (hasAlpha ? Image::ARGB : Image::RGB, width, height, hasAlpha) { lineStride = 0; pixelStride = 0; imageData = juceImage.lockPixelDataReadWrite (0, 0, width, height, lineStride, pixelStride); imageRep = [[NSBitmapImageRep alloc] initWithBitmapDataPlanes: &imageData pixelsWide: width pixelsHigh: height bitsPerSample: 8 samplesPerPixel: pixelStride hasAlpha: hasAlpha isPlanar: NO colorSpaceName: NSCalibratedRGBColorSpace bitmapFormat: /*NSAlphaFirstBitmapFormat*/ (NSBitmapFormat) 0 bytesPerRow: lineStride bitsPerPixel: 8 * pixelStride ]; juceImage.releasePixelDataReadWrite (imageData); } ~JuceNSImage() { [imageRep release]; } Image& getJuceImage() throw() { return juceImage; } void draw (const float x, const float y, const RectangleList& clip, const int originX, const int originY) const { // Our data is BGRA and the damned image rep only takes RGBA, so // we need to byte-swap the active areas if there's an alpha channel... if (juceImage.hasAlphaChannel()) { RectangleList::Iterator iter (clip); while (iter.next()) { const Rectangle* const r = iter.getRectangle(); swapRGBOrder (r->getX() + originX, r->getY() + originY, r->getWidth(), r->getHeight()); } } NSPoint p; p.x = x; p.y = y; [imageRep drawAtPoint: p]; } void drawNSImage (NSImage* imageToDraw) { const ScopedAutoReleasePool pool; [NSGraphicsContext saveGraphicsState]; [NSGraphicsContext setCurrentContext: [NSGraphicsContext graphicsContextWithBitmapImageRep: imageRep]]; [imageToDraw drawAtPoint: NSZeroPoint fromRect: NSMakeRect (0, 0, [imageToDraw size].width, [imageToDraw size].height) operation: NSCompositeSourceOver fraction: 1.0f]; [[NSGraphicsContext currentContext] flushGraphics]; [NSGraphicsContext restoreGraphicsState]; if (juceImage.hasAlphaChannel()) swapRGBOrder (0, 0, juceImage.getWidth(), juceImage.getHeight()); } private: Image juceImage; NSBitmapImageRep* imageRep; uint8* imageData; int pixelStride, lineStride; void swapRGBOrder (const int x, const int y, const int w, int h) const { #if JUCE_BIG_ENDIAN jassert (pixelStride == 4); #endif jassert (Rectangle (0, 0, juceImage.getWidth(), juceImage.getHeight()) .contains (Rectangle (x, y, w, h))); uint8* start = imageData + x * pixelStride + y * lineStride; while (--h >= 0) { uint8* p = start; start += lineStride; for (int i = w; --i >= 0;) { #if JUCE_BIG_ENDIAN const uint8 oldp3 = p[3]; const uint8 oldp1 = p[1]; p[3] = p[0]; p[0] = oldp1; p[1] = p[2]; p[2] = oldp3; #else const uint8 oldp0 = p[0]; p[0] = p[2]; p[2] = oldp0; #endif p += pixelStride; } } } }; static ComponentPeer* currentlyFocusedPeer = 0; static VoidArray keysCurrentlyDown; bool KeyPress::isKeyCurrentlyDown (const int keyCode) throw() { if (keysCurrentlyDown.contains ((void*) keyCode)) return true; if (keyCode >= 'A' && keyCode <= 'Z' && keysCurrentlyDown.contains ((void*) (int) CharacterFunctions::toLowerCase ((tchar) keyCode))) return true; if (keyCode >= 'a' && keyCode <= 'z' && keysCurrentlyDown.contains ((void*) (int) CharacterFunctions::toUpperCase ((tchar) keyCode))) return true; return false; } static int getKeyCodeFromEvent (NSEvent* ev) { const String unmodified (nsStringToJuce ([ev charactersIgnoringModifiers])); int keyCode = unmodified[0]; if (keyCode == 0x19) // (backwards-tab) keyCode = '\t'; else if (keyCode == 0x03) // (enter) keyCode = '\r'; return keyCode; } static int currentModifiers = 0; static void updateModifiers (NSEvent* e) { int m = currentModifiers & ~(ModifierKeys::shiftModifier | ModifierKeys::ctrlModifier | ModifierKeys::altModifier | ModifierKeys::commandModifier); if (([e modifierFlags] & NSShiftKeyMask) != 0) m |= ModifierKeys::shiftModifier; if (([e modifierFlags] & NSControlKeyMask) != 0) m |= ModifierKeys::ctrlModifier; if (([e modifierFlags] & NSAlternateKeyMask) != 0) m |= ModifierKeys::altModifier; if (([e modifierFlags] & NSCommandKeyMask) != 0) m |= ModifierKeys::commandModifier; currentModifiers = m; } static void updateKeysDown (NSEvent* ev, bool isKeyDown) { updateModifiers (ev); int keyCode = getKeyCodeFromEvent (ev); if (keyCode != 0) { if (isKeyDown) keysCurrentlyDown.addIfNotAlreadyThere ((void*) keyCode); else keysCurrentlyDown.removeValue ((void*) keyCode); } } const ModifierKeys ModifierKeys::getCurrentModifiersRealtime() throw() { return ModifierKeys (currentModifiers); } void ModifierKeys::updateCurrentModifiers() throw() { currentModifierFlags = currentModifiers; } static int64 getMouseTime (NSEvent* e) { return (int64) [e timestamp] * 1000.0; } static void getMousePos (NSEvent* e, NSView* view, int& x, int& y) { NSPoint p = [view convertPoint: [e locationInWindow] fromView: nil]; x = roundFloatToInt (p.x); y = roundFloatToInt ([view frame].size.height - p.y); } static int getModifierForButtonNumber (const int num) throw() { return num == 0 ? ModifierKeys::leftButtonModifier : (num == 1 ? ModifierKeys::rightButtonModifier : (num == 2 ? ModifierKeys::middleButtonModifier : 0)); } NSViewComponentPeer::NSViewComponentPeer (Component* const component, const int windowStyleFlags, NSView* viewToAttachTo) : ComponentPeer (component, windowStyleFlags), window (0), view (0), isSharedWindow (viewToAttachTo != 0), fullScreen (false) { NSRect r; r.origin.x = 0; r.origin.y = 0; r.size.width = (float) component->getWidth(); r.size.height = (float) component->getHeight(); view = [[JuceNSView alloc] initWithOwner: this withFrame: r]; [view setPostsFrameChangedNotifications: YES]; if (isSharedWindow) { window = [viewToAttachTo window]; [viewToAttachTo addSubview: view]; setVisible (component->isVisible()); } else { r.origin.x = (float) component->getX(); r.origin.y = (float) component->getY(); r.origin.y = [[[NSScreen screens] objectAtIndex: 0] frame].size.height - (r.origin.y + r.size.height); unsigned int style = 0; if ((windowStyleFlags & windowHasTitleBar) == 0) style = NSBorderlessWindowMask; else style = NSTitledWindowMask; if ((windowStyleFlags & windowHasMinimiseButton) != 0) style |= NSMiniaturizableWindowMask; if ((windowStyleFlags & windowHasCloseButton) != 0) style |= NSClosableWindowMask; if ((windowStyleFlags & windowIsResizable) != 0) style |= NSResizableWindowMask; window = [[JuceNSWindow alloc] initWithContentRect: r styleMask: style backing: NSBackingStoreBuffered defer: YES]; [((JuceNSWindow*) window) setOwner: this]; [window orderOut: nil]; [window setDelegate: (JuceNSWindow*) window]; [window setOpaque: component->isOpaque()]; [window setHasShadow: ((windowStyleFlags & windowHasDropShadow) != 0)]; if (component->isAlwaysOnTop()) [window setLevel: NSFloatingWindowLevel]; [window setContentView: view]; [window setAutodisplay: YES]; [window setAcceptsMouseMovedEvents: YES]; // We'll both retain and also release this on closing because plugin hosts can unexpectedly // close the window for us, and also tend to get cause trouble if setReleasedWhenClosed is NO. [window setReleasedWhenClosed: YES]; [window retain]; [window setExcludedFromWindowsMenu: (windowStyleFlags & windowIsTemporary) != 0]; [window setIgnoresMouseEvents: (windowStyleFlags & windowIgnoresMouseClicks) != 0]; } setTitle (component->getName()); } NSViewComponentPeer::~NSViewComponentPeer() { view->owner = 0; [view removeFromSuperview]; [view release]; if (! isSharedWindow) { [((JuceNSWindow*) window) setOwner: 0]; [window close]; [window release]; } } void* NSViewComponentPeer::getNativeHandle() const { return view; } void NSViewComponentPeer::setVisible (bool shouldBeVisible) { if (isSharedWindow) { [view setHidden: ! shouldBeVisible]; } else { if (shouldBeVisible) [window orderFront: nil]; else [window orderOut: nil]; } } void NSViewComponentPeer::setTitle (const String& title) { const ScopedAutoReleasePool pool; if (! isSharedWindow) [window setTitle: juceStringToNS (title)]; } void NSViewComponentPeer::setPosition (int x, int y) { setBounds (x, y, component->getWidth(), component->getHeight(), false); } void NSViewComponentPeer::setSize (int w, int h) { setBounds (component->getX(), component->getY(), w, h, false); } void NSViewComponentPeer::setBounds (int x, int y, int w, int h, const bool isNowFullScreen) { fullScreen = isNowFullScreen; w = jmax (0, w); h = jmax (0, h); NSRect r; r.origin.x = (float) x; r.origin.y = (float) y; r.size.width = (float) w; r.size.height = (float) h; if (isSharedWindow) { r.origin.y = [[view superview] frame].size.height - (r.origin.y + r.size.height); if ([view frame].size.width != r.size.width || [view frame].size.height != r.size.height) [view setNeedsDisplay: true]; [view setFrame: r]; } else { r.origin.y = [[[NSScreen screens] objectAtIndex: 0] frame].size.height - (r.origin.y + r.size.height); [window setFrame: [window frameRectForContentRect: r] display: true]; } } void NSViewComponentPeer::getBounds (int& x, int& y, int& w, int& h, const bool global) const { NSRect r = [view frame]; if (global && [view window] != 0) { r = [view convertRect: r toView: nil]; NSRect wr = [[view window] frame]; r.origin.x += wr.origin.x; r.origin.y += wr.origin.y; y = (int) ([[[NSScreen screens] objectAtIndex:0] frame].size.height - r.origin.y - r.size.height); } else { y = (int) ([[view superview] frame].size.height - r.origin.y - r.size.height); } x = (int) r.origin.x; w = (int) r.size.width; h = (int) r.size.height; } void NSViewComponentPeer::getBounds (int& x, int& y, int& w, int& h) const { getBounds (x, y, w, h, ! isSharedWindow); } int NSViewComponentPeer::getScreenX() const { int x, y, w, h; getBounds (x, y, w, h, true); return x; } int NSViewComponentPeer::getScreenY() const { int x, y, w, h; getBounds (x, y, w, h, true); return y; } void NSViewComponentPeer::relativePositionToGlobal (int& x, int& y) { int wx, wy, ww, wh; getBounds (wx, wy, ww, wh, true); x += wx; y += wy; } void NSViewComponentPeer::globalPositionToRelative (int& x, int& y) { int wx, wy, ww, wh; getBounds (wx, wy, ww, wh, true); x -= wx; y -= wy; } NSRect NSViewComponentPeer::constrainRect (NSRect r) { if (constrainer != 0) { NSRect current = [window frame]; current.origin.y = [[[NSScreen screens] objectAtIndex: 0] frame].size.height - current.origin.y - current.size.height; r.origin.y = [[[NSScreen screens] objectAtIndex: 0] frame].size.height - r.origin.y - r.size.height; int x = (int) r.origin.x; int y = (int) r.origin.y; int w = (int) r.size.width; int h = (int) r.size.height; Rectangle original ((int) current.origin.x, (int) current.origin.y, (int) current.size.width, (int) current.size.height); constrainer->checkBounds (x, y, w, h, original, Desktop::getInstance().getAllMonitorDisplayAreas().getBounds(), y != original.getY() && y + h == original.getBottom(), x != original.getX() && x + w == original.getRight(), y == original.getY() && y + h != original.getBottom(), x == original.getX() && x + w != original.getRight()); r.origin.x = x; r.origin.y = [[[NSScreen screens] objectAtIndex: 0] frame].size.height - r.size.height - y; r.size.width = w; r.size.height = h; } return r; } void NSViewComponentPeer::setMinimised (bool shouldBeMinimised) { if (! isSharedWindow) { if (shouldBeMinimised) [window miniaturize: nil]; else [window deminiaturize: nil]; } } bool NSViewComponentPeer::isMinimised() const { return window != 0 && [window isMiniaturized]; } void NSViewComponentPeer::setFullScreen (bool shouldBeFullScreen) { if (! isSharedWindow) { Rectangle r (lastNonFullscreenBounds); setMinimised (false); if (fullScreen != shouldBeFullScreen) { if (shouldBeFullScreen) r = Desktop::getInstance().getMainMonitorArea(); // (can't call the component's setBounds method because that'll reset our fullscreen flag) if (r != getComponent()->getBounds() && ! r.isEmpty()) setBounds (r.getX(), r.getY(), r.getWidth(), r.getHeight(), shouldBeFullScreen); } } } bool NSViewComponentPeer::isFullScreen() const { return fullScreen; } bool NSViewComponentPeer::contains (int x, int y, bool trueIfInAChildWindow) const { if (((unsigned int) x) >= (unsigned int) component->getWidth() || ((unsigned int) y) >= (unsigned int) component->getHeight()) return false; NSPoint p; p.x = (float) x; p.y = (float) y; NSView* v = [view hitTest: p]; if (trueIfInAChildWindow) return v != nil; return v == view; } const BorderSize NSViewComponentPeer::getFrameSize() const { BorderSize b; if (! isSharedWindow) { NSRect v = [view convertRect: [view frame] toView: nil]; NSRect w = [window frame]; b.setTop ((int) (w.size.height - (v.origin.y + v.size.height))); b.setBottom ((int) v.origin.y); b.setLeft ((int) v.origin.x); b.setRight ((int) (w.size.width - (v.origin.x + v.size.width))); } return b; } bool NSViewComponentPeer::setAlwaysOnTop (bool alwaysOnTop) { if (! isSharedWindow) { [window setLevel: alwaysOnTop ? NSFloatingWindowLevel : NSNormalWindowLevel]; } return true; } void NSViewComponentPeer::toFront (bool makeActiveWindow) { if (isSharedWindow) { [[view superview] addSubview: view positioned: NSWindowAbove relativeTo: nil]; } if (window != 0 && component->isVisible()) { if (makeActiveWindow) [window makeKeyAndOrderFront: nil]; else [window orderFront: nil]; } } void NSViewComponentPeer::toBehind (ComponentPeer* other) { NSViewComponentPeer* o = (NSViewComponentPeer*) other; if (isSharedWindow) { [[view superview] addSubview: view positioned: NSWindowBelow relativeTo: o->view]; } else { [window orderWindow: NSWindowBelow relativeTo: o->window != 0 ? [o->window windowNumber] : nil ]; } } void NSViewComponentPeer::setIcon (const Image& /*newIcon*/) { // to do.. } void NSViewComponentPeer::viewFocusGain() { if (currentlyFocusedPeer != this) { if (ComponentPeer::isValidPeer (currentlyFocusedPeer)) currentlyFocusedPeer->handleFocusLoss(); currentlyFocusedPeer = this; handleFocusGain(); } } void NSViewComponentPeer::viewFocusLoss() { if (currentlyFocusedPeer == this) { currentlyFocusedPeer = 0; handleFocusLoss(); } } void juce_HandleProcessFocusChange() { keysCurrentlyDown.clear(); if (NSViewComponentPeer::isValidPeer (currentlyFocusedPeer)) { if (Process::isForegroundProcess()) { currentlyFocusedPeer->handleFocusGain(); ComponentPeer::bringModalComponentToFront(); } else { currentlyFocusedPeer->handleFocusLoss(); // turn kiosk mode off if we lose focus.. Desktop::getInstance().setKioskModeComponent (0); } } } bool NSViewComponentPeer::isFocused() const { return isSharedWindow ? this == currentlyFocusedPeer : (window != 0 && [window isKeyWindow]); } void NSViewComponentPeer::grabFocus() { if (window != 0) { [window makeKeyWindow]; [window makeFirstResponder: view]; viewFocusGain(); } } void NSViewComponentPeer::textInputRequired (int /*x*/, int /*y*/) { } bool NSViewComponentPeer::handleKeyEvent (NSEvent* ev, bool isKeyDown) { String unicode (nsStringToJuce ([ev characters])); String unmodified (nsStringToJuce ([ev charactersIgnoringModifiers])); int keyCode = getKeyCodeFromEvent (ev); //DBG ("unicode: " + unicode + " " + String::toHexString ((int) unicode[0])); //DBG ("unmodified: " + unmodified + " " + String::toHexString ((int) unmodified[0])); if (unicode.isNotEmpty() || keyCode != 0) { if (isKeyDown) { bool used = false; while (unicode.length() > 0) { juce_wchar textCharacter = unicode[0]; unicode = unicode.substring (1); if (([ev modifierFlags] & NSCommandKeyMask) != 0) textCharacter = 0; used = handleKeyUpOrDown (true) || used; used = handleKeyPress (keyCode, textCharacter) || used; } return used; } else { if (handleKeyUpOrDown (false)) return true; } } return false; } bool NSViewComponentPeer::redirectKeyDown (NSEvent* ev) { updateKeysDown (ev, true); bool used = handleKeyEvent (ev, true); if (([ev modifierFlags] & NSCommandKeyMask) != 0) { // for command keys, the key-up event is thrown away, so simulate one.. updateKeysDown (ev, false); used = (isValidPeer (this) && handleKeyEvent (ev, false)) || used; } // (If we're running modally, don't allow unused keystrokes to be passed // along to other blocked views..) if (Component::getCurrentlyModalComponent() != 0) used = true; return used; } bool NSViewComponentPeer::redirectKeyUp (NSEvent* ev) { updateKeysDown (ev, false); return handleKeyEvent (ev, false) || Component::getCurrentlyModalComponent() != 0; } void NSViewComponentPeer::redirectModKeyChange (NSEvent* ev) { updateModifiers (ev); handleModifierKeysChange(); } #if MACOS_10_4_OR_EARLIER bool NSViewComponentPeer::redirectPerformKeyEquivalent (NSEvent* ev) { if ([ev type] == NSKeyDown) return redirectKeyDown (ev); else if ([ev type] == NSKeyUp) return redirectKeyUp (ev); return false; } #endif void NSViewComponentPeer::redirectMouseDown (NSEvent* ev) { updateModifiers (ev); currentModifiers |= getModifierForButtonNumber ([ev buttonNumber]); int x, y; getMousePos (ev, view, x, y); handleMouseDown (x, y, getMouseTime (ev)); } void NSViewComponentPeer::redirectMouseUp (NSEvent* ev) { const int oldMods = currentModifiers; updateModifiers (ev); currentModifiers &= ~getModifierForButtonNumber ([ev buttonNumber]); int x, y; getMousePos (ev, view, x, y); handleMouseUp (oldMods, x, y, getMouseTime (ev)); showArrowCursorIfNeeded(); } void NSViewComponentPeer::redirectMouseDrag (NSEvent* ev) { updateModifiers (ev); currentModifiers |= getModifierForButtonNumber ([ev buttonNumber]); int x, y; getMousePos (ev, view, x, y); handleMouseDrag (x, y, getMouseTime (ev)); } void NSViewComponentPeer::redirectMouseMove (NSEvent* ev) { updateModifiers (ev); int x, y; getMousePos (ev, view, x, y); handleMouseMove (x, y, getMouseTime (ev)); showArrowCursorIfNeeded(); } void NSViewComponentPeer::redirectMouseEnter (NSEvent* ev) { updateModifiers (ev); int x, y; getMousePos (ev, view, x, y); handleMouseEnter (x, y, getMouseTime (ev)); } void NSViewComponentPeer::redirectMouseExit (NSEvent* ev) { updateModifiers (ev); int x, y; getMousePos (ev, view, x, y); handleMouseExit (x, y, getMouseTime (ev)); } void NSViewComponentPeer::redirectMouseWheel (NSEvent* ev) { updateModifiers (ev); handleMouseWheel (roundFloatToInt ([ev deltaX] * 10.0f), roundFloatToInt ([ev deltaY] * 10.0f), getMouseTime (ev)); } void NSViewComponentPeer::showArrowCursorIfNeeded() { if (Component::getComponentUnderMouse() == 0) { int mx, my; Desktop::getInstance().getMousePosition (mx, my); if (Desktop::getInstance().findComponentAt (mx, my) == 0) [[NSCursor arrowCursor] set]; } } BOOL NSViewComponentPeer::sendDragCallback (int type, id sender) { NSString* bestType = [[sender draggingPasteboard] availableTypeFromArray: [view getSupportedDragTypes]]; if (bestType == nil) return false; NSPoint p = [view convertPoint: [sender draggingLocation] fromView: nil]; int x = (int) p.x; int y = (int) ([view frame].size.height - p.y); StringArray files; id list = [[sender draggingPasteboard] propertyListForType: bestType]; if (list == nil) return false; if ([list isKindOfClass: [NSArray class]]) { NSArray* items = (NSArray*) list; for (unsigned int i = 0; i < [items count]; ++i) files.add (nsStringToJuce ((NSString*) [items objectAtIndex: i])); } if (files.size() == 0) return false; if (type == 0) handleFileDragMove (files, x, y); else if (type == 1) handleFileDragExit (files); else if (type == 2) handleFileDragDrop (files, x, y); return true; } bool NSViewComponentPeer::isOpaque() { if (! getComponent()->isValidComponent()) return true; return getComponent()->isOpaque(); } void NSViewComponentPeer::drawRect (NSRect r) { if (r.size.width < 1.0f || r.size.height < 1.0f) return; const float y = [view frame].size.height - (r.origin.y + r.size.height); JuceNSImage temp ((int) (r.size.width + 0.5f), (int) (r.size.height + 0.5f), ! getComponent()->isOpaque()); LowLevelGraphicsSoftwareRenderer context (temp.getJuceImage()); const int originX = -roundFloatToInt (r.origin.x); const int originY = -roundFloatToInt (y); context.setOrigin (originX, originY); const NSRect* rects = 0; NSInteger numRects = 0; [view getRectsBeingDrawn: &rects count: &numRects]; RectangleList clip; for (int i = 0; i < numRects; ++i) { clip.addWithoutMerging (Rectangle (roundFloatToInt (rects[i].origin.x), roundFloatToInt ([view frame].size.height - (rects[i].origin.y + rects[i].size.height)), roundFloatToInt (rects[i].size.width), roundFloatToInt (rects[i].size.height))); } if (context.reduceClipRegion (clip)) { handlePaint (context); temp.draw (r.origin.x, r.origin.y, clip, originX, originY); } } bool NSViewComponentPeer::canBecomeKeyWindow() { return (getStyleFlags() & juce::ComponentPeer::windowIgnoresKeyPresses) == 0; } bool NSViewComponentPeer::windowShouldClose() { if (! isValidPeer (this)) return YES; handleUserClosingWindow(); return NO; } void NSViewComponentPeer::redirectMovedOrResized() { handleMovedOrResized(); } void juce_setKioskComponent (Component* kioskModeComponent, bool enableOrDisable, bool allowMenusAndBars) { // Very annoyingly, this function has to use the old SetSystemUIMode function, // which is in Carbon.framework. But, because there's no Cocoa equivalent, it // is apparently still available in 64-bit apps.. if (enableOrDisable) { SetSystemUIMode (kUIModeAllSuppressed, allowMenusAndBars ? kUIOptionAutoShowMenuBar : 0); kioskModeComponent->setBounds (Desktop::getInstance().getMainMonitorArea (false)); } else { SetSystemUIMode (kUIModeNormal, 0); } } void NSViewComponentPeer::repaint (int x, int y, int w, int h) { [view setNeedsDisplayInRect: NSMakeRect ((float) x, (float) ([view frame].size.height - (y + h)), (float) w, (float) h)]; } void NSViewComponentPeer::performAnyPendingRepaintsNow() { [view displayIfNeeded]; } ComponentPeer* Component::createNewPeer (int styleFlags, void* windowToAttachTo) { return new NSViewComponentPeer (this, styleFlags, (NSView*) windowToAttachTo); } static Image* NSImageToJuceImage (NSImage* image) { JuceNSImage juceIm ((int) [image size].width, (int) [image size].height, true); juceIm.drawNSImage (image); return juceIm.getJuceImage().createCopy(); } Image* juce_createIconForFile (const File& file) { const ScopedAutoReleasePool pool; NSImage* im = [[NSWorkspace sharedWorkspace] iconForFile: juceStringToNS (file.getFullPathName())]; return NSImageToJuceImage (im); } const int KeyPress::spaceKey = ' '; const int KeyPress::returnKey = 0x0d; const int KeyPress::escapeKey = 0x1b; const int KeyPress::backspaceKey = 0x7f; const int KeyPress::leftKey = NSLeftArrowFunctionKey; const int KeyPress::rightKey = NSRightArrowFunctionKey; const int KeyPress::upKey = NSUpArrowFunctionKey; const int KeyPress::downKey = NSDownArrowFunctionKey; const int KeyPress::pageUpKey = NSPageUpFunctionKey; const int KeyPress::pageDownKey = NSPageDownFunctionKey; const int KeyPress::endKey = NSEndFunctionKey; const int KeyPress::homeKey = NSHomeFunctionKey; const int KeyPress::deleteKey = NSDeleteFunctionKey; const int KeyPress::insertKey = -1; const int KeyPress::tabKey = 9; const int KeyPress::F1Key = NSF1FunctionKey; const int KeyPress::F2Key = NSF2FunctionKey; const int KeyPress::F3Key = NSF3FunctionKey; const int KeyPress::F4Key = NSF4FunctionKey; const int KeyPress::F5Key = NSF5FunctionKey; const int KeyPress::F6Key = NSF6FunctionKey; const int KeyPress::F7Key = NSF7FunctionKey; const int KeyPress::F8Key = NSF8FunctionKey; const int KeyPress::F9Key = NSF9FunctionKey; const int KeyPress::F10Key = NSF10FunctionKey; const int KeyPress::F11Key = NSF1FunctionKey; const int KeyPress::F12Key = NSF12FunctionKey; const int KeyPress::F13Key = NSF13FunctionKey; const int KeyPress::F14Key = NSF14FunctionKey; const int KeyPress::F15Key = NSF15FunctionKey; const int KeyPress::F16Key = NSF16FunctionKey; const int KeyPress::numberPad0 = 0x30020; const int KeyPress::numberPad1 = 0x30021; const int KeyPress::numberPad2 = 0x30022; const int KeyPress::numberPad3 = 0x30023; const int KeyPress::numberPad4 = 0x30024; const int KeyPress::numberPad5 = 0x30025; const int KeyPress::numberPad6 = 0x30026; const int KeyPress::numberPad7 = 0x30027; const int KeyPress::numberPad8 = 0x30028; const int KeyPress::numberPad9 = 0x30029; const int KeyPress::numberPadAdd = 0x3002a; const int KeyPress::numberPadSubtract = 0x3002b; const int KeyPress::numberPadMultiply = 0x3002c; const int KeyPress::numberPadDivide = 0x3002d; const int KeyPress::numberPadSeparator = 0x3002e; const int KeyPress::numberPadDecimalPoint = 0x3002f; const int KeyPress::numberPadEquals = 0x30030; const int KeyPress::numberPadDelete = 0x30031; const int KeyPress::playKey = 0x30000; const int KeyPress::stopKey = 0x30001; const int KeyPress::fastForwardKey = 0x30002; const int KeyPress::rewindKey = 0x30003; #endif /********* End of inlined file: juce_mac_NSViewComponentPeer.mm *********/ /********* Start of inlined file: juce_mac_MouseCursor.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE #if JUCE_MAC static NSImage* juceImageToNSImage (const Image& image) { const ScopedAutoReleasePool pool; int lineStride, pixelStride; const uint8* pixels = image.lockPixelDataReadOnly (0, 0, image.getWidth(), image.getHeight(), lineStride, pixelStride); NSBitmapImageRep* rep = [[NSBitmapImageRep alloc] initWithBitmapDataPlanes: NULL pixelsWide: image.getWidth() pixelsHigh: image.getHeight() bitsPerSample: 8 samplesPerPixel: image.hasAlphaChannel() ? 4 : 3 hasAlpha: image.hasAlphaChannel() isPlanar: NO colorSpaceName: NSCalibratedRGBColorSpace bitmapFormat: (NSBitmapFormat) 0 bytesPerRow: lineStride bitsPerPixel: pixelStride * 8]; unsigned char* newData = [rep bitmapData]; memcpy (newData, pixels, lineStride * image.getHeight()); image.releasePixelDataReadOnly (pixels); NSImage* im = [[NSImage alloc] init]; [im addRepresentation: rep]; [rep release]; return im; } void* juce_createMouseCursorFromImage (const Image& image, int hotspotX, int hotspotY) throw() { NSImage* im = juceImageToNSImage (image); NSCursor* c = [[NSCursor alloc] initWithImage: im hotSpot: NSMakePoint (hotspotX, hotspotY)]; [im release]; return (void*) c; } static void* juce_cursorFromData (const unsigned char* data, const int size, float hx, float hy) throw() { Image* const im = ImageFileFormat::loadFrom ((const char*) data, size); jassert (im != 0); if (im == 0) return 0; void* const curs = juce_createMouseCursorFromImage (*im, (int) (hx * im->getWidth()), (int) (hy * im->getHeight())); delete im; return curs; } static void* juce_cursorFromWebKitFile (const char* filename, float hx, float hy) { File f ("/System/Library/Frameworks/WebKit.framework/Frameworks/WebCore.framework/Resources"); MemoryBlock mb; if (f.getChildFile (filename).loadFileAsData (mb)) return juce_cursorFromData ((const unsigned char*) mb.getData(), mb.getSize(), hx, hy); return 0; } void* juce_createStandardMouseCursor (MouseCursor::StandardCursorType type) throw() { const ScopedAutoReleasePool pool; NSCursor* c = 0; switch (type) { case MouseCursor::NormalCursor: c = [NSCursor arrowCursor]; break; case MouseCursor::NoCursor: { Image blank (Image::ARGB, 8, 8, true); return juce_createMouseCursorFromImage (blank, 0, 0); } case MouseCursor::DraggingHandCursor: c = [NSCursor openHandCursor]; break; case MouseCursor::CopyingCursor: return juce_cursorFromWebKitFile ("copyCursor.png", 0, 0); case MouseCursor::WaitCursor: c = [NSCursor arrowCursor]; // avoid this on the mac, let the OS provide the beachball break; //return juce_cursorFromWebKitFile ("waitCursor.png", 0.5f, 0.5f); case MouseCursor::IBeamCursor: c = [NSCursor IBeamCursor]; break; case MouseCursor::PointingHandCursor: c = [NSCursor pointingHandCursor]; break; case MouseCursor::LeftRightResizeCursor: c = [NSCursor resizeLeftRightCursor]; break; case MouseCursor::LeftEdgeResizeCursor: c = [NSCursor resizeLeftCursor]; break; case MouseCursor::RightEdgeResizeCursor: c = [NSCursor resizeRightCursor]; break; case MouseCursor::UpDownResizeCursor: case MouseCursor::TopEdgeResizeCursor: case MouseCursor::BottomEdgeResizeCursor: return juce_cursorFromWebKitFile ("northSouthResizeCursor.png", 0.5f, 0.5f); case MouseCursor::TopLeftCornerResizeCursor: case MouseCursor::BottomRightCornerResizeCursor: return juce_cursorFromWebKitFile ("northWestSouthEastResizeCursor.png", 0.5f, 0.5f); case MouseCursor::TopRightCornerResizeCursor: case MouseCursor::BottomLeftCornerResizeCursor: return juce_cursorFromWebKitFile ("northEastSouthWestResizeCursor.png", 0.5f, 0.5f); case MouseCursor::UpDownLeftRightResizeCursor: return juce_cursorFromWebKitFile ("moveCursor.png", 0.5f, 0.5f); case MouseCursor::CrosshairCursor: c = [NSCursor crosshairCursor]; break; } [c retain]; return (void*) c; } void juce_deleteMouseCursor (void* const cursorHandle, const bool isStandard) throw() { NSCursor* c = (NSCursor*) cursorHandle; [c release]; } void MouseCursor::showInAllWindows() const throw() { showInWindow (0); } void MouseCursor::showInWindow (ComponentPeer*) const throw() { NSCursor* const c = (NSCursor*) getHandle(); [c set]; } #else void* juce_createMouseCursorFromImage (const Image& image, int hotspotX, int hotspotY) throw() { return 0; } void* juce_createStandardMouseCursor (MouseCursor::StandardCursorType type) throw() { return 0; } void juce_deleteMouseCursor (void* const cursorHandle, const bool isStandard) throw() {} void MouseCursor::showInAllWindows() const throw() {} void MouseCursor::showInWindow (ComponentPeer*) const throw() {} #endif #endif /********* End of inlined file: juce_mac_MouseCursor.mm *********/ /********* Start of inlined file: juce_mac_NSViewComponent.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE class NSViewComponentInternal : public ComponentMovementWatcher { Component* const owner; NSViewComponentPeer* currentPeer; bool wasShowing; public: NSView* const view; NSViewComponentInternal (NSView* const view_, Component* const owner_) : ComponentMovementWatcher (owner_), owner (owner_), currentPeer (0), wasShowing (false), view (view_) { [view_ retain]; if (owner_->isShowing()) componentPeerChanged(); } ~NSViewComponentInternal() { [view removeFromSuperview]; [view release]; } void componentMovedOrResized (Component& comp, bool wasMoved, bool wasResized) { ComponentMovementWatcher::componentMovedOrResized (comp, wasMoved, wasResized); // The ComponentMovementWatcher version of this method avoids calling // us when the top-level comp is resized, but for an NSView we need to know this // because with inverted co-ords, we need to update the position even if the // top-left pos hasn't changed if (comp.isOnDesktop() && wasResized) componentMovedOrResized (wasMoved, wasResized); } void componentMovedOrResized (bool /*wasMoved*/, bool /*wasResized*/) { Component* const topComp = owner->getTopLevelComponent(); if (topComp->getPeer() != 0) { int x = 0, y = 0; owner->relativePositionToOtherComponent (topComp, x, y); NSRect r; r.origin.x = (float) x; r.origin.y = (float) y; r.size.width = (float) owner->getWidth(); r.size.height = (float) owner->getHeight(); r.origin.y = [[view superview] frame].size.height - (r.origin.y + r.size.height); [view setFrame: r]; } } void componentPeerChanged() { NSViewComponentPeer* const peer = dynamic_cast (owner->getPeer()); if (currentPeer != peer) { [view removeFromSuperview]; currentPeer = peer; if (peer != 0) { [peer->view addSubview: view]; componentMovedOrResized (false, false); } } [view setHidden: ! owner->isShowing()]; } void componentVisibilityChanged (Component&) { componentPeerChanged(); } juce_UseDebuggingNewOperator private: NSViewComponentInternal (const NSViewComponentInternal&); const NSViewComponentInternal& operator= (const NSViewComponentInternal&); }; NSViewComponent::NSViewComponent() : info (0) { } NSViewComponent::~NSViewComponent() { delete info; } void NSViewComponent::setView (void* view) { if (view != getView()) { deleteAndZero (info); if (view != 0) info = new NSViewComponentInternal ((NSView*) view, this); } } void* NSViewComponent::getView() const { return info == 0 ? 0 : info->view; } void NSViewComponent::paint (Graphics& g) { } #endif /********* End of inlined file: juce_mac_NSViewComponent.mm *********/ /********* Start of inlined file: juce_mac_AppleRemote.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE AppleRemoteDevice::AppleRemoteDevice() : device (0), queue (0), remoteId (0) { } AppleRemoteDevice::~AppleRemoteDevice() { stop(); } static io_object_t getAppleRemoteDevice() throw() { CFMutableDictionaryRef dict = IOServiceMatching ("AppleIRController"); io_iterator_t iter = 0; io_object_t iod = 0; if (IOServiceGetMatchingServices (kIOMasterPortDefault, dict, &iter) == kIOReturnSuccess && iter != 0) { iod = IOIteratorNext (iter); } IOObjectRelease (iter); return iod; } static bool createAppleRemoteInterface (io_object_t iod, void** device) throw() { jassert (*device == 0); io_name_t classname; if (IOObjectGetClass (iod, classname) == kIOReturnSuccess) { IOCFPlugInInterface** cfPlugInInterface = 0; SInt32 score = 0; if (IOCreatePlugInInterfaceForService (iod, kIOHIDDeviceUserClientTypeID, kIOCFPlugInInterfaceID, &cfPlugInInterface, &score) == kIOReturnSuccess) { HRESULT hr = (*cfPlugInInterface)->QueryInterface (cfPlugInInterface, CFUUIDGetUUIDBytes (kIOHIDDeviceInterfaceID), device); (void) hr; (*cfPlugInInterface)->Release (cfPlugInInterface); } } return *device != 0; } bool AppleRemoteDevice::start (const bool inExclusiveMode) throw() { if (queue != 0) return true; stop(); bool result = false; io_object_t iod = getAppleRemoteDevice(); if (iod != 0) { if (createAppleRemoteInterface (iod, &device) && open (inExclusiveMode)) result = true; else stop(); IOObjectRelease (iod); } return result; } void AppleRemoteDevice::stop() throw() { if (queue != 0) { (*(IOHIDQueueInterface**) queue)->stop ((IOHIDQueueInterface**) queue); (*(IOHIDQueueInterface**) queue)->dispose ((IOHIDQueueInterface**) queue); (*(IOHIDQueueInterface**) queue)->Release ((IOHIDQueueInterface**) queue); queue = 0; } if (device != 0) { (*(IOHIDDeviceInterface**) device)->close ((IOHIDDeviceInterface**) device); (*(IOHIDDeviceInterface**) device)->Release ((IOHIDDeviceInterface**) device); device = 0; } } bool AppleRemoteDevice::isActive() const throw() { return queue != 0; } static void appleRemoteQueueCallback (void* const target, const IOReturn result, void*, void*) { if (result == kIOReturnSuccess) ((AppleRemoteDevice*) target)->handleCallbackInternal(); } bool AppleRemoteDevice::open (const bool openInExclusiveMode) throw() { Array cookies; CFArrayRef elements; IOHIDDeviceInterface122** const device122 = (IOHIDDeviceInterface122**) device; if ((*device122)->copyMatchingElements (device122, 0, &elements) != kIOReturnSuccess) return false; for (int i = 0; i < CFArrayGetCount (elements); ++i) { CFDictionaryRef element = (CFDictionaryRef) CFArrayGetValueAtIndex (elements, i); // get the cookie CFTypeRef object = CFDictionaryGetValue (element, CFSTR (kIOHIDElementCookieKey)); if (object == 0 || CFGetTypeID (object) != CFNumberGetTypeID()) continue; long number; if (! CFNumberGetValue ((CFNumberRef) object, kCFNumberLongType, &number)) continue; cookies.add ((int) number); } CFRelease (elements); if ((*(IOHIDDeviceInterface**) device) ->open ((IOHIDDeviceInterface**) device, openInExclusiveMode ? kIOHIDOptionsTypeSeizeDevice : kIOHIDOptionsTypeNone) == KERN_SUCCESS) { queue = (*(IOHIDDeviceInterface**) device)->allocQueue ((IOHIDDeviceInterface**) device); if (queue != 0) { (*(IOHIDQueueInterface**) queue)->create ((IOHIDQueueInterface**) queue, 0, 12); for (int i = 0; i < cookies.size(); ++i) { IOHIDElementCookie cookie = (IOHIDElementCookie) cookies.getUnchecked(i); (*(IOHIDQueueInterface**) queue)->addElement ((IOHIDQueueInterface**) queue, cookie, 0); } CFRunLoopSourceRef eventSource; if ((*(IOHIDQueueInterface**) queue) ->createAsyncEventSource ((IOHIDQueueInterface**) queue, &eventSource) == KERN_SUCCESS) { if ((*(IOHIDQueueInterface**) queue)->setEventCallout ((IOHIDQueueInterface**) queue, appleRemoteQueueCallback, this, 0) == KERN_SUCCESS) { CFRunLoopAddSource (CFRunLoopGetCurrent(), eventSource, kCFRunLoopDefaultMode); (*(IOHIDQueueInterface**) queue)->start ((IOHIDQueueInterface**) queue); return true; } } } } return false; } void AppleRemoteDevice::handleCallbackInternal() { int totalValues = 0; AbsoluteTime nullTime = { 0, 0 }; char cookies [12]; int numCookies = 0; while (numCookies < numElementsInArray (cookies)) { IOHIDEventStruct e; if ((*(IOHIDQueueInterface**) queue)->getNextEvent ((IOHIDQueueInterface**) queue, &e, nullTime, 0) != kIOReturnSuccess) break; if ((int) e.elementCookie == 19) { remoteId = e.value; buttonPressed (switched, false); } else { totalValues += e.value; cookies [numCookies++] = (char) (pointer_sized_int) e.elementCookie; } } cookies [numCookies++] = 0; //DBG (String::toHexString ((uint8*) cookies, numCookies, 1) + " " + String (totalValues)); static const char buttonPatterns[] = { 0x1f, 0x14, 0x12, 0x1f, 0x14, 0x12, 0, 0x1f, 0x15, 0x12, 0x1f, 0x15, 0x12, 0, 0x1f, 0x1d, 0x1c, 0x12, 0, 0x1f, 0x1e, 0x1c, 0x12, 0, 0x1f, 0x16, 0x12, 0x1f, 0x16, 0x12, 0, 0x1f, 0x17, 0x12, 0x1f, 0x17, 0x12, 0, 0x1f, 0x12, 0x04, 0x02, 0, 0x1f, 0x12, 0x03, 0x02, 0, 0x1f, 0x12, 0x1f, 0x12, 0, 0x23, 0x1f, 0x12, 0x23, 0x1f, 0x12, 0, 19, 0 }; int buttonNum = (int) menuButton; int i = 0; while (i < numElementsInArray (buttonPatterns)) { if (strcmp (cookies, buttonPatterns + i) == 0) { buttonPressed ((ButtonType) buttonNum, totalValues > 0); break; } i += strlen (buttonPatterns + i) + 1; ++buttonNum; } } #endif /********* End of inlined file: juce_mac_AppleRemote.mm *********/ /********* Start of inlined file: juce_mac_OpenGLComponent.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_OPENGL #if JUCE_MAC END_JUCE_NAMESPACE #define ThreadSafeNSOpenGLView MakeObjCClassName(ThreadSafeNSOpenGLView) @interface ThreadSafeNSOpenGLView : NSOpenGLView { CriticalSection* contextLock; bool needsUpdate; } - (id) initWithFrame: (NSRect) frameRect pixelFormat: (NSOpenGLPixelFormat*) format; - (bool) makeActive; - (void) makeInactive; - (void) reshape; @end @implementation ThreadSafeNSOpenGLView - (id) initWithFrame: (NSRect) frameRect pixelFormat: (NSOpenGLPixelFormat*) format { contextLock = new CriticalSection(); self = [super initWithFrame: frameRect pixelFormat: format]; if (self != nil) [[NSNotificationCenter defaultCenter] addObserver: self selector: @selector (_surfaceNeedsUpdate:) name: NSViewGlobalFrameDidChangeNotification object: self]; return self; } - (void) dealloc { [[NSNotificationCenter defaultCenter] removeObserver: self]; delete contextLock; [super dealloc]; } - (bool) makeActive { const ScopedLock sl (*contextLock); if ([self openGLContext] == 0) return false; [[self openGLContext] makeCurrentContext]; if (needsUpdate) { [super update]; needsUpdate = false; } return true; } - (void) makeInactive { const ScopedLock sl (*contextLock); [NSOpenGLContext clearCurrentContext]; } - (void) _surfaceNeedsUpdate: (NSNotification*) notification { const ScopedLock sl (*contextLock); needsUpdate = true; } - (void) update { const ScopedLock sl (*contextLock); needsUpdate = true; } - (void) reshape { const ScopedLock sl (*contextLock); needsUpdate = true; } @end BEGIN_JUCE_NAMESPACE class WindowedGLContext : public OpenGLContext { public: WindowedGLContext (Component* const component, const OpenGLPixelFormat& pixelFormat_, NSOpenGLContext* sharedContext) : renderContext (0), pixelFormat (pixelFormat_) { jassert (component != 0); NSOpenGLPixelFormatAttribute attribs [64]; int n = 0; attribs[n++] = NSOpenGLPFADoubleBuffer; attribs[n++] = NSOpenGLPFAAccelerated; attribs[n++] = NSOpenGLPFAMPSafe; // NSOpenGLPFAAccelerated, NSOpenGLPFAMultiScreen, NSOpenGLPFASingleRenderer attribs[n++] = NSOpenGLPFAColorSize; attribs[n++] = (NSOpenGLPixelFormatAttribute) jmax (pixelFormat.redBits, pixelFormat.greenBits, pixelFormat.blueBits); attribs[n++] = NSOpenGLPFAAlphaSize; attribs[n++] = (NSOpenGLPixelFormatAttribute) pixelFormat.alphaBits; attribs[n++] = NSOpenGLPFADepthSize; attribs[n++] = (NSOpenGLPixelFormatAttribute) pixelFormat.depthBufferBits; attribs[n++] = NSOpenGLPFAStencilSize; attribs[n++] = (NSOpenGLPixelFormatAttribute) pixelFormat.stencilBufferBits; attribs[n++] = NSOpenGLPFAAccumSize; attribs[n++] = (NSOpenGLPixelFormatAttribute) jmax (pixelFormat.accumulationBufferRedBits, pixelFormat.accumulationBufferGreenBits, pixelFormat.accumulationBufferBlueBits, pixelFormat.accumulationBufferAlphaBits); // xxx not sure how to do fullSceneAntiAliasingNumSamples.. attribs[n++] = NSOpenGLPFASampleBuffers; attribs[n++] = (NSOpenGLPixelFormatAttribute) 1; attribs[n++] = NSOpenGLPFAClosestPolicy; attribs[n++] = NSOpenGLPFANoRecovery; attribs[n++] = (NSOpenGLPixelFormatAttribute) 0; NSOpenGLPixelFormat* format = [[NSOpenGLPixelFormat alloc] initWithAttributes: attribs]; view = [[ThreadSafeNSOpenGLView alloc] initWithFrame: NSMakeRect (0, 0, 100.0f, 100.0f) pixelFormat: format]; renderContext = [[[NSOpenGLContext alloc] initWithFormat: format shareContext: sharedContext] autorelease]; const GLint swapInterval = 1; [renderContext setValues: &swapInterval forParameter: NSOpenGLCPSwapInterval]; [view setOpenGLContext: renderContext]; [renderContext setView: view]; [format release]; viewHolder = new NSViewComponentInternal (view, component); } ~WindowedGLContext() { makeInactive(); [renderContext setView: nil]; delete viewHolder; } bool makeActive() const throw() { jassert (renderContext != 0); [view makeActive]; return isActive(); } bool makeInactive() const throw() { [view makeInactive]; return true; } bool isActive() const throw() { return [NSOpenGLContext currentContext] == renderContext; } const OpenGLPixelFormat getPixelFormat() const { return pixelFormat; } void* getRawContext() const throw() { return renderContext; } void updateWindowPosition (int x, int y, int w, int h, int outerWindowHeight) { } void swapBuffers() { [renderContext flushBuffer]; } bool setSwapInterval (const int numFramesPerSwap) { [renderContext setValues: (const GLint*) &numFramesPerSwap forParameter: NSOpenGLCPSwapInterval]; return true; } int getSwapInterval() const { GLint numFrames = 0; [renderContext getValues: &numFrames forParameter: NSOpenGLCPSwapInterval]; return numFrames; } void repaint() { // we need to invalidate the juce view that holds this gl view, to make it // cause a repaint callback NSView* v = (NSView*) viewHolder->view; NSRect r = [v frame]; // bit of a bodge here.. if we only invalidate the area of the gl component, // it's completely covered by the NSOpenGLView, so the OS throws away the // repaint message, thus never causing our paint() callback, and never repainting // the comp. So invalidating just a little bit around the edge helps.. [[v superview] setNeedsDisplayInRect: NSInsetRect (r, -2.0f, -2.0f)]; } void* getNativeWindowHandle() const { return viewHolder->view; } juce_UseDebuggingNewOperator NSOpenGLContext* renderContext; ThreadSafeNSOpenGLView* view; private: OpenGLPixelFormat pixelFormat; NSViewComponentInternal* viewHolder; WindowedGLContext (const WindowedGLContext&); const WindowedGLContext& operator= (const WindowedGLContext&); }; OpenGLContext* OpenGLContext::createContextForWindow (Component* const component, const OpenGLPixelFormat& pixelFormat, const OpenGLContext* const contextToShareWith) { WindowedGLContext* c = new WindowedGLContext (component, pixelFormat, contextToShareWith != 0 ? (NSOpenGLContext*) contextToShareWith->getRawContext() : 0); if (c->renderContext == 0) deleteAndZero (c); return c; } void* OpenGLComponent::getNativeWindowHandle() const { return context != 0 ? ((WindowedGLContext*) context)->getNativeWindowHandle() : 0; } void juce_glViewport (const int w, const int h) { glViewport (0, 0, w, h); } void OpenGLPixelFormat::getAvailablePixelFormats (Component* /*component*/, OwnedArray & results) { /* GLint attribs [64]; int n = 0; attribs[n++] = AGL_RGBA; attribs[n++] = AGL_DOUBLEBUFFER; attribs[n++] = AGL_ACCELERATED; attribs[n++] = AGL_NO_RECOVERY; attribs[n++] = AGL_NONE; AGLPixelFormat p = aglChoosePixelFormat (0, 0, attribs); while (p != 0) { OpenGLPixelFormat* const pf = new OpenGLPixelFormat(); pf->redBits = getAGLAttribute (p, AGL_RED_SIZE); pf->greenBits = getAGLAttribute (p, AGL_GREEN_SIZE); pf->blueBits = getAGLAttribute (p, AGL_BLUE_SIZE); pf->alphaBits = getAGLAttribute (p, AGL_ALPHA_SIZE); pf->depthBufferBits = getAGLAttribute (p, AGL_DEPTH_SIZE); pf->stencilBufferBits = getAGLAttribute (p, AGL_STENCIL_SIZE); pf->accumulationBufferRedBits = getAGLAttribute (p, AGL_ACCUM_RED_SIZE); pf->accumulationBufferGreenBits = getAGLAttribute (p, AGL_ACCUM_GREEN_SIZE); pf->accumulationBufferBlueBits = getAGLAttribute (p, AGL_ACCUM_BLUE_SIZE); pf->accumulationBufferAlphaBits = getAGLAttribute (p, AGL_ACCUM_ALPHA_SIZE); results.add (pf); p = aglNextPixelFormat (p); }*/ //jassertfalse //xxx can't see how you do this in cocoa! } #else OpenGLContext* OpenGLContext::createContextForWindow (Component* const component, const OpenGLPixelFormat& pixelFormat, const OpenGLContext* const contextToShareWith) { return 0; } void juce_glViewport (const int w, const int h) { //glViewport (0, 0, w, h); } #endif #endif /********* End of inlined file: juce_mac_OpenGLComponent.mm *********/ /********* Start of inlined file: juce_mac_MainMenu.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE class JuceMainMenuHandler; END_JUCE_NAMESPACE using namespace JUCE_NAMESPACE; #define JuceMenuCallback MakeObjCClassName(JuceMenuCallback) #if defined (MAC_OS_X_VERSION_10_6) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6 @interface JuceMenuCallback : NSObject #else @interface JuceMenuCallback : NSObject #endif { JuceMainMenuHandler* owner; } - (JuceMenuCallback*) initWithOwner: (JuceMainMenuHandler*) owner_; - (void) dealloc; - (void) menuItemInvoked: (id) menu; - (void) menuNeedsUpdate: (NSMenu*) menu; @end BEGIN_JUCE_NAMESPACE class JuceMainMenuHandler : private MenuBarModelListener, private DeletedAtShutdown { public: static JuceMainMenuHandler* instance; JuceMainMenuHandler() throw() : currentModel (0), lastUpdateTime (0) { callback = [[JuceMenuCallback alloc] initWithOwner: this]; } ~JuceMainMenuHandler() throw() { setMenu (0); jassert (instance == this); instance = 0; [callback release]; } void setMenu (MenuBarModel* const newMenuBarModel) throw() { if (currentModel != newMenuBarModel) { if (currentModel != 0) currentModel->removeListener (this); currentModel = newMenuBarModel; if (currentModel != 0) currentModel->addListener (this); menuBarItemsChanged (0); } } void addSubMenu (NSMenu* parent, const PopupMenu& child, const String& name, const int menuId, const int tag) { NSMenuItem* item = [parent addItemWithTitle: juceStringToNS (name) action: nil keyEquivalent: @""]; [item setTag: tag]; NSMenu* sub = createMenu (child, name, menuId, tag); [parent setSubmenu: sub forItem: item]; [sub setAutoenablesItems: false]; [sub release]; } void updateSubMenu (NSMenuItem* parentItem, const PopupMenu& menuToCopy, const String& name, const int menuId, const int tag) { [parentItem setTag: tag]; NSMenu* menu = [parentItem submenu]; [menu setTitle: juceStringToNS (name)]; while ([menu numberOfItems] > 0) [menu removeItemAtIndex: 0]; PopupMenu::MenuItemIterator iter (menuToCopy); while (iter.next()) addMenuItem (iter, menu, menuId, tag); [menu setAutoenablesItems: false]; [menu update]; } void menuBarItemsChanged (MenuBarModel*) { lastUpdateTime = Time::getMillisecondCounter(); StringArray menuNames; if (currentModel != 0) menuNames = currentModel->getMenuBarNames(); NSMenu* menuBar = [NSApp mainMenu]; while ([menuBar numberOfItems] > 1 + menuNames.size()) [menuBar removeItemAtIndex: [menuBar numberOfItems] - 1]; int menuId = 1; for (int i = 0; i < menuNames.size(); ++i) { const PopupMenu menu (currentModel->getMenuForIndex (i, menuNames [i])); if (i >= [menuBar numberOfItems] - 1) addSubMenu (menuBar, menu, menuNames[i], menuId, i); else updateSubMenu ([menuBar itemAtIndex: 1 + i], menu, menuNames[i], menuId, i); } } static void flashMenuBar (NSMenu* menu) { const unichar f35Key = NSF35FunctionKey; NSString* f35String = [NSString stringWithCharacters: &f35Key length: 1]; NSMenuItem* item = [[NSMenuItem alloc] initWithTitle: @"x" action: nil keyEquivalent: f35String]; [item setTarget: nil]; [menu insertItem: item atIndex: [menu numberOfItems]]; [item release]; NSEvent* f35Event = [NSEvent keyEventWithType: NSKeyDown location: NSZeroPoint modifierFlags: NSCommandKeyMask timestamp: 0 windowNumber: 0 context: [NSGraphicsContext currentContext] characters: f35String charactersIgnoringModifiers: f35String isARepeat: NO keyCode: 0]; [menu performKeyEquivalent: f35Event]; [menu removeItem: item]; } static NSMenuItem* findMenuItem (NSMenu* const menu, const ApplicationCommandTarget::InvocationInfo& info) { for (int i = [menu numberOfItems]; --i >= 0;) { NSMenuItem* m = [menu itemAtIndex: i]; if ([m tag] == info.commandID) return m; if ([m submenu] != 0) { NSMenuItem* found = findMenuItem ([m submenu], info); if (found != 0) return found; } } return 0; } void menuCommandInvoked (MenuBarModel*, const ApplicationCommandTarget::InvocationInfo& info) { NSMenuItem* item = findMenuItem ([NSApp mainMenu], info); if (item != 0) flashMenuBar ([item menu]); } void updateMenus() { if (Time::getMillisecondCounter() > lastUpdateTime + 500) menuBarItemsChanged (0); } void invoke (const int commandId, ApplicationCommandManager* const commandManager, const int topLevelIndex) const { if (currentModel != 0) { if (commandManager != 0) { ApplicationCommandTarget::InvocationInfo info (commandId); info.invocationMethod = ApplicationCommandTarget::InvocationInfo::fromMenu; commandManager->invoke (info, true); } currentModel->menuItemSelected (commandId, topLevelIndex); } } MenuBarModel* currentModel; uint32 lastUpdateTime; void addMenuItem (PopupMenu::MenuItemIterator& iter, NSMenu* menuToAddTo, const int topLevelMenuId, const int topLevelIndex) { NSString* text = juceStringToNS (iter.itemName.upToFirstOccurrenceOf (T(""), false, true)); if (text == 0) text = @""; if (iter.isSeparator) { [menuToAddTo addItem: [NSMenuItem separatorItem]]; } else if (iter.isSectionHeader) { NSMenuItem* item = [menuToAddTo addItemWithTitle: text action: nil keyEquivalent: @""]; [item setEnabled: false]; } else if (iter.subMenu != 0) { NSMenuItem* item = [menuToAddTo addItemWithTitle: text action: nil keyEquivalent: @""]; [item setTag: iter.itemId]; [item setEnabled: iter.isEnabled]; NSMenu* sub = createMenu (*iter.subMenu, iter.itemName, topLevelMenuId, topLevelIndex); [sub setDelegate: nil]; [menuToAddTo setSubmenu: sub forItem: item]; } else { NSMenuItem* item = [menuToAddTo addItemWithTitle: text action: @selector (menuItemInvoked:) keyEquivalent: @""]; [item setTag: iter.itemId]; [item setEnabled: iter.isEnabled]; [item setState: iter.isTicked ? NSOnState : NSOffState]; [item setTarget: (id) callback]; NSMutableArray* info = [NSMutableArray arrayWithObject: [NSNumber numberWithUnsignedLongLong: (pointer_sized_int) (void*) iter.commandManager]]; [info addObject: [NSNumber numberWithInt: topLevelIndex]]; [item setRepresentedObject: info]; if (iter.commandManager != 0) { const Array keyPresses (iter.commandManager->getKeyMappings() ->getKeyPressesAssignedToCommand (iter.itemId)); if (keyPresses.size() > 0) { const KeyPress& kp = keyPresses.getReference(0); juce_wchar key = kp.getTextCharacter(); if (kp.getKeyCode() == KeyPress::backspaceKey) key = NSBackspaceCharacter; else if (kp.getKeyCode() == KeyPress::deleteKey) key = NSDeleteCharacter; else if (key == 0) key = (juce_wchar) kp.getKeyCode(); unsigned int mods = 0; if (kp.getModifiers().isShiftDown()) mods |= NSShiftKeyMask; if (kp.getModifiers().isCtrlDown()) mods |= NSControlKeyMask; if (kp.getModifiers().isAltDown()) mods |= NSAlternateKeyMask; if (kp.getModifiers().isCommandDown()) mods |= NSCommandKeyMask; [item setKeyEquivalent: juceStringToNS (String::charToString (key))]; [item setKeyEquivalentModifierMask: mods]; } } } } JuceMenuCallback* callback; private: NSMenu* createMenu (const PopupMenu menu, const String& menuName, const int topLevelMenuId, const int topLevelIndex) { NSMenu* m = [[NSMenu alloc] initWithTitle: juceStringToNS (menuName)]; [m setAutoenablesItems: false]; [m setDelegate: callback]; PopupMenu::MenuItemIterator iter (menu); while (iter.next()) addMenuItem (iter, m, topLevelMenuId, topLevelIndex); [m update]; return m; } }; JuceMainMenuHandler* JuceMainMenuHandler::instance = 0; END_JUCE_NAMESPACE @implementation JuceMenuCallback - (JuceMenuCallback*) initWithOwner: (JuceMainMenuHandler*) owner_ { [super init]; owner = owner_; return self; } - (void) dealloc { [super dealloc]; } - (void) menuItemInvoked: (id) menu { NSMenuItem* item = (NSMenuItem*) menu; if ([[item representedObject] isKindOfClass: [NSArray class]]) { NSArray* info = (NSArray*) [item representedObject]; owner->invoke ([item tag], (ApplicationCommandManager*) (pointer_sized_int) [((NSNumber*) [info objectAtIndex: 0]) unsignedLongLongValue], (int) [((NSNumber*) [info objectAtIndex: 1]) intValue]); } } - (void) menuNeedsUpdate: (NSMenu*) menu; { if (JuceMainMenuHandler::instance != 0) JuceMainMenuHandler::instance->updateMenus(); } @end BEGIN_JUCE_NAMESPACE static NSMenu* createStandardAppMenu (NSMenu* menu, const String& appName, const PopupMenu* extraItems) { if (extraItems != 0 && JuceMainMenuHandler::instance != 0 && extraItems->getNumItems() > 0) { PopupMenu::MenuItemIterator iter (*extraItems); while (iter.next()) JuceMainMenuHandler::instance->addMenuItem (iter, menu, 0, -1); [menu addItem: [NSMenuItem separatorItem]]; } NSMenuItem* item; // Services... item = [[NSMenuItem alloc] initWithTitle: NSLocalizedString (@"Services", nil) action: nil keyEquivalent: @""]; [menu addItem: item]; [item release]; NSMenu* servicesMenu = [[NSMenu alloc] initWithTitle: @"Services"]; [menu setSubmenu: servicesMenu forItem: item]; [NSApp setServicesMenu: servicesMenu]; [servicesMenu release]; [menu addItem: [NSMenuItem separatorItem]]; // Hide + Show stuff... item = [[NSMenuItem alloc] initWithTitle: juceStringToNS ("Hide " + appName) action: @selector (hide:) keyEquivalent: @"h"]; [item setTarget: NSApp]; [menu addItem: item]; [item release]; item = [[NSMenuItem alloc] initWithTitle: NSLocalizedString (@"Hide Others", nil) action: @selector (hideOtherApplications:) keyEquivalent: @"h"]; [item setKeyEquivalentModifierMask: NSCommandKeyMask | NSAlternateKeyMask]; [item setTarget: NSApp]; [menu addItem: item]; [item release]; item = [[NSMenuItem alloc] initWithTitle: NSLocalizedString (@"Show All", nil) action: @selector (unhideAllApplications:) keyEquivalent: @""]; [item setTarget: NSApp]; [menu addItem: item]; [item release]; [menu addItem: [NSMenuItem separatorItem]]; // Quit item.... item = [[NSMenuItem alloc] initWithTitle: juceStringToNS ("Quit " + appName) action: @selector (terminate:) keyEquivalent: @"q"]; [item setTarget: NSApp]; [menu addItem: item]; [item release]; return menu; } // Since our app has no NIB, this initialises a standard app menu... static void rebuildMainMenu (const PopupMenu* extraItems) { // this can't be used in a plugin! jassert (JUCEApplication::getInstance() != 0); if (JUCEApplication::getInstance() != 0) { const ScopedAutoReleasePool pool; NSMenu* mainMenu = [[NSMenu alloc] initWithTitle: @"MainMenu"]; NSMenuItem* item = [mainMenu addItemWithTitle: @"Apple" action: nil keyEquivalent: @""]; NSMenu* appMenu = [[NSMenu alloc] initWithTitle: @"Apple"]; [NSApp performSelector: @selector (setAppleMenu:) withObject: appMenu]; [mainMenu setSubmenu: appMenu forItem: item]; [NSApp setMainMenu: mainMenu]; createStandardAppMenu (appMenu, JUCEApplication::getInstance()->getApplicationName(), extraItems); [appMenu release]; [mainMenu release]; } } void MenuBarModel::setMacMainMenu (MenuBarModel* newMenuBarModel, const PopupMenu* extraAppleMenuItems) throw() { if (getMacMainMenu() != newMenuBarModel) { const ScopedAutoReleasePool pool; if (newMenuBarModel == 0) { delete JuceMainMenuHandler::instance; jassert (JuceMainMenuHandler::instance == 0); // should be zeroed in the destructor jassert (extraAppleMenuItems == 0); // you can't specify some extra items without also supplying a model extraAppleMenuItems = 0; } else { if (JuceMainMenuHandler::instance == 0) JuceMainMenuHandler::instance = new JuceMainMenuHandler(); JuceMainMenuHandler::instance->setMenu (newMenuBarModel); } } rebuildMainMenu (extraAppleMenuItems); if (newMenuBarModel != 0) newMenuBarModel->menuItemsChanged(); } MenuBarModel* MenuBarModel::getMacMainMenu() throw() { return JuceMainMenuHandler::instance != 0 ? JuceMainMenuHandler::instance->currentModel : 0; } void initialiseMainMenu() { if (JUCEApplication::getInstance() != 0) // only needed in an app rebuildMainMenu (0); } #endif /********* End of inlined file: juce_mac_MainMenu.mm *********/ /********* Start of inlined file: juce_mac_FileChooser.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE #if JUCE_MAC END_JUCE_NAMESPACE using namespace JUCE_NAMESPACE; #define JuceFileChooserDelegate MakeObjCClassName(JuceFileChooserDelegate) #if defined (MAC_OS_X_VERSION_10_6) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6 @interface JuceFileChooserDelegate : NSObject #else @interface JuceFileChooserDelegate : NSObject #endif { StringArray* filters; } - (JuceFileChooserDelegate*) initWithFilters: (StringArray*) filters_; - (void) dealloc; - (BOOL) panel: (id) sender shouldShowFilename: (NSString*) filename; @end @implementation JuceFileChooserDelegate - (JuceFileChooserDelegate*) initWithFilters: (StringArray*) filters_ { [super init]; filters = filters_; return self; } - (void) dealloc { delete filters; [super dealloc]; } - (BOOL) panel: (id) sender shouldShowFilename: (NSString*) filename { const String fname (nsStringToJuce (filename)); for (int i = filters->size(); --i >= 0;) if (fname.matchesWildcard ((*filters)[i], true)) return true; return File (fname).isDirectory(); } @end BEGIN_JUCE_NAMESPACE void FileChooser::showPlatformDialog (OwnedArray& results, const String& title, const File& currentFileOrDirectory, const String& filter, bool selectsDirectory, bool isSaveDialogue, bool warnAboutOverwritingExistingFiles, bool selectMultipleFiles, FilePreviewComponent* extraInfoComponent) { const ScopedAutoReleasePool pool; StringArray* filters = new StringArray(); filters->addTokens (filter.replaceCharacters (T(",:"), T(";;")), T(";"), 0); filters->trim(); filters->removeEmptyStrings(); JuceFileChooserDelegate* delegate = [[JuceFileChooserDelegate alloc] initWithFilters: filters]; [delegate autorelease]; NSSavePanel* panel = isSaveDialogue ? [NSSavePanel savePanel] : [NSOpenPanel openPanel]; [panel setTitle: juceStringToNS (title)]; if (! isSaveDialogue) { NSOpenPanel* openPanel = (NSOpenPanel*) panel; [openPanel setCanChooseDirectories: selectsDirectory]; [openPanel setCanChooseFiles: ! selectsDirectory]; [openPanel setAllowsMultipleSelection: selectMultipleFiles]; } [panel setDelegate: delegate]; String directory, filename; if (currentFileOrDirectory.isDirectory()) { directory = currentFileOrDirectory.getFullPathName(); } else { directory = currentFileOrDirectory.getParentDirectory().getFullPathName(); filename = currentFileOrDirectory.getFileName(); } if ([panel runModalForDirectory: juceStringToNS (directory) file: juceStringToNS (filename)] == NSOKButton) { if (isSaveDialogue) { results.add (new File (nsStringToJuce ([panel filename]))); } else { NSOpenPanel* openPanel = (NSOpenPanel*) panel; NSArray* urls = [openPanel filenames]; for (unsigned int i = 0; i < [urls count]; ++i) { NSString* f = [urls objectAtIndex: i]; results.add (new File (nsStringToJuce (f))); } } } [panel setDelegate: nil]; } #else void FileChooser::showPlatformDialog (OwnedArray& results, const String& title, const File& currentFileOrDirectory, const String& filter, bool selectsDirectory, bool isSaveDialogue, bool warnAboutOverwritingExistingFiles, bool selectMultipleFiles, FilePreviewComponent* extraInfoComponent) { const ScopedAutoReleasePool pool; jassertfalse //xxx to do } #endif #endif /********* End of inlined file: juce_mac_FileChooser.mm *********/ /********* Start of inlined file: juce_mac_QuickTimeMovieComponent.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_QUICKTIME #define theMovie ((QTMovie*) movie) QuickTimeMovieComponent::QuickTimeMovieComponent() : movie (0) { setOpaque (true); setVisible (true); QTMovieView* view = [[QTMovieView alloc] initWithFrame: NSMakeRect (0, 0, 100.0f, 100.0f)]; setView (view); } QuickTimeMovieComponent::~QuickTimeMovieComponent() { closeMovie(); setView (0); } bool QuickTimeMovieComponent::isQuickTimeAvailable() throw() { return true; } static QTMovie* openMovieFromStream (InputStream* movieStream, File& movieFile) { // unfortunately, QTMovie objects can only be created on the main thread.. jassert (MessageManager::getInstance()->isThisTheMessageThread()); QTMovie* movie = 0; FileInputStream* const fin = dynamic_cast (movieStream); if (fin != 0) { movieFile = fin->getFile(); movie = [QTMovie movieWithFile: juceStringToNS (movieFile.getFullPathName()) error: nil]; } else { MemoryBlock temp; movieStream->readIntoMemoryBlock (temp); const char* const suffixesToTry[] = { ".mov", ".mp3", ".avi", ".m4a" }; for (int i = 0; i < numElementsInArray (suffixesToTry); ++i) { movie = [QTMovie movieWithDataReference: [QTDataReference dataReferenceWithReferenceToData: [NSData dataWithBytes: temp.getData() length: temp.getSize()] name: [NSString stringWithUTF8String: suffixesToTry[i]] MIMEType: @""] error: nil]; if (movie != 0) break; } } return movie; } bool QuickTimeMovieComponent::loadMovie (InputStream* movieStream, const bool controllerVisible) { closeMovie(); if (getPeer() == 0) { // To open a movie, this component must be visible inside a functioning window, so that // the QT control can be assigned to the window. jassertfalse return false; } movie = openMovieFromStream (movieStream, movieFile); [theMovie retain]; QTMovieView* view = (QTMovieView*) getView(); [view setMovie: theMovie]; [view setControllerVisible: controllerVisible]; setLooping (looping); return movie != nil; } void QuickTimeMovieComponent::closeMovie() { stop(); QTMovieView* view = (QTMovieView*) getView(); [view setMovie: nil]; [theMovie release]; movie = 0; movieFile = File::nonexistent; } bool QuickTimeMovieComponent::isMovieOpen() const { return movie != nil; } const File QuickTimeMovieComponent::getCurrentMovieFile() const { return movieFile; } void QuickTimeMovieComponent::play() { [theMovie play]; } void QuickTimeMovieComponent::stop() { [theMovie stop]; } bool QuickTimeMovieComponent::isPlaying() const { return movie != 0 && [theMovie rate] != 0; } void QuickTimeMovieComponent::setPosition (const double seconds) { if (movie != 0) { QTTime t; t.timeValue = (uint64) (100000.0 * seconds); t.timeScale = 100000; t.flags = 0; [theMovie setCurrentTime: t]; } } double QuickTimeMovieComponent::getPosition() const { if (movie == 0) return 0.0; QTTime t = [theMovie currentTime]; return t.timeValue / (double) t.timeScale; } void QuickTimeMovieComponent::setSpeed (const float newSpeed) { [theMovie setRate: newSpeed]; } double QuickTimeMovieComponent::getMovieDuration() const { if (movie == 0) return 0.0; QTTime t = [theMovie duration]; return t.timeValue / (double) t.timeScale; } void QuickTimeMovieComponent::setLooping (const bool shouldLoop) { looping = shouldLoop; [theMovie setAttribute: [NSNumber numberWithBool: shouldLoop] forKey: QTMovieLoopsAttribute]; } bool QuickTimeMovieComponent::isLooping() const { return looping; } void QuickTimeMovieComponent::setMovieVolume (const float newVolume) { [theMovie setVolume: newVolume]; } float QuickTimeMovieComponent::getMovieVolume() const { return movie != 0 ? [theMovie volume] : 0.0f; } void QuickTimeMovieComponent::getMovieNormalSize (int& width, int& height) const { width = 0; height = 0; if (movie != 0) { NSSize s = [[theMovie attributeForKey: QTMovieNaturalSizeAttribute] sizeValue]; width = s.width; height = s.height; } } void QuickTimeMovieComponent::paint (Graphics& g) { if (movie == 0) g.fillAll (Colours::black); } bool QuickTimeMovieComponent::isControllerVisible() const { return controllerVisible; } bool QuickTimeMovieComponent::loadMovie (const File& movieFile_, const bool isControllerVisible) { const bool ok = loadMovie ((InputStream*) movieFile_.createInputStream(), isControllerVisible); movieFile = movieFile_; return ok; } void QuickTimeMovieComponent::goToStart() { setPosition (0.0); } void QuickTimeMovieComponent::setBoundsWithCorrectAspectRatio (const Rectangle& spaceToFitWithin, const RectanglePlacement& placement) { int normalWidth, normalHeight; getMovieNormalSize (normalWidth, normalHeight); if (normalWidth > 0 && normalHeight > 0 && ! spaceToFitWithin.isEmpty()) { double x = 0.0, y = 0.0, w = normalWidth, h = normalHeight; placement.applyTo (x, y, w, h, spaceToFitWithin.getX(), spaceToFitWithin.getY(), spaceToFitWithin.getWidth(), spaceToFitWithin.getHeight()); if (w > 0 && h > 0) { setBounds (roundDoubleToInt (x), roundDoubleToInt (y), roundDoubleToInt (w), roundDoubleToInt (h)); } } else { setBounds (spaceToFitWithin); } } #if ! (JUCE_MAC && JUCE_64BIT) bool juce_OpenQuickTimeMovieFromStream (InputStream* movieStream, Movie& result, Handle& dataHandle) { if (movieStream == 0) return false; File file; QTMovie* movie = openMovieFromStream (movieStream, file); if (movie != nil) result = [movie quickTimeMovie]; return movie != nil; } #endif #endif /********* End of inlined file: juce_mac_QuickTimeMovieComponent.mm *********/ /********* Start of inlined file: juce_mac_AudioCDBurner.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_USE_CDBURNER END_JUCE_NAMESPACE #define OpenDiskDevice MakeObjCClassName(OpenDiskDevice) @interface OpenDiskDevice : NSObject { DRDevice* device; NSMutableArray* tracks; } - (OpenDiskDevice*) initWithDevice: (DRDevice*) device; - (void) dealloc; - (bool) isDiskPresent; - (int) getNumAvailableAudioBlocks; - (void) addSourceTrack: (JUCE_NAMESPACE::AudioSource*) source numSamples: (int) numSamples_; - (void) burn: (JUCE_NAMESPACE::AudioCDBurner::BurnProgressListener*) listener errorString: (JUCE_NAMESPACE::String*) error ejectAfterwards: (bool) shouldEject isFake: (bool) peformFakeBurnForTesting; @end #define AudioTrackProducer MakeObjCClassName(AudioTrackProducer) @interface AudioTrackProducer : NSObject { JUCE_NAMESPACE::AudioSource* source; int readPosition, lengthInFrames; } - (AudioTrackProducer*) init: (int) lengthInFrames; - (AudioTrackProducer*) initWithAudioSource: (JUCE_NAMESPACE::AudioSource*) source numSamples: (int) lengthInSamples; - (void) dealloc; - (void) setupTrackProperties: (DRTrack*) track; - (void) cleanupTrackAfterBurn: (DRTrack*) track; - (BOOL) cleanupTrackAfterVerification:(DRTrack*)track; - (uint64_t) estimateLengthOfTrack:(DRTrack*)track; - (BOOL) prepareTrack:(DRTrack*)track forBurn:(DRBurn*)burn toMedia:(NSDictionary*)mediaInfo; - (BOOL) prepareTrackForVerification:(DRTrack*)track; - (uint32_t) produceDataForTrack:(DRTrack*)track intoBuffer:(char*)buffer length:(uint32_t)bufferLength atAddress:(uint64_t)address blockSize:(uint32_t)blockSize ioFlags:(uint32_t*)flags; - (uint32_t) producePreGapForTrack:(DRTrack*)track intoBuffer:(char*)buffer length:(uint32_t)bufferLength atAddress:(uint64_t)address blockSize:(uint32_t)blockSize ioFlags:(uint32_t*)flags; - (BOOL) verifyDataForTrack:(DRTrack*)track inBuffer:(const char*)buffer length:(uint32_t)bufferLength atAddress:(uint64_t)address blockSize:(uint32_t)blockSize ioFlags:(uint32_t*)flags; - (uint32_t) producePreGapForTrack:(DRTrack*)track intoBuffer:(char*)buffer length:(uint32_t)bufferLength atAddress:(uint64_t)address blockSize:(uint32_t)blockSize ioFlags:(uint32_t*)flags; @end @implementation OpenDiskDevice - (OpenDiskDevice*) initWithDevice: (DRDevice*) device_ { [super init]; device = device_; tracks = [[NSMutableArray alloc] init]; return self; } - (void) dealloc { [tracks release]; [super dealloc]; } - (bool) isDiskPresent { return [device isValid] && [[[device status] objectForKey: DRDeviceMediaStateKey] isEqualTo: DRDeviceMediaStateMediaPresent]; } - (int) getNumAvailableAudioBlocks { return [[[[device status] objectForKey: DRDeviceMediaInfoKey] objectForKey: DRDeviceMediaBlocksFreeKey] intValue]; } - (void) addSourceTrack: (JUCE_NAMESPACE::AudioSource*) source_ numSamples: (int) numSamples_ { AudioTrackProducer* p = [[AudioTrackProducer alloc] initWithAudioSource: source_ numSamples: numSamples_]; DRTrack* t = [[DRTrack alloc] initWithProducer: p]; [p setupTrackProperties: t]; [tracks addObject: t]; [t release]; [p release]; } - (void) burn: (JUCE_NAMESPACE::AudioCDBurner::BurnProgressListener*) listener errorString: (JUCE_NAMESPACE::String*) error ejectAfterwards: (bool) shouldEject isFake: (bool) peformFakeBurnForTesting { DRBurn* burn = [DRBurn burnForDevice: device]; if (! [device acquireExclusiveAccess]) { *error = "Couldn't open or write to the CD device"; return; } [device acquireMediaReservation]; NSMutableDictionary* d = [[burn properties] mutableCopy]; [d autorelease]; [d setObject: [NSNumber numberWithBool: peformFakeBurnForTesting] forKey: DRBurnTestingKey]; [d setObject: [NSNumber numberWithBool: false] forKey: DRBurnVerifyDiscKey]; [d setObject: (shouldEject ? DRBurnCompletionActionEject : DRBurnCompletionActionMount) forKey: DRBurnCompletionActionKey]; [burn setProperties: d]; [burn writeLayout: tracks]; for (;;) { JUCE_NAMESPACE::Thread::sleep (300); float progress = [[[burn status] objectForKey: DRStatusPercentCompleteKey] floatValue]; if (listener != 0 && listener->audioCDBurnProgress (progress)) { [burn abort]; *error = "User cancelled the write operation"; break; } if ([[[burn status] objectForKey: DRStatusStateKey] isEqualTo: DRStatusStateFailed]) { *error = "Write operation failed"; break; } else if ([[[burn status] objectForKey: DRStatusStateKey] isEqualTo: DRStatusStateDone]) { break; } NSString* err = (NSString*) [[[burn status] objectForKey: DRErrorStatusKey] objectForKey: DRErrorStatusErrorStringKey]; if ([err length] > 0) { *error = JUCE_NAMESPACE::String::fromUTF8 ((JUCE_NAMESPACE::uint8*) [err UTF8String]); break; } } [device releaseMediaReservation]; [device releaseExclusiveAccess]; } @end @implementation AudioTrackProducer - (AudioTrackProducer*) init: (int) lengthInFrames_ { lengthInFrames = lengthInFrames_; readPosition = 0; return self; } - (void) setupTrackProperties: (DRTrack*) track { NSMutableDictionary* p = [[track properties] mutableCopy]; [p setObject:[DRMSF msfWithFrames: lengthInFrames] forKey: DRTrackLengthKey]; [p setObject:[NSNumber numberWithUnsignedShort:2352] forKey: DRBlockSizeKey]; [p setObject:[NSNumber numberWithInt:0] forKey: DRDataFormKey]; [p setObject:[NSNumber numberWithInt:0] forKey: DRBlockTypeKey]; [p setObject:[NSNumber numberWithInt:0] forKey: DRTrackModeKey]; [p setObject:[NSNumber numberWithInt:0] forKey: DRSessionFormatKey]; [track setProperties: p]; [p release]; } - (AudioTrackProducer*) initWithAudioSource: (JUCE_NAMESPACE::AudioSource*) source_ numSamples: (int) lengthInSamples { AudioTrackProducer* s = [self init: (lengthInSamples + 587) / 588]; if (s != nil) s->source = source_; return s; } - (void) dealloc { if (source != 0) { source->releaseResources(); delete source; } [super dealloc]; } - (void) cleanupTrackAfterBurn: (DRTrack*) track { } - (BOOL) cleanupTrackAfterVerification: (DRTrack*) track { return true; } - (uint64_t) estimateLengthOfTrack: (DRTrack*) track { return lengthInFrames; } - (BOOL) prepareTrack: (DRTrack*) track forBurn: (DRBurn*) burn toMedia: (NSDictionary*) mediaInfo { if (source != 0) source->prepareToPlay (44100 / 75, 44100); readPosition = 0; return true; } - (BOOL) prepareTrackForVerification: (DRTrack*) track { if (source != 0) source->prepareToPlay (44100 / 75, 44100); return true; } - (uint32_t) produceDataForTrack: (DRTrack*) track intoBuffer: (char*) buffer length: (uint32_t) bufferLength atAddress: (uint64_t) address blockSize: (uint32_t) blockSize ioFlags: (uint32_t*) flags { if (source != 0) { const int numSamples = JUCE_NAMESPACE::jmin (bufferLength / 4, (lengthInFrames * (44100 / 75)) - readPosition); if (numSamples > 0) { JUCE_NAMESPACE::AudioSampleBuffer tempBuffer (2, numSamples); JUCE_NAMESPACE::AudioSourceChannelInfo info; info.buffer = &tempBuffer; info.startSample = 0; info.numSamples = numSamples; source->getNextAudioBlock (info); JUCE_NAMESPACE::AudioDataConverters::convertFloatToInt16LE (tempBuffer.getSampleData (0), buffer, numSamples, 4); JUCE_NAMESPACE::AudioDataConverters::convertFloatToInt16LE (tempBuffer.getSampleData (1), buffer + 2, numSamples, 4); readPosition += numSamples; } return numSamples * 4; } return 0; } - (uint32_t) producePreGapForTrack: (DRTrack*) track intoBuffer: (char*) buffer length: (uint32_t) bufferLength atAddress: (uint64_t) address blockSize: (uint32_t) blockSize ioFlags: (uint32_t*) flags { zeromem (buffer, bufferLength); return bufferLength; } - (BOOL) verifyDataForTrack: (DRTrack*) track inBuffer: (const char*) buffer length: (uint32_t) bufferLength atAddress: (uint64_t) address blockSize: (uint32_t) blockSize ioFlags: (uint32_t*) flags { return true; } @end BEGIN_JUCE_NAMESPACE AudioCDBurner::AudioCDBurner (const int deviceIndex) : internal (0) { OpenDiskDevice* dev = [[OpenDiskDevice alloc] initWithDevice: [[DRDevice devices] objectAtIndex: deviceIndex]]; internal = (void*) dev; } AudioCDBurner::~AudioCDBurner() { OpenDiskDevice* dev = (OpenDiskDevice*) internal; if (dev != 0) [dev release]; } AudioCDBurner* AudioCDBurner::openDevice (const int deviceIndex) { AudioCDBurner* b = new AudioCDBurner (deviceIndex); if (b->internal == 0) deleteAndZero (b); return b; } static NSArray* findDiskBurnerDevices() { NSMutableArray* results = [NSMutableArray array]; NSArray* devs = [DRDevice devices]; if (devs != 0) { int num = [devs count]; int i; for (i = 0; i < num; ++i) { NSDictionary* dic = [[devs objectAtIndex: i] info]; NSString* name = [dic valueForKey: DRDeviceProductNameKey]; if (name != nil) [results addObject: name]; } } return results; } const StringArray AudioCDBurner::findAvailableDevices() { NSArray* names = findDiskBurnerDevices(); StringArray s; for (unsigned int i = 0; i < [names count]; ++i) s.add (String::fromUTF8 ((JUCE_NAMESPACE::uint8*) [[names objectAtIndex: i] UTF8String])); return s; } bool AudioCDBurner::isDiskPresent() const { OpenDiskDevice* dev = (OpenDiskDevice*) internal; return dev != 0 && [dev isDiskPresent]; } int AudioCDBurner::getNumAvailableAudioBlocks() const { OpenDiskDevice* dev = (OpenDiskDevice*) internal; return [dev getNumAvailableAudioBlocks]; } bool AudioCDBurner::addAudioTrack (AudioSource* source, int numSamps) { OpenDiskDevice* dev = (OpenDiskDevice*) internal; if (dev != 0) { [dev addSourceTrack: source numSamples: numSamps]; return true; } return false; } const String AudioCDBurner::burn (JUCE_NAMESPACE::AudioCDBurner::BurnProgressListener* listener, const bool ejectDiscAfterwards, const bool peformFakeBurnForTesting) { String error ("Couldn't open or write to the CD device"); OpenDiskDevice* dev = (OpenDiskDevice*) internal; if (dev != 0) { error = String::empty; [dev burn: listener errorString: &error ejectAfterwards: ejectDiscAfterwards isFake: peformFakeBurnForTesting]; } return error; } void AudioCDReader::ejectDisk() { const ScopedAutoReleasePool p; [[NSWorkspace sharedWorkspace] unmountAndEjectDeviceAtPath: juceStringToNS (volumeDir.getFullPathName())]; } #endif /********* End of inlined file: juce_mac_AudioCDBurner.mm *********/ /********* Start of inlined file: juce_mac_Fonts.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE class FontHelper { NSFont* font; public: String name; bool isBold, isItalic, needsItalicTransform; float fontSize, totalSize, ascent; int refCount; NSMutableDictionary* attributes; FontHelper (const String& name_, const bool bold_, const bool italic_, const float size_) : font (0), name (name_), isBold (bold_), isItalic (italic_), needsItalicTransform (false), fontSize (size_), refCount (1) { attributes = [[NSMutableDictionary dictionaryWithObject: [NSNumber numberWithInt: 0] forKey: NSLigatureAttributeName] retain]; font = [NSFont fontWithName: juceStringToNS (name_) size: size_]; if (italic_) { NSFont* newFont = [[NSFontManager sharedFontManager] convertFont: font toHaveTrait: NSItalicFontMask]; if (newFont == font) needsItalicTransform = true; // couldn't find a proper italic version, so fake it with a transform.. font = newFont; } if (bold_) font = [[NSFontManager sharedFontManager] convertFont: font toHaveTrait: NSBoldFontMask]; [font retain]; ascent = fabsf ([font ascender]); totalSize = ascent + fabsf ([font descender]); } ~FontHelper() { [font release]; [attributes release]; } bool getPathAndKerning (const juce_wchar char1, const juce_wchar char2, Path* path, float& kerning, float* ascent, float* descent) { const ScopedAutoReleasePool pool; if (font == 0 || ! [[font coveredCharacterSet] longCharacterIsMember: (UTF32Char) char1]) return false; String chars; chars << ' ' << char1 << char2; NSTextStorage* textStorage = [[[NSTextStorage alloc] initWithString: juceStringToNS (chars) attributes: attributes] autorelease]; NSLayoutManager* layoutManager = [[[NSLayoutManager alloc] init] autorelease]; NSTextContainer* textContainer = [[[NSTextContainer alloc] init] autorelease]; [layoutManager addTextContainer: textContainer]; [textStorage addLayoutManager: layoutManager]; [textStorage setFont: font]; unsigned int glyphIndex = [layoutManager glyphRangeForCharacterRange: NSMakeRange (1, 1) actualCharacterRange: 0].location; NSPoint p1 = [layoutManager locationForGlyphAtIndex: glyphIndex]; NSPoint p2 = [layoutManager locationForGlyphAtIndex: glyphIndex + 1]; kerning = p2.x - p1.x; if (ascent != 0) *ascent = this->ascent; if (descent != 0) *descent = fabsf ([font descender]); if (path != 0) { NSBezierPath* bez = [NSBezierPath bezierPath]; [bez moveToPoint: NSMakePoint (0, 0)]; [bez appendBezierPathWithGlyph: [layoutManager glyphAtIndex: glyphIndex] inFont: font]; for (int i = 0; i < [bez elementCount]; ++i) { NSPoint p[3]; switch ([bez elementAtIndex: i associatedPoints: p]) { case NSMoveToBezierPathElement: path->startNewSubPath (p[0].x, -p[0].y); break; case NSLineToBezierPathElement: path->lineTo (p[0].x, -p[0].y); break; case NSCurveToBezierPathElement: path->cubicTo (p[0].x, -p[0].y, p[1].x, -p[1].y, p[2].x, -p[2].y); break; case NSClosePathBezierPathElement: path->closeSubPath(); break; default: jassertfalse break; } } if (needsItalicTransform) path->applyTransform (AffineTransform::identity.sheared (-0.15, 0)); } return kerning != 0; } juce_wchar getDefaultChar() { return 0; } }; class FontHelperCache : public Timer, public DeletedAtShutdown { VoidArray cache; public: FontHelperCache() { } ~FontHelperCache() { for (int i = cache.size(); --i >= 0;) { FontHelper* const f = (FontHelper*) cache.getUnchecked(i); delete f; } clearSingletonInstance(); } FontHelper* getFont (const String& name, const bool bold, const bool italic, const float size = 1024) { for (int i = cache.size(); --i >= 0;) { FontHelper* const f = (FontHelper*) cache.getUnchecked(i); if (f->name == name && f->isBold == bold && f->isItalic == italic && f->fontSize == size) { f->refCount++; return f; } } FontHelper* const f = new FontHelper (name, bold, italic, size); cache.add (f); return f; } void releaseFont (FontHelper* f) { for (int i = cache.size(); --i >= 0;) { FontHelper* const f2 = (FontHelper*) cache.getUnchecked(i); if (f == f2) { f->refCount--; if (f->refCount == 0) startTimer (5000); break; } } } void timerCallback() { stopTimer(); for (int i = cache.size(); --i >= 0;) { FontHelper* const f = (FontHelper*) cache.getUnchecked(i); if (f->refCount == 0) { cache.remove (i); delete f; } } if (cache.size() == 0) delete this; } juce_DeclareSingleton_SingleThreaded_Minimal (FontHelperCache) }; juce_ImplementSingleton_SingleThreaded (FontHelperCache) void Typeface::initialiseTypefaceCharacteristics (const String& fontName, bool bold, bool italic, bool addAllGlyphsToFont) throw() { // This method is only safe to be called from the normal UI thread.. jassert (MessageManager::getInstance()->isThisTheMessageThread()); FontHelper* const helper = FontHelperCache::getInstance() ->getFont (fontName, bold, italic); clear(); setAscent (helper->ascent / helper->totalSize); setName (fontName); setDefaultCharacter (helper->getDefaultChar()); setBold (bold); setItalic (italic); if (addAllGlyphsToFont) { //xxx jassertfalse } FontHelperCache::getInstance()->releaseFont (helper); } bool Typeface::findAndAddSystemGlyph (juce_wchar character) throw() { // This method is only safe to be called from the normal UI thread.. jassert (MessageManager::getInstance()->isThisTheMessageThread()); if (character == 0) return false; FontHelper* const helper = FontHelperCache::getInstance() ->getFont (getName(), isBold(), isItalic()); Path path; float width; bool foundOne = false; if (helper->getPathAndKerning (character, T('I'), &path, width, 0, 0)) { path.applyTransform (AffineTransform::scale (1.0f / helper->totalSize, 1.0f / helper->totalSize)); addGlyph (character, path, width / helper->totalSize); for (int i = 0; i < glyphs.size(); ++i) { const TypefaceGlyphInfo* const g = (const TypefaceGlyphInfo*) glyphs.getUnchecked(i); float kerning; if (helper->getPathAndKerning (character, g->getCharacter(), 0, kerning, 0, 0)) { kerning = (kerning - width) / helper->totalSize; if (kerning != 0) addKerningPair (character, g->getCharacter(), kerning); } if (helper->getPathAndKerning (g->getCharacter(), character, 0, kerning, 0, 0)) { kerning = kerning / helper->totalSize - g->width; if (kerning != 0) addKerningPair (g->getCharacter(), character, kerning); } } foundOne = true; } FontHelperCache::getInstance()->releaseFont (helper); return foundOne; } const StringArray Font::findAllTypefaceNames() throw() { StringArray names; const ScopedAutoReleasePool pool; NSArray* fonts = [[NSFontManager sharedFontManager] availableFontFamilies]; for (unsigned int i = 0; i < [fonts count]; ++i) names.add (nsStringToJuce ((NSString*) [fonts objectAtIndex: i])); names.sort (true); return names; } void Typeface::getDefaultFontNames (String& defaultSans, String& defaultSerif, String& defaultFixed) throw() { defaultSans = "Lucida Grande"; defaultSerif = "Times New Roman"; defaultFixed = "Monaco"; } #endif /********* End of inlined file: juce_mac_Fonts.mm *********/ /********* Start of inlined file: juce_mac_MessageManager.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE struct CallbackMessagePayload { MessageCallbackFunction* function; void* parameter; void* volatile result; bool volatile hasBeenExecuted; }; /* When you use multiple DLLs which share similarly-named obj-c classes - like for example having more than one juce plugin loaded into a host, then when a method is called, the actual code that runs might actually be in a different module than the one you expect... So any calls to library functions or statics that are made inside obj-c methods will probably end up getting executed in a different DLL's memory space. Not a great thing to happen - this obviously leads to bizarre crashes. To work around this insanity, I'm only allowing obj-c methods to make calls to virtual methods of an object that's known to live inside the right module's space. */ class AppDelegateRedirector { public: AppDelegateRedirector() {} virtual ~AppDelegateRedirector() {} virtual NSApplicationTerminateReply shouldTerminate() { if (JUCEApplication::getInstance() != 0) { JUCEApplication::getInstance()->systemRequestedQuit(); return NSTerminateCancel; } return NSTerminateNow; } virtual BOOL openFile (const NSString* filename) { if (JUCEApplication::getInstance() != 0) { JUCEApplication::getInstance()->anotherInstanceStarted (nsStringToJuce (filename)); return YES; } return NO; } virtual void openFiles (NSArray* filenames) { StringArray files; for (unsigned int i = 0; i < [filenames count]; ++i) files.add (nsStringToJuce ((NSString*) [filenames objectAtIndex: i])); if (files.size() > 0 && JUCEApplication::getInstance() != 0) { JUCEApplication::getInstance()->anotherInstanceStarted (files.joinIntoString (T(" "))); } } virtual void focusChanged() { juce_HandleProcessFocusChange(); } virtual void deliverMessage (void* message) { // no need for an mm lock here - deliverMessage locks it MessageManager::getInstance()->deliverMessage (message); } virtual void performCallback (CallbackMessagePayload* pl) { pl->result = (*pl->function) (pl->parameter); pl->hasBeenExecuted = true; } virtual void deleteSelf() { delete this; } }; END_JUCE_NAMESPACE using namespace JUCE_NAMESPACE; #define JuceAppDelegate MakeObjCClassName(JuceAppDelegate) static int numPendingMessages = 0; @interface JuceAppDelegate : NSObject { @private id oldDelegate; AppDelegateRedirector* redirector; @public bool flushingMessages; } - (JuceAppDelegate*) init; - (void) dealloc; - (BOOL) application: (NSApplication*) theApplication openFile: (NSString*) filename; - (void) application: (NSApplication*) sender openFiles: (NSArray*) filenames; - (NSApplicationTerminateReply) applicationShouldTerminate: (NSApplication*) app; - (void) applicationDidBecomeActive: (NSNotification*) aNotification; - (void) applicationDidResignActive: (NSNotification*) aNotification; - (void) applicationWillUnhide: (NSNotification*) aNotification; - (void) customEvent: (id) data; - (void) performCallback: (id) info; - (void) dummyMethod; @end @implementation JuceAppDelegate - (JuceAppDelegate*) init { [super init]; redirector = new AppDelegateRedirector(); numPendingMessages = 0; flushingMessages = false; NSNotificationCenter* center = [NSNotificationCenter defaultCenter]; if (JUCEApplication::getInstance() != 0) { oldDelegate = [NSApp delegate]; [NSApp setDelegate: self]; } else { oldDelegate = 0; [center addObserver: self selector: @selector (applicationDidResignActive:) name: NSApplicationDidResignActiveNotification object: NSApp]; [center addObserver: self selector: @selector (applicationDidBecomeActive:) name: NSApplicationDidBecomeActiveNotification object: NSApp]; [center addObserver: self selector: @selector (applicationWillUnhide:) name: NSApplicationWillUnhideNotification object: NSApp]; } return self; } - (void) dealloc { if (oldDelegate != 0) [NSApp setDelegate: oldDelegate]; redirector->deleteSelf(); [super dealloc]; } - (NSApplicationTerminateReply) applicationShouldTerminate: (NSApplication*) app { return redirector->shouldTerminate(); } - (BOOL) application: (NSApplication*) app openFile: (NSString*) filename { return redirector->openFile (filename); } - (void) application: (NSApplication*) sender openFiles: (NSArray*) filenames { return redirector->openFiles (filenames); } - (void) applicationDidBecomeActive: (NSNotification*) aNotification { redirector->focusChanged(); } - (void) applicationDidResignActive: (NSNotification*) aNotification { redirector->focusChanged(); } - (void) applicationWillUnhide: (NSNotification*) aNotification { redirector->focusChanged(); } - (void) customEvent: (id) n { atomicDecrement (numPendingMessages); NSData* data = (NSData*) n; void* message = 0; [data getBytes: &message length: sizeof (message)]; [data release]; if (message != 0 && ! flushingMessages) redirector->deliverMessage (message); } - (void) performCallback: (id) info { if ([info isKindOfClass: [NSData class]]) { CallbackMessagePayload* pl = (CallbackMessagePayload*) [((NSData*) info) bytes]; if (pl != 0) redirector->performCallback (pl); } else { jassertfalse // should never get here! } } - (void) dummyMethod {} // (used as a way of running a dummy thread) @end BEGIN_JUCE_NAMESPACE static JuceAppDelegate* juceAppDelegate = 0; void MessageManager::runDispatchLoop() { if (! quitMessagePosted) // check that the quit message wasn't already posted.. { const ScopedAutoReleasePool pool; // must only be called by the message thread! jassert (isThisTheMessageThread()); [NSApp run]; } } void MessageManager::stopDispatchLoop() { quitMessagePosted = true; [NSApp stop: nil]; [NSApp activateIgnoringOtherApps: YES]; // (if the app is inactive, it sits there and ignores the quit request until the next time it gets activated) [NSEvent startPeriodicEventsAfterDelay: 0 withPeriod: 0.1]; } static bool isEventBlockedByModalComps (NSEvent* e) { if (Component::getNumCurrentlyModalComponents() == 0) return false; NSWindow* const w = [e window]; if (w == 0 || [w worksWhenModal]) return false; bool isKey = false, isInputAttempt = false; switch ([e type]) { case NSKeyDown: case NSKeyUp: isKey = isInputAttempt = true; break; case NSLeftMouseDown: case NSRightMouseDown: case NSOtherMouseDown: isInputAttempt = true; break; case NSLeftMouseDragged: case NSRightMouseDragged: case NSLeftMouseUp: case NSRightMouseUp: case NSOtherMouseUp: case NSOtherMouseDragged: if (Component::getComponentUnderMouse() != 0) return false; break; case NSMouseMoved: case NSMouseEntered: case NSMouseExited: case NSCursorUpdate: case NSScrollWheel: case NSTabletPoint: case NSTabletProximity: break; default: return false; } for (int i = ComponentPeer::getNumPeers(); --i >= 0;) { ComponentPeer* const peer = ComponentPeer::getPeer (i); NSView* const compView = (NSView*) peer->getNativeHandle(); if ([compView window] == w) { if (isKey) { if (compView == [w firstResponder]) return false; } else { if (NSPointInRect ([compView convertPoint: [e locationInWindow] fromView: nil], [compView bounds])) return false; } } } if (isInputAttempt) { if (! [NSApp isActive]) [NSApp activateIgnoringOtherApps: YES]; Component* const modal = Component::getCurrentlyModalComponent (0); if (modal != 0) modal->inputAttemptWhenModal(); } return true; } bool MessageManager::runDispatchLoopUntil (int millisecondsToRunFor) { const ScopedAutoReleasePool pool; jassert (isThisTheMessageThread()); // must only be called by the message thread uint32 endTime = Time::getMillisecondCounter() + millisecondsToRunFor; NSDate* endDate = [NSDate dateWithTimeIntervalSinceNow: millisecondsToRunFor * 0.001]; while (! quitMessagePosted) { const ScopedAutoReleasePool pool; [[NSRunLoop currentRunLoop] runMode: NSDefaultRunLoopMode beforeDate: endDate]; NSEvent* e = [NSApp nextEventMatchingMask: NSAnyEventMask untilDate: endDate inMode: NSDefaultRunLoopMode dequeue: YES]; if (e != 0 && ! isEventBlockedByModalComps (e)) [NSApp sendEvent: e]; if (Time::getMillisecondCounter() >= endTime) break; } return ! quitMessagePosted; } void MessageManager::doPlatformSpecificInitialisation() { if (juceAppDelegate == 0) juceAppDelegate = [[JuceAppDelegate alloc] init]; // This launches a dummy thread, which forces Cocoa to initialise NSThreads // correctly (needed prior to 10.5) if (! [NSThread isMultiThreaded]) [NSThread detachNewThreadSelector: @selector (dummyMethod) toTarget: juceAppDelegate withObject: nil]; initialiseMainMenu(); } void MessageManager::doPlatformSpecificShutdown() { if (juceAppDelegate != 0) { [[NSRunLoop currentRunLoop] cancelPerformSelectorsWithTarget: juceAppDelegate]; [[NSNotificationCenter defaultCenter] removeObserver: juceAppDelegate]; // Annoyingly, cancelPerformSelectorsWithTarget can't actually cancel the messages // sent by performSelectorOnMainThread, so need to manually flush these before quitting.. juceAppDelegate->flushingMessages = true; for (int i = 100; --i >= 0 && numPendingMessages > 0;) { const ScopedAutoReleasePool pool; [[NSRunLoop currentRunLoop] runMode: NSDefaultRunLoopMode beforeDate: [NSDate dateWithTimeIntervalSinceNow: 5 * 0.001]]; } [juceAppDelegate release]; juceAppDelegate = 0; } } bool juce_postMessageToSystemQueue (void* message) { atomicIncrement (numPendingMessages); [juceAppDelegate performSelectorOnMainThread: @selector (customEvent:) withObject: (id) [[NSData alloc] initWithBytes: &message length: (int) sizeof (message)] waitUntilDone: NO]; return true; } void MessageManager::broadcastMessage (const String& value) throw() { } void* MessageManager::callFunctionOnMessageThread (MessageCallbackFunction* callback, void* data) { if (isThisTheMessageThread()) { return (*callback) (data); } else { // If a thread has a MessageManagerLock and then tries to call this method, it'll // deadlock because the message manager is blocked from running, so can never // call your function.. jassert (! MessageManager::getInstance()->currentThreadHasLockedMessageManager()); const ScopedAutoReleasePool pool; CallbackMessagePayload cmp; cmp.function = callback; cmp.parameter = data; cmp.result = 0; cmp.hasBeenExecuted = false; [juceAppDelegate performSelectorOnMainThread: @selector (performCallback:) withObject: [NSData dataWithBytesNoCopy: &cmp length: sizeof (cmp) freeWhenDone: NO] waitUntilDone: YES]; return cmp.result; } } #endif /********* End of inlined file: juce_mac_MessageManager.mm *********/ /********* Start of inlined file: juce_mac_WebBrowserComponent.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_WEB_BROWSER #if JUCE_MAC END_JUCE_NAMESPACE #define DownloadClickDetector MakeObjCClassName(DownloadClickDetector) @interface DownloadClickDetector : NSObject { JUCE_NAMESPACE::WebBrowserComponent* ownerComponent; } - (DownloadClickDetector*) initWithWebBrowserOwner: (JUCE_NAMESPACE::WebBrowserComponent*) ownerComponent; - (void) webView: (WebView*) webView decidePolicyForNavigationAction: (NSDictionary*) actionInformation request: (NSURLRequest*) request frame: (WebFrame*) frame decisionListener: (id) listener; @end @implementation DownloadClickDetector - (DownloadClickDetector*) initWithWebBrowserOwner: (JUCE_NAMESPACE::WebBrowserComponent*) ownerComponent_ { [super init]; ownerComponent = ownerComponent_; return self; } - (void) webView: (WebView*) sender decidePolicyForNavigationAction: (NSDictionary*) actionInformation request: (NSURLRequest*) request frame: (WebFrame*) frame decisionListener: (id ) listener { NSURL* url = [actionInformation valueForKey: @"WebActionOriginalURLKey"]; if (ownerComponent->pageAboutToLoad (nsStringToJuce ([url absoluteString]))) [listener use]; else [listener ignore]; } @end BEGIN_JUCE_NAMESPACE class WebBrowserComponentInternal : public NSViewComponent { public: WebBrowserComponentInternal (WebBrowserComponent* owner) { webView = [[WebView alloc] initWithFrame: NSMakeRect (0, 0, 100.0f, 100.0f) frameName: @"" groupName: @""]; setView (webView); clickListener = [[DownloadClickDetector alloc] initWithWebBrowserOwner: owner]; [webView setPolicyDelegate: clickListener]; } ~WebBrowserComponentInternal() { [webView setPolicyDelegate: nil]; [clickListener release]; setView (0); } void goToURL (const String& url, const StringArray* headers, const MemoryBlock* postData) { NSMutableURLRequest* r = [NSMutableURLRequest requestWithURL: [NSURL URLWithString: juceStringToNS (url)] cachePolicy: NSURLRequestUseProtocolCachePolicy timeoutInterval: 30.0]; if (postData != 0 && postData->getSize() > 0) { [r setHTTPMethod: @"POST"]; [r setHTTPBody: [NSData dataWithBytes: postData->getData() length: postData->getSize()]]; } if (headers != 0) { for (int i = 0; i < headers->size(); ++i) { const String headerName ((*headers)[i].upToFirstOccurrenceOf (T(":"), false, false).trim()); const String headerValue ((*headers)[i].fromFirstOccurrenceOf (T(":"), false, false).trim()); [r setValue: juceStringToNS (headerValue) forHTTPHeaderField: juceStringToNS (headerName)]; } } stop(); [[webView mainFrame] loadRequest: r]; } void goBack() { [webView goBack]; } void goForward() { [webView goForward]; } void stop() { [webView stopLoading: nil]; } void refresh() { [webView reload: nil]; } private: WebView* webView; DownloadClickDetector* clickListener; }; WebBrowserComponent::WebBrowserComponent (const bool unloadPageWhenBrowserIsHidden_) : browser (0), blankPageShown (false), unloadPageWhenBrowserIsHidden (unloadPageWhenBrowserIsHidden_) { setOpaque (true); addAndMakeVisible (browser = new WebBrowserComponentInternal (this)); } WebBrowserComponent::~WebBrowserComponent() { deleteAndZero (browser); } void WebBrowserComponent::goToURL (const String& url, const StringArray* headers, const MemoryBlock* postData) { lastURL = url; lastHeaders.clear(); if (headers != 0) lastHeaders = *headers; lastPostData.setSize (0); if (postData != 0) lastPostData = *postData; blankPageShown = false; browser->goToURL (url, headers, postData); } void WebBrowserComponent::stop() { browser->stop(); } void WebBrowserComponent::goBack() { lastURL = String::empty; blankPageShown = false; browser->goBack(); } void WebBrowserComponent::goForward() { lastURL = String::empty; browser->goForward(); } void WebBrowserComponent::refresh() { browser->refresh(); } void WebBrowserComponent::paint (Graphics& g) { } void WebBrowserComponent::checkWindowAssociation() { if (isShowing()) { if (blankPageShown) goBack(); } else { if (unloadPageWhenBrowserIsHidden && ! blankPageShown) { // when the component becomes invisible, some stuff like flash // carries on playing audio, so we need to force it onto a blank // page to avoid this, (and send it back when it's made visible again). blankPageShown = true; browser->goToURL ("about:blank", 0, 0); } } } void WebBrowserComponent::reloadLastURL() { if (lastURL.isNotEmpty()) { goToURL (lastURL, &lastHeaders, &lastPostData); lastURL = String::empty; } } void WebBrowserComponent::parentHierarchyChanged() { checkWindowAssociation(); } void WebBrowserComponent::resized() { browser->setSize (getWidth(), getHeight()); } void WebBrowserComponent::visibilityChanged() { checkWindowAssociation(); } bool WebBrowserComponent::pageAboutToLoad (const String& url) { return true; } #else WebBrowserComponent::WebBrowserComponent (const bool unloadPageWhenBrowserIsHidden_) { } WebBrowserComponent::~WebBrowserComponent() { } void WebBrowserComponent::goToURL (const String& url, const StringArray* headers, const MemoryBlock* postData) { } void WebBrowserComponent::stop() { } void WebBrowserComponent::goBack() { } void WebBrowserComponent::goForward() { } void WebBrowserComponent::refresh() { } void WebBrowserComponent::paint (Graphics& g) { } void WebBrowserComponent::checkWindowAssociation() { } void WebBrowserComponent::reloadLastURL() { } void WebBrowserComponent::parentHierarchyChanged() { } void WebBrowserComponent::resized() { } void WebBrowserComponent::visibilityChanged() { } bool WebBrowserComponent::pageAboutToLoad (const String& url) { return true; } #endif #endif /********* End of inlined file: juce_mac_WebBrowserComponent.mm *********/ /********* Start of inlined file: juce_mac_CoreAudio.cpp *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE #ifndef JUCE_COREAUDIO_ERROR_LOGGING_ENABLED #define JUCE_COREAUDIO_ERROR_LOGGING_ENABLED 1 #endif #undef log #if JUCE_COREAUDIO_LOGGING_ENABLED #define log(a) Logger::writeToLog (a) #else #define log(a) #endif #undef OK #if JUCE_COREAUDIO_ERROR_LOGGING_ENABLED static bool logAnyErrors_CoreAudio (const OSStatus err, const int lineNum) { if (err == noErr) return true; Logger::writeToLog (T("CoreAudio error: ") + String (lineNum) + T(" - ") + String::toHexString ((int)err)); jassertfalse return false; } #define OK(a) logAnyErrors_CoreAudio (a, __LINE__) #else #define OK(a) (a == noErr) #endif class CoreAudioInternal : public Timer { public: CoreAudioInternal (AudioDeviceID id) : inputLatency (0), outputLatency (0), callback (0), #if ! MACOS_10_4_OR_EARLIER audioProcID (0), #endif inputDevice (0), isSlaveDevice (false), deviceID (id), started (false), sampleRate (0), bufferSize (512), audioBuffer (0), numInputChans (0), numOutputChans (0), callbacksAllowed (true), numInputChannelInfos (0), numOutputChannelInfos (0), tempInputBuffers (0), tempOutputBuffers (0), inputChannelInfo (0), outputChannelInfo (0) { jassert (deviceID != 0); updateDetailsFromDevice(); AudioObjectPropertyAddress pa; pa.mSelector = kAudioObjectPropertySelectorWildcard; pa.mScope = kAudioObjectPropertyScopeWildcard; pa.mElement = kAudioObjectPropertyElementWildcard; AudioObjectAddPropertyListener (deviceID, &pa, deviceListenerProc, this); } ~CoreAudioInternal() { AudioObjectPropertyAddress pa; pa.mSelector = kAudioObjectPropertySelectorWildcard; pa.mScope = kAudioObjectPropertyScopeWildcard; pa.mElement = kAudioObjectPropertyElementWildcard; AudioObjectRemovePropertyListener (deviceID, &pa, deviceListenerProc, this); stop (false); delete inputDevice; juce_free (audioBuffer); juce_free (tempInputBuffers); juce_free (tempOutputBuffers); juce_free (inputChannelInfo); juce_free (outputChannelInfo); } void allocateTempBuffers() { const int tempBufSize = bufferSize + 4; juce_free (audioBuffer); audioBuffer = (float*) juce_calloc ((numInputChans + numOutputChans) * tempBufSize * sizeof (float)); juce_free (tempInputBuffers); tempInputBuffers = (float**) juce_calloc (sizeof (float*) * (numInputChans + 2)); juce_free (tempOutputBuffers); tempOutputBuffers = (float**) juce_calloc (sizeof (float*) * (numOutputChans + 2)); int i, count = 0; for (i = 0; i < numInputChans; ++i) tempInputBuffers[i] = audioBuffer + count++ * tempBufSize; for (i = 0; i < numOutputChans; ++i) tempOutputBuffers[i] = audioBuffer + count++ * tempBufSize; } // returns the number of actual available channels void fillInChannelInfo (const bool input) { int chanNum = 0; UInt32 size; AudioObjectPropertyAddress pa; pa.mSelector = kAudioDevicePropertyStreamConfiguration; pa.mScope = input ? kAudioDevicePropertyScopeInput : kAudioDevicePropertyScopeOutput; pa.mElement = kAudioObjectPropertyElementMaster; if (OK (AudioObjectGetPropertyDataSize (deviceID, &pa, 0, 0, &size))) { AudioBufferList* const bufList = (AudioBufferList*) juce_calloc (size); if (OK (AudioObjectGetPropertyData (deviceID, &pa, 0, 0, &size, bufList))) { const int numStreams = bufList->mNumberBuffers; for (int i = 0; i < numStreams; ++i) { const AudioBuffer& b = bufList->mBuffers[i]; for (unsigned int j = 0; j < b.mNumberChannels; ++j) { String name; { uint8 channelName [256]; zerostruct (channelName); UInt32 nameSize = sizeof (channelName); UInt32 channelNum = chanNum + 1; pa.mSelector = kAudioDevicePropertyChannelName; if (AudioObjectGetPropertyData (deviceID, &pa, sizeof (channelNum), &channelNum, &nameSize, channelName) == noErr) name = String::fromUTF8 (channelName, nameSize); } if (input) { if (activeInputChans[chanNum]) { inputChannelInfo [numInputChannelInfos].streamNum = i; inputChannelInfo [numInputChannelInfos].dataOffsetSamples = j; inputChannelInfo [numInputChannelInfos].dataStrideSamples = b.mNumberChannels; ++numInputChannelInfos; } if (name.isEmpty()) name << "Input " << (chanNum + 1); inChanNames.add (name); } else { if (activeOutputChans[chanNum]) { outputChannelInfo [numOutputChannelInfos].streamNum = i; outputChannelInfo [numOutputChannelInfos].dataOffsetSamples = j; outputChannelInfo [numOutputChannelInfos].dataStrideSamples = b.mNumberChannels; ++numOutputChannelInfos; } if (name.isEmpty()) name << "Output " << (chanNum + 1); outChanNames.add (name); } ++chanNum; } } } juce_free (bufList); } } void updateDetailsFromDevice() { stopTimer(); if (deviceID == 0) return; const ScopedLock sl (callbackLock); Float64 sr; UInt32 size = sizeof (Float64); AudioObjectPropertyAddress pa; pa.mSelector = kAudioDevicePropertyNominalSampleRate; pa.mScope = kAudioObjectPropertyScopeWildcard; pa.mElement = kAudioObjectPropertyElementMaster; if (OK (AudioObjectGetPropertyData (deviceID, &pa, 0, 0, &size, &sr))) sampleRate = sr; UInt32 framesPerBuf; size = sizeof (framesPerBuf); pa.mSelector = kAudioDevicePropertyBufferFrameSize; if (OK (AudioObjectGetPropertyData (deviceID, &pa, 0, 0, &size, &framesPerBuf))) { bufferSize = framesPerBuf; allocateTempBuffers(); } bufferSizes.clear(); pa.mSelector = kAudioDevicePropertyBufferFrameSizeRange; if (OK (AudioObjectGetPropertyDataSize (deviceID, &pa, 0, 0, &size))) { AudioValueRange* ranges = (AudioValueRange*) juce_calloc (size); if (OK (AudioObjectGetPropertyData (deviceID, &pa, 0, 0, &size, ranges))) { bufferSizes.add ((int) ranges[0].mMinimum); for (int i = 32; i < 8192; i += 32) { for (int j = size / sizeof (AudioValueRange); --j >= 0;) { if (i >= ranges[j].mMinimum && i <= ranges[j].mMaximum) { bufferSizes.addIfNotAlreadyThere (i); break; } } } if (bufferSize > 0) bufferSizes.addIfNotAlreadyThere (bufferSize); } juce_free (ranges); } if (bufferSizes.size() == 0 && bufferSize > 0) bufferSizes.add (bufferSize); sampleRates.clear(); const double possibleRates[] = { 44100.0, 48000.0, 88200.0, 96000.0, 176400.0, 192000.0 }; String rates; pa.mSelector = kAudioDevicePropertyAvailableNominalSampleRates; if (OK (AudioObjectGetPropertyDataSize (deviceID, &pa, 0, 0, &size))) { AudioValueRange* ranges = (AudioValueRange*) juce_calloc (size); if (OK (AudioObjectGetPropertyData (deviceID, &pa, 0, 0, &size, ranges))) { for (int i = 0; i < numElementsInArray (possibleRates); ++i) { bool ok = false; for (int j = size / sizeof (AudioValueRange); --j >= 0;) if (possibleRates[i] >= ranges[j].mMinimum - 2 && possibleRates[i] <= ranges[j].mMaximum + 2) ok = true; if (ok) { sampleRates.add (possibleRates[i]); rates << possibleRates[i] << T(" "); } } } juce_free (ranges); } if (sampleRates.size() == 0 && sampleRate > 0) { sampleRates.add (sampleRate); rates << sampleRate; } log (T("sr: ") + rates); inputLatency = 0; outputLatency = 0; UInt32 lat; size = sizeof (lat); pa.mSelector = kAudioDevicePropertyLatency; pa.mScope = kAudioDevicePropertyScopeInput; //if (AudioDeviceGetProperty (deviceID, 0, true, kAudioDevicePropertyLatency, &size, &lat) == noErr) if (AudioObjectGetPropertyData (deviceID, &pa, 0, 0, &size, &lat) == noErr) inputLatency = (int) lat; pa.mScope = kAudioDevicePropertyScopeOutput; size = sizeof (lat); if (AudioObjectGetPropertyData (deviceID, &pa, 0, 0, &size, &lat) == noErr) outputLatency = (int) lat; log (T("lat: ") + String (inputLatency) + T(" ") + String (outputLatency)); inChanNames.clear(); outChanNames.clear(); juce_free (inputChannelInfo); inputChannelInfo = (CallbackDetailsForChannel*) juce_calloc (sizeof (CallbackDetailsForChannel) * (numInputChans + 2)); numInputChannelInfos = 0; juce_free (outputChannelInfo); outputChannelInfo = (CallbackDetailsForChannel*) juce_calloc (sizeof (CallbackDetailsForChannel) * (numOutputChans + 2)); numOutputChannelInfos = 0; fillInChannelInfo (true); fillInChannelInfo (false); } const StringArray getSources (bool input) { StringArray s; int num = 0; OSType* types = getAllDataSourcesForDevice (deviceID, input, num); if (types != 0) { for (int i = 0; i < num; ++i) { AudioValueTranslation avt; char buffer[256]; avt.mInputData = (void*) &(types[i]); avt.mInputDataSize = sizeof (UInt32); avt.mOutputData = buffer; avt.mOutputDataSize = 256; UInt32 transSize = sizeof (avt); AudioObjectPropertyAddress pa; pa.mSelector = kAudioDevicePropertyDataSourceNameForID; pa.mScope = input ? kAudioDevicePropertyScopeInput : kAudioDevicePropertyScopeOutput; pa.mElement = kAudioObjectPropertyElementMaster; if (OK (AudioObjectGetPropertyData (deviceID, &pa, 0, 0, &transSize, &avt))) { DBG (buffer); s.add (buffer); } } juce_free (types); } return s; } int getCurrentSourceIndex (bool input) const { OSType currentSourceID = 0; UInt32 size = sizeof (currentSourceID); int result = -1; AudioObjectPropertyAddress pa; pa.mSelector = kAudioDevicePropertyDataSource; pa.mScope = input ? kAudioDevicePropertyScopeInput : kAudioDevicePropertyScopeOutput; pa.mElement = kAudioObjectPropertyElementMaster; if (deviceID != 0) { if (OK (AudioObjectGetPropertyData (deviceID, &pa, 0, 0, &size, ¤tSourceID))) { int num = 0; OSType* const types = getAllDataSourcesForDevice (deviceID, input, num); if (types != 0) { for (int i = 0; i < num; ++i) { if (types[num] == currentSourceID) { result = i; break; } } juce_free (types); } } } return result; } void setCurrentSourceIndex (int index, bool input) { if (deviceID != 0) { int num = 0; OSType* types = getAllDataSourcesForDevice (deviceID, input, num); if (types != 0) { if (((unsigned int) index) < (unsigned int) num) { AudioObjectPropertyAddress pa; pa.mSelector = kAudioDevicePropertyDataSource; pa.mScope = input ? kAudioDevicePropertyScopeInput : kAudioDevicePropertyScopeOutput; pa.mElement = kAudioObjectPropertyElementMaster; OSType typeId = types[index]; OK (AudioObjectSetPropertyData (deviceID, &pa, 0, 0, sizeof (typeId), &typeId)); } juce_free (types); } } } const String reopen (const BitArray& inputChannels, const BitArray& outputChannels, double newSampleRate, int bufferSizeSamples) { String error; log ("CoreAudio reopen"); callbacksAllowed = false; stopTimer(); stop (false); activeInputChans = inputChannels; activeInputChans.setRange (inChanNames.size(), activeInputChans.getHighestBit() + 1 - inChanNames.size(), false); activeOutputChans = outputChannels; activeOutputChans.setRange (outChanNames.size(), activeOutputChans.getHighestBit() + 1 - outChanNames.size(), false); numInputChans = activeInputChans.countNumberOfSetBits(); numOutputChans = activeOutputChans.countNumberOfSetBits(); // set sample rate AudioObjectPropertyAddress pa; pa.mSelector = kAudioDevicePropertyNominalSampleRate; pa.mScope = kAudioObjectPropertyScopeWildcard; pa.mElement = kAudioObjectPropertyElementMaster; Float64 sr = newSampleRate; if (! OK (AudioObjectSetPropertyData (deviceID, &pa, 0, 0, sizeof (sr), &sr))) { error = "Couldn't change sample rate"; } else { // change buffer size UInt32 framesPerBuf = bufferSizeSamples; pa.mSelector = kAudioDevicePropertyBufferFrameSize; if (! OK (AudioObjectSetPropertyData (deviceID, &pa, 0, 0, sizeof (framesPerBuf), &framesPerBuf))) { error = "Couldn't change buffer size"; } else { // Annoyingly, after changing the rate and buffer size, some devices fail to // correctly report their new settings until some random time in the future, so // after calling updateDetailsFromDevice, we need to manually bodge these values // to make sure we're using the correct numbers.. updateDetailsFromDevice(); sampleRate = newSampleRate; bufferSize = bufferSizeSamples; if (sampleRates.size() == 0) error = "Device has no available sample-rates"; else if (bufferSizes.size() == 0) error = "Device has no available buffer-sizes"; else if (inputDevice != 0) error = inputDevice->reopen (inputChannels, outputChannels, newSampleRate, bufferSizeSamples); } } callbacksAllowed = true; return error; } bool start (AudioIODeviceCallback* cb) { if (! started) { callback = 0; if (deviceID != 0) { #if MACOS_10_4_OR_EARLIER if (OK (AudioDeviceAddIOProc (deviceID, audioIOProc, (void*) this))) #else if (OK (AudioDeviceCreateIOProcID (deviceID, audioIOProc, (void*) this, &audioProcID))) #endif { if (OK (AudioDeviceStart (deviceID, audioIOProc))) { started = true; } else { #if MACOS_10_4_OR_EARLIER OK (AudioDeviceRemoveIOProc (deviceID, audioIOProc)); #else OK (AudioDeviceDestroyIOProcID (deviceID, audioProcID)); audioProcID = 0; #endif } } } } if (started) { const ScopedLock sl (callbackLock); callback = cb; } if (inputDevice != 0) return started && inputDevice->start (cb); else return started; } void stop (bool leaveInterruptRunning) { callbackLock.enter(); callback = 0; callbackLock.exit(); if (started && (deviceID != 0) && ! leaveInterruptRunning) { OK (AudioDeviceStop (deviceID, audioIOProc)); #if MACOS_10_4_OR_EARLIER OK (AudioDeviceRemoveIOProc (deviceID, audioIOProc)); #else OK (AudioDeviceDestroyIOProcID (deviceID, audioProcID)); audioProcID = 0; #endif started = false; callbackLock.enter(); callbackLock.exit(); // wait until it's definately stopped calling back.. for (int i = 40; --i >= 0;) { Thread::sleep (50); UInt32 running = 0; UInt32 size = sizeof (running); AudioObjectPropertyAddress pa; pa.mSelector = kAudioDevicePropertyDeviceIsRunning; pa.mScope = kAudioObjectPropertyScopeWildcard; pa.mElement = kAudioObjectPropertyElementMaster; OK (AudioObjectGetPropertyData (deviceID, &pa, 0, 0, &size, &running)); if (running == 0) break; } callbackLock.enter(); callbackLock.exit(); } if (inputDevice != 0) inputDevice->stop (leaveInterruptRunning); } double getSampleRate() const { return sampleRate; } int getBufferSize() const { return bufferSize; } void audioCallback (const AudioBufferList* inInputData, AudioBufferList* outOutputData) { int i; const ScopedLock sl (callbackLock); if (callback != 0) { if (inputDevice == 0) { for (i = numInputChans; --i >= 0;) { const CallbackDetailsForChannel& info = inputChannelInfo[i]; float* dest = tempInputBuffers [i]; const float* src = ((const float*) inInputData->mBuffers[info.streamNum].mData) + info.dataOffsetSamples; const int stride = info.dataStrideSamples; if (stride != 0) // if this is zero, info is invalid { for (int j = bufferSize; --j >= 0;) { *dest++ = *src; src += stride; } } } } if (! isSlaveDevice) { if (inputDevice == 0) { callback->audioDeviceIOCallback ((const float**) tempInputBuffers, numInputChans, tempOutputBuffers, numOutputChans, bufferSize); } else { jassert (inputDevice->bufferSize == bufferSize); // Sometimes the two linked devices seem to get their callbacks in // parallel, so we need to lock both devices to stop the input data being // changed while inside our callback.. const ScopedLock sl (inputDevice->callbackLock); callback->audioDeviceIOCallback ((const float**) inputDevice->tempInputBuffers, inputDevice->numInputChans, tempOutputBuffers, numOutputChans, bufferSize); } for (i = numOutputChans; --i >= 0;) { const CallbackDetailsForChannel& info = outputChannelInfo[i]; const float* src = tempOutputBuffers [i]; float* dest = ((float*) outOutputData->mBuffers[info.streamNum].mData) + info.dataOffsetSamples; const int stride = info.dataStrideSamples; if (stride != 0) // if this is zero, info is invalid { for (int j = bufferSize; --j >= 0;) { *dest = *src++; dest += stride; } } } } } else { for (i = jmin (numOutputChans, numOutputChannelInfos); --i >= 0;) { const CallbackDetailsForChannel& info = outputChannelInfo[i]; float* dest = ((float*) outOutputData->mBuffers[info.streamNum].mData) + info.dataOffsetSamples; const int stride = info.dataStrideSamples; if (stride != 0) // if this is zero, info is invalid { for (int j = bufferSize; --j >= 0;) { *dest = 0.0f; dest += stride; } } } } } // called by callbacks void deviceDetailsChanged() { if (callbacksAllowed) startTimer (100); } void timerCallback() { stopTimer(); log ("CoreAudio device changed callback"); const double oldSampleRate = sampleRate; const int oldBufferSize = bufferSize; updateDetailsFromDevice(); if (oldBufferSize != bufferSize || oldSampleRate != sampleRate) { callbacksAllowed = false; stop (false); updateDetailsFromDevice(); callbacksAllowed = true; } } CoreAudioInternal* getRelatedDevice() const { UInt32 size = 0; CoreAudioInternal* result = 0; AudioObjectPropertyAddress pa; pa.mSelector = kAudioDevicePropertyRelatedDevices; pa.mScope = kAudioObjectPropertyScopeWildcard; pa.mElement = kAudioObjectPropertyElementMaster; if (deviceID != 0 && AudioObjectGetPropertyDataSize (deviceID, &pa, 0, 0, &size) == noErr && size > 0) { AudioDeviceID* devs = (AudioDeviceID*) juce_calloc (size); if (OK (AudioObjectGetPropertyData (deviceID, &pa, 0, 0, &size, devs))) { for (unsigned int i = 0; i < size / sizeof (AudioDeviceID); ++i) { if (devs[i] != deviceID && devs[i] != 0) { result = new CoreAudioInternal (devs[i]); const bool thisIsInput = inChanNames.size() > 0 && outChanNames.size() == 0; const bool otherIsInput = result->inChanNames.size() > 0 && result->outChanNames.size() == 0; if (thisIsInput != otherIsInput || (inChanNames.size() + outChanNames.size() == 0) || (result->inChanNames.size() + result->outChanNames.size()) == 0) break; deleteAndZero (result); } } } juce_free (devs); } return result; } juce_UseDebuggingNewOperator int inputLatency, outputLatency; BitArray activeInputChans, activeOutputChans; StringArray inChanNames, outChanNames; Array sampleRates; Array bufferSizes; AudioIODeviceCallback* callback; #if ! MACOS_10_4_OR_EARLIER AudioDeviceIOProcID audioProcID; #endif CoreAudioInternal* inputDevice; bool isSlaveDevice; private: CriticalSection callbackLock; AudioDeviceID deviceID; bool started; double sampleRate; int bufferSize; float* audioBuffer; int numInputChans, numOutputChans; bool callbacksAllowed; struct CallbackDetailsForChannel { int streamNum; int dataOffsetSamples; int dataStrideSamples; }; int numInputChannelInfos, numOutputChannelInfos; CallbackDetailsForChannel* inputChannelInfo; CallbackDetailsForChannel* outputChannelInfo; float** tempInputBuffers; float** tempOutputBuffers; CoreAudioInternal (const CoreAudioInternal&); const CoreAudioInternal& operator= (const CoreAudioInternal&); static OSStatus audioIOProc (AudioDeviceID inDevice, const AudioTimeStamp* inNow, const AudioBufferList* inInputData, const AudioTimeStamp* inInputTime, AudioBufferList* outOutputData, const AudioTimeStamp* inOutputTime, void* device) { ((CoreAudioInternal*) device)->audioCallback (inInputData, outOutputData); return noErr; } static OSStatus deviceListenerProc (AudioDeviceID /*inDevice*/, UInt32 /*inLine*/, const AudioObjectPropertyAddress* pa, void* inClientData) { CoreAudioInternal* const intern = (CoreAudioInternal*) inClientData; switch (pa->mSelector) { case kAudioDevicePropertyBufferSize: case kAudioDevicePropertyBufferFrameSize: case kAudioDevicePropertyNominalSampleRate: case kAudioDevicePropertyStreamFormat: case kAudioDevicePropertyDeviceIsAlive: intern->deviceDetailsChanged(); break; case kAudioDevicePropertyBufferSizeRange: case kAudioDevicePropertyVolumeScalar: case kAudioDevicePropertyMute: case kAudioDevicePropertyPlayThru: case kAudioDevicePropertyDataSource: case kAudioDevicePropertyDeviceIsRunning: break; } return noErr; } static OSType* getAllDataSourcesForDevice (AudioDeviceID deviceID, const bool input, int& num) { OSType* types = 0; UInt32 size = 0; num = 0; AudioObjectPropertyAddress pa; pa.mSelector = kAudioDevicePropertyDataSources; pa.mScope = kAudioObjectPropertyScopeWildcard; pa.mElement = kAudioObjectPropertyElementMaster; if (deviceID != 0 && OK (AudioObjectGetPropertyDataSize (deviceID, &pa, 0, 0, &size))) { types = (OSType*) juce_calloc (size); if (OK (AudioObjectGetPropertyData (deviceID, &pa, 0, 0, &size, types))) { num = size / sizeof (OSType); } else { juce_free (types); types = 0; } } return types; } }; class CoreAudioIODevice : public AudioIODevice { public: CoreAudioIODevice (const String& deviceName, AudioDeviceID inputDeviceId, const int inputIndex_, AudioDeviceID outputDeviceId, const int outputIndex_) : AudioIODevice (deviceName, "CoreAudio"), inputIndex (inputIndex_), outputIndex (outputIndex_), isOpen_ (false), isStarted (false) { internal = 0; CoreAudioInternal* device = 0; if (outputDeviceId == 0 || outputDeviceId == inputDeviceId) { jassert (inputDeviceId != 0); device = new CoreAudioInternal (inputDeviceId); } else { device = new CoreAudioInternal (outputDeviceId); if (inputDeviceId != 0) { CoreAudioInternal* secondDevice = new CoreAudioInternal (inputDeviceId); device->inputDevice = secondDevice; secondDevice->isSlaveDevice = true; } } internal = device; AudioObjectPropertyAddress pa; pa.mSelector = kAudioObjectPropertySelectorWildcard; pa.mScope = kAudioObjectPropertyScopeWildcard; pa.mElement = kAudioObjectPropertyElementWildcard; AudioObjectAddPropertyListener (kAudioObjectSystemObject, &pa, hardwareListenerProc, internal); } ~CoreAudioIODevice() { AudioObjectPropertyAddress pa; pa.mSelector = kAudioObjectPropertySelectorWildcard; pa.mScope = kAudioObjectPropertyScopeWildcard; pa.mElement = kAudioObjectPropertyElementWildcard; AudioObjectRemovePropertyListener (kAudioObjectSystemObject, &pa, hardwareListenerProc, internal); delete internal; } const StringArray getOutputChannelNames() { return internal->outChanNames; } const StringArray getInputChannelNames() { if (internal->inputDevice != 0) return internal->inputDevice->inChanNames; else return internal->inChanNames; } int getNumSampleRates() { return internal->sampleRates.size(); } double getSampleRate (int index) { return internal->sampleRates [index]; } int getNumBufferSizesAvailable() { return internal->bufferSizes.size(); } int getBufferSizeSamples (int index) { return internal->bufferSizes [index]; } int getDefaultBufferSize() { for (int i = 0; i < getNumBufferSizesAvailable(); ++i) if (getBufferSizeSamples(i) >= 512) return getBufferSizeSamples(i); return 512; } const String open (const BitArray& inputChannels, const BitArray& outputChannels, double sampleRate, int bufferSizeSamples) { isOpen_ = true; if (bufferSizeSamples <= 0) bufferSizeSamples = getDefaultBufferSize(); lastError = internal->reopen (inputChannels, outputChannels, sampleRate, bufferSizeSamples); isOpen_ = lastError.isEmpty(); return lastError; } void close() { isOpen_ = false; internal->stop (false); } bool isOpen() { return isOpen_; } int getCurrentBufferSizeSamples() { return internal != 0 ? internal->getBufferSize() : 512; } double getCurrentSampleRate() { return internal != 0 ? internal->getSampleRate() : 0; } int getCurrentBitDepth() { return 32; // no way to find out, so just assume it's high.. } const BitArray getActiveOutputChannels() const { return internal != 0 ? internal->activeOutputChans : BitArray(); } const BitArray getActiveInputChannels() const { BitArray chans; if (internal != 0) { chans = internal->activeInputChans; if (internal->inputDevice != 0) chans.orWith (internal->inputDevice->activeInputChans); } return chans; } int getOutputLatencyInSamples() { if (internal == 0) return 0; // this seems like a good guess at getting the latency right - comparing // this with a round-trip measurement, it gets it to within a few millisecs // for the built-in mac soundcard return internal->outputLatency + internal->getBufferSize() * 2; } int getInputLatencyInSamples() { if (internal == 0) return 0; return internal->inputLatency + internal->getBufferSize() * 2; } void start (AudioIODeviceCallback* callback) { if (internal != 0 && ! isStarted) { if (callback != 0) callback->audioDeviceAboutToStart (this); isStarted = true; internal->start (callback); } } void stop() { if (isStarted && internal != 0) { AudioIODeviceCallback* const lastCallback = internal->callback; isStarted = false; internal->stop (true); if (lastCallback != 0) lastCallback->audioDeviceStopped(); } } bool isPlaying() { if (internal->callback == 0) isStarted = false; return isStarted; } const String getLastError() { return lastError; } int inputIndex, outputIndex; juce_UseDebuggingNewOperator private: CoreAudioInternal* internal; bool isOpen_, isStarted; String lastError; static OSStatus hardwareListenerProc (AudioDeviceID /*inDevice*/, UInt32 /*inLine*/, const AudioObjectPropertyAddress* pa, void* inClientData) { CoreAudioInternal* const intern = (CoreAudioInternal*) inClientData; switch (pa->mSelector) { case kAudioHardwarePropertyDevices: intern->deviceDetailsChanged(); break; case kAudioHardwarePropertyDefaultOutputDevice: case kAudioHardwarePropertyDefaultInputDevice: case kAudioHardwarePropertyDefaultSystemOutputDevice: break; } return noErr; } CoreAudioIODevice (const CoreAudioIODevice&); const CoreAudioIODevice& operator= (const CoreAudioIODevice&); }; class CoreAudioIODeviceType : public AudioIODeviceType { public: CoreAudioIODeviceType() : AudioIODeviceType (T("CoreAudio")), hasScanned (false) { } ~CoreAudioIODeviceType() { } void scanForDevices() { hasScanned = true; inputDeviceNames.clear(); outputDeviceNames.clear(); inputIds.clear(); outputIds.clear(); UInt32 size; AudioObjectPropertyAddress pa; pa.mSelector = kAudioHardwarePropertyDevices; pa.mScope = kAudioObjectPropertyScopeWildcard; pa.mElement = kAudioObjectPropertyElementMaster; if (OK (AudioObjectGetPropertyDataSize (kAudioObjectSystemObject, &pa, 0, 0, &size))) { AudioDeviceID* const devs = (AudioDeviceID*) juce_calloc (size); if (OK (AudioObjectGetPropertyData (kAudioObjectSystemObject, &pa, 0, 0, &size, devs))) { static bool alreadyLogged = false; const int num = size / sizeof (AudioDeviceID); for (int i = 0; i < num; ++i) { char name [1024]; size = sizeof (name); pa.mSelector = kAudioDevicePropertyDeviceName; if (OK (AudioObjectGetPropertyData (devs[i], &pa, 0, 0, &size, name))) { const String nameString (String::fromUTF8 ((const uint8*) name, strlen (name))); if (! alreadyLogged) log (T("CoreAudio device: ") + nameString); const int numIns = getNumChannels (devs[i], true); const int numOuts = getNumChannels (devs[i], false); if (numIns > 0) { inputDeviceNames.add (nameString); inputIds.add (devs[i]); } if (numOuts > 0) { outputDeviceNames.add (nameString); outputIds.add (devs[i]); } } } alreadyLogged = true; } juce_free (devs); } inputDeviceNames.appendNumbersToDuplicates (false, true); outputDeviceNames.appendNumbersToDuplicates (false, true); } const StringArray getDeviceNames (const bool wantInputNames) const { jassert (hasScanned); // need to call scanForDevices() before doing this if (wantInputNames) return inputDeviceNames; else return outputDeviceNames; } int getDefaultDeviceIndex (const bool forInput) const { jassert (hasScanned); // need to call scanForDevices() before doing this AudioDeviceID deviceID; UInt32 size = sizeof (deviceID); // if they're asking for any input channels at all, use the default input, so we // get the built-in mic rather than the built-in output with no inputs.. AudioObjectPropertyAddress pa; pa.mSelector = forInput ? kAudioHardwarePropertyDefaultInputDevice : kAudioHardwarePropertyDefaultOutputDevice; pa.mScope = kAudioObjectPropertyScopeWildcard; pa.mElement = kAudioObjectPropertyElementMaster; if (AudioObjectGetPropertyData (kAudioObjectSystemObject, &pa, 0, 0, &size, &deviceID) == noErr) { if (forInput) { for (int i = inputIds.size(); --i >= 0;) if (inputIds[i] == deviceID) return i; } else { for (int i = outputIds.size(); --i >= 0;) if (outputIds[i] == deviceID) return i; } } return 0; } int getIndexOfDevice (AudioIODevice* device, const bool asInput) const { jassert (hasScanned); // need to call scanForDevices() before doing this CoreAudioIODevice* const d = dynamic_cast (device); if (d == 0) return -1; return asInput ? d->inputIndex : d->outputIndex; } bool hasSeparateInputsAndOutputs() const { return true; } AudioIODevice* createDevice (const String& outputDeviceName, const String& inputDeviceName) { jassert (hasScanned); // need to call scanForDevices() before doing this const int inputIndex = inputDeviceNames.indexOf (inputDeviceName); const int outputIndex = outputDeviceNames.indexOf (outputDeviceName); String deviceName (outputDeviceName); if (deviceName.isEmpty()) deviceName = inputDeviceName; if (index >= 0) return new CoreAudioIODevice (deviceName, inputIds [inputIndex], inputIndex, outputIds [outputIndex], outputIndex); return 0; } juce_UseDebuggingNewOperator private: StringArray inputDeviceNames, outputDeviceNames; Array inputIds, outputIds; bool hasScanned; static int getNumChannels (AudioDeviceID deviceID, bool input) { int total = 0; UInt32 size; AudioObjectPropertyAddress pa; pa.mSelector = kAudioDevicePropertyStreamConfiguration; pa.mScope = input ? kAudioDevicePropertyScopeInput : kAudioDevicePropertyScopeOutput; pa.mElement = kAudioObjectPropertyElementMaster; if (OK (AudioObjectGetPropertyDataSize (deviceID, &pa, 0, 0, &size))) { AudioBufferList* const bufList = (AudioBufferList*) juce_calloc (size); if (OK (AudioObjectGetPropertyData (deviceID, &pa, 0, 0, &size, bufList))) { const int numStreams = bufList->mNumberBuffers; for (int i = 0; i < numStreams; ++i) { const AudioBuffer& b = bufList->mBuffers[i]; total += b.mNumberChannels; } } juce_free (bufList); } return total; } CoreAudioIODeviceType (const CoreAudioIODeviceType&); const CoreAudioIODeviceType& operator= (const CoreAudioIODeviceType&); }; AudioIODeviceType* juce_createAudioIODeviceType_CoreAudio() { return new CoreAudioIODeviceType(); } #undef log #endif /********* End of inlined file: juce_mac_CoreAudio.cpp *********/ /********* Start of inlined file: juce_mac_CoreMidi.cpp *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #ifdef JUCE_INCLUDED_FILE #if JUCE_MAC #undef log #define log(a) Logger::writeToLog(a) static bool logAnyErrorsMidi (const OSStatus err, const int lineNum) { if (err == noErr) return true; log (T("CoreMidi error: ") + String (lineNum) + T(" - ") + String::toHexString ((int)err)); jassertfalse return false; } #undef OK #define OK(a) logAnyErrorsMidi(a, __LINE__) static const String getEndpointName (MIDIEndpointRef endpoint, bool isExternal) { String result; CFStringRef str = 0; MIDIObjectGetStringProperty (endpoint, kMIDIPropertyName, &str); if (str != 0) { result = PlatformUtilities::cfStringToJuceString (str); CFRelease (str); str = 0; } MIDIEntityRef entity = 0; MIDIEndpointGetEntity (endpoint, &entity); if (entity == 0) return result; // probably virtual if (result.isEmpty()) { // endpoint name has zero length - try the entity MIDIObjectGetStringProperty (entity, kMIDIPropertyName, &str); if (str != 0) { result += PlatformUtilities::cfStringToJuceString (str); CFRelease (str); str = 0; } } // now consider the device's name MIDIDeviceRef device = 0; MIDIEntityGetDevice (entity, &device); if (device == 0) return result; MIDIObjectGetStringProperty (device, kMIDIPropertyName, &str); if (str != 0) { const String s (PlatformUtilities::cfStringToJuceString (str)); CFRelease (str); // if an external device has only one entity, throw away // the endpoint name and just use the device name if (isExternal && MIDIDeviceGetNumberOfEntities (device) < 2) { result = s; } else if (! result.startsWithIgnoreCase (s)) { // prepend the device name to the entity name result = (s + T(" ") + result).trimEnd(); } } return result; } static const String getConnectedEndpointName (MIDIEndpointRef endpoint) { String result; // Does the endpoint have connections? CFDataRef connections = 0; int numConnections = 0; MIDIObjectGetDataProperty (endpoint, kMIDIPropertyConnectionUniqueID, &connections); if (connections != 0) { numConnections = CFDataGetLength (connections) / sizeof (MIDIUniqueID); if (numConnections > 0) { const SInt32* pid = reinterpret_cast (CFDataGetBytePtr (connections)); for (int i = 0; i < numConnections; ++i, ++pid) { MIDIUniqueID uid = EndianS32_BtoN (*pid); MIDIObjectRef connObject; MIDIObjectType connObjectType; OSStatus err = MIDIObjectFindByUniqueID (uid, &connObject, &connObjectType); if (err == noErr) { String s; if (connObjectType == kMIDIObjectType_ExternalSource || connObjectType == kMIDIObjectType_ExternalDestination) { // Connected to an external device's endpoint (10.3 and later). s = getEndpointName (static_cast (connObject), true); } else { // Connected to an external device (10.2) (or something else, catch-all) CFStringRef str = 0; MIDIObjectGetStringProperty (connObject, kMIDIPropertyName, &str); if (str != 0) { s = PlatformUtilities::cfStringToJuceString (str); CFRelease (str); } } if (s.isNotEmpty()) { if (result.isNotEmpty()) result += (", "); result += s; } } } } CFRelease (connections); } if (result.isNotEmpty()) return result; // Here, either the endpoint had no connections, or we failed to obtain names for any of them. return getEndpointName (endpoint, false); } const StringArray MidiOutput::getDevices() { StringArray s; const ItemCount num = MIDIGetNumberOfDestinations(); for (ItemCount i = 0; i < num; ++i) { MIDIEndpointRef dest = MIDIGetDestination (i); if (dest != 0) { String name (getConnectedEndpointName (dest)); if (name.isEmpty()) name = ""; s.add (name); } else { s.add (""); } } return s; } int MidiOutput::getDefaultDeviceIndex() { return 0; } static MIDIClientRef globalMidiClient; static bool hasGlobalClientBeenCreated = false; static bool makeSureClientExists() { if (! hasGlobalClientBeenCreated) { String name (T("JUCE")); if (JUCEApplication::getInstance() != 0) name = JUCEApplication::getInstance()->getApplicationName(); CFStringRef appName = PlatformUtilities::juceStringToCFString (name); hasGlobalClientBeenCreated = OK (MIDIClientCreate (appName, 0, 0, &globalMidiClient)); CFRelease (appName); } return hasGlobalClientBeenCreated; } struct MidiPortAndEndpoint { MIDIPortRef port; MIDIEndpointRef endPoint; }; MidiOutput* MidiOutput::openDevice (int index) { MidiOutput* mo = 0; if (((unsigned int) index) < (unsigned int) MIDIGetNumberOfDestinations()) { MIDIEndpointRef endPoint = MIDIGetDestination (index); CFStringRef pname; if (OK (MIDIObjectGetStringProperty (endPoint, kMIDIPropertyName, &pname))) { log (T("CoreMidi - opening out: ") + PlatformUtilities::cfStringToJuceString (pname)); if (makeSureClientExists()) { MIDIPortRef port; if (OK (MIDIOutputPortCreate (globalMidiClient, pname, &port))) { MidiPortAndEndpoint* mpe = new MidiPortAndEndpoint(); mpe->port = port; mpe->endPoint = endPoint; mo = new MidiOutput(); mo->internal = (void*)mpe; } } CFRelease (pname); } } return mo; } MidiOutput::~MidiOutput() { MidiPortAndEndpoint* const mpe = (MidiPortAndEndpoint*)internal; MIDIPortDispose (mpe->port); delete mpe; } void MidiOutput::reset() { } bool MidiOutput::getVolume (float& leftVol, float& rightVol) { return false; } void MidiOutput::setVolume (float leftVol, float rightVol) { } void MidiOutput::sendMessageNow (const MidiMessage& message) { MidiPortAndEndpoint* const mpe = (MidiPortAndEndpoint*)internal; if (message.isSysEx()) { const int maxPacketSize = 256; int pos = 0, bytesLeft = message.getRawDataSize(); const int numPackets = (bytesLeft + maxPacketSize - 1) / maxPacketSize; MIDIPacketList* const packets = (MIDIPacketList*) juce_malloc (32 * numPackets + message.getRawDataSize()); packets->numPackets = numPackets; MIDIPacket* p = packets->packet; for (int i = 0; i < numPackets; ++i) { p->timeStamp = 0; p->length = jmin (maxPacketSize, bytesLeft); memcpy (p->data, message.getRawData() + pos, p->length); pos += p->length; bytesLeft -= p->length; p = MIDIPacketNext (p); } MIDISend (mpe->port, mpe->endPoint, packets); juce_free (packets); } else { MIDIPacketList packets; packets.numPackets = 1; packets.packet[0].timeStamp = 0; packets.packet[0].length = message.getRawDataSize(); *(int*) (packets.packet[0].data) = *(const int*) message.getRawData(); MIDISend (mpe->port, mpe->endPoint, &packets); } } const StringArray MidiInput::getDevices() { StringArray s; const ItemCount num = MIDIGetNumberOfSources(); for (ItemCount i = 0; i < num; ++i) { MIDIEndpointRef source = MIDIGetSource (i); if (source != 0) { String name (getConnectedEndpointName (source)); if (name.isEmpty()) name = ""; s.add (name); } else { s.add (""); } } return s; } int MidiInput::getDefaultDeviceIndex() { return 0; } struct MidiPortAndCallback { MidiInput* input; MIDIPortRef port; MIDIEndpointRef endPoint; MidiInputCallback* callback; MemoryBlock pendingData; int pendingBytes; double pendingDataTime; bool active; }; static CriticalSection callbackLock; static VoidArray activeCallbacks; static void processSysex (MidiPortAndCallback* const mpe, const uint8*& d, int& size, const double time) { if (*d == 0xf0) { mpe->pendingBytes = 0; mpe->pendingDataTime = time; } mpe->pendingData.ensureSize (mpe->pendingBytes + size, false); uint8* totalMessage = (uint8*) mpe->pendingData.getData(); uint8* dest = totalMessage + mpe->pendingBytes; while (size > 0) { if (mpe->pendingBytes > 0 && *d >= 0x80) { if (*d >= 0xfa || *d == 0xf8) { mpe->callback->handleIncomingMidiMessage (mpe->input, MidiMessage (*d, time)); ++d; --size; } else { if (*d == 0xf7) { *dest++ = *d++; mpe->pendingBytes++; --size; } break; } } else { *dest++ = *d++; mpe->pendingBytes++; --size; } } if (totalMessage [mpe->pendingBytes - 1] == 0xf7) { mpe->callback->handleIncomingMidiMessage (mpe->input, MidiMessage (totalMessage, mpe->pendingBytes, mpe->pendingDataTime)); mpe->pendingBytes = 0; } else { mpe->callback->handlePartialSysexMessage (mpe->input, totalMessage, mpe->pendingBytes, mpe->pendingDataTime); } } static void midiInputProc (const MIDIPacketList* pktlist, void* readProcRefCon, void* srcConnRefCon) { double time = Time::getMillisecondCounterHiRes() * 0.001; const double originalTime = time; MidiPortAndCallback* const mpe = (MidiPortAndCallback*) readProcRefCon; const ScopedLock sl (callbackLock); if (activeCallbacks.contains (mpe) && mpe->active) { const MIDIPacket* packet = &pktlist->packet[0]; for (unsigned int i = 0; i < pktlist->numPackets; ++i) { const uint8* d = (const uint8*) (packet->data); int size = packet->length; while (size > 0) { time = originalTime; if (mpe->pendingBytes > 0 || d[0] == 0xf0) { processSysex (mpe, d, size, time); } else { int used = 0; const MidiMessage m (d, size, used, 0, time); if (used <= 0) { jassertfalse // malformed midi message break; } else { mpe->callback->handleIncomingMidiMessage (mpe->input, m); } size -= used; d += used; } } packet = MIDIPacketNext (packet); } } } MidiInput* MidiInput::openDevice (int index, MidiInputCallback* callback) { MidiInput* mi = 0; if (((unsigned int) index) < (unsigned int) MIDIGetNumberOfSources()) { MIDIEndpointRef endPoint = MIDIGetSource (index); if (endPoint != 0) { CFStringRef pname; if (OK (MIDIObjectGetStringProperty (endPoint, kMIDIPropertyName, &pname))) { log (T("CoreMidi - opening inp: ") + PlatformUtilities::cfStringToJuceString (pname)); if (makeSureClientExists()) { MIDIPortRef port; MidiPortAndCallback* const mpe = new MidiPortAndCallback(); mpe->active = false; if (OK (MIDIInputPortCreate (globalMidiClient, pname, midiInputProc, mpe, &port))) { if (OK (MIDIPortConnectSource (port, endPoint, 0))) { mpe->port = port; mpe->endPoint = endPoint; mpe->callback = callback; mpe->pendingBytes = 0; mpe->pendingData.ensureSize (128); mi = new MidiInput (getDevices() [index]); mpe->input = mi; mi->internal = (void*) mpe; const ScopedLock sl (callbackLock); activeCallbacks.add (mpe); } else { OK (MIDIPortDispose (port)); delete mpe; } } else { delete mpe; } } } CFRelease (pname); } } return mi; } MidiInput::MidiInput (const String& name_) : name (name_) { } MidiInput::~MidiInput() { MidiPortAndCallback* const mpe = (MidiPortAndCallback*) internal; mpe->active = false; callbackLock.enter(); activeCallbacks.removeValue (mpe); callbackLock.exit(); OK (MIDIPortDisconnectSource (mpe->port, mpe->endPoint)); OK (MIDIPortDispose (mpe->port)); delete mpe; } void MidiInput::start() { MidiPortAndCallback* const mpe = (MidiPortAndCallback*) internal; const ScopedLock sl (callbackLock); mpe->active = true; } void MidiInput::stop() { MidiPortAndCallback* const mpe = (MidiPortAndCallback*) internal; const ScopedLock sl (callbackLock); mpe->active = false; } #undef log #else MidiOutput::~MidiOutput() { } void MidiOutput::reset() { } bool MidiOutput::getVolume (float& leftVol, float& rightVol) { return false; } void MidiOutput::setVolume (float leftVol, float rightVol) { } void MidiOutput::sendMessageNow (const MidiMessage& message) { } const StringArray MidiOutput::getDevices() { return StringArray(); } MidiOutput* MidiOutput::openDevice (int index) { return 0; } const StringArray MidiInput::getDevices() { return StringArray(); } MidiInput* MidiInput::openDevice (int index, MidiInputCallback* callback) { return 0; } #endif #endif /********* End of inlined file: juce_mac_CoreMidi.cpp *********/ /********* Start of inlined file: juce_mac_CameraDevice.mm *********/ // (This file gets included by juce_mac_NativeCode.mm, rather than being // compiled on its own). #if JUCE_INCLUDED_FILE && JUCE_QUICKTIME && JUCE_USE_CAMERA #define QTCaptureCallbackDelegate MakeObjCClassName(QTCaptureCallbackDelegate) class QTCameraDeviceInteral; END_JUCE_NAMESPACE @interface QTCaptureCallbackDelegate : NSObject { @public CameraDevice* owner; QTCameraDeviceInteral* internal; Time* firstRecordedTime; } - (QTCaptureCallbackDelegate*) initWithOwner: (CameraDevice*) owner internalDev: (QTCameraDeviceInteral*) d; - (void) dealloc; - (void) captureOutput: (QTCaptureOutput*) captureOutput didOutputVideoFrame: (CVImageBufferRef) videoFrame withSampleBuffer: (QTSampleBuffer*) sampleBuffer fromConnection: (QTCaptureConnection*) connection; - (void) captureOutput: (QTCaptureFileOutput*) captureOutput didOutputSampleBuffer: (QTSampleBuffer*) sampleBuffer fromConnection: (QTCaptureConnection*) connection; @end BEGIN_JUCE_NAMESPACE class QTCameraDeviceInteral { public: QTCameraDeviceInteral (CameraDevice* owner, int index) { const ScopedAutoReleasePool pool; session = [[QTCaptureSession alloc] init]; NSArray* devs = [QTCaptureDevice inputDevicesWithMediaType: QTMediaTypeVideo]; device = (QTCaptureDevice*) [devs objectAtIndex: index]; input = 0; fileOutput = 0; imageOutput = 0; callbackDelegate = [[QTCaptureCallbackDelegate alloc] initWithOwner: owner internalDev: this]; NSError* err = 0; [device retain]; [device open: &err]; if (err == 0) { input = [[QTCaptureDeviceInput alloc] initWithDevice: device]; [session addInput: input error: &err]; if (err == 0) { resetFile(); imageOutput = [[QTCaptureDecompressedVideoOutput alloc] init]; [imageOutput setDelegate: callbackDelegate]; if (err == 0) { [session startRunning]; return; } } } openingError = nsStringToJuce ([err description]); DBG (openingError); } ~QTCameraDeviceInteral() { [session stopRunning]; [session removeOutput: imageOutput]; [session release]; [input release]; [device release]; [fileOutput release]; [imageOutput release]; [callbackDelegate release]; } void resetFile() { [session removeOutput: fileOutput]; [fileOutput release]; fileOutput = [[QTCaptureMovieFileOutput alloc] init]; [fileOutput setDelegate: callbackDelegate]; } void addListener (CameraImageListener* listenerToAdd) { const ScopedLock sl (listenerLock); if (listeners.size() == 0) [session addOutput: imageOutput error: nil]; listeners.addIfNotAlreadyThere (listenerToAdd); } void removeListener (CameraImageListener* listenerToRemove) { const ScopedLock sl (listenerLock); listeners.removeValue (listenerToRemove); if (listeners.size() == 0) [session removeOutput: imageOutput]; } static void drawNSBitmapIntoJuceImage (Image& dest, NSBitmapImageRep* source) { const ScopedAutoReleasePool pool; int lineStride, pixelStride; uint8* pixels = dest.lockPixelDataReadWrite (0, 0, dest.getWidth(), dest.getHeight(), lineStride, pixelStride); NSBitmapImageRep* rep = [[NSBitmapImageRep alloc] initWithBitmapDataPlanes: &pixels pixelsWide: dest.getWidth() pixelsHigh: dest.getHeight() bitsPerSample: 8 samplesPerPixel: pixelStride hasAlpha: dest.hasAlphaChannel() isPlanar: NO colorSpaceName: NSCalibratedRGBColorSpace bitmapFormat: (NSBitmapFormat) 0 bytesPerRow: lineStride bitsPerPixel: pixelStride * 8]; [NSGraphicsContext saveGraphicsState]; [NSGraphicsContext setCurrentContext: [NSGraphicsContext graphicsContextWithBitmapImageRep: rep]]; [source drawAtPoint: NSZeroPoint]; [[NSGraphicsContext currentContext] flushGraphics]; [NSGraphicsContext restoreGraphicsState]; uint8* start = pixels; for (int h = dest.getHeight(); --h >= 0;) { uint8* p = start; start += lineStride; for (int i = dest.getWidth(); --i >= 0;) { #if JUCE_BIG_ENDIAN const uint8 oldp3 = p[3]; const uint8 oldp1 = p[1]; p[3] = p[0]; p[0] = oldp1; p[1] = p[2]; p[2] = oldp3; #else const uint8 oldp0 = p[0]; p[0] = p[2]; p[2] = oldp0; #endif p += pixelStride; } } dest.releasePixelDataReadWrite (pixels); } void callListeners (NSBitmapImageRep* bitmap) { Image image (Image::ARGB, [bitmap size].width, [bitmap size].height, false); drawNSBitmapIntoJuceImage (image, bitmap); const ScopedLock sl (listenerLock); for (int i = listeners.size(); --i >= 0;) { CameraImageListener* l = (CameraImageListener*) listeners[i]; if (l != 0) l->imageReceived (image); } } QTCaptureDevice* device; QTCaptureDeviceInput* input; QTCaptureSession* session; QTCaptureMovieFileOutput* fileOutput; QTCaptureDecompressedVideoOutput* imageOutput; QTCaptureCallbackDelegate* callbackDelegate; String openingError; VoidArray listeners; CriticalSection listenerLock; }; END_JUCE_NAMESPACE @implementation QTCaptureCallbackDelegate - (QTCaptureCallbackDelegate*) initWithOwner: (CameraDevice*) owner_ internalDev: (QTCameraDeviceInteral*) d { [super init]; owner = owner_; internal = d; firstRecordedTime = 0; return self; } - (void) dealloc { delete firstRecordedTime; [super dealloc]; } - (void) captureOutput: (QTCaptureOutput*) captureOutput didOutputVideoFrame: (CVImageBufferRef) videoFrame withSampleBuffer: (QTSampleBuffer*) sampleBuffer fromConnection: (QTCaptureConnection*) connection { const ScopedAutoReleasePool pool; CIImage* image = [CIImage imageWithCVImageBuffer: videoFrame]; NSBitmapImageRep* bitmap = [[[NSBitmapImageRep alloc] initWithCIImage: image] autorelease]; internal->callListeners (bitmap); } - (void) captureOutput: (QTCaptureFileOutput*) captureOutput didOutputSampleBuffer: (QTSampleBuffer*) sampleBuffer fromConnection: (QTCaptureConnection*) connection { if (firstRecordedTime == 0) firstRecordedTime = new Time (Time::getCurrentTime()); } @end BEGIN_JUCE_NAMESPACE class QTCaptureViewerComp : public NSViewComponent { public: QTCaptureViewerComp (CameraDevice* const cameraDevice, QTCameraDeviceInteral* const internal) { const ScopedAutoReleasePool pool; captureView = [[QTCaptureView alloc] init]; [captureView setCaptureSession: internal->session]; setSize (640, 480); // xxx need to somehow get the movie size - how? setView (captureView); } ~QTCaptureViewerComp() { setView (0); [captureView setCaptureSession: nil]; [captureView release]; } QTCaptureView* captureView; }; CameraDevice::CameraDevice (const String& name_, int index) : name (name_) { isRecording = false; QTCameraDeviceInteral* d = new QTCameraDeviceInteral (this, index); internal = d; } CameraDevice::~CameraDevice() { stopRecording(); delete (QTCameraDeviceInteral*) internal; internal = 0; } Component* CameraDevice::createViewerComponent() { return new QTCaptureViewerComp (this, (QTCameraDeviceInteral*) internal); } const String CameraDevice::getFileExtension() { return ".mov"; } void CameraDevice::startRecordingToFile (const File& file) { stopRecording(); QTCameraDeviceInteral* const d = (QTCameraDeviceInteral*) internal; deleteAndZero (d->callbackDelegate->firstRecordedTime); file.deleteFile(); [d->fileOutput recordToOutputFileURL: [NSURL fileURLWithPath: juceStringToNS (file.getFullPathName())]]; [d->session addOutput: d->fileOutput error: nil]; isRecording = true; } const Time CameraDevice::getTimeOfFirstRecordedFrame() const { QTCameraDeviceInteral* const d = (QTCameraDeviceInteral*) internal; if (d->callbackDelegate->firstRecordedTime != 0) return *d->callbackDelegate->firstRecordedTime; return Time(); } void CameraDevice::stopRecording() { if (isRecording) { QTCameraDeviceInteral* const d = (QTCameraDeviceInteral*) internal; d->resetFile(); isRecording = false; } } void CameraDevice::addListener (CameraImageListener* listenerToAdd) { QTCameraDeviceInteral* const d = (QTCameraDeviceInteral*) internal; if (listenerToAdd != 0) d->addListener (listenerToAdd); } void CameraDevice::removeListener (CameraImageListener* listenerToRemove) { QTCameraDeviceInteral* const d = (QTCameraDeviceInteral*) internal; if (listenerToRemove != 0) d->removeListener (listenerToRemove); } const StringArray CameraDevice::getAvailableDevices() { const ScopedAutoReleasePool pool; StringArray results; NSArray* devs = [QTCaptureDevice inputDevicesWithMediaType: QTMediaTypeVideo]; for (int i = 0; i < [devs count]; ++i) { QTCaptureDevice* dev = (QTCaptureDevice*) [devs objectAtIndex: i]; results.add (nsStringToJuce ([dev localizedDisplayName])); } return results; } CameraDevice* CameraDevice::openDevice (int index, int minWidth, int minHeight, int maxWidth, int maxHeight) { CameraDevice* d = new CameraDevice (getAvailableDevices() [index], index); if (((QTCameraDeviceInteral*) (d->internal))->openingError.isEmpty()) return d; delete d; return 0; } #endif /********* End of inlined file: juce_mac_CameraDevice.mm *********/ #endif #endif END_JUCE_NAMESPACE /********* End of inlined file: juce_mac_NativeCode.mm *********/ #endif