Collection of DPF-based plugins for packaging
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

809 lines
32KB

  1. /// @ref gtc_noise
  2. /// @file glm/gtc/noise.inl
  3. ///
  4. // Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise":
  5. // https://github.com/ashima/webgl-noise
  6. // Following Stefan Gustavson's paper "Simplex noise demystified":
  7. // http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
  8. namespace glm{
  9. namespace gtc
  10. {
  11. template<typename T, qualifier Q>
  12. GLM_FUNC_QUALIFIER vec<4, T, Q> grad4(T const& j, vec<4, T, Q> const& ip)
  13. {
  14. vec<3, T, Q> pXYZ = floor(fract(vec<3, T, Q>(j) * vec<3, T, Q>(ip)) * T(7)) * ip[2] - T(1);
  15. T pW = static_cast<T>(1.5) - dot(abs(pXYZ), vec<3, T, Q>(1));
  16. vec<4, T, Q> s = vec<4, T, Q>(lessThan(vec<4, T, Q>(pXYZ, pW), vec<4, T, Q>(0.0)));
  17. pXYZ = pXYZ + (vec<3, T, Q>(s) * T(2) - T(1)) * s.w;
  18. return vec<4, T, Q>(pXYZ, pW);
  19. }
  20. }//namespace gtc
  21. // Classic Perlin noise
  22. template<typename T, qualifier Q>
  23. GLM_FUNC_QUALIFIER T perlin(vec<2, T, Q> const& Position)
  24. {
  25. vec<4, T, Q> Pi = glm::floor(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) + vec<4, T, Q>(0.0, 0.0, 1.0, 1.0);
  26. vec<4, T, Q> Pf = glm::fract(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) - vec<4, T, Q>(0.0, 0.0, 1.0, 1.0);
  27. Pi = mod(Pi, vec<4, T, Q>(289)); // To avoid truncation effects in permutation
  28. vec<4, T, Q> ix(Pi.x, Pi.z, Pi.x, Pi.z);
  29. vec<4, T, Q> iy(Pi.y, Pi.y, Pi.w, Pi.w);
  30. vec<4, T, Q> fx(Pf.x, Pf.z, Pf.x, Pf.z);
  31. vec<4, T, Q> fy(Pf.y, Pf.y, Pf.w, Pf.w);
  32. vec<4, T, Q> i = detail::permute(detail::permute(ix) + iy);
  33. vec<4, T, Q> gx = static_cast<T>(2) * glm::fract(i / T(41)) - T(1);
  34. vec<4, T, Q> gy = glm::abs(gx) - T(0.5);
  35. vec<4, T, Q> tx = glm::floor(gx + T(0.5));
  36. gx = gx - tx;
  37. vec<2, T, Q> g00(gx.x, gy.x);
  38. vec<2, T, Q> g10(gx.y, gy.y);
  39. vec<2, T, Q> g01(gx.z, gy.z);
  40. vec<2, T, Q> g11(gx.w, gy.w);
  41. vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
  42. g00 *= norm.x;
  43. g01 *= norm.y;
  44. g10 *= norm.z;
  45. g11 *= norm.w;
  46. T n00 = dot(g00, vec<2, T, Q>(fx.x, fy.x));
  47. T n10 = dot(g10, vec<2, T, Q>(fx.y, fy.y));
  48. T n01 = dot(g01, vec<2, T, Q>(fx.z, fy.z));
  49. T n11 = dot(g11, vec<2, T, Q>(fx.w, fy.w));
  50. vec<2, T, Q> fade_xy = detail::fade(vec<2, T, Q>(Pf.x, Pf.y));
  51. vec<2, T, Q> n_x = mix(vec<2, T, Q>(n00, n01), vec<2, T, Q>(n10, n11), fade_xy.x);
  52. T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
  53. return T(2.3) * n_xy;
  54. }
  55. // Classic Perlin noise
  56. template<typename T, qualifier Q>
  57. GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& Position)
  58. {
  59. vec<3, T, Q> Pi0 = floor(Position); // Integer part for indexing
  60. vec<3, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1
  61. Pi0 = detail::mod289(Pi0);
  62. Pi1 = detail::mod289(Pi1);
  63. vec<3, T, Q> Pf0 = fract(Position); // Fractional part for interpolation
  64. vec<3, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0
  65. vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
  66. vec<4, T, Q> iy = vec<4, T, Q>(vec<2, T, Q>(Pi0.y), vec<2, T, Q>(Pi1.y));
  67. vec<4, T, Q> iz0(Pi0.z);
  68. vec<4, T, Q> iz1(Pi1.z);
  69. vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy);
  70. vec<4, T, Q> ixy0 = detail::permute(ixy + iz0);
  71. vec<4, T, Q> ixy1 = detail::permute(ixy + iz1);
  72. vec<4, T, Q> gx0 = ixy0 * T(1.0 / 7.0);
  73. vec<4, T, Q> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5);
  74. gx0 = fract(gx0);
  75. vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0);
  76. vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0.0));
  77. gx0 -= sz0 * (step(T(0), gx0) - T(0.5));
  78. gy0 -= sz0 * (step(T(0), gy0) - T(0.5));
  79. vec<4, T, Q> gx1 = ixy1 * T(1.0 / 7.0);
  80. vec<4, T, Q> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5);
  81. gx1 = fract(gx1);
  82. vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1);
  83. vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(0.0));
  84. gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
  85. gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
  86. vec<3, T, Q> g000(gx0.x, gy0.x, gz0.x);
  87. vec<3, T, Q> g100(gx0.y, gy0.y, gz0.y);
  88. vec<3, T, Q> g010(gx0.z, gy0.z, gz0.z);
  89. vec<3, T, Q> g110(gx0.w, gy0.w, gz0.w);
  90. vec<3, T, Q> g001(gx1.x, gy1.x, gz1.x);
  91. vec<3, T, Q> g101(gx1.y, gy1.y, gz1.y);
  92. vec<3, T, Q> g011(gx1.z, gy1.z, gz1.z);
  93. vec<3, T, Q> g111(gx1.w, gy1.w, gz1.w);
  94. vec<4, T, Q> norm0 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
  95. g000 *= norm0.x;
  96. g010 *= norm0.y;
  97. g100 *= norm0.z;
  98. g110 *= norm0.w;
  99. vec<4, T, Q> norm1 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
  100. g001 *= norm1.x;
  101. g011 *= norm1.y;
  102. g101 *= norm1.z;
  103. g111 *= norm1.w;
  104. T n000 = dot(g000, Pf0);
  105. T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z));
  106. T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z));
  107. T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z));
  108. T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z));
  109. T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z));
  110. T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z));
  111. T n111 = dot(g111, Pf1);
  112. vec<3, T, Q> fade_xyz = detail::fade(Pf0);
  113. vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z);
  114. vec<2, T, Q> n_yz = mix(vec<2, T, Q>(n_z.x, n_z.y), vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y);
  115. T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
  116. return T(2.2) * n_xyz;
  117. }
  118. /*
  119. // Classic Perlin noise
  120. template<typename T, qualifier Q>
  121. GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& P)
  122. {
  123. vec<3, T, Q> Pi0 = floor(P); // Integer part for indexing
  124. vec<3, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1
  125. Pi0 = mod(Pi0, T(289));
  126. Pi1 = mod(Pi1, T(289));
  127. vec<3, T, Q> Pf0 = fract(P); // Fractional part for interpolation
  128. vec<3, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0
  129. vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
  130. vec<4, T, Q> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
  131. vec<4, T, Q> iz0(Pi0.z);
  132. vec<4, T, Q> iz1(Pi1.z);
  133. vec<4, T, Q> ixy = permute(permute(ix) + iy);
  134. vec<4, T, Q> ixy0 = permute(ixy + iz0);
  135. vec<4, T, Q> ixy1 = permute(ixy + iz1);
  136. vec<4, T, Q> gx0 = ixy0 / T(7);
  137. vec<4, T, Q> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
  138. gx0 = fract(gx0);
  139. vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0);
  140. vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0.0));
  141. gx0 -= sz0 * (step(0.0, gx0) - T(0.5));
  142. gy0 -= sz0 * (step(0.0, gy0) - T(0.5));
  143. vec<4, T, Q> gx1 = ixy1 / T(7);
  144. vec<4, T, Q> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
  145. gx1 = fract(gx1);
  146. vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1);
  147. vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(0.0));
  148. gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
  149. gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
  150. vec<3, T, Q> g000(gx0.x, gy0.x, gz0.x);
  151. vec<3, T, Q> g100(gx0.y, gy0.y, gz0.y);
  152. vec<3, T, Q> g010(gx0.z, gy0.z, gz0.z);
  153. vec<3, T, Q> g110(gx0.w, gy0.w, gz0.w);
  154. vec<3, T, Q> g001(gx1.x, gy1.x, gz1.x);
  155. vec<3, T, Q> g101(gx1.y, gy1.y, gz1.y);
  156. vec<3, T, Q> g011(gx1.z, gy1.z, gz1.z);
  157. vec<3, T, Q> g111(gx1.w, gy1.w, gz1.w);
  158. vec<4, T, Q> norm0 = taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
  159. g000 *= norm0.x;
  160. g010 *= norm0.y;
  161. g100 *= norm0.z;
  162. g110 *= norm0.w;
  163. vec<4, T, Q> norm1 = taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
  164. g001 *= norm1.x;
  165. g011 *= norm1.y;
  166. g101 *= norm1.z;
  167. g111 *= norm1.w;
  168. T n000 = dot(g000, Pf0);
  169. T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z));
  170. T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z));
  171. T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z));
  172. T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z));
  173. T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z));
  174. T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z));
  175. T n111 = dot(g111, Pf1);
  176. vec<3, T, Q> fade_xyz = fade(Pf0);
  177. vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z);
  178. vec<2, T, Q> n_yz = mix(
  179. vec<2, T, Q>(n_z.x, n_z.y),
  180. vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y);
  181. T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
  182. return T(2.2) * n_xyz;
  183. }
  184. */
  185. // Classic Perlin noise
  186. template<typename T, qualifier Q>
  187. GLM_FUNC_QUALIFIER T perlin(vec<4, T, Q> const& Position)
  188. {
  189. vec<4, T, Q> Pi0 = floor(Position); // Integer part for indexing
  190. vec<4, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1
  191. Pi0 = mod(Pi0, vec<4, T, Q>(289));
  192. Pi1 = mod(Pi1, vec<4, T, Q>(289));
  193. vec<4, T, Q> Pf0 = fract(Position); // Fractional part for interpolation
  194. vec<4, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0
  195. vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
  196. vec<4, T, Q> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
  197. vec<4, T, Q> iz0(Pi0.z);
  198. vec<4, T, Q> iz1(Pi1.z);
  199. vec<4, T, Q> iw0(Pi0.w);
  200. vec<4, T, Q> iw1(Pi1.w);
  201. vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy);
  202. vec<4, T, Q> ixy0 = detail::permute(ixy + iz0);
  203. vec<4, T, Q> ixy1 = detail::permute(ixy + iz1);
  204. vec<4, T, Q> ixy00 = detail::permute(ixy0 + iw0);
  205. vec<4, T, Q> ixy01 = detail::permute(ixy0 + iw1);
  206. vec<4, T, Q> ixy10 = detail::permute(ixy1 + iw0);
  207. vec<4, T, Q> ixy11 = detail::permute(ixy1 + iw1);
  208. vec<4, T, Q> gx00 = ixy00 / T(7);
  209. vec<4, T, Q> gy00 = floor(gx00) / T(7);
  210. vec<4, T, Q> gz00 = floor(gy00) / T(6);
  211. gx00 = fract(gx00) - T(0.5);
  212. gy00 = fract(gy00) - T(0.5);
  213. gz00 = fract(gz00) - T(0.5);
  214. vec<4, T, Q> gw00 = vec<4, T, Q>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
  215. vec<4, T, Q> sw00 = step(gw00, vec<4, T, Q>(0.0));
  216. gx00 -= sw00 * (step(T(0), gx00) - T(0.5));
  217. gy00 -= sw00 * (step(T(0), gy00) - T(0.5));
  218. vec<4, T, Q> gx01 = ixy01 / T(7);
  219. vec<4, T, Q> gy01 = floor(gx01) / T(7);
  220. vec<4, T, Q> gz01 = floor(gy01) / T(6);
  221. gx01 = fract(gx01) - T(0.5);
  222. gy01 = fract(gy01) - T(0.5);
  223. gz01 = fract(gz01) - T(0.5);
  224. vec<4, T, Q> gw01 = vec<4, T, Q>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
  225. vec<4, T, Q> sw01 = step(gw01, vec<4, T, Q>(0.0));
  226. gx01 -= sw01 * (step(T(0), gx01) - T(0.5));
  227. gy01 -= sw01 * (step(T(0), gy01) - T(0.5));
  228. vec<4, T, Q> gx10 = ixy10 / T(7);
  229. vec<4, T, Q> gy10 = floor(gx10) / T(7);
  230. vec<4, T, Q> gz10 = floor(gy10) / T(6);
  231. gx10 = fract(gx10) - T(0.5);
  232. gy10 = fract(gy10) - T(0.5);
  233. gz10 = fract(gz10) - T(0.5);
  234. vec<4, T, Q> gw10 = vec<4, T, Q>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
  235. vec<4, T, Q> sw10 = step(gw10, vec<4, T, Q>(0));
  236. gx10 -= sw10 * (step(T(0), gx10) - T(0.5));
  237. gy10 -= sw10 * (step(T(0), gy10) - T(0.5));
  238. vec<4, T, Q> gx11 = ixy11 / T(7);
  239. vec<4, T, Q> gy11 = floor(gx11) / T(7);
  240. vec<4, T, Q> gz11 = floor(gy11) / T(6);
  241. gx11 = fract(gx11) - T(0.5);
  242. gy11 = fract(gy11) - T(0.5);
  243. gz11 = fract(gz11) - T(0.5);
  244. vec<4, T, Q> gw11 = vec<4, T, Q>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
  245. vec<4, T, Q> sw11 = step(gw11, vec<4, T, Q>(0.0));
  246. gx11 -= sw11 * (step(T(0), gx11) - T(0.5));
  247. gy11 -= sw11 * (step(T(0), gy11) - T(0.5));
  248. vec<4, T, Q> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
  249. vec<4, T, Q> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
  250. vec<4, T, Q> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
  251. vec<4, T, Q> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
  252. vec<4, T, Q> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
  253. vec<4, T, Q> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
  254. vec<4, T, Q> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
  255. vec<4, T, Q> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
  256. vec<4, T, Q> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
  257. vec<4, T, Q> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
  258. vec<4, T, Q> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
  259. vec<4, T, Q> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
  260. vec<4, T, Q> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
  261. vec<4, T, Q> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
  262. vec<4, T, Q> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
  263. vec<4, T, Q> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
  264. vec<4, T, Q> norm00 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
  265. g0000 *= norm00.x;
  266. g0100 *= norm00.y;
  267. g1000 *= norm00.z;
  268. g1100 *= norm00.w;
  269. vec<4, T, Q> norm01 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
  270. g0001 *= norm01.x;
  271. g0101 *= norm01.y;
  272. g1001 *= norm01.z;
  273. g1101 *= norm01.w;
  274. vec<4, T, Q> norm10 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
  275. g0010 *= norm10.x;
  276. g0110 *= norm10.y;
  277. g1010 *= norm10.z;
  278. g1110 *= norm10.w;
  279. vec<4, T, Q> norm11 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
  280. g0011 *= norm11.x;
  281. g0111 *= norm11.y;
  282. g1011 *= norm11.z;
  283. g1111 *= norm11.w;
  284. T n0000 = dot(g0000, Pf0);
  285. T n1000 = dot(g1000, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
  286. T n0100 = dot(g0100, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
  287. T n1100 = dot(g1100, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
  288. T n0010 = dot(g0010, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
  289. T n1010 = dot(g1010, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
  290. T n0110 = dot(g0110, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
  291. T n1110 = dot(g1110, vec<4, T, Q>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
  292. T n0001 = dot(g0001, vec<4, T, Q>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
  293. T n1001 = dot(g1001, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
  294. T n0101 = dot(g0101, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
  295. T n1101 = dot(g1101, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
  296. T n0011 = dot(g0011, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
  297. T n1011 = dot(g1011, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
  298. T n0111 = dot(g0111, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
  299. T n1111 = dot(g1111, Pf1);
  300. vec<4, T, Q> fade_xyzw = detail::fade(Pf0);
  301. vec<4, T, Q> n_0w = mix(vec<4, T, Q>(n0000, n1000, n0100, n1100), vec<4, T, Q>(n0001, n1001, n0101, n1101), fade_xyzw.w);
  302. vec<4, T, Q> n_1w = mix(vec<4, T, Q>(n0010, n1010, n0110, n1110), vec<4, T, Q>(n0011, n1011, n0111, n1111), fade_xyzw.w);
  303. vec<4, T, Q> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
  304. vec<2, T, Q> n_yzw = mix(vec<2, T, Q>(n_zw.x, n_zw.y), vec<2, T, Q>(n_zw.z, n_zw.w), fade_xyzw.y);
  305. T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
  306. return T(2.2) * n_xyzw;
  307. }
  308. // Classic Perlin noise, periodic variant
  309. template<typename T, qualifier Q>
  310. GLM_FUNC_QUALIFIER T perlin(vec<2, T, Q> const& Position, vec<2, T, Q> const& rep)
  311. {
  312. vec<4, T, Q> Pi = floor(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) + vec<4, T, Q>(0.0, 0.0, 1.0, 1.0);
  313. vec<4, T, Q> Pf = fract(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) - vec<4, T, Q>(0.0, 0.0, 1.0, 1.0);
  314. Pi = mod(Pi, vec<4, T, Q>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period
  315. Pi = mod(Pi, vec<4, T, Q>(289)); // To avoid truncation effects in permutation
  316. vec<4, T, Q> ix(Pi.x, Pi.z, Pi.x, Pi.z);
  317. vec<4, T, Q> iy(Pi.y, Pi.y, Pi.w, Pi.w);
  318. vec<4, T, Q> fx(Pf.x, Pf.z, Pf.x, Pf.z);
  319. vec<4, T, Q> fy(Pf.y, Pf.y, Pf.w, Pf.w);
  320. vec<4, T, Q> i = detail::permute(detail::permute(ix) + iy);
  321. vec<4, T, Q> gx = static_cast<T>(2) * fract(i / T(41)) - T(1);
  322. vec<4, T, Q> gy = abs(gx) - T(0.5);
  323. vec<4, T, Q> tx = floor(gx + T(0.5));
  324. gx = gx - tx;
  325. vec<2, T, Q> g00(gx.x, gy.x);
  326. vec<2, T, Q> g10(gx.y, gy.y);
  327. vec<2, T, Q> g01(gx.z, gy.z);
  328. vec<2, T, Q> g11(gx.w, gy.w);
  329. vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
  330. g00 *= norm.x;
  331. g01 *= norm.y;
  332. g10 *= norm.z;
  333. g11 *= norm.w;
  334. T n00 = dot(g00, vec<2, T, Q>(fx.x, fy.x));
  335. T n10 = dot(g10, vec<2, T, Q>(fx.y, fy.y));
  336. T n01 = dot(g01, vec<2, T, Q>(fx.z, fy.z));
  337. T n11 = dot(g11, vec<2, T, Q>(fx.w, fy.w));
  338. vec<2, T, Q> fade_xy = detail::fade(vec<2, T, Q>(Pf.x, Pf.y));
  339. vec<2, T, Q> n_x = mix(vec<2, T, Q>(n00, n01), vec<2, T, Q>(n10, n11), fade_xy.x);
  340. T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
  341. return T(2.3) * n_xy;
  342. }
  343. // Classic Perlin noise, periodic variant
  344. template<typename T, qualifier Q>
  345. GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& Position, vec<3, T, Q> const& rep)
  346. {
  347. vec<3, T, Q> Pi0 = mod(floor(Position), rep); // Integer part, modulo period
  348. vec<3, T, Q> Pi1 = mod(Pi0 + vec<3, T, Q>(T(1)), rep); // Integer part + 1, mod period
  349. Pi0 = mod(Pi0, vec<3, T, Q>(289));
  350. Pi1 = mod(Pi1, vec<3, T, Q>(289));
  351. vec<3, T, Q> Pf0 = fract(Position); // Fractional part for interpolation
  352. vec<3, T, Q> Pf1 = Pf0 - vec<3, T, Q>(T(1)); // Fractional part - 1.0
  353. vec<4, T, Q> ix = vec<4, T, Q>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
  354. vec<4, T, Q> iy = vec<4, T, Q>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
  355. vec<4, T, Q> iz0(Pi0.z);
  356. vec<4, T, Q> iz1(Pi1.z);
  357. vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy);
  358. vec<4, T, Q> ixy0 = detail::permute(ixy + iz0);
  359. vec<4, T, Q> ixy1 = detail::permute(ixy + iz1);
  360. vec<4, T, Q> gx0 = ixy0 / T(7);
  361. vec<4, T, Q> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
  362. gx0 = fract(gx0);
  363. vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0);
  364. vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0));
  365. gx0 -= sz0 * (step(T(0), gx0) - T(0.5));
  366. gy0 -= sz0 * (step(T(0), gy0) - T(0.5));
  367. vec<4, T, Q> gx1 = ixy1 / T(7);
  368. vec<4, T, Q> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
  369. gx1 = fract(gx1);
  370. vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1);
  371. vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(T(0)));
  372. gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
  373. gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
  374. vec<3, T, Q> g000 = vec<3, T, Q>(gx0.x, gy0.x, gz0.x);
  375. vec<3, T, Q> g100 = vec<3, T, Q>(gx0.y, gy0.y, gz0.y);
  376. vec<3, T, Q> g010 = vec<3, T, Q>(gx0.z, gy0.z, gz0.z);
  377. vec<3, T, Q> g110 = vec<3, T, Q>(gx0.w, gy0.w, gz0.w);
  378. vec<3, T, Q> g001 = vec<3, T, Q>(gx1.x, gy1.x, gz1.x);
  379. vec<3, T, Q> g101 = vec<3, T, Q>(gx1.y, gy1.y, gz1.y);
  380. vec<3, T, Q> g011 = vec<3, T, Q>(gx1.z, gy1.z, gz1.z);
  381. vec<3, T, Q> g111 = vec<3, T, Q>(gx1.w, gy1.w, gz1.w);
  382. vec<4, T, Q> norm0 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
  383. g000 *= norm0.x;
  384. g010 *= norm0.y;
  385. g100 *= norm0.z;
  386. g110 *= norm0.w;
  387. vec<4, T, Q> norm1 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
  388. g001 *= norm1.x;
  389. g011 *= norm1.y;
  390. g101 *= norm1.z;
  391. g111 *= norm1.w;
  392. T n000 = dot(g000, Pf0);
  393. T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z));
  394. T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z));
  395. T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z));
  396. T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z));
  397. T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z));
  398. T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z));
  399. T n111 = dot(g111, Pf1);
  400. vec<3, T, Q> fade_xyz = detail::fade(Pf0);
  401. vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z);
  402. vec<2, T, Q> n_yz = mix(vec<2, T, Q>(n_z.x, n_z.y), vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y);
  403. T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
  404. return T(2.2) * n_xyz;
  405. }
  406. // Classic Perlin noise, periodic version
  407. template<typename T, qualifier Q>
  408. GLM_FUNC_QUALIFIER T perlin(vec<4, T, Q> const& Position, vec<4, T, Q> const& rep)
  409. {
  410. vec<4, T, Q> Pi0 = mod(floor(Position), rep); // Integer part modulo rep
  411. vec<4, T, Q> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep
  412. vec<4, T, Q> Pf0 = fract(Position); // Fractional part for interpolation
  413. vec<4, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0
  414. vec<4, T, Q> ix = vec<4, T, Q>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
  415. vec<4, T, Q> iy = vec<4, T, Q>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
  416. vec<4, T, Q> iz0(Pi0.z);
  417. vec<4, T, Q> iz1(Pi1.z);
  418. vec<4, T, Q> iw0(Pi0.w);
  419. vec<4, T, Q> iw1(Pi1.w);
  420. vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy);
  421. vec<4, T, Q> ixy0 = detail::permute(ixy + iz0);
  422. vec<4, T, Q> ixy1 = detail::permute(ixy + iz1);
  423. vec<4, T, Q> ixy00 = detail::permute(ixy0 + iw0);
  424. vec<4, T, Q> ixy01 = detail::permute(ixy0 + iw1);
  425. vec<4, T, Q> ixy10 = detail::permute(ixy1 + iw0);
  426. vec<4, T, Q> ixy11 = detail::permute(ixy1 + iw1);
  427. vec<4, T, Q> gx00 = ixy00 / T(7);
  428. vec<4, T, Q> gy00 = floor(gx00) / T(7);
  429. vec<4, T, Q> gz00 = floor(gy00) / T(6);
  430. gx00 = fract(gx00) - T(0.5);
  431. gy00 = fract(gy00) - T(0.5);
  432. gz00 = fract(gz00) - T(0.5);
  433. vec<4, T, Q> gw00 = vec<4, T, Q>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
  434. vec<4, T, Q> sw00 = step(gw00, vec<4, T, Q>(0));
  435. gx00 -= sw00 * (step(T(0), gx00) - T(0.5));
  436. gy00 -= sw00 * (step(T(0), gy00) - T(0.5));
  437. vec<4, T, Q> gx01 = ixy01 / T(7);
  438. vec<4, T, Q> gy01 = floor(gx01) / T(7);
  439. vec<4, T, Q> gz01 = floor(gy01) / T(6);
  440. gx01 = fract(gx01) - T(0.5);
  441. gy01 = fract(gy01) - T(0.5);
  442. gz01 = fract(gz01) - T(0.5);
  443. vec<4, T, Q> gw01 = vec<4, T, Q>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
  444. vec<4, T, Q> sw01 = step(gw01, vec<4, T, Q>(0.0));
  445. gx01 -= sw01 * (step(T(0), gx01) - T(0.5));
  446. gy01 -= sw01 * (step(T(0), gy01) - T(0.5));
  447. vec<4, T, Q> gx10 = ixy10 / T(7);
  448. vec<4, T, Q> gy10 = floor(gx10) / T(7);
  449. vec<4, T, Q> gz10 = floor(gy10) / T(6);
  450. gx10 = fract(gx10) - T(0.5);
  451. gy10 = fract(gy10) - T(0.5);
  452. gz10 = fract(gz10) - T(0.5);
  453. vec<4, T, Q> gw10 = vec<4, T, Q>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
  454. vec<4, T, Q> sw10 = step(gw10, vec<4, T, Q>(0.0));
  455. gx10 -= sw10 * (step(T(0), gx10) - T(0.5));
  456. gy10 -= sw10 * (step(T(0), gy10) - T(0.5));
  457. vec<4, T, Q> gx11 = ixy11 / T(7);
  458. vec<4, T, Q> gy11 = floor(gx11) / T(7);
  459. vec<4, T, Q> gz11 = floor(gy11) / T(6);
  460. gx11 = fract(gx11) - T(0.5);
  461. gy11 = fract(gy11) - T(0.5);
  462. gz11 = fract(gz11) - T(0.5);
  463. vec<4, T, Q> gw11 = vec<4, T, Q>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
  464. vec<4, T, Q> sw11 = step(gw11, vec<4, T, Q>(T(0)));
  465. gx11 -= sw11 * (step(T(0), gx11) - T(0.5));
  466. gy11 -= sw11 * (step(T(0), gy11) - T(0.5));
  467. vec<4, T, Q> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
  468. vec<4, T, Q> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
  469. vec<4, T, Q> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
  470. vec<4, T, Q> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
  471. vec<4, T, Q> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
  472. vec<4, T, Q> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
  473. vec<4, T, Q> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
  474. vec<4, T, Q> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
  475. vec<4, T, Q> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
  476. vec<4, T, Q> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
  477. vec<4, T, Q> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
  478. vec<4, T, Q> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
  479. vec<4, T, Q> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
  480. vec<4, T, Q> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
  481. vec<4, T, Q> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
  482. vec<4, T, Q> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
  483. vec<4, T, Q> norm00 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
  484. g0000 *= norm00.x;
  485. g0100 *= norm00.y;
  486. g1000 *= norm00.z;
  487. g1100 *= norm00.w;
  488. vec<4, T, Q> norm01 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
  489. g0001 *= norm01.x;
  490. g0101 *= norm01.y;
  491. g1001 *= norm01.z;
  492. g1101 *= norm01.w;
  493. vec<4, T, Q> norm10 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
  494. g0010 *= norm10.x;
  495. g0110 *= norm10.y;
  496. g1010 *= norm10.z;
  497. g1110 *= norm10.w;
  498. vec<4, T, Q> norm11 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
  499. g0011 *= norm11.x;
  500. g0111 *= norm11.y;
  501. g1011 *= norm11.z;
  502. g1111 *= norm11.w;
  503. T n0000 = dot(g0000, Pf0);
  504. T n1000 = dot(g1000, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
  505. T n0100 = dot(g0100, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
  506. T n1100 = dot(g1100, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
  507. T n0010 = dot(g0010, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
  508. T n1010 = dot(g1010, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
  509. T n0110 = dot(g0110, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
  510. T n1110 = dot(g1110, vec<4, T, Q>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
  511. T n0001 = dot(g0001, vec<4, T, Q>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
  512. T n1001 = dot(g1001, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
  513. T n0101 = dot(g0101, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
  514. T n1101 = dot(g1101, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
  515. T n0011 = dot(g0011, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
  516. T n1011 = dot(g1011, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
  517. T n0111 = dot(g0111, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
  518. T n1111 = dot(g1111, Pf1);
  519. vec<4, T, Q> fade_xyzw = detail::fade(Pf0);
  520. vec<4, T, Q> n_0w = mix(vec<4, T, Q>(n0000, n1000, n0100, n1100), vec<4, T, Q>(n0001, n1001, n0101, n1101), fade_xyzw.w);
  521. vec<4, T, Q> n_1w = mix(vec<4, T, Q>(n0010, n1010, n0110, n1110), vec<4, T, Q>(n0011, n1011, n0111, n1111), fade_xyzw.w);
  522. vec<4, T, Q> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
  523. vec<2, T, Q> n_yzw = mix(vec<2, T, Q>(n_zw.x, n_zw.y), vec<2, T, Q>(n_zw.z, n_zw.w), fade_xyzw.y);
  524. T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
  525. return T(2.2) * n_xyzw;
  526. }
  527. template<typename T, qualifier Q>
  528. GLM_FUNC_QUALIFIER T simplex(glm::vec<2, T, Q> const& v)
  529. {
  530. vec<4, T, Q> const C = vec<4, T, Q>(
  531. T( 0.211324865405187), // (3.0 - sqrt(3.0)) / 6.0
  532. T( 0.366025403784439), // 0.5 * (sqrt(3.0) - 1.0)
  533. T(-0.577350269189626), // -1.0 + 2.0 * C.x
  534. T( 0.024390243902439)); // 1.0 / 41.0
  535. // First corner
  536. vec<2, T, Q> i = floor(v + dot(v, vec<2, T, Q>(C[1])));
  537. vec<2, T, Q> x0 = v - i + dot(i, vec<2, T, Q>(C[0]));
  538. // Other corners
  539. //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
  540. //i1.y = 1.0 - i1.x;
  541. vec<2, T, Q> i1 = (x0.x > x0.y) ? vec<2, T, Q>(1, 0) : vec<2, T, Q>(0, 1);
  542. // x0 = x0 - 0.0 + 0.0 * C.xx ;
  543. // x1 = x0 - i1 + 1.0 * C.xx ;
  544. // x2 = x0 - 1.0 + 2.0 * C.xx ;
  545. vec<4, T, Q> x12 = vec<4, T, Q>(x0.x, x0.y, x0.x, x0.y) + vec<4, T, Q>(C.x, C.x, C.z, C.z);
  546. x12 = vec<4, T, Q>(vec<2, T, Q>(x12) - i1, x12.z, x12.w);
  547. // Permutations
  548. i = mod(i, vec<2, T, Q>(289)); // Avoid truncation effects in permutation
  549. vec<3, T, Q> p = detail::permute(
  550. detail::permute(i.y + vec<3, T, Q>(T(0), i1.y, T(1)))
  551. + i.x + vec<3, T, Q>(T(0), i1.x, T(1)));
  552. vec<3, T, Q> m = max(vec<3, T, Q>(0.5) - vec<3, T, Q>(
  553. dot(x0, x0),
  554. dot(vec<2, T, Q>(x12.x, x12.y), vec<2, T, Q>(x12.x, x12.y)),
  555. dot(vec<2, T, Q>(x12.z, x12.w), vec<2, T, Q>(x12.z, x12.w))), vec<3, T, Q>(0));
  556. m = m * m ;
  557. m = m * m ;
  558. // Gradients: 41 points uniformly over a line, mapped onto a diamond.
  559. // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
  560. vec<3, T, Q> x = static_cast<T>(2) * fract(p * C.w) - T(1);
  561. vec<3, T, Q> h = abs(x) - T(0.5);
  562. vec<3, T, Q> ox = floor(x + T(0.5));
  563. vec<3, T, Q> a0 = x - ox;
  564. // Normalise gradients implicitly by scaling m
  565. // Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h );
  566. m *= static_cast<T>(1.79284291400159) - T(0.85373472095314) * (a0 * a0 + h * h);
  567. // Compute final noise value at P
  568. vec<3, T, Q> g;
  569. g.x = a0.x * x0.x + h.x * x0.y;
  570. //g.yz = a0.yz * x12.xz + h.yz * x12.yw;
  571. g.y = a0.y * x12.x + h.y * x12.y;
  572. g.z = a0.z * x12.z + h.z * x12.w;
  573. return T(130) * dot(m, g);
  574. }
  575. template<typename T, qualifier Q>
  576. GLM_FUNC_QUALIFIER T simplex(vec<3, T, Q> const& v)
  577. {
  578. vec<2, T, Q> const C(1.0 / 6.0, 1.0 / 3.0);
  579. vec<4, T, Q> const D(0.0, 0.5, 1.0, 2.0);
  580. // First corner
  581. vec<3, T, Q> i(floor(v + dot(v, vec<3, T, Q>(C.y))));
  582. vec<3, T, Q> x0(v - i + dot(i, vec<3, T, Q>(C.x)));
  583. // Other corners
  584. vec<3, T, Q> g(step(vec<3, T, Q>(x0.y, x0.z, x0.x), x0));
  585. vec<3, T, Q> l(T(1) - g);
  586. vec<3, T, Q> i1(min(g, vec<3, T, Q>(l.z, l.x, l.y)));
  587. vec<3, T, Q> i2(max(g, vec<3, T, Q>(l.z, l.x, l.y)));
  588. // x0 = x0 - 0.0 + 0.0 * C.xxx;
  589. // x1 = x0 - i1 + 1.0 * C.xxx;
  590. // x2 = x0 - i2 + 2.0 * C.xxx;
  591. // x3 = x0 - 1.0 + 3.0 * C.xxx;
  592. vec<3, T, Q> x1(x0 - i1 + C.x);
  593. vec<3, T, Q> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y
  594. vec<3, T, Q> x3(x0 - D.y); // -1.0+3.0*C.x = -0.5 = -D.y
  595. // Permutations
  596. i = detail::mod289(i);
  597. vec<4, T, Q> p(detail::permute(detail::permute(detail::permute(
  598. i.z + vec<4, T, Q>(T(0), i1.z, i2.z, T(1))) +
  599. i.y + vec<4, T, Q>(T(0), i1.y, i2.y, T(1))) +
  600. i.x + vec<4, T, Q>(T(0), i1.x, i2.x, T(1))));
  601. // Gradients: 7x7 points over a square, mapped onto an octahedron.
  602. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
  603. T n_ = static_cast<T>(0.142857142857); // 1.0/7.0
  604. vec<3, T, Q> ns(n_ * vec<3, T, Q>(D.w, D.y, D.z) - vec<3, T, Q>(D.x, D.z, D.x));
  605. vec<4, T, Q> j(p - T(49) * floor(p * ns.z * ns.z)); // mod(p,7*7)
  606. vec<4, T, Q> x_(floor(j * ns.z));
  607. vec<4, T, Q> y_(floor(j - T(7) * x_)); // mod(j,N)
  608. vec<4, T, Q> x(x_ * ns.x + ns.y);
  609. vec<4, T, Q> y(y_ * ns.x + ns.y);
  610. vec<4, T, Q> h(T(1) - abs(x) - abs(y));
  611. vec<4, T, Q> b0(x.x, x.y, y.x, y.y);
  612. vec<4, T, Q> b1(x.z, x.w, y.z, y.w);
  613. // vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
  614. // vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
  615. vec<4, T, Q> s0(floor(b0) * T(2) + T(1));
  616. vec<4, T, Q> s1(floor(b1) * T(2) + T(1));
  617. vec<4, T, Q> sh(-step(h, vec<4, T, Q>(0.0)));
  618. vec<4, T, Q> a0 = vec<4, T, Q>(b0.x, b0.z, b0.y, b0.w) + vec<4, T, Q>(s0.x, s0.z, s0.y, s0.w) * vec<4, T, Q>(sh.x, sh.x, sh.y, sh.y);
  619. vec<4, T, Q> a1 = vec<4, T, Q>(b1.x, b1.z, b1.y, b1.w) + vec<4, T, Q>(s1.x, s1.z, s1.y, s1.w) * vec<4, T, Q>(sh.z, sh.z, sh.w, sh.w);
  620. vec<3, T, Q> p0(a0.x, a0.y, h.x);
  621. vec<3, T, Q> p1(a0.z, a0.w, h.y);
  622. vec<3, T, Q> p2(a1.x, a1.y, h.z);
  623. vec<3, T, Q> p3(a1.z, a1.w, h.w);
  624. // Normalise gradients
  625. vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
  626. p0 *= norm.x;
  627. p1 *= norm.y;
  628. p2 *= norm.z;
  629. p3 *= norm.w;
  630. // Mix final noise value
  631. vec<4, T, Q> m = max(T(0.6) - vec<4, T, Q>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), vec<4, T, Q>(0));
  632. m = m * m;
  633. return T(42) * dot(m * m, vec<4, T, Q>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3)));
  634. }
  635. template<typename T, qualifier Q>
  636. GLM_FUNC_QUALIFIER T simplex(vec<4, T, Q> const& v)
  637. {
  638. vec<4, T, Q> const C(
  639. 0.138196601125011, // (5 - sqrt(5))/20 G4
  640. 0.276393202250021, // 2 * G4
  641. 0.414589803375032, // 3 * G4
  642. -0.447213595499958); // -1 + 4 * G4
  643. // (sqrt(5) - 1)/4 = F4, used once below
  644. T const F4 = static_cast<T>(0.309016994374947451);
  645. // First corner
  646. vec<4, T, Q> i = floor(v + dot(v, vec4(F4)));
  647. vec<4, T, Q> x0 = v - i + dot(i, vec4(C.x));
  648. // Other corners
  649. // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
  650. vec<4, T, Q> i0;
  651. vec<3, T, Q> isX = step(vec<3, T, Q>(x0.y, x0.z, x0.w), vec<3, T, Q>(x0.x));
  652. vec<3, T, Q> isYZ = step(vec<3, T, Q>(x0.z, x0.w, x0.w), vec<3, T, Q>(x0.y, x0.y, x0.z));
  653. // i0.x = dot(isX, vec3(1.0));
  654. //i0.x = isX.x + isX.y + isX.z;
  655. //i0.yzw = static_cast<T>(1) - isX;
  656. i0 = vec<4, T, Q>(isX.x + isX.y + isX.z, T(1) - isX);
  657. // i0.y += dot(isYZ.xy, vec2(1.0));
  658. i0.y += isYZ.x + isYZ.y;
  659. //i0.zw += 1.0 - vec<2, T, Q>(isYZ.x, isYZ.y);
  660. i0.z += static_cast<T>(1) - isYZ.x;
  661. i0.w += static_cast<T>(1) - isYZ.y;
  662. i0.z += isYZ.z;
  663. i0.w += static_cast<T>(1) - isYZ.z;
  664. // i0 now contains the unique values 0,1,2,3 in each channel
  665. vec<4, T, Q> i3 = clamp(i0, T(0), T(1));
  666. vec<4, T, Q> i2 = clamp(i0 - T(1), T(0), T(1));
  667. vec<4, T, Q> i1 = clamp(i0 - T(2), T(0), T(1));
  668. // x0 = x0 - 0.0 + 0.0 * C.xxxx
  669. // x1 = x0 - i1 + 0.0 * C.xxxx
  670. // x2 = x0 - i2 + 0.0 * C.xxxx
  671. // x3 = x0 - i3 + 0.0 * C.xxxx
  672. // x4 = x0 - 1.0 + 4.0 * C.xxxx
  673. vec<4, T, Q> x1 = x0 - i1 + C.x;
  674. vec<4, T, Q> x2 = x0 - i2 + C.y;
  675. vec<4, T, Q> x3 = x0 - i3 + C.z;
  676. vec<4, T, Q> x4 = x0 + C.w;
  677. // Permutations
  678. i = mod(i, vec<4, T, Q>(289));
  679. T j0 = detail::permute(detail::permute(detail::permute(detail::permute(i.w) + i.z) + i.y) + i.x);
  680. vec<4, T, Q> j1 = detail::permute(detail::permute(detail::permute(detail::permute(
  681. i.w + vec<4, T, Q>(i1.w, i2.w, i3.w, T(1))) +
  682. i.z + vec<4, T, Q>(i1.z, i2.z, i3.z, T(1))) +
  683. i.y + vec<4, T, Q>(i1.y, i2.y, i3.y, T(1))) +
  684. i.x + vec<4, T, Q>(i1.x, i2.x, i3.x, T(1)));
  685. // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
  686. // 7*7*6 = 294, which is close to the ring size 17*17 = 289.
  687. vec<4, T, Q> ip = vec<4, T, Q>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0));
  688. vec<4, T, Q> p0 = gtc::grad4(j0, ip);
  689. vec<4, T, Q> p1 = gtc::grad4(j1.x, ip);
  690. vec<4, T, Q> p2 = gtc::grad4(j1.y, ip);
  691. vec<4, T, Q> p3 = gtc::grad4(j1.z, ip);
  692. vec<4, T, Q> p4 = gtc::grad4(j1.w, ip);
  693. // Normalise gradients
  694. vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
  695. p0 *= norm.x;
  696. p1 *= norm.y;
  697. p2 *= norm.z;
  698. p3 *= norm.w;
  699. p4 *= detail::taylorInvSqrt(dot(p4, p4));
  700. // Mix contributions from the five corners
  701. vec<3, T, Q> m0 = max(T(0.6) - vec<3, T, Q>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), vec<3, T, Q>(0));
  702. vec<2, T, Q> m1 = max(T(0.6) - vec<2, T, Q>(dot(x3, x3), dot(x4, x4) ), vec<2, T, Q>(0));
  703. m0 = m0 * m0;
  704. m1 = m1 * m1;
  705. return T(49) *
  706. (dot(m0 * m0, vec<3, T, Q>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) +
  707. dot(m1 * m1, vec<2, T, Q>(dot(p3, x3), dot(p4, x4))));
  708. }
  709. }//namespace glm