Collection of DPF-based plugins for packaging
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

121 lines
4.9KB

  1. /// @ref gtc_matrix_inverse
  2. /// @file glm/gtc/matrix_inverse.inl
  3. namespace glm
  4. {
  5. template<typename T, qualifier Q>
  6. GLM_FUNC_QUALIFIER mat<3, 3, T, Q> affineInverse(mat<3, 3, T, Q> const& m)
  7. {
  8. mat<2, 2, T, Q> const Inv(inverse(mat<2, 2, T, Q>(m)));
  9. return mat<3, 3, T, Q>(
  10. vec<3, T, Q>(Inv[0], static_cast<T>(0)),
  11. vec<3, T, Q>(Inv[1], static_cast<T>(0)),
  12. vec<3, T, Q>(-Inv * vec<2, T, Q>(m[2]), static_cast<T>(1)));
  13. }
  14. template<typename T, qualifier Q>
  15. GLM_FUNC_QUALIFIER mat<4, 4, T, Q> affineInverse(mat<4, 4, T, Q> const& m)
  16. {
  17. mat<3, 3, T, Q> const Inv(inverse(mat<3, 3, T, Q>(m)));
  18. return mat<4, 4, T, Q>(
  19. vec<4, T, Q>(Inv[0], static_cast<T>(0)),
  20. vec<4, T, Q>(Inv[1], static_cast<T>(0)),
  21. vec<4, T, Q>(Inv[2], static_cast<T>(0)),
  22. vec<4, T, Q>(-Inv * vec<3, T, Q>(m[3]), static_cast<T>(1)));
  23. }
  24. template<typename T, qualifier Q>
  25. GLM_FUNC_QUALIFIER mat<2, 2, T, Q> inverseTranspose(mat<2, 2, T, Q> const& m)
  26. {
  27. T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
  28. mat<2, 2, T, Q> Inverse(
  29. + m[1][1] / Determinant,
  30. - m[0][1] / Determinant,
  31. - m[1][0] / Determinant,
  32. + m[0][0] / Determinant);
  33. return Inverse;
  34. }
  35. template<typename T, qualifier Q>
  36. GLM_FUNC_QUALIFIER mat<3, 3, T, Q> inverseTranspose(mat<3, 3, T, Q> const& m)
  37. {
  38. T Determinant =
  39. + m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
  40. - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
  41. + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
  42. mat<3, 3, T, Q> Inverse;
  43. Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
  44. Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
  45. Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
  46. Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
  47. Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
  48. Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
  49. Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
  50. Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
  51. Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
  52. Inverse /= Determinant;
  53. return Inverse;
  54. }
  55. template<typename T, qualifier Q>
  56. GLM_FUNC_QUALIFIER mat<4, 4, T, Q> inverseTranspose(mat<4, 4, T, Q> const& m)
  57. {
  58. T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
  59. T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
  60. T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
  61. T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
  62. T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
  63. T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
  64. T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
  65. T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
  66. T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
  67. T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
  68. T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
  69. T SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
  70. T SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
  71. T SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
  72. T SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
  73. T SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
  74. T SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
  75. T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
  76. T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
  77. mat<4, 4, T, Q> Inverse;
  78. Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
  79. Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
  80. Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
  81. Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
  82. Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
  83. Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
  84. Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
  85. Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
  86. Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
  87. Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
  88. Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12);
  89. Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);
  90. Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15);
  91. Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17);
  92. Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18);
  93. Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);
  94. T Determinant =
  95. + m[0][0] * Inverse[0][0]
  96. + m[0][1] * Inverse[0][1]
  97. + m[0][2] * Inverse[0][2]
  98. + m[0][3] * Inverse[0][3];
  99. Inverse /= Determinant;
  100. return Inverse;
  101. }
  102. }//namespace glm