Browse Source

Add in tree aubio

Signed-off-by: falkTX <falktx@falktx.com>
tags/22.05
falkTX 3 years ago
parent
commit
2ae7009b0e
Signed by: falkTX <falktx@falktx.com> GPG Key ID: CDBAA37ABC74FBA0
48 changed files with 8937 additions and 1 deletions
  1. +674
    -0
      deps/aubio/COPYING
  2. +62
    -0
      deps/aubio/Makefile
  3. +20
    -0
      deps/aubio/config.h
  4. +208
    -0
      deps/aubio/src/aubio.h
  5. +359
    -0
      deps/aubio/src/aubio_priv.h
  6. +169
    -0
      deps/aubio/src/cvec.c
  7. +247
    -0
      deps/aubio/src/cvec.h
  8. +149
    -0
      deps/aubio/src/fvec.c
  9. +178
    -0
      deps/aubio/src/fvec.h
  10. +80
    -0
      deps/aubio/src/lvec.c
  11. +118
    -0
      deps/aubio/src/lvec.h
  12. +681
    -0
      deps/aubio/src/mathutils.c
  13. +338
    -0
      deps/aubio/src/mathutils.h
  14. +270
    -0
      deps/aubio/src/musicutils.h
  15. +530
    -0
      deps/aubio/src/pitch/pitch.c
  16. +197
    -0
      deps/aubio/src/pitch/pitch.h
  17. +144
    -0
      deps/aubio/src/pitch/pitchfcomb.c
  18. +76
    -0
      deps/aubio/src/pitch/pitchfcomb.h
  19. +435
    -0
      deps/aubio/src/pitch/pitchmcomb.c
  20. +77
    -0
      deps/aubio/src/pitch/pitchmcomb.h
  21. +119
    -0
      deps/aubio/src/pitch/pitchschmitt.c
  22. +75
    -0
      deps/aubio/src/pitch/pitchschmitt.h
  23. +116
    -0
      deps/aubio/src/pitch/pitchspecacf.c
  24. +103
    -0
      deps/aubio/src/pitch/pitchspecacf.h
  25. +189
    -0
      deps/aubio/src/pitch/pitchyin.c
  26. +100
    -0
      deps/aubio/src/pitch/pitchyin.h
  27. +201
    -0
      deps/aubio/src/pitch/pitchyinfast.c
  28. +102
    -0
      deps/aubio/src/pitch/pitchyinfast.h
  29. +208
    -0
      deps/aubio/src/pitch/pitchyinfft.c
  30. +99
    -0
      deps/aubio/src/pitch/pitchyinfft.h
  31. +582
    -0
      deps/aubio/src/spectral/fft.c
  32. +144
    -0
      deps/aubio/src/spectral/fft.h
  33. +224
    -0
      deps/aubio/src/spectral/phasevoc.c
  34. +113
    -0
      deps/aubio/src/spectral/phasevoc.h
  35. +262
    -0
      deps/aubio/src/temporal/a_weighting.c
  36. +88
    -0
      deps/aubio/src/temporal/a_weighting.h
  37. +54
    -0
      deps/aubio/src/temporal/biquad.c
  38. +75
    -0
      deps/aubio/src/temporal/biquad.h
  39. +217
    -0
      deps/aubio/src/temporal/c_weighting.c
  40. +88
    -0
      deps/aubio/src/temporal/c_weighting.h
  41. +163
    -0
      deps/aubio/src/temporal/filter.c
  42. +176
    -0
      deps/aubio/src/temporal/filter.h
  43. +100
    -0
      deps/aubio/src/temporal/resampler.c
  44. +65
    -0
      deps/aubio/src/temporal/resampler.h
  45. +70
    -0
      deps/aubio/src/types.h
  46. +92
    -0
      deps/aubio/src/utils/log.c
  47. +99
    -0
      deps/aubio/src/utils/log.h
  48. +1
    -1
      plugins/Cardinal/src/AudioToCVPitch.cpp

+ 674
- 0
deps/aubio/COPYING View File

@@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

+ 62
- 0
deps/aubio/Makefile View File

@@ -0,0 +1,62 @@
#!/usr/bin/make -f
# Makefile for static aubio #
# ------------------------- #
# Created by falkTX
#

# --------------------------------------------------------------
# Import base definitions

USE_NANOVG_FBO = true
include ../../dpf/Makefile.base.mk

# --------------------------------------------------------------

BUILD_C_FLAGS += -DHAVE_CONFIG_H
BUILD_C_FLAGS += -I.
BUILD_C_FLAGS += -Isrc
BUILD_C_FLAGS += $(shell pkg-config --cflags fftw3f)

OBJS = \
src/cvec.c.o \
src/fvec.c.o \
src/lvec.c.o \
src/mathutils.c.o \
src/pitch/pitch.c.o \
src/pitch/pitchfcomb.c.o \
src/pitch/pitchmcomb.c.o \
src/pitch/pitchschmitt.c.o \
src/pitch/pitchspecacf.c.o \
src/pitch/pitchyin.c.o \
src/pitch/pitchyinfast.c.o \
src/pitch/pitchyinfft.c.o \
src/spectral/fft.c.o \
src/spectral/phasevoc.c.o \
src/temporal/a_weighting.c.o \
src/temporal/biquad.c.o \
src/temporal/c_weighting.c.o \
src/temporal/filter.c.o \
src/temporal/resampler.c.o \
src/utils/log.c.o \

# --------------------------------------------------------------

all: libaubio.a

clean:
rm -f *.a src/*.d src/*.o src/*/*.d src/*/*.o

libaubio.a: $(OBJS)
rm -f $@
$(AR) crs $@ $^

# --------------------------------------------------------------

%.c.o: %.c
$(CC) $< $(BUILD_C_FLAGS) -c -o $@

# --------------------------------------------------------------

-include $(OBJS:%.o=%.d)

# --------------------------------------------------------------

+ 20
- 0
deps/aubio/config.h View File

@@ -0,0 +1,20 @@
#ifndef AUBIO_CONFIG_H
#define AUBIO_CONFIG_H

#define HAVE_STDLIB_H 1
#define HAVE_STDIO_H 1
#define HAVE_MATH_H 1
#define HAVE_STRING_H 1
#define HAVE_LIMITS_H 1
#define HAVE_STDARG_H 1
#define HAVE_GETOPT_H 1
#define HAVE_UNISTD_H 1

#define HAVE_C99_VARARGS_MACROS 1
#define HAVE_MEMCPY_HACKS 1

#define HAVE_FFTW3
#define HAVE_FFTW3F
#define HAVE_COMPLEX_H

#endif /* AUBIO_CONFIG_H */

+ 208
- 0
deps/aubio/src/aubio.h View File

@@ -0,0 +1,208 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/** \mainpage

\section introduction Introduction

aubio is a library to extract annotations from audio signals: it provides a
set of functions that take an input audio signal, and output pitch estimates,
attack times (onset), beat location estimates, and other annotation tasks.

\section basics Basics

All object structures in aubio share the same function prefixes and suffixes:

- \p new_aubio_foo creates the object \p foo
- \p aubio_foo_do executes the object \p foo
- \p del_aubio_foo destroys the object \p foo

All memory allocation and deallocation take place in the \p new_ and \p del_
functions. Optionally, more than one \p _do methods are available.
Additional parameters can be adjusted and observed using:

- \p aubio_foo_get_param, getter function, gets the value of a parameter
- \p aubio_foo_set_param, setter function, changes the value of a parameter

Unless specified in its documentation, no memory operations take place in the
getter functions. However, memory resizing can take place in setter
functions.

\subsection vectors Vectors

Two basic structures are being used in aubio: ::fvec_t and ::cvec_t. The
::fvec_t structures are used to store vectors of floating pointer number.
::cvec_t are used to store complex number, as two vectors of norm and phase
elements.

Additionally, the ::lvec_t structure can be used to store floating point
numbers in double precision. They are mostly used to store filter
coefficients, to avoid instability.

\subsection objects Available objects

Here is a list of some of the most common objects for aubio:

\code

// fast Fourier transform (FFT)
aubio_fft_t *fft = new_aubio_fft (winsize);
// phase vocoder
aubio_pvoc_t *pv = new_aubio_pvoc (winsize, stepsize);
// onset detection
aubio_onset_t *onset = new_aubio_onset (method, winsize, stepsize, samplerate);
// pitch detection
aubio_pitch_t *pitch = new_aubio_pitch (method, winsize, stepsize, samplerate);
// beat tracking
aubio_tempo_t *tempo = new_aubio_tempo (method, winsize, stepsize, samplerate);

\endcode

See the <a href="globals_type.html">list of typedefs</a> for a complete list.

\subsection example Example

Here is a simple example that creates an A-Weighting filter and applies it to a
vector.

\code

// set window size, and sampling rate
uint_t winsize = 1024, sr = 44100;
// create a vector
fvec_t *this_buffer = new_fvec (winsize);
// create the a-weighting filter
aubio_filter_t *this_filter = new_aubio_filter_a_weighting (sr);

while (running) {
// here some code to put some data in this_buffer
// ...

// apply the filter, in place
aubio_filter_do (this_filter, this_buffer);

// here some code to get some data from this_buffer
// ...
}

// and free the structures
del_aubio_filter (this_filter);
del_fvec (this_buffer);

\endcode

Several examples of C programs are available in the \p examples/ and \p tests/src
directories of the source tree.

Some examples:
- @ref spectral/test-fft.c
- @ref spectral/test-phasevoc.c
- @ref onset/test-onset.c
- @ref pitch/test-pitch.c
- @ref tempo/test-tempo.c
- @ref test-fvec.c
- @ref test-cvec.c

\subsection unstable_api Unstable API

Several more functions are available and used within aubio, but not
documented here, either because they are not considered useful to the user,
or because they may need to be changed in the future. However, they can still
be used by defining AUBIO_UNSTABLE to 1 before including the aubio header:

\code
#define AUBIO_UNSTABLE 1
#include <aubio/aubio.h>
\endcode

Future versions of aubio could break API compatibility with these functions
without warning. If you choose to use functions in AUBIO_UNSTABLE, you are on
your own.

\section download Download

Latest versions, further documentation, examples, wiki, and mailing lists can
be found at https://aubio.org .

*/

#ifndef AUBIO_H
#define AUBIO_H

/** @file aubio.h Global aubio include file.

You will want to include this file as:

@code
#include <aubio/aubio.h>
@endcode

To access headers with unstable prototypes, use:

@code
#define AUBIO_UNSTABLE 1
#include <aubio/aubio.h>
@endcode

*/

#ifdef __cplusplus
extern "C"
{
#endif

/* in this order */
#include "types.h"
#include "fvec.h"
// #include "cvec.h"
// #include "lvec.h"
// // #include "fmat.h"
// #include "musicutils.h"
// // #include "vecutils.h"
// #include "temporal/resampler.h"
// #include "temporal/filter.h"
// #include "temporal/biquad.h"
// #include "temporal/a_weighting.h"
// #include "temporal/c_weighting.h"
// #include "spectral/fft.h"
// // #include "spectral/dct.h"
// #include "spectral/phasevoc.h"
// // #include "spectral/filterbank.h"
// // #include "spectral/filterbank_mel.h"
// // #include "spectral/mfcc.h"
// // #include "spectral/specdesc.h"
// // #include "spectral/awhitening.h"
// // #include "spectral/tss.h"
#include "pitch/pitch.h"
// // #include "onset/onset.h"
// // #include "tempo/tempo.h"
// // #include "notes/notes.h"
// // #include "io/source.h"
// // #include "io/sink.h"
// // #include "synth/sampler.h"
// // #include "synth/wavetable.h"
// // #include "utils/parameter.h"
// #include "utils/log.h"

#ifdef __cplusplus
} /* extern "C" */
#endif

#endif

+ 359
- 0
deps/aubio/src/aubio_priv.h View File

@@ -0,0 +1,359 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/** @file
* Private include file
*
* This file is for inclusion from _within_ the library only.
*/

#ifndef AUBIO_PRIV_H
#define AUBIO_PRIV_H

/*********************
*
* External includes
*
*/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif

#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif

/* must be included before fftw3.h */
#ifdef HAVE_COMPLEX_H
#include <complex.h>
#endif

#if defined(HAVE_FFTW3) || defined(HAVE_FFTW3F)
#include <fftw3.h>
#endif

#ifdef HAVE_MATH_H
#include <math.h>
#endif

#ifdef HAVE_STRING_H
#include <string.h>
#endif

#ifdef HAVE_LIMITS_H
#include <limits.h> // for CHAR_BIT, in C99 standard
#endif

#ifdef HAVE_STDARG_H
#include <stdarg.h>
#endif

#ifdef HAVE_ACCELERATE
#define HAVE_ATLAS 1
#include <Accelerate/Accelerate.h>
#elif defined(HAVE_ATLAS_CBLAS_H)
#define HAVE_ATLAS 1
#include <atlas/cblas.h>
#else
#undef HAVE_ATLAS
#endif

#ifdef HAVE_ACCELERATE
#include <Accelerate/Accelerate.h>
#ifndef HAVE_AUBIO_DOUBLE
#define aubio_vDSP_mmov vDSP_mmov
#define aubio_vDSP_vmul vDSP_vmul
#define aubio_vDSP_vfill vDSP_vfill
#define aubio_vDSP_meanv vDSP_meanv
#define aubio_vDSP_sve vDSP_sve
#define aubio_vDSP_maxv vDSP_maxv
#define aubio_vDSP_maxvi vDSP_maxvi
#define aubio_vDSP_minv vDSP_minv
#define aubio_vDSP_minvi vDSP_minvi
#define aubio_vDSP_dotpr vDSP_dotpr
#define aubio_vDSP_vclr vDSP_vclr
#else /* HAVE_AUBIO_DOUBLE */
#define aubio_vDSP_mmov vDSP_mmovD
#define aubio_vDSP_vmul vDSP_vmulD
#define aubio_vDSP_vfill vDSP_vfillD
#define aubio_vDSP_meanv vDSP_meanvD
#define aubio_vDSP_sve vDSP_sveD
#define aubio_vDSP_maxv vDSP_maxvD
#define aubio_vDSP_maxvi vDSP_maxviD
#define aubio_vDSP_minv vDSP_minvD
#define aubio_vDSP_minvi vDSP_minviD
#define aubio_vDSP_dotpr vDSP_dotprD
#define aubio_vDSP_vclr vDSP_vclrD
#endif /* HAVE_AUBIO_DOUBLE */
#endif /* HAVE_ACCELERATE */

#ifdef HAVE_ATLAS
#ifndef HAVE_AUBIO_DOUBLE
#define aubio_catlas_set catlas_sset
#define aubio_cblas_copy cblas_scopy
#define aubio_cblas_swap cblas_sswap
#define aubio_cblas_dot cblas_sdot
#else /* HAVE_AUBIO_DOUBLE */
#define aubio_catlas_set catlas_dset
#define aubio_cblas_copy cblas_dcopy
#define aubio_cblas_swap cblas_dswap
#define aubio_cblas_dot cblas_ddot
#endif /* HAVE_AUBIO_DOUBLE */
#endif /* HAVE_ATLAS */

#if defined HAVE_INTEL_IPP
#include <ippcore.h>
#include <ippvm.h>
#include <ipps.h>
#ifndef HAVE_AUBIO_DOUBLE
#define aubio_ippsSet ippsSet_32f
#define aubio_ippsZero ippsZero_32f
#define aubio_ippsCopy ippsCopy_32f
#define aubio_ippsMul ippsMul_32f
#define aubio_ippsMulC ippsMulC_32f
#define aubio_ippsAddC ippsAddC_32f
#define aubio_ippsLn ippsLn_32f_A21
#define aubio_ippsMean(a,b,c) ippsMean_32f(a, b, c, ippAlgHintFast)
#define aubio_ippsSum(a,b,c) ippsSum_32f(a, b, c, ippAlgHintFast)
#define aubio_ippsMax ippsMax_32f
#define aubio_ippsMin ippsMin_32f
#else /* HAVE_AUBIO_DOUBLE */
#define aubio_ippsSet ippsSet_64f
#define aubio_ippsZero ippsZero_64f
#define aubio_ippsCopy ippsCopy_64f
#define aubio_ippsMul ippsMul_64f
#define aubio_ippsMulC ippsMulC_64f
#define aubio_ippsAddC ippsAddC_64f
#define aubio_ippsLn ippsLn_64f_A26
#define aubio_ippsMean ippsMean_64f
#define aubio_ippsSum ippsSum_64f
#define aubio_ippsMax ippsMax_64f
#define aubio_ippsMin ippsMin_64f
#endif /* HAVE_AUBIO_DOUBLE */
#endif

#if !defined(HAVE_MEMCPY_HACKS) && !defined(HAVE_ACCELERATE) && !defined(HAVE_ATLAS) && !defined(HAVE_INTEL_IPP)
#define HAVE_NOOPT 1
#else
#undef HAVE_NOOPT
#endif

#include "types.h"

#define AUBIO_UNSTABLE 1

#include "mathutils.h"

/****
*
* SYSTEM INTERFACE
*
*/

/* Memory management */
#define AUBIO_MALLOC(_n) malloc(_n)
#define AUBIO_REALLOC(_p,_n) realloc(_p,_n)
#define AUBIO_NEW(_t) (_t*)calloc(sizeof(_t), 1)
#define AUBIO_ARRAY(_t,_n) (_t*)calloc((_n)*sizeof(_t), 1)
#define AUBIO_MEMCPY(_dst,_src,_n) memcpy(_dst,_src,_n)
#define AUBIO_MEMSET(_dst,_src,_t) memset(_dst,_src,_t)
#define AUBIO_FREE(_p) free(_p)


/* file interface */
#define AUBIO_FOPEN(_f,_m) fopen(_f,_m)
#define AUBIO_FCLOSE(_f) fclose(_f)
#define AUBIO_FREAD(_p,_s,_n,_f) fread(_p,_s,_n,_f)
#define AUBIO_FSEEK(_f,_n,_set) fseek(_f,_n,_set)

/* strings */
#define AUBIO_STRLEN(_s) strlen(_s)
#define AUBIO_STRCMP(_s,_t) strcmp(_s,_t)
#define AUBIO_STRNCMP(_s,_t,_n) strncmp(_s,_t,_n)
#define AUBIO_STRCPY(_dst,_src) strcpy(_dst,_src)
#define AUBIO_STRCHR(_s,_c) strchr(_s,_c)
#ifdef strdup
#define AUBIO_STRDUP(s) strdup(s)
#else
#define AUBIO_STRDUP(s) AUBIO_STRCPY(AUBIO_MALLOC(AUBIO_STRLEN(s) + 1), s)
#endif


/* Error reporting */
typedef enum {
AUBIO_OK = 0,
AUBIO_FAIL = 1
} aubio_status;

/* Logging */

#include "utils/log.h"

/** internal logging function, defined in utils/log.c */
uint_t aubio_log(sint_t level, const char_t *fmt, ...);

#ifdef HAVE_C99_VARARGS_MACROS
#define AUBIO_ERR(...) aubio_log(AUBIO_LOG_ERR, "AUBIO ERROR: " __VA_ARGS__)
#define AUBIO_INF(...) aubio_log(AUBIO_LOG_INF, "AUBIO INFO: " __VA_ARGS__)
#define AUBIO_MSG(...) aubio_log(AUBIO_LOG_MSG, __VA_ARGS__)
#define AUBIO_DBG(...) aubio_log(AUBIO_LOG_DBG, __VA_ARGS__)
#define AUBIO_WRN(...) aubio_log(AUBIO_LOG_WRN, "AUBIO WARNING: " __VA_ARGS__)
#else
#define AUBIO_ERR(format, args...) aubio_log(AUBIO_LOG_ERR, "AUBIO ERROR: " format , ##args)
#define AUBIO_INF(format, args...) aubio_log(AUBIO_LOG_INF, "AUBIO INFO: " format , ##args)
#define AUBIO_MSG(format, args...) aubio_log(AUBIO_LOG_MSG, format , ##args)
#define AUBIO_DBG(format, args...) aubio_log(AUBIO_LOG_DBG, format , ##args)
#define AUBIO_WRN(format, args...) aubio_log(AUBIO_LOG_WRN, "AUBIO WARNING: " format, ##args)
#endif

#define AUBIO_ERROR AUBIO_ERR

#define AUBIO_QUIT(_s) exit(_s)
#define AUBIO_SPRINTF sprintf

#define AUBIO_MAX_SAMPLERATE (192000*8)
#define AUBIO_MAX_CHANNELS 1024

/* pi and 2*pi */
#ifndef M_PI
#define PI (3.14159265358979323846)
#else
#define PI (M_PI)
#endif
#define TWO_PI (PI*2.)

#ifndef PATH_MAX
#define PATH_MAX 1024
#endif

/* aliases to math.h functions */
#if !HAVE_AUBIO_DOUBLE
#define EXP expf
#define COS cosf
#define SIN sinf
#define ABS fabsf
#define POW powf
#define SQRT sqrtf
#define LOG10 log10f
#define LOG logf
#define FLOOR floorf
#define CEIL ceilf
#define ATAN atanf
#define ATAN2 atan2f
#else
#error using double
#define EXP exp
#define COS cos
#define SIN sin
#define ABS fabs
#define POW pow
#define SQRT sqrt
#define LOG10 log10
#define LOG log
#define FLOOR floor
#define CEIL ceil
#define ATAN atan
#define ATAN2 atan2
#endif
#define ROUND(x) FLOOR(x+.5)

/* aliases to complex.h functions */
#if HAVE_AUBIO_DOUBLE || !defined(HAVE_COMPLEX_H) || defined(WIN32)
/* mingw32 does not know about c*f functions */
#define EXPC cexp
/** complex = CEXPC(complex) */
#define CEXPC cexp
/** sample = ARGC(complex) */
#define ARGC carg
/** sample = ABSC(complex) norm */
#define ABSC cabs
/** sample = REAL(complex) */
#define REAL creal
/** sample = IMAG(complex) */
#define IMAG cimag
#else
/** sample = EXPC(complex) */
#define EXPC cexpf
/** complex = CEXPC(complex) */
#define CEXPC cexp
/** sample = ARGC(complex) */
#define ARGC cargf
/** sample = ABSC(complex) norm */
#define ABSC cabsf
/** sample = REAL(complex) */
#define REAL crealf
/** sample = IMAG(complex) */
#define IMAG cimagf
#endif

/* avoid unresolved symbol with msvc 9 */
#if defined(_MSC_VER) && (_MSC_VER < 1900)
#define isnan _isnan
#endif

/* handy shortcuts */
#define DB2LIN(g) (POW(10.0,(g)*0.05f))
#define LIN2DB(v) (20.0*LOG10(v))
#define SQR(_a) ((_a)*(_a))

#ifndef MAX
#define MAX(a,b) (((a)>(b))?(a):(b))
#endif /* MAX */
#ifndef MIN
#define MIN(a,b) (((a)<(b))?(a):(b))
#endif /* MIN */

#define ELEM_SWAP(a,b) { register smpl_t t=(a);(a)=(b);(b)=t; }

#define VERY_SMALL_NUMBER 2.e-42 //1.e-37

/** if ABS(f) < VERY_SMALL_NUMBER, returns 1, else 0 */
#define IS_DENORMAL(f) ABS(f) < VERY_SMALL_NUMBER

/** if ABS(f) < VERY_SMALL_NUMBER, returns 0., else f */
#define KILL_DENORMAL(f) IS_DENORMAL(f) ? 0. : f

/** if f > VERY_SMALL_NUMBER, returns f, else returns VERY_SMALL_NUMBER */
#define CEIL_DENORMAL(f) f < VERY_SMALL_NUMBER ? VERY_SMALL_NUMBER : f

#define SAFE_LOG10(f) LOG10(CEIL_DENORMAL(f))
#define SAFE_LOG(f) LOG(CEIL_DENORMAL(f))

/** silence unused parameter warning by adding an attribute */
#if defined(__GNUC__)
#define UNUSED __attribute__((unused))
#else
#define UNUSED
#endif

/* are we using gcc -std=c99 ? */
#if defined(__STRICT_ANSI__)
#define strnlen(a,b) MIN(strlen(a),b)
#if !HAVE_AUBIO_DOUBLE
#define floorf floor
#endif
#endif /* __STRICT_ANSI__ */

#endif /* AUBIO_PRIV_H */

+ 169
- 0
deps/aubio/src/cvec.c View File

@@ -0,0 +1,169 @@
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "cvec.h"

cvec_t * new_cvec(uint_t length) {
cvec_t * s;
if ((sint_t)length <= 0) {
return NULL;
}
s = AUBIO_NEW(cvec_t);
s->length = length/2 + 1;
s->norm = AUBIO_ARRAY(smpl_t,s->length);
s->phas = AUBIO_ARRAY(smpl_t,s->length);
return s;
}

void del_cvec(cvec_t *s) {
AUBIO_FREE(s->norm);
AUBIO_FREE(s->phas);
AUBIO_FREE(s);
}

void cvec_norm_set_sample (cvec_t *s, smpl_t data, uint_t position) {
s->norm[position] = data;
}

void cvec_phas_set_sample (cvec_t *s, smpl_t data, uint_t position) {
s->phas[position] = data;
}

smpl_t cvec_norm_get_sample (cvec_t *s, uint_t position) {
return s->norm[position];
}

smpl_t cvec_phas_get_sample (cvec_t *s, uint_t position) {
return s->phas[position];
}

smpl_t * cvec_norm_get_data (const cvec_t *s) {
return s->norm;
}

smpl_t * cvec_phas_get_data (const cvec_t *s) {
return s->phas;
}

/* helper functions */

void cvec_print(const cvec_t *s) {
uint_t j;
AUBIO_MSG("norm: ");
for (j=0; j< s->length; j++) {
AUBIO_MSG(AUBIO_SMPL_FMT " ", s->norm[j]);
}
AUBIO_MSG("\n");
AUBIO_MSG("phas: ");
for (j=0; j< s->length; j++) {
AUBIO_MSG(AUBIO_SMPL_FMT " ", s->phas[j]);
}
AUBIO_MSG("\n");
}

void cvec_copy(const cvec_t *s, cvec_t *t) {
if (s->length != t->length) {
AUBIO_ERR("trying to copy %d elements to %d elements \n",
s->length, t->length);
return;
}
#if defined(HAVE_INTEL_IPP)
aubio_ippsCopy(s->phas, t->phas, (int)s->length);
aubio_ippsCopy(s->norm, t->norm, (int)s->length);
#elif defined(HAVE_MEMCPY_HACKS)
memcpy(t->norm, s->norm, t->length * sizeof(smpl_t));
memcpy(t->phas, s->phas, t->length * sizeof(smpl_t));
#else
uint_t j;
for (j=0; j< t->length; j++) {
t->norm[j] = s->norm[j];
t->phas[j] = s->phas[j];
}
#endif
}

void cvec_norm_set_all(cvec_t *s, smpl_t val) {
#if defined(HAVE_INTEL_IPP)
aubio_ippsSet(val, s->norm, (int)s->length);
#else
uint_t j;
for (j=0; j< s->length; j++) {
s->norm[j] = val;
}
#endif
}

void cvec_norm_zeros(cvec_t *s) {
#if defined(HAVE_INTEL_IPP)
aubio_ippsZero(s->norm, (int)s->length);
#elif defined(HAVE_MEMCPY_HACKS)
memset(s->norm, 0, s->length * sizeof(smpl_t));
#else
cvec_norm_set_all (s, 0.);
#endif
}

void cvec_norm_ones(cvec_t *s) {
cvec_norm_set_all (s, 1.);
}

void cvec_phas_set_all (cvec_t *s, smpl_t val) {
#if defined(HAVE_INTEL_IPP)
aubio_ippsSet(val, s->phas, (int)s->length);
#else
uint_t j;
for (j=0; j< s->length; j++) {
s->phas[j] = val;
}
#endif
}

void cvec_phas_zeros(cvec_t *s) {
#if defined(HAVE_INTEL_IPP)
aubio_ippsZero(s->phas, (int)s->length);
#elif defined(HAVE_MEMCPY_HACKS)
memset(s->phas, 0, s->length * sizeof(smpl_t));
#else
cvec_phas_set_all (s, 0.);
#endif
}

void cvec_phas_ones(cvec_t *s) {
cvec_phas_set_all (s, 1.);
}

void cvec_zeros(cvec_t *s) {
cvec_norm_zeros(s);
cvec_phas_zeros(s);
}

void cvec_logmag(cvec_t *s, smpl_t lambda) {
#if defined(HAVE_INTEL_IPP)
aubio_ippsMulC(s->norm, lambda, s->norm, (int)s->length);
aubio_ippsAddC(s->norm, 1.0, s->norm, (int)s->length);
aubio_ippsLn(s->norm, s->norm, (int)s->length);
#else
uint_t j;
for (j=0; j< s->length; j++) {
s->norm[j] = LOG(lambda * s->norm[j] + 1);
}
#endif
}

+ 247
- 0
deps/aubio/src/cvec.h View File

@@ -0,0 +1,247 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef AUBIO_CVEC_H
#define AUBIO_CVEC_H

#ifdef __cplusplus
extern "C" {
#endif

/** \file

Vector of complex-valued data, stored in polar coordinates

This file specifies the ::cvec_t buffer type, which is used throughout aubio
to store complex data. Complex values are stored in terms of ::cvec_t.phas
and norm, within 2 vectors of ::smpl_t of size (size/2+1) each.

\example test-cvec.c

*/

/** Vector of real-valued phase and spectrum data

\code

uint_t buffer_size = 1024;

// create a complex vector of 512 values
cvec_t * input = new_cvec (buffer_size);

// set some values of the vector
input->norm[23] = 2.;
input->phas[23] = M_PI;
// ..

// compute the mean of the vector
mean = cvec_mean(input);

// destroy the vector
del_cvec (input);

\endcode

*/
typedef struct {
uint_t length; /**< length of buffer = (requested length)/2 + 1 */
smpl_t *norm; /**< norm array of size ::cvec_t.length */
smpl_t *phas; /**< phase array of size ::cvec_t.length */
} cvec_t;

/** cvec_t buffer creation function

This function creates a cvec_t structure holding two arrays of size
[length/2+1], corresponding to the norm and phase values of the
spectral frame. The length stored in the structure is the actual size of both
arrays, not the length of the complex and symmetrical vector, specified as
creation argument.

\param length the length of the buffer to create

*/
cvec_t * new_cvec(uint_t length);

/** cvec_t buffer deletion function

\param s buffer to delete as returned by new_cvec()

*/
void del_cvec(cvec_t *s);

/** write norm value in a complex buffer

This is equivalent to:
\code
s->norm[position] = val;
\endcode

\param s vector to write to
\param val norm value to write in s->norm[position]
\param position sample position to write to

*/
void cvec_norm_set_sample (cvec_t *s, smpl_t val, uint_t position);

/** write phase value in a complex buffer

This is equivalent to:
\code
s->phas[position] = val;
\endcode

\param s vector to write to
\param val phase value to write in s->phas[position]
\param position sample position to write to

*/
void cvec_phas_set_sample (cvec_t *s, smpl_t val, uint_t position);

/** read norm value from a complex buffer

This is equivalent to:
\code
smpl_t foo = s->norm[position];
\endcode

\param s vector to read from
\param position sample position to read from

*/
smpl_t cvec_norm_get_sample (cvec_t *s, uint_t position);

/** read phase value from a complex buffer

This is equivalent to:
\code
smpl_t foo = s->phas[position];
\endcode

\param s vector to read from
\param position sample position to read from
\returns the value of the sample at position

*/
smpl_t cvec_phas_get_sample (cvec_t *s, uint_t position);

/** read norm data from a complex buffer

\code
smpl_t *data = s->norm;
\endcode

\param s vector to read from

*/
smpl_t * cvec_norm_get_data (const cvec_t *s);

/** read phase data from a complex buffer

This is equivalent to:
\code
smpl_t *data = s->phas;
\endcode

\param s vector to read from

*/
smpl_t * cvec_phas_get_data (const cvec_t *s);

/** print out cvec data

\param s vector to print out

*/
void cvec_print(const cvec_t *s);

/** make a copy of a vector

\param s source vector
\param t vector to copy to

*/
void cvec_copy(const cvec_t *s, cvec_t *t);

/** set all norm elements to a given value

\param s vector to modify
\param val value to set elements to

*/
void cvec_norm_set_all (cvec_t *s, smpl_t val);

/** set all norm elements to zero

\param s vector to modify

*/
void cvec_norm_zeros(cvec_t *s);

/** set all norm elements to one

\param s vector to modify

*/
void cvec_norm_ones(cvec_t *s);

/** set all phase elements to a given value

\param s vector to modify
\param val value to set elements to

*/
void cvec_phas_set_all (cvec_t *s, smpl_t val);

/** set all phase elements to zero

\param s vector to modify

*/
void cvec_phas_zeros(cvec_t *s);

/** set all phase elements to one

\param s vector to modify

*/
void cvec_phas_ones(cvec_t *s);

/** set all norm and phas elements to zero

\param s vector to modify

*/
void cvec_zeros(cvec_t *s);

/** take logarithmic magnitude

\param s input cvec to compress
\param lambda value to use for normalisation

\f$ S_k = log( \lambda * S_k + 1 ) \f$

*/
void cvec_logmag(cvec_t *s, smpl_t lambda);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_CVEC_H */

+ 149
- 0
deps/aubio/src/fvec.c View File

@@ -0,0 +1,149 @@
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "fvec.h"

fvec_t * new_fvec(uint_t length) {
fvec_t * s;
if ((sint_t)length <= 0) {
return NULL;
}
s = AUBIO_NEW(fvec_t);
s->length = length;
s->data = AUBIO_ARRAY(smpl_t, s->length);
return s;
}

void del_fvec(fvec_t *s) {
AUBIO_FREE(s->data);
AUBIO_FREE(s);
}

void fvec_set_sample(fvec_t *s, smpl_t data, uint_t position) {
s->data[position] = data;
}

smpl_t fvec_get_sample(const fvec_t *s, uint_t position) {
return s->data[position];
}

smpl_t * fvec_get_data(const fvec_t *s) {
return s->data;
}

/* helper functions */

void fvec_print(const fvec_t *s) {
uint_t j;
for (j=0; j< s->length; j++) {
AUBIO_MSG(AUBIO_SMPL_FMT " ", s->data[j]);
}
AUBIO_MSG("\n");
}

void fvec_set_all (fvec_t *s, smpl_t val) {
#if defined(HAVE_INTEL_IPP)
aubio_ippsSet(val, s->data, (int)s->length);
#elif defined(HAVE_ATLAS)
aubio_catlas_set(s->length, val, s->data, 1);
#elif defined(HAVE_ACCELERATE)
aubio_vDSP_vfill(&val, s->data, 1, s->length);
#else
uint_t j;
for ( j = 0; j< s->length; j++ )
{
s->data[j] = val;
}
#endif
}

void fvec_zeros(fvec_t *s) {
#if defined(HAVE_INTEL_IPP)
aubio_ippsZero(s->data, (int)s->length);
#elif defined(HAVE_ACCELERATE)
aubio_vDSP_vclr(s->data, 1, s->length);
#elif defined(HAVE_MEMCPY_HACKS)
memset(s->data, 0, s->length * sizeof(smpl_t));
#else
fvec_set_all(s, 0.);
#endif
}

void fvec_ones(fvec_t *s) {
fvec_set_all (s, 1.);
}

void fvec_rev(fvec_t *s) {
uint_t j;
for (j=0; j< FLOOR((smpl_t)s->length/2); j++) {
ELEM_SWAP(s->data[j], s->data[s->length-1-j]);
}
}

void fvec_weight(fvec_t *s, const fvec_t *weight) {
uint_t length = MIN(s->length, weight->length);
#if defined(HAVE_INTEL_IPP)
aubio_ippsMul(s->data, weight->data, s->data, (int)length);
#elif defined(HAVE_ACCELERATE)
aubio_vDSP_vmul( s->data, 1, weight->data, 1, s->data, 1, length );
#else
uint_t j;
for (j = 0; j < length; j++) {
s->data[j] *= weight->data[j];
}
#endif /* HAVE_ACCELERATE */
}

void fvec_weighted_copy(const fvec_t *in, const fvec_t *weight, fvec_t *out) {
uint_t length = MIN(in->length, MIN(out->length, weight->length));
#if defined(HAVE_INTEL_IPP)
aubio_ippsMul(in->data, weight->data, out->data, (int)length);
#elif defined(HAVE_ACCELERATE)
aubio_vDSP_vmul(in->data, 1, weight->data, 1, out->data, 1, length);
#else
uint_t j;
for (j = 0; j < length; j++) {
out->data[j] = in->data[j] * weight->data[j];
}
#endif
}

void fvec_copy(const fvec_t *s, fvec_t *t) {
if (s->length != t->length) {
AUBIO_ERR("trying to copy %d elements to %d elements \n",
s->length, t->length);
return;
}
#if defined(HAVE_INTEL_IPP)
aubio_ippsCopy(s->data, t->data, (int)s->length);
#elif defined(HAVE_BLAS)
aubio_cblas_copy(s->length, s->data, 1, t->data, 1);
#elif defined(HAVE_ACCELERATE)
aubio_vDSP_mmov(s->data, t->data, 1, s->length, 1, 1);
#elif defined(HAVE_MEMCPY_HACKS)
memcpy(t->data, s->data, t->length * sizeof(smpl_t));
#else
uint_t j;
for (j = 0; j < t->length; j++) {
t->data[j] = s->data[j];
}
#endif
}

+ 178
- 0
deps/aubio/src/fvec.h View File

@@ -0,0 +1,178 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef AUBIO_FVEC_H
#define AUBIO_FVEC_H

#ifdef __cplusplus
extern "C" {
#endif

/** \file

Vector of real-valued data

This file specifies the ::fvec_t buffer type, which is used throughout aubio
to store vector of real-valued ::smpl_t.

\example test-fvec.c

*/

/** Buffer for real data

Vector of real-valued data

::fvec_t is is the structure used to store vector of real-valued data, ::smpl_t .

\code

uint_t buffer_size = 1024;

// create a vector of 512 values
fvec_t * input = new_fvec (buffer_size);

// set some values of the vector
input->data[23] = 2.;
// ..

// compute the mean of the vector
mean = fvec_mean(a_vector);

// destroy the vector
del_fvec(a_vector);

\endcode

See `examples/` and `tests/src` directories for more examples.

*/
typedef struct {
uint_t length; /**< length of buffer */
smpl_t *data; /**< data vector of length ::fvec_t.length */
} fvec_t;

/** fvec_t buffer creation function

\param length the length of the buffer to create

*/
fvec_t * new_fvec(uint_t length);

/** fvec_t buffer deletion function

\param s buffer to delete as returned by new_fvec()

*/
void del_fvec(fvec_t *s);

/** read sample value in a buffer

\param s vector to read from
\param position sample position to read from

*/
smpl_t fvec_get_sample(const fvec_t *s, uint_t position);

/** write sample value in a buffer

\param s vector to write to
\param data value to write in s->data[position]
\param position sample position to write to

*/
void fvec_set_sample(fvec_t *s, smpl_t data, uint_t position);

/** read data from a buffer

\param s vector to read from

*/
smpl_t * fvec_get_data(const fvec_t *s);

/** print out fvec data

\param s vector to print out

*/
void fvec_print(const fvec_t *s);

/** set all elements to a given value

\param s vector to modify
\param val value to set elements to

*/
void fvec_set_all (fvec_t *s, smpl_t val);

/** set all elements to zero

\param s vector to modify

*/
void fvec_zeros(fvec_t *s);

/** set all elements to ones

\param s vector to modify

*/
void fvec_ones(fvec_t *s);

/** revert order of vector elements

\param s vector to revert

*/
void fvec_rev(fvec_t *s);

/** apply weight to vector

If the weight vector is longer than s, only the first elements are used. If
the weight vector is shorter than s, the last elements of s are not weighted.

\param s vector to weight
\param weight weighting coefficients

*/
void fvec_weight(fvec_t *s, const fvec_t *weight);

/** make a copy of a vector

\param s source vector
\param t vector to copy to

*/
void fvec_copy(const fvec_t *s, fvec_t *t);

/** make a copy of a vector, applying weights to each element

\param in input vector
\param weight weights vector
\param out output vector

*/
void fvec_weighted_copy(const fvec_t *in, const fvec_t *weight, fvec_t *out);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_FVEC_H */

+ 80
- 0
deps/aubio/src/lvec.c View File

@@ -0,0 +1,80 @@
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "lvec.h"

lvec_t * new_lvec(uint_t length) {
lvec_t * s;
if ((sint_t)length <= 0) {
return NULL;
}
s = AUBIO_NEW(lvec_t);
s->length = length;
s->data = AUBIO_ARRAY(lsmp_t, s->length);
return s;
}

void del_lvec(lvec_t *s) {
AUBIO_FREE(s->data);
AUBIO_FREE(s);
}

void lvec_set_sample(lvec_t *s, lsmp_t data, uint_t position) {
s->data[position] = data;
}

lsmp_t lvec_get_sample(lvec_t *s, uint_t position) {
return s->data[position];
}

lsmp_t * lvec_get_data(const lvec_t *s) {
return s->data;
}

/* helper functions */

void lvec_print(const lvec_t *s) {
uint_t j;
for (j=0; j< s->length; j++) {
AUBIO_MSG(AUBIO_LSMP_FMT " ", s->data[j]);
}
AUBIO_MSG("\n");
}

void lvec_set_all (lvec_t *s, smpl_t val) {
uint_t j;
for (j=0; j< s->length; j++) {
s->data[j] = val;
}
}

void lvec_zeros(lvec_t *s) {
#if HAVE_MEMCPY_HACKS
memset(s->data, 0, s->length * sizeof(lsmp_t));
#else
lvec_set_all (s, 0.);
#endif
}

void lvec_ones(lvec_t *s) {
lvec_set_all (s, 1.);
}


+ 118
- 0
deps/aubio/src/lvec.h View File

@@ -0,0 +1,118 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef AUBIO_LVEC_H
#define AUBIO_LVEC_H

#ifdef __cplusplus
extern "C" {
#endif

/** \file

Vector of real-valued data in double precision

This file specifies the ::lvec_t buffer type, which is used in some places in
aubio to store a vector of ::lsmp_t.

Note: the lvec_t data type is required in some algorithms such as IIR filters
(see temporal/filter.h).

\example test-lvec.c

*/

/** Buffer for real data in double precision */
typedef struct {
uint_t length; /**< length of buffer */
lsmp_t *data; /**< data array of size [length] */
} lvec_t;

/** lvec_t buffer creation function

\param length the length of the buffer to create

*/
lvec_t * new_lvec(uint_t length);
/** lvec_t buffer deletion function

\param s buffer to delete as returned by new_lvec()

*/
void del_lvec(lvec_t *s);

/** read sample value in a buffer

\param s vector to read from
\param position sample position to read from

*/
lsmp_t lvec_get_sample(lvec_t *s, uint_t position);

/** write sample value in a buffer

\param s vector to write to
\param data value to write in s->data[position]
\param position sample position to write to

*/
void lvec_set_sample(lvec_t *s, lsmp_t data, uint_t position);

/** read data from a buffer

\param s vector to read from

*/
lsmp_t * lvec_get_data(const lvec_t *s);

/** print out lvec data

\param s vector to print out

*/
void lvec_print(const lvec_t *s);

/** set all elements to a given value

\param s vector to modify
\param val value to set elements to

*/
void lvec_set_all(lvec_t *s, smpl_t val);

/** set all elements to zero

\param s vector to modify

*/
void lvec_zeros(lvec_t *s);

/** set all elements to ones

\param s vector to modify

*/
void lvec_ones(lvec_t *s);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_LVEC_H */

+ 681
- 0
deps/aubio/src/mathutils.c View File

@@ -0,0 +1,681 @@
/*
Copyright (C) 2003-2014 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/* see in mathutils.h for doc */

#include "aubio_priv.h"
#include "fvec.h"
#include "mathutils.h"
#include "musicutils.h"

/** Window types */
typedef enum
{
aubio_win_ones,
aubio_win_rectangle,
aubio_win_hamming,
aubio_win_hanning,
aubio_win_hanningz,
aubio_win_blackman,
aubio_win_blackman_harris,
aubio_win_gaussian,
aubio_win_welch,
aubio_win_parzen,
aubio_win_default = aubio_win_hanningz,
} aubio_window_type;

fvec_t *
new_aubio_window (char_t * window_type, uint_t length)
{
fvec_t * win = new_fvec (length);
uint_t err;
if (win == NULL) {
return NULL;
}
err = fvec_set_window (win, window_type);
if (err != 0) {
del_fvec(win);
return NULL;
}
return win;
}

uint_t fvec_set_window (fvec_t *win, char_t *window_type) {
smpl_t * w = win->data;
uint_t i, size = win->length;
aubio_window_type wintype;
if (window_type == NULL) {
AUBIO_ERR ("window type can not be null.\n");
return 1;
} else if (strcmp (window_type, "ones") == 0)
wintype = aubio_win_ones;
else if (strcmp (window_type, "rectangle") == 0)
wintype = aubio_win_rectangle;
else if (strcmp (window_type, "hamming") == 0)
wintype = aubio_win_hamming;
else if (strcmp (window_type, "hanning") == 0)
wintype = aubio_win_hanning;
else if (strcmp (window_type, "hanningz") == 0)
wintype = aubio_win_hanningz;
else if (strcmp (window_type, "blackman") == 0)
wintype = aubio_win_blackman;
else if (strcmp (window_type, "blackman_harris") == 0)
wintype = aubio_win_blackman_harris;
else if (strcmp (window_type, "gaussian") == 0)
wintype = aubio_win_gaussian;
else if (strcmp (window_type, "welch") == 0)
wintype = aubio_win_welch;
else if (strcmp (window_type, "parzen") == 0)
wintype = aubio_win_parzen;
else if (strcmp (window_type, "default") == 0)
wintype = aubio_win_default;
else {
AUBIO_ERR ("unknown window type `%s`.\n", window_type);
return 1;
}
switch(wintype) {
case aubio_win_ones:
fvec_ones(win);
break;
case aubio_win_rectangle:
fvec_set_all(win, .5);
break;
case aubio_win_hamming:
for (i=0;i<size;i++)
w[i] = 0.54 - 0.46 * COS(TWO_PI * i / (size));
break;
case aubio_win_hanning:
for (i=0;i<size;i++)
w[i] = 0.5 - (0.5 * COS(TWO_PI * i / (size)));
break;
case aubio_win_hanningz:
for (i=0;i<size;i++)
w[i] = 0.5 * (1.0 - COS(TWO_PI * i / (size)));
break;
case aubio_win_blackman:
for (i=0;i<size;i++)
w[i] = 0.42
- 0.50 * COS( TWO_PI*i/(size-1.0))
+ 0.08 * COS(2.0*TWO_PI*i/(size-1.0));
break;
case aubio_win_blackman_harris:
for (i=0;i<size;i++)
w[i] = 0.35875
- 0.48829 * COS( TWO_PI*i/(size-1.0))
+ 0.14128 * COS(2.0*TWO_PI*i/(size-1.0))
- 0.01168 * COS(3.0*TWO_PI*i/(size-1.0));
break;
case aubio_win_gaussian:
{
lsmp_t a, b, c = 0.5;
uint_t n;
for (n = 0; n < size; n++)
{
a = (n-c*(size-1))/(SQR(c)*(size-1));
b = -c*SQR(a);
w[n] = EXP(b);
}
}
break;
case aubio_win_welch:
for (i=0;i<size;i++)
w[i] = 1.0 - SQR((2.*i-size)/(size+1.0));
break;
case aubio_win_parzen:
for (i=0;i<size;i++)
w[i] = 1.0 - ABS((2.f*i-size)/(size+1.0f));
break;
default:
break;
}
return 0;
}

smpl_t
aubio_unwrap2pi (smpl_t phase)
{
/* mod(phase+pi,-2pi)+pi */
return phase + TWO_PI * (1. + FLOOR (-(phase + PI) / TWO_PI));
}

smpl_t
fvec_mean (fvec_t * s)
{
smpl_t tmp = 0.0;
#if defined(HAVE_INTEL_IPP)
aubio_ippsMean(s->data, (int)s->length, &tmp);
return tmp;
#elif defined(HAVE_ACCELERATE)
aubio_vDSP_meanv(s->data, 1, &tmp, s->length);
return tmp;
#else
uint_t j;
for (j = 0; j < s->length; j++) {
tmp += s->data[j];
}
return tmp / (smpl_t)(s->length);
#endif
}

smpl_t
fvec_sum (fvec_t * s)
{
smpl_t tmp = 0.0;
#if defined(HAVE_INTEL_IPP)
aubio_ippsSum(s->data, (int)s->length, &tmp);
#elif defined(HAVE_ACCELERATE)
aubio_vDSP_sve(s->data, 1, &tmp, s->length);
#else
uint_t j;
for (j = 0; j < s->length; j++) {
tmp += s->data[j];
}
#endif
return tmp;
}

smpl_t
fvec_max (fvec_t * s)
{
#if defined(HAVE_INTEL_IPP)
smpl_t tmp = 0.;
aubio_ippsMax( s->data, (int)s->length, &tmp);
#elif defined(HAVE_ACCELERATE)
smpl_t tmp = 0.;
aubio_vDSP_maxv( s->data, 1, &tmp, s->length );
#else
uint_t j;
smpl_t tmp = s->data[0];
for (j = 1; j < s->length; j++) {
tmp = (tmp > s->data[j]) ? tmp : s->data[j];
}
#endif
return tmp;
}

smpl_t
fvec_min (fvec_t * s)
{
#if defined(HAVE_INTEL_IPP)
smpl_t tmp = 0.;
aubio_ippsMin(s->data, (int)s->length, &tmp);
#elif defined(HAVE_ACCELERATE)
smpl_t tmp = 0.;
aubio_vDSP_minv(s->data, 1, &tmp, s->length);
#else
uint_t j;
smpl_t tmp = s->data[0];
for (j = 1; j < s->length; j++) {
tmp = (tmp < s->data[j]) ? tmp : s->data[j];
}
#endif
return tmp;
}

uint_t
fvec_min_elem (fvec_t * s)
{
#ifndef HAVE_ACCELERATE
uint_t j, pos = 0.;
smpl_t tmp = s->data[0];
for (j = 0; j < s->length; j++) {
pos = (tmp < s->data[j]) ? pos : j;
tmp = (tmp < s->data[j]) ? tmp : s->data[j];
}
#else
smpl_t tmp = 0.;
vDSP_Length pos = 0;
aubio_vDSP_minvi(s->data, 1, &tmp, &pos, s->length);
#endif
return (uint_t)pos;
}

uint_t
fvec_max_elem (fvec_t * s)
{
#ifndef HAVE_ACCELERATE
uint_t j, pos = 0;
smpl_t tmp = 0.0;
for (j = 0; j < s->length; j++) {
pos = (tmp > s->data[j]) ? pos : j;
tmp = (tmp > s->data[j]) ? tmp : s->data[j];
}
#else
smpl_t tmp = 0.;
vDSP_Length pos = 0;
aubio_vDSP_maxvi(s->data, 1, &tmp, &pos, s->length);
#endif
return (uint_t)pos;
}

void
fvec_shift (fvec_t * s)
{
uint_t half = s->length / 2, start = half, j;
// if length is odd, middle element is moved to the end
if (2 * half < s->length) start ++;
#ifndef HAVE_BLAS
for (j = 0; j < half; j++) {
ELEM_SWAP (s->data[j], s->data[j + start]);
}
#else
aubio_cblas_swap(half, s->data, 1, s->data + start, 1);
#endif
if (start != half) {
for (j = 0; j < half; j++) {
ELEM_SWAP (s->data[j + start - 1], s->data[j + start]);
}
}
}

void
fvec_ishift (fvec_t * s)
{
uint_t half = s->length / 2, start = half, j;
// if length is odd, middle element is moved to the beginning
if (2 * half < s->length) start ++;
#ifndef HAVE_BLAS
for (j = 0; j < half; j++) {
ELEM_SWAP (s->data[j], s->data[j + start]);
}
#else
aubio_cblas_swap(half, s->data, 1, s->data + start, 1);
#endif
if (start != half) {
for (j = 0; j < half; j++) {
ELEM_SWAP (s->data[half], s->data[j]);
}
}
}

void fvec_push(fvec_t *in, smpl_t new_elem) {
uint_t i;
for (i = 0; i < in->length - 1; i++) {
in->data[i] = in->data[i + 1];
}
in->data[in->length - 1] = new_elem;
}

void fvec_clamp(fvec_t *in, smpl_t absmax) {
uint_t i;
for (i = 0; i < in->length; i++) {
if (in->data[i] > 0 && in->data[i] > ABS(absmax)) {
in->data[i] = absmax;
} else if (in->data[i] < 0 && in->data[i] < -ABS(absmax)) {
in->data[i] = -absmax;
}
}
}

smpl_t
aubio_level_lin (const fvec_t * f)
{
smpl_t energy = 0.;
#ifndef HAVE_BLAS
uint_t j;
for (j = 0; j < f->length; j++) {
energy += SQR (f->data[j]);
}
#else
energy = aubio_cblas_dot(f->length, f->data, 1, f->data, 1);
#endif
return energy / f->length;
}

smpl_t
fvec_local_hfc (fvec_t * v)
{
smpl_t hfc = 0.;
uint_t j;
for (j = 0; j < v->length; j++) {
hfc += (j + 1) * v->data[j];
}
return hfc;
}

void
fvec_min_removal (fvec_t * v)
{
smpl_t v_min = fvec_min (v);
fvec_add (v, - v_min );
}

smpl_t
fvec_alpha_norm (fvec_t * o, smpl_t alpha)
{
uint_t j;
smpl_t tmp = 0.;
for (j = 0; j < o->length; j++) {
tmp += POW (ABS (o->data[j]), alpha);
}
return POW (tmp / o->length, 1. / alpha);
}

void
fvec_alpha_normalise (fvec_t * o, smpl_t alpha)
{
uint_t j;
smpl_t norm = fvec_alpha_norm (o, alpha);
for (j = 0; j < o->length; j++) {
o->data[j] /= norm;
}
}

void
fvec_add (fvec_t * o, smpl_t val)
{
uint_t j;
for (j = 0; j < o->length; j++) {
o->data[j] += val;
}
}

void
fvec_mul (fvec_t *o, smpl_t val)
{
uint_t j;
for (j = 0; j < o->length; j++) {
o->data[j] *= val;
}
}

void fvec_adapt_thres(fvec_t * vec, fvec_t * tmp,
uint_t post, uint_t pre) {
uint_t length = vec->length, j;
for (j=0;j<length;j++) {
vec->data[j] -= fvec_moving_thres(vec, tmp, post, pre, j);
}
}

smpl_t
fvec_moving_thres (fvec_t * vec, fvec_t * tmpvec,
uint_t post, uint_t pre, uint_t pos)
{
uint_t k;
smpl_t *medar = (smpl_t *) tmpvec->data;
uint_t win_length = post + pre + 1;
uint_t length = vec->length;
/* post part of the buffer does not exist */
if (pos < post + 1) {
for (k = 0; k < post + 1 - pos; k++)
medar[k] = 0.; /* 0-padding at the beginning */
for (k = post + 1 - pos; k < win_length; k++)
medar[k] = vec->data[k + pos - post];
/* the buffer is fully defined */
} else if (pos + pre < length) {
for (k = 0; k < win_length; k++)
medar[k] = vec->data[k + pos - post];
/* pre part of the buffer does not exist */
} else {
for (k = 0; k < length - pos + post; k++)
medar[k] = vec->data[k + pos - post];
for (k = length - pos + post; k < win_length; k++)
medar[k] = 0.; /* 0-padding at the end */
}
return fvec_median (tmpvec);
}

smpl_t fvec_median (fvec_t * input) {
uint_t n = input->length;
smpl_t * arr = (smpl_t *) input->data;
uint_t low, high ;
uint_t median;
uint_t middle, ll, hh;

low = 0 ; high = n-1 ; median = (low + high) / 2;
for (;;) {
if (high <= low) /* One element only */
return arr[median] ;

if (high == low + 1) { /* Two elements only */
if (arr[low] > arr[high])
ELEM_SWAP(arr[low], arr[high]) ;
return arr[median] ;
}

/* Find median of low, middle and high items; swap into position low */
middle = (low + high) / 2;
if (arr[middle] > arr[high]) ELEM_SWAP(arr[middle], arr[high]);
if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]);
if (arr[middle] > arr[low]) ELEM_SWAP(arr[middle], arr[low]) ;

/* Swap low item (now in position middle) into position (low+1) */
ELEM_SWAP(arr[middle], arr[low+1]) ;

/* Nibble from each end towards middle, swapping items when stuck */
ll = low + 1;
hh = high;
for (;;) {
do ll++; while (arr[low] > arr[ll]) ;
do hh--; while (arr[hh] > arr[low]) ;

if (hh < ll)
break;

ELEM_SWAP(arr[ll], arr[hh]) ;
}

/* Swap middle item (in position low) back into correct position */
ELEM_SWAP(arr[low], arr[hh]) ;

/* Re-set active partition */
if (hh <= median)
low = ll;
if (hh >= median)
high = hh - 1;
}
}

smpl_t fvec_quadratic_peak_pos (const fvec_t * x, uint_t pos) {
smpl_t s0, s1, s2; uint_t x0, x2;
smpl_t half = .5, two = 2.;
if (pos == 0 || pos == x->length - 1) return pos;
x0 = (pos < 1) ? pos : pos - 1;
x2 = (pos + 1 < x->length) ? pos + 1 : pos;
if (x0 == pos) return (x->data[pos] <= x->data[x2]) ? pos : x2;
if (x2 == pos) return (x->data[pos] <= x->data[x0]) ? pos : x0;
s0 = x->data[x0];
s1 = x->data[pos];
s2 = x->data[x2];
return pos + half * (s0 - s2 ) / (s0 - two * s1 + s2);
}

smpl_t fvec_quadratic_peak_mag (fvec_t *x, smpl_t pos) {
smpl_t x0, x1, x2;
uint_t index = (uint_t)(pos - .5) + 1;
if (pos >= x->length || pos < 0.) return 0.;
if ((smpl_t)index == pos) return x->data[index];
x0 = x->data[index - 1];
x1 = x->data[index];
x2 = x->data[index + 1];
return x1 - .25 * (x0 - x2) * (pos - index);
}

uint_t fvec_peakpick(const fvec_t * onset, uint_t pos) {
uint_t tmp=0;
tmp = (onset->data[pos] > onset->data[pos-1]
&& onset->data[pos] > onset->data[pos+1]
&& onset->data[pos] > 0.);
return tmp;
}

smpl_t
aubio_quadfrac (smpl_t s0, smpl_t s1, smpl_t s2, smpl_t pf)
{
smpl_t tmp =
s0 + (pf / 2.) * (pf * (s0 - 2. * s1 + s2) - 3. * s0 + 4. * s1 - s2);
return tmp;
}

smpl_t
aubio_freqtomidi (smpl_t freq)
{
smpl_t midi;
if (freq < 2. || freq > 100000.) return 0.; // avoid nans and infs
/* log(freq/A-2)/log(2) */
midi = freq / 6.875;
midi = LOG (midi) / 0.6931471805599453;
midi *= 12;
midi -= 3;
return midi;
}

smpl_t
aubio_miditofreq (smpl_t midi)
{
smpl_t freq;
if (midi > 140.) return 0.; // avoid infs
freq = (midi + 3.) / 12.;
freq = EXP (freq * 0.6931471805599453);
freq *= 6.875;
return freq;
}

smpl_t
aubio_bintofreq (smpl_t bin, smpl_t samplerate, smpl_t fftsize)
{
smpl_t freq = samplerate / fftsize;
return freq * MAX(bin, 0);
}

smpl_t
aubio_bintomidi (smpl_t bin, smpl_t samplerate, smpl_t fftsize)
{
smpl_t midi = aubio_bintofreq (bin, samplerate, fftsize);
return aubio_freqtomidi (midi);
}

smpl_t
aubio_freqtobin (smpl_t freq, smpl_t samplerate, smpl_t fftsize)
{
smpl_t bin = fftsize / samplerate;
return MAX(freq, 0) * bin;
}

smpl_t
aubio_miditobin (smpl_t midi, smpl_t samplerate, smpl_t fftsize)
{
smpl_t freq = aubio_miditofreq (midi);
return aubio_freqtobin (freq, samplerate, fftsize);
}

uint_t
aubio_is_power_of_two (uint_t a)
{
if ((a & (a - 1)) == 0) {
return 1;
} else {
return 0;
}
}

uint_t
aubio_next_power_of_two (uint_t a)
{
uint_t i = 1;
while (i < a) i <<= 1;
return i;
}

uint_t
aubio_power_of_two_order (uint_t a)
{
int order = 0;
int temp = aubio_next_power_of_two(a);
while (temp >>= 1) {
++order;
}
return order;
}

smpl_t
aubio_db_spl (const fvec_t * o)
{
return 10. * LOG10 (aubio_level_lin (o));
}

uint_t
aubio_silence_detection (const fvec_t * o, smpl_t threshold)
{
return (aubio_db_spl (o) < threshold);
}

smpl_t
aubio_level_detection (const fvec_t * o, smpl_t threshold)
{
smpl_t db_spl = aubio_db_spl (o);
if (db_spl < threshold) {
return 1.;
} else {
return db_spl;
}
}

smpl_t
aubio_zero_crossing_rate (fvec_t * input)
{
uint_t j;
uint_t zcr = 0;
for (j = 1; j < input->length; j++) {
// previous was strictly negative
if (input->data[j - 1] < 0.) {
// current is positive or null
if (input->data[j] >= 0.) {
zcr += 1;
}
// previous was positive or null
} else {
// current is strictly negative
if (input->data[j] < 0.) {
zcr += 1;
}
}
}
return zcr / (smpl_t) input->length;
}

void
aubio_autocorr (const fvec_t * input, fvec_t * output)
{
uint_t i, j, length = input->length;
smpl_t *data, *acf;
smpl_t tmp = 0;
data = input->data;
acf = output->data;
for (i = 0; i < length; i++) {
tmp = 0.;
for (j = i; j < length; j++) {
tmp += data[j - i] * data[j];
}
acf[i] = tmp / (smpl_t) (length - i);
}
}

void
aubio_cleanup (void)
{
#ifdef HAVE_FFTW3F
fftwf_cleanup ();
#else
#ifdef HAVE_FFTW3
fftw_cleanup ();
#endif
#endif
}

+ 338
- 0
deps/aubio/src/mathutils.h View File

@@ -0,0 +1,338 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/** \file

Various math functions

\example test-mathutils.c
\example test-mathutils-window.c

*/

#ifndef AUBIO_MATHUTILS_H
#define AUBIO_MATHUTILS_H

#include "fvec.h"
#include "musicutils.h"

#ifdef __cplusplus
extern "C" {
#endif

/** compute the mean of a vector

\param s vector to compute mean from
\return the mean of `v`

*/
smpl_t fvec_mean (fvec_t * s);

/** find the max of a vector

\param s vector to get the max from

\return the value of the minimum of v

*/
smpl_t fvec_max (fvec_t * s);

/** find the min of a vector

\param s vector to get the min from

\return the value of the maximum of v

*/
smpl_t fvec_min (fvec_t * s);

/** find the index of the min of a vector

\param s vector to get the index from

\return the index of the minimum element of v

*/
uint_t fvec_min_elem (fvec_t * s);

/** find the index of the max of a vector

\param s vector to get the index from

\return the index of the maximum element of v

*/
uint_t fvec_max_elem (fvec_t * s);

/** swap the left and right halves of a vector

This function swaps the left part of the signal with the right part of the
signal. Therefore

\f$ a[0], a[1], ..., a[\frac{N}{2}], a[\frac{N}{2}+1], ..., a[N-1], a[N] \f$

becomes

\f$ a[\frac{N}{2}+1], ..., a[N-1], a[N], a[0], a[1], ..., a[\frac{N}{2}] \f$

This operation, known as 'fftshift' in the Matlab Signal Processing Toolbox,
can be used before computing the FFT to simplify the phase relationship of the
resulting spectrum. See Amalia de Götzen's paper referred to above.

*/
void fvec_shift (fvec_t * v);

/** swap the left and right halves of a vector

This function swaps the left part of the signal with the right part of the
signal. Therefore

\f$ a[0], a[1], ..., a[\frac{N}{2}], a[\frac{N}{2}+1], ..., a[N-1], a[N] \f$

becomes

\f$ a[\frac{N}{2}+1], ..., a[N-1], a[N], a[0], a[1], ..., a[\frac{N}{2}] \f$

This operation, known as 'ifftshift' in the Matlab Signal Processing Toolbox,
can be used after computing the inverse FFT to simplify the phase relationship
of the resulting spectrum. See Amalia de Götzen's paper referred to above.

*/
void fvec_ishift (fvec_t * v);

/** push a new element to the end of a vector, erasing the first element and
* sliding all others

\param in vector to push to
\param new_elem new_element to add at the end of the vector

In numpy words, this is equivalent to: in = np.concatenate([in, [new_elem]])[1:]

*/
void fvec_push(fvec_t *in, smpl_t new_elem);

/** compute the sum of all elements of a vector

\param v vector to compute the sum of

\return the sum of v

*/
smpl_t fvec_sum (fvec_t * v);

/** compute the High Frequency Content of a vector

The High Frequency Content is defined as \f$ \sum_0^{N-1} (k+1) v[k] \f$.

\param v vector to get the energy from

\return the HFC of v

*/
smpl_t fvec_local_hfc (fvec_t * v);

/** computes the p-norm of a vector

Computes the p-norm of a vector for \f$ p = \alpha \f$

\f$ L^p = ||x||_p = (|x_1|^p + |x_2|^p + ... + |x_n|^p ) ^ \frac{1}{p} \f$

If p = 1, the result is the Manhattan distance.

If p = 2, the result is the Euclidean distance.

As p tends towards large values, \f$ L^p \f$ tends towards the maximum of the
input vector.

References:

- <a href="http://en.wikipedia.org/wiki/Lp_space">\f$L^p\f$ space</a> on
Wikipedia

\param v vector to compute norm from
\param p order of the computed norm

\return the p-norm of v

*/
smpl_t fvec_alpha_norm (fvec_t * v, smpl_t p);

/** alpha normalisation

This function divides all elements of a vector by the p-norm as computed by
fvec_alpha_norm().

\param v vector to compute norm from
\param p order of the computed norm

*/
void fvec_alpha_normalise (fvec_t * v, smpl_t p);

/** add a constant to each elements of a vector

\param v vector to add constant to
\param c constant to add to v

*/
void fvec_add (fvec_t * v, smpl_t c);

/** multiply each elements of a vector by a scalar

\param v vector to add constant to
\param s constant to scale v with

*/
void fvec_mul (fvec_t * v, smpl_t s);

/** remove the minimum value of the vector to each elements

\param v vector to remove minimum from

*/
void fvec_min_removal (fvec_t * v);

/** compute moving median threshold of a vector

This function computes the moving median threshold value of at the given
position of a vector, taking the median among post elements before and up to
pre elements after pos.

\param v input vector
\param tmp temporary vector of length post+1+pre
\param post length of causal part to take before pos
\param pre length of anti-causal part to take after pos
\param pos index to compute threshold for

\return moving median threshold value

*/
smpl_t fvec_moving_thres (fvec_t * v, fvec_t * tmp, uint_t post, uint_t pre,
uint_t pos);

/** apply adaptive threshold to a vector

For each points at position p of an input vector, this function remove the
moving median threshold computed at p.

\param v input vector
\param tmp temporary vector of length post+1+pre
\param post length of causal part to take before pos
\param pre length of anti-causal part to take after pos

*/
void fvec_adapt_thres (fvec_t * v, fvec_t * tmp, uint_t post, uint_t pre);

/** returns the median of a vector

The QuickSelect routine is based on the algorithm described in "Numerical
recipes in C", Second Edition, Cambridge University Press, 1992, Section 8.5,
ISBN 0-521-43108-5

This implementation of the QuickSelect routine is based on Nicolas
Devillard's implementation, available at http://ndevilla.free.fr/median/median/
and in the Public Domain.

\param v vector to get median from

\return the median of v

*/
smpl_t fvec_median (fvec_t * v);

/** finds exact peak index by quadratic interpolation

See [Quadratic Interpolation of Spectral
Peaks](https://ccrma.stanford.edu/~jos/sasp/Quadratic_Peak_Interpolation.html),
by Julius O. Smith III

\f$ p_{frac} = \frac{1}{2} \frac {x[p-1] - x[p+1]} {x[p-1] - 2 x[p] + x[p+1]} \in [ -.5, .5] \f$

\param x vector to get the interpolated peak position from
\param p index of the peak in vector `x`
\return \f$ p + p_{frac} \f$ exact peak position of interpolated maximum or minimum

*/
smpl_t fvec_quadratic_peak_pos (const fvec_t * x, uint_t p);

/** finds magnitude of peak by quadratic interpolation

See [Quadratic Interpolation of Spectral
Peaks](https://ccrma.stanford.edu/~jos/sasp/Quadratic_Peak_Interpolation.html),
by Julius O. Smith III

\param x vector to get the magnitude of the interpolated peak position from
\param p index of the peak in vector `x`
\return magnitude of interpolated peak

*/
smpl_t fvec_quadratic_peak_mag (fvec_t * x, smpl_t p);

/** Quadratic interpolation using Lagrange polynomial.

Inspired from ``Comparison of interpolation algorithms in real-time sound
processing'', Vladimir Arnost,

\param s0,s1,s2 are 3 consecutive samples of a curve
\param pf is the floating point index [0;2]

\return \f$ s0 + (pf/2.)*((pf-3.)*s0-2.*(pf-2.)*s1+(pf-1.)*s2); \f$

*/
smpl_t aubio_quadfrac (smpl_t s0, smpl_t s1, smpl_t s2, smpl_t pf);

/** return 1 if v[p] is a peak and positive, 0 otherwise

This function returns 1 if a peak is found at index p in the vector v. The
peak is defined as follows:

- v[p] is positive
- v[p-1] < v[p]
- v[p] > v[p+1]

\param v input vector
\param p position of supposed for peak

\return 1 if a peak is found, 0 otherwise

*/
uint_t fvec_peakpick (const fvec_t * v, uint_t p);

/** return 1 if a is a power of 2, 0 otherwise */
uint_t aubio_is_power_of_two(uint_t a);

/** return the next power of power of 2 greater than a */
uint_t aubio_next_power_of_two(uint_t a);

/** return the log2 factor of the given power of 2 value a */
uint_t aubio_power_of_two_order(uint_t a);

/** compute normalised autocorrelation function

\param input vector to compute autocorrelation from
\param output vector to store autocorrelation function to

*/
void aubio_autocorr (const fvec_t * input, fvec_t * output);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_MATHUTILS_H */

+ 270
- 0
deps/aubio/src/musicutils.h View File

@@ -0,0 +1,270 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/** @file
* various functions useful in audio signal processing
*/

#ifndef AUBIO_MUSICUTILS_H
#define AUBIO_MUSICUTILS_H

#ifdef __cplusplus
extern "C" {
#endif

/** create window

\param window_type type of the window to create
\param size length of the window to create (see fvec_set_window())

*/
fvec_t *new_aubio_window (char_t * window_type, uint_t size);

/** set elements of a vector to window coefficients

\param window exsting ::fvec_t to use
\param window_type type of the window to create

List of available window types: "rectangle", "hamming", "hanning",
"hanningz", "blackman", "blackman_harris", "gaussian", "welch", "parzen",
"default".

"default" is equivalent to "hanningz".

References:

- <a href="http://en.wikipedia.org/wiki/Window_function">Window
function</a> on Wikipedia
- Amalia de Götzen, Nicolas Bernardini, and Daniel Arfib. Traditional (?)
implementations of a phase vocoder: the tricks of the trade. In Proceedings of
the International Conference on Digital Audio Effects (DAFx-00), pages 37–44,
Uni- versity of Verona, Italy, 2000.
(<a href="http://www.cs.princeton.edu/courses/archive/spr09/cos325/Bernardini.pdf">
pdf</a>)

*/
uint_t fvec_set_window (fvec_t * window, char_t * window_type);

/** compute the principal argument

This function maps the input phase to its corresponding value wrapped in the
range \f$ [-\pi, \pi] \f$.

\param phase unwrapped phase to map to the unit circle

\return equivalent phase wrapped to the unit circle

*/
smpl_t aubio_unwrap2pi (smpl_t phase);

/** convert frequency bin to midi value */
smpl_t aubio_bintomidi (smpl_t bin, smpl_t samplerate, smpl_t fftsize);

/** convert midi value to frequency bin */
smpl_t aubio_miditobin (smpl_t midi, smpl_t samplerate, smpl_t fftsize);

/** convert frequency bin to frequency (Hz) */
smpl_t aubio_bintofreq (smpl_t bin, smpl_t samplerate, smpl_t fftsize);

/** convert frequency (Hz) to frequency bin */
smpl_t aubio_freqtobin (smpl_t freq, smpl_t samplerate, smpl_t fftsize);

/** convert frequency (Hz) to mel

\param freq input frequency, in Hz

\return output mel

Converts a scalar from the frequency domain to the mel scale using Slaney
Auditory Toolbox's implementation:

If \f$ f < 1000 \f$, \f$ m = 3 f / 200 \f$.

If \f$ f >= 1000 \f$, \f$ m = 1000 + 27 \frac{{ln}(f) - ln(1000))}
{{ln}(6400) - ln(1000)}
\f$

See also
--------

aubio_meltohz(), aubio_hztomel_htk().

*/
smpl_t aubio_hztomel (smpl_t freq);

/** convert mel to frequency (Hz)

\param mel input mel

\return output frequency, in Hz

Converts a scalar from the mel scale to the frequency domain using Slaney
Auditory Toolbox's implementation:

If \f$ f < 1000 \f$, \f$ f = 200 m/3 \f$.

If \f$ f \geq 1000 \f$, \f$ f = 1000 + \left(\frac{6400}{1000}\right)
^{\frac{m - 1000}{27}} \f$

See also
--------

aubio_hztomel(), aubio_meltohz_htk().

References
----------

Malcolm Slaney, *Auditory Toolbox Version 2, Technical Report #1998-010*
https://engineering.purdue.edu/~malcolm/interval/1998-010/

*/
smpl_t aubio_meltohz (smpl_t mel);

/** convert frequency (Hz) to mel

\param freq input frequency, in Hz

\return output mel

Converts a scalar from the frequency domain to the mel scale, using the
equation defined by O'Shaughnessy, as implemented in the HTK speech
recognition toolkit:

\f$ m = 1127 + ln(1 + \frac{f}{700}) \f$

See also
--------

aubio_meltohz_htk(), aubio_hztomel().

References
----------

Douglas O'Shaughnessy (1987). *Speech communication: human and machine*.
Addison-Wesley. p. 150. ISBN 978-0-201-16520-3.

HTK Speech Recognition Toolkit: http://htk.eng.cam.ac.uk/

*/
smpl_t aubio_hztomel_htk (smpl_t freq);

/** convert mel to frequency (Hz)

\param mel input mel

\return output frequency, in Hz

Converts a scalar from the mel scale to the frequency domain, using the
equation defined by O'Shaughnessy, as implemented in the HTK speech
recognition toolkit:

\f$ f = 700 * {e}^\left(\frac{f}{1127} - 1\right) \f$

See also
--------

aubio_hztomel_htk(), aubio_meltohz().

*/
smpl_t aubio_meltohz_htk (smpl_t mel);

/** convert frequency (Hz) to midi value (0-128) */
smpl_t aubio_freqtomidi (smpl_t freq);

/** convert midi value (0-128) to frequency (Hz) */
smpl_t aubio_miditofreq (smpl_t midi);

/** clean up cached memory at the end of program

This function should be used at the end of programs to purge all cached
memory. So far it is only useful to clean FFTW's cache.

*/
void aubio_cleanup (void);

/** zero-crossing rate (ZCR)

The zero-crossing rate is the number of times a signal changes sign,
divided by the length of this signal.

\param v vector to compute ZCR from

\return zero-crossing rate of v

*/
smpl_t aubio_zero_crossing_rate (fvec_t * v);

/** compute sound level on a linear scale

This gives the average of the square amplitudes.

\param v vector to compute level from

\return level of v

*/
smpl_t aubio_level_lin (const fvec_t * v);

/** compute sound pressure level (SPL) in dB

This quantity is often wrongly called 'loudness'.

This gives ten times the log10 of the average of the square amplitudes.

\param v vector to compute dB SPL from

\return level of v in dB SPL

*/
smpl_t aubio_db_spl (const fvec_t * v);

/** check if buffer level in dB SPL is under a given threshold

\param v vector to get level from
\param threshold threshold in dB SPL

\return 1 if level is under the given threshold, 0 otherwise

*/
uint_t aubio_silence_detection (const fvec_t * v, smpl_t threshold);

/** get buffer level if level >= threshold, 1. otherwise

\param v vector to get level from
\param threshold threshold in dB SPL

\return level in dB SPL if level >= threshold, 1. otherwise

*/
smpl_t aubio_level_detection (const fvec_t * v, smpl_t threshold);

/** clamp the values of a vector within the range [-abs(max), abs(max)]

\param in vector to clamp
\param absmax maximum value over which input vector elements should be clamped

*/
void fvec_clamp(fvec_t *in, smpl_t absmax);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_MUSICUTILS_H */

+ 530
- 0
deps/aubio/src/pitch/pitch.c View File

@@ -0,0 +1,530 @@
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "fvec.h"
#include "cvec.h"
#include "lvec.h"
#include "mathutils.h"
#include "musicutils.h"
#include "spectral/phasevoc.h"
#include "temporal/filter.h"
#include "temporal/c_weighting.h"
#include "pitch/pitchmcomb.h"
#include "pitch/pitchyin.h"
#include "pitch/pitchfcomb.h"
#include "pitch/pitchschmitt.h"
#include "pitch/pitchyinfft.h"
#include "pitch/pitchyinfast.h"
#include "pitch/pitchspecacf.h"
#include "pitch/pitch.h"

#define DEFAULT_PITCH_SILENCE -50.

/** pitch detection algorithms */
typedef enum
{
aubio_pitcht_yin, /**< `yin`, YIN algorithm */
aubio_pitcht_mcomb, /**< `mcomb`, Multi-comb filter */
aubio_pitcht_schmitt, /**< `schmitt`, Schmitt trigger */
aubio_pitcht_fcomb, /**< `fcomb`, Fast comb filter */
aubio_pitcht_yinfft, /**< `yinfft`, Spectral YIN */
aubio_pitcht_yinfast, /**< `yinfast`, YIN fast */
aubio_pitcht_specacf, /**< `specacf`, Spectral autocorrelation */
aubio_pitcht_default
= aubio_pitcht_yinfft, /**< `default` */
} aubio_pitch_type;

/** pitch detection output modes */
typedef enum
{
aubio_pitchm_freq, /**< Frequency (Hz) */
aubio_pitchm_midi, /**< MIDI note (0.,127) */
aubio_pitchm_cent, /**< Cent */
aubio_pitchm_bin, /**< Frequency bin (0,bufsize) */
aubio_pitchm_default = aubio_pitchm_freq, /**< the one used when "default" is asked */
} aubio_pitch_mode;

/** callback to get pitch candidate, defined below */
typedef void (*aubio_pitch_detect_t) (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * obuf);

/** callback to convert pitch from one unit to another, defined below */
typedef smpl_t(*aubio_pitch_convert_t) (smpl_t value, uint_t samplerate, uint_t bufsize);

/** callback to fetch the confidence of the algorithm */
typedef smpl_t (*aubio_pitch_get_conf_t) (void * p);

/** generic pitch detection structure */
struct _aubio_pitch_t
{
aubio_pitch_type type; /**< pitch detection mode */
aubio_pitch_mode mode; /**< pitch detection output mode */
uint_t samplerate; /**< samplerate */
uint_t bufsize; /**< buffer size */
void *p_object; /**< pointer to pitch object */
aubio_filter_t *filter; /**< filter */
fvec_t *filtered; /**< filtered input */
aubio_pvoc_t *pv; /**< phase vocoder for mcomb */
cvec_t *fftgrain; /**< spectral frame for mcomb */
fvec_t *buf; /**< temporary buffer for yin */
aubio_pitch_detect_t detect_cb; /**< callback to get the pitch candidates */
aubio_pitch_convert_t conv_cb; /**< callback to convert it to the desired unit */
aubio_pitch_get_conf_t conf_cb; /**< pointer to the current confidence callback */
smpl_t silence; /**< silence threshold */
};

/* callback functions for pitch detection */
static void aubio_pitch_do_mcomb (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * obuf);
static void aubio_pitch_do_yin (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * obuf);
static void aubio_pitch_do_schmitt (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * obuf);
static void aubio_pitch_do_fcomb (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * obuf);
static void aubio_pitch_do_yinfft (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * obuf);
static void aubio_pitch_do_yinfast (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * obuf);
static void aubio_pitch_do_specacf (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * obuf);

/* internal functions for frequency conversion */
static smpl_t freqconvbin (smpl_t f, uint_t samplerate, uint_t bufsize);
static smpl_t freqconvmidi (smpl_t f, uint_t samplerate, uint_t bufsize);
static smpl_t freqconvpass (smpl_t f, uint_t samplerate, uint_t bufsize);

/* adapter to stack ibuf new samples at the end of buf, and trim `buf` to `bufsize` */
void aubio_pitch_slideblock (aubio_pitch_t * p, const fvec_t * ibuf);


aubio_pitch_t *
new_aubio_pitch (const char_t * pitch_mode,
uint_t bufsize, uint_t hopsize, uint_t samplerate)
{
aubio_pitch_t *p = AUBIO_NEW (aubio_pitch_t);
aubio_pitch_type pitch_type;
if (pitch_mode == NULL) {
AUBIO_ERR ("pitch: can not use ‘NULL‘ for pitch detection method\n");
goto beach;
}
if (strcmp (pitch_mode, "mcomb") == 0)
pitch_type = aubio_pitcht_mcomb;
else if (strcmp (pitch_mode, "yinfast") == 0)
pitch_type = aubio_pitcht_yinfast;
else if (strcmp (pitch_mode, "yinfft") == 0)
pitch_type = aubio_pitcht_yinfft;
else if (strcmp (pitch_mode, "yin") == 0)
pitch_type = aubio_pitcht_yin;
else if (strcmp (pitch_mode, "schmitt") == 0)
pitch_type = aubio_pitcht_schmitt;
else if (strcmp (pitch_mode, "fcomb") == 0)
pitch_type = aubio_pitcht_fcomb;
else if (strcmp (pitch_mode, "specacf") == 0)
pitch_type = aubio_pitcht_specacf;
else if (strcmp (pitch_mode, "default") == 0)
pitch_type = aubio_pitcht_default;
else {
AUBIO_ERR ("pitch: unknown pitch detection method ‘%s’\n", pitch_mode);
goto beach;
}

// check parameters are valid
if ((sint_t)hopsize < 1) {
AUBIO_ERR("pitch: got hopsize %d, but can not be < 1\n", hopsize);
goto beach;
} else if ((sint_t)bufsize < 1) {
AUBIO_ERR("pitch: got buffer_size %d, but can not be < 1\n", bufsize);
goto beach;
} else if (bufsize < hopsize) {
AUBIO_ERR("pitch: hop size (%d) is larger than win size (%d)\n", hopsize, bufsize);
goto beach;
} else if ((sint_t)samplerate < 1) {
AUBIO_ERR("pitch: samplerate (%d) can not be < 1\n", samplerate);
goto beach;
}

p->samplerate = samplerate;
p->type = pitch_type;
aubio_pitch_set_unit (p, "default");
p->bufsize = bufsize;
p->silence = DEFAULT_PITCH_SILENCE;
p->conf_cb = NULL;
switch (p->type) {
case aubio_pitcht_yin:
p->buf = new_fvec (bufsize);
p->p_object = new_aubio_pitchyin (bufsize);
if (!p->p_object) goto beach;
p->detect_cb = aubio_pitch_do_yin;
p->conf_cb = (aubio_pitch_get_conf_t)aubio_pitchyin_get_confidence;
aubio_pitchyin_set_tolerance (p->p_object, 0.15);
break;
case aubio_pitcht_mcomb:
p->filtered = new_fvec (hopsize);
p->pv = new_aubio_pvoc (bufsize, hopsize);
if (!p->pv) goto beach;
p->fftgrain = new_cvec (bufsize);
p->p_object = new_aubio_pitchmcomb (bufsize, hopsize);
p->filter = new_aubio_filter_c_weighting (samplerate);
p->detect_cb = aubio_pitch_do_mcomb;
break;
case aubio_pitcht_fcomb:
p->buf = new_fvec (bufsize);
p->p_object = new_aubio_pitchfcomb (bufsize, hopsize);
if (!p->p_object) goto beach;
p->detect_cb = aubio_pitch_do_fcomb;
break;
case aubio_pitcht_schmitt:
p->buf = new_fvec (bufsize);
p->p_object = new_aubio_pitchschmitt (bufsize);
p->detect_cb = aubio_pitch_do_schmitt;
break;
case aubio_pitcht_yinfft:
p->buf = new_fvec (bufsize);
p->p_object = new_aubio_pitchyinfft (samplerate, bufsize);
if (!p->p_object) goto beach;
p->detect_cb = aubio_pitch_do_yinfft;
p->conf_cb = (aubio_pitch_get_conf_t)aubio_pitchyinfft_get_confidence;
aubio_pitchyinfft_set_tolerance (p->p_object, 0.85);
break;
case aubio_pitcht_yinfast:
p->buf = new_fvec (bufsize);
p->p_object = new_aubio_pitchyinfast (bufsize);
if (!p->p_object) goto beach;
p->detect_cb = aubio_pitch_do_yinfast;
p->conf_cb = (aubio_pitch_get_conf_t)aubio_pitchyinfast_get_confidence;
aubio_pitchyinfast_set_tolerance (p->p_object, 0.15);
break;
case aubio_pitcht_specacf:
p->buf = new_fvec (bufsize);
p->p_object = new_aubio_pitchspecacf (bufsize);
if (!p->p_object) goto beach;
p->detect_cb = aubio_pitch_do_specacf;
p->conf_cb = (aubio_pitch_get_conf_t)aubio_pitchspecacf_get_tolerance;
aubio_pitchspecacf_set_tolerance (p->p_object, 0.85);
break;
default:
break;
}
return p;

beach:
if (p->filtered) del_fvec(p->filtered);
if (p->buf) del_fvec(p->buf);
AUBIO_FREE(p);
return NULL;
}

void
del_aubio_pitch (aubio_pitch_t * p)
{
switch (p->type) {
case aubio_pitcht_yin:
del_fvec (p->buf);
del_aubio_pitchyin (p->p_object);
break;
case aubio_pitcht_mcomb:
del_fvec (p->filtered);
del_aubio_pvoc (p->pv);
del_cvec (p->fftgrain);
del_aubio_filter (p->filter);
del_aubio_pitchmcomb (p->p_object);
break;
case aubio_pitcht_schmitt:
del_fvec (p->buf);
del_aubio_pitchschmitt (p->p_object);
break;
case aubio_pitcht_fcomb:
del_fvec (p->buf);
del_aubio_pitchfcomb (p->p_object);
break;
case aubio_pitcht_yinfft:
del_fvec (p->buf);
del_aubio_pitchyinfft (p->p_object);
break;
case aubio_pitcht_yinfast:
del_fvec (p->buf);
del_aubio_pitchyinfast (p->p_object);
break;
case aubio_pitcht_specacf:
del_fvec (p->buf);
del_aubio_pitchspecacf (p->p_object);
break;
default:
break;
}
AUBIO_FREE (p);
}

void
aubio_pitch_slideblock (aubio_pitch_t * p, const fvec_t * ibuf)
{
uint_t overlap_size = p->buf->length - ibuf->length;
#if 1 //!HAVE_MEMCPY_HACKS
uint_t j;
for (j = 0; j < overlap_size; j++) {
p->buf->data[j] = p->buf->data[j + ibuf->length];
}
for (j = 0; j < ibuf->length; j++) {
p->buf->data[j + overlap_size] = ibuf->data[j];
}
#else
smpl_t *data = p->buf->data;
smpl_t *newdata = ibuf->data;
memmove(data, data + ibuf->length, overlap_size);
memcpy(data + overlap_size, newdata, ibuf->length);
#endif
}

uint_t
aubio_pitch_set_unit (aubio_pitch_t * p, const char_t * pitch_unit)
{
uint_t err = AUBIO_OK;
aubio_pitch_mode pitch_mode;
if (strcmp (pitch_unit, "freq") == 0)
pitch_mode = aubio_pitchm_freq;
else if (strcmp (pitch_unit, "hertz") == 0)
pitch_mode = aubio_pitchm_freq;
else if (strcmp (pitch_unit, "Hertz") == 0)
pitch_mode = aubio_pitchm_freq;
else if (strcmp (pitch_unit, "Hz") == 0)
pitch_mode = aubio_pitchm_freq;
else if (strcmp (pitch_unit, "f0") == 0)
pitch_mode = aubio_pitchm_freq;
else if (strcmp (pitch_unit, "midi") == 0)
pitch_mode = aubio_pitchm_midi;
else if (strcmp (pitch_unit, "cent") == 0)
pitch_mode = aubio_pitchm_cent;
else if (strcmp (pitch_unit, "bin") == 0)
pitch_mode = aubio_pitchm_bin;
else if (strcmp (pitch_unit, "default") == 0)
pitch_mode = aubio_pitchm_default;
else {
AUBIO_WRN("pitch: unknown pitch detection unit ‘%s’, using default\n",
pitch_unit);
pitch_mode = aubio_pitchm_default;
err = AUBIO_FAIL;
}
p->mode = pitch_mode;
switch (p->mode) {
case aubio_pitchm_freq:
p->conv_cb = freqconvpass;
break;
case aubio_pitchm_midi:
p->conv_cb = freqconvmidi;
break;
case aubio_pitchm_cent:
/* bug: not implemented */
p->conv_cb = freqconvmidi;
break;
case aubio_pitchm_bin:
p->conv_cb = freqconvbin;
break;
default:
break;
}
return err;
}

uint_t
aubio_pitch_set_tolerance (aubio_pitch_t * p, smpl_t tol)
{
switch (p->type) {
case aubio_pitcht_yin:
aubio_pitchyin_set_tolerance (p->p_object, tol);
break;
case aubio_pitcht_yinfft:
aubio_pitchyinfft_set_tolerance (p->p_object, tol);
break;
case aubio_pitcht_yinfast:
aubio_pitchyinfast_set_tolerance (p->p_object, tol);
break;
default:
break;
}
return AUBIO_OK;
}

smpl_t
aubio_pitch_get_tolerance (aubio_pitch_t * p)
{
smpl_t tolerance = 1.;
switch (p->type) {
case aubio_pitcht_yin:
tolerance = aubio_pitchyin_get_tolerance (p->p_object);
break;
case aubio_pitcht_yinfft:
tolerance = aubio_pitchyinfft_get_tolerance (p->p_object);
break;
case aubio_pitcht_yinfast:
tolerance = aubio_pitchyinfast_get_tolerance (p->p_object);
break;
default:
break;
}
return tolerance;
}

uint_t
aubio_pitch_set_silence (aubio_pitch_t * p, smpl_t silence)
{
if (silence <= 0 && silence >= -200) {
p->silence = silence;
return AUBIO_OK;
} else {
AUBIO_WRN("pitch: could not set silence to %.2f\n", silence);
return AUBIO_FAIL;
}
}

smpl_t
aubio_pitch_get_silence (aubio_pitch_t * p)
{
return p->silence;
}


/* do method, calling the detection callback, then the conversion callback */
void
aubio_pitch_do (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * obuf)
{
p->detect_cb (p, ibuf, obuf);
if (aubio_silence_detection(ibuf, p->silence) == 1) {
obuf->data[0] = 0.;
}
obuf->data[0] = p->conv_cb (obuf->data[0], p->samplerate, p->bufsize);
}

/* do method for each algorithm */
void
aubio_pitch_do_mcomb (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * obuf)
{
aubio_filter_do_outplace (p->filter, ibuf, p->filtered);
aubio_pvoc_do (p->pv, ibuf, p->fftgrain);
aubio_pitchmcomb_do (p->p_object, p->fftgrain, obuf);
obuf->data[0] = aubio_bintofreq (obuf->data[0], p->samplerate, p->bufsize);
}

void
aubio_pitch_do_yin (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * obuf)
{
smpl_t pitch = 0.;
aubio_pitch_slideblock (p, ibuf);
aubio_pitchyin_do (p->p_object, p->buf, obuf);
pitch = obuf->data[0];
if (pitch > 0) {
pitch = p->samplerate / (pitch + 0.);
} else {
pitch = 0.;
}
obuf->data[0] = pitch;
}


void
aubio_pitch_do_yinfft (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * obuf)
{
smpl_t pitch = 0.;
aubio_pitch_slideblock (p, ibuf);
aubio_pitchyinfft_do (p->p_object, p->buf, obuf);
pitch = obuf->data[0];
if (pitch > 0) {
pitch = p->samplerate / (pitch + 0.);
} else {
pitch = 0.;
}
obuf->data[0] = pitch;
}

void
aubio_pitch_do_yinfast (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * obuf)
{
smpl_t pitch = 0.;
aubio_pitch_slideblock (p, ibuf);
aubio_pitchyinfast_do (p->p_object, p->buf, obuf);
pitch = obuf->data[0];
if (pitch > 0) {
pitch = p->samplerate / (pitch + 0.);
} else {
pitch = 0.;
}
obuf->data[0] = pitch;
}

void
aubio_pitch_do_specacf (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * out)
{
smpl_t pitch = 0., period;
aubio_pitch_slideblock (p, ibuf);
aubio_pitchspecacf_do (p->p_object, p->buf, out);
//out->data[0] = aubio_bintofreq (out->data[0], p->samplerate, p->bufsize);
period = out->data[0];
if (period > 0) {
pitch = p->samplerate / period;
} else {
pitch = 0.;
}
out->data[0] = pitch;
}

void
aubio_pitch_do_fcomb (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * out)
{
aubio_pitch_slideblock (p, ibuf);
aubio_pitchfcomb_do (p->p_object, p->buf, out);
out->data[0] = aubio_bintofreq (out->data[0], p->samplerate, p->bufsize);
}

void
aubio_pitch_do_schmitt (aubio_pitch_t * p, const fvec_t * ibuf, fvec_t * out)
{
smpl_t period, pitch = 0.;
aubio_pitch_slideblock (p, ibuf);
aubio_pitchschmitt_do (p->p_object, p->buf, out);
period = out->data[0];
if (period > 0) {
pitch = p->samplerate / period;
} else {
pitch = 0.;
}
out->data[0] = pitch;
}

/* conversion callbacks */
smpl_t
freqconvbin(smpl_t f, uint_t samplerate, uint_t bufsize)
{
return aubio_freqtobin(f, samplerate, bufsize);
}

smpl_t
freqconvmidi (smpl_t f, uint_t samplerate UNUSED, uint_t bufsize UNUSED)
{
return aubio_freqtomidi (f);
}

smpl_t
freqconvpass (smpl_t f, uint_t samplerate UNUSED, uint_t bufsize UNUSED)
{
return f;
}

/* confidence callbacks */
smpl_t
aubio_pitch_get_confidence (aubio_pitch_t * p)
{
if (p->conf_cb) {
return p->conf_cb(p->p_object);
}
return 0.;
}

+ 197
- 0
deps/aubio/src/pitch/pitch.h View File

@@ -0,0 +1,197 @@
/*
Copyright (C) 2003-2013 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef AUBIO_PITCH_H
#define AUBIO_PITCH_H

#ifdef __cplusplus
extern "C" {
#endif

/** \file

Pitch detection object

This file creates the objects required for the computation of the selected
pitch detection algorithm and output the results, in midi note or Hz.

\section pitch Pitch detection methods

A list of the pitch detection methods currently available follows.

\b \p default : use the default method

Currently, the default method is set to \p yinfft .

\b \p schmitt : Schmitt trigger

This pitch extraction method implements a Schmitt trigger to estimate the
period of a signal.

This file was derived from the tuneit project, written by Mario Lang to
detect the fundamental frequency of a sound.

See http://delysid.org/tuneit.html

\b \p fcomb : a fast harmonic comb filter

This pitch extraction method implements a fast harmonic comb filter to
determine the fundamental frequency of a harmonic sound.

This file was derived from the tuneit project, written by Mario Lang to
detect the fundamental frequency of a sound.

See http://delysid.org/tuneit.html

\b \p mcomb : multiple-comb filter

This fundamental frequency estimation algorithm implements spectral
flattening, multi-comb filtering and peak histogramming.

This method was designed by Juan P. Bello and described in:

Juan-Pablo Bello. ``Towards the Automated Analysis of Simple Polyphonic
Music''. PhD thesis, Centre for Digital Music, Queen Mary University of
London, London, UK, 2003.

\b \p yin : YIN algorithm

This algorithm was developed by A. de Cheveigne and H. Kawahara and
published in:

De Cheveigné, A., Kawahara, H. (2002) "YIN, a fundamental frequency
estimator for speech and music", J. Acoust. Soc. Am. 111, 1917-1930.

see http://recherche.ircam.fr/equipes/pcm/pub/people/cheveign.html

\b \p yinfast : Yinfast algorithm

This algorithm is equivalent to the YIN algorithm, but computed in the
spectral domain for efficiency. See also `python/demos/demo_yin_compare.py`.

\b \p yinfft : Yinfft algorithm

This algorithm was derived from the YIN algorithm. In this implementation, a
Fourier transform is used to compute a tapered square difference function,
which allows spectral weighting. Because the difference function is tapered,
the selection of the period is simplified.

Paul Brossier, [Automatic annotation of musical audio for interactive
systems](http://aubio.org/phd/), Chapter 3, Pitch Analysis, PhD thesis,
Centre for Digital music, Queen Mary University of London, London, UK, 2006.

\example pitch/test-pitch.c
\example examples/aubiopitch.c

*/

/** pitch detection object */
typedef struct _aubio_pitch_t aubio_pitch_t;

/** execute pitch detection on an input signal frame

\param o pitch detection object as returned by new_aubio_pitch()
\param in input signal of size [hop_size]
\param out output pitch candidates of size [1]

*/
void aubio_pitch_do (aubio_pitch_t * o, const fvec_t * in, fvec_t * out);

/** change yin or yinfft tolerance threshold

\param o pitch detection object as returned by new_aubio_pitch()
\param tol tolerance default is 0.15 for yin and 0.85 for yinfft

*/
uint_t aubio_pitch_set_tolerance (aubio_pitch_t * o, smpl_t tol);

/** get yin or yinfft tolerance threshold

\param o pitch detection object as returned by new_aubio_pitch()
\return tolerance (default is 0.15 for yin and 0.85 for yinfft)

*/
smpl_t aubio_pitch_get_tolerance (aubio_pitch_t * o);

/** deletion of the pitch detection object

\param o pitch detection object as returned by new_aubio_pitch()

*/
void del_aubio_pitch (aubio_pitch_t * o);

/** creation of the pitch detection object

\param method set pitch detection algorithm
\param buf_size size of the input buffer to analyse
\param hop_size step size between two consecutive analysis instant
\param samplerate sampling rate of the signal

\return newly created ::aubio_pitch_t

*/
aubio_pitch_t *new_aubio_pitch (const char_t * method,
uint_t buf_size, uint_t hop_size, uint_t samplerate);

/** set the output unit of the pitch detection object

\param o pitch detection object as returned by new_aubio_pitch()
\param mode set pitch units for output

mode can be one of "Hz", "midi", "cent", or "bin". Defaults to "Hz".

\return 0 if successfull, non-zero otherwise

*/
uint_t aubio_pitch_set_unit (aubio_pitch_t * o, const char_t * mode);

/** set the silence threshold of the pitch detection object

\param o pitch detection object as returned by new_aubio_pitch()
\param silence level threshold under which pitch should be ignored, in dB

\return 0 if successfull, non-zero otherwise

*/
uint_t aubio_pitch_set_silence (aubio_pitch_t * o, smpl_t silence);

/** set the silence threshold of the pitch detection object

\param o pitch detection object as returned by ::new_aubio_pitch()

\return level threshold under which pitch should be ignored, in dB

*/
smpl_t aubio_pitch_get_silence (aubio_pitch_t * o);

/** get the current confidence

\param o pitch detection object as returned by new_aubio_pitch()

\return the current confidence of the pitch algorithm

*/
smpl_t aubio_pitch_get_confidence (aubio_pitch_t * o);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_PITCH_H */

+ 144
- 0
deps/aubio/src/pitch/pitchfcomb.c View File

@@ -0,0 +1,144 @@
/*
Copyright (C) 2004, 2005 Mario Lang <mlang@delysid.org>
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "fvec.h"
#include "cvec.h"
#include "mathutils.h"
#include "musicutils.h"
#include "spectral/fft.h"
#include "pitch/pitchfcomb.h"

#define MAX_PEAKS 8

typedef struct
{
smpl_t bin;
smpl_t db;
} aubio_fpeak_t;

struct _aubio_pitchfcomb_t
{
uint_t fftSize;
uint_t stepSize;
uint_t rate;
fvec_t *winput;
fvec_t *win;
cvec_t *fftOut;
fvec_t *fftLastPhase;
aubio_fft_t *fft;
};

aubio_pitchfcomb_t *
new_aubio_pitchfcomb (uint_t bufsize, uint_t hopsize)
{
aubio_pitchfcomb_t *p = AUBIO_NEW (aubio_pitchfcomb_t);
p->fftSize = bufsize;
p->stepSize = hopsize;
p->fft = new_aubio_fft (bufsize);
if (!p->fft) goto beach;
p->winput = new_fvec (bufsize);
p->fftOut = new_cvec (bufsize);
p->fftLastPhase = new_fvec (bufsize);
p->win = new_aubio_window ("hanning", bufsize);
return p;

beach:
AUBIO_FREE(p);
return NULL;
}

/* input must be stepsize long */
void
aubio_pitchfcomb_do (aubio_pitchfcomb_t * p, const fvec_t * input, fvec_t * output)
{
uint_t k, l, maxharm = 0;
smpl_t phaseDifference = TWO_PI * (smpl_t) p->stepSize / (smpl_t) p->fftSize;
aubio_fpeak_t peaks[MAX_PEAKS];

for (k = 0; k < MAX_PEAKS; k++) {
peaks[k].db = -200.;
peaks[k].bin = 0.;
}

for (k = 0; k < input->length; k++) {
p->winput->data[k] = p->win->data[k] * input->data[k];
}
aubio_fft_do (p->fft, p->winput, p->fftOut);

for (k = 0; k <= p->fftSize / 2; k++) {
smpl_t
magnitude =
20. * LOG10 (2. * p->fftOut->norm[k] / (smpl_t) p->fftSize),
phase = p->fftOut->phas[k], tmp, bin;

/* compute phase difference */
tmp = phase - p->fftLastPhase->data[k];
p->fftLastPhase->data[k] = phase;

/* subtract expected phase difference */
tmp -= (smpl_t) k *phaseDifference;

/* map delta phase into +/- Pi interval */
tmp = aubio_unwrap2pi (tmp);

/* get deviation from bin frequency from the +/- Pi interval */
tmp = p->fftSize / (smpl_t) p->stepSize * tmp / (TWO_PI);

/* compute the k-th partials' true bin */
bin = (smpl_t) k + tmp;

if (bin > 0.0 && magnitude > peaks[0].db) { // && magnitude < 0) {
memmove (peaks + 1, peaks, sizeof (aubio_fpeak_t) * (MAX_PEAKS - 1));
peaks[0].bin = bin;
peaks[0].db = magnitude;
}
}

k = 0;
for (l = 1; l < MAX_PEAKS && peaks[l].bin > 0.0; l++) {
sint_t harmonic;
for (harmonic = 5; harmonic > 1; harmonic--) {
if (peaks[0].bin / peaks[l].bin < harmonic + .02 &&
peaks[0].bin / peaks[l].bin > harmonic - .02) {
if (harmonic > (sint_t) maxharm && peaks[0].db < peaks[l].db / 2) {
maxharm = harmonic;
k = l;
}
}
}
}
output->data[0] = peaks[k].bin;
/* quick hack to clean output a bit */
if (peaks[k].bin > 5000.)
output->data[0] = 0.;
}

void
del_aubio_pitchfcomb (aubio_pitchfcomb_t * p)
{
del_cvec (p->fftOut);
del_fvec (p->fftLastPhase);
del_fvec (p->win);
del_fvec (p->winput);
del_aubio_fft (p->fft);
AUBIO_FREE (p);
}

+ 76
- 0
deps/aubio/src/pitch/pitchfcomb.h View File

@@ -0,0 +1,76 @@
/*
Copyright (C) 2003-2013 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/** \file

Pitch detection using a fast harmonic comb filter

This pitch extraction method implements a fast harmonic comb filter to
determine the fundamental frequency of a harmonic sound.

This file was derived from the tuneit project, written by Mario Lang to
detect the fundamental frequency of a sound.

See http://delysid.org/tuneit.html

\example pitch/test-pitchfcomb.c

*/

#ifndef AUBIO_PITCHFCOMB_H
#define AUBIO_PITCHFCOMB_H

#ifdef __cplusplus
extern "C" {
#endif

/** pitch detection object */
typedef struct _aubio_pitchfcomb_t aubio_pitchfcomb_t;

/** execute pitch detection on an input buffer

\param p pitch detection object as returned by new_aubio_pitchfcomb
\param input input signal window (length as specified at creation time)
\param output pitch candidates in bins

*/
void aubio_pitchfcomb_do (aubio_pitchfcomb_t * p, const fvec_t * input,
fvec_t * output);

/** creation of the pitch detection object

\param buf_size size of the input buffer to analyse
\param hop_size step size between two consecutive analysis instant

*/
aubio_pitchfcomb_t *new_aubio_pitchfcomb (uint_t buf_size, uint_t hop_size);

/** deletion of the pitch detection object

\param p pitch detection object as returned by new_aubio_pitchfcomb

*/
void del_aubio_pitchfcomb (aubio_pitchfcomb_t * p);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_PITCHFCOMB_H */

+ 435
- 0
deps/aubio/src/pitch/pitchmcomb.c View File

@@ -0,0 +1,435 @@
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "fvec.h"
#include "cvec.h"
#include "mathutils.h"
#include "pitch/pitchmcomb.h"

#define CAND_SWAP(a,b) { register aubio_spectralcandidate_t *t=(a);(a)=(b);(b)=t; }

typedef struct _aubio_spectralpeak_t aubio_spectralpeak_t;
typedef struct _aubio_spectralcandidate_t aubio_spectralcandidate_t;
uint_t aubio_pitchmcomb_get_root_peak (aubio_spectralpeak_t * peaks,
uint_t length);
uint_t aubio_pitchmcomb_quadpick (aubio_spectralpeak_t * spectral_peaks,
const fvec_t * X);
void aubio_pitchmcomb_spectral_pp (aubio_pitchmcomb_t * p, const fvec_t * oldmag);
void aubio_pitchmcomb_combdet (aubio_pitchmcomb_t * p, const fvec_t * newmag);
/* not used but useful : sort by amplitudes (or anything else)
* sort_pitchpeak(peaks, length);
*/
#if 0
/** spectral_peak comparison function (must return signed int) */
static sint_t aubio_pitchmcomb_sort_peak_comp (const void *x, const void *y);
/** sort spectral_peak against their mag */
void aubio_pitchmcomb_sort_peak (aubio_spectralpeak_t * peaks, uint_t nbins);
/** select the best candidates */
uint_t aubio_pitch_cands (aubio_pitchmcomb_t * p, const cvec_t * fftgrain,
smpl_t * cands);
#endif

/** sort spectral_candidate against their comb ene */
void aubio_pitchmcomb_sort_cand_ene (aubio_spectralcandidate_t ** candidates,
uint_t nbins);
#if 0
/** sort spectral_candidate against their frequency */
void aubio_pitchmcomb_sort_cand_freq (aubio_spectralcandidate_t ** candidates,
uint_t nbins);
#endif

struct _aubio_pitchmcomb_t
{
smpl_t threshold; /**< offset threshold [0.033 or 0.01] */
smpl_t alpha; /**< normalisation exponent [9] */
smpl_t cutoff; /**< low-pass filter cutoff [0.34, 1] */
smpl_t tol; /**< tolerance [0.05] */
// smpl_t tau; /**< frequency precision [44100/4096] */
uint_t win_post; /**< median filter window length */
uint_t win_pre; /**< median filter window */
uint_t ncand; /**< maximum number of candidates (combs) */
uint_t npartials; /**< maximum number of partials per combs */
uint_t count; /**< picked picks */
uint_t goodcandidate; /**< best candidate */
uint_t spec_partition; /**< spectrum partition to consider */
aubio_spectralpeak_t *peaks; /**< up to length win/spec_partition */
aubio_spectralcandidate_t **candidates; /** up to five candidates */
/* some scratch pads */
/** \bug (unnecessary copied from fftgrain?) */
fvec_t *newmag; /**< vec to store mag */
fvec_t *scratch; /**< vec to store modified mag */
fvec_t *scratch2; /**< vec to compute moving median */
fvec_t *theta; /**< vec to store phase */
smpl_t phasediff;
smpl_t phasefreq;
/** threshfn: name or handle of fn for computing adaptive threshold [median] */
/** aubio_thresholdfn_t thresholdfn; */
/** picker: name or handle of fn for picking event times [quadpick] */
/** aubio_pickerfn_t pickerfn; */
};

/** spectral peak object */
struct _aubio_spectralpeak_t
{
uint_t bin; /**< bin [0-(length-1)] */
smpl_t ebin; /**< estimated bin */
smpl_t mag; /**< peak magnitude */
};

/** spectral candidates array object */
struct _aubio_spectralcandidate_t
{
smpl_t ebin; /**< interpolated bin */
smpl_t *ecomb; /**< comb */
smpl_t ene; /**< candidate energy */
smpl_t len; /**< length */
};


void
aubio_pitchmcomb_do (aubio_pitchmcomb_t * p, const cvec_t * fftgrain, fvec_t * output)
{
uint_t j;
smpl_t instfreq;
fvec_t *newmag = (fvec_t *) p->newmag;
//smpl_t hfc; //fe=instfreq(theta1,theta,ops); //theta1=theta;
/* copy incoming grain to newmag */
for (j = 0; j < newmag->length; j++)
newmag->data[j] = fftgrain->norm[j];
/* detect only if local energy > 10. */
//if (aubio_level_lin (newmag) * newmag->length > 10.) {
//hfc = fvec_local_hfc(newmag); //not used
aubio_pitchmcomb_spectral_pp (p, newmag);
aubio_pitchmcomb_combdet (p, newmag);
//aubio_pitchmcomb_sort_cand_freq(p->candidates,p->ncand);
//return p->candidates[p->goodcandidate]->ebin;
j = (uint_t) FLOOR (p->candidates[p->goodcandidate]->ebin + .5);
instfreq = aubio_unwrap2pi (fftgrain->phas[j]
- p->theta->data[j] - j * p->phasediff);
instfreq *= p->phasefreq;
/* store phase for next run */
for (j = 0; j < p->theta->length; j++) {
p->theta->data[j] = fftgrain->phas[j];
}
//return p->candidates[p->goodcandidate]->ebin;
output->data[0] =
FLOOR (p->candidates[p->goodcandidate]->ebin + .5) + instfreq;
/*} else {
return -1.;
} */
}

#if 0
uint_t
aubio_pitch_cands (aubio_pitchmcomb_t * p, const cvec_t * fftgrain, smpl_t * cands)
{
uint_t j;
uint_t k;
fvec_t *newmag = (fvec_t *) p->newmag;
aubio_spectralcandidate_t **scands =
(aubio_spectralcandidate_t **) (p->candidates);
//smpl_t hfc; //fe=instfreq(theta1,theta,ops); //theta1=theta;
/* copy incoming grain to newmag */
for (j = 0; j < newmag->length; j++)
newmag->data[j] = fftgrain->norm[j];
/* detect only if local energy > 10. */
if (aubio_level_lin (newmag) * newmag->length > 10.) {
/* hfc = fvec_local_hfc(newmag); do not use */
aubio_pitchmcomb_spectral_pp (p, newmag);
aubio_pitchmcomb_combdet (p, newmag);
aubio_pitchmcomb_sort_cand_freq (scands, p->ncand);
/* store ncand comb energies in cands[1:ncand] */
for (k = 0; k < p->ncand; k++)
cands[k] = p->candidates[k]->ene;
/* store ncand[end] freq in cands[end] */
cands[p->ncand] = p->candidates[p->ncand - 1]->ebin;
return 1;
} else {
for (k = 0; k < p->ncand; k++)
cands[k] = 0;
return 0;
}
}
#endif

void
aubio_pitchmcomb_spectral_pp (aubio_pitchmcomb_t * p, const fvec_t * newmag)
{
fvec_t *mag = (fvec_t *) p->scratch;
fvec_t *tmp = (fvec_t *) p->scratch2;
uint_t j;
uint_t length = mag->length;
/* copy newmag to mag (scracth) */
for (j = 0; j < length; j++) {
mag->data[j] = newmag->data[j];
}
fvec_min_removal (mag); /* min removal */
fvec_alpha_normalise (mag, p->alpha); /* alpha normalisation */
/* skipped *//* low pass filtering */
/** \bug fvec_moving_thres may write out of bounds */
fvec_adapt_thres (mag, tmp, p->win_post, p->win_pre); /* adaptative threshold */
fvec_add (mag, -p->threshold); /* fixed threshold */
{
aubio_spectralpeak_t *peaks = (aubio_spectralpeak_t *) p->peaks;
uint_t count;
/* return bin and ebin */
count = aubio_pitchmcomb_quadpick (peaks, mag);
for (j = 0; j < count; j++)
peaks[j].mag = newmag->data[peaks[j].bin];
/* reset non peaks */
for (j = count; j < length; j++)
peaks[j].mag = 0.;
p->peaks = peaks;
p->count = count;
}
}

void
aubio_pitchmcomb_combdet (aubio_pitchmcomb_t * p, const fvec_t * newmag)
{
aubio_spectralpeak_t *peaks = (aubio_spectralpeak_t *) p->peaks;
aubio_spectralcandidate_t **candidate =
(aubio_spectralcandidate_t **) p->candidates;

/* parms */
uint_t N = p->npartials; /* maximum number of partials to be considered 10 */
uint_t M = p->ncand; /* maximum number of combs to be considered 5 */
uint_t length = newmag->length;
uint_t count = p->count;
uint_t k;
uint_t l;
uint_t d;
uint_t curlen = 0;

smpl_t delta2;
smpl_t xx;
uint_t position = 0;

uint_t root_peak = 0;
uint_t tmpl = 0;
smpl_t tmpene = 0.;

/* get the biggest peak in the spectrum */
root_peak = aubio_pitchmcomb_get_root_peak (peaks, count);
/* not enough partials in highest notes, could be forced */
//if (peaks[root_peak].ebin >= aubio_miditofreq(85.)/p->tau) N=2;
//if (peaks[root_peak].ebin >= aubio_miditofreq(90.)/p->tau) N=1;
/* now calculate the energy of each of the 5 combs */
for (l = 0; l < M; l++) {
smpl_t scaler = (1. / (l + 1.));
candidate[l]->ene = 0.; /* reset ene and len sums */
candidate[l]->len = 0.;
candidate[l]->ebin = scaler * peaks[root_peak].ebin;
/* if less than N peaks available, curlen < N */
if (candidate[l]->ebin != 0.)
curlen = (uint_t) FLOOR (length / (candidate[l]->ebin));
curlen = (N < curlen) ? N : curlen;
/* fill candidate[l]->ecomb[k] with (k+1)*candidate[l]->ebin */
for (k = 0; k < curlen; k++)
candidate[l]->ecomb[k] = (candidate[l]->ebin) * (k + 1.);
for (k = curlen; k < length; k++)
candidate[l]->ecomb[k] = 0.;
/* for each in candidate[l]->ecomb[k] */
for (k = 0; k < curlen; k++) {
xx = 100000.;
/** get the candidate->ecomb the closer to peaks.ebin
* (to cope with the inharmonicity)*/
for (d = 0; d < count; d++) {
delta2 = ABS (candidate[l]->ecomb[k] - peaks[d].ebin);
if (delta2 <= xx) {
position = d;
xx = delta2;
}
}
/* for a Q factor of 17, maintaining "constant Q filtering",
* and sum energy and length over non null combs */
if (17. * xx < candidate[l]->ecomb[k]) {
candidate[l]->ecomb[k] = peaks[position].ebin;
candidate[l]->ene += /* ecomb rounded to nearest int */
POW (newmag->data[(uint_t) FLOOR (candidate[l]->ecomb[k] + .5)],
0.25);
candidate[l]->len += 1. / curlen;
} else
candidate[l]->ecomb[k] = 0.;
}
/* punishment */
/*if (candidate[l]->len<0.6)
candidate[l]->ene=0.; */
/* remember best candidate energy (in polyphonic, could check for
* tmpene*1.1 < candidate->ene to reduce jumps towards low frequencies) */
if (tmpene < candidate[l]->ene) {
tmpl = l;
tmpene = candidate[l]->ene;
}
}
//p->candidates=candidate;
//p->peaks=peaks;
p->goodcandidate = tmpl;
}

/** T=quadpick(X): return indices of elements of X which are peaks and positive
* exact peak positions are retrieved by quadratic interpolation
*
* \bug peak-picking too picky, sometimes counts too many peaks ?
*/
uint_t
aubio_pitchmcomb_quadpick (aubio_spectralpeak_t * spectral_peaks, const fvec_t * X)
{
uint_t j, ispeak, count = 0;
for (j = 1; j < X->length - 1; j++) {
ispeak = fvec_peakpick (X, j);
if (ispeak) {
count += ispeak;
spectral_peaks[count - 1].bin = j;
spectral_peaks[count - 1].ebin = fvec_quadratic_peak_pos (X, j);
}
}
return count;
}

/* get predominant partial */
uint_t
aubio_pitchmcomb_get_root_peak (aubio_spectralpeak_t * peaks, uint_t length)
{
uint_t i, pos = 0;
smpl_t tmp = 0.;
for (i = 0; i < length; i++)
if (tmp <= peaks[i].mag) {
pos = i;
tmp = peaks[i].mag;
}
return pos;
}

#if 0
void
aubio_pitchmcomb_sort_peak (aubio_spectralpeak_t * peaks, uint_t nbins)
{
qsort (peaks, nbins, sizeof (aubio_spectralpeak_t),
aubio_pitchmcomb_sort_peak_comp);
}

static sint_t
aubio_pitchmcomb_sort_peak_comp (const void *x, const void *y)
{
return (((aubio_spectralpeak_t *) y)->mag -
((aubio_spectralpeak_t *) x)->mag);
}


void
aubio_pitchmcomb_sort_cand_ene (aubio_spectralcandidate_t ** candidates,
uint_t nbins)
{
uint_t cur = 0;
uint_t run = 0;
for (cur = 0; cur < nbins; cur++) {
for (run = cur + 1; run < nbins; run++) {
if (candidates[run]->ene > candidates[cur]->ene)
CAND_SWAP (candidates[run], candidates[cur]);
}
}
}

void
aubio_pitchmcomb_sort_cand_freq (aubio_spectralcandidate_t ** candidates,
uint_t nbins)
{
uint_t cur = 0;
uint_t run = 0;
for (cur = 0; cur < nbins; cur++) {
for (run = cur + 1; run < nbins; run++) {
if (candidates[run]->ebin < candidates[cur]->ebin)
CAND_SWAP (candidates[run], candidates[cur]);
}
}
}
#endif

aubio_pitchmcomb_t *
new_aubio_pitchmcomb (uint_t bufsize, uint_t hopsize)
{
aubio_pitchmcomb_t *p = AUBIO_NEW (aubio_pitchmcomb_t);
/* bug: should check if size / 8 > post+pre+1 */
uint_t i, j;
uint_t spec_size;
p->spec_partition = 2;
p->ncand = 5;
p->npartials = 5;
p->cutoff = 1.;
p->threshold = 0.01;
p->win_post = 8;
p->win_pre = 7;
// p->tau = samplerate/bufsize;
p->alpha = 9.;
p->goodcandidate = 0;
p->phasefreq = bufsize / hopsize / TWO_PI;
p->phasediff = TWO_PI * hopsize / bufsize;
spec_size = bufsize / p->spec_partition + 1;
//p->pickerfn = quadpick;
//p->biquad = new_biquad(0.1600,0.3200,0.1600, -0.5949, 0.2348);
/* allocate temp memory */
p->newmag = new_fvec (spec_size);
/* array for median */
p->scratch = new_fvec (spec_size);
/* array for phase */
p->theta = new_fvec (spec_size);
/* array for adaptative threshold */
p->scratch2 = new_fvec (p->win_post + p->win_pre + 1);
/* array of spectral peaks */
p->peaks = AUBIO_ARRAY (aubio_spectralpeak_t, spec_size);
for (i = 0; i < spec_size; i++) {
p->peaks[i].bin = 0.;
p->peaks[i].ebin = 0.;
p->peaks[i].mag = 0.;
}
/* array of pointers to spectral candidates */
p->candidates = AUBIO_ARRAY (aubio_spectralcandidate_t *, p->ncand);
for (i = 0; i < p->ncand; i++) {
p->candidates[i] = AUBIO_NEW (aubio_spectralcandidate_t);
p->candidates[i]->ecomb = AUBIO_ARRAY (smpl_t, spec_size);
for (j = 0; j < spec_size; j++) {
p->candidates[i]->ecomb[j] = 0.;
}
p->candidates[i]->ene = 0.;
p->candidates[i]->ebin = 0.;
p->candidates[i]->len = 0.;
}
return p;
}


void
del_aubio_pitchmcomb (aubio_pitchmcomb_t * p)
{
uint_t i;
del_fvec (p->newmag);
del_fvec (p->scratch);
del_fvec (p->theta);
del_fvec (p->scratch2);
AUBIO_FREE (p->peaks);
for (i = 0; i < p->ncand; i++) {
AUBIO_FREE (p->candidates[i]->ecomb);
AUBIO_FREE (p->candidates[i]);
}
AUBIO_FREE (p->candidates);
AUBIO_FREE (p);
}

+ 77
- 0
deps/aubio/src/pitch/pitchmcomb.h View File

@@ -0,0 +1,77 @@
/*
Copyright (C) 2003-2013 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/** \file

Pitch detection using multiple-comb filter

This fundamental frequency estimation algorithm implements spectral
flattening, multi-comb filtering and peak histogramming.

This method was designed by Juan P. Bello and described in:

Juan-Pablo Bello. ``Towards the Automated Analysis of Simple Polyphonic
Music''. PhD thesis, Centre for Digital Music, Queen Mary University of
London, London, UK, 2003.

\example pitch/test-pitchmcomb.c

*/

#ifndef AUBIO_PITCHMCOMB_H
#define AUBIO_PITCHMCOMB_H

#ifdef __cplusplus
extern "C" {
#endif

/** pitch detection object */
typedef struct _aubio_pitchmcomb_t aubio_pitchmcomb_t;

/** execute pitch detection on an input spectral frame

\param p pitch detection object as returned by new_aubio_pitchmcomb
\param in_fftgrain input signal spectrum as computed by aubio_pvoc_do
\param out_cands pitch candidate frequenciess, in bins

*/
void aubio_pitchmcomb_do (aubio_pitchmcomb_t * p, const cvec_t * in_fftgrain,
fvec_t * out_cands);

/** creation of the pitch detection object

\param buf_size size of the input buffer to analyse
\param hop_size step size between two consecutive analysis instant

*/
aubio_pitchmcomb_t *new_aubio_pitchmcomb (uint_t buf_size, uint_t hop_size);

/** deletion of the pitch detection object

\param p pitch detection object as returned by new_aubio_pitchfcomb

*/
void del_aubio_pitchmcomb (aubio_pitchmcomb_t * p);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_PITCHMCOMB_H */

+ 119
- 0
deps/aubio/src/pitch/pitchschmitt.c View File

@@ -0,0 +1,119 @@
/*
Copyright (C) 2004, 2005 Mario Lang <mlang@delysid.org>
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "fvec.h"
#include "pitch/pitchschmitt.h"

smpl_t aubio_schmittS16LE (aubio_pitchschmitt_t * p, uint_t nframes,
signed short int *indata);

struct _aubio_pitchschmitt_t
{
uint_t blockSize;
uint_t rate;
signed short int *schmittBuffer;
signed short int *schmittPointer;
signed short int *buf;
};

aubio_pitchschmitt_t *
new_aubio_pitchschmitt (uint_t size)
{
aubio_pitchschmitt_t *p = AUBIO_NEW (aubio_pitchschmitt_t);
p->blockSize = size;
p->schmittBuffer = AUBIO_ARRAY (signed short int, p->blockSize);
p->buf = AUBIO_ARRAY (signed short int, p->blockSize);
p->schmittPointer = p->schmittBuffer;
return p;
}

void
aubio_pitchschmitt_do (aubio_pitchschmitt_t * p, const fvec_t * input,
fvec_t * output)
{
uint_t j;
for (j = 0; j < input->length; j++) {
p->buf[j] = input->data[j] * 32768.;
}
output->data[0] = aubio_schmittS16LE (p, input->length, p->buf);
}

smpl_t
aubio_schmittS16LE (aubio_pitchschmitt_t * p, uint_t nframes,
signed short int *indata)
{
uint_t i, j;
uint_t blockSize = p->blockSize;
signed short int *schmittBuffer = p->schmittBuffer;
signed short int *schmittPointer = p->schmittPointer;

smpl_t period = 0., trigfact = 0.6;

for (i = 0; i < nframes; i++) {
*schmittPointer++ = indata[i];
if (schmittPointer - schmittBuffer >= (sint_t) blockSize) {
sint_t endpoint, startpoint, t1, t2, A1, A2, tc, schmittTriggered;

schmittPointer = schmittBuffer;

for (j = 0, A1 = 0, A2 = 0; j < blockSize; j++) {
if (schmittBuffer[j] > 0 && A1 < schmittBuffer[j])
A1 = schmittBuffer[j];
if (schmittBuffer[j] < 0 && A2 < -schmittBuffer[j])
A2 = -schmittBuffer[j];
}
t1 = (sint_t) (A1 * trigfact + 0.5);
t2 = -(sint_t) (A2 * trigfact + 0.5);
startpoint = 0;
for (j = 1; j < blockSize && schmittBuffer[j] <= t1; j++);
for ( ; j < blockSize - 1 && !(schmittBuffer[j] >= t2 &&
schmittBuffer[j + 1] < t2); j++);
startpoint = j;
schmittTriggered = 0;
endpoint = startpoint + 1;
for (j = startpoint, tc = 0; j < blockSize; j++) {
if (!schmittTriggered) {
schmittTriggered = (schmittBuffer[j] >= t1);
} else if (schmittBuffer[j] >= t2 && schmittBuffer[j + 1] < t2) {
endpoint = j;
tc++;
schmittTriggered = 0;
}
}
if ((endpoint > startpoint) && (tc > 0)) {
period = (smpl_t) (endpoint - startpoint) / tc;
}
}
}

p->schmittBuffer = schmittBuffer;
p->schmittPointer = schmittPointer;
return period;
}

void
del_aubio_pitchschmitt (aubio_pitchschmitt_t * p)
{
AUBIO_FREE (p->schmittBuffer);
AUBIO_FREE (p->buf);
AUBIO_FREE (p);
}

+ 75
- 0
deps/aubio/src/pitch/pitchschmitt.h View File

@@ -0,0 +1,75 @@
/*
Copyright (C) 2003-2013 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/** \file

Pitch detection using a Schmitt trigger

This pitch extraction method implements a Schmitt trigger to estimate the
period of a signal.

This file was derived from the tuneit project, written by Mario Lang to
detect the fundamental frequency of a sound.

See http://delysid.org/tuneit.html

\example pitch/test-pitchschmitt.c

*/

#ifndef AUBIO_PITCHSCHMITT_H
#define AUBIO_PITCHSCHMITT_H

#ifdef __cplusplus
extern "C" {
#endif

/** pitch detection object */
typedef struct _aubio_pitchschmitt_t aubio_pitchschmitt_t;

/** execute pitch detection on an input buffer

\param p pitch detection object as returned by new_aubio_pitchschmitt
\param samples_in input signal vector (length as specified at creation time)
\param cands_out pitch period estimates, in samples

*/
void aubio_pitchschmitt_do (aubio_pitchschmitt_t * p, const fvec_t * samples_in,
fvec_t * cands_out);

/** creation of the pitch detection object

\param buf_size size of the input buffer to analyse

*/
aubio_pitchschmitt_t *new_aubio_pitchschmitt (uint_t buf_size);

/** deletion of the pitch detection object

\param p pitch detection object as returned by new_aubio_pitchschmitt

*/
void del_aubio_pitchschmitt (aubio_pitchschmitt_t * p);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_PITCHSCHMITT_H */

+ 116
- 0
deps/aubio/src/pitch/pitchspecacf.c View File

@@ -0,0 +1,116 @@
/*
Copyright (C) 2013 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "fvec.h"
#include "cvec.h"
#include "mathutils.h"
#include "spectral/fft.h"
#include "pitch/pitchspecacf.h"

/** pitch specacf structure */
struct _aubio_pitchspecacf_t
{
fvec_t *win; /**< temporal weighting window */
fvec_t *winput; /**< windowed spectrum */
aubio_fft_t *fft; /**< fft object to compute*/
fvec_t *fftout; /**< Fourier transform output */
fvec_t *sqrmag; /**< square magnitudes */
fvec_t *acf; /**< auto correlation function */
smpl_t tol; /**< tolerance */
smpl_t confidence; /**< confidence */
};

aubio_pitchspecacf_t *
new_aubio_pitchspecacf (uint_t bufsize)
{
aubio_pitchspecacf_t *p = AUBIO_NEW (aubio_pitchspecacf_t);
p->fft = new_aubio_fft (bufsize);
if (!p->fft) goto beach;
p->win = new_aubio_window ("hanningz", bufsize);
p->winput = new_fvec (bufsize);
p->fftout = new_fvec (bufsize);
p->sqrmag = new_fvec (bufsize);
p->acf = new_fvec (bufsize / 2 + 1);
p->tol = 1.;
p->confidence = 0.;
return p;

beach:
AUBIO_FREE(p);
return NULL;
}

void
aubio_pitchspecacf_do (aubio_pitchspecacf_t * p, const fvec_t * input, fvec_t * output)
{
uint_t l, tau;
fvec_t *fftout = p->fftout;
// window the input
for (l = 0; l < input->length; l++) {
p->winput->data[l] = p->win->data[l] * input->data[l];
}
// get the real / imag parts of its fft
aubio_fft_do_complex (p->fft, p->winput, fftout);
for (l = 0; l < input->length / 2 + 1; l++) {
p->sqrmag->data[l] = SQR(fftout->data[l]);
}
// get the real / imag parts of the fft of the squared magnitude
aubio_fft_do_complex (p->fft, p->sqrmag, fftout);
// copy real part to acf
for (l = 0; l < fftout->length / 2 + 1; l++) {
p->acf->data[l] = fftout->data[l];
}
// get the minimum
tau = fvec_min_elem (p->acf);
// get the interpolated minimum
output->data[0] = fvec_quadratic_peak_pos (p->acf, tau) * 2.;
}

void
del_aubio_pitchspecacf (aubio_pitchspecacf_t * p)
{
del_fvec (p->win);
del_fvec (p->winput);
del_aubio_fft (p->fft);
del_fvec (p->sqrmag);
del_fvec (p->fftout);
del_fvec (p->acf);
AUBIO_FREE (p);
}

smpl_t
aubio_pitchspecacf_get_confidence (const aubio_pitchspecacf_t * o) {
// no confidence for now
return o->confidence;
}

uint_t
aubio_pitchspecacf_set_tolerance (aubio_pitchspecacf_t * p, smpl_t tol)
{
p->tol = tol;
return 0;
}

smpl_t
aubio_pitchspecacf_get_tolerance (const aubio_pitchspecacf_t * p)
{
return p->tol;
}

+ 103
- 0
deps/aubio/src/pitch/pitchspecacf.h View File

@@ -0,0 +1,103 @@
/*
Copyright (C) 2013 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/** \file

Pitch detection using spectral auto correlation

This algorithm implements pitch detection by computing the autocorrelation
function as the cosine transform of the square spectral magnitudes.

Anssi Klapuri. Qualitative and quantitative aspects in the design of
periodicity esti- mation algorithms. In Proceedings of the European Signal
Processing Conference (EUSIPCO), 2000.

Paul Brossier, [Automatic annotation of musical audio for interactive
systems](http://aubio.org/phd/), Chapter 3, Pitch Analysis, Autocorrelation,
pp. 75-77, PhD thesis, Centre for Digital music, Queen Mary University of
London, London, UK, 2006.

\example pitch/test-pitchspecacf.c

*/

#ifndef AUBIO_PITCHSPECACF_H
#define AUBIO_PITCHSPECACF_H

#ifdef __cplusplus
extern "C" {
#endif

/** pitch detection object */
typedef struct _aubio_pitchspecacf_t aubio_pitchspecacf_t;

/** execute pitch detection on an input buffer

\param o pitch detection object as returned by new_aubio_pitchspecacf
\param samples_in input signal vector (length as specified at creation time)
\param cands_out pitch period candidates, in samples

*/
void aubio_pitchspecacf_do (aubio_pitchspecacf_t * o, const fvec_t * samples_in, fvec_t * cands_out);
/** creation of the pitch detection object

\param buf_size size of the input buffer to analyse

*/
aubio_pitchspecacf_t *new_aubio_pitchspecacf (uint_t buf_size);
/** deletion of the pitch detection object

\param o pitch detection object as returned by new_aubio_pitchspecacf()

*/
void del_aubio_pitchspecacf (aubio_pitchspecacf_t * o);

/** get tolerance parameter for `specacf` pitch detection object

\param o pitch detection object

\return tolerance parameter for minima selection [default 1.]

*/
smpl_t aubio_pitchspecacf_get_tolerance (const aubio_pitchspecacf_t * o);

/** set tolerance parameter for `specacf` pitch detection object

\param o pitch detection object
\param tol tolerance parameter for minima selection [default 1.]

\return `1` on error, `0` on success

*/
uint_t aubio_pitchspecacf_set_tolerance (aubio_pitchspecacf_t * o, smpl_t tol);

/** get currenct confidence for `specacf` pitch detection object

\param o pitch detection object
\return confidence parameter

*/
smpl_t aubio_pitchspecacf_get_confidence (const aubio_pitchspecacf_t * o);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_PITCHSPECACF_H */

+ 189
- 0
deps/aubio/src/pitch/pitchyin.c View File

@@ -0,0 +1,189 @@
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/* This algorithm was developed by A. de Cheveigné and H. Kawahara and
* published in:
*
* de Cheveigné, A., Kawahara, H. (2002) "YIN, a fundamental frequency
* estimator for speech and music", J. Acoust. Soc. Am. 111, 1917-1930.
*
* see http://recherche.ircam.fr/equipes/pcm/pub/people/cheveign.html
*/

#include "aubio_priv.h"
#include "fvec.h"
#include "mathutils.h"
#include "pitch/pitchyin.h"

struct _aubio_pitchyin_t
{
fvec_t *yin;
smpl_t tol;
uint_t peak_pos;
};

#if 0
/** compute difference function

\param input input signal
\param yinbuf output buffer to store difference function (half shorter than input)

*/
void aubio_pitchyin_diff (fvec_t * input, fvec_t * yinbuf);

/** in place computation of the YIN cumulative normalised function

\param yinbuf input signal (a square difference function), also used to store function

*/
void aubio_pitchyin_getcum (fvec_t * yinbuf);

/** detect pitch in a YIN function

\param yinbuf input buffer as computed by aubio_pitchyin_getcum

*/
uint_t aubio_pitchyin_getpitch (const fvec_t * yinbuf);
#endif

aubio_pitchyin_t *
new_aubio_pitchyin (uint_t bufsize)
{
aubio_pitchyin_t *o = AUBIO_NEW (aubio_pitchyin_t);
o->yin = new_fvec (bufsize / 2);
o->tol = 0.15;
o->peak_pos = 0;
return o;
}

void
del_aubio_pitchyin (aubio_pitchyin_t * o)
{
del_fvec (o->yin);
AUBIO_FREE (o);
}

#if 0
/* outputs the difference function */
void
aubio_pitchyin_diff (fvec_t * input, fvec_t * yin)
{
uint_t j, tau;
smpl_t tmp;
for (tau = 0; tau < yin->length; tau++) {
yin->data[tau] = 0.;
}
for (tau = 1; tau < yin->length; tau++) {
for (j = 0; j < yin->length; j++) {
tmp = input->data[j] - input->data[j + tau];
yin->data[tau] += SQR (tmp);
}
}
}

/* cumulative mean normalized difference function */
void
aubio_pitchyin_getcum (fvec_t * yin)
{
uint_t tau;
smpl_t tmp = 0.;
yin->data[0] = 1.;
//AUBIO_DBG("%f\t",yin->data[0]);
for (tau = 1; tau < yin->length; tau++) {
tmp += yin->data[tau];
yin->data[tau] *= tau / tmp;
//AUBIO_DBG("%f\t",yin->data[tau]);
}
//AUBIO_DBG("\n");
}

uint_t
aubio_pitchyin_getpitch (const fvec_t * yin)
{
uint_t tau = 1;
do {
if (yin->data[tau] < 0.1) {
while (yin->data[tau + 1] < yin->data[tau]) {
tau++;
}
return tau;
}
tau++;
} while (tau < yin->length);
//AUBIO_DBG("No pitch found");
return 0;
}
#endif

/* all the above in one */
void
aubio_pitchyin_do (aubio_pitchyin_t * o, const fvec_t * input, fvec_t * out)
{
const smpl_t tol = o->tol;
fvec_t* yin = o->yin;
const smpl_t *input_data = input->data;
const uint_t length = yin->length;
smpl_t *yin_data = yin->data;
uint_t j, tau;
sint_t period;
smpl_t tmp, tmp2 = 0.;

yin_data[0] = 1.;
for (tau = 1; tau < length; tau++) {
yin_data[tau] = 0.;
for (j = 0; j < length; j++) {
tmp = input_data[j] - input_data[j + tau];
yin_data[tau] += SQR (tmp);
}
tmp2 += yin_data[tau];
if (tmp2 != 0) {
yin->data[tau] *= tau / tmp2;
} else {
yin->data[tau] = 1.;
}
period = tau - 3;
if (tau > 4 && (yin_data[period] < tol) &&
(yin_data[period] < yin_data[period + 1])) {
o->peak_pos = (uint_t)period;
out->data[0] = fvec_quadratic_peak_pos (yin, o->peak_pos);
return;
}
}
o->peak_pos = (uint_t)fvec_min_elem (yin);
out->data[0] = fvec_quadratic_peak_pos (yin, o->peak_pos);
}

smpl_t
aubio_pitchyin_get_confidence (aubio_pitchyin_t * o) {
return 1. - o->yin->data[o->peak_pos];
}

uint_t
aubio_pitchyin_set_tolerance (aubio_pitchyin_t * o, smpl_t tol)
{
o->tol = tol;
return 0;
}

smpl_t
aubio_pitchyin_get_tolerance (aubio_pitchyin_t * o)
{
return o->tol;
}

+ 100
- 0
deps/aubio/src/pitch/pitchyin.h View File

@@ -0,0 +1,100 @@
/*
Copyright (C) 2003-2013 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/** \file

Pitch detection using the YIN algorithm

This algorithm was developed by A. de Cheveigne and H. Kawahara and
published in:

De Cheveigné, A., Kawahara, H. (2002) "YIN, a fundamental frequency
estimator for speech and music", J. Acoust. Soc. Am. 111, 1917-1930.

see http://recherche.ircam.fr/equipes/pcm/pub/people/cheveign.html
http://recherche.ircam.fr/equipes/pcm/cheveign/ps/2002_JASA_YIN_proof.pdf

\example pitch/test-pitchyin.c

*/

#ifndef AUBIO_PITCHYIN_H
#define AUBIO_PITCHYIN_H

#ifdef __cplusplus
extern "C" {
#endif

/** pitch detection object */
typedef struct _aubio_pitchyin_t aubio_pitchyin_t;

/** creation of the pitch detection object

\param buf_size size of the input buffer to analyse

*/
aubio_pitchyin_t *new_aubio_pitchyin (uint_t buf_size);

/** deletion of the pitch detection object

\param o pitch detection object as returned by new_aubio_pitchyin()

*/
void del_aubio_pitchyin (aubio_pitchyin_t * o);

/** execute pitch detection an input buffer

\param o pitch detection object as returned by new_aubio_pitchyin()
\param samples_in input signal vector (length as specified at creation time)
\param cands_out pitch period candidates, in samples

*/
void aubio_pitchyin_do (aubio_pitchyin_t * o, const fvec_t * samples_in, fvec_t * cands_out);


/** set tolerance parameter for YIN algorithm

\param o YIN pitch detection object
\param tol tolerance parameter for minima selection [default 0.15]

*/
uint_t aubio_pitchyin_set_tolerance (aubio_pitchyin_t * o, smpl_t tol);

/** get tolerance parameter for YIN algorithm

\param o YIN pitch detection object
\return tolerance parameter for minima selection [default 0.15]

*/
smpl_t aubio_pitchyin_get_tolerance (aubio_pitchyin_t * o);

/** get current confidence of YIN algorithm

\param o YIN pitch detection object
\return confidence parameter

*/
smpl_t aubio_pitchyin_get_confidence (aubio_pitchyin_t * o);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_PITCHYIN_H */

+ 201
- 0
deps/aubio/src/pitch/pitchyinfast.c View File

@@ -0,0 +1,201 @@
/*
Copyright (C) 2003-2017 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/* This algorithm was developed by A. de Cheveigné and H. Kawahara and
* published in:
*
* de Cheveigné, A., Kawahara, H. (2002) "YIN, a fundamental frequency
* estimator for speech and music", J. Acoust. Soc. Am. 111, 1917-1930.
*
* see http://recherche.ircam.fr/equipes/pcm/pub/people/cheveign.html
*/

#include "aubio_priv.h"
#include "fvec.h"
#include "mathutils.h"
#include "cvec.h"
#include "spectral/fft.h"
#include "pitch/pitchyinfast.h"

struct _aubio_pitchyinfast_t
{
fvec_t *yin;
smpl_t tol;
uint_t peak_pos;
fvec_t *tmpdata;
fvec_t *sqdiff;
fvec_t *kernel;
fvec_t *samples_fft;
fvec_t *kernel_fft;
aubio_fft_t *fft;
};

aubio_pitchyinfast_t *
new_aubio_pitchyinfast (uint_t bufsize)
{
aubio_pitchyinfast_t *o = AUBIO_NEW (aubio_pitchyinfast_t);
o->yin = new_fvec (bufsize / 2);
o->tmpdata = new_fvec (bufsize);
o->sqdiff = new_fvec (bufsize / 2);
o->kernel = new_fvec (bufsize);
o->samples_fft = new_fvec (bufsize);
o->kernel_fft = new_fvec (bufsize);
o->fft = new_aubio_fft (bufsize);
if (!o->yin || !o->tmpdata || !o->tmpdata || !o->sqdiff
|| !o->kernel || !o->samples_fft || !o->kernel || !o->fft)
{
del_aubio_pitchyinfast(o);
return NULL;
}
o->tol = 0.15;
o->peak_pos = 0;
return o;
}

void
del_aubio_pitchyinfast (aubio_pitchyinfast_t * o)
{
if (o->yin)
del_fvec (o->yin);
if (o->tmpdata)
del_fvec (o->tmpdata);
if (o->sqdiff)
del_fvec (o->sqdiff);
if (o->kernel)
del_fvec (o->kernel);
if (o->samples_fft)
del_fvec (o->samples_fft);
if (o->kernel_fft)
del_fvec (o->kernel_fft);
if (o->fft)
del_aubio_fft (o->fft);
AUBIO_FREE (o);
}

/* all the above in one */
void
aubio_pitchyinfast_do (aubio_pitchyinfast_t * o, const fvec_t * input, fvec_t * out)
{
const smpl_t tol = o->tol;
fvec_t* yin = o->yin;
const uint_t length = yin->length;
uint_t B = o->tmpdata->length;
uint_t W = o->yin->length; // B / 2
fvec_t tmp_slice, kernel_ptr;
uint_t tau;
sint_t period;
smpl_t tmp2 = 0.;

// compute r_t(0) + r_t+tau(0)
{
fvec_t *squares = o->tmpdata;
fvec_weighted_copy(input, input, squares);
#if 0
for (tau = 0; tau < W; tau++) {
tmp_slice.data = squares->data + tau;
tmp_slice.length = W;
o->sqdiff->data[tau] = fvec_sum(&tmp_slice);
}
#else
tmp_slice.data = squares->data;
tmp_slice.length = W;
o->sqdiff->data[0] = fvec_sum(&tmp_slice);
for (tau = 1; tau < W; tau++) {
o->sqdiff->data[tau] = o->sqdiff->data[tau-1];
o->sqdiff->data[tau] -= squares->data[tau-1];
o->sqdiff->data[tau] += squares->data[W+tau-1];
}
#endif
fvec_add(o->sqdiff, o->sqdiff->data[0]);
}
// compute r_t(tau) = -2.*ifft(fft(samples)*fft(samples[W-1::-1]))
{
fvec_t *compmul = o->tmpdata;
fvec_t *rt_of_tau = o->samples_fft;
aubio_fft_do_complex(o->fft, input, o->samples_fft);
// build kernel, take a copy of first half of samples
tmp_slice.data = input->data;
tmp_slice.length = W;
kernel_ptr.data = o->kernel->data + 1;
kernel_ptr.length = W;
fvec_copy(&tmp_slice, &kernel_ptr);
// reverse them
fvec_rev(&kernel_ptr);
// compute fft(kernel)
aubio_fft_do_complex(o->fft, o->kernel, o->kernel_fft);
// compute complex product
compmul->data[0] = o->kernel_fft->data[0] * o->samples_fft->data[0];
for (tau = 1; tau < W; tau++) {
compmul->data[tau] = o->kernel_fft->data[tau] * o->samples_fft->data[tau];
compmul->data[tau] -= o->kernel_fft->data[B-tau] * o->samples_fft->data[B-tau];
}
compmul->data[W] = o->kernel_fft->data[W] * o->samples_fft->data[W];
for (tau = 1; tau < W; tau++) {
compmul->data[B-tau] = o->kernel_fft->data[B-tau] * o->samples_fft->data[tau];
compmul->data[B-tau] += o->kernel_fft->data[tau] * o->samples_fft->data[B-tau];
}
// compute inverse fft
aubio_fft_rdo_complex(o->fft, compmul, rt_of_tau);
// compute square difference r_t(tau) = sqdiff - 2 * r_t_tau[W-1:-1]
for (tau = 0; tau < W; tau++) {
yin->data[tau] = o->sqdiff->data[tau] - 2. * rt_of_tau->data[tau+W];
}
}

// now build yin and look for first minimum
fvec_zeros(out);
yin->data[0] = 1.;
for (tau = 1; tau < length; tau++) {
tmp2 += yin->data[tau];
if (tmp2 != 0) {
yin->data[tau] *= tau / tmp2;
} else {
yin->data[tau] = 1.;
}
period = tau - 3;
if (tau > 4 && (yin->data[period] < tol) &&
(yin->data[period] < yin->data[period + 1])) {
o->peak_pos = (uint_t)period;
out->data[0] = fvec_quadratic_peak_pos (yin, o->peak_pos);
return;
}
}
// use global minimum
o->peak_pos = (uint_t)fvec_min_elem (yin);
out->data[0] = fvec_quadratic_peak_pos (yin, o->peak_pos);
}

smpl_t
aubio_pitchyinfast_get_confidence (aubio_pitchyinfast_t * o) {
return 1. - o->yin->data[o->peak_pos];
}

uint_t
aubio_pitchyinfast_set_tolerance (aubio_pitchyinfast_t * o, smpl_t tol)
{
o->tol = tol;
return 0;
}

smpl_t
aubio_pitchyinfast_get_tolerance (aubio_pitchyinfast_t * o)
{
return o->tol;
}

+ 102
- 0
deps/aubio/src/pitch/pitchyinfast.h View File

@@ -0,0 +1,102 @@
/*
Copyright (C) 2003-2017 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/** \file

Pitch detection using YIN algorithm (fast implementation)

This algorithm was developed by A. de Cheveigne and H. Kawahara and
published in:

De Cheveigné, A., Kawahara, H. (2002) "YIN, a fundamental frequency
estimator for speech and music", J. Acoust. Soc. Am. 111, 1917-1930.

This implementation compute the autocorrelation function using time domain
convolution computed in the spectral domain.

see http://recherche.ircam.fr/equipes/pcm/pub/people/cheveign.html
http://recherche.ircam.fr/equipes/pcm/cheveign/ps/2002_JASA_YIN_proof.pdf

*/

#ifndef AUBIO_PITCHYINFAST_H
#define AUBIO_PITCHYINFAST_H

#ifdef __cplusplus
extern "C" {
#endif

/** pitch detection object */
typedef struct _aubio_pitchyinfast_t aubio_pitchyinfast_t;

/** creation of the pitch detection object

\param buf_size size of the input buffer to analyse

*/
aubio_pitchyinfast_t *new_aubio_pitchyinfast (uint_t buf_size);

/** deletion of the pitch detection object

\param o pitch detection object as returned by new_aubio_pitchyin()

*/
void del_aubio_pitchyinfast (aubio_pitchyinfast_t * o);

/** execute pitch detection an input buffer

\param o pitch detection object as returned by new_aubio_pitchyin()
\param samples_in input signal vector (length as specified at creation time)
\param cands_out pitch period candidates, in samples

*/
void aubio_pitchyinfast_do (aubio_pitchyinfast_t * o, const fvec_t * samples_in, fvec_t * cands_out);


/** set tolerance parameter for YIN algorithm

\param o YIN pitch detection object
\param tol tolerance parameter for minima selection [default 0.15]

*/
uint_t aubio_pitchyinfast_set_tolerance (aubio_pitchyinfast_t * o, smpl_t tol);

/** get tolerance parameter for YIN algorithm

\param o YIN pitch detection object
\return tolerance parameter for minima selection [default 0.15]

*/
smpl_t aubio_pitchyinfast_get_tolerance (aubio_pitchyinfast_t * o);

/** get current confidence of YIN algorithm

\param o YIN pitch detection object
\return confidence parameter

*/
smpl_t aubio_pitchyinfast_get_confidence (aubio_pitchyinfast_t * o);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_PITCHYINFAST_H */


+ 208
- 0
deps/aubio/src/pitch/pitchyinfft.c View File

@@ -0,0 +1,208 @@
/*
Copyright (C) 2003-2013 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "fvec.h"
#include "cvec.h"
#include "mathutils.h"
#include "spectral/fft.h"
#include "pitch/pitchyinfft.h"

/** pitch yinfft structure */
struct _aubio_pitchyinfft_t
{
fvec_t *win; /**< temporal weighting window */
fvec_t *winput; /**< windowed spectrum */
fvec_t *sqrmag; /**< square difference function */
fvec_t *weight; /**< spectral weighting window (psychoacoustic model) */
fvec_t *fftout; /**< Fourier transform output */
aubio_fft_t *fft; /**< fft object to compute square difference function */
fvec_t *yinfft; /**< Yin function */
smpl_t tol; /**< Yin tolerance */
uint_t peak_pos; /**< currently selected peak pos*/
uint_t short_period; /** shortest period under which to check for octave error */
};

static const smpl_t freqs[] = {
0., 20., 25., 31.5, 40., 50., 63., 80., 100., 125.,
160., 200., 250., 315., 400., 500., 630., 800., 1000., 1250.,
1600., 2000., 2500., 3150., 4000., 5000., 6300., 8000., 9000., 10000.,
12500., 15000., 20000., 25100., -1.
};

static const smpl_t weight[] = {
-75.8, -70.1, -60.8, -52.1, -44.2, -37.5, -31.3, -25.6, -20.9, -16.5,
-12.6, -9.60, -7.00, -4.70, -3.00, -1.80, -0.80, -0.20, -0.00, 0.50,
1.60, 3.20, 5.40, 7.80, 8.10, 5.30, -2.40, -11.1, -12.8, -12.2,
-7.40, -17.8, -17.8, -17.8
};

aubio_pitchyinfft_t *
new_aubio_pitchyinfft (uint_t samplerate, uint_t bufsize)
{
uint_t i = 0, j = 1;
smpl_t freq = 0, a0 = 0, a1 = 0, f0 = 0, f1 = 0;
aubio_pitchyinfft_t *p = AUBIO_NEW (aubio_pitchyinfft_t);
p->winput = new_fvec (bufsize);
p->fft = new_aubio_fft (bufsize);
if (!p->fft) goto beach;
p->fftout = new_fvec (bufsize);
p->sqrmag = new_fvec (bufsize);
p->yinfft = new_fvec (bufsize / 2 + 1);
p->tol = 0.85;
p->peak_pos = 0;
p->win = new_aubio_window ("hanningz", bufsize);
p->weight = new_fvec (bufsize / 2 + 1);
for (i = 0; i < p->weight->length; i++) {
freq = (smpl_t) i / (smpl_t) bufsize *(smpl_t) samplerate;
while (freq > freqs[j] && freqs[j] > 0) {
//AUBIO_DBG("freq %3.5f > %3.5f \tsamplerate %d (Hz) \t"
// "(weight length %d, bufsize %d) %d %d\n", freq, freqs[j],
// samplerate, p->weight->length, bufsize, i, j);
j += 1;
}
a0 = weight[j - 1];
f0 = freqs[j - 1];
a1 = weight[j];
f1 = freqs[j];
if (f0 == f1) { // just in case
p->weight->data[i] = a0;
} else if (f0 == 0) { // y = ax+b
p->weight->data[i] = (a1 - a0) / f1 * freq + a0;
} else {
p->weight->data[i] = (a1 - a0) / (f1 - f0) * freq +
(a0 - (a1 - a0) / (f1 / f0 - 1.));
}
while (freq > freqs[j]) {
j += 1;
}
//AUBIO_DBG("%f\n",p->weight->data[i]);
p->weight->data[i] = DB2LIN (p->weight->data[i]);
//p->weight->data[i] = SQRT(DB2LIN(p->weight->data[i]));
}
// check for octave errors above 1300 Hz
p->short_period = (uint_t)ROUND(samplerate / 1300.);
return p;

beach:
if (p->winput) del_fvec(p->winput);
AUBIO_FREE(p);
return NULL;
}

void
aubio_pitchyinfft_do (aubio_pitchyinfft_t * p, const fvec_t * input, fvec_t * output)
{
uint_t tau, l;
uint_t length = p->fftout->length;
uint_t halfperiod;
fvec_t *fftout = p->fftout;
fvec_t *yin = p->yinfft;
smpl_t tmp = 0., sum = 0.;
// window the input
fvec_weighted_copy(input, p->win, p->winput);
// get the real / imag parts of its fft
aubio_fft_do_complex (p->fft, p->winput, fftout);
// get the squared magnitude spectrum, applying some weight
p->sqrmag->data[0] = SQR(fftout->data[0]);
p->sqrmag->data[0] *= p->weight->data[0];
for (l = 1; l < length / 2; l++) {
p->sqrmag->data[l] = SQR(fftout->data[l]) + SQR(fftout->data[length - l]);
p->sqrmag->data[l] *= p->weight->data[l];
p->sqrmag->data[length - l] = p->sqrmag->data[l];
}
p->sqrmag->data[length / 2] = SQR(fftout->data[length / 2]);
p->sqrmag->data[length / 2] *= p->weight->data[length / 2];
// get sum of weighted squared mags
for (l = 0; l < length / 2 + 1; l++) {
sum += p->sqrmag->data[l];
}
sum *= 2.;
// get the real / imag parts of the fft of the squared magnitude
aubio_fft_do_complex (p->fft, p->sqrmag, fftout);
yin->data[0] = 1.;
for (tau = 1; tau < yin->length; tau++) {
// compute the square differences
yin->data[tau] = sum - fftout->data[tau];
// and the cumulative mean normalized difference function
tmp += yin->data[tau];
if (tmp != 0) {
yin->data[tau] *= tau / tmp;
} else {
yin->data[tau] = 1.;
}
}
// find best candidates
tau = fvec_min_elem (yin);
if (yin->data[tau] < p->tol) {
// no interpolation, directly return the period as an integer
//output->data[0] = tau;
//return;

// 3 point quadratic interpolation
//return fvec_quadratic_peak_pos (yin,tau,1);
/* additional check for (unlikely) octave doubling in higher frequencies */
if (tau > p->short_period) {
output->data[0] = fvec_quadratic_peak_pos (yin, tau);
} else {
/* should compare the minimum value of each interpolated peaks */
halfperiod = FLOOR (tau / 2 + .5);
if (yin->data[halfperiod] < p->tol)
p->peak_pos = halfperiod;
else
p->peak_pos = tau;
output->data[0] = fvec_quadratic_peak_pos (yin, p->peak_pos);
}
} else {
p->peak_pos = 0;
output->data[0] = 0.;
}
}

void
del_aubio_pitchyinfft (aubio_pitchyinfft_t * p)
{
del_fvec (p->win);
del_aubio_fft (p->fft);
del_fvec (p->yinfft);
del_fvec (p->sqrmag);
del_fvec (p->fftout);
del_fvec (p->winput);
del_fvec (p->weight);
AUBIO_FREE (p);
}

smpl_t
aubio_pitchyinfft_get_confidence (aubio_pitchyinfft_t * o) {
return 1. - o->yinfft->data[o->peak_pos];
}

uint_t
aubio_pitchyinfft_set_tolerance (aubio_pitchyinfft_t * p, smpl_t tol)
{
p->tol = tol;
return 0;
}

smpl_t
aubio_pitchyinfft_get_tolerance (aubio_pitchyinfft_t * p)
{
return p->tol;
}

+ 99
- 0
deps/aubio/src/pitch/pitchyinfft.h View File

@@ -0,0 +1,99 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/** \file

Pitch detection using a spectral implementation of the YIN algorithm

This algorithm was derived from the YIN algorithm. In this implementation, a
Fourier transform is used to compute a tapered square difference function,
which allows spectral weighting. Because the difference function is tapered,
the selection of the period is simplified.

Paul Brossier, [Automatic annotation of musical audio for interactive
systems](http://aubio.org/phd/), Chapter 3, Pitch Analysis, PhD thesis,
Centre for Digital music, Queen Mary University of London, London, UK, 2006.

\example pitch/test-pitchyinfft.c

*/

#ifndef AUBIO_PITCHYINFFT_H
#define AUBIO_PITCHYINFFT_H

#ifdef __cplusplus
extern "C" {
#endif

/** pitch detection object */
typedef struct _aubio_pitchyinfft_t aubio_pitchyinfft_t;

/** execute pitch detection on an input buffer

\param o pitch detection object as returned by new_aubio_pitchyinfft
\param samples_in input signal vector (length as specified at creation time)
\param cands_out pitch period candidates, in samples

*/
void aubio_pitchyinfft_do (aubio_pitchyinfft_t * o, const fvec_t * samples_in, fvec_t * cands_out);
/** creation of the pitch detection object

\param samplerate samplerate of the input signal
\param buf_size size of the input buffer to analyse

*/
aubio_pitchyinfft_t *new_aubio_pitchyinfft (uint_t samplerate, uint_t buf_size);
/** deletion of the pitch detection object

\param o pitch detection object as returned by new_aubio_pitchyinfft()

*/
void del_aubio_pitchyinfft (aubio_pitchyinfft_t * o);

/** get tolerance parameter for YIN algorithm

\param o YIN pitch detection object

\return tolerance parameter for minima selection [default 0.15]

*/
smpl_t aubio_pitchyinfft_get_tolerance (aubio_pitchyinfft_t * o);

/** set tolerance parameter for YIN algorithm

\param o YIN pitch detection object
\param tol tolerance parameter for minima selection [default 0.15]

*/
uint_t aubio_pitchyinfft_set_tolerance (aubio_pitchyinfft_t * o, smpl_t tol);

/** get current confidence of YIN algorithm

\param o YIN pitch detection object
\return confidence parameter

*/
smpl_t aubio_pitchyinfft_get_confidence (aubio_pitchyinfft_t * o);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_PITCHYINFFT_H */

+ 582
- 0
deps/aubio/src/spectral/fft.c View File

@@ -0,0 +1,582 @@
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "fvec.h"
#include "cvec.h"
#include "mathutils.h"
#include "spectral/fft.h"

#ifdef HAVE_FFTW3 // using FFTW3
/* note that <complex.h> is not included here but only in aubio_priv.h, so that
* c++ projects can still use their own complex definition. */
#include <fftw3.h>
#include <pthread.h>

#ifdef HAVE_COMPLEX_H
#ifdef HAVE_FFTW3F
/** fft data type with complex.h and fftw3f */
#define FFTW_TYPE fftwf_complex
#else
/** fft data type with complex.h and fftw3 */
#define FFTW_TYPE fftw_complex
#endif
#else
#ifdef HAVE_FFTW3F
/** fft data type without complex.h and with fftw3f */
#define FFTW_TYPE float
#else
/** fft data type without complex.h and with fftw */
#define FFTW_TYPE double
#endif
#endif

/** fft data type */
typedef FFTW_TYPE fft_data_t;

#ifdef HAVE_FFTW3F
#define fftw_malloc fftwf_malloc
#define fftw_free fftwf_free
#define fftw_execute fftwf_execute
#define fftw_plan_dft_r2c_1d fftwf_plan_dft_r2c_1d
#define fftw_plan_dft_c2r_1d fftwf_plan_dft_c2r_1d
#define fftw_plan_r2r_1d fftwf_plan_r2r_1d
#define fftw_plan fftwf_plan
#define fftw_destroy_plan fftwf_destroy_plan
#endif

#ifdef HAVE_FFTW3F
#if HAVE_AUBIO_DOUBLE
#error "Using aubio in double precision with fftw3 in single precision"
#endif /* HAVE_AUBIO_DOUBLE */
#define real_t float
#elif defined (HAVE_FFTW3) /* HAVE_FFTW3F */
#if !HAVE_AUBIO_DOUBLE
#error "Using aubio in single precision with fftw3 in double precision"
#endif /* HAVE_AUBIO_DOUBLE */
#define real_t double
#endif /* HAVE_FFTW3F */

#ifndef __MOD_DEVICES__
// a global mutex for FFTW thread safety
pthread_mutex_t aubio_fftw_mutex = PTHREAD_MUTEX_INITIALIZER;
#endif

#elif defined HAVE_ACCELERATE // using ACCELERATE
// https://developer.apple.com/library/mac/#documentation/Accelerate/Reference/vDSPRef/Reference/reference.html
#include <Accelerate/Accelerate.h>

#if !HAVE_AUBIO_DOUBLE
#define aubio_vDSP_ctoz vDSP_ctoz
#define aubio_vDSP_fft_zrip vDSP_fft_zrip
#define aubio_vDSP_ztoc vDSP_ztoc
#define aubio_vDSP_zvmags vDSP_zvmags
#define aubio_vDSP_zvphas vDSP_zvphas
#define aubio_vDSP_vsadd vDSP_vsadd
#define aubio_vDSP_vsmul vDSP_vsmul
#define aubio_DSPComplex DSPComplex
#define aubio_DSPSplitComplex DSPSplitComplex
#define aubio_vDSP_DFT_Setup vDSP_DFT_Setup
#define aubio_vDSP_DFT_zrop_CreateSetup vDSP_DFT_zrop_CreateSetup
#define aubio_vDSP_DFT_Execute vDSP_DFT_Execute
#define aubio_vDSP_DFT_DestroySetup vDSP_DFT_DestroySetup
#define aubio_vvsqrt vvsqrtf
#else
#define aubio_vDSP_ctoz vDSP_ctozD
#define aubio_vDSP_fft_zrip vDSP_fft_zripD
#define aubio_vDSP_ztoc vDSP_ztocD
#define aubio_vDSP_zvmags vDSP_zvmagsD
#define aubio_vDSP_zvphas vDSP_zvphasD
#define aubio_vDSP_vsadd vDSP_vsaddD
#define aubio_vDSP_vsmul vDSP_vsmulD
#define aubio_DSPComplex DSPDoubleComplex
#define aubio_DSPSplitComplex DSPDoubleSplitComplex
#define aubio_vDSP_DFT_Setup vDSP_DFT_SetupD
#define aubio_vDSP_DFT_zrop_CreateSetup vDSP_DFT_zrop_CreateSetupD
#define aubio_vDSP_DFT_Execute vDSP_DFT_ExecuteD
#define aubio_vDSP_DFT_DestroySetup vDSP_DFT_DestroySetupD
#define aubio_vvsqrt vvsqrt
#endif /* HAVE_AUBIO_DOUBLE */

#elif defined HAVE_INTEL_IPP // using INTEL IPP

#if !HAVE_AUBIO_DOUBLE
#define aubio_IppFloat Ipp32f
#define aubio_IppComplex Ipp32fc
#define aubio_FFTSpec FFTSpec_R_32f
#define aubio_ippsMalloc_complex ippsMalloc_32fc
#define aubio_ippsFFTInit_R ippsFFTInit_R_32f
#define aubio_ippsFFTGetSize_R ippsFFTGetSize_R_32f
#define aubio_ippsFFTInv_CCSToR ippsFFTInv_CCSToR_32f
#define aubio_ippsFFTFwd_RToCCS ippsFFTFwd_RToCCS_32f
#define aubio_ippsAtan2 ippsAtan2_32f_A21
#else /* HAVE_AUBIO_DOUBLE */
#define aubio_IppFloat Ipp64f
#define aubio_IppComplex Ipp64fc
#define aubio_FFTSpec FFTSpec_R_64f
#define aubio_ippsMalloc_complex ippsMalloc_64fc
#define aubio_ippsFFTInit_R ippsFFTInit_R_64f
#define aubio_ippsFFTGetSize_R ippsFFTGetSize_R_64f
#define aubio_ippsFFTInv_CCSToR ippsFFTInv_CCSToR_64f
#define aubio_ippsFFTFwd_RToCCS ippsFFTFwd_RToCCS_64f
#define aubio_ippsAtan2 ippsAtan2_64f_A50
#endif


#else // using OOURA
// let's use ooura instead
extern void aubio_ooura_rdft(int, int, smpl_t *, int *, smpl_t *);

#endif

struct _aubio_fft_t {
uint_t winsize;
uint_t fft_size;

#ifdef HAVE_FFTW3 // using FFTW3
real_t *in, *out;
fftw_plan pfw, pbw;
fft_data_t * specdata; /* complex spectral data */

#elif defined HAVE_ACCELERATE // using ACCELERATE
aubio_vDSP_DFT_Setup fftSetupFwd;
aubio_vDSP_DFT_Setup fftSetupBwd;
aubio_DSPSplitComplex spec;
smpl_t *in, *out;

#elif defined HAVE_INTEL_IPP // using Intel IPP
smpl_t *in, *out;
Ipp8u* memSpec;
Ipp8u* memInit;
Ipp8u* memBuffer;
struct aubio_FFTSpec* fftSpec;
aubio_IppComplex* complexOut;
#else // using OOURA
smpl_t *in, *out;
smpl_t *w;
int *ip;
#endif /* using OOURA */

fvec_t * compspec;
};

aubio_fft_t * new_aubio_fft (uint_t winsize) {
aubio_fft_t * s = AUBIO_NEW(aubio_fft_t);
if ((sint_t)winsize < 2) {
AUBIO_ERR("fft: got winsize %d, but can not be < 2\n", winsize);
goto beach;
}

#ifdef HAVE_FFTW3
uint_t i;
s->winsize = winsize;
/* allocate memory */
s->in = AUBIO_ARRAY(real_t,winsize);
s->out = AUBIO_ARRAY(real_t,winsize);
s->compspec = new_fvec(winsize);
/* create plans */
#ifndef __MOD_DEVICES__
pthread_mutex_lock(&aubio_fftw_mutex);
#endif
#ifdef HAVE_COMPLEX_H
s->fft_size = winsize/2 + 1;
s->specdata = (fft_data_t*)fftw_malloc(sizeof(fft_data_t)*s->fft_size);
s->pfw = fftw_plan_dft_r2c_1d(winsize, s->in, s->specdata, FFTW_ESTIMATE);
s->pbw = fftw_plan_dft_c2r_1d(winsize, s->specdata, s->out, FFTW_ESTIMATE);
#else
s->fft_size = winsize;
s->specdata = (fft_data_t*)fftw_malloc(sizeof(fft_data_t)*s->fft_size);
s->pfw = fftw_plan_r2r_1d(winsize, s->in, s->specdata, FFTW_R2HC, FFTW_ESTIMATE);
s->pbw = fftw_plan_r2r_1d(winsize, s->specdata, s->out, FFTW_HC2R, FFTW_ESTIMATE);
#endif
#ifndef __MOD_DEVICES__
pthread_mutex_unlock(&aubio_fftw_mutex);
#endif
for (i = 0; i < s->winsize; i++) {
s->in[i] = 0.;
s->out[i] = 0.;
}
for (i = 0; i < s->fft_size; i++) {
s->specdata[i] = 0.;
}

#elif defined HAVE_ACCELERATE // using ACCELERATE
{
uint_t radix = winsize;
uint_t order = 0;
while ((radix / 2) * 2 == radix) {
radix /= 2;
order++;
}
if (order < 4 || (radix != 1 && radix != 3 && radix != 5 && radix != 15)) {
AUBIO_ERR("fft: vDSP/Accelerate supports FFT with sizes = "
"f * 2 ** n, where n > 4 and f in [1, 3, 5, 15], but requested %d. "
"Use the closest power of two, or try recompiling aubio with "
"--enable-fftw3.\n", winsize);
goto beach;
}
}
s->winsize = winsize;
s->fft_size = winsize;
s->compspec = new_fvec(winsize);
s->in = AUBIO_ARRAY(smpl_t, s->fft_size);
s->out = AUBIO_ARRAY(smpl_t, s->fft_size);
s->spec.realp = AUBIO_ARRAY(smpl_t, s->fft_size/2);
s->spec.imagp = AUBIO_ARRAY(smpl_t, s->fft_size/2);
s->fftSetupFwd = aubio_vDSP_DFT_zrop_CreateSetup(NULL,
s->fft_size, vDSP_DFT_FORWARD);
s->fftSetupBwd = aubio_vDSP_DFT_zrop_CreateSetup(s->fftSetupFwd,
s->fft_size, vDSP_DFT_INVERSE);

#elif defined HAVE_INTEL_IPP // using Intel IPP
const IppHintAlgorithm qualityHint = ippAlgHintAccurate; // OR ippAlgHintFast;
const int flags = IPP_FFT_NODIV_BY_ANY; // we're scaling manually afterwards
int order = aubio_power_of_two_order(winsize);
int sizeSpec, sizeInit, sizeBuffer;
IppStatus status;

if (winsize <= 4 || aubio_is_power_of_two(winsize) != 1)
{
AUBIO_ERR("intel IPP fft: can only create with sizes > 4 and power of two, requested %d,"
" try recompiling aubio with --enable-fftw3\n", winsize);
goto beach;
}

status = aubio_ippsFFTGetSize_R(order, flags, qualityHint,
&sizeSpec, &sizeInit, &sizeBuffer);
if (status != ippStsNoErr) {
AUBIO_ERR("fft: failed to initialize fft. IPP error: %d\n", status);
goto beach;
}
s->fft_size = s->winsize = winsize;
s->compspec = new_fvec(winsize);
s->in = AUBIO_ARRAY(smpl_t, s->winsize);
s->out = AUBIO_ARRAY(smpl_t, s->winsize);
s->memSpec = ippsMalloc_8u(sizeSpec);
s->memBuffer = ippsMalloc_8u(sizeBuffer);
if (sizeInit > 0 ) {
s->memInit = ippsMalloc_8u(sizeInit);
}
s->complexOut = aubio_ippsMalloc_complex(s->fft_size / 2 + 1);
status = aubio_ippsFFTInit_R(
&s->fftSpec, order, flags, qualityHint, s->memSpec, s->memInit);
if (status != ippStsNoErr) {
AUBIO_ERR("fft: failed to initialize. IPP error: %d\n", status);
goto beach;
}

#else // using OOURA
if (aubio_is_power_of_two(winsize) != 1) {
AUBIO_ERR("fft: can only create with sizes power of two, requested %d,"
" try recompiling aubio with --enable-fftw3\n", winsize);
goto beach;
}
s->winsize = winsize;
s->fft_size = winsize / 2 + 1;
s->compspec = new_fvec(winsize);
s->in = AUBIO_ARRAY(smpl_t, s->winsize);
s->out = AUBIO_ARRAY(smpl_t, s->winsize);
s->ip = AUBIO_ARRAY(int , s->fft_size);
s->w = AUBIO_ARRAY(smpl_t, s->fft_size);
s->ip[0] = 0;
#endif /* using OOURA */

return s;

beach:
AUBIO_FREE(s);
return NULL;
}

void del_aubio_fft(aubio_fft_t * s) {
/* destroy data */
#ifdef HAVE_FFTW3 // using FFTW3
#ifndef __MOD_DEVICES__
pthread_mutex_lock(&aubio_fftw_mutex);
#endif
fftw_destroy_plan(s->pfw);
fftw_destroy_plan(s->pbw);
fftw_free(s->specdata);
#ifndef __MOD_DEVICES__
pthread_mutex_unlock(&aubio_fftw_mutex);
#endif

#elif defined HAVE_ACCELERATE // using ACCELERATE
AUBIO_FREE(s->spec.realp);
AUBIO_FREE(s->spec.imagp);
aubio_vDSP_DFT_DestroySetup(s->fftSetupBwd);
aubio_vDSP_DFT_DestroySetup(s->fftSetupFwd);

#elif defined HAVE_INTEL_IPP // using Intel IPP
ippFree(s->memSpec);
ippFree(s->memInit);
ippFree(s->memBuffer);
ippFree(s->complexOut);

#else // using OOURA
AUBIO_FREE(s->w);
AUBIO_FREE(s->ip);
#endif

del_fvec(s->compspec);
AUBIO_FREE(s->in);
AUBIO_FREE(s->out);
AUBIO_FREE(s);
}

void aubio_fft_do(aubio_fft_t * s, const fvec_t * input, cvec_t * spectrum) {
aubio_fft_do_complex(s, input, s->compspec);
aubio_fft_get_spectrum(s->compspec, spectrum);
}

void aubio_fft_rdo(aubio_fft_t * s, const cvec_t * spectrum, fvec_t * output) {
aubio_fft_get_realimag(spectrum, s->compspec);
aubio_fft_rdo_complex(s, s->compspec, output);
}

void aubio_fft_do_complex(aubio_fft_t * s, const fvec_t * input, fvec_t * compspec) {
uint_t i;
#ifndef HAVE_MEMCPY_HACKS
for (i=0; i < s->winsize; i++) {
s->in[i] = input->data[i];
}
#else
memcpy(s->in, input->data, s->winsize * sizeof(smpl_t));
#endif /* HAVE_MEMCPY_HACKS */

#ifdef HAVE_FFTW3 // using FFTW3
fftw_execute(s->pfw);
#ifdef HAVE_COMPLEX_H
compspec->data[0] = REAL(s->specdata[0]);
for (i = 1; i < s->fft_size -1 ; i++) {
compspec->data[i] = REAL(s->specdata[i]);
compspec->data[compspec->length - i] = IMAG(s->specdata[i]);
}
compspec->data[s->fft_size-1] = REAL(s->specdata[s->fft_size-1]);
#else /* HAVE_COMPLEX_H */
for (i = 0; i < s->fft_size; i++) {
compspec->data[i] = s->specdata[i];
}
#endif /* HAVE_COMPLEX_H */

#elif defined HAVE_ACCELERATE // using ACCELERATE
// convert real data to even/odd format used in vDSP
aubio_vDSP_ctoz((aubio_DSPComplex*)s->in, 2, &s->spec, 1, s->fft_size/2);
// compute the FFT
aubio_vDSP_DFT_Execute(s->fftSetupFwd, s->spec.realp, s->spec.imagp,
s->spec.realp, s->spec.imagp);
// convert from vDSP complex split to [ r0, r1, ..., rN, iN-1, .., i2, i1]
compspec->data[0] = s->spec.realp[0];
compspec->data[s->fft_size / 2] = s->spec.imagp[0];
for (i = 1; i < s->fft_size / 2; i++) {
compspec->data[i] = s->spec.realp[i];
compspec->data[s->fft_size - i] = s->spec.imagp[i];
}
// apply scaling
smpl_t scale = 1./2.;
aubio_vDSP_vsmul(compspec->data, 1, &scale, compspec->data, 1, s->fft_size);

#elif defined HAVE_INTEL_IPP // using Intel IPP

// apply fft
aubio_ippsFFTFwd_RToCCS(s->in, (aubio_IppFloat*)s->complexOut, s->fftSpec, s->memBuffer);
// convert complex buffer to [ r0, r1, ..., rN, iN-1, .., i2, i1]
compspec->data[0] = s->complexOut[0].re;
compspec->data[s->fft_size / 2] = s->complexOut[s->fft_size / 2].re;
for (i = 1; i < s->fft_size / 2; i++) {
compspec->data[i] = s->complexOut[i].re;
compspec->data[s->fft_size - i] = s->complexOut[i].im;
}

#else // using OOURA
aubio_ooura_rdft(s->winsize, 1, s->in, s->ip, s->w);
compspec->data[0] = s->in[0];
compspec->data[s->winsize / 2] = s->in[1];
for (i = 1; i < s->fft_size - 1; i++) {
compspec->data[i] = s->in[2 * i];
compspec->data[s->winsize - i] = - s->in[2 * i + 1];
}
#endif /* using OOURA */
}

void aubio_fft_rdo_complex(aubio_fft_t * s, const fvec_t * compspec, fvec_t * output) {
uint_t i;
#ifdef HAVE_FFTW3
const smpl_t renorm = 1./(smpl_t)s->winsize;
#ifdef HAVE_COMPLEX_H
s->specdata[0] = compspec->data[0];
for (i=1; i < s->fft_size - 1; i++) {
s->specdata[i] = compspec->data[i] +
I * compspec->data[compspec->length - i];
}
s->specdata[s->fft_size - 1] = compspec->data[s->fft_size - 1];
#else
for (i=0; i < s->fft_size; i++) {
s->specdata[i] = compspec->data[i];
}
#endif
fftw_execute(s->pbw);
for (i = 0; i < output->length; i++) {
output->data[i] = s->out[i]*renorm;
}

#elif defined HAVE_ACCELERATE // using ACCELERATE
// convert from real imag [ r0, r1, ..., rN, iN-1, .., i2, i1]
// to vDSP packed format [ r0, rN, r1, i1, ..., rN-1, iN-1 ]
s->out[0] = compspec->data[0];
s->out[1] = compspec->data[s->winsize / 2];
for (i = 1; i < s->fft_size / 2; i++) {
s->out[2 * i] = compspec->data[i];
s->out[2 * i + 1] = compspec->data[s->winsize - i];
}
// convert to split complex format used in vDSP
aubio_vDSP_ctoz((aubio_DSPComplex*)s->out, 2, &s->spec, 1, s->fft_size/2);
// compute the FFT
aubio_vDSP_DFT_Execute(s->fftSetupBwd, s->spec.realp, s->spec.imagp,
s->spec.realp, s->spec.imagp);
// convert result to real output
aubio_vDSP_ztoc(&s->spec, 1, (aubio_DSPComplex*)output->data, 2, s->fft_size/2);
// apply scaling
smpl_t scale = 1.0 / s->winsize;
aubio_vDSP_vsmul(output->data, 1, &scale, output->data, 1, s->fft_size);

#elif defined HAVE_INTEL_IPP // using Intel IPP

// convert from real imag [ r0, 0, ..., rN, iN-1, .., i2, i1, iN-1] to complex format
s->complexOut[0].re = compspec->data[0];
s->complexOut[0].im = 0;
s->complexOut[s->fft_size / 2].re = compspec->data[s->fft_size / 2];
s->complexOut[s->fft_size / 2].im = 0.0;
for (i = 1; i < s->fft_size / 2; i++) {
s->complexOut[i].re = compspec->data[i];
s->complexOut[i].im = compspec->data[s->fft_size - i];
}
// apply fft
aubio_ippsFFTInv_CCSToR((const aubio_IppFloat *)s->complexOut, output->data, s->fftSpec, s->memBuffer);
// apply scaling
aubio_ippsMulC(output->data, 1.0 / s->winsize, output->data, s->fft_size);

#else // using OOURA
smpl_t scale = 2.0 / s->winsize;
s->out[0] = compspec->data[0];
s->out[1] = compspec->data[s->winsize / 2];
for (i = 1; i < s->fft_size - 1; i++) {
s->out[2 * i] = compspec->data[i];
s->out[2 * i + 1] = - compspec->data[s->winsize - i];
}
aubio_ooura_rdft(s->winsize, -1, s->out, s->ip, s->w);
for (i=0; i < s->winsize; i++) {
output->data[i] = s->out[i] * scale;
}
#endif
}

void aubio_fft_get_spectrum(const fvec_t * compspec, cvec_t * spectrum) {
aubio_fft_get_phas(compspec, spectrum);
aubio_fft_get_norm(compspec, spectrum);
}

void aubio_fft_get_realimag(const cvec_t * spectrum, fvec_t * compspec) {
aubio_fft_get_imag(spectrum, compspec);
aubio_fft_get_real(spectrum, compspec);
}

void aubio_fft_get_phas(const fvec_t * compspec, cvec_t * spectrum) {
uint_t i;
if (compspec->data[0] < 0) {
spectrum->phas[0] = PI;
} else {
spectrum->phas[0] = 0.;
}
#if defined(HAVE_INTEL_IPP)
// convert from real imag [ r0, r1, ..., rN, iN-1, ..., i2, i1, i0]
// to [ r0, r1, ..., rN, i0, i1, i2, ..., iN-1]
for (i = 1; i < spectrum->length / 2; i++) {
ELEM_SWAP(compspec->data[compspec->length - i],
compspec->data[spectrum->length + i - 1]);
}
aubio_ippsAtan2(compspec->data + spectrum->length,
compspec->data + 1, spectrum->phas + 1, spectrum->length - 1);
// revert the imaginary part back again
for (i = 1; i < spectrum->length / 2; i++) {
ELEM_SWAP(compspec->data[spectrum->length + i - 1],
compspec->data[compspec->length - i]);
}
#else
for (i=1; i < spectrum->length - 1; i++) {
spectrum->phas[i] = ATAN2(compspec->data[compspec->length-i],
compspec->data[i]);
}
#endif
#ifdef HAVE_FFTW3
// for even length only, make sure last element is 0 or PI
if (2 * (compspec->length / 2) == compspec->length) {
#endif
if (compspec->data[compspec->length/2] < 0) {
spectrum->phas[spectrum->length - 1] = PI;
} else {
spectrum->phas[spectrum->length - 1] = 0.;
}
#ifdef HAVE_FFTW3
} else {
i = spectrum->length - 1;
spectrum->phas[i] = ATAN2(compspec->data[compspec->length-i],
compspec->data[i]);
}
#endif
}

void aubio_fft_get_norm(const fvec_t * compspec, cvec_t * spectrum) {
uint_t i = 0;
spectrum->norm[0] = ABS(compspec->data[0]);
for (i=1; i < spectrum->length - 1; i++) {
spectrum->norm[i] = SQRT(SQR(compspec->data[i])
+ SQR(compspec->data[compspec->length - i]) );
}
#ifdef HAVE_FFTW3
// for even length, make sure last element is > 0
if (2 * (compspec->length / 2) == compspec->length) {
#endif
spectrum->norm[spectrum->length-1] =
ABS(compspec->data[compspec->length/2]);
#ifdef HAVE_FFTW3
} else {
i = spectrum->length - 1;
spectrum->norm[i] = SQRT(SQR(compspec->data[i])
+ SQR(compspec->data[compspec->length - i]) );
}
#endif
}

void aubio_fft_get_imag(const cvec_t * spectrum, fvec_t * compspec) {
uint_t i;
for (i = 1; i < ( compspec->length + 1 ) / 2 /*- 1 + 1*/; i++) {
compspec->data[compspec->length - i] =
spectrum->norm[i]*SIN(spectrum->phas[i]);
}
}

void aubio_fft_get_real(const cvec_t * spectrum, fvec_t * compspec) {
uint_t i;
for (i = 0; i < compspec->length / 2 + 1; i++) {
compspec->data[i] =
spectrum->norm[i]*COS(spectrum->phas[i]);
}
}

+ 144
- 0
deps/aubio/src/spectral/fft.h View File

@@ -0,0 +1,144 @@
/*
Copyright (C) 2003-2013 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/** \file

Fast Fourier Transform

Depending on how aubio was compiled, FFT are computed using one of:
- [Ooura](http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html)
- [FFTW3](http://www.fftw.org)
- [vDSP](https://developer.apple.com/library/mac/#documentation/Accelerate/Reference/vDSPRef/Reference/reference.html)

\example spectral/test-fft.c

*/

#ifndef AUBIO_FFT_H
#define AUBIO_FFT_H

#ifdef __cplusplus
extern "C" {
#endif

/** FFT object

This object computes forward and backward FFTs.

*/
typedef struct _aubio_fft_t aubio_fft_t;

/** create new FFT computation object

\param size length of the FFT

*/
aubio_fft_t * new_aubio_fft (uint_t size);
/** delete FFT object

\param s fft object as returned by new_aubio_fft

*/
void del_aubio_fft(aubio_fft_t * s);

/** compute forward FFT

\param s fft object as returned by new_aubio_fft
\param input input signal
\param spectrum output spectrum

*/
void aubio_fft_do (aubio_fft_t *s, const fvec_t * input, cvec_t * spectrum);
/** compute backward (inverse) FFT

\param s fft object as returned by new_aubio_fft
\param spectrum input spectrum
\param output output signal

*/
void aubio_fft_rdo (aubio_fft_t *s, const cvec_t * spectrum, fvec_t * output);

/** compute forward FFT

\param s fft object as returned by new_aubio_fft
\param input real input signal
\param compspec complex output fft real/imag

*/
void aubio_fft_do_complex (aubio_fft_t *s, const fvec_t * input, fvec_t * compspec);
/** compute backward (inverse) FFT from real/imag

\param s fft object as returned by new_aubio_fft
\param compspec real/imag input fft array
\param output real output array

*/
void aubio_fft_rdo_complex (aubio_fft_t *s, const fvec_t * compspec, fvec_t * output);

/** convert real/imag spectrum to norm/phas spectrum

\param compspec real/imag input fft array
\param spectrum cvec norm/phas output array

*/
void aubio_fft_get_spectrum(const fvec_t * compspec, cvec_t * spectrum);
/** convert real/imag spectrum to norm/phas spectrum

\param compspec real/imag input fft array
\param spectrum cvec norm/phas output array

*/
void aubio_fft_get_realimag(const cvec_t * spectrum, fvec_t * compspec);

/** compute phas spectrum from real/imag parts

\param compspec real/imag input fft array
\param spectrum cvec norm/phas output array

*/
void aubio_fft_get_phas(const fvec_t * compspec, cvec_t * spectrum);
/** compute imaginary part from the norm/phas cvec

\param spectrum norm/phas input array
\param compspec real/imag output fft array

*/
void aubio_fft_get_imag(const cvec_t * spectrum, fvec_t * compspec);

/** compute norm component from real/imag parts

\param compspec real/imag input fft array
\param spectrum cvec norm/phas output array

*/
void aubio_fft_get_norm(const fvec_t * compspec, cvec_t * spectrum);
/** compute real part from norm/phas components

\param spectrum norm/phas input array
\param compspec real/imag output fft array

*/
void aubio_fft_get_real(const cvec_t * spectrum, fvec_t * compspec);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_FFT_H */

+ 224
- 0
deps/aubio/src/spectral/phasevoc.c View File

@@ -0,0 +1,224 @@
/*
Copyright (C) 2003-2014 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "fvec.h"
#include "cvec.h"
#include "mathutils.h"
#include "spectral/fft.h"
#include "spectral/phasevoc.h"

/** phasevocoder internal object */
struct _aubio_pvoc_t {
uint_t win_s; /** grain length */
uint_t hop_s; /** overlap step */
aubio_fft_t * fft; /** fft object */
fvec_t * data; /** current input grain, [win_s] frames */
fvec_t * dataold; /** memory of past grain, [win_s-hop_s] frames */
fvec_t * synth; /** current output grain, [win_s] frames */
fvec_t * synthold; /** memory of past grain, [win_s-hop_s] frames */
fvec_t * w; /** grain window [win_s] */
uint_t start; /** where to start additive synthesis */
uint_t end; /** where to end it */
smpl_t scale; /** scaling factor for synthesis */
uint_t end_datasize; /** size of memory to end */
uint_t hop_datasize; /** size of memory to hop_s */
};


/** returns data and dataold slided by hop_s */
static void aubio_pvoc_swapbuffers(aubio_pvoc_t *pv, const fvec_t *new);

/** do additive synthesis from 'old' and 'cur' */
static void aubio_pvoc_addsynth(aubio_pvoc_t *pv, fvec_t * synthnew);

void aubio_pvoc_do(aubio_pvoc_t *pv, const fvec_t * datanew, cvec_t *fftgrain) {
/* slide */
aubio_pvoc_swapbuffers(pv, datanew);
/* windowing */
fvec_weight(pv->data, pv->w);
/* shift */
fvec_shift(pv->data);
/* calculate fft */
aubio_fft_do (pv->fft,pv->data,fftgrain);
}

void aubio_pvoc_rdo(aubio_pvoc_t *pv,cvec_t * fftgrain, fvec_t * synthnew) {
/* calculate rfft */
aubio_fft_rdo(pv->fft,fftgrain,pv->synth);
/* unshift */
fvec_ishift(pv->synth);
/* windowing */
// if overlap = 50%, do not apply window (identity)
if (pv->hop_s * 2 < pv->win_s) {
fvec_weight(pv->synth, pv->w);
}
/* additive synthesis */
aubio_pvoc_addsynth(pv, synthnew);
}

aubio_pvoc_t * new_aubio_pvoc (uint_t win_s, uint_t hop_s) {
aubio_pvoc_t * pv = AUBIO_NEW(aubio_pvoc_t);

/* if (win_s < 2*hop_s) {
AUBIO_WRN("Hop size bigger than half the window size!\n");
} */

if ((sint_t)hop_s < 1) {
AUBIO_ERR("pvoc: got hop_size %d, but can not be < 1\n", hop_s);
goto beach;
} else if ((sint_t)win_s < 2) {
AUBIO_ERR("pvoc: got buffer_size %d, but can not be < 2\n", win_s);
goto beach;
} else if (win_s < hop_s) {
AUBIO_ERR("pvoc: hop size (%d) is larger than win size (%d)\n", hop_s, win_s);
goto beach;
}

pv->fft = new_aubio_fft (win_s);
if (pv->fft == NULL) {
goto beach;
}

/* remember old */
pv->data = new_fvec (win_s);
pv->synth = new_fvec (win_s);

/* new input output */
if (win_s > hop_s) {
pv->dataold = new_fvec (win_s-hop_s);
pv->synthold = new_fvec (win_s-hop_s);
} else {
pv->dataold = new_fvec (1);
pv->synthold = new_fvec (1);
}
pv->w = new_aubio_window ("hanningz", win_s);

pv->hop_s = hop_s;
pv->win_s = win_s;

/* more than 50% overlap, overlap anyway */
if (win_s < 2 * hop_s) pv->start = 0;
/* less than 50% overlap, reset latest grain trail */
else pv->start = win_s - hop_s - hop_s;

if (win_s > hop_s) pv->end = win_s - hop_s;
else pv->end = 0;

pv->end_datasize = pv->end * sizeof(smpl_t);
pv->hop_datasize = pv->hop_s * sizeof(smpl_t);

// for reconstruction with 75% overlap
if (win_s == hop_s * 4) {
pv->scale = 2./3.;
} else if (win_s == hop_s * 8) {
pv->scale = 1./3.;
} else if (win_s == hop_s * 2) {
pv->scale = 1.;
} else {
pv->scale = .5;
}

return pv;

beach:
AUBIO_FREE (pv);
return NULL;
}

uint_t aubio_pvoc_set_window(aubio_pvoc_t *pv, const char_t *window) {
return fvec_set_window(pv->w, (char_t*)window);
}

void del_aubio_pvoc(aubio_pvoc_t *pv) {
del_fvec(pv->data);
del_fvec(pv->synth);
del_fvec(pv->dataold);
del_fvec(pv->synthold);
del_fvec(pv->w);
del_aubio_fft(pv->fft);
AUBIO_FREE(pv);
}

static void aubio_pvoc_swapbuffers(aubio_pvoc_t *pv, const fvec_t *new)
{
/* some convenience pointers */
smpl_t * data = pv->data->data;
smpl_t * dataold = pv->dataold->data;
smpl_t * datanew = new->data;
#ifndef HAVE_MEMCPY_HACKS
uint_t i;
for (i = 0; i < pv->end; i++)
data[i] = dataold[i];
for (i = 0; i < pv->hop_s; i++)
data[pv->end + i] = datanew[i];
for (i = 0; i < pv->end; i++)
dataold[i] = data[i + pv->hop_s];
#else
memcpy(data, dataold, pv->end_datasize);
data += pv->end;
memcpy(data, datanew, pv->hop_datasize);
data -= pv->end;
data += pv->hop_s;
memcpy(dataold, data, pv->end_datasize);
#endif
}

static void aubio_pvoc_addsynth(aubio_pvoc_t *pv, fvec_t *synth_new)
{
uint_t i;
/* some convenience pointers */
smpl_t * synth = pv->synth->data;
smpl_t * synthold = pv->synthold->data;
smpl_t * synthnew = synth_new->data;

/* put new result in synthnew */
for (i = 0; i < pv->hop_s; i++)
synthnew[i] = synth[i] * pv->scale;

/* no overlap, nothing else to do */
if (pv->end == 0) return;

/* add new synth to old one */
for (i = 0; i < pv->hop_s; i++)
synthnew[i] += synthold[i];

/* shift synthold */
for (i = 0; i < pv->start; i++)
synthold[i] = synthold[i + pv->hop_s];

/* erase last frame in synthold */
for (i = pv->start; i < pv->end; i++)
synthold[i] = 0.;

/* additive synth */
for (i = 0; i < pv->end; i++)
synthold[i] += synth[i + pv->hop_s] * pv->scale;
}

uint_t aubio_pvoc_get_win(aubio_pvoc_t* pv)
{
return pv->win_s;
}

uint_t aubio_pvoc_get_hop(aubio_pvoc_t* pv)
{
return pv->hop_s;
}

+ 113
- 0
deps/aubio/src/spectral/phasevoc.h View File

@@ -0,0 +1,113 @@
/*
Copyright (C) 2003-2013 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

/** \file

Phase vocoder object

This object implements a phase vocoder. The spectral frames are computed
using a HanningZ window and a swapped version of the signal to simplify the
phase relationships across frames. The window sizes and overlap are specified
at creation time.

\example spectral/test-phasevoc.c

*/

#ifndef AUBIO_PHASEVOC_H
#define AUBIO_PHASEVOC_H

#ifdef __cplusplus
extern "C" {
#endif

/** phasevocoder object */
typedef struct _aubio_pvoc_t aubio_pvoc_t;

/** create phase vocoder object

\param win_s size of analysis buffer (and length the FFT transform)
\param hop_s step size between two consecutive analysis

*/
aubio_pvoc_t * new_aubio_pvoc (uint_t win_s, uint_t hop_s);
/** delete phase vocoder object

\param pv phase vocoder object as returned by new_aubio_pvoc

*/
void del_aubio_pvoc(aubio_pvoc_t *pv);

/** compute spectral frame

This function accepts an input vector of size [hop_s]. The
analysis buffer is rotated and filled with the new data. After windowing of
this signal window, the Fourier transform is computed and returned in
fftgrain as two vectors, magnitude and phase.

\param pv phase vocoder object as returned by new_aubio_pvoc
\param in new input signal (hop_s long)
\param fftgrain output spectral frame

*/
void aubio_pvoc_do(aubio_pvoc_t *pv, const fvec_t *in, cvec_t * fftgrain);
/** compute signal from spectral frame

This function takes an input spectral frame fftgrain of size
[buf_s] and computes its inverse Fourier transform. Overlap-add
synthesis is then computed using the previously synthetised frames, and the
output stored in out.

\param pv phase vocoder object as returned by new_aubio_pvoc
\param fftgrain input spectral frame
\param out output signal (hop_s long)

*/
void aubio_pvoc_rdo(aubio_pvoc_t *pv, cvec_t * fftgrain, fvec_t *out);

/** get window size

\param pv phase vocoder to get the window size from

*/
uint_t aubio_pvoc_get_win(aubio_pvoc_t* pv);

/** get hop size

\param pv phase vocoder to get the hop size from

*/
uint_t aubio_pvoc_get_hop(aubio_pvoc_t* pv);

/** set window type

\param pv phase vocoder to set the window type
\param window_type a string representing a window

\return 0 if successful, non-zero otherwise

*/
uint_t aubio_pvoc_set_window(aubio_pvoc_t *pv, const char_t *window_type);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_PHASEVOC_H */

+ 262
- 0
deps/aubio/src/temporal/a_weighting.c View File

@@ -0,0 +1,262 @@
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "types.h"
#include "fvec.h"
#include "lvec.h"
#include "temporal/filter.h"
#include "temporal/a_weighting.h"

uint_t
aubio_filter_set_a_weighting (aubio_filter_t * f, uint_t samplerate)
{
uint_t order; lsmp_t *a, *b; lvec_t *as, *bs;

if ((sint_t)samplerate <= 0) {
AUBIO_ERROR("aubio_filter: failed setting A-weighting with samplerate %d\n", samplerate);
return AUBIO_FAIL;
}
if (f == NULL) {
AUBIO_ERROR("aubio_filter: failed setting A-weighting with filter NULL\n");
return AUBIO_FAIL;
}

order = aubio_filter_get_order (f);
if (order != 7) {
AUBIO_ERROR ("aubio_filter: order of A-weighting filter must be 7, not %d\n", order);
return 1;
}

aubio_filter_set_samplerate (f, samplerate);
bs = aubio_filter_get_feedforward (f);
as = aubio_filter_get_feedback (f);
b = bs->data, a = as->data;

/* select coefficients according to sampling frequency */
switch (samplerate) {

case 8000:
b[0] = 6.306209468238731519207362907764036208391189575195312500e-01;
b[1] = -1.261241893647746525886077506584115326404571533203125000e+00;
b[2] = -6.306209468238730408984338282607495784759521484375000000e-01;
b[3] = 2.522483787295493051772155013168230652809143066406250000e+00;
b[4] = -6.306209468238730408984338282607495784759521484375000000e-01;
b[5] = -1.261241893647746525886077506584115326404571533203125000e+00;
b[6] = 6.306209468238731519207362907764036208391189575195312500e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -2.128467193009123015201566886389628052711486816406250000e+00;
a[2] = 2.948668980101234460278192273108288645744323730468750000e-01;
a[3] = 1.824183830735050637628091863007284700870513916015625000e+00;
a[4] = -8.056628943119792385374466903158463537693023681640625000e-01;
a[5] = -3.947497982842933517133587884018197655677795410156250000e-01;
a[6] = 2.098548546080332977137317129745497368276119232177734375e-01;
break;

case 11025:
b[0] = 6.014684165832374640459079273568931967020034790039062500e-01;
b[1] = -1.202936833166475150136420779745094478130340576171875000e+00;
b[2] = -6.014684165832373530236054648412391543388366699218750000e-01;
b[3] = 2.405873666332950300272841559490188956260681152343750000e+00;
b[4] = -6.014684165832373530236054648412391543388366699218750000e-01;
b[5] = -1.202936833166475150136420779745094478130340576171875000e+00;
b[6] = 6.014684165832374640459079273568931967020034790039062500e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -2.463578747722854345170162559952586889266967773437500000e+00;
a[2] = 1.096799662705210121060872552334330976009368896484375000e+00;
a[3] = 1.381222210556041218865175324026495218276977539062500000e+00;
a[4] = -1.013875696476876031582037285261321812868118286132812500e+00;
a[5] = -1.839132734476921215982514468123554252088069915771484375e-01;
a[6] = 1.833526393172056623281918064094497822225093841552734375e-01;
break;

case 16000:
b[0] = 5.314898298235570806014038680586963891983032226562500000e-01;
b[1] = -1.062979659647114161202807736117392778396606445312500000e+00;
b[2] = -5.314898298235570806014038680586963891983032226562500000e-01;
b[3] = 2.125959319294228322405615472234785556793212890625000000e+00;
b[4] = -5.314898298235570806014038680586963891983032226562500000e-01;
b[5] = -1.062979659647114161202807736117392778396606445312500000e+00;
b[6] = 5.314898298235570806014038680586963891983032226562500000e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -2.867832572992162987191022693878039717674255371093750000e+00;
a[2] = 2.221144410202312347024644623161293566226959228515625000e+00;
a[3] = 4.552683347886614662058946123579517006874084472656250000e-01;
a[4] = -9.833868636162828025248927588108927011489868164062500000e-01;
a[5] = 5.592994142413361402521587706360151059925556182861328125e-02;
a[6] = 1.188781038285612462468421313133148942142724990844726562e-01;
break;

case 22050:
b[0] = 4.492998504299193784916610638902056962251663208007812500e-01;
b[1] = -8.985997008598388680056245902960654348134994506835937500e-01;
b[2] = -4.492998504299192674693586013745516538619995117187500000e-01;
b[3] = 1.797199401719677958055854105623438954353332519531250000e+00;
b[4] = -4.492998504299192674693586013745516538619995117187500000e-01;
b[5] = -8.985997008598388680056245902960654348134994506835937500e-01;
b[6] = 4.492998504299193784916610638902056962251663208007812500e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -3.229078805225074955131958631682209670543670654296875000e+00;
a[2] = 3.354494881236033787530459449044428765773773193359375000e+00;
a[3] = -7.317843680657351024265722116979304701089859008789062500e-01;
a[4] = -6.271627581807257545420952737913466989994049072265625000e-01;
a[5] = 1.772142005020879151899748649157118052244186401367187500e-01;
a[6] = 5.631716697383508385410522123493137769401073455810546875e-02;
break;

case 24000:
b[0] = 4.256263892891054001488271296693710610270500183105468750e-01;
b[1] = -8.512527785782106892753517968230880796909332275390625000e-01;
b[2] = -4.256263892891054556599783609271980822086334228515625000e-01;
b[3] = 1.702505557156421378550703593646176159381866455078125000e+00;
b[4] = -4.256263892891054556599783609271980822086334228515625000e-01;
b[5] = -8.512527785782106892753517968230880796909332275390625000e-01;
b[6] = 4.256263892891054001488271296693710610270500183105468750e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -3.325996004241962733516402295208536088466644287109375000e+00;
a[2] = 3.677161079286316969216841243905946612358093261718750000e+00;
a[3] = -1.106476076828482035807610373012721538543701171875000000e+00;
a[4] = -4.726706734908718843257702246773988008499145507812500000e-01;
a[5] = 1.861941760230954034938122276798821985721588134765625000e-01;
a[6] = 4.178771337829546850262119050967157818377017974853515625e-02;
break;

case 32000:
b[0] = 3.434583386824304196416335344110848382115364074707031250e-01;
b[1] = -6.869166773648609503055695313378237187862396240234375000e-01;
b[2] = -3.434583386824303641304823031532578170299530029296875000e-01;
b[3] = 1.373833354729721900611139062675647437572479248046875000e+00;
b[4] = -3.434583386824303641304823031532578170299530029296875000e-01;
b[5] = -6.869166773648609503055695313378237187862396240234375000e-01;
b[6] = 3.434583386824304196416335344110848382115364074707031250e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -3.656446043233668063976438133977353572845458984375000000e+00;
a[2] = 4.831468450652579349480220116674900054931640625000000000e+00;
a[3] = -2.557597496581567764195597192156128585338592529296875000e+00;
a[4] = 2.533680394205302666144064005493419244885444641113281250e-01;
a[5] = 1.224430322452567110325105659285327419638633728027343750e-01;
a[6] = 6.764072168342137418572956875095769646577537059783935547e-03;
break;

case 44100:
b[0] = 2.557411252042575133813784304948057979345321655273437500e-01;
b[1] = -5.114822504085150267627568609896115958690643310546875000e-01;
b[2] = -2.557411252042575133813784304948057979345321655273437500e-01;
b[3] = 1.022964500817030053525513721979223191738128662109375000e+00;
b[4] = -2.557411252042575133813784304948057979345321655273437500e-01;
b[5] = -5.114822504085150267627568609896115958690643310546875000e-01;
b[6] = 2.557411252042575133813784304948057979345321655273437500e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -4.019576181115832369528106937650591135025024414062500000e+00;
a[2] = 6.189406442920693862674852425698190927505493164062500000e+00;
a[3] = -4.453198903544116404873420833609998226165771484375000000e+00;
a[4] = 1.420842949621876627475103305187076330184936523437500000e+00;
a[5] = -1.418254738303044160119270600262098014354705810546875000e-01;
a[6] = 4.351177233495117681327801761881346465088427066802978516e-03;
break;

case 48000:
b[0] = 2.343017922995132285013397677175817079842090606689453125e-01;
b[1] = -4.686035845990265125138307666929904371500015258789062500e-01;
b[2] = -2.343017922995132007457641520886681973934173583984375000e-01;
b[3] = 9.372071691980530250276615333859808743000030517578125000e-01;
b[4] = -2.343017922995132007457641520886681973934173583984375000e-01;
b[5] = -4.686035845990265125138307666929904371500015258789062500e-01;
b[6] = 2.343017922995132285013397677175817079842090606689453125e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -4.113043408775872045168853219365701079368591308593750000e+00;
a[2] = 6.553121752655050258340452273841947317123413085937500000e+00;
a[3] = -4.990849294163385074796224216697737574577331542968750000e+00;
a[4] = 1.785737302937575599059982778271660208702087402343750000e+00;
a[5] = -2.461905953194876706113802811159985139966011047363281250e-01;
a[6] = 1.122425003323123879339640041052916785702109336853027344e-02;
break;

case 88200:
b[0] = 1.118876366882113199130444058937428053468465805053710938e-01;
b[1] = -2.237752733764226120705131961585721001029014587402343750e-01;
b[2] = -1.118876366882113337908322137081995606422424316406250000e-01;
b[3] = 4.475505467528452241410263923171442002058029174804687500e-01;
b[4] = -1.118876366882113337908322137081995606422424316406250000e-01;
b[5] = -2.237752733764226120705131961585721001029014587402343750e-01;
b[6] = 1.118876366882113199130444058937428053468465805053710938e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -4.726938565651158441482948546763509511947631835937500000e+00;
a[2] = 9.076897983832765248735086061060428619384765625000000000e+00;
a[3] = -9.014855113464800950850985827855765819549560546875000000e+00;
a[4] = 4.852772261031594425162438710685819387435913085937500000e+00;
a[5] = -1.333877820398965186043938047077972441911697387695312500e+00;
a[6] = 1.460012549591642450064199465487035922706127166748046875e-01;
break;

case 96000:
b[0] = 9.951898975972744976203898659150581806898117065429687500e-02;
b[1] = -1.990379795194548995240779731830116361379623413085937500e-01;
b[2] = -9.951898975972744976203898659150581806898117065429687500e-02;
b[3] = 3.980759590389097990481559463660232722759246826171875000e-01;
b[4] = -9.951898975972744976203898659150581806898117065429687500e-02;
b[5] = -1.990379795194548995240779731830116361379623413085937500e-01;
b[6] = 9.951898975972744976203898659150581806898117065429687500e-02;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -4.802203044225376693532325589330866932868957519531250000e+00;
a[2] = 9.401807218627226347962277941405773162841796875000000000e+00;
a[3] = -9.566143943569164420637207513209432363510131835937500000e+00;
a[4] = 5.309775930392619081032989925006404519081115722656250000e+00;
a[5] = -1.517333360452622237346531619550660252571105957031250000e+00;
a[6] = 1.740971994228911745583587844521389342844486236572265625e-01;
break;

case 192000:
b[0] = 3.433213424548713782469278044118254911154508590698242188e-02;
b[1] = -6.866426849097426177159775306790834292769432067871093750e-02;
b[2] = -3.433213424548714476358668434841092675924301147460937500e-02;
b[3] = 1.373285369819485235431955061358166858553886413574218750e-01;
b[4] = -3.433213424548714476358668434841092675924301147460937500e-02;
b[5] = -6.866426849097426177159775306790834292769432067871093750e-02;
b[6] = 3.433213424548713782469278044118254911154508590698242188e-02;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -5.305923689674640009172890131594613194465637207031250000e+00;
a[2] = 1.165952437466175695135461864992976188659667968750000000e+01;
a[3] = -1.357560092700591525272102444432675838470458984375000000e+01;
a[4] = 8.828906932824192921316353022120893001556396484375000000e+00;
a[5] = -3.039490120988216581565666274400427937507629394531250000e+00;
a[6] = 4.325834301870381537469256727490574121475219726562500000e-01;
break;

default:
AUBIO_ERROR ("sampling rate of A-weighting filter is %d, should be one of\
8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 88200, 96000, 192000.\n", samplerate);
return 1;

}

return 0;
}

aubio_filter_t *
new_aubio_filter_a_weighting (uint_t samplerate)
{
aubio_filter_t *f = new_aubio_filter (7);
if (aubio_filter_set_a_weighting(f,samplerate) != AUBIO_OK) {
del_aubio_filter(f);
return NULL;
}
return f;
}

+ 88
- 0
deps/aubio/src/temporal/a_weighting.h View File

@@ -0,0 +1,88 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef AUBIO_FILTER_A_DESIGN_H
#define AUBIO_FILTER_A_DESIGN_H

/** \file

A-weighting filter coefficients

This file creates an A-weighting digital filter, which reduces low and high
frequencies and enhance the middle ones to reflect the ability of the human
hearing.

The implementation is based on the following standard:

- IEC/CD 1672: Electroacoustics-Sound Level Meters, IEC, Geneva, Nov. 1996,
for A- and C-weighting filters.

See also:

- <a href="http://en.wikipedia.org/wiki/A-weighting">A-Weighting on
Wikipedia</a>
- <a href="http://en.wikipedia.org/wiki/Weighting_filter">Weighting filter on
Wikipedia</a>
- <a href="http://www.mathworks.com/matlabcentral/fileexchange/69">Christophe
Couvreur's 'octave' toolbox</a>

The coefficients in this file have been computed using Christophe Couvreur's
scripts in octave 3.0 (debian package 1:3.0.5-6+b2 with octave-signal
1.0.9-1+b1 on i386), with <pre> [b, a] = adsign(1/Fs) </pre> for various
sampling frequencies (8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000,
88200, 96000, and 192000 Hz).

The sampling frequency should normally be higher than 20kHz, but most common
file sampling rates have been included for completeness.

\example temporal/test-a_weighting.c

*/

#ifdef __cplusplus
extern "C" {
#endif

/** create new A-design filter

\param samplerate sampling frequency of the signal to filter. Should be one of
8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 88200, 96000, and
192000 Hz

\return a new filter object

*/
aubio_filter_t *new_aubio_filter_a_weighting (uint_t samplerate);

/** set feedback and feedforward coefficients of a A-weighting filter

\param f filter object to get coefficients from
\param samplerate sampling frequency of the signal to filter. Should be one of
8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 88200, 96000, and
192000 Hz

*/
uint_t aubio_filter_set_a_weighting (aubio_filter_t * f, uint_t samplerate);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_FILTER_A_DESIGN_H */

+ 54
- 0
deps/aubio/src/temporal/biquad.c View File

@@ -0,0 +1,54 @@
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "fvec.h"
#include "lvec.h"
#include "temporal/filter.h"
#include "temporal/biquad.h"

uint_t
aubio_filter_set_biquad (aubio_filter_t * f, lsmp_t b0, lsmp_t b1, lsmp_t b2,
lsmp_t a1, lsmp_t a2)
{
uint_t order = aubio_filter_get_order (f);
lvec_t *bs = aubio_filter_get_feedforward (f);
lvec_t *as = aubio_filter_get_feedback (f);

if (order != 3) {
AUBIO_ERROR ("order of biquad filter must be 3, not %d\n", order);
return AUBIO_FAIL;
}
bs->data[0] = b0;
bs->data[1] = b1;
bs->data[2] = b2;
as->data[0] = 1.;
as->data[1] = a1;
as->data[2] = a2;
return AUBIO_OK;
}

aubio_filter_t *
new_aubio_filter_biquad (lsmp_t b0, lsmp_t b1, lsmp_t b2, lsmp_t a1, lsmp_t a2)
{
aubio_filter_t *f = new_aubio_filter (3);
aubio_filter_set_biquad (f, b0, b1, b2, a1, a2);
return f;
}

+ 75
- 0
deps/aubio/src/temporal/biquad.h View File

@@ -0,0 +1,75 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef AUBIO_FILTER_BIQUAD_H
#define AUBIO_FILTER_BIQUAD_H

/** \file

Second order Infinite Impulse Response filter

This file implements a normalised biquad filter (second order IIR):

\f$ y[n] = b_0 x[n] + b_1 x[n-1] + b_2 x[n-2] - a_1 y[n-1] - a_2 y[n-2] \f$

The filtfilt version runs the filter twice, forward and backward, to
compensate the phase shifting of the forward operation.

See also <a href="http://en.wikipedia.org/wiki/Digital_biquad_filter">Digital
biquad filter</a> on wikipedia.

\example temporal/test-biquad.c

*/

#ifdef __cplusplus
extern "C" {
#endif

/** set coefficients of a biquad filter

\param f filter object as returned by new_aubio_filter()
\param b0 forward filter coefficient
\param b1 forward filter coefficient
\param b2 forward filter coefficient
\param a1 feedback filter coefficient
\param a2 feedback filter coefficient

*/
uint_t aubio_filter_set_biquad (aubio_filter_t * f, lsmp_t b0, lsmp_t b1,
lsmp_t b2, lsmp_t a1, lsmp_t a2);

/** create biquad filter with `b0`, `b1`, `b2`, `a1`, `a2` coeffs

\param b0 forward filter coefficient
\param b1 forward filter coefficient
\param b2 forward filter coefficient
\param a1 feedback filter coefficient
\param a2 feedback filter coefficient

*/
aubio_filter_t *new_aubio_filter_biquad (lsmp_t b0, lsmp_t b1, lsmp_t b2,
lsmp_t a1, lsmp_t a2);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_FILTER_BIQUAD_H */

+ 217
- 0
deps/aubio/src/temporal/c_weighting.c View File

@@ -0,0 +1,217 @@
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "types.h"
#include "fvec.h"
#include "lvec.h"
#include "temporal/filter.h"
#include "temporal/c_weighting.h"

uint_t
aubio_filter_set_c_weighting (aubio_filter_t * f, uint_t samplerate)
{
uint_t order; lsmp_t *a, *b; lvec_t *as, *bs;

if ((sint_t)samplerate <= 0) {
AUBIO_ERROR("aubio_filter: failed setting C-weighting with samplerate %d\n", samplerate);
return AUBIO_FAIL;
}
if (f == NULL) {
AUBIO_ERROR("aubio_filter: failed setting C-weighting with filter NULL\n");
return AUBIO_FAIL;
}

order = aubio_filter_get_order (f);
if ( order != 5 ) {
AUBIO_ERROR ("aubio_filter: order of C-weighting filter must be 5, not %d\n", order);
return 1;
}

aubio_filter_set_samplerate (f, samplerate);
bs = aubio_filter_get_feedforward (f);
as = aubio_filter_get_feedback (f);
b = bs->data, a = as->data;

/* select coefficients according to sampling frequency */
switch (samplerate) {

case 8000:
b[0] = 6.782173932405135552414776611840352416038513183593750000e-01;
b[1] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[2] = -1.356434786481027110482955322368070483207702636718750000e+00;
b[3] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[4] = 6.782173932405135552414776611840352416038513183593750000e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -6.589092811505605773447769024642184376716613769531250000e-01;
a[2] = -1.179445664897062595599663836765103042125701904296875000e+00;
a[3] = 4.243329729632123736848825501510873436927795410156250000e-01;
a[4] = 4.147270002091348328754349950031610205769538879394531250e-01;
break;

case 11025:
b[0] = 6.002357155402652244546857218665536493062973022460937500e-01;
b[1] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[2] = -1.200471431080530448909371443733107298612594604492187500e+00;
b[3] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[4] = 6.002357155402652244546857218665536493062973022460937500e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -8.705602141280316397242700077185872942209243774414062500e-01;
a[2] = -9.037199507150940336330791069485712796449661254882812500e-01;
a[3] = 4.758433040929530011275971901341108605265617370605468750e-01;
a[4] = 2.987653956523212417373258631414500996470451354980468750e-01;
break;

case 16000:
b[0] = 4.971057193673903418229542694461997598409652709960937500e-01;
b[1] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[2] = -9.942114387347806836459085388923995196819305419921875000e-01;
b[3] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[4] = 4.971057193673903418229542694461997598409652709960937500e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -1.162322939286873690889478893950581550598144531250000000e+00;
a[2] = -4.771961355734982701548574368644040077924728393554687500e-01;
a[3] = 4.736145114694704227886745684372726827859878540039062500e-01;
a[4] = 1.660337524309875301131711466950946487486362457275390625e-01;
break;

case 22050:
b[0] = 4.033381299002754549754001800465630367398262023925781250e-01;
b[1] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[2] = -8.066762598005509099508003600931260734796524047851562500e-01;
b[3] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[4] = 4.033381299002754549754001800465630367398262023925781250e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -1.449545371157945350404361306573264300823211669921875000e+00;
a[2] = -1.030104190885922088583015465701464563608169555664062500e-02;
a[3] = 3.881857047554073680828423675848171114921569824218750000e-01;
a[4] = 7.171589940116777917022972133054281584918498992919921875e-02;
break;

case 24000:
b[0] = 3.786678621924967069745093795063439756631851196289062500e-01;
b[1] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[2] = -7.573357243849934139490187590126879513263702392578125000e-01;
b[3] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[4] = 3.786678621924967069745093795063439756631851196289062500e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -1.529945307555420797029910318087786436080932617187500000e+00;
a[2] = 1.283553182116208835061854642844991758465766906738281250e-01;
a[3] = 3.494608072385725350272878131363540887832641601562500000e-01;
a[4] = 5.217291949300089520802359288609295617789030075073242188e-02;
break;

case 32000:
b[0] = 2.977986488230693340462096330156782642006874084472656250e-01;
b[1] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[2] = -5.955972976461386680924192660313565284013748168945312500e-01;
b[3] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[4] = 2.977986488230693340462096330156782642006874084472656250e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -1.812455387128179218336754274787381291389465332031250000e+00;
a[2] = 6.425013281155662614452239722595550119876861572265625000e-01;
a[3] = 1.619857574578579817448087396769551560282707214355468750e-01;
a[4] = 7.987649713547682189807019881300220731645822525024414062e-03;
break;

case 44100:
b[0] = 2.170085619492190254220531642204150557518005371093750000e-01;
b[1] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[2] = -4.340171238984380508441063284408301115036010742187500000e-01;
b[3] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[4] = 2.170085619492190254220531642204150557518005371093750000e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -2.134674963687040794013682898366823792457580566406250000e+00;
a[2] = 1.279333533236062692139967111870646476745605468750000000e+00;
a[3] = -1.495598460893957093453821016737492755055427551269531250e-01;
a[4] = 4.908700174624683852664386307651511742733418941497802734e-03;
break;

case 48000:
b[0] = 1.978871200263932761398422144338837824761867523193359375e-01;
b[1] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[2] = -3.957742400527865522796844288677675649523735046386718750e-01;
b[3] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[4] = 1.978871200263932761398422144338837824761867523193359375e-01;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -2.219172914052801814932536217384040355682373046875000000e+00;
a[2] = 1.455135878947171557129536267893854528665542602539062500e+00;
a[3] = -2.484960738877830532800317087094299495220184326171875000e-01;
a[4] = 1.253882314727246607977129144728678511455655097961425781e-02;
break;

case 88200:
b[0] = 9.221909851156021020734954163344809785485267639160156250e-02;
b[1] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[2] = -1.844381970231204204146990832668961957097053527832031250e-01;
b[3] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[4] = 9.221909851156021020734954163344809785485267639160156250e-02;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -2.785795902923448696952846148633398115634918212890625000e+00;
a[2] = 2.727736758747444145711824603495188057422637939453125000e+00;
a[3] = -1.097007502819661528548067508381791412830352783203125000e+00;
a[4] = 1.550674356752141103132913713125162757933139801025390625e-01;
break;

case 96000:
b[0] = 8.182864044979756834585771230194950476288795471191406250e-02;
b[1] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[2] = -1.636572808995951366917154246038990095257759094238281250e-01;
b[3] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[4] = 8.182864044979756834585771230194950476288795471191406250e-02;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -2.856378516857566829401093855267390608787536621093750000e+00;
a[2] = 2.897640237559524045707348705036565661430358886718750000e+00;
a[3] = -1.225265958339703198376469117647502571344375610351562500e+00;
a[4] = 1.840048283551226071530493300087982788681983947753906250e-01;
break;

case 192000:
b[0] = 2.784755468532278815940728122768632601946592330932617188e-02;
b[1] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[2] = -5.569510937064557631881456245537265203893184661865234375e-02;
b[3] = 0.000000000000000000000000000000000000000000000000000000e+00;
b[4] = 2.784755468532278815940728122768632601946592330932617188e-02;
a[0] = 1.000000000000000000000000000000000000000000000000000000e+00;
a[1] = -3.333298856144166322224009491037577390670776367187500000e+00;
a[2] = 4.111467536240339448738723149290308356285095214843750000e+00;
a[3] = -2.222889041651291641699117462849244475364685058593750000e+00;
a[4] = 4.447204118126878991112960193277103826403617858886718750e-01;
break;

default:
AUBIO_ERROR ( "sampling rate of C-weighting filter is %d, should be one of\
8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 88200, 96000, 192000.\n",
samplerate );
return 1;

}

return 0;
}

aubio_filter_t * new_aubio_filter_c_weighting (uint_t samplerate) {
aubio_filter_t * f = new_aubio_filter(5);
if (aubio_filter_set_c_weighting(f,samplerate) != AUBIO_OK) {
del_aubio_filter(f);
return NULL;
}
return f;
}

+ 88
- 0
deps/aubio/src/temporal/c_weighting.h View File

@@ -0,0 +1,88 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef AUBIO_FILTER_C_DESIGN_H
#define AUBIO_FILTER_C_DESIGN_H

/** \file

C-weighting filter coefficients

This file creates a C-weighting digital filter, which reduces low and high
frequencies and enhance the middle ones to reflect the ability of the human
hearing.

The implementation is based on the following standard:

- IEC/CD 1672: Electroacoustics-Sound Level Meters, IEC, Geneva, Nov. 1996,
for A- and C-weighting filters.

See also:

- <a href="http://en.wikipedia.org/wiki/A-weighting">A-Weighting on
Wikipedia</a>
- <a href="http://en.wikipedia.org/wiki/Weighting_filter">Weighting filter on
Wikipedia</a>
- <a href="http://www.mathworks.com/matlabcentral/fileexchange/69">Christophe
Couvreur's 'octave' toolbox</a>

The coefficients in this file have been computed using Christophe Couvreur's
scripts in octave 3.0 (debian package 1:3.0.5-6+b2 with octave-signal
1.0.9-1+b1 on i386), with <pre> [b, a] = cdsign(1/Fs) </pre> for various
sampling frequencies (8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000,
88200, 96000, and 192000 Hz).

The sampling frequency should normally be higher than 20kHz, but most common
file sampling rates have been included for completeness.

\example temporal/test-c_weighting.c

*/

#ifdef __cplusplus
extern "C" {
#endif

/** create new C-design filter

\param samplerate sampling frequency of the signal to filter. Should be one of
8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 88200, 96000, and
192000 Hz

\return a new filter object

*/
aubio_filter_t *new_aubio_filter_c_weighting (uint_t samplerate);

/** set feedback and feedforward coefficients of a C-weighting filter

\param f filter object to get coefficients from
\param samplerate sampling frequency of the signal to filter. Should be one of
8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 88200, 96000, and
192000 Hz

*/
uint_t aubio_filter_set_c_weighting (aubio_filter_t * f, uint_t samplerate);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_FILTER_C_DESIGN_H */

+ 163
- 0
deps/aubio/src/temporal/filter.c View File

@@ -0,0 +1,163 @@
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/


/* Requires lsmp_t to be long or double. float will NOT give reliable
* results */

#include "aubio_priv.h"
#include "fvec.h"
#include "lvec.h"
#include "mathutils.h"
#include "temporal/filter.h"

struct _aubio_filter_t
{
uint_t order;
uint_t samplerate;
lvec_t *a;
lvec_t *b;
lvec_t *y;
lvec_t *x;
};

void
aubio_filter_do_outplace (aubio_filter_t * f, const fvec_t * in, fvec_t * out)
{
fvec_copy (in, out);
aubio_filter_do (f, out);
}

void
aubio_filter_do (aubio_filter_t * f, fvec_t * in)
{
uint_t j, l, order = f->order;
lsmp_t *x = f->x->data;
lsmp_t *y = f->y->data;
lsmp_t *a = f->a->data;
lsmp_t *b = f->b->data;

for (j = 0; j < in->length; j++) {
/* new input */
x[0] = KILL_DENORMAL (in->data[j]);
y[0] = b[0] * x[0];
for (l = 1; l < order; l++) {
y[0] += b[l] * x[l];
y[0] -= a[l] * y[l];
}
/* new output */
in->data[j] = y[0];
/* store for next sample */
for (l = order - 1; l > 0; l--) {
x[l] = x[l - 1];
y[l] = y[l - 1];
}
}
}

/* The rough way: reset memory of filter between each run to avoid end effects. */
void
aubio_filter_do_filtfilt (aubio_filter_t * f, fvec_t * in, fvec_t * tmp)
{
uint_t j;
uint_t length = in->length;
/* apply filtering */
aubio_filter_do (f, in);
aubio_filter_do_reset (f);
/* mirror */
for (j = 0; j < length; j++)
tmp->data[length - j - 1] = in->data[j];
/* apply filtering on mirrored */
aubio_filter_do (f, tmp);
aubio_filter_do_reset (f);
/* invert back */
for (j = 0; j < length; j++)
in->data[j] = tmp->data[length - j - 1];
}

lvec_t *
aubio_filter_get_feedback (const aubio_filter_t * f)
{
return f->a;
}

lvec_t *
aubio_filter_get_feedforward (const aubio_filter_t * f)
{
return f->b;
}

uint_t
aubio_filter_get_order (const aubio_filter_t * f)
{
return f->order;
}

uint_t
aubio_filter_get_samplerate (const aubio_filter_t * f)
{
return f->samplerate;
}

uint_t
aubio_filter_set_samplerate (aubio_filter_t * f, uint_t samplerate)
{
f->samplerate = samplerate;
return AUBIO_OK;
}

void
aubio_filter_do_reset (aubio_filter_t * f)
{
lvec_zeros (f->x);
lvec_zeros (f->y);
}

aubio_filter_t *
new_aubio_filter (uint_t order)
{
aubio_filter_t *f = AUBIO_NEW (aubio_filter_t);
if ((sint_t)order < 1) {
AUBIO_FREE(f);
return NULL;
}
f->x = new_lvec (order);
f->y = new_lvec (order);
f->a = new_lvec (order);
f->b = new_lvec (order);
/* by default, samplerate is not set */
f->samplerate = 0;
f->order = order;
/* set default to identity */
f->a->data[0] = 1.;
f->b->data[0] = 1.;
return f;
}

void
del_aubio_filter (aubio_filter_t * f)
{
del_lvec (f->a);
del_lvec (f->b);
del_lvec (f->x);
del_lvec (f->y);
AUBIO_FREE (f);
return;
}

+ 176
- 0
deps/aubio/src/temporal/filter.h View File

@@ -0,0 +1,176 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef AUBIO_FILTER_H
#define AUBIO_FILTER_H

/** \file

Digital filter

This object stores a digital filter of order \f$n\f$.
It contains the following data:
- \f$ n*1 b_i \f$ feedforward coefficients
- \f$ n*1 a_i \f$ feedback coefficients
- \f$ n*c x_i \f$ input signal
- \f$ n*c y_i \f$ output signal

For convenience, the samplerate of the input signal is also stored in the
object.

Feedforward and feedback parameters can be modified using
aubio_filter_get_feedback() and aubio_filter_get_feedforward().

The function aubio_filter_do_outplace() computes the following output signal
\f$ y[n] \f$ from the input signal \f$ x[n] \f$:

\f{eqnarray*}{
y[n] = b_0 x[n] & + & b_1 x[n-1] + b_2 x[n-2] + ... + b_P x[n-P] \\
& - & a_1 y[n-1] - a_2 y[n-2] - ... - a_P y[n-P] \\
\f}

The function aubio_filter_do() executes the same computation but modifies
directly the input signal (in-place).

The function aubio_filter_do_filtfilt() version runs the filter twice, first
forward then backward, to compensate with the phase shifting of the forward
operation.

Some convenience functions are provided:
- new_aubio_filter_a_weighting() and aubio_filter_set_a_weighting(),
- new_aubio_filter_c_weighting() and aubio_filter_set_c_weighting().
- new_aubio_filter_biquad() and aubio_filter_set_biquad().

\example temporal/test-filter.c

*/

#ifdef __cplusplus
extern "C" {
#endif

/** Digital filter

*/
typedef struct _aubio_filter_t aubio_filter_t;

/** filter input vector (in-place)

\param f filter object as returned by new_aubio_filter()
\param in input vector to filter

*/
void aubio_filter_do (aubio_filter_t * f, fvec_t * in);

/** filter input vector (out-of-place)

\param f filter object as returned by new_aubio_filter()
\param in input vector to filter
\param out output vector to store filtered input

*/
void aubio_filter_do_outplace (aubio_filter_t * f, const fvec_t * in, fvec_t * out);

/** filter input vector forward and backward

\param f ::aubio_filter_t object as returned by new_aubio_filter()
\param in ::fvec_t input vector to filter
\param tmp memory space to use for computation

*/
void aubio_filter_do_filtfilt (aubio_filter_t * f, fvec_t * in, fvec_t * tmp);

/** returns a pointer to feedback coefficients \f$ a_i \f$

\param f filter object to get parameters from

\return a pointer to the \f$ a_0 ... a_i ... a_P \f$ coefficients

*/
lvec_t *aubio_filter_get_feedback (const aubio_filter_t * f);

/** returns a pointer to feedforward coefficients \f$ b_i \f$

\param f filter object to get coefficients from

\return a pointer to the \f$ b_0 ... b_i ... b_P \f$ coefficients

*/
lvec_t *aubio_filter_get_feedforward (const aubio_filter_t * f);

/** get order of the filter

\param f filter to get order from

\return the order of the filter

*/
uint_t aubio_filter_get_order (const aubio_filter_t * f);

/** get sampling rate of the filter

\param f filter to get sampling rate from

\return the sampling rate of the filter, in Hz

*/
uint_t aubio_filter_get_samplerate (const aubio_filter_t * f);

/** get sampling rate of the filter

\param f filter to get sampling rate from
\param samplerate sample rate to set the filter to

\return the sampling rate of the filter, in Hz

*/
uint_t aubio_filter_set_samplerate (aubio_filter_t * f, uint_t samplerate);

/** reset filter memory

\param f filter object as returned by new_aubio_filter()

*/
void aubio_filter_do_reset (aubio_filter_t * f);

/** create new filter object

This function creates a new ::aubio_filter_t object, given the order of the
filter.

\param order order of the filter (number of coefficients)

\return the newly created filter object

*/
aubio_filter_t *new_aubio_filter (uint_t order);

/** delete a filter object

\param f filter object to delete

*/
void del_aubio_filter (aubio_filter_t * f);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_FILTER_H */

+ 100
- 0
deps/aubio/src/temporal/resampler.c View File

@@ -0,0 +1,100 @@
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "fvec.h"
#include "temporal/resampler.h"

#ifdef HAVE_SAMPLERATE

#if HAVE_AUBIO_DOUBLE
#error "Should not use libsamplerate with aubio in double precision"
#endif

#include <samplerate.h> /* from libsamplerate */

struct _aubio_resampler_t
{
SRC_DATA *proc;
SRC_STATE *stat;
smpl_t ratio;
uint_t type;
};

aubio_resampler_t *
new_aubio_resampler (smpl_t ratio, uint_t type)
{
aubio_resampler_t *s = AUBIO_NEW (aubio_resampler_t);
int error = 0;
s->stat = src_new (type, 1, &error); /* only one channel */
if (error) {
AUBIO_ERR ("Failed creating resampler: %s\n", src_strerror (error));
del_aubio_resampler(s);
return NULL;
}
s->proc = AUBIO_NEW (SRC_DATA);
s->ratio = ratio;
return s;
}

void
del_aubio_resampler (aubio_resampler_t * s)
{
if (s->stat) src_delete (s->stat);
AUBIO_FREE (s->proc);
AUBIO_FREE (s);
}

void
aubio_resampler_do (aubio_resampler_t * s, const fvec_t * input, fvec_t * output)
{
s->proc->input_frames = input->length;
s->proc->output_frames = output->length;
s->proc->src_ratio = (double) s->ratio;
/* make SRC_PROC data point to input outputs */
s->proc->data_in = (float *) input->data;
s->proc->data_out = (float *) output->data;
/* do resampling */
src_process (s->stat, s->proc);
}

#else
struct _aubio_resampler_t
{
void *dummy;
};

aubio_resampler_t *
new_aubio_resampler (smpl_t ratio UNUSED, uint_t type UNUSED)
{
AUBIO_ERR ("aubio was not compiled with libsamplerate\n");
return NULL;
}

void
del_aubio_resampler (aubio_resampler_t * s UNUSED)
{
}

void
aubio_resampler_do (aubio_resampler_t * s UNUSED, const fvec_t * input UNUSED, fvec_t * output UNUSED)
{
}
#endif /* HAVE_SAMPLERATE */

+ 65
- 0
deps/aubio/src/temporal/resampler.h View File

@@ -0,0 +1,65 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef AUBIO_RESAMPLER_H
#define AUBIO_RESAMPLER_H

/** \file

Resampling object

This object resamples an input vector into an output vector using
libsamplerate. See http://www.mega-nerd.com/SRC/

*/

#ifdef __cplusplus
extern "C" {
#endif

/** resampler object */
typedef struct _aubio_resampler_t aubio_resampler_t;

/** create resampler object

\param ratio output_sample_rate / input_sample_rate
\param type libsamplerate resampling type, see http://www.mega-nerd.com/SRC/api_misc.html#Converters

*/
aubio_resampler_t *new_aubio_resampler (smpl_t ratio, uint_t type);

/** delete resampler object */
void del_aubio_resampler (aubio_resampler_t * s);

/** resample input in output

\param s resampler object
\param input input buffer of size N
\param output output buffer of size N*ratio

*/
void aubio_resampler_do (aubio_resampler_t * s, const fvec_t * input,
fvec_t * output);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_RESAMPLER_H */

+ 70
- 0
deps/aubio/src/types.h View File

@@ -0,0 +1,70 @@
/*
Copyright (C) 2003-2015 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef AUBIO_TYPES_H
#define AUBIO_TYPES_H

/** \file

Definition of data types used in aubio

*/

#ifdef __cplusplus
extern "C" {
#endif

#ifndef HAVE_AUBIO_DOUBLE
/** defined to 1 if aubio is compiled in double precision */
#define HAVE_AUBIO_DOUBLE 0
#endif

/** short sample format (32 or 64 bits) */
#if !HAVE_AUBIO_DOUBLE
typedef float smpl_t;
/** print format for sample in single precision */
#define AUBIO_SMPL_FMT "%f"
#else
typedef double smpl_t;
/** print format for double in single precision */
#define AUBIO_SMPL_FMT "%lf"
#endif
/** long sample format (64 bits or more) */
#if !HAVE_AUBIO_DOUBLE
typedef double lsmp_t;
/** print format for sample in double precision */
#define AUBIO_LSMP_FMT "%lf"
#else
typedef long double lsmp_t;
/** print format for double in double precision */
#define AUBIO_LSMP_FMT "%Lf"
#endif
/** unsigned integer */
typedef unsigned int uint_t;
/** signed integer */
typedef int sint_t;
/** character */
typedef char char_t;

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_TYPES_H */

+ 92
- 0
deps/aubio/src/utils/log.c View File

@@ -0,0 +1,92 @@
/*
Copyright (C) 2016 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "log.h"

/** array of pointers to logging functions, one per level */
static aubio_log_function_t aubio_log_function[AUBIO_LOG_LAST_LEVEL];
/** array of pointers to closure passed to logging functions, one per level */
static void* aubio_log_user_data[AUBIO_LOG_LAST_LEVEL];
/** buffer for logging messages */
static char aubio_log_buffer[512];

/** private function used by default by logging functions */
void
aubio_default_log(sint_t level, const char_t *message, void * data UNUSED)
{
FILE *out;
out = stdout;
if (level == AUBIO_LOG_ERR || level == AUBIO_LOG_DBG || level == AUBIO_LOG_WRN) {
out = stderr;
}
fprintf(out, "%s", message);
//fflush(out);
}

uint_t
aubio_log(sint_t level, const char_t *fmt, ...)
{
aubio_log_function_t fun = NULL;

va_list args;
va_start(args, fmt);
vsnprintf(aubio_log_buffer, sizeof(aubio_log_buffer), fmt, args);
va_end(args);

if ((level >= 0) && (level < AUBIO_LOG_LAST_LEVEL)) {
fun = aubio_log_function[level];
if (fun != NULL) {
(*fun)(level, aubio_log_buffer, aubio_log_user_data[level]);
} else {
aubio_default_log(level, aubio_log_buffer, NULL);
}
}
return AUBIO_FAIL;
}

void
aubio_log_reset(void)
{
uint_t i = 0;
for (i = 0; i < AUBIO_LOG_LAST_LEVEL; i++) {
aubio_log_set_level_function(i, aubio_default_log, NULL);
}
}

aubio_log_function_t
aubio_log_set_level_function(sint_t level, aubio_log_function_t fun, void * data)
{
aubio_log_function_t old = NULL;
if ((level >= 0) && (level < AUBIO_LOG_LAST_LEVEL)) {
old = aubio_log_function[level];
aubio_log_function[level] = fun;
aubio_log_user_data[level] = data;
}
return old;
}

void
aubio_log_set_function(aubio_log_function_t fun, void * data) {
uint_t i = 0;
for (i = 0; i < AUBIO_LOG_LAST_LEVEL; i++) {
aubio_log_set_level_function(i, fun, data);
}
}

+ 99
- 0
deps/aubio/src/utils/log.h View File

@@ -0,0 +1,99 @@
/*
Copyright (C) 2016 Paul Brossier <piem@aubio.org>

This file is part of aubio.

aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef AUBIO_LOG_H
#define AUBIO_LOG_H

#ifdef __cplusplus
extern "C" {
#endif

/** \file

Logging features

This file specifies ::aubio_log_set_function and
::aubio_log_set_level_function, which let you define one or several custom
logging functions to redirect warnings and errors from aubio to your
application. The custom function should have the prototype defined in
::aubio_log_function_t.

After a call to ::aubio_log_set_level_function, ::aubio_log_reset can be used
to reset each logging functions to the default ones.

\example utils/test-log.c

*/

/** list of logging levels */
enum aubio_log_level {
AUBIO_LOG_ERR, /**< critical errors */
AUBIO_LOG_INF, /**< infos */
AUBIO_LOG_MSG, /**< general messages */
AUBIO_LOG_DBG, /**< debug messages */
AUBIO_LOG_WRN, /**< warnings */
AUBIO_LOG_LAST_LEVEL, /**< number of valid levels */
};

/** Logging function prototype, to be passed to ::aubio_log_set_function

\param level log level
\param message text to log
\param data optional closure used by the callback

See @ref utils/test-log.c for an example of logging function.

*/
typedef void (*aubio_log_function_t)(sint_t level, const char_t *message, void
*data);

/** Set logging function for all levels

\param fun the function to be used to log, of type ::aubio_log_function_t
\param data optional closure to be passed to the function (can be NULL if
nothing to pass)

*/
void aubio_log_set_function(aubio_log_function_t fun, void* data);

/** Set logging function for a given level

\param level the level for which to set the logging function
\param fun the function to be used to log, of type ::aubio_log_function_t
\param data optional closure to be passed to the function (can be NULL if
nothing to pass)

*/
aubio_log_function_t aubio_log_set_level_function(sint_t level,
aubio_log_function_t fun, void* data);

/** Reset all logging functions to the default one

After calling this function, the default logging function will be used to
print error, warning, normal, and debug messages to `stdout` or `stderr`.

*/
void aubio_log_reset(void);

#ifdef __cplusplus
}
#endif

#endif /* AUBIO_LOG_H */

+ 1
- 1
plugins/Cardinal/src/AudioToCVPitch.cpp View File

@@ -120,7 +120,7 @@ struct AudioToCVPitch : Module {

if (detectedPitchInHz > 0.f && pitchConfidence >= params[PARAM_CONFIDENCETHRESHOLD].getValue() * 0.01f)
{
const float linearPitch = 12.f * (log2f(detectedPitchInHz / 440.f) + octave - 1) + 69.f;
const float linearPitch = 12.f * (log2f(detectedPitchInHz / 440.f) + octave - 5) + 69.f;
cvPitch = std::max(-10.f, std::min(10.f, linearPitch * (1.f/12.f)));
lastKnownPitchInHz = detectedPitchInHz;
cvSignal = 10.f;


Loading…
Cancel
Save