Collection of DPF-based plugins for packaging
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

901 lines
22KB

  1. /// @ref gtx_euler_angles
  2. /// @file glm/gtx/euler_angles.inl
  3. #include "compatibility.hpp" // glm::atan2
  4. namespace glm
  5. {
  6. template<typename T>
  7. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleX
  8. (
  9. T const& angleX
  10. )
  11. {
  12. T cosX = glm::cos(angleX);
  13. T sinX = glm::sin(angleX);
  14. return mat<4, 4, T, defaultp>(
  15. T(1), T(0), T(0), T(0),
  16. T(0), cosX, sinX, T(0),
  17. T(0),-sinX, cosX, T(0),
  18. T(0), T(0), T(0), T(1));
  19. }
  20. template<typename T>
  21. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleY
  22. (
  23. T const& angleY
  24. )
  25. {
  26. T cosY = glm::cos(angleY);
  27. T sinY = glm::sin(angleY);
  28. return mat<4, 4, T, defaultp>(
  29. cosY, T(0), -sinY, T(0),
  30. T(0), T(1), T(0), T(0),
  31. sinY, T(0), cosY, T(0),
  32. T(0), T(0), T(0), T(1));
  33. }
  34. template<typename T>
  35. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZ
  36. (
  37. T const& angleZ
  38. )
  39. {
  40. T cosZ = glm::cos(angleZ);
  41. T sinZ = glm::sin(angleZ);
  42. return mat<4, 4, T, defaultp>(
  43. cosZ, sinZ, T(0), T(0),
  44. -sinZ, cosZ, T(0), T(0),
  45. T(0), T(0), T(1), T(0),
  46. T(0), T(0), T(0), T(1));
  47. }
  48. template <typename T>
  49. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleX
  50. (
  51. T const & angleX,
  52. T const & angularVelocityX
  53. )
  54. {
  55. T cosX = glm::cos(angleX) * angularVelocityX;
  56. T sinX = glm::sin(angleX) * angularVelocityX;
  57. return mat<4, 4, T, defaultp>(
  58. T(0), T(0), T(0), T(0),
  59. T(0),-sinX, cosX, T(0),
  60. T(0),-cosX,-sinX, T(0),
  61. T(0), T(0), T(0), T(0));
  62. }
  63. template <typename T>
  64. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleY
  65. (
  66. T const & angleY,
  67. T const & angularVelocityY
  68. )
  69. {
  70. T cosY = glm::cos(angleY) * angularVelocityY;
  71. T sinY = glm::sin(angleY) * angularVelocityY;
  72. return mat<4, 4, T, defaultp>(
  73. -sinY, T(0), -cosY, T(0),
  74. T(0), T(0), T(0), T(0),
  75. cosY, T(0), -sinY, T(0),
  76. T(0), T(0), T(0), T(0));
  77. }
  78. template <typename T>
  79. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleZ
  80. (
  81. T const & angleZ,
  82. T const & angularVelocityZ
  83. )
  84. {
  85. T cosZ = glm::cos(angleZ) * angularVelocityZ;
  86. T sinZ = glm::sin(angleZ) * angularVelocityZ;
  87. return mat<4, 4, T, defaultp>(
  88. -sinZ, cosZ, T(0), T(0),
  89. -cosZ, -sinZ, T(0), T(0),
  90. T(0), T(0), T(0), T(0),
  91. T(0), T(0), T(0), T(0));
  92. }
  93. template<typename T>
  94. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXY
  95. (
  96. T const& angleX,
  97. T const& angleY
  98. )
  99. {
  100. T cosX = glm::cos(angleX);
  101. T sinX = glm::sin(angleX);
  102. T cosY = glm::cos(angleY);
  103. T sinY = glm::sin(angleY);
  104. return mat<4, 4, T, defaultp>(
  105. cosY, -sinX * -sinY, cosX * -sinY, T(0),
  106. T(0), cosX, sinX, T(0),
  107. sinY, -sinX * cosY, cosX * cosY, T(0),
  108. T(0), T(0), T(0), T(1));
  109. }
  110. template<typename T>
  111. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYX
  112. (
  113. T const& angleY,
  114. T const& angleX
  115. )
  116. {
  117. T cosX = glm::cos(angleX);
  118. T sinX = glm::sin(angleX);
  119. T cosY = glm::cos(angleY);
  120. T sinY = glm::sin(angleY);
  121. return mat<4, 4, T, defaultp>(
  122. cosY, 0, -sinY, T(0),
  123. sinY * sinX, cosX, cosY * sinX, T(0),
  124. sinY * cosX, -sinX, cosY * cosX, T(0),
  125. T(0), T(0), T(0), T(1));
  126. }
  127. template<typename T>
  128. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXZ
  129. (
  130. T const& angleX,
  131. T const& angleZ
  132. )
  133. {
  134. return eulerAngleX(angleX) * eulerAngleZ(angleZ);
  135. }
  136. template<typename T>
  137. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZX
  138. (
  139. T const& angleZ,
  140. T const& angleX
  141. )
  142. {
  143. return eulerAngleZ(angleZ) * eulerAngleX(angleX);
  144. }
  145. template<typename T>
  146. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYZ
  147. (
  148. T const& angleY,
  149. T const& angleZ
  150. )
  151. {
  152. return eulerAngleY(angleY) * eulerAngleZ(angleZ);
  153. }
  154. template<typename T>
  155. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZY
  156. (
  157. T const& angleZ,
  158. T const& angleY
  159. )
  160. {
  161. return eulerAngleZ(angleZ) * eulerAngleY(angleY);
  162. }
  163. template<typename T>
  164. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXYZ
  165. (
  166. T const& t1,
  167. T const& t2,
  168. T const& t3
  169. )
  170. {
  171. T c1 = glm::cos(-t1);
  172. T c2 = glm::cos(-t2);
  173. T c3 = glm::cos(-t3);
  174. T s1 = glm::sin(-t1);
  175. T s2 = glm::sin(-t2);
  176. T s3 = glm::sin(-t3);
  177. mat<4, 4, T, defaultp> Result;
  178. Result[0][0] = c2 * c3;
  179. Result[0][1] =-c1 * s3 + s1 * s2 * c3;
  180. Result[0][2] = s1 * s3 + c1 * s2 * c3;
  181. Result[0][3] = static_cast<T>(0);
  182. Result[1][0] = c2 * s3;
  183. Result[1][1] = c1 * c3 + s1 * s2 * s3;
  184. Result[1][2] =-s1 * c3 + c1 * s2 * s3;
  185. Result[1][3] = static_cast<T>(0);
  186. Result[2][0] =-s2;
  187. Result[2][1] = s1 * c2;
  188. Result[2][2] = c1 * c2;
  189. Result[2][3] = static_cast<T>(0);
  190. Result[3][0] = static_cast<T>(0);
  191. Result[3][1] = static_cast<T>(0);
  192. Result[3][2] = static_cast<T>(0);
  193. Result[3][3] = static_cast<T>(1);
  194. return Result;
  195. }
  196. template<typename T>
  197. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYXZ
  198. (
  199. T const& yaw,
  200. T const& pitch,
  201. T const& roll
  202. )
  203. {
  204. T tmp_ch = glm::cos(yaw);
  205. T tmp_sh = glm::sin(yaw);
  206. T tmp_cp = glm::cos(pitch);
  207. T tmp_sp = glm::sin(pitch);
  208. T tmp_cb = glm::cos(roll);
  209. T tmp_sb = glm::sin(roll);
  210. mat<4, 4, T, defaultp> Result;
  211. Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb;
  212. Result[0][1] = tmp_sb * tmp_cp;
  213. Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb;
  214. Result[0][3] = static_cast<T>(0);
  215. Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb;
  216. Result[1][1] = tmp_cb * tmp_cp;
  217. Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb;
  218. Result[1][3] = static_cast<T>(0);
  219. Result[2][0] = tmp_sh * tmp_cp;
  220. Result[2][1] = -tmp_sp;
  221. Result[2][2] = tmp_ch * tmp_cp;
  222. Result[2][3] = static_cast<T>(0);
  223. Result[3][0] = static_cast<T>(0);
  224. Result[3][1] = static_cast<T>(0);
  225. Result[3][2] = static_cast<T>(0);
  226. Result[3][3] = static_cast<T>(1);
  227. return Result;
  228. }
  229. template <typename T>
  230. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXZX
  231. (
  232. T const & t1,
  233. T const & t2,
  234. T const & t3
  235. )
  236. {
  237. T c1 = glm::cos(t1);
  238. T s1 = glm::sin(t1);
  239. T c2 = glm::cos(t2);
  240. T s2 = glm::sin(t2);
  241. T c3 = glm::cos(t3);
  242. T s3 = glm::sin(t3);
  243. mat<4, 4, T, defaultp> Result;
  244. Result[0][0] = c2;
  245. Result[0][1] = c1 * s2;
  246. Result[0][2] = s1 * s2;
  247. Result[0][3] = static_cast<T>(0);
  248. Result[1][0] =-c3 * s2;
  249. Result[1][1] = c1 * c2 * c3 - s1 * s3;
  250. Result[1][2] = c1 * s3 + c2 * c3 * s1;
  251. Result[1][3] = static_cast<T>(0);
  252. Result[2][0] = s2 * s3;
  253. Result[2][1] =-c3 * s1 - c1 * c2 * s3;
  254. Result[2][2] = c1 * c3 - c2 * s1 * s3;
  255. Result[2][3] = static_cast<T>(0);
  256. Result[3][0] = static_cast<T>(0);
  257. Result[3][1] = static_cast<T>(0);
  258. Result[3][2] = static_cast<T>(0);
  259. Result[3][3] = static_cast<T>(1);
  260. return Result;
  261. }
  262. template <typename T>
  263. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXYX
  264. (
  265. T const & t1,
  266. T const & t2,
  267. T const & t3
  268. )
  269. {
  270. T c1 = glm::cos(t1);
  271. T s1 = glm::sin(t1);
  272. T c2 = glm::cos(t2);
  273. T s2 = glm::sin(t2);
  274. T c3 = glm::cos(t3);
  275. T s3 = glm::sin(t3);
  276. mat<4, 4, T, defaultp> Result;
  277. Result[0][0] = c2;
  278. Result[0][1] = s1 * s2;
  279. Result[0][2] =-c1 * s2;
  280. Result[0][3] = static_cast<T>(0);
  281. Result[1][0] = s2 * s3;
  282. Result[1][1] = c1 * c3 - c2 * s1 * s3;
  283. Result[1][2] = c3 * s1 + c1 * c2 * s3;
  284. Result[1][3] = static_cast<T>(0);
  285. Result[2][0] = c3 * s2;
  286. Result[2][1] =-c1 * s3 - c2 * c3 * s1;
  287. Result[2][2] = c1 * c2 * c3 - s1 * s3;
  288. Result[2][3] = static_cast<T>(0);
  289. Result[3][0] = static_cast<T>(0);
  290. Result[3][1] = static_cast<T>(0);
  291. Result[3][2] = static_cast<T>(0);
  292. Result[3][3] = static_cast<T>(1);
  293. return Result;
  294. }
  295. template <typename T>
  296. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYXY
  297. (
  298. T const & t1,
  299. T const & t2,
  300. T const & t3
  301. )
  302. {
  303. T c1 = glm::cos(t1);
  304. T s1 = glm::sin(t1);
  305. T c2 = glm::cos(t2);
  306. T s2 = glm::sin(t2);
  307. T c3 = glm::cos(t3);
  308. T s3 = glm::sin(t3);
  309. mat<4, 4, T, defaultp> Result;
  310. Result[0][0] = c1 * c3 - c2 * s1 * s3;
  311. Result[0][1] = s2* s3;
  312. Result[0][2] =-c3 * s1 - c1 * c2 * s3;
  313. Result[0][3] = static_cast<T>(0);
  314. Result[1][0] = s1 * s2;
  315. Result[1][1] = c2;
  316. Result[1][2] = c1 * s2;
  317. Result[1][3] = static_cast<T>(0);
  318. Result[2][0] = c1 * s3 + c2 * c3 * s1;
  319. Result[2][1] =-c3 * s2;
  320. Result[2][2] = c1 * c2 * c3 - s1 * s3;
  321. Result[2][3] = static_cast<T>(0);
  322. Result[3][0] = static_cast<T>(0);
  323. Result[3][1] = static_cast<T>(0);
  324. Result[3][2] = static_cast<T>(0);
  325. Result[3][3] = static_cast<T>(1);
  326. return Result;
  327. }
  328. template <typename T>
  329. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYZY
  330. (
  331. T const & t1,
  332. T const & t2,
  333. T const & t3
  334. )
  335. {
  336. T c1 = glm::cos(t1);
  337. T s1 = glm::sin(t1);
  338. T c2 = glm::cos(t2);
  339. T s2 = glm::sin(t2);
  340. T c3 = glm::cos(t3);
  341. T s3 = glm::sin(t3);
  342. mat<4, 4, T, defaultp> Result;
  343. Result[0][0] = c1 * c2 * c3 - s1 * s3;
  344. Result[0][1] = c3 * s2;
  345. Result[0][2] =-c1 * s3 - c2 * c3 * s1;
  346. Result[0][3] = static_cast<T>(0);
  347. Result[1][0] =-c1 * s2;
  348. Result[1][1] = c2;
  349. Result[1][2] = s1 * s2;
  350. Result[1][3] = static_cast<T>(0);
  351. Result[2][0] = c3 * s1 + c1 * c2 * s3;
  352. Result[2][1] = s2 * s3;
  353. Result[2][2] = c1 * c3 - c2 * s1 * s3;
  354. Result[2][3] = static_cast<T>(0);
  355. Result[3][0] = static_cast<T>(0);
  356. Result[3][1] = static_cast<T>(0);
  357. Result[3][2] = static_cast<T>(0);
  358. Result[3][3] = static_cast<T>(1);
  359. return Result;
  360. }
  361. template <typename T>
  362. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZYZ
  363. (
  364. T const & t1,
  365. T const & t2,
  366. T const & t3
  367. )
  368. {
  369. T c1 = glm::cos(t1);
  370. T s1 = glm::sin(t1);
  371. T c2 = glm::cos(t2);
  372. T s2 = glm::sin(t2);
  373. T c3 = glm::cos(t3);
  374. T s3 = glm::sin(t3);
  375. mat<4, 4, T, defaultp> Result;
  376. Result[0][0] = c1 * c2 * c3 - s1 * s3;
  377. Result[0][1] = c1 * s3 + c2 * c3 * s1;
  378. Result[0][2] =-c3 * s2;
  379. Result[0][3] = static_cast<T>(0);
  380. Result[1][0] =-c3 * s1 - c1 * c2 * s3;
  381. Result[1][1] = c1 * c3 - c2 * s1 * s3;
  382. Result[1][2] = s2 * s3;
  383. Result[1][3] = static_cast<T>(0);
  384. Result[2][0] = c1 * s2;
  385. Result[2][1] = s1 * s2;
  386. Result[2][2] = c2;
  387. Result[2][3] = static_cast<T>(0);
  388. Result[3][0] = static_cast<T>(0);
  389. Result[3][1] = static_cast<T>(0);
  390. Result[3][2] = static_cast<T>(0);
  391. Result[3][3] = static_cast<T>(1);
  392. return Result;
  393. }
  394. template <typename T>
  395. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZXZ
  396. (
  397. T const & t1,
  398. T const & t2,
  399. T const & t3
  400. )
  401. {
  402. T c1 = glm::cos(t1);
  403. T s1 = glm::sin(t1);
  404. T c2 = glm::cos(t2);
  405. T s2 = glm::sin(t2);
  406. T c3 = glm::cos(t3);
  407. T s3 = glm::sin(t3);
  408. mat<4, 4, T, defaultp> Result;
  409. Result[0][0] = c1 * c3 - c2 * s1 * s3;
  410. Result[0][1] = c3 * s1 + c1 * c2 * s3;
  411. Result[0][2] = s2 *s3;
  412. Result[0][3] = static_cast<T>(0);
  413. Result[1][0] =-c1 * s3 - c2 * c3 * s1;
  414. Result[1][1] = c1 * c2 * c3 - s1 * s3;
  415. Result[1][2] = c3 * s2;
  416. Result[1][3] = static_cast<T>(0);
  417. Result[2][0] = s1 * s2;
  418. Result[2][1] =-c1 * s2;
  419. Result[2][2] = c2;
  420. Result[2][3] = static_cast<T>(0);
  421. Result[3][0] = static_cast<T>(0);
  422. Result[3][1] = static_cast<T>(0);
  423. Result[3][2] = static_cast<T>(0);
  424. Result[3][3] = static_cast<T>(1);
  425. return Result;
  426. }
  427. template <typename T>
  428. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXZY
  429. (
  430. T const & t1,
  431. T const & t2,
  432. T const & t3
  433. )
  434. {
  435. T c1 = glm::cos(t1);
  436. T s1 = glm::sin(t1);
  437. T c2 = glm::cos(t2);
  438. T s2 = glm::sin(t2);
  439. T c3 = glm::cos(t3);
  440. T s3 = glm::sin(t3);
  441. mat<4, 4, T, defaultp> Result;
  442. Result[0][0] = c2 * c3;
  443. Result[0][1] = s1 * s3 + c1 * c3 * s2;
  444. Result[0][2] = c3 * s1 * s2 - c1 * s3;
  445. Result[0][3] = static_cast<T>(0);
  446. Result[1][0] =-s2;
  447. Result[1][1] = c1 * c2;
  448. Result[1][2] = c2 * s1;
  449. Result[1][3] = static_cast<T>(0);
  450. Result[2][0] = c2 * s3;
  451. Result[2][1] = c1 * s2 * s3 - c3 * s1;
  452. Result[2][2] = c1 * c3 + s1 * s2 *s3;
  453. Result[2][3] = static_cast<T>(0);
  454. Result[3][0] = static_cast<T>(0);
  455. Result[3][1] = static_cast<T>(0);
  456. Result[3][2] = static_cast<T>(0);
  457. Result[3][3] = static_cast<T>(1);
  458. return Result;
  459. }
  460. template <typename T>
  461. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYZX
  462. (
  463. T const & t1,
  464. T const & t2,
  465. T const & t3
  466. )
  467. {
  468. T c1 = glm::cos(t1);
  469. T s1 = glm::sin(t1);
  470. T c2 = glm::cos(t2);
  471. T s2 = glm::sin(t2);
  472. T c3 = glm::cos(t3);
  473. T s3 = glm::sin(t3);
  474. mat<4, 4, T, defaultp> Result;
  475. Result[0][0] = c1 * c2;
  476. Result[0][1] = s2;
  477. Result[0][2] =-c2 * s1;
  478. Result[0][3] = static_cast<T>(0);
  479. Result[1][0] = s1 * s3 - c1 * c3 * s2;
  480. Result[1][1] = c2 * c3;
  481. Result[1][2] = c1 * s3 + c3 * s1 * s2;
  482. Result[1][3] = static_cast<T>(0);
  483. Result[2][0] = c3 * s1 + c1 * s2 * s3;
  484. Result[2][1] =-c2 * s3;
  485. Result[2][2] = c1 * c3 - s1 * s2 * s3;
  486. Result[2][3] = static_cast<T>(0);
  487. Result[3][0] = static_cast<T>(0);
  488. Result[3][1] = static_cast<T>(0);
  489. Result[3][2] = static_cast<T>(0);
  490. Result[3][3] = static_cast<T>(1);
  491. return Result;
  492. }
  493. template <typename T>
  494. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZYX
  495. (
  496. T const & t1,
  497. T const & t2,
  498. T const & t3
  499. )
  500. {
  501. T c1 = glm::cos(t1);
  502. T s1 = glm::sin(t1);
  503. T c2 = glm::cos(t2);
  504. T s2 = glm::sin(t2);
  505. T c3 = glm::cos(t3);
  506. T s3 = glm::sin(t3);
  507. mat<4, 4, T, defaultp> Result;
  508. Result[0][0] = c1 * c2;
  509. Result[0][1] = c2 * s1;
  510. Result[0][2] =-s2;
  511. Result[0][3] = static_cast<T>(0);
  512. Result[1][0] = c1 * s2 * s3 - c3 * s1;
  513. Result[1][1] = c1 * c3 + s1 * s2 * s3;
  514. Result[1][2] = c2 * s3;
  515. Result[1][3] = static_cast<T>(0);
  516. Result[2][0] = s1 * s3 + c1 * c3 * s2;
  517. Result[2][1] = c3 * s1 * s2 - c1 * s3;
  518. Result[2][2] = c2 * c3;
  519. Result[2][3] = static_cast<T>(0);
  520. Result[3][0] = static_cast<T>(0);
  521. Result[3][1] = static_cast<T>(0);
  522. Result[3][2] = static_cast<T>(0);
  523. Result[3][3] = static_cast<T>(1);
  524. return Result;
  525. }
  526. template <typename T>
  527. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZXY
  528. (
  529. T const & t1,
  530. T const & t2,
  531. T const & t3
  532. )
  533. {
  534. T c1 = glm::cos(t1);
  535. T s1 = glm::sin(t1);
  536. T c2 = glm::cos(t2);
  537. T s2 = glm::sin(t2);
  538. T c3 = glm::cos(t3);
  539. T s3 = glm::sin(t3);
  540. mat<4, 4, T, defaultp> Result;
  541. Result[0][0] = c1 * c3 - s1 * s2 * s3;
  542. Result[0][1] = c3 * s1 + c1 * s2 * s3;
  543. Result[0][2] =-c2 * s3;
  544. Result[0][3] = static_cast<T>(0);
  545. Result[1][0] =-c2 * s1;
  546. Result[1][1] = c1 * c2;
  547. Result[1][2] = s2;
  548. Result[1][3] = static_cast<T>(0);
  549. Result[2][0] = c1 * s3 + c3 * s1 * s2;
  550. Result[2][1] = s1 * s3 - c1 * c3 * s2;
  551. Result[2][2] = c2 * c3;
  552. Result[2][3] = static_cast<T>(0);
  553. Result[3][0] = static_cast<T>(0);
  554. Result[3][1] = static_cast<T>(0);
  555. Result[3][2] = static_cast<T>(0);
  556. Result[3][3] = static_cast<T>(1);
  557. return Result;
  558. }
  559. template<typename T>
  560. GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> yawPitchRoll
  561. (
  562. T const& yaw,
  563. T const& pitch,
  564. T const& roll
  565. )
  566. {
  567. T tmp_ch = glm::cos(yaw);
  568. T tmp_sh = glm::sin(yaw);
  569. T tmp_cp = glm::cos(pitch);
  570. T tmp_sp = glm::sin(pitch);
  571. T tmp_cb = glm::cos(roll);
  572. T tmp_sb = glm::sin(roll);
  573. mat<4, 4, T, defaultp> Result;
  574. Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb;
  575. Result[0][1] = tmp_sb * tmp_cp;
  576. Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb;
  577. Result[0][3] = static_cast<T>(0);
  578. Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb;
  579. Result[1][1] = tmp_cb * tmp_cp;
  580. Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb;
  581. Result[1][3] = static_cast<T>(0);
  582. Result[2][0] = tmp_sh * tmp_cp;
  583. Result[2][1] = -tmp_sp;
  584. Result[2][2] = tmp_ch * tmp_cp;
  585. Result[2][3] = static_cast<T>(0);
  586. Result[3][0] = static_cast<T>(0);
  587. Result[3][1] = static_cast<T>(0);
  588. Result[3][2] = static_cast<T>(0);
  589. Result[3][3] = static_cast<T>(1);
  590. return Result;
  591. }
  592. template<typename T>
  593. GLM_FUNC_QUALIFIER mat<2, 2, T, defaultp> orientate2
  594. (
  595. T const& angle
  596. )
  597. {
  598. T c = glm::cos(angle);
  599. T s = glm::sin(angle);
  600. mat<2, 2, T, defaultp> Result;
  601. Result[0][0] = c;
  602. Result[0][1] = s;
  603. Result[1][0] = -s;
  604. Result[1][1] = c;
  605. return Result;
  606. }
  607. template<typename T>
  608. GLM_FUNC_QUALIFIER mat<3, 3, T, defaultp> orientate3
  609. (
  610. T const& angle
  611. )
  612. {
  613. T c = glm::cos(angle);
  614. T s = glm::sin(angle);
  615. mat<3, 3, T, defaultp> Result;
  616. Result[0][0] = c;
  617. Result[0][1] = s;
  618. Result[0][2] = 0.0f;
  619. Result[1][0] = -s;
  620. Result[1][1] = c;
  621. Result[1][2] = 0.0f;
  622. Result[2][0] = 0.0f;
  623. Result[2][1] = 0.0f;
  624. Result[2][2] = 1.0f;
  625. return Result;
  626. }
  627. template<typename T, qualifier Q>
  628. GLM_FUNC_QUALIFIER mat<3, 3, T, Q> orientate3
  629. (
  630. vec<3, T, Q> const& angles
  631. )
  632. {
  633. return mat<3, 3, T, Q>(yawPitchRoll(angles.z, angles.x, angles.y));
  634. }
  635. template<typename T, qualifier Q>
  636. GLM_FUNC_QUALIFIER mat<4, 4, T, Q> orientate4
  637. (
  638. vec<3, T, Q> const& angles
  639. )
  640. {
  641. return yawPitchRoll(angles.z, angles.x, angles.y);
  642. }
  643. template<typename T>
  644. GLM_FUNC_DECL void extractEulerAngleXYZ(mat<4, 4, T, defaultp> const& M,
  645. T & t1,
  646. T & t2,
  647. T & t3)
  648. {
  649. float T1 = glm::atan2<T, defaultp>(M[2][1], M[2][2]);
  650. float C2 = glm::sqrt(M[0][0]*M[0][0] + M[1][0]*M[1][0]);
  651. float T2 = glm::atan2<T, defaultp>(-M[2][0], C2);
  652. float S1 = glm::sin(T1);
  653. float C1 = glm::cos(T1);
  654. float T3 = glm::atan2<T, defaultp>(S1*M[0][2] - C1*M[0][1], C1*M[1][1] - S1*M[1][2 ]);
  655. t1 = -T1;
  656. t2 = -T2;
  657. t3 = -T3;
  658. }
  659. template <typename T>
  660. GLM_FUNC_QUALIFIER void extractEulerAngleYXZ(mat<4, 4, T, defaultp> const & M,
  661. T & t1,
  662. T & t2,
  663. T & t3)
  664. {
  665. T T1 = glm::atan2<T, defaultp>(M[2][0], M[2][2]);
  666. T C2 = glm::sqrt(M[0][1]*M[0][1] + M[1][1]*M[1][1]);
  667. T T2 = glm::atan2<T, defaultp>(-M[2][1], C2);
  668. T S1 = glm::sin(T1);
  669. T C1 = glm::cos(T1);
  670. T T3 = glm::atan2<T, defaultp>(S1*M[1][2] - C1*M[1][0], C1*M[0][0] - S1*M[0][2]);
  671. t1 = T1;
  672. t2 = T2;
  673. t3 = T3;
  674. }
  675. template <typename T>
  676. GLM_FUNC_QUALIFIER void extractEulerAngleXZX(mat<4, 4, T, defaultp> const & M,
  677. T & t1,
  678. T & t2,
  679. T & t3)
  680. {
  681. T T1 = glm::atan2<T, defaultp>(M[0][2], M[0][1]);
  682. T S2 = glm::sqrt(M[1][0]*M[1][0] + M[2][0]*M[2][0]);
  683. T T2 = glm::atan2<T, defaultp>(S2, M[0][0]);
  684. T S1 = glm::sin(T1);
  685. T C1 = glm::cos(T1);
  686. T T3 = glm::atan2<T, defaultp>(C1*M[1][2] - S1*M[1][1], C1*M[2][2] - S1*M[2][1]);
  687. t1 = T1;
  688. t2 = T2;
  689. t3 = T3;
  690. }
  691. template <typename T>
  692. GLM_FUNC_QUALIFIER void extractEulerAngleXYX(mat<4, 4, T, defaultp> const & M,
  693. T & t1,
  694. T & t2,
  695. T & t3)
  696. {
  697. T T1 = glm::atan2<T, defaultp>(M[0][1], -M[0][2]);
  698. T S2 = glm::sqrt(M[1][0]*M[1][0] + M[2][0]*M[2][0]);
  699. T T2 = glm::atan2<T, defaultp>(S2, M[0][0]);
  700. T S1 = glm::sin(T1);
  701. T C1 = glm::cos(T1);
  702. T T3 = glm::atan2<T, defaultp>(-C1*M[2][1] - S1*M[2][2], C1*M[1][1] + S1*M[1][2]);
  703. t1 = T1;
  704. t2 = T2;
  705. t3 = T3;
  706. }
  707. template <typename T>
  708. GLM_FUNC_QUALIFIER void extractEulerAngleYXY(mat<4, 4, T, defaultp> const & M,
  709. T & t1,
  710. T & t2,
  711. T & t3)
  712. {
  713. T T1 = glm::atan2<T, defaultp>(M[1][0], M[1][2]);
  714. T S2 = glm::sqrt(M[0][1]*M[0][1] + M[2][1]*M[2][1]);
  715. T T2 = glm::atan2<T, defaultp>(S2, M[1][1]);
  716. T S1 = glm::sin(T1);
  717. T C1 = glm::cos(T1);
  718. T T3 = glm::atan2<T, defaultp>(C1*M[2][0] - S1*M[2][2], C1*M[0][0] - S1*M[0][2]);
  719. t1 = T1;
  720. t2 = T2;
  721. t3 = T3;
  722. }
  723. template <typename T>
  724. GLM_FUNC_QUALIFIER void extractEulerAngleYZY(mat<4, 4, T, defaultp> const & M,
  725. T & t1,
  726. T & t2,
  727. T & t3)
  728. {
  729. T T1 = glm::atan2<T, defaultp>(M[1][2], -M[1][0]);
  730. T S2 = glm::sqrt(M[0][1]*M[0][1] + M[2][1]*M[2][1]);
  731. T T2 = glm::atan2<T, defaultp>(S2, M[1][1]);
  732. T S1 = glm::sin(T1);
  733. T C1 = glm::cos(T1);
  734. T T3 = glm::atan2<T, defaultp>(-S1*M[0][0] - C1*M[0][2], S1*M[2][0] + C1*M[2][2]);
  735. t1 = T1;
  736. t2 = T2;
  737. t3 = T3;
  738. }
  739. template <typename T>
  740. GLM_FUNC_QUALIFIER void extractEulerAngleZYZ(mat<4, 4, T, defaultp> const & M,
  741. T & t1,
  742. T & t2,
  743. T & t3)
  744. {
  745. T T1 = glm::atan2<T, defaultp>(M[2][1], M[2][0]);
  746. T S2 = glm::sqrt(M[0][2]*M[0][2] + M[1][2]*M[1][2]);
  747. T T2 = glm::atan2<T, defaultp>(S2, M[2][2]);
  748. T S1 = glm::sin(T1);
  749. T C1 = glm::cos(T1);
  750. T T3 = glm::atan2<T, defaultp>(C1*M[0][1] - S1*M[0][0], C1*M[1][1] - S1*M[1][0]);
  751. t1 = T1;
  752. t2 = T2;
  753. t3 = T3;
  754. }
  755. template <typename T>
  756. GLM_FUNC_QUALIFIER void extractEulerAngleZXZ(mat<4, 4, T, defaultp> const & M,
  757. T & t1,
  758. T & t2,
  759. T & t3)
  760. {
  761. T T1 = glm::atan2<T, defaultp>(M[2][0], -M[2][1]);
  762. T S2 = glm::sqrt(M[0][2]*M[0][2] + M[1][2]*M[1][2]);
  763. T T2 = glm::atan2<T, defaultp>(S2, M[2][2]);
  764. T S1 = glm::sin(T1);
  765. T C1 = glm::cos(T1);
  766. T T3 = glm::atan2<T, defaultp>(-C1*M[1][0] - S1*M[1][1], C1*M[0][0] + S1*M[0][1]);
  767. t1 = T1;
  768. t2 = T2;
  769. t3 = T3;
  770. }
  771. template <typename T>
  772. GLM_FUNC_QUALIFIER void extractEulerAngleXZY(mat<4, 4, T, defaultp> const & M,
  773. T & t1,
  774. T & t2,
  775. T & t3)
  776. {
  777. T T1 = glm::atan2<T, defaultp>(M[1][2], M[1][1]);
  778. T C2 = glm::sqrt(M[0][0]*M[0][0] + M[2][0]*M[2][0]);
  779. T T2 = glm::atan2<T, defaultp>(-M[1][0], C2);
  780. T S1 = glm::sin(T1);
  781. T C1 = glm::cos(T1);
  782. T T3 = glm::atan2<T, defaultp>(S1*M[0][1] - C1*M[0][2], C1*M[2][2] - S1*M[2][1]);
  783. t1 = T1;
  784. t2 = T2;
  785. t3 = T3;
  786. }
  787. template <typename T>
  788. GLM_FUNC_QUALIFIER void extractEulerAngleYZX(mat<4, 4, T, defaultp> const & M,
  789. T & t1,
  790. T & t2,
  791. T & t3)
  792. {
  793. T T1 = glm::atan2<T, defaultp>(-M[0][2], M[0][0]);
  794. T C2 = glm::sqrt(M[1][1]*M[1][1] + M[2][1]*M[2][1]);
  795. T T2 = glm::atan2<T, defaultp>(M[0][1], C2);
  796. T S1 = glm::sin(T1);
  797. T C1 = glm::cos(T1);
  798. T T3 = glm::atan2<T, defaultp>(S1*M[1][0] + C1*M[1][2], S1*M[2][0] + C1*M[2][2]);
  799. t1 = T1;
  800. t2 = T2;
  801. t3 = T3;
  802. }
  803. template <typename T>
  804. GLM_FUNC_QUALIFIER void extractEulerAngleZYX(mat<4, 4, T, defaultp> const & M,
  805. T & t1,
  806. T & t2,
  807. T & t3)
  808. {
  809. T T1 = glm::atan2<T, defaultp>(M[0][1], M[0][0]);
  810. T C2 = glm::sqrt(M[1][2]*M[1][2] + M[2][2]*M[2][2]);
  811. T T2 = glm::atan2<T, defaultp>(-M[0][2], C2);
  812. T S1 = glm::sin(T1);
  813. T C1 = glm::cos(T1);
  814. T T3 = glm::atan2<T, defaultp>(S1*M[2][0] - C1*M[2][1], C1*M[1][1] - S1*M[1][0]);
  815. t1 = T1;
  816. t2 = T2;
  817. t3 = T3;
  818. }
  819. template <typename T>
  820. GLM_FUNC_QUALIFIER void extractEulerAngleZXY(mat<4, 4, T, defaultp> const & M,
  821. T & t1,
  822. T & t2,
  823. T & t3)
  824. {
  825. T T1 = glm::atan2<T, defaultp>(-M[1][0], M[1][1]);
  826. T C2 = glm::sqrt(M[0][2]*M[0][2] + M[2][2]*M[2][2]);
  827. T T2 = glm::atan2<T, defaultp>(M[1][2], C2);
  828. T S1 = glm::sin(T1);
  829. T C1 = glm::cos(T1);
  830. T T3 = glm::atan2<T, defaultp>(C1*M[2][0] + S1*M[2][1], C1*M[0][0] + S1*M[0][1]);
  831. t1 = T1;
  832. t2 = T2;
  833. t3 = T3;
  834. }
  835. }//namespace glm