| @@ -0,0 +1,67 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef BOX2D_H | |||
| #define BOX2D_H | |||
| /** | |||
| \mainpage Box2D API Documentation | |||
| \section intro_sec Getting Started | |||
| For documentation please see http://box2d.org/documentation.html | |||
| For discussion please visit http://box2d.org/forum | |||
| */ | |||
| // These include files constitute the main Box2D API | |||
| #include "Common/b2Settings.h" | |||
| #include "Common/b2Draw.h" | |||
| #include "Common/b2Timer.h" | |||
| #include "Collision/Shapes/b2CircleShape.h" | |||
| #include "Collision/Shapes/b2EdgeShape.h" | |||
| #include "Collision/Shapes/b2ChainShape.h" | |||
| #include "Collision/Shapes/b2PolygonShape.h" | |||
| #include "Collision/b2BroadPhase.h" | |||
| #include "Collision/b2Distance.h" | |||
| #include "Collision/b2DynamicTree.h" | |||
| #include "Collision/b2TimeOfImpact.h" | |||
| #include "Dynamics/b2Body.h" | |||
| #include "Dynamics/b2Fixture.h" | |||
| #include "Dynamics/b2WorldCallbacks.h" | |||
| #include "Dynamics/b2TimeStep.h" | |||
| #include "Dynamics/b2World.h" | |||
| #include "Dynamics/Contacts/b2Contact.h" | |||
| #include "Dynamics/Joints/b2DistanceJoint.h" | |||
| #include "Dynamics/Joints/b2FrictionJoint.h" | |||
| #include "Dynamics/Joints/b2GearJoint.h" | |||
| #include "Dynamics/Joints/b2WheelJoint.h" | |||
| #include "Dynamics/Joints/b2MouseJoint.h" | |||
| #include "Dynamics/Joints/b2PrismaticJoint.h" | |||
| #include "Dynamics/Joints/b2PulleyJoint.h" | |||
| #include "Dynamics/Joints/b2RevoluteJoint.h" | |||
| #include "Dynamics/Joints/b2RopeJoint.h" | |||
| #include "Dynamics/Joints/b2WeldJoint.h" | |||
| #endif | |||
| @@ -0,0 +1,171 @@ | |||
| /* | |||
| * Copyright (c) 2006-2010 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2ChainShape.h" | |||
| #include "b2EdgeShape.h" | |||
| #include <new> | |||
| #include <cstring> | |||
| using namespace std; | |||
| b2ChainShape::~b2ChainShape() | |||
| { | |||
| b2Free(m_vertices); | |||
| m_vertices = NULL; | |||
| m_count = 0; | |||
| } | |||
| void b2ChainShape::CreateLoop(const b2Vec2* vertices, int32 count) | |||
| { | |||
| b2Assert(m_vertices == NULL && m_count == 0); | |||
| b2Assert(count >= 3); | |||
| m_count = count + 1; | |||
| m_vertices = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2)); | |||
| memcpy(m_vertices, vertices, count * sizeof(b2Vec2)); | |||
| m_vertices[count] = m_vertices[0]; | |||
| m_prevVertex = m_vertices[m_count - 2]; | |||
| m_nextVertex = m_vertices[1]; | |||
| m_hasPrevVertex = true; | |||
| m_hasNextVertex = true; | |||
| } | |||
| void b2ChainShape::CreateChain(const b2Vec2* vertices, int32 count) | |||
| { | |||
| b2Assert(m_vertices == NULL && m_count == 0); | |||
| b2Assert(count >= 2); | |||
| m_count = count; | |||
| m_vertices = (b2Vec2*)b2Alloc(count * sizeof(b2Vec2)); | |||
| memcpy(m_vertices, vertices, m_count * sizeof(b2Vec2)); | |||
| m_hasPrevVertex = false; | |||
| m_hasNextVertex = false; | |||
| } | |||
| void b2ChainShape::SetPrevVertex(const b2Vec2& prevVertex) | |||
| { | |||
| m_prevVertex = prevVertex; | |||
| m_hasPrevVertex = true; | |||
| } | |||
| void b2ChainShape::SetNextVertex(const b2Vec2& nextVertex) | |||
| { | |||
| m_nextVertex = nextVertex; | |||
| m_hasNextVertex = true; | |||
| } | |||
| b2Shape* b2ChainShape::Clone(b2BlockAllocator* allocator) const | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2ChainShape)); | |||
| b2ChainShape* clone = new (mem) b2ChainShape; | |||
| clone->CreateChain(m_vertices, m_count); | |||
| clone->m_prevVertex = m_prevVertex; | |||
| clone->m_nextVertex = m_nextVertex; | |||
| clone->m_hasPrevVertex = m_hasPrevVertex; | |||
| clone->m_hasNextVertex = m_hasNextVertex; | |||
| return clone; | |||
| } | |||
| int32 b2ChainShape::GetChildCount() const | |||
| { | |||
| // edge count = vertex count - 1 | |||
| return m_count - 1; | |||
| } | |||
| void b2ChainShape::GetChildEdge(b2EdgeShape* edge, int32 index) const | |||
| { | |||
| b2Assert(0 <= index && index < m_count - 1); | |||
| edge->m_type = b2Shape::e_edge; | |||
| edge->m_radius = m_radius; | |||
| edge->m_vertex1 = m_vertices[index + 0]; | |||
| edge->m_vertex2 = m_vertices[index + 1]; | |||
| if (index > 0) | |||
| { | |||
| edge->m_vertex0 = m_vertices[index - 1]; | |||
| edge->m_hasVertex0 = true; | |||
| } | |||
| else | |||
| { | |||
| edge->m_vertex0 = m_prevVertex; | |||
| edge->m_hasVertex0 = m_hasPrevVertex; | |||
| } | |||
| if (index < m_count - 2) | |||
| { | |||
| edge->m_vertex3 = m_vertices[index + 2]; | |||
| edge->m_hasVertex3 = true; | |||
| } | |||
| else | |||
| { | |||
| edge->m_vertex3 = m_nextVertex; | |||
| edge->m_hasVertex3 = m_hasNextVertex; | |||
| } | |||
| } | |||
| bool b2ChainShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const | |||
| { | |||
| B2_NOT_USED(xf); | |||
| B2_NOT_USED(p); | |||
| return false; | |||
| } | |||
| bool b2ChainShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, | |||
| const b2Transform& xf, int32 childIndex) const | |||
| { | |||
| b2Assert(childIndex < m_count); | |||
| b2EdgeShape edgeShape; | |||
| int32 i1 = childIndex; | |||
| int32 i2 = childIndex + 1; | |||
| if (i2 == m_count) | |||
| { | |||
| i2 = 0; | |||
| } | |||
| edgeShape.m_vertex1 = m_vertices[i1]; | |||
| edgeShape.m_vertex2 = m_vertices[i2]; | |||
| return edgeShape.RayCast(output, input, xf, 0); | |||
| } | |||
| void b2ChainShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const | |||
| { | |||
| b2Assert(childIndex < m_count); | |||
| int32 i1 = childIndex; | |||
| int32 i2 = childIndex + 1; | |||
| if (i2 == m_count) | |||
| { | |||
| i2 = 0; | |||
| } | |||
| b2Vec2 v1 = b2Mul(xf, m_vertices[i1]); | |||
| b2Vec2 v2 = b2Mul(xf, m_vertices[i2]); | |||
| aabb->lowerBound = b2Min(v1, v2); | |||
| aabb->upperBound = b2Max(v1, v2); | |||
| } | |||
| void b2ChainShape::ComputeMass(b2MassData* massData, float32 density) const | |||
| { | |||
| B2_NOT_USED(density); | |||
| massData->mass = 0.0f; | |||
| massData->center.SetZero(); | |||
| massData->I = 0.0f; | |||
| } | |||
| @@ -0,0 +1,102 @@ | |||
| /* | |||
| * Copyright (c) 2006-2010 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_CHAIN_SHAPE_H | |||
| #define B2_CHAIN_SHAPE_H | |||
| #include "b2Shape.h" | |||
| class b2EdgeShape; | |||
| /// A chain shape is a free form sequence of line segments. | |||
| /// The chain has two-sided collision, so you can use inside and outside collision. | |||
| /// Therefore, you may use any winding order. | |||
| /// Since there may be many vertices, they are allocated using b2Alloc. | |||
| /// Connectivity information is used to create smooth collisions. | |||
| /// WARNING: The chain will not collide properly if there are self-intersections. | |||
| class b2ChainShape : public b2Shape | |||
| { | |||
| public: | |||
| b2ChainShape(); | |||
| /// The destructor frees the vertices using b2Free. | |||
| ~b2ChainShape(); | |||
| /// Create a loop. This automatically adjusts connectivity. | |||
| /// @param vertices an array of vertices, these are copied | |||
| /// @param count the vertex count | |||
| void CreateLoop(const b2Vec2* vertices, int32 count); | |||
| /// Create a chain with isolated end vertices. | |||
| /// @param vertices an array of vertices, these are copied | |||
| /// @param count the vertex count | |||
| void CreateChain(const b2Vec2* vertices, int32 count); | |||
| /// Establish connectivity to a vertex that precedes the first vertex. | |||
| /// Don't call this for loops. | |||
| void SetPrevVertex(const b2Vec2& prevVertex); | |||
| /// Establish connectivity to a vertex that follows the last vertex. | |||
| /// Don't call this for loops. | |||
| void SetNextVertex(const b2Vec2& nextVertex); | |||
| /// Implement b2Shape. Vertices are cloned using b2Alloc. | |||
| b2Shape* Clone(b2BlockAllocator* allocator) const; | |||
| /// @see b2Shape::GetChildCount | |||
| int32 GetChildCount() const; | |||
| /// Get a child edge. | |||
| void GetChildEdge(b2EdgeShape* edge, int32 index) const; | |||
| /// This always return false. | |||
| /// @see b2Shape::TestPoint | |||
| bool TestPoint(const b2Transform& transform, const b2Vec2& p) const; | |||
| /// Implement b2Shape. | |||
| bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input, | |||
| const b2Transform& transform, int32 childIndex) const; | |||
| /// @see b2Shape::ComputeAABB | |||
| void ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const; | |||
| /// Chains have zero mass. | |||
| /// @see b2Shape::ComputeMass | |||
| void ComputeMass(b2MassData* massData, float32 density) const; | |||
| /// The vertices. Owned by this class. | |||
| b2Vec2* m_vertices; | |||
| /// The vertex count. | |||
| int32 m_count; | |||
| b2Vec2 m_prevVertex, m_nextVertex; | |||
| bool m_hasPrevVertex, m_hasNextVertex; | |||
| }; | |||
| inline b2ChainShape::b2ChainShape() | |||
| { | |||
| m_type = e_chain; | |||
| m_radius = b2_polygonRadius; | |||
| m_vertices = NULL; | |||
| m_count = 0; | |||
| m_hasPrevVertex = 0; | |||
| m_hasNextVertex = 0; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,100 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2CircleShape.h" | |||
| #include <new> | |||
| using namespace std; | |||
| b2Shape* b2CircleShape::Clone(b2BlockAllocator* allocator) const | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2CircleShape)); | |||
| b2CircleShape* clone = new (mem) b2CircleShape; | |||
| *clone = *this; | |||
| return clone; | |||
| } | |||
| int32 b2CircleShape::GetChildCount() const | |||
| { | |||
| return 1; | |||
| } | |||
| bool b2CircleShape::TestPoint(const b2Transform& transform, const b2Vec2& p) const | |||
| { | |||
| b2Vec2 center = transform.p + b2Mul(transform.q, m_p); | |||
| b2Vec2 d = p - center; | |||
| return b2Dot(d, d) <= m_radius * m_radius; | |||
| } | |||
| // Collision Detection in Interactive 3D Environments by Gino van den Bergen | |||
| // From Section 3.1.2 | |||
| // x = s + a * r | |||
| // norm(x) = radius | |||
| bool b2CircleShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, | |||
| const b2Transform& transform, int32 childIndex) const | |||
| { | |||
| B2_NOT_USED(childIndex); | |||
| b2Vec2 position = transform.p + b2Mul(transform.q, m_p); | |||
| b2Vec2 s = input.p1 - position; | |||
| float32 b = b2Dot(s, s) - m_radius * m_radius; | |||
| // Solve quadratic equation. | |||
| b2Vec2 r = input.p2 - input.p1; | |||
| float32 c = b2Dot(s, r); | |||
| float32 rr = b2Dot(r, r); | |||
| float32 sigma = c * c - rr * b; | |||
| // Check for negative discriminant and short segment. | |||
| if (sigma < 0.0f || rr < b2_epsilon) | |||
| { | |||
| return false; | |||
| } | |||
| // Find the point of intersection of the line with the circle. | |||
| float32 a = -(c + b2Sqrt(sigma)); | |||
| // Is the intersection point on the segment? | |||
| if (0.0f <= a && a <= input.maxFraction * rr) | |||
| { | |||
| a /= rr; | |||
| output->fraction = a; | |||
| output->normal = s + a * r; | |||
| output->normal.Normalize(); | |||
| return true; | |||
| } | |||
| return false; | |||
| } | |||
| void b2CircleShape::ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const | |||
| { | |||
| B2_NOT_USED(childIndex); | |||
| b2Vec2 p = transform.p + b2Mul(transform.q, m_p); | |||
| aabb->lowerBound.Set(p.x - m_radius, p.y - m_radius); | |||
| aabb->upperBound.Set(p.x + m_radius, p.y + m_radius); | |||
| } | |||
| void b2CircleShape::ComputeMass(b2MassData* massData, float32 density) const | |||
| { | |||
| massData->mass = density * b2_pi * m_radius * m_radius; | |||
| massData->center = m_p; | |||
| // inertia about the local origin | |||
| massData->I = massData->mass * (0.5f * m_radius * m_radius + b2Dot(m_p, m_p)); | |||
| } | |||
| @@ -0,0 +1,91 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_CIRCLE_SHAPE_H | |||
| #define B2_CIRCLE_SHAPE_H | |||
| #include "b2Shape.h" | |||
| /// A circle shape. | |||
| class b2CircleShape : public b2Shape | |||
| { | |||
| public: | |||
| b2CircleShape(); | |||
| /// Implement b2Shape. | |||
| b2Shape* Clone(b2BlockAllocator* allocator) const; | |||
| /// @see b2Shape::GetChildCount | |||
| int32 GetChildCount() const; | |||
| /// Implement b2Shape. | |||
| bool TestPoint(const b2Transform& transform, const b2Vec2& p) const; | |||
| /// Implement b2Shape. | |||
| bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input, | |||
| const b2Transform& transform, int32 childIndex) const; | |||
| /// @see b2Shape::ComputeAABB | |||
| void ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const; | |||
| /// @see b2Shape::ComputeMass | |||
| void ComputeMass(b2MassData* massData, float32 density) const; | |||
| /// Get the supporting vertex index in the given direction. | |||
| int32 GetSupport(const b2Vec2& d) const; | |||
| /// Get the supporting vertex in the given direction. | |||
| const b2Vec2& GetSupportVertex(const b2Vec2& d) const; | |||
| /// Get the vertex count. | |||
| int32 GetVertexCount() const { return 1; } | |||
| /// Get a vertex by index. Used by b2Distance. | |||
| const b2Vec2& GetVertex(int32 index) const; | |||
| /// Position | |||
| b2Vec2 m_p; | |||
| }; | |||
| inline b2CircleShape::b2CircleShape() | |||
| { | |||
| m_type = e_circle; | |||
| m_radius = 0.0f; | |||
| m_p.SetZero(); | |||
| } | |||
| inline int32 b2CircleShape::GetSupport(const b2Vec2 &d) const | |||
| { | |||
| B2_NOT_USED(d); | |||
| return 0; | |||
| } | |||
| inline const b2Vec2& b2CircleShape::GetSupportVertex(const b2Vec2 &d) const | |||
| { | |||
| B2_NOT_USED(d); | |||
| return m_p; | |||
| } | |||
| inline const b2Vec2& b2CircleShape::GetVertex(int32 index) const | |||
| { | |||
| B2_NOT_USED(index); | |||
| b2Assert(index == 0); | |||
| return m_p; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,139 @@ | |||
| /* | |||
| * Copyright (c) 2006-2010 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2EdgeShape.h" | |||
| #include <new> | |||
| using namespace std; | |||
| void b2EdgeShape::Set(const b2Vec2& v1, const b2Vec2& v2) | |||
| { | |||
| m_vertex1 = v1; | |||
| m_vertex2 = v2; | |||
| m_hasVertex0 = false; | |||
| m_hasVertex3 = false; | |||
| } | |||
| b2Shape* b2EdgeShape::Clone(b2BlockAllocator* allocator) const | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2EdgeShape)); | |||
| b2EdgeShape* clone = new (mem) b2EdgeShape; | |||
| *clone = *this; | |||
| return clone; | |||
| } | |||
| int32 b2EdgeShape::GetChildCount() const | |||
| { | |||
| return 1; | |||
| } | |||
| bool b2EdgeShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const | |||
| { | |||
| B2_NOT_USED(xf); | |||
| B2_NOT_USED(p); | |||
| return false; | |||
| } | |||
| // p = p1 + t * d | |||
| // v = v1 + s * e | |||
| // p1 + t * d = v1 + s * e | |||
| // s * e - t * d = p1 - v1 | |||
| bool b2EdgeShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, | |||
| const b2Transform& xf, int32 childIndex) const | |||
| { | |||
| B2_NOT_USED(childIndex); | |||
| // Put the ray into the edge's frame of reference. | |||
| b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p); | |||
| b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p); | |||
| b2Vec2 d = p2 - p1; | |||
| b2Vec2 v1 = m_vertex1; | |||
| b2Vec2 v2 = m_vertex2; | |||
| b2Vec2 e = v2 - v1; | |||
| b2Vec2 normal(e.y, -e.x); | |||
| normal.Normalize(); | |||
| // q = p1 + t * d | |||
| // dot(normal, q - v1) = 0 | |||
| // dot(normal, p1 - v1) + t * dot(normal, d) = 0 | |||
| float32 numerator = b2Dot(normal, v1 - p1); | |||
| float32 denominator = b2Dot(normal, d); | |||
| if (denominator == 0.0f) | |||
| { | |||
| return false; | |||
| } | |||
| float32 t = numerator / denominator; | |||
| if (t < 0.0f || input.maxFraction < t) | |||
| { | |||
| return false; | |||
| } | |||
| b2Vec2 q = p1 + t * d; | |||
| // q = v1 + s * r | |||
| // s = dot(q - v1, r) / dot(r, r) | |||
| b2Vec2 r = v2 - v1; | |||
| float32 rr = b2Dot(r, r); | |||
| if (rr == 0.0f) | |||
| { | |||
| return false; | |||
| } | |||
| float32 s = b2Dot(q - v1, r) / rr; | |||
| if (s < 0.0f || 1.0f < s) | |||
| { | |||
| return false; | |||
| } | |||
| output->fraction = t; | |||
| if (numerator > 0.0f) | |||
| { | |||
| output->normal = -normal; | |||
| } | |||
| else | |||
| { | |||
| output->normal = normal; | |||
| } | |||
| return true; | |||
| } | |||
| void b2EdgeShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const | |||
| { | |||
| B2_NOT_USED(childIndex); | |||
| b2Vec2 v1 = b2Mul(xf, m_vertex1); | |||
| b2Vec2 v2 = b2Mul(xf, m_vertex2); | |||
| b2Vec2 lower = b2Min(v1, v2); | |||
| b2Vec2 upper = b2Max(v1, v2); | |||
| b2Vec2 r(m_radius, m_radius); | |||
| aabb->lowerBound = lower - r; | |||
| aabb->upperBound = upper + r; | |||
| } | |||
| void b2EdgeShape::ComputeMass(b2MassData* massData, float32 density) const | |||
| { | |||
| B2_NOT_USED(density); | |||
| massData->mass = 0.0f; | |||
| massData->center = 0.5f * (m_vertex1 + m_vertex2); | |||
| massData->I = 0.0f; | |||
| } | |||
| @@ -0,0 +1,74 @@ | |||
| /* | |||
| * Copyright (c) 2006-2010 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_EDGE_SHAPE_H | |||
| #define B2_EDGE_SHAPE_H | |||
| #include "b2Shape.h" | |||
| /// A line segment (edge) shape. These can be connected in chains or loops | |||
| /// to other edge shapes. The connectivity information is used to ensure | |||
| /// correct contact normals. | |||
| class b2EdgeShape : public b2Shape | |||
| { | |||
| public: | |||
| b2EdgeShape(); | |||
| /// Set this as an isolated edge. | |||
| void Set(const b2Vec2& v1, const b2Vec2& v2); | |||
| /// Implement b2Shape. | |||
| b2Shape* Clone(b2BlockAllocator* allocator) const; | |||
| /// @see b2Shape::GetChildCount | |||
| int32 GetChildCount() const; | |||
| /// @see b2Shape::TestPoint | |||
| bool TestPoint(const b2Transform& transform, const b2Vec2& p) const; | |||
| /// Implement b2Shape. | |||
| bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input, | |||
| const b2Transform& transform, int32 childIndex) const; | |||
| /// @see b2Shape::ComputeAABB | |||
| void ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const; | |||
| /// @see b2Shape::ComputeMass | |||
| void ComputeMass(b2MassData* massData, float32 density) const; | |||
| /// These are the edge vertices | |||
| b2Vec2 m_vertex1, m_vertex2; | |||
| /// Optional adjacent vertices. These are used for smooth collision. | |||
| b2Vec2 m_vertex0, m_vertex3; | |||
| bool m_hasVertex0, m_hasVertex3; | |||
| }; | |||
| inline b2EdgeShape::b2EdgeShape() | |||
| { | |||
| m_type = e_edge; | |||
| m_radius = b2_polygonRadius; | |||
| m_vertex0.x = 0.0f; | |||
| m_vertex0.y = 0.0f; | |||
| m_vertex3.x = 0.0f; | |||
| m_vertex3.y = 0.0f; | |||
| m_hasVertex0 = false; | |||
| m_hasVertex3 = false; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,361 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2PolygonShape.h" | |||
| #include <new> | |||
| b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2PolygonShape)); | |||
| b2PolygonShape* clone = new (mem) b2PolygonShape; | |||
| *clone = *this; | |||
| return clone; | |||
| } | |||
| void b2PolygonShape::SetAsBox(float32 hx, float32 hy) | |||
| { | |||
| m_vertexCount = 4; | |||
| m_vertices[0].Set(-hx, -hy); | |||
| m_vertices[1].Set( hx, -hy); | |||
| m_vertices[2].Set( hx, hy); | |||
| m_vertices[3].Set(-hx, hy); | |||
| m_normals[0].Set(0.0f, -1.0f); | |||
| m_normals[1].Set(1.0f, 0.0f); | |||
| m_normals[2].Set(0.0f, 1.0f); | |||
| m_normals[3].Set(-1.0f, 0.0f); | |||
| m_centroid.SetZero(); | |||
| } | |||
| void b2PolygonShape::SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle) | |||
| { | |||
| m_vertexCount = 4; | |||
| m_vertices[0].Set(-hx, -hy); | |||
| m_vertices[1].Set( hx, -hy); | |||
| m_vertices[2].Set( hx, hy); | |||
| m_vertices[3].Set(-hx, hy); | |||
| m_normals[0].Set(0.0f, -1.0f); | |||
| m_normals[1].Set(1.0f, 0.0f); | |||
| m_normals[2].Set(0.0f, 1.0f); | |||
| m_normals[3].Set(-1.0f, 0.0f); | |||
| m_centroid = center; | |||
| b2Transform xf; | |||
| xf.p = center; | |||
| xf.q.Set(angle); | |||
| // Transform vertices and normals. | |||
| for (int32 i = 0; i < m_vertexCount; ++i) | |||
| { | |||
| m_vertices[i] = b2Mul(xf, m_vertices[i]); | |||
| m_normals[i] = b2Mul(xf.q, m_normals[i]); | |||
| } | |||
| } | |||
| int32 b2PolygonShape::GetChildCount() const | |||
| { | |||
| return 1; | |||
| } | |||
| static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count) | |||
| { | |||
| b2Assert(count >= 3); | |||
| b2Vec2 c; c.Set(0.0f, 0.0f); | |||
| float32 area = 0.0f; | |||
| // pRef is the reference point for forming triangles. | |||
| // It's location doesn't change the result (except for rounding error). | |||
| b2Vec2 pRef(0.0f, 0.0f); | |||
| #if 0 | |||
| // This code would put the reference point inside the polygon. | |||
| for (int32 i = 0; i < count; ++i) | |||
| { | |||
| pRef += vs[i]; | |||
| } | |||
| pRef *= 1.0f / count; | |||
| #endif | |||
| const float32 inv3 = 1.0f / 3.0f; | |||
| for (int32 i = 0; i < count; ++i) | |||
| { | |||
| // Triangle vertices. | |||
| b2Vec2 p1 = pRef; | |||
| b2Vec2 p2 = vs[i]; | |||
| b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0]; | |||
| b2Vec2 e1 = p2 - p1; | |||
| b2Vec2 e2 = p3 - p1; | |||
| float32 D = b2Cross(e1, e2); | |||
| float32 triangleArea = 0.5f * D; | |||
| area += triangleArea; | |||
| // Area weighted centroid | |||
| c += triangleArea * inv3 * (p1 + p2 + p3); | |||
| } | |||
| // Centroid | |||
| b2Assert(area > b2_epsilon); | |||
| c *= 1.0f / area; | |||
| return c; | |||
| } | |||
| void b2PolygonShape::Set(const b2Vec2* vertices, int32 count) | |||
| { | |||
| b2Assert(3 <= count && count <= b2_maxPolygonVertices); | |||
| m_vertexCount = count; | |||
| // Copy vertices. | |||
| for (int32 i = 0; i < m_vertexCount; ++i) | |||
| { | |||
| m_vertices[i] = vertices[i]; | |||
| } | |||
| // Compute normals. Ensure the edges have non-zero length. | |||
| for (int32 i = 0; i < m_vertexCount; ++i) | |||
| { | |||
| int32 i1 = i; | |||
| int32 i2 = i + 1 < m_vertexCount ? i + 1 : 0; | |||
| b2Vec2 edge = m_vertices[i2] - m_vertices[i1]; | |||
| b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon); | |||
| m_normals[i] = b2Cross(edge, 1.0f); | |||
| m_normals[i].Normalize(); | |||
| } | |||
| #ifdef _DEBUG | |||
| // Ensure the polygon is convex and the interior | |||
| // is to the left of each edge. | |||
| for (int32 i = 0; i < m_vertexCount; ++i) | |||
| { | |||
| int32 i1 = i; | |||
| int32 i2 = i + 1 < m_vertexCount ? i + 1 : 0; | |||
| b2Vec2 edge = m_vertices[i2] - m_vertices[i1]; | |||
| for (int32 j = 0; j < m_vertexCount; ++j) | |||
| { | |||
| // Don't check vertices on the current edge. | |||
| if (j == i1 || j == i2) | |||
| { | |||
| continue; | |||
| } | |||
| b2Vec2 r = m_vertices[j] - m_vertices[i1]; | |||
| // If this crashes, your polygon is non-convex, has colinear edges, | |||
| // or the winding order is wrong. | |||
| float32 s = b2Cross(edge, r); | |||
| b2Assert(s > 0.0f && "ERROR: Please ensure your polygon is convex and has a CCW winding order"); | |||
| } | |||
| } | |||
| #endif | |||
| // Compute the polygon centroid. | |||
| m_centroid = ComputeCentroid(m_vertices, m_vertexCount); | |||
| } | |||
| bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const | |||
| { | |||
| b2Vec2 pLocal = b2MulT(xf.q, p - xf.p); | |||
| for (int32 i = 0; i < m_vertexCount; ++i) | |||
| { | |||
| float32 dot = b2Dot(m_normals[i], pLocal - m_vertices[i]); | |||
| if (dot > 0.0f) | |||
| { | |||
| return false; | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, | |||
| const b2Transform& xf, int32 childIndex) const | |||
| { | |||
| B2_NOT_USED(childIndex); | |||
| // Put the ray into the polygon's frame of reference. | |||
| b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p); | |||
| b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p); | |||
| b2Vec2 d = p2 - p1; | |||
| float32 lower = 0.0f, upper = input.maxFraction; | |||
| int32 index = -1; | |||
| for (int32 i = 0; i < m_vertexCount; ++i) | |||
| { | |||
| // p = p1 + a * d | |||
| // dot(normal, p - v) = 0 | |||
| // dot(normal, p1 - v) + a * dot(normal, d) = 0 | |||
| float32 numerator = b2Dot(m_normals[i], m_vertices[i] - p1); | |||
| float32 denominator = b2Dot(m_normals[i], d); | |||
| if (denominator == 0.0f) | |||
| { | |||
| if (numerator < 0.0f) | |||
| { | |||
| return false; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| // Note: we want this predicate without division: | |||
| // lower < numerator / denominator, where denominator < 0 | |||
| // Since denominator < 0, we have to flip the inequality: | |||
| // lower < numerator / denominator <==> denominator * lower > numerator. | |||
| if (denominator < 0.0f && numerator < lower * denominator) | |||
| { | |||
| // Increase lower. | |||
| // The segment enters this half-space. | |||
| lower = numerator / denominator; | |||
| index = i; | |||
| } | |||
| else if (denominator > 0.0f && numerator < upper * denominator) | |||
| { | |||
| // Decrease upper. | |||
| // The segment exits this half-space. | |||
| upper = numerator / denominator; | |||
| } | |||
| } | |||
| // The use of epsilon here causes the assert on lower to trip | |||
| // in some cases. Apparently the use of epsilon was to make edge | |||
| // shapes work, but now those are handled separately. | |||
| //if (upper < lower - b2_epsilon) | |||
| if (upper < lower) | |||
| { | |||
| return false; | |||
| } | |||
| } | |||
| b2Assert(0.0f <= lower && lower <= input.maxFraction); | |||
| if (index >= 0) | |||
| { | |||
| output->fraction = lower; | |||
| output->normal = b2Mul(xf.q, m_normals[index]); | |||
| return true; | |||
| } | |||
| return false; | |||
| } | |||
| void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const | |||
| { | |||
| B2_NOT_USED(childIndex); | |||
| b2Vec2 lower = b2Mul(xf, m_vertices[0]); | |||
| b2Vec2 upper = lower; | |||
| for (int32 i = 1; i < m_vertexCount; ++i) | |||
| { | |||
| b2Vec2 v = b2Mul(xf, m_vertices[i]); | |||
| lower = b2Min(lower, v); | |||
| upper = b2Max(upper, v); | |||
| } | |||
| b2Vec2 r(m_radius, m_radius); | |||
| aabb->lowerBound = lower - r; | |||
| aabb->upperBound = upper + r; | |||
| } | |||
| void b2PolygonShape::ComputeMass(b2MassData* massData, float32 density) const | |||
| { | |||
| // Polygon mass, centroid, and inertia. | |||
| // Let rho be the polygon density in mass per unit area. | |||
| // Then: | |||
| // mass = rho * int(dA) | |||
| // centroid.x = (1/mass) * rho * int(x * dA) | |||
| // centroid.y = (1/mass) * rho * int(y * dA) | |||
| // I = rho * int((x*x + y*y) * dA) | |||
| // | |||
| // We can compute these integrals by summing all the integrals | |||
| // for each triangle of the polygon. To evaluate the integral | |||
| // for a single triangle, we make a change of variables to | |||
| // the (u,v) coordinates of the triangle: | |||
| // x = x0 + e1x * u + e2x * v | |||
| // y = y0 + e1y * u + e2y * v | |||
| // where 0 <= u && 0 <= v && u + v <= 1. | |||
| // | |||
| // We integrate u from [0,1-v] and then v from [0,1]. | |||
| // We also need to use the Jacobian of the transformation: | |||
| // D = cross(e1, e2) | |||
| // | |||
| // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3) | |||
| // | |||
| // The rest of the derivation is handled by computer algebra. | |||
| b2Assert(m_vertexCount >= 3); | |||
| b2Vec2 center; center.Set(0.0f, 0.0f); | |||
| float32 area = 0.0f; | |||
| float32 I = 0.0f; | |||
| // s is the reference point for forming triangles. | |||
| // It's location doesn't change the result (except for rounding error). | |||
| b2Vec2 s(0.0f, 0.0f); | |||
| // This code would put the reference point inside the polygon. | |||
| for (int32 i = 0; i < m_vertexCount; ++i) | |||
| { | |||
| s += m_vertices[i]; | |||
| } | |||
| s *= 1.0f / m_vertexCount; | |||
| const float32 k_inv3 = 1.0f / 3.0f; | |||
| for (int32 i = 0; i < m_vertexCount; ++i) | |||
| { | |||
| // Triangle vertices. | |||
| b2Vec2 e1 = m_vertices[i] - s; | |||
| b2Vec2 e2 = i + 1 < m_vertexCount ? m_vertices[i+1] - s : m_vertices[0] - s; | |||
| float32 D = b2Cross(e1, e2); | |||
| float32 triangleArea = 0.5f * D; | |||
| area += triangleArea; | |||
| // Area weighted centroid | |||
| center += triangleArea * k_inv3 * (e1 + e2); | |||
| float32 ex1 = e1.x, ey1 = e1.y; | |||
| float32 ex2 = e2.x, ey2 = e2.y; | |||
| float32 intx2 = ex1*ex1 + ex2*ex1 + ex2*ex2; | |||
| float32 inty2 = ey1*ey1 + ey2*ey1 + ey2*ey2; | |||
| I += (0.25f * k_inv3 * D) * (intx2 + inty2); | |||
| } | |||
| // Total mass | |||
| massData->mass = density * area; | |||
| // Center of mass | |||
| b2Assert(area > b2_epsilon); | |||
| center *= 1.0f / area; | |||
| massData->center = center + s; | |||
| // Inertia tensor relative to the local origin (point s). | |||
| massData->I = density * I; | |||
| // Shift to center of mass then to original body origin. | |||
| massData->I += massData->mass * (b2Dot(massData->center, massData->center) - b2Dot(center, center)); | |||
| } | |||
| @@ -0,0 +1,95 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_POLYGON_SHAPE_H | |||
| #define B2_POLYGON_SHAPE_H | |||
| #include "../Shapes/b2Shape.h" | |||
| /// A convex polygon. It is assumed that the interior of the polygon is to | |||
| /// the left of each edge. | |||
| /// Polygons have a maximum number of vertices equal to b2_maxPolygonVertices. | |||
| /// In most cases you should not need many vertices for a convex polygon. | |||
| class b2PolygonShape : public b2Shape | |||
| { | |||
| public: | |||
| b2PolygonShape(); | |||
| /// Implement b2Shape. | |||
| b2Shape* Clone(b2BlockAllocator* allocator) const; | |||
| /// @see b2Shape::GetChildCount | |||
| int32 GetChildCount() const; | |||
| /// Copy vertices. This assumes the vertices define a convex polygon. | |||
| /// It is assumed that the exterior is the the right of each edge. | |||
| /// The count must be in the range [3, b2_maxPolygonVertices]. | |||
| void Set(const b2Vec2* vertices, int32 vertexCount); | |||
| /// Build vertices to represent an axis-aligned box. | |||
| /// @param hx the half-width. | |||
| /// @param hy the half-height. | |||
| void SetAsBox(float32 hx, float32 hy); | |||
| /// Build vertices to represent an oriented box. | |||
| /// @param hx the half-width. | |||
| /// @param hy the half-height. | |||
| /// @param center the center of the box in local coordinates. | |||
| /// @param angle the rotation of the box in local coordinates. | |||
| void SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle); | |||
| /// @see b2Shape::TestPoint | |||
| bool TestPoint(const b2Transform& transform, const b2Vec2& p) const; | |||
| /// Implement b2Shape. | |||
| bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input, | |||
| const b2Transform& transform, int32 childIndex) const; | |||
| /// @see b2Shape::ComputeAABB | |||
| void ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const; | |||
| /// @see b2Shape::ComputeMass | |||
| void ComputeMass(b2MassData* massData, float32 density) const; | |||
| /// Get the vertex count. | |||
| int32 GetVertexCount() const { return m_vertexCount; } | |||
| /// Get a vertex by index. | |||
| const b2Vec2& GetVertex(int32 index) const; | |||
| b2Vec2 m_centroid; | |||
| b2Vec2 m_vertices[b2_maxPolygonVertices]; | |||
| b2Vec2 m_normals[b2_maxPolygonVertices]; | |||
| int32 m_vertexCount; | |||
| }; | |||
| inline b2PolygonShape::b2PolygonShape() | |||
| { | |||
| m_type = e_polygon; | |||
| m_radius = b2_polygonRadius; | |||
| m_vertexCount = 0; | |||
| m_centroid.SetZero(); | |||
| } | |||
| inline const b2Vec2& b2PolygonShape::GetVertex(int32 index) const | |||
| { | |||
| b2Assert(0 <= index && index < m_vertexCount); | |||
| return m_vertices[index]; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,101 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_SHAPE_H | |||
| #define B2_SHAPE_H | |||
| #include "../../Common/b2BlockAllocator.h" | |||
| #include "../../Common/b2Math.h" | |||
| #include "../b2Collision.h" | |||
| /// This holds the mass data computed for a shape. | |||
| struct b2MassData | |||
| { | |||
| /// The mass of the shape, usually in kilograms. | |||
| float32 mass; | |||
| /// The position of the shape's centroid relative to the shape's origin. | |||
| b2Vec2 center; | |||
| /// The rotational inertia of the shape about the local origin. | |||
| float32 I; | |||
| }; | |||
| /// A shape is used for collision detection. You can create a shape however you like. | |||
| /// Shapes used for simulation in b2World are created automatically when a b2Fixture | |||
| /// is created. Shapes may encapsulate a one or more child shapes. | |||
| class b2Shape | |||
| { | |||
| public: | |||
| enum Type | |||
| { | |||
| e_circle = 0, | |||
| e_edge = 1, | |||
| e_polygon = 2, | |||
| e_chain = 3, | |||
| e_typeCount = 4 | |||
| }; | |||
| virtual ~b2Shape() {} | |||
| /// Clone the concrete shape using the provided allocator. | |||
| virtual b2Shape* Clone(b2BlockAllocator* allocator) const = 0; | |||
| /// Get the type of this shape. You can use this to down cast to the concrete shape. | |||
| /// @return the shape type. | |||
| Type GetType() const; | |||
| /// Get the number of child primitives. | |||
| virtual int32 GetChildCount() const = 0; | |||
| /// Test a point for containment in this shape. This only works for convex shapes. | |||
| /// @param xf the shape world transform. | |||
| /// @param p a point in world coordinates. | |||
| virtual bool TestPoint(const b2Transform& xf, const b2Vec2& p) const = 0; | |||
| /// Cast a ray against a child shape. | |||
| /// @param output the ray-cast results. | |||
| /// @param input the ray-cast input parameters. | |||
| /// @param transform the transform to be applied to the shape. | |||
| /// @param childIndex the child shape index | |||
| virtual bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input, | |||
| const b2Transform& transform, int32 childIndex) const = 0; | |||
| /// Given a transform, compute the associated axis aligned bounding box for a child shape. | |||
| /// @param aabb returns the axis aligned box. | |||
| /// @param xf the world transform of the shape. | |||
| /// @param childIndex the child shape | |||
| virtual void ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const = 0; | |||
| /// Compute the mass properties of this shape using its dimensions and density. | |||
| /// The inertia tensor is computed about the local origin. | |||
| /// @param massData returns the mass data for this shape. | |||
| /// @param density the density in kilograms per meter squared. | |||
| virtual void ComputeMass(b2MassData* massData, float32 density) const = 0; | |||
| Type m_type; | |||
| float32 m_radius; | |||
| }; | |||
| inline b2Shape::Type b2Shape::GetType() const | |||
| { | |||
| return m_type; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,122 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2BroadPhase.h" | |||
| #include <cstring> | |||
| using namespace std; | |||
| b2BroadPhase::b2BroadPhase() | |||
| { | |||
| m_proxyCount = 0; | |||
| m_pairCapacity = 16; | |||
| m_pairCount = 0; | |||
| m_pairBuffer = (b2Pair*)b2Alloc(m_pairCapacity * sizeof(b2Pair)); | |||
| m_moveCapacity = 16; | |||
| m_moveCount = 0; | |||
| m_moveBuffer = (int32*)b2Alloc(m_moveCapacity * sizeof(int32)); | |||
| } | |||
| b2BroadPhase::~b2BroadPhase() | |||
| { | |||
| b2Free(m_moveBuffer); | |||
| b2Free(m_pairBuffer); | |||
| } | |||
| int32 b2BroadPhase::CreateProxy(const b2AABB& aabb, void* userData) | |||
| { | |||
| int32 proxyId = m_tree.CreateProxy(aabb, userData); | |||
| ++m_proxyCount; | |||
| BufferMove(proxyId); | |||
| return proxyId; | |||
| } | |||
| void b2BroadPhase::DestroyProxy(int32 proxyId) | |||
| { | |||
| UnBufferMove(proxyId); | |||
| --m_proxyCount; | |||
| m_tree.DestroyProxy(proxyId); | |||
| } | |||
| void b2BroadPhase::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement) | |||
| { | |||
| bool buffer = m_tree.MoveProxy(proxyId, aabb, displacement); | |||
| if (buffer) | |||
| { | |||
| BufferMove(proxyId); | |||
| } | |||
| } | |||
| void b2BroadPhase::TouchProxy(int32 proxyId) | |||
| { | |||
| BufferMove(proxyId); | |||
| } | |||
| void b2BroadPhase::BufferMove(int32 proxyId) | |||
| { | |||
| if (m_moveCount == m_moveCapacity) | |||
| { | |||
| int32* oldBuffer = m_moveBuffer; | |||
| m_moveCapacity *= 2; | |||
| m_moveBuffer = (int32*)b2Alloc(m_moveCapacity * sizeof(int32)); | |||
| memcpy(m_moveBuffer, oldBuffer, m_moveCount * sizeof(int32)); | |||
| b2Free(oldBuffer); | |||
| } | |||
| m_moveBuffer[m_moveCount] = proxyId; | |||
| ++m_moveCount; | |||
| } | |||
| void b2BroadPhase::UnBufferMove(int32 proxyId) | |||
| { | |||
| for (int32 i = 0; i < m_moveCount; ++i) | |||
| { | |||
| if (m_moveBuffer[i] == proxyId) | |||
| { | |||
| m_moveBuffer[i] = e_nullProxy; | |||
| return; | |||
| } | |||
| } | |||
| } | |||
| // This is called from b2DynamicTree::Query when we are gathering pairs. | |||
| bool b2BroadPhase::QueryCallback(int32 proxyId) | |||
| { | |||
| // A proxy cannot form a pair with itself. | |||
| if (proxyId == m_queryProxyId) | |||
| { | |||
| return true; | |||
| } | |||
| // Grow the pair buffer as needed. | |||
| if (m_pairCount == m_pairCapacity) | |||
| { | |||
| b2Pair* oldBuffer = m_pairBuffer; | |||
| m_pairCapacity *= 2; | |||
| m_pairBuffer = (b2Pair*)b2Alloc(m_pairCapacity * sizeof(b2Pair)); | |||
| memcpy(m_pairBuffer, oldBuffer, m_pairCount * sizeof(b2Pair)); | |||
| b2Free(oldBuffer); | |||
| } | |||
| m_pairBuffer[m_pairCount].proxyIdA = b2Min(proxyId, m_queryProxyId); | |||
| m_pairBuffer[m_pairCount].proxyIdB = b2Max(proxyId, m_queryProxyId); | |||
| ++m_pairCount; | |||
| return true; | |||
| } | |||
| @@ -0,0 +1,248 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_BROAD_PHASE_H | |||
| #define B2_BROAD_PHASE_H | |||
| #include "../Common/b2Settings.h" | |||
| #include "b2Collision.h" | |||
| #include "b2DynamicTree.h" | |||
| #include <algorithm> | |||
| struct b2Pair | |||
| { | |||
| int32 proxyIdA; | |||
| int32 proxyIdB; | |||
| int32 next; | |||
| }; | |||
| /// The broad-phase is used for computing pairs and performing volume queries and ray casts. | |||
| /// This broad-phase does not persist pairs. Instead, this reports potentially new pairs. | |||
| /// It is up to the client to consume the new pairs and to track subsequent overlap. | |||
| class b2BroadPhase | |||
| { | |||
| public: | |||
| enum | |||
| { | |||
| e_nullProxy = -1 | |||
| }; | |||
| b2BroadPhase(); | |||
| ~b2BroadPhase(); | |||
| /// Create a proxy with an initial AABB. Pairs are not reported until | |||
| /// UpdatePairs is called. | |||
| int32 CreateProxy(const b2AABB& aabb, void* userData); | |||
| /// Destroy a proxy. It is up to the client to remove any pairs. | |||
| void DestroyProxy(int32 proxyId); | |||
| /// Call MoveProxy as many times as you like, then when you are done | |||
| /// call UpdatePairs to finalized the proxy pairs (for your time step). | |||
| void MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement); | |||
| /// Call to trigger a re-processing of it's pairs on the next call to UpdatePairs. | |||
| void TouchProxy(int32 proxyId); | |||
| /// Get the fat AABB for a proxy. | |||
| const b2AABB& GetFatAABB(int32 proxyId) const; | |||
| /// Get user data from a proxy. Returns NULL if the id is invalid. | |||
| void* GetUserData(int32 proxyId) const; | |||
| /// Test overlap of fat AABBs. | |||
| bool TestOverlap(int32 proxyIdA, int32 proxyIdB) const; | |||
| /// Get the number of proxies. | |||
| int32 GetProxyCount() const; | |||
| /// Update the pairs. This results in pair callbacks. This can only add pairs. | |||
| template <typename T> | |||
| void UpdatePairs(T* callback); | |||
| /// Query an AABB for overlapping proxies. The callback class | |||
| /// is called for each proxy that overlaps the supplied AABB. | |||
| template <typename T> | |||
| void Query(T* callback, const b2AABB& aabb) const; | |||
| /// Ray-cast against the proxies in the tree. This relies on the callback | |||
| /// to perform a exact ray-cast in the case were the proxy contains a shape. | |||
| /// The callback also performs the any collision filtering. This has performance | |||
| /// roughly equal to k * log(n), where k is the number of collisions and n is the | |||
| /// number of proxies in the tree. | |||
| /// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1). | |||
| /// @param callback a callback class that is called for each proxy that is hit by the ray. | |||
| template <typename T> | |||
| void RayCast(T* callback, const b2RayCastInput& input) const; | |||
| /// Get the height of the embedded tree. | |||
| int32 GetTreeHeight() const; | |||
| /// Get the balance of the embedded tree. | |||
| int32 GetTreeBalance() const; | |||
| /// Get the quality metric of the embedded tree. | |||
| float32 GetTreeQuality() const; | |||
| private: | |||
| friend class b2DynamicTree; | |||
| void BufferMove(int32 proxyId); | |||
| void UnBufferMove(int32 proxyId); | |||
| bool QueryCallback(int32 proxyId); | |||
| b2DynamicTree m_tree; | |||
| int32 m_proxyCount; | |||
| int32* m_moveBuffer; | |||
| int32 m_moveCapacity; | |||
| int32 m_moveCount; | |||
| b2Pair* m_pairBuffer; | |||
| int32 m_pairCapacity; | |||
| int32 m_pairCount; | |||
| int32 m_queryProxyId; | |||
| }; | |||
| /// This is used to sort pairs. | |||
| inline bool b2PairLessThan(const b2Pair& pair1, const b2Pair& pair2) | |||
| { | |||
| if (pair1.proxyIdA < pair2.proxyIdA) | |||
| { | |||
| return true; | |||
| } | |||
| if (pair1.proxyIdA == pair2.proxyIdA) | |||
| { | |||
| return pair1.proxyIdB < pair2.proxyIdB; | |||
| } | |||
| return false; | |||
| } | |||
| inline void* b2BroadPhase::GetUserData(int32 proxyId) const | |||
| { | |||
| return m_tree.GetUserData(proxyId); | |||
| } | |||
| inline bool b2BroadPhase::TestOverlap(int32 proxyIdA, int32 proxyIdB) const | |||
| { | |||
| const b2AABB& aabbA = m_tree.GetFatAABB(proxyIdA); | |||
| const b2AABB& aabbB = m_tree.GetFatAABB(proxyIdB); | |||
| return b2TestOverlap(aabbA, aabbB); | |||
| } | |||
| inline const b2AABB& b2BroadPhase::GetFatAABB(int32 proxyId) const | |||
| { | |||
| return m_tree.GetFatAABB(proxyId); | |||
| } | |||
| inline int32 b2BroadPhase::GetProxyCount() const | |||
| { | |||
| return m_proxyCount; | |||
| } | |||
| inline int32 b2BroadPhase::GetTreeHeight() const | |||
| { | |||
| return m_tree.GetHeight(); | |||
| } | |||
| inline int32 b2BroadPhase::GetTreeBalance() const | |||
| { | |||
| return m_tree.GetMaxBalance(); | |||
| } | |||
| inline float32 b2BroadPhase::GetTreeQuality() const | |||
| { | |||
| return m_tree.GetAreaRatio(); | |||
| } | |||
| template <typename T> | |||
| void b2BroadPhase::UpdatePairs(T* callback) | |||
| { | |||
| // Reset pair buffer | |||
| m_pairCount = 0; | |||
| // Perform tree queries for all moving proxies. | |||
| for (int32 i = 0; i < m_moveCount; ++i) | |||
| { | |||
| m_queryProxyId = m_moveBuffer[i]; | |||
| if (m_queryProxyId == e_nullProxy) | |||
| { | |||
| continue; | |||
| } | |||
| // We have to query the tree with the fat AABB so that | |||
| // we don't fail to create a pair that may touch later. | |||
| const b2AABB& fatAABB = m_tree.GetFatAABB(m_queryProxyId); | |||
| // Query tree, create pairs and add them pair buffer. | |||
| m_tree.Query(this, fatAABB); | |||
| } | |||
| // Reset move buffer | |||
| m_moveCount = 0; | |||
| // Sort the pair buffer to expose duplicates. | |||
| std::sort(m_pairBuffer, m_pairBuffer + m_pairCount, b2PairLessThan); | |||
| // Send the pairs back to the client. | |||
| int32 i = 0; | |||
| while (i < m_pairCount) | |||
| { | |||
| b2Pair* primaryPair = m_pairBuffer + i; | |||
| void* userDataA = m_tree.GetUserData(primaryPair->proxyIdA); | |||
| void* userDataB = m_tree.GetUserData(primaryPair->proxyIdB); | |||
| callback->AddPair(userDataA, userDataB); | |||
| ++i; | |||
| // Skip any duplicate pairs. | |||
| while (i < m_pairCount) | |||
| { | |||
| b2Pair* pair = m_pairBuffer + i; | |||
| if (pair->proxyIdA != primaryPair->proxyIdA || pair->proxyIdB != primaryPair->proxyIdB) | |||
| { | |||
| break; | |||
| } | |||
| ++i; | |||
| } | |||
| } | |||
| // Try to keep the tree balanced. | |||
| //m_tree.Rebalance(4); | |||
| } | |||
| template <typename T> | |||
| inline void b2BroadPhase::Query(T* callback, const b2AABB& aabb) const | |||
| { | |||
| m_tree.Query(callback, aabb); | |||
| } | |||
| template <typename T> | |||
| inline void b2BroadPhase::RayCast(T* callback, const b2RayCastInput& input) const | |||
| { | |||
| m_tree.RayCast(callback, input); | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,154 @@ | |||
| /* | |||
| * Copyright (c) 2007-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Collision.h" | |||
| #include "Shapes/b2CircleShape.h" | |||
| #include "Shapes/b2PolygonShape.h" | |||
| void b2CollideCircles( | |||
| b2Manifold* manifold, | |||
| const b2CircleShape* circleA, const b2Transform& xfA, | |||
| const b2CircleShape* circleB, const b2Transform& xfB) | |||
| { | |||
| manifold->pointCount = 0; | |||
| b2Vec2 pA = b2Mul(xfA, circleA->m_p); | |||
| b2Vec2 pB = b2Mul(xfB, circleB->m_p); | |||
| b2Vec2 d = pB - pA; | |||
| float32 distSqr = b2Dot(d, d); | |||
| float32 rA = circleA->m_radius, rB = circleB->m_radius; | |||
| float32 radius = rA + rB; | |||
| if (distSqr > radius * radius) | |||
| { | |||
| return; | |||
| } | |||
| manifold->type = b2Manifold::e_circles; | |||
| manifold->localPoint = circleA->m_p; | |||
| manifold->localNormal.SetZero(); | |||
| manifold->pointCount = 1; | |||
| manifold->points[0].localPoint = circleB->m_p; | |||
| manifold->points[0].id.key = 0; | |||
| } | |||
| void b2CollidePolygonAndCircle( | |||
| b2Manifold* manifold, | |||
| const b2PolygonShape* polygonA, const b2Transform& xfA, | |||
| const b2CircleShape* circleB, const b2Transform& xfB) | |||
| { | |||
| manifold->pointCount = 0; | |||
| // Compute circle position in the frame of the polygon. | |||
| b2Vec2 c = b2Mul(xfB, circleB->m_p); | |||
| b2Vec2 cLocal = b2MulT(xfA, c); | |||
| // Find the min separating edge. | |||
| int32 normalIndex = 0; | |||
| float32 separation = -b2_maxFloat; | |||
| float32 radius = polygonA->m_radius + circleB->m_radius; | |||
| int32 vertexCount = polygonA->m_vertexCount; | |||
| const b2Vec2* vertices = polygonA->m_vertices; | |||
| const b2Vec2* normals = polygonA->m_normals; | |||
| for (int32 i = 0; i < vertexCount; ++i) | |||
| { | |||
| float32 s = b2Dot(normals[i], cLocal - vertices[i]); | |||
| if (s > radius) | |||
| { | |||
| // Early out. | |||
| return; | |||
| } | |||
| if (s > separation) | |||
| { | |||
| separation = s; | |||
| normalIndex = i; | |||
| } | |||
| } | |||
| // Vertices that subtend the incident face. | |||
| int32 vertIndex1 = normalIndex; | |||
| int32 vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0; | |||
| b2Vec2 v1 = vertices[vertIndex1]; | |||
| b2Vec2 v2 = vertices[vertIndex2]; | |||
| // If the center is inside the polygon ... | |||
| if (separation < b2_epsilon) | |||
| { | |||
| manifold->pointCount = 1; | |||
| manifold->type = b2Manifold::e_faceA; | |||
| manifold->localNormal = normals[normalIndex]; | |||
| manifold->localPoint = 0.5f * (v1 + v2); | |||
| manifold->points[0].localPoint = circleB->m_p; | |||
| manifold->points[0].id.key = 0; | |||
| return; | |||
| } | |||
| // Compute barycentric coordinates | |||
| float32 u1 = b2Dot(cLocal - v1, v2 - v1); | |||
| float32 u2 = b2Dot(cLocal - v2, v1 - v2); | |||
| if (u1 <= 0.0f) | |||
| { | |||
| if (b2DistanceSquared(cLocal, v1) > radius * radius) | |||
| { | |||
| return; | |||
| } | |||
| manifold->pointCount = 1; | |||
| manifold->type = b2Manifold::e_faceA; | |||
| manifold->localNormal = cLocal - v1; | |||
| manifold->localNormal.Normalize(); | |||
| manifold->localPoint = v1; | |||
| manifold->points[0].localPoint = circleB->m_p; | |||
| manifold->points[0].id.key = 0; | |||
| } | |||
| else if (u2 <= 0.0f) | |||
| { | |||
| if (b2DistanceSquared(cLocal, v2) > radius * radius) | |||
| { | |||
| return; | |||
| } | |||
| manifold->pointCount = 1; | |||
| manifold->type = b2Manifold::e_faceA; | |||
| manifold->localNormal = cLocal - v2; | |||
| manifold->localNormal.Normalize(); | |||
| manifold->localPoint = v2; | |||
| manifold->points[0].localPoint = circleB->m_p; | |||
| manifold->points[0].id.key = 0; | |||
| } | |||
| else | |||
| { | |||
| b2Vec2 faceCenter = 0.5f * (v1 + v2); | |||
| float32 separation = b2Dot(cLocal - faceCenter, normals[vertIndex1]); | |||
| if (separation > radius) | |||
| { | |||
| return; | |||
| } | |||
| manifold->pointCount = 1; | |||
| manifold->type = b2Manifold::e_faceA; | |||
| manifold->localNormal = normals[vertIndex1]; | |||
| manifold->localPoint = faceCenter; | |||
| manifold->points[0].localPoint = circleB->m_p; | |||
| manifold->points[0].id.key = 0; | |||
| } | |||
| } | |||
| @@ -0,0 +1,698 @@ | |||
| /* | |||
| * Copyright (c) 2007-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Collision.h" | |||
| #include "Shapes/b2CircleShape.h" | |||
| #include "Shapes/b2EdgeShape.h" | |||
| #include "Shapes/b2PolygonShape.h" | |||
| // Compute contact points for edge versus circle. | |||
| // This accounts for edge connectivity. | |||
| void b2CollideEdgeAndCircle(b2Manifold* manifold, | |||
| const b2EdgeShape* edgeA, const b2Transform& xfA, | |||
| const b2CircleShape* circleB, const b2Transform& xfB) | |||
| { | |||
| manifold->pointCount = 0; | |||
| // Compute circle in frame of edge | |||
| b2Vec2 Q = b2MulT(xfA, b2Mul(xfB, circleB->m_p)); | |||
| b2Vec2 A = edgeA->m_vertex1, B = edgeA->m_vertex2; | |||
| b2Vec2 e = B - A; | |||
| // Barycentric coordinates | |||
| float32 u = b2Dot(e, B - Q); | |||
| float32 v = b2Dot(e, Q - A); | |||
| float32 radius = edgeA->m_radius + circleB->m_radius; | |||
| b2ContactFeature cf; | |||
| cf.indexB = 0; | |||
| cf.typeB = b2ContactFeature::e_vertex; | |||
| // Region A | |||
| if (v <= 0.0f) | |||
| { | |||
| b2Vec2 P = A; | |||
| b2Vec2 d = Q - P; | |||
| float32 dd = b2Dot(d, d); | |||
| if (dd > radius * radius) | |||
| { | |||
| return; | |||
| } | |||
| // Is there an edge connected to A? | |||
| if (edgeA->m_hasVertex0) | |||
| { | |||
| b2Vec2 A1 = edgeA->m_vertex0; | |||
| b2Vec2 B1 = A; | |||
| b2Vec2 e1 = B1 - A1; | |||
| float32 u1 = b2Dot(e1, B1 - Q); | |||
| // Is the circle in Region AB of the previous edge? | |||
| if (u1 > 0.0f) | |||
| { | |||
| return; | |||
| } | |||
| } | |||
| cf.indexA = 0; | |||
| cf.typeA = b2ContactFeature::e_vertex; | |||
| manifold->pointCount = 1; | |||
| manifold->type = b2Manifold::e_circles; | |||
| manifold->localNormal.SetZero(); | |||
| manifold->localPoint = P; | |||
| manifold->points[0].id.key = 0; | |||
| manifold->points[0].id.cf = cf; | |||
| manifold->points[0].localPoint = circleB->m_p; | |||
| return; | |||
| } | |||
| // Region B | |||
| if (u <= 0.0f) | |||
| { | |||
| b2Vec2 P = B; | |||
| b2Vec2 d = Q - P; | |||
| float32 dd = b2Dot(d, d); | |||
| if (dd > radius * radius) | |||
| { | |||
| return; | |||
| } | |||
| // Is there an edge connected to B? | |||
| if (edgeA->m_hasVertex3) | |||
| { | |||
| b2Vec2 B2 = edgeA->m_vertex3; | |||
| b2Vec2 A2 = B; | |||
| b2Vec2 e2 = B2 - A2; | |||
| float32 v2 = b2Dot(e2, Q - A2); | |||
| // Is the circle in Region AB of the next edge? | |||
| if (v2 > 0.0f) | |||
| { | |||
| return; | |||
| } | |||
| } | |||
| cf.indexA = 1; | |||
| cf.typeA = b2ContactFeature::e_vertex; | |||
| manifold->pointCount = 1; | |||
| manifold->type = b2Manifold::e_circles; | |||
| manifold->localNormal.SetZero(); | |||
| manifold->localPoint = P; | |||
| manifold->points[0].id.key = 0; | |||
| manifold->points[0].id.cf = cf; | |||
| manifold->points[0].localPoint = circleB->m_p; | |||
| return; | |||
| } | |||
| // Region AB | |||
| float32 den = b2Dot(e, e); | |||
| b2Assert(den > 0.0f); | |||
| b2Vec2 P = (1.0f / den) * (u * A + v * B); | |||
| b2Vec2 d = Q - P; | |||
| float32 dd = b2Dot(d, d); | |||
| if (dd > radius * radius) | |||
| { | |||
| return; | |||
| } | |||
| b2Vec2 n(-e.y, e.x); | |||
| if (b2Dot(n, Q - A) < 0.0f) | |||
| { | |||
| n.Set(-n.x, -n.y); | |||
| } | |||
| n.Normalize(); | |||
| cf.indexA = 0; | |||
| cf.typeA = b2ContactFeature::e_face; | |||
| manifold->pointCount = 1; | |||
| manifold->type = b2Manifold::e_faceA; | |||
| manifold->localNormal = n; | |||
| manifold->localPoint = A; | |||
| manifold->points[0].id.key = 0; | |||
| manifold->points[0].id.cf = cf; | |||
| manifold->points[0].localPoint = circleB->m_p; | |||
| } | |||
| // This structure is used to keep track of the best separating axis. | |||
| struct b2EPAxis | |||
| { | |||
| enum Type | |||
| { | |||
| e_unknown, | |||
| e_edgeA, | |||
| e_edgeB | |||
| }; | |||
| Type type; | |||
| int32 index; | |||
| float32 separation; | |||
| }; | |||
| // This holds polygon B expressed in frame A. | |||
| struct b2TempPolygon | |||
| { | |||
| b2Vec2 vertices[b2_maxPolygonVertices]; | |||
| b2Vec2 normals[b2_maxPolygonVertices]; | |||
| int32 count; | |||
| }; | |||
| // Reference face used for clipping | |||
| struct b2ReferenceFace | |||
| { | |||
| int32 i1, i2; | |||
| b2Vec2 v1, v2; | |||
| b2Vec2 normal; | |||
| b2Vec2 sideNormal1; | |||
| float32 sideOffset1; | |||
| b2Vec2 sideNormal2; | |||
| float32 sideOffset2; | |||
| }; | |||
| // This class collides and edge and a polygon, taking into account edge adjacency. | |||
| struct b2EPCollider | |||
| { | |||
| void Collide(b2Manifold* manifold, const b2EdgeShape* edgeA, const b2Transform& xfA, | |||
| const b2PolygonShape* polygonB, const b2Transform& xfB); | |||
| b2EPAxis ComputeEdgeSeparation(); | |||
| b2EPAxis ComputePolygonSeparation(); | |||
| enum VertexType | |||
| { | |||
| e_isolated, | |||
| e_concave, | |||
| e_convex | |||
| }; | |||
| b2TempPolygon m_polygonB; | |||
| b2Transform m_xf; | |||
| b2Vec2 m_centroidB; | |||
| b2Vec2 m_v0, m_v1, m_v2, m_v3; | |||
| b2Vec2 m_normal0, m_normal1, m_normal2; | |||
| b2Vec2 m_normal; | |||
| VertexType m_type1, m_type2; | |||
| b2Vec2 m_lowerLimit, m_upperLimit; | |||
| float32 m_radius; | |||
| bool m_front; | |||
| }; | |||
| // Algorithm: | |||
| // 1. Classify v1 and v2 | |||
| // 2. Classify polygon centroid as front or back | |||
| // 3. Flip normal if necessary | |||
| // 4. Initialize normal range to [-pi, pi] about face normal | |||
| // 5. Adjust normal range according to adjacent edges | |||
| // 6. Visit each separating axes, only accept axes within the range | |||
| // 7. Return if _any_ axis indicates separation | |||
| // 8. Clip | |||
| void b2EPCollider::Collide(b2Manifold* manifold, const b2EdgeShape* edgeA, const b2Transform& xfA, | |||
| const b2PolygonShape* polygonB, const b2Transform& xfB) | |||
| { | |||
| m_xf = b2MulT(xfA, xfB); | |||
| m_centroidB = b2Mul(m_xf, polygonB->m_centroid); | |||
| m_v0 = edgeA->m_vertex0; | |||
| m_v1 = edgeA->m_vertex1; | |||
| m_v2 = edgeA->m_vertex2; | |||
| m_v3 = edgeA->m_vertex3; | |||
| bool hasVertex0 = edgeA->m_hasVertex0; | |||
| bool hasVertex3 = edgeA->m_hasVertex3; | |||
| b2Vec2 edge1 = m_v2 - m_v1; | |||
| edge1.Normalize(); | |||
| m_normal1.Set(edge1.y, -edge1.x); | |||
| float32 offset1 = b2Dot(m_normal1, m_centroidB - m_v1); | |||
| float32 offset0 = 0.0f, offset2 = 0.0f; | |||
| bool convex1 = false, convex2 = false; | |||
| // Is there a preceding edge? | |||
| if (hasVertex0) | |||
| { | |||
| b2Vec2 edge0 = m_v1 - m_v0; | |||
| edge0.Normalize(); | |||
| m_normal0.Set(edge0.y, -edge0.x); | |||
| convex1 = b2Cross(edge0, edge1) >= 0.0f; | |||
| offset0 = b2Dot(m_normal0, m_centroidB - m_v0); | |||
| } | |||
| // Is there a following edge? | |||
| if (hasVertex3) | |||
| { | |||
| b2Vec2 edge2 = m_v3 - m_v2; | |||
| edge2.Normalize(); | |||
| m_normal2.Set(edge2.y, -edge2.x); | |||
| convex2 = b2Cross(edge1, edge2) > 0.0f; | |||
| offset2 = b2Dot(m_normal2, m_centroidB - m_v2); | |||
| } | |||
| // Determine front or back collision. Determine collision normal limits. | |||
| if (hasVertex0 && hasVertex3) | |||
| { | |||
| if (convex1 && convex2) | |||
| { | |||
| m_front = offset0 >= 0.0f || offset1 >= 0.0f || offset2 >= 0.0f; | |||
| if (m_front) | |||
| { | |||
| m_normal = m_normal1; | |||
| m_lowerLimit = m_normal0; | |||
| m_upperLimit = m_normal2; | |||
| } | |||
| else | |||
| { | |||
| m_normal = -m_normal1; | |||
| m_lowerLimit = -m_normal1; | |||
| m_upperLimit = -m_normal1; | |||
| } | |||
| } | |||
| else if (convex1) | |||
| { | |||
| m_front = offset0 >= 0.0f || (offset1 >= 0.0f && offset2 >= 0.0f); | |||
| if (m_front) | |||
| { | |||
| m_normal = m_normal1; | |||
| m_lowerLimit = m_normal0; | |||
| m_upperLimit = m_normal1; | |||
| } | |||
| else | |||
| { | |||
| m_normal = -m_normal1; | |||
| m_lowerLimit = -m_normal2; | |||
| m_upperLimit = -m_normal1; | |||
| } | |||
| } | |||
| else if (convex2) | |||
| { | |||
| m_front = offset2 >= 0.0f || (offset0 >= 0.0f && offset1 >= 0.0f); | |||
| if (m_front) | |||
| { | |||
| m_normal = m_normal1; | |||
| m_lowerLimit = m_normal1; | |||
| m_upperLimit = m_normal2; | |||
| } | |||
| else | |||
| { | |||
| m_normal = -m_normal1; | |||
| m_lowerLimit = -m_normal1; | |||
| m_upperLimit = -m_normal0; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| m_front = offset0 >= 0.0f && offset1 >= 0.0f && offset2 >= 0.0f; | |||
| if (m_front) | |||
| { | |||
| m_normal = m_normal1; | |||
| m_lowerLimit = m_normal1; | |||
| m_upperLimit = m_normal1; | |||
| } | |||
| else | |||
| { | |||
| m_normal = -m_normal1; | |||
| m_lowerLimit = -m_normal2; | |||
| m_upperLimit = -m_normal0; | |||
| } | |||
| } | |||
| } | |||
| else if (hasVertex0) | |||
| { | |||
| if (convex1) | |||
| { | |||
| m_front = offset0 >= 0.0f || offset1 >= 0.0f; | |||
| if (m_front) | |||
| { | |||
| m_normal = m_normal1; | |||
| m_lowerLimit = m_normal0; | |||
| m_upperLimit = -m_normal1; | |||
| } | |||
| else | |||
| { | |||
| m_normal = -m_normal1; | |||
| m_lowerLimit = m_normal1; | |||
| m_upperLimit = -m_normal1; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| m_front = offset0 >= 0.0f && offset1 >= 0.0f; | |||
| if (m_front) | |||
| { | |||
| m_normal = m_normal1; | |||
| m_lowerLimit = m_normal1; | |||
| m_upperLimit = -m_normal1; | |||
| } | |||
| else | |||
| { | |||
| m_normal = -m_normal1; | |||
| m_lowerLimit = m_normal1; | |||
| m_upperLimit = -m_normal0; | |||
| } | |||
| } | |||
| } | |||
| else if (hasVertex3) | |||
| { | |||
| if (convex2) | |||
| { | |||
| m_front = offset1 >= 0.0f || offset2 >= 0.0f; | |||
| if (m_front) | |||
| { | |||
| m_normal = m_normal1; | |||
| m_lowerLimit = -m_normal1; | |||
| m_upperLimit = m_normal2; | |||
| } | |||
| else | |||
| { | |||
| m_normal = -m_normal1; | |||
| m_lowerLimit = -m_normal1; | |||
| m_upperLimit = m_normal1; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| m_front = offset1 >= 0.0f && offset2 >= 0.0f; | |||
| if (m_front) | |||
| { | |||
| m_normal = m_normal1; | |||
| m_lowerLimit = -m_normal1; | |||
| m_upperLimit = m_normal1; | |||
| } | |||
| else | |||
| { | |||
| m_normal = -m_normal1; | |||
| m_lowerLimit = -m_normal2; | |||
| m_upperLimit = m_normal1; | |||
| } | |||
| } | |||
| } | |||
| else | |||
| { | |||
| m_front = offset1 >= 0.0f; | |||
| if (m_front) | |||
| { | |||
| m_normal = m_normal1; | |||
| m_lowerLimit = -m_normal1; | |||
| m_upperLimit = -m_normal1; | |||
| } | |||
| else | |||
| { | |||
| m_normal = -m_normal1; | |||
| m_lowerLimit = m_normal1; | |||
| m_upperLimit = m_normal1; | |||
| } | |||
| } | |||
| // Get polygonB in frameA | |||
| m_polygonB.count = polygonB->m_vertexCount; | |||
| for (int32 i = 0; i < polygonB->m_vertexCount; ++i) | |||
| { | |||
| m_polygonB.vertices[i] = b2Mul(m_xf, polygonB->m_vertices[i]); | |||
| m_polygonB.normals[i] = b2Mul(m_xf.q, polygonB->m_normals[i]); | |||
| } | |||
| m_radius = 2.0f * b2_polygonRadius; | |||
| manifold->pointCount = 0; | |||
| b2EPAxis edgeAxis = ComputeEdgeSeparation(); | |||
| // If no valid normal can be found than this edge should not collide. | |||
| if (edgeAxis.type == b2EPAxis::e_unknown) | |||
| { | |||
| return; | |||
| } | |||
| if (edgeAxis.separation > m_radius) | |||
| { | |||
| return; | |||
| } | |||
| b2EPAxis polygonAxis = ComputePolygonSeparation(); | |||
| if (polygonAxis.type != b2EPAxis::e_unknown && polygonAxis.separation > m_radius) | |||
| { | |||
| return; | |||
| } | |||
| // Use hysteresis for jitter reduction. | |||
| const float32 k_relativeTol = 0.98f; | |||
| const float32 k_absoluteTol = 0.001f; | |||
| b2EPAxis primaryAxis; | |||
| if (polygonAxis.type == b2EPAxis::e_unknown) | |||
| { | |||
| primaryAxis = edgeAxis; | |||
| } | |||
| else if (polygonAxis.separation > k_relativeTol * edgeAxis.separation + k_absoluteTol) | |||
| { | |||
| primaryAxis = polygonAxis; | |||
| } | |||
| else | |||
| { | |||
| primaryAxis = edgeAxis; | |||
| } | |||
| b2ClipVertex ie[2]; | |||
| b2ReferenceFace rf; | |||
| if (primaryAxis.type == b2EPAxis::e_edgeA) | |||
| { | |||
| manifold->type = b2Manifold::e_faceA; | |||
| // Search for the polygon normal that is most anti-parallel to the edge normal. | |||
| int32 bestIndex = 0; | |||
| float32 bestValue = b2Dot(m_normal, m_polygonB.normals[0]); | |||
| for (int32 i = 1; i < m_polygonB.count; ++i) | |||
| { | |||
| float32 value = b2Dot(m_normal, m_polygonB.normals[i]); | |||
| if (value < bestValue) | |||
| { | |||
| bestValue = value; | |||
| bestIndex = i; | |||
| } | |||
| } | |||
| int32 i1 = bestIndex; | |||
| int32 i2 = i1 + 1 < m_polygonB.count ? i1 + 1 : 0; | |||
| ie[0].v = m_polygonB.vertices[i1]; | |||
| ie[0].id.cf.indexA = 0; | |||
| ie[0].id.cf.indexB = i1; | |||
| ie[0].id.cf.typeA = b2ContactFeature::e_face; | |||
| ie[0].id.cf.typeB = b2ContactFeature::e_vertex; | |||
| ie[1].v = m_polygonB.vertices[i2]; | |||
| ie[1].id.cf.indexA = 0; | |||
| ie[1].id.cf.indexB = i2; | |||
| ie[1].id.cf.typeA = b2ContactFeature::e_face; | |||
| ie[1].id.cf.typeB = b2ContactFeature::e_vertex; | |||
| if (m_front) | |||
| { | |||
| rf.i1 = 0; | |||
| rf.i2 = 1; | |||
| rf.v1 = m_v1; | |||
| rf.v2 = m_v2; | |||
| rf.normal = m_normal1; | |||
| } | |||
| else | |||
| { | |||
| rf.i1 = 1; | |||
| rf.i2 = 0; | |||
| rf.v1 = m_v2; | |||
| rf.v2 = m_v1; | |||
| rf.normal = -m_normal1; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| manifold->type = b2Manifold::e_faceB; | |||
| ie[0].v = m_v1; | |||
| ie[0].id.cf.indexA = 0; | |||
| ie[0].id.cf.indexB = primaryAxis.index; | |||
| ie[0].id.cf.typeA = b2ContactFeature::e_vertex; | |||
| ie[0].id.cf.typeB = b2ContactFeature::e_face; | |||
| ie[1].v = m_v2; | |||
| ie[1].id.cf.indexA = 0; | |||
| ie[1].id.cf.indexB = primaryAxis.index; | |||
| ie[1].id.cf.typeA = b2ContactFeature::e_vertex; | |||
| ie[1].id.cf.typeB = b2ContactFeature::e_face; | |||
| rf.i1 = primaryAxis.index; | |||
| rf.i2 = rf.i1 + 1 < m_polygonB.count ? rf.i1 + 1 : 0; | |||
| rf.v1 = m_polygonB.vertices[rf.i1]; | |||
| rf.v2 = m_polygonB.vertices[rf.i2]; | |||
| rf.normal = m_polygonB.normals[rf.i1]; | |||
| } | |||
| rf.sideNormal1.Set(rf.normal.y, -rf.normal.x); | |||
| rf.sideNormal2 = -rf.sideNormal1; | |||
| rf.sideOffset1 = b2Dot(rf.sideNormal1, rf.v1); | |||
| rf.sideOffset2 = b2Dot(rf.sideNormal2, rf.v2); | |||
| // Clip incident edge against extruded edge1 side edges. | |||
| b2ClipVertex clipPoints1[2]; | |||
| b2ClipVertex clipPoints2[2]; | |||
| int32 np; | |||
| // Clip to box side 1 | |||
| np = b2ClipSegmentToLine(clipPoints1, ie, rf.sideNormal1, rf.sideOffset1, rf.i1); | |||
| if (np < b2_maxManifoldPoints) | |||
| { | |||
| return; | |||
| } | |||
| // Clip to negative box side 1 | |||
| np = b2ClipSegmentToLine(clipPoints2, clipPoints1, rf.sideNormal2, rf.sideOffset2, rf.i2); | |||
| if (np < b2_maxManifoldPoints) | |||
| { | |||
| return; | |||
| } | |||
| // Now clipPoints2 contains the clipped points. | |||
| if (primaryAxis.type == b2EPAxis::e_edgeA) | |||
| { | |||
| manifold->localNormal = rf.normal; | |||
| manifold->localPoint = rf.v1; | |||
| } | |||
| else | |||
| { | |||
| manifold->localNormal = polygonB->m_normals[rf.i1]; | |||
| manifold->localPoint = polygonB->m_vertices[rf.i1]; | |||
| } | |||
| int32 pointCount = 0; | |||
| for (int32 i = 0; i < b2_maxManifoldPoints; ++i) | |||
| { | |||
| float32 separation; | |||
| separation = b2Dot(rf.normal, clipPoints2[i].v - rf.v1); | |||
| if (separation <= m_radius) | |||
| { | |||
| b2ManifoldPoint* cp = manifold->points + pointCount; | |||
| if (primaryAxis.type == b2EPAxis::e_edgeA) | |||
| { | |||
| cp->localPoint = b2MulT(m_xf, clipPoints2[i].v); | |||
| cp->id = clipPoints2[i].id; | |||
| } | |||
| else | |||
| { | |||
| cp->localPoint = clipPoints2[i].v; | |||
| cp->id.cf.typeA = clipPoints2[i].id.cf.typeB; | |||
| cp->id.cf.typeB = clipPoints2[i].id.cf.typeA; | |||
| cp->id.cf.indexA = clipPoints2[i].id.cf.indexB; | |||
| cp->id.cf.indexB = clipPoints2[i].id.cf.indexA; | |||
| } | |||
| ++pointCount; | |||
| } | |||
| } | |||
| manifold->pointCount = pointCount; | |||
| } | |||
| b2EPAxis b2EPCollider::ComputeEdgeSeparation() | |||
| { | |||
| b2EPAxis axis; | |||
| axis.type = b2EPAxis::e_edgeA; | |||
| axis.index = m_front ? 0 : 1; | |||
| axis.separation = FLT_MAX; | |||
| for (int32 i = 0; i < m_polygonB.count; ++i) | |||
| { | |||
| float32 s = b2Dot(m_normal, m_polygonB.vertices[i] - m_v1); | |||
| if (s < axis.separation) | |||
| { | |||
| axis.separation = s; | |||
| } | |||
| } | |||
| return axis; | |||
| } | |||
| b2EPAxis b2EPCollider::ComputePolygonSeparation() | |||
| { | |||
| b2EPAxis axis; | |||
| axis.type = b2EPAxis::e_unknown; | |||
| axis.index = -1; | |||
| axis.separation = -FLT_MAX; | |||
| b2Vec2 perp(-m_normal.y, m_normal.x); | |||
| for (int32 i = 0; i < m_polygonB.count; ++i) | |||
| { | |||
| b2Vec2 n = -m_polygonB.normals[i]; | |||
| float32 s1 = b2Dot(n, m_polygonB.vertices[i] - m_v1); | |||
| float32 s2 = b2Dot(n, m_polygonB.vertices[i] - m_v2); | |||
| float32 s = b2Min(s1, s2); | |||
| if (s > m_radius) | |||
| { | |||
| // No collision | |||
| axis.type = b2EPAxis::e_edgeB; | |||
| axis.index = i; | |||
| axis.separation = s; | |||
| return axis; | |||
| } | |||
| // Adjacency | |||
| if (b2Dot(n, perp) >= 0.0f) | |||
| { | |||
| if (b2Dot(n - m_upperLimit, m_normal) < -b2_angularSlop) | |||
| { | |||
| continue; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| if (b2Dot(n - m_lowerLimit, m_normal) < -b2_angularSlop) | |||
| { | |||
| continue; | |||
| } | |||
| } | |||
| if (s > axis.separation) | |||
| { | |||
| axis.type = b2EPAxis::e_edgeB; | |||
| axis.index = i; | |||
| axis.separation = s; | |||
| } | |||
| } | |||
| return axis; | |||
| } | |||
| void b2CollideEdgeAndPolygon( b2Manifold* manifold, | |||
| const b2EdgeShape* edgeA, const b2Transform& xfA, | |||
| const b2PolygonShape* polygonB, const b2Transform& xfB) | |||
| { | |||
| b2EPCollider collider; | |||
| collider.Collide(manifold, edgeA, xfA, polygonB, xfB); | |||
| } | |||
| @@ -0,0 +1,317 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Collision.h" | |||
| #include "Shapes/b2PolygonShape.h" | |||
| // Find the separation between poly1 and poly2 for a give edge normal on poly1. | |||
| static float32 b2EdgeSeparation(const b2PolygonShape* poly1, const b2Transform& xf1, int32 edge1, | |||
| const b2PolygonShape* poly2, const b2Transform& xf2) | |||
| { | |||
| const b2Vec2* vertices1 = poly1->m_vertices; | |||
| const b2Vec2* normals1 = poly1->m_normals; | |||
| int32 count2 = poly2->m_vertexCount; | |||
| const b2Vec2* vertices2 = poly2->m_vertices; | |||
| b2Assert(0 <= edge1 && edge1 < poly1->m_vertexCount); | |||
| // Convert normal from poly1's frame into poly2's frame. | |||
| b2Vec2 normal1World = b2Mul(xf1.q, normals1[edge1]); | |||
| b2Vec2 normal1 = b2MulT(xf2.q, normal1World); | |||
| // Find support vertex on poly2 for -normal. | |||
| int32 index = 0; | |||
| float32 minDot = b2_maxFloat; | |||
| for (int32 i = 0; i < count2; ++i) | |||
| { | |||
| float32 dot = b2Dot(vertices2[i], normal1); | |||
| if (dot < minDot) | |||
| { | |||
| minDot = dot; | |||
| index = i; | |||
| } | |||
| } | |||
| b2Vec2 v1 = b2Mul(xf1, vertices1[edge1]); | |||
| b2Vec2 v2 = b2Mul(xf2, vertices2[index]); | |||
| float32 separation = b2Dot(v2 - v1, normal1World); | |||
| return separation; | |||
| } | |||
| // Find the max separation between poly1 and poly2 using edge normals from poly1. | |||
| static float32 b2FindMaxSeparation(int32* edgeIndex, | |||
| const b2PolygonShape* poly1, const b2Transform& xf1, | |||
| const b2PolygonShape* poly2, const b2Transform& xf2) | |||
| { | |||
| int32 count1 = poly1->m_vertexCount; | |||
| const b2Vec2* normals1 = poly1->m_normals; | |||
| // Vector pointing from the centroid of poly1 to the centroid of poly2. | |||
| b2Vec2 d = b2Mul(xf2, poly2->m_centroid) - b2Mul(xf1, poly1->m_centroid); | |||
| b2Vec2 dLocal1 = b2MulT(xf1.q, d); | |||
| // Find edge normal on poly1 that has the largest projection onto d. | |||
| int32 edge = 0; | |||
| float32 maxDot = -b2_maxFloat; | |||
| for (int32 i = 0; i < count1; ++i) | |||
| { | |||
| float32 dot = b2Dot(normals1[i], dLocal1); | |||
| if (dot > maxDot) | |||
| { | |||
| maxDot = dot; | |||
| edge = i; | |||
| } | |||
| } | |||
| // Get the separation for the edge normal. | |||
| float32 s = b2EdgeSeparation(poly1, xf1, edge, poly2, xf2); | |||
| // Check the separation for the previous edge normal. | |||
| int32 prevEdge = edge - 1 >= 0 ? edge - 1 : count1 - 1; | |||
| float32 sPrev = b2EdgeSeparation(poly1, xf1, prevEdge, poly2, xf2); | |||
| // Check the separation for the next edge normal. | |||
| int32 nextEdge = edge + 1 < count1 ? edge + 1 : 0; | |||
| float32 sNext = b2EdgeSeparation(poly1, xf1, nextEdge, poly2, xf2); | |||
| // Find the best edge and the search direction. | |||
| int32 bestEdge; | |||
| float32 bestSeparation; | |||
| int32 increment; | |||
| if (sPrev > s && sPrev > sNext) | |||
| { | |||
| increment = -1; | |||
| bestEdge = prevEdge; | |||
| bestSeparation = sPrev; | |||
| } | |||
| else if (sNext > s) | |||
| { | |||
| increment = 1; | |||
| bestEdge = nextEdge; | |||
| bestSeparation = sNext; | |||
| } | |||
| else | |||
| { | |||
| *edgeIndex = edge; | |||
| return s; | |||
| } | |||
| // Perform a local search for the best edge normal. | |||
| for ( ; ; ) | |||
| { | |||
| if (increment == -1) | |||
| edge = bestEdge - 1 >= 0 ? bestEdge - 1 : count1 - 1; | |||
| else | |||
| edge = bestEdge + 1 < count1 ? bestEdge + 1 : 0; | |||
| s = b2EdgeSeparation(poly1, xf1, edge, poly2, xf2); | |||
| if (s > bestSeparation) | |||
| { | |||
| bestEdge = edge; | |||
| bestSeparation = s; | |||
| } | |||
| else | |||
| { | |||
| break; | |||
| } | |||
| } | |||
| *edgeIndex = bestEdge; | |||
| return bestSeparation; | |||
| } | |||
| static void b2FindIncidentEdge(b2ClipVertex c[2], | |||
| const b2PolygonShape* poly1, const b2Transform& xf1, int32 edge1, | |||
| const b2PolygonShape* poly2, const b2Transform& xf2) | |||
| { | |||
| const b2Vec2* normals1 = poly1->m_normals; | |||
| int32 count2 = poly2->m_vertexCount; | |||
| const b2Vec2* vertices2 = poly2->m_vertices; | |||
| const b2Vec2* normals2 = poly2->m_normals; | |||
| b2Assert(0 <= edge1 && edge1 < poly1->m_vertexCount); | |||
| // Get the normal of the reference edge in poly2's frame. | |||
| b2Vec2 normal1 = b2MulT(xf2.q, b2Mul(xf1.q, normals1[edge1])); | |||
| // Find the incident edge on poly2. | |||
| int32 index = 0; | |||
| float32 minDot = b2_maxFloat; | |||
| for (int32 i = 0; i < count2; ++i) | |||
| { | |||
| float32 dot = b2Dot(normal1, normals2[i]); | |||
| if (dot < minDot) | |||
| { | |||
| minDot = dot; | |||
| index = i; | |||
| } | |||
| } | |||
| // Build the clip vertices for the incident edge. | |||
| int32 i1 = index; | |||
| int32 i2 = i1 + 1 < count2 ? i1 + 1 : 0; | |||
| c[0].v = b2Mul(xf2, vertices2[i1]); | |||
| c[0].id.cf.indexA = (uint8)edge1; | |||
| c[0].id.cf.indexB = (uint8)i1; | |||
| c[0].id.cf.typeA = b2ContactFeature::e_face; | |||
| c[0].id.cf.typeB = b2ContactFeature::e_vertex; | |||
| c[1].v = b2Mul(xf2, vertices2[i2]); | |||
| c[1].id.cf.indexA = (uint8)edge1; | |||
| c[1].id.cf.indexB = (uint8)i2; | |||
| c[1].id.cf.typeA = b2ContactFeature::e_face; | |||
| c[1].id.cf.typeB = b2ContactFeature::e_vertex; | |||
| } | |||
| // Find edge normal of max separation on A - return if separating axis is found | |||
| // Find edge normal of max separation on B - return if separation axis is found | |||
| // Choose reference edge as min(minA, minB) | |||
| // Find incident edge | |||
| // Clip | |||
| // The normal points from 1 to 2 | |||
| void b2CollidePolygons(b2Manifold* manifold, | |||
| const b2PolygonShape* polyA, const b2Transform& xfA, | |||
| const b2PolygonShape* polyB, const b2Transform& xfB) | |||
| { | |||
| manifold->pointCount = 0; | |||
| float32 totalRadius = polyA->m_radius + polyB->m_radius; | |||
| int32 edgeA = 0; | |||
| float32 separationA = b2FindMaxSeparation(&edgeA, polyA, xfA, polyB, xfB); | |||
| if (separationA > totalRadius) | |||
| return; | |||
| int32 edgeB = 0; | |||
| float32 separationB = b2FindMaxSeparation(&edgeB, polyB, xfB, polyA, xfA); | |||
| if (separationB > totalRadius) | |||
| return; | |||
| const b2PolygonShape* poly1; // reference polygon | |||
| const b2PolygonShape* poly2; // incident polygon | |||
| b2Transform xf1, xf2; | |||
| int32 edge1; // reference edge | |||
| uint8 flip; | |||
| const float32 k_relativeTol = 0.98f; | |||
| const float32 k_absoluteTol = 0.001f; | |||
| if (separationB > k_relativeTol * separationA + k_absoluteTol) | |||
| { | |||
| poly1 = polyB; | |||
| poly2 = polyA; | |||
| xf1 = xfB; | |||
| xf2 = xfA; | |||
| edge1 = edgeB; | |||
| manifold->type = b2Manifold::e_faceB; | |||
| flip = 1; | |||
| } | |||
| else | |||
| { | |||
| poly1 = polyA; | |||
| poly2 = polyB; | |||
| xf1 = xfA; | |||
| xf2 = xfB; | |||
| edge1 = edgeA; | |||
| manifold->type = b2Manifold::e_faceA; | |||
| flip = 0; | |||
| } | |||
| b2ClipVertex incidentEdge[2]; | |||
| b2FindIncidentEdge(incidentEdge, poly1, xf1, edge1, poly2, xf2); | |||
| int32 count1 = poly1->m_vertexCount; | |||
| const b2Vec2* vertices1 = poly1->m_vertices; | |||
| int32 iv1 = edge1; | |||
| int32 iv2 = edge1 + 1 < count1 ? edge1 + 1 : 0; | |||
| b2Vec2 v11 = vertices1[iv1]; | |||
| b2Vec2 v12 = vertices1[iv2]; | |||
| b2Vec2 localTangent = v12 - v11; | |||
| localTangent.Normalize(); | |||
| b2Vec2 localNormal = b2Cross(localTangent, 1.0f); | |||
| b2Vec2 planePoint = 0.5f * (v11 + v12); | |||
| b2Vec2 tangent = b2Mul(xf1.q, localTangent); | |||
| b2Vec2 normal = b2Cross(tangent, 1.0f); | |||
| v11 = b2Mul(xf1, v11); | |||
| v12 = b2Mul(xf1, v12); | |||
| // Face offset. | |||
| float32 frontOffset = b2Dot(normal, v11); | |||
| // Side offsets, extended by polytope skin thickness. | |||
| float32 sideOffset1 = -b2Dot(tangent, v11) + totalRadius; | |||
| float32 sideOffset2 = b2Dot(tangent, v12) + totalRadius; | |||
| // Clip incident edge against extruded edge1 side edges. | |||
| b2ClipVertex clipPoints1[2]; | |||
| b2ClipVertex clipPoints2[2]; | |||
| int np; | |||
| // Clip to box side 1 | |||
| np = b2ClipSegmentToLine(clipPoints1, incidentEdge, -tangent, sideOffset1, iv1); | |||
| if (np < 2) | |||
| return; | |||
| // Clip to negative box side 1 | |||
| np = b2ClipSegmentToLine(clipPoints2, clipPoints1, tangent, sideOffset2, iv2); | |||
| if (np < 2) | |||
| { | |||
| return; | |||
| } | |||
| // Now clipPoints2 contains the clipped points. | |||
| manifold->localNormal = localNormal; | |||
| manifold->localPoint = planePoint; | |||
| int32 pointCount = 0; | |||
| for (int32 i = 0; i < b2_maxManifoldPoints; ++i) | |||
| { | |||
| float32 separation = b2Dot(normal, clipPoints2[i].v) - frontOffset; | |||
| if (separation <= totalRadius) | |||
| { | |||
| b2ManifoldPoint* cp = manifold->points + pointCount; | |||
| cp->localPoint = b2MulT(xf2, clipPoints2[i].v); | |||
| cp->id = clipPoints2[i].id; | |||
| if (flip) | |||
| { | |||
| // Swap features | |||
| b2ContactFeature cf = cp->id.cf; | |||
| cp->id.cf.indexA = cf.indexB; | |||
| cp->id.cf.indexB = cf.indexA; | |||
| cp->id.cf.typeA = cf.typeB; | |||
| cp->id.cf.typeB = cf.typeA; | |||
| } | |||
| ++pointCount; | |||
| } | |||
| } | |||
| manifold->pointCount = pointCount; | |||
| } | |||
| @@ -0,0 +1,249 @@ | |||
| /* | |||
| * Copyright (c) 2007-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Collision.h" | |||
| #include "b2Distance.h" | |||
| void b2WorldManifold::Initialize(const b2Manifold* manifold, | |||
| const b2Transform& xfA, float32 radiusA, | |||
| const b2Transform& xfB, float32 radiusB) | |||
| { | |||
| if (manifold->pointCount == 0) | |||
| { | |||
| return; | |||
| } | |||
| switch (manifold->type) | |||
| { | |||
| case b2Manifold::e_circles: | |||
| { | |||
| normal.Set(1.0f, 0.0f); | |||
| b2Vec2 pointA = b2Mul(xfA, manifold->localPoint); | |||
| b2Vec2 pointB = b2Mul(xfB, manifold->points[0].localPoint); | |||
| if (b2DistanceSquared(pointA, pointB) > b2_epsilon * b2_epsilon) | |||
| { | |||
| normal = pointB - pointA; | |||
| normal.Normalize(); | |||
| } | |||
| b2Vec2 cA = pointA + radiusA * normal; | |||
| b2Vec2 cB = pointB - radiusB * normal; | |||
| points[0] = 0.5f * (cA + cB); | |||
| } | |||
| break; | |||
| case b2Manifold::e_faceA: | |||
| { | |||
| normal = b2Mul(xfA.q, manifold->localNormal); | |||
| b2Vec2 planePoint = b2Mul(xfA, manifold->localPoint); | |||
| for (int32 i = 0; i < manifold->pointCount; ++i) | |||
| { | |||
| b2Vec2 clipPoint = b2Mul(xfB, manifold->points[i].localPoint); | |||
| b2Vec2 cA = clipPoint + (radiusA - b2Dot(clipPoint - planePoint, normal)) * normal; | |||
| b2Vec2 cB = clipPoint - radiusB * normal; | |||
| points[i] = 0.5f * (cA + cB); | |||
| } | |||
| } | |||
| break; | |||
| case b2Manifold::e_faceB: | |||
| { | |||
| normal = b2Mul(xfB.q, manifold->localNormal); | |||
| b2Vec2 planePoint = b2Mul(xfB, manifold->localPoint); | |||
| for (int32 i = 0; i < manifold->pointCount; ++i) | |||
| { | |||
| b2Vec2 clipPoint = b2Mul(xfA, manifold->points[i].localPoint); | |||
| b2Vec2 cB = clipPoint + (radiusB - b2Dot(clipPoint - planePoint, normal)) * normal; | |||
| b2Vec2 cA = clipPoint - radiusA * normal; | |||
| points[i] = 0.5f * (cA + cB); | |||
| } | |||
| // Ensure normal points from A to B. | |||
| normal = -normal; | |||
| } | |||
| break; | |||
| } | |||
| } | |||
| void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints], | |||
| const b2Manifold* manifold1, const b2Manifold* manifold2) | |||
| { | |||
| for (int32 i = 0; i < b2_maxManifoldPoints; ++i) | |||
| { | |||
| state1[i] = b2_nullState; | |||
| state2[i] = b2_nullState; | |||
| } | |||
| // Detect persists and removes. | |||
| for (int32 i = 0; i < manifold1->pointCount; ++i) | |||
| { | |||
| b2ContactID id = manifold1->points[i].id; | |||
| state1[i] = b2_removeState; | |||
| for (int32 j = 0; j < manifold2->pointCount; ++j) | |||
| { | |||
| if (manifold2->points[j].id.key == id.key) | |||
| { | |||
| state1[i] = b2_persistState; | |||
| break; | |||
| } | |||
| } | |||
| } | |||
| // Detect persists and adds. | |||
| for (int32 i = 0; i < manifold2->pointCount; ++i) | |||
| { | |||
| b2ContactID id = manifold2->points[i].id; | |||
| state2[i] = b2_addState; | |||
| for (int32 j = 0; j < manifold1->pointCount; ++j) | |||
| { | |||
| if (manifold1->points[j].id.key == id.key) | |||
| { | |||
| state2[i] = b2_persistState; | |||
| break; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| // From Real-time Collision Detection, p179. | |||
| bool b2AABB::RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const | |||
| { | |||
| float32 tmin = -b2_maxFloat; | |||
| float32 tmax = b2_maxFloat; | |||
| b2Vec2 p = input.p1; | |||
| b2Vec2 d = input.p2 - input.p1; | |||
| b2Vec2 absD = b2Abs(d); | |||
| b2Vec2 normal; | |||
| for (int32 i = 0; i < 2; ++i) | |||
| { | |||
| if (absD(i) < b2_epsilon) | |||
| { | |||
| // Parallel. | |||
| if (p(i) < lowerBound(i) || upperBound(i) < p(i)) | |||
| { | |||
| return false; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| float32 inv_d = 1.0f / d(i); | |||
| float32 t1 = (lowerBound(i) - p(i)) * inv_d; | |||
| float32 t2 = (upperBound(i) - p(i)) * inv_d; | |||
| // Sign of the normal vector. | |||
| float32 s = -1.0f; | |||
| if (t1 > t2) | |||
| { | |||
| b2Swap(t1, t2); | |||
| s = 1.0f; | |||
| } | |||
| // Push the min up | |||
| if (t1 > tmin) | |||
| { | |||
| normal.SetZero(); | |||
| normal(i) = s; | |||
| tmin = t1; | |||
| } | |||
| // Pull the max down | |||
| tmax = b2Min(tmax, t2); | |||
| if (tmin > tmax) | |||
| { | |||
| return false; | |||
| } | |||
| } | |||
| } | |||
| // Does the ray start inside the box? | |||
| // Does the ray intersect beyond the max fraction? | |||
| if (tmin < 0.0f || input.maxFraction < tmin) | |||
| { | |||
| return false; | |||
| } | |||
| // Intersection. | |||
| output->fraction = tmin; | |||
| output->normal = normal; | |||
| return true; | |||
| } | |||
| // Sutherland-Hodgman clipping. | |||
| int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2], | |||
| const b2Vec2& normal, float32 offset, int32 vertexIndexA) | |||
| { | |||
| // Start with no output points | |||
| int32 numOut = 0; | |||
| // Calculate the distance of end points to the line | |||
| float32 distance0 = b2Dot(normal, vIn[0].v) - offset; | |||
| float32 distance1 = b2Dot(normal, vIn[1].v) - offset; | |||
| // If the points are behind the plane | |||
| if (distance0 <= 0.0f) vOut[numOut++] = vIn[0]; | |||
| if (distance1 <= 0.0f) vOut[numOut++] = vIn[1]; | |||
| // If the points are on different sides of the plane | |||
| if (distance0 * distance1 < 0.0f) | |||
| { | |||
| // Find intersection point of edge and plane | |||
| float32 interp = distance0 / (distance0 - distance1); | |||
| vOut[numOut].v = vIn[0].v + interp * (vIn[1].v - vIn[0].v); | |||
| // VertexA is hitting edgeB. | |||
| vOut[numOut].id.cf.indexA = vertexIndexA; | |||
| vOut[numOut].id.cf.indexB = vIn[0].id.cf.indexB; | |||
| vOut[numOut].id.cf.typeA = b2ContactFeature::e_vertex; | |||
| vOut[numOut].id.cf.typeB = b2ContactFeature::e_face; | |||
| ++numOut; | |||
| } | |||
| return numOut; | |||
| } | |||
| bool b2TestOverlap( const b2Shape* shapeA, int32 indexA, | |||
| const b2Shape* shapeB, int32 indexB, | |||
| const b2Transform& xfA, const b2Transform& xfB) | |||
| { | |||
| b2DistanceInput input; | |||
| input.proxyA.Set(shapeA, indexA); | |||
| input.proxyB.Set(shapeB, indexB); | |||
| input.transformA = xfA; | |||
| input.transformB = xfB; | |||
| input.useRadii = true; | |||
| b2SimplexCache cache; | |||
| cache.count = 0; | |||
| b2DistanceOutput output; | |||
| b2Distance(&output, &cache, &input); | |||
| return output.distance < 10.0f * b2_epsilon; | |||
| } | |||
| @@ -0,0 +1,276 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_COLLISION_H | |||
| #define B2_COLLISION_H | |||
| #include "../Common/b2Math.h" | |||
| #include <climits> | |||
| /// @file | |||
| /// Structures and functions used for computing contact points, distance | |||
| /// queries, and TOI queries. | |||
| class b2Shape; | |||
| class b2CircleShape; | |||
| class b2EdgeShape; | |||
| class b2PolygonShape; | |||
| const uint8 b2_nullFeature = UCHAR_MAX; | |||
| /// The features that intersect to form the contact point | |||
| /// This must be 4 bytes or less. | |||
| struct b2ContactFeature | |||
| { | |||
| enum Type | |||
| { | |||
| e_vertex = 0, | |||
| e_face = 1 | |||
| }; | |||
| uint8 indexA; ///< Feature index on shapeA | |||
| uint8 indexB; ///< Feature index on shapeB | |||
| uint8 typeA; ///< The feature type on shapeA | |||
| uint8 typeB; ///< The feature type on shapeB | |||
| }; | |||
| /// Contact ids to facilitate warm starting. | |||
| union b2ContactID | |||
| { | |||
| b2ContactFeature cf; | |||
| uint32 key; ///< Used to quickly compare contact ids. | |||
| }; | |||
| /// A manifold point is a contact point belonging to a contact | |||
| /// manifold. It holds details related to the geometry and dynamics | |||
| /// of the contact points. | |||
| /// The local point usage depends on the manifold type: | |||
| /// -e_circles: the local center of circleB | |||
| /// -e_faceA: the local center of cirlceB or the clip point of polygonB | |||
| /// -e_faceB: the clip point of polygonA | |||
| /// This structure is stored across time steps, so we keep it small. | |||
| /// Note: the impulses are used for internal caching and may not | |||
| /// provide reliable contact forces, especially for high speed collisions. | |||
| struct b2ManifoldPoint | |||
| { | |||
| b2Vec2 localPoint; ///< usage depends on manifold type | |||
| float32 normalImpulse; ///< the non-penetration impulse | |||
| float32 tangentImpulse; ///< the friction impulse | |||
| b2ContactID id; ///< uniquely identifies a contact point between two shapes | |||
| }; | |||
| /// A manifold for two touching convex shapes. | |||
| /// Box2D supports multiple types of contact: | |||
| /// - clip point versus plane with radius | |||
| /// - point versus point with radius (circles) | |||
| /// The local point usage depends on the manifold type: | |||
| /// -e_circles: the local center of circleA | |||
| /// -e_faceA: the center of faceA | |||
| /// -e_faceB: the center of faceB | |||
| /// Similarly the local normal usage: | |||
| /// -e_circles: not used | |||
| /// -e_faceA: the normal on polygonA | |||
| /// -e_faceB: the normal on polygonB | |||
| /// We store contacts in this way so that position correction can | |||
| /// account for movement, which is critical for continuous physics. | |||
| /// All contact scenarios must be expressed in one of these types. | |||
| /// This structure is stored across time steps, so we keep it small. | |||
| struct b2Manifold | |||
| { | |||
| enum Type | |||
| { | |||
| e_circles, | |||
| e_faceA, | |||
| e_faceB | |||
| }; | |||
| b2ManifoldPoint points[b2_maxManifoldPoints]; ///< the points of contact | |||
| b2Vec2 localNormal; ///< not use for Type::e_points | |||
| b2Vec2 localPoint; ///< usage depends on manifold type | |||
| Type type; | |||
| int32 pointCount; ///< the number of manifold points | |||
| }; | |||
| /// This is used to compute the current state of a contact manifold. | |||
| struct b2WorldManifold | |||
| { | |||
| /// Evaluate the manifold with supplied transforms. This assumes | |||
| /// modest motion from the original state. This does not change the | |||
| /// point count, impulses, etc. The radii must come from the shapes | |||
| /// that generated the manifold. | |||
| void Initialize(const b2Manifold* manifold, | |||
| const b2Transform& xfA, float32 radiusA, | |||
| const b2Transform& xfB, float32 radiusB); | |||
| b2Vec2 normal; ///< world vector pointing from A to B | |||
| b2Vec2 points[b2_maxManifoldPoints]; ///< world contact point (point of intersection) | |||
| }; | |||
| /// This is used for determining the state of contact points. | |||
| enum b2PointState | |||
| { | |||
| b2_nullState, ///< point does not exist | |||
| b2_addState, ///< point was added in the update | |||
| b2_persistState, ///< point persisted across the update | |||
| b2_removeState ///< point was removed in the update | |||
| }; | |||
| /// Compute the point states given two manifolds. The states pertain to the transition from manifold1 | |||
| /// to manifold2. So state1 is either persist or remove while state2 is either add or persist. | |||
| void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints], | |||
| const b2Manifold* manifold1, const b2Manifold* manifold2); | |||
| /// Used for computing contact manifolds. | |||
| struct b2ClipVertex | |||
| { | |||
| b2Vec2 v; | |||
| b2ContactID id; | |||
| }; | |||
| /// Ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1). | |||
| struct b2RayCastInput | |||
| { | |||
| b2Vec2 p1, p2; | |||
| float32 maxFraction; | |||
| }; | |||
| /// Ray-cast output data. The ray hits at p1 + fraction * (p2 - p1), where p1 and p2 | |||
| /// come from b2RayCastInput. | |||
| struct b2RayCastOutput | |||
| { | |||
| b2Vec2 normal; | |||
| float32 fraction; | |||
| }; | |||
| /// An axis aligned bounding box. | |||
| struct b2AABB | |||
| { | |||
| /// Verify that the bounds are sorted. | |||
| bool IsValid() const; | |||
| /// Get the center of the AABB. | |||
| b2Vec2 GetCenter() const | |||
| { | |||
| return 0.5f * (lowerBound + upperBound); | |||
| } | |||
| /// Get the extents of the AABB (half-widths). | |||
| b2Vec2 GetExtents() const | |||
| { | |||
| return 0.5f * (upperBound - lowerBound); | |||
| } | |||
| /// Get the perimeter length | |||
| float32 GetPerimeter() const | |||
| { | |||
| float32 wx = upperBound.x - lowerBound.x; | |||
| float32 wy = upperBound.y - lowerBound.y; | |||
| return 2.0f * (wx + wy); | |||
| } | |||
| /// Combine an AABB into this one. | |||
| void Combine(const b2AABB& aabb) | |||
| { | |||
| lowerBound = b2Min(lowerBound, aabb.lowerBound); | |||
| upperBound = b2Max(upperBound, aabb.upperBound); | |||
| } | |||
| /// Combine two AABBs into this one. | |||
| void Combine(const b2AABB& aabb1, const b2AABB& aabb2) | |||
| { | |||
| lowerBound = b2Min(aabb1.lowerBound, aabb2.lowerBound); | |||
| upperBound = b2Max(aabb1.upperBound, aabb2.upperBound); | |||
| } | |||
| /// Does this aabb contain the provided AABB. | |||
| bool Contains(const b2AABB& aabb) const | |||
| { | |||
| bool result = true; | |||
| result = result && lowerBound.x <= aabb.lowerBound.x; | |||
| result = result && lowerBound.y <= aabb.lowerBound.y; | |||
| result = result && aabb.upperBound.x <= upperBound.x; | |||
| result = result && aabb.upperBound.y <= upperBound.y; | |||
| return result; | |||
| } | |||
| bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const; | |||
| b2Vec2 lowerBound; ///< the lower vertex | |||
| b2Vec2 upperBound; ///< the upper vertex | |||
| }; | |||
| /// Compute the collision manifold between two circles. | |||
| void b2CollideCircles(b2Manifold* manifold, | |||
| const b2CircleShape* circleA, const b2Transform& xfA, | |||
| const b2CircleShape* circleB, const b2Transform& xfB); | |||
| /// Compute the collision manifold between a polygon and a circle. | |||
| void b2CollidePolygonAndCircle(b2Manifold* manifold, | |||
| const b2PolygonShape* polygonA, const b2Transform& xfA, | |||
| const b2CircleShape* circleB, const b2Transform& xfB); | |||
| /// Compute the collision manifold between two polygons. | |||
| void b2CollidePolygons(b2Manifold* manifold, | |||
| const b2PolygonShape* polygonA, const b2Transform& xfA, | |||
| const b2PolygonShape* polygonB, const b2Transform& xfB); | |||
| /// Compute the collision manifold between an edge and a circle. | |||
| void b2CollideEdgeAndCircle(b2Manifold* manifold, | |||
| const b2EdgeShape* polygonA, const b2Transform& xfA, | |||
| const b2CircleShape* circleB, const b2Transform& xfB); | |||
| /// Compute the collision manifold between an edge and a circle. | |||
| void b2CollideEdgeAndPolygon(b2Manifold* manifold, | |||
| const b2EdgeShape* edgeA, const b2Transform& xfA, | |||
| const b2PolygonShape* circleB, const b2Transform& xfB); | |||
| /// Clipping for contact manifolds. | |||
| int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2], | |||
| const b2Vec2& normal, float32 offset, int32 vertexIndexA); | |||
| /// Determine if two generic shapes overlap. | |||
| bool b2TestOverlap( const b2Shape* shapeA, int32 indexA, | |||
| const b2Shape* shapeB, int32 indexB, | |||
| const b2Transform& xfA, const b2Transform& xfB); | |||
| // ---------------- Inline Functions ------------------------------------------ | |||
| inline bool b2AABB::IsValid() const | |||
| { | |||
| b2Vec2 d = upperBound - lowerBound; | |||
| bool valid = d.x >= 0.0f && d.y >= 0.0f; | |||
| valid = valid && lowerBound.IsValid() && upperBound.IsValid(); | |||
| return valid; | |||
| } | |||
| inline bool b2TestOverlap(const b2AABB& a, const b2AABB& b) | |||
| { | |||
| b2Vec2 d1, d2; | |||
| d1 = b.lowerBound - a.upperBound; | |||
| d2 = a.lowerBound - b.upperBound; | |||
| if (d1.x > 0.0f || d1.y > 0.0f) | |||
| return false; | |||
| if (d2.x > 0.0f || d2.y > 0.0f) | |||
| return false; | |||
| return true; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,603 @@ | |||
| /* | |||
| * Copyright (c) 2007-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Distance.h" | |||
| #include "Shapes/b2CircleShape.h" | |||
| #include "Shapes/b2EdgeShape.h" | |||
| #include "Shapes/b2ChainShape.h" | |||
| #include "Shapes/b2PolygonShape.h" | |||
| // GJK using Voronoi regions (Christer Ericson) and Barycentric coordinates. | |||
| int32 b2_gjkCalls, b2_gjkIters, b2_gjkMaxIters; | |||
| void b2DistanceProxy::Set(const b2Shape* shape, int32 index) | |||
| { | |||
| switch (shape->GetType()) | |||
| { | |||
| case b2Shape::e_circle: | |||
| { | |||
| const b2CircleShape* circle = (b2CircleShape*)shape; | |||
| m_vertices = &circle->m_p; | |||
| m_count = 1; | |||
| m_radius = circle->m_radius; | |||
| } | |||
| break; | |||
| case b2Shape::e_polygon: | |||
| { | |||
| const b2PolygonShape* polygon = (b2PolygonShape*)shape; | |||
| m_vertices = polygon->m_vertices; | |||
| m_count = polygon->m_vertexCount; | |||
| m_radius = polygon->m_radius; | |||
| } | |||
| break; | |||
| case b2Shape::e_chain: | |||
| { | |||
| const b2ChainShape* chain = (b2ChainShape*)shape; | |||
| b2Assert(0 <= index && index < chain->m_count); | |||
| m_buffer[0] = chain->m_vertices[index]; | |||
| if (index + 1 < chain->m_count) | |||
| { | |||
| m_buffer[1] = chain->m_vertices[index + 1]; | |||
| } | |||
| else | |||
| { | |||
| m_buffer[1] = chain->m_vertices[0]; | |||
| } | |||
| m_vertices = m_buffer; | |||
| m_count = 2; | |||
| m_radius = chain->m_radius; | |||
| } | |||
| break; | |||
| case b2Shape::e_edge: | |||
| { | |||
| const b2EdgeShape* edge = (b2EdgeShape*)shape; | |||
| m_vertices = &edge->m_vertex1; | |||
| m_count = 2; | |||
| m_radius = edge->m_radius; | |||
| } | |||
| break; | |||
| default: | |||
| b2Assert(false); | |||
| } | |||
| } | |||
| struct b2SimplexVertex | |||
| { | |||
| b2Vec2 wA; // support point in proxyA | |||
| b2Vec2 wB; // support point in proxyB | |||
| b2Vec2 w; // wB - wA | |||
| float32 a; // barycentric coordinate for closest point | |||
| int32 indexA; // wA index | |||
| int32 indexB; // wB index | |||
| }; | |||
| struct b2Simplex | |||
| { | |||
| void ReadCache( const b2SimplexCache* cache, | |||
| const b2DistanceProxy* proxyA, const b2Transform& transformA, | |||
| const b2DistanceProxy* proxyB, const b2Transform& transformB) | |||
| { | |||
| b2Assert(cache->count <= 3); | |||
| // Copy data from cache. | |||
| m_count = cache->count; | |||
| b2SimplexVertex* vertices = &m_v1; | |||
| for (int32 i = 0; i < m_count; ++i) | |||
| { | |||
| b2SimplexVertex* v = vertices + i; | |||
| v->indexA = cache->indexA[i]; | |||
| v->indexB = cache->indexB[i]; | |||
| b2Vec2 wALocal = proxyA->GetVertex(v->indexA); | |||
| b2Vec2 wBLocal = proxyB->GetVertex(v->indexB); | |||
| v->wA = b2Mul(transformA, wALocal); | |||
| v->wB = b2Mul(transformB, wBLocal); | |||
| v->w = v->wB - v->wA; | |||
| v->a = 0.0f; | |||
| } | |||
| // Compute the new simplex metric, if it is substantially different than | |||
| // old metric then flush the simplex. | |||
| if (m_count > 1) | |||
| { | |||
| float32 metric1 = cache->metric; | |||
| float32 metric2 = GetMetric(); | |||
| if (metric2 < 0.5f * metric1 || 2.0f * metric1 < metric2 || metric2 < b2_epsilon) | |||
| { | |||
| // Reset the simplex. | |||
| m_count = 0; | |||
| } | |||
| } | |||
| // If the cache is empty or invalid ... | |||
| if (m_count == 0) | |||
| { | |||
| b2SimplexVertex* v = vertices + 0; | |||
| v->indexA = 0; | |||
| v->indexB = 0; | |||
| b2Vec2 wALocal = proxyA->GetVertex(0); | |||
| b2Vec2 wBLocal = proxyB->GetVertex(0); | |||
| v->wA = b2Mul(transformA, wALocal); | |||
| v->wB = b2Mul(transformB, wBLocal); | |||
| v->w = v->wB - v->wA; | |||
| m_count = 1; | |||
| } | |||
| } | |||
| void WriteCache(b2SimplexCache* cache) const | |||
| { | |||
| cache->metric = GetMetric(); | |||
| cache->count = uint16(m_count); | |||
| const b2SimplexVertex* vertices = &m_v1; | |||
| for (int32 i = 0; i < m_count; ++i) | |||
| { | |||
| cache->indexA[i] = uint8(vertices[i].indexA); | |||
| cache->indexB[i] = uint8(vertices[i].indexB); | |||
| } | |||
| } | |||
| b2Vec2 GetSearchDirection() const | |||
| { | |||
| switch (m_count) | |||
| { | |||
| case 1: | |||
| return -m_v1.w; | |||
| case 2: | |||
| { | |||
| b2Vec2 e12 = m_v2.w - m_v1.w; | |||
| float32 sgn = b2Cross(e12, -m_v1.w); | |||
| if (sgn > 0.0f) | |||
| { | |||
| // Origin is left of e12. | |||
| return b2Cross(1.0f, e12); | |||
| } | |||
| else | |||
| { | |||
| // Origin is right of e12. | |||
| return b2Cross(e12, 1.0f); | |||
| } | |||
| } | |||
| default: | |||
| b2Assert(false); | |||
| return b2Vec2_zero; | |||
| } | |||
| } | |||
| b2Vec2 GetClosestPoint() const | |||
| { | |||
| switch (m_count) | |||
| { | |||
| case 0: | |||
| b2Assert(false); | |||
| return b2Vec2_zero; | |||
| case 1: | |||
| return m_v1.w; | |||
| case 2: | |||
| return m_v1.a * m_v1.w + m_v2.a * m_v2.w; | |||
| case 3: | |||
| return b2Vec2_zero; | |||
| default: | |||
| b2Assert(false); | |||
| return b2Vec2_zero; | |||
| } | |||
| } | |||
| void GetWitnessPoints(b2Vec2* pA, b2Vec2* pB) const | |||
| { | |||
| switch (m_count) | |||
| { | |||
| case 0: | |||
| b2Assert(false); | |||
| break; | |||
| case 1: | |||
| *pA = m_v1.wA; | |||
| *pB = m_v1.wB; | |||
| break; | |||
| case 2: | |||
| *pA = m_v1.a * m_v1.wA + m_v2.a * m_v2.wA; | |||
| *pB = m_v1.a * m_v1.wB + m_v2.a * m_v2.wB; | |||
| break; | |||
| case 3: | |||
| *pA = m_v1.a * m_v1.wA + m_v2.a * m_v2.wA + m_v3.a * m_v3.wA; | |||
| *pB = *pA; | |||
| break; | |||
| default: | |||
| b2Assert(false); | |||
| break; | |||
| } | |||
| } | |||
| float32 GetMetric() const | |||
| { | |||
| switch (m_count) | |||
| { | |||
| case 0: | |||
| b2Assert(false); | |||
| return 0.0; | |||
| case 1: | |||
| return 0.0f; | |||
| case 2: | |||
| return b2Distance(m_v1.w, m_v2.w); | |||
| case 3: | |||
| return b2Cross(m_v2.w - m_v1.w, m_v3.w - m_v1.w); | |||
| default: | |||
| b2Assert(false); | |||
| return 0.0f; | |||
| } | |||
| } | |||
| void Solve2(); | |||
| void Solve3(); | |||
| b2SimplexVertex m_v1, m_v2, m_v3; | |||
| int32 m_count; | |||
| }; | |||
| // Solve a line segment using barycentric coordinates. | |||
| // | |||
| // p = a1 * w1 + a2 * w2 | |||
| // a1 + a2 = 1 | |||
| // | |||
| // The vector from the origin to the closest point on the line is | |||
| // perpendicular to the line. | |||
| // e12 = w2 - w1 | |||
| // dot(p, e) = 0 | |||
| // a1 * dot(w1, e) + a2 * dot(w2, e) = 0 | |||
| // | |||
| // 2-by-2 linear system | |||
| // [1 1 ][a1] = [1] | |||
| // [w1.e12 w2.e12][a2] = [0] | |||
| // | |||
| // Define | |||
| // d12_1 = dot(w2, e12) | |||
| // d12_2 = -dot(w1, e12) | |||
| // d12 = d12_1 + d12_2 | |||
| // | |||
| // Solution | |||
| // a1 = d12_1 / d12 | |||
| // a2 = d12_2 / d12 | |||
| void b2Simplex::Solve2() | |||
| { | |||
| b2Vec2 w1 = m_v1.w; | |||
| b2Vec2 w2 = m_v2.w; | |||
| b2Vec2 e12 = w2 - w1; | |||
| // w1 region | |||
| float32 d12_2 = -b2Dot(w1, e12); | |||
| if (d12_2 <= 0.0f) | |||
| { | |||
| // a2 <= 0, so we clamp it to 0 | |||
| m_v1.a = 1.0f; | |||
| m_count = 1; | |||
| return; | |||
| } | |||
| // w2 region | |||
| float32 d12_1 = b2Dot(w2, e12); | |||
| if (d12_1 <= 0.0f) | |||
| { | |||
| // a1 <= 0, so we clamp it to 0 | |||
| m_v2.a = 1.0f; | |||
| m_count = 1; | |||
| m_v1 = m_v2; | |||
| return; | |||
| } | |||
| // Must be in e12 region. | |||
| float32 inv_d12 = 1.0f / (d12_1 + d12_2); | |||
| m_v1.a = d12_1 * inv_d12; | |||
| m_v2.a = d12_2 * inv_d12; | |||
| m_count = 2; | |||
| } | |||
| // Possible regions: | |||
| // - points[2] | |||
| // - edge points[0]-points[2] | |||
| // - edge points[1]-points[2] | |||
| // - inside the triangle | |||
| void b2Simplex::Solve3() | |||
| { | |||
| b2Vec2 w1 = m_v1.w; | |||
| b2Vec2 w2 = m_v2.w; | |||
| b2Vec2 w3 = m_v3.w; | |||
| // Edge12 | |||
| // [1 1 ][a1] = [1] | |||
| // [w1.e12 w2.e12][a2] = [0] | |||
| // a3 = 0 | |||
| b2Vec2 e12 = w2 - w1; | |||
| float32 w1e12 = b2Dot(w1, e12); | |||
| float32 w2e12 = b2Dot(w2, e12); | |||
| float32 d12_1 = w2e12; | |||
| float32 d12_2 = -w1e12; | |||
| // Edge13 | |||
| // [1 1 ][a1] = [1] | |||
| // [w1.e13 w3.e13][a3] = [0] | |||
| // a2 = 0 | |||
| b2Vec2 e13 = w3 - w1; | |||
| float32 w1e13 = b2Dot(w1, e13); | |||
| float32 w3e13 = b2Dot(w3, e13); | |||
| float32 d13_1 = w3e13; | |||
| float32 d13_2 = -w1e13; | |||
| // Edge23 | |||
| // [1 1 ][a2] = [1] | |||
| // [w2.e23 w3.e23][a3] = [0] | |||
| // a1 = 0 | |||
| b2Vec2 e23 = w3 - w2; | |||
| float32 w2e23 = b2Dot(w2, e23); | |||
| float32 w3e23 = b2Dot(w3, e23); | |||
| float32 d23_1 = w3e23; | |||
| float32 d23_2 = -w2e23; | |||
| // Triangle123 | |||
| float32 n123 = b2Cross(e12, e13); | |||
| float32 d123_1 = n123 * b2Cross(w2, w3); | |||
| float32 d123_2 = n123 * b2Cross(w3, w1); | |||
| float32 d123_3 = n123 * b2Cross(w1, w2); | |||
| // w1 region | |||
| if (d12_2 <= 0.0f && d13_2 <= 0.0f) | |||
| { | |||
| m_v1.a = 1.0f; | |||
| m_count = 1; | |||
| return; | |||
| } | |||
| // e12 | |||
| if (d12_1 > 0.0f && d12_2 > 0.0f && d123_3 <= 0.0f) | |||
| { | |||
| float32 inv_d12 = 1.0f / (d12_1 + d12_2); | |||
| m_v1.a = d12_1 * inv_d12; | |||
| m_v2.a = d12_2 * inv_d12; | |||
| m_count = 2; | |||
| return; | |||
| } | |||
| // e13 | |||
| if (d13_1 > 0.0f && d13_2 > 0.0f && d123_2 <= 0.0f) | |||
| { | |||
| float32 inv_d13 = 1.0f / (d13_1 + d13_2); | |||
| m_v1.a = d13_1 * inv_d13; | |||
| m_v3.a = d13_2 * inv_d13; | |||
| m_count = 2; | |||
| m_v2 = m_v3; | |||
| return; | |||
| } | |||
| // w2 region | |||
| if (d12_1 <= 0.0f && d23_2 <= 0.0f) | |||
| { | |||
| m_v2.a = 1.0f; | |||
| m_count = 1; | |||
| m_v1 = m_v2; | |||
| return; | |||
| } | |||
| // w3 region | |||
| if (d13_1 <= 0.0f && d23_1 <= 0.0f) | |||
| { | |||
| m_v3.a = 1.0f; | |||
| m_count = 1; | |||
| m_v1 = m_v3; | |||
| return; | |||
| } | |||
| // e23 | |||
| if (d23_1 > 0.0f && d23_2 > 0.0f && d123_1 <= 0.0f) | |||
| { | |||
| float32 inv_d23 = 1.0f / (d23_1 + d23_2); | |||
| m_v2.a = d23_1 * inv_d23; | |||
| m_v3.a = d23_2 * inv_d23; | |||
| m_count = 2; | |||
| m_v1 = m_v3; | |||
| return; | |||
| } | |||
| // Must be in triangle123 | |||
| float32 inv_d123 = 1.0f / (d123_1 + d123_2 + d123_3); | |||
| m_v1.a = d123_1 * inv_d123; | |||
| m_v2.a = d123_2 * inv_d123; | |||
| m_v3.a = d123_3 * inv_d123; | |||
| m_count = 3; | |||
| } | |||
| void b2Distance(b2DistanceOutput* output, | |||
| b2SimplexCache* cache, | |||
| const b2DistanceInput* input) | |||
| { | |||
| ++b2_gjkCalls; | |||
| const b2DistanceProxy* proxyA = &input->proxyA; | |||
| const b2DistanceProxy* proxyB = &input->proxyB; | |||
| b2Transform transformA = input->transformA; | |||
| b2Transform transformB = input->transformB; | |||
| // Initialize the simplex. | |||
| b2Simplex simplex; | |||
| simplex.ReadCache(cache, proxyA, transformA, proxyB, transformB); | |||
| // Get simplex vertices as an array. | |||
| b2SimplexVertex* vertices = &simplex.m_v1; | |||
| const int32 k_maxIters = 20; | |||
| // These store the vertices of the last simplex so that we | |||
| // can check for duplicates and prevent cycling. | |||
| int32 saveA[3], saveB[3]; | |||
| int32 saveCount = 0; | |||
| b2Vec2 closestPoint = simplex.GetClosestPoint(); | |||
| float32 distanceSqr1 = closestPoint.LengthSquared(); | |||
| float32 distanceSqr2 = distanceSqr1; | |||
| // Main iteration loop. | |||
| int32 iter = 0; | |||
| while (iter < k_maxIters) | |||
| { | |||
| // Copy simplex so we can identify duplicates. | |||
| saveCount = simplex.m_count; | |||
| for (int32 i = 0; i < saveCount; ++i) | |||
| { | |||
| saveA[i] = vertices[i].indexA; | |||
| saveB[i] = vertices[i].indexB; | |||
| } | |||
| switch (simplex.m_count) | |||
| { | |||
| case 1: | |||
| break; | |||
| case 2: | |||
| simplex.Solve2(); | |||
| break; | |||
| case 3: | |||
| simplex.Solve3(); | |||
| break; | |||
| default: | |||
| b2Assert(false); | |||
| } | |||
| // If we have 3 points, then the origin is in the corresponding triangle. | |||
| if (simplex.m_count == 3) | |||
| { | |||
| break; | |||
| } | |||
| // Compute closest point. | |||
| b2Vec2 p = simplex.GetClosestPoint(); | |||
| distanceSqr2 = p.LengthSquared(); | |||
| // Ensure progress | |||
| if (distanceSqr2 >= distanceSqr1) | |||
| { | |||
| //break; | |||
| } | |||
| distanceSqr1 = distanceSqr2; | |||
| // Get search direction. | |||
| b2Vec2 d = simplex.GetSearchDirection(); | |||
| // Ensure the search direction is numerically fit. | |||
| if (d.LengthSquared() < b2_epsilon * b2_epsilon) | |||
| { | |||
| // The origin is probably contained by a line segment | |||
| // or triangle. Thus the shapes are overlapped. | |||
| // We can't return zero here even though there may be overlap. | |||
| // In case the simplex is a point, segment, or triangle it is difficult | |||
| // to determine if the origin is contained in the CSO or very close to it. | |||
| break; | |||
| } | |||
| // Compute a tentative new simplex vertex using support points. | |||
| b2SimplexVertex* vertex = vertices + simplex.m_count; | |||
| vertex->indexA = proxyA->GetSupport(b2MulT(transformA.q, -d)); | |||
| vertex->wA = b2Mul(transformA, proxyA->GetVertex(vertex->indexA)); | |||
| b2Vec2 wBLocal; | |||
| vertex->indexB = proxyB->GetSupport(b2MulT(transformB.q, d)); | |||
| vertex->wB = b2Mul(transformB, proxyB->GetVertex(vertex->indexB)); | |||
| vertex->w = vertex->wB - vertex->wA; | |||
| // Iteration count is equated to the number of support point calls. | |||
| ++iter; | |||
| ++b2_gjkIters; | |||
| // Check for duplicate support points. This is the main termination criteria. | |||
| bool duplicate = false; | |||
| for (int32 i = 0; i < saveCount; ++i) | |||
| { | |||
| if (vertex->indexA == saveA[i] && vertex->indexB == saveB[i]) | |||
| { | |||
| duplicate = true; | |||
| break; | |||
| } | |||
| } | |||
| // If we found a duplicate support point we must exit to avoid cycling. | |||
| if (duplicate) | |||
| { | |||
| break; | |||
| } | |||
| // New vertex is ok and needed. | |||
| ++simplex.m_count; | |||
| } | |||
| b2_gjkMaxIters = b2Max(b2_gjkMaxIters, iter); | |||
| // Prepare output. | |||
| simplex.GetWitnessPoints(&output->pointA, &output->pointB); | |||
| output->distance = b2Distance(output->pointA, output->pointB); | |||
| output->iterations = iter; | |||
| // Cache the simplex. | |||
| simplex.WriteCache(cache); | |||
| // Apply radii if requested. | |||
| if (input->useRadii) | |||
| { | |||
| float32 rA = proxyA->m_radius; | |||
| float32 rB = proxyB->m_radius; | |||
| if (output->distance > rA + rB && output->distance > b2_epsilon) | |||
| { | |||
| // Shapes are still no overlapped. | |||
| // Move the witness points to the outer surface. | |||
| output->distance -= rA + rB; | |||
| b2Vec2 normal = output->pointB - output->pointA; | |||
| normal.Normalize(); | |||
| output->pointA += rA * normal; | |||
| output->pointB -= rB * normal; | |||
| } | |||
| else | |||
| { | |||
| // Shapes are overlapped when radii are considered. | |||
| // Move the witness points to the middle. | |||
| b2Vec2 p = 0.5f * (output->pointA + output->pointB); | |||
| output->pointA = p; | |||
| output->pointB = p; | |||
| output->distance = 0.0f; | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,141 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_DISTANCE_H | |||
| #define B2_DISTANCE_H | |||
| #include "../Common/b2Math.h" | |||
| class b2Shape; | |||
| /// A distance proxy is used by the GJK algorithm. | |||
| /// It encapsulates any shape. | |||
| struct b2DistanceProxy | |||
| { | |||
| b2DistanceProxy() : m_vertices(NULL), m_count(0), m_radius(0.0f) {} | |||
| /// Initialize the proxy using the given shape. The shape | |||
| /// must remain in scope while the proxy is in use. | |||
| void Set(const b2Shape* shape, int32 index); | |||
| /// Get the supporting vertex index in the given direction. | |||
| int32 GetSupport(const b2Vec2& d) const; | |||
| /// Get the supporting vertex in the given direction. | |||
| const b2Vec2& GetSupportVertex(const b2Vec2& d) const; | |||
| /// Get the vertex count. | |||
| int32 GetVertexCount() const; | |||
| /// Get a vertex by index. Used by b2Distance. | |||
| const b2Vec2& GetVertex(int32 index) const; | |||
| b2Vec2 m_buffer[2]; | |||
| const b2Vec2* m_vertices; | |||
| int32 m_count; | |||
| float32 m_radius; | |||
| }; | |||
| /// Used to warm start b2Distance. | |||
| /// Set count to zero on first call. | |||
| struct b2SimplexCache | |||
| { | |||
| float32 metric; ///< length or area | |||
| uint16 count; | |||
| uint8 indexA[3]; ///< vertices on shape A | |||
| uint8 indexB[3]; ///< vertices on shape B | |||
| }; | |||
| /// Input for b2Distance. | |||
| /// You have to option to use the shape radii | |||
| /// in the computation. Even | |||
| struct b2DistanceInput | |||
| { | |||
| b2DistanceProxy proxyA; | |||
| b2DistanceProxy proxyB; | |||
| b2Transform transformA; | |||
| b2Transform transformB; | |||
| bool useRadii; | |||
| }; | |||
| /// Output for b2Distance. | |||
| struct b2DistanceOutput | |||
| { | |||
| b2Vec2 pointA; ///< closest point on shapeA | |||
| b2Vec2 pointB; ///< closest point on shapeB | |||
| float32 distance; | |||
| int32 iterations; ///< number of GJK iterations used | |||
| }; | |||
| /// Compute the closest points between two shapes. Supports any combination of: | |||
| /// b2CircleShape, b2PolygonShape, b2EdgeShape. The simplex cache is input/output. | |||
| /// On the first call set b2SimplexCache.count to zero. | |||
| void b2Distance(b2DistanceOutput* output, | |||
| b2SimplexCache* cache, | |||
| const b2DistanceInput* input); | |||
| ////////////////////////////////////////////////////////////////////////// | |||
| inline int32 b2DistanceProxy::GetVertexCount() const | |||
| { | |||
| return m_count; | |||
| } | |||
| inline const b2Vec2& b2DistanceProxy::GetVertex(int32 index) const | |||
| { | |||
| b2Assert(0 <= index && index < m_count); | |||
| return m_vertices[index]; | |||
| } | |||
| inline int32 b2DistanceProxy::GetSupport(const b2Vec2& d) const | |||
| { | |||
| int32 bestIndex = 0; | |||
| float32 bestValue = b2Dot(m_vertices[0], d); | |||
| for (int32 i = 1; i < m_count; ++i) | |||
| { | |||
| float32 value = b2Dot(m_vertices[i], d); | |||
| if (value > bestValue) | |||
| { | |||
| bestIndex = i; | |||
| bestValue = value; | |||
| } | |||
| } | |||
| return bestIndex; | |||
| } | |||
| inline const b2Vec2& b2DistanceProxy::GetSupportVertex(const b2Vec2& d) const | |||
| { | |||
| int32 bestIndex = 0; | |||
| float32 bestValue = b2Dot(m_vertices[0], d); | |||
| for (int32 i = 1; i < m_count; ++i) | |||
| { | |||
| float32 value = b2Dot(m_vertices[i], d); | |||
| if (value > bestValue) | |||
| { | |||
| bestIndex = i; | |||
| bestValue = value; | |||
| } | |||
| } | |||
| return m_vertices[bestIndex]; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,771 @@ | |||
| /* | |||
| * Copyright (c) 2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2DynamicTree.h" | |||
| #include <cstring> | |||
| #include <cfloat> | |||
| using namespace std; | |||
| b2DynamicTree::b2DynamicTree() | |||
| { | |||
| m_root = b2_nullNode; | |||
| m_nodeCapacity = 16; | |||
| m_nodeCount = 0; | |||
| m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode)); | |||
| memset(m_nodes, 0, m_nodeCapacity * sizeof(b2TreeNode)); | |||
| // Build a linked list for the free list. | |||
| for (int32 i = 0; i < m_nodeCapacity - 1; ++i) | |||
| { | |||
| m_nodes[i].next = i + 1; | |||
| m_nodes[i].height = -1; | |||
| } | |||
| m_nodes[m_nodeCapacity-1].next = b2_nullNode; | |||
| m_nodes[m_nodeCapacity-1].height = -1; | |||
| m_freeList = 0; | |||
| m_path = 0; | |||
| m_insertionCount = 0; | |||
| } | |||
| b2DynamicTree::~b2DynamicTree() | |||
| { | |||
| // This frees the entire tree in one shot. | |||
| b2Free(m_nodes); | |||
| } | |||
| // Allocate a node from the pool. Grow the pool if necessary. | |||
| int32 b2DynamicTree::AllocateNode() | |||
| { | |||
| // Expand the node pool as needed. | |||
| if (m_freeList == b2_nullNode) | |||
| { | |||
| b2Assert(m_nodeCount == m_nodeCapacity); | |||
| // The free list is empty. Rebuild a bigger pool. | |||
| b2TreeNode* oldNodes = m_nodes; | |||
| m_nodeCapacity *= 2; | |||
| m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode)); | |||
| memcpy(m_nodes, oldNodes, m_nodeCount * sizeof(b2TreeNode)); | |||
| b2Free(oldNodes); | |||
| // Build a linked list for the free list. The parent | |||
| // pointer becomes the "next" pointer. | |||
| for (int32 i = m_nodeCount; i < m_nodeCapacity - 1; ++i) | |||
| { | |||
| m_nodes[i].next = i + 1; | |||
| m_nodes[i].height = -1; | |||
| } | |||
| m_nodes[m_nodeCapacity-1].next = b2_nullNode; | |||
| m_nodes[m_nodeCapacity-1].height = -1; | |||
| m_freeList = m_nodeCount; | |||
| } | |||
| // Peel a node off the free list. | |||
| int32 nodeId = m_freeList; | |||
| m_freeList = m_nodes[nodeId].next; | |||
| m_nodes[nodeId].parent = b2_nullNode; | |||
| m_nodes[nodeId].child1 = b2_nullNode; | |||
| m_nodes[nodeId].child2 = b2_nullNode; | |||
| m_nodes[nodeId].height = 0; | |||
| m_nodes[nodeId].userData = NULL; | |||
| ++m_nodeCount; | |||
| return nodeId; | |||
| } | |||
| // Return a node to the pool. | |||
| void b2DynamicTree::FreeNode(int32 nodeId) | |||
| { | |||
| b2Assert(0 <= nodeId && nodeId < m_nodeCapacity); | |||
| b2Assert(0 < m_nodeCount); | |||
| m_nodes[nodeId].next = m_freeList; | |||
| m_nodes[nodeId].height = -1; | |||
| m_freeList = nodeId; | |||
| --m_nodeCount; | |||
| } | |||
| // Create a proxy in the tree as a leaf node. We return the index | |||
| // of the node instead of a pointer so that we can grow | |||
| // the node pool. | |||
| int32 b2DynamicTree::CreateProxy(const b2AABB& aabb, void* userData) | |||
| { | |||
| int32 proxyId = AllocateNode(); | |||
| // Fatten the aabb. | |||
| b2Vec2 r(b2_aabbExtension, b2_aabbExtension); | |||
| m_nodes[proxyId].aabb.lowerBound = aabb.lowerBound - r; | |||
| m_nodes[proxyId].aabb.upperBound = aabb.upperBound + r; | |||
| m_nodes[proxyId].userData = userData; | |||
| m_nodes[proxyId].height = 0; | |||
| InsertLeaf(proxyId); | |||
| return proxyId; | |||
| } | |||
| void b2DynamicTree::DestroyProxy(int32 proxyId) | |||
| { | |||
| b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); | |||
| b2Assert(m_nodes[proxyId].IsLeaf()); | |||
| RemoveLeaf(proxyId); | |||
| FreeNode(proxyId); | |||
| } | |||
| bool b2DynamicTree::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement) | |||
| { | |||
| b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); | |||
| b2Assert(m_nodes[proxyId].IsLeaf()); | |||
| if (m_nodes[proxyId].aabb.Contains(aabb)) | |||
| { | |||
| return false; | |||
| } | |||
| RemoveLeaf(proxyId); | |||
| // Extend AABB. | |||
| b2AABB b = aabb; | |||
| b2Vec2 r(b2_aabbExtension, b2_aabbExtension); | |||
| b.lowerBound = b.lowerBound - r; | |||
| b.upperBound = b.upperBound + r; | |||
| // Predict AABB displacement. | |||
| b2Vec2 d = b2_aabbMultiplier * displacement; | |||
| if (d.x < 0.0f) | |||
| { | |||
| b.lowerBound.x += d.x; | |||
| } | |||
| else | |||
| { | |||
| b.upperBound.x += d.x; | |||
| } | |||
| if (d.y < 0.0f) | |||
| { | |||
| b.lowerBound.y += d.y; | |||
| } | |||
| else | |||
| { | |||
| b.upperBound.y += d.y; | |||
| } | |||
| m_nodes[proxyId].aabb = b; | |||
| InsertLeaf(proxyId); | |||
| return true; | |||
| } | |||
| void b2DynamicTree::InsertLeaf(int32 leaf) | |||
| { | |||
| ++m_insertionCount; | |||
| if (m_root == b2_nullNode) | |||
| { | |||
| m_root = leaf; | |||
| m_nodes[m_root].parent = b2_nullNode; | |||
| return; | |||
| } | |||
| // Find the best sibling for this node | |||
| b2AABB leafAABB = m_nodes[leaf].aabb; | |||
| int32 index = m_root; | |||
| while (m_nodes[index].IsLeaf() == false) | |||
| { | |||
| int32 child1 = m_nodes[index].child1; | |||
| int32 child2 = m_nodes[index].child2; | |||
| float32 area = m_nodes[index].aabb.GetPerimeter(); | |||
| b2AABB combinedAABB; | |||
| combinedAABB.Combine(m_nodes[index].aabb, leafAABB); | |||
| float32 combinedArea = combinedAABB.GetPerimeter(); | |||
| // Cost of creating a new parent for this node and the new leaf | |||
| float32 cost = 2.0f * combinedArea; | |||
| // Minimum cost of pushing the leaf further down the tree | |||
| float32 inheritanceCost = 2.0f * (combinedArea - area); | |||
| // Cost of descending into child1 | |||
| float32 cost1; | |||
| if (m_nodes[child1].IsLeaf()) | |||
| { | |||
| b2AABB aabb; | |||
| aabb.Combine(leafAABB, m_nodes[child1].aabb); | |||
| cost1 = aabb.GetPerimeter() + inheritanceCost; | |||
| } | |||
| else | |||
| { | |||
| b2AABB aabb; | |||
| aabb.Combine(leafAABB, m_nodes[child1].aabb); | |||
| float32 oldArea = m_nodes[child1].aabb.GetPerimeter(); | |||
| float32 newArea = aabb.GetPerimeter(); | |||
| cost1 = (newArea - oldArea) + inheritanceCost; | |||
| } | |||
| // Cost of descending into child2 | |||
| float32 cost2; | |||
| if (m_nodes[child2].IsLeaf()) | |||
| { | |||
| b2AABB aabb; | |||
| aabb.Combine(leafAABB, m_nodes[child2].aabb); | |||
| cost2 = aabb.GetPerimeter() + inheritanceCost; | |||
| } | |||
| else | |||
| { | |||
| b2AABB aabb; | |||
| aabb.Combine(leafAABB, m_nodes[child2].aabb); | |||
| float32 oldArea = m_nodes[child2].aabb.GetPerimeter(); | |||
| float32 newArea = aabb.GetPerimeter(); | |||
| cost2 = newArea - oldArea + inheritanceCost; | |||
| } | |||
| // Descend according to the minimum cost. | |||
| if (cost < cost1 && cost < cost2) | |||
| { | |||
| break; | |||
| } | |||
| // Descend | |||
| if (cost1 < cost2) | |||
| { | |||
| index = child1; | |||
| } | |||
| else | |||
| { | |||
| index = child2; | |||
| } | |||
| } | |||
| int32 sibling = index; | |||
| // Create a new parent. | |||
| int32 oldParent = m_nodes[sibling].parent; | |||
| int32 newParent = AllocateNode(); | |||
| m_nodes[newParent].parent = oldParent; | |||
| m_nodes[newParent].userData = NULL; | |||
| m_nodes[newParent].aabb.Combine(leafAABB, m_nodes[sibling].aabb); | |||
| m_nodes[newParent].height = m_nodes[sibling].height + 1; | |||
| if (oldParent != b2_nullNode) | |||
| { | |||
| // The sibling was not the root. | |||
| if (m_nodes[oldParent].child1 == sibling) | |||
| { | |||
| m_nodes[oldParent].child1 = newParent; | |||
| } | |||
| else | |||
| { | |||
| m_nodes[oldParent].child2 = newParent; | |||
| } | |||
| m_nodes[newParent].child1 = sibling; | |||
| m_nodes[newParent].child2 = leaf; | |||
| m_nodes[sibling].parent = newParent; | |||
| m_nodes[leaf].parent = newParent; | |||
| } | |||
| else | |||
| { | |||
| // The sibling was the root. | |||
| m_nodes[newParent].child1 = sibling; | |||
| m_nodes[newParent].child2 = leaf; | |||
| m_nodes[sibling].parent = newParent; | |||
| m_nodes[leaf].parent = newParent; | |||
| m_root = newParent; | |||
| } | |||
| // Walk back up the tree fixing heights and AABBs | |||
| index = m_nodes[leaf].parent; | |||
| while (index != b2_nullNode) | |||
| { | |||
| index = Balance(index); | |||
| int32 child1 = m_nodes[index].child1; | |||
| int32 child2 = m_nodes[index].child2; | |||
| b2Assert(child1 != b2_nullNode); | |||
| b2Assert(child2 != b2_nullNode); | |||
| m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height); | |||
| m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); | |||
| index = m_nodes[index].parent; | |||
| } | |||
| //Validate(); | |||
| } | |||
| void b2DynamicTree::RemoveLeaf(int32 leaf) | |||
| { | |||
| if (leaf == m_root) | |||
| { | |||
| m_root = b2_nullNode; | |||
| return; | |||
| } | |||
| int32 parent = m_nodes[leaf].parent; | |||
| int32 grandParent = m_nodes[parent].parent; | |||
| int32 sibling; | |||
| if (m_nodes[parent].child1 == leaf) | |||
| { | |||
| sibling = m_nodes[parent].child2; | |||
| } | |||
| else | |||
| { | |||
| sibling = m_nodes[parent].child1; | |||
| } | |||
| if (grandParent != b2_nullNode) | |||
| { | |||
| // Destroy parent and connect sibling to grandParent. | |||
| if (m_nodes[grandParent].child1 == parent) | |||
| { | |||
| m_nodes[grandParent].child1 = sibling; | |||
| } | |||
| else | |||
| { | |||
| m_nodes[grandParent].child2 = sibling; | |||
| } | |||
| m_nodes[sibling].parent = grandParent; | |||
| FreeNode(parent); | |||
| // Adjust ancestor bounds. | |||
| int32 index = grandParent; | |||
| while (index != b2_nullNode) | |||
| { | |||
| index = Balance(index); | |||
| int32 child1 = m_nodes[index].child1; | |||
| int32 child2 = m_nodes[index].child2; | |||
| m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); | |||
| m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height); | |||
| index = m_nodes[index].parent; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| m_root = sibling; | |||
| m_nodes[sibling].parent = b2_nullNode; | |||
| FreeNode(parent); | |||
| } | |||
| //Validate(); | |||
| } | |||
| // Perform a left or right rotation if node A is imbalanced. | |||
| // Returns the new root index. | |||
| int32 b2DynamicTree::Balance(int32 iA) | |||
| { | |||
| b2Assert(iA != b2_nullNode); | |||
| b2TreeNode* A = m_nodes + iA; | |||
| if (A->IsLeaf() || A->height < 2) | |||
| { | |||
| return iA; | |||
| } | |||
| int32 iB = A->child1; | |||
| int32 iC = A->child2; | |||
| b2Assert(0 <= iB && iB < m_nodeCapacity); | |||
| b2Assert(0 <= iC && iC < m_nodeCapacity); | |||
| b2TreeNode* B = m_nodes + iB; | |||
| b2TreeNode* C = m_nodes + iC; | |||
| int32 balance = C->height - B->height; | |||
| // Rotate C up | |||
| if (balance > 1) | |||
| { | |||
| int32 iF = C->child1; | |||
| int32 iG = C->child2; | |||
| b2TreeNode* F = m_nodes + iF; | |||
| b2TreeNode* G = m_nodes + iG; | |||
| b2Assert(0 <= iF && iF < m_nodeCapacity); | |||
| b2Assert(0 <= iG && iG < m_nodeCapacity); | |||
| // Swap A and C | |||
| C->child1 = iA; | |||
| C->parent = A->parent; | |||
| A->parent = iC; | |||
| // A's old parent should point to C | |||
| if (C->parent != b2_nullNode) | |||
| { | |||
| if (m_nodes[C->parent].child1 == iA) | |||
| { | |||
| m_nodes[C->parent].child1 = iC; | |||
| } | |||
| else | |||
| { | |||
| b2Assert(m_nodes[C->parent].child2 == iA); | |||
| m_nodes[C->parent].child2 = iC; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| m_root = iC; | |||
| } | |||
| // Rotate | |||
| if (F->height > G->height) | |||
| { | |||
| C->child2 = iF; | |||
| A->child2 = iG; | |||
| G->parent = iA; | |||
| A->aabb.Combine(B->aabb, G->aabb); | |||
| C->aabb.Combine(A->aabb, F->aabb); | |||
| A->height = 1 + b2Max(B->height, G->height); | |||
| C->height = 1 + b2Max(A->height, F->height); | |||
| } | |||
| else | |||
| { | |||
| C->child2 = iG; | |||
| A->child2 = iF; | |||
| F->parent = iA; | |||
| A->aabb.Combine(B->aabb, F->aabb); | |||
| C->aabb.Combine(A->aabb, G->aabb); | |||
| A->height = 1 + b2Max(B->height, F->height); | |||
| C->height = 1 + b2Max(A->height, G->height); | |||
| } | |||
| return iC; | |||
| } | |||
| // Rotate B up | |||
| if (balance < -1) | |||
| { | |||
| int32 iD = B->child1; | |||
| int32 iE = B->child2; | |||
| b2TreeNode* D = m_nodes + iD; | |||
| b2TreeNode* E = m_nodes + iE; | |||
| b2Assert(0 <= iD && iD < m_nodeCapacity); | |||
| b2Assert(0 <= iE && iE < m_nodeCapacity); | |||
| // Swap A and B | |||
| B->child1 = iA; | |||
| B->parent = A->parent; | |||
| A->parent = iB; | |||
| // A's old parent should point to B | |||
| if (B->parent != b2_nullNode) | |||
| { | |||
| if (m_nodes[B->parent].child1 == iA) | |||
| { | |||
| m_nodes[B->parent].child1 = iB; | |||
| } | |||
| else | |||
| { | |||
| b2Assert(m_nodes[B->parent].child2 == iA); | |||
| m_nodes[B->parent].child2 = iB; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| m_root = iB; | |||
| } | |||
| // Rotate | |||
| if (D->height > E->height) | |||
| { | |||
| B->child2 = iD; | |||
| A->child1 = iE; | |||
| E->parent = iA; | |||
| A->aabb.Combine(C->aabb, E->aabb); | |||
| B->aabb.Combine(A->aabb, D->aabb); | |||
| A->height = 1 + b2Max(C->height, E->height); | |||
| B->height = 1 + b2Max(A->height, D->height); | |||
| } | |||
| else | |||
| { | |||
| B->child2 = iE; | |||
| A->child1 = iD; | |||
| D->parent = iA; | |||
| A->aabb.Combine(C->aabb, D->aabb); | |||
| B->aabb.Combine(A->aabb, E->aabb); | |||
| A->height = 1 + b2Max(C->height, D->height); | |||
| B->height = 1 + b2Max(A->height, E->height); | |||
| } | |||
| return iB; | |||
| } | |||
| return iA; | |||
| } | |||
| int32 b2DynamicTree::GetHeight() const | |||
| { | |||
| if (m_root == b2_nullNode) | |||
| { | |||
| return 0; | |||
| } | |||
| return m_nodes[m_root].height; | |||
| } | |||
| // | |||
| float32 b2DynamicTree::GetAreaRatio() const | |||
| { | |||
| if (m_root == b2_nullNode) | |||
| { | |||
| return 0.0f; | |||
| } | |||
| const b2TreeNode* root = m_nodes + m_root; | |||
| float32 rootArea = root->aabb.GetPerimeter(); | |||
| float32 totalArea = 0.0f; | |||
| for (int32 i = 0; i < m_nodeCapacity; ++i) | |||
| { | |||
| const b2TreeNode* node = m_nodes + i; | |||
| if (node->height < 0) | |||
| { | |||
| // Free node in pool | |||
| continue; | |||
| } | |||
| totalArea += node->aabb.GetPerimeter(); | |||
| } | |||
| return totalArea / rootArea; | |||
| } | |||
| // Compute the height of a sub-tree. | |||
| int32 b2DynamicTree::ComputeHeight(int32 nodeId) const | |||
| { | |||
| b2Assert(0 <= nodeId && nodeId < m_nodeCapacity); | |||
| b2TreeNode* node = m_nodes + nodeId; | |||
| if (node->IsLeaf()) | |||
| { | |||
| return 0; | |||
| } | |||
| int32 height1 = ComputeHeight(node->child1); | |||
| int32 height2 = ComputeHeight(node->child2); | |||
| return 1 + b2Max(height1, height2); | |||
| } | |||
| int32 b2DynamicTree::ComputeHeight() const | |||
| { | |||
| int32 height = ComputeHeight(m_root); | |||
| return height; | |||
| } | |||
| void b2DynamicTree::ValidateStructure(int32 index) const | |||
| { | |||
| if (index == b2_nullNode) | |||
| { | |||
| return; | |||
| } | |||
| if (index == m_root) | |||
| { | |||
| b2Assert(m_nodes[index].parent == b2_nullNode); | |||
| } | |||
| const b2TreeNode* node = m_nodes + index; | |||
| int32 child1 = node->child1; | |||
| int32 child2 = node->child2; | |||
| if (node->IsLeaf()) | |||
| { | |||
| b2Assert(child1 == b2_nullNode); | |||
| b2Assert(child2 == b2_nullNode); | |||
| b2Assert(node->height == 0); | |||
| return; | |||
| } | |||
| b2Assert(0 <= child1 && child1 < m_nodeCapacity); | |||
| b2Assert(0 <= child2 && child2 < m_nodeCapacity); | |||
| b2Assert(m_nodes[child1].parent == index); | |||
| b2Assert(m_nodes[child2].parent == index); | |||
| ValidateStructure(child1); | |||
| ValidateStructure(child2); | |||
| } | |||
| void b2DynamicTree::ValidateMetrics(int32 index) const | |||
| { | |||
| if (index == b2_nullNode) | |||
| { | |||
| return; | |||
| } | |||
| const b2TreeNode* node = m_nodes + index; | |||
| int32 child1 = node->child1; | |||
| int32 child2 = node->child2; | |||
| if (node->IsLeaf()) | |||
| { | |||
| b2Assert(child1 == b2_nullNode); | |||
| b2Assert(child2 == b2_nullNode); | |||
| b2Assert(node->height == 0); | |||
| return; | |||
| } | |||
| b2Assert(0 <= child1 && child1 < m_nodeCapacity); | |||
| b2Assert(0 <= child2 && child2 < m_nodeCapacity); | |||
| int32 height1 = m_nodes[child1].height; | |||
| int32 height2 = m_nodes[child2].height; | |||
| int32 height; | |||
| height = 1 + b2Max(height1, height2); | |||
| b2Assert(node->height == height); | |||
| b2AABB aabb; | |||
| aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); | |||
| b2Assert(aabb.lowerBound == node->aabb.lowerBound); | |||
| b2Assert(aabb.upperBound == node->aabb.upperBound); | |||
| ValidateMetrics(child1); | |||
| ValidateMetrics(child2); | |||
| } | |||
| void b2DynamicTree::Validate() const | |||
| { | |||
| ValidateStructure(m_root); | |||
| ValidateMetrics(m_root); | |||
| int32 freeCount = 0; | |||
| int32 freeIndex = m_freeList; | |||
| while (freeIndex != b2_nullNode) | |||
| { | |||
| b2Assert(0 <= freeIndex && freeIndex < m_nodeCapacity); | |||
| freeIndex = m_nodes[freeIndex].next; | |||
| ++freeCount; | |||
| } | |||
| b2Assert(GetHeight() == ComputeHeight()); | |||
| b2Assert(m_nodeCount + freeCount == m_nodeCapacity); | |||
| } | |||
| int32 b2DynamicTree::GetMaxBalance() const | |||
| { | |||
| int32 maxBalance = 0; | |||
| for (int32 i = 0; i < m_nodeCapacity; ++i) | |||
| { | |||
| const b2TreeNode* node = m_nodes + i; | |||
| if (node->height <= 1) | |||
| { | |||
| continue; | |||
| } | |||
| b2Assert(node->IsLeaf() == false); | |||
| int32 child1 = node->child1; | |||
| int32 child2 = node->child2; | |||
| int32 balance = b2Abs(m_nodes[child2].height - m_nodes[child1].height); | |||
| maxBalance = b2Max(maxBalance, balance); | |||
| } | |||
| return maxBalance; | |||
| } | |||
| void b2DynamicTree::RebuildBottomUp() | |||
| { | |||
| int32* nodes = (int32*)b2Alloc(m_nodeCount * sizeof(int32)); | |||
| int32 count = 0; | |||
| // Build array of leaves. Free the rest. | |||
| for (int32 i = 0; i < m_nodeCapacity; ++i) | |||
| { | |||
| if (m_nodes[i].height < 0) | |||
| { | |||
| // free node in pool | |||
| continue; | |||
| } | |||
| if (m_nodes[i].IsLeaf()) | |||
| { | |||
| m_nodes[i].parent = b2_nullNode; | |||
| nodes[count] = i; | |||
| ++count; | |||
| } | |||
| else | |||
| { | |||
| FreeNode(i); | |||
| } | |||
| } | |||
| while (count > 1) | |||
| { | |||
| float32 minCost = b2_maxFloat; | |||
| int32 iMin = -1, jMin = -1; | |||
| for (int32 i = 0; i < count; ++i) | |||
| { | |||
| b2AABB aabbi = m_nodes[nodes[i]].aabb; | |||
| for (int32 j = i + 1; j < count; ++j) | |||
| { | |||
| b2AABB aabbj = m_nodes[nodes[j]].aabb; | |||
| b2AABB b; | |||
| b.Combine(aabbi, aabbj); | |||
| float32 cost = b.GetPerimeter(); | |||
| if (cost < minCost) | |||
| { | |||
| iMin = i; | |||
| jMin = j; | |||
| minCost = cost; | |||
| } | |||
| } | |||
| } | |||
| int32 index1 = nodes[iMin]; | |||
| int32 index2 = nodes[jMin]; | |||
| b2TreeNode* child1 = m_nodes + index1; | |||
| b2TreeNode* child2 = m_nodes + index2; | |||
| int32 parentIndex = AllocateNode(); | |||
| b2TreeNode* parent = m_nodes + parentIndex; | |||
| parent->child1 = index1; | |||
| parent->child2 = index2; | |||
| parent->height = 1 + b2Max(child1->height, child2->height); | |||
| parent->aabb.Combine(child1->aabb, child2->aabb); | |||
| parent->parent = b2_nullNode; | |||
| child1->parent = parentIndex; | |||
| child2->parent = parentIndex; | |||
| nodes[jMin] = nodes[count-1]; | |||
| nodes[iMin] = parentIndex; | |||
| --count; | |||
| } | |||
| m_root = nodes[0]; | |||
| b2Free(nodes); | |||
| Validate(); | |||
| } | |||
| @@ -0,0 +1,284 @@ | |||
| /* | |||
| * Copyright (c) 2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_DYNAMIC_TREE_H | |||
| #define B2_DYNAMIC_TREE_H | |||
| #include "b2Collision.h" | |||
| #include "../Common/b2GrowableStack.h" | |||
| #define b2_nullNode (-1) | |||
| /// A node in the dynamic tree. The client does not interact with this directly. | |||
| struct b2TreeNode | |||
| { | |||
| bool IsLeaf() const | |||
| { | |||
| return child1 == b2_nullNode; | |||
| } | |||
| /// Enlarged AABB | |||
| b2AABB aabb; | |||
| void* userData; | |||
| union | |||
| { | |||
| int32 parent; | |||
| int32 next; | |||
| }; | |||
| int32 child1; | |||
| int32 child2; | |||
| // leaf = 0, free node = -1 | |||
| int32 height; | |||
| }; | |||
| /// A dynamic AABB tree broad-phase, inspired by Nathanael Presson's btDbvt. | |||
| /// A dynamic tree arranges data in a binary tree to accelerate | |||
| /// queries such as volume queries and ray casts. Leafs are proxies | |||
| /// with an AABB. In the tree we expand the proxy AABB by b2_fatAABBFactor | |||
| /// so that the proxy AABB is bigger than the client object. This allows the client | |||
| /// object to move by small amounts without triggering a tree update. | |||
| /// | |||
| /// Nodes are pooled and relocatable, so we use node indices rather than pointers. | |||
| class b2DynamicTree | |||
| { | |||
| public: | |||
| /// Constructing the tree initializes the node pool. | |||
| b2DynamicTree(); | |||
| /// Destroy the tree, freeing the node pool. | |||
| ~b2DynamicTree(); | |||
| /// Create a proxy. Provide a tight fitting AABB and a userData pointer. | |||
| int32 CreateProxy(const b2AABB& aabb, void* userData); | |||
| /// Destroy a proxy. This asserts if the id is invalid. | |||
| void DestroyProxy(int32 proxyId); | |||
| /// Move a proxy with a swepted AABB. If the proxy has moved outside of its fattened AABB, | |||
| /// then the proxy is removed from the tree and re-inserted. Otherwise | |||
| /// the function returns immediately. | |||
| /// @return true if the proxy was re-inserted. | |||
| bool MoveProxy(int32 proxyId, const b2AABB& aabb1, const b2Vec2& displacement); | |||
| /// Get proxy user data. | |||
| /// @return the proxy user data or 0 if the id is invalid. | |||
| void* GetUserData(int32 proxyId) const; | |||
| /// Get the fat AABB for a proxy. | |||
| const b2AABB& GetFatAABB(int32 proxyId) const; | |||
| /// Query an AABB for overlapping proxies. The callback class | |||
| /// is called for each proxy that overlaps the supplied AABB. | |||
| template <typename T> | |||
| void Query(T* callback, const b2AABB& aabb) const; | |||
| /// Ray-cast against the proxies in the tree. This relies on the callback | |||
| /// to perform a exact ray-cast in the case were the proxy contains a shape. | |||
| /// The callback also performs the any collision filtering. This has performance | |||
| /// roughly equal to k * log(n), where k is the number of collisions and n is the | |||
| /// number of proxies in the tree. | |||
| /// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1). | |||
| /// @param callback a callback class that is called for each proxy that is hit by the ray. | |||
| template <typename T> | |||
| void RayCast(T* callback, const b2RayCastInput& input) const; | |||
| /// Validate this tree. For testing. | |||
| void Validate() const; | |||
| /// Compute the height of the binary tree in O(N) time. Should not be | |||
| /// called often. | |||
| int32 GetHeight() const; | |||
| /// Get the maximum balance of an node in the tree. The balance is the difference | |||
| /// in height of the two children of a node. | |||
| int32 GetMaxBalance() const; | |||
| /// Get the ratio of the sum of the node areas to the root area. | |||
| float32 GetAreaRatio() const; | |||
| /// Build an optimal tree. Very expensive. For testing. | |||
| void RebuildBottomUp(); | |||
| private: | |||
| int32 AllocateNode(); | |||
| void FreeNode(int32 node); | |||
| void InsertLeaf(int32 node); | |||
| void RemoveLeaf(int32 node); | |||
| int32 Balance(int32 index); | |||
| int32 ComputeHeight() const; | |||
| int32 ComputeHeight(int32 nodeId) const; | |||
| void ValidateStructure(int32 index) const; | |||
| void ValidateMetrics(int32 index) const; | |||
| int32 m_root; | |||
| b2TreeNode* m_nodes; | |||
| int32 m_nodeCount; | |||
| int32 m_nodeCapacity; | |||
| int32 m_freeList; | |||
| /// This is used to incrementally traverse the tree for re-balancing. | |||
| uint32 m_path; | |||
| int32 m_insertionCount; | |||
| }; | |||
| inline void* b2DynamicTree::GetUserData(int32 proxyId) const | |||
| { | |||
| b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); | |||
| return m_nodes[proxyId].userData; | |||
| } | |||
| inline const b2AABB& b2DynamicTree::GetFatAABB(int32 proxyId) const | |||
| { | |||
| b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); | |||
| return m_nodes[proxyId].aabb; | |||
| } | |||
| template <typename T> | |||
| inline void b2DynamicTree::Query(T* callback, const b2AABB& aabb) const | |||
| { | |||
| b2GrowableStack<int32, 256> stack; | |||
| stack.Push(m_root); | |||
| while (stack.GetCount() > 0) | |||
| { | |||
| int32 nodeId = stack.Pop(); | |||
| if (nodeId == b2_nullNode) | |||
| { | |||
| continue; | |||
| } | |||
| const b2TreeNode* node = m_nodes + nodeId; | |||
| if (b2TestOverlap(node->aabb, aabb)) | |||
| { | |||
| if (node->IsLeaf()) | |||
| { | |||
| bool proceed = callback->QueryCallback(nodeId); | |||
| if (proceed == false) | |||
| { | |||
| return; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| stack.Push(node->child1); | |||
| stack.Push(node->child2); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| template <typename T> | |||
| inline void b2DynamicTree::RayCast(T* callback, const b2RayCastInput& input) const | |||
| { | |||
| b2Vec2 p1 = input.p1; | |||
| b2Vec2 p2 = input.p2; | |||
| b2Vec2 r = p2 - p1; | |||
| b2Assert(r.LengthSquared() > 0.0f); | |||
| r.Normalize(); | |||
| // v is perpendicular to the segment. | |||
| b2Vec2 v = b2Cross(1.0f, r); | |||
| b2Vec2 abs_v = b2Abs(v); | |||
| // Separating axis for segment (Gino, p80). | |||
| // |dot(v, p1 - c)| > dot(|v|, h) | |||
| float32 maxFraction = input.maxFraction; | |||
| // Build a bounding box for the segment. | |||
| b2AABB segmentAABB; | |||
| { | |||
| b2Vec2 t = p1 + maxFraction * (p2 - p1); | |||
| segmentAABB.lowerBound = b2Min(p1, t); | |||
| segmentAABB.upperBound = b2Max(p1, t); | |||
| } | |||
| b2GrowableStack<int32, 256> stack; | |||
| stack.Push(m_root); | |||
| while (stack.GetCount() > 0) | |||
| { | |||
| int32 nodeId = stack.Pop(); | |||
| if (nodeId == b2_nullNode) | |||
| { | |||
| continue; | |||
| } | |||
| const b2TreeNode* node = m_nodes + nodeId; | |||
| if (b2TestOverlap(node->aabb, segmentAABB) == false) | |||
| { | |||
| continue; | |||
| } | |||
| // Separating axis for segment (Gino, p80). | |||
| // |dot(v, p1 - c)| > dot(|v|, h) | |||
| b2Vec2 c = node->aabb.GetCenter(); | |||
| b2Vec2 h = node->aabb.GetExtents(); | |||
| float32 separation = b2Abs(b2Dot(v, p1 - c)) - b2Dot(abs_v, h); | |||
| if (separation > 0.0f) | |||
| { | |||
| continue; | |||
| } | |||
| if (node->IsLeaf()) | |||
| { | |||
| b2RayCastInput subInput; | |||
| subInput.p1 = input.p1; | |||
| subInput.p2 = input.p2; | |||
| subInput.maxFraction = maxFraction; | |||
| float32 value = callback->RayCastCallback(subInput, nodeId); | |||
| if (value == 0.0f) | |||
| { | |||
| // The client has terminated the ray cast. | |||
| return; | |||
| } | |||
| if (value > 0.0f) | |||
| { | |||
| // Update segment bounding box. | |||
| maxFraction = value; | |||
| b2Vec2 t = p1 + maxFraction * (p2 - p1); | |||
| segmentAABB.lowerBound = b2Min(p1, t); | |||
| segmentAABB.upperBound = b2Max(p1, t); | |||
| } | |||
| } | |||
| else | |||
| { | |||
| stack.Push(node->child1); | |||
| stack.Push(node->child2); | |||
| } | |||
| } | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,476 @@ | |||
| /* | |||
| * Copyright (c) 2007-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Collision.h" | |||
| #include "b2Distance.h" | |||
| #include "b2TimeOfImpact.h" | |||
| #include "Shapes/b2CircleShape.h" | |||
| #include "Shapes/b2PolygonShape.h" | |||
| #include <cstdio> | |||
| using namespace std; | |||
| int32 b2_toiCalls, b2_toiIters, b2_toiMaxIters; | |||
| int32 b2_toiRootIters, b2_toiMaxRootIters; | |||
| struct b2SeparationFunction | |||
| { | |||
| enum Type | |||
| { | |||
| e_points, | |||
| e_faceA, | |||
| e_faceB | |||
| }; | |||
| // TODO_ERIN might not need to return the separation | |||
| float32 Initialize(const b2SimplexCache* cache, | |||
| const b2DistanceProxy* proxyA, const b2Sweep& sweepA, | |||
| const b2DistanceProxy* proxyB, const b2Sweep& sweepB, | |||
| float32 t1) | |||
| { | |||
| m_proxyA = proxyA; | |||
| m_proxyB = proxyB; | |||
| int32 count = cache->count; | |||
| b2Assert(0 < count && count < 3); | |||
| m_sweepA = sweepA; | |||
| m_sweepB = sweepB; | |||
| b2Transform xfA, xfB; | |||
| m_sweepA.GetTransform(&xfA, t1); | |||
| m_sweepB.GetTransform(&xfB, t1); | |||
| if (count == 1) | |||
| { | |||
| m_type = e_points; | |||
| b2Vec2 localPointA = m_proxyA->GetVertex(cache->indexA[0]); | |||
| b2Vec2 localPointB = m_proxyB->GetVertex(cache->indexB[0]); | |||
| b2Vec2 pointA = b2Mul(xfA, localPointA); | |||
| b2Vec2 pointB = b2Mul(xfB, localPointB); | |||
| m_axis = pointB - pointA; | |||
| float32 s = m_axis.Normalize(); | |||
| return s; | |||
| } | |||
| else if (cache->indexA[0] == cache->indexA[1]) | |||
| { | |||
| // Two points on B and one on A. | |||
| m_type = e_faceB; | |||
| b2Vec2 localPointB1 = proxyB->GetVertex(cache->indexB[0]); | |||
| b2Vec2 localPointB2 = proxyB->GetVertex(cache->indexB[1]); | |||
| m_axis = b2Cross(localPointB2 - localPointB1, 1.0f); | |||
| m_axis.Normalize(); | |||
| b2Vec2 normal = b2Mul(xfB.q, m_axis); | |||
| m_localPoint = 0.5f * (localPointB1 + localPointB2); | |||
| b2Vec2 pointB = b2Mul(xfB, m_localPoint); | |||
| b2Vec2 localPointA = proxyA->GetVertex(cache->indexA[0]); | |||
| b2Vec2 pointA = b2Mul(xfA, localPointA); | |||
| float32 s = b2Dot(pointA - pointB, normal); | |||
| if (s < 0.0f) | |||
| { | |||
| m_axis = -m_axis; | |||
| s = -s; | |||
| } | |||
| return s; | |||
| } | |||
| else | |||
| { | |||
| // Two points on A and one or two points on B. | |||
| m_type = e_faceA; | |||
| b2Vec2 localPointA1 = m_proxyA->GetVertex(cache->indexA[0]); | |||
| b2Vec2 localPointA2 = m_proxyA->GetVertex(cache->indexA[1]); | |||
| m_axis = b2Cross(localPointA2 - localPointA1, 1.0f); | |||
| m_axis.Normalize(); | |||
| b2Vec2 normal = b2Mul(xfA.q, m_axis); | |||
| m_localPoint = 0.5f * (localPointA1 + localPointA2); | |||
| b2Vec2 pointA = b2Mul(xfA, m_localPoint); | |||
| b2Vec2 localPointB = m_proxyB->GetVertex(cache->indexB[0]); | |||
| b2Vec2 pointB = b2Mul(xfB, localPointB); | |||
| float32 s = b2Dot(pointB - pointA, normal); | |||
| if (s < 0.0f) | |||
| { | |||
| m_axis = -m_axis; | |||
| s = -s; | |||
| } | |||
| return s; | |||
| } | |||
| } | |||
| float32 FindMinSeparation(int32* indexA, int32* indexB, float32 t) const | |||
| { | |||
| b2Transform xfA, xfB; | |||
| m_sweepA.GetTransform(&xfA, t); | |||
| m_sweepB.GetTransform(&xfB, t); | |||
| switch (m_type) | |||
| { | |||
| case e_points: | |||
| { | |||
| b2Vec2 axisA = b2MulT(xfA.q, m_axis); | |||
| b2Vec2 axisB = b2MulT(xfB.q, -m_axis); | |||
| *indexA = m_proxyA->GetSupport(axisA); | |||
| *indexB = m_proxyB->GetSupport(axisB); | |||
| b2Vec2 localPointA = m_proxyA->GetVertex(*indexA); | |||
| b2Vec2 localPointB = m_proxyB->GetVertex(*indexB); | |||
| b2Vec2 pointA = b2Mul(xfA, localPointA); | |||
| b2Vec2 pointB = b2Mul(xfB, localPointB); | |||
| float32 separation = b2Dot(pointB - pointA, m_axis); | |||
| return separation; | |||
| } | |||
| case e_faceA: | |||
| { | |||
| b2Vec2 normal = b2Mul(xfA.q, m_axis); | |||
| b2Vec2 pointA = b2Mul(xfA, m_localPoint); | |||
| b2Vec2 axisB = b2MulT(xfB.q, -normal); | |||
| *indexA = -1; | |||
| *indexB = m_proxyB->GetSupport(axisB); | |||
| b2Vec2 localPointB = m_proxyB->GetVertex(*indexB); | |||
| b2Vec2 pointB = b2Mul(xfB, localPointB); | |||
| float32 separation = b2Dot(pointB - pointA, normal); | |||
| return separation; | |||
| } | |||
| case e_faceB: | |||
| { | |||
| b2Vec2 normal = b2Mul(xfB.q, m_axis); | |||
| b2Vec2 pointB = b2Mul(xfB, m_localPoint); | |||
| b2Vec2 axisA = b2MulT(xfA.q, -normal); | |||
| *indexB = -1; | |||
| *indexA = m_proxyA->GetSupport(axisA); | |||
| b2Vec2 localPointA = m_proxyA->GetVertex(*indexA); | |||
| b2Vec2 pointA = b2Mul(xfA, localPointA); | |||
| float32 separation = b2Dot(pointA - pointB, normal); | |||
| return separation; | |||
| } | |||
| default: | |||
| b2Assert(false); | |||
| *indexA = -1; | |||
| *indexB = -1; | |||
| return 0.0f; | |||
| } | |||
| } | |||
| float32 Evaluate(int32 indexA, int32 indexB, float32 t) const | |||
| { | |||
| b2Transform xfA, xfB; | |||
| m_sweepA.GetTransform(&xfA, t); | |||
| m_sweepB.GetTransform(&xfB, t); | |||
| switch (m_type) | |||
| { | |||
| case e_points: | |||
| { | |||
| b2Vec2 localPointA = m_proxyA->GetVertex(indexA); | |||
| b2Vec2 localPointB = m_proxyB->GetVertex(indexB); | |||
| b2Vec2 pointA = b2Mul(xfA, localPointA); | |||
| b2Vec2 pointB = b2Mul(xfB, localPointB); | |||
| float32 separation = b2Dot(pointB - pointA, m_axis); | |||
| return separation; | |||
| } | |||
| case e_faceA: | |||
| { | |||
| b2Vec2 normal = b2Mul(xfA.q, m_axis); | |||
| b2Vec2 pointA = b2Mul(xfA, m_localPoint); | |||
| b2Vec2 localPointB = m_proxyB->GetVertex(indexB); | |||
| b2Vec2 pointB = b2Mul(xfB, localPointB); | |||
| float32 separation = b2Dot(pointB - pointA, normal); | |||
| return separation; | |||
| } | |||
| case e_faceB: | |||
| { | |||
| b2Vec2 normal = b2Mul(xfB.q, m_axis); | |||
| b2Vec2 pointB = b2Mul(xfB, m_localPoint); | |||
| b2Vec2 localPointA = m_proxyA->GetVertex(indexA); | |||
| b2Vec2 pointA = b2Mul(xfA, localPointA); | |||
| float32 separation = b2Dot(pointA - pointB, normal); | |||
| return separation; | |||
| } | |||
| default: | |||
| b2Assert(false); | |||
| return 0.0f; | |||
| } | |||
| } | |||
| const b2DistanceProxy* m_proxyA; | |||
| const b2DistanceProxy* m_proxyB; | |||
| b2Sweep m_sweepA, m_sweepB; | |||
| Type m_type; | |||
| b2Vec2 m_localPoint; | |||
| b2Vec2 m_axis; | |||
| }; | |||
| // CCD via the local separating axis method. This seeks progression | |||
| // by computing the largest time at which separation is maintained. | |||
| void b2TimeOfImpact(b2TOIOutput* output, const b2TOIInput* input) | |||
| { | |||
| ++b2_toiCalls; | |||
| output->state = b2TOIOutput::e_unknown; | |||
| output->t = input->tMax; | |||
| const b2DistanceProxy* proxyA = &input->proxyA; | |||
| const b2DistanceProxy* proxyB = &input->proxyB; | |||
| b2Sweep sweepA = input->sweepA; | |||
| b2Sweep sweepB = input->sweepB; | |||
| // Large rotations can make the root finder fail, so we normalize the | |||
| // sweep angles. | |||
| sweepA.Normalize(); | |||
| sweepB.Normalize(); | |||
| float32 tMax = input->tMax; | |||
| float32 totalRadius = proxyA->m_radius + proxyB->m_radius; | |||
| float32 target = b2Max(b2_linearSlop, totalRadius - 3.0f * b2_linearSlop); | |||
| float32 tolerance = 0.25f * b2_linearSlop; | |||
| b2Assert(target > tolerance); | |||
| float32 t1 = 0.0f; | |||
| const int32 k_maxIterations = 20; // TODO_ERIN b2Settings | |||
| int32 iter = 0; | |||
| // Prepare input for distance query. | |||
| b2SimplexCache cache; | |||
| cache.count = 0; | |||
| b2DistanceInput distanceInput; | |||
| distanceInput.proxyA = input->proxyA; | |||
| distanceInput.proxyB = input->proxyB; | |||
| distanceInput.useRadii = false; | |||
| // The outer loop progressively attempts to compute new separating axes. | |||
| // This loop terminates when an axis is repeated (no progress is made). | |||
| for(;;) | |||
| { | |||
| b2Transform xfA, xfB; | |||
| sweepA.GetTransform(&xfA, t1); | |||
| sweepB.GetTransform(&xfB, t1); | |||
| // Get the distance between shapes. We can also use the results | |||
| // to get a separating axis. | |||
| distanceInput.transformA = xfA; | |||
| distanceInput.transformB = xfB; | |||
| b2DistanceOutput distanceOutput; | |||
| b2Distance(&distanceOutput, &cache, &distanceInput); | |||
| // If the shapes are overlapped, we give up on continuous collision. | |||
| if (distanceOutput.distance <= 0.0f) | |||
| { | |||
| // Failure! | |||
| output->state = b2TOIOutput::e_overlapped; | |||
| output->t = 0.0f; | |||
| break; | |||
| } | |||
| if (distanceOutput.distance < target + tolerance) | |||
| { | |||
| // Victory! | |||
| output->state = b2TOIOutput::e_touching; | |||
| output->t = t1; | |||
| break; | |||
| } | |||
| // Initialize the separating axis. | |||
| b2SeparationFunction fcn; | |||
| fcn.Initialize(&cache, proxyA, sweepA, proxyB, sweepB, t1); | |||
| #if 0 | |||
| // Dump the curve seen by the root finder | |||
| { | |||
| const int32 N = 100; | |||
| float32 dx = 1.0f / N; | |||
| float32 xs[N+1]; | |||
| float32 fs[N+1]; | |||
| float32 x = 0.0f; | |||
| for (int32 i = 0; i <= N; ++i) | |||
| { | |||
| sweepA.GetTransform(&xfA, x); | |||
| sweepB.GetTransform(&xfB, x); | |||
| float32 f = fcn.Evaluate(xfA, xfB) - target; | |||
| printf("%g %g\n", x, f); | |||
| xs[i] = x; | |||
| fs[i] = f; | |||
| x += dx; | |||
| } | |||
| } | |||
| #endif | |||
| // Compute the TOI on the separating axis. We do this by successively | |||
| // resolving the deepest point. This loop is bounded by the number of vertices. | |||
| bool done = false; | |||
| float32 t2 = tMax; | |||
| int32 pushBackIter = 0; | |||
| for (;;) | |||
| { | |||
| // Find the deepest point at t2. Store the witness point indices. | |||
| int32 indexA, indexB; | |||
| float32 s2 = fcn.FindMinSeparation(&indexA, &indexB, t2); | |||
| // Is the final configuration separated? | |||
| if (s2 > target + tolerance) | |||
| { | |||
| // Victory! | |||
| output->state = b2TOIOutput::e_separated; | |||
| output->t = tMax; | |||
| done = true; | |||
| break; | |||
| } | |||
| // Has the separation reached tolerance? | |||
| if (s2 > target - tolerance) | |||
| { | |||
| // Advance the sweeps | |||
| t1 = t2; | |||
| break; | |||
| } | |||
| // Compute the initial separation of the witness points. | |||
| float32 s1 = fcn.Evaluate(indexA, indexB, t1); | |||
| // Check for initial overlap. This might happen if the root finder | |||
| // runs out of iterations. | |||
| if (s1 < target - tolerance) | |||
| { | |||
| output->state = b2TOIOutput::e_failed; | |||
| output->t = t1; | |||
| done = true; | |||
| break; | |||
| } | |||
| // Check for touching | |||
| if (s1 <= target + tolerance) | |||
| { | |||
| // Victory! t1 should hold the TOI (could be 0.0). | |||
| output->state = b2TOIOutput::e_touching; | |||
| output->t = t1; | |||
| done = true; | |||
| break; | |||
| } | |||
| // Compute 1D root of: f(x) - target = 0 | |||
| int32 rootIterCount = 0; | |||
| float32 a1 = t1, a2 = t2; | |||
| for (;;) | |||
| { | |||
| // Use a mix of the secant rule and bisection. | |||
| float32 t; | |||
| if (rootIterCount & 1) | |||
| { | |||
| // Secant rule to improve convergence. | |||
| t = a1 + (target - s1) * (a2 - a1) / (s2 - s1); | |||
| } | |||
| else | |||
| { | |||
| // Bisection to guarantee progress. | |||
| t = 0.5f * (a1 + a2); | |||
| } | |||
| float32 s = fcn.Evaluate(indexA, indexB, t); | |||
| if (b2Abs(s - target) < tolerance) | |||
| { | |||
| // t2 holds a tentative value for t1 | |||
| t2 = t; | |||
| break; | |||
| } | |||
| // Ensure we continue to bracket the root. | |||
| if (s > target) | |||
| { | |||
| a1 = t; | |||
| s1 = s; | |||
| } | |||
| else | |||
| { | |||
| a2 = t; | |||
| s2 = s; | |||
| } | |||
| ++rootIterCount; | |||
| ++b2_toiRootIters; | |||
| if (rootIterCount == 50) | |||
| { | |||
| break; | |||
| } | |||
| } | |||
| b2_toiMaxRootIters = b2Max(b2_toiMaxRootIters, rootIterCount); | |||
| ++pushBackIter; | |||
| if (pushBackIter == b2_maxPolygonVertices) | |||
| { | |||
| break; | |||
| } | |||
| } | |||
| ++iter; | |||
| ++b2_toiIters; | |||
| if (done) | |||
| { | |||
| break; | |||
| } | |||
| if (iter == k_maxIterations) | |||
| { | |||
| // Root finder got stuck. Semi-victory. | |||
| output->state = b2TOIOutput::e_failed; | |||
| output->t = t1; | |||
| break; | |||
| } | |||
| } | |||
| b2_toiMaxIters = b2Max(b2_toiMaxIters, iter); | |||
| } | |||
| @@ -0,0 +1,58 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_TIME_OF_IMPACT_H | |||
| #define B2_TIME_OF_IMPACT_H | |||
| #include "../Common/b2Math.h" | |||
| #include "../Collision/b2Distance.h" | |||
| /// Input parameters for b2TimeOfImpact | |||
| struct b2TOIInput | |||
| { | |||
| b2DistanceProxy proxyA; | |||
| b2DistanceProxy proxyB; | |||
| b2Sweep sweepA; | |||
| b2Sweep sweepB; | |||
| float32 tMax; // defines sweep interval [0, tMax] | |||
| }; | |||
| // Output parameters for b2TimeOfImpact. | |||
| struct b2TOIOutput | |||
| { | |||
| enum State | |||
| { | |||
| e_unknown, | |||
| e_failed, | |||
| e_overlapped, | |||
| e_touching, | |||
| e_separated | |||
| }; | |||
| State state; | |||
| float32 t; | |||
| }; | |||
| /// Compute the upper bound on time before two shapes penetrate. Time is represented as | |||
| /// a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate, | |||
| /// non-tunneling collision. If you change the time interval, you should call this function | |||
| /// again. | |||
| /// Note: use b2Distance to compute the contact point and normal at the time of impact. | |||
| void b2TimeOfImpact(b2TOIOutput* output, const b2TOIInput* input); | |||
| #endif | |||
| @@ -0,0 +1,217 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2BlockAllocator.h" | |||
| #include <cstdlib> | |||
| #include <climits> | |||
| #include <cstring> | |||
| #include <memory> | |||
| using namespace std; | |||
| int32 b2BlockAllocator::s_blockSizes[b2_blockSizes] = | |||
| { | |||
| 16, // 0 | |||
| 32, // 1 | |||
| 64, // 2 | |||
| 96, // 3 | |||
| 128, // 4 | |||
| 160, // 5 | |||
| 192, // 6 | |||
| 224, // 7 | |||
| 256, // 8 | |||
| 320, // 9 | |||
| 384, // 10 | |||
| 448, // 11 | |||
| 512, // 12 | |||
| 640, // 13 | |||
| }; | |||
| uint8 b2BlockAllocator::s_blockSizeLookup[b2_maxBlockSize + 1]; | |||
| bool b2BlockAllocator::s_blockSizeLookupInitialized; | |||
| struct b2Chunk | |||
| { | |||
| int32 blockSize; | |||
| b2Block* blocks; | |||
| }; | |||
| struct b2Block | |||
| { | |||
| b2Block* next; | |||
| }; | |||
| b2BlockAllocator::b2BlockAllocator() | |||
| { | |||
| b2Assert(b2_blockSizes < UCHAR_MAX); | |||
| m_chunkSpace = b2_chunkArrayIncrement; | |||
| m_chunkCount = 0; | |||
| m_chunks = (b2Chunk*)b2Alloc(m_chunkSpace * sizeof(b2Chunk)); | |||
| memset(m_chunks, 0, m_chunkSpace * sizeof(b2Chunk)); | |||
| memset(m_freeLists, 0, sizeof(m_freeLists)); | |||
| if (s_blockSizeLookupInitialized == false) | |||
| { | |||
| int32 j = 0; | |||
| for (int32 i = 1; i <= b2_maxBlockSize; ++i) | |||
| { | |||
| b2Assert(j < b2_blockSizes); | |||
| if (i <= s_blockSizes[j]) | |||
| { | |||
| s_blockSizeLookup[i] = (uint8)j; | |||
| } | |||
| else | |||
| { | |||
| ++j; | |||
| s_blockSizeLookup[i] = (uint8)j; | |||
| } | |||
| } | |||
| s_blockSizeLookupInitialized = true; | |||
| } | |||
| } | |||
| b2BlockAllocator::~b2BlockAllocator() | |||
| { | |||
| for (int32 i = 0; i < m_chunkCount; ++i) | |||
| { | |||
| b2Free(m_chunks[i].blocks); | |||
| } | |||
| b2Free(m_chunks); | |||
| } | |||
| void* b2BlockAllocator::Allocate(int32 size) | |||
| { | |||
| if (size == 0) | |||
| return NULL; | |||
| b2Assert(0 < size); | |||
| if (size > b2_maxBlockSize) | |||
| { | |||
| return b2Alloc(size); | |||
| } | |||
| int32 index = s_blockSizeLookup[size]; | |||
| b2Assert(0 <= index && index < b2_blockSizes); | |||
| if (m_freeLists[index]) | |||
| { | |||
| b2Block* block = m_freeLists[index]; | |||
| m_freeLists[index] = block->next; | |||
| return block; | |||
| } | |||
| else | |||
| { | |||
| if (m_chunkCount == m_chunkSpace) | |||
| { | |||
| b2Chunk* oldChunks = m_chunks; | |||
| m_chunkSpace += b2_chunkArrayIncrement; | |||
| m_chunks = (b2Chunk*)b2Alloc(m_chunkSpace * sizeof(b2Chunk)); | |||
| memcpy(m_chunks, oldChunks, m_chunkCount * sizeof(b2Chunk)); | |||
| memset(m_chunks + m_chunkCount, 0, b2_chunkArrayIncrement * sizeof(b2Chunk)); | |||
| b2Free(oldChunks); | |||
| } | |||
| b2Chunk* chunk = m_chunks + m_chunkCount; | |||
| chunk->blocks = (b2Block*)b2Alloc(b2_chunkSize); | |||
| #if defined(_DEBUG) | |||
| memset(chunk->blocks, 0xcd, b2_chunkSize); | |||
| #endif | |||
| int32 blockSize = s_blockSizes[index]; | |||
| chunk->blockSize = blockSize; | |||
| int32 blockCount = b2_chunkSize / blockSize; | |||
| b2Assert(blockCount * blockSize <= b2_chunkSize); | |||
| for (int32 i = 0; i < blockCount - 1; ++i) | |||
| { | |||
| b2Block* block = (b2Block*)((int8*)chunk->blocks + blockSize * i); | |||
| b2Block* next = (b2Block*)((int8*)chunk->blocks + blockSize * (i + 1)); | |||
| block->next = next; | |||
| } | |||
| b2Block* last = (b2Block*)((int8*)chunk->blocks + blockSize * (blockCount - 1)); | |||
| last->next = NULL; | |||
| m_freeLists[index] = chunk->blocks->next; | |||
| ++m_chunkCount; | |||
| return chunk->blocks; | |||
| } | |||
| } | |||
| void b2BlockAllocator::Free(void* p, int32 size) | |||
| { | |||
| if (size == 0) | |||
| { | |||
| return; | |||
| } | |||
| b2Assert(0 < size); | |||
| if (size > b2_maxBlockSize) | |||
| { | |||
| b2Free(p); | |||
| return; | |||
| } | |||
| int32 index = s_blockSizeLookup[size]; | |||
| b2Assert(0 <= index && index < b2_blockSizes); | |||
| #ifdef _DEBUG | |||
| // Verify the memory address and size is valid. | |||
| int32 blockSize = s_blockSizes[index]; | |||
| bool found = false; | |||
| for (int32 i = 0; i < m_chunkCount; ++i) | |||
| { | |||
| b2Chunk* chunk = m_chunks + i; | |||
| if (chunk->blockSize != blockSize) | |||
| { | |||
| b2Assert( (int8*)p + blockSize <= (int8*)chunk->blocks || | |||
| (int8*)chunk->blocks + b2_chunkSize <= (int8*)p); | |||
| } | |||
| else | |||
| { | |||
| if ((int8*)chunk->blocks <= (int8*)p && (int8*)p + blockSize <= (int8*)chunk->blocks + b2_chunkSize) | |||
| { | |||
| found = true; | |||
| } | |||
| } | |||
| } | |||
| b2Assert(found); | |||
| memset(p, 0xfd, blockSize); | |||
| #endif | |||
| b2Block* block = (b2Block*)p; | |||
| block->next = m_freeLists[index]; | |||
| m_freeLists[index] = block; | |||
| } | |||
| void b2BlockAllocator::Clear() | |||
| { | |||
| for (int32 i = 0; i < m_chunkCount; ++i) | |||
| { | |||
| b2Free(m_chunks[i].blocks); | |||
| } | |||
| m_chunkCount = 0; | |||
| memset(m_chunks, 0, m_chunkSpace * sizeof(b2Chunk)); | |||
| memset(m_freeLists, 0, sizeof(m_freeLists)); | |||
| } | |||
| @@ -0,0 +1,62 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_BLOCK_ALLOCATOR_H | |||
| #define B2_BLOCK_ALLOCATOR_H | |||
| #include "b2Settings.h" | |||
| const int32 b2_chunkSize = 16 * 1024; | |||
| const int32 b2_maxBlockSize = 640; | |||
| const int32 b2_blockSizes = 14; | |||
| const int32 b2_chunkArrayIncrement = 128; | |||
| struct b2Block; | |||
| struct b2Chunk; | |||
| /// This is a small object allocator used for allocating small | |||
| /// objects that persist for more than one time step. | |||
| /// See: http://www.codeproject.com/useritems/Small_Block_Allocator.asp | |||
| class b2BlockAllocator | |||
| { | |||
| public: | |||
| b2BlockAllocator(); | |||
| ~b2BlockAllocator(); | |||
| /// Allocate memory. This will use b2Alloc if the size is larger than b2_maxBlockSize. | |||
| void* Allocate(int32 size); | |||
| /// Free memory. This will use b2Free if the size is larger than b2_maxBlockSize. | |||
| void Free(void* p, int32 size); | |||
| void Clear(); | |||
| private: | |||
| b2Chunk* m_chunks; | |||
| int32 m_chunkCount; | |||
| int32 m_chunkSpace; | |||
| b2Block* m_freeLists[b2_blockSizes]; | |||
| static int32 s_blockSizes[b2_blockSizes]; | |||
| static uint8 s_blockSizeLookup[b2_maxBlockSize + 1]; | |||
| static bool s_blockSizeLookupInitialized; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,44 @@ | |||
| /* | |||
| * Copyright (c) 2011 Erin Catto http://box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Draw.h" | |||
| b2Draw::b2Draw() | |||
| { | |||
| m_drawFlags = 0; | |||
| } | |||
| void b2Draw::SetFlags(uint32 flags) | |||
| { | |||
| m_drawFlags = flags; | |||
| } | |||
| uint32 b2Draw::GetFlags() const | |||
| { | |||
| return m_drawFlags; | |||
| } | |||
| void b2Draw::AppendFlags(uint32 flags) | |||
| { | |||
| m_drawFlags |= flags; | |||
| } | |||
| void b2Draw::ClearFlags(uint32 flags) | |||
| { | |||
| m_drawFlags &= ~flags; | |||
| } | |||
| @@ -0,0 +1,87 @@ | |||
| /* | |||
| * Copyright (c) 2011 Erin Catto http://box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef BOX2D_DRAW_H | |||
| #define BOX2D_DRAW_H | |||
| #include "b2Math.h" | |||
| /// Color for debug drawing. Each value has the range [0,1]. | |||
| struct b2Color | |||
| { | |||
| b2Color() {} | |||
| b2Color(float32 r, float32 g, float32 b) : r(r), g(g), b(b) {} | |||
| void Set(float32 ri, float32 gi, float32 bi) { r = ri; g = gi; b = bi; } | |||
| float32 r, g, b; | |||
| }; | |||
| /// Implement and register this class with a b2World to provide debug drawing of physics | |||
| /// entities in your game. | |||
| class b2Draw | |||
| { | |||
| public: | |||
| b2Draw(); | |||
| virtual ~b2Draw() {} | |||
| enum | |||
| { | |||
| e_shapeBit = 0x0001, ///< draw shapes | |||
| e_jointBit = 0x0002, ///< draw joint connections | |||
| e_aabbBit = 0x0004, ///< draw axis aligned bounding boxes | |||
| e_pairBit = 0x0008, ///< draw broad-phase pairs | |||
| e_centerOfMassBit = 0x0010 ///< draw center of mass frame | |||
| }; | |||
| /// Set the drawing flags. | |||
| void SetFlags(uint32 flags); | |||
| /// Get the drawing flags. | |||
| uint32 GetFlags() const; | |||
| /// Append flags to the current flags. | |||
| void AppendFlags(uint32 flags); | |||
| /// Clear flags from the current flags. | |||
| void ClearFlags(uint32 flags); | |||
| /// Draw a closed polygon provided in CCW order. | |||
| virtual void DrawPolygon(const b2Vec2* vertices, int32 vertexCount, const b2Color& color) = 0; | |||
| /// Draw a solid closed polygon provided in CCW order. | |||
| virtual void DrawSolidPolygon(const b2Vec2* vertices, int32 vertexCount, const b2Color& color) = 0; | |||
| /// Draw a circle. | |||
| virtual void DrawCircle(const b2Vec2& center, float32 radius, const b2Color& color) = 0; | |||
| /// Draw a solid circle. | |||
| virtual void DrawSolidCircle(const b2Vec2& center, float32 radius, const b2Vec2& axis, const b2Color& color) = 0; | |||
| /// Draw a line segment. | |||
| virtual void DrawSegment(const b2Vec2& p1, const b2Vec2& p2, const b2Color& color) = 0; | |||
| /// Draw a transform. Choose your own length scale. | |||
| /// @param xf a transform. | |||
| virtual void DrawTransform(const b2Transform& xf) = 0; | |||
| protected: | |||
| uint32 m_drawFlags; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,86 @@ | |||
| /* | |||
| * Copyright (c) 2010 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_GROWABLE_STACK_H | |||
| #define B2_GROWABLE_STACK_H | |||
| #include "b2Settings.h" | |||
| #include <cstring> | |||
| /// This is a growable LIFO stack with an initial capacity of N. | |||
| /// If the stack size exceeds the initial capacity, the heap is used | |||
| /// to increase the size of the stack. | |||
| template <typename T, int32 N> | |||
| class b2GrowableStack | |||
| { | |||
| public: | |||
| b2GrowableStack() | |||
| { | |||
| m_stack = m_array; | |||
| m_count = 0; | |||
| m_capacity = N; | |||
| } | |||
| ~b2GrowableStack() | |||
| { | |||
| if (m_stack != m_array) | |||
| { | |||
| b2Free(m_stack); | |||
| m_stack = NULL; | |||
| } | |||
| } | |||
| void Push(const T& element) | |||
| { | |||
| if (m_count == m_capacity) | |||
| { | |||
| T* old = m_stack; | |||
| m_capacity *= 2; | |||
| m_stack = (T*)b2Alloc(m_capacity * sizeof(T)); | |||
| std::memcpy(m_stack, old, m_count * sizeof(T)); | |||
| if (old != m_array) | |||
| { | |||
| b2Free(old); | |||
| } | |||
| } | |||
| m_stack[m_count] = element; | |||
| ++m_count; | |||
| } | |||
| T Pop() | |||
| { | |||
| b2Assert(m_count > 0); | |||
| --m_count; | |||
| return m_stack[m_count]; | |||
| } | |||
| int32 GetCount() | |||
| { | |||
| return m_count; | |||
| } | |||
| private: | |||
| T* m_stack; | |||
| T m_array[N]; | |||
| int32 m_count; | |||
| int32 m_capacity; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,94 @@ | |||
| /* | |||
| * Copyright (c) 2007-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Math.h" | |||
| const b2Vec2 b2Vec2_zero(0.0f, 0.0f); | |||
| /// Solve A * x = b, where b is a column vector. This is more efficient | |||
| /// than computing the inverse in one-shot cases. | |||
| b2Vec3 b2Mat33::Solve33(const b2Vec3& b) const | |||
| { | |||
| float32 det = b2Dot(ex, b2Cross(ey, ez)); | |||
| if (det != 0.0f) | |||
| { | |||
| det = 1.0f / det; | |||
| } | |||
| b2Vec3 x; | |||
| x.x = det * b2Dot(b, b2Cross(ey, ez)); | |||
| x.y = det * b2Dot(ex, b2Cross(b, ez)); | |||
| x.z = det * b2Dot(ex, b2Cross(ey, b)); | |||
| return x; | |||
| } | |||
| /// Solve A * x = b, where b is a column vector. This is more efficient | |||
| /// than computing the inverse in one-shot cases. | |||
| b2Vec2 b2Mat33::Solve22(const b2Vec2& b) const | |||
| { | |||
| float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y; | |||
| float32 det = a11 * a22 - a12 * a21; | |||
| if (det != 0.0f) | |||
| { | |||
| det = 1.0f / det; | |||
| } | |||
| b2Vec2 x; | |||
| x.x = det * (a22 * b.x - a12 * b.y); | |||
| x.y = det * (a11 * b.y - a21 * b.x); | |||
| return x; | |||
| } | |||
| /// | |||
| void b2Mat33::GetInverse22(b2Mat33* M) const | |||
| { | |||
| float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y; | |||
| float32 det = a * d - b * c; | |||
| if (det != 0.0f) | |||
| { | |||
| det = 1.0f / det; | |||
| } | |||
| M->ex.x = det * d; M->ey.x = -det * b; M->ex.z = 0.0f; | |||
| M->ex.y = -det * c; M->ey.y = det * a; M->ey.z = 0.0f; | |||
| M->ez.x = 0.0f; M->ez.y = 0.0f; M->ez.z = 0.0f; | |||
| } | |||
| /// Returns the zero matrix if singular. | |||
| void b2Mat33::GetSymInverse33(b2Mat33* M) const | |||
| { | |||
| float32 det = b2Dot(ex, b2Cross(ey, ez)); | |||
| if (det != 0.0f) | |||
| { | |||
| det = 1.0f / det; | |||
| } | |||
| float32 a11 = ex.x, a12 = ey.x, a13 = ez.x; | |||
| float32 a22 = ey.y, a23 = ez.y; | |||
| float32 a33 = ez.z; | |||
| M->ex.x = det * (a22 * a33 - a23 * a23); | |||
| M->ex.y = det * (a13 * a23 - a12 * a33); | |||
| M->ex.z = det * (a12 * a23 - a13 * a22); | |||
| M->ey.x = M->ex.y; | |||
| M->ey.y = det * (a11 * a33 - a13 * a13); | |||
| M->ey.z = det * (a13 * a12 - a11 * a23); | |||
| M->ez.x = M->ex.z; | |||
| M->ez.y = M->ey.z; | |||
| M->ez.z = det * (a11 * a22 - a12 * a12); | |||
| } | |||
| @@ -0,0 +1,731 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_MATH_H | |||
| #define B2_MATH_H | |||
| #include "b2Settings.h" | |||
| #include <cmath> | |||
| #include <cfloat> | |||
| #include <cstddef> | |||
| #include <limits> | |||
| /// This function is used to ensure that a floating point number is | |||
| /// not a NaN or infinity. | |||
| inline bool b2IsValid(float32 x) | |||
| { | |||
| if (x != x) | |||
| { | |||
| // NaN. | |||
| return false; | |||
| } | |||
| float32 infinity = std::numeric_limits<float32>::infinity(); | |||
| return -infinity < x && x < infinity; | |||
| } | |||
| /// This is a approximate yet fast inverse square-root. | |||
| inline float32 b2InvSqrt(float32 x) | |||
| { | |||
| union | |||
| { | |||
| float32 x; | |||
| int32 i; | |||
| } convert; | |||
| convert.x = x; | |||
| float32 xhalf = 0.5f * x; | |||
| convert.i = 0x5f3759df - (convert.i >> 1); | |||
| x = convert.x; | |||
| x = x * (1.5f - xhalf * x * x); | |||
| return x; | |||
| } | |||
| #define b2Sqrt(x) std::sqrt(x) | |||
| #define b2Atan2(y, x) std::atan2(y, x) | |||
| /// A 2D column vector. | |||
| struct b2Vec2 | |||
| { | |||
| /// Default constructor does nothing (for performance). | |||
| b2Vec2() {} | |||
| /// Construct using coordinates. | |||
| b2Vec2(float32 x, float32 y) : x(x), y(y) {} | |||
| /// Set this vector to all zeros. | |||
| void SetZero() { x = 0.0f; y = 0.0f; } | |||
| /// Set this vector to some specified coordinates. | |||
| void Set(float32 x_, float32 y_) { x = x_; y = y_; } | |||
| /// Negate this vector. | |||
| b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; } | |||
| /// Read from and indexed element. | |||
| float32 operator () (int32 i) const | |||
| { | |||
| return (&x)[i]; | |||
| } | |||
| /// Write to an indexed element. | |||
| float32& operator () (int32 i) | |||
| { | |||
| return (&x)[i]; | |||
| } | |||
| /// Add a vector to this vector. | |||
| void operator += (const b2Vec2& v) | |||
| { | |||
| x += v.x; y += v.y; | |||
| } | |||
| /// Subtract a vector from this vector. | |||
| void operator -= (const b2Vec2& v) | |||
| { | |||
| x -= v.x; y -= v.y; | |||
| } | |||
| /// Multiply this vector by a scalar. | |||
| void operator *= (float32 a) | |||
| { | |||
| x *= a; y *= a; | |||
| } | |||
| /// Get the length of this vector (the norm). | |||
| float32 Length() const | |||
| { | |||
| return b2Sqrt(x * x + y * y); | |||
| } | |||
| /// Get the length squared. For performance, use this instead of | |||
| /// b2Vec2::Length (if possible). | |||
| float32 LengthSquared() const | |||
| { | |||
| return x * x + y * y; | |||
| } | |||
| /// Convert this vector into a unit vector. Returns the length. | |||
| float32 Normalize() | |||
| { | |||
| float32 length = Length(); | |||
| if (length < b2_epsilon) | |||
| { | |||
| return 0.0f; | |||
| } | |||
| float32 invLength = 1.0f / length; | |||
| x *= invLength; | |||
| y *= invLength; | |||
| return length; | |||
| } | |||
| /// Does this vector contain finite coordinates? | |||
| bool IsValid() const | |||
| { | |||
| return b2IsValid(x) && b2IsValid(y); | |||
| } | |||
| /// Get the skew vector such that dot(skew_vec, other) == cross(vec, other) | |||
| b2Vec2 Skew() const | |||
| { | |||
| return b2Vec2(-y, x); | |||
| } | |||
| float32 x, y; | |||
| }; | |||
| /// A 2D column vector with 3 elements. | |||
| struct b2Vec3 | |||
| { | |||
| /// Default constructor does nothing (for performance). | |||
| b2Vec3() {} | |||
| /// Construct using coordinates. | |||
| b2Vec3(float32 x, float32 y, float32 z) : x(x), y(y), z(z) {} | |||
| /// Set this vector to all zeros. | |||
| void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; } | |||
| /// Set this vector to some specified coordinates. | |||
| void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; } | |||
| /// Negate this vector. | |||
| b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; } | |||
| /// Add a vector to this vector. | |||
| void operator += (const b2Vec3& v) | |||
| { | |||
| x += v.x; y += v.y; z += v.z; | |||
| } | |||
| /// Subtract a vector from this vector. | |||
| void operator -= (const b2Vec3& v) | |||
| { | |||
| x -= v.x; y -= v.y; z -= v.z; | |||
| } | |||
| /// Multiply this vector by a scalar. | |||
| void operator *= (float32 s) | |||
| { | |||
| x *= s; y *= s; z *= s; | |||
| } | |||
| float32 x, y, z; | |||
| }; | |||
| /// A 2-by-2 matrix. Stored in column-major order. | |||
| struct b2Mat22 | |||
| { | |||
| /// The default constructor does nothing (for performance). | |||
| b2Mat22() {} | |||
| /// Construct this matrix using columns. | |||
| b2Mat22(const b2Vec2& c1, const b2Vec2& c2) | |||
| { | |||
| ex = c1; | |||
| ey = c2; | |||
| } | |||
| /// Construct this matrix using scalars. | |||
| b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22) | |||
| { | |||
| ex.x = a11; ex.y = a21; | |||
| ey.x = a12; ey.y = a22; | |||
| } | |||
| /// Initialize this matrix using columns. | |||
| void Set(const b2Vec2& c1, const b2Vec2& c2) | |||
| { | |||
| ex = c1; | |||
| ey = c2; | |||
| } | |||
| /// Set this to the identity matrix. | |||
| void SetIdentity() | |||
| { | |||
| ex.x = 1.0f; ey.x = 0.0f; | |||
| ex.y = 0.0f; ey.y = 1.0f; | |||
| } | |||
| /// Set this matrix to all zeros. | |||
| void SetZero() | |||
| { | |||
| ex.x = 0.0f; ey.x = 0.0f; | |||
| ex.y = 0.0f; ey.y = 0.0f; | |||
| } | |||
| b2Mat22 GetInverse() const | |||
| { | |||
| float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y; | |||
| b2Mat22 B; | |||
| float32 det = a * d - b * c; | |||
| if (det != 0.0f) | |||
| { | |||
| det = 1.0f / det; | |||
| } | |||
| B.ex.x = det * d; B.ey.x = -det * b; | |||
| B.ex.y = -det * c; B.ey.y = det * a; | |||
| return B; | |||
| } | |||
| /// Solve A * x = b, where b is a column vector. This is more efficient | |||
| /// than computing the inverse in one-shot cases. | |||
| b2Vec2 Solve(const b2Vec2& b) const | |||
| { | |||
| float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y; | |||
| float32 det = a11 * a22 - a12 * a21; | |||
| if (det != 0.0f) | |||
| { | |||
| det = 1.0f / det; | |||
| } | |||
| b2Vec2 x; | |||
| x.x = det * (a22 * b.x - a12 * b.y); | |||
| x.y = det * (a11 * b.y - a21 * b.x); | |||
| return x; | |||
| } | |||
| b2Vec2 ex, ey; | |||
| }; | |||
| /// A 3-by-3 matrix. Stored in column-major order. | |||
| struct b2Mat33 | |||
| { | |||
| /// The default constructor does nothing (for performance). | |||
| b2Mat33() {} | |||
| /// Construct this matrix using columns. | |||
| b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3) | |||
| { | |||
| ex = c1; | |||
| ey = c2; | |||
| ez = c3; | |||
| } | |||
| /// Set this matrix to all zeros. | |||
| void SetZero() | |||
| { | |||
| ex.SetZero(); | |||
| ey.SetZero(); | |||
| ez.SetZero(); | |||
| } | |||
| /// Solve A * x = b, where b is a column vector. This is more efficient | |||
| /// than computing the inverse in one-shot cases. | |||
| b2Vec3 Solve33(const b2Vec3& b) const; | |||
| /// Solve A * x = b, where b is a column vector. This is more efficient | |||
| /// than computing the inverse in one-shot cases. Solve only the upper | |||
| /// 2-by-2 matrix equation. | |||
| b2Vec2 Solve22(const b2Vec2& b) const; | |||
| /// Get the inverse of this matrix as a 2-by-2. | |||
| /// Returns the zero matrix if singular. | |||
| void GetInverse22(b2Mat33* M) const; | |||
| /// Get the symmetric inverse of this matrix as a 3-by-3. | |||
| /// Returns the zero matrix if singular. | |||
| void GetSymInverse33(b2Mat33* M) const; | |||
| b2Vec3 ex, ey, ez; | |||
| }; | |||
| /// Rotation | |||
| struct b2Rot | |||
| { | |||
| b2Rot() {} | |||
| /// Initialize from an angle in radians | |||
| explicit b2Rot(float32 angle) | |||
| { | |||
| /// TODO_ERIN optimize | |||
| s = sinf(angle); | |||
| c = cosf(angle); | |||
| } | |||
| /// Set using an angle in radians. | |||
| void Set(float32 angle) | |||
| { | |||
| /// TODO_ERIN optimize | |||
| s = sinf(angle); | |||
| c = cosf(angle); | |||
| } | |||
| /// Set to the identity rotation | |||
| void SetIdentity() | |||
| { | |||
| s = 0.0f; | |||
| c = 1.0f; | |||
| } | |||
| /// Get the angle in radians | |||
| float32 GetAngle() const | |||
| { | |||
| return b2Atan2(s, c); | |||
| } | |||
| /// Get the x-axis | |||
| b2Vec2 GetXAxis() const | |||
| { | |||
| return b2Vec2(c, s); | |||
| } | |||
| /// Get the u-axis | |||
| b2Vec2 GetYAxis() const | |||
| { | |||
| return b2Vec2(-s, c); | |||
| } | |||
| /// Sine and cosine | |||
| float32 s, c; | |||
| }; | |||
| /// A transform contains translation and rotation. It is used to represent | |||
| /// the position and orientation of rigid frames. | |||
| struct b2Transform | |||
| { | |||
| /// The default constructor does nothing. | |||
| b2Transform() {} | |||
| /// Initialize using a position vector and a rotation. | |||
| b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {} | |||
| /// Set this to the identity transform. | |||
| void SetIdentity() | |||
| { | |||
| p.SetZero(); | |||
| q.SetIdentity(); | |||
| } | |||
| /// Set this based on the position and angle. | |||
| void Set(const b2Vec2& position, float32 angle) | |||
| { | |||
| p = position; | |||
| q.Set(angle); | |||
| } | |||
| b2Vec2 p; | |||
| b2Rot q; | |||
| }; | |||
| /// This describes the motion of a body/shape for TOI computation. | |||
| /// Shapes are defined with respect to the body origin, which may | |||
| /// no coincide with the center of mass. However, to support dynamics | |||
| /// we must interpolate the center of mass position. | |||
| struct b2Sweep | |||
| { | |||
| /// Get the interpolated transform at a specific time. | |||
| /// @param beta is a factor in [0,1], where 0 indicates alpha0. | |||
| void GetTransform(b2Transform* xfb, float32 beta) const; | |||
| /// Advance the sweep forward, yielding a new initial state. | |||
| /// @param alpha the new initial time. | |||
| void Advance(float32 alpha); | |||
| /// Normalize the angles. | |||
| void Normalize(); | |||
| b2Vec2 localCenter; ///< local center of mass position | |||
| b2Vec2 c0, c; ///< center world positions | |||
| float32 a0, a; ///< world angles | |||
| /// Fraction of the current time step in the range [0,1] | |||
| /// c0 and a0 are the positions at alpha0. | |||
| float32 alpha0; | |||
| }; | |||
| /// Useful constant | |||
| extern const b2Vec2 b2Vec2_zero; | |||
| /// Perform the dot product on two vectors. | |||
| inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b) | |||
| { | |||
| return a.x * b.x + a.y * b.y; | |||
| } | |||
| /// Perform the cross product on two vectors. In 2D this produces a scalar. | |||
| inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b) | |||
| { | |||
| return a.x * b.y - a.y * b.x; | |||
| } | |||
| /// Perform the cross product on a vector and a scalar. In 2D this produces | |||
| /// a vector. | |||
| inline b2Vec2 b2Cross(const b2Vec2& a, float32 s) | |||
| { | |||
| return b2Vec2(s * a.y, -s * a.x); | |||
| } | |||
| /// Perform the cross product on a scalar and a vector. In 2D this produces | |||
| /// a vector. | |||
| inline b2Vec2 b2Cross(float32 s, const b2Vec2& a) | |||
| { | |||
| return b2Vec2(-s * a.y, s * a.x); | |||
| } | |||
| /// Multiply a matrix times a vector. If a rotation matrix is provided, | |||
| /// then this transforms the vector from one frame to another. | |||
| inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v) | |||
| { | |||
| return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); | |||
| } | |||
| /// Multiply a matrix transpose times a vector. If a rotation matrix is provided, | |||
| /// then this transforms the vector from one frame to another (inverse transform). | |||
| inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v) | |||
| { | |||
| return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey)); | |||
| } | |||
| /// Add two vectors component-wise. | |||
| inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b) | |||
| { | |||
| return b2Vec2(a.x + b.x, a.y + b.y); | |||
| } | |||
| /// Subtract two vectors component-wise. | |||
| inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b) | |||
| { | |||
| return b2Vec2(a.x - b.x, a.y - b.y); | |||
| } | |||
| inline b2Vec2 operator * (float32 s, const b2Vec2& a) | |||
| { | |||
| return b2Vec2(s * a.x, s * a.y); | |||
| } | |||
| inline bool operator == (const b2Vec2& a, const b2Vec2& b) | |||
| { | |||
| return a.x == b.x && a.y == b.y; | |||
| } | |||
| inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b) | |||
| { | |||
| b2Vec2 c = a - b; | |||
| return c.Length(); | |||
| } | |||
| inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b) | |||
| { | |||
| b2Vec2 c = a - b; | |||
| return b2Dot(c, c); | |||
| } | |||
| inline b2Vec3 operator * (float32 s, const b2Vec3& a) | |||
| { | |||
| return b2Vec3(s * a.x, s * a.y, s * a.z); | |||
| } | |||
| /// Add two vectors component-wise. | |||
| inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b) | |||
| { | |||
| return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z); | |||
| } | |||
| /// Subtract two vectors component-wise. | |||
| inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b) | |||
| { | |||
| return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z); | |||
| } | |||
| /// Perform the dot product on two vectors. | |||
| inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b) | |||
| { | |||
| return a.x * b.x + a.y * b.y + a.z * b.z; | |||
| } | |||
| /// Perform the cross product on two vectors. | |||
| inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b) | |||
| { | |||
| return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); | |||
| } | |||
| inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B) | |||
| { | |||
| return b2Mat22(A.ex + B.ex, A.ey + B.ey); | |||
| } | |||
| // A * B | |||
| inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B) | |||
| { | |||
| return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey)); | |||
| } | |||
| // A^T * B | |||
| inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B) | |||
| { | |||
| b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex)); | |||
| b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey)); | |||
| return b2Mat22(c1, c2); | |||
| } | |||
| /// Multiply a matrix times a vector. | |||
| inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v) | |||
| { | |||
| return v.x * A.ex + v.y * A.ey + v.z * A.ez; | |||
| } | |||
| /// Multiply a matrix times a vector. | |||
| inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v) | |||
| { | |||
| return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); | |||
| } | |||
| /// Multiply two rotations: q * r | |||
| inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r) | |||
| { | |||
| // [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc] | |||
| // [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc] | |||
| // s = qs * rc + qc * rs | |||
| // c = qc * rc - qs * rs | |||
| b2Rot qr; | |||
| qr.s = q.s * r.c + q.c * r.s; | |||
| qr.c = q.c * r.c - q.s * r.s; | |||
| return qr; | |||
| } | |||
| /// Transpose multiply two rotations: qT * r | |||
| inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r) | |||
| { | |||
| // [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc] | |||
| // [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc] | |||
| // s = qc * rs - qs * rc | |||
| // c = qc * rc + qs * rs | |||
| b2Rot qr; | |||
| qr.s = q.c * r.s - q.s * r.c; | |||
| qr.c = q.c * r.c + q.s * r.s; | |||
| return qr; | |||
| } | |||
| /// Rotate a vector | |||
| inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v) | |||
| { | |||
| return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y); | |||
| } | |||
| /// Inverse rotate a vector | |||
| inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v) | |||
| { | |||
| return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y); | |||
| } | |||
| inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v) | |||
| { | |||
| float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x; | |||
| float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y; | |||
| return b2Vec2(x, y); | |||
| } | |||
| inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v) | |||
| { | |||
| float32 px = v.x - T.p.x; | |||
| float32 py = v.y - T.p.y; | |||
| float32 x = (T.q.c * px + T.q.s * py); | |||
| float32 y = (-T.q.s * px + T.q.c * py); | |||
| return b2Vec2(x, y); | |||
| } | |||
| // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p | |||
| // = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p | |||
| inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B) | |||
| { | |||
| b2Transform C; | |||
| C.q = b2Mul(A.q, B.q); | |||
| C.p = b2Mul(A.q, B.p) + A.p; | |||
| return C; | |||
| } | |||
| // v2 = A.q' * (B.q * v1 + B.p - A.p) | |||
| // = A.q' * B.q * v1 + A.q' * (B.p - A.p) | |||
| inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B) | |||
| { | |||
| b2Transform C; | |||
| C.q = b2MulT(A.q, B.q); | |||
| C.p = b2MulT(A.q, B.p - A.p); | |||
| return C; | |||
| } | |||
| template <typename T> | |||
| inline T b2Abs(T a) | |||
| { | |||
| return a > T(0) ? a : -a; | |||
| } | |||
| inline b2Vec2 b2Abs(const b2Vec2& a) | |||
| { | |||
| return b2Vec2(b2Abs(a.x), b2Abs(a.y)); | |||
| } | |||
| inline b2Mat22 b2Abs(const b2Mat22& A) | |||
| { | |||
| return b2Mat22(b2Abs(A.ex), b2Abs(A.ey)); | |||
| } | |||
| template <typename T> | |||
| inline T b2Min(T a, T b) | |||
| { | |||
| return a < b ? a : b; | |||
| } | |||
| inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b) | |||
| { | |||
| return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y)); | |||
| } | |||
| template <typename T> | |||
| inline T b2Max(T a, T b) | |||
| { | |||
| return a > b ? a : b; | |||
| } | |||
| inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b) | |||
| { | |||
| return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y)); | |||
| } | |||
| template <typename T> | |||
| inline T b2Clamp(T a, T low, T high) | |||
| { | |||
| return b2Max(low, b2Min(a, high)); | |||
| } | |||
| inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high) | |||
| { | |||
| return b2Max(low, b2Min(a, high)); | |||
| } | |||
| template<typename T> inline void b2Swap(T& a, T& b) | |||
| { | |||
| T tmp = a; | |||
| a = b; | |||
| b = tmp; | |||
| } | |||
| /// "Next Largest Power of 2 | |||
| /// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm | |||
| /// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with | |||
| /// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next | |||
| /// largest power of 2. For a 32-bit value:" | |||
| inline uint32 b2NextPowerOfTwo(uint32 x) | |||
| { | |||
| x |= (x >> 1); | |||
| x |= (x >> 2); | |||
| x |= (x >> 4); | |||
| x |= (x >> 8); | |||
| x |= (x >> 16); | |||
| return x + 1; | |||
| } | |||
| inline bool b2IsPowerOfTwo(uint32 x) | |||
| { | |||
| bool result = x > 0 && (x & (x - 1)) == 0; | |||
| return result; | |||
| } | |||
| inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const | |||
| { | |||
| xf->p = (1.0f - beta) * c0 + beta * c; | |||
| float32 angle = (1.0f - beta) * a0 + beta * a; | |||
| xf->q.Set(angle); | |||
| // Shift to origin | |||
| xf->p -= b2Mul(xf->q, localCenter); | |||
| } | |||
| inline void b2Sweep::Advance(float32 alpha) | |||
| { | |||
| b2Assert(alpha0 < 1.0f); | |||
| float32 beta = (alpha - alpha0) / (1.0f - alpha0); | |||
| c0 = (1.0f - beta) * c0 + beta * c; | |||
| a0 = (1.0f - beta) * a0 + beta * a; | |||
| alpha0 = alpha; | |||
| } | |||
| /// Normalize an angle in radians to be between -pi and pi | |||
| inline void b2Sweep::Normalize() | |||
| { | |||
| float32 twoPi = 2.0f * b2_pi; | |||
| float32 d = twoPi * floorf(a0 / twoPi); | |||
| a0 -= d; | |||
| a -= d; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,44 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Settings.h" | |||
| #include <cstdlib> | |||
| #include <cstdio> | |||
| #include <cstdarg> | |||
| b2Version b2_version = {2, 2, 1}; | |||
| // Memory allocators. Modify these to use your own allocator. | |||
| void* b2Alloc(int32 size) | |||
| { | |||
| return malloc(size); | |||
| } | |||
| void b2Free(void* mem) | |||
| { | |||
| free(mem); | |||
| } | |||
| // You can modify this to use your logging facility. | |||
| void b2Log(const char* string, ...) | |||
| { | |||
| va_list args; | |||
| va_start(args, string); | |||
| vprintf(string, args); | |||
| va_end(args); | |||
| } | |||
| @@ -0,0 +1,150 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_SETTINGS_H | |||
| #define B2_SETTINGS_H | |||
| #include <cassert> | |||
| #include <cmath> | |||
| #define B2_NOT_USED(x) ((void)(x)) | |||
| #define b2Assert(A) assert(A) | |||
| typedef signed char int8; | |||
| typedef signed short int16; | |||
| typedef signed int int32; | |||
| typedef unsigned char uint8; | |||
| typedef unsigned short uint16; | |||
| typedef unsigned int uint32; | |||
| typedef float float32; | |||
| typedef double float64; | |||
| #define b2_maxFloat FLT_MAX | |||
| #define b2_epsilon FLT_EPSILON | |||
| #define b2_pi 3.14159265359f | |||
| /// @file | |||
| /// Global tuning constants based on meters-kilograms-seconds (MKS) units. | |||
| /// | |||
| // Collision | |||
| /// The maximum number of contact points between two convex shapes. Do | |||
| /// not change this value. | |||
| #define b2_maxManifoldPoints 2 | |||
| /// The maximum number of vertices on a convex polygon. You cannot increase | |||
| /// this too much because b2BlockAllocator has a maximum object size. | |||
| #define b2_maxPolygonVertices 8 | |||
| /// This is used to fatten AABBs in the dynamic tree. This allows proxies | |||
| /// to move by a small amount without triggering a tree adjustment. | |||
| /// This is in meters. | |||
| #define b2_aabbExtension 0.1f | |||
| /// This is used to fatten AABBs in the dynamic tree. This is used to predict | |||
| /// the future position based on the current displacement. | |||
| /// This is a dimensionless multiplier. | |||
| #define b2_aabbMultiplier 2.0f | |||
| /// A small length used as a collision and constraint tolerance. Usually it is | |||
| /// chosen to be numerically significant, but visually insignificant. | |||
| #define b2_linearSlop 0.005f | |||
| /// A small angle used as a collision and constraint tolerance. Usually it is | |||
| /// chosen to be numerically significant, but visually insignificant. | |||
| #define b2_angularSlop (2.0f / 180.0f * b2_pi) | |||
| /// The radius of the polygon/edge shape skin. This should not be modified. Making | |||
| /// this smaller means polygons will have an insufficient buffer for continuous collision. | |||
| /// Making it larger may create artifacts for vertex collision. | |||
| #define b2_polygonRadius (2.0f * b2_linearSlop) | |||
| /// Maximum number of sub-steps per contact in continuous physics simulation. | |||
| #define b2_maxSubSteps 8 | |||
| // Dynamics | |||
| /// Maximum number of contacts to be handled to solve a TOI impact. | |||
| #define b2_maxTOIContacts 32 | |||
| /// A velocity threshold for elastic collisions. Any collision with a relative linear | |||
| /// velocity below this threshold will be treated as inelastic. | |||
| #define b2_velocityThreshold 1.0f | |||
| /// The maximum linear position correction used when solving constraints. This helps to | |||
| /// prevent overshoot. | |||
| #define b2_maxLinearCorrection 0.2f | |||
| /// The maximum angular position correction used when solving constraints. This helps to | |||
| /// prevent overshoot. | |||
| #define b2_maxAngularCorrection (8.0f / 180.0f * b2_pi) | |||
| /// The maximum linear velocity of a body. This limit is very large and is used | |||
| /// to prevent numerical problems. You shouldn't need to adjust this. | |||
| #define b2_maxTranslation 2.0f | |||
| #define b2_maxTranslationSquared (b2_maxTranslation * b2_maxTranslation) | |||
| /// The maximum angular velocity of a body. This limit is very large and is used | |||
| /// to prevent numerical problems. You shouldn't need to adjust this. | |||
| #define b2_maxRotation (0.5f * b2_pi) | |||
| #define b2_maxRotationSquared (b2_maxRotation * b2_maxRotation) | |||
| /// This scale factor controls how fast overlap is resolved. Ideally this would be 1 so | |||
| /// that overlap is removed in one time step. However using values close to 1 often lead | |||
| /// to overshoot. | |||
| #define b2_baumgarte 0.2f | |||
| #define b2_toiBaugarte 0.75f | |||
| // Sleep | |||
| /// The time that a body must be still before it will go to sleep. | |||
| #define b2_timeToSleep 0.5f | |||
| /// A body cannot sleep if its linear velocity is above this tolerance. | |||
| #define b2_linearSleepTolerance 0.01f | |||
| /// A body cannot sleep if its angular velocity is above this tolerance. | |||
| #define b2_angularSleepTolerance (2.0f / 180.0f * b2_pi) | |||
| // Memory Allocation | |||
| /// Implement this function to use your own memory allocator. | |||
| void* b2Alloc(int32 size); | |||
| /// If you implement b2Alloc, you should also implement this function. | |||
| void b2Free(void* mem); | |||
| /// Logging function. | |||
| void b2Log(const char* string, ...); | |||
| /// Version numbering scheme. | |||
| /// See http://en.wikipedia.org/wiki/Software_versioning | |||
| struct b2Version | |||
| { | |||
| int32 major; ///< significant changes | |||
| int32 minor; ///< incremental changes | |||
| int32 revision; ///< bug fixes | |||
| }; | |||
| /// Current version. | |||
| extern b2Version b2_version; | |||
| #endif | |||
| @@ -0,0 +1,83 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2StackAllocator.h" | |||
| #include "b2Math.h" | |||
| b2StackAllocator::b2StackAllocator() | |||
| { | |||
| m_index = 0; | |||
| m_allocation = 0; | |||
| m_maxAllocation = 0; | |||
| m_entryCount = 0; | |||
| } | |||
| b2StackAllocator::~b2StackAllocator() | |||
| { | |||
| b2Assert(m_index == 0); | |||
| b2Assert(m_entryCount == 0); | |||
| } | |||
| void* b2StackAllocator::Allocate(int32 size) | |||
| { | |||
| b2Assert(m_entryCount < b2_maxStackEntries); | |||
| b2StackEntry* entry = m_entries + m_entryCount; | |||
| entry->size = size; | |||
| if (m_index + size > b2_stackSize) | |||
| { | |||
| entry->data = (char*)b2Alloc(size); | |||
| entry->usedMalloc = true; | |||
| } | |||
| else | |||
| { | |||
| entry->data = m_data + m_index; | |||
| entry->usedMalloc = false; | |||
| m_index += size; | |||
| } | |||
| m_allocation += size; | |||
| m_maxAllocation = b2Max(m_maxAllocation, m_allocation); | |||
| ++m_entryCount; | |||
| return entry->data; | |||
| } | |||
| void b2StackAllocator::Free(void* p) | |||
| { | |||
| b2Assert(m_entryCount > 0); | |||
| b2StackEntry* entry = m_entries + m_entryCount - 1; | |||
| b2Assert(p == entry->data); | |||
| if (entry->usedMalloc) | |||
| { | |||
| b2Free(p); | |||
| } | |||
| else | |||
| { | |||
| m_index -= entry->size; | |||
| } | |||
| m_allocation -= entry->size; | |||
| --m_entryCount; | |||
| p = NULL; | |||
| } | |||
| int32 b2StackAllocator::GetMaxAllocation() const | |||
| { | |||
| return m_maxAllocation; | |||
| } | |||
| @@ -0,0 +1,60 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_STACK_ALLOCATOR_H | |||
| #define B2_STACK_ALLOCATOR_H | |||
| #include "b2Settings.h" | |||
| const int32 b2_stackSize = 100 * 1024; // 100k | |||
| const int32 b2_maxStackEntries = 32; | |||
| struct b2StackEntry | |||
| { | |||
| char* data; | |||
| int32 size; | |||
| bool usedMalloc; | |||
| }; | |||
| // This is a stack allocator used for fast per step allocations. | |||
| // You must nest allocate/free pairs. The code will assert | |||
| // if you try to interleave multiple allocate/free pairs. | |||
| class b2StackAllocator | |||
| { | |||
| public: | |||
| b2StackAllocator(); | |||
| ~b2StackAllocator(); | |||
| void* Allocate(int32 size); | |||
| void Free(void* p); | |||
| int32 GetMaxAllocation() const; | |||
| private: | |||
| char m_data[b2_stackSize]; | |||
| int32 m_index; | |||
| int32 m_allocation; | |||
| int32 m_maxAllocation; | |||
| b2StackEntry m_entries[b2_maxStackEntries]; | |||
| int32 m_entryCount; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,100 @@ | |||
| /* | |||
| * Copyright (c) 2011 Erin Catto http://box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Timer.h" | |||
| #if defined(_WIN32) | |||
| float64 b2Timer::s_invFrequency = 0.0f; | |||
| #include <windows.h> | |||
| b2Timer::b2Timer() | |||
| { | |||
| LARGE_INTEGER largeInteger; | |||
| if (s_invFrequency == 0.0f) | |||
| { | |||
| QueryPerformanceFrequency(&largeInteger); | |||
| s_invFrequency = float64(largeInteger.QuadPart); | |||
| if (s_invFrequency > 0.0f) | |||
| { | |||
| s_invFrequency = 1000.0f / s_invFrequency; | |||
| } | |||
| } | |||
| QueryPerformanceCounter(&largeInteger); | |||
| m_start = float64(largeInteger.QuadPart); | |||
| } | |||
| void b2Timer::Reset() | |||
| { | |||
| LARGE_INTEGER largeInteger; | |||
| QueryPerformanceCounter(&largeInteger); | |||
| m_start = float64(largeInteger.QuadPart); | |||
| } | |||
| float32 b2Timer::GetMilliseconds() const | |||
| { | |||
| LARGE_INTEGER largeInteger; | |||
| QueryPerformanceCounter(&largeInteger); | |||
| float64 count = float64(largeInteger.QuadPart); | |||
| float32 ms = float32(s_invFrequency * (count - m_start)); | |||
| return ms; | |||
| } | |||
| #elif defined(__linux__) || defined (__APPLE__) | |||
| #include <sys/time.h> | |||
| b2Timer::b2Timer() | |||
| { | |||
| Reset(); | |||
| } | |||
| void b2Timer::Reset() | |||
| { | |||
| timeval t; | |||
| gettimeofday(&t, 0); | |||
| m_start_sec = t.tv_sec; | |||
| m_start_msec = t.tv_usec * 0.001f; | |||
| } | |||
| float32 b2Timer::GetMilliseconds() const | |||
| { | |||
| timeval t; | |||
| gettimeofday(&t, 0); | |||
| return (t.tv_sec - m_start_sec) * 1000 + t.tv_usec * 0.001f - m_start_msec; | |||
| } | |||
| #else | |||
| b2Timer::b2Timer() | |||
| { | |||
| } | |||
| void b2Timer::Reset() | |||
| { | |||
| } | |||
| float32 b2Timer::GetMilliseconds() const | |||
| { | |||
| return 0.0f; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,50 @@ | |||
| /* | |||
| * Copyright (c) 2011 Erin Catto http://box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef BOX2D_TIMER_H | |||
| #define BOX2D_TIMER_H | |||
| #include "b2Settings.h" | |||
| /// Timer for profiling. This has platform specific code and may | |||
| /// not work on every platform. | |||
| class b2Timer | |||
| { | |||
| public: | |||
| /// Constructor | |||
| b2Timer(); | |||
| /// Reset the timer. | |||
| void Reset(); | |||
| /// Get the time since construction or the last reset. | |||
| float32 GetMilliseconds() const; | |||
| private: | |||
| #if defined(_WIN32) | |||
| float64 m_start; | |||
| static float64 s_invFrequency; | |||
| #elif defined(__linux__) || defined (__APPLE__) | |||
| unsigned long m_start_sec; | |||
| unsigned long m_start_msec; | |||
| #endif | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,54 @@ | |||
| /* | |||
| * Copyright (c) 2006-2010 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2ChainAndCircleContact.h" | |||
| #include "../../Common/b2BlockAllocator.h" | |||
| #include "../b2Fixture.h" | |||
| #include "../../Collision/Shapes/b2ChainShape.h" | |||
| #include "../../Collision/Shapes/b2EdgeShape.h" | |||
| #include <new> | |||
| using namespace std; | |||
| b2Contact* b2ChainAndCircleContact::Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator) | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2ChainAndCircleContact)); | |||
| return new (mem) b2ChainAndCircleContact(fixtureA, indexA, fixtureB, indexB); | |||
| } | |||
| void b2ChainAndCircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) | |||
| { | |||
| ((b2ChainAndCircleContact*)contact)->~b2ChainAndCircleContact(); | |||
| allocator->Free(contact, sizeof(b2ChainAndCircleContact)); | |||
| } | |||
| b2ChainAndCircleContact::b2ChainAndCircleContact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB) | |||
| : b2Contact(fixtureA, indexA, fixtureB, indexB) | |||
| { | |||
| b2Assert(m_fixtureA->GetType() == b2Shape::e_chain); | |||
| b2Assert(m_fixtureB->GetType() == b2Shape::e_circle); | |||
| } | |||
| void b2ChainAndCircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) | |||
| { | |||
| b2ChainShape* chain = (b2ChainShape*)m_fixtureA->GetShape(); | |||
| b2EdgeShape edge; | |||
| chain->GetChildEdge(&edge, m_indexA); | |||
| b2CollideEdgeAndCircle( manifold, &edge, xfA, | |||
| (b2CircleShape*)m_fixtureB->GetShape(), xfB); | |||
| } | |||
| @@ -0,0 +1,39 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_CHAIN_AND_CIRCLE_CONTACT_H | |||
| #define B2_CHAIN_AND_CIRCLE_CONTACT_H | |||
| #include "b2Contact.h" | |||
| class b2BlockAllocator; | |||
| class b2ChainAndCircleContact : public b2Contact | |||
| { | |||
| public: | |||
| static b2Contact* Create( b2Fixture* fixtureA, int32 indexA, | |||
| b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); | |||
| static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); | |||
| b2ChainAndCircleContact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB); | |||
| ~b2ChainAndCircleContact() {} | |||
| void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB); | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,54 @@ | |||
| /* | |||
| * Copyright (c) 2006-2010 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2ChainAndPolygonContact.h" | |||
| #include "../../Common/b2BlockAllocator.h" | |||
| #include "../b2Fixture.h" | |||
| #include "../../Collision/Shapes/b2ChainShape.h" | |||
| #include "../../Collision/Shapes/b2EdgeShape.h" | |||
| #include <new> | |||
| using namespace std; | |||
| b2Contact* b2ChainAndPolygonContact::Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator) | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2ChainAndPolygonContact)); | |||
| return new (mem) b2ChainAndPolygonContact(fixtureA, indexA, fixtureB, indexB); | |||
| } | |||
| void b2ChainAndPolygonContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) | |||
| { | |||
| ((b2ChainAndPolygonContact*)contact)->~b2ChainAndPolygonContact(); | |||
| allocator->Free(contact, sizeof(b2ChainAndPolygonContact)); | |||
| } | |||
| b2ChainAndPolygonContact::b2ChainAndPolygonContact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB) | |||
| : b2Contact(fixtureA, indexA, fixtureB, indexB) | |||
| { | |||
| b2Assert(m_fixtureA->GetType() == b2Shape::e_chain); | |||
| b2Assert(m_fixtureB->GetType() == b2Shape::e_polygon); | |||
| } | |||
| void b2ChainAndPolygonContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) | |||
| { | |||
| b2ChainShape* chain = (b2ChainShape*)m_fixtureA->GetShape(); | |||
| b2EdgeShape edge; | |||
| chain->GetChildEdge(&edge, m_indexA); | |||
| b2CollideEdgeAndPolygon( manifold, &edge, xfA, | |||
| (b2PolygonShape*)m_fixtureB->GetShape(), xfB); | |||
| } | |||
| @@ -0,0 +1,39 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_CHAIN_AND_POLYGON_CONTACT_H | |||
| #define B2_CHAIN_AND_POLYGON_CONTACT_H | |||
| #include "b2Contact.h" | |||
| class b2BlockAllocator; | |||
| class b2ChainAndPolygonContact : public b2Contact | |||
| { | |||
| public: | |||
| static b2Contact* Create( b2Fixture* fixtureA, int32 indexA, | |||
| b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); | |||
| static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); | |||
| b2ChainAndPolygonContact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB); | |||
| ~b2ChainAndPolygonContact() {} | |||
| void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB); | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,53 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2CircleContact.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2Fixture.h" | |||
| #include "../b2WorldCallbacks.h" | |||
| #include "../../Common/b2BlockAllocator.h" | |||
| #include "../../Collision/b2TimeOfImpact.h" | |||
| #include <new> | |||
| using namespace std; | |||
| b2Contact* b2CircleContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2CircleContact)); | |||
| return new (mem) b2CircleContact(fixtureA, fixtureB); | |||
| } | |||
| void b2CircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) | |||
| { | |||
| ((b2CircleContact*)contact)->~b2CircleContact(); | |||
| allocator->Free(contact, sizeof(b2CircleContact)); | |||
| } | |||
| b2CircleContact::b2CircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB) | |||
| : b2Contact(fixtureA, 0, fixtureB, 0) | |||
| { | |||
| b2Assert(m_fixtureA->GetType() == b2Shape::e_circle); | |||
| b2Assert(m_fixtureB->GetType() == b2Shape::e_circle); | |||
| } | |||
| void b2CircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) | |||
| { | |||
| b2CollideCircles(manifold, | |||
| (b2CircleShape*)m_fixtureA->GetShape(), xfA, | |||
| (b2CircleShape*)m_fixtureB->GetShape(), xfB); | |||
| } | |||
| @@ -0,0 +1,39 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_CIRCLE_CONTACT_H | |||
| #define B2_CIRCLE_CONTACT_H | |||
| #include "b2Contact.h" | |||
| class b2BlockAllocator; | |||
| class b2CircleContact : public b2Contact | |||
| { | |||
| public: | |||
| static b2Contact* Create( b2Fixture* fixtureA, int32 indexA, | |||
| b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); | |||
| static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); | |||
| b2CircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB); | |||
| ~b2CircleContact() {} | |||
| void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB); | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,240 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Contact.h" | |||
| #include "b2CircleContact.h" | |||
| #include "b2PolygonAndCircleContact.h" | |||
| #include "b2PolygonContact.h" | |||
| #include "b2EdgeAndCircleContact.h" | |||
| #include "b2EdgeAndPolygonContact.h" | |||
| #include "b2ChainAndCircleContact.h" | |||
| #include "b2ChainAndPolygonContact.h" | |||
| #include "b2ContactSolver.h" | |||
| #include "../../Collision/b2Collision.h" | |||
| #include "../../Collision/b2TimeOfImpact.h" | |||
| #include "../../Collision/Shapes/b2Shape.h" | |||
| #include "../../Common/b2BlockAllocator.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2Fixture.h" | |||
| #include "../b2World.h" | |||
| b2ContactRegister b2Contact::s_registers[b2Shape::e_typeCount][b2Shape::e_typeCount]; | |||
| bool b2Contact::s_initialized = false; | |||
| void b2Contact::InitializeRegisters() | |||
| { | |||
| AddType(b2CircleContact::Create, b2CircleContact::Destroy, b2Shape::e_circle, b2Shape::e_circle); | |||
| AddType(b2PolygonAndCircleContact::Create, b2PolygonAndCircleContact::Destroy, b2Shape::e_polygon, b2Shape::e_circle); | |||
| AddType(b2PolygonContact::Create, b2PolygonContact::Destroy, b2Shape::e_polygon, b2Shape::e_polygon); | |||
| AddType(b2EdgeAndCircleContact::Create, b2EdgeAndCircleContact::Destroy, b2Shape::e_edge, b2Shape::e_circle); | |||
| AddType(b2EdgeAndPolygonContact::Create, b2EdgeAndPolygonContact::Destroy, b2Shape::e_edge, b2Shape::e_polygon); | |||
| AddType(b2ChainAndCircleContact::Create, b2ChainAndCircleContact::Destroy, b2Shape::e_chain, b2Shape::e_circle); | |||
| AddType(b2ChainAndPolygonContact::Create, b2ChainAndPolygonContact::Destroy, b2Shape::e_chain, b2Shape::e_polygon); | |||
| } | |||
| void b2Contact::AddType(b2ContactCreateFcn* createFcn, b2ContactDestroyFcn* destoryFcn, | |||
| b2Shape::Type type1, b2Shape::Type type2) | |||
| { | |||
| b2Assert(0 <= type1 && type1 < b2Shape::e_typeCount); | |||
| b2Assert(0 <= type2 && type2 < b2Shape::e_typeCount); | |||
| s_registers[type1][type2].createFcn = createFcn; | |||
| s_registers[type1][type2].destroyFcn = destoryFcn; | |||
| s_registers[type1][type2].primary = true; | |||
| if (type1 != type2) | |||
| { | |||
| s_registers[type2][type1].createFcn = createFcn; | |||
| s_registers[type2][type1].destroyFcn = destoryFcn; | |||
| s_registers[type2][type1].primary = false; | |||
| } | |||
| } | |||
| b2Contact* b2Contact::Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator) | |||
| { | |||
| if (s_initialized == false) | |||
| { | |||
| InitializeRegisters(); | |||
| s_initialized = true; | |||
| } | |||
| b2Shape::Type type1 = fixtureA->GetType(); | |||
| b2Shape::Type type2 = fixtureB->GetType(); | |||
| b2Assert(0 <= type1 && type1 < b2Shape::e_typeCount); | |||
| b2Assert(0 <= type2 && type2 < b2Shape::e_typeCount); | |||
| b2ContactCreateFcn* createFcn = s_registers[type1][type2].createFcn; | |||
| if (createFcn) | |||
| { | |||
| if (s_registers[type1][type2].primary) | |||
| { | |||
| return createFcn(fixtureA, indexA, fixtureB, indexB, allocator); | |||
| } | |||
| else | |||
| { | |||
| return createFcn(fixtureB, indexB, fixtureA, indexA, allocator); | |||
| } | |||
| } | |||
| else | |||
| { | |||
| return NULL; | |||
| } | |||
| } | |||
| void b2Contact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) | |||
| { | |||
| b2Assert(s_initialized == true); | |||
| if (contact->m_manifold.pointCount > 0) | |||
| { | |||
| contact->GetFixtureA()->GetBody()->SetAwake(true); | |||
| contact->GetFixtureB()->GetBody()->SetAwake(true); | |||
| } | |||
| b2Shape::Type typeA = contact->GetFixtureA()->GetType(); | |||
| b2Shape::Type typeB = contact->GetFixtureB()->GetType(); | |||
| b2Assert(0 <= typeA && typeB < b2Shape::e_typeCount); | |||
| b2Assert(0 <= typeA && typeB < b2Shape::e_typeCount); | |||
| b2ContactDestroyFcn* destroyFcn = s_registers[typeA][typeB].destroyFcn; | |||
| destroyFcn(contact, allocator); | |||
| } | |||
| b2Contact::b2Contact(b2Fixture* fA, int32 indexA, b2Fixture* fB, int32 indexB) | |||
| { | |||
| m_flags = e_enabledFlag; | |||
| m_fixtureA = fA; | |||
| m_fixtureB = fB; | |||
| m_indexA = indexA; | |||
| m_indexB = indexB; | |||
| m_manifold.pointCount = 0; | |||
| m_prev = NULL; | |||
| m_next = NULL; | |||
| m_nodeA.contact = NULL; | |||
| m_nodeA.prev = NULL; | |||
| m_nodeA.next = NULL; | |||
| m_nodeA.other = NULL; | |||
| m_nodeB.contact = NULL; | |||
| m_nodeB.prev = NULL; | |||
| m_nodeB.next = NULL; | |||
| m_nodeB.other = NULL; | |||
| m_toiCount = 0; | |||
| m_friction = b2MixFriction(m_fixtureA->m_friction, m_fixtureB->m_friction); | |||
| m_restitution = b2MixRestitution(m_fixtureA->m_restitution, m_fixtureB->m_restitution); | |||
| } | |||
| // Update the contact manifold and touching status. | |||
| // Note: do not assume the fixture AABBs are overlapping or are valid. | |||
| void b2Contact::Update(b2ContactListener* listener) | |||
| { | |||
| b2Manifold oldManifold = m_manifold; | |||
| // Re-enable this contact. | |||
| m_flags |= e_enabledFlag; | |||
| bool touching = false; | |||
| bool wasTouching = (m_flags & e_touchingFlag) == e_touchingFlag; | |||
| bool sensorA = m_fixtureA->IsSensor(); | |||
| bool sensorB = m_fixtureB->IsSensor(); | |||
| bool sensor = sensorA || sensorB; | |||
| b2Body* bodyA = m_fixtureA->GetBody(); | |||
| b2Body* bodyB = m_fixtureB->GetBody(); | |||
| const b2Transform& xfA = bodyA->GetTransform(); | |||
| const b2Transform& xfB = bodyB->GetTransform(); | |||
| // Is this contact a sensor? | |||
| if (sensor) | |||
| { | |||
| const b2Shape* shapeA = m_fixtureA->GetShape(); | |||
| const b2Shape* shapeB = m_fixtureB->GetShape(); | |||
| touching = b2TestOverlap(shapeA, m_indexA, shapeB, m_indexB, xfA, xfB); | |||
| // Sensors don't generate manifolds. | |||
| m_manifold.pointCount = 0; | |||
| } | |||
| else | |||
| { | |||
| Evaluate(&m_manifold, xfA, xfB); | |||
| touching = m_manifold.pointCount > 0; | |||
| // Match old contact ids to new contact ids and copy the | |||
| // stored impulses to warm start the solver. | |||
| for (int32 i = 0; i < m_manifold.pointCount; ++i) | |||
| { | |||
| b2ManifoldPoint* mp2 = m_manifold.points + i; | |||
| mp2->normalImpulse = 0.0f; | |||
| mp2->tangentImpulse = 0.0f; | |||
| b2ContactID id2 = mp2->id; | |||
| for (int32 j = 0; j < oldManifold.pointCount; ++j) | |||
| { | |||
| b2ManifoldPoint* mp1 = oldManifold.points + j; | |||
| if (mp1->id.key == id2.key) | |||
| { | |||
| mp2->normalImpulse = mp1->normalImpulse; | |||
| mp2->tangentImpulse = mp1->tangentImpulse; | |||
| break; | |||
| } | |||
| } | |||
| } | |||
| if (touching != wasTouching) | |||
| { | |||
| bodyA->SetAwake(true); | |||
| bodyB->SetAwake(true); | |||
| } | |||
| } | |||
| if (touching) | |||
| { | |||
| m_flags |= e_touchingFlag; | |||
| } | |||
| else | |||
| { | |||
| m_flags &= ~e_touchingFlag; | |||
| } | |||
| if (wasTouching == false && touching == true && listener) | |||
| { | |||
| listener->BeginContact(this); | |||
| } | |||
| if (wasTouching == true && touching == false && listener) | |||
| { | |||
| listener->EndContact(this); | |||
| } | |||
| if (sensor == false && touching && listener) | |||
| { | |||
| listener->PreSolve(this, &oldManifold); | |||
| } | |||
| } | |||
| @@ -0,0 +1,331 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_CONTACT_H | |||
| #define B2_CONTACT_H | |||
| #include "../../Common/b2Math.h" | |||
| #include "../../Collision/b2Collision.h" | |||
| #include "../../Collision/Shapes/b2Shape.h" | |||
| #include "../b2Fixture.h" | |||
| class b2Body; | |||
| class b2Contact; | |||
| class b2Fixture; | |||
| class b2World; | |||
| class b2BlockAllocator; | |||
| class b2StackAllocator; | |||
| class b2ContactListener; | |||
| /// Friction mixing law. The idea is to allow either fixture to drive the restitution to zero. | |||
| /// For example, anything slides on ice. | |||
| inline float32 b2MixFriction(float32 friction1, float32 friction2) | |||
| { | |||
| return std::sqrt(friction1 * friction2); | |||
| } | |||
| /// Restitution mixing law. The idea is allow for anything to bounce off an inelastic surface. | |||
| /// For example, a superball bounces on anything. | |||
| inline float32 b2MixRestitution(float32 restitution1, float32 restitution2) | |||
| { | |||
| return restitution1 > restitution2 ? restitution1 : restitution2; | |||
| } | |||
| typedef b2Contact* b2ContactCreateFcn( b2Fixture* fixtureA, int32 indexA, | |||
| b2Fixture* fixtureB, int32 indexB, | |||
| b2BlockAllocator* allocator); | |||
| typedef void b2ContactDestroyFcn(b2Contact* contact, b2BlockAllocator* allocator); | |||
| struct b2ContactRegister | |||
| { | |||
| b2ContactCreateFcn* createFcn; | |||
| b2ContactDestroyFcn* destroyFcn; | |||
| bool primary; | |||
| }; | |||
| /// A contact edge is used to connect bodies and contacts together | |||
| /// in a contact graph where each body is a node and each contact | |||
| /// is an edge. A contact edge belongs to a doubly linked list | |||
| /// maintained in each attached body. Each contact has two contact | |||
| /// nodes, one for each attached body. | |||
| struct b2ContactEdge | |||
| { | |||
| b2Body* other; ///< provides quick access to the other body attached. | |||
| b2Contact* contact; ///< the contact | |||
| b2ContactEdge* prev; ///< the previous contact edge in the body's contact list | |||
| b2ContactEdge* next; ///< the next contact edge in the body's contact list | |||
| }; | |||
| /// The class manages contact between two shapes. A contact exists for each overlapping | |||
| /// AABB in the broad-phase (except if filtered). Therefore a contact object may exist | |||
| /// that has no contact points. | |||
| class b2Contact | |||
| { | |||
| public: | |||
| /// Get the contact manifold. Do not modify the manifold unless you understand the | |||
| /// internals of Box2D. | |||
| b2Manifold* GetManifold(); | |||
| const b2Manifold* GetManifold() const; | |||
| /// Get the world manifold. | |||
| void GetWorldManifold(b2WorldManifold* worldManifold) const; | |||
| /// Is this contact touching? | |||
| bool IsTouching() const; | |||
| /// Enable/disable this contact. This can be used inside the pre-solve | |||
| /// contact listener. The contact is only disabled for the current | |||
| /// time step (or sub-step in continuous collisions). | |||
| void SetEnabled(bool flag); | |||
| /// Has this contact been disabled? | |||
| bool IsEnabled() const; | |||
| /// Get the next contact in the world's contact list. | |||
| b2Contact* GetNext(); | |||
| const b2Contact* GetNext() const; | |||
| /// Get fixture A in this contact. | |||
| b2Fixture* GetFixtureA(); | |||
| const b2Fixture* GetFixtureA() const; | |||
| /// Get the child primitive index for fixture A. | |||
| int32 GetChildIndexA() const; | |||
| /// Get fixture B in this contact. | |||
| b2Fixture* GetFixtureB(); | |||
| const b2Fixture* GetFixtureB() const; | |||
| /// Get the child primitive index for fixture B. | |||
| int32 GetChildIndexB() const; | |||
| /// Override the default friction mixture. You can call this in b2ContactListener::PreSolve. | |||
| /// This value persists until set or reset. | |||
| void SetFriction(float32 friction); | |||
| /// Get the friction. | |||
| float32 GetFriction() const; | |||
| /// Reset the friction mixture to the default value. | |||
| void ResetFriction(); | |||
| /// Override the default restitution mixture. You can call this in b2ContactListener::PreSolve. | |||
| /// The value persists until you set or reset. | |||
| void SetRestitution(float32 restitution); | |||
| /// Get the restitution. | |||
| float32 GetRestitution() const; | |||
| /// Reset the restitution to the default value. | |||
| void ResetRestitution(); | |||
| /// Evaluate this contact with your own manifold and transforms. | |||
| virtual void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) = 0; | |||
| protected: | |||
| friend class b2ContactManager; | |||
| friend class b2World; | |||
| friend class b2ContactSolver; | |||
| friend class b2Body; | |||
| friend class b2Fixture; | |||
| // Flags stored in m_flags | |||
| enum | |||
| { | |||
| // Used when crawling contact graph when forming islands. | |||
| e_islandFlag = 0x0001, | |||
| // Set when the shapes are touching. | |||
| e_touchingFlag = 0x0002, | |||
| // This contact can be disabled (by user) | |||
| e_enabledFlag = 0x0004, | |||
| // This contact needs filtering because a fixture filter was changed. | |||
| e_filterFlag = 0x0008, | |||
| // This bullet contact had a TOI event | |||
| e_bulletHitFlag = 0x0010, | |||
| // This contact has a valid TOI in m_toi | |||
| e_toiFlag = 0x0020 | |||
| }; | |||
| /// Flag this contact for filtering. Filtering will occur the next time step. | |||
| void FlagForFiltering(); | |||
| static void AddType(b2ContactCreateFcn* createFcn, b2ContactDestroyFcn* destroyFcn, | |||
| b2Shape::Type typeA, b2Shape::Type typeB); | |||
| static void InitializeRegisters(); | |||
| static b2Contact* Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); | |||
| static void Destroy(b2Contact* contact, b2Shape::Type typeA, b2Shape::Type typeB, b2BlockAllocator* allocator); | |||
| static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); | |||
| b2Contact() : m_fixtureA(NULL), m_fixtureB(NULL) {} | |||
| b2Contact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB); | |||
| virtual ~b2Contact() {} | |||
| void Update(b2ContactListener* listener); | |||
| static b2ContactRegister s_registers[b2Shape::e_typeCount][b2Shape::e_typeCount]; | |||
| static bool s_initialized; | |||
| uint32 m_flags; | |||
| // World pool and list pointers. | |||
| b2Contact* m_prev; | |||
| b2Contact* m_next; | |||
| // Nodes for connecting bodies. | |||
| b2ContactEdge m_nodeA; | |||
| b2ContactEdge m_nodeB; | |||
| b2Fixture* m_fixtureA; | |||
| b2Fixture* m_fixtureB; | |||
| int32 m_indexA; | |||
| int32 m_indexB; | |||
| b2Manifold m_manifold; | |||
| int32 m_toiCount; | |||
| float32 m_toi; | |||
| float32 m_friction; | |||
| float32 m_restitution; | |||
| }; | |||
| inline b2Manifold* b2Contact::GetManifold() | |||
| { | |||
| return &m_manifold; | |||
| } | |||
| inline const b2Manifold* b2Contact::GetManifold() const | |||
| { | |||
| return &m_manifold; | |||
| } | |||
| inline void b2Contact::GetWorldManifold(b2WorldManifold* worldManifold) const | |||
| { | |||
| const b2Body* bodyA = m_fixtureA->GetBody(); | |||
| const b2Body* bodyB = m_fixtureB->GetBody(); | |||
| const b2Shape* shapeA = m_fixtureA->GetShape(); | |||
| const b2Shape* shapeB = m_fixtureB->GetShape(); | |||
| worldManifold->Initialize(&m_manifold, bodyA->GetTransform(), shapeA->m_radius, bodyB->GetTransform(), shapeB->m_radius); | |||
| } | |||
| inline void b2Contact::SetEnabled(bool flag) | |||
| { | |||
| if (flag) | |||
| { | |||
| m_flags |= e_enabledFlag; | |||
| } | |||
| else | |||
| { | |||
| m_flags &= ~e_enabledFlag; | |||
| } | |||
| } | |||
| inline bool b2Contact::IsEnabled() const | |||
| { | |||
| return (m_flags & e_enabledFlag) == e_enabledFlag; | |||
| } | |||
| inline bool b2Contact::IsTouching() const | |||
| { | |||
| return (m_flags & e_touchingFlag) == e_touchingFlag; | |||
| } | |||
| inline b2Contact* b2Contact::GetNext() | |||
| { | |||
| return m_next; | |||
| } | |||
| inline const b2Contact* b2Contact::GetNext() const | |||
| { | |||
| return m_next; | |||
| } | |||
| inline b2Fixture* b2Contact::GetFixtureA() | |||
| { | |||
| return m_fixtureA; | |||
| } | |||
| inline const b2Fixture* b2Contact::GetFixtureA() const | |||
| { | |||
| return m_fixtureA; | |||
| } | |||
| inline b2Fixture* b2Contact::GetFixtureB() | |||
| { | |||
| return m_fixtureB; | |||
| } | |||
| inline int32 b2Contact::GetChildIndexA() const | |||
| { | |||
| return m_indexA; | |||
| } | |||
| inline const b2Fixture* b2Contact::GetFixtureB() const | |||
| { | |||
| return m_fixtureB; | |||
| } | |||
| inline int32 b2Contact::GetChildIndexB() const | |||
| { | |||
| return m_indexB; | |||
| } | |||
| inline void b2Contact::FlagForFiltering() | |||
| { | |||
| m_flags |= e_filterFlag; | |||
| } | |||
| inline void b2Contact::SetFriction(float32 friction) | |||
| { | |||
| m_friction = friction; | |||
| } | |||
| inline float32 b2Contact::GetFriction() const | |||
| { | |||
| return m_friction; | |||
| } | |||
| inline void b2Contact::ResetFriction() | |||
| { | |||
| m_friction = b2MixFriction(m_fixtureA->m_friction, m_fixtureB->m_friction); | |||
| } | |||
| inline void b2Contact::SetRestitution(float32 restitution) | |||
| { | |||
| m_restitution = restitution; | |||
| } | |||
| inline float32 b2Contact::GetRestitution() const | |||
| { | |||
| return m_restitution; | |||
| } | |||
| inline void b2Contact::ResetRestitution() | |||
| { | |||
| m_restitution = b2MixRestitution(m_fixtureA->m_restitution, m_fixtureB->m_restitution); | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,832 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2ContactSolver.h" | |||
| #include "b2Contact.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2Fixture.h" | |||
| #include "../b2World.h" | |||
| #include "../../Common/b2StackAllocator.h" | |||
| #define B2_DEBUG_SOLVER 0 | |||
| struct b2ContactPositionConstraint | |||
| { | |||
| b2Vec2 localPoints[b2_maxManifoldPoints]; | |||
| b2Vec2 localNormal; | |||
| b2Vec2 localPoint; | |||
| int32 indexA; | |||
| int32 indexB; | |||
| float32 invMassA, invMassB; | |||
| b2Vec2 localCenterA, localCenterB; | |||
| float32 invIA, invIB; | |||
| b2Manifold::Type type; | |||
| float32 radiusA, radiusB; | |||
| int32 pointCount; | |||
| }; | |||
| b2ContactSolver::b2ContactSolver(b2ContactSolverDef* def) | |||
| { | |||
| m_step = def->step; | |||
| m_allocator = def->allocator; | |||
| m_count = def->count; | |||
| m_positionConstraints = (b2ContactPositionConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactPositionConstraint)); | |||
| m_velocityConstraints = (b2ContactVelocityConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactVelocityConstraint)); | |||
| m_positions = def->positions; | |||
| m_velocities = def->velocities; | |||
| m_contacts = def->contacts; | |||
| // Initialize position independent portions of the constraints. | |||
| for (int32 i = 0; i < m_count; ++i) | |||
| { | |||
| b2Contact* contact = m_contacts[i]; | |||
| b2Fixture* fixtureA = contact->m_fixtureA; | |||
| b2Fixture* fixtureB = contact->m_fixtureB; | |||
| b2Shape* shapeA = fixtureA->GetShape(); | |||
| b2Shape* shapeB = fixtureB->GetShape(); | |||
| float32 radiusA = shapeA->m_radius; | |||
| float32 radiusB = shapeB->m_radius; | |||
| b2Body* bodyA = fixtureA->GetBody(); | |||
| b2Body* bodyB = fixtureB->GetBody(); | |||
| b2Manifold* manifold = contact->GetManifold(); | |||
| int32 pointCount = manifold->pointCount; | |||
| b2Assert(pointCount > 0); | |||
| b2ContactVelocityConstraint* vc = m_velocityConstraints + i; | |||
| vc->friction = contact->m_friction; | |||
| vc->restitution = contact->m_restitution; | |||
| vc->indexA = bodyA->m_islandIndex; | |||
| vc->indexB = bodyB->m_islandIndex; | |||
| vc->invMassA = bodyA->m_invMass; | |||
| vc->invMassB = bodyB->m_invMass; | |||
| vc->invIA = bodyA->m_invI; | |||
| vc->invIB = bodyB->m_invI; | |||
| vc->contactIndex = i; | |||
| vc->pointCount = pointCount; | |||
| vc->K.SetZero(); | |||
| vc->normalMass.SetZero(); | |||
| b2ContactPositionConstraint* pc = m_positionConstraints + i; | |||
| pc->indexA = bodyA->m_islandIndex; | |||
| pc->indexB = bodyB->m_islandIndex; | |||
| pc->invMassA = bodyA->m_invMass; | |||
| pc->invMassB = bodyB->m_invMass; | |||
| pc->localCenterA = bodyA->m_sweep.localCenter; | |||
| pc->localCenterB = bodyB->m_sweep.localCenter; | |||
| pc->invIA = bodyA->m_invI; | |||
| pc->invIB = bodyB->m_invI; | |||
| pc->localNormal = manifold->localNormal; | |||
| pc->localPoint = manifold->localPoint; | |||
| pc->pointCount = pointCount; | |||
| pc->radiusA = radiusA; | |||
| pc->radiusB = radiusB; | |||
| pc->type = manifold->type; | |||
| for (int32 j = 0; j < pointCount; ++j) | |||
| { | |||
| b2ManifoldPoint* cp = manifold->points + j; | |||
| b2VelocityConstraintPoint* vcp = vc->points + j; | |||
| if (m_step.warmStarting) | |||
| { | |||
| vcp->normalImpulse = m_step.dtRatio * cp->normalImpulse; | |||
| vcp->tangentImpulse = m_step.dtRatio * cp->tangentImpulse; | |||
| } | |||
| else | |||
| { | |||
| vcp->normalImpulse = 0.0f; | |||
| vcp->tangentImpulse = 0.0f; | |||
| } | |||
| vcp->rA.SetZero(); | |||
| vcp->rB.SetZero(); | |||
| vcp->normalMass = 0.0f; | |||
| vcp->tangentMass = 0.0f; | |||
| vcp->velocityBias = 0.0f; | |||
| pc->localPoints[j] = cp->localPoint; | |||
| } | |||
| } | |||
| } | |||
| b2ContactSolver::~b2ContactSolver() | |||
| { | |||
| m_allocator->Free(m_velocityConstraints); | |||
| m_allocator->Free(m_positionConstraints); | |||
| } | |||
| // Initialize position dependent portions of the velocity constraints. | |||
| void b2ContactSolver::InitializeVelocityConstraints() | |||
| { | |||
| for (int32 i = 0; i < m_count; ++i) | |||
| { | |||
| b2ContactVelocityConstraint* vc = m_velocityConstraints + i; | |||
| b2ContactPositionConstraint* pc = m_positionConstraints + i; | |||
| float32 radiusA = pc->radiusA; | |||
| float32 radiusB = pc->radiusB; | |||
| b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold(); | |||
| int32 indexA = vc->indexA; | |||
| int32 indexB = vc->indexB; | |||
| float32 mA = vc->invMassA; | |||
| float32 mB = vc->invMassB; | |||
| float32 iA = vc->invIA; | |||
| float32 iB = vc->invIB; | |||
| b2Vec2 localCenterA = pc->localCenterA; | |||
| b2Vec2 localCenterB = pc->localCenterB; | |||
| b2Vec2 cA = m_positions[indexA].c; | |||
| float32 aA = m_positions[indexA].a; | |||
| b2Vec2 vA = m_velocities[indexA].v; | |||
| float32 wA = m_velocities[indexA].w; | |||
| b2Vec2 cB = m_positions[indexB].c; | |||
| float32 aB = m_positions[indexB].a; | |||
| b2Vec2 vB = m_velocities[indexB].v; | |||
| float32 wB = m_velocities[indexB].w; | |||
| b2Assert(manifold->pointCount > 0); | |||
| b2Transform xfA, xfB; | |||
| xfA.q.Set(aA); | |||
| xfB.q.Set(aB); | |||
| xfA.p = cA - b2Mul(xfA.q, localCenterA); | |||
| xfB.p = cB - b2Mul(xfB.q, localCenterB); | |||
| b2WorldManifold worldManifold; | |||
| worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB); | |||
| vc->normal = worldManifold.normal; | |||
| int32 pointCount = vc->pointCount; | |||
| for (int32 j = 0; j < pointCount; ++j) | |||
| { | |||
| b2VelocityConstraintPoint* vcp = vc->points + j; | |||
| vcp->rA = worldManifold.points[j] - cA; | |||
| vcp->rB = worldManifold.points[j] - cB; | |||
| float32 rnA = b2Cross(vcp->rA, vc->normal); | |||
| float32 rnB = b2Cross(vcp->rB, vc->normal); | |||
| float32 kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB; | |||
| vcp->normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f; | |||
| b2Vec2 tangent = b2Cross(vc->normal, 1.0f); | |||
| float32 rtA = b2Cross(vcp->rA, tangent); | |||
| float32 rtB = b2Cross(vcp->rB, tangent); | |||
| float32 kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB; | |||
| vcp->tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f; | |||
| // Setup a velocity bias for restitution. | |||
| vcp->velocityBias = 0.0f; | |||
| float32 vRel = b2Dot(vc->normal, vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA)); | |||
| if (vRel < -b2_velocityThreshold) | |||
| { | |||
| vcp->velocityBias = -vc->restitution * vRel; | |||
| } | |||
| } | |||
| // If we have two points, then prepare the block solver. | |||
| if (vc->pointCount == 2) | |||
| { | |||
| b2VelocityConstraintPoint* vcp1 = vc->points + 0; | |||
| b2VelocityConstraintPoint* vcp2 = vc->points + 1; | |||
| float32 rn1A = b2Cross(vcp1->rA, vc->normal); | |||
| float32 rn1B = b2Cross(vcp1->rB, vc->normal); | |||
| float32 rn2A = b2Cross(vcp2->rA, vc->normal); | |||
| float32 rn2B = b2Cross(vcp2->rB, vc->normal); | |||
| float32 k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B; | |||
| float32 k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B; | |||
| float32 k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B; | |||
| // Ensure a reasonable condition number. | |||
| const float32 k_maxConditionNumber = 1000.0f; | |||
| if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) | |||
| { | |||
| // K is safe to invert. | |||
| vc->K.ex.Set(k11, k12); | |||
| vc->K.ey.Set(k12, k22); | |||
| vc->normalMass = vc->K.GetInverse(); | |||
| } | |||
| else | |||
| { | |||
| // The constraints are redundant, just use one. | |||
| // TODO_ERIN use deepest? | |||
| vc->pointCount = 1; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void b2ContactSolver::WarmStart() | |||
| { | |||
| // Warm start. | |||
| for (int32 i = 0; i < m_count; ++i) | |||
| { | |||
| b2ContactVelocityConstraint* vc = m_velocityConstraints + i; | |||
| int32 indexA = vc->indexA; | |||
| int32 indexB = vc->indexB; | |||
| float32 mA = vc->invMassA; | |||
| float32 iA = vc->invIA; | |||
| float32 mB = vc->invMassB; | |||
| float32 iB = vc->invIB; | |||
| int32 pointCount = vc->pointCount; | |||
| b2Vec2 vA = m_velocities[indexA].v; | |||
| float32 wA = m_velocities[indexA].w; | |||
| b2Vec2 vB = m_velocities[indexB].v; | |||
| float32 wB = m_velocities[indexB].w; | |||
| b2Vec2 normal = vc->normal; | |||
| b2Vec2 tangent = b2Cross(normal, 1.0f); | |||
| for (int32 j = 0; j < pointCount; ++j) | |||
| { | |||
| b2VelocityConstraintPoint* vcp = vc->points + j; | |||
| b2Vec2 P = vcp->normalImpulse * normal + vcp->tangentImpulse * tangent; | |||
| wA -= iA * b2Cross(vcp->rA, P); | |||
| vA -= mA * P; | |||
| wB += iB * b2Cross(vcp->rB, P); | |||
| vB += mB * P; | |||
| } | |||
| m_velocities[indexA].v = vA; | |||
| m_velocities[indexA].w = wA; | |||
| m_velocities[indexB].v = vB; | |||
| m_velocities[indexB].w = wB; | |||
| } | |||
| } | |||
| void b2ContactSolver::SolveVelocityConstraints() | |||
| { | |||
| for (int32 i = 0; i < m_count; ++i) | |||
| { | |||
| b2ContactVelocityConstraint* vc = m_velocityConstraints + i; | |||
| int32 indexA = vc->indexA; | |||
| int32 indexB = vc->indexB; | |||
| float32 mA = vc->invMassA; | |||
| float32 iA = vc->invIA; | |||
| float32 mB = vc->invMassB; | |||
| float32 iB = vc->invIB; | |||
| int32 pointCount = vc->pointCount; | |||
| b2Vec2 vA = m_velocities[indexA].v; | |||
| float32 wA = m_velocities[indexA].w; | |||
| b2Vec2 vB = m_velocities[indexB].v; | |||
| float32 wB = m_velocities[indexB].w; | |||
| b2Vec2 normal = vc->normal; | |||
| b2Vec2 tangent = b2Cross(normal, 1.0f); | |||
| float32 friction = vc->friction; | |||
| b2Assert(pointCount == 1 || pointCount == 2); | |||
| // Solve tangent constraints first because non-penetration is more important | |||
| // than friction. | |||
| for (int32 j = 0; j < pointCount; ++j) | |||
| { | |||
| b2VelocityConstraintPoint* vcp = vc->points + j; | |||
| // Relative velocity at contact | |||
| b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA); | |||
| // Compute tangent force | |||
| float32 vt = b2Dot(dv, tangent); | |||
| float32 lambda = vcp->tangentMass * (-vt); | |||
| // b2Clamp the accumulated force | |||
| float32 maxFriction = friction * vcp->normalImpulse; | |||
| float32 newImpulse = b2Clamp(vcp->tangentImpulse + lambda, -maxFriction, maxFriction); | |||
| lambda = newImpulse - vcp->tangentImpulse; | |||
| vcp->tangentImpulse = newImpulse; | |||
| // Apply contact impulse | |||
| b2Vec2 P = lambda * tangent; | |||
| vA -= mA * P; | |||
| wA -= iA * b2Cross(vcp->rA, P); | |||
| vB += mB * P; | |||
| wB += iB * b2Cross(vcp->rB, P); | |||
| } | |||
| // Solve normal constraints | |||
| if (vc->pointCount == 1) | |||
| { | |||
| b2VelocityConstraintPoint* vcp = vc->points + 0; | |||
| // Relative velocity at contact | |||
| b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA); | |||
| // Compute normal impulse | |||
| float32 vn = b2Dot(dv, normal); | |||
| float32 lambda = -vcp->normalMass * (vn - vcp->velocityBias); | |||
| // b2Clamp the accumulated impulse | |||
| float32 newImpulse = b2Max(vcp->normalImpulse + lambda, 0.0f); | |||
| lambda = newImpulse - vcp->normalImpulse; | |||
| vcp->normalImpulse = newImpulse; | |||
| // Apply contact impulse | |||
| b2Vec2 P = lambda * normal; | |||
| vA -= mA * P; | |||
| wA -= iA * b2Cross(vcp->rA, P); | |||
| vB += mB * P; | |||
| wB += iB * b2Cross(vcp->rB, P); | |||
| } | |||
| else | |||
| { | |||
| // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite). | |||
| // Build the mini LCP for this contact patch | |||
| // | |||
| // vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2 | |||
| // | |||
| // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n ) | |||
| // b = vn0 - velocityBias | |||
| // | |||
| // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i | |||
| // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases | |||
| // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid | |||
| // solution that satisfies the problem is chosen. | |||
| // | |||
| // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires | |||
| // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i). | |||
| // | |||
| // Substitute: | |||
| // | |||
| // x = a + d | |||
| // | |||
| // a := old total impulse | |||
| // x := new total impulse | |||
| // d := incremental impulse | |||
| // | |||
| // For the current iteration we extend the formula for the incremental impulse | |||
| // to compute the new total impulse: | |||
| // | |||
| // vn = A * d + b | |||
| // = A * (x - a) + b | |||
| // = A * x + b - A * a | |||
| // = A * x + b' | |||
| // b' = b - A * a; | |||
| b2VelocityConstraintPoint* cp1 = vc->points + 0; | |||
| b2VelocityConstraintPoint* cp2 = vc->points + 1; | |||
| b2Vec2 a(cp1->normalImpulse, cp2->normalImpulse); | |||
| b2Assert(a.x >= 0.0f && a.y >= 0.0f); | |||
| // Relative velocity at contact | |||
| b2Vec2 dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); | |||
| b2Vec2 dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); | |||
| // Compute normal velocity | |||
| float32 vn1 = b2Dot(dv1, normal); | |||
| float32 vn2 = b2Dot(dv2, normal); | |||
| b2Vec2 b; | |||
| b.x = vn1 - cp1->velocityBias; | |||
| b.y = vn2 - cp2->velocityBias; | |||
| // Compute b' | |||
| b -= b2Mul(vc->K, a); | |||
| const float32 k_errorTol = 1e-3f; | |||
| B2_NOT_USED(k_errorTol); | |||
| for (;;) | |||
| { | |||
| // | |||
| // Case 1: vn = 0 | |||
| // | |||
| // 0 = A * x + b' | |||
| // | |||
| // Solve for x: | |||
| // | |||
| // x = - inv(A) * b' | |||
| // | |||
| b2Vec2 x = - b2Mul(vc->normalMass, b); | |||
| if (x.x >= 0.0f && x.y >= 0.0f) | |||
| { | |||
| // Get the incremental impulse | |||
| b2Vec2 d = x - a; | |||
| // Apply incremental impulse | |||
| b2Vec2 P1 = d.x * normal; | |||
| b2Vec2 P2 = d.y * normal; | |||
| vA -= mA * (P1 + P2); | |||
| wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); | |||
| vB += mB * (P1 + P2); | |||
| wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); | |||
| // Accumulate | |||
| cp1->normalImpulse = x.x; | |||
| cp2->normalImpulse = x.y; | |||
| #if B2_DEBUG_SOLVER == 1 | |||
| // Postconditions | |||
| dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); | |||
| dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); | |||
| // Compute normal velocity | |||
| vn1 = b2Dot(dv1, normal); | |||
| vn2 = b2Dot(dv2, normal); | |||
| b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); | |||
| b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); | |||
| #endif | |||
| break; | |||
| } | |||
| // | |||
| // Case 2: vn1 = 0 and x2 = 0 | |||
| // | |||
| // 0 = a11 * x1 + a12 * 0 + b1' | |||
| // vn2 = a21 * x1 + a22 * 0 + b2' | |||
| // | |||
| x.x = - cp1->normalMass * b.x; | |||
| x.y = 0.0f; | |||
| vn1 = 0.0f; | |||
| vn2 = vc->K.ex.y * x.x + b.y; | |||
| if (x.x >= 0.0f && vn2 >= 0.0f) | |||
| { | |||
| // Get the incremental impulse | |||
| b2Vec2 d = x - a; | |||
| // Apply incremental impulse | |||
| b2Vec2 P1 = d.x * normal; | |||
| b2Vec2 P2 = d.y * normal; | |||
| vA -= mA * (P1 + P2); | |||
| wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); | |||
| vB += mB * (P1 + P2); | |||
| wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); | |||
| // Accumulate | |||
| cp1->normalImpulse = x.x; | |||
| cp2->normalImpulse = x.y; | |||
| #if B2_DEBUG_SOLVER == 1 | |||
| // Postconditions | |||
| dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); | |||
| // Compute normal velocity | |||
| vn1 = b2Dot(dv1, normal); | |||
| b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); | |||
| #endif | |||
| break; | |||
| } | |||
| // | |||
| // Case 3: vn2 = 0 and x1 = 0 | |||
| // | |||
| // vn1 = a11 * 0 + a12 * x2 + b1' | |||
| // 0 = a21 * 0 + a22 * x2 + b2' | |||
| // | |||
| x.x = 0.0f; | |||
| x.y = - cp2->normalMass * b.y; | |||
| vn1 = vc->K.ey.x * x.y + b.x; | |||
| vn2 = 0.0f; | |||
| if (x.y >= 0.0f && vn1 >= 0.0f) | |||
| { | |||
| // Resubstitute for the incremental impulse | |||
| b2Vec2 d = x - a; | |||
| // Apply incremental impulse | |||
| b2Vec2 P1 = d.x * normal; | |||
| b2Vec2 P2 = d.y * normal; | |||
| vA -= mA * (P1 + P2); | |||
| wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); | |||
| vB += mB * (P1 + P2); | |||
| wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); | |||
| // Accumulate | |||
| cp1->normalImpulse = x.x; | |||
| cp2->normalImpulse = x.y; | |||
| #if B2_DEBUG_SOLVER == 1 | |||
| // Postconditions | |||
| dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); | |||
| // Compute normal velocity | |||
| vn2 = b2Dot(dv2, normal); | |||
| b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); | |||
| #endif | |||
| break; | |||
| } | |||
| // | |||
| // Case 4: x1 = 0 and x2 = 0 | |||
| // | |||
| // vn1 = b1 | |||
| // vn2 = b2; | |||
| x.x = 0.0f; | |||
| x.y = 0.0f; | |||
| vn1 = b.x; | |||
| vn2 = b.y; | |||
| if (vn1 >= 0.0f && vn2 >= 0.0f ) | |||
| { | |||
| // Resubstitute for the incremental impulse | |||
| b2Vec2 d = x - a; | |||
| // Apply incremental impulse | |||
| b2Vec2 P1 = d.x * normal; | |||
| b2Vec2 P2 = d.y * normal; | |||
| vA -= mA * (P1 + P2); | |||
| wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); | |||
| vB += mB * (P1 + P2); | |||
| wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); | |||
| // Accumulate | |||
| cp1->normalImpulse = x.x; | |||
| cp2->normalImpulse = x.y; | |||
| break; | |||
| } | |||
| // No solution, give up. This is hit sometimes, but it doesn't seem to matter. | |||
| break; | |||
| } | |||
| } | |||
| m_velocities[indexA].v = vA; | |||
| m_velocities[indexA].w = wA; | |||
| m_velocities[indexB].v = vB; | |||
| m_velocities[indexB].w = wB; | |||
| } | |||
| } | |||
| void b2ContactSolver::StoreImpulses() | |||
| { | |||
| for (int32 i = 0; i < m_count; ++i) | |||
| { | |||
| b2ContactVelocityConstraint* vc = m_velocityConstraints + i; | |||
| b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold(); | |||
| for (int32 j = 0; j < vc->pointCount; ++j) | |||
| { | |||
| manifold->points[j].normalImpulse = vc->points[j].normalImpulse; | |||
| manifold->points[j].tangentImpulse = vc->points[j].tangentImpulse; | |||
| } | |||
| } | |||
| } | |||
| struct b2PositionSolverManifold | |||
| { | |||
| void Initialize(b2ContactPositionConstraint* pc, const b2Transform& xfA, const b2Transform& xfB, int32 index) | |||
| { | |||
| b2Assert(pc->pointCount > 0); | |||
| switch (pc->type) | |||
| { | |||
| case b2Manifold::e_circles: | |||
| { | |||
| b2Vec2 pointA = b2Mul(xfA, pc->localPoint); | |||
| b2Vec2 pointB = b2Mul(xfB, pc->localPoints[0]); | |||
| normal = pointB - pointA; | |||
| normal.Normalize(); | |||
| point = 0.5f * (pointA + pointB); | |||
| separation = b2Dot(pointB - pointA, normal) - pc->radiusA - pc->radiusB; | |||
| } | |||
| break; | |||
| case b2Manifold::e_faceA: | |||
| { | |||
| normal = b2Mul(xfA.q, pc->localNormal); | |||
| b2Vec2 planePoint = b2Mul(xfA, pc->localPoint); | |||
| b2Vec2 clipPoint = b2Mul(xfB, pc->localPoints[index]); | |||
| separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB; | |||
| point = clipPoint; | |||
| } | |||
| break; | |||
| case b2Manifold::e_faceB: | |||
| { | |||
| normal = b2Mul(xfB.q, pc->localNormal); | |||
| b2Vec2 planePoint = b2Mul(xfB, pc->localPoint); | |||
| b2Vec2 clipPoint = b2Mul(xfA, pc->localPoints[index]); | |||
| separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB; | |||
| point = clipPoint; | |||
| // Ensure normal points from A to B | |||
| normal = -normal; | |||
| } | |||
| break; | |||
| } | |||
| } | |||
| b2Vec2 normal; | |||
| b2Vec2 point; | |||
| float32 separation; | |||
| }; | |||
| // Sequential solver. | |||
| bool b2ContactSolver::SolvePositionConstraints() | |||
| { | |||
| float32 minSeparation = 0.0f; | |||
| for (int32 i = 0; i < m_count; ++i) | |||
| { | |||
| b2ContactPositionConstraint* pc = m_positionConstraints + i; | |||
| int32 indexA = pc->indexA; | |||
| int32 indexB = pc->indexB; | |||
| b2Vec2 localCenterA = pc->localCenterA; | |||
| float32 mA = pc->invMassA; | |||
| float32 iA = pc->invIA; | |||
| b2Vec2 localCenterB = pc->localCenterB; | |||
| float32 mB = pc->invMassB; | |||
| float32 iB = pc->invIB; | |||
| int32 pointCount = pc->pointCount; | |||
| b2Vec2 cA = m_positions[indexA].c; | |||
| float32 aA = m_positions[indexA].a; | |||
| b2Vec2 cB = m_positions[indexB].c; | |||
| float32 aB = m_positions[indexB].a; | |||
| // Solve normal constraints | |||
| for (int32 j = 0; j < pointCount; ++j) | |||
| { | |||
| b2Transform xfA, xfB; | |||
| xfA.q.Set(aA); | |||
| xfB.q.Set(aB); | |||
| xfA.p = cA - b2Mul(xfA.q, localCenterA); | |||
| xfB.p = cB - b2Mul(xfB.q, localCenterB); | |||
| b2PositionSolverManifold psm; | |||
| psm.Initialize(pc, xfA, xfB, j); | |||
| b2Vec2 normal = psm.normal; | |||
| b2Vec2 point = psm.point; | |||
| float32 separation = psm.separation; | |||
| b2Vec2 rA = point - cA; | |||
| b2Vec2 rB = point - cB; | |||
| // Track max constraint error. | |||
| minSeparation = b2Min(minSeparation, separation); | |||
| // Prevent large corrections and allow slop. | |||
| float32 C = b2Clamp(b2_baumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); | |||
| // Compute the effective mass. | |||
| float32 rnA = b2Cross(rA, normal); | |||
| float32 rnB = b2Cross(rB, normal); | |||
| float32 K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; | |||
| // Compute normal impulse | |||
| float32 impulse = K > 0.0f ? - C / K : 0.0f; | |||
| b2Vec2 P = impulse * normal; | |||
| cA -= mA * P; | |||
| aA -= iA * b2Cross(rA, P); | |||
| cB += mB * P; | |||
| aB += iB * b2Cross(rB, P); | |||
| } | |||
| m_positions[indexA].c = cA; | |||
| m_positions[indexA].a = aA; | |||
| m_positions[indexB].c = cB; | |||
| m_positions[indexB].a = aB; | |||
| } | |||
| // We can't expect minSpeparation >= -b2_linearSlop because we don't | |||
| // push the separation above -b2_linearSlop. | |||
| return minSeparation >= -3.0f * b2_linearSlop; | |||
| } | |||
| // Sequential position solver for position constraints. | |||
| bool b2ContactSolver::SolveTOIPositionConstraints(int32 toiIndexA, int32 toiIndexB) | |||
| { | |||
| float32 minSeparation = 0.0f; | |||
| for (int32 i = 0; i < m_count; ++i) | |||
| { | |||
| b2ContactPositionConstraint* pc = m_positionConstraints + i; | |||
| int32 indexA = pc->indexA; | |||
| int32 indexB = pc->indexB; | |||
| b2Vec2 localCenterA = pc->localCenterA; | |||
| b2Vec2 localCenterB = pc->localCenterB; | |||
| int32 pointCount = pc->pointCount; | |||
| float32 mA = 0.0f; | |||
| float32 iA = 0.0f; | |||
| if (indexA == toiIndexA || indexA == toiIndexB) | |||
| { | |||
| mA = pc->invMassA; | |||
| iA = pc->invIA; | |||
| } | |||
| float32 mB = pc->invMassB; | |||
| float32 iB = pc->invIB; | |||
| if (indexB == toiIndexA || indexB == toiIndexB) | |||
| { | |||
| mB = pc->invMassB; | |||
| iB = pc->invIB; | |||
| } | |||
| b2Vec2 cA = m_positions[indexA].c; | |||
| float32 aA = m_positions[indexA].a; | |||
| b2Vec2 cB = m_positions[indexB].c; | |||
| float32 aB = m_positions[indexB].a; | |||
| // Solve normal constraints | |||
| for (int32 j = 0; j < pointCount; ++j) | |||
| { | |||
| b2Transform xfA, xfB; | |||
| xfA.q.Set(aA); | |||
| xfB.q.Set(aB); | |||
| xfA.p = cA - b2Mul(xfA.q, localCenterA); | |||
| xfB.p = cB - b2Mul(xfB.q, localCenterB); | |||
| b2PositionSolverManifold psm; | |||
| psm.Initialize(pc, xfA, xfB, j); | |||
| b2Vec2 normal = psm.normal; | |||
| b2Vec2 point = psm.point; | |||
| float32 separation = psm.separation; | |||
| b2Vec2 rA = point - cA; | |||
| b2Vec2 rB = point - cB; | |||
| // Track max constraint error. | |||
| minSeparation = b2Min(minSeparation, separation); | |||
| // Prevent large corrections and allow slop. | |||
| float32 C = b2Clamp(b2_toiBaugarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); | |||
| // Compute the effective mass. | |||
| float32 rnA = b2Cross(rA, normal); | |||
| float32 rnB = b2Cross(rB, normal); | |||
| float32 K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; | |||
| // Compute normal impulse | |||
| float32 impulse = K > 0.0f ? - C / K : 0.0f; | |||
| b2Vec2 P = impulse * normal; | |||
| cA -= mA * P; | |||
| aA -= iA * b2Cross(rA, P); | |||
| cB += mB * P; | |||
| aB += iB * b2Cross(rB, P); | |||
| } | |||
| m_positions[indexA].c = cA; | |||
| m_positions[indexA].a = aA; | |||
| m_positions[indexB].c = cB; | |||
| m_positions[indexB].a = aB; | |||
| } | |||
| // We can't expect minSpeparation >= -b2_linearSlop because we don't | |||
| // push the separation above -b2_linearSlop. | |||
| return minSeparation >= -1.5f * b2_linearSlop; | |||
| } | |||
| @@ -0,0 +1,93 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_CONTACT_SOLVER_H | |||
| #define B2_CONTACT_SOLVER_H | |||
| #include "../../Common/b2Math.h" | |||
| #include "../../Collision/b2Collision.h" | |||
| #include "../b2TimeStep.h" | |||
| class b2Contact; | |||
| class b2Body; | |||
| class b2StackAllocator; | |||
| struct b2ContactPositionConstraint; | |||
| struct b2VelocityConstraintPoint | |||
| { | |||
| b2Vec2 rA; | |||
| b2Vec2 rB; | |||
| float32 normalImpulse; | |||
| float32 tangentImpulse; | |||
| float32 normalMass; | |||
| float32 tangentMass; | |||
| float32 velocityBias; | |||
| }; | |||
| struct b2ContactVelocityConstraint | |||
| { | |||
| b2VelocityConstraintPoint points[b2_maxManifoldPoints]; | |||
| b2Vec2 normal; | |||
| b2Mat22 normalMass; | |||
| b2Mat22 K; | |||
| int32 indexA; | |||
| int32 indexB; | |||
| float32 invMassA, invMassB; | |||
| float32 invIA, invIB; | |||
| float32 friction; | |||
| float32 restitution; | |||
| int32 pointCount; | |||
| int32 contactIndex; | |||
| }; | |||
| struct b2ContactSolverDef | |||
| { | |||
| b2TimeStep step; | |||
| b2Contact** contacts; | |||
| int32 count; | |||
| b2Position* positions; | |||
| b2Velocity* velocities; | |||
| b2StackAllocator* allocator; | |||
| }; | |||
| class b2ContactSolver | |||
| { | |||
| public: | |||
| b2ContactSolver(b2ContactSolverDef* def); | |||
| ~b2ContactSolver(); | |||
| void InitializeVelocityConstraints(); | |||
| void WarmStart(); | |||
| void SolveVelocityConstraints(); | |||
| void StoreImpulses(); | |||
| bool SolvePositionConstraints(); | |||
| bool SolveTOIPositionConstraints(int32 toiIndexA, int32 toiIndexB); | |||
| b2TimeStep m_step; | |||
| b2Position* m_positions; | |||
| b2Velocity* m_velocities; | |||
| b2StackAllocator* m_allocator; | |||
| b2ContactPositionConstraint* m_positionConstraints; | |||
| b2ContactVelocityConstraint* m_velocityConstraints; | |||
| b2Contact** m_contacts; | |||
| int m_count; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,50 @@ | |||
| /* | |||
| * Copyright (c) 2006-2010 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2EdgeAndCircleContact.h" | |||
| #include "../../Common/b2BlockAllocator.h" | |||
| #include "../b2Fixture.h" | |||
| #include <new> | |||
| using namespace std; | |||
| b2Contact* b2EdgeAndCircleContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2EdgeAndCircleContact)); | |||
| return new (mem) b2EdgeAndCircleContact(fixtureA, fixtureB); | |||
| } | |||
| void b2EdgeAndCircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) | |||
| { | |||
| ((b2EdgeAndCircleContact*)contact)->~b2EdgeAndCircleContact(); | |||
| allocator->Free(contact, sizeof(b2EdgeAndCircleContact)); | |||
| } | |||
| b2EdgeAndCircleContact::b2EdgeAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB) | |||
| : b2Contact(fixtureA, 0, fixtureB, 0) | |||
| { | |||
| b2Assert(m_fixtureA->GetType() == b2Shape::e_edge); | |||
| b2Assert(m_fixtureB->GetType() == b2Shape::e_circle); | |||
| } | |||
| void b2EdgeAndCircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) | |||
| { | |||
| b2CollideEdgeAndCircle( manifold, | |||
| (b2EdgeShape*)m_fixtureA->GetShape(), xfA, | |||
| (b2CircleShape*)m_fixtureB->GetShape(), xfB); | |||
| } | |||
| @@ -0,0 +1,39 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_EDGE_AND_CIRCLE_CONTACT_H | |||
| #define B2_EDGE_AND_CIRCLE_CONTACT_H | |||
| #include "b2Contact.h" | |||
| class b2BlockAllocator; | |||
| class b2EdgeAndCircleContact : public b2Contact | |||
| { | |||
| public: | |||
| static b2Contact* Create( b2Fixture* fixtureA, int32 indexA, | |||
| b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); | |||
| static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); | |||
| b2EdgeAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB); | |||
| ~b2EdgeAndCircleContact() {} | |||
| void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB); | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,50 @@ | |||
| /* | |||
| * Copyright (c) 2006-2010 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2EdgeAndPolygonContact.h" | |||
| #include "../../Common/b2BlockAllocator.h" | |||
| #include "../b2Fixture.h" | |||
| #include <new> | |||
| using namespace std; | |||
| b2Contact* b2EdgeAndPolygonContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2EdgeAndPolygonContact)); | |||
| return new (mem) b2EdgeAndPolygonContact(fixtureA, fixtureB); | |||
| } | |||
| void b2EdgeAndPolygonContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) | |||
| { | |||
| ((b2EdgeAndPolygonContact*)contact)->~b2EdgeAndPolygonContact(); | |||
| allocator->Free(contact, sizeof(b2EdgeAndPolygonContact)); | |||
| } | |||
| b2EdgeAndPolygonContact::b2EdgeAndPolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB) | |||
| : b2Contact(fixtureA, 0, fixtureB, 0) | |||
| { | |||
| b2Assert(m_fixtureA->GetType() == b2Shape::e_edge); | |||
| b2Assert(m_fixtureB->GetType() == b2Shape::e_polygon); | |||
| } | |||
| void b2EdgeAndPolygonContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) | |||
| { | |||
| b2CollideEdgeAndPolygon( manifold, | |||
| (b2EdgeShape*)m_fixtureA->GetShape(), xfA, | |||
| (b2PolygonShape*)m_fixtureB->GetShape(), xfB); | |||
| } | |||
| @@ -0,0 +1,39 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_EDGE_AND_POLYGON_CONTACT_H | |||
| #define B2_EDGE_AND_POLYGON_CONTACT_H | |||
| #include "b2Contact.h" | |||
| class b2BlockAllocator; | |||
| class b2EdgeAndPolygonContact : public b2Contact | |||
| { | |||
| public: | |||
| static b2Contact* Create( b2Fixture* fixtureA, int32 indexA, | |||
| b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); | |||
| static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); | |||
| b2EdgeAndPolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB); | |||
| ~b2EdgeAndPolygonContact() {} | |||
| void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB); | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,50 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2PolygonAndCircleContact.h" | |||
| #include "../../Common/b2BlockAllocator.h" | |||
| #include "../b2Fixture.h" | |||
| #include <new> | |||
| using namespace std; | |||
| b2Contact* b2PolygonAndCircleContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2PolygonAndCircleContact)); | |||
| return new (mem) b2PolygonAndCircleContact(fixtureA, fixtureB); | |||
| } | |||
| void b2PolygonAndCircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) | |||
| { | |||
| ((b2PolygonAndCircleContact*)contact)->~b2PolygonAndCircleContact(); | |||
| allocator->Free(contact, sizeof(b2PolygonAndCircleContact)); | |||
| } | |||
| b2PolygonAndCircleContact::b2PolygonAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB) | |||
| : b2Contact(fixtureA, 0, fixtureB, 0) | |||
| { | |||
| b2Assert(m_fixtureA->GetType() == b2Shape::e_polygon); | |||
| b2Assert(m_fixtureB->GetType() == b2Shape::e_circle); | |||
| } | |||
| void b2PolygonAndCircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) | |||
| { | |||
| b2CollidePolygonAndCircle( manifold, | |||
| (b2PolygonShape*)m_fixtureA->GetShape(), xfA, | |||
| (b2CircleShape*)m_fixtureB->GetShape(), xfB); | |||
| } | |||
| @@ -0,0 +1,38 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_POLYGON_AND_CIRCLE_CONTACT_H | |||
| #define B2_POLYGON_AND_CIRCLE_CONTACT_H | |||
| #include "b2Contact.h" | |||
| class b2BlockAllocator; | |||
| class b2PolygonAndCircleContact : public b2Contact | |||
| { | |||
| public: | |||
| static b2Contact* Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); | |||
| static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); | |||
| b2PolygonAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB); | |||
| ~b2PolygonAndCircleContact() {} | |||
| void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB); | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,53 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2PolygonContact.h" | |||
| #include "../../Common/b2BlockAllocator.h" | |||
| #include "../../Collision/b2TimeOfImpact.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2Fixture.h" | |||
| #include "../b2WorldCallbacks.h" | |||
| #include <new> | |||
| using namespace std; | |||
| b2Contact* b2PolygonContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2PolygonContact)); | |||
| return new (mem) b2PolygonContact(fixtureA, fixtureB); | |||
| } | |||
| void b2PolygonContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) | |||
| { | |||
| ((b2PolygonContact*)contact)->~b2PolygonContact(); | |||
| allocator->Free(contact, sizeof(b2PolygonContact)); | |||
| } | |||
| b2PolygonContact::b2PolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB) | |||
| : b2Contact(fixtureA, 0, fixtureB, 0) | |||
| { | |||
| b2Assert(m_fixtureA->GetType() == b2Shape::e_polygon); | |||
| b2Assert(m_fixtureB->GetType() == b2Shape::e_polygon); | |||
| } | |||
| void b2PolygonContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) | |||
| { | |||
| b2CollidePolygons( manifold, | |||
| (b2PolygonShape*)m_fixtureA->GetShape(), xfA, | |||
| (b2PolygonShape*)m_fixtureB->GetShape(), xfB); | |||
| } | |||
| @@ -0,0 +1,39 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_POLYGON_CONTACT_H | |||
| #define B2_POLYGON_CONTACT_H | |||
| #include "b2Contact.h" | |||
| class b2BlockAllocator; | |||
| class b2PolygonContact : public b2Contact | |||
| { | |||
| public: | |||
| static b2Contact* Create( b2Fixture* fixtureA, int32 indexA, | |||
| b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator); | |||
| static void Destroy(b2Contact* contact, b2BlockAllocator* allocator); | |||
| b2PolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB); | |||
| ~b2PolygonContact() {} | |||
| void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB); | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,260 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2DistanceJoint.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2TimeStep.h" | |||
| // 1-D constrained system | |||
| // m (v2 - v1) = lambda | |||
| // v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass. | |||
| // x2 = x1 + h * v2 | |||
| // 1-D mass-damper-spring system | |||
| // m (v2 - v1) + h * d * v2 + h * k * | |||
| // C = norm(p2 - p1) - L | |||
| // u = (p2 - p1) / norm(p2 - p1) | |||
| // Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1)) | |||
| // J = [-u -cross(r1, u) u cross(r2, u)] | |||
| // K = J * invM * JT | |||
| // = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2 | |||
| void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2, | |||
| const b2Vec2& anchor1, const b2Vec2& anchor2) | |||
| { | |||
| bodyA = b1; | |||
| bodyB = b2; | |||
| localAnchorA = bodyA->GetLocalPoint(anchor1); | |||
| localAnchorB = bodyB->GetLocalPoint(anchor2); | |||
| b2Vec2 d = anchor2 - anchor1; | |||
| length = d.Length(); | |||
| } | |||
| b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def) | |||
| : b2Joint(def) | |||
| { | |||
| m_localAnchorA = def->localAnchorA; | |||
| m_localAnchorB = def->localAnchorB; | |||
| m_length = def->length; | |||
| m_frequencyHz = def->frequencyHz; | |||
| m_dampingRatio = def->dampingRatio; | |||
| m_impulse = 0.0f; | |||
| m_gamma = 0.0f; | |||
| m_bias = 0.0f; | |||
| } | |||
| void b2DistanceJoint::InitVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| m_indexA = m_bodyA->m_islandIndex; | |||
| m_indexB = m_bodyB->m_islandIndex; | |||
| m_localCenterA = m_bodyA->m_sweep.localCenter; | |||
| m_localCenterB = m_bodyB->m_sweep.localCenter; | |||
| m_invMassA = m_bodyA->m_invMass; | |||
| m_invMassB = m_bodyB->m_invMass; | |||
| m_invIA = m_bodyA->m_invI; | |||
| m_invIB = m_bodyB->m_invI; | |||
| b2Vec2 cA = data.positions[m_indexA].c; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| b2Rot qA(aA), qB(aB); | |||
| m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| m_u = cB + m_rB - cA - m_rA; | |||
| // Handle singularity. | |||
| float32 length = m_u.Length(); | |||
| if (length > b2_linearSlop) | |||
| { | |||
| m_u *= 1.0f / length; | |||
| } | |||
| else | |||
| { | |||
| m_u.Set(0.0f, 0.0f); | |||
| } | |||
| float32 crAu = b2Cross(m_rA, m_u); | |||
| float32 crBu = b2Cross(m_rB, m_u); | |||
| float32 invMass = m_invMassA + m_invIA * crAu * crAu + m_invMassB + m_invIB * crBu * crBu; | |||
| // Compute the effective mass matrix. | |||
| m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; | |||
| if (m_frequencyHz > 0.0f) | |||
| { | |||
| float32 C = length - m_length; | |||
| // Frequency | |||
| float32 omega = 2.0f * b2_pi * m_frequencyHz; | |||
| // Damping coefficient | |||
| float32 d = 2.0f * m_mass * m_dampingRatio * omega; | |||
| // Spring stiffness | |||
| float32 k = m_mass * omega * omega; | |||
| // magic formulas | |||
| float32 h = data.step.dt; | |||
| m_gamma = h * (d + h * k); | |||
| m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; | |||
| m_bias = C * h * k * m_gamma; | |||
| invMass += m_gamma; | |||
| m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; | |||
| } | |||
| else | |||
| { | |||
| m_gamma = 0.0f; | |||
| m_bias = 0.0f; | |||
| } | |||
| if (data.step.warmStarting) | |||
| { | |||
| // Scale the impulse to support a variable time step. | |||
| m_impulse *= data.step.dtRatio; | |||
| b2Vec2 P = m_impulse * m_u; | |||
| vA -= m_invMassA * P; | |||
| wA -= m_invIA * b2Cross(m_rA, P); | |||
| vB += m_invMassB * P; | |||
| wB += m_invIB * b2Cross(m_rB, P); | |||
| } | |||
| else | |||
| { | |||
| m_impulse = 0.0f; | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| void b2DistanceJoint::SolveVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| // Cdot = dot(u, v + cross(w, r)) | |||
| b2Vec2 vpA = vA + b2Cross(wA, m_rA); | |||
| b2Vec2 vpB = vB + b2Cross(wB, m_rB); | |||
| float32 Cdot = b2Dot(m_u, vpB - vpA); | |||
| float32 impulse = -m_mass * (Cdot + m_bias + m_gamma * m_impulse); | |||
| m_impulse += impulse; | |||
| b2Vec2 P = impulse * m_u; | |||
| vA -= m_invMassA * P; | |||
| wA -= m_invIA * b2Cross(m_rA, P); | |||
| vB += m_invMassB * P; | |||
| wB += m_invIB * b2Cross(m_rB, P); | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| bool b2DistanceJoint::SolvePositionConstraints(const b2SolverData& data) | |||
| { | |||
| if (m_frequencyHz > 0.0f) | |||
| { | |||
| // There is no position correction for soft distance constraints. | |||
| return true; | |||
| } | |||
| b2Vec2 cA = data.positions[m_indexA].c; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Rot qA(aA), qB(aB); | |||
| b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| b2Vec2 u = cB + rB - cA - rA; | |||
| float32 length = u.Normalize(); | |||
| float32 C = length - m_length; | |||
| C = b2Clamp(C, -b2_maxLinearCorrection, b2_maxLinearCorrection); | |||
| float32 impulse = -m_mass * C; | |||
| b2Vec2 P = impulse * u; | |||
| cA -= m_invMassA * P; | |||
| aA -= m_invIA * b2Cross(rA, P); | |||
| cB += m_invMassB * P; | |||
| aB += m_invIB * b2Cross(rB, P); | |||
| data.positions[m_indexA].c = cA; | |||
| data.positions[m_indexA].a = aA; | |||
| data.positions[m_indexB].c = cB; | |||
| data.positions[m_indexB].a = aB; | |||
| return b2Abs(C) < b2_linearSlop; | |||
| } | |||
| b2Vec2 b2DistanceJoint::GetAnchorA() const | |||
| { | |||
| return m_bodyA->GetWorldPoint(m_localAnchorA); | |||
| } | |||
| b2Vec2 b2DistanceJoint::GetAnchorB() const | |||
| { | |||
| return m_bodyB->GetWorldPoint(m_localAnchorB); | |||
| } | |||
| b2Vec2 b2DistanceJoint::GetReactionForce(float32 inv_dt) const | |||
| { | |||
| b2Vec2 F = (inv_dt * m_impulse) * m_u; | |||
| return F; | |||
| } | |||
| float32 b2DistanceJoint::GetReactionTorque(float32 inv_dt) const | |||
| { | |||
| B2_NOT_USED(inv_dt); | |||
| return 0.0f; | |||
| } | |||
| void b2DistanceJoint::Dump() | |||
| { | |||
| int32 indexA = m_bodyA->m_islandIndex; | |||
| int32 indexB = m_bodyB->m_islandIndex; | |||
| b2Log(" b2DistanceJointDef jd;\n"); | |||
| b2Log(" jd.bodyA = bodies[%d];\n", indexA); | |||
| b2Log(" jd.bodyB = bodies[%d];\n", indexB); | |||
| b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); | |||
| b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); | |||
| b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); | |||
| b2Log(" jd.length = %.15lef;\n", m_length); | |||
| b2Log(" jd.frequencyHz = %.15lef;\n", m_frequencyHz); | |||
| b2Log(" jd.dampingRatio = %.15lef;\n", m_dampingRatio); | |||
| b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | |||
| } | |||
| @@ -0,0 +1,169 @@ | |||
| /* | |||
| * Copyright (c) 2006-2007 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_DISTANCE_JOINT_H | |||
| #define B2_DISTANCE_JOINT_H | |||
| #include "b2Joint.h" | |||
| /// Distance joint definition. This requires defining an | |||
| /// anchor point on both bodies and the non-zero length of the | |||
| /// distance joint. The definition uses local anchor points | |||
| /// so that the initial configuration can violate the constraint | |||
| /// slightly. This helps when saving and loading a game. | |||
| /// @warning Do not use a zero or short length. | |||
| struct b2DistanceJointDef : public b2JointDef | |||
| { | |||
| b2DistanceJointDef() | |||
| { | |||
| type = e_distanceJoint; | |||
| localAnchorA.Set(0.0f, 0.0f); | |||
| localAnchorB.Set(0.0f, 0.0f); | |||
| length = 1.0f; | |||
| frequencyHz = 0.0f; | |||
| dampingRatio = 0.0f; | |||
| } | |||
| /// Initialize the bodies, anchors, and length using the world | |||
| /// anchors. | |||
| void Initialize(b2Body* bodyA, b2Body* bodyB, | |||
| const b2Vec2& anchorA, const b2Vec2& anchorB); | |||
| /// The local anchor point relative to bodyA's origin. | |||
| b2Vec2 localAnchorA; | |||
| /// The local anchor point relative to bodyB's origin. | |||
| b2Vec2 localAnchorB; | |||
| /// The natural length between the anchor points. | |||
| float32 length; | |||
| /// The mass-spring-damper frequency in Hertz. A value of 0 | |||
| /// disables softness. | |||
| float32 frequencyHz; | |||
| /// The damping ratio. 0 = no damping, 1 = critical damping. | |||
| float32 dampingRatio; | |||
| }; | |||
| /// A distance joint constrains two points on two bodies | |||
| /// to remain at a fixed distance from each other. You can view | |||
| /// this as a massless, rigid rod. | |||
| class b2DistanceJoint : public b2Joint | |||
| { | |||
| public: | |||
| b2Vec2 GetAnchorA() const; | |||
| b2Vec2 GetAnchorB() const; | |||
| /// Get the reaction force given the inverse time step. | |||
| /// Unit is N. | |||
| b2Vec2 GetReactionForce(float32 inv_dt) const; | |||
| /// Get the reaction torque given the inverse time step. | |||
| /// Unit is N*m. This is always zero for a distance joint. | |||
| float32 GetReactionTorque(float32 inv_dt) const; | |||
| /// The local anchor point relative to bodyA's origin. | |||
| const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; } | |||
| /// The local anchor point relative to bodyB's origin. | |||
| const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; } | |||
| /// Set/get the natural length. | |||
| /// Manipulating the length can lead to non-physical behavior when the frequency is zero. | |||
| void SetLength(float32 length); | |||
| float32 GetLength() const; | |||
| /// Set/get frequency in Hz. | |||
| void SetFrequency(float32 hz); | |||
| float32 GetFrequency() const; | |||
| /// Set/get damping ratio. | |||
| void SetDampingRatio(float32 ratio); | |||
| float32 GetDampingRatio() const; | |||
| /// Dump joint to dmLog | |||
| void Dump(); | |||
| protected: | |||
| friend class b2Joint; | |||
| b2DistanceJoint(const b2DistanceJointDef* data); | |||
| void InitVelocityConstraints(const b2SolverData& data); | |||
| void SolveVelocityConstraints(const b2SolverData& data); | |||
| bool SolvePositionConstraints(const b2SolverData& data); | |||
| float32 m_frequencyHz; | |||
| float32 m_dampingRatio; | |||
| float32 m_bias; | |||
| // Solver shared | |||
| b2Vec2 m_localAnchorA; | |||
| b2Vec2 m_localAnchorB; | |||
| float32 m_gamma; | |||
| float32 m_impulse; | |||
| float32 m_length; | |||
| // Solver temp | |||
| int32 m_indexA; | |||
| int32 m_indexB; | |||
| b2Vec2 m_u; | |||
| b2Vec2 m_rA; | |||
| b2Vec2 m_rB; | |||
| b2Vec2 m_localCenterA; | |||
| b2Vec2 m_localCenterB; | |||
| float32 m_invMassA; | |||
| float32 m_invMassB; | |||
| float32 m_invIA; | |||
| float32 m_invIB; | |||
| float32 m_mass; | |||
| }; | |||
| inline void b2DistanceJoint::SetLength(float32 length) | |||
| { | |||
| m_length = length; | |||
| } | |||
| inline float32 b2DistanceJoint::GetLength() const | |||
| { | |||
| return m_length; | |||
| } | |||
| inline void b2DistanceJoint::SetFrequency(float32 hz) | |||
| { | |||
| m_frequencyHz = hz; | |||
| } | |||
| inline float32 b2DistanceJoint::GetFrequency() const | |||
| { | |||
| return m_frequencyHz; | |||
| } | |||
| inline void b2DistanceJoint::SetDampingRatio(float32 ratio) | |||
| { | |||
| m_dampingRatio = ratio; | |||
| } | |||
| inline float32 b2DistanceJoint::GetDampingRatio() const | |||
| { | |||
| return m_dampingRatio; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,251 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2FrictionJoint.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2TimeStep.h" | |||
| // Point-to-point constraint | |||
| // Cdot = v2 - v1 | |||
| // = v2 + cross(w2, r2) - v1 - cross(w1, r1) | |||
| // J = [-I -r1_skew I r2_skew ] | |||
| // Identity used: | |||
| // w k % (rx i + ry j) = w * (-ry i + rx j) | |||
| // Angle constraint | |||
| // Cdot = w2 - w1 | |||
| // J = [0 0 -1 0 0 1] | |||
| // K = invI1 + invI2 | |||
| void b2FrictionJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) | |||
| { | |||
| bodyA = bA; | |||
| bodyB = bB; | |||
| localAnchorA = bodyA->GetLocalPoint(anchor); | |||
| localAnchorB = bodyB->GetLocalPoint(anchor); | |||
| } | |||
| b2FrictionJoint::b2FrictionJoint(const b2FrictionJointDef* def) | |||
| : b2Joint(def) | |||
| { | |||
| m_localAnchorA = def->localAnchorA; | |||
| m_localAnchorB = def->localAnchorB; | |||
| m_linearImpulse.SetZero(); | |||
| m_angularImpulse = 0.0f; | |||
| m_maxForce = def->maxForce; | |||
| m_maxTorque = def->maxTorque; | |||
| } | |||
| void b2FrictionJoint::InitVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| m_indexA = m_bodyA->m_islandIndex; | |||
| m_indexB = m_bodyB->m_islandIndex; | |||
| m_localCenterA = m_bodyA->m_sweep.localCenter; | |||
| m_localCenterB = m_bodyB->m_sweep.localCenter; | |||
| m_invMassA = m_bodyA->m_invMass; | |||
| m_invMassB = m_bodyB->m_invMass; | |||
| m_invIA = m_bodyA->m_invI; | |||
| m_invIB = m_bodyB->m_invI; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| b2Rot qA(aA), qB(aB); | |||
| // Compute the effective mass matrix. | |||
| m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| // J = [-I -r1_skew I r2_skew] | |||
| // [ 0 -1 0 1] | |||
| // r_skew = [-ry; rx] | |||
| // Matlab | |||
| // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] | |||
| // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] | |||
| // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] | |||
| float32 mA = m_invMassA, mB = m_invMassB; | |||
| float32 iA = m_invIA, iB = m_invIB; | |||
| b2Mat22 K; | |||
| K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y; | |||
| K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y; | |||
| K.ey.x = K.ex.y; | |||
| K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x; | |||
| m_linearMass = K.GetInverse(); | |||
| m_angularMass = iA + iB; | |||
| if (m_angularMass > 0.0f) | |||
| { | |||
| m_angularMass = 1.0f / m_angularMass; | |||
| } | |||
| if (data.step.warmStarting) | |||
| { | |||
| // Scale impulses to support a variable time step. | |||
| m_linearImpulse *= data.step.dtRatio; | |||
| m_angularImpulse *= data.step.dtRatio; | |||
| b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y); | |||
| vA -= mA * P; | |||
| wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse); | |||
| vB += mB * P; | |||
| wB += iB * (b2Cross(m_rB, P) + m_angularImpulse); | |||
| } | |||
| else | |||
| { | |||
| m_linearImpulse.SetZero(); | |||
| m_angularImpulse = 0.0f; | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| void b2FrictionJoint::SolveVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| float32 mA = m_invMassA, mB = m_invMassB; | |||
| float32 iA = m_invIA, iB = m_invIB; | |||
| float32 h = data.step.dt; | |||
| // Solve angular friction | |||
| { | |||
| float32 Cdot = wB - wA; | |||
| float32 impulse = -m_angularMass * Cdot; | |||
| float32 oldImpulse = m_angularImpulse; | |||
| float32 maxImpulse = h * m_maxTorque; | |||
| m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse); | |||
| impulse = m_angularImpulse - oldImpulse; | |||
| wA -= iA * impulse; | |||
| wB += iB * impulse; | |||
| } | |||
| // Solve linear friction | |||
| { | |||
| b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); | |||
| b2Vec2 impulse = -b2Mul(m_linearMass, Cdot); | |||
| b2Vec2 oldImpulse = m_linearImpulse; | |||
| m_linearImpulse += impulse; | |||
| float32 maxImpulse = h * m_maxForce; | |||
| if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse) | |||
| { | |||
| m_linearImpulse.Normalize(); | |||
| m_linearImpulse *= maxImpulse; | |||
| } | |||
| impulse = m_linearImpulse - oldImpulse; | |||
| vA -= mA * impulse; | |||
| wA -= iA * b2Cross(m_rA, impulse); | |||
| vB += mB * impulse; | |||
| wB += iB * b2Cross(m_rB, impulse); | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| bool b2FrictionJoint::SolvePositionConstraints(const b2SolverData& data) | |||
| { | |||
| B2_NOT_USED(data); | |||
| return true; | |||
| } | |||
| b2Vec2 b2FrictionJoint::GetAnchorA() const | |||
| { | |||
| return m_bodyA->GetWorldPoint(m_localAnchorA); | |||
| } | |||
| b2Vec2 b2FrictionJoint::GetAnchorB() const | |||
| { | |||
| return m_bodyB->GetWorldPoint(m_localAnchorB); | |||
| } | |||
| b2Vec2 b2FrictionJoint::GetReactionForce(float32 inv_dt) const | |||
| { | |||
| return inv_dt * m_linearImpulse; | |||
| } | |||
| float32 b2FrictionJoint::GetReactionTorque(float32 inv_dt) const | |||
| { | |||
| return inv_dt * m_angularImpulse; | |||
| } | |||
| void b2FrictionJoint::SetMaxForce(float32 force) | |||
| { | |||
| b2Assert(b2IsValid(force) && force >= 0.0f); | |||
| m_maxForce = force; | |||
| } | |||
| float32 b2FrictionJoint::GetMaxForce() const | |||
| { | |||
| return m_maxForce; | |||
| } | |||
| void b2FrictionJoint::SetMaxTorque(float32 torque) | |||
| { | |||
| b2Assert(b2IsValid(torque) && torque >= 0.0f); | |||
| m_maxTorque = torque; | |||
| } | |||
| float32 b2FrictionJoint::GetMaxTorque() const | |||
| { | |||
| return m_maxTorque; | |||
| } | |||
| void b2FrictionJoint::Dump() | |||
| { | |||
| int32 indexA = m_bodyA->m_islandIndex; | |||
| int32 indexB = m_bodyB->m_islandIndex; | |||
| b2Log(" b2FrictionJointDef jd;\n"); | |||
| b2Log(" jd.bodyA = bodies[%d];\n", indexA); | |||
| b2Log(" jd.bodyB = bodies[%d];\n", indexB); | |||
| b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); | |||
| b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); | |||
| b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); | |||
| b2Log(" jd.maxForce = %.15lef;\n", m_maxForce); | |||
| b2Log(" jd.maxTorque = %.15lef;\n", m_maxTorque); | |||
| b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | |||
| } | |||
| @@ -0,0 +1,119 @@ | |||
| /* | |||
| * Copyright (c) 2006-2007 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_FRICTION_JOINT_H | |||
| #define B2_FRICTION_JOINT_H | |||
| #include "b2Joint.h" | |||
| /// Friction joint definition. | |||
| struct b2FrictionJointDef : public b2JointDef | |||
| { | |||
| b2FrictionJointDef() | |||
| { | |||
| type = e_frictionJoint; | |||
| localAnchorA.SetZero(); | |||
| localAnchorB.SetZero(); | |||
| maxForce = 0.0f; | |||
| maxTorque = 0.0f; | |||
| } | |||
| /// Initialize the bodies, anchors, axis, and reference angle using the world | |||
| /// anchor and world axis. | |||
| void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor); | |||
| /// The local anchor point relative to bodyA's origin. | |||
| b2Vec2 localAnchorA; | |||
| /// The local anchor point relative to bodyB's origin. | |||
| b2Vec2 localAnchorB; | |||
| /// The maximum friction force in N. | |||
| float32 maxForce; | |||
| /// The maximum friction torque in N-m. | |||
| float32 maxTorque; | |||
| }; | |||
| /// Friction joint. This is used for top-down friction. | |||
| /// It provides 2D translational friction and angular friction. | |||
| class b2FrictionJoint : public b2Joint | |||
| { | |||
| public: | |||
| b2Vec2 GetAnchorA() const; | |||
| b2Vec2 GetAnchorB() const; | |||
| b2Vec2 GetReactionForce(float32 inv_dt) const; | |||
| float32 GetReactionTorque(float32 inv_dt) const; | |||
| /// The local anchor point relative to bodyA's origin. | |||
| const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; } | |||
| /// The local anchor point relative to bodyB's origin. | |||
| const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; } | |||
| /// Set the maximum friction force in N. | |||
| void SetMaxForce(float32 force); | |||
| /// Get the maximum friction force in N. | |||
| float32 GetMaxForce() const; | |||
| /// Set the maximum friction torque in N*m. | |||
| void SetMaxTorque(float32 torque); | |||
| /// Get the maximum friction torque in N*m. | |||
| float32 GetMaxTorque() const; | |||
| /// Dump joint to dmLog | |||
| void Dump(); | |||
| protected: | |||
| friend class b2Joint; | |||
| b2FrictionJoint(const b2FrictionJointDef* def); | |||
| void InitVelocityConstraints(const b2SolverData& data); | |||
| void SolveVelocityConstraints(const b2SolverData& data); | |||
| bool SolvePositionConstraints(const b2SolverData& data); | |||
| b2Vec2 m_localAnchorA; | |||
| b2Vec2 m_localAnchorB; | |||
| // Solver shared | |||
| b2Vec2 m_linearImpulse; | |||
| float32 m_angularImpulse; | |||
| float32 m_maxForce; | |||
| float32 m_maxTorque; | |||
| // Solver temp | |||
| int32 m_indexA; | |||
| int32 m_indexB; | |||
| b2Vec2 m_rA; | |||
| b2Vec2 m_rB; | |||
| b2Vec2 m_localCenterA; | |||
| b2Vec2 m_localCenterB; | |||
| float32 m_invMassA; | |||
| float32 m_invMassB; | |||
| float32 m_invIA; | |||
| float32 m_invIB; | |||
| b2Mat22 m_linearMass; | |||
| float32 m_angularMass; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,419 @@ | |||
| /* | |||
| * Copyright (c) 2007-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2GearJoint.h" | |||
| #include "b2RevoluteJoint.h" | |||
| #include "b2PrismaticJoint.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2TimeStep.h" | |||
| // Gear Joint: | |||
| // C0 = (coordinate1 + ratio * coordinate2)_initial | |||
| // C = (coordinate1 + ratio * coordinate2) - C0 = 0 | |||
| // J = [J1 ratio * J2] | |||
| // K = J * invM * JT | |||
| // = J1 * invM1 * J1T + ratio * ratio * J2 * invM2 * J2T | |||
| // | |||
| // Revolute: | |||
| // coordinate = rotation | |||
| // Cdot = angularVelocity | |||
| // J = [0 0 1] | |||
| // K = J * invM * JT = invI | |||
| // | |||
| // Prismatic: | |||
| // coordinate = dot(p - pg, ug) | |||
| // Cdot = dot(v + cross(w, r), ug) | |||
| // J = [ug cross(r, ug)] | |||
| // K = J * invM * JT = invMass + invI * cross(r, ug)^2 | |||
| b2GearJoint::b2GearJoint(const b2GearJointDef* def) | |||
| : b2Joint(def) | |||
| { | |||
| m_joint1 = def->joint1; | |||
| m_joint2 = def->joint2; | |||
| m_typeA = m_joint1->GetType(); | |||
| m_typeB = m_joint2->GetType(); | |||
| b2Assert(m_typeA == e_revoluteJoint || m_typeA == e_prismaticJoint); | |||
| b2Assert(m_typeB == e_revoluteJoint || m_typeB == e_prismaticJoint); | |||
| float32 coordinateA, coordinateB; | |||
| // TODO_ERIN there might be some problem with the joint edges in b2Joint. | |||
| m_bodyC = m_joint1->GetBodyA(); | |||
| m_bodyA = m_joint1->GetBodyB(); | |||
| // Get geometry of joint1 | |||
| b2Transform xfA = m_bodyA->m_xf; | |||
| float32 aA = m_bodyA->m_sweep.a; | |||
| b2Transform xfC = m_bodyC->m_xf; | |||
| float32 aC = m_bodyC->m_sweep.a; | |||
| if (m_typeA == e_revoluteJoint) | |||
| { | |||
| b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint1; | |||
| m_localAnchorC = revolute->m_localAnchorA; | |||
| m_localAnchorA = revolute->m_localAnchorB; | |||
| m_referenceAngleA = revolute->m_referenceAngle; | |||
| m_localAxisC.SetZero(); | |||
| coordinateA = aA - aC - m_referenceAngleA; | |||
| } | |||
| else | |||
| { | |||
| b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint1; | |||
| m_localAnchorC = prismatic->m_localAnchorA; | |||
| m_localAnchorA = prismatic->m_localAnchorB; | |||
| m_referenceAngleA = prismatic->m_referenceAngle; | |||
| m_localAxisC = prismatic->m_localXAxisA; | |||
| b2Vec2 pC = m_localAnchorC; | |||
| b2Vec2 pA = b2MulT(xfC.q, b2Mul(xfA.q, m_localAnchorA) + (xfA.p - xfC.p)); | |||
| coordinateA = b2Dot(pA - pC, m_localAxisC); | |||
| } | |||
| m_bodyD = m_joint2->GetBodyA(); | |||
| m_bodyB = m_joint2->GetBodyB(); | |||
| // Get geometry of joint2 | |||
| b2Transform xfB = m_bodyB->m_xf; | |||
| float32 aB = m_bodyB->m_sweep.a; | |||
| b2Transform xfD = m_bodyD->m_xf; | |||
| float32 aD = m_bodyD->m_sweep.a; | |||
| if (m_typeB == e_revoluteJoint) | |||
| { | |||
| b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint2; | |||
| m_localAnchorD = revolute->m_localAnchorA; | |||
| m_localAnchorB = revolute->m_localAnchorB; | |||
| m_referenceAngleB = revolute->m_referenceAngle; | |||
| m_localAxisD.SetZero(); | |||
| coordinateB = aB - aD - m_referenceAngleB; | |||
| } | |||
| else | |||
| { | |||
| b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint2; | |||
| m_localAnchorD = prismatic->m_localAnchorA; | |||
| m_localAnchorB = prismatic->m_localAnchorB; | |||
| m_referenceAngleB = prismatic->m_referenceAngle; | |||
| m_localAxisD = prismatic->m_localXAxisA; | |||
| b2Vec2 pD = m_localAnchorD; | |||
| b2Vec2 pB = b2MulT(xfD.q, b2Mul(xfB.q, m_localAnchorB) + (xfB.p - xfD.p)); | |||
| coordinateB = b2Dot(pB - pD, m_localAxisD); | |||
| } | |||
| m_ratio = def->ratio; | |||
| m_constant = coordinateA + m_ratio * coordinateB; | |||
| m_impulse = 0.0f; | |||
| } | |||
| void b2GearJoint::InitVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| m_indexA = m_bodyA->m_islandIndex; | |||
| m_indexB = m_bodyB->m_islandIndex; | |||
| m_indexC = m_bodyC->m_islandIndex; | |||
| m_indexD = m_bodyD->m_islandIndex; | |||
| m_lcA = m_bodyA->m_sweep.localCenter; | |||
| m_lcB = m_bodyB->m_sweep.localCenter; | |||
| m_lcC = m_bodyC->m_sweep.localCenter; | |||
| m_lcD = m_bodyD->m_sweep.localCenter; | |||
| m_mA = m_bodyA->m_invMass; | |||
| m_mB = m_bodyB->m_invMass; | |||
| m_mC = m_bodyC->m_invMass; | |||
| m_mD = m_bodyD->m_invMass; | |||
| m_iA = m_bodyA->m_invI; | |||
| m_iB = m_bodyB->m_invI; | |||
| m_iC = m_bodyC->m_invI; | |||
| m_iD = m_bodyD->m_invI; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| float32 aC = data.positions[m_indexC].a; | |||
| b2Vec2 vC = data.velocities[m_indexC].v; | |||
| float32 wC = data.velocities[m_indexC].w; | |||
| float32 aD = data.positions[m_indexD].a; | |||
| b2Vec2 vD = data.velocities[m_indexD].v; | |||
| float32 wD = data.velocities[m_indexD].w; | |||
| b2Rot qA(aA), qB(aB), qC(aC), qD(aD); | |||
| m_mass = 0.0f; | |||
| if (m_typeA == e_revoluteJoint) | |||
| { | |||
| m_JvAC.SetZero(); | |||
| m_JwA = 1.0f; | |||
| m_JwC = 1.0f; | |||
| m_mass += m_iA + m_iC; | |||
| } | |||
| else | |||
| { | |||
| b2Vec2 u = b2Mul(qC, m_localAxisC); | |||
| b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC); | |||
| b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA); | |||
| m_JvAC = u; | |||
| m_JwC = b2Cross(rC, u); | |||
| m_JwA = b2Cross(rA, u); | |||
| m_mass += m_mC + m_mA + m_iC * m_JwC * m_JwC + m_iA * m_JwA * m_JwA; | |||
| } | |||
| if (m_typeB == e_revoluteJoint) | |||
| { | |||
| m_JvBD.SetZero(); | |||
| m_JwB = m_ratio; | |||
| m_JwD = m_ratio; | |||
| m_mass += m_ratio * m_ratio * (m_iB + m_iD); | |||
| } | |||
| else | |||
| { | |||
| b2Vec2 u = b2Mul(qD, m_localAxisD); | |||
| b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD); | |||
| b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB); | |||
| m_JvBD = m_ratio * u; | |||
| m_JwD = m_ratio * b2Cross(rD, u); | |||
| m_JwB = m_ratio * b2Cross(rB, u); | |||
| m_mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * m_JwD * m_JwD + m_iB * m_JwB * m_JwB; | |||
| } | |||
| // Compute effective mass. | |||
| m_mass = m_mass > 0.0f ? 1.0f / m_mass : 0.0f; | |||
| if (data.step.warmStarting) | |||
| { | |||
| vA += (m_mA * m_impulse) * m_JvAC; | |||
| wA += m_iA * m_impulse * m_JwA; | |||
| vB += (m_mB * m_impulse) * m_JvBD; | |||
| wB += m_iB * m_impulse * m_JwB; | |||
| vC -= (m_mC * m_impulse) * m_JvAC; | |||
| wC -= m_iC * m_impulse * m_JwC; | |||
| vD -= (m_mD * m_impulse) * m_JvBD; | |||
| wD -= m_iD * m_impulse * m_JwD; | |||
| } | |||
| else | |||
| { | |||
| m_impulse = 0.0f; | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| data.velocities[m_indexC].v = vC; | |||
| data.velocities[m_indexC].w = wC; | |||
| data.velocities[m_indexD].v = vD; | |||
| data.velocities[m_indexD].w = wD; | |||
| } | |||
| void b2GearJoint::SolveVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| b2Vec2 vC = data.velocities[m_indexC].v; | |||
| float32 wC = data.velocities[m_indexC].w; | |||
| b2Vec2 vD = data.velocities[m_indexD].v; | |||
| float32 wD = data.velocities[m_indexD].w; | |||
| float32 Cdot = b2Dot(m_JvAC, vA - vC) + b2Dot(m_JvBD, vB - vD); | |||
| Cdot += (m_JwA * wA - m_JwC * wC) + (m_JwB * wB - m_JwD * wD); | |||
| float32 impulse = -m_mass * Cdot; | |||
| m_impulse += impulse; | |||
| vA += (m_mA * impulse) * m_JvAC; | |||
| wA += m_iA * impulse * m_JwA; | |||
| vB += (m_mB * impulse) * m_JvBD; | |||
| wB += m_iB * impulse * m_JwB; | |||
| vC -= (m_mC * impulse) * m_JvAC; | |||
| wC -= m_iC * impulse * m_JwC; | |||
| vD -= (m_mD * impulse) * m_JvBD; | |||
| wD -= m_iD * impulse * m_JwD; | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| data.velocities[m_indexC].v = vC; | |||
| data.velocities[m_indexC].w = wC; | |||
| data.velocities[m_indexD].v = vD; | |||
| data.velocities[m_indexD].w = wD; | |||
| } | |||
| bool b2GearJoint::SolvePositionConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 cA = data.positions[m_indexA].c; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Vec2 cC = data.positions[m_indexC].c; | |||
| float32 aC = data.positions[m_indexC].a; | |||
| b2Vec2 cD = data.positions[m_indexD].c; | |||
| float32 aD = data.positions[m_indexD].a; | |||
| b2Rot qA(aA), qB(aB), qC(aC), qD(aD); | |||
| float32 linearError = 0.0f; | |||
| float32 coordinateA, coordinateB; | |||
| b2Vec2 JvAC, JvBD; | |||
| float32 JwA, JwB, JwC, JwD; | |||
| float32 mass = 0.0f; | |||
| if (m_typeA == e_revoluteJoint) | |||
| { | |||
| JvAC.SetZero(); | |||
| JwA = 1.0f; | |||
| JwC = 1.0f; | |||
| mass += m_iA + m_iC; | |||
| coordinateA = aA - aC - m_referenceAngleA; | |||
| } | |||
| else | |||
| { | |||
| b2Vec2 u = b2Mul(qC, m_localAxisC); | |||
| b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC); | |||
| b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA); | |||
| JvAC = u; | |||
| JwC = b2Cross(rC, u); | |||
| JwA = b2Cross(rA, u); | |||
| mass += m_mC + m_mA + m_iC * JwC * JwC + m_iA * JwA * JwA; | |||
| b2Vec2 pC = m_localAnchorC - m_lcC; | |||
| b2Vec2 pA = b2MulT(qC, rA + (cA - cC)); | |||
| coordinateA = b2Dot(pA - pC, m_localAxisC); | |||
| } | |||
| if (m_typeB == e_revoluteJoint) | |||
| { | |||
| JvBD.SetZero(); | |||
| JwB = m_ratio; | |||
| JwD = m_ratio; | |||
| mass += m_ratio * m_ratio * (m_iB + m_iD); | |||
| coordinateB = aB - aD - m_referenceAngleB; | |||
| } | |||
| else | |||
| { | |||
| b2Vec2 u = b2Mul(qD, m_localAxisD); | |||
| b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD); | |||
| b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB); | |||
| JvBD = m_ratio * u; | |||
| JwD = m_ratio * b2Cross(rD, u); | |||
| JwB = m_ratio * b2Cross(rB, u); | |||
| mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * JwD * JwD + m_iB * JwB * JwB; | |||
| b2Vec2 pD = m_localAnchorD - m_lcD; | |||
| b2Vec2 pB = b2MulT(qD, rB + (cB - cD)); | |||
| coordinateB = b2Dot(pB - pD, m_localAxisD); | |||
| } | |||
| float32 C = (coordinateA + m_ratio * coordinateB) - m_constant; | |||
| float32 impulse = 0.0f; | |||
| if (mass > 0.0f) | |||
| { | |||
| impulse = -C / mass; | |||
| } | |||
| cA += m_mA * impulse * JvAC; | |||
| aA += m_iA * impulse * JwA; | |||
| cB += m_mB * impulse * JvBD; | |||
| aB += m_iB * impulse * JwB; | |||
| cC -= m_mC * impulse * JvAC; | |||
| aC -= m_iC * impulse * JwC; | |||
| cD -= m_mD * impulse * JvBD; | |||
| aD -= m_iD * impulse * JwD; | |||
| data.positions[m_indexA].c = cA; | |||
| data.positions[m_indexA].a = aA; | |||
| data.positions[m_indexB].c = cB; | |||
| data.positions[m_indexB].a = aB; | |||
| data.positions[m_indexC].c = cC; | |||
| data.positions[m_indexC].a = aC; | |||
| data.positions[m_indexD].c = cD; | |||
| data.positions[m_indexD].a = aD; | |||
| // TODO_ERIN not implemented | |||
| return linearError < b2_linearSlop; | |||
| } | |||
| b2Vec2 b2GearJoint::GetAnchorA() const | |||
| { | |||
| return m_bodyA->GetWorldPoint(m_localAnchorA); | |||
| } | |||
| b2Vec2 b2GearJoint::GetAnchorB() const | |||
| { | |||
| return m_bodyB->GetWorldPoint(m_localAnchorB); | |||
| } | |||
| b2Vec2 b2GearJoint::GetReactionForce(float32 inv_dt) const | |||
| { | |||
| b2Vec2 P = m_impulse * m_JvAC; | |||
| return inv_dt * P; | |||
| } | |||
| float32 b2GearJoint::GetReactionTorque(float32 inv_dt) const | |||
| { | |||
| float32 L = m_impulse * m_JwA; | |||
| return inv_dt * L; | |||
| } | |||
| void b2GearJoint::SetRatio(float32 ratio) | |||
| { | |||
| b2Assert(b2IsValid(ratio)); | |||
| m_ratio = ratio; | |||
| } | |||
| float32 b2GearJoint::GetRatio() const | |||
| { | |||
| return m_ratio; | |||
| } | |||
| void b2GearJoint::Dump() | |||
| { | |||
| int32 indexA = m_bodyA->m_islandIndex; | |||
| int32 indexB = m_bodyB->m_islandIndex; | |||
| int32 index1 = m_joint1->m_index; | |||
| int32 index2 = m_joint2->m_index; | |||
| b2Log(" b2GearJointDef jd;\n"); | |||
| b2Log(" jd.bodyA = bodies[%d];\n", indexA); | |||
| b2Log(" jd.bodyB = bodies[%d];\n", indexB); | |||
| b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); | |||
| b2Log(" jd.joint1 = joints[%d];\n", index1); | |||
| b2Log(" jd.joint2 = joints[%d];\n", index2); | |||
| b2Log(" jd.ratio = %.15lef;\n", m_ratio); | |||
| b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | |||
| } | |||
| @@ -0,0 +1,125 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_GEAR_JOINT_H | |||
| #define B2_GEAR_JOINT_H | |||
| #include "b2Joint.h" | |||
| /// Gear joint definition. This definition requires two existing | |||
| /// revolute or prismatic joints (any combination will work). | |||
| struct b2GearJointDef : public b2JointDef | |||
| { | |||
| b2GearJointDef() | |||
| { | |||
| type = e_gearJoint; | |||
| joint1 = NULL; | |||
| joint2 = NULL; | |||
| ratio = 1.0f; | |||
| } | |||
| /// The first revolute/prismatic joint attached to the gear joint. | |||
| b2Joint* joint1; | |||
| /// The second revolute/prismatic joint attached to the gear joint. | |||
| b2Joint* joint2; | |||
| /// The gear ratio. | |||
| /// @see b2GearJoint for explanation. | |||
| float32 ratio; | |||
| }; | |||
| /// A gear joint is used to connect two joints together. Either joint | |||
| /// can be a revolute or prismatic joint. You specify a gear ratio | |||
| /// to bind the motions together: | |||
| /// coordinate1 + ratio * coordinate2 = constant | |||
| /// The ratio can be negative or positive. If one joint is a revolute joint | |||
| /// and the other joint is a prismatic joint, then the ratio will have units | |||
| /// of length or units of 1/length. | |||
| /// @warning You have to manually destroy the gear joint if joint1 or joint2 | |||
| /// is destroyed. | |||
| class b2GearJoint : public b2Joint | |||
| { | |||
| public: | |||
| b2Vec2 GetAnchorA() const; | |||
| b2Vec2 GetAnchorB() const; | |||
| b2Vec2 GetReactionForce(float32 inv_dt) const; | |||
| float32 GetReactionTorque(float32 inv_dt) const; | |||
| /// Get the first joint. | |||
| b2Joint* GetJoint1() { return m_joint1; } | |||
| /// Get the second joint. | |||
| b2Joint* GetJoint2() { return m_joint2; } | |||
| /// Set/Get the gear ratio. | |||
| void SetRatio(float32 ratio); | |||
| float32 GetRatio() const; | |||
| /// Dump joint to dmLog | |||
| void Dump(); | |||
| protected: | |||
| friend class b2Joint; | |||
| b2GearJoint(const b2GearJointDef* data); | |||
| void InitVelocityConstraints(const b2SolverData& data); | |||
| void SolveVelocityConstraints(const b2SolverData& data); | |||
| bool SolvePositionConstraints(const b2SolverData& data); | |||
| b2Joint* m_joint1; | |||
| b2Joint* m_joint2; | |||
| b2JointType m_typeA; | |||
| b2JointType m_typeB; | |||
| // Body A is connected to body C | |||
| // Body B is connected to body D | |||
| b2Body* m_bodyC; | |||
| b2Body* m_bodyD; | |||
| // Solver shared | |||
| b2Vec2 m_localAnchorA; | |||
| b2Vec2 m_localAnchorB; | |||
| b2Vec2 m_localAnchorC; | |||
| b2Vec2 m_localAnchorD; | |||
| b2Vec2 m_localAxisC; | |||
| b2Vec2 m_localAxisD; | |||
| float32 m_referenceAngleA; | |||
| float32 m_referenceAngleB; | |||
| float32 m_constant; | |||
| float32 m_ratio; | |||
| float32 m_impulse; | |||
| // Solver temp | |||
| int32 m_indexA, m_indexB, m_indexC, m_indexD; | |||
| b2Vec2 m_lcA, m_lcB, m_lcC, m_lcD; | |||
| float32 m_mA, m_mB, m_mC, m_mD; | |||
| float32 m_iA, m_iB, m_iC, m_iD; | |||
| b2Vec2 m_JvAC, m_JvBD; | |||
| float32 m_JwA, m_JwB, m_JwC, m_JwD; | |||
| float32 m_mass; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,199 @@ | |||
| /* | |||
| * Copyright (c) 2006-2007 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Joint.h" | |||
| #include "b2DistanceJoint.h" | |||
| #include "b2WheelJoint.h" | |||
| #include "b2MouseJoint.h" | |||
| #include "b2RevoluteJoint.h" | |||
| #include "b2PrismaticJoint.h" | |||
| #include "b2PulleyJoint.h" | |||
| #include "b2GearJoint.h" | |||
| #include "b2WeldJoint.h" | |||
| #include "b2FrictionJoint.h" | |||
| #include "b2RopeJoint.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2World.h" | |||
| #include "../../Common/b2BlockAllocator.h" | |||
| #include <new> | |||
| b2Joint* b2Joint::Create(const b2JointDef* def, b2BlockAllocator* allocator) | |||
| { | |||
| b2Joint* joint = NULL; | |||
| switch (def->type) | |||
| { | |||
| case e_distanceJoint: | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2DistanceJoint)); | |||
| joint = new (mem) b2DistanceJoint((b2DistanceJointDef*)def); | |||
| } | |||
| break; | |||
| case e_mouseJoint: | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2MouseJoint)); | |||
| joint = new (mem) b2MouseJoint((b2MouseJointDef*)def); | |||
| } | |||
| break; | |||
| case e_prismaticJoint: | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2PrismaticJoint)); | |||
| joint = new (mem) b2PrismaticJoint((b2PrismaticJointDef*)def); | |||
| } | |||
| break; | |||
| case e_revoluteJoint: | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2RevoluteJoint)); | |||
| joint = new (mem) b2RevoluteJoint((b2RevoluteJointDef*)def); | |||
| } | |||
| break; | |||
| case e_pulleyJoint: | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2PulleyJoint)); | |||
| joint = new (mem) b2PulleyJoint((b2PulleyJointDef*)def); | |||
| } | |||
| break; | |||
| case e_gearJoint: | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2GearJoint)); | |||
| joint = new (mem) b2GearJoint((b2GearJointDef*)def); | |||
| } | |||
| break; | |||
| case e_wheelJoint: | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2WheelJoint)); | |||
| joint = new (mem) b2WheelJoint((b2WheelJointDef*)def); | |||
| } | |||
| break; | |||
| case e_weldJoint: | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2WeldJoint)); | |||
| joint = new (mem) b2WeldJoint((b2WeldJointDef*)def); | |||
| } | |||
| break; | |||
| case e_frictionJoint: | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2FrictionJoint)); | |||
| joint = new (mem) b2FrictionJoint((b2FrictionJointDef*)def); | |||
| } | |||
| break; | |||
| case e_ropeJoint: | |||
| { | |||
| void* mem = allocator->Allocate(sizeof(b2RopeJoint)); | |||
| joint = new (mem) b2RopeJoint((b2RopeJointDef*)def); | |||
| } | |||
| break; | |||
| default: | |||
| b2Assert(false); | |||
| break; | |||
| } | |||
| return joint; | |||
| } | |||
| void b2Joint::Destroy(b2Joint* joint, b2BlockAllocator* allocator) | |||
| { | |||
| joint->~b2Joint(); | |||
| switch (joint->m_type) | |||
| { | |||
| case e_distanceJoint: | |||
| allocator->Free(joint, sizeof(b2DistanceJoint)); | |||
| break; | |||
| case e_mouseJoint: | |||
| allocator->Free(joint, sizeof(b2MouseJoint)); | |||
| break; | |||
| case e_prismaticJoint: | |||
| allocator->Free(joint, sizeof(b2PrismaticJoint)); | |||
| break; | |||
| case e_revoluteJoint: | |||
| allocator->Free(joint, sizeof(b2RevoluteJoint)); | |||
| break; | |||
| case e_pulleyJoint: | |||
| allocator->Free(joint, sizeof(b2PulleyJoint)); | |||
| break; | |||
| case e_gearJoint: | |||
| allocator->Free(joint, sizeof(b2GearJoint)); | |||
| break; | |||
| case e_wheelJoint: | |||
| allocator->Free(joint, sizeof(b2WheelJoint)); | |||
| break; | |||
| case e_weldJoint: | |||
| allocator->Free(joint, sizeof(b2WeldJoint)); | |||
| break; | |||
| case e_frictionJoint: | |||
| allocator->Free(joint, sizeof(b2FrictionJoint)); | |||
| break; | |||
| case e_ropeJoint: | |||
| allocator->Free(joint, sizeof(b2RopeJoint)); | |||
| break; | |||
| default: | |||
| b2Assert(false); | |||
| break; | |||
| } | |||
| } | |||
| b2Joint::b2Joint(const b2JointDef* def) | |||
| { | |||
| b2Assert(def->bodyA != def->bodyB); | |||
| m_type = def->type; | |||
| m_prev = NULL; | |||
| m_next = NULL; | |||
| m_bodyA = def->bodyA; | |||
| m_bodyB = def->bodyB; | |||
| m_index = 0; | |||
| m_collideConnected = def->collideConnected; | |||
| m_islandFlag = false; | |||
| m_userData = def->userData; | |||
| m_edgeA.joint = NULL; | |||
| m_edgeA.other = NULL; | |||
| m_edgeA.prev = NULL; | |||
| m_edgeA.next = NULL; | |||
| m_edgeB.joint = NULL; | |||
| m_edgeB.other = NULL; | |||
| m_edgeB.prev = NULL; | |||
| m_edgeB.next = NULL; | |||
| } | |||
| bool b2Joint::IsActive() const | |||
| { | |||
| return m_bodyA->IsActive() && m_bodyB->IsActive(); | |||
| } | |||
| @@ -0,0 +1,222 @@ | |||
| /* | |||
| * Copyright (c) 2006-2007 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_JOINT_H | |||
| #define B2_JOINT_H | |||
| #include "../../Common/b2Math.h" | |||
| class b2Body; | |||
| class b2Joint; | |||
| struct b2SolverData; | |||
| class b2BlockAllocator; | |||
| enum b2JointType | |||
| { | |||
| e_unknownJoint, | |||
| e_revoluteJoint, | |||
| e_prismaticJoint, | |||
| e_distanceJoint, | |||
| e_pulleyJoint, | |||
| e_mouseJoint, | |||
| e_gearJoint, | |||
| e_wheelJoint, | |||
| e_weldJoint, | |||
| e_frictionJoint, | |||
| e_ropeJoint | |||
| }; | |||
| enum b2LimitState | |||
| { | |||
| e_inactiveLimit, | |||
| e_atLowerLimit, | |||
| e_atUpperLimit, | |||
| e_equalLimits | |||
| }; | |||
| struct b2Jacobian | |||
| { | |||
| b2Vec2 linear; | |||
| float32 angularA; | |||
| float32 angularB; | |||
| }; | |||
| /// A joint edge is used to connect bodies and joints together | |||
| /// in a joint graph where each body is a node and each joint | |||
| /// is an edge. A joint edge belongs to a doubly linked list | |||
| /// maintained in each attached body. Each joint has two joint | |||
| /// nodes, one for each attached body. | |||
| struct b2JointEdge | |||
| { | |||
| b2Body* other; ///< provides quick access to the other body attached. | |||
| b2Joint* joint; ///< the joint | |||
| b2JointEdge* prev; ///< the previous joint edge in the body's joint list | |||
| b2JointEdge* next; ///< the next joint edge in the body's joint list | |||
| }; | |||
| /// Joint definitions are used to construct joints. | |||
| struct b2JointDef | |||
| { | |||
| b2JointDef() | |||
| { | |||
| type = e_unknownJoint; | |||
| userData = NULL; | |||
| bodyA = NULL; | |||
| bodyB = NULL; | |||
| collideConnected = false; | |||
| } | |||
| /// The joint type is set automatically for concrete joint types. | |||
| b2JointType type; | |||
| /// Use this to attach application specific data to your joints. | |||
| void* userData; | |||
| /// The first attached body. | |||
| b2Body* bodyA; | |||
| /// The second attached body. | |||
| b2Body* bodyB; | |||
| /// Set this flag to true if the attached bodies should collide. | |||
| bool collideConnected; | |||
| }; | |||
| /// The base joint class. Joints are used to constraint two bodies together in | |||
| /// various fashions. Some joints also feature limits and motors. | |||
| class b2Joint | |||
| { | |||
| public: | |||
| /// Get the type of the concrete joint. | |||
| b2JointType GetType() const; | |||
| /// Get the first body attached to this joint. | |||
| b2Body* GetBodyA(); | |||
| /// Get the second body attached to this joint. | |||
| b2Body* GetBodyB(); | |||
| /// Get the anchor point on bodyA in world coordinates. | |||
| virtual b2Vec2 GetAnchorA() const = 0; | |||
| /// Get the anchor point on bodyB in world coordinates. | |||
| virtual b2Vec2 GetAnchorB() const = 0; | |||
| /// Get the reaction force on bodyB at the joint anchor in Newtons. | |||
| virtual b2Vec2 GetReactionForce(float32 inv_dt) const = 0; | |||
| /// Get the reaction torque on bodyB in N*m. | |||
| virtual float32 GetReactionTorque(float32 inv_dt) const = 0; | |||
| /// Get the next joint the world joint list. | |||
| b2Joint* GetNext(); | |||
| const b2Joint* GetNext() const; | |||
| /// Get the user data pointer. | |||
| void* GetUserData() const; | |||
| /// Set the user data pointer. | |||
| void SetUserData(void* data); | |||
| /// Short-cut function to determine if either body is inactive. | |||
| bool IsActive() const; | |||
| /// Get collide connected. | |||
| /// Note: modifying the collide connect flag won't work correctly because | |||
| /// the flag is only checked when fixture AABBs begin to overlap. | |||
| bool GetCollideConnected() const; | |||
| /// Dump this joint to the log file. | |||
| virtual void Dump() { b2Log("// Dump is not supported for this joint type.\n"); } | |||
| protected: | |||
| friend class b2World; | |||
| friend class b2Body; | |||
| friend class b2Island; | |||
| friend class b2GearJoint; | |||
| static b2Joint* Create(const b2JointDef* def, b2BlockAllocator* allocator); | |||
| static void Destroy(b2Joint* joint, b2BlockAllocator* allocator); | |||
| b2Joint(const b2JointDef* def); | |||
| virtual ~b2Joint() {} | |||
| virtual void InitVelocityConstraints(const b2SolverData& data) = 0; | |||
| virtual void SolveVelocityConstraints(const b2SolverData& data) = 0; | |||
| // This returns true if the position errors are within tolerance. | |||
| virtual bool SolvePositionConstraints(const b2SolverData& data) = 0; | |||
| b2JointType m_type; | |||
| b2Joint* m_prev; | |||
| b2Joint* m_next; | |||
| b2JointEdge m_edgeA; | |||
| b2JointEdge m_edgeB; | |||
| b2Body* m_bodyA; | |||
| b2Body* m_bodyB; | |||
| int32 m_index; | |||
| bool m_islandFlag; | |||
| bool m_collideConnected; | |||
| void* m_userData; | |||
| }; | |||
| inline b2JointType b2Joint::GetType() const | |||
| { | |||
| return m_type; | |||
| } | |||
| inline b2Body* b2Joint::GetBodyA() | |||
| { | |||
| return m_bodyA; | |||
| } | |||
| inline b2Body* b2Joint::GetBodyB() | |||
| { | |||
| return m_bodyB; | |||
| } | |||
| inline b2Joint* b2Joint::GetNext() | |||
| { | |||
| return m_next; | |||
| } | |||
| inline const b2Joint* b2Joint::GetNext() const | |||
| { | |||
| return m_next; | |||
| } | |||
| inline void* b2Joint::GetUserData() const | |||
| { | |||
| return m_userData; | |||
| } | |||
| inline void b2Joint::SetUserData(void* data) | |||
| { | |||
| m_userData = data; | |||
| } | |||
| inline bool b2Joint::GetCollideConnected() const | |||
| { | |||
| return m_collideConnected; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,217 @@ | |||
| /* | |||
| * Copyright (c) 2006-2007 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2MouseJoint.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2TimeStep.h" | |||
| // p = attached point, m = mouse point | |||
| // C = p - m | |||
| // Cdot = v | |||
| // = v + cross(w, r) | |||
| // J = [I r_skew] | |||
| // Identity used: | |||
| // w k % (rx i + ry j) = w * (-ry i + rx j) | |||
| b2MouseJoint::b2MouseJoint(const b2MouseJointDef* def) | |||
| : b2Joint(def) | |||
| { | |||
| b2Assert(def->target.IsValid()); | |||
| b2Assert(b2IsValid(def->maxForce) && def->maxForce >= 0.0f); | |||
| b2Assert(b2IsValid(def->frequencyHz) && def->frequencyHz >= 0.0f); | |||
| b2Assert(b2IsValid(def->dampingRatio) && def->dampingRatio >= 0.0f); | |||
| m_targetA = def->target; | |||
| m_localAnchorB = b2MulT(m_bodyB->GetTransform(), m_targetA); | |||
| m_maxForce = def->maxForce; | |||
| m_impulse.SetZero(); | |||
| m_frequencyHz = def->frequencyHz; | |||
| m_dampingRatio = def->dampingRatio; | |||
| m_beta = 0.0f; | |||
| m_gamma = 0.0f; | |||
| } | |||
| void b2MouseJoint::SetTarget(const b2Vec2& target) | |||
| { | |||
| if (m_bodyB->IsAwake() == false) | |||
| { | |||
| m_bodyB->SetAwake(true); | |||
| } | |||
| m_targetA = target; | |||
| } | |||
| const b2Vec2& b2MouseJoint::GetTarget() const | |||
| { | |||
| return m_targetA; | |||
| } | |||
| void b2MouseJoint::SetMaxForce(float32 force) | |||
| { | |||
| m_maxForce = force; | |||
| } | |||
| float32 b2MouseJoint::GetMaxForce() const | |||
| { | |||
| return m_maxForce; | |||
| } | |||
| void b2MouseJoint::SetFrequency(float32 hz) | |||
| { | |||
| m_frequencyHz = hz; | |||
| } | |||
| float32 b2MouseJoint::GetFrequency() const | |||
| { | |||
| return m_frequencyHz; | |||
| } | |||
| void b2MouseJoint::SetDampingRatio(float32 ratio) | |||
| { | |||
| m_dampingRatio = ratio; | |||
| } | |||
| float32 b2MouseJoint::GetDampingRatio() const | |||
| { | |||
| return m_dampingRatio; | |||
| } | |||
| void b2MouseJoint::InitVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| m_indexB = m_bodyB->m_islandIndex; | |||
| m_localCenterB = m_bodyB->m_sweep.localCenter; | |||
| m_invMassB = m_bodyB->m_invMass; | |||
| m_invIB = m_bodyB->m_invI; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| b2Rot qB(aB); | |||
| float32 mass = m_bodyB->GetMass(); | |||
| // Frequency | |||
| float32 omega = 2.0f * b2_pi * m_frequencyHz; | |||
| // Damping coefficient | |||
| float32 d = 2.0f * mass * m_dampingRatio * omega; | |||
| // Spring stiffness | |||
| float32 k = mass * (omega * omega); | |||
| // magic formulas | |||
| // gamma has units of inverse mass. | |||
| // beta has units of inverse time. | |||
| float32 h = data.step.dt; | |||
| b2Assert(d + h * k > b2_epsilon); | |||
| m_gamma = h * (d + h * k); | |||
| if (m_gamma != 0.0f) | |||
| { | |||
| m_gamma = 1.0f / m_gamma; | |||
| } | |||
| m_beta = h * k * m_gamma; | |||
| // Compute the effective mass matrix. | |||
| m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| // K = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)] | |||
| // = [1/m1+1/m2 0 ] + invI1 * [r1.y*r1.y -r1.x*r1.y] + invI2 * [r1.y*r1.y -r1.x*r1.y] | |||
| // [ 0 1/m1+1/m2] [-r1.x*r1.y r1.x*r1.x] [-r1.x*r1.y r1.x*r1.x] | |||
| b2Mat22 K; | |||
| K.ex.x = m_invMassB + m_invIB * m_rB.y * m_rB.y + m_gamma; | |||
| K.ex.y = -m_invIB * m_rB.x * m_rB.y; | |||
| K.ey.x = K.ex.y; | |||
| K.ey.y = m_invMassB + m_invIB * m_rB.x * m_rB.x + m_gamma; | |||
| m_mass = K.GetInverse(); | |||
| m_C = cB + m_rB - m_targetA; | |||
| m_C *= m_beta; | |||
| // Cheat with some damping | |||
| wB *= 0.98f; | |||
| if (data.step.warmStarting) | |||
| { | |||
| m_impulse *= data.step.dtRatio; | |||
| vB += m_invMassB * m_impulse; | |||
| wB += m_invIB * b2Cross(m_rB, m_impulse); | |||
| } | |||
| else | |||
| { | |||
| m_impulse.SetZero(); | |||
| } | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| void b2MouseJoint::SolveVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| // Cdot = v + cross(w, r) | |||
| b2Vec2 Cdot = vB + b2Cross(wB, m_rB); | |||
| b2Vec2 impulse = b2Mul(m_mass, -(Cdot + m_C + m_gamma * m_impulse)); | |||
| b2Vec2 oldImpulse = m_impulse; | |||
| m_impulse += impulse; | |||
| float32 maxImpulse = data.step.dt * m_maxForce; | |||
| if (m_impulse.LengthSquared() > maxImpulse * maxImpulse) | |||
| { | |||
| m_impulse *= maxImpulse / m_impulse.Length(); | |||
| } | |||
| impulse = m_impulse - oldImpulse; | |||
| vB += m_invMassB * impulse; | |||
| wB += m_invIB * b2Cross(m_rB, impulse); | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| bool b2MouseJoint::SolvePositionConstraints(const b2SolverData& data) | |||
| { | |||
| B2_NOT_USED(data); | |||
| return true; | |||
| } | |||
| b2Vec2 b2MouseJoint::GetAnchorA() const | |||
| { | |||
| return m_targetA; | |||
| } | |||
| b2Vec2 b2MouseJoint::GetAnchorB() const | |||
| { | |||
| return m_bodyB->GetWorldPoint(m_localAnchorB); | |||
| } | |||
| b2Vec2 b2MouseJoint::GetReactionForce(float32 inv_dt) const | |||
| { | |||
| return inv_dt * m_impulse; | |||
| } | |||
| float32 b2MouseJoint::GetReactionTorque(float32 inv_dt) const | |||
| { | |||
| return inv_dt * 0.0f; | |||
| } | |||
| @@ -0,0 +1,126 @@ | |||
| /* | |||
| * Copyright (c) 2006-2007 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_MOUSE_JOINT_H | |||
| #define B2_MOUSE_JOINT_H | |||
| #include "b2Joint.h" | |||
| /// Mouse joint definition. This requires a world target point, | |||
| /// tuning parameters, and the time step. | |||
| struct b2MouseJointDef : public b2JointDef | |||
| { | |||
| b2MouseJointDef() | |||
| { | |||
| type = e_mouseJoint; | |||
| target.Set(0.0f, 0.0f); | |||
| maxForce = 0.0f; | |||
| frequencyHz = 5.0f; | |||
| dampingRatio = 0.7f; | |||
| } | |||
| /// The initial world target point. This is assumed | |||
| /// to coincide with the body anchor initially. | |||
| b2Vec2 target; | |||
| /// The maximum constraint force that can be exerted | |||
| /// to move the candidate body. Usually you will express | |||
| /// as some multiple of the weight (multiplier * mass * gravity). | |||
| float32 maxForce; | |||
| /// The response speed. | |||
| float32 frequencyHz; | |||
| /// The damping ratio. 0 = no damping, 1 = critical damping. | |||
| float32 dampingRatio; | |||
| }; | |||
| /// A mouse joint is used to make a point on a body track a | |||
| /// specified world point. This a soft constraint with a maximum | |||
| /// force. This allows the constraint to stretch and without | |||
| /// applying huge forces. | |||
| /// NOTE: this joint is not documented in the manual because it was | |||
| /// developed to be used in the testbed. If you want to learn how to | |||
| /// use the mouse joint, look at the testbed. | |||
| class b2MouseJoint : public b2Joint | |||
| { | |||
| public: | |||
| /// Implements b2Joint. | |||
| b2Vec2 GetAnchorA() const; | |||
| /// Implements b2Joint. | |||
| b2Vec2 GetAnchorB() const; | |||
| /// Implements b2Joint. | |||
| b2Vec2 GetReactionForce(float32 inv_dt) const; | |||
| /// Implements b2Joint. | |||
| float32 GetReactionTorque(float32 inv_dt) const; | |||
| /// Use this to update the target point. | |||
| void SetTarget(const b2Vec2& target); | |||
| const b2Vec2& GetTarget() const; | |||
| /// Set/get the maximum force in Newtons. | |||
| void SetMaxForce(float32 force); | |||
| float32 GetMaxForce() const; | |||
| /// Set/get the frequency in Hertz. | |||
| void SetFrequency(float32 hz); | |||
| float32 GetFrequency() const; | |||
| /// Set/get the damping ratio (dimensionless). | |||
| void SetDampingRatio(float32 ratio); | |||
| float32 GetDampingRatio() const; | |||
| /// The mouse joint does not support dumping. | |||
| void Dump() { b2Log("Mouse joint dumping is not supported.\n"); } | |||
| protected: | |||
| friend class b2Joint; | |||
| b2MouseJoint(const b2MouseJointDef* def); | |||
| void InitVelocityConstraints(const b2SolverData& data); | |||
| void SolveVelocityConstraints(const b2SolverData& data); | |||
| bool SolvePositionConstraints(const b2SolverData& data); | |||
| b2Vec2 m_localAnchorB; | |||
| b2Vec2 m_targetA; | |||
| float32 m_frequencyHz; | |||
| float32 m_dampingRatio; | |||
| float32 m_beta; | |||
| // Solver shared | |||
| b2Vec2 m_impulse; | |||
| float32 m_maxForce; | |||
| float32 m_gamma; | |||
| // Solver temp | |||
| int32 m_indexA; | |||
| int32 m_indexB; | |||
| b2Vec2 m_rB; | |||
| b2Vec2 m_localCenterB; | |||
| float32 m_invMassB; | |||
| float32 m_invIB; | |||
| b2Mat22 m_mass; | |||
| b2Vec2 m_C; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,635 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2PrismaticJoint.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2TimeStep.h" | |||
| // Linear constraint (point-to-line) | |||
| // d = p2 - p1 = x2 + r2 - x1 - r1 | |||
| // C = dot(perp, d) | |||
| // Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - cross(w1, r1)) | |||
| // = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + dot(cross(r2, perp), v2) | |||
| // J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)] | |||
| // | |||
| // Angular constraint | |||
| // C = a2 - a1 + a_initial | |||
| // Cdot = w2 - w1 | |||
| // J = [0 0 -1 0 0 1] | |||
| // | |||
| // K = J * invM * JT | |||
| // | |||
| // J = [-a -s1 a s2] | |||
| // [0 -1 0 1] | |||
| // a = perp | |||
| // s1 = cross(d + r1, a) = cross(p2 - x1, a) | |||
| // s2 = cross(r2, a) = cross(p2 - x2, a) | |||
| // Motor/Limit linear constraint | |||
| // C = dot(ax1, d) | |||
| // Cdot = = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + dot(cross(r2, ax1), v2) | |||
| // J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)] | |||
| // Block Solver | |||
| // We develop a block solver that includes the joint limit. This makes the limit stiff (inelastic) even | |||
| // when the mass has poor distribution (leading to large torques about the joint anchor points). | |||
| // | |||
| // The Jacobian has 3 rows: | |||
| // J = [-uT -s1 uT s2] // linear | |||
| // [0 -1 0 1] // angular | |||
| // [-vT -a1 vT a2] // limit | |||
| // | |||
| // u = perp | |||
| // v = axis | |||
| // s1 = cross(d + r1, u), s2 = cross(r2, u) | |||
| // a1 = cross(d + r1, v), a2 = cross(r2, v) | |||
| // M * (v2 - v1) = JT * df | |||
| // J * v2 = bias | |||
| // | |||
| // v2 = v1 + invM * JT * df | |||
| // J * (v1 + invM * JT * df) = bias | |||
| // K * df = bias - J * v1 = -Cdot | |||
| // K = J * invM * JT | |||
| // Cdot = J * v1 - bias | |||
| // | |||
| // Now solve for f2. | |||
| // df = f2 - f1 | |||
| // K * (f2 - f1) = -Cdot | |||
| // f2 = invK * (-Cdot) + f1 | |||
| // | |||
| // Clamp accumulated limit impulse. | |||
| // lower: f2(3) = max(f2(3), 0) | |||
| // upper: f2(3) = min(f2(3), 0) | |||
| // | |||
| // Solve for correct f2(1:2) | |||
| // K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:3) * f1 | |||
| // = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:2) * f1(1:2) + K(1:2,3) * f1(3) | |||
| // K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3)) + K(1:2,1:2) * f1(1:2) | |||
| // f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + f1(1:2) | |||
| // | |||
| // Now compute impulse to be applied: | |||
| // df = f2 - f1 | |||
| void b2PrismaticJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis) | |||
| { | |||
| bodyA = bA; | |||
| bodyB = bB; | |||
| localAnchorA = bodyA->GetLocalPoint(anchor); | |||
| localAnchorB = bodyB->GetLocalPoint(anchor); | |||
| localAxisA = bodyA->GetLocalVector(axis); | |||
| referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); | |||
| } | |||
| b2PrismaticJoint::b2PrismaticJoint(const b2PrismaticJointDef* def) | |||
| : b2Joint(def) | |||
| { | |||
| m_localAnchorA = def->localAnchorA; | |||
| m_localAnchorB = def->localAnchorB; | |||
| m_localXAxisA = def->localAxisA; | |||
| m_localXAxisA.Normalize(); | |||
| m_localYAxisA = b2Cross(1.0f, m_localXAxisA); | |||
| m_referenceAngle = def->referenceAngle; | |||
| m_impulse.SetZero(); | |||
| m_motorMass = 0.0; | |||
| m_motorImpulse = 0.0f; | |||
| m_lowerTranslation = def->lowerTranslation; | |||
| m_upperTranslation = def->upperTranslation; | |||
| m_maxMotorForce = def->maxMotorForce; | |||
| m_motorSpeed = def->motorSpeed; | |||
| m_enableLimit = def->enableLimit; | |||
| m_enableMotor = def->enableMotor; | |||
| m_limitState = e_inactiveLimit; | |||
| m_axis.SetZero(); | |||
| m_perp.SetZero(); | |||
| } | |||
| void b2PrismaticJoint::InitVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| m_indexA = m_bodyA->m_islandIndex; | |||
| m_indexB = m_bodyB->m_islandIndex; | |||
| m_localCenterA = m_bodyA->m_sweep.localCenter; | |||
| m_localCenterB = m_bodyB->m_sweep.localCenter; | |||
| m_invMassA = m_bodyA->m_invMass; | |||
| m_invMassB = m_bodyB->m_invMass; | |||
| m_invIA = m_bodyA->m_invI; | |||
| m_invIB = m_bodyB->m_invI; | |||
| b2Vec2 cA = data.positions[m_indexA].c; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| b2Rot qA(aA), qB(aB); | |||
| // Compute the effective masses. | |||
| b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| b2Vec2 d = (cB - cA) + rB - rA; | |||
| float32 mA = m_invMassA, mB = m_invMassB; | |||
| float32 iA = m_invIA, iB = m_invIB; | |||
| // Compute motor Jacobian and effective mass. | |||
| { | |||
| m_axis = b2Mul(qA, m_localXAxisA); | |||
| m_a1 = b2Cross(d + rA, m_axis); | |||
| m_a2 = b2Cross(rB, m_axis); | |||
| m_motorMass = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2; | |||
| if (m_motorMass > 0.0f) | |||
| { | |||
| m_motorMass = 1.0f / m_motorMass; | |||
| } | |||
| } | |||
| // Prismatic constraint. | |||
| { | |||
| m_perp = b2Mul(qA, m_localYAxisA); | |||
| m_s1 = b2Cross(d + rA, m_perp); | |||
| m_s2 = b2Cross(rB, m_perp); | |||
| float32 k11 = mA + mB + iA * m_s1 * m_s1 + iB * m_s2 * m_s2; | |||
| float32 k12 = iA * m_s1 + iB * m_s2; | |||
| float32 k13 = iA * m_s1 * m_a1 + iB * m_s2 * m_a2; | |||
| float32 k22 = iA + iB; | |||
| if (k22 == 0.0f) | |||
| { | |||
| // For bodies with fixed rotation. | |||
| k22 = 1.0f; | |||
| } | |||
| float32 k23 = iA * m_a1 + iB * m_a2; | |||
| float32 k33 = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2; | |||
| m_K.ex.Set(k11, k12, k13); | |||
| m_K.ey.Set(k12, k22, k23); | |||
| m_K.ez.Set(k13, k23, k33); | |||
| } | |||
| // Compute motor and limit terms. | |||
| if (m_enableLimit) | |||
| { | |||
| float32 jointTranslation = b2Dot(m_axis, d); | |||
| if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop) | |||
| { | |||
| m_limitState = e_equalLimits; | |||
| } | |||
| else if (jointTranslation <= m_lowerTranslation) | |||
| { | |||
| if (m_limitState != e_atLowerLimit) | |||
| { | |||
| m_limitState = e_atLowerLimit; | |||
| m_impulse.z = 0.0f; | |||
| } | |||
| } | |||
| else if (jointTranslation >= m_upperTranslation) | |||
| { | |||
| if (m_limitState != e_atUpperLimit) | |||
| { | |||
| m_limitState = e_atUpperLimit; | |||
| m_impulse.z = 0.0f; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| m_limitState = e_inactiveLimit; | |||
| m_impulse.z = 0.0f; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| m_limitState = e_inactiveLimit; | |||
| m_impulse.z = 0.0f; | |||
| } | |||
| if (m_enableMotor == false) | |||
| { | |||
| m_motorImpulse = 0.0f; | |||
| } | |||
| if (data.step.warmStarting) | |||
| { | |||
| // Account for variable time step. | |||
| m_impulse *= data.step.dtRatio; | |||
| m_motorImpulse *= data.step.dtRatio; | |||
| b2Vec2 P = m_impulse.x * m_perp + (m_motorImpulse + m_impulse.z) * m_axis; | |||
| float32 LA = m_impulse.x * m_s1 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a1; | |||
| float32 LB = m_impulse.x * m_s2 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a2; | |||
| vA -= mA * P; | |||
| wA -= iA * LA; | |||
| vB += mB * P; | |||
| wB += iB * LB; | |||
| } | |||
| else | |||
| { | |||
| m_impulse.SetZero(); | |||
| m_motorImpulse = 0.0f; | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| void b2PrismaticJoint::SolveVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| float32 mA = m_invMassA, mB = m_invMassB; | |||
| float32 iA = m_invIA, iB = m_invIB; | |||
| // Solve linear motor constraint. | |||
| if (m_enableMotor && m_limitState != e_equalLimits) | |||
| { | |||
| float32 Cdot = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA; | |||
| float32 impulse = m_motorMass * (m_motorSpeed - Cdot); | |||
| float32 oldImpulse = m_motorImpulse; | |||
| float32 maxImpulse = data.step.dt * m_maxMotorForce; | |||
| m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); | |||
| impulse = m_motorImpulse - oldImpulse; | |||
| b2Vec2 P = impulse * m_axis; | |||
| float32 LA = impulse * m_a1; | |||
| float32 LB = impulse * m_a2; | |||
| vA -= mA * P; | |||
| wA -= iA * LA; | |||
| vB += mB * P; | |||
| wB += iB * LB; | |||
| } | |||
| b2Vec2 Cdot1; | |||
| Cdot1.x = b2Dot(m_perp, vB - vA) + m_s2 * wB - m_s1 * wA; | |||
| Cdot1.y = wB - wA; | |||
| if (m_enableLimit && m_limitState != e_inactiveLimit) | |||
| { | |||
| // Solve prismatic and limit constraint in block form. | |||
| float32 Cdot2; | |||
| Cdot2 = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA; | |||
| b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); | |||
| b2Vec3 f1 = m_impulse; | |||
| b2Vec3 df = m_K.Solve33(-Cdot); | |||
| m_impulse += df; | |||
| if (m_limitState == e_atLowerLimit) | |||
| { | |||
| m_impulse.z = b2Max(m_impulse.z, 0.0f); | |||
| } | |||
| else if (m_limitState == e_atUpperLimit) | |||
| { | |||
| m_impulse.z = b2Min(m_impulse.z, 0.0f); | |||
| } | |||
| // f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + f1(1:2) | |||
| b2Vec2 b = -Cdot1 - (m_impulse.z - f1.z) * b2Vec2(m_K.ez.x, m_K.ez.y); | |||
| b2Vec2 f2r = m_K.Solve22(b) + b2Vec2(f1.x, f1.y); | |||
| m_impulse.x = f2r.x; | |||
| m_impulse.y = f2r.y; | |||
| df = m_impulse - f1; | |||
| b2Vec2 P = df.x * m_perp + df.z * m_axis; | |||
| float32 LA = df.x * m_s1 + df.y + df.z * m_a1; | |||
| float32 LB = df.x * m_s2 + df.y + df.z * m_a2; | |||
| vA -= mA * P; | |||
| wA -= iA * LA; | |||
| vB += mB * P; | |||
| wB += iB * LB; | |||
| } | |||
| else | |||
| { | |||
| // Limit is inactive, just solve the prismatic constraint in block form. | |||
| b2Vec2 df = m_K.Solve22(-Cdot1); | |||
| m_impulse.x += df.x; | |||
| m_impulse.y += df.y; | |||
| b2Vec2 P = df.x * m_perp; | |||
| float32 LA = df.x * m_s1 + df.y; | |||
| float32 LB = df.x * m_s2 + df.y; | |||
| vA -= mA * P; | |||
| wA -= iA * LA; | |||
| vB += mB * P; | |||
| wB += iB * LB; | |||
| Cdot1.x = b2Dot(m_perp, vB - vA) + m_s2 * wB - m_s1 * wA; | |||
| Cdot1.y = wB - wA; | |||
| /*if (b2Abs(Cdot1.x) > 0.01f || b2Abs(Cdot1.y) > 0.01f) | |||
| { | |||
| b2Vec2 test = b2Mul22(m_K, df); | |||
| Cdot1.x += 0.0f; | |||
| }*/ | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| bool b2PrismaticJoint::SolvePositionConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 cA = data.positions[m_indexA].c; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Rot qA(aA), qB(aB); | |||
| float32 mA = m_invMassA, mB = m_invMassB; | |||
| float32 iA = m_invIA, iB = m_invIB; | |||
| // Compute fresh Jacobians | |||
| b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| b2Vec2 d = cB + rB - cA - rA; | |||
| b2Vec2 axis = b2Mul(qA, m_localXAxisA); | |||
| float32 a1 = b2Cross(d + rA, axis); | |||
| float32 a2 = b2Cross(rB, axis); | |||
| b2Vec2 perp = b2Mul(qA, m_localYAxisA); | |||
| float32 s1 = b2Cross(d + rA, perp); | |||
| float32 s2 = b2Cross(rB, perp); | |||
| b2Vec3 impulse; | |||
| b2Vec2 C1; | |||
| C1.x = b2Dot(perp, d); | |||
| C1.y = aB - aA - m_referenceAngle; | |||
| float32 linearError = b2Abs(C1.x); | |||
| float32 angularError = b2Abs(C1.y); | |||
| bool active = false; | |||
| float32 C2 = 0.0f; | |||
| if (m_enableLimit) | |||
| { | |||
| float32 translation = b2Dot(axis, d); | |||
| if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop) | |||
| { | |||
| // Prevent large angular corrections | |||
| C2 = b2Clamp(translation, -b2_maxLinearCorrection, b2_maxLinearCorrection); | |||
| linearError = b2Max(linearError, b2Abs(translation)); | |||
| active = true; | |||
| } | |||
| else if (translation <= m_lowerTranslation) | |||
| { | |||
| // Prevent large linear corrections and allow some slop. | |||
| C2 = b2Clamp(translation - m_lowerTranslation + b2_linearSlop, -b2_maxLinearCorrection, 0.0f); | |||
| linearError = b2Max(linearError, m_lowerTranslation - translation); | |||
| active = true; | |||
| } | |||
| else if (translation >= m_upperTranslation) | |||
| { | |||
| // Prevent large linear corrections and allow some slop. | |||
| C2 = b2Clamp(translation - m_upperTranslation - b2_linearSlop, 0.0f, b2_maxLinearCorrection); | |||
| linearError = b2Max(linearError, translation - m_upperTranslation); | |||
| active = true; | |||
| } | |||
| } | |||
| if (active) | |||
| { | |||
| float32 k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; | |||
| float32 k12 = iA * s1 + iB * s2; | |||
| float32 k13 = iA * s1 * a1 + iB * s2 * a2; | |||
| float32 k22 = iA + iB; | |||
| if (k22 == 0.0f) | |||
| { | |||
| // For fixed rotation | |||
| k22 = 1.0f; | |||
| } | |||
| float32 k23 = iA * a1 + iB * a2; | |||
| float32 k33 = mA + mB + iA * a1 * a1 + iB * a2 * a2; | |||
| b2Mat33 K; | |||
| K.ex.Set(k11, k12, k13); | |||
| K.ey.Set(k12, k22, k23); | |||
| K.ez.Set(k13, k23, k33); | |||
| b2Vec3 C; | |||
| C.x = C1.x; | |||
| C.y = C1.y; | |||
| C.z = C2; | |||
| impulse = K.Solve33(-C); | |||
| } | |||
| else | |||
| { | |||
| float32 k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; | |||
| float32 k12 = iA * s1 + iB * s2; | |||
| float32 k22 = iA + iB; | |||
| if (k22 == 0.0f) | |||
| { | |||
| k22 = 1.0f; | |||
| } | |||
| b2Mat22 K; | |||
| K.ex.Set(k11, k12); | |||
| K.ey.Set(k12, k22); | |||
| b2Vec2 impulse1 = K.Solve(-C1); | |||
| impulse.x = impulse1.x; | |||
| impulse.y = impulse1.y; | |||
| impulse.z = 0.0f; | |||
| } | |||
| b2Vec2 P = impulse.x * perp + impulse.z * axis; | |||
| float32 LA = impulse.x * s1 + impulse.y + impulse.z * a1; | |||
| float32 LB = impulse.x * s2 + impulse.y + impulse.z * a2; | |||
| cA -= mA * P; | |||
| aA -= iA * LA; | |||
| cB += mB * P; | |||
| aB += iB * LB; | |||
| data.positions[m_indexA].c = cA; | |||
| data.positions[m_indexA].a = aA; | |||
| data.positions[m_indexB].c = cB; | |||
| data.positions[m_indexB].a = aB; | |||
| return linearError <= b2_linearSlop && angularError <= b2_angularSlop; | |||
| } | |||
| b2Vec2 b2PrismaticJoint::GetAnchorA() const | |||
| { | |||
| return m_bodyA->GetWorldPoint(m_localAnchorA); | |||
| } | |||
| b2Vec2 b2PrismaticJoint::GetAnchorB() const | |||
| { | |||
| return m_bodyB->GetWorldPoint(m_localAnchorB); | |||
| } | |||
| b2Vec2 b2PrismaticJoint::GetReactionForce(float32 inv_dt) const | |||
| { | |||
| return inv_dt * (m_impulse.x * m_perp + (m_motorImpulse + m_impulse.z) * m_axis); | |||
| } | |||
| float32 b2PrismaticJoint::GetReactionTorque(float32 inv_dt) const | |||
| { | |||
| return inv_dt * m_impulse.y; | |||
| } | |||
| float32 b2PrismaticJoint::GetJointTranslation() const | |||
| { | |||
| b2Vec2 pA = m_bodyA->GetWorldPoint(m_localAnchorA); | |||
| b2Vec2 pB = m_bodyB->GetWorldPoint(m_localAnchorB); | |||
| b2Vec2 d = pB - pA; | |||
| b2Vec2 axis = m_bodyA->GetWorldVector(m_localXAxisA); | |||
| float32 translation = b2Dot(d, axis); | |||
| return translation; | |||
| } | |||
| float32 b2PrismaticJoint::GetJointSpeed() const | |||
| { | |||
| b2Body* bA = m_bodyA; | |||
| b2Body* bB = m_bodyB; | |||
| b2Vec2 rA = b2Mul(bA->m_xf.q, m_localAnchorA - bA->m_sweep.localCenter); | |||
| b2Vec2 rB = b2Mul(bB->m_xf.q, m_localAnchorB - bB->m_sweep.localCenter); | |||
| b2Vec2 p1 = bA->m_sweep.c + rA; | |||
| b2Vec2 p2 = bB->m_sweep.c + rB; | |||
| b2Vec2 d = p2 - p1; | |||
| b2Vec2 axis = b2Mul(bA->m_xf.q, m_localXAxisA); | |||
| b2Vec2 vA = bA->m_linearVelocity; | |||
| b2Vec2 vB = bB->m_linearVelocity; | |||
| float32 wA = bA->m_angularVelocity; | |||
| float32 wB = bB->m_angularVelocity; | |||
| float32 speed = b2Dot(d, b2Cross(wA, axis)) + b2Dot(axis, vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA)); | |||
| return speed; | |||
| } | |||
| bool b2PrismaticJoint::IsLimitEnabled() const | |||
| { | |||
| return m_enableLimit; | |||
| } | |||
| void b2PrismaticJoint::EnableLimit(bool flag) | |||
| { | |||
| if (flag != m_enableLimit) | |||
| { | |||
| m_bodyA->SetAwake(true); | |||
| m_bodyB->SetAwake(true); | |||
| m_enableLimit = flag; | |||
| m_impulse.z = 0.0f; | |||
| } | |||
| } | |||
| float32 b2PrismaticJoint::GetLowerLimit() const | |||
| { | |||
| return m_lowerTranslation; | |||
| } | |||
| float32 b2PrismaticJoint::GetUpperLimit() const | |||
| { | |||
| return m_upperTranslation; | |||
| } | |||
| void b2PrismaticJoint::SetLimits(float32 lower, float32 upper) | |||
| { | |||
| b2Assert(lower <= upper); | |||
| if (lower != m_lowerTranslation || upper != m_upperTranslation) | |||
| { | |||
| m_bodyA->SetAwake(true); | |||
| m_bodyB->SetAwake(true); | |||
| m_lowerTranslation = lower; | |||
| m_upperTranslation = upper; | |||
| m_impulse.z = 0.0f; | |||
| } | |||
| } | |||
| bool b2PrismaticJoint::IsMotorEnabled() const | |||
| { | |||
| return m_enableMotor; | |||
| } | |||
| void b2PrismaticJoint::EnableMotor(bool flag) | |||
| { | |||
| m_bodyA->SetAwake(true); | |||
| m_bodyB->SetAwake(true); | |||
| m_enableMotor = flag; | |||
| } | |||
| void b2PrismaticJoint::SetMotorSpeed(float32 speed) | |||
| { | |||
| m_bodyA->SetAwake(true); | |||
| m_bodyB->SetAwake(true); | |||
| m_motorSpeed = speed; | |||
| } | |||
| void b2PrismaticJoint::SetMaxMotorForce(float32 force) | |||
| { | |||
| m_bodyA->SetAwake(true); | |||
| m_bodyB->SetAwake(true); | |||
| m_maxMotorForce = force; | |||
| } | |||
| float32 b2PrismaticJoint::GetMotorForce(float32 inv_dt) const | |||
| { | |||
| return inv_dt * m_motorImpulse; | |||
| } | |||
| void b2PrismaticJoint::Dump() | |||
| { | |||
| int32 indexA = m_bodyA->m_islandIndex; | |||
| int32 indexB = m_bodyB->m_islandIndex; | |||
| b2Log(" b2PrismaticJointDef jd;\n"); | |||
| b2Log(" jd.bodyA = bodies[%d];\n", indexA); | |||
| b2Log(" jd.bodyB = bodies[%d];\n", indexB); | |||
| b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); | |||
| b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); | |||
| b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); | |||
| b2Log(" jd.localAxisA.Set(%.15lef, %.15lef);\n", m_localXAxisA.x, m_localXAxisA.y); | |||
| b2Log(" jd.referenceAngle = %.15lef;\n", m_referenceAngle); | |||
| b2Log(" jd.enableLimit = bool(%d);\n", m_enableLimit); | |||
| b2Log(" jd.lowerTranslation = %.15lef;\n", m_lowerTranslation); | |||
| b2Log(" jd.upperTranslation = %.15lef;\n", m_upperTranslation); | |||
| b2Log(" jd.enableMotor = bool(%d);\n", m_enableMotor); | |||
| b2Log(" jd.motorSpeed = %.15lef;\n", m_motorSpeed); | |||
| b2Log(" jd.maxMotorForce = %.15lef;\n", m_maxMotorForce); | |||
| b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | |||
| } | |||
| @@ -0,0 +1,196 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_PRISMATIC_JOINT_H | |||
| #define B2_PRISMATIC_JOINT_H | |||
| #include "b2Joint.h" | |||
| /// Prismatic joint definition. This requires defining a line of | |||
| /// motion using an axis and an anchor point. The definition uses local | |||
| /// anchor points and a local axis so that the initial configuration | |||
| /// can violate the constraint slightly. The joint translation is zero | |||
| /// when the local anchor points coincide in world space. Using local | |||
| /// anchors and a local axis helps when saving and loading a game. | |||
| struct b2PrismaticJointDef : public b2JointDef | |||
| { | |||
| b2PrismaticJointDef() | |||
| { | |||
| type = e_prismaticJoint; | |||
| localAnchorA.SetZero(); | |||
| localAnchorB.SetZero(); | |||
| localAxisA.Set(1.0f, 0.0f); | |||
| referenceAngle = 0.0f; | |||
| enableLimit = false; | |||
| lowerTranslation = 0.0f; | |||
| upperTranslation = 0.0f; | |||
| enableMotor = false; | |||
| maxMotorForce = 0.0f; | |||
| motorSpeed = 0.0f; | |||
| } | |||
| /// Initialize the bodies, anchors, axis, and reference angle using the world | |||
| /// anchor and unit world axis. | |||
| void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor, const b2Vec2& axis); | |||
| /// The local anchor point relative to bodyA's origin. | |||
| b2Vec2 localAnchorA; | |||
| /// The local anchor point relative to bodyB's origin. | |||
| b2Vec2 localAnchorB; | |||
| /// The local translation unit axis in bodyA. | |||
| b2Vec2 localAxisA; | |||
| /// The constrained angle between the bodies: bodyB_angle - bodyA_angle. | |||
| float32 referenceAngle; | |||
| /// Enable/disable the joint limit. | |||
| bool enableLimit; | |||
| /// The lower translation limit, usually in meters. | |||
| float32 lowerTranslation; | |||
| /// The upper translation limit, usually in meters. | |||
| float32 upperTranslation; | |||
| /// Enable/disable the joint motor. | |||
| bool enableMotor; | |||
| /// The maximum motor torque, usually in N-m. | |||
| float32 maxMotorForce; | |||
| /// The desired motor speed in radians per second. | |||
| float32 motorSpeed; | |||
| }; | |||
| /// A prismatic joint. This joint provides one degree of freedom: translation | |||
| /// along an axis fixed in bodyA. Relative rotation is prevented. You can | |||
| /// use a joint limit to restrict the range of motion and a joint motor to | |||
| /// drive the motion or to model joint friction. | |||
| class b2PrismaticJoint : public b2Joint | |||
| { | |||
| public: | |||
| b2Vec2 GetAnchorA() const; | |||
| b2Vec2 GetAnchorB() const; | |||
| b2Vec2 GetReactionForce(float32 inv_dt) const; | |||
| float32 GetReactionTorque(float32 inv_dt) const; | |||
| /// The local anchor point relative to bodyA's origin. | |||
| const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; } | |||
| /// The local anchor point relative to bodyB's origin. | |||
| const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; } | |||
| /// The local joint axis relative to bodyA. | |||
| const b2Vec2& GetLocalAxisA() const { return m_localXAxisA; } | |||
| /// Get the reference angle. | |||
| float32 GetReferenceAngle() const { return m_referenceAngle; } | |||
| /// Get the current joint translation, usually in meters. | |||
| float32 GetJointTranslation() const; | |||
| /// Get the current joint translation speed, usually in meters per second. | |||
| float32 GetJointSpeed() const; | |||
| /// Is the joint limit enabled? | |||
| bool IsLimitEnabled() const; | |||
| /// Enable/disable the joint limit. | |||
| void EnableLimit(bool flag); | |||
| /// Get the lower joint limit, usually in meters. | |||
| float32 GetLowerLimit() const; | |||
| /// Get the upper joint limit, usually in meters. | |||
| float32 GetUpperLimit() const; | |||
| /// Set the joint limits, usually in meters. | |||
| void SetLimits(float32 lower, float32 upper); | |||
| /// Is the joint motor enabled? | |||
| bool IsMotorEnabled() const; | |||
| /// Enable/disable the joint motor. | |||
| void EnableMotor(bool flag); | |||
| /// Set the motor speed, usually in meters per second. | |||
| void SetMotorSpeed(float32 speed); | |||
| /// Get the motor speed, usually in meters per second. | |||
| float32 GetMotorSpeed() const; | |||
| /// Set the maximum motor force, usually in N. | |||
| void SetMaxMotorForce(float32 force); | |||
| float32 GetMaxMotorForce() const { return m_maxMotorForce; } | |||
| /// Get the current motor force given the inverse time step, usually in N. | |||
| float32 GetMotorForce(float32 inv_dt) const; | |||
| /// Dump to b2Log | |||
| void Dump(); | |||
| protected: | |||
| friend class b2Joint; | |||
| friend class b2GearJoint; | |||
| b2PrismaticJoint(const b2PrismaticJointDef* def); | |||
| void InitVelocityConstraints(const b2SolverData& data); | |||
| void SolveVelocityConstraints(const b2SolverData& data); | |||
| bool SolvePositionConstraints(const b2SolverData& data); | |||
| // Solver shared | |||
| b2Vec2 m_localAnchorA; | |||
| b2Vec2 m_localAnchorB; | |||
| b2Vec2 m_localXAxisA; | |||
| b2Vec2 m_localYAxisA; | |||
| float32 m_referenceAngle; | |||
| b2Vec3 m_impulse; | |||
| float32 m_motorImpulse; | |||
| float32 m_lowerTranslation; | |||
| float32 m_upperTranslation; | |||
| float32 m_maxMotorForce; | |||
| float32 m_motorSpeed; | |||
| bool m_enableLimit; | |||
| bool m_enableMotor; | |||
| b2LimitState m_limitState; | |||
| // Solver temp | |||
| int32 m_indexA; | |||
| int32 m_indexB; | |||
| b2Vec2 m_localCenterA; | |||
| b2Vec2 m_localCenterB; | |||
| float32 m_invMassA; | |||
| float32 m_invMassB; | |||
| float32 m_invIA; | |||
| float32 m_invIB; | |||
| b2Vec2 m_axis, m_perp; | |||
| float32 m_s1, m_s2; | |||
| float32 m_a1, m_a2; | |||
| b2Mat33 m_K; | |||
| float32 m_motorMass; | |||
| }; | |||
| inline float32 b2PrismaticJoint::GetMotorSpeed() const | |||
| { | |||
| return m_motorSpeed; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,332 @@ | |||
| /* | |||
| * Copyright (c) 2007 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2PulleyJoint.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2TimeStep.h" | |||
| // Pulley: | |||
| // length1 = norm(p1 - s1) | |||
| // length2 = norm(p2 - s2) | |||
| // C0 = (length1 + ratio * length2)_initial | |||
| // C = C0 - (length1 + ratio * length2) | |||
| // u1 = (p1 - s1) / norm(p1 - s1) | |||
| // u2 = (p2 - s2) / norm(p2 - s2) | |||
| // Cdot = -dot(u1, v1 + cross(w1, r1)) - ratio * dot(u2, v2 + cross(w2, r2)) | |||
| // J = -[u1 cross(r1, u1) ratio * u2 ratio * cross(r2, u2)] | |||
| // K = J * invM * JT | |||
| // = invMass1 + invI1 * cross(r1, u1)^2 + ratio^2 * (invMass2 + invI2 * cross(r2, u2)^2) | |||
| void b2PulleyJointDef::Initialize(b2Body* bA, b2Body* bB, | |||
| const b2Vec2& groundA, const b2Vec2& groundB, | |||
| const b2Vec2& anchorA, const b2Vec2& anchorB, | |||
| float32 r) | |||
| { | |||
| bodyA = bA; | |||
| bodyB = bB; | |||
| groundAnchorA = groundA; | |||
| groundAnchorB = groundB; | |||
| localAnchorA = bodyA->GetLocalPoint(anchorA); | |||
| localAnchorB = bodyB->GetLocalPoint(anchorB); | |||
| b2Vec2 dA = anchorA - groundA; | |||
| lengthA = dA.Length(); | |||
| b2Vec2 dB = anchorB - groundB; | |||
| lengthB = dB.Length(); | |||
| ratio = r; | |||
| b2Assert(ratio > b2_epsilon); | |||
| } | |||
| b2PulleyJoint::b2PulleyJoint(const b2PulleyJointDef* def) | |||
| : b2Joint(def) | |||
| { | |||
| m_groundAnchorA = def->groundAnchorA; | |||
| m_groundAnchorB = def->groundAnchorB; | |||
| m_localAnchorA = def->localAnchorA; | |||
| m_localAnchorB = def->localAnchorB; | |||
| m_lengthA = def->lengthA; | |||
| m_lengthB = def->lengthB; | |||
| b2Assert(def->ratio != 0.0f); | |||
| m_ratio = def->ratio; | |||
| m_constant = def->lengthA + m_ratio * def->lengthB; | |||
| m_impulse = 0.0f; | |||
| } | |||
| void b2PulleyJoint::InitVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| m_indexA = m_bodyA->m_islandIndex; | |||
| m_indexB = m_bodyB->m_islandIndex; | |||
| m_localCenterA = m_bodyA->m_sweep.localCenter; | |||
| m_localCenterB = m_bodyB->m_sweep.localCenter; | |||
| m_invMassA = m_bodyA->m_invMass; | |||
| m_invMassB = m_bodyB->m_invMass; | |||
| m_invIA = m_bodyA->m_invI; | |||
| m_invIB = m_bodyB->m_invI; | |||
| b2Vec2 cA = data.positions[m_indexA].c; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| b2Rot qA(aA), qB(aB); | |||
| m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| // Get the pulley axes. | |||
| m_uA = cA + m_rA - m_groundAnchorA; | |||
| m_uB = cB + m_rB - m_groundAnchorB; | |||
| float32 lengthA = m_uA.Length(); | |||
| float32 lengthB = m_uB.Length(); | |||
| if (lengthA > 10.0f * b2_linearSlop) | |||
| { | |||
| m_uA *= 1.0f / lengthA; | |||
| } | |||
| else | |||
| { | |||
| m_uA.SetZero(); | |||
| } | |||
| if (lengthB > 10.0f * b2_linearSlop) | |||
| { | |||
| m_uB *= 1.0f / lengthB; | |||
| } | |||
| else | |||
| { | |||
| m_uB.SetZero(); | |||
| } | |||
| // Compute effective mass. | |||
| float32 ruA = b2Cross(m_rA, m_uA); | |||
| float32 ruB = b2Cross(m_rB, m_uB); | |||
| float32 mA = m_invMassA + m_invIA * ruA * ruA; | |||
| float32 mB = m_invMassB + m_invIB * ruB * ruB; | |||
| m_mass = mA + m_ratio * m_ratio * mB; | |||
| if (m_mass > 0.0f) | |||
| { | |||
| m_mass = 1.0f / m_mass; | |||
| } | |||
| if (data.step.warmStarting) | |||
| { | |||
| // Scale impulses to support variable time steps. | |||
| m_impulse *= data.step.dtRatio; | |||
| // Warm starting. | |||
| b2Vec2 PA = -(m_impulse) * m_uA; | |||
| b2Vec2 PB = (-m_ratio * m_impulse) * m_uB; | |||
| vA += m_invMassA * PA; | |||
| wA += m_invIA * b2Cross(m_rA, PA); | |||
| vB += m_invMassB * PB; | |||
| wB += m_invIB * b2Cross(m_rB, PB); | |||
| } | |||
| else | |||
| { | |||
| m_impulse = 0.0f; | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| void b2PulleyJoint::SolveVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| b2Vec2 vpA = vA + b2Cross(wA, m_rA); | |||
| b2Vec2 vpB = vB + b2Cross(wB, m_rB); | |||
| float32 Cdot = -b2Dot(m_uA, vpA) - m_ratio * b2Dot(m_uB, vpB); | |||
| float32 impulse = -m_mass * Cdot; | |||
| m_impulse += impulse; | |||
| b2Vec2 PA = -impulse * m_uA; | |||
| b2Vec2 PB = -m_ratio * impulse * m_uB; | |||
| vA += m_invMassA * PA; | |||
| wA += m_invIA * b2Cross(m_rA, PA); | |||
| vB += m_invMassB * PB; | |||
| wB += m_invIB * b2Cross(m_rB, PB); | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| bool b2PulleyJoint::SolvePositionConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 cA = data.positions[m_indexA].c; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Rot qA(aA), qB(aB); | |||
| b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| // Get the pulley axes. | |||
| b2Vec2 uA = cA + rA - m_groundAnchorA; | |||
| b2Vec2 uB = cB + rB - m_groundAnchorB; | |||
| float32 lengthA = uA.Length(); | |||
| float32 lengthB = uB.Length(); | |||
| if (lengthA > 10.0f * b2_linearSlop) | |||
| { | |||
| uA *= 1.0f / lengthA; | |||
| } | |||
| else | |||
| { | |||
| uA.SetZero(); | |||
| } | |||
| if (lengthB > 10.0f * b2_linearSlop) | |||
| { | |||
| uB *= 1.0f / lengthB; | |||
| } | |||
| else | |||
| { | |||
| uB.SetZero(); | |||
| } | |||
| // Compute effective mass. | |||
| float32 ruA = b2Cross(rA, uA); | |||
| float32 ruB = b2Cross(rB, uB); | |||
| float32 mA = m_invMassA + m_invIA * ruA * ruA; | |||
| float32 mB = m_invMassB + m_invIB * ruB * ruB; | |||
| float32 mass = mA + m_ratio * m_ratio * mB; | |||
| if (mass > 0.0f) | |||
| { | |||
| mass = 1.0f / mass; | |||
| } | |||
| float32 C = m_constant - lengthA - m_ratio * lengthB; | |||
| float32 linearError = b2Abs(C); | |||
| float32 impulse = -mass * C; | |||
| b2Vec2 PA = -impulse * uA; | |||
| b2Vec2 PB = -m_ratio * impulse * uB; | |||
| cA += m_invMassA * PA; | |||
| aA += m_invIA * b2Cross(rA, PA); | |||
| cB += m_invMassB * PB; | |||
| aB += m_invIB * b2Cross(rB, PB); | |||
| data.positions[m_indexA].c = cA; | |||
| data.positions[m_indexA].a = aA; | |||
| data.positions[m_indexB].c = cB; | |||
| data.positions[m_indexB].a = aB; | |||
| return linearError < b2_linearSlop; | |||
| } | |||
| b2Vec2 b2PulleyJoint::GetAnchorA() const | |||
| { | |||
| return m_bodyA->GetWorldPoint(m_localAnchorA); | |||
| } | |||
| b2Vec2 b2PulleyJoint::GetAnchorB() const | |||
| { | |||
| return m_bodyB->GetWorldPoint(m_localAnchorB); | |||
| } | |||
| b2Vec2 b2PulleyJoint::GetReactionForce(float32 inv_dt) const | |||
| { | |||
| b2Vec2 P = m_impulse * m_uB; | |||
| return inv_dt * P; | |||
| } | |||
| float32 b2PulleyJoint::GetReactionTorque(float32 inv_dt) const | |||
| { | |||
| B2_NOT_USED(inv_dt); | |||
| return 0.0f; | |||
| } | |||
| b2Vec2 b2PulleyJoint::GetGroundAnchorA() const | |||
| { | |||
| return m_groundAnchorA; | |||
| } | |||
| b2Vec2 b2PulleyJoint::GetGroundAnchorB() const | |||
| { | |||
| return m_groundAnchorB; | |||
| } | |||
| float32 b2PulleyJoint::GetLengthA() const | |||
| { | |||
| b2Vec2 p = m_bodyA->GetWorldPoint(m_localAnchorA); | |||
| b2Vec2 s = m_groundAnchorA; | |||
| b2Vec2 d = p - s; | |||
| return d.Length(); | |||
| } | |||
| float32 b2PulleyJoint::GetLengthB() const | |||
| { | |||
| b2Vec2 p = m_bodyB->GetWorldPoint(m_localAnchorB); | |||
| b2Vec2 s = m_groundAnchorB; | |||
| b2Vec2 d = p - s; | |||
| return d.Length(); | |||
| } | |||
| float32 b2PulleyJoint::GetRatio() const | |||
| { | |||
| return m_ratio; | |||
| } | |||
| void b2PulleyJoint::Dump() | |||
| { | |||
| int32 indexA = m_bodyA->m_islandIndex; | |||
| int32 indexB = m_bodyB->m_islandIndex; | |||
| b2Log(" b2PulleyJointDef jd;\n"); | |||
| b2Log(" jd.bodyA = bodies[%d];\n", indexA); | |||
| b2Log(" jd.bodyB = bodies[%d];\n", indexB); | |||
| b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); | |||
| b2Log(" jd.groundAnchorA.Set(%.15lef, %.15lef);\n", m_groundAnchorA.x, m_groundAnchorA.y); | |||
| b2Log(" jd.groundAnchorB.Set(%.15lef, %.15lef);\n", m_groundAnchorB.x, m_groundAnchorB.y); | |||
| b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); | |||
| b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); | |||
| b2Log(" jd.lengthA = %.15lef;\n", m_lengthA); | |||
| b2Log(" jd.lengthB = %.15lef;\n", m_lengthB); | |||
| b2Log(" jd.ratio = %.15lef;\n", m_ratio); | |||
| b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | |||
| } | |||
| @@ -0,0 +1,143 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_PULLEY_JOINT_H | |||
| #define B2_PULLEY_JOINT_H | |||
| #include "b2Joint.h" | |||
| const float32 b2_minPulleyLength = 2.0f; | |||
| /// Pulley joint definition. This requires two ground anchors, | |||
| /// two dynamic body anchor points, and a pulley ratio. | |||
| struct b2PulleyJointDef : public b2JointDef | |||
| { | |||
| b2PulleyJointDef() | |||
| { | |||
| type = e_pulleyJoint; | |||
| groundAnchorA.Set(-1.0f, 1.0f); | |||
| groundAnchorB.Set(1.0f, 1.0f); | |||
| localAnchorA.Set(-1.0f, 0.0f); | |||
| localAnchorB.Set(1.0f, 0.0f); | |||
| lengthA = 0.0f; | |||
| lengthB = 0.0f; | |||
| ratio = 1.0f; | |||
| collideConnected = true; | |||
| } | |||
| /// Initialize the bodies, anchors, lengths, max lengths, and ratio using the world anchors. | |||
| void Initialize(b2Body* bodyA, b2Body* bodyB, | |||
| const b2Vec2& groundAnchorA, const b2Vec2& groundAnchorB, | |||
| const b2Vec2& anchorA, const b2Vec2& anchorB, | |||
| float32 ratio); | |||
| /// The first ground anchor in world coordinates. This point never moves. | |||
| b2Vec2 groundAnchorA; | |||
| /// The second ground anchor in world coordinates. This point never moves. | |||
| b2Vec2 groundAnchorB; | |||
| /// The local anchor point relative to bodyA's origin. | |||
| b2Vec2 localAnchorA; | |||
| /// The local anchor point relative to bodyB's origin. | |||
| b2Vec2 localAnchorB; | |||
| /// The a reference length for the segment attached to bodyA. | |||
| float32 lengthA; | |||
| /// The a reference length for the segment attached to bodyB. | |||
| float32 lengthB; | |||
| /// The pulley ratio, used to simulate a block-and-tackle. | |||
| float32 ratio; | |||
| }; | |||
| /// The pulley joint is connected to two bodies and two fixed ground points. | |||
| /// The pulley supports a ratio such that: | |||
| /// length1 + ratio * length2 <= constant | |||
| /// Yes, the force transmitted is scaled by the ratio. | |||
| /// Warning: the pulley joint can get a bit squirrelly by itself. They often | |||
| /// work better when combined with prismatic joints. You should also cover the | |||
| /// the anchor points with static shapes to prevent one side from going to | |||
| /// zero length. | |||
| class b2PulleyJoint : public b2Joint | |||
| { | |||
| public: | |||
| b2Vec2 GetAnchorA() const; | |||
| b2Vec2 GetAnchorB() const; | |||
| b2Vec2 GetReactionForce(float32 inv_dt) const; | |||
| float32 GetReactionTorque(float32 inv_dt) const; | |||
| /// Get the first ground anchor. | |||
| b2Vec2 GetGroundAnchorA() const; | |||
| /// Get the second ground anchor. | |||
| b2Vec2 GetGroundAnchorB() const; | |||
| /// Get the current length of the segment attached to bodyA. | |||
| float32 GetLengthA() const; | |||
| /// Get the current length of the segment attached to bodyB. | |||
| float32 GetLengthB() const; | |||
| /// Get the pulley ratio. | |||
| float32 GetRatio() const; | |||
| /// Dump joint to dmLog | |||
| void Dump(); | |||
| protected: | |||
| friend class b2Joint; | |||
| b2PulleyJoint(const b2PulleyJointDef* data); | |||
| void InitVelocityConstraints(const b2SolverData& data); | |||
| void SolveVelocityConstraints(const b2SolverData& data); | |||
| bool SolvePositionConstraints(const b2SolverData& data); | |||
| b2Vec2 m_groundAnchorA; | |||
| b2Vec2 m_groundAnchorB; | |||
| float32 m_lengthA; | |||
| float32 m_lengthB; | |||
| // Solver shared | |||
| b2Vec2 m_localAnchorA; | |||
| b2Vec2 m_localAnchorB; | |||
| float32 m_constant; | |||
| float32 m_ratio; | |||
| float32 m_impulse; | |||
| // Solver temp | |||
| int32 m_indexA; | |||
| int32 m_indexB; | |||
| b2Vec2 m_uA; | |||
| b2Vec2 m_uB; | |||
| b2Vec2 m_rA; | |||
| b2Vec2 m_rB; | |||
| b2Vec2 m_localCenterA; | |||
| b2Vec2 m_localCenterB; | |||
| float32 m_invMassA; | |||
| float32 m_invMassB; | |||
| float32 m_invIA; | |||
| float32 m_invIB; | |||
| float32 m_mass; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,502 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2RevoluteJoint.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2TimeStep.h" | |||
| // Point-to-point constraint | |||
| // C = p2 - p1 | |||
| // Cdot = v2 - v1 | |||
| // = v2 + cross(w2, r2) - v1 - cross(w1, r1) | |||
| // J = [-I -r1_skew I r2_skew ] | |||
| // Identity used: | |||
| // w k % (rx i + ry j) = w * (-ry i + rx j) | |||
| // Motor constraint | |||
| // Cdot = w2 - w1 | |||
| // J = [0 0 -1 0 0 1] | |||
| // K = invI1 + invI2 | |||
| void b2RevoluteJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) | |||
| { | |||
| bodyA = bA; | |||
| bodyB = bB; | |||
| localAnchorA = bodyA->GetLocalPoint(anchor); | |||
| localAnchorB = bodyB->GetLocalPoint(anchor); | |||
| referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); | |||
| } | |||
| b2RevoluteJoint::b2RevoluteJoint(const b2RevoluteJointDef* def) | |||
| : b2Joint(def) | |||
| { | |||
| m_localAnchorA = def->localAnchorA; | |||
| m_localAnchorB = def->localAnchorB; | |||
| m_referenceAngle = def->referenceAngle; | |||
| m_impulse.SetZero(); | |||
| m_motorImpulse = 0.0f; | |||
| m_lowerAngle = def->lowerAngle; | |||
| m_upperAngle = def->upperAngle; | |||
| m_maxMotorTorque = def->maxMotorTorque; | |||
| m_motorSpeed = def->motorSpeed; | |||
| m_enableLimit = def->enableLimit; | |||
| m_enableMotor = def->enableMotor; | |||
| m_limitState = e_inactiveLimit; | |||
| } | |||
| void b2RevoluteJoint::InitVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| m_indexA = m_bodyA->m_islandIndex; | |||
| m_indexB = m_bodyB->m_islandIndex; | |||
| m_localCenterA = m_bodyA->m_sweep.localCenter; | |||
| m_localCenterB = m_bodyB->m_sweep.localCenter; | |||
| m_invMassA = m_bodyA->m_invMass; | |||
| m_invMassB = m_bodyB->m_invMass; | |||
| m_invIA = m_bodyA->m_invI; | |||
| m_invIB = m_bodyB->m_invI; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| b2Rot qA(aA), qB(aB); | |||
| m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| // J = [-I -r1_skew I r2_skew] | |||
| // [ 0 -1 0 1] | |||
| // r_skew = [-ry; rx] | |||
| // Matlab | |||
| // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] | |||
| // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] | |||
| // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] | |||
| float32 mA = m_invMassA, mB = m_invMassB; | |||
| float32 iA = m_invIA, iB = m_invIB; | |||
| bool fixedRotation = (iA + iB == 0.0f); | |||
| m_mass.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; | |||
| m_mass.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; | |||
| m_mass.ez.x = -m_rA.y * iA - m_rB.y * iB; | |||
| m_mass.ex.y = m_mass.ey.x; | |||
| m_mass.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; | |||
| m_mass.ez.y = m_rA.x * iA + m_rB.x * iB; | |||
| m_mass.ex.z = m_mass.ez.x; | |||
| m_mass.ey.z = m_mass.ez.y; | |||
| m_mass.ez.z = iA + iB; | |||
| m_motorMass = iA + iB; | |||
| if (m_motorMass > 0.0f) | |||
| { | |||
| m_motorMass = 1.0f / m_motorMass; | |||
| } | |||
| if (m_enableMotor == false || fixedRotation) | |||
| { | |||
| m_motorImpulse = 0.0f; | |||
| } | |||
| if (m_enableLimit && fixedRotation == false) | |||
| { | |||
| float32 jointAngle = aB - aA - m_referenceAngle; | |||
| if (b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2_angularSlop) | |||
| { | |||
| m_limitState = e_equalLimits; | |||
| } | |||
| else if (jointAngle <= m_lowerAngle) | |||
| { | |||
| if (m_limitState != e_atLowerLimit) | |||
| { | |||
| m_impulse.z = 0.0f; | |||
| } | |||
| m_limitState = e_atLowerLimit; | |||
| } | |||
| else if (jointAngle >= m_upperAngle) | |||
| { | |||
| if (m_limitState != e_atUpperLimit) | |||
| { | |||
| m_impulse.z = 0.0f; | |||
| } | |||
| m_limitState = e_atUpperLimit; | |||
| } | |||
| else | |||
| { | |||
| m_limitState = e_inactiveLimit; | |||
| m_impulse.z = 0.0f; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| m_limitState = e_inactiveLimit; | |||
| } | |||
| if (data.step.warmStarting) | |||
| { | |||
| // Scale impulses to support a variable time step. | |||
| m_impulse *= data.step.dtRatio; | |||
| m_motorImpulse *= data.step.dtRatio; | |||
| b2Vec2 P(m_impulse.x, m_impulse.y); | |||
| vA -= mA * P; | |||
| wA -= iA * (b2Cross(m_rA, P) + m_motorImpulse + m_impulse.z); | |||
| vB += mB * P; | |||
| wB += iB * (b2Cross(m_rB, P) + m_motorImpulse + m_impulse.z); | |||
| } | |||
| else | |||
| { | |||
| m_impulse.SetZero(); | |||
| m_motorImpulse = 0.0f; | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| void b2RevoluteJoint::SolveVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| float32 mA = m_invMassA, mB = m_invMassB; | |||
| float32 iA = m_invIA, iB = m_invIB; | |||
| bool fixedRotation = (iA + iB == 0.0f); | |||
| // Solve motor constraint. | |||
| if (m_enableMotor && m_limitState != e_equalLimits && fixedRotation == false) | |||
| { | |||
| float32 Cdot = wB - wA - m_motorSpeed; | |||
| float32 impulse = -m_motorMass * Cdot; | |||
| float32 oldImpulse = m_motorImpulse; | |||
| float32 maxImpulse = data.step.dt * m_maxMotorTorque; | |||
| m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); | |||
| impulse = m_motorImpulse - oldImpulse; | |||
| wA -= iA * impulse; | |||
| wB += iB * impulse; | |||
| } | |||
| // Solve limit constraint. | |||
| if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) | |||
| { | |||
| b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); | |||
| float32 Cdot2 = wB - wA; | |||
| b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); | |||
| b2Vec3 impulse = -m_mass.Solve33(Cdot); | |||
| if (m_limitState == e_equalLimits) | |||
| { | |||
| m_impulse += impulse; | |||
| } | |||
| else if (m_limitState == e_atLowerLimit) | |||
| { | |||
| float32 newImpulse = m_impulse.z + impulse.z; | |||
| if (newImpulse < 0.0f) | |||
| { | |||
| b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); | |||
| b2Vec2 reduced = m_mass.Solve22(rhs); | |||
| impulse.x = reduced.x; | |||
| impulse.y = reduced.y; | |||
| impulse.z = -m_impulse.z; | |||
| m_impulse.x += reduced.x; | |||
| m_impulse.y += reduced.y; | |||
| m_impulse.z = 0.0f; | |||
| } | |||
| else | |||
| { | |||
| m_impulse += impulse; | |||
| } | |||
| } | |||
| else if (m_limitState == e_atUpperLimit) | |||
| { | |||
| float32 newImpulse = m_impulse.z + impulse.z; | |||
| if (newImpulse > 0.0f) | |||
| { | |||
| b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); | |||
| b2Vec2 reduced = m_mass.Solve22(rhs); | |||
| impulse.x = reduced.x; | |||
| impulse.y = reduced.y; | |||
| impulse.z = -m_impulse.z; | |||
| m_impulse.x += reduced.x; | |||
| m_impulse.y += reduced.y; | |||
| m_impulse.z = 0.0f; | |||
| } | |||
| else | |||
| { | |||
| m_impulse += impulse; | |||
| } | |||
| } | |||
| b2Vec2 P(impulse.x, impulse.y); | |||
| vA -= mA * P; | |||
| wA -= iA * (b2Cross(m_rA, P) + impulse.z); | |||
| vB += mB * P; | |||
| wB += iB * (b2Cross(m_rB, P) + impulse.z); | |||
| } | |||
| else | |||
| { | |||
| // Solve point-to-point constraint | |||
| b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); | |||
| b2Vec2 impulse = m_mass.Solve22(-Cdot); | |||
| m_impulse.x += impulse.x; | |||
| m_impulse.y += impulse.y; | |||
| vA -= mA * impulse; | |||
| wA -= iA * b2Cross(m_rA, impulse); | |||
| vB += mB * impulse; | |||
| wB += iB * b2Cross(m_rB, impulse); | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| bool b2RevoluteJoint::SolvePositionConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 cA = data.positions[m_indexA].c; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Rot qA(aA), qB(aB); | |||
| float32 angularError = 0.0f; | |||
| float32 positionError = 0.0f; | |||
| bool fixedRotation = (m_invIA + m_invIB == 0.0f); | |||
| // Solve angular limit constraint. | |||
| if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) | |||
| { | |||
| float32 angle = aB - aA - m_referenceAngle; | |||
| float32 limitImpulse = 0.0f; | |||
| if (m_limitState == e_equalLimits) | |||
| { | |||
| // Prevent large angular corrections | |||
| float32 C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection); | |||
| limitImpulse = -m_motorMass * C; | |||
| angularError = b2Abs(C); | |||
| } | |||
| else if (m_limitState == e_atLowerLimit) | |||
| { | |||
| float32 C = angle - m_lowerAngle; | |||
| angularError = -C; | |||
| // Prevent large angular corrections and allow some slop. | |||
| C = b2Clamp(C + b2_angularSlop, -b2_maxAngularCorrection, 0.0f); | |||
| limitImpulse = -m_motorMass * C; | |||
| } | |||
| else if (m_limitState == e_atUpperLimit) | |||
| { | |||
| float32 C = angle - m_upperAngle; | |||
| angularError = C; | |||
| // Prevent large angular corrections and allow some slop. | |||
| C = b2Clamp(C - b2_angularSlop, 0.0f, b2_maxAngularCorrection); | |||
| limitImpulse = -m_motorMass * C; | |||
| } | |||
| aA -= m_invIA * limitImpulse; | |||
| aB += m_invIB * limitImpulse; | |||
| } | |||
| // Solve point-to-point constraint. | |||
| { | |||
| qA.Set(aA); | |||
| qB.Set(aB); | |||
| b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| b2Vec2 C = cB + rB - cA - rA; | |||
| positionError = C.Length(); | |||
| float32 mA = m_invMassA, mB = m_invMassB; | |||
| float32 iA = m_invIA, iB = m_invIB; | |||
| b2Mat22 K; | |||
| K.ex.x = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y; | |||
| K.ex.y = -iA * rA.x * rA.y - iB * rB.x * rB.y; | |||
| K.ey.x = K.ex.y; | |||
| K.ey.y = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x; | |||
| b2Vec2 impulse = -K.Solve(C); | |||
| cA -= mA * impulse; | |||
| aA -= iA * b2Cross(rA, impulse); | |||
| cB += mB * impulse; | |||
| aB += iB * b2Cross(rB, impulse); | |||
| } | |||
| data.positions[m_indexA].c = cA; | |||
| data.positions[m_indexA].a = aA; | |||
| data.positions[m_indexB].c = cB; | |||
| data.positions[m_indexB].a = aB; | |||
| return positionError <= b2_linearSlop && angularError <= b2_angularSlop; | |||
| } | |||
| b2Vec2 b2RevoluteJoint::GetAnchorA() const | |||
| { | |||
| return m_bodyA->GetWorldPoint(m_localAnchorA); | |||
| } | |||
| b2Vec2 b2RevoluteJoint::GetAnchorB() const | |||
| { | |||
| return m_bodyB->GetWorldPoint(m_localAnchorB); | |||
| } | |||
| b2Vec2 b2RevoluteJoint::GetReactionForce(float32 inv_dt) const | |||
| { | |||
| b2Vec2 P(m_impulse.x, m_impulse.y); | |||
| return inv_dt * P; | |||
| } | |||
| float32 b2RevoluteJoint::GetReactionTorque(float32 inv_dt) const | |||
| { | |||
| return inv_dt * m_impulse.z; | |||
| } | |||
| float32 b2RevoluteJoint::GetJointAngle() const | |||
| { | |||
| b2Body* bA = m_bodyA; | |||
| b2Body* bB = m_bodyB; | |||
| return bB->m_sweep.a - bA->m_sweep.a - m_referenceAngle; | |||
| } | |||
| float32 b2RevoluteJoint::GetJointSpeed() const | |||
| { | |||
| b2Body* bA = m_bodyA; | |||
| b2Body* bB = m_bodyB; | |||
| return bB->m_angularVelocity - bA->m_angularVelocity; | |||
| } | |||
| bool b2RevoluteJoint::IsMotorEnabled() const | |||
| { | |||
| return m_enableMotor; | |||
| } | |||
| void b2RevoluteJoint::EnableMotor(bool flag) | |||
| { | |||
| m_bodyA->SetAwake(true); | |||
| m_bodyB->SetAwake(true); | |||
| m_enableMotor = flag; | |||
| } | |||
| float32 b2RevoluteJoint::GetMotorTorque(float32 inv_dt) const | |||
| { | |||
| return inv_dt * m_motorImpulse; | |||
| } | |||
| void b2RevoluteJoint::SetMotorSpeed(float32 speed) | |||
| { | |||
| m_bodyA->SetAwake(true); | |||
| m_bodyB->SetAwake(true); | |||
| m_motorSpeed = speed; | |||
| } | |||
| void b2RevoluteJoint::SetMaxMotorTorque(float32 torque) | |||
| { | |||
| m_bodyA->SetAwake(true); | |||
| m_bodyB->SetAwake(true); | |||
| m_maxMotorTorque = torque; | |||
| } | |||
| bool b2RevoluteJoint::IsLimitEnabled() const | |||
| { | |||
| return m_enableLimit; | |||
| } | |||
| void b2RevoluteJoint::EnableLimit(bool flag) | |||
| { | |||
| if (flag != m_enableLimit) | |||
| { | |||
| m_bodyA->SetAwake(true); | |||
| m_bodyB->SetAwake(true); | |||
| m_enableLimit = flag; | |||
| m_impulse.z = 0.0f; | |||
| } | |||
| } | |||
| float32 b2RevoluteJoint::GetLowerLimit() const | |||
| { | |||
| return m_lowerAngle; | |||
| } | |||
| float32 b2RevoluteJoint::GetUpperLimit() const | |||
| { | |||
| return m_upperAngle; | |||
| } | |||
| void b2RevoluteJoint::SetLimits(float32 lower, float32 upper) | |||
| { | |||
| b2Assert(lower <= upper); | |||
| if (lower != m_lowerAngle || upper != m_upperAngle) | |||
| { | |||
| m_bodyA->SetAwake(true); | |||
| m_bodyB->SetAwake(true); | |||
| m_impulse.z = 0.0f; | |||
| m_lowerAngle = lower; | |||
| m_upperAngle = upper; | |||
| } | |||
| } | |||
| void b2RevoluteJoint::Dump() | |||
| { | |||
| int32 indexA = m_bodyA->m_islandIndex; | |||
| int32 indexB = m_bodyB->m_islandIndex; | |||
| b2Log(" b2RevoluteJointDef jd;\n"); | |||
| b2Log(" jd.bodyA = bodies[%d];\n", indexA); | |||
| b2Log(" jd.bodyB = bodies[%d];\n", indexB); | |||
| b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); | |||
| b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); | |||
| b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); | |||
| b2Log(" jd.referenceAngle = %.15lef;\n", m_referenceAngle); | |||
| b2Log(" jd.enableLimit = bool(%d);\n", m_enableLimit); | |||
| b2Log(" jd.lowerAngle = %.15lef;\n", m_lowerAngle); | |||
| b2Log(" jd.upperAngle = %.15lef;\n", m_upperAngle); | |||
| b2Log(" jd.enableMotor = bool(%d);\n", m_enableMotor); | |||
| b2Log(" jd.motorSpeed = %.15lef;\n", m_motorSpeed); | |||
| b2Log(" jd.maxMotorTorque = %.15lef;\n", m_maxMotorTorque); | |||
| b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | |||
| } | |||
| @@ -0,0 +1,204 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_REVOLUTE_JOINT_H | |||
| #define B2_REVOLUTE_JOINT_H | |||
| #include "b2Joint.h" | |||
| /// Revolute joint definition. This requires defining an | |||
| /// anchor point where the bodies are joined. The definition | |||
| /// uses local anchor points so that the initial configuration | |||
| /// can violate the constraint slightly. You also need to | |||
| /// specify the initial relative angle for joint limits. This | |||
| /// helps when saving and loading a game. | |||
| /// The local anchor points are measured from the body's origin | |||
| /// rather than the center of mass because: | |||
| /// 1. you might not know where the center of mass will be. | |||
| /// 2. if you add/remove shapes from a body and recompute the mass, | |||
| /// the joints will be broken. | |||
| struct b2RevoluteJointDef : public b2JointDef | |||
| { | |||
| b2RevoluteJointDef() | |||
| { | |||
| type = e_revoluteJoint; | |||
| localAnchorA.Set(0.0f, 0.0f); | |||
| localAnchorB.Set(0.0f, 0.0f); | |||
| referenceAngle = 0.0f; | |||
| lowerAngle = 0.0f; | |||
| upperAngle = 0.0f; | |||
| maxMotorTorque = 0.0f; | |||
| motorSpeed = 0.0f; | |||
| enableLimit = false; | |||
| enableMotor = false; | |||
| } | |||
| /// Initialize the bodies, anchors, and reference angle using a world | |||
| /// anchor point. | |||
| void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor); | |||
| /// The local anchor point relative to bodyA's origin. | |||
| b2Vec2 localAnchorA; | |||
| /// The local anchor point relative to bodyB's origin. | |||
| b2Vec2 localAnchorB; | |||
| /// The bodyB angle minus bodyA angle in the reference state (radians). | |||
| float32 referenceAngle; | |||
| /// A flag to enable joint limits. | |||
| bool enableLimit; | |||
| /// The lower angle for the joint limit (radians). | |||
| float32 lowerAngle; | |||
| /// The upper angle for the joint limit (radians). | |||
| float32 upperAngle; | |||
| /// A flag to enable the joint motor. | |||
| bool enableMotor; | |||
| /// The desired motor speed. Usually in radians per second. | |||
| float32 motorSpeed; | |||
| /// The maximum motor torque used to achieve the desired motor speed. | |||
| /// Usually in N-m. | |||
| float32 maxMotorTorque; | |||
| }; | |||
| /// A revolute joint constrains two bodies to share a common point while they | |||
| /// are free to rotate about the point. The relative rotation about the shared | |||
| /// point is the joint angle. You can limit the relative rotation with | |||
| /// a joint limit that specifies a lower and upper angle. You can use a motor | |||
| /// to drive the relative rotation about the shared point. A maximum motor torque | |||
| /// is provided so that infinite forces are not generated. | |||
| class b2RevoluteJoint : public b2Joint | |||
| { | |||
| public: | |||
| b2Vec2 GetAnchorA() const; | |||
| b2Vec2 GetAnchorB() const; | |||
| /// The local anchor point relative to bodyA's origin. | |||
| const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; } | |||
| /// The local anchor point relative to bodyB's origin. | |||
| const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; } | |||
| /// Get the reference angle. | |||
| float32 GetReferenceAngle() const { return m_referenceAngle; } | |||
| /// Get the current joint angle in radians. | |||
| float32 GetJointAngle() const; | |||
| /// Get the current joint angle speed in radians per second. | |||
| float32 GetJointSpeed() const; | |||
| /// Is the joint limit enabled? | |||
| bool IsLimitEnabled() const; | |||
| /// Enable/disable the joint limit. | |||
| void EnableLimit(bool flag); | |||
| /// Get the lower joint limit in radians. | |||
| float32 GetLowerLimit() const; | |||
| /// Get the upper joint limit in radians. | |||
| float32 GetUpperLimit() const; | |||
| /// Set the joint limits in radians. | |||
| void SetLimits(float32 lower, float32 upper); | |||
| /// Is the joint motor enabled? | |||
| bool IsMotorEnabled() const; | |||
| /// Enable/disable the joint motor. | |||
| void EnableMotor(bool flag); | |||
| /// Set the motor speed in radians per second. | |||
| void SetMotorSpeed(float32 speed); | |||
| /// Get the motor speed in radians per second. | |||
| float32 GetMotorSpeed() const; | |||
| /// Set the maximum motor torque, usually in N-m. | |||
| void SetMaxMotorTorque(float32 torque); | |||
| float32 GetMaxMotorTorque() const { return m_maxMotorTorque; } | |||
| /// Get the reaction force given the inverse time step. | |||
| /// Unit is N. | |||
| b2Vec2 GetReactionForce(float32 inv_dt) const; | |||
| /// Get the reaction torque due to the joint limit given the inverse time step. | |||
| /// Unit is N*m. | |||
| float32 GetReactionTorque(float32 inv_dt) const; | |||
| /// Get the current motor torque given the inverse time step. | |||
| /// Unit is N*m. | |||
| float32 GetMotorTorque(float32 inv_dt) const; | |||
| /// Dump to b2Log. | |||
| void Dump(); | |||
| protected: | |||
| friend class b2Joint; | |||
| friend class b2GearJoint; | |||
| b2RevoluteJoint(const b2RevoluteJointDef* def); | |||
| void InitVelocityConstraints(const b2SolverData& data); | |||
| void SolveVelocityConstraints(const b2SolverData& data); | |||
| bool SolvePositionConstraints(const b2SolverData& data); | |||
| // Solver shared | |||
| b2Vec2 m_localAnchorA; | |||
| b2Vec2 m_localAnchorB; | |||
| b2Vec3 m_impulse; | |||
| float32 m_motorImpulse; | |||
| bool m_enableMotor; | |||
| float32 m_maxMotorTorque; | |||
| float32 m_motorSpeed; | |||
| bool m_enableLimit; | |||
| float32 m_referenceAngle; | |||
| float32 m_lowerAngle; | |||
| float32 m_upperAngle; | |||
| // Solver temp | |||
| int32 m_indexA; | |||
| int32 m_indexB; | |||
| b2Vec2 m_rA; | |||
| b2Vec2 m_rB; | |||
| b2Vec2 m_localCenterA; | |||
| b2Vec2 m_localCenterB; | |||
| float32 m_invMassA; | |||
| float32 m_invMassB; | |||
| float32 m_invIA; | |||
| float32 m_invIB; | |||
| b2Mat33 m_mass; // effective mass for point-to-point constraint. | |||
| float32 m_motorMass; // effective mass for motor/limit angular constraint. | |||
| b2LimitState m_limitState; | |||
| }; | |||
| inline float32 b2RevoluteJoint::GetMotorSpeed() const | |||
| { | |||
| return m_motorSpeed; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,241 @@ | |||
| /* | |||
| * Copyright (c) 2007-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2RopeJoint.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2TimeStep.h" | |||
| // Limit: | |||
| // C = norm(pB - pA) - L | |||
| // u = (pB - pA) / norm(pB - pA) | |||
| // Cdot = dot(u, vB + cross(wB, rB) - vA - cross(wA, rA)) | |||
| // J = [-u -cross(rA, u) u cross(rB, u)] | |||
| // K = J * invM * JT | |||
| // = invMassA + invIA * cross(rA, u)^2 + invMassB + invIB * cross(rB, u)^2 | |||
| b2RopeJoint::b2RopeJoint(const b2RopeJointDef* def) | |||
| : b2Joint(def) | |||
| { | |||
| m_localAnchorA = def->localAnchorA; | |||
| m_localAnchorB = def->localAnchorB; | |||
| m_maxLength = def->maxLength; | |||
| m_mass = 0.0f; | |||
| m_impulse = 0.0f; | |||
| m_state = e_inactiveLimit; | |||
| m_length = 0.0f; | |||
| } | |||
| void b2RopeJoint::InitVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| m_indexA = m_bodyA->m_islandIndex; | |||
| m_indexB = m_bodyB->m_islandIndex; | |||
| m_localCenterA = m_bodyA->m_sweep.localCenter; | |||
| m_localCenterB = m_bodyB->m_sweep.localCenter; | |||
| m_invMassA = m_bodyA->m_invMass; | |||
| m_invMassB = m_bodyB->m_invMass; | |||
| m_invIA = m_bodyA->m_invI; | |||
| m_invIB = m_bodyB->m_invI; | |||
| b2Vec2 cA = data.positions[m_indexA].c; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| b2Rot qA(aA), qB(aB); | |||
| m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| m_u = cB + m_rB - cA - m_rA; | |||
| m_length = m_u.Length(); | |||
| float32 C = m_length - m_maxLength; | |||
| if (C > 0.0f) | |||
| { | |||
| m_state = e_atUpperLimit; | |||
| } | |||
| else | |||
| { | |||
| m_state = e_inactiveLimit; | |||
| } | |||
| if (m_length > b2_linearSlop) | |||
| { | |||
| m_u *= 1.0f / m_length; | |||
| } | |||
| else | |||
| { | |||
| m_u.SetZero(); | |||
| m_mass = 0.0f; | |||
| m_impulse = 0.0f; | |||
| return; | |||
| } | |||
| // Compute effective mass. | |||
| float32 crA = b2Cross(m_rA, m_u); | |||
| float32 crB = b2Cross(m_rB, m_u); | |||
| float32 invMass = m_invMassA + m_invIA * crA * crA + m_invMassB + m_invIB * crB * crB; | |||
| m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; | |||
| if (data.step.warmStarting) | |||
| { | |||
| // Scale the impulse to support a variable time step. | |||
| m_impulse *= data.step.dtRatio; | |||
| b2Vec2 P = m_impulse * m_u; | |||
| vA -= m_invMassA * P; | |||
| wA -= m_invIA * b2Cross(m_rA, P); | |||
| vB += m_invMassB * P; | |||
| wB += m_invIB * b2Cross(m_rB, P); | |||
| } | |||
| else | |||
| { | |||
| m_impulse = 0.0f; | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| void b2RopeJoint::SolveVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| // Cdot = dot(u, v + cross(w, r)) | |||
| b2Vec2 vpA = vA + b2Cross(wA, m_rA); | |||
| b2Vec2 vpB = vB + b2Cross(wB, m_rB); | |||
| float32 C = m_length - m_maxLength; | |||
| float32 Cdot = b2Dot(m_u, vpB - vpA); | |||
| // Predictive constraint. | |||
| if (C < 0.0f) | |||
| { | |||
| Cdot += data.step.inv_dt * C; | |||
| } | |||
| float32 impulse = -m_mass * Cdot; | |||
| float32 oldImpulse = m_impulse; | |||
| m_impulse = b2Min(0.0f, m_impulse + impulse); | |||
| impulse = m_impulse - oldImpulse; | |||
| b2Vec2 P = impulse * m_u; | |||
| vA -= m_invMassA * P; | |||
| wA -= m_invIA * b2Cross(m_rA, P); | |||
| vB += m_invMassB * P; | |||
| wB += m_invIB * b2Cross(m_rB, P); | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| bool b2RopeJoint::SolvePositionConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 cA = data.positions[m_indexA].c; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Rot qA(aA), qB(aB); | |||
| b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| b2Vec2 u = cB + rB - cA - rA; | |||
| float32 length = u.Normalize(); | |||
| float32 C = length - m_maxLength; | |||
| C = b2Clamp(C, 0.0f, b2_maxLinearCorrection); | |||
| float32 impulse = -m_mass * C; | |||
| b2Vec2 P = impulse * u; | |||
| cA -= m_invMassA * P; | |||
| aA -= m_invIA * b2Cross(rA, P); | |||
| cB += m_invMassB * P; | |||
| aB += m_invIB * b2Cross(rB, P); | |||
| data.positions[m_indexA].c = cA; | |||
| data.positions[m_indexA].a = aA; | |||
| data.positions[m_indexB].c = cB; | |||
| data.positions[m_indexB].a = aB; | |||
| return length - m_maxLength < b2_linearSlop; | |||
| } | |||
| b2Vec2 b2RopeJoint::GetAnchorA() const | |||
| { | |||
| return m_bodyA->GetWorldPoint(m_localAnchorA); | |||
| } | |||
| b2Vec2 b2RopeJoint::GetAnchorB() const | |||
| { | |||
| return m_bodyB->GetWorldPoint(m_localAnchorB); | |||
| } | |||
| b2Vec2 b2RopeJoint::GetReactionForce(float32 inv_dt) const | |||
| { | |||
| b2Vec2 F = (inv_dt * m_impulse) * m_u; | |||
| return F; | |||
| } | |||
| float32 b2RopeJoint::GetReactionTorque(float32 inv_dt) const | |||
| { | |||
| B2_NOT_USED(inv_dt); | |||
| return 0.0f; | |||
| } | |||
| float32 b2RopeJoint::GetMaxLength() const | |||
| { | |||
| return m_maxLength; | |||
| } | |||
| b2LimitState b2RopeJoint::GetLimitState() const | |||
| { | |||
| return m_state; | |||
| } | |||
| void b2RopeJoint::Dump() | |||
| { | |||
| int32 indexA = m_bodyA->m_islandIndex; | |||
| int32 indexB = m_bodyB->m_islandIndex; | |||
| b2Log(" b2RopeJointDef jd;\n"); | |||
| b2Log(" jd.bodyA = bodies[%d];\n", indexA); | |||
| b2Log(" jd.bodyB = bodies[%d];\n", indexB); | |||
| b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); | |||
| b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); | |||
| b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); | |||
| b2Log(" jd.maxLength = %.15lef;\n", m_maxLength); | |||
| b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | |||
| } | |||
| @@ -0,0 +1,114 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_ROPE_JOINT_H | |||
| #define B2_ROPE_JOINT_H | |||
| #include "b2Joint.h" | |||
| /// Rope joint definition. This requires two body anchor points and | |||
| /// a maximum lengths. | |||
| /// Note: by default the connected objects will not collide. | |||
| /// see collideConnected in b2JointDef. | |||
| struct b2RopeJointDef : public b2JointDef | |||
| { | |||
| b2RopeJointDef() | |||
| { | |||
| type = e_ropeJoint; | |||
| localAnchorA.Set(-1.0f, 0.0f); | |||
| localAnchorB.Set(1.0f, 0.0f); | |||
| maxLength = 0.0f; | |||
| } | |||
| /// The local anchor point relative to bodyA's origin. | |||
| b2Vec2 localAnchorA; | |||
| /// The local anchor point relative to bodyB's origin. | |||
| b2Vec2 localAnchorB; | |||
| /// The maximum length of the rope. | |||
| /// Warning: this must be larger than b2_linearSlop or | |||
| /// the joint will have no effect. | |||
| float32 maxLength; | |||
| }; | |||
| /// A rope joint enforces a maximum distance between two points | |||
| /// on two bodies. It has no other effect. | |||
| /// Warning: if you attempt to change the maximum length during | |||
| /// the simulation you will get some non-physical behavior. | |||
| /// A model that would allow you to dynamically modify the length | |||
| /// would have some sponginess, so I chose not to implement it | |||
| /// that way. See b2DistanceJoint if you want to dynamically | |||
| /// control length. | |||
| class b2RopeJoint : public b2Joint | |||
| { | |||
| public: | |||
| b2Vec2 GetAnchorA() const; | |||
| b2Vec2 GetAnchorB() const; | |||
| b2Vec2 GetReactionForce(float32 inv_dt) const; | |||
| float32 GetReactionTorque(float32 inv_dt) const; | |||
| /// The local anchor point relative to bodyA's origin. | |||
| const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; } | |||
| /// The local anchor point relative to bodyB's origin. | |||
| const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; } | |||
| /// Set/Get the maximum length of the rope. | |||
| void SetMaxLength(float32 length) { m_maxLength = length; } | |||
| float32 GetMaxLength() const; | |||
| b2LimitState GetLimitState() const; | |||
| /// Dump joint to dmLog | |||
| void Dump(); | |||
| protected: | |||
| friend class b2Joint; | |||
| b2RopeJoint(const b2RopeJointDef* data); | |||
| void InitVelocityConstraints(const b2SolverData& data); | |||
| void SolveVelocityConstraints(const b2SolverData& data); | |||
| bool SolvePositionConstraints(const b2SolverData& data); | |||
| // Solver shared | |||
| b2Vec2 m_localAnchorA; | |||
| b2Vec2 m_localAnchorB; | |||
| float32 m_maxLength; | |||
| float32 m_length; | |||
| float32 m_impulse; | |||
| // Solver temp | |||
| int32 m_indexA; | |||
| int32 m_indexB; | |||
| b2Vec2 m_u; | |||
| b2Vec2 m_rA; | |||
| b2Vec2 m_rB; | |||
| b2Vec2 m_localCenterA; | |||
| b2Vec2 m_localCenterB; | |||
| float32 m_invMassA; | |||
| float32 m_invMassB; | |||
| float32 m_invIA; | |||
| float32 m_invIB; | |||
| float32 m_mass; | |||
| b2LimitState m_state; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,328 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2WeldJoint.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2TimeStep.h" | |||
| // Point-to-point constraint | |||
| // C = p2 - p1 | |||
| // Cdot = v2 - v1 | |||
| // = v2 + cross(w2, r2) - v1 - cross(w1, r1) | |||
| // J = [-I -r1_skew I r2_skew ] | |||
| // Identity used: | |||
| // w k % (rx i + ry j) = w * (-ry i + rx j) | |||
| // Angle constraint | |||
| // C = angle2 - angle1 - referenceAngle | |||
| // Cdot = w2 - w1 | |||
| // J = [0 0 -1 0 0 1] | |||
| // K = invI1 + invI2 | |||
| void b2WeldJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) | |||
| { | |||
| bodyA = bA; | |||
| bodyB = bB; | |||
| localAnchorA = bodyA->GetLocalPoint(anchor); | |||
| localAnchorB = bodyB->GetLocalPoint(anchor); | |||
| referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); | |||
| } | |||
| b2WeldJoint::b2WeldJoint(const b2WeldJointDef* def) | |||
| : b2Joint(def) | |||
| { | |||
| m_localAnchorA = def->localAnchorA; | |||
| m_localAnchorB = def->localAnchorB; | |||
| m_referenceAngle = def->referenceAngle; | |||
| m_frequencyHz = def->frequencyHz; | |||
| m_dampingRatio = def->dampingRatio; | |||
| m_impulse.SetZero(); | |||
| } | |||
| void b2WeldJoint::InitVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| m_indexA = m_bodyA->m_islandIndex; | |||
| m_indexB = m_bodyB->m_islandIndex; | |||
| m_localCenterA = m_bodyA->m_sweep.localCenter; | |||
| m_localCenterB = m_bodyB->m_sweep.localCenter; | |||
| m_invMassA = m_bodyA->m_invMass; | |||
| m_invMassB = m_bodyB->m_invMass; | |||
| m_invIA = m_bodyA->m_invI; | |||
| m_invIB = m_bodyB->m_invI; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| b2Rot qA(aA), qB(aB); | |||
| m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| // J = [-I -r1_skew I r2_skew] | |||
| // [ 0 -1 0 1] | |||
| // r_skew = [-ry; rx] | |||
| // Matlab | |||
| // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] | |||
| // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] | |||
| // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] | |||
| float32 mA = m_invMassA, mB = m_invMassB; | |||
| float32 iA = m_invIA, iB = m_invIB; | |||
| b2Mat33 K; | |||
| K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; | |||
| K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; | |||
| K.ez.x = -m_rA.y * iA - m_rB.y * iB; | |||
| K.ex.y = K.ey.x; | |||
| K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; | |||
| K.ez.y = m_rA.x * iA + m_rB.x * iB; | |||
| K.ex.z = K.ez.x; | |||
| K.ey.z = K.ez.y; | |||
| K.ez.z = iA + iB; | |||
| if (m_frequencyHz > 0.0f) | |||
| { | |||
| K.GetInverse22(&m_mass); | |||
| float32 invM = iA + iB; | |||
| float32 m = invM > 0.0f ? 1.0f / invM : 0.0f; | |||
| float32 C = aB - aA - m_referenceAngle; | |||
| // Frequency | |||
| float32 omega = 2.0f * b2_pi * m_frequencyHz; | |||
| // Damping coefficient | |||
| float32 d = 2.0f * m * m_dampingRatio * omega; | |||
| // Spring stiffness | |||
| float32 k = m * omega * omega; | |||
| // magic formulas | |||
| float32 h = data.step.dt; | |||
| m_gamma = h * (d + h * k); | |||
| m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; | |||
| m_bias = C * h * k * m_gamma; | |||
| invM += m_gamma; | |||
| m_mass.ez.z = invM != 0.0f ? 1.0f / invM : 0.0f; | |||
| } | |||
| else | |||
| { | |||
| K.GetSymInverse33(&m_mass); | |||
| m_gamma = 0.0f; | |||
| m_bias = 0.0f; | |||
| } | |||
| if (data.step.warmStarting) | |||
| { | |||
| // Scale impulses to support a variable time step. | |||
| m_impulse *= data.step.dtRatio; | |||
| b2Vec2 P(m_impulse.x, m_impulse.y); | |||
| vA -= mA * P; | |||
| wA -= iA * (b2Cross(m_rA, P) + m_impulse.z); | |||
| vB += mB * P; | |||
| wB += iB * (b2Cross(m_rB, P) + m_impulse.z); | |||
| } | |||
| else | |||
| { | |||
| m_impulse.SetZero(); | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| void b2WeldJoint::SolveVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| float32 mA = m_invMassA, mB = m_invMassB; | |||
| float32 iA = m_invIA, iB = m_invIB; | |||
| if (m_frequencyHz > 0.0f) | |||
| { | |||
| float32 Cdot2 = wB - wA; | |||
| float32 impulse2 = -m_mass.ez.z * (Cdot2 + m_bias + m_gamma * m_impulse.z); | |||
| m_impulse.z += impulse2; | |||
| wA -= iA * impulse2; | |||
| wB += iB * impulse2; | |||
| b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); | |||
| b2Vec2 impulse1 = -b2Mul22(m_mass, Cdot1); | |||
| m_impulse.x += impulse1.x; | |||
| m_impulse.y += impulse1.y; | |||
| b2Vec2 P = impulse1; | |||
| vA -= mA * P; | |||
| wA -= iA * b2Cross(m_rA, P); | |||
| vB += mB * P; | |||
| wB += iB * b2Cross(m_rB, P); | |||
| } | |||
| else | |||
| { | |||
| b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); | |||
| float32 Cdot2 = wB - wA; | |||
| b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); | |||
| b2Vec3 impulse = -b2Mul(m_mass, Cdot); | |||
| m_impulse += impulse; | |||
| b2Vec2 P(impulse.x, impulse.y); | |||
| vA -= mA * P; | |||
| wA -= iA * (b2Cross(m_rA, P) + impulse.z); | |||
| vB += mB * P; | |||
| wB += iB * (b2Cross(m_rB, P) + impulse.z); | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| bool b2WeldJoint::SolvePositionConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 cA = data.positions[m_indexA].c; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Rot qA(aA), qB(aB); | |||
| float32 mA = m_invMassA, mB = m_invMassB; | |||
| float32 iA = m_invIA, iB = m_invIB; | |||
| b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| float32 positionError, angularError; | |||
| b2Mat33 K; | |||
| K.ex.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB; | |||
| K.ey.x = -rA.y * rA.x * iA - rB.y * rB.x * iB; | |||
| K.ez.x = -rA.y * iA - rB.y * iB; | |||
| K.ex.y = K.ey.x; | |||
| K.ey.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB; | |||
| K.ez.y = rA.x * iA + rB.x * iB; | |||
| K.ex.z = K.ez.x; | |||
| K.ey.z = K.ez.y; | |||
| K.ez.z = iA + iB; | |||
| if (m_frequencyHz > 0.0f) | |||
| { | |||
| b2Vec2 C1 = cB + rB - cA - rA; | |||
| positionError = C1.Length(); | |||
| angularError = 0.0f; | |||
| b2Vec2 P = -K.Solve22(C1); | |||
| cA -= mA * P; | |||
| aA -= iA * b2Cross(rA, P); | |||
| cB += mB * P; | |||
| aB += iB * b2Cross(rB, P); | |||
| } | |||
| else | |||
| { | |||
| b2Vec2 C1 = cB + rB - cA - rA; | |||
| float32 C2 = aB - aA - m_referenceAngle; | |||
| positionError = C1.Length(); | |||
| angularError = b2Abs(C2); | |||
| b2Vec3 C(C1.x, C1.y, C2); | |||
| b2Vec3 impulse = -K.Solve33(C); | |||
| b2Vec2 P(impulse.x, impulse.y); | |||
| cA -= mA * P; | |||
| aA -= iA * (b2Cross(rA, P) + impulse.z); | |||
| cB += mB * P; | |||
| aB += iB * (b2Cross(rB, P) + impulse.z); | |||
| } | |||
| data.positions[m_indexA].c = cA; | |||
| data.positions[m_indexA].a = aA; | |||
| data.positions[m_indexB].c = cB; | |||
| data.positions[m_indexB].a = aB; | |||
| return positionError <= b2_linearSlop && angularError <= b2_angularSlop; | |||
| } | |||
| b2Vec2 b2WeldJoint::GetAnchorA() const | |||
| { | |||
| return m_bodyA->GetWorldPoint(m_localAnchorA); | |||
| } | |||
| b2Vec2 b2WeldJoint::GetAnchorB() const | |||
| { | |||
| return m_bodyB->GetWorldPoint(m_localAnchorB); | |||
| } | |||
| b2Vec2 b2WeldJoint::GetReactionForce(float32 inv_dt) const | |||
| { | |||
| b2Vec2 P(m_impulse.x, m_impulse.y); | |||
| return inv_dt * P; | |||
| } | |||
| float32 b2WeldJoint::GetReactionTorque(float32 inv_dt) const | |||
| { | |||
| return inv_dt * m_impulse.z; | |||
| } | |||
| void b2WeldJoint::Dump() | |||
| { | |||
| int32 indexA = m_bodyA->m_islandIndex; | |||
| int32 indexB = m_bodyB->m_islandIndex; | |||
| b2Log(" b2WeldJointDef jd;\n"); | |||
| b2Log(" jd.bodyA = bodies[%d];\n", indexA); | |||
| b2Log(" jd.bodyB = bodies[%d];\n", indexB); | |||
| b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); | |||
| b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); | |||
| b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); | |||
| b2Log(" jd.referenceAngle = %.15lef;\n", m_referenceAngle); | |||
| b2Log(" jd.frequencyHz = %.15lef;\n", m_frequencyHz); | |||
| b2Log(" jd.dampingRatio = %.15lef;\n", m_dampingRatio); | |||
| b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | |||
| } | |||
| @@ -0,0 +1,126 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_WELD_JOINT_H | |||
| #define B2_WELD_JOINT_H | |||
| #include "b2Joint.h" | |||
| /// Weld joint definition. You need to specify local anchor points | |||
| /// where they are attached and the relative body angle. The position | |||
| /// of the anchor points is important for computing the reaction torque. | |||
| struct b2WeldJointDef : public b2JointDef | |||
| { | |||
| b2WeldJointDef() | |||
| { | |||
| type = e_weldJoint; | |||
| localAnchorA.Set(0.0f, 0.0f); | |||
| localAnchorB.Set(0.0f, 0.0f); | |||
| referenceAngle = 0.0f; | |||
| frequencyHz = 0.0f; | |||
| dampingRatio = 0.0f; | |||
| } | |||
| /// Initialize the bodies, anchors, and reference angle using a world | |||
| /// anchor point. | |||
| void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor); | |||
| /// The local anchor point relative to bodyA's origin. | |||
| b2Vec2 localAnchorA; | |||
| /// The local anchor point relative to bodyB's origin. | |||
| b2Vec2 localAnchorB; | |||
| /// The bodyB angle minus bodyA angle in the reference state (radians). | |||
| float32 referenceAngle; | |||
| /// The mass-spring-damper frequency in Hertz. Rotation only. | |||
| /// Disable softness with a value of 0. | |||
| float32 frequencyHz; | |||
| /// The damping ratio. 0 = no damping, 1 = critical damping. | |||
| float32 dampingRatio; | |||
| }; | |||
| /// A weld joint essentially glues two bodies together. A weld joint may | |||
| /// distort somewhat because the island constraint solver is approximate. | |||
| class b2WeldJoint : public b2Joint | |||
| { | |||
| public: | |||
| b2Vec2 GetAnchorA() const; | |||
| b2Vec2 GetAnchorB() const; | |||
| b2Vec2 GetReactionForce(float32 inv_dt) const; | |||
| float32 GetReactionTorque(float32 inv_dt) const; | |||
| /// The local anchor point relative to bodyA's origin. | |||
| const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; } | |||
| /// The local anchor point relative to bodyB's origin. | |||
| const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; } | |||
| /// Get the reference angle. | |||
| float32 GetReferenceAngle() const { return m_referenceAngle; } | |||
| /// Set/get frequency in Hz. | |||
| void SetFrequency(float32 hz) { m_frequencyHz = hz; } | |||
| float32 GetFrequency() const { return m_frequencyHz; } | |||
| /// Set/get damping ratio. | |||
| void SetDampingRatio(float32 ratio) { m_dampingRatio = ratio; } | |||
| float32 GetDampingRatio() const { return m_dampingRatio; } | |||
| /// Dump to b2Log | |||
| void Dump(); | |||
| protected: | |||
| friend class b2Joint; | |||
| b2WeldJoint(const b2WeldJointDef* def); | |||
| void InitVelocityConstraints(const b2SolverData& data); | |||
| void SolveVelocityConstraints(const b2SolverData& data); | |||
| bool SolvePositionConstraints(const b2SolverData& data); | |||
| float32 m_frequencyHz; | |||
| float32 m_dampingRatio; | |||
| float32 m_bias; | |||
| // Solver shared | |||
| b2Vec2 m_localAnchorA; | |||
| b2Vec2 m_localAnchorB; | |||
| float32 m_referenceAngle; | |||
| float32 m_gamma; | |||
| b2Vec3 m_impulse; | |||
| // Solver temp | |||
| int32 m_indexA; | |||
| int32 m_indexB; | |||
| b2Vec2 m_rA; | |||
| b2Vec2 m_rB; | |||
| b2Vec2 m_localCenterA; | |||
| b2Vec2 m_localCenterB; | |||
| float32 m_invMassA; | |||
| float32 m_invMassB; | |||
| float32 m_invIA; | |||
| float32 m_invIB; | |||
| b2Mat33 m_mass; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,419 @@ | |||
| /* | |||
| * Copyright (c) 2006-2007 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2WheelJoint.h" | |||
| #include "../b2Body.h" | |||
| #include "../b2TimeStep.h" | |||
| // Linear constraint (point-to-line) | |||
| // d = pB - pA = xB + rB - xA - rA | |||
| // C = dot(ay, d) | |||
| // Cdot = dot(d, cross(wA, ay)) + dot(ay, vB + cross(wB, rB) - vA - cross(wA, rA)) | |||
| // = -dot(ay, vA) - dot(cross(d + rA, ay), wA) + dot(ay, vB) + dot(cross(rB, ay), vB) | |||
| // J = [-ay, -cross(d + rA, ay), ay, cross(rB, ay)] | |||
| // Spring linear constraint | |||
| // C = dot(ax, d) | |||
| // Cdot = = -dot(ax, vA) - dot(cross(d + rA, ax), wA) + dot(ax, vB) + dot(cross(rB, ax), vB) | |||
| // J = [-ax -cross(d+rA, ax) ax cross(rB, ax)] | |||
| // Motor rotational constraint | |||
| // Cdot = wB - wA | |||
| // J = [0 0 -1 0 0 1] | |||
| void b2WheelJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis) | |||
| { | |||
| bodyA = bA; | |||
| bodyB = bB; | |||
| localAnchorA = bodyA->GetLocalPoint(anchor); | |||
| localAnchorB = bodyB->GetLocalPoint(anchor); | |||
| localAxisA = bodyA->GetLocalVector(axis); | |||
| } | |||
| b2WheelJoint::b2WheelJoint(const b2WheelJointDef* def) | |||
| : b2Joint(def) | |||
| { | |||
| m_localAnchorA = def->localAnchorA; | |||
| m_localAnchorB = def->localAnchorB; | |||
| m_localXAxisA = def->localAxisA; | |||
| m_localYAxisA = b2Cross(1.0f, m_localXAxisA); | |||
| m_mass = 0.0f; | |||
| m_impulse = 0.0f; | |||
| m_motorMass = 0.0; | |||
| m_motorImpulse = 0.0f; | |||
| m_springMass = 0.0f; | |||
| m_springImpulse = 0.0f; | |||
| m_maxMotorTorque = def->maxMotorTorque; | |||
| m_motorSpeed = def->motorSpeed; | |||
| m_enableMotor = def->enableMotor; | |||
| m_frequencyHz = def->frequencyHz; | |||
| m_dampingRatio = def->dampingRatio; | |||
| m_bias = 0.0f; | |||
| m_gamma = 0.0f; | |||
| m_ax.SetZero(); | |||
| m_ay.SetZero(); | |||
| } | |||
| void b2WheelJoint::InitVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| m_indexA = m_bodyA->m_islandIndex; | |||
| m_indexB = m_bodyB->m_islandIndex; | |||
| m_localCenterA = m_bodyA->m_sweep.localCenter; | |||
| m_localCenterB = m_bodyB->m_sweep.localCenter; | |||
| m_invMassA = m_bodyA->m_invMass; | |||
| m_invMassB = m_bodyB->m_invMass; | |||
| m_invIA = m_bodyA->m_invI; | |||
| m_invIB = m_bodyB->m_invI; | |||
| float32 mA = m_invMassA, mB = m_invMassB; | |||
| float32 iA = m_invIA, iB = m_invIB; | |||
| b2Vec2 cA = data.positions[m_indexA].c; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| b2Rot qA(aA), qB(aB); | |||
| // Compute the effective masses. | |||
| b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| b2Vec2 d = cB + rB - cA - rA; | |||
| // Point to line constraint | |||
| { | |||
| m_ay = b2Mul(qA, m_localYAxisA); | |||
| m_sAy = b2Cross(d + rA, m_ay); | |||
| m_sBy = b2Cross(rB, m_ay); | |||
| m_mass = mA + mB + iA * m_sAy * m_sAy + iB * m_sBy * m_sBy; | |||
| if (m_mass > 0.0f) | |||
| { | |||
| m_mass = 1.0f / m_mass; | |||
| } | |||
| } | |||
| // Spring constraint | |||
| m_springMass = 0.0f; | |||
| m_bias = 0.0f; | |||
| m_gamma = 0.0f; | |||
| if (m_frequencyHz > 0.0f) | |||
| { | |||
| m_ax = b2Mul(qA, m_localXAxisA); | |||
| m_sAx = b2Cross(d + rA, m_ax); | |||
| m_sBx = b2Cross(rB, m_ax); | |||
| float32 invMass = mA + mB + iA * m_sAx * m_sAx + iB * m_sBx * m_sBx; | |||
| if (invMass > 0.0f) | |||
| { | |||
| m_springMass = 1.0f / invMass; | |||
| float32 C = b2Dot(d, m_ax); | |||
| // Frequency | |||
| float32 omega = 2.0f * b2_pi * m_frequencyHz; | |||
| // Damping coefficient | |||
| float32 d = 2.0f * m_springMass * m_dampingRatio * omega; | |||
| // Spring stiffness | |||
| float32 k = m_springMass * omega * omega; | |||
| // magic formulas | |||
| float32 h = data.step.dt; | |||
| m_gamma = h * (d + h * k); | |||
| if (m_gamma > 0.0f) | |||
| { | |||
| m_gamma = 1.0f / m_gamma; | |||
| } | |||
| m_bias = C * h * k * m_gamma; | |||
| m_springMass = invMass + m_gamma; | |||
| if (m_springMass > 0.0f) | |||
| { | |||
| m_springMass = 1.0f / m_springMass; | |||
| } | |||
| } | |||
| } | |||
| else | |||
| { | |||
| m_springImpulse = 0.0f; | |||
| } | |||
| // Rotational motor | |||
| if (m_enableMotor) | |||
| { | |||
| m_motorMass = iA + iB; | |||
| if (m_motorMass > 0.0f) | |||
| { | |||
| m_motorMass = 1.0f / m_motorMass; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| m_motorMass = 0.0f; | |||
| m_motorImpulse = 0.0f; | |||
| } | |||
| if (data.step.warmStarting) | |||
| { | |||
| // Account for variable time step. | |||
| m_impulse *= data.step.dtRatio; | |||
| m_springImpulse *= data.step.dtRatio; | |||
| m_motorImpulse *= data.step.dtRatio; | |||
| b2Vec2 P = m_impulse * m_ay + m_springImpulse * m_ax; | |||
| float32 LA = m_impulse * m_sAy + m_springImpulse * m_sAx + m_motorImpulse; | |||
| float32 LB = m_impulse * m_sBy + m_springImpulse * m_sBx + m_motorImpulse; | |||
| vA -= m_invMassA * P; | |||
| wA -= m_invIA * LA; | |||
| vB += m_invMassB * P; | |||
| wB += m_invIB * LB; | |||
| } | |||
| else | |||
| { | |||
| m_impulse = 0.0f; | |||
| m_springImpulse = 0.0f; | |||
| m_motorImpulse = 0.0f; | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| void b2WheelJoint::SolveVelocityConstraints(const b2SolverData& data) | |||
| { | |||
| float32 mA = m_invMassA, mB = m_invMassB; | |||
| float32 iA = m_invIA, iB = m_invIB; | |||
| b2Vec2 vA = data.velocities[m_indexA].v; | |||
| float32 wA = data.velocities[m_indexA].w; | |||
| b2Vec2 vB = data.velocities[m_indexB].v; | |||
| float32 wB = data.velocities[m_indexB].w; | |||
| // Solve spring constraint | |||
| { | |||
| float32 Cdot = b2Dot(m_ax, vB - vA) + m_sBx * wB - m_sAx * wA; | |||
| float32 impulse = -m_springMass * (Cdot + m_bias + m_gamma * m_springImpulse); | |||
| m_springImpulse += impulse; | |||
| b2Vec2 P = impulse * m_ax; | |||
| float32 LA = impulse * m_sAx; | |||
| float32 LB = impulse * m_sBx; | |||
| vA -= mA * P; | |||
| wA -= iA * LA; | |||
| vB += mB * P; | |||
| wB += iB * LB; | |||
| } | |||
| // Solve rotational motor constraint | |||
| { | |||
| float32 Cdot = wB - wA - m_motorSpeed; | |||
| float32 impulse = -m_motorMass * Cdot; | |||
| float32 oldImpulse = m_motorImpulse; | |||
| float32 maxImpulse = data.step.dt * m_maxMotorTorque; | |||
| m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); | |||
| impulse = m_motorImpulse - oldImpulse; | |||
| wA -= iA * impulse; | |||
| wB += iB * impulse; | |||
| } | |||
| // Solve point to line constraint | |||
| { | |||
| float32 Cdot = b2Dot(m_ay, vB - vA) + m_sBy * wB - m_sAy * wA; | |||
| float32 impulse = -m_mass * Cdot; | |||
| m_impulse += impulse; | |||
| b2Vec2 P = impulse * m_ay; | |||
| float32 LA = impulse * m_sAy; | |||
| float32 LB = impulse * m_sBy; | |||
| vA -= mA * P; | |||
| wA -= iA * LA; | |||
| vB += mB * P; | |||
| wB += iB * LB; | |||
| } | |||
| data.velocities[m_indexA].v = vA; | |||
| data.velocities[m_indexA].w = wA; | |||
| data.velocities[m_indexB].v = vB; | |||
| data.velocities[m_indexB].w = wB; | |||
| } | |||
| bool b2WheelJoint::SolvePositionConstraints(const b2SolverData& data) | |||
| { | |||
| b2Vec2 cA = data.positions[m_indexA].c; | |||
| float32 aA = data.positions[m_indexA].a; | |||
| b2Vec2 cB = data.positions[m_indexB].c; | |||
| float32 aB = data.positions[m_indexB].a; | |||
| b2Rot qA(aA), qB(aB); | |||
| b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | |||
| b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | |||
| b2Vec2 d = (cB - cA) + rB - rA; | |||
| b2Vec2 ay = b2Mul(qA, m_localYAxisA); | |||
| float32 sAy = b2Cross(d + rA, ay); | |||
| float32 sBy = b2Cross(rB, ay); | |||
| float32 C = b2Dot(d, ay); | |||
| float32 k = m_invMassA + m_invMassB + m_invIA * m_sAy * m_sAy + m_invIB * m_sBy * m_sBy; | |||
| float32 impulse; | |||
| if (k != 0.0f) | |||
| { | |||
| impulse = - C / k; | |||
| } | |||
| else | |||
| { | |||
| impulse = 0.0f; | |||
| } | |||
| b2Vec2 P = impulse * ay; | |||
| float32 LA = impulse * sAy; | |||
| float32 LB = impulse * sBy; | |||
| cA -= m_invMassA * P; | |||
| aA -= m_invIA * LA; | |||
| cB += m_invMassB * P; | |||
| aB += m_invIB * LB; | |||
| data.positions[m_indexA].c = cA; | |||
| data.positions[m_indexA].a = aA; | |||
| data.positions[m_indexB].c = cB; | |||
| data.positions[m_indexB].a = aB; | |||
| return b2Abs(C) <= b2_linearSlop; | |||
| } | |||
| b2Vec2 b2WheelJoint::GetAnchorA() const | |||
| { | |||
| return m_bodyA->GetWorldPoint(m_localAnchorA); | |||
| } | |||
| b2Vec2 b2WheelJoint::GetAnchorB() const | |||
| { | |||
| return m_bodyB->GetWorldPoint(m_localAnchorB); | |||
| } | |||
| b2Vec2 b2WheelJoint::GetReactionForce(float32 inv_dt) const | |||
| { | |||
| return inv_dt * (m_impulse * m_ay + m_springImpulse * m_ax); | |||
| } | |||
| float32 b2WheelJoint::GetReactionTorque(float32 inv_dt) const | |||
| { | |||
| return inv_dt * m_motorImpulse; | |||
| } | |||
| float32 b2WheelJoint::GetJointTranslation() const | |||
| { | |||
| b2Body* bA = m_bodyA; | |||
| b2Body* bB = m_bodyB; | |||
| b2Vec2 pA = bA->GetWorldPoint(m_localAnchorA); | |||
| b2Vec2 pB = bB->GetWorldPoint(m_localAnchorB); | |||
| b2Vec2 d = pB - pA; | |||
| b2Vec2 axis = bA->GetWorldVector(m_localXAxisA); | |||
| float32 translation = b2Dot(d, axis); | |||
| return translation; | |||
| } | |||
| float32 b2WheelJoint::GetJointSpeed() const | |||
| { | |||
| float32 wA = m_bodyA->m_angularVelocity; | |||
| float32 wB = m_bodyB->m_angularVelocity; | |||
| return wB - wA; | |||
| } | |||
| bool b2WheelJoint::IsMotorEnabled() const | |||
| { | |||
| return m_enableMotor; | |||
| } | |||
| void b2WheelJoint::EnableMotor(bool flag) | |||
| { | |||
| m_bodyA->SetAwake(true); | |||
| m_bodyB->SetAwake(true); | |||
| m_enableMotor = flag; | |||
| } | |||
| void b2WheelJoint::SetMotorSpeed(float32 speed) | |||
| { | |||
| m_bodyA->SetAwake(true); | |||
| m_bodyB->SetAwake(true); | |||
| m_motorSpeed = speed; | |||
| } | |||
| void b2WheelJoint::SetMaxMotorTorque(float32 torque) | |||
| { | |||
| m_bodyA->SetAwake(true); | |||
| m_bodyB->SetAwake(true); | |||
| m_maxMotorTorque = torque; | |||
| } | |||
| float32 b2WheelJoint::GetMotorTorque(float32 inv_dt) const | |||
| { | |||
| return inv_dt * m_motorImpulse; | |||
| } | |||
| void b2WheelJoint::Dump() | |||
| { | |||
| int32 indexA = m_bodyA->m_islandIndex; | |||
| int32 indexB = m_bodyB->m_islandIndex; | |||
| b2Log(" b2WheelJointDef jd;\n"); | |||
| b2Log(" jd.bodyA = bodies[%d];\n", indexA); | |||
| b2Log(" jd.bodyB = bodies[%d];\n", indexB); | |||
| b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); | |||
| b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); | |||
| b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); | |||
| b2Log(" jd.localAxisA.Set(%.15lef, %.15lef);\n", m_localXAxisA.x, m_localXAxisA.y); | |||
| b2Log(" jd.enableMotor = bool(%d);\n", m_enableMotor); | |||
| b2Log(" jd.motorSpeed = %.15lef;\n", m_motorSpeed); | |||
| b2Log(" jd.maxMotorTorque = %.15lef;\n", m_maxMotorTorque); | |||
| b2Log(" jd.frequencyHz = %.15lef;\n", m_frequencyHz); | |||
| b2Log(" jd.dampingRatio = %.15lef;\n", m_dampingRatio); | |||
| b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | |||
| } | |||
| @@ -0,0 +1,213 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_WHEEL_JOINT_H | |||
| #define B2_WHEEL_JOINT_H | |||
| #include "b2Joint.h" | |||
| /// Wheel joint definition. This requires defining a line of | |||
| /// motion using an axis and an anchor point. The definition uses local | |||
| /// anchor points and a local axis so that the initial configuration | |||
| /// can violate the constraint slightly. The joint translation is zero | |||
| /// when the local anchor points coincide in world space. Using local | |||
| /// anchors and a local axis helps when saving and loading a game. | |||
| struct b2WheelJointDef : public b2JointDef | |||
| { | |||
| b2WheelJointDef() | |||
| { | |||
| type = e_wheelJoint; | |||
| localAnchorA.SetZero(); | |||
| localAnchorB.SetZero(); | |||
| localAxisA.Set(1.0f, 0.0f); | |||
| enableMotor = false; | |||
| maxMotorTorque = 0.0f; | |||
| motorSpeed = 0.0f; | |||
| frequencyHz = 2.0f; | |||
| dampingRatio = 0.7f; | |||
| } | |||
| /// Initialize the bodies, anchors, axis, and reference angle using the world | |||
| /// anchor and world axis. | |||
| void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor, const b2Vec2& axis); | |||
| /// The local anchor point relative to bodyA's origin. | |||
| b2Vec2 localAnchorA; | |||
| /// The local anchor point relative to bodyB's origin. | |||
| b2Vec2 localAnchorB; | |||
| /// The local translation axis in bodyA. | |||
| b2Vec2 localAxisA; | |||
| /// Enable/disable the joint motor. | |||
| bool enableMotor; | |||
| /// The maximum motor torque, usually in N-m. | |||
| float32 maxMotorTorque; | |||
| /// The desired motor speed in radians per second. | |||
| float32 motorSpeed; | |||
| /// Suspension frequency, zero indicates no suspension | |||
| float32 frequencyHz; | |||
| /// Suspension damping ratio, one indicates critical damping | |||
| float32 dampingRatio; | |||
| }; | |||
| /// A wheel joint. This joint provides two degrees of freedom: translation | |||
| /// along an axis fixed in bodyA and rotation in the plane. You can use a | |||
| /// joint limit to restrict the range of motion and a joint motor to drive | |||
| /// the rotation or to model rotational friction. | |||
| /// This joint is designed for vehicle suspensions. | |||
| class b2WheelJoint : public b2Joint | |||
| { | |||
| public: | |||
| void GetDefinition(b2WheelJointDef* def) const; | |||
| b2Vec2 GetAnchorA() const; | |||
| b2Vec2 GetAnchorB() const; | |||
| b2Vec2 GetReactionForce(float32 inv_dt) const; | |||
| float32 GetReactionTorque(float32 inv_dt) const; | |||
| /// The local anchor point relative to bodyA's origin. | |||
| const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; } | |||
| /// The local anchor point relative to bodyB's origin. | |||
| const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; } | |||
| /// The local joint axis relative to bodyA. | |||
| const b2Vec2& GetLocalAxisA() const { return m_localXAxisA; } | |||
| /// Get the current joint translation, usually in meters. | |||
| float32 GetJointTranslation() const; | |||
| /// Get the current joint translation speed, usually in meters per second. | |||
| float32 GetJointSpeed() const; | |||
| /// Is the joint motor enabled? | |||
| bool IsMotorEnabled() const; | |||
| /// Enable/disable the joint motor. | |||
| void EnableMotor(bool flag); | |||
| /// Set the motor speed, usually in radians per second. | |||
| void SetMotorSpeed(float32 speed); | |||
| /// Get the motor speed, usually in radians per second. | |||
| float32 GetMotorSpeed() const; | |||
| /// Set/Get the maximum motor force, usually in N-m. | |||
| void SetMaxMotorTorque(float32 torque); | |||
| float32 GetMaxMotorTorque() const; | |||
| /// Get the current motor torque given the inverse time step, usually in N-m. | |||
| float32 GetMotorTorque(float32 inv_dt) const; | |||
| /// Set/Get the spring frequency in hertz. Setting the frequency to zero disables the spring. | |||
| void SetSpringFrequencyHz(float32 hz); | |||
| float32 GetSpringFrequencyHz() const; | |||
| /// Set/Get the spring damping ratio | |||
| void SetSpringDampingRatio(float32 ratio); | |||
| float32 GetSpringDampingRatio() const; | |||
| /// Dump to b2Log | |||
| void Dump(); | |||
| protected: | |||
| friend class b2Joint; | |||
| b2WheelJoint(const b2WheelJointDef* def); | |||
| void InitVelocityConstraints(const b2SolverData& data); | |||
| void SolveVelocityConstraints(const b2SolverData& data); | |||
| bool SolvePositionConstraints(const b2SolverData& data); | |||
| float32 m_frequencyHz; | |||
| float32 m_dampingRatio; | |||
| // Solver shared | |||
| b2Vec2 m_localAnchorA; | |||
| b2Vec2 m_localAnchorB; | |||
| b2Vec2 m_localXAxisA; | |||
| b2Vec2 m_localYAxisA; | |||
| float32 m_impulse; | |||
| float32 m_motorImpulse; | |||
| float32 m_springImpulse; | |||
| float32 m_maxMotorTorque; | |||
| float32 m_motorSpeed; | |||
| bool m_enableMotor; | |||
| // Solver temp | |||
| int32 m_indexA; | |||
| int32 m_indexB; | |||
| b2Vec2 m_localCenterA; | |||
| b2Vec2 m_localCenterB; | |||
| float32 m_invMassA; | |||
| float32 m_invMassB; | |||
| float32 m_invIA; | |||
| float32 m_invIB; | |||
| b2Vec2 m_ax, m_ay; | |||
| float32 m_sAx, m_sBx; | |||
| float32 m_sAy, m_sBy; | |||
| float32 m_mass; | |||
| float32 m_motorMass; | |||
| float32 m_springMass; | |||
| float32 m_bias; | |||
| float32 m_gamma; | |||
| }; | |||
| inline float32 b2WheelJoint::GetMotorSpeed() const | |||
| { | |||
| return m_motorSpeed; | |||
| } | |||
| inline float32 b2WheelJoint::GetMaxMotorTorque() const | |||
| { | |||
| return m_maxMotorTorque; | |||
| } | |||
| inline void b2WheelJoint::SetSpringFrequencyHz(float32 hz) | |||
| { | |||
| m_frequencyHz = hz; | |||
| } | |||
| inline float32 b2WheelJoint::GetSpringFrequencyHz() const | |||
| { | |||
| return m_frequencyHz; | |||
| } | |||
| inline void b2WheelJoint::SetSpringDampingRatio(float32 ratio) | |||
| { | |||
| m_dampingRatio = ratio; | |||
| } | |||
| inline float32 b2WheelJoint::GetSpringDampingRatio() const | |||
| { | |||
| return m_dampingRatio; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,514 @@ | |||
| /* | |||
| * Copyright (c) 2006-2007 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Body.h" | |||
| #include "b2Fixture.h" | |||
| #include "b2World.h" | |||
| #include "Contacts/b2Contact.h" | |||
| #include "Joints/b2Joint.h" | |||
| b2Body::b2Body(const b2BodyDef* bd, b2World* world) | |||
| { | |||
| b2Assert(bd->position.IsValid()); | |||
| b2Assert(bd->linearVelocity.IsValid()); | |||
| b2Assert(b2IsValid(bd->angle)); | |||
| b2Assert(b2IsValid(bd->angularVelocity)); | |||
| b2Assert(b2IsValid(bd->angularDamping) && bd->angularDamping >= 0.0f); | |||
| b2Assert(b2IsValid(bd->linearDamping) && bd->linearDamping >= 0.0f); | |||
| m_flags = 0; | |||
| if (bd->bullet) | |||
| { | |||
| m_flags |= e_bulletFlag; | |||
| } | |||
| if (bd->fixedRotation) | |||
| { | |||
| m_flags |= e_fixedRotationFlag; | |||
| } | |||
| if (bd->allowSleep) | |||
| { | |||
| m_flags |= e_autoSleepFlag; | |||
| } | |||
| if (bd->awake) | |||
| { | |||
| m_flags |= e_awakeFlag; | |||
| } | |||
| if (bd->active) | |||
| { | |||
| m_flags |= e_activeFlag; | |||
| } | |||
| m_world = world; | |||
| m_xf.p = bd->position; | |||
| m_xf.q.Set(bd->angle); | |||
| m_sweep.localCenter.SetZero(); | |||
| m_sweep.c0 = m_xf.p; | |||
| m_sweep.c = m_xf.p; | |||
| m_sweep.a0 = bd->angle; | |||
| m_sweep.a = bd->angle; | |||
| m_sweep.alpha0 = 0.0f; | |||
| m_jointList = NULL; | |||
| m_contactList = NULL; | |||
| m_prev = NULL; | |||
| m_next = NULL; | |||
| m_linearVelocity = bd->linearVelocity; | |||
| m_angularVelocity = bd->angularVelocity; | |||
| m_linearDamping = bd->linearDamping; | |||
| m_angularDamping = bd->angularDamping; | |||
| m_gravityScale = bd->gravityScale; | |||
| m_force.SetZero(); | |||
| m_torque = 0.0f; | |||
| m_sleepTime = 0.0f; | |||
| m_type = bd->type; | |||
| if (m_type == b2_dynamicBody) | |||
| { | |||
| m_mass = 1.0f; | |||
| m_invMass = 1.0f; | |||
| } | |||
| else | |||
| { | |||
| m_mass = 0.0f; | |||
| m_invMass = 0.0f; | |||
| } | |||
| m_I = 0.0f; | |||
| m_invI = 0.0f; | |||
| m_userData = bd->userData; | |||
| m_fixtureList = NULL; | |||
| m_fixtureCount = 0; | |||
| } | |||
| b2Body::~b2Body() | |||
| { | |||
| // shapes and joints are destroyed in b2World::Destroy | |||
| } | |||
| void b2Body::SetType(b2BodyType type) | |||
| { | |||
| b2Assert(m_world->IsLocked() == false); | |||
| if (m_world->IsLocked() == true) | |||
| { | |||
| return; | |||
| } | |||
| if (m_type == type) | |||
| { | |||
| return; | |||
| } | |||
| m_type = type; | |||
| ResetMassData(); | |||
| if (m_type == b2_staticBody) | |||
| { | |||
| m_linearVelocity.SetZero(); | |||
| m_angularVelocity = 0.0f; | |||
| m_sweep.a0 = m_sweep.a; | |||
| m_sweep.c0 = m_sweep.c; | |||
| SynchronizeFixtures(); | |||
| } | |||
| SetAwake(true); | |||
| m_force.SetZero(); | |||
| m_torque = 0.0f; | |||
| // Since the body type changed, we need to flag contacts for filtering. | |||
| for (b2Fixture* f = m_fixtureList; f; f = f->m_next) | |||
| { | |||
| f->Refilter(); | |||
| } | |||
| } | |||
| b2Fixture* b2Body::CreateFixture(const b2FixtureDef* def) | |||
| { | |||
| b2Assert(m_world->IsLocked() == false); | |||
| if (m_world->IsLocked() == true) | |||
| { | |||
| return NULL; | |||
| } | |||
| b2BlockAllocator* allocator = &m_world->m_blockAllocator; | |||
| void* memory = allocator->Allocate(sizeof(b2Fixture)); | |||
| b2Fixture* fixture = new (memory) b2Fixture; | |||
| fixture->Create(allocator, this, def); | |||
| if (m_flags & e_activeFlag) | |||
| { | |||
| b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase; | |||
| fixture->CreateProxies(broadPhase, m_xf); | |||
| } | |||
| fixture->m_next = m_fixtureList; | |||
| m_fixtureList = fixture; | |||
| ++m_fixtureCount; | |||
| fixture->m_body = this; | |||
| // Adjust mass properties if needed. | |||
| if (fixture->m_density > 0.0f) | |||
| { | |||
| ResetMassData(); | |||
| } | |||
| // Let the world know we have a new fixture. This will cause new contacts | |||
| // to be created at the beginning of the next time step. | |||
| m_world->m_flags |= b2World::e_newFixture; | |||
| return fixture; | |||
| } | |||
| b2Fixture* b2Body::CreateFixture(const b2Shape* shape, float32 density) | |||
| { | |||
| b2FixtureDef def; | |||
| def.shape = shape; | |||
| def.density = density; | |||
| return CreateFixture(&def); | |||
| } | |||
| void b2Body::DestroyFixture(b2Fixture* fixture) | |||
| { | |||
| b2Assert(m_world->IsLocked() == false); | |||
| if (m_world->IsLocked() == true) | |||
| { | |||
| return; | |||
| } | |||
| b2Assert(fixture->m_body == this); | |||
| // Remove the fixture from this body's singly linked list. | |||
| b2Assert(m_fixtureCount > 0); | |||
| b2Fixture** node = &m_fixtureList; | |||
| bool found = false; | |||
| while (*node != NULL) | |||
| { | |||
| if (*node == fixture) | |||
| { | |||
| *node = fixture->m_next; | |||
| found = true; | |||
| break; | |||
| } | |||
| node = &(*node)->m_next; | |||
| } | |||
| // You tried to remove a shape that is not attached to this body. | |||
| b2Assert(found); | |||
| // Destroy any contacts associated with the fixture. | |||
| b2ContactEdge* edge = m_contactList; | |||
| while (edge) | |||
| { | |||
| b2Contact* c = edge->contact; | |||
| edge = edge->next; | |||
| b2Fixture* fixtureA = c->GetFixtureA(); | |||
| b2Fixture* fixtureB = c->GetFixtureB(); | |||
| if (fixture == fixtureA || fixture == fixtureB) | |||
| { | |||
| // This destroys the contact and removes it from | |||
| // this body's contact list. | |||
| m_world->m_contactManager.Destroy(c); | |||
| } | |||
| } | |||
| b2BlockAllocator* allocator = &m_world->m_blockAllocator; | |||
| if (m_flags & e_activeFlag) | |||
| { | |||
| b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase; | |||
| fixture->DestroyProxies(broadPhase); | |||
| } | |||
| fixture->Destroy(allocator); | |||
| fixture->m_body = NULL; | |||
| fixture->m_next = NULL; | |||
| fixture->~b2Fixture(); | |||
| allocator->Free(fixture, sizeof(b2Fixture)); | |||
| --m_fixtureCount; | |||
| // Reset the mass data. | |||
| ResetMassData(); | |||
| } | |||
| void b2Body::ResetMassData() | |||
| { | |||
| // Compute mass data from shapes. Each shape has its own density. | |||
| m_mass = 0.0f; | |||
| m_invMass = 0.0f; | |||
| m_I = 0.0f; | |||
| m_invI = 0.0f; | |||
| m_sweep.localCenter.SetZero(); | |||
| // Static and kinematic bodies have zero mass. | |||
| if (m_type == b2_staticBody || m_type == b2_kinematicBody) | |||
| { | |||
| m_sweep.c0 = m_xf.p; | |||
| m_sweep.c = m_xf.p; | |||
| m_sweep.a0 = m_sweep.a; | |||
| return; | |||
| } | |||
| b2Assert(m_type == b2_dynamicBody); | |||
| // Accumulate mass over all fixtures. | |||
| b2Vec2 localCenter = b2Vec2_zero; | |||
| for (b2Fixture* f = m_fixtureList; f; f = f->m_next) | |||
| { | |||
| if (f->m_density == 0.0f) | |||
| { | |||
| continue; | |||
| } | |||
| b2MassData massData; | |||
| f->GetMassData(&massData); | |||
| m_mass += massData.mass; | |||
| localCenter += massData.mass * massData.center; | |||
| m_I += massData.I; | |||
| } | |||
| // Compute center of mass. | |||
| if (m_mass > 0.0f) | |||
| { | |||
| m_invMass = 1.0f / m_mass; | |||
| localCenter *= m_invMass; | |||
| } | |||
| else | |||
| { | |||
| // Force all dynamic bodies to have a positive mass. | |||
| m_mass = 1.0f; | |||
| m_invMass = 1.0f; | |||
| } | |||
| if (m_I > 0.0f && (m_flags & e_fixedRotationFlag) == 0) | |||
| { | |||
| // Center the inertia about the center of mass. | |||
| m_I -= m_mass * b2Dot(localCenter, localCenter); | |||
| b2Assert(m_I > 0.0f); | |||
| m_invI = 1.0f / m_I; | |||
| } | |||
| else | |||
| { | |||
| m_I = 0.0f; | |||
| m_invI = 0.0f; | |||
| } | |||
| // Move center of mass. | |||
| b2Vec2 oldCenter = m_sweep.c; | |||
| m_sweep.localCenter = localCenter; | |||
| m_sweep.c0 = m_sweep.c = b2Mul(m_xf, m_sweep.localCenter); | |||
| // Update center of mass velocity. | |||
| m_linearVelocity += b2Cross(m_angularVelocity, m_sweep.c - oldCenter); | |||
| } | |||
| void b2Body::SetMassData(const b2MassData* massData) | |||
| { | |||
| b2Assert(m_world->IsLocked() == false); | |||
| if (m_world->IsLocked() == true) | |||
| { | |||
| return; | |||
| } | |||
| if (m_type != b2_dynamicBody) | |||
| { | |||
| return; | |||
| } | |||
| m_invMass = 0.0f; | |||
| m_I = 0.0f; | |||
| m_invI = 0.0f; | |||
| m_mass = massData->mass; | |||
| if (m_mass <= 0.0f) | |||
| { | |||
| m_mass = 1.0f; | |||
| } | |||
| m_invMass = 1.0f / m_mass; | |||
| if (massData->I > 0.0f && (m_flags & b2Body::e_fixedRotationFlag) == 0) | |||
| { | |||
| m_I = massData->I - m_mass * b2Dot(massData->center, massData->center); | |||
| b2Assert(m_I > 0.0f); | |||
| m_invI = 1.0f / m_I; | |||
| } | |||
| // Move center of mass. | |||
| b2Vec2 oldCenter = m_sweep.c; | |||
| m_sweep.localCenter = massData->center; | |||
| m_sweep.c0 = m_sweep.c = b2Mul(m_xf, m_sweep.localCenter); | |||
| // Update center of mass velocity. | |||
| m_linearVelocity += b2Cross(m_angularVelocity, m_sweep.c - oldCenter); | |||
| } | |||
| bool b2Body::ShouldCollide(const b2Body* other) const | |||
| { | |||
| // At least one body should be dynamic. | |||
| if (m_type != b2_dynamicBody && other->m_type != b2_dynamicBody) | |||
| { | |||
| return false; | |||
| } | |||
| // Does a joint prevent collision? | |||
| for (b2JointEdge* jn = m_jointList; jn; jn = jn->next) | |||
| { | |||
| if (jn->other == other) | |||
| { | |||
| if (jn->joint->m_collideConnected == false) | |||
| { | |||
| return false; | |||
| } | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| void b2Body::SetTransform(const b2Vec2& position, float32 angle) | |||
| { | |||
| b2Assert(m_world->IsLocked() == false); | |||
| if (m_world->IsLocked() == true) | |||
| { | |||
| return; | |||
| } | |||
| m_xf.q.Set(angle); | |||
| m_xf.p = position; | |||
| m_sweep.c = b2Mul(m_xf, m_sweep.localCenter); | |||
| m_sweep.a = angle; | |||
| m_sweep.c0 = m_sweep.c; | |||
| m_sweep.a0 = angle; | |||
| b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase; | |||
| for (b2Fixture* f = m_fixtureList; f; f = f->m_next) | |||
| { | |||
| f->Synchronize(broadPhase, m_xf, m_xf); | |||
| } | |||
| m_world->m_contactManager.FindNewContacts(); | |||
| } | |||
| void b2Body::SynchronizeFixtures() | |||
| { | |||
| b2Transform xf1; | |||
| xf1.q.Set(m_sweep.a0); | |||
| xf1.p = m_sweep.c0 - b2Mul(xf1.q, m_sweep.localCenter); | |||
| b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase; | |||
| for (b2Fixture* f = m_fixtureList; f; f = f->m_next) | |||
| { | |||
| f->Synchronize(broadPhase, xf1, m_xf); | |||
| } | |||
| } | |||
| void b2Body::SetActive(bool flag) | |||
| { | |||
| b2Assert(m_world->IsLocked() == false); | |||
| if (flag == IsActive()) | |||
| { | |||
| return; | |||
| } | |||
| if (flag) | |||
| { | |||
| m_flags |= e_activeFlag; | |||
| // Create all proxies. | |||
| b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase; | |||
| for (b2Fixture* f = m_fixtureList; f; f = f->m_next) | |||
| { | |||
| f->CreateProxies(broadPhase, m_xf); | |||
| } | |||
| // Contacts are created the next time step. | |||
| } | |||
| else | |||
| { | |||
| m_flags &= ~e_activeFlag; | |||
| // Destroy all proxies. | |||
| b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase; | |||
| for (b2Fixture* f = m_fixtureList; f; f = f->m_next) | |||
| { | |||
| f->DestroyProxies(broadPhase); | |||
| } | |||
| // Destroy the attached contacts. | |||
| b2ContactEdge* ce = m_contactList; | |||
| while (ce) | |||
| { | |||
| b2ContactEdge* ce0 = ce; | |||
| ce = ce->next; | |||
| m_world->m_contactManager.Destroy(ce0->contact); | |||
| } | |||
| m_contactList = NULL; | |||
| } | |||
| } | |||
| void b2Body::Dump() | |||
| { | |||
| int32 bodyIndex = m_islandIndex; | |||
| b2Log("{\n"); | |||
| b2Log(" b2BodyDef bd;\n"); | |||
| b2Log(" bd.type = b2BodyType(%d);\n", m_type); | |||
| b2Log(" bd.position.Set(%.15lef, %.15lef);\n", m_xf.p.x, m_xf.p.y); | |||
| b2Log(" bd.angle = %.15lef;\n", m_sweep.a); | |||
| b2Log(" bd.linearVelocity.Set(%.15lef, %.15lef);\n", m_linearVelocity.x, m_linearVelocity.y); | |||
| b2Log(" bd.angularVelocity = %.15lef;\n", m_angularVelocity); | |||
| b2Log(" bd.linearDamping = %.15lef;\n", m_linearDamping); | |||
| b2Log(" bd.angularDamping = %.15lef;\n", m_angularDamping); | |||
| b2Log(" bd.allowSleep = bool(%d);\n", m_flags & e_autoSleepFlag); | |||
| b2Log(" bd.awake = bool(%d);\n", m_flags & e_awakeFlag); | |||
| b2Log(" bd.fixedRotation = bool(%d);\n", m_flags & e_fixedRotationFlag); | |||
| b2Log(" bd.bullet = bool(%d);\n", m_flags & e_bulletFlag); | |||
| b2Log(" bd.active = bool(%d);\n", m_flags & e_activeFlag); | |||
| b2Log(" bd.gravityScale = %.15lef;\n", m_gravityScale); | |||
| b2Log(" bodies[%d] = m_world->CreateBody(&bd);\n", m_islandIndex); | |||
| b2Log("\n"); | |||
| for (b2Fixture* f = m_fixtureList; f; f = f->m_next) | |||
| { | |||
| b2Log(" {\n"); | |||
| f->Dump(bodyIndex); | |||
| b2Log(" }\n"); | |||
| } | |||
| b2Log("}\n"); | |||
| } | |||
| @@ -0,0 +1,846 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_BODY_H | |||
| #define B2_BODY_H | |||
| #include "../Common/b2Math.h" | |||
| #include "../Collision/Shapes/b2Shape.h" | |||
| #include <memory> | |||
| class b2Fixture; | |||
| class b2Joint; | |||
| class b2Contact; | |||
| class b2Controller; | |||
| class b2World; | |||
| struct b2FixtureDef; | |||
| struct b2JointEdge; | |||
| struct b2ContactEdge; | |||
| /// The body type. | |||
| /// static: zero mass, zero velocity, may be manually moved | |||
| /// kinematic: zero mass, non-zero velocity set by user, moved by solver | |||
| /// dynamic: positive mass, non-zero velocity determined by forces, moved by solver | |||
| enum b2BodyType | |||
| { | |||
| b2_staticBody = 0, | |||
| b2_kinematicBody, | |||
| b2_dynamicBody | |||
| // TODO_ERIN | |||
| //b2_bulletBody, | |||
| }; | |||
| /// A body definition holds all the data needed to construct a rigid body. | |||
| /// You can safely re-use body definitions. Shapes are added to a body after construction. | |||
| struct b2BodyDef | |||
| { | |||
| /// This constructor sets the body definition default values. | |||
| b2BodyDef() | |||
| { | |||
| userData = NULL; | |||
| position.Set(0.0f, 0.0f); | |||
| angle = 0.0f; | |||
| linearVelocity.Set(0.0f, 0.0f); | |||
| angularVelocity = 0.0f; | |||
| linearDamping = 0.0f; | |||
| angularDamping = 0.0f; | |||
| allowSleep = true; | |||
| awake = true; | |||
| fixedRotation = false; | |||
| bullet = false; | |||
| type = b2_staticBody; | |||
| active = true; | |||
| gravityScale = 1.0f; | |||
| } | |||
| /// The body type: static, kinematic, or dynamic. | |||
| /// Note: if a dynamic body would have zero mass, the mass is set to one. | |||
| b2BodyType type; | |||
| /// The world position of the body. Avoid creating bodies at the origin | |||
| /// since this can lead to many overlapping shapes. | |||
| b2Vec2 position; | |||
| /// The world angle of the body in radians. | |||
| float32 angle; | |||
| /// The linear velocity of the body's origin in world co-ordinates. | |||
| b2Vec2 linearVelocity; | |||
| /// The angular velocity of the body. | |||
| float32 angularVelocity; | |||
| /// Linear damping is use to reduce the linear velocity. The damping parameter | |||
| /// can be larger than 1.0f but the damping effect becomes sensitive to the | |||
| /// time step when the damping parameter is large. | |||
| float32 linearDamping; | |||
| /// Angular damping is use to reduce the angular velocity. The damping parameter | |||
| /// can be larger than 1.0f but the damping effect becomes sensitive to the | |||
| /// time step when the damping parameter is large. | |||
| float32 angularDamping; | |||
| /// Set this flag to false if this body should never fall asleep. Note that | |||
| /// this increases CPU usage. | |||
| bool allowSleep; | |||
| /// Is this body initially awake or sleeping? | |||
| bool awake; | |||
| /// Should this body be prevented from rotating? Useful for characters. | |||
| bool fixedRotation; | |||
| /// Is this a fast moving body that should be prevented from tunneling through | |||
| /// other moving bodies? Note that all bodies are prevented from tunneling through | |||
| /// kinematic and static bodies. This setting is only considered on dynamic bodies. | |||
| /// @warning You should use this flag sparingly since it increases processing time. | |||
| bool bullet; | |||
| /// Does this body start out active? | |||
| bool active; | |||
| /// Use this to store application specific body data. | |||
| void* userData; | |||
| /// Scale the gravity applied to this body. | |||
| float32 gravityScale; | |||
| }; | |||
| /// A rigid body. These are created via b2World::CreateBody. | |||
| class b2Body | |||
| { | |||
| public: | |||
| /// Creates a fixture and attach it to this body. Use this function if you need | |||
| /// to set some fixture parameters, like friction. Otherwise you can create the | |||
| /// fixture directly from a shape. | |||
| /// If the density is non-zero, this function automatically updates the mass of the body. | |||
| /// Contacts are not created until the next time step. | |||
| /// @param def the fixture definition. | |||
| /// @warning This function is locked during callbacks. | |||
| b2Fixture* CreateFixture(const b2FixtureDef* def); | |||
| /// Creates a fixture from a shape and attach it to this body. | |||
| /// This is a convenience function. Use b2FixtureDef if you need to set parameters | |||
| /// like friction, restitution, user data, or filtering. | |||
| /// If the density is non-zero, this function automatically updates the mass of the body. | |||
| /// @param shape the shape to be cloned. | |||
| /// @param density the shape density (set to zero for static bodies). | |||
| /// @warning This function is locked during callbacks. | |||
| b2Fixture* CreateFixture(const b2Shape* shape, float32 density); | |||
| /// Destroy a fixture. This removes the fixture from the broad-phase and | |||
| /// destroys all contacts associated with this fixture. This will | |||
| /// automatically adjust the mass of the body if the body is dynamic and the | |||
| /// fixture has positive density. | |||
| /// All fixtures attached to a body are implicitly destroyed when the body is destroyed. | |||
| /// @param fixture the fixture to be removed. | |||
| /// @warning This function is locked during callbacks. | |||
| void DestroyFixture(b2Fixture* fixture); | |||
| /// Set the position of the body's origin and rotation. | |||
| /// This breaks any contacts and wakes the other bodies. | |||
| /// Manipulating a body's transform may cause non-physical behavior. | |||
| /// @param position the world position of the body's local origin. | |||
| /// @param angle the world rotation in radians. | |||
| void SetTransform(const b2Vec2& position, float32 angle); | |||
| /// Get the body transform for the body's origin. | |||
| /// @return the world transform of the body's origin. | |||
| const b2Transform& GetTransform() const; | |||
| /// Get the world body origin position. | |||
| /// @return the world position of the body's origin. | |||
| const b2Vec2& GetPosition() const; | |||
| /// Get the angle in radians. | |||
| /// @return the current world rotation angle in radians. | |||
| float32 GetAngle() const; | |||
| /// Get the world position of the center of mass. | |||
| const b2Vec2& GetWorldCenter() const; | |||
| /// Get the local position of the center of mass. | |||
| const b2Vec2& GetLocalCenter() const; | |||
| /// Set the linear velocity of the center of mass. | |||
| /// @param v the new linear velocity of the center of mass. | |||
| void SetLinearVelocity(const b2Vec2& v); | |||
| /// Get the linear velocity of the center of mass. | |||
| /// @return the linear velocity of the center of mass. | |||
| b2Vec2 GetLinearVelocity() const; | |||
| /// Set the angular velocity. | |||
| /// @param omega the new angular velocity in radians/second. | |||
| void SetAngularVelocity(float32 omega); | |||
| /// Get the angular velocity. | |||
| /// @return the angular velocity in radians/second. | |||
| float32 GetAngularVelocity() const; | |||
| /// Apply a force at a world point. If the force is not | |||
| /// applied at the center of mass, it will generate a torque and | |||
| /// affect the angular velocity. This wakes up the body. | |||
| /// @param force the world force vector, usually in Newtons (N). | |||
| /// @param point the world position of the point of application. | |||
| void ApplyForce(const b2Vec2& force, const b2Vec2& point); | |||
| /// Apply a force to the center of mass. This wakes up the body. | |||
| /// @param force the world force vector, usually in Newtons (N). | |||
| void ApplyForceToCenter(const b2Vec2& force); | |||
| /// Apply a torque. This affects the angular velocity | |||
| /// without affecting the linear velocity of the center of mass. | |||
| /// This wakes up the body. | |||
| /// @param torque about the z-axis (out of the screen), usually in N-m. | |||
| void ApplyTorque(float32 torque); | |||
| /// Apply an impulse at a point. This immediately modifies the velocity. | |||
| /// It also modifies the angular velocity if the point of application | |||
| /// is not at the center of mass. This wakes up the body. | |||
| /// @param impulse the world impulse vector, usually in N-seconds or kg-m/s. | |||
| /// @param point the world position of the point of application. | |||
| void ApplyLinearImpulse(const b2Vec2& impulse, const b2Vec2& point); | |||
| /// Apply an angular impulse. | |||
| /// @param impulse the angular impulse in units of kg*m*m/s | |||
| void ApplyAngularImpulse(float32 impulse); | |||
| /// Get the total mass of the body. | |||
| /// @return the mass, usually in kilograms (kg). | |||
| float32 GetMass() const; | |||
| /// Get the rotational inertia of the body about the local origin. | |||
| /// @return the rotational inertia, usually in kg-m^2. | |||
| float32 GetInertia() const; | |||
| /// Get the mass data of the body. | |||
| /// @return a struct containing the mass, inertia and center of the body. | |||
| void GetMassData(b2MassData* data) const; | |||
| /// Set the mass properties to override the mass properties of the fixtures. | |||
| /// Note that this changes the center of mass position. | |||
| /// Note that creating or destroying fixtures can also alter the mass. | |||
| /// This function has no effect if the body isn't dynamic. | |||
| /// @param massData the mass properties. | |||
| void SetMassData(const b2MassData* data); | |||
| /// This resets the mass properties to the sum of the mass properties of the fixtures. | |||
| /// This normally does not need to be called unless you called SetMassData to override | |||
| /// the mass and you later want to reset the mass. | |||
| void ResetMassData(); | |||
| /// Get the world coordinates of a point given the local coordinates. | |||
| /// @param localPoint a point on the body measured relative the the body's origin. | |||
| /// @return the same point expressed in world coordinates. | |||
| b2Vec2 GetWorldPoint(const b2Vec2& localPoint) const; | |||
| /// Get the world coordinates of a vector given the local coordinates. | |||
| /// @param localVector a vector fixed in the body. | |||
| /// @return the same vector expressed in world coordinates. | |||
| b2Vec2 GetWorldVector(const b2Vec2& localVector) const; | |||
| /// Gets a local point relative to the body's origin given a world point. | |||
| /// @param a point in world coordinates. | |||
| /// @return the corresponding local point relative to the body's origin. | |||
| b2Vec2 GetLocalPoint(const b2Vec2& worldPoint) const; | |||
| /// Gets a local vector given a world vector. | |||
| /// @param a vector in world coordinates. | |||
| /// @return the corresponding local vector. | |||
| b2Vec2 GetLocalVector(const b2Vec2& worldVector) const; | |||
| /// Get the world linear velocity of a world point attached to this body. | |||
| /// @param a point in world coordinates. | |||
| /// @return the world velocity of a point. | |||
| b2Vec2 GetLinearVelocityFromWorldPoint(const b2Vec2& worldPoint) const; | |||
| /// Get the world velocity of a local point. | |||
| /// @param a point in local coordinates. | |||
| /// @return the world velocity of a point. | |||
| b2Vec2 GetLinearVelocityFromLocalPoint(const b2Vec2& localPoint) const; | |||
| /// Get the linear damping of the body. | |||
| float32 GetLinearDamping() const; | |||
| /// Set the linear damping of the body. | |||
| void SetLinearDamping(float32 linearDamping); | |||
| /// Get the angular damping of the body. | |||
| float32 GetAngularDamping() const; | |||
| /// Set the angular damping of the body. | |||
| void SetAngularDamping(float32 angularDamping); | |||
| /// Get the gravity scale of the body. | |||
| float32 GetGravityScale() const; | |||
| /// Set the gravity scale of the body. | |||
| void SetGravityScale(float32 scale); | |||
| /// Set the type of this body. This may alter the mass and velocity. | |||
| void SetType(b2BodyType type); | |||
| /// Get the type of this body. | |||
| b2BodyType GetType() const; | |||
| /// Should this body be treated like a bullet for continuous collision detection? | |||
| void SetBullet(bool flag); | |||
| /// Is this body treated like a bullet for continuous collision detection? | |||
| bool IsBullet() const; | |||
| /// You can disable sleeping on this body. If you disable sleeping, the | |||
| /// body will be woken. | |||
| void SetSleepingAllowed(bool flag); | |||
| /// Is this body allowed to sleep | |||
| bool IsSleepingAllowed() const; | |||
| /// Set the sleep state of the body. A sleeping body has very | |||
| /// low CPU cost. | |||
| /// @param flag set to true to put body to sleep, false to wake it. | |||
| void SetAwake(bool flag); | |||
| /// Get the sleeping state of this body. | |||
| /// @return true if the body is sleeping. | |||
| bool IsAwake() const; | |||
| /// Set the active state of the body. An inactive body is not | |||
| /// simulated and cannot be collided with or woken up. | |||
| /// If you pass a flag of true, all fixtures will be added to the | |||
| /// broad-phase. | |||
| /// If you pass a flag of false, all fixtures will be removed from | |||
| /// the broad-phase and all contacts will be destroyed. | |||
| /// Fixtures and joints are otherwise unaffected. You may continue | |||
| /// to create/destroy fixtures and joints on inactive bodies. | |||
| /// Fixtures on an inactive body are implicitly inactive and will | |||
| /// not participate in collisions, ray-casts, or queries. | |||
| /// Joints connected to an inactive body are implicitly inactive. | |||
| /// An inactive body is still owned by a b2World object and remains | |||
| /// in the body list. | |||
| void SetActive(bool flag); | |||
| /// Get the active state of the body. | |||
| bool IsActive() const; | |||
| /// Set this body to have fixed rotation. This causes the mass | |||
| /// to be reset. | |||
| void SetFixedRotation(bool flag); | |||
| /// Does this body have fixed rotation? | |||
| bool IsFixedRotation() const; | |||
| /// Get the list of all fixtures attached to this body. | |||
| b2Fixture* GetFixtureList(); | |||
| const b2Fixture* GetFixtureList() const; | |||
| /// Get the list of all joints attached to this body. | |||
| b2JointEdge* GetJointList(); | |||
| const b2JointEdge* GetJointList() const; | |||
| /// Get the list of all contacts attached to this body. | |||
| /// @warning this list changes during the time step and you may | |||
| /// miss some collisions if you don't use b2ContactListener. | |||
| b2ContactEdge* GetContactList(); | |||
| const b2ContactEdge* GetContactList() const; | |||
| /// Get the next body in the world's body list. | |||
| b2Body* GetNext(); | |||
| const b2Body* GetNext() const; | |||
| /// Get the user data pointer that was provided in the body definition. | |||
| void* GetUserData() const; | |||
| /// Set the user data. Use this to store your application specific data. | |||
| void SetUserData(void* data); | |||
| /// Get the parent world of this body. | |||
| b2World* GetWorld(); | |||
| const b2World* GetWorld() const; | |||
| /// Dump this body to a log file | |||
| void Dump(); | |||
| private: | |||
| friend class b2World; | |||
| friend class b2Island; | |||
| friend class b2ContactManager; | |||
| friend class b2ContactSolver; | |||
| friend class b2Contact; | |||
| friend class b2DistanceJoint; | |||
| friend class b2GearJoint; | |||
| friend class b2WheelJoint; | |||
| friend class b2MouseJoint; | |||
| friend class b2PrismaticJoint; | |||
| friend class b2PulleyJoint; | |||
| friend class b2RevoluteJoint; | |||
| friend class b2WeldJoint; | |||
| friend class b2FrictionJoint; | |||
| friend class b2RopeJoint; | |||
| // m_flags | |||
| enum | |||
| { | |||
| e_islandFlag = 0x0001, | |||
| e_awakeFlag = 0x0002, | |||
| e_autoSleepFlag = 0x0004, | |||
| e_bulletFlag = 0x0008, | |||
| e_fixedRotationFlag = 0x0010, | |||
| e_activeFlag = 0x0020, | |||
| e_toiFlag = 0x0040 | |||
| }; | |||
| b2Body(const b2BodyDef* bd, b2World* world); | |||
| ~b2Body(); | |||
| void SynchronizeFixtures(); | |||
| void SynchronizeTransform(); | |||
| // This is used to prevent connected bodies from colliding. | |||
| // It may lie, depending on the collideConnected flag. | |||
| bool ShouldCollide(const b2Body* other) const; | |||
| void Advance(float32 t); | |||
| b2BodyType m_type; | |||
| uint16 m_flags; | |||
| int32 m_islandIndex; | |||
| b2Transform m_xf; // the body origin transform | |||
| b2Sweep m_sweep; // the swept motion for CCD | |||
| b2Vec2 m_linearVelocity; | |||
| float32 m_angularVelocity; | |||
| b2Vec2 m_force; | |||
| float32 m_torque; | |||
| b2World* m_world; | |||
| b2Body* m_prev; | |||
| b2Body* m_next; | |||
| b2Fixture* m_fixtureList; | |||
| int32 m_fixtureCount; | |||
| b2JointEdge* m_jointList; | |||
| b2ContactEdge* m_contactList; | |||
| float32 m_mass, m_invMass; | |||
| // Rotational inertia about the center of mass. | |||
| float32 m_I, m_invI; | |||
| float32 m_linearDamping; | |||
| float32 m_angularDamping; | |||
| float32 m_gravityScale; | |||
| float32 m_sleepTime; | |||
| void* m_userData; | |||
| }; | |||
| inline b2BodyType b2Body::GetType() const | |||
| { | |||
| return m_type; | |||
| } | |||
| inline const b2Transform& b2Body::GetTransform() const | |||
| { | |||
| return m_xf; | |||
| } | |||
| inline const b2Vec2& b2Body::GetPosition() const | |||
| { | |||
| return m_xf.p; | |||
| } | |||
| inline float32 b2Body::GetAngle() const | |||
| { | |||
| return m_sweep.a; | |||
| } | |||
| inline const b2Vec2& b2Body::GetWorldCenter() const | |||
| { | |||
| return m_sweep.c; | |||
| } | |||
| inline const b2Vec2& b2Body::GetLocalCenter() const | |||
| { | |||
| return m_sweep.localCenter; | |||
| } | |||
| inline void b2Body::SetLinearVelocity(const b2Vec2& v) | |||
| { | |||
| if (m_type == b2_staticBody) | |||
| { | |||
| return; | |||
| } | |||
| if (b2Dot(v,v) > 0.0f) | |||
| { | |||
| SetAwake(true); | |||
| } | |||
| m_linearVelocity = v; | |||
| } | |||
| inline b2Vec2 b2Body::GetLinearVelocity() const | |||
| { | |||
| return m_linearVelocity; | |||
| } | |||
| inline void b2Body::SetAngularVelocity(float32 w) | |||
| { | |||
| if (m_type == b2_staticBody) | |||
| { | |||
| return; | |||
| } | |||
| if (w * w > 0.0f) | |||
| { | |||
| SetAwake(true); | |||
| } | |||
| m_angularVelocity = w; | |||
| } | |||
| inline float32 b2Body::GetAngularVelocity() const | |||
| { | |||
| return m_angularVelocity; | |||
| } | |||
| inline float32 b2Body::GetMass() const | |||
| { | |||
| return m_mass; | |||
| } | |||
| inline float32 b2Body::GetInertia() const | |||
| { | |||
| return m_I + m_mass * b2Dot(m_sweep.localCenter, m_sweep.localCenter); | |||
| } | |||
| inline void b2Body::GetMassData(b2MassData* data) const | |||
| { | |||
| data->mass = m_mass; | |||
| data->I = m_I + m_mass * b2Dot(m_sweep.localCenter, m_sweep.localCenter); | |||
| data->center = m_sweep.localCenter; | |||
| } | |||
| inline b2Vec2 b2Body::GetWorldPoint(const b2Vec2& localPoint) const | |||
| { | |||
| return b2Mul(m_xf, localPoint); | |||
| } | |||
| inline b2Vec2 b2Body::GetWorldVector(const b2Vec2& localVector) const | |||
| { | |||
| return b2Mul(m_xf.q, localVector); | |||
| } | |||
| inline b2Vec2 b2Body::GetLocalPoint(const b2Vec2& worldPoint) const | |||
| { | |||
| return b2MulT(m_xf, worldPoint); | |||
| } | |||
| inline b2Vec2 b2Body::GetLocalVector(const b2Vec2& worldVector) const | |||
| { | |||
| return b2MulT(m_xf.q, worldVector); | |||
| } | |||
| inline b2Vec2 b2Body::GetLinearVelocityFromWorldPoint(const b2Vec2& worldPoint) const | |||
| { | |||
| return m_linearVelocity + b2Cross(m_angularVelocity, worldPoint - m_sweep.c); | |||
| } | |||
| inline b2Vec2 b2Body::GetLinearVelocityFromLocalPoint(const b2Vec2& localPoint) const | |||
| { | |||
| return GetLinearVelocityFromWorldPoint(GetWorldPoint(localPoint)); | |||
| } | |||
| inline float32 b2Body::GetLinearDamping() const | |||
| { | |||
| return m_linearDamping; | |||
| } | |||
| inline void b2Body::SetLinearDamping(float32 linearDamping) | |||
| { | |||
| m_linearDamping = linearDamping; | |||
| } | |||
| inline float32 b2Body::GetAngularDamping() const | |||
| { | |||
| return m_angularDamping; | |||
| } | |||
| inline void b2Body::SetAngularDamping(float32 angularDamping) | |||
| { | |||
| m_angularDamping = angularDamping; | |||
| } | |||
| inline float32 b2Body::GetGravityScale() const | |||
| { | |||
| return m_gravityScale; | |||
| } | |||
| inline void b2Body::SetGravityScale(float32 scale) | |||
| { | |||
| m_gravityScale = scale; | |||
| } | |||
| inline void b2Body::SetBullet(bool flag) | |||
| { | |||
| if (flag) | |||
| { | |||
| m_flags |= e_bulletFlag; | |||
| } | |||
| else | |||
| { | |||
| m_flags &= ~e_bulletFlag; | |||
| } | |||
| } | |||
| inline bool b2Body::IsBullet() const | |||
| { | |||
| return (m_flags & e_bulletFlag) == e_bulletFlag; | |||
| } | |||
| inline void b2Body::SetAwake(bool flag) | |||
| { | |||
| if (flag) | |||
| { | |||
| if ((m_flags & e_awakeFlag) == 0) | |||
| { | |||
| m_flags |= e_awakeFlag; | |||
| m_sleepTime = 0.0f; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| m_flags &= ~e_awakeFlag; | |||
| m_sleepTime = 0.0f; | |||
| m_linearVelocity.SetZero(); | |||
| m_angularVelocity = 0.0f; | |||
| m_force.SetZero(); | |||
| m_torque = 0.0f; | |||
| } | |||
| } | |||
| inline bool b2Body::IsAwake() const | |||
| { | |||
| return (m_flags & e_awakeFlag) == e_awakeFlag; | |||
| } | |||
| inline bool b2Body::IsActive() const | |||
| { | |||
| return (m_flags & e_activeFlag) == e_activeFlag; | |||
| } | |||
| inline void b2Body::SetFixedRotation(bool flag) | |||
| { | |||
| if (flag) | |||
| { | |||
| m_flags |= e_fixedRotationFlag; | |||
| } | |||
| else | |||
| { | |||
| m_flags &= ~e_fixedRotationFlag; | |||
| } | |||
| ResetMassData(); | |||
| } | |||
| inline bool b2Body::IsFixedRotation() const | |||
| { | |||
| return (m_flags & e_fixedRotationFlag) == e_fixedRotationFlag; | |||
| } | |||
| inline void b2Body::SetSleepingAllowed(bool flag) | |||
| { | |||
| if (flag) | |||
| { | |||
| m_flags |= e_autoSleepFlag; | |||
| } | |||
| else | |||
| { | |||
| m_flags &= ~e_autoSleepFlag; | |||
| SetAwake(true); | |||
| } | |||
| } | |||
| inline bool b2Body::IsSleepingAllowed() const | |||
| { | |||
| return (m_flags & e_autoSleepFlag) == e_autoSleepFlag; | |||
| } | |||
| inline b2Fixture* b2Body::GetFixtureList() | |||
| { | |||
| return m_fixtureList; | |||
| } | |||
| inline const b2Fixture* b2Body::GetFixtureList() const | |||
| { | |||
| return m_fixtureList; | |||
| } | |||
| inline b2JointEdge* b2Body::GetJointList() | |||
| { | |||
| return m_jointList; | |||
| } | |||
| inline const b2JointEdge* b2Body::GetJointList() const | |||
| { | |||
| return m_jointList; | |||
| } | |||
| inline b2ContactEdge* b2Body::GetContactList() | |||
| { | |||
| return m_contactList; | |||
| } | |||
| inline const b2ContactEdge* b2Body::GetContactList() const | |||
| { | |||
| return m_contactList; | |||
| } | |||
| inline b2Body* b2Body::GetNext() | |||
| { | |||
| return m_next; | |||
| } | |||
| inline const b2Body* b2Body::GetNext() const | |||
| { | |||
| return m_next; | |||
| } | |||
| inline void b2Body::SetUserData(void* data) | |||
| { | |||
| m_userData = data; | |||
| } | |||
| inline void* b2Body::GetUserData() const | |||
| { | |||
| return m_userData; | |||
| } | |||
| inline void b2Body::ApplyForce(const b2Vec2& force, const b2Vec2& point) | |||
| { | |||
| if (m_type != b2_dynamicBody) | |||
| { | |||
| return; | |||
| } | |||
| if (IsAwake() == false) | |||
| { | |||
| SetAwake(true); | |||
| } | |||
| m_force += force; | |||
| m_torque += b2Cross(point - m_sweep.c, force); | |||
| } | |||
| inline void b2Body::ApplyForceToCenter(const b2Vec2& force) | |||
| { | |||
| if (m_type != b2_dynamicBody) | |||
| { | |||
| return; | |||
| } | |||
| if (IsAwake() == false) | |||
| { | |||
| SetAwake(true); | |||
| } | |||
| m_force += force; | |||
| } | |||
| inline void b2Body::ApplyTorque(float32 torque) | |||
| { | |||
| if (m_type != b2_dynamicBody) | |||
| { | |||
| return; | |||
| } | |||
| if (IsAwake() == false) | |||
| { | |||
| SetAwake(true); | |||
| } | |||
| m_torque += torque; | |||
| } | |||
| inline void b2Body::ApplyLinearImpulse(const b2Vec2& impulse, const b2Vec2& point) | |||
| { | |||
| if (m_type != b2_dynamicBody) | |||
| { | |||
| return; | |||
| } | |||
| if (IsAwake() == false) | |||
| { | |||
| SetAwake(true); | |||
| } | |||
| m_linearVelocity += m_invMass * impulse; | |||
| m_angularVelocity += m_invI * b2Cross(point - m_sweep.c, impulse); | |||
| } | |||
| inline void b2Body::ApplyAngularImpulse(float32 impulse) | |||
| { | |||
| if (m_type != b2_dynamicBody) | |||
| { | |||
| return; | |||
| } | |||
| if (IsAwake() == false) | |||
| { | |||
| SetAwake(true); | |||
| } | |||
| m_angularVelocity += m_invI * impulse; | |||
| } | |||
| inline void b2Body::SynchronizeTransform() | |||
| { | |||
| m_xf.q.Set(m_sweep.a); | |||
| m_xf.p = m_sweep.c - b2Mul(m_xf.q, m_sweep.localCenter); | |||
| } | |||
| inline void b2Body::Advance(float32 alpha) | |||
| { | |||
| // Advance to the new safe time. This doesn't sync the broad-phase. | |||
| m_sweep.Advance(alpha); | |||
| m_sweep.c = m_sweep.c0; | |||
| m_sweep.a = m_sweep.a0; | |||
| m_xf.q.Set(m_sweep.a); | |||
| m_xf.p = m_sweep.c - b2Mul(m_xf.q, m_sweep.localCenter); | |||
| } | |||
| inline b2World* b2Body::GetWorld() | |||
| { | |||
| return m_world; | |||
| } | |||
| inline const b2World* b2Body::GetWorld() const | |||
| { | |||
| return m_world; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,293 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2ContactManager.h" | |||
| #include "b2Body.h" | |||
| #include "b2Fixture.h" | |||
| #include "b2WorldCallbacks.h" | |||
| #include "Contacts/b2Contact.h" | |||
| b2ContactFilter b2_defaultFilter; | |||
| b2ContactListener b2_defaultListener; | |||
| b2ContactManager::b2ContactManager() | |||
| { | |||
| m_contactList = NULL; | |||
| m_contactCount = 0; | |||
| m_contactFilter = &b2_defaultFilter; | |||
| m_contactListener = &b2_defaultListener; | |||
| m_allocator = NULL; | |||
| } | |||
| void b2ContactManager::Destroy(b2Contact* c) | |||
| { | |||
| b2Fixture* fixtureA = c->GetFixtureA(); | |||
| b2Fixture* fixtureB = c->GetFixtureB(); | |||
| b2Body* bodyA = fixtureA->GetBody(); | |||
| b2Body* bodyB = fixtureB->GetBody(); | |||
| if (m_contactListener && c->IsTouching()) | |||
| { | |||
| m_contactListener->EndContact(c); | |||
| } | |||
| // Remove from the world. | |||
| if (c->m_prev) | |||
| { | |||
| c->m_prev->m_next = c->m_next; | |||
| } | |||
| if (c->m_next) | |||
| { | |||
| c->m_next->m_prev = c->m_prev; | |||
| } | |||
| if (c == m_contactList) | |||
| { | |||
| m_contactList = c->m_next; | |||
| } | |||
| // Remove from body 1 | |||
| if (c->m_nodeA.prev) | |||
| { | |||
| c->m_nodeA.prev->next = c->m_nodeA.next; | |||
| } | |||
| if (c->m_nodeA.next) | |||
| { | |||
| c->m_nodeA.next->prev = c->m_nodeA.prev; | |||
| } | |||
| if (&c->m_nodeA == bodyA->m_contactList) | |||
| { | |||
| bodyA->m_contactList = c->m_nodeA.next; | |||
| } | |||
| // Remove from body 2 | |||
| if (c->m_nodeB.prev) | |||
| { | |||
| c->m_nodeB.prev->next = c->m_nodeB.next; | |||
| } | |||
| if (c->m_nodeB.next) | |||
| { | |||
| c->m_nodeB.next->prev = c->m_nodeB.prev; | |||
| } | |||
| if (&c->m_nodeB == bodyB->m_contactList) | |||
| { | |||
| bodyB->m_contactList = c->m_nodeB.next; | |||
| } | |||
| // Call the factory. | |||
| b2Contact::Destroy(c, m_allocator); | |||
| --m_contactCount; | |||
| } | |||
| // This is the top level collision call for the time step. Here | |||
| // all the narrow phase collision is processed for the world | |||
| // contact list. | |||
| void b2ContactManager::Collide() | |||
| { | |||
| // Update awake contacts. | |||
| b2Contact* c = m_contactList; | |||
| while (c) | |||
| { | |||
| b2Fixture* fixtureA = c->GetFixtureA(); | |||
| b2Fixture* fixtureB = c->GetFixtureB(); | |||
| int32 indexA = c->GetChildIndexA(); | |||
| int32 indexB = c->GetChildIndexB(); | |||
| b2Body* bodyA = fixtureA->GetBody(); | |||
| b2Body* bodyB = fixtureB->GetBody(); | |||
| // Is this contact flagged for filtering? | |||
| if (c->m_flags & b2Contact::e_filterFlag) | |||
| { | |||
| // Should these bodies collide? | |||
| if (bodyB->ShouldCollide(bodyA) == false) | |||
| { | |||
| b2Contact* cNuke = c; | |||
| c = cNuke->GetNext(); | |||
| Destroy(cNuke); | |||
| continue; | |||
| } | |||
| // Check user filtering. | |||
| if (m_contactFilter && m_contactFilter->ShouldCollide(fixtureA, fixtureB) == false) | |||
| { | |||
| b2Contact* cNuke = c; | |||
| c = cNuke->GetNext(); | |||
| Destroy(cNuke); | |||
| continue; | |||
| } | |||
| // Clear the filtering flag. | |||
| c->m_flags &= ~b2Contact::e_filterFlag; | |||
| } | |||
| bool activeA = bodyA->IsAwake() && bodyA->m_type != b2_staticBody; | |||
| bool activeB = bodyB->IsAwake() && bodyB->m_type != b2_staticBody; | |||
| // At least one body must be awake and it must be dynamic or kinematic. | |||
| if (activeA == false && activeB == false) | |||
| { | |||
| c = c->GetNext(); | |||
| continue; | |||
| } | |||
| int32 proxyIdA = fixtureA->m_proxies[indexA].proxyId; | |||
| int32 proxyIdB = fixtureB->m_proxies[indexB].proxyId; | |||
| bool overlap = m_broadPhase.TestOverlap(proxyIdA, proxyIdB); | |||
| // Here we destroy contacts that cease to overlap in the broad-phase. | |||
| if (overlap == false) | |||
| { | |||
| b2Contact* cNuke = c; | |||
| c = cNuke->GetNext(); | |||
| Destroy(cNuke); | |||
| continue; | |||
| } | |||
| // The contact persists. | |||
| c->Update(m_contactListener); | |||
| c = c->GetNext(); | |||
| } | |||
| } | |||
| void b2ContactManager::FindNewContacts() | |||
| { | |||
| m_broadPhase.UpdatePairs(this); | |||
| } | |||
| void b2ContactManager::AddPair(void* proxyUserDataA, void* proxyUserDataB) | |||
| { | |||
| b2FixtureProxy* proxyA = (b2FixtureProxy*)proxyUserDataA; | |||
| b2FixtureProxy* proxyB = (b2FixtureProxy*)proxyUserDataB; | |||
| b2Fixture* fixtureA = proxyA->fixture; | |||
| b2Fixture* fixtureB = proxyB->fixture; | |||
| int32 indexA = proxyA->childIndex; | |||
| int32 indexB = proxyB->childIndex; | |||
| b2Body* bodyA = fixtureA->GetBody(); | |||
| b2Body* bodyB = fixtureB->GetBody(); | |||
| // Are the fixtures on the same body? | |||
| if (bodyA == bodyB) | |||
| { | |||
| return; | |||
| } | |||
| // TODO_ERIN use a hash table to remove a potential bottleneck when both | |||
| // bodies have a lot of contacts. | |||
| // Does a contact already exist? | |||
| b2ContactEdge* edge = bodyB->GetContactList(); | |||
| while (edge) | |||
| { | |||
| if (edge->other == bodyA) | |||
| { | |||
| b2Fixture* fA = edge->contact->GetFixtureA(); | |||
| b2Fixture* fB = edge->contact->GetFixtureB(); | |||
| int32 iA = edge->contact->GetChildIndexA(); | |||
| int32 iB = edge->contact->GetChildIndexB(); | |||
| if (fA == fixtureA && fB == fixtureB && iA == indexA && iB == indexB) | |||
| { | |||
| // A contact already exists. | |||
| return; | |||
| } | |||
| if (fA == fixtureB && fB == fixtureA && iA == indexB && iB == indexA) | |||
| { | |||
| // A contact already exists. | |||
| return; | |||
| } | |||
| } | |||
| edge = edge->next; | |||
| } | |||
| // Does a joint override collision? Is at least one body dynamic? | |||
| if (bodyB->ShouldCollide(bodyA) == false) | |||
| { | |||
| return; | |||
| } | |||
| // Check user filtering. | |||
| if (m_contactFilter && m_contactFilter->ShouldCollide(fixtureA, fixtureB) == false) | |||
| { | |||
| return; | |||
| } | |||
| // Call the factory. | |||
| b2Contact* c = b2Contact::Create(fixtureA, indexA, fixtureB, indexB, m_allocator); | |||
| if (c == NULL) | |||
| { | |||
| return; | |||
| } | |||
| // Contact creation may swap fixtures. | |||
| fixtureA = c->GetFixtureA(); | |||
| fixtureB = c->GetFixtureB(); | |||
| indexA = c->GetChildIndexA(); | |||
| indexB = c->GetChildIndexB(); | |||
| bodyA = fixtureA->GetBody(); | |||
| bodyB = fixtureB->GetBody(); | |||
| // Insert into the world. | |||
| c->m_prev = NULL; | |||
| c->m_next = m_contactList; | |||
| if (m_contactList != NULL) | |||
| { | |||
| m_contactList->m_prev = c; | |||
| } | |||
| m_contactList = c; | |||
| // Connect to island graph. | |||
| // Connect to body A | |||
| c->m_nodeA.contact = c; | |||
| c->m_nodeA.other = bodyB; | |||
| c->m_nodeA.prev = NULL; | |||
| c->m_nodeA.next = bodyA->m_contactList; | |||
| if (bodyA->m_contactList != NULL) | |||
| { | |||
| bodyA->m_contactList->prev = &c->m_nodeA; | |||
| } | |||
| bodyA->m_contactList = &c->m_nodeA; | |||
| // Connect to body B | |||
| c->m_nodeB.contact = c; | |||
| c->m_nodeB.other = bodyA; | |||
| c->m_nodeB.prev = NULL; | |||
| c->m_nodeB.next = bodyB->m_contactList; | |||
| if (bodyB->m_contactList != NULL) | |||
| { | |||
| bodyB->m_contactList->prev = &c->m_nodeB; | |||
| } | |||
| bodyB->m_contactList = &c->m_nodeB; | |||
| // Wake up the bodies | |||
| bodyA->SetAwake(true); | |||
| bodyB->SetAwake(true); | |||
| ++m_contactCount; | |||
| } | |||
| @@ -0,0 +1,52 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_CONTACT_MANAGER_H | |||
| #define B2_CONTACT_MANAGER_H | |||
| #include "../Collision/b2BroadPhase.h" | |||
| class b2Contact; | |||
| class b2ContactFilter; | |||
| class b2ContactListener; | |||
| class b2BlockAllocator; | |||
| // Delegate of b2World. | |||
| class b2ContactManager | |||
| { | |||
| public: | |||
| b2ContactManager(); | |||
| // Broad-phase callback. | |||
| void AddPair(void* proxyUserDataA, void* proxyUserDataB); | |||
| void FindNewContacts(); | |||
| void Destroy(b2Contact* c); | |||
| void Collide(); | |||
| b2BroadPhase m_broadPhase; | |||
| b2Contact* m_contactList; | |||
| int32 m_contactCount; | |||
| b2ContactFilter* m_contactFilter; | |||
| b2ContactListener* m_contactListener; | |||
| b2BlockAllocator* m_allocator; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,303 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Fixture.h" | |||
| #include "Contacts/b2Contact.h" | |||
| #include "b2World.h" | |||
| #include "../Collision/Shapes/b2CircleShape.h" | |||
| #include "../Collision/Shapes/b2EdgeShape.h" | |||
| #include "../Collision/Shapes/b2PolygonShape.h" | |||
| #include "../Collision/Shapes/b2ChainShape.h" | |||
| #include "../Collision/b2BroadPhase.h" | |||
| #include "../Collision/b2Collision.h" | |||
| #include "../Common/b2BlockAllocator.h" | |||
| b2Fixture::b2Fixture() | |||
| { | |||
| m_userData = NULL; | |||
| m_body = NULL; | |||
| m_next = NULL; | |||
| m_proxies = NULL; | |||
| m_proxyCount = 0; | |||
| m_shape = NULL; | |||
| m_density = 0.0f; | |||
| } | |||
| void b2Fixture::Create(b2BlockAllocator* allocator, b2Body* body, const b2FixtureDef* def) | |||
| { | |||
| m_userData = def->userData; | |||
| m_friction = def->friction; | |||
| m_restitution = def->restitution; | |||
| m_body = body; | |||
| m_next = NULL; | |||
| m_filter = def->filter; | |||
| m_isSensor = def->isSensor; | |||
| m_shape = def->shape->Clone(allocator); | |||
| // Reserve proxy space | |||
| int32 childCount = m_shape->GetChildCount(); | |||
| m_proxies = (b2FixtureProxy*)allocator->Allocate(childCount * sizeof(b2FixtureProxy)); | |||
| for (int32 i = 0; i < childCount; ++i) | |||
| { | |||
| m_proxies[i].fixture = NULL; | |||
| m_proxies[i].proxyId = b2BroadPhase::e_nullProxy; | |||
| } | |||
| m_proxyCount = 0; | |||
| m_density = def->density; | |||
| } | |||
| void b2Fixture::Destroy(b2BlockAllocator* allocator) | |||
| { | |||
| // The proxies must be destroyed before calling this. | |||
| b2Assert(m_proxyCount == 0); | |||
| // Free the proxy array. | |||
| int32 childCount = m_shape->GetChildCount(); | |||
| allocator->Free(m_proxies, childCount * sizeof(b2FixtureProxy)); | |||
| m_proxies = NULL; | |||
| // Free the child shape. | |||
| switch (m_shape->m_type) | |||
| { | |||
| case b2Shape::e_circle: | |||
| { | |||
| b2CircleShape* s = (b2CircleShape*)m_shape; | |||
| s->~b2CircleShape(); | |||
| allocator->Free(s, sizeof(b2CircleShape)); | |||
| } | |||
| break; | |||
| case b2Shape::e_edge: | |||
| { | |||
| b2EdgeShape* s = (b2EdgeShape*)m_shape; | |||
| s->~b2EdgeShape(); | |||
| allocator->Free(s, sizeof(b2EdgeShape)); | |||
| } | |||
| break; | |||
| case b2Shape::e_polygon: | |||
| { | |||
| b2PolygonShape* s = (b2PolygonShape*)m_shape; | |||
| s->~b2PolygonShape(); | |||
| allocator->Free(s, sizeof(b2PolygonShape)); | |||
| } | |||
| break; | |||
| case b2Shape::e_chain: | |||
| { | |||
| b2ChainShape* s = (b2ChainShape*)m_shape; | |||
| s->~b2ChainShape(); | |||
| allocator->Free(s, sizeof(b2ChainShape)); | |||
| } | |||
| break; | |||
| default: | |||
| b2Assert(false); | |||
| break; | |||
| } | |||
| m_shape = NULL; | |||
| } | |||
| void b2Fixture::CreateProxies(b2BroadPhase* broadPhase, const b2Transform& xf) | |||
| { | |||
| b2Assert(m_proxyCount == 0); | |||
| // Create proxies in the broad-phase. | |||
| m_proxyCount = m_shape->GetChildCount(); | |||
| for (int32 i = 0; i < m_proxyCount; ++i) | |||
| { | |||
| b2FixtureProxy* proxy = m_proxies + i; | |||
| m_shape->ComputeAABB(&proxy->aabb, xf, i); | |||
| proxy->proxyId = broadPhase->CreateProxy(proxy->aabb, proxy); | |||
| proxy->fixture = this; | |||
| proxy->childIndex = i; | |||
| } | |||
| } | |||
| void b2Fixture::DestroyProxies(b2BroadPhase* broadPhase) | |||
| { | |||
| // Destroy proxies in the broad-phase. | |||
| for (int32 i = 0; i < m_proxyCount; ++i) | |||
| { | |||
| b2FixtureProxy* proxy = m_proxies + i; | |||
| broadPhase->DestroyProxy(proxy->proxyId); | |||
| proxy->proxyId = b2BroadPhase::e_nullProxy; | |||
| } | |||
| m_proxyCount = 0; | |||
| } | |||
| void b2Fixture::Synchronize(b2BroadPhase* broadPhase, const b2Transform& transform1, const b2Transform& transform2) | |||
| { | |||
| if (m_proxyCount == 0) | |||
| { | |||
| return; | |||
| } | |||
| for (int32 i = 0; i < m_proxyCount; ++i) | |||
| { | |||
| b2FixtureProxy* proxy = m_proxies + i; | |||
| // Compute an AABB that covers the swept shape (may miss some rotation effect). | |||
| b2AABB aabb1, aabb2; | |||
| m_shape->ComputeAABB(&aabb1, transform1, proxy->childIndex); | |||
| m_shape->ComputeAABB(&aabb2, transform2, proxy->childIndex); | |||
| proxy->aabb.Combine(aabb1, aabb2); | |||
| b2Vec2 displacement = transform2.p - transform1.p; | |||
| broadPhase->MoveProxy(proxy->proxyId, proxy->aabb, displacement); | |||
| } | |||
| } | |||
| void b2Fixture::SetFilterData(const b2Filter& filter) | |||
| { | |||
| m_filter = filter; | |||
| Refilter(); | |||
| } | |||
| void b2Fixture::Refilter() | |||
| { | |||
| if (m_body == NULL) | |||
| { | |||
| return; | |||
| } | |||
| // Flag associated contacts for filtering. | |||
| b2ContactEdge* edge = m_body->GetContactList(); | |||
| while (edge) | |||
| { | |||
| b2Contact* contact = edge->contact; | |||
| b2Fixture* fixtureA = contact->GetFixtureA(); | |||
| b2Fixture* fixtureB = contact->GetFixtureB(); | |||
| if (fixtureA == this || fixtureB == this) | |||
| { | |||
| contact->FlagForFiltering(); | |||
| } | |||
| edge = edge->next; | |||
| } | |||
| b2World* world = m_body->GetWorld(); | |||
| if (world == NULL) | |||
| { | |||
| return; | |||
| } | |||
| // Touch each proxy so that new pairs may be created | |||
| b2BroadPhase* broadPhase = &world->m_contactManager.m_broadPhase; | |||
| for (int32 i = 0; i < m_proxyCount; ++i) | |||
| { | |||
| broadPhase->TouchProxy(m_proxies[i].proxyId); | |||
| } | |||
| } | |||
| void b2Fixture::SetSensor(bool sensor) | |||
| { | |||
| if (sensor != m_isSensor) | |||
| { | |||
| m_body->SetAwake(true); | |||
| m_isSensor = sensor; | |||
| } | |||
| } | |||
| void b2Fixture::Dump(int32 bodyIndex) | |||
| { | |||
| b2Log(" b2FixtureDef fd;\n"); | |||
| b2Log(" fd.friction = %.15lef;\n", m_friction); | |||
| b2Log(" fd.restitution = %.15lef;\n", m_restitution); | |||
| b2Log(" fd.density = %.15lef;\n", m_density); | |||
| b2Log(" fd.isSensor = bool(%d);\n", m_isSensor); | |||
| b2Log(" fd.filter.categoryBits = uint16(%d);\n", m_filter.categoryBits); | |||
| b2Log(" fd.filter.maskBits = uint16(%d);\n", m_filter.maskBits); | |||
| b2Log(" fd.filter.groupIndex = int16(%d);\n", m_filter.groupIndex); | |||
| switch (m_shape->m_type) | |||
| { | |||
| case b2Shape::e_circle: | |||
| { | |||
| b2CircleShape* s = (b2CircleShape*)m_shape; | |||
| b2Log(" b2CircleShape shape;\n"); | |||
| b2Log(" shape.m_radius = %.15lef;\n", s->m_radius); | |||
| b2Log(" shape.m_p.Set(%.15lef, %.15lef);\n", s->m_p.x, s->m_p.y); | |||
| } | |||
| break; | |||
| case b2Shape::e_edge: | |||
| { | |||
| b2EdgeShape* s = (b2EdgeShape*)m_shape; | |||
| b2Log(" b2EdgeShape shape;\n"); | |||
| b2Log(" shape.m_radius = %.15lef;\n", s->m_radius); | |||
| b2Log(" shape.m_vertex0.Set(%.15lef, %.15lef);\n", s->m_vertex0.x, s->m_vertex0.y); | |||
| b2Log(" shape.m_vertex1.Set(%.15lef, %.15lef);\n", s->m_vertex1.x, s->m_vertex1.y); | |||
| b2Log(" shape.m_vertex2.Set(%.15lef, %.15lef);\n", s->m_vertex2.x, s->m_vertex2.y); | |||
| b2Log(" shape.m_vertex3.Set(%.15lef, %.15lef);\n", s->m_vertex3.x, s->m_vertex3.y); | |||
| b2Log(" shape.m_hasVertex0 = bool(%d);\n", s->m_hasVertex0); | |||
| b2Log(" shape.m_hasVertex3 = bool(%d);\n", s->m_hasVertex3); | |||
| } | |||
| break; | |||
| case b2Shape::e_polygon: | |||
| { | |||
| b2PolygonShape* s = (b2PolygonShape*)m_shape; | |||
| b2Log(" b2PolygonShape shape;\n"); | |||
| b2Log(" b2Vec2 vs[%d];\n", b2_maxPolygonVertices); | |||
| for (int32 i = 0; i < s->m_vertexCount; ++i) | |||
| { | |||
| b2Log(" vs[%d].Set(%.15lef, %.15lef);\n", i, s->m_vertices[i].x, s->m_vertices[i].y); | |||
| } | |||
| b2Log(" shape.Set(vs, %d);\n", s->m_vertexCount); | |||
| } | |||
| break; | |||
| case b2Shape::e_chain: | |||
| { | |||
| b2ChainShape* s = (b2ChainShape*)m_shape; | |||
| b2Log(" b2ChainShape shape;\n"); | |||
| b2Log(" b2Vec2 vs[%d];\n", s->m_count); | |||
| for (int32 i = 0; i < s->m_count; ++i) | |||
| { | |||
| b2Log(" vs[%d].Set(%.15lef, %.15lef);\n", i, s->m_vertices[i].x, s->m_vertices[i].y); | |||
| } | |||
| b2Log(" shape.CreateChain(vs, %d);\n", s->m_count); | |||
| b2Log(" shape.m_prevVertex.Set(%.15lef, %.15lef);\n", s->m_prevVertex.x, s->m_prevVertex.y); | |||
| b2Log(" shape.m_nextVertex.Set(%.15lef, %.15lef);\n", s->m_nextVertex.x, s->m_nextVertex.y); | |||
| b2Log(" shape.m_hasPrevVertex = bool(%d);\n", s->m_hasPrevVertex); | |||
| b2Log(" shape.m_hasNextVertex = bool(%d);\n", s->m_hasNextVertex); | |||
| } | |||
| break; | |||
| default: | |||
| return; | |||
| } | |||
| b2Log("\n"); | |||
| b2Log(" fd.shape = &shape;\n"); | |||
| b2Log("\n"); | |||
| b2Log(" bodies[%d]->CreateFixture(&fd);\n", bodyIndex); | |||
| } | |||
| @@ -0,0 +1,345 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_FIXTURE_H | |||
| #define B2_FIXTURE_H | |||
| #include "b2Body.h" | |||
| #include "../Collision/b2Collision.h" | |||
| #include "../Collision/Shapes/b2Shape.h" | |||
| class b2BlockAllocator; | |||
| class b2Body; | |||
| class b2BroadPhase; | |||
| class b2Fixture; | |||
| /// This holds contact filtering data. | |||
| struct b2Filter | |||
| { | |||
| b2Filter() | |||
| { | |||
| categoryBits = 0x0001; | |||
| maskBits = 0xFFFF; | |||
| groupIndex = 0; | |||
| } | |||
| /// The collision category bits. Normally you would just set one bit. | |||
| uint16 categoryBits; | |||
| /// The collision mask bits. This states the categories that this | |||
| /// shape would accept for collision. | |||
| uint16 maskBits; | |||
| /// Collision groups allow a certain group of objects to never collide (negative) | |||
| /// or always collide (positive). Zero means no collision group. Non-zero group | |||
| /// filtering always wins against the mask bits. | |||
| int16 groupIndex; | |||
| }; | |||
| /// A fixture definition is used to create a fixture. This class defines an | |||
| /// abstract fixture definition. You can reuse fixture definitions safely. | |||
| struct b2FixtureDef | |||
| { | |||
| /// The constructor sets the default fixture definition values. | |||
| b2FixtureDef() | |||
| { | |||
| shape = NULL; | |||
| userData = NULL; | |||
| friction = 0.2f; | |||
| restitution = 0.0f; | |||
| density = 0.0f; | |||
| isSensor = false; | |||
| } | |||
| /// The shape, this must be set. The shape will be cloned, so you | |||
| /// can create the shape on the stack. | |||
| const b2Shape* shape; | |||
| /// Use this to store application specific fixture data. | |||
| void* userData; | |||
| /// The friction coefficient, usually in the range [0,1]. | |||
| float32 friction; | |||
| /// The restitution (elasticity) usually in the range [0,1]. | |||
| float32 restitution; | |||
| /// The density, usually in kg/m^2. | |||
| float32 density; | |||
| /// A sensor shape collects contact information but never generates a collision | |||
| /// response. | |||
| bool isSensor; | |||
| /// Contact filtering data. | |||
| b2Filter filter; | |||
| }; | |||
| /// This proxy is used internally to connect fixtures to the broad-phase. | |||
| struct b2FixtureProxy | |||
| { | |||
| b2AABB aabb; | |||
| b2Fixture* fixture; | |||
| int32 childIndex; | |||
| int32 proxyId; | |||
| }; | |||
| /// A fixture is used to attach a shape to a body for collision detection. A fixture | |||
| /// inherits its transform from its parent. Fixtures hold additional non-geometric data | |||
| /// such as friction, collision filters, etc. | |||
| /// Fixtures are created via b2Body::CreateFixture. | |||
| /// @warning you cannot reuse fixtures. | |||
| class b2Fixture | |||
| { | |||
| public: | |||
| /// Get the type of the child shape. You can use this to down cast to the concrete shape. | |||
| /// @return the shape type. | |||
| b2Shape::Type GetType() const; | |||
| /// Get the child shape. You can modify the child shape, however you should not change the | |||
| /// number of vertices because this will crash some collision caching mechanisms. | |||
| /// Manipulating the shape may lead to non-physical behavior. | |||
| b2Shape* GetShape(); | |||
| const b2Shape* GetShape() const; | |||
| /// Set if this fixture is a sensor. | |||
| void SetSensor(bool sensor); | |||
| /// Is this fixture a sensor (non-solid)? | |||
| /// @return the true if the shape is a sensor. | |||
| bool IsSensor() const; | |||
| /// Set the contact filtering data. This will not update contacts until the next time | |||
| /// step when either parent body is active and awake. | |||
| /// This automatically calls Refilter. | |||
| void SetFilterData(const b2Filter& filter); | |||
| /// Get the contact filtering data. | |||
| const b2Filter& GetFilterData() const; | |||
| /// Call this if you want to establish collision that was previously disabled by b2ContactFilter::ShouldCollide. | |||
| void Refilter(); | |||
| /// Get the parent body of this fixture. This is NULL if the fixture is not attached. | |||
| /// @return the parent body. | |||
| b2Body* GetBody(); | |||
| const b2Body* GetBody() const; | |||
| /// Get the next fixture in the parent body's fixture list. | |||
| /// @return the next shape. | |||
| b2Fixture* GetNext(); | |||
| const b2Fixture* GetNext() const; | |||
| /// Get the user data that was assigned in the fixture definition. Use this to | |||
| /// store your application specific data. | |||
| void* GetUserData() const; | |||
| /// Set the user data. Use this to store your application specific data. | |||
| void SetUserData(void* data); | |||
| /// Test a point for containment in this fixture. | |||
| /// @param p a point in world coordinates. | |||
| bool TestPoint(const b2Vec2& p) const; | |||
| /// Cast a ray against this shape. | |||
| /// @param output the ray-cast results. | |||
| /// @param input the ray-cast input parameters. | |||
| bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input, int32 childIndex) const; | |||
| /// Get the mass data for this fixture. The mass data is based on the density and | |||
| /// the shape. The rotational inertia is about the shape's origin. This operation | |||
| /// may be expensive. | |||
| void GetMassData(b2MassData* massData) const; | |||
| /// Set the density of this fixture. This will _not_ automatically adjust the mass | |||
| /// of the body. You must call b2Body::ResetMassData to update the body's mass. | |||
| void SetDensity(float32 density); | |||
| /// Get the density of this fixture. | |||
| float32 GetDensity() const; | |||
| /// Get the coefficient of friction. | |||
| float32 GetFriction() const; | |||
| /// Set the coefficient of friction. This will _not_ change the friction of | |||
| /// existing contacts. | |||
| void SetFriction(float32 friction); | |||
| /// Get the coefficient of restitution. | |||
| float32 GetRestitution() const; | |||
| /// Set the coefficient of restitution. This will _not_ change the restitution of | |||
| /// existing contacts. | |||
| void SetRestitution(float32 restitution); | |||
| /// Get the fixture's AABB. This AABB may be enlarge and/or stale. | |||
| /// If you need a more accurate AABB, compute it using the shape and | |||
| /// the body transform. | |||
| const b2AABB& GetAABB(int32 childIndex) const; | |||
| /// Dump this fixture to the log file. | |||
| void Dump(int32 bodyIndex); | |||
| protected: | |||
| friend class b2Body; | |||
| friend class b2World; | |||
| friend class b2Contact; | |||
| friend class b2ContactManager; | |||
| b2Fixture(); | |||
| // We need separation create/destroy functions from the constructor/destructor because | |||
| // the destructor cannot access the allocator (no destructor arguments allowed by C++). | |||
| void Create(b2BlockAllocator* allocator, b2Body* body, const b2FixtureDef* def); | |||
| void Destroy(b2BlockAllocator* allocator); | |||
| // These support body activation/deactivation. | |||
| void CreateProxies(b2BroadPhase* broadPhase, const b2Transform& xf); | |||
| void DestroyProxies(b2BroadPhase* broadPhase); | |||
| void Synchronize(b2BroadPhase* broadPhase, const b2Transform& xf1, const b2Transform& xf2); | |||
| float32 m_density; | |||
| b2Fixture* m_next; | |||
| b2Body* m_body; | |||
| b2Shape* m_shape; | |||
| float32 m_friction; | |||
| float32 m_restitution; | |||
| b2FixtureProxy* m_proxies; | |||
| int32 m_proxyCount; | |||
| b2Filter m_filter; | |||
| bool m_isSensor; | |||
| void* m_userData; | |||
| }; | |||
| inline b2Shape::Type b2Fixture::GetType() const | |||
| { | |||
| return m_shape->GetType(); | |||
| } | |||
| inline b2Shape* b2Fixture::GetShape() | |||
| { | |||
| return m_shape; | |||
| } | |||
| inline const b2Shape* b2Fixture::GetShape() const | |||
| { | |||
| return m_shape; | |||
| } | |||
| inline bool b2Fixture::IsSensor() const | |||
| { | |||
| return m_isSensor; | |||
| } | |||
| inline const b2Filter& b2Fixture::GetFilterData() const | |||
| { | |||
| return m_filter; | |||
| } | |||
| inline void* b2Fixture::GetUserData() const | |||
| { | |||
| return m_userData; | |||
| } | |||
| inline void b2Fixture::SetUserData(void* data) | |||
| { | |||
| m_userData = data; | |||
| } | |||
| inline b2Body* b2Fixture::GetBody() | |||
| { | |||
| return m_body; | |||
| } | |||
| inline const b2Body* b2Fixture::GetBody() const | |||
| { | |||
| return m_body; | |||
| } | |||
| inline b2Fixture* b2Fixture::GetNext() | |||
| { | |||
| return m_next; | |||
| } | |||
| inline const b2Fixture* b2Fixture::GetNext() const | |||
| { | |||
| return m_next; | |||
| } | |||
| inline void b2Fixture::SetDensity(float32 density) | |||
| { | |||
| b2Assert(b2IsValid(density) && density >= 0.0f); | |||
| m_density = density; | |||
| } | |||
| inline float32 b2Fixture::GetDensity() const | |||
| { | |||
| return m_density; | |||
| } | |||
| inline float32 b2Fixture::GetFriction() const | |||
| { | |||
| return m_friction; | |||
| } | |||
| inline void b2Fixture::SetFriction(float32 friction) | |||
| { | |||
| m_friction = friction; | |||
| } | |||
| inline float32 b2Fixture::GetRestitution() const | |||
| { | |||
| return m_restitution; | |||
| } | |||
| inline void b2Fixture::SetRestitution(float32 restitution) | |||
| { | |||
| m_restitution = restitution; | |||
| } | |||
| inline bool b2Fixture::TestPoint(const b2Vec2& p) const | |||
| { | |||
| return m_shape->TestPoint(m_body->GetTransform(), p); | |||
| } | |||
| inline bool b2Fixture::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, int32 childIndex) const | |||
| { | |||
| return m_shape->RayCast(output, input, m_body->GetTransform(), childIndex); | |||
| } | |||
| inline void b2Fixture::GetMassData(b2MassData* massData) const | |||
| { | |||
| m_shape->ComputeMass(massData, m_density); | |||
| } | |||
| inline const b2AABB& b2Fixture::GetAABB(int32 childIndex) const | |||
| { | |||
| b2Assert(0 <= childIndex && childIndex < m_proxyCount); | |||
| return m_proxies[childIndex].aabb; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,539 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "../Collision/b2Distance.h" | |||
| #include "b2Island.h" | |||
| #include "b2Body.h" | |||
| #include "b2Fixture.h" | |||
| #include "b2World.h" | |||
| #include "Contacts/b2Contact.h" | |||
| #include "Contacts/b2ContactSolver.h" | |||
| #include "Joints/b2Joint.h" | |||
| #include "../Common/b2StackAllocator.h" | |||
| #include "../Common/b2Timer.h" | |||
| /* | |||
| Position Correction Notes | |||
| ========================= | |||
| I tried the several algorithms for position correction of the 2D revolute joint. | |||
| I looked at these systems: | |||
| - simple pendulum (1m diameter sphere on massless 5m stick) with initial angular velocity of 100 rad/s. | |||
| - suspension bridge with 30 1m long planks of length 1m. | |||
| - multi-link chain with 30 1m long links. | |||
| Here are the algorithms: | |||
| Baumgarte - A fraction of the position error is added to the velocity error. There is no | |||
| separate position solver. | |||
| Pseudo Velocities - After the velocity solver and position integration, | |||
| the position error, Jacobian, and effective mass are recomputed. Then | |||
| the velocity constraints are solved with pseudo velocities and a fraction | |||
| of the position error is added to the pseudo velocity error. The pseudo | |||
| velocities are initialized to zero and there is no warm-starting. After | |||
| the position solver, the pseudo velocities are added to the positions. | |||
| This is also called the First Order World method or the Position LCP method. | |||
| Modified Nonlinear Gauss-Seidel (NGS) - Like Pseudo Velocities except the | |||
| position error is re-computed for each constraint and the positions are updated | |||
| after the constraint is solved. The radius vectors (aka Jacobians) are | |||
| re-computed too (otherwise the algorithm has horrible instability). The pseudo | |||
| velocity states are not needed because they are effectively zero at the beginning | |||
| of each iteration. Since we have the current position error, we allow the | |||
| iterations to terminate early if the error becomes smaller than b2_linearSlop. | |||
| Full NGS or just NGS - Like Modified NGS except the effective mass are re-computed | |||
| each time a constraint is solved. | |||
| Here are the results: | |||
| Baumgarte - this is the cheapest algorithm but it has some stability problems, | |||
| especially with the bridge. The chain links separate easily close to the root | |||
| and they jitter as they struggle to pull together. This is one of the most common | |||
| methods in the field. The big drawback is that the position correction artificially | |||
| affects the momentum, thus leading to instabilities and false bounce. I used a | |||
| bias factor of 0.2. A larger bias factor makes the bridge less stable, a smaller | |||
| factor makes joints and contacts more spongy. | |||
| Pseudo Velocities - the is more stable than the Baumgarte method. The bridge is | |||
| stable. However, joints still separate with large angular velocities. Drag the | |||
| simple pendulum in a circle quickly and the joint will separate. The chain separates | |||
| easily and does not recover. I used a bias factor of 0.2. A larger value lead to | |||
| the bridge collapsing when a heavy cube drops on it. | |||
| Modified NGS - this algorithm is better in some ways than Baumgarte and Pseudo | |||
| Velocities, but in other ways it is worse. The bridge and chain are much more | |||
| stable, but the simple pendulum goes unstable at high angular velocities. | |||
| Full NGS - stable in all tests. The joints display good stiffness. The bridge | |||
| still sags, but this is better than infinite forces. | |||
| Recommendations | |||
| Pseudo Velocities are not really worthwhile because the bridge and chain cannot | |||
| recover from joint separation. In other cases the benefit over Baumgarte is small. | |||
| Modified NGS is not a robust method for the revolute joint due to the violent | |||
| instability seen in the simple pendulum. Perhaps it is viable with other constraint | |||
| types, especially scalar constraints where the effective mass is a scalar. | |||
| This leaves Baumgarte and Full NGS. Baumgarte has small, but manageable instabilities | |||
| and is very fast. I don't think we can escape Baumgarte, especially in highly | |||
| demanding cases where high constraint fidelity is not needed. | |||
| Full NGS is robust and easy on the eyes. I recommend this as an option for | |||
| higher fidelity simulation and certainly for suspension bridges and long chains. | |||
| Full NGS might be a good choice for ragdolls, especially motorized ragdolls where | |||
| joint separation can be problematic. The number of NGS iterations can be reduced | |||
| for better performance without harming robustness much. | |||
| Each joint in a can be handled differently in the position solver. So I recommend | |||
| a system where the user can select the algorithm on a per joint basis. I would | |||
| probably default to the slower Full NGS and let the user select the faster | |||
| Baumgarte method in performance critical scenarios. | |||
| */ | |||
| /* | |||
| Cache Performance | |||
| The Box2D solvers are dominated by cache misses. Data structures are designed | |||
| to increase the number of cache hits. Much of misses are due to random access | |||
| to body data. The constraint structures are iterated over linearly, which leads | |||
| to few cache misses. | |||
| The bodies are not accessed during iteration. Instead read only data, such as | |||
| the mass values are stored with the constraints. The mutable data are the constraint | |||
| impulses and the bodies velocities/positions. The impulses are held inside the | |||
| constraint structures. The body velocities/positions are held in compact, temporary | |||
| arrays to increase the number of cache hits. Linear and angular velocity are | |||
| stored in a single array since multiple arrays lead to multiple misses. | |||
| */ | |||
| /* | |||
| 2D Rotation | |||
| R = [cos(theta) -sin(theta)] | |||
| [sin(theta) cos(theta) ] | |||
| thetaDot = omega | |||
| Let q1 = cos(theta), q2 = sin(theta). | |||
| R = [q1 -q2] | |||
| [q2 q1] | |||
| q1Dot = -thetaDot * q2 | |||
| q2Dot = thetaDot * q1 | |||
| q1_new = q1_old - dt * w * q2 | |||
| q2_new = q2_old + dt * w * q1 | |||
| then normalize. | |||
| This might be faster than computing sin+cos. | |||
| However, we can compute sin+cos of the same angle fast. | |||
| */ | |||
| b2Island::b2Island( | |||
| int32 bodyCapacity, | |||
| int32 contactCapacity, | |||
| int32 jointCapacity, | |||
| b2StackAllocator* allocator, | |||
| b2ContactListener* listener) | |||
| { | |||
| m_bodyCapacity = bodyCapacity; | |||
| m_contactCapacity = contactCapacity; | |||
| m_jointCapacity = jointCapacity; | |||
| m_bodyCount = 0; | |||
| m_contactCount = 0; | |||
| m_jointCount = 0; | |||
| m_allocator = allocator; | |||
| m_listener = listener; | |||
| m_bodies = (b2Body**)m_allocator->Allocate(bodyCapacity * sizeof(b2Body*)); | |||
| m_contacts = (b2Contact**)m_allocator->Allocate(contactCapacity * sizeof(b2Contact*)); | |||
| m_joints = (b2Joint**)m_allocator->Allocate(jointCapacity * sizeof(b2Joint*)); | |||
| m_velocities = (b2Velocity*)m_allocator->Allocate(m_bodyCapacity * sizeof(b2Velocity)); | |||
| m_positions = (b2Position*)m_allocator->Allocate(m_bodyCapacity * sizeof(b2Position)); | |||
| } | |||
| b2Island::~b2Island() | |||
| { | |||
| // Warning: the order should reverse the constructor order. | |||
| m_allocator->Free(m_positions); | |||
| m_allocator->Free(m_velocities); | |||
| m_allocator->Free(m_joints); | |||
| m_allocator->Free(m_contacts); | |||
| m_allocator->Free(m_bodies); | |||
| } | |||
| void b2Island::Solve(b2Profile* profile, const b2TimeStep& step, const b2Vec2& gravity, bool allowSleep) | |||
| { | |||
| b2Timer timer; | |||
| float32 h = step.dt; | |||
| // Integrate velocities and apply damping. Initialize the body state. | |||
| for (int32 i = 0; i < m_bodyCount; ++i) | |||
| { | |||
| b2Body* b = m_bodies[i]; | |||
| b2Vec2 c = b->m_sweep.c; | |||
| float32 a = b->m_sweep.a; | |||
| b2Vec2 v = b->m_linearVelocity; | |||
| float32 w = b->m_angularVelocity; | |||
| // Store positions for continuous collision. | |||
| b->m_sweep.c0 = b->m_sweep.c; | |||
| b->m_sweep.a0 = b->m_sweep.a; | |||
| if (b->m_type == b2_dynamicBody) | |||
| { | |||
| // Integrate velocities. | |||
| v += h * (b->m_gravityScale * gravity + b->m_invMass * b->m_force); | |||
| w += h * b->m_invI * b->m_torque; | |||
| // Apply damping. | |||
| // ODE: dv/dt + c * v = 0 | |||
| // Solution: v(t) = v0 * exp(-c * t) | |||
| // Time step: v(t + dt) = v0 * exp(-c * (t + dt)) = v0 * exp(-c * t) * exp(-c * dt) = v * exp(-c * dt) | |||
| // v2 = exp(-c * dt) * v1 | |||
| // Taylor expansion: | |||
| // v2 = (1.0f - c * dt) * v1 | |||
| v *= b2Clamp(1.0f - h * b->m_linearDamping, 0.0f, 1.0f); | |||
| w *= b2Clamp(1.0f - h * b->m_angularDamping, 0.0f, 1.0f); | |||
| } | |||
| m_positions[i].c = c; | |||
| m_positions[i].a = a; | |||
| m_velocities[i].v = v; | |||
| m_velocities[i].w = w; | |||
| } | |||
| timer.Reset(); | |||
| // Solver data | |||
| b2SolverData solverData; | |||
| solverData.step = step; | |||
| solverData.positions = m_positions; | |||
| solverData.velocities = m_velocities; | |||
| // Initialize velocity constraints. | |||
| b2ContactSolverDef contactSolverDef; | |||
| contactSolverDef.step = step; | |||
| contactSolverDef.contacts = m_contacts; | |||
| contactSolverDef.count = m_contactCount; | |||
| contactSolverDef.positions = m_positions; | |||
| contactSolverDef.velocities = m_velocities; | |||
| contactSolverDef.allocator = m_allocator; | |||
| b2ContactSolver contactSolver(&contactSolverDef); | |||
| contactSolver.InitializeVelocityConstraints(); | |||
| if (step.warmStarting) | |||
| { | |||
| contactSolver.WarmStart(); | |||
| } | |||
| for (int32 i = 0; i < m_jointCount; ++i) | |||
| { | |||
| m_joints[i]->InitVelocityConstraints(solverData); | |||
| } | |||
| profile->solveInit = timer.GetMilliseconds(); | |||
| // Solve velocity constraints | |||
| timer.Reset(); | |||
| for (int32 i = 0; i < step.velocityIterations; ++i) | |||
| { | |||
| for (int32 j = 0; j < m_jointCount; ++j) | |||
| { | |||
| m_joints[j]->SolveVelocityConstraints(solverData); | |||
| } | |||
| contactSolver.SolveVelocityConstraints(); | |||
| } | |||
| // Store impulses for warm starting | |||
| contactSolver.StoreImpulses(); | |||
| profile->solveVelocity = timer.GetMilliseconds(); | |||
| // Integrate positions | |||
| for (int32 i = 0; i < m_bodyCount; ++i) | |||
| { | |||
| b2Vec2 c = m_positions[i].c; | |||
| float32 a = m_positions[i].a; | |||
| b2Vec2 v = m_velocities[i].v; | |||
| float32 w = m_velocities[i].w; | |||
| // Check for large velocities | |||
| b2Vec2 translation = h * v; | |||
| if (b2Dot(translation, translation) > b2_maxTranslationSquared) | |||
| { | |||
| float32 ratio = b2_maxTranslation / translation.Length(); | |||
| v *= ratio; | |||
| } | |||
| float32 rotation = h * w; | |||
| if (rotation * rotation > b2_maxRotationSquared) | |||
| { | |||
| float32 ratio = b2_maxRotation / b2Abs(rotation); | |||
| w *= ratio; | |||
| } | |||
| // Integrate | |||
| c += h * v; | |||
| a += h * w; | |||
| m_positions[i].c = c; | |||
| m_positions[i].a = a; | |||
| m_velocities[i].v = v; | |||
| m_velocities[i].w = w; | |||
| } | |||
| // Solve position constraints | |||
| timer.Reset(); | |||
| bool positionSolved = false; | |||
| for (int32 i = 0; i < step.positionIterations; ++i) | |||
| { | |||
| bool contactsOkay = contactSolver.SolvePositionConstraints(); | |||
| bool jointsOkay = true; | |||
| for (int32 i = 0; i < m_jointCount; ++i) | |||
| { | |||
| bool jointOkay = m_joints[i]->SolvePositionConstraints(solverData); | |||
| jointsOkay = jointsOkay && jointOkay; | |||
| } | |||
| if (contactsOkay && jointsOkay) | |||
| { | |||
| // Exit early if the position errors are small. | |||
| positionSolved = true; | |||
| break; | |||
| } | |||
| } | |||
| // Copy state buffers back to the bodies | |||
| for (int32 i = 0; i < m_bodyCount; ++i) | |||
| { | |||
| b2Body* body = m_bodies[i]; | |||
| body->m_sweep.c = m_positions[i].c; | |||
| body->m_sweep.a = m_positions[i].a; | |||
| body->m_linearVelocity = m_velocities[i].v; | |||
| body->m_angularVelocity = m_velocities[i].w; | |||
| body->SynchronizeTransform(); | |||
| } | |||
| profile->solvePosition = timer.GetMilliseconds(); | |||
| Report(contactSolver.m_velocityConstraints); | |||
| if (allowSleep) | |||
| { | |||
| float32 minSleepTime = b2_maxFloat; | |||
| const float32 linTolSqr = b2_linearSleepTolerance * b2_linearSleepTolerance; | |||
| const float32 angTolSqr = b2_angularSleepTolerance * b2_angularSleepTolerance; | |||
| for (int32 i = 0; i < m_bodyCount; ++i) | |||
| { | |||
| b2Body* b = m_bodies[i]; | |||
| if (b->GetType() == b2_staticBody) | |||
| { | |||
| continue; | |||
| } | |||
| if ((b->m_flags & b2Body::e_autoSleepFlag) == 0 || | |||
| b->m_angularVelocity * b->m_angularVelocity > angTolSqr || | |||
| b2Dot(b->m_linearVelocity, b->m_linearVelocity) > linTolSqr) | |||
| { | |||
| b->m_sleepTime = 0.0f; | |||
| minSleepTime = 0.0f; | |||
| } | |||
| else | |||
| { | |||
| b->m_sleepTime += h; | |||
| minSleepTime = b2Min(minSleepTime, b->m_sleepTime); | |||
| } | |||
| } | |||
| if (minSleepTime >= b2_timeToSleep && positionSolved) | |||
| { | |||
| for (int32 i = 0; i < m_bodyCount; ++i) | |||
| { | |||
| b2Body* b = m_bodies[i]; | |||
| b->SetAwake(false); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void b2Island::SolveTOI(const b2TimeStep& subStep, int32 toiIndexA, int32 toiIndexB) | |||
| { | |||
| b2Assert(toiIndexA < m_bodyCount); | |||
| b2Assert(toiIndexB < m_bodyCount); | |||
| // Initialize the body state. | |||
| for (int32 i = 0; i < m_bodyCount; ++i) | |||
| { | |||
| b2Body* b = m_bodies[i]; | |||
| m_positions[i].c = b->m_sweep.c; | |||
| m_positions[i].a = b->m_sweep.a; | |||
| m_velocities[i].v = b->m_linearVelocity; | |||
| m_velocities[i].w = b->m_angularVelocity; | |||
| } | |||
| b2ContactSolverDef contactSolverDef; | |||
| contactSolverDef.contacts = m_contacts; | |||
| contactSolverDef.count = m_contactCount; | |||
| contactSolverDef.allocator = m_allocator; | |||
| contactSolverDef.step = subStep; | |||
| contactSolverDef.positions = m_positions; | |||
| contactSolverDef.velocities = m_velocities; | |||
| b2ContactSolver contactSolver(&contactSolverDef); | |||
| // Solve position constraints. | |||
| for (int32 i = 0; i < subStep.positionIterations; ++i) | |||
| { | |||
| bool contactsOkay = contactSolver.SolveTOIPositionConstraints(toiIndexA, toiIndexB); | |||
| if (contactsOkay) | |||
| { | |||
| break; | |||
| } | |||
| } | |||
| #if 0 | |||
| // Is the new position really safe? | |||
| for (int32 i = 0; i < m_contactCount; ++i) | |||
| { | |||
| b2Contact* c = m_contacts[i]; | |||
| b2Fixture* fA = c->GetFixtureA(); | |||
| b2Fixture* fB = c->GetFixtureB(); | |||
| b2Body* bA = fA->GetBody(); | |||
| b2Body* bB = fB->GetBody(); | |||
| int32 indexA = c->GetChildIndexA(); | |||
| int32 indexB = c->GetChildIndexB(); | |||
| b2DistanceInput input; | |||
| input.proxyA.Set(fA->GetShape(), indexA); | |||
| input.proxyB.Set(fB->GetShape(), indexB); | |||
| input.transformA = bA->GetTransform(); | |||
| input.transformB = bB->GetTransform(); | |||
| input.useRadii = false; | |||
| b2DistanceOutput output; | |||
| b2SimplexCache cache; | |||
| cache.count = 0; | |||
| b2Distance(&output, &cache, &input); | |||
| if (output.distance == 0 || cache.count == 3) | |||
| { | |||
| cache.count += 0; | |||
| } | |||
| } | |||
| #endif | |||
| // Leap of faith to new safe state. | |||
| m_bodies[toiIndexA]->m_sweep.c0 = m_positions[toiIndexA].c; | |||
| m_bodies[toiIndexA]->m_sweep.a0 = m_positions[toiIndexA].a; | |||
| m_bodies[toiIndexB]->m_sweep.c0 = m_positions[toiIndexB].c; | |||
| m_bodies[toiIndexB]->m_sweep.a0 = m_positions[toiIndexB].a; | |||
| // No warm starting is needed for TOI events because warm | |||
| // starting impulses were applied in the discrete solver. | |||
| contactSolver.InitializeVelocityConstraints(); | |||
| // Solve velocity constraints. | |||
| for (int32 i = 0; i < subStep.velocityIterations; ++i) | |||
| { | |||
| contactSolver.SolveVelocityConstraints(); | |||
| } | |||
| // Don't store the TOI contact forces for warm starting | |||
| // because they can be quite large. | |||
| float32 h = subStep.dt; | |||
| // Integrate positions | |||
| for (int32 i = 0; i < m_bodyCount; ++i) | |||
| { | |||
| b2Vec2 c = m_positions[i].c; | |||
| float32 a = m_positions[i].a; | |||
| b2Vec2 v = m_velocities[i].v; | |||
| float32 w = m_velocities[i].w; | |||
| // Check for large velocities | |||
| b2Vec2 translation = h * v; | |||
| if (b2Dot(translation, translation) > b2_maxTranslationSquared) | |||
| { | |||
| float32 ratio = b2_maxTranslation / translation.Length(); | |||
| v *= ratio; | |||
| } | |||
| float32 rotation = h * w; | |||
| if (rotation * rotation > b2_maxRotationSquared) | |||
| { | |||
| float32 ratio = b2_maxRotation / b2Abs(rotation); | |||
| w *= ratio; | |||
| } | |||
| // Integrate | |||
| c += h * v; | |||
| a += h * w; | |||
| m_positions[i].c = c; | |||
| m_positions[i].a = a; | |||
| m_velocities[i].v = v; | |||
| m_velocities[i].w = w; | |||
| // Sync bodies | |||
| b2Body* body = m_bodies[i]; | |||
| body->m_sweep.c = c; | |||
| body->m_sweep.a = a; | |||
| body->m_linearVelocity = v; | |||
| body->m_angularVelocity = w; | |||
| body->SynchronizeTransform(); | |||
| } | |||
| Report(contactSolver.m_velocityConstraints); | |||
| } | |||
| void b2Island::Report(const b2ContactVelocityConstraint* constraints) | |||
| { | |||
| if (m_listener == NULL) | |||
| { | |||
| return; | |||
| } | |||
| for (int32 i = 0; i < m_contactCount; ++i) | |||
| { | |||
| b2Contact* c = m_contacts[i]; | |||
| const b2ContactVelocityConstraint* vc = constraints + i; | |||
| b2ContactImpulse impulse; | |||
| impulse.count = vc->pointCount; | |||
| for (int32 j = 0; j < vc->pointCount; ++j) | |||
| { | |||
| impulse.normalImpulses[j] = vc->points[j].normalImpulse; | |||
| impulse.tangentImpulses[j] = vc->points[j].tangentImpulse; | |||
| } | |||
| m_listener->PostSolve(c, &impulse); | |||
| } | |||
| } | |||
| @@ -0,0 +1,93 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_ISLAND_H | |||
| #define B2_ISLAND_H | |||
| #include "../Common/b2Math.h" | |||
| #include "b2Body.h" | |||
| #include "b2TimeStep.h" | |||
| class b2Contact; | |||
| class b2Joint; | |||
| class b2StackAllocator; | |||
| class b2ContactListener; | |||
| struct b2ContactVelocityConstraint; | |||
| struct b2Profile; | |||
| /// This is an internal class. | |||
| class b2Island | |||
| { | |||
| public: | |||
| b2Island(int32 bodyCapacity, int32 contactCapacity, int32 jointCapacity, | |||
| b2StackAllocator* allocator, b2ContactListener* listener); | |||
| ~b2Island(); | |||
| void Clear() | |||
| { | |||
| m_bodyCount = 0; | |||
| m_contactCount = 0; | |||
| m_jointCount = 0; | |||
| } | |||
| void Solve(b2Profile* profile, const b2TimeStep& step, const b2Vec2& gravity, bool allowSleep); | |||
| void SolveTOI(const b2TimeStep& subStep, int32 toiIndexA, int32 toiIndexB); | |||
| void Add(b2Body* body) | |||
| { | |||
| b2Assert(m_bodyCount < m_bodyCapacity); | |||
| body->m_islandIndex = m_bodyCount; | |||
| m_bodies[m_bodyCount] = body; | |||
| ++m_bodyCount; | |||
| } | |||
| void Add(b2Contact* contact) | |||
| { | |||
| b2Assert(m_contactCount < m_contactCapacity); | |||
| m_contacts[m_contactCount++] = contact; | |||
| } | |||
| void Add(b2Joint* joint) | |||
| { | |||
| b2Assert(m_jointCount < m_jointCapacity); | |||
| m_joints[m_jointCount++] = joint; | |||
| } | |||
| void Report(const b2ContactVelocityConstraint* constraints); | |||
| b2StackAllocator* m_allocator; | |||
| b2ContactListener* m_listener; | |||
| b2Body** m_bodies; | |||
| b2Contact** m_contacts; | |||
| b2Joint** m_joints; | |||
| b2Position* m_positions; | |||
| b2Velocity* m_velocities; | |||
| int32 m_bodyCount; | |||
| int32 m_jointCount; | |||
| int32 m_contactCount; | |||
| int32 m_bodyCapacity; | |||
| int32 m_contactCapacity; | |||
| int32 m_jointCapacity; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,70 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_TIME_STEP_H | |||
| #define B2_TIME_STEP_H | |||
| #include "../Common/b2Math.h" | |||
| /// Profiling data. Times are in milliseconds. | |||
| struct b2Profile | |||
| { | |||
| float32 step; | |||
| float32 collide; | |||
| float32 solve; | |||
| float32 solveInit; | |||
| float32 solveVelocity; | |||
| float32 solvePosition; | |||
| float32 broadphase; | |||
| float32 solveTOI; | |||
| }; | |||
| /// This is an internal structure. | |||
| struct b2TimeStep | |||
| { | |||
| float32 dt; // time step | |||
| float32 inv_dt; // inverse time step (0 if dt == 0). | |||
| float32 dtRatio; // dt * inv_dt0 | |||
| int32 velocityIterations; | |||
| int32 positionIterations; | |||
| bool warmStarting; | |||
| }; | |||
| /// This is an internal structure. | |||
| struct b2Position | |||
| { | |||
| b2Vec2 c; | |||
| float32 a; | |||
| }; | |||
| /// This is an internal structure. | |||
| struct b2Velocity | |||
| { | |||
| b2Vec2 v; | |||
| float32 w; | |||
| }; | |||
| /// Solver Data | |||
| struct b2SolverData | |||
| { | |||
| b2TimeStep step; | |||
| b2Position* positions; | |||
| b2Velocity* velocities; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,349 @@ | |||
| /* | |||
| * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_WORLD_H | |||
| #define B2_WORLD_H | |||
| #include "../Common/b2Math.h" | |||
| #include "../Common/b2BlockAllocator.h" | |||
| #include "../Common/b2StackAllocator.h" | |||
| #include "b2ContactManager.h" | |||
| #include "b2WorldCallbacks.h" | |||
| #include "b2TimeStep.h" | |||
| struct b2AABB; | |||
| struct b2BodyDef; | |||
| struct b2Color; | |||
| struct b2JointDef; | |||
| class b2Body; | |||
| class b2Draw; | |||
| class b2Fixture; | |||
| class b2Joint; | |||
| /// The world class manages all physics entities, dynamic simulation, | |||
| /// and asynchronous queries. The world also contains efficient memory | |||
| /// management facilities. | |||
| class b2World | |||
| { | |||
| public: | |||
| /// Construct a world object. | |||
| /// @param gravity the world gravity vector. | |||
| b2World(const b2Vec2& gravity); | |||
| /// Destruct the world. All physics entities are destroyed and all heap memory is released. | |||
| ~b2World(); | |||
| /// Register a destruction listener. The listener is owned by you and must | |||
| /// remain in scope. | |||
| void SetDestructionListener(b2DestructionListener* listener); | |||
| /// Register a contact filter to provide specific control over collision. | |||
| /// Otherwise the default filter is used (b2_defaultFilter). The listener is | |||
| /// owned by you and must remain in scope. | |||
| void SetContactFilter(b2ContactFilter* filter); | |||
| /// Register a contact event listener. The listener is owned by you and must | |||
| /// remain in scope. | |||
| void SetContactListener(b2ContactListener* listener); | |||
| /// Register a routine for debug drawing. The debug draw functions are called | |||
| /// inside with b2World::DrawDebugData method. The debug draw object is owned | |||
| /// by you and must remain in scope. | |||
| void SetDebugDraw(b2Draw* debugDraw); | |||
| /// Create a rigid body given a definition. No reference to the definition | |||
| /// is retained. | |||
| /// @warning This function is locked during callbacks. | |||
| b2Body* CreateBody(const b2BodyDef* def); | |||
| /// Destroy a rigid body given a definition. No reference to the definition | |||
| /// is retained. This function is locked during callbacks. | |||
| /// @warning This automatically deletes all associated shapes and joints. | |||
| /// @warning This function is locked during callbacks. | |||
| void DestroyBody(b2Body* body); | |||
| /// Create a joint to constrain bodies together. No reference to the definition | |||
| /// is retained. This may cause the connected bodies to cease colliding. | |||
| /// @warning This function is locked during callbacks. | |||
| b2Joint* CreateJoint(const b2JointDef* def); | |||
| /// Destroy a joint. This may cause the connected bodies to begin colliding. | |||
| /// @warning This function is locked during callbacks. | |||
| void DestroyJoint(b2Joint* joint); | |||
| /// Take a time step. This performs collision detection, integration, | |||
| /// and constraint solution. | |||
| /// @param timeStep the amount of time to simulate, this should not vary. | |||
| /// @param velocityIterations for the velocity constraint solver. | |||
| /// @param positionIterations for the position constraint solver. | |||
| void Step( float32 timeStep, | |||
| int32 velocityIterations, | |||
| int32 positionIterations); | |||
| /// Manually clear the force buffer on all bodies. By default, forces are cleared automatically | |||
| /// after each call to Step. The default behavior is modified by calling SetAutoClearForces. | |||
| /// The purpose of this function is to support sub-stepping. Sub-stepping is often used to maintain | |||
| /// a fixed sized time step under a variable frame-rate. | |||
| /// When you perform sub-stepping you will disable auto clearing of forces and instead call | |||
| /// ClearForces after all sub-steps are complete in one pass of your game loop. | |||
| /// @see SetAutoClearForces | |||
| void ClearForces(); | |||
| /// Call this to draw shapes and other debug draw data. | |||
| void DrawDebugData(); | |||
| /// Query the world for all fixtures that potentially overlap the | |||
| /// provided AABB. | |||
| /// @param callback a user implemented callback class. | |||
| /// @param aabb the query box. | |||
| void QueryAABB(b2QueryCallback* callback, const b2AABB& aabb) const; | |||
| /// Ray-cast the world for all fixtures in the path of the ray. Your callback | |||
| /// controls whether you get the closest point, any point, or n-points. | |||
| /// The ray-cast ignores shapes that contain the starting point. | |||
| /// @param callback a user implemented callback class. | |||
| /// @param point1 the ray starting point | |||
| /// @param point2 the ray ending point | |||
| void RayCast(b2RayCastCallback* callback, const b2Vec2& point1, const b2Vec2& point2) const; | |||
| /// Get the world body list. With the returned body, use b2Body::GetNext to get | |||
| /// the next body in the world list. A NULL body indicates the end of the list. | |||
| /// @return the head of the world body list. | |||
| b2Body* GetBodyList(); | |||
| const b2Body* GetBodyList() const; | |||
| /// Get the world joint list. With the returned joint, use b2Joint::GetNext to get | |||
| /// the next joint in the world list. A NULL joint indicates the end of the list. | |||
| /// @return the head of the world joint list. | |||
| b2Joint* GetJointList(); | |||
| const b2Joint* GetJointList() const; | |||
| /// Get the world contact list. With the returned contact, use b2Contact::GetNext to get | |||
| /// the next contact in the world list. A NULL contact indicates the end of the list. | |||
| /// @return the head of the world contact list. | |||
| /// @warning contacts are created and destroyed in the middle of a time step. | |||
| /// Use b2ContactListener to avoid missing contacts. | |||
| b2Contact* GetContactList(); | |||
| const b2Contact* GetContactList() const; | |||
| /// Enable/disable sleep. | |||
| void SetAllowSleeping(bool flag); | |||
| bool GetAllowSleeping() const { return m_allowSleep; } | |||
| /// Enable/disable warm starting. For testing. | |||
| void SetWarmStarting(bool flag) { m_warmStarting = flag; } | |||
| bool GetWarmStarting() const { return m_warmStarting; } | |||
| /// Enable/disable continuous physics. For testing. | |||
| void SetContinuousPhysics(bool flag) { m_continuousPhysics = flag; } | |||
| bool GetContinuousPhysics() const { return m_continuousPhysics; } | |||
| /// Enable/disable single stepped continuous physics. For testing. | |||
| void SetSubStepping(bool flag) { m_subStepping = flag; } | |||
| bool GetSubStepping() const { return m_subStepping; } | |||
| /// Get the number of broad-phase proxies. | |||
| int32 GetProxyCount() const; | |||
| /// Get the number of bodies. | |||
| int32 GetBodyCount() const; | |||
| /// Get the number of joints. | |||
| int32 GetJointCount() const; | |||
| /// Get the number of contacts (each may have 0 or more contact points). | |||
| int32 GetContactCount() const; | |||
| /// Get the height of the dynamic tree. | |||
| int32 GetTreeHeight() const; | |||
| /// Get the balance of the dynamic tree. | |||
| int32 GetTreeBalance() const; | |||
| /// Get the quality metric of the dynamic tree. The smaller the better. | |||
| /// The minimum is 1. | |||
| float32 GetTreeQuality() const; | |||
| /// Change the global gravity vector. | |||
| void SetGravity(const b2Vec2& gravity); | |||
| /// Get the global gravity vector. | |||
| b2Vec2 GetGravity() const; | |||
| /// Is the world locked (in the middle of a time step). | |||
| bool IsLocked() const; | |||
| /// Set flag to control automatic clearing of forces after each time step. | |||
| void SetAutoClearForces(bool flag); | |||
| /// Get the flag that controls automatic clearing of forces after each time step. | |||
| bool GetAutoClearForces() const; | |||
| /// Get the contact manager for testing. | |||
| const b2ContactManager& GetContactManager() const; | |||
| /// Get the current profile. | |||
| const b2Profile& GetProfile() const; | |||
| /// Dump the world into the log file. | |||
| /// @warning this should be called outside of a time step. | |||
| void Dump(); | |||
| private: | |||
| // m_flags | |||
| enum | |||
| { | |||
| e_newFixture = 0x0001, | |||
| e_locked = 0x0002, | |||
| e_clearForces = 0x0004 | |||
| }; | |||
| friend class b2Body; | |||
| friend class b2Fixture; | |||
| friend class b2ContactManager; | |||
| friend class b2Controller; | |||
| void Solve(const b2TimeStep& step); | |||
| void SolveTOI(const b2TimeStep& step); | |||
| void DrawJoint(b2Joint* joint); | |||
| void DrawShape(b2Fixture* shape, const b2Transform& xf, const b2Color& color); | |||
| b2BlockAllocator m_blockAllocator; | |||
| b2StackAllocator m_stackAllocator; | |||
| int32 m_flags; | |||
| b2ContactManager m_contactManager; | |||
| b2Body* m_bodyList; | |||
| b2Joint* m_jointList; | |||
| int32 m_bodyCount; | |||
| int32 m_jointCount; | |||
| b2Vec2 m_gravity; | |||
| bool m_allowSleep; | |||
| b2DestructionListener* m_destructionListener; | |||
| b2Draw* m_debugDraw; | |||
| // This is used to compute the time step ratio to | |||
| // support a variable time step. | |||
| float32 m_inv_dt0; | |||
| // These are for debugging the solver. | |||
| bool m_warmStarting; | |||
| bool m_continuousPhysics; | |||
| bool m_subStepping; | |||
| bool m_stepComplete; | |||
| b2Profile m_profile; | |||
| }; | |||
| inline b2Body* b2World::GetBodyList() | |||
| { | |||
| return m_bodyList; | |||
| } | |||
| inline const b2Body* b2World::GetBodyList() const | |||
| { | |||
| return m_bodyList; | |||
| } | |||
| inline b2Joint* b2World::GetJointList() | |||
| { | |||
| return m_jointList; | |||
| } | |||
| inline const b2Joint* b2World::GetJointList() const | |||
| { | |||
| return m_jointList; | |||
| } | |||
| inline b2Contact* b2World::GetContactList() | |||
| { | |||
| return m_contactManager.m_contactList; | |||
| } | |||
| inline const b2Contact* b2World::GetContactList() const | |||
| { | |||
| return m_contactManager.m_contactList; | |||
| } | |||
| inline int32 b2World::GetBodyCount() const | |||
| { | |||
| return m_bodyCount; | |||
| } | |||
| inline int32 b2World::GetJointCount() const | |||
| { | |||
| return m_jointCount; | |||
| } | |||
| inline int32 b2World::GetContactCount() const | |||
| { | |||
| return m_contactManager.m_contactCount; | |||
| } | |||
| inline void b2World::SetGravity(const b2Vec2& gravity) | |||
| { | |||
| m_gravity = gravity; | |||
| } | |||
| inline b2Vec2 b2World::GetGravity() const | |||
| { | |||
| return m_gravity; | |||
| } | |||
| inline bool b2World::IsLocked() const | |||
| { | |||
| return (m_flags & e_locked) == e_locked; | |||
| } | |||
| inline void b2World::SetAutoClearForces(bool flag) | |||
| { | |||
| if (flag) | |||
| { | |||
| m_flags |= e_clearForces; | |||
| } | |||
| else | |||
| { | |||
| m_flags &= ~e_clearForces; | |||
| } | |||
| } | |||
| /// Get the flag that controls automatic clearing of forces after each time step. | |||
| inline bool b2World::GetAutoClearForces() const | |||
| { | |||
| return (m_flags & e_clearForces) == e_clearForces; | |||
| } | |||
| inline const b2ContactManager& b2World::GetContactManager() const | |||
| { | |||
| return m_contactManager; | |||
| } | |||
| inline const b2Profile& b2World::GetProfile() const | |||
| { | |||
| return m_profile; | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,36 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2WorldCallbacks.h" | |||
| #include "b2Fixture.h" | |||
| // Return true if contact calculations should be performed between these two shapes. | |||
| // If you implement your own collision filter you may want to build from this implementation. | |||
| bool b2ContactFilter::ShouldCollide(b2Fixture* fixtureA, b2Fixture* fixtureB) | |||
| { | |||
| const b2Filter& filterA = fixtureA->GetFilterData(); | |||
| const b2Filter& filterB = fixtureB->GetFilterData(); | |||
| if (filterA.groupIndex == filterB.groupIndex && filterA.groupIndex != 0) | |||
| { | |||
| return filterA.groupIndex > 0; | |||
| } | |||
| bool collide = (filterA.maskBits & filterB.categoryBits) != 0 && (filterA.categoryBits & filterB.maskBits) != 0; | |||
| return collide; | |||
| } | |||
| @@ -0,0 +1,155 @@ | |||
| /* | |||
| * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_WORLD_CALLBACKS_H | |||
| #define B2_WORLD_CALLBACKS_H | |||
| #include "../Common/b2Settings.h" | |||
| struct b2Vec2; | |||
| struct b2Transform; | |||
| class b2Fixture; | |||
| class b2Body; | |||
| class b2Joint; | |||
| class b2Contact; | |||
| struct b2ContactResult; | |||
| struct b2Manifold; | |||
| /// Joints and fixtures are destroyed when their associated | |||
| /// body is destroyed. Implement this listener so that you | |||
| /// may nullify references to these joints and shapes. | |||
| class b2DestructionListener | |||
| { | |||
| public: | |||
| virtual ~b2DestructionListener() {} | |||
| /// Called when any joint is about to be destroyed due | |||
| /// to the destruction of one of its attached bodies. | |||
| virtual void SayGoodbye(b2Joint* joint) = 0; | |||
| /// Called when any fixture is about to be destroyed due | |||
| /// to the destruction of its parent body. | |||
| virtual void SayGoodbye(b2Fixture* fixture) = 0; | |||
| }; | |||
| /// Implement this class to provide collision filtering. In other words, you can implement | |||
| /// this class if you want finer control over contact creation. | |||
| class b2ContactFilter | |||
| { | |||
| public: | |||
| virtual ~b2ContactFilter() {} | |||
| /// Return true if contact calculations should be performed between these two shapes. | |||
| /// @warning for performance reasons this is only called when the AABBs begin to overlap. | |||
| virtual bool ShouldCollide(b2Fixture* fixtureA, b2Fixture* fixtureB); | |||
| }; | |||
| /// Contact impulses for reporting. Impulses are used instead of forces because | |||
| /// sub-step forces may approach infinity for rigid body collisions. These | |||
| /// match up one-to-one with the contact points in b2Manifold. | |||
| struct b2ContactImpulse | |||
| { | |||
| float32 normalImpulses[b2_maxManifoldPoints]; | |||
| float32 tangentImpulses[b2_maxManifoldPoints]; | |||
| int32 count; | |||
| }; | |||
| /// Implement this class to get contact information. You can use these results for | |||
| /// things like sounds and game logic. You can also get contact results by | |||
| /// traversing the contact lists after the time step. However, you might miss | |||
| /// some contacts because continuous physics leads to sub-stepping. | |||
| /// Additionally you may receive multiple callbacks for the same contact in a | |||
| /// single time step. | |||
| /// You should strive to make your callbacks efficient because there may be | |||
| /// many callbacks per time step. | |||
| /// @warning You cannot create/destroy Box2D entities inside these callbacks. | |||
| class b2ContactListener | |||
| { | |||
| public: | |||
| virtual ~b2ContactListener() {} | |||
| /// Called when two fixtures begin to touch. | |||
| virtual void BeginContact(b2Contact* contact) { B2_NOT_USED(contact); } | |||
| /// Called when two fixtures cease to touch. | |||
| virtual void EndContact(b2Contact* contact) { B2_NOT_USED(contact); } | |||
| /// This is called after a contact is updated. This allows you to inspect a | |||
| /// contact before it goes to the solver. If you are careful, you can modify the | |||
| /// contact manifold (e.g. disable contact). | |||
| /// A copy of the old manifold is provided so that you can detect changes. | |||
| /// Note: this is called only for awake bodies. | |||
| /// Note: this is called even when the number of contact points is zero. | |||
| /// Note: this is not called for sensors. | |||
| /// Note: if you set the number of contact points to zero, you will not | |||
| /// get an EndContact callback. However, you may get a BeginContact callback | |||
| /// the next step. | |||
| virtual void PreSolve(b2Contact* contact, const b2Manifold* oldManifold) | |||
| { | |||
| B2_NOT_USED(contact); | |||
| B2_NOT_USED(oldManifold); | |||
| } | |||
| /// This lets you inspect a contact after the solver is finished. This is useful | |||
| /// for inspecting impulses. | |||
| /// Note: the contact manifold does not include time of impact impulses, which can be | |||
| /// arbitrarily large if the sub-step is small. Hence the impulse is provided explicitly | |||
| /// in a separate data structure. | |||
| /// Note: this is only called for contacts that are touching, solid, and awake. | |||
| virtual void PostSolve(b2Contact* contact, const b2ContactImpulse* impulse) | |||
| { | |||
| B2_NOT_USED(contact); | |||
| B2_NOT_USED(impulse); | |||
| } | |||
| }; | |||
| /// Callback class for AABB queries. | |||
| /// See b2World::Query | |||
| class b2QueryCallback | |||
| { | |||
| public: | |||
| virtual ~b2QueryCallback() {} | |||
| /// Called for each fixture found in the query AABB. | |||
| /// @return false to terminate the query. | |||
| virtual bool ReportFixture(b2Fixture* fixture) = 0; | |||
| }; | |||
| /// Callback class for ray casts. | |||
| /// See b2World::RayCast | |||
| class b2RayCastCallback | |||
| { | |||
| public: | |||
| virtual ~b2RayCastCallback() {} | |||
| /// Called for each fixture found in the query. You control how the ray cast | |||
| /// proceeds by returning a float: | |||
| /// return -1: ignore this fixture and continue | |||
| /// return 0: terminate the ray cast | |||
| /// return fraction: clip the ray to this point | |||
| /// return 1: don't clip the ray and continue | |||
| /// @param fixture the fixture hit by the ray | |||
| /// @param point the point of initial intersection | |||
| /// @param normal the normal vector at the point of intersection | |||
| /// @return -1 to filter, 0 to terminate, fraction to clip the ray for | |||
| /// closest hit, 1 to continue | |||
| virtual float32 ReportFixture( b2Fixture* fixture, const b2Vec2& point, | |||
| const b2Vec2& normal, float32 fraction) = 0; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,8 @@ | |||
| This folder contains the source from the excellent Box2D physics library. | |||
| For any Box2D-related info, visit their website: http://box2d.org | |||
| To create the juce module, the only changes required to the original source-code | |||
| were to adjust the include paths to be relative rather than absolute, and to wrap | |||
| #ifdefs around a couple of unguarded header files. (Oh, and there were a few | |||
| compiler warnings that I cleaned up to avoid bothering people with them) | |||
| @@ -0,0 +1,259 @@ | |||
| /* | |||
| * Copyright (c) 2011 Erin Catto http://box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #include "b2Rope.h" | |||
| #include "../Common/b2Draw.h" | |||
| b2Rope::b2Rope() | |||
| { | |||
| m_count = 0; | |||
| m_ps = NULL; | |||
| m_p0s = NULL; | |||
| m_vs = NULL; | |||
| m_ims = NULL; | |||
| m_Ls = NULL; | |||
| m_as = NULL; | |||
| m_gravity.SetZero(); | |||
| m_k2 = 1.0f; | |||
| m_k3 = 0.1f; | |||
| } | |||
| b2Rope::~b2Rope() | |||
| { | |||
| b2Free(m_ps); | |||
| b2Free(m_p0s); | |||
| b2Free(m_vs); | |||
| b2Free(m_ims); | |||
| b2Free(m_Ls); | |||
| b2Free(m_as); | |||
| } | |||
| void b2Rope::Initialize(const b2RopeDef* def) | |||
| { | |||
| b2Assert(def->count >= 3); | |||
| m_count = def->count; | |||
| m_ps = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2)); | |||
| m_p0s = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2)); | |||
| m_vs = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2)); | |||
| m_ims = (float32*)b2Alloc(m_count * sizeof(float32)); | |||
| for (int32 i = 0; i < m_count; ++i) | |||
| { | |||
| m_ps[i] = def->vertices[i]; | |||
| m_p0s[i] = def->vertices[i]; | |||
| m_vs[i].SetZero(); | |||
| float32 m = def->masses[i]; | |||
| if (m > 0.0f) | |||
| { | |||
| m_ims[i] = 1.0f / m; | |||
| } | |||
| else | |||
| { | |||
| m_ims[i] = 0.0f; | |||
| } | |||
| } | |||
| int32 count2 = m_count - 1; | |||
| int32 count3 = m_count - 2; | |||
| m_Ls = (float32*)b2Alloc(count2 * sizeof(float32)); | |||
| m_as = (float32*)b2Alloc(count3 * sizeof(float32)); | |||
| for (int32 i = 0; i < count2; ++i) | |||
| { | |||
| b2Vec2 p1 = m_ps[i]; | |||
| b2Vec2 p2 = m_ps[i+1]; | |||
| m_Ls[i] = b2Distance(p1, p2); | |||
| } | |||
| for (int32 i = 0; i < count3; ++i) | |||
| { | |||
| b2Vec2 p1 = m_ps[i]; | |||
| b2Vec2 p2 = m_ps[i + 1]; | |||
| b2Vec2 p3 = m_ps[i + 2]; | |||
| b2Vec2 d1 = p2 - p1; | |||
| b2Vec2 d2 = p3 - p2; | |||
| float32 a = b2Cross(d1, d2); | |||
| float32 b = b2Dot(d1, d2); | |||
| m_as[i] = b2Atan2(a, b); | |||
| } | |||
| m_gravity = def->gravity; | |||
| m_damping = def->damping; | |||
| m_k2 = def->k2; | |||
| m_k3 = def->k3; | |||
| } | |||
| void b2Rope::Step(float32 h, int32 iterations) | |||
| { | |||
| if (h == 0.0) | |||
| { | |||
| return; | |||
| } | |||
| float32 d = expf(- h * m_damping); | |||
| for (int32 i = 0; i < m_count; ++i) | |||
| { | |||
| m_p0s[i] = m_ps[i]; | |||
| if (m_ims[i] > 0.0f) | |||
| { | |||
| m_vs[i] += h * m_gravity; | |||
| } | |||
| m_vs[i] *= d; | |||
| m_ps[i] += h * m_vs[i]; | |||
| } | |||
| for (int32 i = 0; i < iterations; ++i) | |||
| { | |||
| SolveC2(); | |||
| SolveC3(); | |||
| SolveC2(); | |||
| } | |||
| float32 inv_h = 1.0f / h; | |||
| for (int32 i = 0; i < m_count; ++i) | |||
| { | |||
| m_vs[i] = inv_h * (m_ps[i] - m_p0s[i]); | |||
| } | |||
| } | |||
| void b2Rope::SolveC2() | |||
| { | |||
| int32 count2 = m_count - 1; | |||
| for (int32 i = 0; i < count2; ++i) | |||
| { | |||
| b2Vec2 p1 = m_ps[i]; | |||
| b2Vec2 p2 = m_ps[i + 1]; | |||
| b2Vec2 d = p2 - p1; | |||
| float32 L = d.Normalize(); | |||
| float32 im1 = m_ims[i]; | |||
| float32 im2 = m_ims[i + 1]; | |||
| if (im1 + im2 == 0.0f) | |||
| { | |||
| continue; | |||
| } | |||
| float32 s1 = im1 / (im1 + im2); | |||
| float32 s2 = im2 / (im1 + im2); | |||
| p1 -= m_k2 * s1 * (m_Ls[i] - L) * d; | |||
| p2 += m_k2 * s2 * (m_Ls[i] - L) * d; | |||
| m_ps[i] = p1; | |||
| m_ps[i + 1] = p2; | |||
| } | |||
| } | |||
| void b2Rope::SetAngle(float32 angle) | |||
| { | |||
| int32 count3 = m_count - 2; | |||
| for (int32 i = 0; i < count3; ++i) | |||
| { | |||
| m_as[i] = angle; | |||
| } | |||
| } | |||
| void b2Rope::SolveC3() | |||
| { | |||
| int32 count3 = m_count - 2; | |||
| for (int32 i = 0; i < count3; ++i) | |||
| { | |||
| b2Vec2 p1 = m_ps[i]; | |||
| b2Vec2 p2 = m_ps[i + 1]; | |||
| b2Vec2 p3 = m_ps[i + 2]; | |||
| float32 m1 = m_ims[i]; | |||
| float32 m2 = m_ims[i + 1]; | |||
| float32 m3 = m_ims[i + 2]; | |||
| b2Vec2 d1 = p2 - p1; | |||
| b2Vec2 d2 = p3 - p2; | |||
| float32 L1sqr = d1.LengthSquared(); | |||
| float32 L2sqr = d2.LengthSquared(); | |||
| if (L1sqr * L2sqr == 0.0f) | |||
| { | |||
| continue; | |||
| } | |||
| float32 a = b2Cross(d1, d2); | |||
| float32 b = b2Dot(d1, d2); | |||
| float32 angle = b2Atan2(a, b); | |||
| b2Vec2 Jd1 = (-1.0f / L1sqr) * d1.Skew(); | |||
| b2Vec2 Jd2 = (1.0f / L2sqr) * d2.Skew(); | |||
| b2Vec2 J1 = -Jd1; | |||
| b2Vec2 J2 = Jd1 - Jd2; | |||
| b2Vec2 J3 = Jd2; | |||
| float32 mass = m1 * b2Dot(J1, J1) + m2 * b2Dot(J2, J2) + m3 * b2Dot(J3, J3); | |||
| if (mass == 0.0f) | |||
| { | |||
| continue; | |||
| } | |||
| mass = 1.0f / mass; | |||
| float32 C = angle - m_as[i]; | |||
| while (C > b2_pi) | |||
| { | |||
| angle -= 2 * b2_pi; | |||
| C = angle - m_as[i]; | |||
| } | |||
| while (C < -b2_pi) | |||
| { | |||
| angle += 2.0f * b2_pi; | |||
| C = angle - m_as[i]; | |||
| } | |||
| float32 impulse = - m_k3 * mass * C; | |||
| p1 += (m1 * impulse) * J1; | |||
| p2 += (m2 * impulse) * J2; | |||
| p3 += (m3 * impulse) * J3; | |||
| m_ps[i] = p1; | |||
| m_ps[i + 1] = p2; | |||
| m_ps[i + 2] = p3; | |||
| } | |||
| } | |||
| void b2Rope::Draw(b2Draw* draw) const | |||
| { | |||
| b2Color c(0.4f, 0.5f, 0.7f); | |||
| for (int32 i = 0; i < m_count - 1; ++i) | |||
| { | |||
| draw->DrawSegment(m_ps[i], m_ps[i+1], c); | |||
| } | |||
| } | |||
| @@ -0,0 +1,115 @@ | |||
| /* | |||
| * Copyright (c) 2011 Erin Catto http://www.box2d.org | |||
| * | |||
| * This software is provided 'as-is', without any express or implied | |||
| * warranty. In no event will the authors be held liable for any damages | |||
| * arising from the use of this software. | |||
| * Permission is granted to anyone to use this software for any purpose, | |||
| * including commercial applications, and to alter it and redistribute it | |||
| * freely, subject to the following restrictions: | |||
| * 1. The origin of this software must not be misrepresented; you must not | |||
| * claim that you wrote the original software. If you use this software | |||
| * in a product, an acknowledgment in the product documentation would be | |||
| * appreciated but is not required. | |||
| * 2. Altered source versions must be plainly marked as such, and must not be | |||
| * misrepresented as being the original software. | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| */ | |||
| #ifndef B2_ROPE_H | |||
| #define B2_ROPE_H | |||
| #include "../Common/b2Math.h" | |||
| class b2Draw; | |||
| /// | |||
| struct b2RopeDef | |||
| { | |||
| b2RopeDef() | |||
| { | |||
| vertices = NULL; | |||
| count = 0; | |||
| masses = NULL; | |||
| gravity.SetZero(); | |||
| damping = 0.1f; | |||
| k2 = 0.9f; | |||
| k3 = 0.1f; | |||
| } | |||
| /// | |||
| b2Vec2* vertices; | |||
| /// | |||
| int32 count; | |||
| /// | |||
| float32* masses; | |||
| /// | |||
| b2Vec2 gravity; | |||
| /// | |||
| float32 damping; | |||
| /// Stretching stiffness | |||
| float32 k2; | |||
| /// Bending stiffness. Values above 0.5 can make the simulation blow up. | |||
| float32 k3; | |||
| }; | |||
| /// | |||
| class b2Rope | |||
| { | |||
| public: | |||
| b2Rope(); | |||
| ~b2Rope(); | |||
| /// | |||
| void Initialize(const b2RopeDef* def); | |||
| /// | |||
| void Step(float32 timeStep, int32 iterations); | |||
| /// | |||
| int32 GetVertexCount() const | |||
| { | |||
| return m_count; | |||
| } | |||
| /// | |||
| const b2Vec2* GetVertices() const | |||
| { | |||
| return m_ps; | |||
| } | |||
| /// | |||
| void Draw(b2Draw* draw) const; | |||
| /// | |||
| void SetAngle(float32 angle); | |||
| private: | |||
| void SolveC2(); | |||
| void SolveC3(); | |||
| int32 m_count; | |||
| b2Vec2* m_ps; | |||
| b2Vec2* m_p0s; | |||
| b2Vec2* m_vs; | |||
| float32* m_ims; | |||
| float32* m_Ls; | |||
| float32* m_as; | |||
| b2Vec2 m_gravity; | |||
| float32 m_damping; | |||
| float32 m_k2; | |||
| float32 m_k3; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,90 @@ | |||
| /* | |||
| ============================================================================== | |||
| This file is part of the JUCE library - "Jules' Utility Class Extensions" | |||
| Copyright 2004-11 by Raw Material Software Ltd. | |||
| ------------------------------------------------------------------------------ | |||
| JUCE can be redistributed and/or modified under the terms of the GNU General | |||
| Public License (Version 2), as published by the Free Software Foundation. | |||
| A copy of the license is included in the JUCE distribution, or can be found | |||
| online at www.gnu.org/licenses. | |||
| JUCE is distributed in the hope that it will be useful, but WITHOUT ANY | |||
| WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR | |||
| A PARTICULAR PURPOSE. See the GNU General Public License for more details. | |||
| ------------------------------------------------------------------------------ | |||
| To release a closed-source product which uses JUCE, commercial licenses are | |||
| available: visit www.rawmaterialsoftware.com/juce for more information. | |||
| ============================================================================== | |||
| */ | |||
| #if defined (__JUCE_BOX2D_JUCEHEADER__) && ! JUCE_AMALGAMATED_INCLUDE | |||
| /* When you add this cpp file to your project, you mustn't include it in a file where you've | |||
| already included any other headers - just put it inside a file on its own, possibly with your config | |||
| flags preceding it, but don't include anything else. That also includes avoiding any automatic prefix | |||
| header files that the compiler may be using. | |||
| */ | |||
| #error "Incorrect use of JUCE cpp file" | |||
| #endif | |||
| // Your project must contain an AppConfig.h file with your project-specific settings in it, | |||
| // and your header search path must make it accessible to the module's files. | |||
| #include "AppConfig.h" | |||
| #include "juce_box2d.h" | |||
| #include "box2d/Collision/b2BroadPhase.cpp" | |||
| #include "box2d/Collision/b2CollideCircle.cpp" | |||
| #include "box2d/Collision/b2CollideEdge.cpp" | |||
| #include "box2d/Collision/b2CollidePolygon.cpp" | |||
| #include "box2d/Collision/b2Collision.cpp" | |||
| #include "box2d/Collision/b2Distance.cpp" | |||
| #include "box2d/Collision/b2DynamicTree.cpp" | |||
| #include "box2d/Collision/b2TimeOfImpact.cpp" | |||
| #include "box2d/Collision/Shapes/b2ChainShape.cpp" | |||
| #include "box2d/Collision/Shapes/b2CircleShape.cpp" | |||
| #include "box2d/Collision/Shapes/b2EdgeShape.cpp" | |||
| #include "box2d/Collision/Shapes/b2PolygonShape.cpp" | |||
| #include "box2d/Common/b2BlockAllocator.cpp" | |||
| #include "box2d/Common/b2Draw.cpp" | |||
| #include "box2d/Common/b2Math.cpp" | |||
| #include "box2d/Common/b2Settings.cpp" | |||
| #include "box2d/Common/b2StackAllocator.cpp" | |||
| #include "box2d/Common/b2Timer.cpp" | |||
| #include "box2d/Dynamics/b2Body.cpp" | |||
| #include "box2d/Dynamics/b2ContactManager.cpp" | |||
| #include "box2d/Dynamics/b2Fixture.cpp" | |||
| #include "box2d/Dynamics/b2Island.cpp" | |||
| #include "box2d/Dynamics/b2World.cpp" | |||
| #include "box2d/Dynamics/b2WorldCallbacks.cpp" | |||
| #include "box2d/Dynamics/Contacts/b2ChainAndCircleContact.cpp" | |||
| #include "box2d/Dynamics/Contacts/b2ChainAndPolygonContact.cpp" | |||
| #include "box2d/Dynamics/Contacts/b2CircleContact.cpp" | |||
| #include "box2d/Dynamics/Contacts/b2Contact.cpp" | |||
| #include "box2d/Dynamics/Contacts/b2ContactSolver.cpp" | |||
| #include "box2d/Dynamics/Contacts/b2EdgeAndCircleContact.cpp" | |||
| #include "box2d/Dynamics/Contacts/b2EdgeAndPolygonContact.cpp" | |||
| #include "box2d/Dynamics/Contacts/b2PolygonAndCircleContact.cpp" | |||
| #include "box2d/Dynamics/Contacts/b2PolygonContact.cpp" | |||
| #include "box2d/Dynamics/Joints/b2DistanceJoint.cpp" | |||
| #include "box2d/Dynamics/Joints/b2FrictionJoint.cpp" | |||
| #include "box2d/Dynamics/Joints/b2GearJoint.cpp" | |||
| #include "box2d/Dynamics/Joints/b2Joint.cpp" | |||
| #include "box2d/Dynamics/Joints/b2MouseJoint.cpp" | |||
| #include "box2d/Dynamics/Joints/b2PrismaticJoint.cpp" | |||
| #include "box2d/Dynamics/Joints/b2PulleyJoint.cpp" | |||
| #include "box2d/Dynamics/Joints/b2RevoluteJoint.cpp" | |||
| #include "box2d/Dynamics/Joints/b2RopeJoint.cpp" | |||
| #include "box2d/Dynamics/Joints/b2WeldJoint.cpp" | |||
| #include "box2d/Dynamics/Joints/b2WheelJoint.cpp" | |||
| #include "box2d/Rope/b2Rope.cpp" | |||
| namespace juce | |||
| { | |||
| #include "utils/juce_Box2DRenderer.cpp" | |||
| } | |||
| @@ -0,0 +1,39 @@ | |||
| /* | |||
| ============================================================================== | |||
| This file is part of the JUCE library - "Jules' Utility Class Extensions" | |||
| Copyright 2004-11 by Raw Material Software Ltd. | |||
| ------------------------------------------------------------------------------ | |||
| JUCE can be redistributed and/or modified under the terms of the GNU General | |||
| Public License (Version 2), as published by the Free Software Foundation. | |||
| A copy of the license is included in the JUCE distribution, or can be found | |||
| online at www.gnu.org/licenses. | |||
| JUCE is distributed in the hope that it will be useful, but WITHOUT ANY | |||
| WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR | |||
| A PARTICULAR PURPOSE. See the GNU General Public License for more details. | |||
| ------------------------------------------------------------------------------ | |||
| To release a closed-source product which uses JUCE, commercial licenses are | |||
| available: visit www.rawmaterialsoftware.com/juce for more information. | |||
| ============================================================================== | |||
| */ | |||
| #ifndef __JUCE_BOX2D_JUCEHEADER__ | |||
| #define __JUCE_BOX2D_JUCEHEADER__ | |||
| //============================================================================= | |||
| #include "../juce_graphics/juce_graphics.h" | |||
| #include "box2d/Box2D.h" | |||
| namespace juce | |||
| { | |||
| #include "utils/juce_Box2DRenderer.h" | |||
| } | |||
| #endif // __JUCE_BOX2D_JUCEHEADER__ | |||
| @@ -0,0 +1,16 @@ | |||
| { | |||
| "id": "juce_box2d", | |||
| "name": "JUCE wrapper for the Box2D physics engine", | |||
| "version": "2.0.39", | |||
| "description": "The Box2D physics engine and some utility classes.", | |||
| "website": "http://www.juce.com/juce", | |||
| "license": "GPL/Commercial", | |||
| "dependencies": [ { "id": "juce_graphics", "version": "matching" } ], | |||
| "include": "juce_box2d.h", | |||
| "compile": [ { "file": "juce_box2d.cpp" } ], | |||
| "browse": [ "box2d/*", "utils/*" ] | |||
| } | |||
| @@ -0,0 +1,104 @@ | |||
| /* | |||
| ============================================================================== | |||
| This file is part of the JUCE library - "Jules' Utility Class Extensions" | |||
| Copyright 2004-11 by Raw Material Software Ltd. | |||
| ------------------------------------------------------------------------------ | |||
| JUCE can be redistributed and/or modified under the terms of the GNU General | |||
| Public License (Version 2), as published by the Free Software Foundation. | |||
| A copy of the license is included in the JUCE distribution, or can be found | |||
| online at www.gnu.org/licenses. | |||
| JUCE is distributed in the hope that it will be useful, but WITHOUT ANY | |||
| WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR | |||
| A PARTICULAR PURPOSE. See the GNU General Public License for more details. | |||
| ------------------------------------------------------------------------------ | |||
| To release a closed-source product which uses JUCE, commercial licenses are | |||
| available: visit www.rawmaterialsoftware.com/juce for more information. | |||
| ============================================================================== | |||
| */ | |||
| Box2DRenderer::Box2DRenderer() noexcept : graphics (nullptr) | |||
| { | |||
| SetFlags (e_shapeBit); | |||
| } | |||
| void Box2DRenderer::render (Graphics& g, b2World& world, | |||
| float left, float top, float right, float bottom, | |||
| const Rectangle<float>& target) | |||
| { | |||
| graphics = &g; | |||
| g.addTransform (AffineTransform::fromTargetPoints (left, top, target.getX(), target.getY(), | |||
| right, top, target.getRight(), target.getY(), | |||
| left, bottom, target.getX(), target.getBottom())); | |||
| world.SetDebugDraw (this); | |||
| world.DrawDebugData(); | |||
| } | |||
| Colour Box2DRenderer::getColour (const b2Color& c) const | |||
| { | |||
| return Colour::fromFloatRGBA (c.r, c.g, c.b, 1.0f); | |||
| } | |||
| float Box2DRenderer::getLineThickness() const | |||
| { | |||
| return 0.1f; | |||
| } | |||
| static void createPath (Path& p, const b2Vec2* vertices, int32 vertexCount) | |||
| { | |||
| p.startNewSubPath (vertices[0].x, vertices[0].y); | |||
| for (int i = 1; i < vertexCount; ++i) | |||
| p.lineTo (vertices[i].x, vertices[i].y); | |||
| } | |||
| void Box2DRenderer::DrawPolygon (const b2Vec2* vertices, int32 vertexCount, const b2Color& color) | |||
| { | |||
| graphics->setColour (getColour (color)); | |||
| Path p; | |||
| createPath (p, vertices, vertexCount); | |||
| graphics->strokePath (p, PathStrokeType (getLineThickness())); | |||
| } | |||
| void Box2DRenderer::DrawSolidPolygon (const b2Vec2* vertices, int32 vertexCount, const b2Color& color) | |||
| { | |||
| graphics->setColour (getColour (color)); | |||
| Path p; | |||
| createPath (p, vertices, vertexCount); | |||
| graphics->fillPath (p); | |||
| } | |||
| void Box2DRenderer::DrawCircle (const b2Vec2& center, float32 radius, const b2Color& color) | |||
| { | |||
| graphics->setColour (getColour (color)); | |||
| graphics->drawEllipse (center.x - radius, center.y - radius, | |||
| radius * 2.0f, radius * 2.0f, | |||
| getLineThickness()); | |||
| } | |||
| void Box2DRenderer::DrawSolidCircle (const b2Vec2& center, float32 radius, const b2Vec2& axis, const b2Color& color) | |||
| { | |||
| graphics->setColour (getColour (color)); | |||
| graphics->fillEllipse (center.x - radius, center.y - radius, | |||
| radius * 2.0f, radius * 2.0f); | |||
| } | |||
| void Box2DRenderer::DrawSegment (const b2Vec2& p1, const b2Vec2& p2, const b2Color& color) | |||
| { | |||
| graphics->setColour (getColour (color)); | |||
| graphics->drawLine (p1.x, p1.y, p2.x, p2.y, getLineThickness()); | |||
| } | |||
| void Box2DRenderer::DrawTransform (const b2Transform&) | |||
| { | |||
| } | |||
| @@ -0,0 +1,78 @@ | |||
| /* | |||
| ============================================================================== | |||
| This file is part of the JUCE library - "Jules' Utility Class Extensions" | |||
| Copyright 2004-11 by Raw Material Software Ltd. | |||
| ------------------------------------------------------------------------------ | |||
| JUCE can be redistributed and/or modified under the terms of the GNU General | |||
| Public License (Version 2), as published by the Free Software Foundation. | |||
| A copy of the license is included in the JUCE distribution, or can be found | |||
| online at www.gnu.org/licenses. | |||
| JUCE is distributed in the hope that it will be useful, but WITHOUT ANY | |||
| WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR | |||
| A PARTICULAR PURPOSE. See the GNU General Public License for more details. | |||
| ------------------------------------------------------------------------------ | |||
| To release a closed-source product which uses JUCE, commercial licenses are | |||
| available: visit www.rawmaterialsoftware.com/juce for more information. | |||
| ============================================================================== | |||
| */ | |||
| #ifndef __JUCE_BOX2DRENDERER_JUCEHEADER__ | |||
| #define __JUCE_BOX2DRENDERER_JUCEHEADER__ | |||
| //============================================================================= | |||
| /** A simple implementation of the b2Draw class, used to draw a Box2D world. | |||
| To use it, simply create an instance of this class in your paint() method, | |||
| and call its render() method. | |||
| */ | |||
| class Box2DRenderer : public b2Draw | |||
| { | |||
| public: | |||
| Box2DRenderer() noexcept; | |||
| /** Renders the world. | |||
| @param g the context to render into | |||
| @param world the world to render | |||
| @param box2DWorldLeft the left coordinate of the area of the world to be drawn | |||
| @param box2DWorldTop the top coordinate of the area of the world to be drawn | |||
| @param box2DWorldRight the right coordinate of the area of the world to be drawn | |||
| @param box2DWorldBottom the bottom coordinate of the area of the world to be drawn | |||
| @param targetArea the area within the target context onto which the source | |||
| world rectangle should be mapped | |||
| */ | |||
| void render (Graphics& g, | |||
| b2World& world, | |||
| float box2DWorldLeft, float box2DWorldTop, | |||
| float box2DWorldRight, float box2DWorldBottom, | |||
| const Rectangle<float>& targetArea); | |||
| // b2Draw methods: | |||
| void DrawPolygon (const b2Vec2*, int32, const b2Color&) override; | |||
| void DrawSolidPolygon (const b2Vec2*, int32, const b2Color&) override; | |||
| void DrawCircle (const b2Vec2& center, float32 radius, const b2Color&) override; | |||
| void DrawSolidCircle (const b2Vec2& center, float32 radius, const b2Vec2& axis, const b2Color&) override; | |||
| void DrawSegment (const b2Vec2& p1, const b2Vec2& p2, const b2Color&) override; | |||
| void DrawTransform (const b2Transform& xf) override; | |||
| /** Converts a b2Color to a juce Colour. */ | |||
| virtual Colour getColour (const b2Color&) const; | |||
| /** Returns the thickness to use for drawing outlines. */ | |||
| virtual float getLineThickness() const; | |||
| protected: | |||
| Graphics* graphics; | |||
| JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (Box2DRenderer) | |||
| }; | |||
| #endif // __JUCE_BOX2DRENDERER_JUCEHEADER__ | |||